
Investigation into the Design of

a Remote Maintenance System

for Clinical Analysers

A thesis submitted to Dublin City University

for a Master’s Degree in Computer Science

June, 2001

E. G. Maher, Dip. E. E., BSc. (Eng)

Control Systems and Electrical Engineering

Dublin Institute of Technology

Supervisor : Frank Duignan

Declaration

I hereby certify that this material, which I now submit for assessment

on the programme of study leading to the award of Master’s Degree, is

entirely my own work and has not been taken from the work of others

save and to the extent that such work has been cited and acknowledged

within the text of my work.

Signed : /

Eamon Maher

Date : Ocini, o&M

Acknowledgements

The author is greatly indebted to all the people who assisted with the research

described in this thesis, particularly Mr. Frank Duignan who supervised the project.

Dr. Jonathan Fisher, as head o f the Department of Control Systems and Electrical

Engineering in Kevin Street (DIT), merits recognition for gathering together the

department’s many talented professionals who were always eager to dispense

advice, support and encouragement whilst providing ready access to necessary

equipment and computer facilities.

The author is grateful to the Dublin Institute of Technology (DIT) for

providing the funding which made it feasible to undertake this research

The personnel of the clinical Pathology Laboratory of Saint James’s Hospital in

Dublin were indispensable as a valuable source o f knowledge about the medical

environment and its stringent requirements. Peter Gaffney was particularly key and

was always forthcoming with his extensive clinical and technical knowledge.

Support and distraction were cheerfully dispensed by the hapless souls in the

Industrial Control Centre (Ciaran, Damon, Dominic, Rory, Sean) and the author’s

roommate (Raymond Rochford). A special mention goes to Sinead who brought

happiness and light to the darkest depths o f research.

Finally, the author wishes to dedicate this thesis to his family who ceaselessly

provided support throughout his extended academic career.

Abstract
“Investigation into the Design o f a Remote Maintenance System fo r Clinical

Analysers”

E. G. Maher, Dip. E. E., BSc. (Eng)

This is a thesis study o f the design considerations involved in interfacing

medical analysers to computer systems for remote monitoring.

Most medical analysers provide a serial port connection for interfacing to a

computer. Due to the limitations of this physical link, it is necessary for the

interfacing computer to be within a radius of several metres. This computer can

perform all the data monitoring and processing of the medical analyser. Monitoring

the operational performance of a medical analyser can assist in maintenance

programs. If it relays relevant data to a remote computer, a powerful remote

maintenance and monitoring system can be developed when the remote monitoring

computer collects data from a number of remote medical analysers.

To satisfy the demands of remote maintenance and monitoring the

T ra n sm iss io n Control Protocol/Internet Protocol (TCP/P) network protocol was

investigated. The existing worldwide base of support for this protocol on

numerous platforms and its universal addressing scheme made it the preferred

choice for “openness” concerns. The relative merits of User Datagram Protocol

(UDP) and Transmission Control Protocol (TCP) were evaluated and the nature of

the reliable stream service offered by TCP was selected as more appropriate to the

medical environment where data loss is unacceptable.

A Client/Server architecture was investigated with a central server and remote

clients which were connected to clinical analysers. The monitoring computer local

to an analyser connects to the server using the TCP/IP network protocol. This

Client-Server configuration is particularly suited to the distributed nature of

medical laboratories where instruments are typically not centralised and the lack of

availability o f powerful computers makes it necessary to resort to using simple

computers locally to the instrument to relay data to the more powerful server

computer.

The work was carried out with the co-operation o f the Central Pathology

Laboratory o f Saint James’s hospital in Dublin.

Table of Contents
1. IN T R O D U C T IO N ...5

2. T H E E N V IR O N M E N T ..9

2.1. H ospital In fo r m a tio n System s (H IS)... 9

2.2. La b o r a to r y In fo r m a tio n System s (LIS)..11

2.3. T he M o d ern M edica l Labo ra to ry En v ir o n m en t .. 14

2.3.1. Operational Availability o f Laboratory Instruments..............................15

2.3.2. Computer-Based Quality Assurance Schemes.............. 16

2.4. C linical A n a l y s is17

2.5. C linical An a l y s e r s ..21

2.5.1. Operational Principles,...... 23

2.5.2. Physical Size... 24

2.6. Co m pu ter isa tio n of C linical A n a l y s is ..25

2.7. D ec en tr a lisa tio n of Labo ra to ry Se r v ic e s ... 27

2.8. Co n c l u s io n ...28

3. U S E R R E Q U IR E M E N T S ..30

3.1. Categ o ries of U s e r s .. 30

3.1.1. Operators o f Laboratory Analysers..31

3.1.2. Operators o f Remote Analysers... 31

3.1.3. Test Requesters.. 32

3.1.4. Laboratory Administrators.. 32

3.2. Sa m ple P r o c e s s in g ...33

3.3. G en er a l U s e r R e q u ir e m e n t s .. 34

3.4. Su m m a r y ..35

4. T H E D E S IG N S O L U T IO N ..36

4.1. F ou n d a tio n G u id e l in e s .. 36

4.2. T h e G e n er a l C o m p o n e n t s .. 38

4.3. A vailable Se r v ic e s .. 40

4.4. A n a l y ser to H o st Co m p u t e r .. 41

4.5. T ra n sa c tio n -b a sed A r c h itec tu r e ... 43

4.6. C lient/ s e r v e r A r c h it e c t u r e .. 45

4.7. D istribu ted C o m p o n e n t s .. 47

4.8. In ter a c tiv e Co m m u n ica tio n B etw een Oper a to r s .. 50

4.9. E x a m p l e ... 52

5. IN S T R U M E N T IN T E R F A C IN G ... 55

5.1. In tr o d u ctio n to D a ta Ga th er in g ...55

5.2. M ed ica l D a ta M a n a g em en t Sy s t e m s ..57

5.3. A n a l y ser T e s t s .. 59

5.3.1. Sample Tests................ 59

5.3.2. Calibration Tests...59

5.3.3. Control Tests... 60

5.4. A n a ly ser D a t a .. 61

5.4.1. Fixed Length Messages...61

5.4.2. Variable Length Messages.................................. 62

5.5. A n a ly ser P hy sic a l In t e r f a c e ..63

5.6. A n a ly ser So ftw a re In t e r fa c e ...64

5.6.1. Visual Basic Communications Control............................ 65

5.6.2. C Dynamic Link Library... 66

5.7. An a ly ser M essa g e In t e r p r e t a t io n ... 69

5.7.1. General Parsing Techniques..69

5.7.2. Advanced Instrument Interface (A.I. I) .. 71

5.7.3. Static Parser Generator.. 72

5.7.4. Adopted Module.. 74

6. T R A N S A C T IO N A R C H IT E C T U R E ... 76

6.1. T r a nsaction St r u c t u r e ... 78

6.2. T r a nsaction P r o c e ss o r81

6.3. Service P r o c e d u r e s .. 85

6.3.1. Opening and Closing the Link.. 85

6.3.2. Privileges and Security Issues.. 86

6.3.3. Obtaining Additional Information... 87

6.3.4. Enquiring the Status 88

6.3.5. Data Storage and Retrieval... 88

6.3.6. Interactive Chat... 91

6.3.7. Tutorial Instruction... 93

1. D A TA B A SE IN T E R F A C E ..95

7.1. In tr o d u ctio n to S Q L ..96

7.2. T ra n sferrin g SQL Sta t e m e n t s ... 97

7.3. Da ta ba se So ftw a r e In ter fa c e .. 99

7.3.1. Visual Basic Data Control...99

7.3.2. Simplified Database API..101

8. R E M O T E C O N N E C T IV IT Y .. 104

8.1. In tr o d u ctio n to N etw o rk P ro to c o ls .. 104

8.1.1. Open Systems Interconnection Reference Model.................................105

8.1.2. Internet Protocol Network Stack.. 107

8.2. TCP/IP C o m p o n e n t s ... 109

8.2.1. Windows Sockets API..109

8.2.2. Types o f Data Transfers in TCP/IP... I l l

8.3. P ro g ressiv e A pplica tion D ev elo pm en ts ... 112

8.3.1. Test Application 1: Host Name and Service Resolution........................ 112

8.3.2. Test Application 2: User Datagram Protocol Client and Server..............113

8.3.3. Test Application 3: Asynchronous Stream-Connected Client and Server 114

8.3.4. Test Application 4: Simplified API Implemented as a DLL.................... 114

8.3.5. Test Application 5: Asynchronous Peer-to-Peer Communication............ 117

8.3.6. Conclusions from Progressive Application Development.......................118

8.4. T elephon y Su p p o r t ..119

8.4.1. Telephony Standards..120

8.4.2. Controlling Modems.. 121

8.4.3. Application Programming Interface................................ 122

8.4.4. Telephony Scenarios.. 122

9. C O N C L U SIO N S .. 124

9.1. D esign Im p l e m e n t a t io n ...124

9.2. In st a lling th e A p pl ic a t io n ..126

9.2.1. Creation o f the Physical Media... 126

9.2.2. Deployment o f the Files...126

9.2.3. Registration o f Binaries...127

9.2.4. Initial Configuration... 127

9.2.5. Third-Party Installation Product..128

9.3. E v a l u a tio n ...128

9.3.1. User Appraisal..128

9.3.2. Suitability o f Architecture.. 130

9.3.3. Extensibility o f Architecture....................................... 133

9.4. F u tu re D e v e l o p m e n t s ... 134

9.4.1. Enhancements.. 125

9.4.2. Improvements.............................. 138

10. R E FE R E N C E S... 140

APPENDIX A A-l

APPENDIX B B-l

APPENDIX C C-l

APPENDIX D D-l

APPENDIX E E-l

Glossary of Acronyms
The following is a list of acronyms used throughout this thesis:

A ll Advanced Instrument Interface

A N SI American National Standards Institute

API Application Programming Interface

CCITT Comité Consultatif Internationale de Télégraphique et Téléphonique

(International Telegraph and Telephone Consultative Committee)

CEN Comité European de Normalisation (European Committee for Standardisation)

CTI Computer-Telephony Integration

DARPA D efence Advanced Research Projects Agency

DBM S DataBase Management System

DLL Dynamic Link Library

GP General Practitioner

GUI Graphical User Interface

HIS Hospital Information System

ICMP Internet Control M essage Protocol

ICU Intensive Care Unit

IGMP Internet Group M essage Protocol

IP Internet Protocol

ISO International Standards Organisation

IT Information Technology

LA N Locai Area Network

LIS Laboratory Information System

LTQC Long Term Quality Control

MIC Module Identification Code

M NP M icrocom Networking Protocol

M OM Message-Oriented Middleware

OSI Open Systems Interconnect

PPP Point-to-Point Protocol

Q A Quality Assurance

RFC Request For Comment

SLIP Serial Line Interface Protocol

SQL Structured Query Language

SRL Service Request List

TAPI Telephony API

TCP Transport Control Protocol

TIN Transaction Identification Number

UDP User Datagram Protocol

1. Introduction
The medical world is one o f the few remaining Information Technology-

starved domains. Whereas industry and commerce have embraced the advantages

of computer analysis as a competitive tool and distributed computing as an

empowering technology for more efficient work methodologies, the medical world

still relies predominantly on paper trails o f information and documentation. The

exploitation o f Information Technology in the medical domain presents substantial

opportunities and is receiving considerable attention from a number of sources

worldwide.

Any initiatives for the adoption o f Information Technology as applied to the

medical domain have tended to be sporadic and on a small scale due to limited

funding. To date, Information Technology has not been viewed as a critical

component o f the healthcare environment, and is subject to the budgetary

priorities o f various ministers and governments [ALLE - 91][BA K K - 88].

The perception of Information Technology as applied to the medical domain

(medical infomatics) as one o f high-tech indulgence limited to over-funded

departments has changed to one o f competitive advantage offering cost-effective

benefits and is indeed now seen as a critical factor to survival. As the global

population increases and the number o f people who require extra medical care

also increases due to ageing demographics, efficient and cost-effective delivery of

healthcare services has focused attention on the costs associated with medical

services.

Due to the advances have been made in all aspects o f healthcare, the resulting

information created (as well as the increased complexity o f interacting data

between the various diverse components of an integrated healthcare service) has

produced an explosion in the volume of data to be collected, processed, correlated

and stored. However the production o f masses o f data does not necessarily mean

that useful information is automatically available [CONN - 80], Any effective

data management system must collect, collate and distribute data from numerous

Page 5

sources in the healthcare environment. These sources are as diverse as surgical,

pharmacological, laboratory, transportation, administration, billing, and combine

to deliver an integrated healthcare service. They all have common elements but

also numerous differences which complicate their smooth interaction from an

information exchange point o f view.

Soaring healthcare costs combined with the additional expense o f managing

such huge volumes of data have forced healthcare service providers to recognise

the need to optimise their delivery of care and improve the efficiency and

effectiveness o f the service. Traditional paper-based manual record/data

management systems are incapable o f administering the volume o f data which is

currently utilised by healthcare systems and will balk under future loading

predictions. As in many other industries, computerisation offers great potential for

a cost-effective solution to the integration of the healthcare environment and its

rigorous data management demands.

Some progress has been made in the application of information technology

techniques to certain areas o f patient care. Legacy database systems are now

growing in volume with records of demographic details for the administration of

patients. Medical imaging is regularly digitised and stored on some form of

computer archival and retrieval system. Clinical laboratories use increasingly

sophisticated instrumentation which is often interfaced with local computer

systems to form part o f a laboratory-wide computing environment.

However these isolated implementations o f Information Technology are rarely

integrated completely with other Laboratory Information Systems (LIS’s) or

Hospital Information Systems (HIS’s) and result in hybrid data management

systems which by necessity cling to the traditional documentation and reporting

methods whilst struggling to embrace the waves o f advancing technology.

Standardisation bodies such as the American Society for Testing and Materials

(ASTM) and the European Committee for Standardisation (Comité European de

Normalisation, CEN) are currently working towards developing standards for the

Page 6

communication o f data throughout several sections o f integrated healthcare

systems. However, this process is ongoing and it is expected to take several years

before a definitive standard is universally accepted and even longer before it is

implemented on a global scale.

There is a very clear and immediate need for opening the disparate computer-

enabled medical environments and their related generated data to a wider

audience. For example, if the extensive data generated in Laboratory Information

Systems were to be correlated with the wealth o f demographic and historical data

that is available through administrative data sources, then the improved healthcare

delivery would be substantial. Diagnoses would be more reliable and more rapid

as environmental factors due to the patient’s living situation become integrated

with the physician’s decision analysis.

In an attempt to realise this goal, this thesis has addressed the need to develop

an architecture that facilitates the cross-integration of disparate data sources.

Specifically, this thesis focuses on opening the laboratory-wide computing

environment to a wider audience, as one of many interim solutions while awaiting

the arrival o f an embracing set o f standards.

The design has utilised many existing technologies in an attempt to leverage

the substantial investment in those technologies. Serial communications have been

used to interface to instruments, Structured Query Language (SQL) to enable data

storage and retrieval in databases, and the predominant Internet protocol, TCP/IP,

to provide remote data communications. These technologies have become the de

facto standards in their respective fields and have been in widespread use for

numerous years. Such established and mature implementations supply robust

foundations for application development without the unknowns and quirks o f new

cutting-edge methodologies. This is especially important in the medical domain

where fault intolerance is essential.

The basic layout o f this thesis follows an analysis-design-implementation

format. Following upon this introductory chapter, chapter two introduces the

Page 7

medical domain in general and the clinical laboratory in particular. It imparts an

appreciation o f the environment under analysis and highlights some o f the related

problems and difficulties.

The third chapter presents the specific requirements which drive the resolution

of the design concept. These requirements are addressed in relation to the various

categories o f users who impact on the scope o f this research.

The fourth chapter proposes an architecture to satisfy the preceding user

requirements and is referred to as the design concept. It also discusses the

components necessary to fulfil the design concept and how they interact.

The ensuing three chapters divulge the specifics o f the implementation of the

components. The three basic components are the interface to the instrument, the

transmission o f data throughout the system (particularly the storage and retrieval

of data obtained from the instrument), and remote connectivity for distributed

processing.

The final chapter brings all the components together again and critiques the

efficacy o f the total design solution with respect to satisfying the user

requirements as they were described in the third chapter.

Page 8

2. The Environment

2.1. Hospital Information Systems (HIS)

The goal o f a Hospital Information System (HIS) is to integrate all information

processing aspects o f the hospital from numerous sources [BALL - 91], However,

the integration o f data from such diverse sources is not a trivial matter and the

resulting engineering solution is always complex.

Numerous areas o f the medical domain have local data management systems.

An accounts department could have a billing system integrated with a patient

demographic database over a Local Area Network (LAN) within the administrative

offices. Stores and purchasing departments may have an inventory and

warehousing system for efficient space and stock management. Whilst laboratories

may have Laboratory Information Systems (LIS) to support the processing of

samples and the corresponding analytical results.

One means of achieving the above goal which is currently being studied by the

medical informatics community ([HL7 - 90], [ASTM - 90], [DEMO - 92]) is

through the utilisation o f a computer-based Medical Record for collecting data

relating to an individual patient from all medical areas. When a generic standard for

the computer-based Medical Record is agreed upon, it will accommodate the

meaningful exchange o f medical information between healthcare service providers

and their supporting agencies throughout the world [BAKK - 88][ALLE - 91],

This would result in consistent healthcare treatment given to a patient which is

independent o f wherever a patient may require medical services. The required

medical history of the patient would be available at the point o f treatment despite

the possibility o f the patient’s primary healthcare service provider being on the

opposite side o f the globe.

There are several widely published protocols for the communication of data

between hospital computer systems. The most common ones are Health Level 7

(HL7)[HL7 - 90], ASTM E 1238-90 [ASTM - 90], and CEN ENV 1613 [DEMO

Page 9

- 92], As yet no protocol has emerged as the dominant de-facto standard or as an

agreed standard and considerable effort is being exerted in those directions.

A typical HIS is shown in Figure 2.1. Such HIS’s are usually composed of a

vast selection of different systems, each with their own hardware and protocol

dependencies. The cost o f completely replacing these systems is prohibitive and so

a HIS must merge the components into a coherently operating union. Different

network technologies must inter-operate (twisted pair with coaxial; ethernet with

token ring; TCP/IP with IPX; Novell NetWare with Microsoft Networks);

operating systems must handle data and file formats from other operating systems

(Windows and DOS with Dec Alpha and UNIX). Its operation tends not to be

seamless and frequently is not complete. Integration compliancy requires

proprietary turnkey solutions which are difficult and expensive to maintain.

Figure 2.1 The diverse makeup o f a typical Hospital Information System

(HIS)

These monolithic legacy systems are based on the computing architecture

model o f mainframe computer systems. As such they are expensive to install and

maintain, and lack the flexibility to be incorporated into the modern computing

Page 10

paradigm of “downsizing” which tends to be the inevitable solution to the problem

of soaring costs and competitive markets.

The component of the HIS which is pertinent to the research documented in

this thesis is the LIS. In particular, clinical instruments and how they interface to

the overall Information Technology (IT) structure.

2.2. Laboratory Information Systems (LIS)

Traditionally the majority of medical analysers were located within the confines

of a hospital site and typically provided services for the hospital, local GP

surgeries, community health clinics, and other local hospitals. It was also a regional

centre for specific core competencies where specialised expertise and equipment

were centralised due to financial and resource restrictions. Thus these specialised

services would necessarily have been available to a very wide area.

As the coverage area for the provision of clinical analysis has grown, the

volume of laboratory test requests has increased. Technological advances have also

increased the variety o f tests available to assist healthcare professionals. These

increases in volume and variety have driven (and been driven by) the development

of automated clinical analysers and this has resulted in the production of large

volumes of data [KELL - 74][BENS - 80], at the rate o f thousands of tests per

hour.

In order to manage these large volumes of data, Laboratory Information

Systems (LIS’s) have been developed. Services regularly supported by a modern

LIS include patient demographic and test request entry, the generation of work-

lists, data capture from instruments, data manipulation, manual test entry, report

validation, report generation, accounting facilities, and comprehensive database

management. Sometimes these LIS’s are incorporated into larger data management

systems like Hospital Information Systems (HIS’s). They can support the

connection of several analysers to a LIS (Figure 2.2) and can even support multiple

LIS’s servicing one or more analysers (Figure 2.3).

Page 11

Figure 2.2 Multiple analysers connected to a Laboratory Information

System (LIS)

However, the absence of a globally accepted analyser/computer interface

standard necessitates the development of customised interface software solutions

which are specific to each new analyser/LIS configuration. The American

Standards for Testing Materials (ASTM) and the European Committee for

Standardisation (CEN) are working on publishing a standard for the

analyser/computer interface (ASTM 1394 and CEN/TC251 WG5), but that will

take several years.

Figure 2.3 Multiple Laboratory Information Systems (LIS’s) servicing one

instrument

Page 12

In the meantime more demands are being placed on current LIS’s to process

more medical requests at faster rates. Any expansion of a LIS to cope with these

increasing demands tends to be labour and time intensive and further difficulties

tend to occur owing to cumbersome licensing agreements (of a proprietary nature).

Cost-effective solutions provided by third party developers are generally difficult if

not impossible to implement due to licensing restrictions and unforeseen

architectural design difficulties.

In an attempt to utilise the investment in these legacy systems, several

proprietary systems have been produced in ad-hoc isolated developments which

leverage the data assimilation and management features supported by the existing

LIS’s, while utilising new computer design concepts to fulfil specific local

requirements [LEWA - 9 2][0 ’M 0 - 88][MOLL - 90], The size and fragmentation

of this market have resulted in isolated software solutions which in fact are

solutions that adhere to few standards and exist as “stand-alone” solutions to

problems shared by many laboratories (for example an order entry system for an

Hitachi 717 mixed chemistry analyser [GAFF - 96]). So, whilst the problems are

shared, the solutions are not turnkey and are generally difficult to transfer to other

laboratory locations due to the lack of standards.

In order to assist with the management o f the data administered by a LIS, it has

been shown that computer-based Decision Support Systems (DSS’s) can be used

for data reduction and information enhancement [O’MO - 88], With the

incorporation of the knowledge of experts into DSS’s it has been shown that

DSS’s have applications in many different areas o f laboratory medicine [BENS -

80], For example they have been shown to be of benefit in monitoring the

performance o f automated clinical chemistry analysers since Quality Assurance,

maintenance, and fault diagnosis are areas ideally suited to the use o f DSS’s

[GROT-9 1] ,

Whilst many successful DSS’s have been developed at a local level [SPAC -

87], they essentially tend to be third party proprietary solutions and suffer the

Page 13

corresponding problems outlined above: they are specifically designed to satisfy

local requirements and are often difficult to transfer to other locations and integrate

with other data management systems due to the absence o f an adopted data

communication standards. They also tend to have an over-reliance on local

personnel who were key to the implementation of the DSS, and consequently their

continued performance depends on those key personnel - not a stable situation

given the current employment trend o f increasing mobility o f employees within the

medical infomatics industry. This inability to easily transfer DSS’s between

laboratories has limited their scope of implementation.

2.3. The Modern Medical Laboratory Environment

Just as the data administration overhead has increased throughout areas of the

medical domain, clinical laboratories have had to accommodate a substantial

increase in the volume of clinical services rendered.

The provision of a clinical analysis service is dependent on the ability of the

laboratory to deliver accurate data within an acceptable time-frame from when it is

requested. Instrument failure may have significant cost and patient health

implications resulting from lost production, staff idleness and untimely sample

reports. Lack of confidence in the ability o f a laboratory to deliver reports on time

may necessitate the healthcare service seeking a more reliable clinical analysis

provider in order to deliver an acceptable healthcare service. This other clinical

analysis provider would invariably be external to the hospital’s sphere o f direct

influence and would introduce issues o f regulation and Quality Assurance of the

service. Additional indirect costs would be incurred due to the expensive clinical

laboratory resources being under-utilised as urgent samples get sub-contracted to

external laboratories. Therefore a clinical laboratory must ensure that it sustains its

reputation o f timely analysis by using instruments in an operational state and

delivering accurate and timely reports on all sample analyses.

Page 14

The operational availability o f an instrument is dependent on its reliability,

maintainability, and staff training and experience. The reliability of an instrument is

a measure of its ability to maintain the specified performance, whilst the

maintainability is the ease o f rectifying a failure situation [ARS - 80], Technically

competent staff may be able to sustain sufficient operational availability for an

instrument which has low reliability but high maintainability, whereas less well

trained staff may require an instrument with greater reliability to offset their lack of

technical competence in order to deliver an equivalent level o f operational

availability. This would require more expensive instruments which deliver greater

reliability, or an aggressive continuous training program for laboratory staff. The

costs o f training staff to a sufficiently high level o f competency can become

prohibitive if the rate of instrument replacement or acquisition is high, or if staff

turnover is high.

An effective maintenance program can minimise the loss o f operational

availability. Maintenance is traditionally separated into the two areas of

preventative and corrective maintenance. Preventative maintenance attempts to

anticipate problems before they materialise by defining procedures to be performed

at specific time intervals. The time intervals are calculated in accordance with

component lifetimes and expected usage, and therefore can only accommodate

anticipated component performance [ROBE - 80], Corrective maintenance

encompasses the procedures necessary to restore operational availability when a

fault has occurred.

The costs incurred due to a maintenance program (for example downtime costs

or component replacement costs) can be decreased if the preventative maintenance

schedule is based on the actual status of components rather than the anticipated

status. Thus component replacement costs would be incurred only when necessary

rather than when dictated by a linear, inflexible preventative maintenance schedule

based on predicted component lifetimes and expected usage.

2.3.1. Operational Availability of Laboratory Instruments

Page 15

The implementation o f a maintenance program is defined in the Quality

Assurance scheme being exercised in the laboratory. It is within the guidelines and

procedures o f the Quality Assurance scheme that the effectiveness of a

maintenance program can be tuned.

2.3.2. Computer-Based Quality Assurance Schemes

An experienced operator may be able to intuitively assess the status of an

instrument by visual inspection and by monitoring an instrument’s status and report

messages. However it can take a considerable amount of time and resources for an

operator to become sufficiently acquainted with an instrument so that they can

correctly interpret most situations that may arise and deal with them quickly.

However, there also remains the possibility of the occurrence of a situation that

even an experienced operator has not yet encountered, such as a low-level

hardware failure for example, and may result in extended periods of inoperation.

Automating the intuitive deductions o f an experienced operator is not an easy

task but the benefits o f such a system would include assisting inexperienced

operators whenever unexpected situations arise as well as freeing resources which

may be necessary to support inexperienced operators. Even experienced operators

may not encounter all possible failure situations due to the complexity of modern

instruments and to their improved reliability [MOLL - 90], and over time would

also benefit from such a system. This is particularly relevant for a typical clinical

laboratory which does not have staff dedicated to instrument maintenance and

quality control duties. Instead, performing maintenance protocols and the logging

of all maintenance procedures performed would thereby form only a small part of

the responsibilities o f clinical laboratory technicians.

This is unlike procedures in industries such as the Armed Forces, the Nuclear

Energy and Aviation industries where maintenance is considered critical and strict

documentation and control procedures are practised [HOLM - 92], Computer-

based systems for the control of maintenance scheduling [PETE - 89], corrective

maintenance, and rapid and accurate fault diagnosis [CARR - 86][MALK - 86]

Page 16

are in existence in those environments. Such comprehensive Quality Assurance

schemes require the assimilation o f data from numerous sources and their timely

correlation and integration are only possible through the extensive use of data

management facilities offered by computerisation. However these systems are

targeted to the unique requirements of each industry and are therefore customised

beyond transferability to the medical domain without substantial reengineering.

Whilst the exact procedures in such specialised areas are not appropriate to the

requirements o f the medical domain, the lessons learnt and the broad functionality

of their Quality Assurance schemes can assist in the adoption of industrial-standard

Quality Assurance schemes in the healthcare environment.

Maintenance scheduling based on the actual status of an instrument would be

the most cost-effective approach for a maintenance program. Unnecessary

preventative maintenance would be reduced because a correctly performing

instrument would not require attention. As quality control methods indicate a

deterioration or unexpected change in the performance of an instrument,

preventative maintenance measures would be taken and, if necessary, corrective

maintenance performed.

All medical laboratories have some form of manual Quality Assurance

protocols to assist them in their assessment o f the performance of the instrument in

their care [GAFF - 96], If the results o f these Quality Assurance protocols are

made available to a computer-based Decision Support System (DSS), the resultant

automatic Quality Assurance scheme would be tirelessly more efficient than the

equivalent manual human scheme where boredom and exhaustion can have a

substantial impact on the effectiveness o f the scheme.

2.4. Clinical Analysis

Clinical laboratory tests provide contributory or definitive diagnostic evidence

for the discovery, confirmation, exclusion or management of disease states. While

healthcare professionals request tests for many reasons, fear of litigation can be

Page 17

reduced by having substantive clinical data to support a diagnosis and hence

treatment. Since the accuracy of clinical data defines the validity o f their use as

diagnostic evidence, the quality o f the data resulting from clinical analysis is of

paramount importance for a clinical laboratory. The quality o f the results produced

and the continued operation o f an instrument depends on a comprehensive Quality

Assurance scheme, o f which a comprehensive and effective maintenance program

is an essential element.

A complete clinical analysis iteration is a cyclic process (Figure 2.4) starting

with the decision by a healthcare professional that a clinical analysis would assist

the healthcare service delivery to a patient. A sample is obtained from the patient

and analysed to produce a result which is reported to the healthcare professional. It

can be simplified as a “brain-to-brain” process where each step in the loop is

described as a generalised functional entity, as shown in Figure 2.5.

Page 18

Over half o f all laboratory tests are used for the purpose of monitoring patients

with a disease [BEEL - 87] and this is best achieved by selecting the test(s) most

sensitive to change in the disease process since variations in the results for an

individual are always much less than variations in the general population [WINK -

87], Monitoring changes in consecutive results for a patient can lead to the

derivation o f the status or progress of the disease process. While changes in

consecutive results can be due to biological variations, analytical or technical

variations can also be the cause. The cause o f the changes must be identified so

that inconsistent results due to analytical or technical variations are not incorrectly

attributed to biological variations. For large changes between consecutive results

(greater than 2.8 standard deviations), it is 95% certain that they are not caused by

analytic variations [GAFF - 96],

A comprehensive Quality Assurance scheme which includes technical validation

will minimise inaccurate results due to analytic variations. Technical validation of

results compares them with “Reference Range” values which correspond to the

Page 19

spread of results found in 95% of a selected population group with a specific

demographic profile. Sex, age, ethnic origin, even geographic location can

influence the distribution of results for apparently healthy subjects. Because

“Reference Range” values account for only 95% of the population group,

statistical analysis shows that the possibility of a correct result being produced

decreases with the number of tests performed (Table 2.1)[HOWA - 91], This

situation must be avoided.

Number of tests ordered 1 6 12 20 100
Probability of “normal” result 95% 75% 54% 36% 0.6%

Table 2.1 Probability o f a healthy person having all test results within the

“Reference Range ” [HOWA -9 1]

Analysis of results from testing known quality control material is used for

assessing the Real Time Quality Control (RTQC) status. This enables the RTQC of

patient results to be evaluated and directly indicates whether variations are

attributable to analytic or technical sources.

The various Quality Assurance schemes utilised for technical validation are not

effective in detecting gross errors such as mislabelled samples and data entry or

transcription errors [CHAM - 86], Gross errors can only be minimised by the

provision of, and adherence to, specific operational protocols. These, by their very

nature, tend to be tedious and repetitive. As fatigue or carelessness affects the

human link in these protocols, the potential for gross errors increases. There is also

the additional possibility of incorrectly validating a test result when it is buried

under hundreds or thousands of technically valid results.

Whilst the processes utilised for evaluating the technical validity of data are

typically well documented and may even be declared as Standard Operating

Procedures (SOP’s), it is very easy for their implementation to deviate from the

defined protocols. As the volume of clinical tests being requested increases, it is

necessary for the number of laboratories and their various complements of staffing

levels to also increase. As more staff are required to be trained to competent and

Page 20

proficient levels, the training pyramid grows deeper (Figure 2.6 Training Pyramid),

with the manufacturer-defined operational protocols being spread over a wider

operator base further from their original definition.

Figure 2.6 Training Pyramid

In the absence of certified training courses producing clinical instrument

operators of an approximately constant competency, recently assimilated

laboratory assistants are typically introduced to the SOP’s by their immediate

senior. This invariably results in an accumulative deviation from the operational

protocols defined by the manufacturer for a specific instrument model. The

complexity and diversity of modern clinical instruments being employed in

laboratories compounds this problem. This can result in a degradation of the

operational performance of an instrument and can impact on the definitive worth of

data as diagnostic evidence.

2.5. Clinical Analysers

The vast majority of clinical analysis requires repeated iterations of relatively

simple functional steps (Figure 2.7). Just as technological advances empowered

increasing automation in diverse industrial processes, the clinical laboratory

eventually underwent a similar revolution in sample processing and result

production.

Page 21

Initial attempts at automation concentrated on mimicking the actions required

for manual methods. However, once the functional steps were identified at the

process level and automation techniques applied to each function rather than to the

physical activity necessary for the manual completion of the function, rapid

progress was made in the development of automated clinical analysis (Figure 2.8).

Figure 2.8 The functional steps involved in automated analysis o f a sample

The basic architecture of modern analysers is based on a global controller

module which monitors and regulates the operation of the various sub-systems

necessary for the fulfilment of the analyser functionality specification. It detects

and interprets fault patterns to produce the appropriate alarms to correctly

associate errors with the responsible sub-systems. Depending on a specific

Page 22

implementation in an analyser, some functional steps may be repeated to provide

more comprehensive analyses. The figure illustrates the lowest common

denominator in functionality.

The first viable clinical analyser performed Continuous Flow Analysis for a

single analyte. The modern trend in analyser design is for discrete analysers

offering a large range of tests and using Multiple Channel Random Access analysis

[GAFF - 96], for example the Beckman CX7, Hitachi 717 and 747, Bayer Dax 96,

and the Olympus AU5200. These are multi-functional analysers whose expense has

limited their use to only the larger, well-funded medical laboratories. Continuous

Flow non-discrete analysers such as the Technicon Auto Analyser system are now

obsolete.

Currently there are numerous categories of clinical analysers which satisfy

specific niche market requirements depending on sample throughput and cost.

They can be broadly classified according to a combination of operational principle

and physical size.

It is not easy to precisely classify analysers according to operational principle

since several principles may be utilised in one analyser. The International Union of

Pure and Applied Chemistry have issued definitions of operational principles

employed by automated analysers [IUP - 78] and the more common ones are listed

below.

2.5.1. Operational Principles

Batch Analysis - a number of specimens are processed in the same analytic

session or run.

Sequential Analysis - each specimen in the batch enters the analytic process

one after another and each result, or set of results, emerges in the same order as

the specimens entered.

Continuous Flow Analysis - each specimen in the batch passes through the

same continuous stream of liquid and is subjected to the same analytical reactions

as every other specimen and at the same rate.

Page 23

Discrete Analysis - each specimen in the batch has its own physical and

chemical space separate from every other specimen.

Single-channel Analysis - each specimen is subjected to a single process so

that the result for a single analyte is produced.

Multiple-channel Analysis - each specimen is subjected to multiple analytical

processes so that a set of results is obtained.

Parallel Analysis - all specimens are subjected to a series of analytical

processes at the same time.

Discretionary Multiple-channel Analysis - specimens in sequence can be

analysed by any one or more than one of the available processes; each sample can

use any combination of the available methods.

Random Access Analysis - any specimen can be analysed by any, or all,

available process, in or out of sequence with other specimens, and without regard

to their initial order.

2.5.2. Physical Size

Pocket-sized analysers are designed to perform a single dedicated function

such as blood glucose monitoring. Their simplicity make them ideal for use by a

doctor or patient in a non-medical environment.

Desktop and small analysers have a low sample throughput and a limited

range of tests. They are typically used in clinics and physician offices to provide

confirmatory diagnosis or initiate more comprehensive investigation. An example

would be the Boehringer Reflotron for measuring glucose, urea, cholesterol, etc.

Bedside analysers are essentially desktop and small analysers that are located

immediately beside the patient in critical care situations such as Intensive Care

Units (ICU’s) and may provide communication facilties to interact with a nursing

station. An example would be a Hewlett Packard’s HP Care System.

Medium-sized analysers have a typical throughput of 50 - 120 samples per

hour and can perform a large range of tests. They are expensive (> £50,000) and

complex instruments necessitating their location in a clinical laboratory and

operation by experienced laboratory technicians. They produce quite large volumes

of data and may include some rudimentary data management capabilities.

Page 24

Large analysers are based on the design and operating principles of medium­

sized analysers but with a large range of tests and a throughput of more than 120

samples per hour. Due to the very large volumes of data they produce, they always

have a dedicated data management workstation. They are very expensive (>

£120,000) and used in large clinical laboratories where workload and budgetary

constraints can support them.

As can be seen from the above categories, few analysers comfortably satisfy the

definition of only one category. However all automated processes share common

and/or logical steps, just as manual analytical processes can be viewed as

procedures consisting of generic steps or functionality (refer to Figure 2.7).

2.6. Computerisation of Clinical Analysis

Traditionally laboratory reports were hand-written transcriptions of data and

manually calculated results. The process of transferring instrument data to peaks

on chart paper and then converting them into test results was tedious and prone to

transcription errors. This process was sufficiently effective for use with the first

commercially viable clinical analyser - the Technicon AutoAnalyser [COON - 58]

- which was first marketed in 1957. However with the advent of multi-channel

clinical analysers [KADI - 66], the task of manually producing reports was a major

drawback. These automated analysers substantially increased the data being

produced [SKEG - 64] by the laboratory. Whilst these analysers used pre-printed

chart paper and generated an output for each result, the volume of data produced

became so great that the main task of the laboratory technician was the

transcription of results from worklists to report forms and log books. Thus sample

handling and data management became the limiting factors in the rate of

production of results.

The introduction of bar code readers improved sample handling capabilities by

automating the identification of samples and the association with their

corresponding entry in a worklist. This reduced the possibility of gross errors due

to sample identification errors. Random Access Analysers permitted specific

Page 25

individual tests to be requested from the total available on a multi-channel analyser.

Thus the volume of data produced was reduced as only essential tests were

requested whilst unnecessary test requests were minimised. This also focused the

attention of medical professionals to request only necessary tests and eliminated

irrelevant and distracting data produced by the laboratory.

The power of micro-computers to help in analysing large amounts of data for

quality control purposes was recognised early [DITO - 70], and was a natural

progression from the use of programmable calculators previously used for this

purpose [WEST - 75], During the late 1970 s microprocessor-based computers

became available that were small enough and cheap enough to be incorporated into

new analysers. These computers were primarily used to control the analyser

operations and assisted in the development of multi-channel Random Access

Analysers. They also allowed many operator procedures such as calibration and

data conversion to be automated to varying degrees.

Advances in micro-computers facilitated their use in sophisticated data analysis

of quality control results involving more than one rule (multi-rule analysis) and

automatic graphing facilities were incorporated into these systems [WEST - 84],

Despite technological advances to improve sample handling and reduce the

volume of requests for spurious tests, the demand for the services of clinical

laboratories continues to increase. Modern analysers monitor many of their

functions and processes but do not integrate or interpret the data produced.

A comprehensive computer-assisted system for Quality Assurance, technical

validation, fault diagnosis, maintenance scheduling and maintenance instruction will

ensure minimum deviation from the recommended operating protocols as defined

by the manufacturer or in SOP documentation. Computerised technical validation

ensures that questionable results are isolated and brought to the attention of the

operator. Thus the operator can investigate the few problem results without the

distraction of dealing with the thousands of results that are technically valid.

Page 26

The incorporation of the knowledge of experts into Decision Support Systems

(DSS’s) to produce Knowledge-Based Systems (KBS’s) has been shown to be

possible in many different areas of the laboratory environment [BENS - 80],

KBS’s provide a level of technical competency greater than that which the majority

of individuals could possibly attain in a lifetime of dedication, and permit the

laboratory technicians to concentrate on the focus of their abilities. Unfortunately

only instruments currently with dedicated workstations included in their basic

design concept have DSS’s natively built in and these systems are in the class of

expensive large analysers.

The benefits of having such systems available to other smaller analysers would

provide work methodology efficiencies similar to those obtained from the large

integrated analytical systems with inherent DSS’s, but on a wider scale due to the

larger installed user base of smaller clinical analyser systems.

2.7. Decentralisation of Laboratory Services

There is a growing trend for analyser manufacturers to produce instruments

specifically designed for non-laboratory sites. Most hospitals have recognised the

advantages (and sometimes the necessity) of distributing clinical analysis services

and consequently locate analysers in strategic sites for efficient healthcare service

delivery where non-laboratory staff have to perform analyses. This has led to the

increasing use of near-patient analysers in areas such as Emergency Wards and

Intensive Care Units (ICU) [BURR - 90], Such analysers are designed to be used

by non-laboratory personnel.

It is well recognised that the performance of near-patient analysers is linked to

the level of support provided by the central laboratory [MARK - 88], A well-

designed Quality Assurance scheme is essential for the safe and efficient use of

analysers in non-laboratory sites, particularly because the instrument would be out

of the immediate influence and control of the experienced laboratory staff. Instead

it would be under the direct influence of inexperienced operators such as doctors

and nurses, and the possibility of a catastrophic event occurring outside the

Page 27

bounding timetable of a static maintenance schedule is consequently greatly

increased.

Near-patient analysers therefore require regular skilled maintenance to ensure

optimum performance since these casual operators would not possess the technical

expertise to perform corrective maintenance whenever problems arose [RUBI -

79][LEWA - 92], Hence these distributed instruments place the emphasis of the

Quality Assurance scheme on preventative maintenance.

To evaluate the operational performance of distributed instruments remotely

would alleviate wasteful time spent travelling to sites by the experienced laboratory

personnel. This remote monitoring, or telematics, could be done on a scheduled

batch basis, on demand whenever initiated by laboratory personnel, or in real time

for optimal monitoring. Laboratory personnel could then spend the maximum

amount of their time in the laboratory performing laboratory-based analyses and

interpreting data sent from remote instruments.

2.8. Conclusion

The combination of advanced maintenance procedures and telematics would

ensure that all instruments could be part of a “distributed laboratory”. This would

enable the performance of non-laboratory instruments to be monitored remotely as

if the analysers were located in the laboratory instead of the necessity of a

laboratory staff member explicitly travelling to the site of an instrument to perform

the required Quality Assurance procedures. Thus the instrument can be included in

whatever computerised Quality Assurance scheme is implemented in the central

laboratory. An intelligent maintenance scheduling system which includes an early

warning facility would result in the central laboratory being better able to support

and control these distributed analysers. The resultant intelligent preventative

maintenance scheduling would substantially increase the operational availability

and accuracy of results available to the healthcare professionals using the facilities

of the remote instrument.

Page 28

The purpose of this thesis is to evaluate and propose the design of an

architecture for the interface of medical instruments in an open environment which

would support the remote maintenance of decentralised clinical laboratory services.

This design concept is dependent on the requirements of identified users (refer to

Section 3.3), and the concept is introduced in the fourth chapter.

Page 29

3. User Requirements
As with any development project, the design phase is a critical component of

the project life-cycle, and the design phase is dependent on the specifications

obtained during the user requirements identification stage. An incomplete

requirements specification would inevitably result in an incomplete design concept,

which would yield an unsatisfactory solution. Getting a comprehensive user

requirements specification is not trivial as the user’s wishes often occlude the

user’s actual needs. Therefore, substantial time was needed to isolate realistic and

attainable requirements which would definitively result in improved work

methodologies.

Assistance for specifying the user requirements was obtained from a senior

medical laboratory technician in St. James Hospital, Dublin [GAFF - 96], This

emphasised the focus of the design concept on satisfying the real-world

requirements of a modern clinical laboratory and its associated distributed

components. The categories of users who impact on the delivery of clinical analysis

services were identified and their characteristic stipulations identified. Each user

category interacts with the clinical laboratory in a different manner and computer

assistance with these interactions would be beneficial to the delivery of an

improved service.

3.1. Categories of Users

Four broad user categories were segmented according to how they interact

with the operation of the clinical laboratory. The most obvious category is the

collection of people who deal directly with laboratory instruments - namely the

laboratory staff. This “front-line” group of operators leads to the identification of

the ancillary group of operators who use clinical instruments which are remote

from the laboratory. These two groups use analysers to fulfill the needs of the third

group - the category of people who actually request clinical analysis of samples.

The final group identified was secondary to the actual delivery of clinical analysis

because they are concerned with the overall performance of the laboratory.

Page 30

3.1.1. Operators of Laboratory Analysers

These operators are the skilled professionals who staff the laboratory. Their

competence with the operation and maintenance of clinical instruments is a critical

constituent of their professional capabilities and responsibilities. Their primary role

is the creation of clinically accurate reports of patient sample analyses. They are

also concerned with the monitoring of the operational performance of instruments

and make extensive use of control and calibration data to supplement statistical

analysis.

The automation of sample result collection and recording (be they patient,

control, or calibration samples) would be of great benefit to laboratory staff. Result

recording is a long, tedious process which can involve thousands of results and

therefore gross transaction errors can ensue from the sheer volume of data to be

processed. Automation would free laboratory staff from this process and allow

them to concentrate their attention on the few anomalous results which may be

produced.

3.1.2. Operators of Remote Analysers

These operators are doctors and nurses who use medical analysers in a near­

patient environment, such as an Intensive Care Unit (ICU) or ambulatory EEG’s.

As such their primary competency would not include clinical instrument operation

and maintenance. But the technical validity of the results they obtain would depend

on the efficient performance of the instrument. Thus its participation in a Quality

Assurance scheme is essential.

Remote connectivity between the instrument and a computer would enable the

computer to immediately analyse control and calibration data recorded from the

instrument, without the need for a laboratory technician to manually record the

data after visiting the remote instrument. This would permit the instrument to be

included in a computer-based Quality Assurance scheme that would monitor its

performance using various automated statistical techniques and would thereby

result in improved technically valid results.

Page 31

A real-time interaction facility between the operator of the remote instrument

and a laboratory technician would allow the instrument operator to benefit from

the core competency of the laboratory technician. This would be particularly

valuable when an unexpected circumstance occurs which is outside the limited

experience of the remote instrument operator. A more knowledgeable laboratory

technician would be able to assist using a real-time interaction facility without

having to visit the remote instrument, thereby decreasing the downtime of the

instrument.

3.1.3. Test Requesters

The group of people who request sample analysis tend to be a diverse selection

of healthcare professionals which include hospital doctors, consultants, and GP’s.

Typically they fill out a request form and eventually receive a report to assist them

in their diagnosis and treatment of patients.

If they had access to an appropriate computer, remote connectivity with a

laboratory computer would enable them to directly request the appropriate tests to

be performed on a sample. The request would be made available to the worklist for

the corresponding analyser and the result would be recorded. This result could then

be reported back to the healthcare professional via the remote computer link,

thereby expediting the report process by circumventing the traditional paper-based

method. The paper-based method could be retained for documentary purposes, but

the computer request and report could be logged to provide a “paper trail” of the

sample analysis.

3.1.4. Laboratory Administrators

This group is concerned with the productivity and quality of service delivered

by the laboratory. It is composed mainly of senior laboratory staff and laboratory

administrators whose responsibilities include monitoring general performance

indices. They are particularly concerned with the operational availability of all

Page 32

laboratory instruments to try to minimise the costs of repairs and downtime. This

information can be obtained from control and calibration data. The recording of

these instrument performance data and making them available through remote

connectivity would facilitate their analyses. They would consequently be able to

automate much of their report generation methods since all the pertinent data

would be computer-based and accessible to their computers.

3.2. Sample Processing

The system for clinical analysis was described in Section 2.4. The existing

system is heavily reliant on paper-based requests and reports. Once a request form

and sample are received in the clinical laboratory, the sample is prepared whilst the

request is manually keyed in to the Laboratory Information System (LIS) to

facilitate automated test requests at the local level in the laboratory. Once the

sample has been submitted to the analyser, the tests requested are entered into the

analyser or it is informed by a worklist from the LIS, and sample processing

commences. When the result is available it is usually transcribed to a standard

duplicate report form for delivery to the requesting healthcare professional. If this

process was automated it would release laboratory staff from what are essentially

administrative duties, allowing them to be more productive elsewhere.

As stated in Section 2.4, the technical validity of the report is dependent on an

effective Quality Assurance scheme. In the laboratory, Quality Assurance is the

responsibility of the local laboratory personnel and is given a high priority. As such

the statistical monitoring techniques utilised for Quality Assurance are quite

advanced. The performance trends of numerous laboratory instruments are usually

observed, manually recorded, and sometimes manually correlated. These trends

assist in the scheduling of preventative maintenance as the performance of an

instrument deteriorates, and also highlights essential corrective maintenance as

technically invalid results are produced. This allows a fully integrated maintenance

program to be applied throughout the whole laboratory with the aim of producing

technically valid data all of the time.

Page 33

However, with the modern trend in distributed clinical analysis and bed-side

analysers, for example in an environment like an Intensive Care Unit (ICU), there

would be primitive or possibly even no statistical monitoring techniques in place

for these remote analysers. Preventative maintenance is usually only on a fixed

scheduling basis instead o f as the instrument performance degrades, and substantial

data could be produced before it becomes obvious that corrective maintenance is

necessary. Comparative correlations between the performance characteristics of

remote analysers and similar laboratory-based analysers would also not be possible.

This adversely impacts the operational availability o f analysers that are remote

from the influence o f the clinical laboratory Quality Assurance scheme, and even

affects the technical validity of the results produced.

3.3. General User Requirements

The concerns outlined above provide the basis for the user requirements:

1. Record instrument performance data. This would obviate the need for

human interaction for this simple task and as a result would free up human

resources and reduce the possibility o f gross errors by removing the error-

prone data entry phase.

2. Record patient data. As various tests are carried out, their results need to be

associated with each corresponding patient. The administrative overhead for

this task is quite substantial and data entry errors can be an unfortunate side

effect.

3. Remote connectivity between the instrument and a geographically

removed computer. This would enable remote monitoring o f an instrument’s

performance for inclusion into a laboratory Quality Assurance scheme, as well

as making patient results available at other sites, for example at the location of

the initial request.

4. Real-time interaction between the operator of the instrument and the user

of a remote computer. This is to facilitate operators at each computer to

communicate with each other. This would be of benefit for the maintenance of

a remote instrument by an inexperienced person whilst receiving assistance

Page 34

from a more experienced person, who would typically be located in the central

clinical laboratory.

3.4. Summary

It was envisaged that the user specifications would result in an application that

logs data from an analyser and provides the facility for remote interaction. The

primary concern was for remote access to performance data resulting from control

and calibration sample data for statistical monitoring o f the performance of the

instrument. This would enable a laboratory clinician with expertise specific to a

particular instrument to remotely monitor its performance and even to correlate its

performance with other similar instruments under the direct control of the clinical

laboratory without the need for physical proximity to each instrument.

As potential problems become apparent, the real-time interaction facility would

enable a discussion between an experienced laboratory staff member and the local

operator to take place. Thus the laboratory-based expert could inform the local

operator o f necessary preventative or remedial action. The interaction facility

would even allow the expert to instruct the local operator in any procedures

required for the action.

Just as a remote clinician would have access to control and calibration data

from an instrument, a remote physician could have access to patient results. This

could eliminate the need for manually-prepared report forms and reduce the delays

in the delivery o f reports. For a physician outside the immediate boundaries of the

hospital reporting mechanism, delivery delays are substantial and any reduction in

these delays would be extremely desirable.

Page 35

4. The Design Solution

4.1. Foundation Guidelines

Before any design work was initiated, several strategic design decisions were

made. These were concepts which would be applied to the design process in the

form of a generalised guiding framework in order to assist in resolving design

issues.

It was decided to align as much of the design concept as possible with “open”

standards. This would imply using existing technology as much as possible where it

was based on mature standards - be they de facto adopted standards or standards

introduced by one o f the main standards bodies such as ANSI, CCITT, or CEN.

At the time o f writing there is much research being carried out in the area of open

standards computing (CORBA, COM, DCOM, or Java), these are in their infancy.

The medical domain tends to be very conservative when considering new

technology due to the data-sensitive environment and fear o f litigation, so

preference is given to technologies that have matured over time and have evolved

into robust and reliable standards.

Mature standards have well-defined functionalities and concise interfacing

requirements. With such clear interface specifications, the various functional

components can be integrated in a predictable manner to ease the development

process. There is also the benefit that interface specifications in existence for quite

some time invariably result in the development o f software components for

interoperability between them (as the filters for converting DBase files into Excel

files exemplify). This is o f particular relevance as the design concept goes through

its iterative evolution of future versions where additional functionality and new

features are introduced. These “off-the-shelf’ software components can thus be

reused to speed up various aspects o f the development process.

This functional component development approach could be considered as a

form of “plug-and-play” and depended substantially on the second guiding design

Page 36

decision - a modularised design concept. As the user requirements are analysed,

functional domains must be identified and subdivided into coherent, self-contained

units o f purpose. Each unit must have a specific sphere of responsibility for

delivering certain key functionalities. The methodology which a unit implements to

deliver its functionality requirements must be its own concern and not dependent

on any other unit. Whatever data, algorithms or procedures are required by a unit

are available for use only by that unit and are therefore essentially invisible to other

units. This technique of “data hiding” (or encapsulation) is based on data

abstraction which is one o f the central concepts of object-oriented design

methodologies [M URR- 93],

The third guiding design decision was that the basic computer paradigm must

be Client/Server to facilitate a distributed architecture. Rather than designing one

large solution concept, a modularised approach will produce self-contained units

that can be dispersed throughout a data processing environment. This data

processing environment could be contained within one computer or spread over

multiple computers, with the modularised units interacting in a Client/Server

fashion.

The final guiding design decision was to reuse as much technology as was

already available in the target environment. This decision minimises the cost and

risk of the investigation as well as eliminating the interference with existing

methodologies and training requirements in the clinical laboratory.

The benefits o f this kind o f a guiding framework are many:

1. Adopting an architecture driven by open standards focuses compliance with

existing methodologies. As stated in Chapter 1, there is substantial

international interest in the whole area o f computerised healthcare delivery

without any clear dominant standard as yet. Whenever an internationally

adopted standard is implemented, an observance o f an open architecture for

this design concept would simplify its integration with the adopted

international standard.

Page 37

2. Modular development facilitates the design and implementation of any large

project. As each modular unit is created, it need only focus on fulfilling its

functional requirements. This can reduce complex cross-functional

dependencies and focuses design on identifying coherent processes and

tasks in order to segment them into well-defined units of functionality. The

resultant model can be developed in a more controllable piece-wise manner

which simplifies project management and testing, enabling “black box” unit

testing to be extensively utilised.

3. Components that satisfy modularised architecture considerations could be

removed and replaced by other components which similarly satisfy

modularised architecture considerations and maintain the common interface

requirements. Thus components which deliver a superior functionality

service through improved reliability, increased performance, or more

complex functionality could seamlessly replace existing components whilst

eliminating the impact on unrelated components.

4. Attempting to maintain an “open” environment was desirable in order to

support a modular engineering model and clearly defines the interaction

between component modules of the solution. The interoperability of

components depends upon commonality o f solution definitions and

communication protocols and should allow the leveraging of reusable

definitions and code modules. As new design concepts are developed an

open architecture environment permits them to be absorbed into the total

solution concept on an individual basis without a redefinition of other

unrelated components.

5. A Client/Server communication model provides the foundation for building

strategic information applications through system connectivity. It permits

rapid modification as data processing circumstances change [DONO - 94],

4.2. The General Components

In order to obtain clinical data from an instrument, it is proposed to use serial

data communications with an instrument-to-host module. This module is

responsible for all the physical and logical requirements necessary to connect to the

Page 38

instrument and conduct serial data communication. The serial byte stream is parsed

into its component data elements and then interpreted to identify the context of the

data before being processed by other components o f the design solution.

A transaction-generating module processes these data elements. This module

packages the data elements into a transaction which consists o f an appropriately

formatted body containing the data and a header containing certain context

information.

These transactions can be viewed as requests for services which get sent to

service provider modules by a transaction processing module (called the

Transaction Processor). The service provider modules act on the information

contained within the transaction to produce a desired action such as storing the

data in a database, displaying the data in a graph, or transmitting the data to a

remote computer.

It is proposed to distribute these services throughout functional modules. A

distributed design concept such as this requires a modular functionality definition

where each functional unit provides a complete service. The functional units can

then be distributed throughout the data processing environment as required. It is

proposed that they would interact with each other using a 3-tier Client/Server

communication model.

As with any Client/Server architecture, the elements o f the architecture can

reside on the same computer or can be distributed throughout several computers

that can communicate via a data network. When a service is being provided by a

remote computer, the Transaction Processor initiates and maintains a data link with

the remote computer in order to avail o f the service(s) required by the transaction.

A final additional component is necessary to satisfy the last user requirement of

a near real-time interaction facility between an instrument operator and a remote

user. This component permits users on different computers to type messages to

each other. Once a sentence has been typed on one computer it appears on the

Page 39

other computer, thereby permitting a dynamic exchange of questions and ideas. It

would be particularly useful for providing technical laboratory assistance to

healthcare personnel who may not have the necessary expertise - for example

doctors requesting sample assays and an assistance with the interpretation of

anomalous results.

4.3. Available Services

An analysis o f the user requirements (Section 3.3) yield the following necessary

services:

1. The primary prerequisites revolve around data processing based on storing and

retrieving data. This focus on data and its associated administration encourages

a design concept which harnesses data storage as its core design element. Thus

databases will provide the foundations upon which data processing will

revolve.

It is proposed that the service of storing data to, and retrieving data from,

databases will be performed by one coherent module. This module will be

responsible for the physical and logical connection to targeted databases. It will

leverage the widely implemented Standard Querying Language (SQL) standard to

interact with the databases. Since SQL is a mature standard [GROF - 94], all the

leading Database Management System (DBMS) vendors support it. This decision

aligns itself with the first guiding design decision of using mature standards

wherever possible. Due to the diverse selection of DBMS’s in use in the distributed

environment o f medicine, SQL provides the necessary flexibility to interact with

existing DBMS’s, such as patient demographic information or clinical records

stored in LIS’s. This flexibility permits the re-use of the investment in existing

database technologies - the fourth guiding design decision.

2. To support the near real-time interaction facility between an instrument

operator and a remote user, the service will provide interaction with the user. It

is proposed that the service provider presents a graphical user interface to the

user to permit text entry and text display. It generates transactions based on the

Page 40

entered text that the Transaction Processor recognises as requiring

transmission to a remote computer. The Transaction Processor then uses the

same mechanism as the other distributed elements o f the design solution to

transmit to the remote computer. The remote computer will have an identical

service provider module and they will interact with each other in a symmetric

peer-to-peer fashion.

As additional functionality is needed, extra services can be defined and the

appropriate service providers designed. These can then be added to the design

solution in a scalable manner so long as they adhere to the mechanisms outlined in

the chapter. An example o f additional services would be ones responsible for

elements o f a Quality Assurance scheme. These would establish the Real Time

Quality Control (RTQC) status for all patient results and perform automatic

technical validation. These kinds of services would have comprehensive

maintenance and fault diagnosis facilities in order to support Long Term Quality

Control (LTQC) monitoring.

4.4. Analyser to Host Computer

As summarised in Section 2.5, medical instruments come in numerous different

categories as described by their operational principle and/or their physical size. The

larger, more complex (and hence expensive) analysers usually have a dedicated

data management workstation which processes results and applies Quality

Assurance schemes locally to the data produced by the analyser. However, while

this kind of system provides excellent data management facilities, the cost of

integrating it with other computers is usually prohibitive and so it tends to be a

stand-alone system. Being isolated in this manner does not easily permit the

correlation of statistical performance data with other similar analysers, except by

the traditional manual methods that are time-consuming and prone to gross errors

due to transcribing mistakes.

Smaller analysers do not have dedicated data management workstations.

Therefore, in order to support a computerised Quality Assurance scheme, data

Page 41

processing capabilities must be made available to the necessary analysers. It is

proposed that this processing power be provided by a computer based locally to

the analyser. This computer could be quite a modest Personal Computer (PC) such

as commonly found throughout the medical domain. The PC offers a universal,

scaleable, economical hardware platform with “open” interfaces suitable for

connection to laboratory devices [NORG - 95], Therefore the abundant PC is a

logical choice as the most cost-effective platform for medical instrument

communication.

The local computer would provide services to all analysers connected to it,

which could include the necessary data management required by a computer-based

Quality Assurance scheme. This computer will be called the “host” because it hosts

a variety o f services for the analyser to which it is connected (Figure 4.1). The data

management services provided by the “host” could range from the most basic

logging o f sample data for permanent storage, to making worklists available for

sample processing, to real time technical validation of samples, or even a

comprehensive Quality Assurance scheme with an integrated maintenance

scheduling module.

Instrument
w orklist requests

Computer

’ ^ ___ w orklist

n1 m .*4 initiate QA sampling

sample data -------------- -

performance data
— ►

Figure 4.1 Examples o f services provided to an instrument by a "host"

It is proposed to use the PC’s serial port to exploit the serial data

communication protocol which almost all analysers generically support. If the PC

being utilised has more than one serial port, then it could act as “host” to as many

analysers as it had serial ports (Figure 4.2). A “daisy-chained” polling mechanism

could service each serial port in turn or else a PC with a multi-tasking operating

Page 42

system such as IBM’s OS/2 Warp or Microsoft’s Windows would be required for

the efficient hosting of multiple analysers. Since the vast majority of PC’s in the

test site use Windows 3.11, it was decided to leverage the multi-tasking features of

this operating system. This decision follows a scaleable path as full 32-bit operating

systems with proper pre-emptive multi-tasking such as Windows 95 and Windows

NT become the prevalent operating systems in use in the target environment

Figure 4.2 Multiple instrument support by a "host" PC

In a practical sense the module responsible for communicating with the

analyser must accept and interpret all data types generated by the analyser

including Quality Control data, calibration data, hardware alarms, and data alarms.

The correct interpretation of these data types supplies the context information

which other modules use to decide how to process the data. The design of this

module is covered in more detail in Section 5.6.

4.5. Transaction-based Architecture

As mentioned earlier, it is proposed to utilise transactions to interact between

the various modules contained within the architecture. Because the design concept

is predominantly centred on data storage and retrieval, it logically follows to

extend the “open” environment of databases to the services. It is therefore

proposed to base all transaction protocols utilised for service requests on a format

which is closely linked with data processing and administration. This syntax will be

directly derived from the syntax used natively by almost all databases - the

Page 43

Structured Query Language (SQL) - for interacting with data stored in SQL-

compatible databases. By using a SQL-based transaction protocol and storing all

relevant data in databases instead of proprietary data structures, an “open”

architected environment is promoted.

As data becomes available from the instrument interfacing module, the

transaction-generating module embeds the data in an appropriate SQL statement

which is then wrapped in a transaction along with context information in the header

(the exact format is described in Section 6.1).

The Transaction Processor dispatches the transaction to an appropriate service

provider by based on the context information (Figure 4.3). For example, if the data

is to be stored in a database, the receiving service provider is one which supports a

service for interacting directly with a database. This service provider then utilises

the embedded SQL statement to store the data in the database.

Figure 4.3 Data flow through the transaction-based architecture

As additional services are introduced, the existing format for transactions can

be used with specific codes introduced to support any new data exchange

information. In this way the design solution scales linearly by releveraging the

underlying architecture. Only new service provider modules and new transaction

generation modules would be needed to handle any new data exchange information

required by these additional services.

Page 44

4.6. Client/Server Architecture

The classical model o f Client/Server communication uses an entity (the server)

which provides services and functionality to anything that requests it. An entity

that requests services from a server is referred to as a client, and it is always the

client who initiates the process. A 3-tier Client/Server communication model is an

extension of the classical model with an additional layer introduced between the

two entities to provide extra processing and arbitration for the process (Figure

4.4). This insulating layer is commonly referred to as “middleware” and provides

the necessary functionality to interface between an entity that wants data and an

entity that can provide that data.

Figure 4.4 The 3-tier Client/Server communication model

The majority o f services will inter-operate with a database on some level and

the other components of the design concept using transactions in a 3-tier

Client/Server communication environment (Figure 4.5). When a client module

requires data processing by an available service provider, it will request the service

from the service provider using clearly defined transactions (Section 6.1).

Figure 4.5 The 3-tier Client/Server access to databases

Page 45

As an example o f this scheme it is proposed to utilise a data storage area as a

repository of all data which may be utilised to fulfil service requirements. As a

client module requires pertinent data, it obtains it from the data store using a 3-tier

Client/Server paradigm (Figure 4.6). The data store behaves as a Server whilst the

client module generates a transaction which requests the data.

This data store is a database (or collection o f databases) of sufficient

complexity to support efficient data storage and retrieval. The structure of the

database corresponds to the nature of the data it has to store and as such needs to

be custom designed. Data is obtained from analysers connected locally to the

“host” and hence the database structure is dependent on the specific content of

messages received from those analysers. The data is stored in the database by a

service provider using the similar Client/Server transaction protocol as used by

service providers retrieving data from the database.

The middleware layer performs transaction translation and processing, and

ensures that the transaction is directed to the correct service provider which

administers the data store. The middleware layer functionality could also be

extended to provide additional services such as queuing o f transactions and

tracking receipt confirmations and service acknowledgements on the successful

completion o f the transaction.

Page 46

In the proposed design concept the transaction processing module (Transaction

Processor) performs as the middleware. As data is assimilated from an analyser, the

interfacing module generates a transaction. As stated earlier, this transaction will

be based on a SQL statement. The Transaction Processor will drive the transaction

through to the appropriate service provider module, resulting in the data being

stored.

4.7. Distributed Components

Remote connectivity which supports transaction processing on distributed

computers would empower the services o f a medical laboratory that is distributed

throughout the healthcare environment. Analysers which are located outside the

laboratory (for example in an Intensive Care Unit) would benefit from transaction

processing through the capabilities of remote connectivity. This would permit them

to participate in whatever Laboratory Information System is in place in the

laboratory. The resulting conceptual model is based on hierarchical “spheres of

influence” where high level entities can interact with single or multiple lower level

entities (Figure 4.7). The typical communication model for this kind of concept is

Client/Server, where the higher level entity behaves as a server while the lower

level entity initiates transactions just as a client typically does.

Figure 4.7 Conceptual model o f the integration o f laboratory components

Page 47

In this kind o f configuration it is proposed that a computer in the medical

laboratory behaves as a centralised Quality Assurance service provider. “Host”

computers connected to analysers perform transactions with this centralised “QA

server”, supplying it with whatever data it requires for its QA analysis, such as

control and calibration data. The “host” computers of remote analysers would thus

appear to interact with this centralised QA server in an identical manner as “host”

computers of analysers located in the laboratory environment using SQL-based

transactions.

The QA server could even proactively trigger Quality Assurance assays to be

performed on a remote analyser to augment whatever data it already has available

to it in order to contribute to specific Quality Assurance procedures. This would

necessitate the temporary syntactical reversal of roles as Client and Server, so that

the QA server could initiate a calibration run on the remote analyser and therefore

behave as a client. Depending on the features available in the analyser, its “host”

could act on the transaction and trigger an automatic calibration run, or else it may

have to alert a local operator to perform the calibration run. Either way, the results

would be reported to the QA server which could then complete its Quality

Assurance analysis procedures.

The operating performance for each remote analyser could be tracked and

analysed from a central location where it could benefit from the supervision and

interpretation o f expert laboratory personnel.

As results are obtained from an analyser, the local host computer can store

them locally in databases using the previously mentioned SQL transactions.

However, by collecting the data from numerous analysers distributed throughout

the hospital environment, substantial statistical analysis can be performed on all the

relevant information (Figure 4.8). This would require the availability of data at one

processing location.

Page 48

Local

Figure 4.8 Data Flow Diagram (DFD) fo r locai and remote data processing

If operating performance data from all analysers are available in a central

location then it would facilitate their correlation with operating performance data

from similar analysers. A statistical trend analysis o f these data sets would indicate

that it conforms to a required performance level. Deviations from this level would

be immediately obvious and would trigger an alarm. The alarm would prompt a

laboratory technician to perform an analysis o f the reasons for the offending

analyser’s sub-optimal behaviour. This, for example, might result in giving an

indication of the impact of a remote analyser’s environment on its operating

performance since it could be compared with the operating performance of similar

analysers in the relatively controlled environment o f the clinical laboratory. A

remote analyser might indicate a tendency to overheat through usage as the day

progresses. By comparison with similar analysers it might be obvious that other

analysers do not overheat and further investigation is required to rectify this

situation. It may subsequently be discovered that overheating in the remote

analyser is due, for example, to its ventilation ducts being blocked by adjacent

machinery and so an improved air flow around the analyser would solve the

problem.

To transfer the data from local host computers to a centralised statistical

processing computer or a remote data storage station necessitates the utilisation of

a data communication protocol. The data communication protocol needs to

transparently and reliably transfer data between computers. It is proposed to

implement the low-level protocol upon which the widely popular Internet relies.

Page 49

This protocol (commonly referred to as the TCP/IP protocol after some of its

component parts) supports data exchange over numerous physical media between

numerous different computer hardware and software types. It is based on a

modularised architecture and has been in mature implementation for several

decades - this mirrors design guidelines adopted for the design concept (Section

4.1). Its support o f multiple platforms makes it particularly attractive for use in the

medical domain which is composed of numerous different processing platforms.

While there are several higher level technologies utilising the TCP/IP (standard

such as CORBA, Java, and WWW), these are specific to the applications which

they serve. As stated at the beginning of this chapter, the primary prerequisite

revolves around data processing and it was proposed to base the transaction

protocol on embedded SQL statements in order to facilitate interaction with

databases. Therefore the transaction architecture is specific to the application being

proposed by the design concept. Introducing an alternative application-level

technology purely for data communication would complicate the data

communication process as well as needlessly adding an extra layer o f complexity in

order to simply leverage an emerging technology. Since these technologies are in

their infancy, the design guideline of utilising mature standards (Section 4.1) also

rules out their adoption in the design concept.

4.8. Interactive Communication Between Operators

Due to distributed nature o f clinical services, several analysers may not be

located within the immediate confines of the laboratory environment. The main

users of such remote analysers would be medical professionals such as nurses and

doctors who would not possess the skill-set equivalent to that o f a laboratory

technician. An interactive communication link between the remote operators and

laboratory staff will provide access to such skills and was one of the user

requirements specified in Chapter 3.

It is not anticipated that this service would replace voice communication,

instead it is merely an additional mode of communication to complement the

Page 50

traditional voice method. In certain circumstances it may even be preferable, for

example when the two users are separated by very large distances and the

telephony costs would be substantial, or when the concepts being discussed are

sufficiently complex that seeing the words rather than hearing the words would be

helpful. It would also provide a record of the discussion that can be referred to

repeatedly after the discussion has ended, or as log o f the resolutions decided upon

during the discussion.

An e-mail-based communication link would not be adequate for urgent

interactions due to the nature of electronic mail systems and their associated time

lags. If the e-mail has to travel through several domain servers from the sender to

the recipient, it is conceivable that it may not get forwarded from the mail queues

o f heavily-trafficked domain servers for several minutes. The cumulated delay

could potentially be quite substantial. There is also always the possibility that the

recipient may not have an active e-mail client and they would remain unaware of

the pending e-mail. Since a remote computer-analyser pair would be used by

several people in the remote site, if e-mail access were to be provided to all of

them, there would be an administrative overhead associated with configuring and

maintaining multiple profiles for the e-mail client software. Combined with this

would be the training of the staff in the use of e-mail client software and the

significance o f switching o f user profiles.

Obviously however, the proposed communication link architecture could not

be securely used for sensitive communication since there is no authentication of

participants. Therefore a participant could anonymously pretend to be someone

else.

It is proposed that this link will utilise the underlying data communication

protocol mentioned in the previous section - TCP/IP. It will take the form of a

“chat” utility where each user can type text into a simple user interface and it will

be displayed on the other users screen. Thus interactive discussions can take place

where problems encountered at a remote analyser can be resolved with the

assistance of a laboratory technician. This is in contrast to the existing method of

Page 51

resolving problems where the laboratory technician would have to travel to the

remote site, diagnose the problem, evaluate what materials are required, travel

back to the laboratory to get the materials, return to the remote site, and then

travel back to the laboratory. If the remote site was adjacent to the laboratory the

time involved would not be too excessive. However if the remote site is very

distant (for example the ICU in St. James’s Hospital which is half a mile from the

laboratory), then considerable time is wasted in travelling between the two points.

Whenever text is typed in the user interface and the Enter button hit, the text is

embedded in a transaction along with appropriate context information in the header

part o f the transaction. The context information identifies the transaction as an

interactive chat element as well as identifying the target computer for the

Transaction Processor to correctly dispatch it to the recipient service provider

module on the remote computer. This service provider module then displays the

embedded text in the user interface for viewing and reaction by the operator.

4.9. Example

As a demonstration of how the various components interact with each other,

consider the following scenario. A healthcare professional wants to analyse the

effect o f different steroid treatments on renal tubular acidosis caused by systemic

lupus or eiythematosus, as indicated by pH, C 02 and bicarbonate concentrations in

blood gas analysis. To this end several blood samples are sent to the clinical

laboratory for analysis.

As this analysis is completed for each sample, the data is transferred via a serial

link to the host computer where the instrument-to-host module receives and

interprets it. Once it has been identified as patient data, the transaction generating

module (called the Transaction Agent) can produce an appropriate SQL statement

(an “INSERT INTO ...”) that will result in the data being stored in the correct

database. This SQL statement is then embedded in a transaction along with context

information in the header part o f the transaction identifying the type of data and the

destination of the transaction. For the sake o f this example, assume that the

Page 52

database for patient data from blood gas analyses has been configured to reside on

the host computer. Therefore the destination specified in the header is the local

computer.

Once the transaction has been assembled by the Transaction Agent, it is

dispatched to the Transaction Processor. Using the information contained within

the transaction header, the Transaction Processor routes the transaction to the

correct service provider - in this case one which provides connectivity to the blood

gas analysis database on the local computer.

The database connectivity service provider marshals the necessary procedures

to connect and communicate with the database. It extracts the embedded SQL

statement and passes it through the exposed database interface to the native SQL

handler/interpreter mechanism inherent in the target database. Since all the major

database products contain a SQL handler/interpreter, the design decision to base

the body o f the transaction architect upon text-based SQL statements becomes

obvious. Providing that the SQL statement is syntactically correct, the patient data

is consequently stored in the database for whatever future data processing may

occur (for example, report generation).

Consider now the scenario where the blood gas analyser is remotely located in

the ICU and instead of processing a patient sample, a control sample is introduced.

As this analysis is completed, the result of the control sample gets transferred to

the host computer where the instrument-to-host module receives and interprets it

as before - this time it is identified as control data. The Transaction Agent

produces an appropriate SQL statement (an “INSERT INTO ...”) and embeds it in

a transaction along with context information in the header part of the transaction

identifying the type of data and the destination of the transaction. For this scenario,

assume that the database for control data from blood gas analyses has been

configured to reside on a centralised QA server computer in the clinical laboratory.

Therefore the destination specified in the header is the remote laboratory

computer.

Page 53

In order for the Transaction Processor to route the transaction to the QA

server, it must initiate and maintain a data communication link between them such

that the remote database connectivity service provider can receive the transaction.

This is achieved using the TCP/IP communication protocol and the IP address of

the remote computer. Once it receives it, the SQL statement is extracted as before

and passed to the SQL handler/interpreter in the targeted database.

Page 54

5. Instrument Interfacing

5.1. Introduction to Data Gathering

Computerisation of work practices in the business, manufacturing, industrial,

investment and medical environments has met with great success in the area of data

management [DONO - 94], Relational databases, numerical spreadsheets,

statistical analysis tools and, more recently, data warehousing methodologies have

facilitated the analysis o f previously incomprehensible volumes of data [HACK -

93], As a result, business models have become more realistic, trend analysis has

become more comprehensive, predictive analysis has become more accurate, and

fluctuations in operational parameters of business and industrial processes can be

identified and counteracted in real-time. As more and more data becomes available

to data management systems, subsequent processing will produce improved yields

in all the above areas.

Data management systems are not only concerned with processing and

analysing data, they are also concerned with the gathering of that data. This

includes the assimilation of existing data in written, printed, or digital form as well

as new data as it is created. The traditional method of making data available to data

management systems is through data entry using equipment varying from a

keyboard and a terminal with a very primitive user interface, to a fully functional

data management workstation. This manual transcription of printed data to digital

form is very labour-intensive and therefore expensive. Automation o f this process

is highly desirable.

The conversion o f existing information which is stored in a printed format to

digital storage media has recently received a lot of attention due to the availability

of new technologies. Libraries are among a number of institutes embracing the

digitisation o f printed works in order to exploit the benefits o f digital storage.

These benefits include:

Page 55

• protection o f delicate original documents by making their content digitally

available,

• rapid retrieval through efficient cataloguing and indexing systems based on

digital retrieval systems,

• viewing by many individuals at the same time using multiple digital copies,

• utilisation of the cheaper storage costs of digital media - the cost of storing

a 300-page publication in a digital format on disk media is approximately

$2 compared to $30 for traditional storage methods on shelves [LESK -

97],

The costs o f digitising a standard 300-page document of printed information

can range from $30 - $40 for scanning, $120 for scanning and Optical Character

Recognition (OCR), and up to $600 for manually keying the original information

[LESK - 97], These methods still require some degree of human assistance and so

are automated in only a limited sense. As far as published content is concerned, the

majority o f modem publications are natively created in digital format and thus do

not require any digitisation. This limits the cost of assimilating new information to

a digital format for use by a data management system in the publishing domain.

Very recently there has been a rapid trend towards integrating information from

numerous different existing data management systems to produce large data sets

from which information can be harvested. This results in a vast accumulation of

data commonly referred to as an “information warehouse”. By early 1996, over

90% of large corporations either had adopted or were planning to adopt data

warehousing technology [ORFA - 96],

Richard D. Hackathorn defines a data warehouse as “a collection of data

objects that have been inventoried for distribution to a business community”

[HACK - 93], or more explicitly a data warehouse could be described as “an

active intelligent store o f data that can manage and aggregate information from

many sources, distribute it where needed, and activate business policies.” This data

Page 56

management methodology utilises data which already exists in a digital format and

easily lends itself to complete automation.

Manufacturing and industrial domains on the other hand obtain data directly

from automated processes. Process automation is quite a mature area in these

domains and the technology employed on their automated production lines tend to

be custom designed robotic systems or more general purpose Programmable Logic

Controllers (PLC’s) which are particularly suited to controlling the analogue and

digital signals associated with process control. These systems usually have

embedded data management systems and readily support integration into

automated process local area networks and factory-wide networks. The resulting

integrated data management systems can provide the seamless integration of

process, inventory, safety, financial, and personnel domains and results in the

corresponding efficiencies due to effective inter-domain data communication.

However, they are designed to satisfy the specific needs of their environment and

are therefore not easily transferable to other domains.

5.2. Medical Data Management Systems

A comprehensive integrated data management system is highly desirable in the

medical domain. Due to the traditionally conservative approach to embracing new

technology by the medical domain, such data management systems have been slow

to develop. The complex nature o f the data requirements specific to the medical

domain has also been a factor. For example, the validation and interpretation of

clinical analysis results have a very strong correlation with a patient’s demographic

information, such as sex or age, and can impact on the validity o f their use as

diagnostic evidence [HOWA - 91], The necessity o f accessing data from diverse

segments o f the medical domain requires a depth of integration of various data

sources not normally found in data management systems of other domains. Such a

rich problem set requires an engineering solution tailored to the comprehensive

needs o f a medical data management system.

Page 57

Currently there are several systems in use for managing data in the medical

domain [BALL - 91][KENN - 94][SPAC - 87], The majority are principally

concerned with administering patient demographic information with varying

degrees o f integration with billing systems. There are also some legacy Laboratory

Information Systems (LIS’s), along with isolated data management systems

involved with inventory control and data archiving. These are generally systems

which have made the transition from the commercial sector without addressing the

focused needs o f the medical domain at the design level. Rather, they have been

adapted to fulfil new requirements and as such address local needs in a proprietary

and non-transferrable manner. This has been a factor in their limited integration

with each other and with newer data management systems.

Existing printed medical information will need to be assimilated using

techniques similar to those being employed in the publishing domain like scanning,

OCR, and even manual keying. However, currently produced medical information

also needs to be absorbed into the digital domain and, unlike the publishing

domain, it is not automatically created and stored in a digital format. Some data-

intensive operations like imaging can produce information in a digital format.

Magnetic Resonance Interference (MRI) and modem X-ray machines achieve this

through local hardware functionality, but this feature is not commonly exploited to

its full potential due to the lack o f a standard for digital image storage and the

necessary infrastructure to support it.

In the clinical laboratory environment only the most sophisticated instruments

have data assimilation and management features incorporated into their core

design. High volume multi-channel random analysers like the Hitachi 747 are an

example. These high-end instruments have a dedicated workstation which is used

for test ordering and sophisticated data analysis methods for comprehensive result

generation.

As medical instrument manufacturers react to the trend for integrated data

management systems, they will incorporate the necessary features into an

increasing number of products instead o f just their high-end models. As technology

Page 58

advances and becomes more cost-effective, medical instrument manufacturers will

eventually incorporate data assimilation and management features into their entire

product range whilst adopting a global standard for medical data processing. When

that happens, medical instruments of all kinds will support the seamless integration

of disparate medical data management systems.

5.3. Analyser Tests

In the normal course of operation of any instrument it’s operational

performance will tend to drift from its optimum due to a number of factors

including age o f the instrument, quality of its components, component failures, and

sample variations. In order to limit the effect of this drift on the quality of result

data produced for samples, it is necessary to perform additional categories of tests

to monitor and supplement its efficient operation. These are outlined below.

5.3.1. Sample Tests

These are the category of normal tests that are performed on samples to

produce results which are used to assist in patient diagnoses. Depending on the

complexity o f the analyser, a number of different channel tests can be applied to a

single sample to produce multiple result sets providing information such as

photometric composition and ion analysis.

These result sets are usually submitted to a technical validation process as the

last authorisation step in the production of a laboratory report. This process could

include delta checks to detect gross laboratory errors and sample mix-ups, and may

even utilise pattern recognition techniques to detect inconsistent trends.

5.3.2. Calibration Tests

Calibration is the process of quantifying the conversion factors used to express

measured values (absorbency, millivolts, etc.) as useful analytical quantities. As

reagents age and analyser subsystem components wear, the measured values will

Page 59

change. Calibration is required to adjust the conversion factor used in the

calibration equation which converts from the raw measured values to the

corresponding correct result.

The calibration test uses the measured values from a zero calibration solution

and from a full calibration solution to provide the limits of the useful measurement

range o f the analyser. These measured limits are used internally within the analyser

to generate the conversion factor for all subsequent sample analyses. Frequent

variations in the conversion factor can indicate unstable reagents which rapidly

decompose, or else an unstable subsystem within the analyser which would require

maintenance attention. Thus calibration tests provide vital information to a Quality

Assurance scheme.

5.3.3. Control Tests

Control tests compare analytical results for material of a constant composition

over time. The control material is chosen to be of a similar composition as the

samples being investigated and is stored in such a way as to guarantee its

consistency over time (months to years).

ITT Control Samples ■

Patient Patient Patient Patient • É
Samples

I I i I 1 I I I
Samples

1 1 1 1 1 1 1 1 —
Samples

M I M M I
Samples

; ! ! i ! :

m
&

Figure 5.1 Control test locations within several runs o f patient samples

The control test is performed on the material at regular intervals under exactly

the same conditions as the normal samples. The results from the control test are

analysed to determine the quality o f the normal samples results and any increase in

imprecision or bias in the analysers measurement subsystems. Typically three

control materials are chosen to represent low, medium, and high concentrations

Page 60

and the frequency o f control tests is dependent on the anticipated fault rate.

“Nested” stages o f control tests involve assays being performed at an initial check

stage, a monitoring stage, an end-of-run stage, and an assessment o f several runs

(Figure 5. l)[ARON - 84],

5.4. Analyser Data

Most medical analysers have a selection of tests which produce unique sets of

process data. The analyser makes these sets of process data available on its output

port - invariably a serial data port. Depending on the complexity of the analyser,

these data could be presented in fixed length messages or variable length messages.

Generally the analysers that perform multiple-channel analyses or random access

analyses utilise variable length messages because the results output from the

analysis vary according to the sample being processed and the tests selected for it.

Each message consists o f a subset o f message elements which are unique to

each test. Each message subset contains informational fields such as labels and

descriptors, and data fields composed o f results from actual analytical assays. The

exact makeup of each message depends on the message format implemented in the

analyser for the different analytical tests.

5.4.1. Fixed Length Messages

This type o f message format is typical of small and bedside analysers which do

not possess the complexities necessary to perform different tests on different

samples within the one sample set. An example is the ABL3 Blood Gas Analyser

(Figure 5.2).

Page 61

Patient Data Calibration Data Control Data

RADIOMETER ABL330 RADIOMETER ABL330 RADIOMETER ABL330
20 23 26

TIME 11:33 2 POINT CAL 1 POINT CAL
DATE 1996 FEB 18 TIME 11:44 TIME 11:55

DATE 1996 FEB 18 DATE 1996 FEB 18
PTID 12345 BARO 101. 9 k Pa BARO 101.9 kPa
TEMP 37.0 C CORRECTED VALUES CORRECTED VALUES
Hb * 15.0 g% RED CAL pH 7.381

pH 7.382 PC02 5.36 kPa
pH 7.393 PC02 5.36 kPa P02 18.89 kPa
PC02 5.19 kPa P02 18.88 kPa ELECTRODE DRIFT
P02 14.91 kPa GREEN CAL pH 0.000

pH 6.842 PC02 -0.03 kPa
HC03 23.4 MM/L PC02 10.61 kPa P02 0.12 kPa
TC02 24.6 MM/L ELECTRODE DRIFT
ABE -1.0 MM/L RED DRIFT
SBE -1.1 MM/L pH 0.001
SBC 23.6 MM/L PC02 0.01 kPa

P02 0.03 kPa
SAT 98.1 % GREEN DRIFT

pH 0.000
* PREPROG. VALUE PC02 -0.03 kPa

Figure 5.2 Samples o f process data from an Air Blood Gas Analyser (ABL330)

For each class o f analytical test (patient, control, or calibration) the generated

message follows a rigid definition o f information, value descriptors, values, and

value units. They are always in the same layout with the same number of characters

for each element o f a message subset. This predictability makes it easier to

interface to a host computer because the interface module only needs to be

sufficiently complex to process this small set o f fixed length messages.

5.4.2. Variable Length Messages

This type of message format is typical o f analysers that use worklists to define

which tests out o f a collection o f tests will be performed on an individual sample.

This encompasses the classes o f medium and large sized analysers and an example

is the Hitachi 717 Clinical Chemical Analyser from Boehringer Mannheim/Hitachi.

The message sets produced by these types o f analysers vary in length

depending on the selection of tests to be performed on each sample. Information,

Page 62

value descriptors, values, and value units are also present in this message format,

but the number o f fields associated with values may increase. Some samples may

only have one test result associated with their entry in the message whilst other

samples may have dozens o f results. The entry in the message for each sample

dynamically resizes to accommodate the varying number of test result entries.

Extensive use is made o f delimiting characters to break the message subsets into

their component fields and this feature is utilised to identify the termination of

repeating fields when interfacing to a host computer.

5.5. Analyser Physical Interface

Currently almost all medical instruments have a serial port which supports the

transfer o f their process data using RS232C or RS485 protocols (Appendix B).

Rather than invest in new instrumentation, using the process data available on this

serial port as the data assimilation path will allow the leveraging of current

technology to support the integration of clinical instruments into a healthcare-wide

data management system. As results are produced by clinical analysers in a medical

laboratory, they can be assimilated to a local computer using the serial port. Thus

the current investment in technology is reused without the need to invest in new

hardware interfaces ([KENN - 94]) or new instruments.

Whilst approximately 50% of the serial communication market uses the RS-232

standard, other communication interfaces like RS-422/423, RS-484, RS-485, RS-

574, RS-644, and fibre-optic-based standards are also available. The RS-422/423

standard supports data transfer over distances o f up to 300m at higher speeds than

the RS-232 standard with improved immunity to electrical interference, and is

particularly suited to a laboratory environment where it may not be possible to

locate a computer close to all the instruments to which it may be connected. There

is also a trend in the industry to change to CMOS transistors instead of BJT

transistors, and to use 3 V instead of 5 V voltage levels. In 1996 approximately

68% of all RS-232 devices were BJT, but this is expected to drop to 52% by 2000

as CMOS is more widely adopted. Similarly 28% of RS-232 devices in 1996 used

3 V signal levels but that is expected to increase to 60% by 2000 [MANT - 97],

Page 63

In order to address these trends in the serial communication market, the

application development must be modular so that as different communication

interfaces are adopted, the hardware and associated driver software can be

replaced without impacting on the core design o f the data transferring application.

If it is deemed necessary to replace RS-232 connections with RS-422 connections

in order to facilitate a more distributed laboratory environment, the serial port

hardware can be replaced and the driver software easily upgraded without

impacting on any other sub-system modules in the data assimilation application.

5.6. Analyser Software Interface

Device driver software for controlling the hardware responsible for this process

of data transfer over an electrical medium and the associated hardware and error

control logic is readily available. It typically permits the specification of data

transfer rates, number o f stop bits, number of data bits, type o f parity checking,

and any hardware flow control which may be utilised during the transaction. The

software is a time-proven technology and is usually bundled with all operating

systems.

To develop customised driver software is a relatively uncomplicated process

since the serial port hardware is not too complex and the necessary functionality to

control it is well documented [SERG - 89], The software can be developed as an

integral part o f the data transferring application or as an add-on module. This

second approach satisfies the modular approach of application development since it

allows the development o f the customised driver software to be carried out

independently o f the data transferring application. The add-on module could be a

Dynamically Linked Library (DLL) or an object-based class which provide access

to serial data communication through a streamlined interface.

Page 64

For rapid assessment of the feasibility o f design choices being made, it was

decided to use the Communications Control available in Visual Basic 3.0. This

custom control (VBX) is available with the Visual Basic application development

environment and simplifies serial communications for applications by allowing the

transmission and reception of data through a serial port [MICR - 95], When the

application is distributed, in order to use the Communications Control, the file

ms comm, vbx must be copied to the Windows \SYSTEM subdirectory of the target

system.

5.6.1. Visual Basic Communications Control

ctlComm.PortOpen = True ' try opening the serial port
If (ctlComm. PortOpen = True) Then

' successful - try outputting a command string to the serial port
ctlComm.Output = strCommand

End If
ctlComm. PortOpen = False ' done, so close the serial port

Figure 5.3 VB code sample fo r interacting with a Communications Control

named "ctlComm’’

The Communications Control has properties and functions for interacting with

it. The main ones are shown in the sample code in Figure 5.3. It has only one event

- the “ oncomm” event - that must be serviced. The “ oncomm” event is generated

whenever the value o f the CommEvent property changes, indicating that either a

communications event or a communications error has occurred. This is typically

used for processing any data that is received by the serial port (Figure 5.4).

Page 65

Sub ctlComm OnComm ()
Dim strRecv As String

Select Case ctlComm.CommEvent
' Events
Case MSCOMM_EV_CD ' change in the CD line
Case MSCOMM EV CTS ' change in the CTS line
Case MSCOMM_EV_DSR ' change in the DSR line
Case MSCOMM EV RECEIVE ' received characters

If (ctlComm.InBufferCount > 0) Then
1 i f there were characters, read them into a string variable
strRecv = ctlComm.Input

End If
' Errors
Case MSCOMM_ER_BREAK 'A Break was received
Case MSCOMM_ER_CDTO ' CD (RLSD) Timeout
Case MSCOMM_ER_CTSTO ' CTS Timeout
Case MSCOMM ER DSRTO 'DSR Timeout
Case MSCOMM_ER_TXFULL ' Transmit buffer full
End Select

End Sub

Figure 5.4 VB code sample fo r the Communications Control event

5.6.2. C Dynamic Link Library

For performance reasons and due to the fact that the custom control file

ms comm . vbx must be distributed with the design solution, a C-based Dynamic I,ink

Library (DLL) was developed. The C language provides greater control over the

communication ports at a lower level than Visual Basic with less overhead.

Therefore, equivalent functionality invariably executes faster when it is

implemented in C compared to a Visual Basic implementation. The resultant DLL

does not require any special installation process - it simply needs to be in the same

directory as the executable that calls it.

From the functional prototyping achieved using the Visual Basic custom

control, it was obvious that a relatively simple Application Programming Interface

(API) was sufficient. The C-based DLL provides five interfaces: Configure, open,

close, Read, and Write (Figure 5.5). A data structure is also defined for use in

configuring and identifying the serial port.

Page 66

extern "C" BOOL FAR PASCAL ^export Configure(HWND hCaller,
struct ConfigStruct far *Config);

extern "C" BOOL FAR PASCAL __export Open (HWND hCaller,
struct ConfigStruct far *Config);

extern "C" BOOL FAR PASCAL _export Close(HWND hCaller,
struct ConfigStruct far *Config);

extern "C" WORD FAR PASCAL _export Write(HWND hCaller,
struct ConfigStruct far *Config, void far *Data, unsigned
iCount);

extern "C" WORD FAR PASCAL export ReadfHWND hCaller,
struct ConfigStruct far *Config, void far *Data, unsigned
iCount);

Structure o f configuration data */
struct ConfigStruct
{

char cDevicelD [16]; /* used to identify the type/name o f device */
DWORD dwConf igDataLen; /* overall length o f this structure * /

DCB DCBinf o ; /* standard 53-byte Windows DCB used here */
HWND hCaller; / * hWndto the caller */
int iDeviceNum; /* used to identify multiple devices */

};

Figure 5.5 C function definitions fo r a serial communications DLL

In order for these interfaces to be used by a Visual Basic application, they must

be declared in a manner that Visual Basic can recognise (Figure 5.6). ’’Alias” is

used to identify the name o f the procedure in the DLL for use in the Visual Basic

domain. This prevents the external procedure name conflicting with a Visual Basic

reserved word, a global variable or constant, or any other procedure in the same

scope. Thus the five C-based DLL interfaces are renamed to: ConfigPort,

openPort, elosePort, ReadPort, and writePort. A data structure is also defined

for use in configuring and identifying the serial port.

Page 67

Declare Function ConfigPort Lib "RS232.dll" Alias "Configure"
(ByVal HWND As Integer, pConfig As ConfigStruct) As Integer

Declare Function OpenPort Lib "RS232.dll" Alias "Open" (ByVal
HWND As Integer, pConfig As ConfigStruct) As Integer

Declare Function ClosePort Lib "RS232.dll" Alias "Close"
(ByVal HWND As Integer, pConfig As ConfigStruct) As Integer

Declare Function ReadPort Lib "RS232.dll" Alias "Read" (ByVal
HWND As Integer, pConfig As ConfigStruct, ByVal strBuffer As
String, ByVal iBufSize As Integer) As Integer

Declare Function WritePort Lib "RS232.dll" Alias "Write"
(ByVal HWND As Integer, pConfig As ConfigStruct, ByVal
strBuffer As String, ByVal iBufSize As Integer) As Integer

Type ConfigStruct
strDevicelD As String * 16 ' used to identify the type/name o f device
ConfigDataLen As Long ' overall length o f this structure
DCBinfo As String * 55 ' standard 53-byte Windows D C B structure
hCaller As Integer ' hWnd to the caller
iDeviceNum As Integer ' used to identify multiple devices

End Type

Figure 5.6 VB declarations fo r calling functions from a DLL API

A simple Visual Basic code sample in Figure 5.7 shows how the interfaces of

the C-based DLL can be invoked and used.

' use the DLL's configuration d ia log box
If (ConfigPort(HWND, pConfig) = False) Then

MsgBox "Error configuring the Port", 48
Else

' try opening the seria l p o r t
If (OpenPort(HWND, pConfig) = False) Then

MsgBox "Error opening the Port", 48
Else

' try outputting a com m and string to the seria l po rt
bRetVal = WritePort(HWND, pConfig, strCommand,

Len(strCommand))
' done, so close the seria l p o r t
If (ClosePort(HWND, pConfig) = False) Then

MsgBox "Error closing the Port", 48
End If

End If
End If

Figure 5.7 VB code sample fo r invoking a serial communications DLL

Page 68

5.7. Analyser Message Interpretation

Most medical instruments have a selection of tests which produce unique sets

of process data. These tests can be one of two types: either sample analysis or

calibration procedures to assist in the technical validation process of a Quality

Assurance scheme. Most medical instruments provide serial transmission of

process data as a stream of characters arranged to give fixed length message sets.

Each message consists of subset message elements which are unique to each test.

Whilst each message subset can contain informational fields and data fields

composed of varying data, the length of each message subset is a fixed number of

characters. A selection of sample data output from an ABL 330 Blood Gas

Analyser is shown in Figure 5.2. This property can be exploited to identify the

specific analytical procedure which generated the process data being assimilated.

As each message is transferred via the serial data connection to the PC, the

analytical procedure which generated it must be identified in order that the data

elements can be correctly assimilated according to the context of the generating

analytical procedure.

In the absence of any adopted medical instrument messaging standard, the

analytical procedure identification process is unique to each instrument since the

message content is unique to the process data output by the instrument for each

analytical procedure. Therefore the identification rules utilised in this process are

unique to each instrument and must be generated as required. This is not an easily

automated process and necessitates human interaction. Once the identification rules

have been correctly defined, the assimilation of process data can be repeatedly

iterated on an automated basis. If a different instrument is connected to the PC,

then the identification rules need to be redefined for the message syntax unique to

that instrument.

5.7.1. General Parsing Techniques

The identification rules are composed of two parts. The first part operates on a

data stream to break it into discrete components which are recognisable as multiple

Page 69

unit entities of message subsets. This division into units (which are usually called

tokens) is known as lexical analysis. The module performing this lexical analysis

can be custom-coded in any general-purpose programming language, such as C, to

process the unique message content of a specific instrument. Alternatively a lexical

analyser generation tool, such as Flex, could be used. Flex has its roots in the

UNIX-based Lex [LESK - 75] which resulted from research in the area of Finite

State Techniques [JOHN - 68] as applied to scanning and parsing theory [AAHO

- 86][MORT - 93], Flex requires a description of the input stream content (using a

special-purpose language for writing lexical analysers) and produces a lexical

analyser that is both fast and compact. The resultant lexical analyser is almost

always faster than one which has been custom-coded due to the various

algorithmic optimisations implemented by the Flex tool [LEVI - 92], It is usually

used for generating compilers.

The second component utilises the tokens generated by the lexical analyser and

compares them to grammar rules. The grammar rules define the context to which

the tokens are to be applied and therefore the sequence in which they arrive from

the lexical analyser is critical. This process is known as parsing. As a sequence of

tokens is logically matched to a specific grammar rule, a user-defined action can be

carried out. This user-defined action could be a simple single code statement or a

function call which passes temporary control to some other processing module. As

with the lexical analyser, the parser could be custom-coded or else a parser

generation tool could be used such as the UNIX-based YACC (Yet Another

Compiler Compiler), or its modern counterpart Bison. Whilst the YACC-generated

parser is usually not as fast as a custom-coded parser [LEVI - 92], the ease in

writing and modifying the parser is invariably worth any speed loss incurred and it

uses sophisticated parsing algorithms derived from the article [KRIS - 81],

Two different rule generation techniques were examined which performed real­

time analytical procedure identification on the stream of process data received from

the medical instrument over serial communications. Both techniques use a lexical

analyser to perform a lexical analysis on the data input stream and break it up into

a sequence of tokens. This sequence of tokens is then compared against a

Page 70

collection of grammar rules in a parser. Each grammar rule set is specific to an

analytical procedure, thereby enabling its identification. The difference between the

two techniques is based on how the lexical analysis and grammar rules are

generated for each instrument being interfaced to produce a lexical analyser and

parser pair.

5.7.2. Advanced Instrument Interface (A.I.I.)

The first technique utilised software developed for the OpenLabs project,

which was an EU Advanced Informatics in Medicine (AIM) research initiative to

study the area of medical informatics [OPEN - 95], The software generated the

lexical analyser and parser using a set of tools in a graphical environment (Figure

5.8).

Figure 5.8 Advanced Instrument Interface (All) development environment

Tokens were represented in a simple graphical manner and their relationships

with each other were represented as lines connecting different tokens in specific

orders to produce the grammar rule set specific to different analytical procedures

Page 71

for each instrument. Each token has attributes associated with it such as an

identifying label, its length, delimiter character(s), and validation rule(s) for

grammatical integrity. These attributes dictate its interaction with other tokens in

the grammar analysis.

The software has several plug-in interfaces for connectivity to various data

sources and data sinks. These include RS-232 for serial communication, TCP/IP

for network communication, and Dynamic Data Exchange (DDE) for DDE-

compliant inter-application communication.

The graphical-based definition of tokens enables rapid and easy development of

a lexical analyser and parser pair. Specification of token attributes and additional

grammatical rules is achieved with a few dialog boxes. The architecture permits the

design of new plug-in interface modules to satisfy unique requirements as they are

encountered, resulting in an extensible development environment. Integrated

debugging features display messages indicating the status of parsing as the

grammar rule sets are navigated. This enables rapid prototype development. The

resultant run-time interface application can support multiple data streams from

multiple sources going to multiple destinations all independently of one another.

However there is a performance penalty for the flexibility of this run-time interface

application. The processing overhead can result in sluggish performance for data

transfer rates above baud rates of 9600, Whilst most medical instruments have a

range of data transfer rates, they usually do not have serial communication

capabilities at those higher data transfer rates, so this system would be sufficient to

interface an instrument to a computer. If network communication is also required,

then this may introduce too many time delays to make it any more realistic than a

prototype development.

5.7.3. Static Parser Generator

The second technique was custom designed for this research using Visual Basic

to exploit its powerful user interface creation abilities and rapid development and

ratification cycles (Figure 5.9). It was designed to exploit the typical format of

Page 72

serial data from simple medical analysers in the low-end of the market. Most of

these analysers output a relatively uncomplicated stream of data sets which do not

require complex processing before assimilation. These streams tend to be static in

structure with fixed field sizes and no dynamically generated content. For example,

the content of a calibration data set always contains the same message subsets.

Since low-end analysers are more prolific in the medical environment than the more

expensive high-end analysers, it was decided to target their serial data

communication templates for design guidelines when developing this parser

generator.

Parse Form

RADIOMETER ABL3 30 □□□
24 □□□

TIME 17:39 □□□
DATE 1 9 9 4 AUG 3 1 □ □ □

□□□
PTID £ □□□
TEMP 3 7 . 0 C □ □ □

■ • ¡Number

" RADIOMETER ABL3301 From 1 to 23
" 24 " From 32 to 35
" T I M E " From 47 to 53
"17:39" From 55 to 59
" D A T E " | From 70 to 7G
'1994 AUG 31" From 77 to 87
' PTI D " From 116 to 1:

Title
SeqNum
IblTime
Time
IblDate
Date
IblPtID
PHD

Discardable
Number
Discardable
Date
Discardable
Date
Discardable
Number

Figure 5.9 Parser being "trained" fo r message sets from anABL 330

The model adopted was vaguely inspired by the methodologies used in neural

networks where the net was “trained” with known inputs to give an improved

probability of a correct output when presented with an unknown input. Thus the

parser was “trained” with a selection of typical analytical procedure message sets

Page 73

to generate the rule sets for the lexical analyser and parser. These rule sets were

utilised by the parser to identify unknown analytical procedure message sets.

Training is performed by specifying the operational mode as being “training”.

The instrument then transmits sample messages for each of the operational

procedures whose data are required to be assimilated. The messages are

transmitted to the host computer over the serial communication link as separate

data streams. Each data stream is extracted from the serial communication module

to reproduce the original message. The message is then presented to the user

permitting the identification of the discrete units of the message subsets within the

message by a simple point-and-click interface. The message subsets are given

appropriate attributes to convert them to tokens for lexical analysis and to define

their location within the grammatical structure of the message. Due to the simple

format of the messages from the targeted low-end analysers, the location within the

grammatical structure is simply the location in the stream of data. Hence the

location attribute specifies the character count up to the start character of the

message subset and the number of characters within it.

Once the “training” has been completed for all the analytical procedures of

interest, the operational mode is changed to “parse”. As serial data is received from

the connected medical instrument, the message data is extracted and passed to the

lexical analyser and parser pair for processing. These modules attempt to match the

message data to a grammar rule by iterating through all the pertinent grammar

rules available to it. When a match has been found the analytical procedure which

created the message data has been identified so that the subset information can be

used in the correct context. Thus, for example, result data from patient sample

analyses are made available to Technical Validation techniques whilst result data

from control sample analyses are made available to Quality Assurance procedures.

5.7.4. Adopted Module

Since most of the clinical analysers available in the test environment are of low-

end variety, they generate data sets of fixed length and predictable content.

Page 74

Therefore, it was decided to utilise the “static parser generator” as the analyser

message interpretation module. It provides the necessary flexibility and ease of use

to suit the user requirements dictated by the clinical laboratory environment.

Both systems follow the same process. As the lexical analysis identifies

required message elements, they are paired with their assigned name in a multi­

dimensional array. Any data that is attributed a “discardable” type is ignored for

further processing. The resultant two-dimensional array has a name and value pair

for each message element.

During configuration of the lexical rules, the name assigned to a message

element is critical. Since the data will ultimately be stored in a database, the

message element name corresponds to the field name of the table to which it will

be stored. Thus, they must match exactly. The two-dimensional array is passed to

its associated Transaction Agent in the Instrument Interface module. There it is

used to generate a SQL statement that will result in it being stored in a database.

The message element names are used as the “field” parameters whilst the data

values are used as the “value” parameters in an INSERT statement (see Section 7.1

for a discussion of SQL and Appendix D for the specific SQL syntax). For

example, “INSERT INTO PatientData (SeqNum, Time, Date, PtID, Temp,
Hb) VALUES ('20', '11:33', '1996 Feb 18', '12345', '37.0',

'15.0')” (data taken from Figure 5.2). If the message element names do not

concisely match the names of fields in the table of the target database, the SQL

statement will fail.

At configuration time, the successful operation depends upon accurately

specifying the message element names. If errors become apparent at execution

time, the “static parser generator” facilitates correcting the name assignments with

minimal difficulty. In fact, it is not necessary to repeat the “training” process since

the rule set can be edited and updated as required. Once the necessary

modifications have been completed, the rule set just needs to be saved before

returning to the “parse” mode of operation.

Page 75

6. Transaction Architecture
A design concept based on a Client/Server communication model inherently

utilises discrete parcels of data to carry out units of work. Each unit of work is

referred to as a transaction, which is essentially a negotiation between a Client and

a Server using a prearranged syntax to deliver some functionality. The syntax could

be composed of specific predefined requests which are constant and follow a rigid

pre-defmed format, or they could be more complex permitting the dynamic

generation of requests which may never have been encountered before, but which

must be correctly interpreted according to their context.

The syntax used for the transactions must be defined in accordance with the

units of work to be performed. In the context of this design concept the units of

work are service procedures. In order to invoke a service procedure a transaction

must be dispatched to the service provider via the Transaction Processor. The

transaction requires the appropriate data formatting when it is transmitted in order

that the service provider can correctly interpret the service request and utilise the

appropriate procedure to deliver the correct service (Figure 6.1).

Transaction
Processor Service Request

Service
Procedure

Service
Service Procedure

Provider Service
Procedure

Service
Procedure

Figure 6.1 The infrastructure fo r transaction processing

For the proposed 3-tier Client/Server communication paradigm a middleware

layer of functionality will be provided by the Transaction Processor. The

Transaction Processor will route all the transactions from client modules to the

Page 76

appropriate service providers and provide additional processing and administration

of transactions.

When client modules are initialised (for example Instrument Interface

modules), they register with the Transaction Processor by providing identifying

information in the form of some brief user-entered text. This text is used for user-

interface and logging purposes. The Transaction Processor consequently supplies

each client module with a unique identifier code appropriate to their function. Each

unique identifier code (Module Identification Code, MIC) issued to a client module

at registration is composed of a functional code (see Table 6.1) and a number. The

number is incremented by the Transaction Processor for each newly registered

module of the same functional type. So a “host” with 3 medical analysers

connected to it would have 3 instrument interface modules registered with its

Transaction Processor each having MIC’s of INS 1, INS2, and INS3. This scheme

of centralising the registration process reduces the arbitration problems as new

client modules are initiated at run time and simplifies the tracking and routing of

transactions between clients and servers.

Function Code D escription

INS Instrument interface module

GUI Graphical User Interface module

DBS Database interfacing module

CHT Chat facility

TUT Tutorial facility

Table 6.1 Function codes fo r module registration

Each client module is responsible for identifying all transactions it generates by

incrementing a counter and using the counter as a Transaction Identification

Number (TIN). With the MIC combined with the TIN, the Transaction Processor

can uniquely identify all transactions originating from its locally connected client

modules.

Page 77

In order to define the necessary transactions and their components, the service

domains were analysed and their component individual services procedures

identified. The service domains revolve around two general areas: administering a

transactional link and exchanging data over that link.

Administering a transactional link involves:

• opening and closing it

• negotiating identities

• establishing privileges

• obtaining additional information

• enquiring the status

Exchanging data includes a variety of data from a number of services:

• data storage

• data retrieval

• interactive chat

• tutorial instruction

Since the focus of the design concept is data processing based on storing and

retrieving data, the majority of transactions will be concerned with exchanging data

of the first two types. The last two data types are included to permit the

exploitation of expert knowledge by the operator of an analyser which is located

remotely from the medical laboratory.

6.1. Transaction Structure

It is proposed to construct transactions that are composed of two sections - a

header and a body. The header section encapsulates three types of fields - a

“command” field, an occasional “qualifier” field and several “administrative” fields,

whilst the body section encapsulates a “message” field (Figure 6.2).

Page 78

The “command” field specifies the service procedure being requested (as

outlined earlier and described in more detail later), while the “qualifier” field

provides additional information to instruct how, or on what, to perform the service

procedure. Obviously some service procedures will not need any qualifiers in order

for a service provider to completely deliver the requested service. Typically,

service procedures located on remote computers would be the most frequent users

of this “qualifier” field where it would contain the IP address of the remote

computer. The “administrative” fields contain information to uniquely identify

which client module originated the transaction (the MIC) and the transaction itself

(the TIN), the time it was requested, the overall length of the transaction, and a

delimiter.

Transaction Header Transaction Body

1 0

Command |Q x ii| Message Field [in s e r t in t o |

MIC I'insvi Delimiter @
TIN looos'l

Date & Time ^hmmssddm myyy|

Length l'Q064 l
Occasional Qualifier (123 458 789 M i l

Delimiter 111

Figure 6.2 The component fields o f a transaction

The “message” field contains the raw data which will be used by the service

provider in the service procedure and can vary from potentially no characters to

several thousand, depending on the type of service being requested. As identified in

the user requirements (Chapter 3), the majority of transactions will be database

centric. Therefore the “message” field would typically contain the text-based SQL

statement necessary to fulfil the required database activity.

The header contains a fixed-length (2 bytes) hexadecimal number representing

the transaction type command code (Appendix D). In the next 8 bytes are the

fixed-length MIC (4 bytes) and TIN (4 bytes), used for uniquely identifying the

originating client module. A 14-byte character representation of the date and time

stamp follows, which has the format “hhmmssddmmyyyy”. Thus 14:52:10 on the

Page 79

2nd of April in 1992 appears as “14521002041992”. The next field is also fixed-

length (4 bytes) and contains a hexadecimal number representing the total count of

bytes in the complete transaction including the header. Therefore the maximum

theoretical length is OxFFFF = 65,535 bytes. Following this is an optional field

(called a “qualifier”), the content of which depends on the type of transaction (see

Appendix D). In order to identify when the header is complete and the body of the

transaction is starting, a delimiter is used as the final field and is defined as the

“¡’’character. This is necessary because the optional qualifier field has a variable

length which can be zero or greater than zero. The body of the transaction also has

a delimiter that it is defined as the NULL character (0x00) because the message is

typically text (formatted as a SQL statement), and NULL is widely accepted as a

terminator for text.

Transactions are based on a request-response pairing. For every transaction

request there should be a corresponding transaction response. When a client

module requires a service, it generates a transaction with its MIC and the TIN

appended together to uniquely identify the transaction. This is placed in the

designated field of the header along with the command code and other necessary

information to provide context (Appendix D). This transaction is dispatched to the

Transaction Processor and routed through to the service provider. The response

from the service provider contains the same unique identification as the request

(the original combination of MIC and TIN), as well as the requesting command

code placed in the “qualifier” field, and a command code indicates the success or

failure of the transaction. This is sent back to the client module via the Transaction

Processor. The unique identification of each request-response transaction pair

allows the Transaction Processor to match the response to each individual request

and permits the tracking of incomplete transactions. Since all transactions contain a

time-stamp, matching the response to the request also gives an indication of the

time taken to complete transactions, Excessively slow completion of transactions

would therefore be highlighted and corrective action could be taken. The

transaction response could contain a simple acknowledgement code, a substantial

data set, or a transaction failure based on the output of the transaction service

procedure.

Page 80

6.2. Transaction Processor

The Transaction Processor provides the middleware functionality in the

adopted 3-tier Client/Server communication model. Its purpose is to provide

coherence to the transaction-based messaging system by centralising the control

and administration of transactions. A functional representation of the internal

components is shown in Figure 6.3 and they are explained below.

Transaction
A gent

Transaction Processor

Transaction Interpreter

Remote
Connectivity

Local
Connectivity

Registration!-1—i7
Arbitration

Transaction 1
Recorder

Service Request List (SRL) | ~ p Logger

Network
Pipe

Data
Store

Data
Store

Figure 6.3 Transaction Processor internals

Each “host” has its own Transaction Processor to arbitrate over internal

transactions. Each module (client modules and service provider modules) on the

“host” must register with the Transaction Processor so that it knows how to route

transactions. The Transaction Processor is able to redirect every transaction to the

correct service provider based on the command code and any qualifiers associated

with it.

For example, when an instrument interface module needs to store data in a

database, its Transaction Agent generates a transaction which the Transaction

Processor routes to the database connectivity service provider. This routing is

based on the command code in the transaction header and the fact that the database

connectivity service provider module has previously registered with the

Page 81

Transaction Provider. Even a remote database can be referenced with this

mechanism since the transaction header command code would indicate a remote

database operation and the “qualifier” field would specify the IP address of the

remote database server.

Client Server

Transaction
Processor

fan»*» jg
Coftneciiviiy Data Communication Pipe . : ' ■

Ramo» ;
Connectivity Transaction

ProcessorLocal
Connectivity

Local
Connectivity

Figure 6.4 Extending the Transaction Processor to a remote server

For transactions to a remote computer (for example a centralised QA server),

the Transaction Processor conceptually extends over the data communication

medium to include a counterpart Transaction Processor on the server, producing

one expansive virtual Transaction Processor (Figure 6.4). Therefore the “host”

Transaction Processor establishes a data communication link with the remote

Transaction Processor, and passes the transaction to the remote Transaction

Processor. This remote Transaction Processor then arbitrates and dispatches the

transaction to the required service provider as if it had been generated locally.

Response transactions from the service provider are passed to the “host”

Transaction Processor by the remote Transaction Processor via the data

communication link and routed to the requesting client module. Isolating the data

communication functionality in this manner results in transparent transaction

processing whether the service provider is located on the local computer or on a

remote computer.

Whenever it receives a service request, the Transaction Processor appends an

entry to the end of a “Service Request List” (SRL). The SRL entry is composed of

two sections - a request section and a response section - to mimic the request-

response pairing of transactions (Figure 6.5).

Page 82

Request Response

MIC & TIN Command
code

Time Stamp Qualifier Command
code

Time Stamp Qualifier

I IN S I0005 I IÔXÏÏ] [14521002041992 1123.456 789 00 1 1 |0xF0| |14521402041992 I |0x1l|

Figure 6.5 The elements o f a Service Request List (SRL) entry

The request section contains the unique MIC and TIN, the transaction

command code, the time-stamp, and the “qualifier” field (if any) o f the transaction.

These four elements are obtained from information contained within the header of

the transaction (Appendix C). The response section contains the transaction

command code, the time-stamp, and the “qualifier” field (if any) of the response

transaction. It is filled out using information contained within the header o f the

response transaction when it is received from the service provider. The time­

stamps permit the identification o f time-intensive transactions or sluggish

transaction processing, whilst an unmatched time-stamp could be used to identify

incomplete transaction and provide a time-out to the requesting client module.

As each request-response transaction pair is matched up, it indicates a

completed transaction, successful or otherwise. At this point the entry is removed

from the SRL and can be either discarded or else logged to a report file (Figure

6.6). The logging information could be an exact duplicate o f the SRL entry or else

a verbose translation of the SRL entry, depending on configuration data supplied at

start-up. Thus the time stamps and transaction codes would be translated by the

logging module within the Transaction Processor from definitions in a look-up

table and the MIC would be replaced with information supplied at the time o f the

module’s registration.

Page 83

Default formatting o f SRL output to log file
INS10005 0x02 14520002041992 123.456.789.001 OxFO 14520902041992 0x02
INS10005 0x11 14521002041992 123.456.709.001 OxFO 14521402041992 0x11
INS10005 0x11 14521502041992 123.456.789.001 OxFO 14521902041992 0x11
INS10005 0x11 14522002041992 123.456.709.001 OxFO 14522402041992 0x11
INS10005 0x11 14522502041992 123.456.709.001 OxFO 14522902041992 0x11
INS10005 0x07 14523002041992 123.456.709.001 OxFl 14523102041992 0x07

Verbose formatting of SRL output to log file

lood Gas Ana. in Room 34
OPEN DB REMOTE 14 52:00 02-Apr-1992 123.456.709.001

ACK 14 52:09 02-Apr-1992 OPEN_DB_REMOTE
Blood Gas Ana. in Room 34
DB_STORE 14 52:10 02-Apr-l992 123.456.709.001

ACK 14 52:14 02-Apr-1992 DB_STORE
Blood Gas Ana. in Room 34
DB_STORE 14 52:15 02-Apr-1992 123.456.789.001

ACK 14 52:19 02-Apr-1992 DB_STORE
Blood Gas Ana, in Room 34
DB_STORE 14 52:20 02-Apr-1992 123.456.789.001

ACK 14 52:24 02-Apr-1992 DB_STORE
lood Gas Ana. in Room 34
DB_STORE 14 52:25 02-Apr-1992 123.456.709.001

ACK 14 52:29 02-Apr-1992 DB_STORE
lood Gas Ana. in Room 34
CLOSE LINK 14 52:30 02-Apr-1992 123.456.709.001

ACK 14 52:31 02-Apr-1992 CLOSE_LINK

Figure 6.6 Sample outputs to the Service Request List (SRL) log file

An example of the flow of transactions between a client module and a service

provider is shown in Figure 6.7. In this example, the client module is requesting a

database to be opened for some pending database activity. The request transaction

and its acknowledgement transaction are shown, as is the syntax for the interaction

with the SRL.

Client
Module

(e.g. Instrument
Interface)

Transaction
Agent

Transaction Request
(a.g Conneot to local database)

Transaction Response

SRL

Lag INS1 0001
(e.g. queue request from

client for connection)

Remove jNS1 0001
(e.g. remove previous

connect request from queue)

QPEN_OÔ_iOCALM$1
0001
113959Û1011997
5»

'C:\Keass\medlcal\fi
albnt.mdb‘

Transaction
Processor

Transaction Response
(e.g. Connect successful)

ACK.
WSÍ :
0001
,200000101 m y m

Transaction Request

Transaction "jj _ ^ Service
Provider
(e.g. DBMS

Interface)

Figure 6.7 Example Transaction flow fo r opening a database

Page 84

6.3. Service Procedures

As stated above, service procedures belong to one of two generalised domains.

The procedures belonging to the “Administrating the Link” domain are necessary

for establishing the transaction link and maintaining it in order to support the

procedures of the second domain of “Exchanging Data”. The procedures are listed

in their entirety in Appendix D.

The addition of new message types (e.g. binary X-ray images) will not affect

the transaction structure. This is because they will simply be additional types with

their own unique message content and will therefore not require a redefinition of

the transaction structure. As new functionality is added to the transaction

brokering system implemented within the Transaction Processor it may fall under

the categoiy of an existing service procedure class and therefore also scale linearly.

However, it is recognised that some new functionalities may require an extension

to the functions available within the Transaction Processor.

6.3.1. Opening and Closing the Link

All data exchanges must be initiated before they are committed and

subsequently completed. This class of services enable the Transaction Processor to

identify the appropriate service provider and ensure that it is in a stable state and is

prepared to deliver the requested service. The type of data that is exchanged over

the transactional link defines the exact content of the opening and closing service

syntax, and these are listed below:

Local database activity

(O PEN _D B_LO CA L)

Data being exchanged w ill be stored or retrieved from a

local database

Remote database activity

(O PEN_DB_REM O TE)

Data being exchanged w ill be stored or retrieved from a

remote database

Interactive chat

(OPEN_CHAT)

Data w ill be exchanged in a real-time peer-to-peer link

between operators

Tutorial information

(O PEN_TU TO R)

Data being exchanged w ill request tutorial information

such as a specific tutorial, or a list o f archived informational

topics

Page 85

The last three initiate transaction links with remote computers and must

therefore include the appropriate information to establish a data communication

session. Since the underlying remote communication protocol is TCP/IP, the IP

address of the target computer must be given in the “qualifier” field of the header

section of the transaction to represent the destination.

If the service provider is capable of facilitating the service request then it sends

an acknowledgement with the transaction command code echoed in the “qualifier”

field of the transaction header. This allows the Transaction Processor to ratify the

acknowledgement with the request. If the two do not match then the Transaction

Processor closes down the link and sends a failed transaction message to the

requesting client module.

To close a transaction link, either party can issue a close command. There are

two types of close commands - one graceful and one an emergency.

Graceful shutdown

(C LO S E JJN K)

Communication link shutdown request

Emergency shutdown

(TERM INATE)

Emergency communication link shutdown

The graceful one (CLOSE_LINK) requires an acknowledgement from the

other party in the transaction which echoes the CLOSELINK command in its

“qualifier” field. The other close command (TERMINATE) indicates that an

emergency state has occurred where it is not possible to wait for the

acknowledgement associated with a graceful shut down. When a TERMINATE

command is received, the other party must recover as best it can.

6.3.2. Privileges and Security Issues

In a distributed laboratory environment there would be numerous analysers

capable of participating in the Laboratory Information System (LIS). It is desirable

to uniquely identify each analyser and its “host” computer, as well as whatever

Page 86

“server” computers may be connected to the LIS to provide data management

services. This would allow nodes on the LIS to express the types of services they

are capable of delivering. Thus an analyser would reply to this type of transaction

with its identity, its location, any other designated parameters necessary for

identifying it in the LIS, and a list of the analytical assays it is capable of

performing. Similarly, a server would respond with designated information and the

class of services it is capable of delivering, for example patient or sample

identification, Long Term Quality Control (LTQC) of operational performance, or

technical validation of samples.

Identification Identification request that also requires supported services

(W H O _A R E_Y O U)

The range of services, which must necessarily be included in this type of

informational exchange, can be quite extensive. Whilst each service could be

uniquely identified using a proprietary coding mechanism unique to the laboratory,

there is substantial continuing research in the area of standard medical

nomenclature [BOAR - 94][CAMP - 94][COTE - 73] as well as published

standards (SNOMED, etc.). One of these standards should be used to define the

analytical services for this type of informational exchange.

In the data-sensitive medical environment, it is imperative that security issues

are addressed. Only services with the necessary privileges will be allowed access to

data. This is an attempt to eliminate unauthorised use and abuse of critical medical

information. It also enables auditing procedures to track data and error sources.

6.3.3. Obtaining Additional Information

This category of services is included to provide future informational features as

they are required. For example, as audit trails are ratified it may become necessary

to explicitly log data transactions or provide digital signatures. This information

could be made available through transactions based on this category.

Page 87

This simple service procedure allows clients and servers to obtain information

about the status of another machine. It could be used as the precursor to the

delivery of a critical transaction in order to increase its chances of successfully

completing.

6.3.4. Enquiring the Status

Status enquiry Request for the status o f a computer

(WH A T_STA TU S)

The command (WHAT_STATUS) does not require any message component

and the acknowledgement command (STATUS) has a message which indicates its

status. The defined statuses are listed below:

Available Can receive and process transactions

Busy Currently performing a service

Off-line Services are not currently available

No answer Server inoperative or data communication problem

If, for example, a host is asked its status, it could be ready for transaction

processing (and therefore give its acknowledgement status as “available”).

Alternatively it could be involved with an analyser assisting in performing a sample

analysis (and give its acknowledgement status as “busy”).

6.3.5. Data Storage and Retrieval

This category of service procedures contains elements that are to be transferred

to and from databases. It is anticipated that these procedures will account for the

majority of transaction traffic in the final implementation of the design concept. In

order to minimise interface complications the transaction will use a syntax which is

most easily recognised by the vast majority of databases - Standard Querying

Language (SQL) [GROF - 94] - as the contents of the message element.

Page 88

Whilst this standard is very mature with comprehensive support throughout the

DBMS vendors, the standard permits some implementation-specific interpretations

and has resulted in some variance from vendor to vendor. Consequently, not all

feature sets are directly transferable between vendors systems. To avoid these

incompatibilities transactions will be based on the simple sub-set of SQL elements

which are in the category of “entry level SQL” [DATE - 93] and are supported by

the vast majority of DBMS’s (covered in Appendix D).

Assuming suitable permissions have been authenticated (by the “open”

transactions used for establishing the link - Sections 6.3.1 and 6.3.2), these SQL

statements will store data to existing databases and extract required data from

existing databases. No database structures will be altered or generated due to any

transaction and all databases are expected to have been previously defined and

created. It is the responsibility of the module that generates the transaction (the

Transaction Agent) to ensure the accuracy of any SQL statement which it uses in a

transaction. The outcome of the SQL statement will be returned to the requesting

Transaction Agent, thus it is also the responsibility of the requesting Transaction

Agent to handle any subsequent errors due to the failure of SQL statements.

These criteria will distribute some of the processing load to the client modules

and will subsequently limit the overhead on the database server, thereby allowing

the support of more transactions than would otherwise be possible. This is of

particular importance in a distributed environment where several client computers

may be trying to simultaneously interact with one central server. As the overhead

to deal with a single transaction on the server increases, the volume of transactions

that can be serviced consequently reduces. Keeping this overhead to a minimum

therefore increases the number of clients a single server can support. This kind of

scalability issue becomes a practical concern as increasing numbers of instruments

are connected to a central server [BENS - 80][MARK - 88],

Page 89

Data storage

(D B _ST O R E)

Data w ill be stored to a SQL-compatible database using an

“INSERT INTO . . . ” statement

Data retrieval

(DB_EXTRACT)

Data w ill be retrieved from a SQL-compatible database

using a “SELECT FROM . . .” statement

It is desirable that data will be stored to databases whenever it is generated.

Typically, this data originates from an instrument connected to a “host” after it has

completed a sample analysis. The results of the test(s) are assimilated by the

instrument interface module and made available to its Transaction Agent. The

Transaction Agent generates a service request to store the results in a predefined

database. It does this by an appropriately formatted SQL statement (see Appendix

D), and dispatching it to the Transaction Processor for further processing. The

Transaction Processor delivers the service request to the appropriate service

provider (in this case, a SQL-servicing mechanism) which stores the data and

delivers an acknowledgement transaction to indicate the successful completion of

the service request (Figure 6.8).

Figure 6.8 Transaction flow fo r instrument data

Data is retrieved from databases whenever it is required for contributory

analysis. This could be QA analysis (for example patient demographic information

for technical validation or LTQC of the operational performance of the

instrument), or a medical professional using the results to assist in the diagnosis

and treatment of a patient. In each case the requesting module (analysis tool or

user interface display) issues the requirements to its Transaction Agent which

Page 90

generates the appropriate service request based on a SQL statement. The

Transaction Agent dispatches the transaction to the Transaction Processor which

in turn delivers it to the appropriate service provider. The transaction

acknowledgement contains the result(s) of the SQL statement (Figure 6.9).

....\

Ul Display

\
^ ’S
Ê <

. .

Monitor

\

\
QA Module II

Figure 6.9 Transaction flow fo r data requests

If the database is remote, the transaction uses a different transaction qualifier

which includes the IP address of the remote computer in the qualifier fields. The

SQL statement would be identical to a SQL statement which would be used to

interact with a local database. This simplifies the SQL generation to a single

transparent format for local and remote database activity.

6.3.6. Interactive Chat

This type of service uses message elements which are character-based to

provide a service for the real-time interaction between two operators. It is

specifically suited to an analyser that is located remotely from the medical

laboratory, for example in an Intensive Care Unit (ICU). Therefore, the operators

of such an analyser would be healthcare professionals whose core competencies

would not primarily be focused on analyser techniques and operations. Personnel

with those skills would be based in the laboratory. In order for the efficient

Page 91

operation of the analyser, sometimes it would be desirable for the experience of

laboratory personnel to be available to the remote operators of the analyser.

Interactive communication

(CHAT_SEND)

Character-based messages w ill be transferred to a remote

computer

This is achieved through the use of a simple interface (Figure 6.10) which

allows a user to type a message and it appears on the other user’s screen. This

facility could be used by a remote operator to discuss difficulties encountered

through use of the analyser with a member of the laboratory staff. As stated in

Section 4.8, it is not anticipated that this service would replace traditional

communication methods, instead it is merely an additional mode of communication

to complement traditional methods.

Status

C o n n e c t e d to 123.456.789.123

The instrument is displaying "Reactant A resevoir low"
What do I do???
The level in the red bottle is low
How much?

Look at the bottles on the side, what do you ssa?
That is "Reactant A", use the standard solution of NaCI to
it up.
To the "max" line.

123.4S6.78S

Figure 6.10 Interactive chat user interface screen

In order to deliver varying degrees of real-time interaction, the length of the

data being transmitted in every transaction can be tuned. While the data

transmission capacity of the network and the volume of network traffic will be the

Page 92

main data transfer factors, the size of the data packets and their corresponding

frequency will also impact on performance. For as close to real-time an experience

as possible, every key-press would be transmitted for each transaction command

(CHAT_SEND).

In order to preserve network bandwidth, complete words could be transmitted

with white space characters indicating the boundary of each word and triggering

the transmission of the preceding word. For the most efficient use of network

bandwidth, the characters typed could be buffered until a special key is pressed and

then the complete message would be sent. This latter type of exchange could be

used for distinct question-and-answer sessions where interactivity could be

sacrificed for the benefit of network traffic and complete sentences or even

paragraphs could be sent with a single transaction.

6.3.7. Tutorial Instruction

This service procedure could be used to augment whatever assistance can be

given remotely by an experienced laboratory staff member using the interactive

chat service. The tutorial could take the form of a simple text file, a formatted help

file, or a multimedia presentation composed of (conceivably) video and audio

elements, and could for example describe in detail the procedure for carrying out a

calibration test on the analyser, or performing some maintenance task.

A library of previously prepared tutorial material would be stored in a central

archive repository. A service could generate a transaction to request a list of

available tutorial material and then a different transaction would be generated to

request specific material to be transmitted to the remote operator and assist in

whatever task was currently being undertaken.

Tutorial instruction

(T U T O R _R E Q U E ST)

Tutorial request that delivers a specific tutorial or a list o f

available tutorials depending on the qualifier

Page 93

All tutorial requests use the same command (TUTOR REQUEST) with

different qualifiers to indicate what is being requested - a list or a specific tutorial.

If a specific tutorial is requested, its name is given in the message field. Service

provider responses also use a common command (TUTOR SEND) with the

qualifier field indicating whether it is a list or an actual tutorial. If it is an actual

tutorial, the qualifier field specifies the format used for the tutorial (text, audio,

etc.). The message field contains the data. A list of tutorials will be a delimited

sequence of text listing tutorial entries. An individual tutorial will be a binary file

and could be several megabytes in size (fragmentation of such a large data packet

is taken care of by the data communication layers).

The whole area of multimedia and interactive help facilities is a vast area of

human-computer interaction and is receiving considerable research interest. Whilst

the facility is provided in the design concept, it is outside the scope of this analysis

and the specific implementation issues are not examined.

Page 94

7. Database Interface
As stated in Section 4.2, the user requirements revolve around data processing

based on storing and retrieving data. This data processing closely couples the

design concept with databases and interacting with them. Whilst there are

numerous different DataBase Management Systems (DBMS) available, all with

their own specific interface requirements, the vast majority support Structured

Query Language (SQL). Depending on their degree of compliance with the various

generations of the SQL standard (see later Section 7.1), each DBMS provides a

SQL interpreter for interacting with the structure of the data and the data itself.

Leveraging this widely supported database language simplifies the design

considerations for interfacing with databases. Due to the diverse selection of

DBMS’s in use in the distributed medical environment, SQL provides the

necessary flexibility to interact with these existing DBMS’s.

In the implemented design concept there are two types of SQL statements

utilised by service providers to handle data processing requirements. The service

providers store data and retrieve data. The syntax of each type being utilised is

supported in the “entry level SQL” conformance definition [ORFA - 96] in order

to be successfully executed on the majority of the mainstream DBMS’s.

More complex SQL constructs such as JOIN, REVOKE, or bit strings and

translations are not explicitly implemented, however that does not exclude their use

by future service providers. This is because the transactions service providers

generate are SQL statements and can therefore be executed on the majority of the

mainstream DBMS’s (so long as they are syntactically correct). Therefore, if a data

processing module was added which required “intermediate level” or “full SQL”

functionalities, it would be its responsibility to generate the appropriate SQL

statement, embed it in a transaction, and send it to the Transaction Processor. As

with all other transactions, the Transaction Processor would forward it to the

service provider - in this case the database connectivity module. Depending on the

specific vendor solution being manipulated at that time, the transaction would

Page 95

either pass or fail. Since conformance is not guaranteed at those levels, success is

dependent on a transaction-by-transaction basis. Of course, as more and more

vendor solutions embrace the most modem SQL standard, the probability of

success for these more complex SQL statements will consequently increase.

7.1. Introduction to SQL

SQL started out as a convenient tool in the development of relational

databases. After several revisions, an official standard was adopted by the

American National Standards Institute (ANSI) as ANSI standard X3.135 in 1986,

and by the International Standards Organisation (ISO) as an ISO standard in 1987.

This standard, slightly revised and expanded in 1989, is usually called the “SQL-

89” or “SQL1” standard. The standard was ratified in 1992 to ISO SQL-92 or

“SQL2” to suggest a staged approach to conformance - entry, intermediate, and

full [ORFA - 96]. The most recent version (“SQL3”) was drafted in 1997 but will

take some time to be implemented by DataBase Management System (DBMS)

vendors.

The key generic features of SQL include:

• high-level command structure making it easy to learn and quick to

implement

• it is a complete database language which supports database administration,

database creation, data manipulation, data sharing, and security concerns

• dynamic data definition allowing database structures to be changed and

expanded dynamically

• Client/Server architecture for implementing applications in a distributed

environment

• hardware and vendor independence due to the official standardisation of

SQL and the adoption by the leading DBMS vendors

Relational databases are composed of self-contained elements called “tables”,

which hold the actual data. Each entry in a table is referred to as a “row” and is

composed of any number of units of data which are called “attributes”. The

Page 96

information contained within a database can be retrieved from any number of tables

and filtered to provide only the pertinent data by executing “queries” which specify

rules for data to satisfy.

7.2. Transferring SQL Statements

Being able to communicate desired instructions to a DBMS is not the only

consideration when interacting with a database. The underlying mechanism for

connecting and issuing these instructions must also be addressed.

Every DBMS has its own API for exposing its functionality to other

applications (for example Oracle Objects for OLE, 0 0 4 0), but an ever-increasing

number are supporting the Open Database Connectivity (ODBC). While this has

not yet been ratified as a formal standard, it has been adopted to such a degree that

it is rapidly becoming the de-facto standard for database connectivity. In this

manner, ODBC acts as an insulating layer whereby the application is isolated from

the proprietary interface requirements of different DBMS’s (Figure 7.1).

It is proposed to utilise ODBC as the database communication mechanism for

the design implementation. This necessitates that the database exposes its ODBC

interface to the hosting computer system by the specification of a Data Source

Page 97

Name (DSN) to uniquely identify it. All DBMS’s that support ODBC must have

specific driver software installed on the computer system. This is typically the case

when the DBMS is originally installed; otherwise, the driver software must be

installed to permit ODBC with the DBMS.

The transaction link is initiated with an opening transaction where the header is

composed of a command component indicating an impending data storage service

request (OPEN_DB_LOCAL or OPEN_DB_REMOTE). The message component

indicates the database to be affected. Additional database information is specified

in an initialisation file which is configurable by an operator with the necessary

privileges. This file assists the database interface module in identifying the correct

database and table.

The database interface module attempts to establish a connection with the

DBMS using ODBC (see later Section 7.3). If this is successful, the requesting

module issues a transaction containing a SQL statement (in the message

component) in order to achieve a specific database operation: to store the data to

the database, the command code DB_STORE is used, whereas to retrieve data

from the database the command code DB EXTRACT is used. Each of these

transactions has a message component that contains the appropriate SQL

statement to fulfil the required operation.

The Transaction Agent of the database interface module extracts the SQL

statement and passes it through the established (ODBC) connection to the DBMS

(Figure 7.2). The DBMS’s SQL interpreter then attempts to process the SQL

statement. Depending on the success of the SQL statement, the service provider

returns a pass or fail acknowledgement to the requesting module. A success

acknowledgement when retrieving data will contain a dataset fulfilling the specified

conditions. A failure acknowledgement will be passed up to the requesting module

and it is its responsibility to handle such an occurrence.

Page 98

Service Provider
(Database Interface Module)

Figure 7.2 Processing a transaction by a database interface module

A failure will cause a default action to occur which attempts to store the data

on the “hosts” hard disk using the previously generated SQL statement. Ignoring

the possibility of a failure in the file system of the local host, this default action will

prevent any data from being irretrievably lost. In an incorrectly configured system

where databases, tables, or fields are not accurately and properly declared, failures

will happen very frequently. Therefore, the default action could result in a

substantial amount of data being stored in the local hard disk if the situation is not

rectified quickly. The logging features of the Transaction Processor will highlight

which transactions are failing and will assist in correcting the problem(s).

7.3. Database Software Interface

7.3.1. Visual Basic Data Control

For rapid assessment of the feasibility of design choices being made, it was

decided to utilise the Data Control available in Visual Basic 3.0. This control is

available with the Visual Basic application development environment and simplifies

database operations. It uses the Microsoft Access database engine for its local data

access functionality, and Open Database Connectivity (ODBC) for remote data

access functionality [M3CR - 95] which is supported by the vast majority of

DBMS’s. Thus, the Data Control provides a simplified method of connecting to

the vast majority of database management systems commercially available.

Page 99

When the application is distributed, in order to use the Data Control, the files

m s a j t i i o .d l l , m s a e s i i o .DLL and o d b c .dl l must be copied to the Windows

\SYSTEM subdirectory of the target system.

The Data Control has several properties and functions for interacting with it.

The “DatabaseName” property specifies the exact database, whilst the “connect”

property specifies the connection information for different types of databases (see

Table 7.1). The “RecordSource” property specifies the source of the records

accessible through the Data Control. It can directly reference a table, a SQL

statement or a “QueryDef’. The use of these properties is demonstrated in the

sample code in Figure 7.3.

Database Form at DatabaseNam e Connect

Microsoft Acecss drive:\path\filename (none)

dBASE III drive:\path “dBASE III”

dBASE IV drive:\path “dBASE IV"

Paradox drive:\path “Paradox”

Btrieve drive:\path “Btrieve"

FoxPro 2.0 driveApath “FoxPro 2.0"

FoxPro 2.5 drive:\path “FoxPro 2 .0”

ODBC data source name or “ODBC; DSN = server; DATABASE

an empty string ("") = defaultdatabase; UID = user;

PW D = password;’’

Table 7.1 Properties fo r a VB Data Control to support various database types

ctlData.DatabaseName = "PatientData.mdb"
ctlData. Connect = "" ' using M S Access, so leave blank
ctlData.RecordSource = "SELECT * FROM pHTable WHERE PtID = "
& iPatientNum
ctlData.Refresh
If (ctlData.Recordset.RecordCount > 0) Then

' successful - try extracting the values
ipHValue = ctlData.Recordset.Fields("pH").Value
iHbValue = ctlData. Recordset.Fields("Hb").Value

End If

Figure 7.3 VB code sample fo r interacting with a Data Control

Page 100

The recordset resulting from correctly specifying these properties can be

manipulated using a rich API composed of field objects and navigation operations

such as “MoveFirst”, “MoveNext”, “MoveLast”, and “e o f ”. These are typically

used for processing any data contained within the recordset (Figure 7.4).

i = 0
ctlData.Recordset.MoveFirst
Do Until ctlData.Recordset.EOF

DataArray(i, 1) = ctlData.Recordset.Fields("pH").Name
DataArrayfi, 2) = ctlData.Recordset.Fields("pH").Value
i = i + 1
ctlData.Recordset.MoveNext

Loop

Figure 7.4 VB code sample for processing recordsets with a Data Control

7.3.2. Simplified Database API

From the functional prototyping achieved using the Visual Basic control, it was

obvious that a relatively simple Application Programming Interface (API) was

sufficient. Thus, for performance reasons and due to the additional files that must

be distributed with the design solution, it was decided to directly leverage the

system-level calls for database communication. This is achieved using a VB code

module that invokes certain Windows API functions while providing a simplified

API to the design concept implementation. This also permitted the code module to

follow a similar interface specification as the other code modules in the design

concept (serial communication - Section 5.6.2).

As with the other code modules in the adopted modularised approach for the

design concept, it does not require any special installation process, so the DLL’s

required by the Data Control in the preceding section are not necessary. However,

it does rely on one file - o d b c .d l l - since it is specifically for connecting to

ODBC-compatible DBMS’s.

This simplified API requires the same basic categories of functionality as that

provided by the C-based serial communications DLL. These five categories -

Page 101

configure, Open, close, Read, and Write - are implemented as five database-

centric interfaces: ConfigODBC, 0pen0DBC, eloseODBe, ReadODBC, and

writeODBC. Since they are VB functions in a VB code module, it is not possible to

use the ’’Alias” keyword in the code declarations to assign a non-conflicting name

as in the case when DLL’s are used. Being in a code module, the functions are

essentially internal to the design concept compared to an external DLL. They

would therefore conflict with Visual Basic reserved words and any global variable

or constant, or other procedure in the same scope with the same name. The

Windows API functions which are invoked by these simplified API functions are

shown in Figure 7.5.

Declare Function SQLAllocEnv Lib "odbc.dll" (HenvPtr As Long)
As Integer
Declare Function SQLAllocConnect Lib "odbc.dll" (ByVal HENV
As Long, HDBCPtr As Long) As Integer
Declare Function SQLConnect Lib "odbc.dll" (ByVal HDBC As
Long, ByVal DSN As String, ByVal DSNLen As Integer, ByVal UID
As String, ByVal UIDLen As Integer, ByVal AuthStr As String,
ByVal AuthStrLen As Integer) As Integer
Declare Function SQLDisconnect Lib "odbc.dll" (ByVal HDBC As
Long) As Integer
Declare Function SQLFreeConnect Lib "odbc.dll" (ByVal HDBC As
Long) As Integer
Declare Function SQLFreeEnv Lib "odbc.dll" (ByVal HENV As
Long) As Integer
Declare Function SQLAllocStmt Lib "odbc.dll" (ByVal HDBC As
Long, HSTMTPtr As Long) As Integer
Declare Function SQLFreeStmt Lib "odbc.dll" (ByVal HSTMT As
Long, ByVal fOption As Integer) As Integer
Declare Function SQLExecDirect Lib "odbc.dll" (ByVal HSTMT As
Long, ByVal SQLStr As String, ByVal SqlStrLen As Long) As
Integer
Declare Function SQLBindCol Lib "odbc.dll" (ByVal HSTMT As
Long, ByVal ColNum As Integer, ByVal ColType As Integer,
ByVal ColData As String, ByVal MaxData As Long, ActualData As
Long) As Integer
Declare Function SQLFetch Lib "odbc.dll" (ByVal HSTMT As
Long) As Integer
Declare Function SQLPrepare Lib "odbc.dll" (ByVal HSTMT As
Long, ByVal SQLStr As String, ByVal SqlStrLen As Long) As
Integer
Declare Function SQLExecute Lib "odbc.dll" (ByVal HSTMT As
Long) As Integer
Declare Function SQLError Lib "odbc.dll" (ByVal HENV As Long,
ByVal HDBC As Long, ByVal HSTMT As Long, ByVal SQLState As
String, NativeErrorCode As Long, ByVal ErrMsg As String,
ByVal ErrorMsgMax As Integer, ErrorMsgLen As Integer) As
Integer

Figure 7.5 VB declarations fo r invoked Windows API functions

Page 102

For demonstration purposes, the OpenODBC function is listed in Figure 7.6.

Function OpenODBC (DSN As String, UID As String, PassWd As
String) As Integer
Dim RetCode As Integer

DEBUGSQL = True
If DataBaseOpen = 0 Then

RetCode = SQLAllocEnv(HENV)
If (RetCode = SQL_SUCCESS) Then

RetCode = SQLAllocConnect(HENV, HDBC)
If (RetCode = SQL_SUCCESS) Then

RetCode = SQLConnect(HDBC, DSN, SQL_NTS,
UID, SQL_NTS, PassWd, SQL_NTS)
If (RetCode = SQL_SUCCESS) Or (RetCode =
SQL_SUCCESS_WITH_INFO) Then

DataBaseOpen = 1
OpenODBC = 0

Else
RetCode = SQLFreeConnect(HDBC)
RetCode = SQLFreeEnv(HENV)
OpenODBC = -1

End If
Else

RetCode = SQLFreeEnv(HENV)
OpenODBC = -1

End If
Else

OpenODBC = -1
End If

End If
End Function

Figure 7.6 VB code for opening an ODBC database

A simple Visual Basic code sample in Figure 7.7 shows how the interfaces can

be invoked and used.

' try opening the database
If (OpenODBC("TestDB", "Admin", "") = False) Then

MsgBox "Error opening the database", 48
Else

' try outputting a com m and string to the database
strSQL = "INSERT INTO TestTable (FName, LName) VALUES
('John', 'Smith')"
bRetVal = WriteODBC(strSQL)

' done, so close the database
If (CloseODBCO = False) Then

MsgBox "Error closing the database", 48
End If

End If

Figure 7.7 VB code sample fo r invoking simplified database functions

Page 103

8. Remote Connectivity
In order to support the remote connectivity specified in the user requirements,

a data communication channel is necessary. As with other areas of the design

concept, this functionality will rely on existing standards which are widely

implemented and in a mature state of development. This approach encourages the

adoption of an open data communication environment to seamlessly integrate with

other components of the design solution. The modularised approach introduced in

the design chapter (Chapter 4) will facilitate the independent implementation of the

data communication functionality. As competing standards are adopted in the

medical domain, the data communication module can be upgraded or replaced with

the appropriate replacement module so long as it conforms to the simple interface

specification detailed in this chapter.

8.1. Introduction to Network Protocols

Data communication functionality is provided by software modules called

“stacks” which are composed of layers of functionality. Each layer operates on the

data as it passes through it from the application to the electrical components which

provide the physical connection between the two communicating computers. A

number of layers can work together to implement a certain protocol. Figure 8.1

shows a layered description of a network stack with various protocols inserted into

their appropriate position in the layered structure. (Some of the elements will be

described, but the rest are displayed for demonstration purposes.)

Page 104

_ Peer-to-peer
’ Services API

- Common
Transport

Sem antics

■ N D IS o r O DI

Figure 8.1 Various protocols within a stack architecture

8.1.1. Open Systems Interconnection Reference Model

The definitive layered approach to data communication was defined by

International Standards Organisation (ISO) between 1977 and 1984 and is called

the Open Systems Interconnect (OSI) Reference Model (ISO reference number

7498). According to Andrew Tanenbaum [TANE - 96] the layered approach

adopted by this large world-wide standards group had the following ideals in mind:

• A layer should be created where a different level of abstraction is needed.

• Each layer should perform a well-defined function.

• The function of each layer should be chosen with the objective of defining

internationally standardised protocols.

• The layer boundaries should be chosen to minimise the information flow

across the interfaces.

• The number of layers should be large enough that distinct functions do not

have to be thrown together in the same layer out of necessity, and small

enough that the architecture does not become unwieldy.

Page 105

The OSI model is composed of seven layers (Figure 8.2) each with well-

defined functionalities, the implementation details of which are hidden from all

other layers. This simplifies transferring the network stack to a new hardware

platform or operating system since only the layers that are different need to be

redesigned to address the target-specific issues.

S iso/osp-x
\A p p lic a tio n J

End-user services such as the
finger protocol or file transfer

Application Layer
(Messages)

Data representation transformations
and data encryption

Presentation Layer
(Messages)

Session Layer
(Messages)

t
Transport Layer

(Messages)
t

Network Layer
(Packets)

t
Data-Link Layer

(Frames)
t

Physical Layer
(B«s)

Channel set-up and synchronization,
user authorization and passwords

End-to-end message transfer, data
fragmentation, and flow control

Network addressing and routing,
network congestion

Data framing, transparency,
and error control

Mechanical and electrical network
interface, timing and control signals

Figure 8 .2ISO/OSI seven layer network model

While OSI has provided a conceptual framework for network application

developers, its presence in terms of products designed in accordance with the

conceptual model has, until recently, been minimal in the commercial marketplace

[BURN - 93], Other communication protocols based on the OSI framework have

achieved greater dominance, one of which is described next.

Page 106

The most widely implemented network stack is commonly referred to as the

Internet stack, or more accurately the Transport Control Protocol/Internet

Protocol (TCP/IP) stack. This layered model is similar to the OSI model, however

it only consists of four discrete layers. Some layers encapsulate functionalities

which are separated into component layers in the OSI Model (Figure 8.3).

8.1.2. Internet Protocol Network Stack

The initial development of the TCP/IP network protocol suite was undertaken

as a research project funded by the Defence Advanced Research Projects Agency

(DARPA) in 1969 and resulted in the experimental network called ARPANET. It

initially serviced non-classified military communications, but its popularity grew

when it was expanded to include educational establishments to further the research

effort.

Page 107

The protocol rapidly developed into a mature specification through a unique

architecture methodology. Each design proposal, review and adoption was publicly

available. Through the use of Request For Comment (RFC) documents it

encouraged debate and input from individuals and small groups, as well as

established research committees. This informal method of establishing new

protocol standards was in stark contrast with the stringent requirements employed

by the ISO. This RFC process was far more expeditious than the equivalent

procedure utilised for defining the OSI model and consequently resulted in its

quick adoption as the de facto standard for data communication across computer

networks. Each RFC document addresses different aspects of the TCP/IP network

suite and is publicly available. As a result anybody can make recommendations on

the content of an RFC and the resulting RFC is the product of global consensus.

Some of the distinguishing features of the TCP/IP network suite are:

• Independence of network topology

• Independence of network hardware

• Independence of operating system

• Publicly available protocol standard

• Universal addressing scheme

• Powerful Client/Server framework

• Application-specific protocols

The widespread support and implementation of this network suite provides the

main reason for its advocacy as the data communication protocol for supporting

the remote connectivity aspect of the design concept. Numerous hardware

platforms and operating systems have their own TCP/IP network stack. In the

diverse environment of the medical domain, homogeneity of computer systems is

not a realistic possibility, so the ready availability of a network stack for all

platforms is necessary in order to integrate these dissimilar computer systems.

Page 108

8.2. TCP/IP Components

The TCP/IP network protocol uses an abstract end-point for all communication

services called a socket. This is very similar to the UNIX-based object descriptor

which provides the UNIX operating system with a handle for interacting with

various elements of the system such as printers, tape drives, and disk files. The

descriptor enables input/output operations using an “open-read-write-close”

process for all system interactions. However network communication requires

additional functionality to the file descriptor process to support an extra step:

“open-define-read-write-close”. The “define” segment of the process permits the

specification of a remote computer and unique process with which to participate in

data communications.

Data communications based on sockets inherently use the Client/Server model:

a socket on a server is configured to wait for client sockets to initiate a data link

with it; then either party can read or write data on the established data link.

8.2.1. Windows Sockets API

The Windows Sockets Application Programming Interface (WinSock API) is a

software interface to the TCP/IP network suite on computers which host the

Microsoft Windows operating system. It is vendor-independent for any TCP/IP-

compliant network suite. As explained in section Chapter 2, the predominant

hardware platform available in the medical domain is the Personal Computer (PC)

with Microsoft Windows as its operating system. Therefore the WinSock API is

the network suite employed in the design concept.

The TCP/IP network model was initially designed for implementation on the

UNIX operating system. As such it utilised the multi-tasking features of that

operating system and pre-emptively multi-tasks between processes. If a function

does not return immediately, the UNIX operating system pre-empts that thread of

execution and allows other threads of operation to proceed. So no single function

call can bring the system to a grinding halt while it waits for a response from a

remote computer which may or may not even be operational.

Page 109

However, under the Windows operating system, if a function does not return

immediately the co-operative multi-tasking nature of Windows cannot interrupt the

stalled function and it blocks further execution of other program statements and

processes.

There are two ways of getting round this blocking function call. The first is to

use non-blocking sockets. When a socket is created it is blocking by default, but it

can be converted to non-blocking mode by using the ioctisocket () function (this

function is a WinSock-specific extension of the iocti () function for input/output

control on a file descriptor under UNIX). If a function is subsequently called which

would not return immediately, an error code is returned which indicates that the

function cannot immediately complete. The select () function is used in

conjunction with the ioctisocket () function to query the status of the non-

blocking socket. It checks the readability, writeability, and exception status of one

or more sockets. Non-blocking sockets are frequently used in Windows-based

applications to prevent the calling application from locking up the system due to a

blocking function call.

The second solution is to take advantage of the message-driven nature of

Windows and use asynchronous function calls. Asynchronous functions include

parameters which the operating system uses to send a message to report the

success or failure of the asynchronous operation. When an asynchronous function

is called, it tells the operating system to notify the caller when the operation has

been completed and immediately continues execution to the next program

statement. Thus, the calling function does not cause execution to be suspended

until the operation is completed but instead permits the application to continue.

When the operation has completed the operating system posts a notification

message to the window of the caller which reports the success or failure of the

asynchronous operation. Thus the caller must have a message-handling routine to

process the outcome of the asynchronous operation. All WinSock asynchronous

functions are identified by the wsAAsync prefix. The wsAAsyncselect () function

Page 110

changes a socket into non-blocking mode and informs the operating system of the

combination of network operations which are to be monitored.

The difference between the two solutions is somewhat subtle. The non-

blocking method returns an error immediately if the network operation cannot be

completed. Whereas the asynchronous function method relinquishes control and

does not return an error immediately if the network operation cannot be

completed, instead it eventually times out and then returns an error.

8.2.2. Types of Data Transfers in TCP/IP

The TCP/IP network suite supports three data communication services

depending on which protocol is used over the socket data link:

• User Datagram Protocol (UDP)

• Transport Control Protocol (TCP)

• Internet Control Message Protocol (ICMP)

UDP provides a connectionless datagram service where data packets are sent

to an Internet address on a best-try basis. No point-to-point virtual communication

link is established, therefore data packets must contain the target IP address of

their destination. Thus, the sender and receiver must know each other’s IP address.

This mechanism results in a protocol with minimal overhead since channel

management and transfer acknowledgements are not required. It is typically used in

applications where data integrity is not as important as data transmission rates and

processing overhead.

It is proposed to use this type of data transfer for the chat and tutorial aspects

of the design concept. Having a high throughput is more important than accuracy

of data. If a packet fails to arrive (for whatever reason), the overall meaning of the

complete exchange (i.e. during use of the “chat” functionality) may still be

intelligible. If not, then the user can request just that lost portion.

Page 111

TCP provides a reliable, connection-oriented stream service where a

communication channel is established and maintained throughout the complete data

exchange. Once this channel has been established, data packets simply need to be

sent to the channel where the underlying protocol ensures their delivery over the

virtual link. Packet fragmentation, reassembly and framing are handled by the

protocol. If a packet fails to arrive (for whatever reason), the protocol manages the

request for retransmission invisibly from the upper layers in the communication

stack. These channel management features incur the penalty of higher overheads.

This mechanism of data transfer is typically used in applications where data

integrity is more important than data transmission rates and processing overhead.

It is proposed to use this type of data transfer for what is anticipated to be the

majority of remote communication - transactions with messages composed of SQL

statements. Since it is critical that these transactions are delivered in their entirety

to their destination, the reliable connection-oriented nature of TCP makes it the

preferred choice over UDP.

ICMP uses low-level protocols to bypass the transport layer and communicate

directly with the network layer. It is typically used for flow control, error reporting

and routing manipulation. Thus, its use is more suited to network management

instead of data transfer and consequently it is not used in the design concept.

8.3. Progressive Application Developments

A number of different applications were developed to investigate the design

considerations associated with the WinSock API. These ranged from very basic

utilities to complete networked applications and are described briefly below.

8.3.1. Test Application 1: Host Name and Service Resolution

This first WinSock application - wsdbtest.exe - was developed in the

Microsoft Visual C++ environment. It uses the Microsoft Foundation Classes

(MFC’s) to draw the window frame and handle the menu messages which are used

Page 112

to control the WinSock functions. It uses database look-up functions to convert

between different formats for Internet addresses and Internet Services and displays

the results in pop-up message boxes.

Internet addresses can be represented as dotted decimal address or dotted

ASCII text name (for example “123.456.789.123” or “www.nasa.gov”). The

function gethostbyaddr () returns the dotted ASCII text name when supplied

with the dotted decimal address. The function gethostbyname () returns the

dotted decimal address when supplied with dotted ASCII text name. The

asynchronous equivalents of these functions - wsAAsyncGetHostByAddr () and

WSAAsyncGetHostByName () - were also USed.

Protocol ports uniquely identify a service being provided being provided by a

Server such as finger or ftp. Protocol ports can be represented by their number or

by a service name. The function getservbyport () returns the service name when

supplied with the port number and getservbyname () returns the port number

when supplied with the service name. The asynchronous equivalents of these

functions — WSAAsynGetServByPort () and WSAAsyncGetServByName () were

also used.

8.3.2. Test Application 2: User Datagram Protocol Client and

Server

These two applications - udpcii. exe and udpserv. exe - were developed in

the Microsoft Visual C++ environment. They use the Microsoft Foundation

Classes (MFC’s) to draw the window frame and handle the menu messages which

are used to control the WinSock functions. They implement the connectionless

datagram communication protocol using blocking function calls.

As described previously, both applications create a socket, however in this

implementation only the Server application binds its socket to a port. The reason

for this is that it was decided that communication need only be uni-directional - the

Client sends datagrams to the Server and the Server receives them, but no data

Page 113

flows in the opposite direction. Thus the Client sends datagrams to the Server and

the Server simply receives the datagrams. Both applications display messages in the

client area of its window indicating the status of the network operations and the

Server also displays any messages it receives.

8.3.3. Test Application 3: Asynchronous Stream-Connected Client

and Server

These two applications - asyncii.exe and asynserv.exe - were developed

in the Microsoft Visual C++ environment. They use the Microsoft Foundation

Classes (MFC’s) to draw the window frame and handle the menu and button

messages which are used to control the WinSock functions. They implement the

connection-oriented communication protocol using asynchronous function calls.

As described previously, both applications create a socket but only the Server

application binds its socket to a port and then listens for connections from Clients.

When the Client attempts to connect to the Server, the link is established when the

Server acknowledges the Client. All data transfers take place over this virtual link

bi-directionally until the link is terminated. Both applications display simply

messages in the client area of its window indicating the status of the network

operations. Each application has an edit box control for typing messages which get

transmitted one line at a time on a menu click event. Thus communication is bi­

directional.

8.3.4. Test Application 4: Simplified API Implemented as a DLL

In order to speed up application development and provide a simplified

programming interface to the WinSock functions, a Dynamic Link Library (DLL)

was developed. This was the ultimate aim of the investigation into the WinSock

API and resulted in access to TCP/IP data communication through a streamlined

interface where it encapsulated network functionality within five function calls. Just

as with the serial data communication module (Section 5.6.2), this kind of modular

Page 114

approach to application development allows the development of network

communication to be carried out independently from the rest of the application.

This C-based DLL - aiicsock.dll - provides all the features necessary to

establish a connection-oriented link, transmit and receive data, and terminate the

link. The five interfaces are: configured, open(), closed, readd, and

write () (Figure 8.4). A data structure is also defined for use in configuring and

identifying the socket for communication.

extern "C" BOOL FAR PASCAL _export Configure(HWND hCaller,
struct ConfigStruct far *Config);

extern "C" BOOL FAR PASCAL _export Open(HWND hCaller, struct
ConfigStruct far *Config);

extern "C" BOOL FAR PASCAL _export Close(HWND hCaller,
struct ConfigStruct far *Config) ;

extern "C" WORD FAR PASCAL _export Write(HWND hCaller,
struct ConfigStruct far *Config, void far *Data, unsigned
iCount);

extern "C" WORD FAR PASCAL _export Read(HWND hCaller, struct
ConfigStruct far *Config, void far *Data, unsigned iCount);

/* Structure o f IP address and p o r t data */
typedef struct tagSockStruct
{

char cRemotelP[16];
unsigned iRemoteListenPort;
unsigned iRemoteTalkPort;
unsigned iLocalListenPort;
unsigned iLocalTalkPort;

) SockStruct;

Structure o f configuration data */
struct ConfigStruct
{

char cDevicelD [16] ; /* u sed to identify the type/nam e o f device */
DWORD dwConfigDataLen; /* overa ll length o f this structure */
SockStruct Configinfo; /* custom ized structure fo r IP and p o r ts */
BOOL bOpen; /* open or closed */
WORD hConnection; /* open or c losed */
CWinSock far* m_pWinSock;/* W inSocksub-system startup/shutdown */

};

Figure 8.4 C function definitions fo r a TCP/IP communications DLL

Page 115

In order for these interfaces to be used by a Visual Basic application, they must

be declared in a manner that Visual Basic can recognise {Figure 8.5). ’’Alias” is

used to identify the name of the procedure in the DLL for use in the Visual Basic

domain. This prevents the external procedure name conflicting with a Visual Basic

reserved word, a global variable or constant, or any other procedure in the same

scope. Thus the five C-based DLL interfaces are renamed to: configsocket,

openSocket, eloseSocket, Readsocket, and WriteSocket. A VB data structure

is also defined for use in configuring and identifying the socket.

Declare Function ConfigSocket Lib "AIICSock.dll" Alias
"Configure" (ByVal HWND As Integer, pConfig As
TCPIPConfigStruct) As Integer

Declare Function OpenSocket Lib " AIICSock.dll" Alias "Open"
(ByVal HWND As Integer, pConfig As TCPIPConfigStruct) As
Integer

Declare Function CloseSocket Lib " AIICSock.dll" Alias
"Close" (ByVal HWND As Integer, pConfig As TCPIPConfigStruct)
As Integer

Declare Function ReadSocket Lib " AIICSock.dll" Alias "Read"
(ByVal HWND As Integer, pConfig As TCPIPConfigStruct, ByVal
strBuffer As String, ByVal iBufSize As Integer) As Integer

Declare Function WriteSocket Lib " AIICSock.dll" Alias
"Write" (ByVal HWND As Integer, pConfig As TCPIPConfigStruct,
ByVal strBuffer As String, ByVal iBufSize As Integer) As
Integer

Type TCPIPConfigStruct
strDevicelD As String * 16 ' used to identify the type/name o f device
ConfigDataLen As Long ' overall length o f this structure
strRemotelP As String * 16 ' IP address o f rem ote system
iRemoteListen As Integer ' number o f listen p o r t fo r rem ote app
iRemoteTalk As Integer ' number o f talk p o r t fo r rem ote app
iLocalListen As Integer ' number o f listen p o r tfo r local server app
iLocalTalk As Integer ' number o f talk p o r t fo r local server app
iDeviceNum As Integer ' used to identify m ultiple devices
bOpen As Boolean ' open or closed
hConnection As Integer ' 16-bit connection handle
pWinSock As Long ' 32-b it po in ter to WinSock ob ject

Figure 8.5 VB declarations fo r calling functions from a DLL API

A simple Visual Basic code sample in Figure 8.6 shows how the interfaces of

the C-based DLL can be invoked and used.

Page 116

' use the DLL's configuration d ialog box
If (Configsocket(HWND, TCPIPConfig) = False) Then

MsgBox "Error configuring the socket", 48
Else

' try opening the socket
If (OpenSocket(HWND, TCPIPConfig) = False) Then

MsgBox "Error opening the socket", 48
Else

' try outputting a com m and string to the socket
bRetVal = WriteSocket(HWND, TCPIPConfig, strCommand,

Len(strCoramand))
' done, so close the sockett
If (CloseSocket(HWND, TCPIPConfig) = False) Then

MsgBox "Error closing the socket", 48
End If

End If
End If

Figure 8.6 VB code sample fo r invoking a TCP/IP communications DLL

With the first reference to the DLL, it creates a socket to listen for remote

Clients trying to connect. The Configsocket () function allows a local protocol

port, a remote protocol port, and a remote Internet address to be specified for the

communication channel. The OpenSocket () function then spawns a second socket

for communication with the remote PC specified in the configsocket () function.

If another remote PC attempts to communicate then a third socket is spawned.

Therefore, each application using the DLL has the potential to behave like a Server

waiting for connection requests, and also like a Client actively requesting

connections from a Server.

8.3.5. Test Application 5: Asynchronous Peer-to-Peer

Communica tion

This application - sock.exe - was developed using Microsoft Visual Basic.

Applications were developed for versions 3.0 and 4.0 of Visual Basic. It

implements an asynchronous connection-oriented communication link by calling

functions from the previously described DLL. Therefore, two computers can

communicate with each other using this application running on each of them

without any concerns about who is the Server and who is the Client. This is

Page 117

because the DLL creates an extra socket which constantly listens for connection

requests.

The application is controlled by button clicks rather than menus. It allows text

to be typed into an edit box and then transmitted to the specified remote computer,

which then displays the text in another edit box. Text can be transmitted in either

direction since the link is symmetrical. This application laid the foundation for the

development of the chat utility.

A variation was developed for transferring files. Once the full path of the file

had been specified, the file gets broken into chunks of 1024 bytes, transmitted, and

reassembled at the receiving computer. Numerous file types (such as text, image,

and binary files) were successfully transferred using this technique. It proved the

feasibility of using the same mechanism for transferring tutorial material in the form

of binary files.

8.3.6. Conclusions from Progressive Application Development

All of the test applications described in this section contributed to the overall

implementation of the design concept. They assisted in establishing the necessary

technical details for specific areas of functionality.

For exchanging SQL-based transactions to succeed, it must be able to ensure

accurate and complete delivery of transactions between modules. Stream-

connected clients (Section 8.3.3) deliver reliable data communication that resends

any data packets that do not correctly arrive at their destination.

By comparison, the “chat” functionality does not necessitate reliable data

communications. In this capacity, it can be considered loss-tolerant. The

connectionless datagram communication protocol (Section 8.3.2) attempts a “best

try” to the delivery of data packets to specified destination, whilst minimising the

processing overhead. This type of data communication is suitable for the peer-to-

peer nature of the “chat” utility (Section 8.3.5).

Page 118

By encapsulating the data communication functionality within a DLL (Section

8.3.4), the design guideline of a modularised architecture is perpetuated. Being a

DLL permitted its implementation using C with the corresponding benefits in

efficient and rapid execution. Exposing the functionality through a simplified API

results in a programming paradigm aligned with the existing modules for serial and

database communications. It also makes its adoption into the design

implementation less complicated, easier to debug and simpler to black box test.

8.4. Telephony Support

Due to the distributed nature of the healthcare environment, remote

connectivity may not be available using traditional physical media such as Ethernet

on coaxial cable or twisted pair. This may be due to a remote location not having

complete access to the hospital infrastructure (for example old buildings not

included in the Local Area Network (LAN)), or geographic remoteness where the

site is not on the actual grounds of the hospital (for example a GP performing

house calls).

In these situations alternative physical layer media are necessary. Telephony-

based networking exploits the indigenous telephone network which permeates all

areas of the healthcare environment. Wireless alternatives would include satellite

and cellular technologies which would support truly mobile networking. However

the scope of wireless telecommunications are too extensive to be included as

merely a section in this research. Only telephony data communications were

investigated.

Just as the lowest layer in the TCP/IP model (Physical Layer) supports multiple

network technologies (Figure 8.1), it can also be modified to handle physical

connection to a telephone network. It simply involves replacing the lower network-

specific layers with layers which can deal with telephony communication protocols

such as Point-to-Point Protocol (PPP) or Serial Line Interface Protocol (SLIP).

Page 119

When a modem is connected to a computer with the appropriate TCP/IP stack,

the lower layers transparently handle the telephony issues of dialling and

maintaining the data link. The modem encodes the computer-generated digital bits

into analogue signals which can be transmitted over the telephone infrastructure.

(A growing number of telephone networks are making digital networks available

which use protocols like Integrated Services Digital Network (ISDN) and so

would not require the digital-to-analogue conversion stage.)

8.4.1. Telephony Standards

The International Telegraph and Telephone Consultative Committee (CCITT)

define various telephony-based data communication protocols which specify

transmission speeds and processing of the data being transmitted. The defined V

series of standards applies to existing switched telephone networks [HALS - 92]

and is outlined in the following table.

CCITT V-Series

2/4-wire leased circuits 2-wire switched circuits Point-to-point

V.23 600 or 1200 bps V.21 300/300 bps duplex V.35 48 kbps

V.26 1200 or 2400 bps V.22 1200/1200 bps duplex V.36 48-72 kbps

V.27 2400 or 4800 bps V.22bis 2400/2400 bps duplex V.37 96-168 kbps

V.29 4800 or 9600 bps V.23 A 75/1200 bps duplex

V.29 4800/9600 half-duplex

V.32 4800/9600 duplex

The protocols specify permissible processing which may be applied to data and

are being expanded on a continuous basis. Error control and compression are the

main data processing implemented within modems [CHEN - 91], Error control

improves data transfer by providing an error-controlled reliable connection. V.42 is

an error control protocol established by the CCITT, and Microcom Networking

Protocol (MNP) 4 has been adopted by the CCITT as an alternate error control

protocol.

Page 120

The two protocols use a sophisticated algorithm to make sure that the data

received match with the data sent. V.42 (and MNP 4) copes with the telephone line

impairments by filtering out the line noise and automatically retransmitting

corrupted data.

The other benefit of V.42 (or MNP 4) is that it can improve throughput.

Before sending the data to a remote system, a modem with V.42 (or MNP 4)

assembles the data into packets and during that process it is able to reduce the size

of the data. A character typically takes up 1 start bit, 8 data bits and 1 stop bit for a

total of 10 bits. When two modems establish a reliable link using V.42 or MNP 4,

the sending modem strips the start and stop bits (thereby subtracting 20% of the

data) and sends the data to the other end. The receiving modem then reinserts the

start and stop bits and passes the data to the remote computer.

Besides error control protocols, all current high-speed modems also support

data compression protocols. That means the sending modem will compress the

data on-the-fly and the receiving modem will decompress the data to its original

form. There are two standards for data compression protocols, MNP-5 and CCITT

V.42bis. Some modems also use proprietary data compression protocols [CHEN -

91].

8.4.2. Controlling Modems

Modems are configured and controlled using control strings. The most

common collection of instruction strings is the Hayes AT command set and is the

de facto standard for modem control. Once the port connected to the modem has

been correctly configured for baud rate, stop bits, etc. (refer to Section 5.5 and

Appendix B), commands can be sent to the modem. These commands can set the

modem to auto-answer mode (“a t a ”) or dial a telephone number (“a t d 1234567”).

If the dialled telephone is connected to a modem which is in auto-answer mode,

then the two modems negotiate transmission parameters prior to establishing the

communication link. After this exchange (which can take several seconds), data

can be transferred over the link just as if it was a direct network connection.

Page 121

8.4.3. Application Programming Interface

The simplified API which was developed for TCP/IP communication (Section

8.3.4) was modified to support telephony communication. The main adjustments

were to the configuration structure which gets passed in the OpenSocket ()

function call. Instead of containing TCP/IP-specific information (like IP addresses

and port numbers), the new configuration structure contains modem-specific

information (like baud rate, start & stop bits, and command strings).

As with all other elements of the design concept, the telephony component is

modularised through the use of the simple API mentioned above. As different

communication alternatives are exposed they can replace the module without

impacting on the rest of the design concept. Other Computer-Telephony

Integration (CTI) applications utilise the Microsoft Windows Telephony API

(TAPI) for increased functionality and flexibility in many environments [MICR -

96], Whilst this protocol provides many powerful features, the simplistic

requirements of this prototype design make TAPI an over-engineered component.

Future development could necessitate the adoption of TAPI for telephony data

communication. In that case, the modular design would facilitate its

implementation.

8.4.4. Telephony Scenarios

There are two basic scenarios where telephony communication is desirable.

The first applies to a GP who is in his surgery or visiting a patient. If a sample had

previously been taken from the patient and processed, the GP could connect to the

server in the laboratory using a modem plugged into a standard telephone line.

After an appropriate negotiation where the GP’s identity is verified, the GP could

request the patient’s test results from the server. Or a collection of past results

could be requested to provide the supporting data for a historical trend analysis of

the patient’s progress.

Page 122

The second scenario is an access resolution issue. If there is telephone network

in place (be it a public network or a private hospital-wide network), it may be more

appropriate to use it as the communication medium. This would be the case if there

was no LAN in place or if the network traffic on the LAN was substantially

congested compared to telephone traffic. Thus, the availability of the telephone

network could be exploited to overcome LAN-derived limitations.

Due to the considerable time involved in establishing a communication link

between two modems (due to dialling, answering, and negotiation exchange) and

the possibility o f an engaged modem line, time-critical data is not particularly

suited to this type of communication medium.

Page 123

9. Conclusions

9.1. Design Implementation

The rapid prototyping possible with Microsoft Visual Basic made it the logical

choice for substantial areas of the implementation of the design concept. Visual

Basic proved to be a critical tool in evaluating the feasibility of concepts in the

design solution due to the rapid turn-around from design to prototype. The

powerful Graphical User Interface (GUI) development environment of Visual

Basic made it the sensible choice for implementing all the GUI elements. In order

to avail of object oriented methods, Visual Basic version 4.0 was the actual

development environment employed. This provided access to class definitions and

the “Public” and “private” Visual Basic keywords for use in implementing code

modules. Thus the concept of “data hiding” in an object module was feasible.

Some of the computationally intensive components were initially developed in

Visual Basic for initial evaluation purposes. However these were subsequently

ported to C to make use of its processing efficiency and to utilise the

modularization possible with Dynamic Link Libraries (DLL’s) and its faster

execution at run-time.

The main problem with Visual Basic as a product-creating tool (as opposed to

a prototype-creating tool) is its speed of execution. It is an interpreted language

unlike compiled languages (for example C). Whilst it permits the generation of

what it refers to as an “EXE”, it is not a complete stand-alone binary executable. It

relies on a runtime DLL (vBrun300.dll for Visual Basic version 3.0 and

VBrun4 0 0 .dll for Visual Basic version 4.0) to perform the run-time

interpretation. It also means that the run-time DLL must be on the computer for

the generated “EXE” to execute, compared to fully compiled code which can run

natively on the computer, typically without any support files. Thus, all

applications execute slower than equivalent applications created from compiled

code (although this mechanism does execute faster than the earlier fully-

interpreted Basic and Visual Basic languages). This issue has since been improved

Page 124

by the latest release of Visual Basic (version 5.0) as it generates object code along

with an improved runtime DLL, now referred to as a “virtual machine”

(MSVB5 0VM.dll).

Applications developed in Visual Basic have the additional requirement of

several runtime libraries unique to Visual Basic. Each version has its own runtime

library (vBrun3 00.dll, VBrun4 0 0 .dll or MSVB50VM.dll) and several support

DLL’s (stdoie2 .dll, 0 ieAut3 2 .dll, and 0iePro32.dll). These must all be

appropriately available either in the same directory as the executable, in the system

directory, or on the “path”. Any database operations necessitate various runtime

libraries (for example “msajtiio.dll“, and “msaesiio.dll”), as well as the

ODBC runtime library (“odbc.dll“). Whilst this was not really a difficulty, it

introduced an additional amount of complexity to the installation and

configuration process. If any of these DLL’s are absent from the installation or are

incorrectly registered, then the application will fail to operate.

Current trends in the software industry favour centralising commonly used

functionality and packaging them in DLL’s in order for several applications to

utilise the functionality (often accessing the DLL concurrently). This modular

architecture facilitates the continuous enhancement of shared libraries. As

improvements in quality (such as more robust exception handling) and

performance (such as multi-threaded execution and lower resource requirements)

are generated, they can be of immediate benefit to all the multiple applications that

leverage the upgraded DLL. Another benefit is to the application development

process whereby less time is consumed designing, implementing and testing

commonly available functionality; instead a DLL (or other shared library

mechanism) is leveraged and the development effort can remain focused on the

unique requirements that the current application demands. Therefore, reliance on

multiple runtime libraries is the preferred model in the modem software

development industry.

Page 125

9.2. Installing the Application

Delivering the implemented design solution from a development and test

environment to the production environment and final users can be a task fraught

with difficulties if it is not managed in a failsafe manner. It can be broken into

several distinct steps that are expanded upon below:

1. Creation of the physical media

2. Deployment of the files

3. Registration of binaries

4. Initial configuration

9.2.1. Creation of the Physical Media

Standard 3.5” floppy disks were selected as the distribution media. Due to the

relatively small size of the installation files only two disks were required, therefore

other media with greater capacity (such as writeable CD-ROMs) would have been

chosen inappropriately.

When distribution disks were created with the software solution contained on

them, all the ancillary files had to be included. All DLL’s for serial, TCP/IP, and

database connectivity, as well as the miscellaneous runtime libraries, had to be

present. These distribution disks were then used as the master copies for

delivering the application into the production environment.

9.2.2. Deployment of the Files

The application consists of several files of different types. Deploying the files

involves placing each categorisation of file type into the appropriate directories on

the target PC. Since the target environment exclusively used the Windows

operating system, the deployment process was tuned for that operating system and

file structure.

The directory for the application files could be specified by the person

performing the installation, although it defaulted to the general applications

Page 126

directory with a sub-directory named to reflect this application. Common system

files that support the application (like VBrun400 .dll)) were placed in the system

directory whilst application-specific files (like initialisation files and data files)

were placed in the same directory as the main application. Files specific to an

individual user (like preference files and data files) can be located either in sub­

directories contained in the main application or else in their system profiles

directory within the system directory. To simplify the deployment process and

maintenance, it was decided to locate them in sub-directories within the main

application directory.

9.2.3. Registration of Binaries

In order for any application to interact with the operating system in a seamless

fashion, it is necessary to register certain binary files. This allows the operating

system to manage its resources in an efficient manner, for example by reusing

resources across multiple applications. For this reason, an architecture based on

DLL’s for frequently used components is the preferred methodology. By adding

the application binary to the system path, it can permit the application to be

invoked from anywhere within the file system (although it was decided not to

facilitate this since the application was targeted at a very specific need and

therefore should not be globally invokable).

Registration of the included DLL binaries required a single system call.

Thereafter, multiple applications could share the functionality exposed by these

DLL’s. If the DLL was already registered with the system, then it was necessary to

compare the version and decide whether to replace it with the one being installed

or to reuse the one already resident on the operating system.

9.2.4. Initial Configuration

The correct operation of the system depended on an accurate and successful

configuration. This was particularly true for the remote connectivity issues where

IP address conflicts and errors can be especially difficult to resolve. Thus it was

Page 127

advisable that the configuration process should be carried out by an installation

expert who was familiar with the IP addresses of all computers hosted within the

domain of the system and the full paths to database files, along with the pertinent

table names in the database schema.

Mistakes in specifying these parameters would cause several services to fail. It

would be preferable to have this done automatically instead of requiring skilled

human intervention, but the field of network resource resolution and utilisation is

a large area of study in itself and was outside the scope of this research.

9.2.5. Third-Party Installation Product

Due to the complex nature of delivering the application into the production

environment, a third-party product was used. Microsoft Install Shield was chosen

to simplify the creation of the installation program.

The installation program handled the deployment of the various files into their

respective directories and transparently managed the registration of DLL’s in a

customised manner, as well as updating the computer’s registry for the newly

installed software. Install Shield also produced the distribution media.

The end result was complete installation package that presented the user with a

professional-looking graphical user interface for installing the software that was

consistent with the look and feel of other Windows-based application installation

programs.

9.3. Evaluation

9.3.1. User Appraisal

As stated in Chapter 3, the user requirements were developed with the

assistance of a senior medical laboratory technician in St. James Hospital, Dublin.

The histology laboratory in St. James Hospital was the test environment targeted

for the deployment of the implemented design concept. Due to the fact that this

Page 128

laboratory was fully operational and dealing with real samples, deployment of the

implemented design concept was limited. The senior medical laboratory

technician acted as an “evangelist” in supporting this limited deployment in areas

under his direct control. Consequently, the performance in the test environment

was specifically targeted at fulfilling his needs.

Primary among these needs was accessibility to Quality Control (QC) data

from numerous different analysers. A single computer was already acting as a QC

server in the laboratory where QC data was manually entered before performing

statistical analysis and generating reports. Therefore, it was required to automate

the collection of QC data from instruments and store them in the QC database

before the analysis and reporting processes occurred. Thus, patient data collection

and its real-time technical validation were not required tasks in the test

environment. Neither was remote access to data already stored on the QC server

(since all further processing of these data was performed locally on the QC

server), nor data presentation (since processing of the data was achieved using

existing tools). Tutorial instructions between computers were not exploited, but

the “chat” utility was found to be somewhat useful for analysers that were located

outside the confines of the laboratory.

The fact that several aspects of the design concept were not exploited in the

test environment does not mean that these features were useless. With deployment

in a different test environment, the functionality set employed would undoubtedly

be different. Because the target environment was a medical one, evaluation of

performance in other test environments which would exercise different aspects of

the design concept were understandably not permitted.

As part o f a different research programme [ROCH - 97], the design concept

was leveraged to provide an asynchronous peer-to-peer data communication link

(see Section 8.3.5). The application was for remotely viewing image data (X-rays

and ultrasound scans) stored on a central image database server.

Page 129

As stressed in the design chapter (Chapter 4) a modularised architecture was

developed using existing standards and protocols wherever possible. This

approach favoured a continuous development process where functional modules

were continually developed beyond their initial design specifications, or even

replaced by equivalent modules.

Throughout this document there were references to several modules (Figure

9.1) which could be successfully integrated within the design concept:

• instrument interface for receiving and parsing data from a clinical analyser

via a serial port (Chapter 5)

• database interface for interacting with SQL-compatible databases via

ODBC (Chapter 7)

• technical validation of patient data by statistical analysis of boundary

values to eliminate gross errors and highlight deviations

• Quality Assurance module to analyse the performance and maintenance

requirements of instruments

• GUI representation of data in tabular form or scatter plots for use by a

requesting physician (also useful for QA analysis)

• remote connectivity for connecting to isolated computers using TCP/IP

(Chapter 8)

• chat utility for interaction between a remote operator and a laboratory

technician (Chapter 6 and Chapter 8)

• tutorial utility for instruction in instrument operation, maintenance

protocols and repair

9.3.2. Suitability of Architecture

Page 130

/ / À
Instrument Interface Trans. 1

Module Agent f
/ / /

Technical Validation Trans.
-

L
Module Agent /

/ / A
Quality Assurance Trans. •

Module Agent /
/ / /

Graphical Data Trans. 1
Display Module Agent

f
/ / A

Chat Utility Module Trans.
Agent f

/ / /
Trans.
Agent

Tutorial Module

>

>

>

>

î>

Transaction
Processor

=>

/ /
Trans.

r Database Interface
Agent Module /

/ X /
Trans. Remote Connectivity
Agent Module /

/

Figure 9.1 Potential modules fo r interaction with the Transaction

Processor

Each module has its own unique implementation details (the instrument

interface has serial communication and parsing components, the chat utility has

user interaction components based in the Windows environment), but they all

contain a Transaction Agent. This Transaction Agent permits the modules to

dispatch service requests in the form of transactions via the Transaction Processor

to other modules. These modules fulfill the service requests and return an

acknowledgement response to the requesting modules. Thus, each module can

leverage the services o f other modules, thereby increasing their functionality

without embedding that specific functionality within them. This kind of

distributed architecture scales extremely well as new functionality is required and

additional modules are introduced since existing modules do not necessarily need

to be replaced or updated.

Due to the diversity o f instruments in use in the medical domain, the adopted

instrument interface is incapable o f handling all cases. Whilst it is particularly

suited to instruments that output constant length process information, variable

length messages are not capable o f being processed. For those types o f outputs, a

Page 131

custom driver or an interface module like the An (Section 5.7.2) should be

utilised.

Since almost every analyser being interfaced to a host computer requires a

unique interface specification to parse its unique message format, the adopted

interface module must be simple and rapid to implement. Whichever instrument

interface modules are used, they must contain an intuitive user interface which

builds on a user’s familiarity with the standard Windows GUI. As increasingly

complex instruments are interfaced, the interfacing module must likewise gain in

complexity without sacrificing any of its intuitiveness.

The remote connectivity functionality was one of the primary user

requirements in order to make remotely located analysers accessible to the LIS for

statistical monitoring and maintenance. This was required in order to reduce the

frequency of traveling to remote analysers. This remote connectivity functionality

utilises the TCP/IP network protocol. This data communication protocol is used

throughout the world as the enabling technology of the World Wide Web (WWW)

and as such is widely supported on numerous hardware and operating system

platforms. The result is an extensively adopted and robust protocol, the advantages

of which are consequently inherited by the design implementation’s use of it.

For regions of the healthcare domain which do not have access to a network

connection, telephony data communication is supported. This was introduced to

exploit the extensive private telephone network which is in operation in St.

James’s Hospital, Dublin, to avoid the invasive installation and additional cost of

network connections wherever a clinical analyser happens to be located. The

private telephone infrastructure extends to the farthest reaches of the hospital

domain. All instruments are within sufficient proximity to a telephone connection

point so that signal degradation due to excessively long cabling is not a problem.

This communication medium can even be extended beyond the geographical

boundaries of the hospital’s private network. Thus, instruments connected to a

host computer external to the hospital (for example in a GP’s private practice)

could dial up the centralised LIS server for transaction-based interactions.

Page 132

Obviously this exposes the system to potential security breaches and this must be

addressed.

However, telephony data communication suffers from time delays due to

dialing to establish the call and then a handshaking procedure to synchronise baud

rates. Therefore it may not be appropriate for some analysers that timeout if they

do not receive a rapid responses to requests. Additionally, over a telephone line

only one remote host computer can communicate with the database server at any

one time. This will result in other remote host computers who require services

from the server to be locked out from the accessing these services. A partial

solution to this would be to equip the server with additional modems. This would

allow a remote host computer that receives an engaged dialling tone during call

set-up to try the next telephone line, and so on until it is able to connect to the

server and establish a transaction link.

9.3.3. Extensibility of the Architecture

Choosing a design architecture which is database-centric provides a viable

progression path. For example, consider data from clinical analysers being

required for statistical monitoring of analyser performance or for the investigation

of medical trends. The instrument interface module gathers the data necessary for

these kinds of analyses. Thus, modules performing these new kinds of processing

can extract the necessary information from the data store using simple SQL

statements. These modules that require this kind of information for additional

processing would use a Transaction Agent which generates the relevant SQL

statements. These SQL statements are then passed to the appropriate service

provider (the database interface module) via the Transaction Processor. Thus, the

existing architecture is leveraged to provide new functionality.

Alternatively, applications which generate these SQL statements can be quite

easily developed in Visual Basic and can connect to the SQL-compatible

databases using the Open DataBase Connectivity (ODBC) protocol as supplied

with the Data Control supplied with all versions of Visual Basic from version 3.0

Page 133

onwards. So, whilst the architecture is not leveraged, it permits the development

of stand-alone applications that can interact with data obtained using the

architecture. For example, if the billing department needs to know what tests were

performed on a patient’s sample, an application could be developed which queries

the results database. The required SQL statement would contain the patient’s name

as a conditional clause in the s e l e c t statement and return only the patient’s tests.

Database querying applications of this type would be created separately from

the main application presented in this research and would therefore be

independent of whatever future developments might be implemented. These

separate development paths can comfortably co-exist so long as the location

information for the database(s) remains available to these types of secondary

applications.

This gives an indication of the potential weakness of the design architecture:

being so heavily reliant on database storage of clinical analysis data means that the

databases must be very well designed and administered. A weakness in the

relational model employed in the DBMS would invariably impact on the main

application. It was decided that this frailty was a possibility, not a probability and

as such was far outweighed by the flexibility of developing derivative applications

to support information processing.

9.4. Future Developments

Advances in the software development industry occur at such a rapid pace that

obsolescence can be measured in years rather than decades. The longevity of an

application solution can be maximized by adopting a standards-based, modular

architecture. Standards-based technology leverages currently supported

methodologies that will continue to be supported for some time due to the fact that

they are standards. A modular architecture facilitates the incremental updating of

obsolete components without impacting the solution as a whole. Thus, as future

advances introduce new ways of performing certain functionality, the module

responsible for delivering that functionality would be updated in isolation.

Page 134

Due to the uncertainty of future software development practices, an analysis of

future developments can be split into immediately desirable enhancements and

speculative possible improvements.

9.4.1. Enhancements

Multiple Analysers

Only a small selection of clinical instruments were used in the evaluation of

this design solution. As described earlier (Section 2.5, “Clinical Analysers”), there

is a multitude of clinical instruments in use and support for a wider set of

analysers would be desirable. Since very few analysers support a standardized

format for data communication, each analyzer would require its own Instrument

Interface Module.

The larger analysers usually have a dedicated workstation. In order to include

these types of complex instruments into this application, they would require a very

specialised interface. It would be necessary to write code that would reside directly

on the dedicated workstation and would be very specific to the analyser and how it

operates.

Support for more diverse instruments would undoubtedly load the design

implementation in new ways that would expose new areas of opportunity for

improving the overall architecture.

Additional Modules

Due to the extensible nature of the design solution, modules supporting

different feature sets could easily be integrated. Some of these were listed earlier

(Section 9.3.2) and are reproduced here in an abbreviated format for convenience:

• technical validation of patient data

• Quality Assurance module

• GUI representation of data

• tutorial utility

Page 135

Security

In the data-sensitive area of the healthcare environment, security of data is

vitally important. Future developments would include several data security

features. The most obvious of these is data encryption, particularly for the

transmission of data over telephone connections. Public switched telephone

networks are not a secure media and so appropriate measures would be necessary.

Public key encryption has received a lot of attention recently and is gaining

widespread recognition as an enabling technology for commercial transactions in

the Internet domain. Depending on the degree of encryption (or the number of

bytes in the encryption key: 40-bit or 128-bit or the new digitally signed

certificates) various levels of security can be achieved whilst affecting processing

overhead. The larger the encryption key, the larger the processing overhead. A

compromise would be necessary which would address the two concerns. For the

relatively slow data transmission speeds of a telephone link, strong encryption

could be used since processing time would be a smaller percentage of the overall

transaction time. As transmission speeds increase, time spent processing an

encryption algorithm becomes a more significant percentage. Therefore, the

degree of encryption could be “tuned” relative to the amount of processing time

required as a percentage of the overall time.

The remote connectivity module would handle encryption services. Whenever

the module has to send data to a remote host, it would encrypt it using the selected

encryption mechanism and then send it. The remote receiving module would then

decrypt it before passing the data through to its Transaction Processor.

Authentication

For data communication within the bounds of the Hospital Information System

(HIS), the issue of authentication becomes more important than data security so

long as the HIS is adequately protected by firewalls from external interference.

Correct identification of computers which attempt transactions with a server and

Page 136

the authentication of the user driving the transaction must be obtained before

critical information is divulged.

Message Server

A core element of the design solution is the Transaction Processor. This

handles the correct routing of messages between different components and

attempts to provide a degree of reliability by utilising a send-acknowledge

architecture.

A Message Server would transparently guarantee the reliable delivery of

messages between components. It would have an extremely high level o f fault

tolerance even through catastrophic system failures like power outages. It would

achieve this through the use of a persistent data repository. Message Server

products also typically provide logging and archival functionalities.

In the medical environment where data are sensitive and usually time sensitive,

a guaranteed delivery subsystem would be very desirable. The impact on the

design solution would be quite small since a message centric architecture was

utilised. Each component would simply give a message to the Message Server

agent without the need for any confirmation or acknowledgement since delivery is

assured.

However these kinds of products usually have high licensing fees. This would

probably prohibit their adoption under the scope of this research and its nature as

an interim solution until a standard is accepted.

Localisation

As globalisation continues with the integration of widespread clinical

resources, foreign countries could conceivably be included within the scope of a

single healthcare provider. Thus, communication within the healthcare

infrastructure may require multi-lingual support.

Page 137

Localisation is the customisation of all user prompts into a language native to

its deployment environment. It can be accomplished by using string tables for all

text that is visible to the user. Therefore, each string entry in the table would have

a corresponding entry for each language it supports. When the user interface needs

to display some information to the user, it would use the corresponding table

entry.

Due to the modular architecture adopted, only modules that contain user

interface functionalities would require the use of localisation string tables. Thus,

localisation support could be implemented on a per-module basis as the need

arose.

9.4.2. Improvements

The client-server paradigm has been in use for several decades and has proven

its worth as a scalable solution. This was the foundation of the architectural

choices utilized in the design solution. However, there is a trend to favouring a

Web-based paradigm.

A Web-based paradigm uses the Internet as the enabling communication

medium. TCP/IP remains as the transport and network layers, but the application

layer is considerably different. All user interface modules would be implemented

using a Web browser interface with HyperText Markup Language (HTML) as the

software language of the presentation layer. Interaction with the centralised server

would be through HTTP requests to a web server with server-side processing to

handle them.

Server-side processing is typically handled by scripts that the web server

invokes based on HTTP requests. These scripts use an API called Common

Gateway Interface (CGI) and can be written in Perl or C. Microsoft’s Active

Server Pages (ASP) are becoming increasingly popular due to their use of a

version of VB Script and close integration with other Microsoft technologies like

the Component Object Model (COM) and Internet Information Server (IIS).

Page 138

Platform independent java provides another alternative through Java Server Pages

(JSP) and Java Servlets.

Since all the resources reside on the server it liberates the design solution from

client software modules. Therefore, maintenance and upgrades can be carried out

in one place instead of having to follow the four-steps described above for re­

installing a newer version of the design solution on every machine it was ever

installed on.

Whilst this architecture reduces the processing load on the client, it

consequently increases the processing load on the server. Thus more powerful

hardware is required for the server than in a more distributed client-server

architecture.

Another disadvantage of a Web-based paradigm relates to some of the peer-to-

peer tasks currently supported by the design solution. The more automated tasks of

the design solution could not be achieved using a simple web server and web

browser arrangement. Since several scenarios exist where a remote machine must

service requests (for example, to perform a quality assurance validation), the

computer connected to the remote analyzer must have its own web server. This

approach raises all the associated concerns with security and maintenance

multiplied by the number of machines that host a web server and therefore does

not scale terribly well.

Due to the nature of a Web-based solution, a substantial redesign of several of

the modules of the design solution would be necessary. The additional software

requirements and more powerful hardware would introduce a financial

commitment that would have to be made at a very early stage. Therefore, the

decision to implement a Web-based solution is typically part of a much larger

strategic technical decision, for example as part of a global e-strategy. Within the

scope of this research, a Web-based solution would not be a practical answer to

the limited set of technical requirements of this research.

Page 139

10. References
[AAHO - 86] A. V. Aho, Ravi Sethi, & J. D. Ullman: “Compilers, Principles,

Techniques, and Tools”; Addison-Wesley, 1986.

[ALLE-9 1] D. A. Aller: “Open Systems Architecture: The Multi vendor

Hospital Information System”; In Aller RD, Elevitch FR (eds)

Clinics in Laboratory Medicine Volume 11, No. 1, pp. 73 - 81,

March 1991.

[ARON - 84] T. Aronsson & T. Groth: “Nested Control Procedures for Internal

Analytical Quality Control”; Scand J Clin Lab Invest, No. 44,

Supplement 172, 51, 1984.

[ARS - 80] J. Arsenault & J. Roberts: “Reliability and Maintainability of

Electronic Systems”; Computer Science Press, Inc., Rockville,

Maryland, 1980.

[ASTM -90] ASTM E31.ll Committee, C. Me Donald (chairman): “Standard

Specification for Transferring Clinical Observations Between

Independent Computer Systems”; (Revision, E1238-90), ASTM,

Philidelphia, 1990.

[BAKK - 88] R. A. Bakker, M. J. Ball, J. R. Scherrer & J. L. Williams: “Towards

New Hospital Information Systems”; Elsevier Science Publications,

Amsterdam, The Netherlands, 1988.

[BALL - 91] M. J. Ball, R. I. O’ Desky & J. V. Douglas: “Status and Progress of

Hospital Information Systems (HIS)”; International Biomedical

Computing, 29, pp. 161 - 168, 1991.

[BEEL - 87] M. F. Beel & R. Sappenfield: “Medical Monitoring: What is it,

How can it be Improved?”; An J Clin Pathol 87: 285 - 288, 1987.

[BENS - 80] E. S. Benson: “Initiatives Towards Efficient Decision Making and

Laboratory Use”; Human Pathology Volume 11, No. 5, Sept. 1980.

[BOAR - 94] Board of Directors of the American Medical Informatics

Association: “Standards for Medical Identifiers, Codes, and

Messages Needed to Create an Efficient Computer-Stored Medical

Record”; J Am Med Informatics Assoc., 1(1): 1-7, 1994.

Page 140

[BURN-9 3] J. Bums & J. Hourihan: “Simplifying LAN_WAN Integration”;

Wellfleet Communications, Inc., July 1993.

[BURR - 90] M. Burrett: “Current Analytical Approaches to Measuring Blood

Analytes”; Clin. Chem., (8 pt 2): 1562 - 1566, August 1990.

[CARR - 86] K. R. Carr: “Expert Systems Application for Diagnosis and

Trouble-Shooting of Computer Systems and Instrumentation”; Oak

Ridge National Laboratory, DE 87000219, 1986.

[CHAM - 86] A. M. Chambers, J. Elder, & D. StJ. O’ Reilly: “The Blunder Rate

in a Clinical Biochemistry Service”; Ann Clin Biochem, 223: 470 -

473, 1986.

[CHEN - 91] Patrick Chen: "The Joy of Telecomputing"; 1991.

[CONN - 80] D. P. Connelly & B. Steel: “Laboratory Utilisation Problems and

Solutions”; Arch Pathol Lab Med 104, 59 - 62, 1980.

[C O O N -58] R. Coon, L. Crowley & J. Utterback, “Automation in Small

Hospital Laboratories”; paper presented at the annual meetingof the

American Society of Clinical Pathologists, Nov. 5th 1958.

[COTE - 73] R. A. Côté, “Use of a Nomenclature of Medicine in a Medical

Information Management System”; Bulletin of the Canadian

Association of the Medical Record Librarians, Volume 5, 4, Nov.

1973.

[COUL - 94] G. Coulouris, J. Dollimore & T. Kindberg: “Distributed Systems,

Concepts & Design”; Addison-Wesley, 1994. ISBN 0-20162-433 8.

[DATE - 93] C. J. Date & H. Darwen: “A Guide to the SQL Standard: A User’s

Guide”; Addison-Wesley, 1993. ISBN 0-201-55822-X.

[DEMO - 92] G. J. E. De Moor: “Standardisation in Healthcare Informatics and

Telematics in Europe: CEN/TC 251 Activities”; Medical

Informatics 17, 2:133-140,1992.

[D ITO -70] W. Dito: “Programmable Calculations for Quality Control in

Clinical Chemistry”; in Knights EM Jr. (ed): Mini-computers on

the clinical laboratory; Springfield, IL, Thomas CC, pp 9-29, 1970.

[D O NO -94] J. J. Donovan: “Business Re-engineering with Information

Technology”; Prentice-Hall, Inc., 1994. ISBN 0-13-311028-1.

[DUMA - 95] A. Dumas: “Programming WinSock”; Sams Publishing, 1995.

Page 141

[GAFF - 96] P. Gaffney: “Medical Infomatics in a Clinical Laboratory

Environment”, MSc Thesis, Trinity College Dublin, 1996.

[GROF - 94] J. R. Groff & P. N. Weinberg: “LAN Times® Guide to SQL”; Me

Graw Hill, 1994. ISBN 0-07882-026 x.

[GROT - 91] T. Groth & H. Moden: “A Knowledge-Based System for Real-Time

Quality Control and Fault Diagnosis of Multi-Test Analysers”;

Comp Meth Program Biomed, 34: 175, 1991.

[HACK - 93] R. D. Hackathor: “Enterprise Database Connectivity”; Wiley, 1993.

[HALS - 92] F. Halsall: “Data Communications, Computer Networks and Open

Systems”; Addison-Wesley. 1992.

[HL7 - 90] HL7 Committee: “The HL7 Standard for Communications of

Health Care Information”; Version 2.1, Chicago, IL, July 1990.

[HOLM - 92] K. Holmberg & A. Folkeson: “Operational Reliability and

Syatematic Maintenance”; Elsevier Applied Science, 1992. ISBN

1-85166-612 5.

[H O W A -91]J. H. Howanitz & P. J. Howanitz: “Principles of Laboratory

Medicine. In Laboratory Medicine - Test Selection and

Interpretation”; Churchill Livingstone Inc., New York, 1991.

[IUP - 78] International Union of Pure and Applied Chemistry, Commission

on Automation: “Characteristics and Attributes of Instruments

Intended for Automated Analysis in Clinical Chemistry”; IUPAC

Inf. Bull., No. 3, pp. 233 - 240, 1978.

[JAME - 95] K. James & K. Cope: “Internet Programming”; Jamsa Press, 1995.

[JOHN - 68] W. L. Johnson. “Automatic Generation of Efficient Lexical

Analysers Using Finite State Techniques”; Communications of the

ACM, Volume 11 No. 12, 1968.

[KADI-6 6] A. Kadish: “Instrumentation Methods for Predictive Methods”;

edited by TB Weber and J Poyer, Pittsburg, PA, Instrument Society

of America, 1966.

[KELL - 74] C. R. Kelly & J. Manlin: “Ambulatory Medical Care, Quality,

Determination by Diagnostic Outcome”; JAMA 227, pp. 113- 115,

1974.

Page 142

[KENN-9 4] Robert J. Kennelly: “New IEEE Standard (IEEE P1073) Enables

Data Collection for Medical Applications”; SCAMC, 1994.

[KRIS-8 1] B. B. Kristensen & O. L. Madsen: “Methods for Computing

LALR(k) Lookahead”; ACM Transactions on Programming

Languages And Systems, Volume 3 No. 1, January 1981.

[LESK -75] M. E. Lesk: “Lex - A Lexical Analyser Generator”; Computer

Science Technical Report No. 39, Bell Labs, Oct. 1975.

[LESK - 97] M. Lesk: “Going Digital”; American Scientific, Mar. 1997.

[LEVI - 92] John R. Levine, Tony Mason & Doug Brown: “Lex & Yacc”; O’

Reilly & Associates Inc., Oct. 1992.

[LEWA - 92] K. Lewandroski, et al: “Implementation of Capillary Blood Glucose

Monitoring in a Teaching Hospital and Determination of Program

Requirements to Maintain Quality Testing”; Am. J. Med., 93 (4):

pp. 419-426, Oct. 1992.

[LYNC - 93] D. C. Lynch & M. T. Rose: “Internet Systems Handbook”;

Addison-Weslesy, 1993. ISBN 0-20156-741 5.

[M ALK- 86] D. B. Malkoff: “Real-Time Fault Detection and Diagnosis. The Use

of Learning Expert Systems to Handle Timing of Events”; Navy

Personnel Research and Development Center, ADA 1746551/1,

Nov. 1986.

[MANT - 97] Charles Mantel: “The Long-lived RS-232 Standard Coming to an

End”; Electronic Buyers News (EBN), May 1997.

[M A R K -88] V. Marks: “Essential Consideration in the Provision of Near-

Patient Testing Facilities”; Ann. Clin. Biochem., 25: pp. 220 - 225,

1988.

[M ICR-95] Microsoft Windows Help: “Custom Control Reference”; copyright

1990 - 1995, Microsoft Corporation, 4.10.1998.

[M ICR-96] Microsoft White Paper: “The Microsoft Windows Telephony

Platform: Using TAPI 2.0”; Microsoft Corporation, 1996.

[MOLL-9 0] D. P. Moll: “A Diagnostic Expert System”; Biomed Tech Berlin,

Apr. 1990; 35 (4): 62 -68.

[MORT -9 3] “Reference Manual for MKS Lex & Yacc”; 3rd edition, Mortice

Kern Systems Inc., 1993.

Page 143

[MURR-9 3] R. B. Murray: “C++ Strategies and Tactics”; Addison-Wesley,

1993. ISBN 0-201-56382-7.

[NORG - 95] Thomas Norgall: “Open Communication Among Medical Devices

Using ISO MAP Application Protocol MMS”; CEN TC 251 WG5

N 75.

[O’MO - 88] R. O’ Moore: “Decision Support Based on Laboratory Data”; Meth.

Inform. Med. 27: pp. 187 - 190, 1988.

[OPEN - 95] OpenLabs (A2028) Consortium: “Specification of the Architecture

for an Open Clinical Laboratory Information System

Environment”; AIM Programme (A2028), ARCH-2, Jan. 1995.

[ORFA - 96] R. Orfali, D. Harkey & J. Edwards: “The Essential Client - Server

Survival Guide”; Wiley, 1996.

[PETE - 89] K. E. Petersen, et al: “Reliability Analysis in Life Cycle Cost

Estimation for Small Wind Turbines”; SRE Symposium,

Stavanger, Norway, 1989.

[ROBE - 80] J. A. Roberts & J. E. Arsenault: “Limited Life Items”; Reliability

and Maintainability of Electronic Systems, Computer Science Press

Inc., Rockville, Maryland, 1980.

[ROCH - 97] R. Rochford: “Compression and Storage of Medical Images”; MSc

Thesis, Dublin City University, 1997.

[RU BI-79] P. Rubin, S. Bradbury & K. Prowse: “Comparative Study of

Automatic Blood-Gas Analysers and Their Use in Analysing

Arterial and Capillary Samples”; British Medical Journal 1: pp, 156

- 158, 1979.

[SERG - 89] Sergent & Schumacher: “The IBM PC from the Inside Out”; p.65.

[SK EG -64] L. Skeggs & H. Hochstrasser: “Multiple Automatic Segment

Analysis”; Clin. Chem. 10: pp. 918 - 936, 1964.

[SPAC - 87] K. A. Spacman, D. P. Connolly: “Knowledge Based Systems in

Laboratory Medicine and Pathology”; Arch Pathol Lab Med,

Volume 111, pp. 116 - 119, 1987.

[TA N E-96] A. S. Tanenbaum: “Computer Networks”; Prentice Hall, 1996.

ISBN 0-133-49945-6.

Page 144

[VASK - 93] D. Vaskevitch: “Client/Server Strategies”; IDG Books, 1993. ISBN

1-56884-064-0.

[WEST - 75] G. Westlake: “Microprocessors, Programmable Calculators and

Minicomputers in the Clinical Laboratory”; in Endlander D (ed):

Computers in Laboratory Medicine, New York, Academic Press,

1975.

[WEST - 84] J. Westgard & T. Groth: “Computer Systems for Implementation of

Internal Quality Control Procedures”; Scand. J. Clin. Lab. Invest.

44 (suppl. 172): pp. 203 - 207, 1984.

[WINK - 87] P. Winkel, U. Adam: “Components of Biologic and Analytic

Variation”; Laboratory Quality Assurance, Me Graw-Hill Inc.,

1987. ISBN 0-07-029672-3: 166-182.

Page 145

Appendix A - Scenarios

A.1. Scenarios for archived data

“Draft Minutes of the 11th CEN TC 251 WG5 Meeting at Dublin Trinity

Medical Centre, 8th to 10th September 1994”

(CEN/TC 251AVG5-N101)

1. EEG recording for 30 minutes. Signals sent to amplifier, A/D converter then

recorded in a computer. Neurophysiologist makes a diagnosis record.

2. Ambulatory EEG. Recordings on tape recorder for 24 hours. Play-back into

A/D converter and into computer. Again diagnosis record is made.

3. Sleep lab. Transducers - amplifier - A7D converter - computer recordings

made for up to 24 hours. Data is archived then analysed with waveform display.

Analysis provides new parameters. Report on paper. Statistics on multiple patients.

4. Epilepsy monitoring. EEG recordings for 1 - 1 4 days. Up to 64 channels

EEG. Also video recording of patient state. Ethernet transports data from PC to

UNIX where there is Big-endian/Little-endian data representation problem.

Analysis produces a brain map of EEG.

5. Patients monitors, etc. feeding data into a data logger. Data flow is uni­

directional. Many kinds of data but few problems of time synchronisation, etc.

6. Monitoring display - pumps, ventilators, etc. feeding uni-directionally into a

larger patient monitor. Issues are time synchronisation, real-time, alert handling

such that alerts on a gas monitor may be desired on the larger monitor.

7. Monitoring system with bi-directional data transfer. Added problems are

real-time, alert receipt, alert acknowledge, device setting receipt, device setting

changes.

8. Interoperable viewing system. Uni-directional network of monitors sending

data to a central point monitor.

9. Interoperable with patient transfer. Central point or data logger needs to

transfer data from bed A to bed B.

Page A-l

10.Third party diagnostic analyser may send diagnostic reports back to the

bedside monitor.

11.Patient is moved around the hospital where continuity monitoring is a

problem. Loading transport monitor data into a destination monitor introduces

time-stamping as a concern.

A.2. Scenarios for Analyser Communications

CEN/TC251 WG5 CALM Modelling Activity Modelling Workout Version 6

1. Analyser sends results to LIS (zero, one, or more samples; qc or not)

2. LIS sends orders to analyser (worklist or single sample)

3. Analyser sends a query to LIS (query=?)

4. LIS sends a query to analyser (query=?)

5. Analyser sends status to LIS (function, production, inventory,

configuration)

6. LIS sends additional sample information to analyser

7. LIS sends a control message to analyser (command)

8. LIS sends results to analyser

9. Analyser sends special data to LIS (qc, calibration, graphics, instrument)

10.LIS sends communication check to analyser

11 Analyser sends communication check to LIS

12.LIS sends microbiological orders or batteries to analyser

Page A-2

Appendix B - Serial Communications

B.1. Physical Connection

Serial ports are an industry standard using one of two connector types - 9 pin

sub-D type (Figure B. 1) or 25 pin sub-D type (Figure B.2). Both types require the

use of only 3 wires for the most basic data transfers. One wire acts as a signal

ground and the other two wires act as the signal carriers for data flowing in each

direction. Therefore for data transfer in only one direction (simplex data transfer),

only two wires are needed for the basic service whereas three are required for bi­

directional (duplex) data transfer. Other wires are defined for hardware

handshaking to produce more reliable data transfers at higher speeds over greater

distances or in an asynchronous environment.

Pin Signal Function

1 DCD Data Carrier Detect

2 RxD Receive Data

3 TxD Transmit Data

4 DTR Data Terminal Ready

5 Gnd Logic ground

6 D SR Data Set Ready

7 RTS Request To Send

8 CTS Clear To Send

9 RD Ring Detect

Page B-l

Pin Signal Function Pin Signal Function

1 FG Frame Ground 14 STxD Secondary TxD

2 TxD Transmit Data 15 TClk Transmit Clock

3 RxD R eceive Data 16 SRxD Secondary RxD

4 RTS Request To Send 17 RClk Receive Clock

5 CTS Clear To Send 18 (unassigned)

6 DSR Data Send Request 19 STRS Secondary TRS

7 Gnd Signal Ground 20 DTR Data Terminal Ready

8 DCD Data Carrier Detect 21 SQ Signal Quality

9 V+ Positive Voltage 22 RD Ring Detect

10 V - N egative Voltage 23 DRS Data Rate Selector

11 (unassigned) 24 SCTE Secondary Transmit

12 SDCD Secondary DCD 25 BUSY Busy

13 SCTS Secondary CTS

B.2. Data Formatting

Whenever data are transmitted over a serial link between two serially-

connected Data Communications Equipment (DCE) terminals they are packaged

within digital bits to provide hardware-level synchronisation and error control. The

format is shown in Figure B.3. The extra data bits are not seen by the receiving

terminal because they are used by the hardware associated with the serial port and

are removed before the data is passed up to the next level of processing.

Page B-2

Start Bit Data Bits Parity Bit Stop Bit(s)

□ 1 1 1 i i i 1 1 1 □ m
(1 bit) (5 - 8 bits) (optional 1 bit) (1 - 2 bits)

Figure B. 3 Bit-by-bit breakdown o f serial data format

Once the data has been correctly received by the serial port hardware and the

extra communication bits removed, the application layer receives the data as a

stream of sequential bytes without any semantic organisation or grouping. It is the

responsibility of the top-level application program to interpret and process this

stream of data.

Page B-3

Appendix C - Transactions

C.1. Components of the Transaction

The transaction header contains two parts - the command and its qualifiers, if

any. There is sufficient information to indicate the type of transaction which is

taking place and therefore enable the Transaction Processor to resolve the target of

the transaction.

The elements of the header are:

E lem ent D escription

Command

MIC

TIN

data & time

length

qualifier

delimiter

2 digit hex constant from a lookup table

3 character plus 1 number unique Module Identification Code

4 number unique Transaction Identification Number

14 characters in the form o f hhmmssddmmyyyy

4 numbers giving the number o f characters in the transaction

occasional element for additional processing information

to indicate the end o f the header, character ‘ ’ is used

The transaction body contains as many characters as necessary for the

transaction, and may even be zero. There is a NULL character (‘\0’) used as a

delimiter of the message field to indicate the end. The transaction length in the

header could be used for evaluating the size of the message, but this delimiter

technique is a simpler and also guarantees that the string in the message field is

always null-terminated.

Elem ent Description

M essage

delimiter

0 to ? characters

to indicate the end o f the m essage field, character ‘\0 ’ is used

Page C-l

E.2. Definitions of Transaction Types

Command Code Qualifier(s) Message
REGISTER 0x00 (nothing) delimited text strings

ACK OxFO REGISTER Module Identification Code
OPEN DB LOCAL 0x01 (nothing) specify database (OPEN)

ACK OxFO OPEN DB LOCAL (nothing)
OPEN DB REMOTE 0x02 IP address specify database

ACK OxFO OPEN DB REMOTE (nothing)
OPEN CHAT 0x03 DP address (nothing)

ACK OxFO OPEN CHAT (nothing)
OPEN TUTOR 0x04 IP address (nothing)

ACK OxFO OPEN TUTOR (nothing)
WHO ARE YOU 0x05 (nothing) (nothing)

I AM 0xF5 WHO ARE YOU delimited strings
WHAT STATUS 0x06 (nothing) (nothing)

STATUS 0xF6 W HAT_STATUS available, busy, off-line, or
a time-out (no answer)

DB STORE 0x10 (nothing) “INSERT INTO ..."
ACK OxFO DB STORE SQL response

DB STORE 0x11 IP address “INSERT IN T O ...”
ACK OxFO DB STORE SQL response

DB EXTRACT 0x12 (nothing) “SELECT FRO M ...”
ACK OxFO DB EXTRACT SQL response

DB EXTRACT 0x13 IP address “SELECT FRO M ...”
ACK OxFO DB EXTRACT SQL response

CHAT SEND 0x14 number o f chars. character(s)
TUTOR REQUEST 0x15 list or tutorial (nothing) or tutorial

TUTOR .SEND 0xE5 number o f entries or
tutorial format

delimited list or tutorial file

CLOSE LINK 0x07 (nothing) (nothing)
ACK OxFO CLOSE LINK (nothing)

TERMINATE 0x08 (nothing) (nothing)

FAIL OxFF (nothing) the original command code

(Note: acknowledgement transactions are indented)

C.2.1. Opening a Connection

OPEN_DB_LOCAL specify which local database

OPEN DB REMOTE specify the machine IP address and database

OPEN CHAT specify the machine IP address

OPENTUTOR specify the machine IP address

Page C-2

WHO_ARE_YOU own identity information plus username

I_AM delimited string of identity information plus username

C.2.3. Establishing Privileges

ACCESS coded level of accessibility (depends on previous

identity negotiation)

C.2.4. Additional Information

(For future developments)

C.2.5. Status Enquiry

WHAT STATUS no qualifier

STATUS one of the constants (available, busy, off-line, or a

timeout delivering no answer)

C.2.6. Data Storage

DB_STORE SQL statement “APPEND TO ,.,”

C.2.7. Data Retrieval

DB EXTRACT SQL statement “SELECT FROM.. ”

C.2.8. Interactive Chat

CHAT SEND number of characters; character(s)

C.2.9. Tutorial Instruction

TUTOR_REQUEST tutorial list or individual tutorial

TUTOR_SEND whatever format the tutorial is in; the data

C.2.2. Negotiating Identities

Page C-3

CLOSE_LINK (wait for ACK)

TERMINATE (abrupt without ACK)

C.2.10. Closing a Connection

Page C-4

Appendix D - Structured Query Language

D.1. Storing Data

The format of a SQL statement for storing data [DATE - 93] is:
INSERT INTO target [(fieldl[, field2[, ...]])] VALUES (valuel[,

value2[, ...])

where

target name of the table to append records to

f ieidi, f ieid2 names of the fields to append data to

value 1, vaiue2 values to insert into the specific fields of the new record

Each data value is inserted into the field that corresponds to the data’s position

in the list: valuel is inserted into fieldl of the new record, vaiue2 into fieid2,

and so on. For SQL compliance values must be separated with a comma, and text

fields enclosed in double quotation marks (" ").

D.2. Retrieving Data

The format of a SQL statement for retrieving data [DATE - 93] is:
SELECT [predicate] {*|table.*|[table.]fieldl[, [table.]field2

...]]} FROM tableexpression [, ...] [WHERE...]

where

predicate

table

fieldl, field2

tableexpression

WHERE...

One Of ALL, DISTINCT, DISTINCTROW, of TOP to

restrict the number of records returned (default is a l l)

that all fields from the specified table are selected

the name of the table containing the specific records

the name of the fields to retrieve data from

the name of the table containing the specific records

specifies a conditional clause to reduce the records

returned

Page D -l

Appendix E - The WinSock API

E.1. Creating a Server Socket

Before the WinSock API’s can be used, they must first be initialised. The

w s A s t a r t u p () function (see later sections for complete function definitions) is

used for this purpose and allows the version of the WinSock API to be verified.

Various other functions can be used at this stage to get additional information such

as computer Internet addresses in the form of names or dotted-decimal numbers, or

services in the form of name or number.

To create the end-point of communication, the s o c k e t () function returns a

unique socket handle on success. It is at the call to this function that the type of

communication is specified - connection-oriented stream communication or

connectionless datagram communication.

To receive network requests the socket handle must be associated with a

specific protocol port using the bind () function. This function tells the socket

implementation which protocol port to use for data communication, and the socket

implementation informs the Transport Layer to deliver all data received for that

port to the WinSock API.

E.2. Creating a Client Socket

Once the WinSock API’s have been initialised as above, the end-point of

communication is created using the socket () function. As above, it is at the call to

this function that the type of communication is specified - connection-oriented

stream communication or connectionless datagram communication.

In a Client/Server communication configuration, the Client initiates

communication. Therefore the Client must know the protocol port at which the

Server is expecting communication. However, the reverse is not necessary since

the Client informs the Server which protocol port it is using. The Client socket can

Page E -l

be assigned a specific protocol port using the bind () function, but usually this is

not done and the WinSock API chooses an arbitrary protocol port which is sent to

the Server when communication is initiated.

E.3. Sending Data Using Streams

Sending data using streams involves establishing a connection-oriented

communication channel (Figure E .l). The Server socket listens for Client sockets

trying to establish a connection. This is a passive operation during which the

Server does not initiate a communication channel. The Server socket is put in this

listen mode by using the listen () function.

The Client attempts to establish a communication channel by calling the

connect () function with all the relevant information about the Server socket’s

protocol port and Internet address number. When the Server receives a request for

a connection on the protocol port to which it is bound, it can choose to accept the

link by calling the accept () function. This function spawns a new socket for the

communication channel and releases the Server socket for other Clients to connect

to the Server. At this stage, the communication channel is established using the

new socket and data can now be sent in either direction.

Data is transmitted and received by the Client and the Server using the same

functions. To transmit data the functions send() or write () are used with the

appropriate socket descriptor. It is not necessary to specify the Internet address of

the remote computer since the communication channel has been established. The

data is received using the recv() or read() functions to extract any newly

arrived data from the Transport Layer.

When all data transfers are complete the ciosesocket () function terminates

the communication link (Figure E. 1).

Page E-2

E.4. Sending Data Using Datagrams

Sending data using datagrams does not involve establishing a communication

channel (Figure E.2). Instead the data is simply sent with an Internet address as a

function parameter and a best-try attempt is made at delivering it. Therefore the

sender must know the recipient’s protocol port and Internet address numbers, and

this will only succeed if the recipient has bound the socket to the protocol port

using the bind () function. Hence, for two-way data transfers, both the Client and

the Server must use the bind () function to associate the socket with a protocol

port.

Page E-3

Once the Client and the Server have created their sockets and bound them to

Protocol ports, the sendtof) function is used to transmit a datagram to the

specified recipient. The recipient then uses the recvfrom () function to receive the

datagram. It is necessary to specify the Internet address of the remote computer

since this is a connectionless communication channel.

When all data transfers are complete the closesocket () function terminates

the communication link (Figure E.2).

Server Client

Create the socket [s o c k e t ()] Create the socket

Associate i with a port [b in d 't)] Associate it with a port

I r I
Send and receive data fs e n d to {) / r e c v f r o m ()] Send and receive data

Disconnect the socket fc io i# à ^ o k e it. t ?] Disconnect the socket

Figure E.2 Client/Server connection using datagrams

E.5. Initialisation and Error Functions

int PASCAL FAR WSAStartup (WORD wVersionRequired, LPWSADATA
lpWSAData);

Initialises the underlying Windows Sockets Dynamic Link Library (WinSock

DLL) before any WinSock-specific functions are called. Permits the vendor of the

particular WinSock stack to perform any necessary application-specific

Page E-4

initialisation. The wVersionRequired is the highest version of the WinSock API

that the calling convention can use, allowing the confirmation that the minimum

application version requirements are satisfied by the WinSock stack. lpWSAData is

a pointer to a data structure which receives details of the Specific WinSock stack

available. It contains vendor information, version information, socket information,

system information, and a text description.

SOCKET PASCAL FAR socket(int af, int type, int protocol);

Creates an end-point of communication, called a socket, and specifies the type

of protocol used for transferring data over the connection, type can be either

s o c k_ s t r e a m for stream oriented connections or s o c k_ d g r a m for datagram

oriented connections. On success it returns a socket descriptor which uniquely

identifies the end-point of communication.

int PASCAL FAR closesocket(SOCKET s);

Terminates the application’s use of a specific socket as specified by s whilst

flushing out any remaining data to be read/written according to a previously-

defined option.

int PASCAL FAR WSACleanup(void) ;

Terminates the application’s use of the WinSock stack and causes it to release

any remaining resources it was using back to the system.

int PASCAL FAR WSAGetLastError(void);

Returns a code indicating the last WinSock error which occurred and should be

called immediately after a function fails to obtain information about the failure.

E.6. Socket Functions

E.6.1. Server-Specific

int PASCAL FAR bind(SOCKET s, const struct sockaddr FAR *addr,
int addrlen);

Page E-5

Associates the logical socket with a name as specified by the addr structure. It

typically specifies a port number for server applications to listen for connections,

for example port 39 for ftp connections or port 80 for WWW connections.

int PASCAL FAR listen(SOCKET s, int backlog);

Causes the socket to synchronously listen for Clients attempting to connect to

initiate communication, hence it is used by a sever application.

E.6.2. Client-Specific

int PASCAL FAR connect(SOCKET s, , const struct sockaddr FAR *,
int addrlen);

Causes the socket to synchronously attempt to connect to the server specified

in the addr structure and initiate communication, hence it used by a Client

application. Note that the server must already be listening for connections.

SOCKET PASCAL FAR accept(SOCKET s, struct sockaddr FAR *, int
FAR *addrlen);

Accepts the initiation of communication with a Client. It stores the Client’s

address in the addr structure for future use and spawns a new socket on which to

continue the communication. This releases the original listening socket to permit

connections by more than one Client at a time. Each accepted Client gets a

uniquely spawned socket for the duration of its communication. This indicates the

successful negotiation of a virtual data communication circuit between a Client and

a Server and supports the transmission of data using the reliable stream data

transfer protocol.

int PASCAL FAR sendto (SOCKET s, const char FAR *buf, int len,
int flags, const struct sockaddr FAR *to, int tolen);

Used to synchronously send information to an address using the datagram data

transfer protocol. This does not require a virtual communication circuit to be

established, it blindly sends the data and assumes it gets to the specified

destination.

Page E-6

int PASCAL FAR recvfrom(SOCKET s, char FAR *buf, int len, int
flags, struct sockaddr FAR *from, int fromlen);

Used to synchronously extract data from a socket after being sent using the

datagram data transfer protocol.

int PASCAL FAR send (SOCKET s, const char FAR *buf, int buflen,
int flags);

Used to synchronously send information over a connected virtual

communication circuit using the reliable stream data transfer protocol.

int PASCAL FAR recv(SOCKET s, char FAR *buf, int buflen, int
flags);

Used to synchronously extract data from a socket after being sent over a

connected virtual communication circuit using the reliable stream data transfer

protocol.

E.7. Format Conversion Functions

unsigned long PASCAL FAR inet_addr(const char FAR *cp);

Used to convert from the dotted-decimal IP address of the cp string

representation for an Internet address to the internal 32-bit byte-ordered number

required by other WinSock functions.

char FAR * PASCAL FAR inet_ntoa(struct in_addr in);

Used to convert from the 32-bit byte-ordered number of the in structure

representation for an Internet address to the string-based dotted-decimal IP.

u_long PASCAL FAR htonl(u_long hostlong);

Used for platform independence. Converts the hostlong long integer from the

host number format (little-endian for PC’s) to the network format (internationally

accepted as big-endian), if necessary.

u short PASCAL FAR htons(u short hostshort);

Page E-7

Used for platform independence. Converts the hostshort short integer from

the host number format (little-endian for PC’s) to the network format

(internationally accepted as big-endian), if necessary.

u_long PASCAL FAR ntohl(u_long netlong);

Used for platform independence. Converts the netlong long integer from the

network number format (internationally accepted as big-endian) to the host format

(little-endian for PC’s), if necessary.

u_short PASCAL FAR ntohs(u_short netshort);

Used for platform independence. Converts the netshort short integer from

the network number format (internationally accepted as big-endian) to the host

format (little-endian for PC’s), if necessary.

E.8. Database Functions

struct hostent FAR * PASCAL FAR gethostbyaddr(const char FAR
*addr, int addrlen, int type);

Uses the IP address specified in the addr string to synchronously evaluate its

corresponding text name. Retrieves the information from a locally stored lookup

table or else sends the request across the network to a name server.

struct hostent FAR * PASCAL FAR gethostbyname(const char FAR
*name);

Uses the text name specified in the name string to synchronously evaluate its

corresponding IP address. Retrieves the information from a locally stored lookup

table or else sends the request across the network to a name server.

int PASCAL FAR gethostname(char FAR *name, int namelen);

Obtains the text name of the host computer and stores it in the name string.

This text name can be used by the gethostbyname () function to evaluate the host

computers full IP address.

struct servent FAR * PASCAL FAR getservbyname (const char FAR
*name, const char FAR *proto);

Page E-8

Uses the name specified in the name string and the protocol specified in the

proto string to synchronously retrieve additional information about the service

from a locally stored lookup table. Most commonly used services are listed in this

file. This function would most frequently be used to uncover the port which must

be used for a particular service.

struct servent FAR * PASCAL FAR getservbyport(int port, const
char FAR *proto);

Uses the port number specified in the port integer and the protocol specified in

the proto string to synchronously retrieve additional information about the service

from a locally stored lookup table. Most commonly used services are listed in this

file.

E.9. Asynchronous Windows Functions

HANDLE PASCAL FAR WSAAsyncGetHostByAddr(HWND hWnd, u_int wMsg,
const char FAR *addr, int len, int type, char FAR *buf, int
buflen);

Uses the IP address specified in the addr string to asynchronously evaluate its

corresponding text name. Retrieves the information from a locally stored lookup

table or else sends the request across the network to a name server and stores it in

the buf string buffer.

HANDLE PASCAL FAR WSAAsyncGetHostByName(HWND hWnd, u_int wMsg,
const char FAR *name, char FAR *buf, int buflen);

Uses the text name specified in the name string to asynchronously evaluate its

corresponding IP address. Retrieves the information from a locally stored lookup

table or else sends the request across the network to a name server and stores it in

the buf string buffer.

HANDLE PASCAL FAR WSAAsyncGetServByName(HWND hWnd, u_int wMsg,
const char FAR *name, const char FAR *proto, char FAR *buf, int
buflen);

Uses the name specified in the name string and the protocol specified in the

proto string to asynchronously retrieve additional information about the service

Page E-9

from a locally stored lookup table and stores it in the buf buffer. This function

would most frequently be used to uncover the port which must be used to access a

particular service.

HANDLE PASCAL FAR WSAAsyncGetServByPort (HWND hWnd, u_int wMsg,
const char FAR *proto, char FAR *buf, int buflen) ;

Uses the port number specified in the port integer and the protocol specified in

the proto string to asynchronously retrieve additional information about the

service from a locally stored lookup table and store it in the buf buffer.

int PASCAL FAR WSAAsyncSelect (SOCKET s, HWND hWnd, u_int wMsg,
long 1Event);

Used for asynchronous function calls by putting the s socket in a non-

blocking mode of operation. Notifies the Windows messaging system of the types

of socket events the socket is interested in, for example connection established or

data available to be processed.

PageE-10

