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A bstract

The models presented are discrete Monte Carlo(M C) and  Cellular Au- 
tom ata(C A ) representations of th e  interaction of HIV w ith the imm une 
system. HIV is characterised by the depletion of Helper T  cells in the 
body. Helper T  cells are essential to  the correct regulation of the immune 
system. Their degradation leaves th e  body incapable of defending itself, 
even against w hat is usually an unharm ful infection. T he models con
sider ju s t four cell types th e  Macrophage, M, the  helper T  cell, H , the 
cytotoxic Killer cell, C and the  virus, V. Each cell type  can either be in 
high concentration (1) or low concentration (0). An up d a te  of a  site con
sists of nearest-neighbour interaction followed by in tra -site  interactions. 
The nearest-neighbour interaction represents the influence of a site’s sur
roundings on it. T he intra-site interactions are Boolean equations which 
represent a succinct in terpretation  of HIV infection and its effect on the 
host im m une system. M utation is considered via a probabilistic param eter 
P m u t -  Each cell type has inherent mobility due to  th e  nearest-neighbour 
interactions, explicit m obility is explored by a probabilistic param eter 
Pmob• The MC and CA .simulations differ in their updating , w ith CA up 
dating is synchronous and w ith MC it is asynchronous. MC is explored as 
an alternative to  the CA model form. Due to th e  Boolean concentrations 
of th e  cell types, synchronous (CA) updating  leads to  overshooting, there 
is either com plete viral dominance or im m une dom inance and no in ter
m ediate state. Asynchronous (MC) updating  sm oothes these extremes; 
interm ediate sta tes between im m uno-dom inance and immuno-deficiency 
exist. These interm ediate states offer new insight into th e  dynam ics of 
HIV and the im m une system. Asynchronous updating  gives clearly de
fined growth pa tte rn s and this enables th e  exploration of critical points. 
One such critical point is the value of Pmut for which the  cross-over be
tween im m une dom inance and deficiency occurs. Also characteristics of 
the disease progression such as latency can be investigated.
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1 In troduction

The research presented here investigates a number of discrete models of Human 
Immuno-Deficiency Syndrome (HIV) infection. HIV is a virus which leads to 
a condition called AIDS -acquired immuno-deficency syndrome. The models 
are built with the intention to simulate in p art some real-life behaviour of the 
disease. This can be achieved by focusing on the behaviour and interactions of 
the infection and encorporating this information into a model. If the model does 
indeed emulate some specific real-life behaviour we can then use the model to 
gain insight into the mechanisms and behaviour of HIV/  AIDS. The assumptions 
underlying each model are also investigated, because although a model may 
mimic, known behaviour of the infection, it is useless w ithout sound assumptions.

Each of the models we discuss are formulated with Boolean algebra and a com
puter simulation of the model is then performed. The purpose of the computer 
simulation is to enable us to perform computer experiments on the model. Since 
the advent of computer simulations, the line between theory and experiment has 
become more blurred. Yes, these models are theoretical, because the system is 
not dealt with directly but rather approximated by a series of m athem atical 
equations and postulates. On the other hand, while there is not a Bunsen 
burner in sight, these models are also experimental since valid experiments can 
be performed using a computer simulation. Param eters in a simulation like 
parameters in traditional experimentation can be varied and effect of these al
terations measured. Therefore, it is better to think of a computer simulation 
falling somewhere between theory and experiment.

Mathematics has been used in biological research to great success. Winfree 
(Levin, 1999) used m athematics to establish th a t purposeless oscillations of the 
heart (ventricular fibrillation) were a m ajor cause of cardiac misfunction. Com
puter simulations have also been used to study the blood flow in the heart 
(Levin, 1999). Karle and Hauptm an received the Nobel Prize in 1987 for de
veloping algorithms to reveal structures from x-ray data. Such successes in the 
field of theoretical biology gives credence to what can be achieved by theoretical 
immunology. The use of m athem atics to describe the workings of the immune 
system is quite recent but provides an exciting application for study using a 
hybrid of m athem atics and computer science.

Using computer simulations, a theoretical immunologist can explore almost any 
facet of the immune system and disease. Often experiments may be impos
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sible to do in real life, whereas a param eter of a simulation can be altered as 
required. There can be great cost incurred in traditional experiments where suit
able candidates and tissues have to be found. A theory th a t is simulated can be 
investigated in a systematic, efficient and productive way. The outcome of this 
analysis can be measured against how well the model has emulated behaviour 
found in the real system. If the outcome is favourable, one may be on the right 
track. In the case of theoretical immunology this may enable the prediction of 
the efficacy of some drug treatm ent or the pathogenesis of some disease. This 
favourable outcome might lead to some more traditional experimentation and 
concrete results.

A simulation tries to mimic a particular situation with the aim of identifying 
the causes for certain system behaviour. The results or outcome from a simula
tion are used to predict what will happen to  the system on a priori grounds. If 
behaviour x, was found to occur in a simulation with param eter set {P}, then it 
can be deduced the {P} will cause behaviour x  in the real system. This of course 
depends on having a “good” simulation. A “good” simulation is one where the 
assumptions made are sound and the rules are well-developed, but, ultimately, 
a “good” simulation is proved only when it mimics reality well. Computers have 
for the length of their lifetime been an alternative to traditional experimenta
tion. Computer simulations are now a part of everyday life, with everything 
from weather forecasting to the stock m arket to medicine all utilising computer 
simulations in some way.

1.1 Im m une System  M odels

The IMMSIMM model is a discrete computer simulation of the immune sys
tem which was developed by Seiden and Celada(1992). A discrete model is one 
where the components of the system such as time and cell-concentration take 
on discrete values. IMMSIMM aims to provide a comprehensive model of the 
interaction of the immune system with infection. This model is used to  perform 
experiments in machina. Rheumatoid factor production,(Lefevre et al. 1996), 
vaccines,(Kohler, 1999) thymic functioning (Morpugo et al, 1995) are among the 
conditions and treatm ents which have been investigated using this model. Other 
successful models have been developed by the Los Alamos National Laboratory, 
one of the leading theoretical immunology groups in the world. The group has 
had much success exploring the dynamics and treatm ent of viral diseases such
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as HIV, (Leitner and Albert, 1999), influenza (Smith et al 1998) and hepatitis 
(Lamb et al, 1997). These models mostly consist of differential equations and 
so are classed as continuous models as opposed to discrete. While theoretical 
immunology still has to prove itself vis-a-vis predicting traditional experimen
tation via its investigations, we can learn a  lot more about the immune system 
and its behaviour. Modelling viral dynamics allows predictions to be made on 
the pathogenesis of the disease, its response to therapy and maybe even the 
design of a suitable vaccine.

1.2 W hat is H IV  infection - A ID S ?

Acquired Immune Deficiency Syndrome, (AIDS), is not a single disease itself, 
rather it is a collection of diseases caused by a seriously damaged immune sys
tem. The collapsed immune system is due to the depletion of key immune cells, 
by the retrovirus, HIV - Human Immuno-deficiency Virus. The immunology of 
HIV/ AIDS will be discussed in detail in the following chapter.

AIDS was first reported in the USA in 1981 and is now a worldwide epidemic. 
AIDS is now a bigger killer than war in Africa,(WHO, 2000); infecting 1 in 10 
of the population in the sub-Sahara countries,(NIAID, 2000). The genesis of 
the disease is still unclear but from when it was first noticed in the early 1980’s 
there have been 34 million people worldwide infected with HIV/AIDS and there 
have been 19 million recorded deaths(WHO,2000).

AIDS is defined by a depletion of certain cells of the immune system, mainly cells 
which are called Helper cells and also by 26 infections which are characteristic of 
advanced HIV in an individual. Many of these AIDS defining infections could 
be easily warded off by a fit immune system, but HIV leaves a body unable 
to defend itself. HIV infection is spread in three main ways , as a sexually 
transm itted disease, through infected blood( this is mainly through intravenous 
drug addicts who use infected needles) and from pregnant m other to unborn 
child. There is a long progression between first infection with HIV and AIDS 
defining illnesses. Because of this an infected person can appear healthy, thus 
increasing the risk of the disease being spread unknowingly. The mean time 
to develop AIDS is 7-10 years, with some people developing the disease before 
this time and a small number (< 5 0  people) having had HIV for longer than  10 
years and having not yet developed AIDS like symptoms (JAMA, 1999).

There are treatm ents for AIDS which involve cocktails of many drugs ( these
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will be discussed in the next chapter). The aim of these drugs is to ameliorate 
the symptoms rather than  cure the disease. These treatm ents have also proved 
costly and have severe side effects. Recently the top 5 pharmaceutical companies 
in the US announced th a t they would sell their treatm ents to African countries at 
90% below the American price, but many parts of Africa lack the adm inistration 
and facilities to make this effective in combating the epidemic there (CDC,2000). 
The medical focus has shifted from one of finding a cure to one of finding a 
vaccine.

Vaccines have in the past proved successful in annihilating many viruses such 
as smallpox and a t the moment a vaccine would seem like the best hope for 
putting an end to the epidemic in Africa and elsewhere. Only recently have the 
pharmaceutical company Merck expressed optimism about their experimental 
AIDS vaccine (Reuters Health, 2000), but the vaccine is still on trial and has 
yet to prove itself to the medical world. A vaccine works by exposing small 
quantities of the virus to an un-infected individual. This small quantity while 
not enough to  cause complete infection is enough to establish an immune re
sponse to the infection. Therefore, if the infection ever occurs again the immune 
system is primed to fight it. However, as HIV is a disease of the immune system, 
the construction of a suitable vaccine would seem very complicated. Given th a t 
HIV can destroy a person’s immune system administering a small amount of 
the infection, which is required for a vaccine, would seem dangerous. Therefore 
increasing the knowledge about dynamics of HIV is crucial in helping construct 
a vaccine. Theoretical modelling is one way of looking more closely at the 
behaviour of the virus and determining ways to fight it.

1.3 W hy m odel diseases

Diseases are modelled by m athematical means for a variety of reasons. It gives 
the scientist an opportunity to investigate any facet of the disease, or indeed any 
proposed vaccine/cure for the disease. Theories can be given sufficient weight 
so th a t classical “in vivo” experimentation can take place. Likewise, theories 
can also be discredited and research can continue whilst taking these negative 
findings into account.

The theoretical study of HIV evolution is performed at two distinct levels. 
Firstly, we have the macroscopic evolution as regards disease spread and the 
global diversity of HIV (Colgate et al, 1989). This gives much-needed back
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ground information on the epidemiology of the disease and the history of the 
pandemic. Secondly, there is the microscopic level of a  single host. Concen
trating on the microscopic enables us to learn about viral-immuno interactions 
and viral kinetics. It also allows us to identify key crossover points in the strug
gle between HIV and the immune system. The microscopic is the focus of the 
research presented here.

The contemporary nature of the disease and the fact th a t a lot is still unknown 
about the mechanics of HIV/AIDS has contributed towards the interest in mod
elling it. Many hypotheses exist about HIV infection and the transition to AIDS. 
It is a lot easier and cheaper to try  and validate these hypotheses via computer 
simulations, governed by m athematical equations, than to  use animals or other 
means of “in vivo” experimentation. Using m athem atical models, we hope to 
gain some understanding of the mechanisms of HIV and therefore help in some 
way towards unravelling the complexity of the disease progression.

1.4 Scope of thesis

The prim ary goal of this thesis is to describe some discrete models of HIV 
infection. We also investigate the kinetics and results of simulations based upon 
these models. The next chapter will present a brief introduction to  immunology 
and, specifically, its interaction with HIV. Following this, in Chapter 3, we will 
discuss a method of discrete modelling of complex systems, namely Cellular 
Autom ata (CA) and subsequently we outline, in Chapter 4, some past CA 
models of HIV infection. Our C A model is then presented in Chapter 5, followed 
by an introduction to the Monte Carlo method in Chapter 6. Our Monte Carlo 
discrete model is then investigated in Chapter 7 and we present our conclusions 
in Chapter 8.

1.5 New directions and contributions

In our research we have investigated discrete models of HIV’s infection of the 
immune system. We use asynchronous Monte Carlo updating of discrete states 
in a lattice and is the first discrete model of HIV to do so. Synchronous updating 
causes “overshoot” in the system, with either immune or viral dominance and 
no middle ground. Asynchronous updating allows the existence of intermediate 
states which do not exist with synchronous updating. The status quo between 
immune and viral dominance is of much interest as we can investigate what
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causes this to cease, with resulting immune or viral dominance. Furthermore, 
these intermediate states give us insight into the mechanics of the infection. 
M utation, probably the most influential characteristic of HIV is incorporated 
into the model. As this is a computer simulation minute variations to  the 
m utation param eter can be applied and the effect of this can be immediately 
seen. Using this information we can investigate w hat m utation rate corresponds 
to what stage of the disease. Also we have seen from our computer experiments 
that the latency period of the disease is inversely proportional to the m utation of 
the virus. This model now represents a framework whereby m any characteristics 
of the disease can be investigated. Using this framework we have investigated the 
growth of viral and helper cells. The virus we have seen grows exponentially 
at the beginning and decreases to a constant level. A logarithmic function 
best represents helper cell growth. We have also explored the half-life of the 
virus, which is the tim e taken for the virus to  half in concentration and so is 
indicative of the strength of the immune response. We have seen tha t this half- 
life is dependent upon the stage of infection, with progressed infection having 
a longer half-life. The critical time of recovery for the immune system was 
also investigated and it was found to be proportional to the m utation rate, 
with the immune system taking only a short tim e to  recover with low m utation 
rates. Future studies could use and build on this framework to explore many 
other facets of the disease. Our models only consider fixed m utation rates. 
The investigation of HIV infection with a m utation rate varying throughout the 
simulation, will provide a rich source of exploration and research.



2 B asic Im m unology

The immune system is one of the most complex, intricate, and interesting bio
logical systems known. The job of the immune system is to  protect an individual 
against unwanted intrusions from viruses, bacteria and other foreign invaders. 
The workings of the immune system consists of varying responses all working in 
a co-ordinated fashion. The combination of immune responses and their ability 
to regulate each other is fascinating and will continually be a source of fact, 
theory and hypothesis. Below, we present a very brief introduction to the field 
and especially the interaction with the Human Immuno-Deficiency Virus (HIV). 
Most of the description of immunology presented below is a summary of a more 
in-depth introduction given by (Roitt, 1994) and (Kuby,1992).

2.1 C ell-m ediated and H um oral arm s

The lymphoid tissues and the organs comprise the lymphoid system which is 
a core component of the immunological system. Lymphocytes (white blood 
cells) are the predominant cells of the lymphoid system which also include 
macrophages (a type of white blood cell) and plasma cells (antibody producing 
cells). Lymphocytes circulate around the body via the blood system and also 
the lymphatic channels. The lymphatic channels are used to  transport lymph 
to the successive lymph nodes. At a lymph node impurities in the lymph are 
filtered by lymphocytes. The immune system is able to recognise foreign in
vaders (antigen). The recognition of an invader stimulates two main defences, 
the humoral and the cell-mediated defence (see below).

Cell-M ediated A rm

The cell-mediated arm is concerned with cells which are infected by an intruder 
(viral infected cells). The cell-mediated response consists of the activation and 
proliferation of T8 cytotoxic killer cells (CD8+ T cells). T cells are lymphocytes, 
which m ature in the thymus. T8 are T cells which have CD8 protein on their 
surface. Infected cells are killed by cytotoxic killer T  cells . A brief overview 
of the activation of these killer cells is as follows. Macrophages, (and related 
antigen presenting cells), which are the body’s first line of defence, circulate 
and ingest any free antigen present in the body. Macrophages have proteins 
called Class II Major Histocompatibility Complex, (MHC), a complex of genes 
encoding cell-surface molecules, on their surface. After they ingest antigen,
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they display protein fragments of the antigen on their surface along with the 
MHG protein. Helper T4 cells (a subclass of T cells, which are lymphocytes 
which m ature in the thymus and have CD4 protein (see Section 2.2.2) on their 
surface) peruse Macrophages. When they encounter the combination of MHC 
and antigenic protein, they secrete cytokines which stim ulate the growth of 
Killer,TS cells. Cytokines are proteins which are used for communication by 
the cells of the immune system. This immune response is very specific, Helper 
T4 cells have receptors with the ability to recognise a single epitope (epitopes 
are what identifies an antigen) and they will only stim ulate a killer response 
if they encounter this specific epitope on the surface of the macrophage. The 
cell-mediated response also has a switching-off mechanism. This mechanism 
consists of another subset of T8 cells, called suppressor cells, whose function it 
is to secrete cytokines which shut-down the killer cells.

H um oral Arm

The humoral arm is concerned with free antigen (free viral particles) and pro
ducing antibodies which neutralise these free virions. The humoral response 
consists of the m aturation and proliferation of B cells (a class of lymphocyte 
which m ature in bone marrow). They differentiate into memory and plasma 
cells. The memory cells guard against future infection; where as plasma cells 
secrete antibodies. Antibodies mark free antigens and inactivate them. The hu
moral response is activated in much the same way as the cell-mediated response, 
with Helper cells releasing cytokines to  stimulate the Hurnoural arm.

As can be seen from their brief description above, both the Cell-Mediated and 
Humoral arms are reliant on the correct functioning of T helper cells (CD4+ T 
cells). T4 Helper cells can be sub-divided further into two T4 cell sub-groups, 
namely T h l and Th2, with T h l controlling the cell mediated response while 
Th2 controls the humoral response. T h l and Th2 are self-regulating if one is 
switched on, the other is switched off. Helper cells are central to the correction 
regulation of the immune response and any impairment of their functionality 
would result in a mal-func.tioning immune system.

In addition to both immune responses mentioned above, there are the natural 
killer (NK) cells, (lymphocytes which are neither B nor T cells) which are active 
at the first stages of infection and which decrease, as the cell-mediated response 
becomes dominant. They kill viral cells independently of the MHC complex and 
any stimulation. Their role in a viral infection is im portant as they kill cells
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Figure 2.1 The Humoral and Cell-Mediated arms of the Immune System

with growth and surface properties inappropriate for normal cell functions. As 
viral-infected cells are abnormal they would be recognised as such by NK cells. 
The cytokine, (IL2-the same cytokine th a t activates T8 killer cells), is thought 
to cause an increase in the cytotoxicity of the NK cells and their proliferation. 
NK cells are thought to  decrease once the cell mediated response is activated 
(it is said tha t this is due to the competition from T8 killer cells for IL2).

2.2 A ID S /H IV  and the Im m une System

AIDS (Acquired Immune Deficiency Syndrome) is characterised by a depletion 
in certain cells of the immune system namely, T4, T8, and B cells. The most 
notable decline is in the T4 helper cell population. In a healthy person there are 
800-1,200 T4 per \_iLitre, while at the onset of AIDS an HIV-infected individual 
would have <  200 per ¡¿Litre. There is usually a long progression period from 
the first infection with the HIV virus to full blown AIDS. In the first stages of 
infection, the immune system seems able to cope, but eventually HIV gets the 
upper hand and leads to the to tal collapse of the body’s defences. Viruses which 
have a long interval between initial infection and onset of serious symptoms are 
called lentiviruses.

Viruses are noncellular and consist of nucleoid acid surrounded by a protein
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coat. They spread by infecting cells and using the host cell to help it propagate. 
Influenza and Chicken Pox are examples of common ailments caused by viral 
infection. HIV, like all viruses can only replicate inside cells. The virus infects 
a cell and commandeers the cell’s machinery to reproduce.

2.2.1 H IV  - A R etrovirus

HIV is a retrovirus, the genes of which are encoded in single stranded RNA. The 
normal flow of genetic information is from DNA,(which is double stranded), to 
RNA,( single stranded). However, with a retrovirus this flow is reversed, single 
stranded RNA is converted into double stranded DNA. This double stranded 
DNA, is then integrated into the chromosome of the host, where it directs the 
production of more viral RNA. The control of this conversion from RNA to DNA 
is a viral gene called reverse transcriptase. The whole process is called reverse 
transcription and is incredibly error prone (Nowak and McMichael, 1995). These 
errors then cause m utations in the genetic makeup of the virus. A virus which 
rapidly m utates is extremely difficult to fight because the enemy as such is con- 
tinously changing guise. Being a retrovirus, HIV has a high m utation ra te  and it 
is in fact the most highly m utating virus known, (Nowak and McMichael,1995). 
In any given individual there can be genetic differences of up to 25% in the 
viral particles. The high m utation ra te is incredibly advantageous to the virus 
as it increases the probability tha t a chance m utation will yield an advantage 
for the virus. Following one of the fundamental rules of evolution theory, the 
survival of the fittest, cells with this advantage will become abundant. The 
mutations would lead to epitopes,(an antigenic determ inant), unrecognisable by 
the host cells, and when they eventually respond to it, the virus could have 
m utated again. When the virus is integrated into the chromosome of the host 
it is referred to as a provirus. Then every time the cell divides the virus is also 
duplicated.

2.2.2 Why H IV  targets H elper cells

HIV targets cells which have a receptor molecule called cluster designation 
4(CD4) on their surface. Cells which have this molecule are referred to as 
CD4 cells. gpl20 is a protein which resides above and below HIV’s surface and 
which influences the types of cells which HIV infects. gpl20 and CD4 are com
plementary, therefore making CD4 cells a target for HIV. Therefore, HIV has 
an affinity for T4 helper cells, as they display CD4 on their surface. As should

12



be obvious from above, T4 helper cells are central to the correct orchestration of 
immune defences, so their depletion weakens the immune system significantly.

The infection of T4 cells leads to the destruction of the T4 cells (either by 
the virus itself or by T8 killer cells as they are now viral-infected cells) or in 
some cases the T4 cells return to a resting state, (now infected with HIV). This 
resting state is a normal immunological response as it represents immunological 
memory.

Originally the period in which the immune system responded well to the virus 
was thought of as some sort of latency period for the virus. This idea of latency 
has since been altered, as instead of the virus ceasing reproduction the immune 
system is just about keeping it under control(Blakeslee 1998). However, we will 
continue to reference it under this nomenclature as it is common in literature.

As mentioned before, Helper cells can be subdivided into T h l and Th2, with 
their responses being self-regulatory. This is necessary for the proper function
ing of the immune system, as a Th2 type response is im portant at the beginning 
of infection and a T h l response is im portant for progressed infections. In an 
infection like HIV where the cell-mediated response is more im portant, a domi
nant humoral response could be disastrous, as there are far more viral-infected 
cells than free virions. Indeed, it has been found th a t the Th2 response seems 
to dominate over the T h l response in the course of HIV infection. Researchers 
think tha t in the beginning of infection there is a T h l response which then 
switches later to a Th2 response (Clerici, 1993). The high m utation ra te of 
the virus then leads it to escape these antibody (Th2) attacks. Recent findings 
have shown th a t Th2-type cytokines are dominant in the saliva of HIV-infected 
individuals(Leigh, 1998). It has been said th a t T h l cytokines can be associated 
with resistance to HIV infection and Th2 cytokines with the progressive phase of 
the disease (Clerici 1993). The protein gpl20 also needs co-receptors, proteins 
on the outside of cells, to attach to a  cell. Two proteins CXCR4 and CCR5 
are co-receptors and so along with gpl20 are necessary for HIV to attach to a 
cell, (Cohen and Fauci, 1998). Further, CCR5 is a  preferred chemokine receptor 
for T h l type cell (Blakeslee, 1998) thus making it more of a target for HIV 
than  Th2 type cells, therefore hindering the cell-mediated attack. It should be 
noted at this stage th a t T h l/T h 2  differentiation is not incorporated into any of 
our models at this stage. A framework for a model should use well established 
immunological fact and when the model proves itself, it can then be built upon 
to include more contemporary theories.

13



2.3 H IV /A ID S  Treatm ent

HIV treatm ent is targeted at different steps in the replication cycle of HIV. Some 
drugs target the reverse transcriptase enyzme which is responsible for converting 
RNA into DNA. These drugs are called nucleosides and non-nucleoside reverse 
transcriptase inhibitors. Nucleosides act by incorporating themselves into the 
DNA of virus, thereby stopping the building process; the resulting DNA is 
incomplete and cannot create new virus. Non-nucleosides stop HIV production 
by binding directly onto reverse transcrijjtase and preventing conversion of RNA 
to DNA. There are also drugs called protease inhibitors which work at the last 
stage of the viral reproduction cycle; preventing HIV from being successfully 
assembled and released from infected CD4+ cells.

HAART (High-Active Retroviral Therapy) consists of combinations of these 
three drug types and has proved successful in prolonging the lives of HIV- 
infected individuals. HAART and all other HIV treatm ent is expensive, «$30,000 
per year (this is a conservative estim ate), and patients can suffer severe side ef
fects. Arising from the study of this treatm ent is the finding th a t the complete 
eradication of HIV from an infected person is impossible. The reason for this is 
the population of resting T4 cells. A resting T4 memory cell state represents a 
reservoir for the virus (see Section 2.2), as a virus in this state is hidden from 
the immune system and provokes no reaction (Blakeslee, 1997). Almost all cur
rent anti-HIV drugs cannot attack HIV in this resting state  (Siliciano,1998) . 
Normally, these cells can be thought of as T memory cells, which will become 
stimulated again when the right epitope is encountered. However, in the case 
of HIV these cells are infected with HIV and HIV will s ta rt replicating again 
when the T4 cell is stimulated. It is unclear how big a th rea t these resting 
memory T cells infected with HIV are, as they only make up 1 in 10,0000 of all 
T lymphocytes(Blakeslee, 1997). Therefore, it can be seen th a t although much 
progress has been made, a great deal more about the pathogenesis of AIDS must 
be learned, before an effective treatm ent/vaccine is found.
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3 C ellular A u to m a ta

3.1 I n t r o d u c t io n

Cellular A utom ata (CA) are a class of discrete models. They aim to mimic 
complex behaviour by building a system up from simple local interactions. This 
is in contrast to the global perspective taken by more traditional modelling ap
proaches. Before discussing the history,background and applications of Cellular 
Autornata(CA), let us first discuss what we mean by cellular autom ata. All CA 
models share a number of basic characteristics .

3 .1 .1  T h e  C ell

The basic building block of any CA is the cell. A cell can be representative of a 
microscopic entity, e.g. a plant cell in a model of plant growth, or can represent 
a  macroscopic unit, e.g. a  tree in a model of forest fire spread. All cells act in 
a homogenous way and their actions are governed by rules (see below). A cell 
can be in a discrete number of states. The interpretation of what the differing 
states mean depends on the application. For instance, if discussing a living 
organism, a state with value 1 may represent life while the state with value 0 
may represent death. In a traffic flow simulation, however, the discrete states 
may represent the velocity of the car, so state 0, represents a stopped car, while 
state, n, would mean a car travelling n  m ph (Schreckenberg & Schadschneider, 
1996).

3.1.2 The Lattice  (or G rid)

The cells sit on a lattice. The lattice is usually employed to take into account 
the spatial relationship between cells. If we refer again to  traffic flow, a car, x ,  

will be in a traffic jam  if there are ’cars’ a t each cell on the lattice adjacent to  the 
cell tha t x  occupies. The spatial relationship between entities is very im portant 
when considering many physical systems and celhilar au tom ata’s innate ability 
to incorporate this, is one of its  many strengths.

The lattice can, however, represent a relationship other than  a spatial one. The 
BSP model (de Boer et al, 1992) is an immunological CA which simulates the 
interaction between B cells and other B cells via their complementary receptors. 
This is incorporated by a cell’s m irror image on the lattice representing a perfect 
fit between two B cells while a cell’s neighbour’s image represents a less exact
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fit. Therefore, the lattice in this situation is used as a means of establishing the 
“lock and key” relationship between complementary receptors on B cells.

If one is modelling more than one interacting entity then alternatively it is better 
to think of sites ra ther than  cells. Each site can hold the n  differing entities. 
Each site then behaves as an n-dimensional cell with the entities interacting 
together at the site. The lattice can be of any dimension depending on what 
suits the application best, e.g. where traffic flow can be represented in 1-D , 
simulating fluid flow may be best represented in 2-D so th a t both horizontal 
and vertical flows are considered.

Alternatively, a lattice may not be considered at all and this is the mean-field 
approach. In this approach one may consider a string of n  bits, the rules of the 
CA are then applied continuously to these n  bits until a  fixed point or cycle is 
found.

3.1.3 N eighbourhoods

Another strength of Cellular A utom ata in modelling natural phenomena is tha t 
the influence of a cell’s neighbours is considered. A sense of locality is very 
im portant in many physical systems and CA offers a way to  incorporate this. 
A nearest neighbourhood is defined in CA for every cell (or site). This nearest 
neighbourhood is made up of the cells close enough to x  on the lattice to have 
an influence on it. This introduction of locality means th a t every interaction 
has a specific location and range of effect. The range of effect being its nearest 
neighbourhood. There are different neighbourhoods and they are defined below 
(Wolfram, 1986) (the definitions are given in 2-D but can easily be extended to 
higher dimensions).

von N eum ann neighbourhood - Five cells consisting of the cell itself, 
the cell above and below and the cell right and left, i.e. the cells tha t share a 
common edge with the central cell.

M oore neighbourhood - This is similar to the von Neumann neighbour
hood but contains the cells a t its diagonals as well, i.e. the cells th a t share a 
common node with the central cell.

Extended M oore neighbourhood - This is an extension of the Moore 
neighbourhood to the next adjacent cells.
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Figure 3.1 von Neumann neighbourhood

Figure 3.2 Moore neighbourhood

The neighbourhood one would use in a specific application depends on the con
nectivity of the environment one is modelling. The more connected the environ
ment the larger the range of effect, therefore the definition of neighbourhood in 
a highly connected system would include many neighbours.

3 .1 .4  T h e  “ru le s”

The influence of a cell’s neighbourhood is governed by the nearest-neighbour 
interactions of the model. These determine a cell’s state at the next timestep. 
In CA, rules can be deterministic or probabilistic; if the la tter, the model is 
correctly termed stochastic CA(SCA) or probabilistic CA(PCA). The rules are 
dependent on the application. Conway’s Game of Life aimed to model living
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Figure 3.3 Extended Moore neighbourhood

organisms. Each ceil was capable of holding a single organism, the state of the 
cell was dead(O) or alive (1) and the neighbourhood was a Moore one. The 
rules which governed the life or death of an organism were based solely on the 
number of “alive” neighbours a cell, x, had. A cell died if it was overcrowded ( 
this was defined has having >3 alive neighbours). A cell also died if it was lonely, 
(<1 alive neighbour). The condition conducive to  having a  cell come alive was 
having exactly 3 alive neighbours. A status quo was achieved by having exactly 
2 alive nearest neighbours, thereby the state of the cell would remain the same. 
The above example is used to illustrate how the rules, based on the system being 
modelled, are the mechanics behind the evolution of a CA model. If more than 
one entity is being modelled and all entities can occupy a cell together, than  
additional inter-cell interactions can be specified.

3 .1 .5  T im e s te p s

The nearest neighbour interaction followed by any other additional local inter
action determines a single timestep. Therefore, the timestep is set by the nature 
of the process being simulated. In a forest fire, fire spread is slow at the begin
ning and then gains momentum and so spreads more quickly. A single timestep 
in a CA model of forest fire spread would represent more real time a t the s ta rt 
of the simulation, (when the fire spread is slow), than  later on, (when the fire is 
spreading faster). Therefore, a CA timestep has a tenuous link with real-time 
and caution is advised when trying to establish a relationship between the two.
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Cellular Autom ata theory was introduced by von Neumann and Ulam in the 
1940s , where von Neumann was principally concerned with describing elemen
tary units which are capable of reproducing themselves. Von Nuemann described 
an autom aton with 29 different states and which he hoped was a Turing machine 
i.e. capable of performing any calculation possible(Preston & Duff, 1984). Ulam 
formalised von Neumann’s idea of automatons by considering these elements po
sitioned on a lattice and including nearest neighbour interactions. The lattice is 
im portant to CA because with out it one cannot establish nearest neighbours for 
a cell. W ithout nearest neighbours CA have no sense of locality. The concept of 
locality is central to CA as it permits the location of an entity to be influential 
and also the interactions on the entity to have a range of effect. CA were popu
larised by Conway’s Game of Life via G ardner’s “M athem atical Games” column 
in Scientific American (1971). This coinciding with the emerging popularity 
of computer simulations led to many physical systems being modelled through 
CA.

In the 1980’s Wolfram produced a body of work on the subject most of which is 
collected in (Wolfram, 1986). Wolfram’s systematic studying of CA behaviours 
led him to develop four classes of CA grouped by their phenomenological be
haviour. The first class of CA is characterised by a spatially homogenous global 
state (see Figure 3.4) , periodic stable structures are characteristic of the second 
class (see Figure 3.5), chaotic behaviour is exhibited in the third class while in 
the fourth class there are some localised static complex structures with other 
structures moving around the cellular space. See figures 3.4-3.7, which were 
constructed from examples given in Wolfram (1986). Wolfram reasoned, (Wol
fram, 1984), th a t because of the small number of classes, universality existed in 
the complex behaviour CA exhibits. Furthermore, because of this universality 
he proposed th a t many of the details involved in creating a CA are irrelevant 
w .r.t determining their qualitative behaviour. This he surmised could imply 
tha t complex physical and biological systems may too, fall into one of the above 
four classes. Therefore the study of CA may find some general results that 
can be applied to these complex systems. The above classification of CA is 
phenotypic as the CA which exhibit similar behaviours are grouped into the 
same class. There is also a genotypic classification, i.e. it is derived from the 
mechanics which drive the simulation. This classification uses the param eter, A, 
developed by Langton, A, is a measure of the state transitions in the rule space

3.2 B ackground  an d  A p p lica tio n s
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Figure 3.4

Figure 3.5

of a CA (Gutowitz, 1996, Li et al, 1990). However, Wolfram’s phenomenological 
classification remains the most popular. This is probably due to its intuitive 
nature and its examination of behaviour, looking at the output which a GA 
produces, one can easily deduce to which Wolfram class it belongs. The science 
of complexity is very much based on observed behaviours of systems.

CAs can produce quite complex global behaviour from simple local interactions. 
A real-life example would be a Mexican wave at a football game. Watching from 
a distance it looks quite complex and magnificent, however, a t a local level it 
consists of a simple nearest neighbour interaction. T hat interaction being a cell, 
(spectator), looking at its next nearest neighbour and when they have changed 
state, (i.e. waved), then th a t cell changes state too. Cellular A utom ata are 
counterpoint to  partial differentiation equations, because instead of trying to 
simulate complex behaviour from “above” using complex equations, they seek
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Figure 3.7
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to generate complex behaviour at a macroscopic level, by simple rules at a local 
level, i.e. a bottom-up rather than a top-down approach.

CAs have been used as extremely simple models of differential equations in 
physics, examples include heat and wave equations (Toffoli, 1984)and the Navier- 
Stokes equation(Frisch et al, 1986) There are many C A models of biological sys
tems, such as tum our growth (Smolle & Stettner, 1993) and ecological systems, 
e.g. forest fire spread , (Green et al, 1990), starfish outburst (Hogeweg &Hesper
1990) in existence. CA models have also been used in immunology (de Boer et 
al, 1992, Deffner, 1993, Zorzenon dos Santos 1993, Seiden and Celada, 1992) 
with Kaufman et al (1985) developing the first immunological CA model .

W ith CA, as with differential equations, it is possible to alter the param eters of 
the system being modelled and establish the consequence of this variation on the 
system. However, CA holds many advantages over differential equations. CA 
rules in general are “intuitive”, simple and easily modified. Differential equations 
are often complex involving many param eters and n th  derivatives. Due to  the 
fact th a t CA model directly the basic elements of the system, one has tighter 
control over the m anipulation of the model a t a  microscopic level i.e. a t an 
individual element level and any param eters effecting it. Using CA one can hy
pothesise about behaviour a t the microscopic level and see w hat the macroscopic 
behaviour appears like. If the system level behaviour mimics known behaviour 
then the CA model provides a much richer picture as insight is gained into the 
microscopic as well as the macroscopic. CA lets behaviour emerge from the 
model while differential equations attem pt to  describe behaviour. Of course 
differential equations have advantages over CA as they are based on rigorously 
defined m athem atical concepts. Differential equations have been the de-facto 
modelling tool for physical sytems for centuries and have been found to model 
them very effectively. Many tenets of a system have a known differential part, a 
simple example would be the velocity of an object. CA does not have such well 
established resuable characteristics to  draw on. CA, however can help one to 
learn about emergent behaviour and how the basic elements at the microscopic 
level can influence the overall behaviour of the system. Due to CA’s determin
istic rules, the individual elements can be completely controlled. Also, because 
the models are made up of simple building blocks for which interactions locally 
are quite simple but whose overall macroscopic behaviour is quite complicated, 
they are analogous with nature.
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4 C A  M od els o f H IV  In fection

4.1 Introduction

The formation of any model involves making assumptions, simplifying relation
ships and behaviour, and distinguishing the im portant elements to be included. 
Therefore, any model is always open to improvements, from new knowledge ac
quired and from the lessons learned from previous models. No model can be 
called definitive and can be taken only in context of its current knowledge base 
and w hat has been garnered from previous models. Both theoretical and im
munology C A modelling are relatively new fields so the archive of knowledge and 
expertise is not as extensive as it would be if one were formulating a model in a 
traditional discipline e.g. physics, using traditional methods, such as differential 
equations.

4.2 The M odel B asics

In this section, we present different models of HIV infection and its interaction 
with the immune system. The different models focus on different aspects of the 
infection and include differing cell types. They do, however, share a number 
of basic characteristics and we present these here. All models we discuss in 
this section are simulated on a 2-D or 3-D regular lattice of length, L  with 
V1  or L s sites. Each site on the lattice is capable of holding at m ost one of 
each cell type. Each cell type considered is in one of two concentrations, high 
concentration (1 ), or low concentration (0). I t is im portant to note at this 
stage th a t sites contain n  distinct cell types and th a t sites are involved in two 
different types of interactions. The first type of interaction is interior to the 
site, intra-site (inter-cell) interactions, where cell types interact with different 
cell types at a site. These are Boolean equations and have to be a succinct 
interpretation of the cell-type’s behaviour in the system. Sites also interact 
with their neighbouring sites and these interactions are the nearest-neighbour 
interactions. These are restricted between cells of the same type and so are 
termed, intra-cell, or inter-site interactions.

The immune system is a highly connected environment; location and range of 
influence are im portant factors in correctly simulating it. Nearest-neighbour 
interactions are used to mimic this connectivity by taking into account the
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influence of a site’s nearest neighbours. The neighbourhood considered is von 
Neumann, (for definition see Chapter 3), and in all the models we discuss, 
the nearest-neighbour interaction consists of a logical-OR between the nearest 
neighbours. Thus, if a cell-type is in high concentration at any one of its nearest 
neighbours then it will be in high concentration at th a t given site too. Eqn (4.1) 
shows the code for the nearest-neighbour interaction for c(i, j ,  k) ,where c ( i,j , k) 
is a representation of a cell-type, it is either 1 or 0  , i, k is its position on a 2  — d 
lattice and k is the cell -type

c { i,j,k )  = c(i, j , k) || c(i + l , j , k )  || c(i — l , j ,  k) || c ( i , j  + l , k)  || c ( i , j - l , k )
(4.1)
Updating is synchronous with Cellular Autom ata; all interactions take place at 
all sites simultaneously. At each timestep, each site on the lattice is updated by 
the nearest-neighbour interactions followed by intra-site interactions.

4.2.1 W h at is th e  su b je c t  o f th e se  m od els ?

A question which needs to  be answered before formulating any model is: what 
exactly is it th a t one wants to model ? Once this has been established, it is 
im portant to ask, what is necessary to include, so as to model this effectively 
? The aim of the models presented below, is to try  and simulate HIV and its 
infection of the body and also the immune system ’s response to this infection. 
The immune system’s interaction with any invader, no m atter how small and 
threatening, is a very complex one. Modelling an infection such as HIV, where 
a lot is still unknown, is daunting. HIVs invasion triggers both  a humoral and 
cell-mediated response. Each of these defences consist of various cell types and 
cell-mediators (lymphokines, cytokines and other regulatory molecules). The 
m ajority of the models decide to concentrate on one type of immune defence, 
cell-mediated being the preferred choice. Why ? Because HIV is a viral infection 
and the cell-mediated defence targets viral-infected cells and also it simplifies 
the formation of the model. If this is the case, the answer to the first question, 
“what is being modelled ?”, is the interaction of HIV and the cell-mediated 
response to it.

Once the subject of the simulation has been decided upon, another question 
arises. How ? The modelling tool used for all the models presented below, 
is Cellular Automata. W hat restrictions does this imply ? Firstly, cell types 
have to be in discrete concentrations, Boolean concentrations, so they require
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Boolean equations. Boolean equations require th a t very basic generalities about 
the cell-types need to be abstracted. Therefore, the way in which immune 
system, or particularly the cell-mediated defence, tries to  defeat HIV needs to 
be investigated. This has to be done with an eye for choosing generalities about 
each cell type involved and about the virus itself.

One also needs to consider the mimber of cell types to include. The more cell- 
types we include, the more complicated the model is made and the harder it 
is to abstract these generalities. At the same time, one does not want to leave- 
out some vital part of the system. It is a delicate balance between including 
too little information, with the result th a t differing cell-types are over-reliant on 
each other or including too many, so th a t there is much redundancy and many 
components are basically doing the same job. One might consider the activation 
of a killer cell as being very im portant to include. One would investigate what is 
clinically known and realise it is brought about by the interaction of an antigen 
presenting cell, helper cell and various lymphokines and cytokines. One may 
ju st pare this down to the generalities; a viral invader encounters an antigen 
presenting cell which stimulates the growth of helper cells which in turn, stimu
lates the growth of killer cells. Therefore, the activation of killer cells has been 
simplified to four cell types: APC, killer, helper and viral cells. Boolean equa
tions can then be constructed which encompass the basic traits  and interactions 
of these cell types.

Another consideration is the hardware of the computer, this imposes physical 
limits on the model. This point can be illustrated by considering a model with 
a great number of cell types. If instead one modelled killer cell activation with 
a 1 0 -cell model which included the four cell types mentioned in the previous 
paragraph along with free virions, NK cells, lymphokines, suppressor T  cells,B 
cells, and antibodies. If a modest 100x100, 2-d lattice was employed for the 
simulation, one would have to store for each i,j co-ordinate on the lattice 1 0  bits 
of information. Each timestep would generate 100,000 bits of information each 
tirnestep which has be stored. If the simulation is run for a 1000 timesteps and 
50 runs, this entails a computer dealing with at least 500 million calculations. 
However, hardware considerations are not as im portant as they once were as 
computing capacity is continuing to increase and will accommodate such strains 
on current resources. This will allow computer experimentalists in the future to 
formulate models without having to overly consider hardware constraints.

Many of the models discussed below include varying numbers of cell types from
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the immune system and virus. They have differing intra-site interactions gov
erning their propagation. The differences exist in an effort to  explore alternative 
views of what is happening, incorporate some new finding or because of weak
nesses exposed in assumptions or in the structure of a previous model.

4.3 The M odels

4.3.1 P S l

The first CA model, P S l, to tackle the interaction between the immune system 
and HIV, is tha t of Pandey and Stauffer (1989). The authors considered three 
cell types. These consisting of the Helper cell (H) , the cytotoxic Killer cell, (C), 
and the viral infected cell (V). The immune cells, H and C, represented the cell 
mediated arm of the immune system. Each of these cell types was represented 
by Boolean expressions ruling their behaviour, with the right-hand side and 
left-hand side of these expressions representing the concentrations (high(l) or 
low (0)) at time, t  and t  +  1 respectively. The Boolean equations representing 
the behaviours of these immune cells are

which means th a t an H will self- propagate at the next timestep, if V is not 
present a t the current timestep. This incorporates the basic principle th a t HIV 
kills Helper cells. Nothing in this model triggers the formation of an H and 
so it relies on the spread from the initial concentration of H-seeded sites via 
nearest-neighbour interactions. The killer cell (C) can also self-propagate or 
can be triggered by the Helper cell. There is no suppression factor on G so 
once a killer cell is present at a site, it will remain ad infinitum. There are two 
separate equations governing the behaviour of the virus.

Eqn (4.5) is more virulent than  Eqn(4.4), as V will always propagate except 
when all three cell types are present at a site, while Eqn(4.4) needs both the 
presence of an H and a V and the absence of Killer cells to propagate. W ith 
Eqn(4.4) a unique combination of cell type concentrations creates a V (H =V =1, 
C=0) , Eqn(4.5) has seven possible arrangements of cell type concentrations to

H  = H  and [not (V) 
C = H  or C

(4.2)
(4.3)

V  = (H and V) and  (not (C )) 
V  =  not (H and V  arid C)

(4.4)
(4.5)
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make a V ((i)H =V =C =0, (ii)V = C = l, H =0, (iii)V = H = l, C=0, (iv) H = 0 = 1 , 
V = 0 , (v)H =V =0, C = l,(v i) H = C = 0 , V = l,  (vii)JV = C = l, H= 0  )

Equation (4.4) is chosen to occur at a given site with probability, B , and Eqn.
(4.5) with probability, (1 — B ), so this is a probabilistic cellular autom ata model 
(PC’A) model. To incorporate this probability into the model, two different 
types of random mixing of Eqn(4.4) and Eqn(4.5) were employed. Quenched 
and annealed were the mixing methods used. Quenched and annealed represent 
different viewpoints. One view is th a t the same equation should always be used 
at the same site, so th a t it becomes an a ttribu te of the site. This is the quenched 
approach. At the start of the simulation B  * L 2 sites are assigned Eqn(4.4) for 
the length of the simulation and \  — B  * L 2 sites are assigned, Eqn(4.5). On 
the other hand, with annealed mixing, at each time step and at each site, one 
of the two viral equations is chosen. The two approaches are conceptually 
different. In the quenched approach, the sites allocated with Eqn(4.5) for the 
entire simulation can be thought of as representing something akin to static 
immune weaknesses, a frozen attribute. This is because Eqn(4.5) would be 
representative of the immune system’s inability to handle the invader, while 
Eqn(4.4) would be an attribu te of competent immune system response. On the 
other hand, annealed mixing, represents a mobile virulent virus or a transient 
immune system deficiency. Two equations represented the virus, because at 
th a t time not much about the mechanics of the virus was known, the virus was 
known to be virulent in some stages and less virulent a t others ( i.e latency 
period).

PSl was simulated on a 3-d lattice of length 60, (216,000 sites), with an initial 
concentration p = 0.0005 of each cell type («108 of each cell type). The results 
of the model showed th a t as the probability of the more virulent virus, i.e Eqn
(4.5), increased the helper cell population decreased. Therefore, the less virulent 
virus may represent early infection with the more virulent one representing the 
collapse of the immune system. One m ay ask what changes the behaviour of 
the virus from Eqn.(4.4) to Eqn(4.5) ? An answer may be the continuing mu
tation of the virus. As PSl was an exploratory model not too much weight was 
attached to the reasoning for the transition from Eqn(4.4) type viral behaviour 
to Eqn(4.5) type behaviour.
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4.3.2 P I

Pandey built further on PSl with P I (Pandey, 1989) and introduced a  sec
ond alternate equation for the Helper cell, (H), which has the general effect of 
enhancing Helper growth. This, as we understand it, was introduced to com
plement the enhanced viral proliferation brought about by Eqn(4.5)

H  = not (H  and V ) (4-6)

Using this equation for H, it can be seen th a t the cell-mediated response can 
be triggered by the virus, i.e. V=1 and H=0 leads to  H=1 at time t  +  1,which 
is biologically sound. If H and V were present together than  the virus would 
kill the helper cell. However, an H can be generated from both V and H being 
absent which does not make sense. Two interaction sets were used, interaction 
set (1), consisted of equations (4.2),(4.3),(4.4) and interaction set (2) comprised 
of (4.3),(4.5),(4.6 ). Interestingly (4.5) and (4.6) are in the same interaction 
set which leads to H and V appearing simultaneously at sites. This results in 
their populations oscillating together. However, this would not make sense as 
the virus kills helper cells and they should not realistically be growing together. 
The interactions sets (1) and (2) were mixed randomly using both quenched and 
annealed mixing. As the probability of using interaction set (2 ) increases, the 
immune system weakens, which is predictable as interaction set (2 ) represents 
a very strong viral attack and a weakened immune response.

4 .3 .3  K S1

Kougias and Schulte (1990) formulated a model, with again the same comple
ment of three cell types: Helper, Killer and Viral infected. In this model each 
cell type has only one rule governing its intra-site interactions. There is no 
random mixing as before, the authors found “no biological justification” for it. 
This comment signifies a difference in approach between P S l, P I and KS1. The 
previous models, P S l, P I, were exploratory with different equations for the 
virus and helper cell. These equations were mixed as a method of investigating 
different immune responses and alternative viral attacks. The approach by KS1 
is to determine what equation best suits the cell type and not alter that. This 
approach means th a t the outcome is better understood, as the rules are com
pletely deterministic. The simulation takes place on a 2-D lattice with L  = 512, 
(262,144 sites), and an initial concentration for each cell type of p = 0.001, 
(«a 262 sites). The Boolean equation representing the Helper cells is
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H =  H x o r V (4.7)

This means th a t V can trigger an H response if no H is already present, or it 
will kill an H if it is already present. The exclusive-OR means th a t if both H 
and V are in low concentration then no H response is triggered. Killer cells were 
represented by

An activated helper (a helper in the presence of a viral infected cell) stimulates 
killer cell growth, or if the killer-cell itself is already present it will self-propagate. 
This means th a t once a killer cell is generated, it will keep proliferating as there 
is no suppression on its propagation.

The viral infected cell’s behaviour was described by

Therefore an H or a V can generate more virus only in the absence of C, which 
would kill the virus if it was present. These three equations represent a suc
cinct view of the interaction between the immune system and HIV. The authors 
showed th a t an increase in viral population results in a corresponding decay in 
helper cell population. While this is a basic result, it is still representative of 
clinical findings, i.e. Helper cell counts decrease as HIV cell counts increase.

4.3.4 P2

Pandey(1991) formulated a model P2 th a t included the humoral response along 
with the cell-mediated response. It was an eight cell model th a t included free 
virions, viral infected cells, macrophages, lymphokines, killer cells, helper cells, 
antibodies and suppressor cells. This was a departure from previous models, 
which concentrated only on the cell-mediated response. The previous models 
showed, th a t while the 3-cell model was easy to implement, more cell types 
were needed so th a t cell types were not over dependent on each other. A 3-D 
lattice of length 64, (262,144 sites) was employed with an initial concentration 
of cell types, p = 0.000005, («  1 of each cell type). A model of this type, with 
many different cell types, can easily contain redundancy with over complicated 
expressions involving many cell types where one would have sufficed. The eight 
different cell types included, C \, free antigen, C2 , antigen expressed in a partic
ular form, C3 , macrophages, C4 helper cells, C5 lymphokines,Ce killer cells, C7 

suppressor cells,Cg antibodies.

C  =  (V and H )or C (4.8)

V = (V or H) and (not C ) (4.9)
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FYee virions will propagate in the absence of antibodies (which would kill them) 
if free virions or helper cells are already present. This indicates that the infected 
Helper cells will eventually explode and release free virions.

C-2 =  (Ci and C 3 ) and (not (C'e)) (4.11)

C-2 represents antigen expressed in a particular form, e.g on a macrophage. 
These will propagate in the absence of killer cells (as killer cells kill viral infected 
cells) and if both free antigens and macrophages are present.

C3 =  Cz or C, (4 .12)

O3 represents macrophages. These self-prop agate or are triggered by free 
antigens (virions), as they are the first line of the defence against the viral 
invader.

64 =  (C4 or C’2) and (not (C i)) (4.13)

C4 represents helper cells, which will be killed by free antigens but in the 
absence of free antigen will self-propagate or be stimulated by antigen on a 
macrophage.

Cr, =  (Cr, or C4) and (not (C7 )) (4-14)

Cr, are lymphokines. In the absence of suppressor cells, they will self- 
propagate or be propagated by the presence of helper cells.

Co =  C'« or Cr, (4-15)

C'c represents killer cells. These will self-propagate or be stimulated by 
lymphokines

C 7  = C  ̂ or Cr, (4.16)

C 7  represents suppressor cells. These will self-propagate or be stimulated by 
lymphokines

C 8  = CH or C 5  (4.17)

C8 represents antibodies. These too will either self-propagate or be stimu
lated by lymphokines

Ci = (C\ or C4) and (not (C$)) (4.10)
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Once lyrnphokines are formed, they will trigger killer and suppressor cells and 
antibodies. These are all self-propagating and have no suppression factor built 
in. Therefore the role of lyrnphokines is influential only at the beginning of 
the simulation. The role of suppressor cells is now redundant, as their purpose 
is to suppress or halt the cell-mediated and humoral defences, which in this 
model continue ad infinitum when stimulated . This is a characteristic weakness 
of a model involving many different cell types, where one cell type, namely 
lyrnphokines, manage to obliterate indirectly, the influence of another cell type, 
namely the suppressor cells.

Once more, there is an alternative interaction for the virus, and as we are dealing 
with two different guises of virus, i.e free antigen and viral infected cells, each 
of these has an alternative interaction. These alternative interactions are as 
follows

Ci = (Ci or C4 ) and (not (Cs and C5 )) (4-18)

C2 = (C\ and  C3 ) and (not (Cq arid C5 )) (4-19)

In Eqn(4.19) , killer cells will only be effective in the presence of lyrnphokines 
and this is true also for antibodies in Eqn(4.18). This enhances the viral prolif
eration by putting stricter criteria on the proper functioning of the killer cells 
and antibodies. Therefore, in these alternative equations, lyrnphokines play an 
im portant role. So the proliferation of suppressor cells, (which suppress lym- 
phokines) are all the more critical in th is set of interactions. The first set of 
viral interactions is chosen with probability, / ,  and the second set with prob
ability 1 — / .  For /  > 0.8, the viral population grows and then decays with 
a corresponding increase in helper cell population; for /  <  0 .8 , we see viral 
domination. This result is not surprising when one considers the additional 
requirements imposed on killer cells and antibodies to do their job.

The eight cell model, P2 , incorporated two lines of defence, humoral and cell- 
mediated and two lines of attack, free antigen and viral-infected cells. As a 
model attem pting to incorporate more than  the usual number of cell types, it 
suffered a little from trying to include too much information. Lyrnphokines could 
only actively participate at the beginning of the simulation while suppressor cells 
could not function correctly. On the whole, it is interesting in what it tries to 
achieve; the unification of two im portant immune responses. Its weakness and 
strengths should be used as a starting  point for future development of a CA 
model incorporating both humoral and cell-mediated immune responses.
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4.3.5 PS2

A characteristic of HIV infection is the long latency period between initial in
fection and full blown AIDS. This latency period was explored by Pandey and 
Stauffer (1990) and was the first model to explore a specific facet of the disease. 
This model PS2, consisted of 5 cell types, the Macrophage, the Helper cell, the 
killer cell, interleukin and virus. Interleukin is the name of the cytokine pro
duced by activated Helper cells. The authors assumed th a t macrophages would 
be present throughout the simulation and so developed no equation for them. 
This assumption could be interpreted as the supply of macrophages will always 
be replenished completely so HIV has no negative effect on this replenishment. 
It may be naive to assume th a t the population of macrophages does not decline 
with HIV infection. The following are the intra-site equations

V  = H and  (not (C)) (4.20)
Here the virus will propagate only in the presence of Helper cells and only where 
killer cells are absent.

H — I  or (not (V)) (4-21)

The Helper cells will be triggered by interleukin but only in the absence of Viral 
cells

C — I  (4.22)

Interleukin triggers the production of killer cells and notice there is no suppres
sion factor on their production.

I  = H  (4.23)

Interleukin is triggered by Helper cells.

Eqns (4.20), (4.21), (4.22), (4.23) are an interesting set of equations, where 
Interleukin and Helper cells have a m utual dependence. The authors introduced 
a probability, p, th a t interleukin concentration will be equal to  zero. This could 
represent defective killer cell receptors or more probably a lack of interleukin 
production caused by impaired Helper cell functioning. They found th a t for 
all non-zero values of p a fixed state of viral dominance was found. As the 
authors were investigating the latency period, they were interested in how many 
timesteps it took to reach this state of viral dominance. The timesteps were of 
the order This would mean th a t effective interleukin production and proper
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Helper cell functioning contribute towards a lengthening of the latency period, 
while any malfunctioning of these elements cause a shorter latency period.

4.3 .6  O ther C A  im m une m odels

Above, we have presented a brief history of CA models of HIV infection. Other 
models exist such as tha t of Sieburg et al (1990). In this model, S i, the au
thors considered a cellular device machine (CDM). CDM was basically a cellular 
autom aton, where the cell types change state based on their current state and 
some pattern  element. The pattern  elements represent the binding sites on a 
cell’s receptors. The CDM was modelled on a two dimensional lattice. The 
authors classed the evolution of the infection as AIDS for a number of reasons. 
There was a lasting depletion of Helper cells and this depletion was preceded 
by a long latency period.

The IMMSIM model is a general model of the humoral arm of the immune 
system and is similar in construct to SI. It too, is a  CA approach but it 
goes into greater microscopic detail. Antigens, T  cells, B cells, APCs are all 
considered along with their receptors, peptides and epitopes. As stated it is a 
general model and as of yet has not investigated HIV infection specifically.

Another CA model to explore HIV was presented by Stauffer and Chowdary 
(1990). In this approach, SCI, the authors considered auto-immune response 
and normal immune response, along with HIV. The interactions between the 
cell types were governed by Boolean equations. In this case, the authors didn’t 
utilise a lattice but opted instead for the mean-field approach. In this approach 
one considers a string of 1 ’s and 0 ’s, each binary digit in the string represents the 
concentration of a specific cell type and the length of the string is the number of 
cell types modelled. In this case, six cell types were considered HIV, suppressor 
cells, killer cells, helper cells, non-HIV specific antibody and B cells. If we take 
the above cell types in the order given then the binary string ,0 0 0 0 0 0 , represents 
absence of all cell types, while 1 0 0 0 1 0 , would represent high concentrations of 
HIV and non-HIV antibody and absence of all other cell types. In the mean-field 
approach as a lattice is not used, we have no nearest neighbour interactions. The 
Boolean equations alone govern each cell type’s behaviour. As we have six cell 
types, each of which can be in one of two concentrations, we have 2 6 possible 
starting configurations. Each of these starting configurations is then iterated 
using the Boolean equations and iterated until a fixed point or a limit cycle
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is found. The fixed points of the above model in the presence of HIV were 
a virgin state (0 0 0 0 0 0 ), a low dose state (1 0 0 0 0 0 ), a high dose state (1 0 0 1 0 0 ) 
and non-responsive state (000100). The mean field approach is interesting as it 
explores the internal evolution of the equations w ithout any outside influence i.e. 
nearest neighbour interactions. However, the influence of the nearest neighbours 
when modelling a system as connected as the immune response is imperative to 
include.

Mielke and Pandey (1998) developed a fuzzy CA model of HIV infections, M P 1 

. The authors considered ten different sets of immune response and at each site 
at each timestep one of the ten  interactions sets was randomly chosen to govern 
the states of the cell types in th a t site. As the immune system responses can be 
in some sense random the authors considered this approach viable. However, 
the genesis of the interaction sets and associated probabilities are not explained 
in detail. When trying to mimic the random behaviour of a  system, one always 
has to employ artificial means, here a deterministic interaction set is given an 
associated probability of occurring at a tirne-step. The use of artificial means 
runs the risk of the simulation seeming contrived, especially when the interac
tion sets are not well derived and are not representative of reality. The authors 
also considered m utation (discussed in Chapter 5). I t  m ay have been a better 
approach to investigate m utation with deterministic rules, where the effect of 
m utation would have been more explicit, ra ther than with randomised “fuzzy” 
interaction sets, where its effect can be clouded by the randomness of the in
teraction sets. Fuzzy simulations are best employed when known behaviours of 
the system are incorporated into interactions and not when guesses are being 
made about behaviours. W hen guesses are being made about system behaviour 
the risk is run of the interaction sets being tweaked until the desired results are 
achieved. On the other hand, if known system behaviour is incorporated into 
the interaction sets, then real analysis can be done on the results.
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5 C u rren t D iscre te  M o d els

5.1 C om m on Feature o f M C  and C A  approaches

In this chapter, we introduce the basic formulations for a GA model (Stauffer & 
Pandey,1992, Paridey, 1998) and its Monte Carlo (MC) counterpart (Mannion 
et al 2000a). The Monte Carlo method is described in more detail in Chapter 6 . 
Firstly, both MC and CA, share the same nearest-neighbour interactions. They 
also share the same intra-site interactions. Both also take into account m utation 
and mobility. All simulations take place on a 2-D or 3-D regular square lattice. 
Sites on the edges of the lattice will be missing some nearest neighbours, for this 
reason we use helical boundaries. Helical or periodical boundaries “wrap” the 
lattice around so th a t each site has the appropriate number of nearest neigh
bours. An example of this would be, on a 2-d lattice the site in the left hand 
bottom corner of the lattice, (see Figure 5.1, where it is shaded the darkest). 
This site is missing a southerly nearest neighbour and a nearest neighbour on 
its left-hand side. Using helical boundaries its m irror image on the top row of 
the lattice becomes its southerly nearest neighbour and the site in the bottom 
right corner of the lattice becomes its left nearest neighbour (these and its other 
nearest neighbours are shaded grey in Fig. 5.1).

5.2 N earest-neighbour and In tra-S ite  Interactions

The nearest-neighbour interactions consist of a logical-ORing between the same 
cell types in their von Neumann neighbourhood (see Figure 5.2 for example). 
The code implements the nearest-neighbour interaction as follows; for each cell 
type, the concentration of th a t cell type in the n  nearest neighbours are added 
together, this is then added to n — 1 and divided by n. The following code 
(5.1), is taken from M Cl(M annion et al,2000). Where, im l is the macrophage 
concentration, ih l, helper concentration, ic l, killer cell concentration and iv l, 
viral concentration, ic,(k,i,j) is a site where i,j are the lattice co-ordinates (2-D 
lattice) and k the cell type, ib(i) determines the appropriate nearest-neighbour 
using helical boundaries.

(5.1)
im l =  (4 +  ic(l,i,j) +  iC(1, ib(i-l) j )  +  ic(l, ib (i+ l) j )  +  ic(l, i,ib(j-l)) +  ic(l,
i. ib (j+ l))) /5
ih l =  (4 +  ic(2,i,j) +  ic,(2,ib(i-l),j) +  ic(2 ,ib(i+ l),j) +  ic(2,i,ib(j-l)) +  ic(2,i, 
ib (j+ l))) /5
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Figure 5.1 The left-hand corner site(shaded darkest) and its nearest neigh- 
bours(shaded grey) by use of helical boundaries

icl =  (4 +  ic(3,ij) +  ic(3,ib(i-l),j) +  ic(3 ,ib(i+ l) j )  +  ic(3,i,ib(j-l)) +  ic(3,i, 
ib (j+ l))) /5
ivl =  (4 +  ic.(4,i,j) +  ic(4 ,ib(i-l)j) +  ic(4 ,ib(i+ l),j) +  ic(4,i,ib(j-l)) +  ic(4,i, 
ib (j+ l))) /5

The inter-cell (intra-site) equations th a t make up our current simulation first 
appeared in a paper by Stauffer and Pandey, SP1, (1992). These equations are

This model also focuses on the cell-mediated arm of the immune system, dealing 
with Macrophages, Helper cells, Killer cells and Viral Infected cells. Macrophages, 
M, are the new cell type considered in this model compared with previous m od
els PS1, P I and P 2  . Their role is to act as an intermediary, as they propagate 
both immune and viral cells, and this enables the model to evolve in a way a 3- 
cell model could not. Eqn(5.2) shows th a t the Macrophages are self-propagating 
or can be stimulated by a viral-infected cell. So, if a V appeared at a site, it 
would induce an M at the site. This can be explained as macrophages are the

M  = M  or V
H = (M  or H) and (not (V ))
C =  H and M  and V 
V =  (V or M  or H) and (not (C))

(5.2)
(5.3)
(5.4) 

(5.5)
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Figure 5.2 An example of the nearest-neighbour mechanism
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Figure 5.3 An example of the intra-site(inter-cell) interaction
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first line of defence. Helper cells are self-propagating or can be induced by an 
M. Macrophages signal to helper cells to proliferate. V kills Helper cells. The 
Killer cells, C, are only stimulated when an activated M, i.e. an M which has 
encountered a V, has induced an H response. An H and an M contribute to
wards V ’s proliferation, as both cell types can be virally infected. V cells are 
also self-propagating. Figure 5.3 shows an example of a intra-site (inter-cell) 
interaction. Appendix 1 contains the code for a simulation with these intra- 
site (inter-cell) interactions. An update of a site in this model consists of the 
nearest-neighbour interactions followed by the intra-site interactions.

Figure 5.4 All possible sta tes for a given site with the valid configurations shaded in 
grey.

Due to the fact tha t we are dealing with four cell types in 2 possible states, 
each site can be in 16 different configurations see Figure 5.4. Due to the 
intra-site (inter-cell equations ){(5.2)-(5.5)} only 4 of these configurations are 
valid, as these Boolean equations will not give rise to any other states. These 
valid .states are shaded in grey in Figure 5.2. Each of the valid configurations 
(1000),(1001),(1011),(1101)} are reversible in the sense th a t each has a distinct
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predecessor,

(1000)-> (1101) 

(1001)->(1001) 
(1011)-> (1000) 
(1101) - > ( 1011)

Macrophages,Helpers,Killers and Virus
L=200

Timestep

Figure 5.5 Macrophages, Helper,Killer and Viral cells, indistinguishable because of the 
large oscillations

As nearest-neighbours interactions precede intra-site interactions, they ensure 
thatthe  states of the site are not restricted to a cycle. The nearest-neighbour 
interactions also cause the system as a whole to be irreversible; given any site 
at a particular timestep it is impossible to determine the states of the cell types 
at the site at the previous timestep. This irreversibility is characteristic of a
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self-organising system (Wolfram, 1986). Irreversibility can cause a system to 
evolve from a disordered initial state to  an ordered state.

Typical results of such a  C A model, simulated on a 2-d lattice of length I =  200 
and with initial random configuration of one of each cell type, are shown in 
figure 5.5 . One can see large oscillations in the populations of Helper, Killer 
arid Viral Infected cells while the macrophages stay constant at system size 
(40,000 sites). As the lattice reaches saturation point, w ith every site on the 
lattice containing at least one cell type, ( this occurs at timestep «200 in Fig

B—Q m

0-0 H 
A-Ac 
CH>v

M acrophages,Helpers,Killers and Virus
L=200

Figure 5.6 This is Figure 5.5 zoomed in on tim esteps between 190 and 200 to  show 
oscillations

a cycle is evident. The cycle occurs when the lattice is a t saturation point 
so the nearest-neighbour interactions no longer have an effect on the intra-site 
interactions, interactions no longer have an effect. The cycle is as follows, all 
the sites being in state (1000), (a Macrophage at every site), then state (1101),
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( M,H,V at every site), followed by state (1011), (M, C and V at every site), and 
back to the start of the cycle. Figure 5.6 shows this cycle as it shows the cell 
concentrations between timesteps 190 and 200. This cycle continues indefinitely. 
Because of this cycle it is impossible to determine a definite outcome for the 
simulation, as the cycle goes from immune dominance to viral dominance. This 
cycle is due to the completely deterministic nature of the Boolean equations. 
Also each cell type is limited to one of two concentrations, low (0) and high(l) 
and as no intermediate concentration exists this leads to  the extremes in the 
oscillations.

5.3 M u ta t io n

HIV has the highest m utation ra te  of all known retroviruses (Nowak & Michael,
1991), see section 2.2. Many hypotheses suggest th a t this m utating rate is 
one of the main reasons th a t HIV is so deft a t evading the immune response 
(Nowak &z Michael, 1991). It is therefore, vital th a t a model of HIV should 
include some mechanism for introducing m utation. HIV m utates because the 
process of reverse transcriptase is extremely error prone. It is generally thought, 
(Blakelee 1996), th a t one m utation occurs every time a DNA copy is made of 
the viral RNA genome. T hat is, every time th a t the virus enters a host cell and 
integrates itself into the DNA of the host cell. Although m utations will change 
the epitopes of the virus, ( i.e. change the pattern, by which the immune system 
recognises them ), not all m utations will be advantageous to  the virus, as the 
immune system may already be primed for th a t m utation.

To incorporate m utation, a m utation probability, Pmut , is introduced, for the 
code implementation see Appendix 1 .

D efn: Pmut , is the probability th a t the virus has m utated and th a t this mu
tation is advantageous to the virus.
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Figure 5.7 W ith m utation  introduced, Pmut — 0.30 we see a reduction in the oscilla
tions and in the Helper population

An accurate estimate of P mut is impossible, as the m utation ra te changes from 
individual to  individual with HIV (Walker &Basgoz, 1998). This of course raises 
a question with respect to our modelling of HIV infection, as we are concerned 
with a general model which utilises commonalities across people. Therefore 
investigating a range of Pmut and its effect on the infection is im portant. 

M utation is incorporated as follows as in Pandey (1998): with probability P mut, 

V is set to zero in Eqns. 5.2 and 5.4. The GA model is now a probabilistic CA 
or a stochastic CA. Thus if V is m utated, an M or a C cannot recognise it and 
so elicit an effective response, while an H can still be killed by a m utated V, 
even if it does not recognise it. W ith m utation, the state (1001), an M and a V 
has more than  one predecessor namely

2-D lattice L =200 P ,=0.30mul
H elper and Viral cells
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(1001)-> (1001)
(10U)->(1001)
(1101) - > ( 1001)

This means now th a t the inter-cell (intra-site) interactions like the nearest- 
neighbour interactions are irreversible and this increases the irreversibility of 
the system as a whole.

Introducing m utation into the CA model therefore affects the population 
of the immune cells, as can be seen in Figure 5.7, where Pmu t=  0.30, s.t. the 
maximum level of Helper cells is reduced and cell population oscillations are 
somewhat dampened. Due to large oscillations in the cell populations it is 
difficult to pinpoint exactly at what level of Pmut the crossover from immune 
to viral dominance occurs.

5.4 M o b ility

Nearest-neighbour interactions result in intrinsic mobility in the model. Nearest- 
neighbour interactions cause a cell type to  fan out from its central site to  all its 
nearest neighbours. More explicitly, mobility has been considered by introduc
ing a probabilistic param eter, Pmob, which is governed by certain rules. This 
mobility can be thought of as chemotaxis. Chemotaxis is the directed m igra
tion of cells, in chemotaxis cells move towards other cells which release certain 
cytokines. Therefore this explicit mobility we incorporate into our models can 
be it can be thought of as chemotaxis, as the mobility is directed. This type of 
mobility was introduced by Pandey (1998). The rules governing the mobility 
param eter Pmob (Pandey 1998) are

1. For any cell type to move, it must not already be present at the intended 
site .

2. For a macrophage or cytotoxic cell to move to a neighbouring site, a viral 
infected cell must be present a t the intended site.

3. For a viral infected cell to move, a macrophage or a helper cell must be at 
the target site.
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Before Mobility

MH

After

MHV
Figure 5.8 An example of the mobility mechanism
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H elper and Viral Population

Timesteps

Figure 5.9 We see with extrem e mobility, Pmob — 1 th a t the  cell populations oscillations 
die down

See Figure 5.8 for an example of the mobility mechanism and for code imple
m entation see Appendix 1 .

Mobility dampens the oscillations, (see Figure 5.9), in each cell-type’s popula
tion, (excluding M which are always at system size). This is due to  mobility 
contributing randomness to what was a previously deterministic system in most 
cases. Also, the rules governing mobility are such th a t the cell types are being 
better employed. The immune system cells, M and C only move if the virus 
is present at the neighbouring site, i.e. they will only move in order to fight 
against the virus instead of randomly moving to any site. Also the virus will 
only move if a M or H is present, meaning the virus will only move if there are 
cells for it to  infect and will stay pu t otherwise.
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H elper and Viral Population

Timesteps

Fig 5.9 We see the. virsus beginning to  dom inate for Pmnt =  0.45 and notice oscillation 
getting larger eventhough Pmob — 1-0

Given tha t mobility dampens oscillations, it makes it easier to  track at what 
level of PmUt , the transition from an immuno-dorninant system to an irnmuno- 
deficient system takes place. W ith extreme mobility (Pmob =  1) the transition 
occurs at 0.40, see Fig 5.9. Also, with extreme mobility an increasing
P-niut results in increasing oscillations in cell populations, see Fig 5.9. Therefore 
the effect of m utation dominates over the effect of mobility.

In this Chapter, we provided a brief overview of the CA version of our model. 
The CA model incorporates m utation and mobility using probabilistic param 
eters. Increasing m utation weakens the immune response. Mobility brings di
rected migration to the cell types. Even with the dampened oscillations in the 
cell populations, it is still difficult to define clearly any phase transition between
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immune dominance and viral dominance. I t is also difficult to  determine the 
critical value of Pmut below which we find immune dominance and above which 
the virus dominates. In the next Chapter we discuss the Monte Carlo approach 
and will see th a t this dampens the oscillations sufficiently to  allow us to explore 
cellular dynamics in greater detail.
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6 C h ap te r  6 M on te C arlo  M eth o d s

6.1 Backgroun d

The Monte Carlo method uses random numbers to establish approximate solu
tions to various problems. The problem may be intrinsically probabilistic but 
the Monte Carlo m ethod is also used for problems th a t are not. The Monte Carlo 
method was principally developed by von Neumann, Ularn and Metropolis while 
working on the M anhattan project during World War II, where problems like 
the random neutron diffusion in fissile material were of concern to them (Ham- 
mersley and Handscomb, 1964, Jain ,1992). They simulated this randomness 
by probabilistic methods. The m ethod is named after Monte Carlo in Monaco, 
which is synonymous with gambling, because of the similarity between games 
of chance and statistical simulation. The term  Monte Carlo m ethod is very 
general, so any m ethod th a t utilises random numbers in some way is termed 
a Monte Carlo method. Prior to von Neumann et al. pioneering work, Monte 
Carlo methods were used in isolated cases. The most popular of these involved 
the determination of i t  by throwing a needle onto a board with parallel lines 
and observing the number of intersections between the line and the needle, this 
was termed Buffon’s needle (Jain ,1992). By 1950, Fermi, Metropolis and Ulam 
derived estimates for the eigenvalues of the Schrödinger Equations using the 
Monte Carlo method (Hammersley and Handscomb, 1964). The Ising model, a 
simple model of ferromagnetism, for which no analytical 3-D solution has been 
found, was solved numerically in 3-D by an algorithm by Metropolis using the 
Monte Carlo technique (Hammersley and Handscomb, 1964, Jain, 1992). The 
advent of computing led to the immense popularity of Monte Carlo method as a 
simulation tool, with applications far and wide ranging from stock m arket pre
dictions (Fox, 1999) to modelling subnuclear processes in high energy physics 
(Jadach et al, 1992).

Monte Carlo simulations are experiments using random numbers. The random 
numbers may be used to solve a  probabilistic or deterministic problem. A sim
ple probabilistic experiment might involve the generation of random numbers 
to simulate some random physical process, the random num bers would typically 
generated be in such a way th a t they directly emulate this random  behaviour. 
An example of this would be stock markets forecasting, where a simple Monte 
Carlo model may look at the last 36 months of stock price to  ascertain associated 
probabilities for percentage increases and decreases of the stock price. These

48



probabilities could then be used in a  Monte Carlo simulation of the stock price 
fluctuations for the coming 6  months. A random num ber,z, (0 <  z  < 1) would 
be generated and checked against a associated probability, P , e.g P  =  probabil
ity of stock price increasing 10% , if z < P, then the stock price would increase 
10% if z > P  then it would not. Deterministic problems are not as intuitive to 
model by the Monte Carlo method as they have no obvious random behaviour. 
However, sometimes the theory of the deterministic problem reveals an underly
ing structure th a t is analogous with some known random process. Monte Carlo 
experiments can then be performed and the problem solved numerically.

It is interesting to  note th a t the founding fathers of CA methods, von Neumann 
and Ulam, were also fundamental in the development of Monte Carlo methods. 
Monte Carlo methods much like CA methods can be contrasted with the tradi
tional methods of problem solving such as partial differential equations. Often a 
theory is too general or too abstract to allow for numerical interpretation or the 
formation of equations; in these types of situations CA and MC methods come 
to the fore. These methods simulate physical processes directly so th a t there 
is no need to establish differential equations to describe the behaviour of the 
system. For instance if behaviour in some system is observed as being random 
it is better to emulate this using some random number generator rather than 
formulating equations to feign randomness. Likewise, if modelling the immune 
system by differential equations, param eters such as clearing-rate, renewal ra te 
etc. have to be determined. Many of these param eters are at best educated 
guesses. W ith CA such parameters do not have to be determined when the 
model is formulated; rather than  determining the system they are determined 
from  the system . This is one of the great advantages of using CA methods. 
Rather than fixing such param eters a t the s ta rt they simply come into existence 
once the simulation is begun and evolve with it.

6.2 Synchronous and A synchronous U p d atin g

6.2.1 Synchronous

In a CA model, sites are updated synchronously, which means th a t at each 
timestep, all interactions are taken to happen simultaneously at all sites, i.e. in 
strict parallel. No content of a site is altered until its is checked against all its 
neighbours. This is usually achieved by the programmer m aintaining two copies 
of the lattice, an “old” copy and a “new” copy. W hen a site is being updated the
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program looks at the states of the nearest neighbours of the sites in the “old” 
lattice and the updated state of this site is then pu t in the “new” lattice. After 
each site has been updated the “new” lattice becomes the “old” lattice. W ith 
synchronous updating, in a single timestep the order in which sites are updated 
makes no difference. Synchronous updating has its advantages, the outcome of 
the system is deterministic and therefore controlled but it is also a very idealised 
view of a system. As can be seen from Figure 5.5 in C hapter 5, synchronous 
updating of our model leads to a uniform state, throughout the lattice, with 
the Boolean equations causing a cycle of uniform states. Synchronous updating 
causes the system to overshoot, either complete viral dominance or complete 
immune dominance and no intermediate states; this overshooting occurs for two 
mains reasons.

1. The concentrations of the cell types can only ever be high,l, or low, 0. 
No gradient or different levels of concentration are allowed. Because of 
this Boolean equations have to be employed to describe the system, which 
leaves no room for middleground.

2. The timelag for updating is too long. Each site has to wait until every 
other site has been updated before it can update, as is the nature of syn
chronous updating. This does not allow for any site to  have an “advantage” 
over any other, but also is not representative of physical reality where such 
“advantages” are commonplace.

6.2.2 A synchron ous

For these reasons we consider an alternative, i.e use of asynchronous updating. 
In this approach, a site is chosen at random and then immediately updated and 
another site is then chosen a t random. The software for asynchronous updating, 
therefore only requires one copy of the lattice, a “current” one, which reduces the 
memory overhead of the program. The order in which the sites are chosen can 
alter the outcome of the simulation, (see Figures 6.1 and 6.2 ). In each figure, 
the starting configuration is identical, the only difference is th a t in Figure 6.1 
the left central neighbour is chosen for updating first. Updating consists of the 
nearest-neighbour interaction, followed by interactions (5.2)-(5.5), (see Chapter 
5). This leaves V, an M and a C in the left central site, and an H and an M 
in the right central site. In the second figure, 6.2, the left central site is chosen
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first which results in nothing in the left central site and an M, and H and a V 
in the right central site.

We investigated asynchronous updating for a number of reasons. W ith asyn
chronous updating one does not get a dominant uniform state, but rather pock
ets of viral and immune dominance co-existing. Therefore, while the concentra
tions of the cell types can still only be in one of two concentrations, the overall 
macroscopic picture has different gradients of immune and viral dominance. 
Asynchronous updating massages the extremes found in synchronous updating 
towards an average. W ith synchronous updating, due to  nearest-neighbour in
teractions and intra-site interactions, sites can only can exist in certain states, 
these being, (1001), an M and a V, (1101), an M, an H and a V and (1011), 
an M a C and a V. Asynchronous updating increases the number of states tha t 
can exist. Along with the above states, the following can exist, (1000), an M, 
(1010),an M and a C. This increases the interaction between the cell types and 
also the realism of the model. Due to asynchronous updating the simulation 
does not get locked into a cycle of uniform states and therefore intermediate 
states, between viral and immune control, can exist. The growth patterns of 
cell types can also be distinguished. Figure G.3 shows such an intermediate 
state. It is intermediate states of the simulation which are of interest, as one 
can explore the critical point of transition between immune dominance and im
mune deficiency. Critical points are of interest in physical systems as they are 
the point a t which the system changes phase i.e. a phase transition of the sys
tem. A common example of a phase transition, is th a t of the density of water 
when changing from a liquid to a  gas, the critical point would be «  100° C el

sius. Critical points in theoretical immunology are key to  understanding the 
mechanics behind how the immune system defends against an invader and what 
causes the “phase transisition” from a healthy immune system to a weakened 
one. Once these critical points have been established they can be used as a 
gauge for how effective a theoretical treatm ent could be, i.e. does the critical 
point increase in favour of the immune system or decrease and weaken it or is 
the phase transistion “smoothened” ?

Asynchronous Monte Carlo updating provides a probabilistic aspect to the sys
tem, but rather than changing the core equations this probabilistic aspect is in 
the updating of the sites. W ith synchronous updating the core Boolean intra-site 
equations dictate the way the system behaves while with asynchronous updating 
these intra-site equations are the way the system “tends” to behave and so allows
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Figure 6.3 Snapshot of Helper and Virus on a 100x100 lattice with Pmut =  0.90 
after 149 MC timesteps

a certain degree of “fuzziness”. Also, the timelag in the updating is no longer 
uniform and deterministic, rather it is distributed probabilistically throughout 
the lattice at each timestep. So in an effort to mimic a physical process, we 
are replacing what we do not know with randomness. We can justify our use of 
Monte Carlo updating on either of two grounds

]. Randomness plays a part in the order in which interactions occur.

2. The order is deterministic but we do not know enough about the system 
(we have a model of only four cell types) to apply the rules deterministic 
cally so we use randomness to replace our lack of knowledge.

At each timestep, N  random numbers are generated, where N  is the number of 
sites on the lattice. Each of these random numbers corresponds to a site on the 
lattice, where some sites can be chosen more than  once during a timestep and 
others may not be chosen at all. In MC models many runs of a simulation are 
performed so th a t statistical fluctuations are accounted for, the results reported 
are an average of the results for each run. Even though the updating is asyn
chronous in the case where two or more sites are updated before any of their 
nearest neighbours, the interactions at those sites can be thought of as having
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Figure 6.4 If site A and B were updating asynchronously before their nearest 
neighbours than the interactions at A and B can be said to have happened 
simultaneously

happened simultaneously. This is because the nearest-neighbours propagate the 
results of the asynchronous updating throughout the lattice. If a site, a, is up
dated before its nearest-neighbours and another site, b, is updated before its 
nearest-neighbours then the interactions at a and b can be considered as having 
happened simultaneously (see Figure 6.4). W ith asynchronous updating it is 
very im portant to ensure th a t the sites are chosen in a truly random  fashion, 
with no obvious or repeating pattern  in the sites chosen. This means th a t it is 
essential to have “good” random numbers .

6.3 P seudo-R andom  N um bers

Good Monte Carlo simulation relies on a  quality pseudo-random number gen
erator. A pseudo-random number generator is one where a “random” number 
is generated via an algorithm which is carefully constructed so th a t the output 
seems genuinely random. A good random number generator should satisfy a 
number of basic requirements:

1 . A long cycle so tha t its does not repeat itself too often. The length of 
the cycle should be longer than the total number of random numbers tha t
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need to be generated.

2 . There should be no distinguishable mode i.e no one number should occur 
more frequently than  the other numbers.

The random number generator used for all our MC models can be found in 
Stauffer(1988). This generator falls into the general category of Multiplicative 
Linear Congrential Generators and this type of generator is one of the oldest 
and most widely used. The following is the algorithm for generating a pseudo
random number using this generator .

ibm = ibm * 16807
abm, — 0.5*(float(ibm)+2147483647.)
rand = abm/2147483647.

ibm is generated originally from a seed ( e.g iseed  =7893). The first time a 
random number is required we use this algorithm to generate it with ibm=7893, 
the next time we require a random number we use the same algorithm but this 
time ibm ~  7893 * 16807 and so on . This is a good pseudo-random number 
generator; as can be seen from Figure 6.5 there appears to be no distinguishable 
mode and as the graph changes shape for the different number of runs, the cycle 
would appear to be quite long. If the cycle was short, then the overall pattern  
of the graph would not change from 5 million runs to  10 million runs. The 
maximum length of the cycle is 2147483647-1.

6.4 H am iltonian

The Monte Carlo m ethod has an associated “Hamilitonian” (Stauffer, 1988). In 
a generic system th a t uses the Monte Carlo method to  change states, a rule is 
needed to govern these changes. This rule can take the form of an equation 
based on a key a ttribu te of the system or a phenomenological aspect of the 
system. This rule is referred to  as a Hamiltonian and in effect determines the 
nature of the simulation. A Hamiltonian, in the strictly physical interpretation, 
is a function which evaluates the energy of a  system in a particular state. We 
use the term  here to refer to  a function which determines the “energy” of a  sys
tem and given th a t information decides whether or not to alter the state of the 
system. The interpretation of “energy” depends on the system being modelled. 
An example of a quantitative Hamiltonian is used in the Ising model. The Ising 
model mimics the behaviour of interacting molecules of a  liquid or dense gas
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Random Numbers Generated
L=50

Figure 6.5 Random number generated versus frequency

confined to a chamber. Metropolis’ algorithm for the Ising model (Hammersley 
and Handscornb, 1964, Stauffer, 1988) has e_AB/ fei}T as its Hamiltonian, where 
A E  is an energy change and k s  is Boltzmann’s constant and T  is absolute tem 
perature. This simulation is based on a lattice (which represents the chamber) 
with each site on the lattice having two possible states, 1 , occupied and -1 , 
empty. A state in this model is referred to as a “spin”. An “up” spin refers to 
a molecule occupying a site and a “down” spin represents a  vacuum at the site. 
The algorithm for the simulation involves calculating the energy change A E  
and then generating a random number, z , (Q < z  < 1 ), and z  is then compared 
with the Hamiltonian. If the random number, z , is less than  the Hamiltonian, 
the spin is flipped otherwise it remains the same.

In our simulation it is impossible to establish a quantitative Hamiltonian. W hat 
determines the state of a site at a given timestep is the nearest-neighbour in
teractions followed by the intra-site interactions. To draw an analogy with the 
Ising model, the energy change here is the interactions occurring at a  site. The 
state change of a given cell type is a function of the interactions themselves. 
So, it is better to think of the Hamiltonian in our simulation as being a phe
nomenological one i.e. it is representative of a phenomenon occurring in the 
system. This phenomenon is the interaction of HIV and the immune system 
as we have described in Eqn. (5.1-5.5) and these determine the states of the
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cell types. If wo investigate this Hamiltonian, we see that the state of a  site 
is very susceptible to change, that is given a site on the lattice the state of 
the site is more than likely to change after the nearest-neighbour followed by 
the intra-site interaction. One of the reasons for adopting the asynchronous 
updating approach is due to the low threshold of the Hamiltonian. This results 
in large oscillations in cell populations with synchronous updating. As stated 
previously these large oscillations hide the intermediate states that are visible 
with asynchronous updating. With synchronous updating all sites are engaged 
in simultaneous exchange of “energy” ( the results of the interactions) across 
the. lattice within a single time-step. With asynchronous updating, the “en
ergy” is not exchanged simultaneously but rather dissipates through the lattice 
according to the order in which the sites are chosen for updating.

In this chapter, we have discussed the history and theory behind the Monte Carlo 
method. Any Monte Carlo simulation requires a good pseudo-random number 
generator. We presented the multiplicative Linear Congruential Generator we 
utilised in our simulation and we discussed its merits. Asynchronous updating 
was introduced and its advantages over synchronous updating were discussed. 
The phenomenological Hamiltonian of the system was also explored .
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7 V ira l an d  Im m une D y n am ics

Asynchronous updating can present underlying features of a model th a t are 
hidden by the extremity of synchronous updating. Therefore, asynchronous up
dating complements rather than contradicts the results found with synchronous 
updating (see results and figures presented in C hapter 5). One of the features 
of the simulation tha t is hidden under the extreme oscillations of the cell pop
ulations, which occur with synchronous updating, is the growth pattern  of cell 
types. Asynchronous updating allows the model to be in an interm ediate state, 
poised somewhere between immune dominance and deficiency. This enables the 
investigation and definition of, phase transitions and critical points where the 
virus begins to get the upper hand on the immune system. These occur when 
the system changes from a state of immune dominance to  immune deficiency 
and are essential when exploring the cellular dynamics of HIV infection.

7.1 C ellu lar D ynam ics

The main effect of asynchronous updating on our model, M CI, (Mannion et al; 
2000, see Appendix 2  for code implementation) is th a t there are no longer large 
oscillations and cell populations attain  intermediate values. These allows us to 
investigate the competition between the immune cells and virus. The growth 
patterns of the cell types are clearly visible, (see Figure 7.1). Helper cells grow to 
an equilibrium value. The viral growth pattern  sees the virus population reach 
a peak and then decrease to  an equilibrium level. Both equilibrium levels of 
Helper and Viral cell populations are a function of the corresponding m utation 
probability, Pmut-

It is also easy to approximate these growth patterns by mathem atical means. In 
MCI we consider a 2-dimensional lattice, (100x100, lattice with 10,000 sites), 
with nearest-neighbour and intra-site interactions as described in Chapter 5, 
siibsection 5.2. The only difference between this and our CA model is asyn
chronous updating. An update in M CI comprises of nearest-neighbour inter
actions followed by intra-site interactions which then results in the immediate 
updating of tha t site. At the beginning of the simulation the initial population 
of each cell type is 1 , with this single cell being randomly spatially allocated a 
single site.
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Fig 7.1 M CI model: Helper and Viral growth pa tte rn s for various Pmut

7.1.1 V ira l G row th

Focusing on Figure 7.2 , one can see th a t the growth of the viral populations has 
two phases. The viral population grows to an initial peak; this represents the 
initial infection catching the immune system unawares. As the immune system 
mounts its response we then observe a decay in the viral population to a very 
slightly oscillating equilibrium. This decay is not as dram atic as Pmut~^Pcrit- 

Defn: Pcru , is the least value of Pmut for which viral dominance occurs. This 
is the critical point for the transition between the phase of immune dominance 
to the phase of viral dominance. In M CI Pcrit was found to  be Pcrit~  0.44.
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E x p o n e n tia l D e c lin e  o f  V ira l C e lls

If we investigate the pattern of decline of the viral population after the initial 
viral peak we find that an exponential regression line fits the viral data well for

Finui ^  /  (*ril

V = V 0e-m  (7.1)

with Vo being the peak viral population before decline. The slope, m, is depen
dent upon Pm,it, and ranges from -0.018 for Pmuj =  0 to -0.005 for PmUi =  0.3fi 
(see Figure 7.3). This would mean with that a  low mutation probability the 
virus decays quicker due to strong immune defences and as the Pmut increases, 
the immune system responses are weaker causing slower viral decay.
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6i&

Figure 7.3 Pmut versus m, the slope of viral decay , the above is fitted to a 6th degree 
polynomial

For P mut —» Per it the exponential approximation becomes less exact. Ho et 
al (1995) having monitoring 20 HIV-infected individuals, found viral decay to 
follow an exponential decline, with exponents ranging from m  =  -.53 to  m  = 
-0.21, depending on the m utation probability of the virus. The patients were 
treated with a protease inhibitor. This decreases the ra te  of infection of new 
cells by the virus (see Chapter 2, subsection 2.3 ). Though our model M CI does 
not explicitly incorporate protease inhibitors, we observe for Pmut < Pcrit the 
immune system dominating over the viral invader. This strong immune response 
could be representative of the effect of treatm ents like protease inhibitors. It 
has to be pointed out th a t the results of Ho et al were based on clinical data 
from 2 0  patients and their slope m  is based on actual days while our slope m  is 
based on a Monte Carlo Timestep. It would be naive of us to compare actual 
real time with an artificial Monte Carlo timestep.

7.1 .2  H alf-L ife  o f V iru s

Using Eqn (7.1) we can measure the half life of the virus in this initial rapid 
decline. This tells us how rapidly the virus halves its concentration, which is 
an indication of the strength of the immune response. t\/2 ranges from 38.5 
timesteps to 126.1 tirnesteps. This variation in half-lives is to be expected,
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because as virus m utation levels increase it takes longer for the immune system 
to kill the virus.

The ra te of viral decay is dependent on the initial viral load, m  varies 2-fold 
corresponding with initial viral load varying 3-fold. This could be interpreted 
as viral decay being dependent upon the stage of infection. High viral load 
represents progressed infection and lower viral loads would represent the latent 
infection period. It has been found tha t viral load and viral clearance rates are 
independent(Perelson et al, 1997) . The investigations here have been based on a 
fixed Pmut ■ The above finding may indicate th a t our m utation probability Pmut 
might best be iitilised as variable, with Pmut varying throughout the length of 
the simulation, rather than  fixed, where Pmut is set a t the s ta rt of the simulation 
and not altered.

The equilibrium level of the virus population does not vary greatly for any 
Pmut ^  Peril , with the equilibrium level ranging from «925 sites out of 1 0 , 0 0 0  
total sites (.0925 concentration) to «1600 sites out of 10,000 (.16 concentration). 
Even at zero m utation the immune system does not eliminate all of the virus. 
This means th a t even in the presence of a strong immune response, pockets 
of viral activity still exist. These pockets could easily extend if the m utation 
probability increased even slightly.

7.2 H elper G row th

We now turn  our attention to  studying the growth of the Helper cells. Helper 
cells grow to a steady equilibrium, (see Fig 7.4). The growth of the Helper cells, 
up to the oscillating equilibrium, is represented well by a  logarithmic function, 
H  oc ln(t), but as Pmut -* Pent the approximation becomes less exact. An 
exponential increase in Helper cell population is consistent with proliferation 
of Helper cells in secondary lymphoid organs such as the lymph node, whilst a 
linear increase is consistent with procution from a precursor source such as the 
thymus (Mitchie, 1992). This logarithmic growth could represent a combina
tion of both proliferations which is viable as Helpers in MCI have no defined 
precursor. As expected the Helper cell equilibrium is dependent on Pmut with 
its population decreasing with increasing Pmut ■

The variation in the equilibrium levels of Helper cells, is much more than  for 
the virus, with the population decreasing from H  «  6000 (0.6 concentration) for 
low m utation levels to H  «  4000 (0.4 concentration) for high m utation levels.

63



This indicates th a t viral m utation has a larger effect on the Helper population, 
than it does on the viral one. Interpreting this, one could say th a t the decrease 
in the Helper population, is primarily caused by a higher proportion of m utated 
virions, rather than an actual increase in viral population.
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Fig 7.4 MCI model: Helper Cell Growth Pattern for various Pmut

In Figure 7.5, we present the variation of equilibrium cell density with m utation 
rate, in order to see the relative progression of cell counts. The low m utation 
regime could be interpreted as the latent period of the infection, where the host 
cells are able to control the recognisable virus. The cross-over regime relates 
to the prolonged period of infection where the competition between the host 
cells and the virus becomes intense. The viral explosion at Pcru  corresponds 
to a  very advanced stage of infection. A very slight change in the m utation
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Figure 7.5 Above is the Cell Density of Viral and Helper cells virvis Pmui

level could result in the transition from a  latent stage of the disease to a very 
advanced one.

7.3 C ritical Recovery T im e and C rossover

D efn. A critical recovery time is the number of timesteps it takes for the Helper 
population to become larger than the viral population.

This is an important parameter to study as it tells us if and when the immune 
system can defeat the virus. This critical time, is dependent on Pmui- 

Figure 7.6 shows (<.,.« versus P,nut on a  normal-log scale, which suggests 
exponential dependence

tcrit ̂  Acap""“

with a = 4.52 ±  0.29 in low mutation regime and a =  15.21 ±1.41 in the high 
mutation regime. Thus, there is a crossover from a  relatively slow recovery time 
period to a collapse regime at around 0.4 when t cri t rises much faster.
Therefore any anti-retroviral therapy would have to be administered before: this 
crossover in order to sustain some recovery.
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Figure 7.6 /',„«< versus Critical recovery time

If. is obvious from the above, that the Monte Carlo method, has enabled us to 
learn a  lot more about the population dynamics of the cell types. The critical 
mutation probability, PCrit, is not significantly different from PCYu obtained 
previously using parallel updating, so it could be said that Monte Carlo, does 
not alter the overall results, but just presents us with a  richer picture.

7.4 Enhanced N earest-N eigh bour In teractions

We also considered enhancing the nearest-neighbour interactions in MC2 (Man- 
nion et al, 2000b). These were enhanced for a number of reasons. Firstly, to 
increase the intrinsic mobility of the system, so that the effect of cytokines and 
other “messenger” molecules would be stronger. Therefore we can ascertain, or 
at least hypothesise what effect a  strong immune response would have on a  IIIV 
invader. The enhanced nearest-neighbour interactions are, (see Appendix 2 for 
code implementation)

M" =M' or V’ (7.3)

II” =M' or II' (7.4)

C" =C' or // ' (7.5)

66



Where, M  , H  and C' , are obtained by the regular nearest-neighbour interac
tions as before. Therefore Macrophage development at a site can be stimulated 
by another Macrophage or viral-infected cell a t one of its nearest neighbours. 
A Helper cell can be propagated if there is a Macrophage or a Helper cell at 
a site in its neighbourhood and a killer cell can appear at a site if one of its 
nearest neighbours has either a killer cell or helper cell in high concentration. 
To offset complete immune dominance, we also enhance the nearest-neighbour 
interaction of the Viral infected cell.

V " = V ' or H'

Therefore a viral infected cell or a helper cell a t a neighbouring site can prop
agate a viral-infected cell a t the central site. M  , H  ,C , and V  are then 
used for the inter-site interactions. In MC2, nearest-neighbour interactions fol
lowed by the enhanced nearest-neighbour interactions followed by the intra-site 
interactions define an update of a site.

As might be expected with such a strong immune response, the critical m u
tation probability is quite high, Pcrit ~ 0 .8 8 , when compared with th a t which 
occurred previously in M CI. The MC2 growth patterns for Helper and Viral 
cells can be seen in Fig 7.7. This shows us how the immune system can benefit 
from an increase in inducers such as cytokines. An increase in these inducers 
makes it more difficult for the viral invaders to  overwhelm the immune system. 
It should be stated however th a t only the positive inducing characteristics of 
cytokines were considered and their negative suppression factor was not taken 
into account. A further development of MC2 might include these suppression 
factors.

The growth patterns between MCI and MC2 are also quite different (compare 
Fig 7.1 (MCI) with Fig 7.7(MC2)). W ithout the enhanced nearest-neighbour 
interactions in M CI we saw the virus grow to a peak at the beginning, rep
resenting the initial viral attack and then the viral population decrease to  an 
equilibrium. W ith the enhanced interactions we see the viral population reach 
its population equilibrium much like the helper growth pattern  in the M CI. 
The Helper growth in this model has two patterns. The first for Pmut < Pcrit 
shows a pattern  like the viral growth pattern. The second, for Pmut > Pcrit sees 
the Helper cells grow to a peak and then decrease to an equilibrium value. This 
second growth pattern  for the Helper cells is much like the viral growth pattern  
in MCI. This indicates a shift in the method in which the virus attacks. P re
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viously without the enhanced interactions, in M CI, the Helper cell population 
grew to an equilibrium value tha t was either greater or less than  the viral pop
ulation. Therefore without enhanced nearest-neighbour interactions the virus 
dominated by slowing the helper growth rate until the equilibrium helper pop
ulation was less than the viral one. W ith the enhanced interactions in MC2 
the helper population grows quickly in the beginning to  try  and halt the viral 
invasion but after this initial increase, it decreases due to  the rapid growth of 
the virus.
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Pig 7.7 Helper and Viral growth pa tte rn s in MC2 model

Mobility affects the cell population growth patterns by speeding up the rate of 
growth for both viral and helper cells, (Pandey, 1998, Mannion et al 2000b) 
.Both cells reach their equilibrium populations more rapidly with extreme mo-
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Cell and Viral counts after initial infection

Figure 7.8 Helper and Viral cell counts ju s t after initial infection (constructed from 
data  from Fauci et aJ, 1996)

bility, Pmob =  1- This is probably due to  mobility increasing the interactions 
between cell types. Also the rules governing mobility enable the cell types to be 
used to better effect.

7.4.1 In vestigatin g  L aten cy

One of the characteristics of HIV is the latency period, which is the length of 
time it takes from the original infection to full blown AIDS. This time varies 
from between 2-3 years (rapid progressors) , 7-11 years (typical progressors) to 
beyond 20 years (longterm non-progressors). In Figure 7.8 we see the helper 
cell count and viral count after the initial infection, in Figure7.9 we see what 
these cell counts would be like in a typical progressor after 1 0  years.

Factors determining how long this latency period lasts have been the subject of 
much research. Using MC2 with enhanced nearest-neighbour interactions, we 
investigated how the m utation of the virus may influence this latency period. 
For this investigation we used a 3-D lattice of length 50 (see Appendix 3 for 
code implementation). We looked at values of Pmut > Pcrit> (P m u t  < P e r  i t ,  led 
to Helper cell dominance) and then calculated how many timestep it took for 
the viral population to exceed th a t of the helper population. We found the
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Cell and Viral counts years after initial infection

A —A  Helper Cells Count (celisAnm 3) 
G - 0  HIV Copies per ml Plasma

Years

Figure 7.9 Helper and Viral cell counts in a  typical progressor years after infection 
(constructed from d a ta  from Fauci et al, 1996)

following relationship with A P = P Crit—Pmut

As is evident in the Eqn(7.7), small increases in Pmut lead to significant decreases 
in the latency time. A small increase in the m utation probability associated 
with one latency category can lead to a change to a different latency category 
of shorter timespan. Therefore we conclude th a t in relation to our model it 
is the m utation of the virus which determines the length of the latency time 
and a slight increase in tha t m utation can dramatically decrease the associated 
latency time. It must be stressed th a t the latency period we are discussing is 
th a t of our simulation, MC2, with time in  units of Monte Carlo timesteps which 
we do not attem pt to equate with real-time.

In this chapter we have presented two Monte Carlo models, MCI and MC2, 
which utilise asynchronous updating. Asynchronous updating enables the in
vestigation of cellular dynamics and phase transitions. Both viral and helper 
growth patterns were discussed, viral decay follows an exponential decline and 
helper cells grow in a logarithmic fashion. For levels of Pmut < Pcrit the time 
taken for the Helper cells to defeat the viral invaders was considered and an 
exponential dependence on Pmut was illustrated. We found tha t different cate
gories of latency periods were dependent on Pmut and this dependency was very

M C S = (££)AP\-0.73 (7.7)
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sensitive. W hat this suggests is th a t the category of progressor a HIV-infected 
individual falls into, is dependent on the m utation rate of their HIV infection.
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8 C onclusions and Future W ork

We have presented discrete models of the immune system’s interaction with HIV, 
models which used both synchronous (Cellular Autom ata) and asynchronous 
(Monte Carlo) updatings. Neither updating procedure can be said to  be right 
nor wrong, or indeed one more correct than  the other. They can only be used to 
complement each other. Some structures and patterns may be hidden using one 
updating procedure and may come to light when using the other. Because of the 
“overshooting” which occurs with synchronous updating the interm ediate state 
of the system when it is poised between immune and viral dominance can not be 
investigated. W ith asynchronous updating the oscillations of cell populations 
were dampened sufficiently to allow us to explore this interm ediate state in 
detail and let us investigate cell dynamics and growth patterns. Conversely, 
the deterministic aspect of synchronous updating allows us to see the dynamics 
of individual sites at a magnified level . Therefore the asynchronous updating 
shows us a “macroscopic” picture while the synchronous updating provides the 
“microscopic” equivalent.

Modelling an infection like HIV, using discrete methods is never going to be 
an easy task. The pathogenesis of AIDS and the internal dynamics of HIV 
are still not well understood (this of course being a reason to  explore it using 
a m athematical m odel/com puter simulation). Therefore assumptions have to 
be made on various aspects of the infection/disease th a t is not yet known. 
Also there is the other difficulty of scaling down this immense system to a 
few components. One is always going to face certain difficulties when trying 
to reduce the number of active components in a system with a large number of 
interacting elements. Choices have to  be made. Which components are essential 
to the model ? Which are superfluous ? This choice of course can be wrong and 
is limited by the current knowledge base and our assumptions.

In our simulations we reduced the number of components to four cell types, the 
Macrophage,the Helper cell, the Killer cell and the Viral infected cells, out of 
a vast number of different cell types comprising the immune system. Therefore 
we have made a lot of assumptions, some which may be correct and some which 
certainly may not prove to be so. We have included probabilistic param eters 
to incorporate both the m utation of the virus and its explicit mobility. The 
m utation was necessary to include as it is the overwhelming characteristic of
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the virus. Our results reflect this, we have shown th a t the m utation ra te  of the 
virus may be the determining factor of the latency period of the disease. Also 
the mobility param eter is restricted by rules, which could be rethought to  better 
reflect chemotaxis, i.e the increased directional migration of cells.

Future work may rethink this model, in terms of increasing the number of cell 
types. This should be done in a systematic way without overly increasing the 
complexity of the model while ensuring th a t biological fact is never compro
mised. Theories th a t could be explored include the cross-regulation of T h l\T h 2  
Helper T  cells, which was recently explored by continuous means (Fishman & 
Perelson, 1994). M utation also could be re-thought; perhaps it could better ex
plored as a variable param eter rather than  fixed. A reason for exploring variable 
m utation was indicated by our results, (see Section 7.3.1), where we showed th a t 
the different stages of infection corresponded to different fixed m utation rates. 
If the m utation rate of HIV was to increase steadily throughout its infection, 
the ra te  of this increase would then determine the latency period, with a rapid 
increase leading to rapid progression into AIDS and a very slow or stationary 
ra te leading to non-progression. Therefore treatm ent might focus on keeping 
the m utation ra te below a critical point rather than on its eradication.

The purpose of any simulation is insight and not hard data  and results. Theoret
ical immunology enables “clean” experiments to  be performed with little cost. 
We have shown tha t asynchronous updating dampens cell population oscilla
tions so th a t the actual mechanics of the cell-types can be determined, however, 
we still maintain Boolean expressions to govern their behaviour. Therefore we 
have all the benefits of a CA model, the interactions are completely determin
istic without any of the loss of information caused by the “overshooting” which 
occurs with synchronous updating. Our asynchronous models can be used as a 
framework on which to  build on in the future, changes can easily be encorpo- 
rated and parameters varied. The field of theoretical immunology is growing, 
as computer resources increase and are capable of performing very large simu
lations for diverse models. The theoretical modelling of HIV should provide the 
traditional experimentalists with some fresh ideas for their research. Likewise, 
findings from traditional experiments should be incorporated into development 
of theoretical models. The complementary efforts of both fields is necessary for 
the successful future of each of them.
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9 G lo ssa ry

A cqu ired  Im m une D eficiency Sy n d ro m e (A ID S ) - A disease caused by 
the retrovirus HIV, which results in a dramatic decline in the T4 cell population, 
leading to a diminished immune system (see cell types below).

A n tibod ies- Proteins th a t bind to antigens and aid in their removal and de
struction

Antigen-A molecule recognised as foreign by the immune system

A n tigen  P resen tin g  C ells (A P C s) - cells th a t can process and present anti
gen peptides(protein fragments) on their surface in association with Class II 
MHC molecules,( MHC defined below). A Macrophages is an APC.

B  cells- B cells are lymphocytes th a t m ature in the bone marrow; they are a 
source of antibodies

E p ito p e-An antigenic determ inant present on an antigenic molecule, it interacts 
with an antibody or a T-cell receptor.

CD 4- A protein on a cell surface, th a t recognises MHC II molecules on a APC.

CD 8- A protein on a cell surface, tha t recognises MHC I molecules on a target 
cell.

C ytokin es - Proteins th a t regulate the intensity and length of an immune 
response, by stimulating and inhibiting the proliferation of various immune cells 
and antibodies.

C ytotoxicity - The ability to kill cells.

g p l2 0  - A protein which sits above and below HIV’s surface which enable HIV 
to recognise, attach to  and penetrate certain types of cells.

H elper cells- A subset of T4 cells, which when activated by APCs, differenti
ate and release cytokines to stimulate both cell mediated, (T 8  killer cells) and 
humoral, (antibodies) responses.

H um an  im m unodeflcency v iru s (H IV )- A retrovirus, which infects T4 cells.

Inducers- T cells th a t trigger the m aturation of other T cells 

Leucoctyes- white blood cells
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L ym ph  - Fluid surrounding the cells in the lymphatic system which provides a 
path  through which nutrients, gases, and wastes can travel.

L ym p h atic  sy stem - A collections of glands and vessels th a t drain lymph from 
body tissues and return it to the circulatory system (i.e. the blood system).

L ym ph ocytes- W hite blood cells central to the immune system, they can be 
categorised in three ways: T  cells, B cells, and null cells

Lym hokines-A  generic name for cytokines

M acro p h age  - A scavenger cell which specialises in ingesting and processing 
of antigen

M H C  - Major Histocompatibility complex, a complex of genes encoding cell- 
surface molecules. Class 1 MHC molecules are on almost all nucleated cells. 
Class II MHC molecules are mainly expressed on APCs.

In terleukins- cytokines secreted by leukocytes

N u ll cells - Lymphocytes tha t do not express the membrane molecules th a t 
characterise T and B cells

N a tu ra l K ille r  C ells -Lymphocytes (null cells) th a t have cytotoxicity ability 
and are not MHC restricted.

P rotease- Proteins which degrade other proteins, by splitting the peptide 
bonds, leading to the destruction or dram atic alternation of the target protein.

R etrov irus- A virus where the flow of genetic information is converted from 
RNA to DNA (which is the reverse of normal genetic information flow which 
converts DNA to RNA). The virus’ genetic information is then integrated into 
the host cell’s DNA, so th a t each time the cell multiplies so does the virus.

R ev erse  T ran scrip tase : A viral gene th a t carries out the conversion of RNA 
to DNA.

T  cells- T cells are lymphocytes th a t m ature in the thymus. They can be 
further sub divided into four subsets on the basis of function (Helper, Inducer, 
Killer and Suppressor) and only two sub classes on the basis of biochemical 
markers, namely T4 (with CD4 as a surface marker) and T 8  (with CD8  as a 
surface marker) cells.
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T 4 cells- T  lymphocytes that recognise antigen in the context of MIIC !1 pro
teins. T4 cells have two functions . They function as Helpers and Inducers

T8- T  cells that recognise antigen in the context of MHC I protein. T 8 cells 
perform 2 main functions, killing and suppressing.

T 8  k iller cells - Activated by helper cells, these destroy target cells by antibody 
dependent cytotoxicity (ADCC).

T 8  su p p re sso r  cells- T8 cells that suppress the immune response.

T h l-A  subpopulation of the T4 Helper cell, which is defined by the cytokines 
it. produces upon stimulation, (namely IL-2 and IFN ) and mainly augments 
cel 1 - mediate d im m uni ty

Th2-A subpopulation of the T4 Helper cell which is defined by cytokines it 
produces, (IL-4 ,1 L/iJl-G and IL-10) upon stimulation, which mainly augments 
humoral immunity

Tropism -IIIV ’s attraction for T4 Helper cells, is due to the protein on the 
surface of the virus, gpl20, and gp l20 ’s affinity for the CD4 protein on the 
surface of the Helper cell.
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Appendix 1

M C I Fortran  P rogram m e 2-d L a ttice  with Asynchronous 
updating, m utation and m obility

program  m c2 d ll

c M C /S tochastic  sim ulations for im m une response
c Four celi-types are  considered: l-> M acrophages
c 2 - Helper (T4), 3 -> C yto tox ic  (T 8), 4 ->V irus (V)
(. * * * *
c M ethod: D istribu te  cells of concentration  p ( i= l,4 )
c on a  la ttice  random ly w ith no m ore than  one
c cell of one type a t  a  site,
c Select a  site (i,j) random ly,
c Use the neighboring (in ter-site) in teraction  rule

im plicit none

integer i, j ,  k, I, Ip I, Is, it, j t ,  ir 
integer i l , j 1, ¡2, j2 , nsite 
integer ncell. nri, ribr 
integer i d ,  ih1, irn l, iv l ,  rriutv 
integer nrun, m axt, m in t, rn in tf 
integer ibm , iseed

real pvnut, pm ob, per 
real abm , rand  

<: real t l ,  t2 , second, dum , ran f

param eter (I =  100, Is =  1*1) 
p aram eter (rnaxt =  1000,m in t =  1, m in tf — Is) 
param eter (Ip l = 1  +  1, iseed = 7893, n run  =■ 10) 
p aram eter (pm ut =  0.43, pm ob 0.0) 
param eter (ncell =  4, nn =  4)

integer icell(ncell), icsum (ncell), isurn(ncell)
integer nnx(nn), nny(nn)
integer ib (0 :lp l)
integer ic(ncell,l,l)
integer ix(neell), iy(ncell)

real p(ncell)
real x(ncell, m axt), y(ncell, m axt)
real r(ncell, m axt)



real ac(ncell, m axt) 
real acO(ncell) 
real per_cell(ncell)

c call srand(iseed)
c call ranset(iseed)

c t l  =  second(dum )
¡bin — 2 *¡seed - 1

write(G,*)’ n ic2 d ll.f : 1, m axt,m in t,m in tf, n run  = ’ 
write(G, 1000) I, m axt,m int,rn intf, n run

1000 form at(5i7)
write(G, *) ’ p m ut p m u t,’ pm ob = ’>pm ob 
write(G,*)’ iseed = ’,iseed

p ( l)  =  0.0001 
p(2) =  0.000
p(3) =  0.000 
p(4) =  0.0001

do 5 k =• 1, neell
icell(k) =  I +  p(k)*ls 

5 continue

w rite(6 ,*)’ Initial conc. of cells: 1-ncell:’ 
\vrite(G,1001) p ( l ) ,  p(2), p (3), p(4)

1001 form at(4 fl 2.8)
w rite (6 ,*)’ Initial cells #  : 1-ncell:’,

& icell(l), icell(2), icelI(3), icell(4)

per =  1 ./floa t(n run )

n n x (l)  =  1 
nnx(2) = 0 
n»x(3) =  -1 
nnx(4) =  0 
n n y (l)  =  0 
nny(2) =  1 
nny(3) =  0 
nny(4) =  -1

do 10 k =  1, ncell 
ac0(k) =  0.0 

do 10,j I, m axt



a c (k j)  =  0.0 
x(k j )  =  0.0
y(i'>j) -  0-0 
i'(l<j) =  o.o

10 continue

do 20 i -  1,1 
ib(i) =  i 

20 continue
ib(lp l) =  1 
ih(0) =  I

c * * * *
c outer (nn in ) loop

<lo 80 ir =  1, nrun

c initialize the  cellular s ta te  
„ * * * *

do 30 j =  1,1 
do 30 i — 1,1 
do 30 k = 1, ncell 

ic(k, i j )  =  0 
30 continue

c d is tribu te  the  cells random ly in th e  la ttice

do 34 k =  1, ncell

if (icell(k).fit-0) then

isutn(k) =  0

32 continue

iliiii =  ihtn * 16807
;il mi =  0.i)*(float(ibni)+2147483647.)
rand =  abm /2147483647.
il =  1 -I- rand*!
i hi n i hm *  16807



abm  =  0.5*(float(ibm )+2147483647.) 
rand  =  abm /2147483647. 
j l  =  1 +  rand*l 
if (ic(k,il j l ) . l t . l )  then 

ic(k,il j l )  =  1 
isum (k) =  isurn(k) -f 1 

endif

if (isum (k).lt.icell(k)) go to  32 

endif

34 continue

c * * * *

c calculate the initial num ber of each cell type
c initialize the ir displacem ents

do 45 k =  1, ncell 
icsum (k) =  0

do 40 j  =  1,1 
do 40 i =  1, I 

icsum(k) =  k:sum(k)+ ic (k ,ij)
40 continue

acO(k) — acO(k) +  float(icsuin(k)) 
ix(k) =  0
iy(k) =  o

45 continue

do 70 it  — 1, m ax t 

do 62 j t  =  1, m int 

do 50 nsite =  1, m intf

c do 50 nsite =  1, Is

ibm = ibm * 16807
abm  =  0.5*(float(ibm )+2147483647.)
rand =  abm /2147483647.
i =  l +  rand* I
ibm = ibm * 16807



ab iti =  0.5*(tìoat(ibm)+2147483G47.) 
rand =  abm/2147483647. 
j  =  1 +  rand*l

irnl =  (4 +  ic ( l , i j )
+  ¡c (l, ib ( i - l ) j )  +  ic (l, ib (i-t-l) j)
+  ic (l, i ,ib (j- l) )  +  ic (l, i, ib ( j+ l) ) ) /5  

iiil =  (4 +  ic(2,¡ j )
+  ic (2 ,ib (i-l) j )  +  ¡c(2,i b ( i+ l)  j )
+  ic(2 ,i,ib (j-l)) +  ic(2,i, ¡b(j-4-1 ))) /5  

¡el =  (4 +  ic(3,i j )
+  ic(3 ,¡b (i-l) j )  +  ic (3 ,ib ( i+ l) j)
+  ie(3,i,il)(j-l)) +  ic(3,i, ¡b(j +  l) ) ) /5  

iv i =  (4 +  ic(4,i j )
+ ic(4 ,ib (i-l) j )  +  ic (4 ,ib ( i+ l) j)
+  ic (4 ,i,¡b (j-l)) +  ic(4,i, ib 0 + l) ) ) /5

m utv  =  ivi

ihm =  i bi n * 1G807 
abril 0.f.*(Hoat(ibm)+2147483G47.) 
rand  =  abin/2147483647, 
if (rand.le .p inut) m utv  =  0

ic ( l , i j )  =  (im i +  m utv  -I- l ) /2
ic.(2, i j )  =  (1 - iv l)* (ih l + im i + l ) / 2
m(3> >jj) =  ib i * im i * m utv
ie (4 ,ij) =  (1 - ic i)  * (ilil +  im i +  ivi +  2 )/3

50 continue

* * * *

c a tte m p t to  move each cell
g

ihm  =  ibin * 1G807
abin =  0 .5*(float(ibm )+2147483647.)
rand =  abiri/2147483G47.
if (rand.le.pm ob) then

do GO j =  1, I 
do GO i =  1, I

ihm = ibin * IG807
abin =  0.5*(Hoat(ibm)+2147483G47.)



rand  =  abm /2147483647.
¡ 1 = 1 +  rand*  I

ibin =  ibin * 16807
abin =  0.5*(float(ibm )+2147483647.)
rand  =  abm /2147483647.
j l  =  1 +  rand*l

ibin =  ibin * 16807
abin =  0.5*(fioat(ibrn)+2147483G47.)
rand  =  abm /2147483647.
k =  1 +  rand*ncell

if (ic:( k ,il j l  ) .eq. 1) then

ibin =  ibin * 16807
abin =  0.5*(float(ibm )+2147483647.)
rand - abm /2147483647.
nbr =  1 +  rand*nn

¡2 =  ib (il +  nnx(nbr)) 
j2 =  ib (jl +  nny (nbr j j

if ( ic (k ,i2 j2 ) .eq. 0 ) then

if ( (k .eq .l).and . (ic (4 ,i2 j2 ).eq .l)) then

ie(k, i2, j2) =  ic(k, il j l )  
ic:(k, i l ,  j l )  =  0

ix(k) =  ix(k) +  nnx(nbr) 
iy(k) =  iy(k) +  niiy(nbr)

elseif (k.ec|.2) then

ic(k, i2, j2) =  ic(k, il j l )  
ic(k, i l , j l )  =  0

ix(k) =  ix(k) +  nnx(nhr) 
iy(k) =  iy(k) +  nny (nbr)

elseif ( (k.eq.3) .and.
ic(4,i2j2).(!<|.l) then

ic(k, i2, j2) =  ie(k, il j l )  
ic(k, i l , j l )  =  0



ix(k) =  ix(k) +  mix(nbr)
•yOO =  iy(>0 +  nny(nbr)

elseif ( (k.eq.4) .and.
( ic(2,i2,j2) .eq. 1 .or. 

ic (l,i2 J2 ) .eq. 1) ) then

ic(k, i2, j2 ) =  ic(k, ï 1,j 1 ) 
ic(k, i l , j l )  =  0

ix(k) =  ix(k) +  nnx(nbr)
>y{k) =  iy{k) +  nny(nbr)

endif

endif

endif

GO continue

endif 

G2 continue

c find the num ber of each cell type

do GG k =  1,l icei I 
iCKiim(k) =  0

do G4 j  =  1,1
do 64 i =  1,1

c ic(k,i j )  =  icn(k,i j )
icsum (k) -  icsum (k) +  ic(k, i j )

64 continue
per_cell(k) =  I ./Hoat(icsum(k) + 1 )  
ac(k, it) =  ac{k, it) 4- float(icsum(k))

66 continue

do 68 k =  1, ncell

x(k ,it) = x(k,it) i float(ix(k))



y(k,it) =  y (k,it) +  float(iy(k)) 
c x(k ,it) =  x(k ,it) +  per_cell(k)*float(ix (k))
c: y (k ,it) =  y (k ,it) +- per_cell(k)*float(iy (k))

68 continue

70 continue

ç * * * *
c end of the tim e loop

* * * *

80 continue

*  *  *  *

c end of the  run  loop
(. * * * *

do 90 k =  1, ncell 
ac.0(k) =  ac.0(k)*per

do 90 i =  I , m axt

ac(k,i) — ac(k,i)*per

if (pinol).fit..0.0) then

x(k,i) =  x(k ,i)*per 
y(k,i) =  y(k ,i)*per
r(k ,i) =  sqrt(x(k ,i)*x(k ,i) +  y(k,i)*y(k,i)) 

endif 

90 continue

c w rite the  average no. cells
{. * * * *

w nte(G ,*)’ initial nuinber o f cell types:’
write(G,2000) (ac0(i), i =  1, ncell)

2000 fonnat(4 fl2 .3 )

write(G,*)’ i, ac(k, i), k =  1, ncell:’ 
c write(6,300Q)( i*inint, (ac(k,i), k == 1, ncell),



do it =  1, rnaxt
write(G,3000) it*nrin t, (ac(k ,it), k =  1, ncell) 

enddo

form at(i7, 4fl2 .3)

if (praob.gt.0.0) then

write(G,*)’ ’
write(G,*)’ it*m in t, r(k ,it) , k — 1, ncell:’

do i t  =  1, m axt 
write(G, 4000) it* inint, (r(k ,it), k =  1,ncell) 

enddo

w rite(6 ,*)’ ’
w rite(6 ,*)’ it*m in t, x (k ,it), k 1, ncell:’

do it =  1, rnaxt 
w rite(6, 4000) it, (x(k ,it), k =  l.ncell) 

enddo

write(G,*)’ ’
write(G,*)’ it*m in t, y (k ,it), k 1, ncell:’

do it  =  1, m ax t 
writo(G, 4000) it*m int, (y (k ,it), k =  1,ncell) 

enddo

endif

form a t  (¡7, 4fl2 .3) 
t2  =  second(dum ) - t l  
w rite(6 ,*)’ CPU = ’,t2 ,’Seconds’
StO])
end

i = 1, maxt)



A ppendix 2

M C 2 F ortran  P rogram m e 2-d L attice  w ith A synchronous 
U p d atin g , Enhanced N earest N eighbour In teractions, M u
tatio n  and  M obility

p r o g r a m  i m  11

<: M C /S tochastic  CA for im m une response
c Cray-version
c Evaluate the  difference between helper and viral population

im plicit none

integer i, j ,  k, I, Ip], Is, it, j t ,  ir 
integer i l ,  j l ,  i2, j2, nsite 
integer ncell, nn, nbr, kcell 
integer i d ,  ih l, im l, iv l ,  m utv  
integer n d ,  n h l, n m l, nvl 
integer nrun, m ax t, m int, m in tf 
integer ibrn, iseed

real pm ut, pinob, per
real abm , rand
real t l , t2 , second, durri, ran f

p aram eter (I =  100, Is =  1*1) 
param eter (m axt =  500,m in t — 1, m in tf Is) 
p aram eter (Ipl =  1 +  1, iseed =  7893, nrun 50) 
param eter (pm ut =  0.894, pm ob 0.0) 
p aram eter (ncell =  4, nn =  4)

integer
integer
integer
integer
integer

real
real
real
real
real
real

icell(ncell), icsm n(ncell), isum (ncell)
nnx(nn), nny(nn)
ib(0:!pl )
ic(nce.ll,I,l)
ix(ncell), iy(ncell)

p(ncell)
x(ncel), m ax t), y(ncel 
r(ncell, m axt) 
ac(ncell, rrwixt) 
vhdiff(m axt) 
acO(ncell)

m axt)



real per_cell(ncell)

<: call srand(iseed)
c call ranset(iseed)

c t l  =  second(durn)
ibm =  2*iseed - 1

w rite(6 ,*)’ mc.2d21.f: 1, m axt,Tnint,m intf, n run  = ’ 
w rite(6, 1000) 1, itt.axt,raint,inintf, nrun

1000 fonnat(5 i7)
w rite(6, *) ’ pm ut p m u t,’ pm ob = ’,pmob 
w ritc(6 ,*)’ iseed = ’,iseed

p ( l)  =  0.0001 
p(2) =  0.000
p(3) =  0.000 
p(4) 0.0001

do 5 k =  1, ncell 
¡cell (k) =  1 + p(k)*ls 

5 continue

w nte(6 ,* )’ Initial cone, of cells:l-nce.ll:’ 
write(6,1001) p ( l ) ,  p(2), p(3), p(4)

1001 forrnat(4f!2.8)
w rite(6 ,*)’ Initial cells #  : 1-ucell:’,

& ice ll(l), i cel I (2), icell(3), ice 11(4)

l>er = I ./float,(nrun)

n n x (l)  =  1 
nnx(2) =  0 
nnx(3) =  -1 
nnx(4) =  0 
liuy(l) =  0 
nny(2) =  1 
nny(3) =  0 
nny(4) =  -1

do 10 k =  I, ncell 
ac0(k) =  0.0 

do 10 j =  1, rnax t

a c (k j)  =  0.0 
x (k j)  =  0.0



y (k j)  =  o.o 
r ( k j )  =  0.0

10 continue

do 20 i =  1, I
ih(i) =  i

20 continue
ib (lp l)  =  1 
ib(0) =  I

* *  *  *

c ou ter (nrun) loop
(. * * * *

do SO ir =  1, nrun

c initialize the cellular s ta te

do 30 j  =  1,1 
do 30 i =  1,1 
do 30 k l ,n c e ll  

ic(k, i j )  =  0 
30 continue

* * * *

c d istrib u te  the cells random ly in the lattice
, .  * * * *

do 34 k l ,n c e ll

if (icell(k).gt.O) then

isxun(k) =  0

32 continue

ibm = ibrn * 16807
alnn =  0.5*(float(ilm i)+2147483647.)
rand =  a b in /2 1 47483647.
il =  1 +  rand*!
ibm  =  ibm * 10807
ahm  =  0 .5*(float(ibm )+2147483647.)
rand =  a b in /2 1 47483647.



j l  =  1 +  rancPi 
if (ic(k,il j l ) . l t . l )  then 

ic(k,il j l )  =  1 
ismn(k) =  isum(k) +  1 

endif

if (isum(k).lt.icell(k)) go to 32 

endif

34 continue

c calculate th e  initial num ber of each cell type
c initialize their displacem ents

do 45 k =  1, ncell 
icsum(k) =  0

do 40 j =  1,1
do 40 i =  1, 1

icsum(k) =  icsum(k) +  ic (k ,ij)
40 continue

acO(k) =  ac.0(k) +  float(icsuin(k)) 
ix(k) =  0
iy(k) =  0

45 continue

do 70 i t  =  1, m ax t 

do 62 j t  — 1, m in t 

do 50 nsite  - 1, m in tf

c do 50 nsite =  1, Is

ibm =  ibrn * 16807
abrn -  0.5*(float(ibm )+2147483647.)
rand =  abrn/2147483647.
i =  1 +  rand*l
ibm =  ibm * 16807
abrn 0.5*(float(ibm )+2147483617.)
rand abm/2147483647.



nini =  ic ( l , i j )
+  ic (l, ib (i-l)J ) +  ic (l, ib ( i+ l ) j )
+  ic (l, i,ib (j- l) )  +  ic (l, i, ib ( j+ l) )

nh î =  ic (2 ,ij)
+  ic.(2,ib(i-l) j )  +  ic (2 ,ib ( i+ l) j)
4- ic (2 ,i,ib (j-l)) +  ic(2,i, ib(j +  l ) )  

nel =  ic(3,i j )
+  ic.(3,ib(i-l) j )  +  ic (3 ,ib (i+ l) j )
+  ic (3 ,i,ib (j-l)) +  ic(3,i, ib ( j+ l) )  

nvl =  ie (4 ,ij)
+  ic (4 ,ib ( i- l) j)  +  k :(4 ,ib (i+ l) j)
+  ic (4 ,i,ib (j-l)) +  ic<4,i, ib ( j+ l) )

im i =  (9 +  nini +  n v l)/1 0  
ili 1 =  (9 +  nhl -I- n m l)/1 0  
id  =  (9 -t- nel +  n h l)/1 0  
iv i =  (9 +  nvl H- nli 1)/10

im i =  (4 +  ic ( l , i j )
+  ic( 1, ib ( i - l ) j )  +  ic (l, ib ( i+ 1 )j)
+  ic (l, i,ib(j-l.)) +  ie (l, i, ib ( j+ l) ) ) /5

ih I =  (4 -I- ic(2,i j )
H ie(2,ib(i 1)j )  -!- ic (2 ,ib ( i+ l) j)
-I ie(2,i,ib.Q-1)) +  ic(2,i, ib ( j+ l) ) ) /5  

id  =  (4 +  ic(3,i j )
+  ie,(3,ib(i-l) j )  +  ic (3 ,ib ( i+ l) j)
+  ic (3 ,i,ib (j-I)) +  ic(3,i, ib ( j+ 1 ))) /5  

iv i =  (4 +  ie(4,i,j)
+ ie(4,ib(i-l ) j )  +  ic(4,ib(H-1) j )
+  ie (4 ,i,ib (j-l)) +  ic(4,i. ib ( j+ l) ) ) /5

j  =  1 +  rand* I

rnutv =  iv i

ibm -  ibm * 1G807
abrn =  0.5*(float(ibm)+2147483647.)
rand =  abrn/2147483647.
if (rand.le.pmut) mutv =  0

i<:( 1 ,i J) =  (im i +  mutv 4- 1 )/2
ic(2, i,j) =  (1 - iv l) * ( ih l -t- im i f  l ) /2
ic:(3, i,j) =  ilil * im i * mutv
ie(4,i,j) =  (I - id )  * (ili 1 4- im i -t- ivi -I- 2 )/3



50 continue

( > * * * *

c a tte m p t to  m ove each cell
£  * * * *

ibin =  ibm * 16807
abm  =  0.5*(float(ibm )+2147483647.)
rand  =  abm/2147483G47.
if (rand.le.pm ob) then

do 60 j =  1, 1 
do 60 i =  1,1 
do 60 kcell =  1, ncell

ibm  =  ibm * 16807
abm  =  0.5* (float (ibm) 1214 74830)47.)
rand = abm /2147483647.
il =  1 +  rand*l

ibm =  ibm * 16807
abm  =  0.5*(float(ibm )+2147483647.)
rand  =  abm /2147483647.
j l  =  1 +  rand*l

ibm -  ibm * 16807
abm  =  0.5*(float(ibm )+2147483647.)
rand  ■= abm /2147483647.
k =  1 +  tand*ncell

if  (i<:( k,i 1 j  1 ) .eq. 1) then

ibm =  ibm * 16807
abm  =  0 .5*(float(ibm )+2147483647.)
rand =  abm /2147483647.
n br — 1 +  rand*nn

i2 =  ib(il + nnx(nbr)) 
j2  =  i b (j 1 +  nny(nbr))

if ( ic(k,i2J2) .eq. 0 ) tlien

if ( (k .eq .l).and . (ic (4 ,i2 j2 ).e (|.l)) then

ic(k, i2, j2) =  ic(k, il j l )  
ic(k, i l ,  j l )  =  0



îx(k) =  ix(k) ( nnx(nbr)
>y(k) =  >y(k) +  nny(nbr)

elseif (k.eq.2) then

ic(k, ¡2, j ‘2) =  ic(k, il j l )  
ic(k, i l , j l )  =  0

ix(k) =  ix(k) +  nnx(nbr) 
iy(k) =  iy(k) +  nny(nbr)

elseif ( (k.cq.3) .and.
ic (4 ,i2 j2 ).eq .l) then

ic(k, i2, j2) = ic(k, il J l )  
ic(k, i l , j l )  =  0

ix(k) =  ix(k) 4- nnx(nbr) 
iy(k) -  iy(k) 4- nny(nbr)

elseif ( (k.eq.'l) .and.
( ic(2 ,i2 j2) .eq. 1 .or. 

ic ( l ,i2 j2 )  .eq. 1) ) then

ic(k, i2 ,j2 )  ie(k, i l j l )  
ic(k, i l ,  j l )  =  0

ix(k) =  ix(k) 4- nnx(nbr) 
iy(k) -  iy(k) l nny(nbr)

endif

endif

continue

endif

continue

(itici thi! num ber o f  each cell type



do 6G k =  1 ,ncell 
icsurn(k) =  0

do 64 j  =  1,1
do 64 ¡ =  1,1

c ic (k ,i j )  =  icn (k ,i j )
icsum (k) =  iesum (k) +  ic(k, i j )

64 continué
per_cell(k ) =  l./fioa t(icsum (k) +  1) 
ac(k, ¡t) =  ac(k, ¡t) +  float(icsum (k))

66 contimie

do 68 k =  1, ncell

x(k,¡t) =  x(k,it) 4- float(ix(k)) 
y (k ,it) =  y(k ,it) +  float(iy(k)) 

c x(k,it) =  x(k ,it) -l- per_cell(k )* float(ix (k ))
c  y(k ,it) =  y(k ,it) +  per_ceU (k)*float(iy(k))

68 continúe

70 continué

c end of tlie tinte, loop
*■***

80 continué

c end of tlie run loop
* * * *

do 00 k =  1, ncell 
acO(k) =  ac0(k)*per

do 90 i = 1 , rnaxt 

ac(k,i) = ac(k,i)*per 

if (pinol).gt.0.0) tlien 

x(k,i) =  x(k,i)*per



y(k,i) =  y(k,i)*per
r(k,¡) =  sqrt(x(k,i)*x(k,¡) +  y(k,i)*y(k,i))

endif

90 continué

(. * * * *

c w rite tlic average no. cells
(. * * * *

w rite(6 ,* )’ initial nuniber of cell types:’ 
write(6,2000) (acO(i), i =  1, ncell)

2000 form at(4fl2 .3)

w rite(6 ,*)’ i, ac(k, i), k =  1, ncell:’ 
c. write(6,3000)( ¡*inirit, (ac(k,i), k =  1, ncell),
c : i =  1, rnaxt)

do it =  1, rnaxt
vhdiff(it) - ac(4,it) - ac.(2,it) 

enddo

do it =  I , rnaxt 
write(6,3000) it* rn in t, (ac(k ,it), k 1, ncell), 

: vlidiff(it)
enddo

3000 fonnat(i7 , 5fl2.3) 

if (puvob.gt.0.0) tlien 

w rite(6 ,* )’ ’
w rite(6 ,*)’ it*rnint, r(k ,it) , k 1, ncell:’

do it  =  1, rnaxt 
w rite(6, 4000) it*rnin t, (r(k ,it), k = 1,ncell) 

enddo

write(6,*)’ ’
w rite(6 ,*)’ it*m int, x (k ,it) , k =  I ,  ncell:’

do i t  =  1, rnaxt 
write(G, 4000) it, (x (k ,it), k =  1 ,ut:«ll) 

enddo



write(G,*)’ ’
w rite(6 ,*)’ it*m int, y(k,it), k =  1, ncell:’

do it =  1, rnaxt 
write(6, 4000) it*m int, (y(k,it), k =  1,ncell) 

enddo

endif

4000
c
c

format(i7, 4Í12.3) 
t2 =  second(durn) - t i  
write(6 , * ) ’ CPU =  ’,t2 ,’Seconds’
stop
end



A ppendix 3

M C 2 Fortran  P rogram m e 3-d L attice  w ith A synchronous 
u p d atin g  Enhanced N earest-N eigh bour In teraction s,M u tation  
and M obility.

program im3dll

c M C /S tochastic  CA for im m une response
c Cray-version
c Evaluate the difference between helper and viral population

im plicit none

integer i, j ,  k, I, Ip l, 111, it, j t ,  ir
integer i l , j l , k l , i‘2, j ‘2, k'2, nsite
integer kc, ncell, nn , nbr, kcell
integer ic i, ih l ,  im l, iv l, rnutv
integer no t, n h l,  n m l, nv1 
integer nrun, m ax t, m int, m in tf 
integer ibrn, iseed

real prnut, pm ob, per
real abm , rand
real t l ,  t2, second, dum , ran f

param eter (I =  30, 111 = 1*1*1) 
param eter (m axt =  200,m int 1, m in tf =  111) 
param eter (Ipl =  I +  1, iseed =  7893, n run  =  50) 
param eter (prnut =  0.851, pm ob=1.0) 
p aram eter (ncell =  4, nn (!)

integer icell(ncell), icsum (ncell), isum(ncell)
integer nnx(nn), nny(nn), nnz(nn)
integer ib (0 :lp l)
integer ic(ncell,l,l,l)
integer ix(ncell), iy(ncell), i'/.(ncell)

real p(ncell)
real x(ncell, m ax t), y(ncell, m ax t), z(ncell, m axt)
real r(ncell, m axt)
real ;w:(ncell, m axt)
real vlidiff(maxt)
real acO(ricell)



real pcr_cell(ncell)
real persite , sum , avh, vhm ax, vhm in, err

c call srand(iseed)
c  call ranset(iseed)

c t l  =  second(durn)
ibm  =  2*iseed - 1

w rite(6 ,*)’ im 3 d ll.f : I, m ax t,m in t,m in tf, n ru n  —’ 
write(C), 1000) 1, m ax t,nun t,nun tf, n run

1000 form at(5i7)
w rite(6, *) ’ p m ut = ’, p rnu t,’ pm ob = ’,pmob 
w rite(6 ,*)’ iseed = ’,iseed

p ( l)  =  0.00025
p(2) =  0.000
p(3) =  0.000 
p(4) =  0.00025

do 5 kc = 1, ucell 
icell(kc) =  1 +  p(kc)*lll 

5 continue

w rite(6 ,*)! Initial conc. of cells:l-ncell:’ 
write(G,1001) p ( l ) ,  p(2), p (3), p(4)

1001 fonnat(4fl2 .S )
w rite(6 ,*)’ Initial cells #  : 1-ncell:’,

& icell(l), icell(2), icell(3), icell(4)

per I ./floa t(u run )

n n x ( l)  =  1 
n n x (2 ) =  0 

n n x (3 ) =  -1 
n n x (4 ) =  0 
n n x (5 ) =  0 
nnx(G) =  0 
m iy ( l )  =  0 
n n y(2 ) =  1 
n n y (3 ) =  0 
nn y(4 ) =  -1 
n n y(5 ) =  0 
nny (6 ) =  0 
nn z(l) =  0 
nii7.(2) =  0



rmz(3) =  0
nnz(4) =  0
nnz(5) =  1
nnz(6) =  -1

do 10 kc =  1, ncell 
ac.O(kc) = 0 .0  

do 10 j =  1, rnaxt

ac(kc.,j) =  0.0 
x (k c j)  =  0.0 
y (k c j)  =  0.0 
z(kc,j) =  0.0 
r (kc,j) =  0.0

10 continue

do 20 i =  1, 1
ib (i) pc i

‘20 continue
ib (lp l)  =  1 
ib (0) =  1

c: outer (nrun) loop

do 80 ir =  1, nrun

c initialize the cellular state

do 30 k =  1, 1 
do 30 j =  1, 1 
do 30 i =  1, 1 
do 30 kc =  1, ncell 

ic(kc, i,j,k) =  0 
30 continue

c distribute the cells random ly in the lattice

do 34 kc =  1, ncell



if (icell(kc).gt.O) then

isum (kc) =  0 

32 continue

ibrn =  ibrn *  16807
abm =  0.4999* (float(i bm) +2147483647.) 
rand =  abm/2147483647. 
i l  =  1 +  rand*l 
ibrn =  ibrn *  16807
abm  =  0.4999* (float(ibm )+2147483647.) 
rand =  abm /2147483647. 
j l  =  1 +  rand*l 
ibrn =  ibrn * 16S07
abm  = 0.4999*(float(ibm )+2147483647.) 
rand  =  abm /2147483647. 
kl =  1 + rand*! 
if ( ic (k c ,il.j1 ,k l) .lt.l)  then 

ic(kc,il j l , k l )  =  1 
isurn(kc) =  isum (kc) +  1 

endif

if (isurn(kc).lt.icell(kc)) ro to  32 

endif

34 continue

* * * +

c calculate the initial num ber of each cell type
c initialize their displacem ents
£  * * * *

do 45 kc =  1, ticell 
icsum(kc) =  0

do 40 k =  1,1 
do 40 j  =  1, I 
do 40 i =  1, I 

icsum(kc) =  icsurn(kc)+  ic(kc,i,j,k)
40 continue

acO(kc) =  acO(kc) 4- float(icsum (kc)) 
ix(kc) =  0 
iy(kc) =  0



iz{ke) =  0 
coi i Ci mie

do 70 it =  I ,  maxt 

do 62 j t  =  1, mint 

do 50 nsite =  1, m intf 

ibrn =  ibm *  16S07
abm -  0.4999* (float(ihrn)+2147483647.) 
rand =  abm/2147483647. 
i =  l +  rand*l 
ibm =  ibm *  10807
abm  =  0.4999* (float(ibm ) 4-214748364 7.) 
rand  =  abm /2147483647. 
j =  1 +  rand*l 
ibm =  ibm * 16807
abm =  0.4999*(float(ibrn) 4 2147483647.) 
rand =  abm/2147483647.
k =  1 4- rami*]

rimi =  ic ( l ,i j ,k )
+  ic (l,il» (i-l)j,k ) +  ic(l,ib (i f l ) , j ,k )  
+  ic ( l,i,ib (j-l) ,k ) 4- ic ( l,i ,ib ( j+ l) ,k )  
+  ic ( l ,i j , ib (k - l) )  4- ic ( l , i j , ib (k + l) )  

nb l =  ic (2 ,ij,k )
+  ic (2 ,ib (i- l) j,k )  4- ic (2 ,ib (i+ l),j,k ) 
+  ic(2 ,i,ib (j-l),k ) +  ic(2,i1ib ( j+ l) ,k )  
f ic(2 ,i,j,ib (k-l)) I- ic (2 ,ij ,ib (k + l) )  

nel =  ic(3 ,ij,k )
-I- ic (3 ,ib (i-l) j,k ) +  ic (3 ,ib ( i+ l) j,k )  
+  ic(3 ,i,ib (j-l),k) +  ic (3 ,i,ib (j41),k) 
+  ic (3 ,ij,ib (k -l)) +  ic(3,i j , ib (k + 1 )) 

nvl =  ic (4 ,ij,k )
+  ic (4 ,ib (i- l) j,k )  4- ic (4 ,ib (i4 1 )j,k )  
4- ic(4 ,i,ib (j-l),k ) +  ic(4,i,ib(j M ),k) 
-I- ic (4 ,ij,ib (k -l))  4- ic (4 ,ij,ib (k 4  1))

irnl =  (13 +  rimi +  nvl)/14  
ibi =  (13 + nlil H mnl)/14  
icl =  (13 4- nel +  nb 1)/14 
ivi =  (13 +  nvl +  nli1)/l4

rnutv =  ivi



ibm  =  ibrn * 16807
abm  =  0.4999*(float(ibm )+2147483647.) 
ram i =  a b m /2 14 748364 7. 
if (rand.le.prnut) m utv  =  0

ic ( l ,i j ,k )  =  (im i +  m utv  +  l ) /2
ic(2,i,j,k) =  (1 - iv l)* (ib l +  im i +  l ) / 2
ic(3,i,j,k) =  ib i * im i * rnutv
ic(4,i,j,k) =  (1 - ic l)  * (ib i +  im i +  iv i +  2 )/3

50 continue

c a tte m p t to  move eacli cell

ibm =  ibm * 16807
al >i n =  0.4 999*(Hoat(i bm )+214 7483647.) 
ranci =  abm /2147483647. 
if (rand.le.prnob) then

do 60 k =  1,1 
do 60 j — 1, I 
do 60 i =  1, 1 
do 60 kcell =  1, ncell-l

ibm =  ibm * 16S07
abm  0.4999* (tìoat(ibm )+214748364 7.)
rand  =  abm /2147483647. 
il =  l +  rand*l

ibm =  ibm * 16807
abm  0.4999*(float(ibm ) +214 7483647.)
rand  =  abm /2147483647. 
j l  =  1 +  raudal

ibm =  ibrn * 16807
abm  =  0.4999*(float(ibm ) t 2147483647.) 
rand  =  abm /2147483647. 
kl =  1 +  rand*l

ibm =  ibm * 16807
abm -  0.4999*(float(ibrn)+2147483647.) 
rand =  abm /2147483647. 
kc -  1 -i- rand*neell



f (ie( ko,il j l , k l ) ,eq. 1) then 

ihm  =  ibm  * 16807
abm  =  0 .4999*(float(ibm )+2147483647.) 
rand  =  abm/21474836-17. 
n b r =  1 +  rand*nn

i2 =  il)(il +  nnx(ribr)) 
j2  =  ib (jl +  nny(nbr)) 
k2 =  ib (k l +  nnz(nbr))

if ( ic(kc,i2,j2,k2) .eq. 0 ) then

if ( (kc.eq .l).and . (ic (4 ,i2J2 ,k2).eq .l)) then

ic.(kc, i2, j2,k2) =  ic(kc, il  j l , k l )  
ic(kc, i l ,  j l , k l )  =  0

ix(ke) — ix(kc) + nnx(nbr) 
iy(kc) =  iy(kc) +  nny(nbr) 
iz(kc) =  iy(kc) +  nnz(nbr)

elseif (kc.eq.2) then

ic(kc, i2, j2,k2) =  ic(kc, i l J 1 ,k 1 ) 
ic(kc, i l ,  j  1 ,k 1 ) =  0

ix(kc) =  ix(kc) +  nnx(nhr) 
iy(kc) =  iy(kc) -t- nny(nbr) 
iz(kc) = iz(kc) +  nnz(nbr)

elseif ( (kc.eq.3) .and.
ic(4 ,i2 j2 ,k2 ).eq .l) then

ic(kc, i2, j2,k2) =  ic(kc, i l j l , k l )  
ic(kc, i l ,  j l , k l )  =  0

ix(kc) =  ix(kc) +  nnx(nbr) 
iy(kc) =  iy(kc) +  nny(nbr) 
iz(kc) =  iz(kc) +  nnz(nbr)

«Isoif ( (kc.eq.4) .and.
( ic(2,i2J2,k2) .eq. 1 .or. 

ic (l,i2 j2 ,k 2 ) .eq. 1) ) then

ic(kc, i2, j2 ,k2) =  ic(kc, i l j l . k l )



ic(kc, i l ,  j l , k l )  =  O

ix(kc) =  ix(kc) +  nnx(nbr) 
iy(kc) =  iy(kc) 4- nny(nbr) 
iz(kc) =  iz(kc) 4- nnz(nbr)

endif

endif

endif

60 continue

endif 

62 continue

c find tlie num ber of each cell type

do 66 kc =  1 ,ncell 
icsum (kc) =  0

do 64 k =  1,1 
do 64 j  =  1,1 
do 64 i =  1,1 

icsum(kc) = icsuin(kc) +  ic(kc, i j ,k )
64 continue

per_cell(kc) = l./floa t(icsiun(kc) 4- 1) 
ac.(kc, it) =  ac(kc, it) 4 float(icsuin(kc))

66 contim ie

do 68 kc =  1, ncel I

x (kc,it) x(kc,it) 4- float(ix(kc)) 
y (kc.it) =  y(kc,it) 4- float(iy(kc)) 
z(kc,it) =  z(kc,it) 4- float(iz(kc))

68 continue

70 continue



c end of the  tim e loop
£ * * * *

SO continue

£  * * * *

c end of the  run loop
£  * * * *

do 90 kc =  1, ncell 
acO(kc) =  ac0(kc)*per

do 90 i =  1, m axt

ac(kc,i) -  ac(kc.,i)*per

if (ptnob.gt.0.0) then

x(kc,i) =  x(kc,i)*per 
y(kc,i) =  y(kc,i)*per 
z(kc,i) =  z(kc,i)*per
r(kc,i) =  sqrt(x(kc,i)*x(kc,i) +  y(kc,i)*y(kc,i) 

: +  z(kc,i)*z(kc,i))

endif

90 continue

Ç. $$$-$
c w rite the  average no. cells
(. * * * *

w rite(6 ,*)’ initial num ber of cell types:’ 
write(6,2000) (acO(i), i =  1, ncell)

2000 forrnat(4fl2 .3)

vhrnax =  0.0 
vlunin =  0.0 
sum =  0.0 
do it =  1, m ax t 

vhdiff(it) =  ac(4 ,it) - ac(2,it) 
if (it.ge .m ax t/2 ) then 

sum  =  sum -f vhdiff(it) 
if (vhdifF(it).lt. vhm in) vlunin vhdilf(it)



if (vhdiff(it).gt. vhrnax) vhrnax =  vhdiff(it) 
endif 

enddo

3000

4000
c
t:

avh =  2 .0*sum /float(m axt) 
err =  vhm ax - vlimin

w rite(6 ,* )’ ’ 
p rin t V  avh = ’,avh
p rin t vlim ax = ’,vhrnax,’ vlunin =  v lun in ,’ e rro r = ’,err
w rite(6 ,*)’ ’
write(G,*)’ i, ac(kc, i), kc =  1, ncell, v -h :’ 
write(G,*)’ ’ 
do i t ’ =  1, m ax t 

write(6,3000) it*m in t, (ac(kc,it), kc =  1, ncell), 
vhdiff(it)

enddo 

forrnat(i7, 5f 12.3) 

write(G,*)’ ’
write(G,*)’ i, Cell density: 1, ncell, v -h :’ 
persite  =  1 ./float(lll)

do it =  1, m axt 
write(G,3000) it*m int, (ac(kc,it)*persite , kc =  1, 

ncell), vhdiff (i t)*persite
enddo

if (pm ob.gt.0.0) then 

w rite(6 ,*)’ ’
w rite(6 ,*)’ it*rnint, r(kc,it), kc =  I, ncell:’

do it =  1, m axt 
w rite(6, 4000) it*m int, (r(kc,it), kc 1,ncell) 

enddo

endif

form at(i7 , 4f 12.3) 
t,2 =  second(dum ) - t l  
write(G,*)’ CPU  = ’,t2 ,’Seconds’ 
stop 
end
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Summary: Using a direct M onte C arlo sim ulation, population  grow th of helper T-cells 
(TV//) and viral cells (Ny) is studied for an im m une response m odel w ith  an enhanced 
spatial inter-cellular interaction relevant to  H IV  as a function of viral m utation. In the 
absence of cellular mobility (P„,0b = 0), the helper T-cells grow nonm onotonicaliy be
fore reaching saturation and the viral population grows monotonically before reaching 
a constant equilibrium. Cellular m obility (Pmob =  I) enhances the viral grow th and re
duces the stimulative T-ccIl growth. Below a m utation threshold (Pc), the steady-state 
density of helper T-cell ij>n) is larger than that o f the Virus (pv)> the density difference 
&po(= pv-pn) remains a constant at Pmu\, - 1 while -A/;o-^0 as Pmut —> P( at 
Pmob = 0. Above the m utation threshold, die difference Ap0 in cell density, grows w ith 
AP = Pmut Pc monotonically: Ap0 «  (A P f  w ith  /I ̂  0.574 ± 0.016 in absence of mobi
lity, while Ap0 ~  6(AP) w ith  Pmob = 1.

Introduction

Rule-based interactions are frequently used in com putational m odeling o f 
cellular populations particularly for C ellu lar A utom ata (C A ) m ethods and 
variants, i.e ., probabilistic C A  (P C A ) and stochastic C A  (SC A ) [1-13]. In 
m ost C A  approaches [2-5], part o f the rule-based intersite cellular interac
tions are im plemented sim ultaneously, where the mechanics to achieve this 
sim ultaneity involve visiting each site o f the lattice synchronously in order 
to assign each cell its interm ediate state. A  set o f inter-cellular interaction 
rules is then used with these interm ediate states at each lattice site to  u p 
date their states at the next time step [8]. The stochastic m obility o f cells 
was recently introduced in a stochastic C A  (S C A ) [13] in order to take
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into account cellular motility, together with synchronous update w ith in
dependent rules, as in traditional C A . Very recently, w e introduced a com 
puter sim ulation method [14] in which updates o f the cellular states, in 
contrast to synchronous updates, occur random ly and one at a time, with 
subsequent m obility o f cells. We extend this direct M onte C arlo  (D M C ) 
approach here to incorporate the effects o f stim uli factors via inter-cellular 
inter-site interaction by including m ore cellular elements from  the neigh
boring sites. We find that extending intercellular interaction to neighbor
ing sites appropriate for H IV  response, leads to different grow th patterns 
than w as found for the intracellular interaction alone, with the effect o f 
viral m utation on cellular grow th m ore pronounced.

Model

The m odel is very sim ilar to that o f our first M C  sim ulation [14] o f cell 
population  in immune response, except for the inter-site interaction (see 
below). A s before, we consider a cell m ediated immune response with four 
cell types: m acrophages (M ), helper T-cells (H ), cytotoxic T-cells (C ), and 
antigen/virion (or virus carrying cells) (V) each with a binary cellular state 
to represent their high (“ 1” ) and low  (“ 0 ”) concentrations. A  set o f b o o 
lean expressions can be used to describe the intra-site cellular interactions 
[8],
M (t +  1) =  M (t).or.V(t), (1(d))

H ( t +  1) =  [M (t).or.H(t)\.and.[notV(t)\, (1(^0)

C ( i + 1 )  =  M (t).and.H (t).and.V (t), ( l ( c))

V (t +  1) =  [H(t).or.M (t).or.V(t)\.and.[notC{t)\, (1 (^ ))

where the states o f the four cell types at time t +  1 evolve from  their states 
at time t. This interaction set, (Eq. 1) has been previously analyzed in de
tail w ith a mean field approach [8]. This analysis found that starting with a 
random  configuration (out o f sixteen) and applying the above equations 
leads to a flow  diagram  with two fixed points, which have a cycle o f peri
od two. The fixed points represent states o f “ im m unocom petency” and 
“ im m unodeficiency” , while the cycle includes infected, severely infected, 
and susceptible states.
In order to incorporate the effects o f m ediators, growth factors, effectors 
etc. [15, 16] via local interactions and to study the population  o f cells, we 
consider a discrete lattice o f size L x  L. We typically start w ith one or two 
cells o f each cell type distributed random ly am ong a fraction p  o f the lat
tice sites. A  site can be occupied by four different cell types, with never 
m ore than one cell o f each type at a site. A  site i is referred to as occupied
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by a cell type ic if the state o f the cell type ic is 1 (high concentration); the 
cellular state ‘0 ’ (low  concentration), is referred to as an em pty site for the

(A ) R andom  sequential update o f cellular state:
(t) select a site i randomly.

(ii) find the sum  s,(ic) o f each cell type (ic) over their fou r neighbors and

otherwise s,(ic)' =  0.
(Hi) w ith these interm ediate states (st(ic)' =  M ', H', C', V' fo r ic -  1, 2, 3, 

and 4 respectively), evaluate the corresponding stim ulated states 
(si(ic)" = M", If", C", H "), using the fo llow ing relations,

action (1) in the follow ing step (iv) to take into account IL 2 , cy to
kines and other effectors to enhance the reaction.

(iv) U sin g  the current state s,(zc)" o f cells at site i, im plem ent the inter
cellular interaction (Eq. (1)) am ong different cell types, to update 
their state, i. e., M, H , C  and V at site i.

(v) Repeat steps (i)-(iv) L 2 times.
(B) M utation: viral mutation is considered probabilistically  in the preced

ing step A(iv) and where inter-cell interactions (Eq. (1)) are im ple
mented. With probability (PmM), a virus is m utated such that the host
cells no longer recognize it; then V =  0 in E q . (1(a), 1(c)).

(C ) R andom  sequential m ove with im m unological m obility: w e set the 
m obility rate Pmob in the beginning o f sim ulation, 0 <  Pmob -  1 where 
Pmob =  0 means no m obility and Pmob =  1 describes highest mobility. 
The follow ing steps (i-viii) are im plem ented w ith probability  P„toi,:

(i) select a site i randomly,
(it) select a cell type (ic) at the site i randomly.

(Hi) IF  the cell type ic is present at site i, T H E N
(iv) select one o f the nearest neighbor sites /;
(v) IF  the cell type ic is absent at s ite ;,  T H E N

(vi) With probability Pmob attem pt to m ove the cell type ic from  site i to 
site /. In order to  accept the move further specific criteria [16] m ust 
be satisfied. F o r  exam ple, site j  m ust have a viral infected cell, i. e., 
V =  1 for m acrophages and cytotoxic cells to m ove. O n  the other 
hand, a virion can move to site j  if either m acrophage or helper cell
or both cell types are present, i. e., (M.or.H) =  1 at s ite ;.

cell type. The cell populations change as w e im plem ent the cellular interac 
tions and update their states using the follow ing steps:

the cell at site i: if s$c) >  1 then assign an interm ediate state S i(ic) ' =  1

M " =  M' .or.V' 
II"  =  H '.or.M ' 
C "  =  C '.or.H '

(2(a))
{2(b))
{2(c))



(vii) G o  to step (i) in case any o f the above “ I F ” conditions fail.
(viii) R epeat steps (i)-(vii) 4 x  L 2 times.

The above procedures, (71-C), carried out sequentially, define a unit 
M onte C arlo  step (M C S). We perform  the sim ulation for a fixed num ber 
o f time steps with a num ber o f independent runs for each m utation p ro b 
ability with different m obility rates. N o te  that this procedure is nearly the 
sam e as in our first M C  study, except in step A(iii) where the cellular 
states are stim ulated by their inter-site-inter-cell interactions, E q . (2 (a)- 
(d)), as well as by  the separate inter-cell and inter-site interactions. Includ
ing this stim ulus, produces a considerable change in the grow th pattern as 
we see below. Further, the interactions, cellular m obility, along w ith the 
m utation m echanism  adopted here are specific to this m odel and m ay de
pend on the type o f immune response.

Results and Discussion

Sim ulations are perform ed m ostly  on 2-dim ensional 1 0 0 x 1 0 0  and 
200 x  200 lattices with a very low  initial concentration of each cell type, 
typically one o f each distributed randomly. We have also used different 
sam ple sizes to check for severe finite size effects and the qualitative re
sults are independent o f the lattice sizes. The m utation rate, 0 <  PmHt <  1, is 
varied and the data presented here are m ostly in the range o f 
P mut ~  0.75 -  1.00, where significant changes in the grow th pattern of 
virus and helper T-cells are observed for m obility Pmob =  0 and 1. It m ust 
be pointed out that the range o f num erical value o f Pmu[ is relatively large 
and should not be com pared with clinical m utation rates -  it m ust be 
scaled in order to make it clinically realistic; also a variable m utation rate 
m ay prove to be m ore characteristic o f the virus. U p  to 50 independent 
sam ples are used to find the average num ber of cells. A s before, we m oni
tor the population  of each cell type w ith time steps as a function of m uta
tion rate. We focus prim arily on the populations o f helper T-cells and viral 
cells since the population  o f m acrophages reaches its m axim um  constant 
value in a rather short series o f time steps.
Since the sim ulation is perform ed on a square lattice it is easy to  inspect 
visually as the num ber of cells grow. F igure 1 show s a typical evolution of 
cells at different time steps. F o r  viral m utation Pmut =  0.90, we see that 
both helper T-cell and viral populations are low  but N H >  N v at the initial 
stage o f grow th (Fig. 1(a)). The viral population  grow s faster and dom i
nates the helper cells over long time periods (Fig. 1). A ttem pts are m ade to 
quantify such grow th patterns in the follow ing.
G row th of cell populations with time is presented in Figure 2 for Pmoy =  0. 
A t relatively low  m utation, (Pmut <  0.90), both helper T-cell and virus 
grow  very fast to their constant values (N H —» N Hs, N v  —> N vs). While

148 R. Mannion, H . J . Ruskin and R. B. Pandey



A  M onte C arlo  approach to population  dynam ics o f  cell 149

Figure 1 a
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0 100

Fig. 1 d
Fig. 1. Typical snapshots of helper T-cells (square) and virus (star) at time steps t =  75(a), 
149(£), 223(c ), 297(d) for Pmut = 0.90 in absence of cell m obility on a 100 x 100 lattice.



_CQ
a>O
o
ai.a
EDZ

A  M onte C arlo  approach to population dynam ics o f  cell 151

0e+00
0.0 400.0 600.0

Time (MCS)
800.0 1000.0

8e+03

6e+03

4e+03

2e+03

I

I ~l I ~ | |  I , p ~  ■̂ M|l«l| ■ ~ M ||_ I sv

= H ( P „ = 0.79) 
•V(P™=0.79) 
^ H ( P . ^ 0.80) 
.  V ( P „ ,= 0.80) 

( P ^ O .81) 
►VtP̂ O.81) 
^ H (Pmul=0.Q2)

1 v (P«*.=°-0Z)3H (P ™ =0.84) 
< V ( P ™ = 0.64) 
7 H (P „ „ = 0.86) 
r  V ( P ^ O .86) 
> H (Pmu(=088) 
" v (P™=0-88) 3H (P ™ =0.90) 
I V (P mu,=0.90) 
:  H ( P ^ . 91)

1 v(p™t=0-91)
> H ( P mu,=0.92) 
► V (P ™ ,=0.92) 
\ H (P n ^ O .94) 
L V (P mul=0.94) 
5H(P̂ =0.95) 
< V (P „„ ,=0.95)

200.0

Fig. 2 a

0)O

CD

E

Time (MCS)
Fig. 2 b
Fig. 2. N um ber of cells (helper T-cells and virus) versus time step at various m utation rates 
Pmm w ith the cellular mobility Pmob = 0.0(a), 1.0(b). Sample of size 100 x 100 is used w ith up 
to 50 independent runs.

8e+03

6e+03

4e+03

2e+03

0e+00
0.0 100.0



1 5 2  R. M annion, H . J. Ruskin and R. B. Pandey

N y s  increases very slowly, N hs remains unchanged on increasing Pmut 
from  0.79 to 0 .88. The helper cells dom inate over the viral population. In 
the high m utation rate regime, on the other hand, the viral population  in
creases m uch faster to a constant value while the popu lation  of helper T- 
cell decays system atically on increasing the m utation rate. Thus, the viral 
population dom inates over the helper cell (N vs > N h s)- W ith cell m obility 
(Pmob =  1), both helper cells and viral cells show  a speedy increase to con
stant values and the viral population  dom inates over the helper cells at 
P m„t > 0 .81  (see fig. 2(b)). Thus, cellular m obility  enhances the viral effect. 
The results for the less-restricted m obility are presented here and differ 
from  the restricted case on ly fo r Pmut >  Pcrit> leading to higher equilibrium  
population value for V. We w ould like to em phasise that the cellular 
grow th pattern is different to that o f our recent M C  study [14] which 
lacked inter-cellular inter-site interaction as in A(iii). C om pared  with our 
previous M C  m odel [14], the cell populations are significantly decreased 
while the critical m utation rate is significantly higher. A lso  the viral p o p u 
lation in this study never exceeds the helper population  below  the critical 
m utation rate, even at the initial stage o f infection. T hus, the specificity of 
the local medium  as considered here, (interaction A(iii)), is im portant in 
controlling the grow th pattern of cells. Further, oscillation  in cellular 
populations as found for stochastic cellular autom ata (S C A ) [13] does not 
appear here as in our first M C  study [14],
In order to provide an estimate o f an M C  time step with the order o f m ag
nitude in real time, we have to look  at the clinical data such as the varia
tion o f H IV  R N A  copies in plasm a, culturable plasm a viremia, and 
C D 4  cell (H elper cell) counts with weeks and years reported by Fauci et 
al. [15]. The growth and decay of helper cells w ith high viral m utation cru
dely resem bles that o f clinical data. Accordingly, about 300 M C  tim esteps 
corresponds to the order o f about 10 years in clinical data. We would, 
however, like to caution that this com parison should not be taken literally 
since the growth and decay time depends on the size o f the lattice.
The variation of equilibrium  cell density with the m utation rate m ay pro
vide an estimate o f immune progression. F igure 3 show s such a variation. 
We see that the viral density increases while the helper cell density decays 
m onotonically beyond a critical value, P c. In absence o f cellular m obility 
(Pmob =  increase in viral density above Pc =  0.884 show s a continuous 
transition to a progression  of infection with P mut. The decay of helper cell 
density, likewise, describes a continuous depletion o f im m uno-com pe- 
tence. For Pmut < P „  helper cell density (pn) is larger than the viral density 
(,Py) and the density difference, Ap = Ph ~ Pv, remains constant. O ne may 
interpret the region Pmut < P C as a latent state while P mut > Pc indicates a 
state o f H IV  with a continuous progression  o f infection above the critical 
threshold. N ote  that the cell m obility changes the progression  consider
ably (Fig. 3). Below  the critical m utation rate (Pc c* 0.820), we see a con-
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Fig. 3. Equilibrium  densities of helper T-cells (pH) and virus (py) versus m utation rate (Pmut)- 
(Statistics are as fo r Figure 2).

stant decay o f im m uno-com petence as A/? decreases w ith PmM. A bove the 
threshold m utation P c, Ap increases with Pmin, illustrating the advance to 
com plete collapsc o f the im m une system  which characterizes A ID S.
From  the variation o f the cell density in Figure 3, it is interesting to see 
the contrast in the grow th and decay o f virus and helper T-cell density 
count, with (Pmob =  1) and without (P„lob =  0) the cell m obility. O ne may 
treat the cell densities or their density difference, Ap0 = p v ~  Ph , as an or
der param eter to analyze the type o f transition at the threshold m utation. 
A  close exam ination o f the variation (Figure 4), suggests a continuous 
phase transition for Pmob =  0, i. e.,

Ap0 ~  AAPP, (3)

where AP =  Pmu[-  Pc and A  a constant. In presence o f cell m obility 
(Pmob -  1)> the phase transition is sm eared out (see F ig. 4). From  a log-log 
plot (Figure 5) o f the variation of the order param eter (Ap0) with AP, we 
estimate the exponent/? ~  0.574 ± 0 .0 1 6 . In the presence o f m obility  we 
find A p0 ~  (5.976 ±  0.013) A P.
In summary, effects o f a local m ediator for cellular interaction are consid
ered to enhance the stim uli factors in an H IV  im m une response m odel, in-
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Fig. 4. Variation of the difference in cell density (Ap =  P v ~  Ph ) w ith the m utation rate. (Sta
tistics are as for Fig. 2 and 3).
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Fig. 5. Im m uno-deficient order param eter (Ap0) versus (Pmu, -  Pc) above the m utation  thresh
old (Pc = 0.884) on a log-log scale for Pmot, = 0. (Statistics are as for previous Figs).
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vestigated b y  an M C  sim ulation. Enhanced local interaction changes the 
pattern of infection progression. G row th o f cell populations are studied  as 
a function o f viral m utation rate for m obile (P mob =  1) and im m obile 
{Pmob -  0) cells. F or mutation below  the threshold (Pc), the helper cells 
control the im m une system , while viral grow th w eakens the im m une re
sponse above Pc. T he transition from  im m uno-com petent state to im m u- 
no-deficient state and its progression  depends on P mob- In the absence o f 
mobility, Pmob =  0 , Ap =  p u  -  pv  is positive and constant (im m uno-com pe- 
tent) at Pm„, below  the threshold (Pc ~  0.884). Viral density continues to 
grow and helper T-cell density count continues to decay above the thre
shold mutation. The transition from  im m uno-com petent to im m uno-dcfi- 
cient state is less extreme than for P,„„b =  1 (Fig. 3) and is characterized by 
an exponent fi ^  0.574 ±0 .016 . In the presence o f  mobility, on the other 
hand, the difference in helper cell and viral densities (Ap) continues to de
crease with mutation below the thresold m utation (/V = 0.82). The im m u- 
no-dcficient order param eter (Apa) increases linearly w ith the m utation 
above the threshold. Thus, cell m obility  is im portant in controlling the 
threshold and the growth pattern of cells, i. e., the progression  o f infection.
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Figure  C aption s:

Figu re  1: Typical snapshots of helper T-cells (square) and virus (star) at time steps 
I =  75(a), 149(6),223(c), 297(d) for Pmiit =  0.90 in absence of cell mobility on a 
100 x 100 lattice.

F igu re  2: Number of cells (helper T-cells and virus) versus time step at various 
mutation rates Pmut with the cellular mobility Pmob =  0.0(a), 1.0(6). Sample of size 
100 x 100 is used with up to 50 independent runs.

F igu re  3: Equilibrium densities of helper T-cells (/>h) and virus (py ) versus mutation 
rate (Pmut)• (Statistics are as for Figure 2).

F igu re  4: Variation of the difference in cell density (A/> =  pv~pn)  with the mutation 
rate. (Statistics arc as for Fig. 2 and 3).

F igu re  5: Immuno-deficient order parameter (A/;„) versus (Pmut — Pc) above the 
mutation threshold (P(: =  0.884) on a log-log scale for Pmoi> =  0. (Statistics are as for 
previous Figs).
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Summary: A M onte Carlo sim ulation is proposed to  study the dynamics of helper T- 
cells (N fj) and viral (N v) populations in an im mune response m odel relevant to  HIV. 
C ellular states are binary variables and the interactions are described by logical expres
sions. Viral population shows a nonm onotonic grow th before reaching a constant va
lue while helper T-cells grow to a constant after a relaxation/reaction time. Initially, 
the population of helper cells grows w ith  tim e w ith a power-law, before
reaching the steady-state; the grow th exponent/? increases systematically (ft ~  1 - 2 )  
w ith the m utation rate ^  0.1 -0 .4 ) . The critical recovery time (tc) increases ex
ponentially w ith the viral m utation, tc ~  A e w ith a  -  4.52 + 0.29 in low  m utation 
regime and a =  15.21 ±1.41 in high m utation regime. The equilibrium  population  of 
helper T-cell declines slowly w ith P„lu, and collapses at ~ 0.40; the viral population  ex
hibits a reverse trend, i.e., a slow increase before the burst around the same m utation 
regime.

Introduction and M otivation

A  considerable interest has been recently directed tow ard m odeling the 
population  dynam ics o f cells in an im m une response to HIV. In com puta
tional m odeling o f population dynam ics, two approaches have em erged in 
last decade: continuum  [1-4] and discrete m ethods [5—16]. The discrete la t
tice m ethods have becom e increasingly popular due to their sim plicity  in 
direct im plem entations particularly with the rule-based cellular interac
tions. C ellular A utom ata (C A ) [6—8] approach has been frequently used in 
recent years to study the population  dynam ics o f cells in a variety  o f im 
mune response m odels [10]. In m ost C A  approaches [7, 10, 15], parts o f

http://www.urbanfischer.de/journals/theorybiosc
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the rule based intersite cellular interactions are im plem ented sim ultan
eously to all cells synchronously in order to assign their tem porary  inter
m ediate states which are then follow ed by a set o f inter-cellular interaction 
rules at each lattice site to update their states at the next time step [11]. R e
cently, the m obility o f cells are considered stochastically  in a stochastic 
C A  (SC A ) [17] in order to take into account cellular m otility along with 
synchronous update with independent rules as in traditional C A . In this ar
ticle wc present a com puter simulation method in which the cellular states 
resulting from  the cellular interaction are updated stochastically and ran
dom ly with one update at a step (see below). C e ll’s m obility is also con sid
ered stochastically with a m otility criteria as before [17]. The direct M onte 
C arlo  (M C ) sim ulation presented here is, thus, an alternate approach to 
C A  m ethods and is a viable approach to study population growth in sy s
tems as com plex as HIV immune response [18, 19]. In the follow ing; the 
model is described with a sim ple interaction already used before [17] to 
study the effect of viral m utation on the population of helper cells.

Model

We consider a cell mediated im m une response with four cell types: m acro
phages (M ), helper T-cells (H ), cytotoxic T-cells (C ), and antigen/virion 
(or virus carrying cells) (V). The cellular states are described b y  a binary 
variable, i.e ., their high concentration b y “ l ” and low  concentration 
by “ 0” . A s before [11], a set o f boolean expressions can be used to de
scribe the cellular interaction,

M (t +  1) =  M (t) .or .V (t), (!(<*))

H (t +  1) m [M (t).or.H (t)\.and\notV (t)\,

C ( i  +  1) =  M (t).and.H (t).and.V (t), ( l ( c))

V(t +  1) =  [.H (t).or.M (t).or.V (t)\.and.[notC(t)], 0 ( ^ ) )

where the states of the four cell types at time t +  1 are evolved from  their 
states at tim et. Equation (1(a)) describes the grow th of m acrophages 
which will be in their high concentration (M(t +  1) =  1) state at tim e step 
t + 1 if they were already in this state (M (t) =  1) (a self-propagating inter
action) or if a viral infected cell w as present (V (t)=  1) or both m acro
phages and virus are present at time t. O ther equations ( l(b -d ))  refers si
milar grow th conditions for M, H  and C  [11].
The four cell types lead to sixteen configurations. This interaction set was 
analyzed in detail [11] with a mean field approach where all cells o f each 
cell type behave in the same w ay regardless o f their location in space, an 
infinite range interacting system  [5]. Iterating the above equation from  a
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random  configuration leads to a flow  diagram . O ne m ay easily check [11] 
that there are two fixed points, an im m unocom petent (absence o f all 
activated cell types) and an im m unodeficient (presence o f m acrophages 
and virus, and absence of helper and cytotoxic T-cells), and a cycle o f peri
od two am ong the “ infected” (presence o f m acrophages, helper cells, and 
virus, and absence o f cytotoxic cells), “ severely in fected” (presence o f all 
but the helper T-cells), and “ susceptible” (absence o f all bu t the activated 
m acrophages) configurations. Thus, this interaction captures som e general 
characteristics o f im m une response in H IV  infection [18, 19].
We consider a discrete lattice o f size L  X L  to incorporate the effects of 
m ediators, grow th factors, effectors etc. [18, 19] via local interactions. In
itially, a small num ber of each cell type (typically one of each), are ran
dom ly distributed am ong a fraction p  o f the lattice sites. A  site can be oc
cupied by four different ceil types, however, m ore than one cell o f one 
type is not allowed at a site. A site i is referred as occupied b y  a cell type c 
if die state of the cell type c is 1 (high concentration); the cellular state ‘O’ 
is referred as an em pty site for the cell type. The num ber o f cells grow  and 
decay as we im plem ent the cellular interactions and update their states 
using the follow ing steps:

(A) Random  sequential update o f cellular state:
(i) select a site i randomly.

(li) find the sum  5t(c) o f each cell type (c) over their four neighbors and 
the cell at site i: if si(c)' >  1 then assign an interm ediate state Si(c)' =  1 
otherwise i,(c )/ =  0 .

(ui) U sing the current state si(c)' o f cells at site i, im plem ent the inter-cel
lular interaction (eq. (1)) am ong different cell types, to update their 
state, i. e., M, H , C  and V at site i.

(iv) Repeat steps (i)-(iii) L 2 times.
(B) M utation: viral mutation is considered probabilistically  in the pre

ceding step A (iii) where inter-cell interactions (eq. (1)) are im ple
mented. Because a virus cannot be recognized b y  the host cells, the 
viral state is set to V =  0 w ith the m utation probability  Pmut in 
eq. 1(a) and (c). This enhances the advantage o f viral action over the 
host cells.

(C ) Random  sequential move with im m unological m otihty criteria: we 
set the m obility rate Pmob in the beginning of sim ulation, 
0 < P mni ,< \  where Pmoy -  0 means no m obility  and Pmnb = 1 de
scribes highest mobility. The follow ing steps (i-viii) are perform ed 
with probability  Pmob to im plem ent the cell m obility  [17]:

(i) select a site, say, i randomly,
(it) select a cell type (c) at the site i randomly.

(iii) IF  the cell type c is present at site i, T H E N
(iv) select one of the nearest neighbor s ite /;
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(v) IF  the cell type c is absent at site;', T H E N
(vi) attem pt to m ove the cell type c from  site i to s ite ;.  In order to ac

cept the m ove further specific m otility criterion [17] m ust be satis
fied, namely, s ite ; ’ m ust have a viral infected cell, i. e., V =  1 for 
m acrophages and cytotoxic cells to move while either m acrophages 
or helper cells m ust be present (M or V), (note this is a less restric
tive criteria than in [IF]) at s ite ; for virion to  m ove to site j.

(•vii) Go  to step (i) in case any of the above “ IF ” fails.
(viii) Repeat steps (i)-(vii) 4 x £ 2 times.

The above procedures (A -C ) carried out sequentially defines a unit M onte 
C arlo  step (M C S). Sim ulation is perform ed for a fixed num ber o f time 
steps with a num ber of independent runs for each m utation probability  
with different m obility rates. The hopping procedure and m utation m e
chanism adopted here are specific to this m odel and m ay depend on the 
type of im m une response. F or example, helper T-cells m ove to their neigh
boring em pty sites with and without presence o f other cell types. It is en
visaged that the helper cells have m ore m obility since they play a key role 
in orchestrating the im m une response.

Results and Discussion

Sim ulations are perform ed m ostly on a 1 0 0 x 1 0 0  lattice with a very low 
initial concentration of each cell type, typically one of each distributed 
randomly. D ifferent sam ple sizes are used to check for severe finite size ef
fects. The qualitative results presented here are independent o f the lattice 
sizes within the statistical fluctuations. We vary the m utation rate, 
PmM =  0 .0 -  0.50 for m obility Pmoy -  0 and 1. U p  to 50 independent sam 
ples are used to m easure the average num ber o f cells. We m onitor the p o 
pulation o f each cell type with time steps as a function o f m utation rate. 
Population of m acrophages reaches its m axim um  constant value in a rather 
short time steps, therefore, we focus mainly on the population  o f helper T- 
cells and virus.
Figure 1 show s the evolution of cells (H , V) population  as a function o f 
viral mutation rate. In absence of viral m utation (PmM — 0-0), we see that 
the population  o f helper cells (N h ) increases rather fast to a constant value 
(.N hs)• Let us define the recovery response period (a relaxation time) as 
the num ber of time steps (r) needed to approach the equilibrium  p o pu la
tion value. Increasing the viral m utation increases this relaxation time 
while reducing the equilibrium  population o f helper cells Viral p o 
pulation, on the other hand, grow s nonm onotonically, a rapid increase is 
follow ed b y  a decay before reaching a constant equilibrium  value (N v$). 
The equilibrium  viral population (N v$) increases, though slowly, with the
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Fig. 1. N um ber of cells (helper T-cells and virus) versus time step at various m utation rate 
P mu, =  0.0 -  0.5 w ith the cellular m obility  p mob = 0.0(<*), l.O(^). Sample of size 100x100 is 
used w ith 10 independent runs.
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m utation rate. Beyond a certain threshold o f m utation rate (Pcmut ~  0.4), 
the viral population  grow s much faster while the helper T-cell populations 
deplete. Although, the qualitative grow th pattern o f cell populations re
main unchanged by incorporating the m obility (fig 1(b)), the grow th of 
viral population is further enhanced b y  m obility  w hile the growth o f T- 
cells population  is som ew hat reduced. It is w orth pointing that unlike re
cent results o f an stochastic cellular autom ata (SC A ) approach [17], w e do 
not observe oscillation in cell populations. It is rather easy to identify  the 
equilibrium  value of the cell populations in our M C  approach. The varia
tion of the equilibrium  values with the m utation rate m ay be useful in un
derstanding better the response and grow th process as follow s.
O ne of the m ost difficult and frequently asked questions in such sim ula
tions is, how does the num ber o f time steps is related with the real time. It 
is tem pting to m ake a crude estim ate via qualitative com parison  with the 
clinical data. From  the variation o f H IV  R N A  copies in plasm a, culturable 
plasm a virem ia, and C D 4  cell counts with w eeks and years reported by 
Fauci et al. [17], it appears that the non-m onotonic grow th pattern o f virus 
population in figure 1 could be com pared w ith the variation o f H IV  R N A  
copies or viramia. With this assum ption, 12 weeks could be o f the order o f 
300 M C S time i.e., one time step is equivalent to six hours. We should cau
tion however, that the viral mutation rate, an independent (constant) should

Time (MCS)

Fig. 2. Typical variation of the helper T-cell population with tim e steps in early stage of re
sponse (data from fig. 1(b) for Pmu, = 0.37 in the range of 200-350 MCS) on a log-log scale.
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be factored in m aking a better estim ate o f time. A t present we do not know, 
how the viral m utation used here depends on tim e in clinical finding. There
fore, it is difficult to com pare the grow th rate w ith time step alone w ithout 
considering the m utation rate as we see below.
R ate o f grow th of activated helper T-cells w ould  be an interesting quantity 
to m onitor during the progression  o f initial infection. We can stu dy  the 
growth rate o f helper cells by  analyzing the data in a range where po pu la
tion show s a well defined dependence. F igure 2 show s the variation of the

helper cell population  with time step less than 
x on a log-log scale. The linear variation o f 
the data in the interm ediate tim e regim e su g
gests the possib ility  o f a pow er-law  grow th of 
the T-cell population  (A///) with time (t), i. e.,

N h ~  tf1 (2)

We estim ate the values o f the grow th expo
nent/? at various m utation rate (see table 1). 
N ote  that the exponent increases system ati
cally (/? ~  1 -  2) with the m utation rate 

(PmM -  0 .1 0 -0 .4 3 ) . This implies that the helper cells grow  faster as the 
virus m utates, but levels off faster as they conquered b y  the virus.
From  figure 1, we see that the viral population  is larger than the helper T- 
cells initially, but the helper cells grow  and overtakes the viral population  
at Pmut — 0.0 -  0.40. Let us define a critical recovery time (fc) in w hich the 
population of helper cells {N H) becom es larger than the viral population  
(Ny). We find that the critical time, i0 depends on the m utation rate. F ig 
ure 3 show s a tc versus Pmut on a norm al-log scale, which suggests expo
nential dependence,

tc ~  AeaPm

with a  =  4.52 ± 0 .2 9  in low m utation regim e and a  =15 .21  ± 1 .4 1  in high 
mutation regime. Thus, there is a crossover from  a relatively slow  recover
able time period to a collapse regime at around Pmut ~ 0.4 when tc rises 
much faster. This means that the highly active anti-retroviral therapy 
(H A A R T ) has to be adm inistered before the crossover mutation rate de
velops in order to sustain the recovery.
In order to see the relative progression  of cell counts, we present the var
iation of equilibriun cell density with the mutation rate in figure 4. We 
see a slow  decline in T-cell density and increase in viral density fo r PmM 
up to 0.40 beyond which the viral density explodes while the T-cell den
sity collapses. A round this m utation threshold, the population o f T-cells 
and viruses fluctuates which m ay be a region where opportunistic infec
tions may occur. Thus the range o f low m utation rate (PmM<  0.33) could

T ab le  1 G ro w th  ex p o n en t fi

p1 mut P

0.10 1.00
0.20 1.21
0.30 1.40
0.35 1.44
0.37 1.50
0.40 1.63
0.43 1.93
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0.10 0.20 0.30 0.40 0.50
Probability of Mutation

Fig. 3. Critical recovery time step versus viral m utation rate on a semi-log scale. Statistics is 
the same as in fig. 1(b).

be interpreted as the latent period of virions infection where host im 
mune cells are able to control the recognizable virions (fig. 3 and 4). The 
crossover regime (Pmut — 0 .3 5 -0 .4 1 )  corresponds to prolonged period of 
infection where com petition between host cells and virus becom es in 
tense. This regime, though appears narrow in the m utation range, m ay 
corresponds to a long period (order o f 5-8  years) in real time [18]. The 
range o f m utation above the threshold (PmM> 0 A 0 ) relates to an ad 
vanced stage [18] leading to death. We w ould  like to em phasize that even 
a slight increase in m utation rate results in a change from  a latent to  an 
advanced state o f disease.
In sum m ary we have presented a M C  sim ulation to study the grow th o f cel
lular elements in a cell-m ediated im m une response relevant to H IV  infec
tion. In contrast to cellular autom ata approaches, the oscillation in cellular 
population is vanished. We find that the viral mutation rate is very im por
tant in orchestrating the growth rates o f cells and their equilibrium  density. 
From  the p lot o f recovery tim e with the m utation rate, we are able to p ro 
vide an exponential growth pattern (eq. 3) which shows a crossover from  a 
slow  progression  o f infection to a rapid advance leading to collapse. These 
observations are consistent with our analysis of relative cell density count 
with the m utation rate -  a slow  decline o f T-cell counts with som e fluctua
tion before collapse with an opposite trend in viral density.
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l;ig. ‘I. Equilibrium  density of helper T-cclls and virus versus m utation rate w ith the same sta
tistics as in fig. 1(b).
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E ffects o f V ira l M u ta tio n  
on C ellu lar D yn am ics in a  M on te  C arlo  

sim ulation  o f H IV  im m une resp o n se  m odel in T h ree  D im en sions

R . M an n io n  an d  H . J .  R u sk in

Sch oo l o f  C o m p u te r  A p p lic a tio n s  

D u b lin  C ity  U n iv ersity , D u b lin  9, Ire la n d

R .B .  P a n d e y

D e p a r tm e n t o f P h y sic s  an d  A stro n o m y  

U n iv e rsity  o f So u th ern  M iss is s ip p i, H a tt ie sb u r g , M S  3 9406-5046

A b s t r a c t :  T h e  ce llu lar  d y n am ics  o f H IV  in te ra c tio n  w ith  th e  im m u n e  sy s te m  is 

exp lo red  in 3 -d im en sio n s u sin g  a  d irec t M on te  C a r lo  s im u la tio n . V ir a l  m u ta tio n  w ith  

p ro b a b ility , P mU£, is con sid ered  w ith  im m o b ile  a n d  m ob ile  cells. W ith  im m o b ile  cells, v ira l 

p o p u la t io n  b e c o m e s la rg e r  th an  th a t  o f  th e  h e lp er  cells b ey o n d  a  la te n c y  p e r io d  Tcrit an d  

ab o v e  a  m u ta tio n  th resh o ld  Pcrit. T h a t  is a t  P mut >  P crit , Tcrit oc (P mut -  P c r it)~ ^ , w ith  

7  ~  0 .73  in th ree  d im en sio n s a n d  7  ~  0.88  in 2D . V ery  lit t le  d ifferen ce in  P crit is  o b serv ed  

betw een  two a n d  th ree  d im e n sio n s. W ith  m o b ile  cells, 110 p ow er-law  is  o b se rv e d  for th e 

p e r io d  o f  la ten cy , b u t  th e  d ifference in Pcru  betw een  tw o an d  th ree  d im e n sio n s is  in crea sed . 

T h e  tim e -d e p en d e n cy  o f th e d en sity  d ifferen ce  betw een  V ira l an d  H e lp e r  cell p o p u la t io n s  

(Pv  ~  P h ) iR e x p lo red  an d  fo llow s th e  b a s ic  p a t te r n  o f an  im m u n e re sp o n se  to  in fection . 

T h is  is m ark e d ly  m ore  defined th an  in the 2-D  c a se , w here 110 c lear  p a t te r n  em erges.
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In trod uction : T h ere  h ave  b een  m an y  m o d e ls  o f  ce llu la r  p o p u la t io n s  u s in g  ru le -b a se d  

in te ra c tio n s, in p a r t ic u la r  th o se  o f C e llu la r  A u to m a ta (C A ) ,  p r o b a b il is t ic  C A  (P C A ) ,  a n d  

s to c h a st ic  C A  (S C A ) ,  (P ere lso n  &  W eisb u ch , 1997; D a y a n  et a l, 1988; de O liv e ira  e t  al, 

1999; P an d e y , 1996; C h o w d u ry  et a l , 1991 ; S ta u ffe r  &  P a n d e y  , 1992 ; P an d ey , 1991; 

C a stilg lio n e , 1997 ; A h m ed , 1996 ; K a n e k o , 1997; M ielk e  &  P a n d e y  ,1 9 9 8 ; P an d ey , 1998) 

. M o st  C A  a p p ro a c h e s  (D a y an  et a l, 1988; de  O liv e ira  e t a l, 1999 ; P an d ey , 1996 ; d o s 

S a n so s , 1999 ) u se  sy n ch ro n o u s u p d a t in g , th e reb y  en su rin g  t h a t  th e  ce llu lar  in te ra c t io n s  

a t  each  s ite  a re  im p lem en ted  s im u ltan eo u sly . T h e  m o b ility  o f  ce lls w as recen tly  c o n sid e re d  

v ia  an  S C A  (P an d ey , 1998) m o d e l w ith  t r a d it io n a l C A  sy n ch ro n o u s u p d a t in g . O th er 

m o d e ls  h ave  a lso  recen tly  b een  in v e s tig a te d , w here a sy n c h ro n o u s r a th e r  th a n  sy n ch ro n o u s 

u p d a te s  o ccu r  (M an n io n  et a l 1 999a ; M an n io n  et a l 1 9 9 9 b ). T h e  s ite s  in  th is  a p p ro a c h  

are  chosen  ra n d o m ly  a n d  ce llu lar in te ra c t io n s  a re  th en  im p le m en ted  w ith  im m o b ile  an d  

m ob ile  cells. V ery  recen tly  th e e ffects o f  s t im u li w ere en h an ced  b y  in crea s in g  th e  in te ra c tio n  

am o n g  n e ig h b o u rin g  cells (M an n io n  et a l; 1 9 9 9 b ). H ow ever, th is  s tu d y  w as p e r fo rm e d  in 

two d im en sio n s, w h ereas th e  h o st sp a c e , (th e  ly m p h  n ode a n d  o th er se c o n d a ry  ly m p h o id  

o rg an s , w here an tigen  driven  re sp o n se s  o c c u r) , is c lo ser to  th ree  d im en sio n s. W e th ere fore  

ex ten d  th e earlier  s tu d y  here to  th ree  d im e n sio n s. A lth o u g h  we do n o t find a  d r a m a t ic  

ch an ge in ce llu lar  grow th  p a t te r n s  in go in g  fro m  2-D  to  3-D , th e  flu c tu a t io n s  in d a t a  (for cell 

p o p u la t io n s)  a re  red u ced . T h e  m o d e l is p re se n ted  below , w ith  in te ra c tio n  se ts  d e sc r ib e d , 

w hich in c o rp o ra te  p ro b a b ilis t ic  m ech an ism s for m o b ility  a n d  m u ta tio n , d e scr ib ed . T h e  cell 

p o p u la t io n s  a re  d iscu sse d  a s  fu n ctio n s o f  m u ta tio n  an d  m o b ility  an d  a lso  c o m p a r it iv e ly  

w ith  the p re v io u s  2-D fin d in gs.

A s b e fo re , we con sider a  cell m e d ia te d  im m u n e re sp o n se  w ith  four ce ll ty p e s : 

m a c ro p h a g e s  (M ), h e lper T -ce lls  (H ), c y to to x ic  T -ce lls  (C ) ,  a n d  a n tig e n /v ir io n  (o r v iru s 

ca rry in g  ce lls) (V ) each  w ith  a  b in a ry  ce llu la r  s t a t e  to  rep resen t th eir  h igh  (” 1” ) an d  low 

(” 0” ) c o n ce n tra tio n s. A  se t  o f b o o le a n  e x p re ss io n s  can  b e  u sed  to  d e sc r ib e  th e  in tra -site  

ce llu lar  in te ra c tio n s  [8],

w here the s t a t e s  o f  th e four cell ty p e s  a t  t im e  t +  1 evolve fro m  th eir  s t a t e s  a t  t im e  t. T h is  

in teractio n  se t , (E q . 1) h a s been  p re v io u sly  a n a ly ze d  in d e ta il w ith  a  m ean  field ap p ro ac h  

(P an d ey , 1 9 9 1 ). T h is  a n a ly s is  fou n d  th a t ,  s t a r t in g  w ith  an y  ra n d o m  co n fig u ra tio n  o f  th e 

six teen  p o ss ib le  co n fig u ra tio n s an d  a p p ly in g  th e ab o v e  e q u a tio n s , le ad s to  a  flow d ia g ra m

M odel:

M (t  +  1) =  M (t ) .o r .V ( t ),

H (t  +  1) =  [M  (t) .o r .H  (t)].an d .[n o tV (t)]i 

C (t  +  1 ) =  M (t ) .a n d .f f ( t ) .a n d .V ( i ) ,

V ( t - 1- 1 ) =  [H (t) .o r .M (t) .o r .V (t)] .a n d .[n o tC (t)] ,

( ! ( « ) )

( 1 (6))

(1 (c))

(1(d))
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w ith  tw o fix ed  p o in ts , w hich have a  cy c le  o f  p e r io d  tw o. T h e  fix ed  p o in ts  rep re sen t s t a t e s  o f 

’’ im m u n o c o m p e te n c y ” an d  ” im m u n o d efic ien cy ” , w hile  th e  cy c le  in c lu d e s in fected , sev ere ly  

in fected , a n d  su sc e p tib le  s ta te s .

In o rd er to  in co rp o ra te  th e  e ffects o f  m e d ia to r s , grow th  fa c to r s ,  e ffec to rs (M an n io n  et 

al 199 9 a , M an n io n  et a l 19 9 9 b ) v ia  lo c a l in te ra c tio n s a n d  to  s tu d y  th e  p o p u la t io n  o f  cells, 

we con sider a  d iscre te  s im p le  cub ic  la t t ic e  o f  size  L  x  L  x  L  . T h e  m o d e l is in it ia te d  w ith  a  

ran d o m  d is tr ib u tio n  o f a  sin g le  M  a n d  a  sin g le  V . A  s ite  can  b e  o c c u p ie d  b y  four d ifferen t 

cell ty p e s , w ith  a  m a x im u m  o f one cell o f  each  ty p e  p o ss ib le  a t  a  s ite . A  s ite  i is re fe rred  

to  a s  o ccu p ied  b y  a  cell ty p e  ic  i f  th e  s t a t e  o f  th e  cell ty p e  ic  is  1 (h igh  c o n c e n tra tio n ); th e  

ce llu lar  s t a t e  ’O’ , (low c o n ce n tra tio n ), is re fe rred  to  a s  an  e m p ty  s ite  for th e  cell ty p e . T h e  

cell p o p u la t io n s  ch an ge  a s  we im p le m en t th e  ce llu lar  in te ra c t io n s  an d  u p d a te  th e ir  s t a t e s  

u sin g  th e fo llow ing ste p s:

( A )  R a n d o m  seq u en tia l u p d a te  o f ce llu lar  s ta te :

( i ) se lect a  s ite  i ran d om ly .

( i i ) find th e  su m  Si(ic) o f each  cell ty p e  (ic) over th e  n e ig h b o rin g  s ite s  ( s ix  n e igh b o rs for 

3-D ) a n d  th e cell a t  s ite  i: if Si(ic) >  1 th en  a ss ig n  an  in te rm e d ia te  s t a t e  Si(ic)' =  1 

o th erw ise  Hi(ic)' =  0 .

(iii) w ith  th ese  in te rm e d ia te  s ta te s  (¿ '¿(ic)' =  M ' , V7 for ic  =  1 ,2 ,3 ,  a n d  4 re 

sp e c tiv e ly ), ev a lu a te  th e  co rre sp o n d in g  s t im u la te d  s t a t e s  ( s i ( ic ) "  =  M " , H " , C " ,  H " ) ,  

u sin g  th e  fo llow ing re la tio n s ,

M " =  M '.o r .V ' (2 (a ) )

H " =  H '.o r .M 1 (2 (6))

C " =  C  .o r .H ' (2 (c ))

V " =  V '.o r .H ' (2 (c ))

N o te  th a t  th is  se t o f in te ra c tio n s  is  im p lem en ted  in a d d it io n  to  in te ra c tio n  (1 ), in th e  

fo llow ing s te p  (iv ), to  tak e  in to  ac c o u n t IL 2 , cy to k in es an d  o th er e ffec to rs w hich en h an ce  

th e reac tio n .

(iv) U sin g  th e  cu rren t s ta te  s'i(ic )"  o f  ce lls a t  s ite  i, im p lem en t th e  in te r-ce llu lar  in te ra c tio n  

(E q . (1 )) am o n g  d ifferen t cell ty p e s , to  u p d a te  th e ir  s t a te ,  i.e ., M , H , C  an d  V  a t  s ite  

i.

(v) R e p e a t  s te p s  (i) — (iv )L 3 t im es.

( B )  M u ta t io n : v ira l m u ta tio n  is co n sid e re d  p ro b a b ilis t ic a lly  in th e  p reced in g  s te p  A (iii )  

w here in ter-cell in te ra c tio n s (E q . ( 1 )) a re  im p lem en ted . W ith  p ro b a b ility  (Pmut)i a 
v iru s m u ta te s  such  th a t  th e h o st  ce lls no longer recogn ize  it ; then  V = 0  in E q  (1 (a ) ,  

1 (c )).
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( C )  R a n d o m  se q u e n tia l m ove w ith  im m u n o lo g ica l m o b ility : we se t  th e  m o b ility  r a t e  P mob 
in th e  b e g in n in g  o f s im u la tio n , 0 <  Prnob <  1 w here Pmob =  0 r e p re se n ts  no m o b ility  

an d  Pmob =  1 d e sc r ib e s  h ig h e st m ob ility . T h e  fo llow in g s t e p s  ( i —v i i i ) a re  im p lem en ted  

w ith p ro b a b ility  Pmob'- 
(i) se lect a  s ite  i  ran d om ly ,

(ii) se lec t a  cell ty p e  (ic ) a t  th e  s ite  i ran d om ly .

(m )  I F  th e  cell ty p e  ic  is p re se n t a t  s ite  z, T H E N

( iv ) se lect one o f th e  n e are st  n e igh b or s ite s  j ]

(i>) I F  th e  cell ty p e  ic  is a b se n t  a t  s ite  j , T H E N

(v i) W ith  p ro b a b ility  P mob a t t e m p t  to  m ove the cell ty p e  ic  fro m  s ite  i to  s ite  j .  In  o rd er 

to  a c c e p t  th e  m ove, fu rth er  sp ec ific  c r ite r ia  [ 1 6 ]  m u st b e  sa tis f ie d , n am ely , s ite  j  m u st 

have a  v ira l in fected  cell, i.e ., V  =  1 for m a c ro p h a g e s  an d  c y to to x ic  ce lls to  m ove, 

w hile b o th  m a c ro p h a g e s  a s  w ell a s  h e lper cells m u st  b e  p re se n t  (M  =  H  =  1) a t  s ite  

j  for v irion  to  m ove to  s ite  j .

(v ii)  G o  to  s te p  (i ) in c a se  an y  o f th e  a b o v e  ” I F ” c o n d itio n s fa il.

(v iii)  R e p e a t  s te p s  (?) — (v ii) 4 x  L 3 t im es.

T h e  ab o v e  p ro c e d u re s , ( A  — C ) ,  c arrie d  ou t seq u en tia lly , d efin e a  u n it M on te  C a r lo  s te p  

(M C S ) . W e p erfo rm  the s im u la tio n  for a  fixed n u m b er o f  t im e  s te p s  w ith  a  n u m b er  o f 

in d ep en d en t ru n s for each  m u ta tio n  p ro b a b ility  an d  for m a x im u m  an d  zero m o b ility .

R e su lts  and  D iscussion : S im u la t io n s  are  p erfo rm ed  m o stly  on a  3 -d im e n sio n a l 50 x  

50 x 5 0  la tt ic e  w ith  a  very  low  in it ia l co n cen tra tio n  o f M  an d  V , ty p ic a lly  one o f  each  

d is tr ib u te d  ran d o m ly . D ifferen t la t t ic e  sizes i.e 203 an d  3 0 s a re  a lso  u sed  to  check  for 

fin ite  size  e ffects. T h e  q u a lita t iv e  re su lts  p re se n ted  here a re  in d ep e n d e n t o f sa m p le  size, 

un less sp ec ified . T h e  grow th  p a t te r n s  o f th e  H elp er  an d  V ira l C e lls  in th ree  d im e n sio n s 

a re  s im ila r  to  p a t te r n s  in 2-D  s im u la tio n s  (see  F ig . 1 )  . T h e  t im e-d e p en d e n t g ro w th  o f  th e 

d en sity  d ifferen ce betw een  V ira l an d  H elp er p o p u la t io n s , i.e . p v  — P h , w as in v e s tig a te d . 

T h is  re p re se n ts  th e  figh t for co n tro l betw een  th e im m u n e sy s te m  an d  th e  v ira l in vader. 

A ty p ica l v a r ia tio n  w ith  t im e s te p  is p re se n ted  in F ig u re  1 an d  is i l lu s tra te d  for Pmob =  1 

which e x h ib its  th e  m ore in te re stin g  fe a tu re s . T h e  v iru s  reach es a  p e a k  a p p r o x im a te ly  ten  

t im e ste p s  a fte r  th e  s t a r t  o f  in it ia l in fection . T h is  c o rre sp o n d s  to  th e  e a r ly  in fection  p er io d , 

w here th e  in vad er e x p lo its  th e  im m u n e s y s te m ’s lack  o f aw aren ess  o f  in fection  to  ga in  th e 

u p p er h an d . T h is  p e a k  is th en  follow ed b y  a  d e cre a se  in v ira l d o m in a n c e  to  an  o sc illa t in g  

eq u ilib r iu m , which rep resen ts th e im m u n e s y s te m ’s m o u n tin g  re sp o n se . T h is  o sc illa t in g  

eq u ilib riu m  is govern ed  , a s  e x p e c te d , by  Pmut- B elow  a  c e r ta in  m u ta tio n  level Pcrit , th is  

e q u ilib riu m  is n e g a tiv e , rep re sen tin g  H elp er d o m in an ce . M u ta t io n  levels la rg e r  th a n  Pcru 
re su lt  in a  p o s it iv e  eq u ilib r iu m , re p re se n ta tiv e  o f v ira l d o m in an ce .
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W e see, for in cre a s in g  P mut, an  in crease  in  p e a k  a m p litu d e  in  th e  in it ia l v ira l a t t a c k

et a l, 1 9 9 6 ). T h e  t im e -d e lay  for th e  im m u n e re sp o n se , ev id en t in 3 -D , is n ot a s  c le ar  in  2-D  

and th e  o sc illa t io n s  in th e  eq u ilib r iu m  d en sity  d ifferen ce a re  la rg e r . T h e  3-D  cu rv e s h ave  a  

c h a ra c te r is t ic  w ell-defined sh a p e  c o m p ared  to  2-D  , d u e  to  a v e ra g in g  over a d d it io n a l n e igh 

b o u rs  . In  th e  a b sen ce  o f  m o b ility  in th ree  d im e n sio n s, Pcrit =  0 .8 8 7  (s lig h tly  in crea sed  

from  th e  2-D  v a lu e  o f 0 .8 8 4 ) an d  w ith  e x tre m e  m o b ility  P CTit =  0 .8 1 5  (c o m p a re d  w ith  

0 .852  in 2 d im e n sio n s). T h e  p h a se  tra n s it io n s  b etw een  im m u n e -co m p eten cy  a n d  im m u n e- 

defic ien cy  a re  very  s im ila r  in b o th  d im en sio n s, w ith  th e  3-D  t r a n s it io n s  b e in g  sm o o th e r , 

a s  ev id en t fro m  F ig u re  2.

W e a lso  con sid er  th e  m e asu re m e n t o f th e ’’ la te n c y ” p e r io d  a s  p re d ic te d  by  th e  s im 

u la tio n . L a te n c y  is th e  le n g th  o f t im e  tak en  for th e  in it ia l  H IV  in fection  to  d ev e lo p  in to  

A ID S . W h ile  th e  te rm  d o es n ot a c c u ra te ly  reflect cell b e h a v io u r , (a s  th e v iru s  is r e p lic a t 

in g a n d  m u ta tin g )  it is u sed  to  d e sc r ib e  th e  p h a se  o f  th e  d ise a se  p ro g re ss io n  for w hich 

no m a c ro sc o p ic  e ffects a re  ev id en t. L a te n c y  is a  c h a r a c te r is t ic  o f every  H IV  in fec tio n , 

w h ether o f len g th  2-3 y e a rs  (r a p id  p ro g re sso rs ) , 7-11 y e a r s  ( ty p ic a l p ro g re sso rs )  or m o re  

th an  20 y e a r s ( lo n g te rm  n o n -p ro gresso rs) (F au c i e t a l, 1 9 9 6 ). W e a t t e m p t  to  m e a su re  th e  

la ten c y  p e r io d  o f ou r s im u la tio n  by co u n tin g  th e  n u m b er o f  t im e s te p s  tak en  b y  th e  v ira l 

p o p u la t io n  to  d o m in a te  th e h e lp er  p o p u la t io n  (see  F ig u re  3 ) . W e defin e a  p a r a m e te r  P cru  

- P-mut ( P a ) , which we p lo t  a g a in s t  M on te  C a r lo  t in ie s te p s ( im c), w here Pmut >  P crit, (a s  

Pmut. <  Pcrit le ad s to  H elp er cell d o m in a n ce ). W e fir s t  in v e s tig a te  th is  p a r a m e te r  in th e  

ab se n ce  o f  m ob ility . F or  Pmut >  Pcrit, th e la te n c y  p e r io d  d e c re a se s  an d  can  b e  d e sc r ib e d  

in th ree  d im e n sio n s by  an  in verse pow er law i.e.

A s im ila r  law  a lso  e x is ts  for 2-D  sim u la tio n , w ith  th e  c o rre sp o n d in g  m a g n itu d e  o f th e  

ex p o n en t h igh er ( = - 0 .88 )

I t  is w orth  p o in tin g  ou t th a t  sm a ll in crease s in P a  le ad  to  d r a m a t ic  d e c re a se s  in th e  

la ten cy  p e r io d . A n  in crea se  o f ju s t  0 .0 0 7  in P a ,  from  P a  = 0 ,  g iv e s a  c o rre sp o n d in g  50%  

d e c re a se  in la ten cy  tim e . T h is  m a g n itu d e  o f a  d e c re a se  in rea l- tim e  m ay  re su lt  in th e  

tra n sit io n  from  one p ro g re ssio n  c a te g o ry  to  a  p ro g re ssio n  c a te g o ry  o f  sh o rte r  t im e sp a n  . 

T h e  ran g e  o f  Pmut c o rre sp o n d in g  to  th e  la te n c y  p e r io d  is 0 .0 4 2 5  (c o m p a re d  w ith  0 .065  in 

2-D ) T h re e-d im en sio n a l re su lts  h ave  co n siste n tly  sm a lle r  la te n c y  t im e s  th an  th o se  fou n d  in 

2-D . T h is  m ay  b e  du e  to  a d d it io n a l n ea re st  n e igh b o u rs in 3-D  c a u s in g  th e  d o m in a n t p a t te r n  

o f intra-site , in te ra c tio n s to  sp re a d  m ore quickly. F or  P a  >  0 .0 4 2 5 , ( P a  >  0 .065  in th e  

2-D  c a se ) , th ere  is no la te n c y  p e r io d  w ith  th e  v iru s d o m in a tin g  th ro u g h o u t th e  s im u la tio n . 

T h is  cou ld  rep resen t ex tre m e  rap id  p ro g re sso rs  or a  m u ta tio n  p ro b a b ility  th a t  is to o  la rg e

to g e th e r  w ith  a  lo n ger t im e  la g  to  reach  th e  eq u ilib r iu m  s t a t e  o f  e ith er  im m u n e  or v ira l 

con tro l. T h is  a g re e s  w ith  w h at is know n c lin ica lly  a b o u t  in fec tio n  a t  an  e a r ly  s t a g e  (F a u c i



to represent tha t of HIV’s accurately. For Pmut < Pcrit the latency time is infinite i.e. the 
immune system retains control over HIV. These two extremes of latency period, may not 
be representative of the disease progression. For this reason we focus on the region between 
these extremes and hypothesise th a t it contains timesteps representative of latency times 
corresponding to typical and rapid progressors and longterm non-progressors. This would 
imply th a t the m utation probabilities leading to the different rates of progression of disease 
are very specific with corresponding small ranges. The range of P a  is more sensitive at 
low values of P a , e.g P a  =0.005, corresponding to longer latency times than at values of 
P a , e.g P a =0.04, corresponding to shorter latency times.

Exploring latency is not as straightforward when mobility is introduced, as the tran- 
sistion from an immuno-competent system to an immuno-deficent system is not a clear 
one. The transistion is ’’fuzzy” with oscillations between viral and immune dominance 
eventually leading to complete viral dominance above Pcrit- Given these oscillations it is 
impossible to define a timestep for when the viral population resurges. This ’’fuzzy” tran 
sistion exists because mobility increases the interactions between cells and also increases 
the stochasticity of the system, thereby decreasing its reliance on the core deterministic 
interaction sets. This ’’fuzzy” transition is also responsible for the almost continous phase 
transistion for mobile cells evident in Figure 2 compared with the very obvious transition 
for immobile cells. This would suggest that our treatm ent of mobility maybe somewhat 
unsophisicated and that future studies might usefully review the mechanism used.

In summary, the extension of our previous 2-D model to 3-D, has little effect on overall 
cell-growth patterns or the value of Pcru  for both mobile and immobile cells. This could 
be because our extension to 3-D, which includes just two extra nearest neighbours is too 
simplistic and that a true extension should be more sophisticated, possibly including next- 
nearest neighbours and variable mobility. The latency period, predicted by our simulations, 
was investigated and followed a power law for both 2-D and 3-D, with a decrease in the 
magnitude of the exponent from 0.88 in 2-dimensions to 0.73 in 3-D. It is clear th a t viable 
latency times correspond to a small Pmut range only and are significantly affected by 
small increases in the mutation probability. The pattern  of the immune system’s fight for 
control over the virus was explored for extreme mobility and corresponds well to clinical 
findings, i.e. initial advantage for the virus, followed by a decrease in its population due to 
the mounting immune response. The amplitude of the peak of infection, as measured by 
difference between viral and helper densities, and the time taken for the immune response 
are functions of Pmut■
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Figu re  C ap tio n s:

F ig u re  1: Progression of pv  -  Ph  with tim e, for various Pmut ■ 3-D filled shapes, 
2-D

F ig u re  2: Variation of the difference in cell density (A p =  pv — ph)  with mutation 
rate Pmut , for 3-D and 2-D.

F ig u re  3: V ariation of latency period with Pmut -  Pcrit • Circles representing 2-D , 
squares representing 3-D , with P7noi, — 0
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