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Abstract
R2PC: Fault-tolerance Made Easy

Fault-tolerance is a concept that is becoming more and more important as computers are 

increasingly being used in application areas such as process control, air-traffic control and 

communication systems. However, the construction o f fault-tolerant software remains a very 

difficult task, as it requires extensive knowledge and experience on the part o f the designers o f the 

system.

The basics o f the Remote Procedure Call (RPC) protocol and its many variants are a fundamental 

mechanism that provides the adequate level o f abstraction for the construction o f distributed 

applications and release the programmers from the burden of dealing with low level networking 

protocols. However, the standard definition o f the protocol does not provide us with semantics 

that are sufficiently transparent to deal with unexpected hardware and software faults, i.e. the 

programmer has to deal with possible problems that may occur.

To deal with this problem, different reliable variations o f the RPC protocol have been defined. 

This dissertation introduces a new reliable protocol - R2PC - with the following characteristics.

•  Symmetric treatment of client and server processes.

•  Use o f concurrently processed nested calls in stateful servers.

•  The achievement of failure transparency at the application level.



Introduction
Introduction of Concepts and State of Art

1.1 Motivation

Fault-tolerance is a concept that is becoming more and more important as computers are 

increasingly used in application areas such as process control, air-traffic control and 

communication systems. However, the construction o f fault-tolerant software remains a very 

difficult task inasmuch as it requires extensive knowledge and experience on the part o f the 

designers o f the system. This difficulty is to a large extent due to the lack o f powerful generic tools 

and methods, which would enable the designer to express their algorithms at an abstract level and 

thus free them from having to concentrate on minor details. The traditional way o f constructing 

fault-tolerant applications can be compared with the expression of algorithms using assembly 

code - the quantity of details that have to be taken into account makes the programmer’s task 

enormously difficult.

Distributed systems, consisting of computers connected by a network, are an appropriate 

platform for the construction o f fault-tolerant software.

The basics o f the Remote Procedure Call (RPC) [Birrell et al. 84] protocol and its many variants 

(like Method Invocation [OMG 98] or Java RMI [http://www.javasoft.com]) are a fundamental 

mechanism for the construction of distributed applications by providing an appropriate level o f 

abstraction that releases programmers from the burden of dealing with low level networking 

protocols.

For this reason, it would be logical to use the RPC mechanism for the construction of fault- 

tolerant software as well. However, the standard definition o f the protocol does not provide us 

with sufficiently transparent semantics to deal with unexpected hardware and software faults 

[Coulouris et al. 88].

http://www.javasoft.com


This paper introduces R2PC, a new Reliable RPC protocol, which provides an appropriate 

framework for the easy construction o f fault-tolerant applications.

1.2 Fault-tolerance Concepts

In fault-tolerance terminology there are a number of terms that, when applied to computer 

systems, have traditionally been used in a very confusing way — due, no doubt, to the lack of 

consensus on what exactly fault-tolerance is. This lack o f common understanding is an issue that 

has been tackled by different authors ([Cristian 91], [Heimerdinger et al. 92]).

Based on their work, this section introduces a number of basic definitions that will be used to 

establish a proper reference framework throughout the rest o f the thesis.

1.2.1 General Concepts

A system  is the entire set o f components, both computer related and non-computer related, that 

provides a service to a user.

An example o f a system could be a computer-controlled train level-crossing. The system would 

have to provide the users with safe traffic control for cars and trains at a certain junction.

A possible set o f components o f such a system would be the barrier itself, sensors to detect the 

cars and trains, the computer unit that controlled all the components and the operators in charge 

of the maintenance o f the system (see Figure 1). It should be noted that the operators are included 

as part o f the system, but the drivers o f the vehicles - our users o f the system - would not be.

A system is said to have a failure if the service it delivers to the user deviates from the system 

specification for any period o f time.

A fault is the failure of a subsystem (a component o f the system). A fault may or may not lead to 

other faults, or to a failure o f the system.

A sym ptom  is the observable effect o f a fault at the system boundary.

A fault-tolerant system  is a system that may continue providing its service in the presence of 

faults.
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Let us return to our example and try to establish a better understanding of the distinctions 

between the different concepts involved.

Suppose that a bit in the computer’s memory becomes stuck - that is a failure of the memory and 

a fault o f the computer system.

If the memory fault affects the operation o f the program to the extent that the computer system 

believes that there is no train coming when, in actual fact, a train is about to reach the railway 

crossing what we have is a computer system failure and a fault in the overall train barrier system.

If the computer system’s output indicates that there is no train, that is a symptom o f the computer 

system’s fault.

If  the operator o f the system becomes aware o f the problem and lowers the barrier in time, the 

system did not fail, it tolerated the fault.

Figure 1 Possible set of components of a railway crossing system

A fault is observable if information about its existence is available at the system boundary.

A fault is detected  if the fault-tolerance mechanism o f a system finds it. Otherwise it is latent; 

regardless o f whether it is observable or not.
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Now, imagine that instead of getting a bit o f memory stuck, one o f the sensors had failed resulting 

in the same indication from the computer system. Could we say that the computer system had 

failed? It depends on the specification given to the computer system. If the computer system had 

been supposed to detect the problem and solve it by itself, we could then say that, in this case, 

there had been a failure o f the computer system. But, if the computer system was only supposed 

to inform the operator about the problem, the computer system would have worked in 

accordance with its specifications. In fact, the computer system could be said to have been 

working in accordance with its specifications even in the case where the memory got stuck! An 

example o f this type of case would be a situation where the task o f the computer system was to 

communicate any possible problem to the operator, leaving him/her the ultimate responsibility 

for the proper administration of the barrier.

Therefore, as we can see, it is very important to specify precisely what the system is supposed to

The logical or physical blocks that make up a system are called components. Each component 

can also be made up o f sub-components.

An atom ic component is a component that is not divisible or one that we choose not to divide 

into more sub-components.

Theoretically, any component o f the system is liable to fail. However, each component o f the 

system is supposed to accomplish certain specifications. Therefore, for any system, there is a level 

beyond which the faults are not worth considering. This level is called the fault-floor o f the 

system.

The system  boundary is the set o f components that make up the system. Failures occur when 

faults reach the system boundary.

The span o f  concern is the area that lies between the fault-floor o f the system and the system 

boundary. The span o f concern is the area within which faults need to be taken into 

consideration.

4



Fault-tolerance can only be achieved through the use of redundancy. Redundancy is the 

provision o f functional capabilities which have been designed to deal with possible faults - in 

other words, capabilities that would be unnecessary in a fault-free environment. The use of 

redundancy obviously implies a cost. However, it is important to note that the use o f redundancy 

by itself does not solve the problem o f fault-tolerance in a system, it just helps to detect the 

problems.

In our example, we could improve the fault-tolerance of the system by adding extra sensors and 

including parity bits in our memory chips to help us in the detection o f possible faults. In this 

case, the addition of a signalling system to regulate the passage of the trains would improve 

substantially the safety o f the system (see Figure 2). The design of such a signalling system should 

ensure that a train is not allowed to go unless the barrier is down.

Unfortunately, as we have said, the use of redundancy does imply a cost. It is natural that a user, 

not being aware o f these extra costs, would demand a completely fault-tolerant system. However, 

protecting a system from every conceivable fault can be extremely expensive in terms o f money, 

space and time. It is ultimately the responsibility o f the users and the builders o f the system to 

strike a balance between the requirements o f the system and its cost. Whenever possible, it is 

better to concentrate on likely faults and ignore the less likely ones — unless, o f course, they can be 

dealt without any additional cost.

Figure 2 The provision of fault-tolerance implies a cost
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1.2.2 Fault-tolerant Computer Concepts

The previous section dealt with general concepts used for any fault-tolerant system. Digital 

computer systems have special characteristics that determine how systems fail and what fault- 

tolerance mechanisms are appropriate. This section introduces concepts that are particular for 

computer systems.

In computer systems, high-availability is a term commonly used when referring to fault-tolerance 

[Kesnick 96].

A highly available system  is a system designed and implemented with sufficient redundancy in 

its components to provide its essential services while masking any failure or fault of computer 

nodes or software objects.

Depending on the degree of transparency in which the replacement of a component occurs, we 

can have different types o f highly available systems:

•  M anual masking. Following a component fault, some manual action is required to put 

the redundant component into service, during which time the system is unavailable for 

use. In actual fact, systems o f this type are not normally considered to be highly available.

•  Cold/W arm Standby: Following a component fault, users o f the component are 

disconnected and lose any work in progress (i.e. they roll back to the last consistent, 

committed state o f their work). An automatic fault detection and recovery mechanism 

then detects the fault and brings into service the redundant component. Once this is 

done, users are able to reconnect to it and begin processing again from the point o f their 

rollback.

Recovery time is application dependent but it usually involves cleaning up file systems, 

databases and persistent resources, all o f which can take a considerable amount o f time.

The more time a system requires for recovery the colder its “ temperature” is.

This type o f mechanism is typical o f transactional systems that distinguish between two 

entities: the transactions (or processes) that execute operations and the data accessed by 

the transactions. The data exists independently of the transactions and the consistency of
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the system is defined solely in terms of the state o f this external, persistent database. 

Normally, transactions communicate through the use o f this external database.

The System V [Cheriton 88] and Arjuna [Shrivastava 94] are two examples o f fault- 

tolerant services that belong to this category.

•  H ot Standby: Following a component fault, users o f the components are not 

disconnected and are not aware o f the fault whatsoever.

Recovery times in these systems are of very short duration. In fact, the concept o f 

recovery time does not really apply since from the client’s perspective there is no 

recovery.

This type o f mechanism is typical for message based applications that manage data as part 

o f the state o f a process and define consistency in terms o f the joint states o f the 

processes that belong to the system. Normally this model corresponds to the 

control/communication applications where it is unacceptable to wait indefinitely for a 

system component to recover.

The sufficient degree of redundancy required is normally expressed in terms of the resilience 

degree of the system. The resilience degree o f a highly available system is the maximum number 

of simultaneous node failures that the system can tolerate without failing.

Computer systems are composed o f multiple interrelated components interrelated. Due to the 

quantity and variety o f faults that may arise during the execution o f such systems, faulty systems 

are normally grouped together into fault classes. [Powell 95] describes a very general model to 

classify different types o f computer faults. Here we present a taxonomy that describes the most 

common system fault-classes used in the literature starting from die most unreliable fault-classes 

[Barborak et al. 93].

We understand by Byzantine Fault any possible fault in the system. Systems in this class 

[Lamport et al. 82], can produce any type o f errors at any time, arbitrarily or maliciously.

In the Authenticated Byzantine Fault class we have systems with the same characteristics as in 

the previous class, but in this case every message can be verified to detect whether it contains 

erroneous information (arbitrary or malicious).

7



The systems that belong to the Incorrect Computation Fault class produce incorrect results, 

but they are always produced on time.

The systems that belong to the Arbitrary Tim ing Fault class do not produce incorrect value 

results, however, the results are delivered outside their specified time constraints (either earlier or 

later).

The Omission Fault class describes systems in which the results are either produced on time or 

not at all.

The Crash Fault class describes the systems in which, once a certain number o f results have been 

omitted, we have the guarantee that any further results will be omitted as well. This class is also 

known as Fail-Silent class.

The systems that belong to the Fail-Stop class alert to the other processors when they cease 

operation.

Finally, the systems that belong to the N o Fault class do not produce any type o f errors.

Theoretically, a fault-tolerant service with a sufficient level o f reliability can be achieved in any 

system independently of the fault-floor that we adopt, but the cost o f algorithms and number of 

necessary components will increase as the fault-floor lowers. For example, if we take the Byzantine 

model, [Dolevetal. 1985] shows that if-we have n processors, t  ofwhich are faulty, we will need at 

least 0(ni) messages to reach agreement. However, if we consider Authenticated Byzantine systems 

the algorithm becomes much simpler and we will only need 0{n + t)  messages.

In practice, many existing fault-tolerant systems are implemented using the Vail-Silent or the Fail- 

Stop model as fault-floor [Schlichting et al. 83]. This is normally considered a sufficiently reliable 

model for current systems. However, if a more reliable model is needed, [Schneider 84] shows 

how to implementfdl-stcp processors using bŷ antine systems. Unfortunately, with a finite amount 

of hardware resources we can only implement an approximation to a completely fault-tolerant 

system. For this reason, the paper describes an approximation to an n-fail-stop processor, a system 

that behaves as a fail-stop processor unless n+ 1 failures occur within its components. The result is 

that to implement an n-fail-stop processor, 2 «+ l processes are required.

As well as dealing with failures at the software execution level we should also deal with failures at 

the hardware level. A replaceable hardware component is a physical component that can be

8



removed from the system without affecting other hardware components. Ideally, it should be 

possible to remove a replaceable hardware component from the system (either because of a 

failure or for preventive maintenance) without affecting the activity o f the software components 

running on the system. As this is often too expensive or impossible to achieve, the next best 

approach is to ensure that the failure induced into the software components by the replacement 

o f any hardware component has “nice” semantics, such as crush or omission. In this way, the 

software level will be able to detect the hardware fault and deal with it appropriately before it 

propagates outside the boundaries o f the system.

Depending on the granularity o f the replaceable hardware components we can distinguish 

between coarse grain architectures and fine grain architectures. The replaceable components o f 

fine grain architectures will be the fundamental hardware components o f the system itself. In the 

coarse grain architectures, the replaceable components will package together different basic 

hardware components, such as CPU, I/O  and memory. At the hardware level, it is important to 

replicate every component. Furthermore, fault-tolerant hardware systems have to ensure that each 

component is connected to the rest via more than one disjoint path. Examples o f this type of 

hardware architectures can be found in [Siewiorek 90], [Laprie et al. 90] and [Cristian 91].

Another major source of problems is the occurrence o f errors in the software process, resulting in 

systems that do not behave as expected. The only solution for this type o f problem is the use of 

methodologies, formal verification, and proper fault validation by means o f the use o f complete 

tests. In recent times, this issue has become increasingly relevant and different standards are being 

created to recommend practices for the development o f safety critical systems [CEI/IEC 97], 

[ISO/IEC 98]. An alternative approach to dealing with this type of problem is the 

implementation of more than one variant o f the function to be performed, or so called prvgram 

diversity [Avizienis et al. 84]. In theory, truly diverse designs would eliminate dependencies on 

design methodologies, software implementations and tests, and this would help in the creation of 

software that would meet the requirements o f the initial specifications.

This issue of errors in the software process takes on particular relevance in the context o f our 

thesis because the creation o f fault-tolerant applications is a very complex problem and one of the 

main focus of this thesis is to simplify the creation of this type o f applications.

From now on, when we use the term fault-tolerant software system  (or fault-tolerant 

applicatioii) it will be understood to mean a software system designed and implemented to
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provide its essential services while masking the presence o f up to r — the resilience degree - 

simultaneous crash failures and providing hot-standby transparency.

There is a natural link between the creation of fault-tolerant systems and the idea of constructing 

distributed applications. On one hand, the potentially large number o f machines in a distributed 

system makes the probability o f at least one component failing large, which could lead to the 

unavailability o f the service. On the other hand, distributed systems possess inherent potential for 

fault-tolerance because the failure of some number o f machines can be masked by the 

components that are available. Although the probability o f at least one machine failing can be 

high, the probability o f all the machines failing can be extremely small.

A distributed system  is a system that divides its work and data among different machines.

A fault-tolerant system needs to divide its work among different machines so as to ensure that the 

failure of any machine in the system does not cause the failure o f the fault-tolerant system.

The designer of fault-tolerant software has to deal with many difficult issues such as: fault- 

detection, distributed consistency, synchronisation and order o f messages.

However, traditionally, distributed systems have not been designed with the idea of supporting 

the development of fault-tolerant applications in mind. Consequently, developers o f this type of 

application have had no assistance in dealingwith all these issues.

The next section studies and describes different approaches to supporting the development of 

distributed systems and their requirements to develop fault-tolerant software.

1.3 Requirements for Fault-Tolerant Software System Support

Fault-tolerant systems are usually modelled as client/server applications [Cristian 91].

A computer service specifies a collection of operations whose execution can be triggered by 

users of the service. The execution of the operations may result in outputs and/or service state 

changes.

A server implements a service without exposing the internal service state representation and 

operation implementation details to clients.
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A client ]s a user o f the service. The accuracy o f a client depends on the accuracy of the servers 

that it uses.

A server may use services from other servers. In other words, a server may behave as a client and 

as a server.

Different abstract programming mechanisms have been proposed and used to represent the 

client/server model. In the next section we present the most common ones arranged according to 

their level o f abstraction.

1.3.1 Message Communication

In tr o d u c tio n

In the Message Passing model, processes communicate through the exchange o f messages.

In a traditional message passing mechanism (e.g. [Berkeley 86]), the developer of the application 

decides what type o f information is being sent, to which process, if a reply should be awaited, and 

what should be done if anything goes wrong.

The main advantage of this model is its flexibility. As it is such a low-level construct, the 

programmer is in control o f every communication aspect o f the application and consequently, the 

application can be tuned very efficiently.

F a u lt- to le r a n c e  i s s u e s

The construction of a fault-tolerant application using a standard message passing mechanism 

requires a considerable amount o f work as the programmer has to deal with all the fault-tolerant 

issues involved such as: fault-detection, recoverability, synchronisation, retransmissions, and 

serializability o f messages.

However, the introduction of the Group Communication model used in the V distributed 

kernel [Cheriton 84], marked a first step towards releasing the programmer from many o f the 

above problems.

A process group is a set o f processes that share a set o f common characteristics (internal state) 

interacting and co-ordinating with each other to provide a common external interface [L. Liang et 

al. 90].
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Groups can be said to be either open or cbsed. In a closed group, only its members can send 

messages to the group while, on the other hand, in an open group  outsiders are permitted to 

forward messages to the group.

The structure of a group can be either static or dynamic. In a dynamic group, processes can join or 

leave the group at runtime. A static group keeps the same members for its entire lifetime.

Communications between external clients and group members are called intergroup 

communications, while, internal communications among group members are known as 

intragroup communications.

Distributed applications can make use o f the Group Communication model in different ways:

•  Distribution of workload: Processor groups can be useful for load balancing, for example, 

distributing incoming requests among different processors.

•  Distribution o f data: In this case the state o f the group is partitioned among its members.

This could be the case for a distributed naming service such as the OSI directory service.

•  Replication o f data: Each member o f the group holds a replica o f the state of the group.

This is particularly useful for the development o f fault-tolerant applications.

Group communication can support the development o f fault-tolerant systems through the use of 

the following features [L. Liang et al. 90]:

•  Communication transparency: This feature is comprised o f two related aspects:

•  Atomic message delivery: An atomic message is either received and processed by all 

the group members or by none at all. This feature makes it possible to get around the 

problems associated with a partial communication failure by converting it into a total 

failure.

•  Application-level absolute ordering: The sequence o f messages processed by any 

member o f a group has to change its state in accordance with the rest o f the 

members.

•  Naming transparency: Group members have to be transparently bound to a single group

name. This service may be particularly complex to implement in dynamic groups because
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the system has to ensure that all the group members have a consistent view of the current 

members o f the group.

•  Failure transparency: The failure o f a group member can be notified to the application so 

that recovery actions can be taken at the application-level or, alternatively, it can be dealt 

with transparently. In this case, the system can either try to automatically select other 

members to take over the failed member’s tasks or present the failure as a total group 

failure.

It has to be said, however, that some o f these requirements may be in conflict with the features 

necessary for the development o f applications that do not require fault-tolerance. Indeed, it could 

be conceived that an application that seeks to distribute its workload among its members using 

such strong communication semantics might find that the cost o f the work-distribution is too 

expensive.

Several existing systems support different group communication semantics. For example, the Y  

kernel’s focus is on efficiency but its communication mechanism does not guarantee atomic order 

[Cheriton 88], while the Amoeba system does guarantee application-level ordering [Kaashoek 92] 

and Isis provides a set o f primitives to the application level, each o f which is equipped with 

different delivery semantics [Birman 93]. Consequently, the application programmers become tied 

to the semantics offered by the system they use.

A different approach is taken with the introduction of configurable group communication 

services (such as the case o f Horns [van Renesse et al. 96] or Coyote [Bhatti et al. 98]). In this case, 

the semantics o f the primitives used can be configured and changed at run-time, thus adding 

another level o f flexibility to these systems.

C o n c lu s io n s

The construction o f fault-tolerant applications using traditional message passing mechanisms 

requires an enormous amount of work at programming level.

The introduction of the Group Communication mechanism has done much to facilitate the tasks 

of the programmer in terms of the development o f fault-tolerant applications.
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In the final analysis, however, the use of these low-level primitives alone cannot offer a completely 

transparent solution. In fact, many o f these systems include, or are built with the idea o f including 

a Reliable Remote Procedure Call mechanism.

1.3.2 Remote Procedure Call

In tr o d u c tio n

A Rem ote Procedure Call (RPC) is the execution o f a procedure that resides in a foreign node. 

With the use o f this mechanism, the programmer does not have to deal with the transmission or 

reception of messages. This mechanism is used in a very similar way to a normal procedure call 

but with the important difference that the procedure is executed in a foreign node.

This mechanism provides an adequate level o f abstraction for the construction o f distributed 

applications by virtue o f the fact that it releases programmers from the burden o f dealing with low 

level networking protocols.

Since its definition [Birrell et al. 84], this protocol has been very successful and adopted as a 

fundamental mechanism for the implementation of many distributed systems and standards for 

the development o f distributed applications (see for example Method Invocation [OMG 98] or 

Java RMI [http://www.javasoft.com]).

F a u lt- to le r a n c e  i s s u e s

The standard definition of the protocol, unfortunately, does not provide us with sufficiently 

transparent semantics to deal with unexpected hardware and software faults. During the 

processing o f a procedure call, one of the following events may occur (see Figure 3):

1. The request message may be lost.

2. The reply message may be lost.

3. The server process may crash.

4. The client process may crash.
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Figure 3 Invocation of a Remote Procedure Call

Traditional RPC packages provide error checking and primitive recovery mechanisms to support 

the client and server processes. Three basic types o f execution semantics have been defined - at 

least once, at most once, and exactly once semantics [Coulouris et al. 88]. With at least once semantics, 

the client process makes repeated attempts to successfully execute the procedure until it either 

times out or receives an indication o f a server failure. In this case, the procedure may have been 

executed many times before the client acknowledges a successful execution. With at m ost once 

semantics, the steps o f RPC execution continue until an unrecoverable error occurs. The client 

and the server only transmit one message/procedure execution. I f  one o f the steps fails, the client 

receives an exception and the remote procedure call aborts. The error may occur either before or 

after the actual procedure execution has occurred. Therefore, if the caller receives an error 

message, there is no guarantee that the procedure has not executed. If  no errors occur, the 

procedure runs only once. Exactly once semantics guarantee that in case of failure, the remote 

procedure will not be executed. Otherwise, the procedure will be executed only once.

The definition and use of these semantics forces the programmer to be aware of a number of 

possible errors during the execution of the call. This extra responsibility makes programming of 

remote procedure calls a complex and cumbersome task. If  we use at least once semantics, the client 

process has to repeat the call until it is successful, and once it is successful, the client has to take 

into account the number o f times it has been executed (if it is using non-idempotent procedures). 

When errors appear using at most once semantics, the client process does not know whether the 

procedure has been executed or not. Finally, the "best" semantics to offer the programmer are 

exactly once semantics, because, in case of errors, at least the programmer can try to redirect the call to 

other servers without having to worry about whether the call was already processed or not.
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However, unfortunately, these semantics are very rarely offered to the programmer because in a 

networked environment they are very difficult to guarantee since errors may occur at any stage of 

the process.

C o n c lu s io n s

As we have seen, this situation is far from perfect. The ideal would be to define a mechanism that 

could recover from errors in a transparent way so that the user o f the service would not have to 

be aware o f possible communication problems.

1.3.3 Co-ordination Languages

In tr o d u c tio n

A coordination language provides operations to create computational activities and to support 

communication among them. Coordination languages hide the direct link between the client and 

the server o f a distributed application. Due to its simplicity and power, we are going to focus on 

Linda, which is a coordination model for parallel programming developed at Yale University 

[Gelemter 85].

In Linda, processes exchange information through the use o f an abstract communication 

environment called tuple space. The Tuple Space (TS) is a content-addressable shared memory 

system. Processes exchange information in the form o f tuples. A  tuple is a series o f typed values, 

for example:

(“a string”, 10, 4.5)

A tuple in TS is equally accessible to all processes but is bound to none. The communicating 

processes are uncoupled in space and time (tuples are persistent objects). Another interesting 

feature of Linda is that processes are created in the form o f “live” tuples that are inserted in the 

tuple space. The “live” tuple carries out some specific computation and then turns into an 

ordinary data object tuple.

Linda defines the following primitives:

•  out(Tuple)

This operation inserts a new tuple in the tuple space.

•  rd(Template)
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A template specifies a tuple to search. A template can describe the search for a particular 

tuple by specifying the values o f each of the typed fields, or it can search for a tuple within 

a group by just writing a collection o f some o f the values and specifying the type o f the 

rest o f the fields to search. These types are specified in the form of variables (formals) 

that are going to be assigned with the values (actuals) o f the tuple found in tuple space.

For example, rd(?a, 1, ?b) would search for a tuple which in its second field had the value 

1 and the other two fields held an integer value.

•  in(Template)

The same as before but in this case, when the tuple is found, it is removed from the tuple 

space.

•  eval(Tuple)

In this case, at least one o f the fields o f the tuple has to specify the name o f a function to 

be executed. This sentence creates a “live” tuple that is executed independently o f the 

process that create it. “Live” tuples cannot be accessed until they turn into static tuples.

F a u lt- to le r a n c e  i s s u e s

The Linda model facilitates the programming o f fault-tolerant applications due to the following 

characteristics:

•  Space Uncoupling The different processes o f the system are address-space disjoint. The 

processes in the system do not need to know the location of the processes to which they 

are communicating. They communicate through the use of a common framework, the 

Tuple Space. This feature helps in the implementation of a fault-tolerant mechanism 

because it facilitates the restart and replication o f processes in different nodes.

•  Time Uncoupling. The co-operating Linda processes do not need to know anything 

about their relative speed of processing. This means that a process waiting for the result 

o f a failed process will get suspended until the failed process is restarted.

•  Structured Naming A receive operation can normally be matched against several 

different tuples result. This means that, in case o f a process failure, the system can still 

provide result tuples that match the search o f the requesting processes without need to 

block them. Therefore, the system can still function when only partial data is available.
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However, although these characteristics facilitate the implementation of a Fault-Tolerant system, 

they are not enough to guarantee the existence o f a Fault-Tolerant system. Any implementation 

supporting fault-tolerant processes must ensure the following fault-tolerance conditions:

•  Correctness condition: The result o f a computation should be the same as the result o f a 

failure-free execution.

•  Termination condition: The computation will reach a final state in finite amount o f time if 

at least one node is operational.

Nevertheless, the original definition o f Linda does not consider what happens in abnormal 

conditions, for example, the failure o f a “live” tuple.

C o n c lu s io n s

The Linda model provides a very high level o f abstraction that may be very appropriate for the 

creation o f fault-tolerant applications. However, the subject has not been tackled in the original 

definition of the model. The effects o f processor failures on the execution o f Linda programs are 

not considered in the standard definitions of the language.

1.4 New models for the construction of fault-tolerant software

Our main objective in this thesis has been to assist application programmers and minimise their 

effort in the development of future highly available applications.

With this idea in mind, we have added fault-tolerant mechanisms to the existing higher-level 

model to construct distributed applications, minimising the semantic and syntactic changes 

necessary to achieve the requirements o f fault-tolerance and transparency.

This thesis presents the design and implementation o f R2PC, a new Reliable Remote Procedure 

Call (RRPC) protocol with the following characteristics:

•  The protocol provides mechanisms to guarantee the recovery o f client and server 

processes. Many RRPC systems do not even consider the option o f restarting client 

processes (see [Beedubail et al. 95], [D. Liang et al. 98]). Probably this is due to the fact 

that many fault-tolerant systems have been designed with the only intention o f providing 

a fault-tolerant service. In fact, the idea o f restarting client processes does not seem to 

make much sense on a broad distributed system (for example, a server in Alabama cannot 

control whether a client in Dublin is working or not). However, this concept is important
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in a restricted environment where there is a need to implement a fully reliable system (for 

example, a computer's LAN controlling a nuclear reactor). Such type of application may 

require reliability in all the components and not only in the servers. Client processes 

should also have the right to survive!

•  The protocol permits the use of stateful servers that can act as clients for other servers 

(nested calls). This is a basic aspect for the creation o f many complex distributed 

applications, for example, the definition of the OMA standard and particularly, one o f its 

key components, CORBA, requests and enhances the use o f nested RPC calls [Vinoski 

97]. However, we know of very few systems that deal with nested RRPC calls (see Jalote 

89], [Yap et al. 88] and [Beedubail et al. 95]). And from those systems, none permits the 

concurrent service o f different calls.

•  The use o f the reliable protocol is "fully" application transparent. The desirable property 

of a fully transparent RRPC mechanism would be that we could transport our traditional 

unreliable RPC (as defined in [Birrell et al. 84]) programs into this new system obtaining 

reliable applications automatically. However, such an automatic adaptation is not possible 

due to syntactic and semantic factors. One of the main aims of R2PC has been to create a 

fault-tolerant system semantically and syntactically as close to the original definition o f the 

RPC mechanism as possible, facilitating the transition from an unreliable environment to 

a reliable one. We have been successful in doing so by introducing only two main changes 

in the original definition:

•  Syntactically: Traditional RPC mechanisms address a particular process in a specific 

node. If  this node fails, our application will have to change the address to which the 

call is being directed. In order to have a reliably transparent mechanism, the R2PC 

mechanism has to identify entities independently from where are located.

•  Semantically: The provision of fault-tolerance will be guaranteed if the behaviour of 

each client process can be determined from the results obtained in the execution of 

the R2PC calls evaluated.

In fact, existing RRPC systems include stronger semantic preconditions on their 

reliable protocol such as the non-provision for client recovery ([Beedubail et al. 95],
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[Yap et al. 88], [D. Liang et al. 98]), or the non-provision for nested calls ([Wood 93], 

[D. Liang et al. 98], [Maffeis 96]).

•  The protocol facilitates an efficient implementation that provides concurrent service o f 

different calls and minimises the number of messages exchanged through the use of 

multicast mechanisms.

As a testbed for our design, we have used R2PC to implement R2PCLinda, a new fault-tolerant 

Linda system that incorporates reliability to the model without requiring any change in its original 

syntax or semantics. As far as we know, this is the first existing implementation o f Linda with 

such characteristics.

1.5 Outline of the Dissertation

The remainder of this dissertation is organised as follows. Chapter 2 describes related work in the 

areas o f Reliable Remote Procedure Calls systems and fault-tolerant Linda systems. It compares 

the approaches that have been used to construct fault-tolerant applications at a medium and high 

level o f abstraction and serves as a foundation to compare our approach to others.

Chapter 3 presents our approach to constructing fault-tolerant distributed applications. A new 

Reliable Remote Procedure Call system is introduced preserving the semantics o f the original 

model and providing a framework for the development o f transparent and efficient fault-tolerant 

systems.

Chapter 4 describes an example o f the application o f our approach. Using our system, we provide 

a fault-tolerant implementation o f a Linda system.

Chapter 5 evaluates the efficiency and reliability o f our resulting system. It presents an analysis o f 

the system using different examples.

Chapter 6 summarises the dissertation and offers future research directions.
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Related Work
High-Level Constructs for Fault-Tolerance

2.1 Reliable Remote Procedure Calls

2.1.1 Introduction

This chapter presents different existing Reliable Remote Procedure Call (RRPC) models in 

chronological order. The systems are described and compared by studying their efficiency and 

transparency semantics.

The following definitions are introduced to provide a consistent study o f the systems to be 

compared:

We define that the processes o f a system are determ inistic if we can guarantee the following 

condition — from a given a state, the invocation o f an operation on different copies o f a process 

makes the same sequence of requests and the states o f each process will be the same after the 

operation is completed.

This precondition is assumed by all o f the fault-tolerant systems described.

Fault-tolerant systems use three different replication models:

•  In the active replication approach requests are sent to and performed by all the 

replicated elements.

•  In the passive replication approach one copy o f the replicated processes is declared as 

primary and the others as backups. All requests are sent to the primary which is 

responsible for providing the service, the backups are passive but they get updated 

information from the primary so that they are capable o f assuming the role o f the primary 

if this process fails. This mechanism is also known as the primary-backup approach.



•  The coordinator/cohort approach combines the two previous methods by declaring a 

primary and backups but, in this case, the backups are active, internally updating its state 

with the information transferred from the primary. This allows for a faster recovery.

2.1.2 Troupes

[Cooper 85] describes the RPC mechanism implemented for the Circus system, one o f the first 

Reliable RPC mechanisms created. The implementation of the system only uses intergroup 

communication (a process group is named troupe in the paper). Each client sends a 1-to-many call 

to each member o f the server group, and each server replies to the client group with another 1-to- 

many call. There is no communication among the members o f a group and each member works 

independently of the others. Inconsistencies can be detected at the client side and appropriate 

measures can be taken according to the voting policy adopted.

A p p lic a t io n  T r a n s p a r e n c y

Inconsistencies could also arise in the case o f including client thread execution or using nested

The system includes a commit protocol to detect any inconsistencies and transforms such 

attempts into a deadlock. Deadlock detection is then used to abort and retry one or more of the 

offending transactions.

However, the lack of a mechanism to identify nested calls globally among the system means that 

inconsistencies could remain undetected (see section 3.2.2). This means that the system can not 

deal with the use of nested calls.

The system provides support for the recovery o f client and server processes. However, this 

mechanism has to be triggered at the application level on reception o f errors from the primitives.

E ff ic ie n c y

This protocol uses the active replication approach because each group member executes every 

call. The implementation o f the system only uses point to point communication (the multicast 

mechanism was not available at the moment o f its implementation). The protocol is quite 

expensive requiring N*M point-to-point messages for the processing o f each call (N  and M  being 

the number of clients and servers respectively). However, the introduction o f a multicast 

mechanism would reduce the number of multicast messages transmitted to N+M.
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Although the protocol supports the use o f threads, the calls from different client groups are 

evaluated serially on the server side.

2.1.3 Clusters

[Yap et al. 88] presents a protocol based on the establishment o f a hierarchy defined among the 

members o f the group (named cluster's in this case) to establish a linearly ordered sequence o f calls 

to execute. The member with the highest rank is called the primary while the rest are tine 

subordinates.

The primary client process sends a message to the primary server. The call is transferred from one 

subordinate o f the group to the other until it reaches the last member, from this point an ack is 

transferred linearly back to the primary which then, executes the call and sends the result to the 

primary client The chain o f calls with the result is transferred among the client members until the 

primary client receives an ack from its immediate subordinate. Finally, a done message is sent to the 

primary process o f the server group, which transfers it linearly to its subordinates. When that 

process receives the ack from its immediate subordinate, the call has finished its execution.

A p p lic a t io n  T r a n s p a r e n c y

This protocol is based on the passive replication approach.

In this protocol, nested calls can be supported by introducing their service within the linear 

sequence o f messages generated during the service o f another call.

Only server processes are replicated (they can work as clients during the service o f a nested call). 

Client processes are not replicated.

The use of threads is not supported.

E ff ic ie n c y

This system only uses point-to-point communication. With this mechanism, the number of point- 

to-point messages required for the normal processing of a call is reduced to N+(2*M). However, 

the efficiency o f the protocol would not improve with the use o f a multicast mechanism due to its 

linear transfer nature.

Each call has to be processed sequentially and moreover, the execution of each call has to wait for 

its linearly ordered execution among all the members o f a cluster.
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This situation results in a very poor scalability. The processing cost o f a call increases almost 

linearly with the number o f replicas o f a cluster.

2.1.4 Contexts

Using the group primitives provided by Amoeba [Kaashoek 92], Wood describes the 

implementation of a more efficient RRPC system [Wood 93]. Its scheme is based on the 

coordinator-cohort model. The coordinator o f the server group (groups are called contexts in the 

paper) transfers the client call to its cohorts using the reliable multicast service provided by 

Amoeba. All the members execute the call, but only the coordinator sends the result to the 

coordinator o f the client group, which forwards it to its cohorts through the use o f another 

multicast.

The protocol was tuned and adapted to make the most efficient use of the Amoeba group 

primitives by exploiting knowledge o f the internal implementation o f these primitives. For 

example, Amoeba’s groups are closed, permitting only intragroup communication. Its groups 

implement total order through the designation o f a sequencer process that serializes the 

transmission of messages among the group members.

Client/server communication is achieved through the use of point-to-point calls among tine 

coordinators o f each group. The protocol elects the sequencers o f  each group as coordinators in 

order to improve its performance.

A p p lic a t io n  T r a n s p a r e n c y

The use of the protocol is syntactically quite transparent to its user. However, the user has to 

define receive_state and transfer_state routines to implement an application-level state transfer among 

the coordinator and a new cohort that joins the group.

Semantically, the protocol does not permit the use of nested calls and no provision for thread 

support is included. However, [Wood 93] points to some of the problems and solutions that 

could be introduced to achieve that support.

The protocol permits the replication and availability o f client and server processes.
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The execution of a RRPC requires the use of 2 point-to-point +  2 reliable multicast messages. 

The implementation o f the reliable multicast service through the use o f a hardware multicast 

mechanism improves the efficiency and scalability o f the system considerably.

However, the protocol structure does not permit the concurrent service o f different calls 

simultaneously. This affects the resulting efficiency of the system because incoming calls from 

different clients can only be served in sequential order.

2.1.5 Hot Replication

The scheme presented by [Beedubail et al. 95] uses the coordinator-cohort model. This permits a 

very quick recovery time (hot repRcatiort). The general algorithm for the processing o f a RRPC is 

very similar to the one presented previously in die context groups. However client user processes 

are not replicated in this algorithm.

Nested calls are taken into consideration by identifying each call globally in the system. The 

identification scheme used is based on the one introduced in [Jalote 89]. However, its 

identification scheme presents the problem that the number o f identification fields needed to 

represent a call grows linearly with the number o f levels that the call is nested in — in other words, 

to identify a nested call o f N  levels, N  different numeric fields are required.

A p p lic a t io n  T r a n s p a r e n c y

The use o f Hot Replication is syntactically transparent to its user. However, as the user does not 

define any primitives to transfer the state and the system does not provide any automatic 

mechanism to do so, the system cannot permit new replicas to join once the state o f the

coordinator has changed its state and flushed old messages.

As mentioned previously, user clients are not replicated and the system supports the use of nested 

calls. However, the use of threads is not considered.

E ff ic ie n c y

As in the previous protocol, a nested RRPC requires the use o f 2 point-to -point +  2 reliable

multicast messages. However, as the system does not provide support for threads, it cannot

provide concurrent service for different simultaneous calls.

Efficiency
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Piranha is an availability management and monitoring tool for CORBA applications [Maffeis 96].

The CORBA standard does not include any group communication features to support the 

construction of fault-tolerant applications [Maffeis et al. 97]. For this reason, Piranha was 

implemented on top of Electra [Landis et al. 97], an extended CORBA architecture that provides 

the Isis Virtual Synchrony model.

Object references are persistent. They are still valid after the referenced objects fail. As soon as an 

instance of die object is restarted, client applications can make progress without having to contact 

the naming service. This mechanism is achieved by viewing object references as multicast 

addresses.

Failure detection is provided by a separate service that makes suggestions about failed objects 

using timeout mechanisms. Another service, the availability manager,; relies on the information 

provided by the failure detection service to restart objects that may have failed. The availability manager 

is implemented in the form o f an object group, with a group member per machine. The service is 

not scaleable because each member has to maintain information on all the application objects 

running on the other machines.

The system provides a very complete monitor service that provides system administrators with a 

complete view of the status o f the objects running in the system. If an object has failed, the 

system administrator can detect whether or not the object has been restarted automatically, or can 

decide on the node where to restart it. This tool also permits the manual migration o f objects for 

load balancing purposes.

From the user’s point o f view, RRPC’s are activated as method invocations to remote objects.

The issues involved in developing fault-tolerant object-based applications differ from those of 

process-based applications in several aspects. First o f all, a server process often contains many 

objects. The detection mechanism for process crush is not sufficient to detect the object crwh. As 

many object servers are implemented as multithreaded servers with each object running in a 

separate thread, the detection mechanism for processfailure may not detect an objectfailure (or a thread 

failut'i). On the other hand, die use o f objects and inheritance provide a natural framework for the 

inclusion of methods that facilitate the implementation of fault-tolerant services, such as methods

2.1.6 Piranha
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to transfer the current status o f an object or methods that permit the use of different reliability 

semantics.

Unfortunately, the protocol does not seem to deal with nested call invocation, which in the 

context o f CORBA, is a considerable drawback due to the fact that the definition o f die OMA 

standard requests and enhances the use o f nested RPC calls [Vinoski 97].

2.1.7 Phoinix

Phoinix provides the development of fault-tolerant CORBA applications by extending the 

CORBA service without modifying the original standard definitions [D. Liang et al. 98].

Instead o f including the use o f group communication primitives and replicated objects, the system 

relies on the exception mechanisms provided by the standard. In the case o f an object failure, the 

client receives an exceptional signal from the ORB. However, instead o f raising tiiis exception 

signal to the client directiy, a Phoinix reliable module (linked with the client’s code) intercepts the 

exception signal and activates another service object via the ORB, binding the client to die new 

restarted service.

As service objects cannot be replicated, a special service, called the log manager; is in charge of 

keeping track of the necessary state information to recover any failing object. To ensure the fault- 

tolerance o f this service, the log manager is replicated as two CORBA objects, each being the hot 

standby of the other.

A p p lic a t io n  T r a n s p a r e n c y

Although the Phoinix mechanism is syntactically transparent, semantically it does not support 

either the use of nested calls or the recovery o f client processes. However, die introduction of 

support for nested calls could be achieved with the inclusion o f global identifiers and appropriate 

logging o f requests and responses.

E ff ic ie n c y

The scalability o f the Phoinix system is one o f its biggest problems because the log manager has 

to hold state information for all the existing reliable objects.

The resilience degree of the system is limited. The simultaneous failure o f a reliable object and the 

log manager could be disastrous, but this scenario is not considered to be likely to occur.
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The performance o f the system under normal conditions is very good. The transmission o f a 

RRPC only involves the use of 2 RPC’s, one to the server object and another to the log manager. 

Concurrent service o f different calls is tolerated.

The recovery process will have to create an object and restart it from scratch. The time for 

recovery will depend on the checkpoint frequency used.

2.1.8 Conclusions

Ideally, we would like to be able to transform our currently unreliable applications into efficiently 

fault-tolerant ones automatically.

However, the idea of developing a general method to construct fault-tolerant applications in a 

completely transparent manner is fallacious. Programmers have to be aware that they are 

developing fault-tolerant applications, at least to ensure that their systems are deterministic.

Whichever application is being implemented, programmers should be provided with powerful 

and simple tools that could be used comfortably to obtain reliable systems at reasonable levels o f 

efficiency.

As we can see from the tables below, the current situation is far from ideal. The existing systems 

are semantically too restrictive, either excluding the use of nested calls, or not permitting the 

recovery of client processes. The systems that do permit nested calls are too inefficient, 

particularly because they do not permit the concurrent service of different calls, a very important 

feature for a service that may have to provide support to large numbers o f clients.

For this reason, the ability to support threads is an important characteristic on the server side. 

However, on the client side it is not that important, particularly considering that the resulting 

systems have to be deterministic. The programmer would have to be very careful with the use of 

threads on the client side.

Transparent recovery is an important feature because the programmer should not have to deal 

with node failures. However, the requirement o f having to include state transfer routines in the 

code should not be a problem from the programmer’s point o f view, particularly when using an 

object oriented language.

Turning to the issue o f efficiency, it is important to take into consideration the scalability o f the 

system, particularly in systems that have to deal with large numbers o f nodes and processes (or
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objects). Current systems, where failures are considered to be rare, will not need a high degree of 

resilience.

Finally, the time needed for recovery is a factor whose importance varies according to the type of 

applications being dealt with. Control applications where the response time is a very important 

factor may need very fast recovery methods. Normally, the recovery time depends on the system 

model used by the system, whether it uses active, passive or coordinator/cohort replication. 

However, the normal response time of the system will also depend on the model used. Passive 

systems will not require as many resources as active ones. If  possible, the programmer o f the 

system should be able to choose what model suits his/her needs better.
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Table 1 Summary of the properties needed to achieve reliable semantic transparency
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Table 2 Summary of the efficiency costs for fault-tolerance
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2.2 Fault-Tolerant Linda Systems

2.2.1 Introduction

This section introduces the issues involved and solutions taken in introducing fault-tolerance to 

the Linda model.

Two basic approaches are taken:

•  Systems that implement fault-tolerance trying to preserve the original semantics o f the model.

•  Systems that introduce changes in the original model in order to achieve more efficient 

implementations.

2.2.2 Reliable Tuple Space

In Linda, processes communicate via use o f the shared structure called tupk space (TS). 

Consequently, the failure survival o f TS is one o f the most important aspects in any fault-tolerant 

Linda system. This reliability requires some form of redundancy.

|Xu et al. 89] describes a design in which accesses are based on a read-any-write-all protocol. 

There is an incarnation number associated with each access to the TS (called a mew). The failure of 

any node changes the global incarnation number using a two-phase commit protocol. The 

algorithm replicates all the tuples in each TS replica. However, [Xu et al. 89] discusses a method to 

partition the TS among different sets o f replicas.

[Bakken et al. 95] uses the replicated state machine approach where the tuples are replicated in 

each processor using an atomic multicast protocol. This means that each tuple operation 

performed on stable TS generates an atomic multicast message in order to replicate TS in each 

tuple server o f the system. In this case, each tuple server holds all the tuples present in TS.

Plinda [Jeong et al. 94] replicates TS in disks using a checkpoint mechanism. In this mechanism, 

TS will not be available until the restart o f the failed processors.

However, the existence o f reliable TS is not sufficient in itself to obtain a fault-tolerant Linda 

system. One o f the: main problems with fault-tolerant Linda is the lack o f sufficient atomicity in its 

operators. I f  we consider the initial semantics o f Linda, each operation modifies the shared tuple
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space independently, i.e., Linda provides only single-operation atomicity. Linda programs cannot 

be structured to handle failures with these semantics. [Bakken et al. 95] presents a simple example 

to illustrate some of the problems involved with the use o f these semantics.

In the example we want to use a shared variable between our processes. In TS we will keep a 

tuple containing the name and value o f the shared variable. The typical operations used to access 

such variable are represented in Figure 4.

•  Initialization o f the variable: 

out(“ variable_name” , init_value);

•  Inspection o f the current value: 

rd(“variable_name” , ?value);

•  Updating o f the variable:

in(“ variable_naine” , ?old_value); 
out(“ variable__name” , new_value);

Figure 4 Example of Linda operations used to access a shared variable

Unfortunately, if the process that is updating the value o f the variable fails just after withdrawing 

the tuple that contains the old value of a variable, the rest on the processes o f the system will 

reach deadlock waiting for the value o f a variable that was never replaced. The problem is due to 

the inability to execute atomically all o f the operations that update the value o f a variable. 

[Kambhatla 90] discusses a method to implement fault-tolerance while at the same time keeping 

the initial semantics o f Linda. The method is based on checkpointing process states and logging 

messages. The main idea is to keep a log space (LS) for recovery purposes. LS is similar to TS but 

with an important difference: the tuples in LS have a total order based on the process identifier 

and the time of insertion. In LS we keep the last checkpoint state o f TS and all the tuples that 

have been ouied and ined since the last checkpoint. When we have to restart execution we have to 

go through the following steps:

•  Load the checkpointed state.
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•  For each out operation, first check if this tuple is already in LS. If it is, then the operation 

logically becomes a null operation (this mechanism should also be used for each eval 

operation).

•  For each in operation we first check LS to verify if the tuple had been received before. If 

it had, the operation is satisfied with the tuple present in LS. Otherwise, we access the 

tuple from TS.

[Kambhatla 90] discusses an algorithm to ensure that the states o f LS, TS and processes are 

consistent. The estimation overheads of this method are predicted to be linear with respect to the 

number of tuple operations performed by the program. However, the method has not been 

implemented. We note that the method only works for processes whose execution is deterministic 

upon receiving the same replies from TS.

2.2.3 Redefining the Semantics of Linda

The languages that redefine the semantics o f Linda introduce operators to group different Linda 

operations into one atomic action. The larger the number o f operations grouped into one single 

action, the lower the number o f opportunities for parallelism that can be obtained.

M O M

The MOM system [Cannon et al. 94] redefines the semantics and syntax of Linda. It introduces a 

done call that is equivalent to the commit calls typical o f database transactions. The system 

implements fault-tolerance by not committing any partial result until done. The system forces the 

programmers to use the bag-of-tasks paradigm [Carriero et al. 90]. A process first requests a task 

in tuple space (TS), performs the indicated processing and finally returns the results to TS. At the 

completion of the task a done call is issued to indicate that all the task tuples retrieved have been 

successfully processed. This mechanism simulates the existence o f a two-phase commit protocol. 

Under these semantics it is much easier to implement a fault-tolerant mechanism. The system 

locks all the imd tuples and stores all the outed tuples in temporary storage until the issue o f the 

done call, at which point all the partial results generated by the process are reflected in tuple space.

The. MOM model only allows for algorithms that can be expressed using the producer/consumer 

paradigm. Another problem is that the model imposes a certain degree o f serialisation since 

intermediate results are not reported until done. Consequently, MOM influences the resulting 

efficiency o f our program even in the case o f normal execution with no failures.
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L in d a  P ira n h a

The Piranha system [Carriero et al. 93] is another variant designed to utilise idle workstations 

effectively for parallel computation. This model also structures the parallel programs using the 

producer/consumer paradigm. But in this case the system is designed to take advantage of new 

resources as they become available, and also reduce the number o f usable resources without 

aborting. The Piranha system may cancel the execution o f a process when a workstation needs to 

be used for other purposes. If this happens, the process in execution terminates its local 

computation and restores any intermediate results using a retreat operation. Therefore the 

programmers need to write the code to restore any intermediate result which makes programming 

more difficult than with the MOM model.

F T -L in d a

FT-Linda [Bakken et al. 95] does not restrict the programmer using the producer/consumer 

paradigm. It introduces two new constructs to the syntax o f Linda: the Atomic Guarded 

Statement and the Atomic Tuple Transfer.

The Atomic Guarded Statement provides all-or-none execution of a group o f tuple operations. 

The execution o f this grouped statement is conditioned to the execution o f a guard statement. It 

has the form:

(guard = >  body)

The process is blocked until the guard either succeeds or fails. I f  it succeeds, then guard and the 

body are executed as an atomic unit; if it fails, the body part is not executed.

FT-Linda permits the creation o f multiple tuple spaces with different attributes. For example, the 

user can define a stable or a volatile tuple space. Only the stable tuple spaces will survive processor 

failures. A tuple space can also be shared or private to indicate which processes may access it. The 

Atomic Tuple Transfer primitive permits the movement and copying of tuples atomically 

between different tuple spaces. With this primitive the programmer can evaluate all the partial 

results in a local tuple space and, at the end, transfer all the tuples from the local to the global 

tuple space in a single action.
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The introduction of these primitives facilitates an efficient implementation of the model by 

relaxing the implementation o f the two-phase commit protocol. However, the programmer needs 

to be involved heavily in the reliable implementation o f the program. Each FT-Linda program 

requires the implementation o f a monitor process which, in case o f failure, will re-establish the 

system to a consistent state.

process worker() 
while true do

( in (TS, “work” , ?task_args) = >
out (TS, “in_progress” , my_id, task _ arg s)) 

calc (task_args, &result)
( in(TS, “in_progress” , my_id, task_args) = >  

out(TS, “result” , resu lt)) 
end while 

end worker

process monitor(failure_id) 
while true do

in(TS, “failure” , failure_id, ?host) 
while ( in(TS, “in_progress” , host, ?task_args) = >  

out (TS, “work” , task_args) do 
nooperation 

end while 
end monitor

Figure 5 Programming the bag-of-tasks paradigm in FT-Linda

For example, Figure 5 shows the structure o f a program which represents the bag-of-tasks 

paradigm using FT-Linda. In this case, when a task is withdrawn from tuple space, a new tuple 

in_progress describing the current task in execution is deposited atomically in tuple space. When a 

host failure occurs, one failure tuple is deposited into TS indicating the host that failed. The 

monitor process then detects the failure and can restore all the inprogress tuples from the failed 

host.

One aspect not mentioned in [Bakken et al. 95] is the explanation o f what happens in the case of 

the monitor process failing after detecting a failure. As we can see, the programming of a complex 

application can be very cumbersome and difficult to verify. Although the resulting system may be 

efficient, the programmer has a large responsibility in the final efficiency of the program. FT- 

Linda encourages the programmer to keep all the temporal results in local tuple space and, at the 

end of the processing, transfer the final results to global tuple space. Consequently we also end up 

with a serialised program.
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P L in d a

PLmda Qeong et al. 94] provides a mechanism to checkpoint the current state o f a process. In this 

way, processes are allowed to save only minimal information required for recovery at checkpoint. 

This makes the mechanism cheaper than transparent checkpoints that have to save the entire 

process image in stable storage. The mechanism is used in a similar form as access to tuple space 

but it is designed to save the state o f a process. This separate tuple space is accessed sequentially 

and it associates each tuple with a particular process.

Plinda also provides two operators (xstart and xcommii) to group the statements to be executed 

atomically. The programmer is not forced to use the producer/consumer paradigm. A task can 

have different groups of atomic statements to execute, preserving the current state o f the task 

between these atomic statements. In this way, a task can recover to the last checkpointed state in 

case of failure.

2.2.4 Conclusions

This section has presented two different approaches for the introduction o f fault-tolerance in 

Linda systems.

The first option is the automatic provision of fault-tolerance without introducing any change in 

the original semantics o f the model. This is the ideal approach from the programmer’s point o f 

view because the use of the original model provides the more natural solutions and, at the same 

time, permits the automatic conversion of the available deterministic applications into fault- 

tolerance ones. However, from the system designer’s point o f view, the provision of such a fault- 

tolerant system represents a complex problem that may offer very poor levels o f response. 

Currently, we do not know of any existing implementation with such characteristics.

On the other hand, the introduction o f changes in the original semantics o f the model 

theoretically facilitates the implementation of fault-tolerant Linda systems, permitting better levels 

o f system’s efficiency. However, programmers are interested in the efficiency of their resulting 

applications more than the efficiency of the system. Using these models, the programmer is 

forced to serialise the original applications, reducing the opportunities for parallelism. It is difficult 

to assess the approach that can provide better response times at the application level. 

Furthermore, the use of these models may obscure the semantics o f the original model, requiring 

more effort on the part o f the application programmer.
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Definition of a New Reliable RPC Protocol
R2PC: Transparent Fault-Tolerance

3.1 Introduction

The main purpose o f this thesis is the design o f an efficient and scalable mechanism that provides 

simple, clear and transparent semantics for the development o f fault-tolerant applications.

The Remote Procedure Call (RPC) mechanism provides an appropriate framework to construct 

distributed applications. The programmer does not have to deal with the transmission or 

reception of messages. This mechanism can be used in a very similar way to a normal procedure 

call but with the important difference that the procedure is executed in a foreign host.

Since the definition o f RPC [Birrell et al. 84], this mechanism has been very successful and has 

been the basis for the implementation of many existing distributed systems and for the 

specification of standards for development of future systems (like Method Invocation [OMG 98] 

orJavaRMI [http://www.javasoft.com]).

Section 1.3.2 has shown that the original definition o f the protocol forces the programmer to be 

aware of a number o f possible errors during the execution o f a call. For this reason, different 

variations of the original protocol have been introduced (called Reliable Remote Procedure Call - 

RRPC - systems). Nevertheless, section 2.1 has shown that existing systems are semantically too 

restrictive and/or inefficient.

This thesis introduces R2PC, a new RRPC system that adds reliability to the original RPC protocol 

while retaining the main semantics o f the model at a reasonable cost.

In order to guarantee fault-tolerance, R2PC introduces a few syntactic and semantic changes to the 

original definition o f RPC.

http://www.javasoft.com


3.1.1 Group Addressing

One o f the main problems involved with normal RPC protocol is that client processes specify a 

particular node where the remote procedure is to be executed. This ensures that if the server 

process fails, the mechanism has to return an error. There is nothing else that can be done.

Consequently, in order to have a transparent and reliable mechanism it is necessary to address 

process groups. Every process o f the system will form part o f a process group. The group 

members exchange information through the use o f group communication primitives.

The current implementation of the system follows the primary-backup approach whereby the 

primary process carries out the main computation of the group and transfers information about 

its status to the replicas.

3.1.2 Execution Semantics

From a programmer’s point o f view, the execution semantics offered by the R2PC protocol are 

Exactly Once semantics with no possibility o f failure. Any failure will be dealt automatically by the 

system. If the system can not deal with all the failures, the result will be the failure o f the system.

With these semantics, programmers can concentrate in the development of their distributed 

system achieving automatic fault-tolerance without having to worry and deal with all the possible 

fault scenarios that may occur.

In order to achieve this target, each R2PC call is treated as a transaction, keeping the properties of 

Atomicity, Isolation, Definitiveness and Consistence [Elmasiri etal. 94].

The implementation o f the transaction mechanism can be quite simple in the case of using 

idempotent procedures. In this case, the result o f the call will not depend on the status o f the 

server but on the parameters from the client. Taking this precondition into consideration, in the 

case o f a server failure, the call can be simply redirected to another available server.

The main problems become apparent in the case o f using servers that need to preserve their 

status according to the previous calls made from the clients which, in practice, is the most usual 

case.

•  Atomicity: The R2PC has to be either completely executed or not executed at all. In case 

of acceptance, the call has to be processed exactly once, and once it has been processed, 

there is no way back. To accomplish these requirements we have to consider for example,
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the situation where a client does not receive a reply message. How do we establish 

whether the call has been processed or not?

To address this requirement each R2PC call has been associated with a unique sequence 

number. If  a reply message is lost, the server will now be able to distinguish whether the 

call had already been processed. If this is the case, the server process will only have to 

return the same results evaluated previously. The form and use given to these sequence 

numbers will be presented in more detail in the description o f the protocol.

•  Consistence: If a transaction starts in a consistent state, after completion o f the 

transaction, the resulting state has to be consistent as well.

Every process is presumed to be deterministic upon reception o f the same results from 

the execution o f the same sequence of R2PC calls.

The protocol does not define an ordering on the results o f the original sequence o f R2PC 

calls. However, in the case of a failure, the system will generate the same sequence of 

results from the re-executed R2PC calls. This order will be preserved as well for the case 

o f nested calls.

•  Isolation: The transaction has to be executed independently from other transactions that 

are executing concurrently. In effect, the transaction is executed as if it was isolated.

In the new system, all the R2PC calls are sent to and processed by a single process, which 

is the current primary process. This process orders the execution o f the calls. The least the 

primary process must do is to sequence the transmission and acceptance o f results. 

Different calls may be processed simultaneously using different threads, but the 

programmer has to establish the appropriate critical sections in order to prevent calls 

interfering with each other.

•  Definitiveness: Once the transaction has been accepted, its results are permanent.

For example, what happens when the server process that attended the request crashes?

The results and calls evaluated by each process are kept in the replicas until a checkpoint 

is made. Each process in the system forms part o f a group.

However, the provision of these requirements may not be sufficient. It may be necessary to define 

a transaction as a much bigger unit than a R2PC. For example, what happens when a client
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crashes? Maybe this client had some pending R2PC calls to execute. Should the R2PC protocol 

guarantee the restart and recovery o f the client processes? This idea does not seem to have much 

sense in a broad distributed system - a server in Alabama cannot control whether a client in 

Dublin is working or not. However, in a restricted environment where there is a need to 

implement a reliable system, for example, a computer's LAN controlling a nuclear power plant, 

such a guarantee would be sensible.

For this reason, the property of Consistence is treated at two different levels:

•  A single R2PC - keeping the consistence o f the execution o f this R2PC among all the servers 

o f the group.

•  The complete execution of any process - if any primary process crashes, the group will elect 

one of the replica processes as the primary process and will restart it from the last checkpoint 

before the crash.

The system manager can decide what groups need replication and in what numbers by specifying 

the resilience degree for each group.

The next sections describe the theoretical and technical details o f our implementation o f R2PC.

3.2 R2PC Protocol

3.2.1 System Overview

In order to guarantee the recovery of client and server process, in the R2PC system there are no 

single processes. Any process forms part o f a group.

Each group o f the system is an independent unit organised using the primary/backup approach. 

In this case, each group elects a particular process, called primary, that carries the computation of 

the group. The primary sends recovery information to the rest o f the members o f the group, called 

r'epEcas. In the following description, when we refer to the evaluation o f a call by a group, it is the 

primary process o f the group that carries out the evaluation unless otherwise specified.

When a client group executes an R2PC call, a message (identified with a unique call identifier) is 

sent to the corresponding server group, which evaluates the call and sends a reliable multicast 

message with the results to all its replicas. Only after a successful multicast to the replicas in the 

server group does the server send the results back to the client’s primary process. Finally, the
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primary client process sends a reliable multicast to its own replicas with the result o f the call 

before returning control to the application.

Each process group can act as client, server or both. Each group holds two history buffers: one 

for the client part and the other for the server part o f each process. This information is stored for 

recovery purposes. In this way, every process can be restored to its previous state by re-evaluating 

all the local calculations made from the last checkpoint. All this information can be stored in a 

machine independent format, avoiding the dependence on a particular machine configuration.

The client side of the history buffer stores the results returned from each call so that, when a 

client crashes and restarts, it does not have to ask the server processes to re-evaluate the calls that 

had already been made. The client uses die information stored in its internal tables to re-establish 

the state o f the group. The server side needs to store information about the input calls that had 

been processed from the last checkpoint. At restart, a primary server will re-evaluate all these calls 

from the last checkpoint.

In the case of a primary server crash, a new server is elected. As the failed server could have been 

processing the call from a client, the client may have remained blocked waiting for die result. For 

this reason, when a client does not get any result back from the server, after a certain period of 

time, it will repeat the call. The directory service - a service in charge o f translating any group address 

into the network address that identifies the current primary process o f the group — will re-direct 

the call to the new primary server of the group. Once the new server receives the call, it will check 

the call identifier. If die call had already been processed before the crash it will just return the 

results, otherwise it will evaluate the call.

If the crash is on the client side, the results returned by the server will be lost. However, this is not 

a problem. When the client restarts execution again, the call will be requested again and die server 

will not re-evaluate the call, it will just send the same results once more.
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Figure 6 Overview of the R2PC Protocol

3.2.2 Nested Calls

This section is going to compare our protocol with the State Machine Approach [Schneider 90] in 

order to verify the correctness o f our model.

State machines are used to model services and servers. [Schneider 90] defines a state machine as 

a set o f state variables, which encode its state and commands, which transform its state. A 

deterministic program implements each command. Execution o f the command is atomic with 

respect to other commands and modifies the state variables and/ or produces some output. A 

client o f the state machine makes a request to execute a command. The request names a state 

machine, the command to be performed and contains any information needed by the command. 

Output from request processing is sent to the client that is awaiting response from its prior request. 

Outputs from a state machine are completely determined by the sequence o f requests it processes, 

independent of time and any other activity in a system.

In case of a nested call, output from a state machine can also be used as a request to other state 

machines. This case is not considered in the original model o f a state machine. In fact, the 

introduction of a nested call could introduce non-determinism in the execution o f the state 

machine. Why?
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Let us consider the case o f Figure 7, where Pi are processes and refers to the jib  call requested 

by the client process P,. The execution of a command will involve a return of information for the 

executing process.

Figure 7 Possible command sequence generated by nested machine states

The execution of the command M t1 in P3 generates the execution o f the command M:1 in Ps. At 

the same time, the execution o f M21 in P4 generates the execution o f the command M41 in P5. 

Now, if Mj, and M41 are not commutative commands over Ps, neither P3 nor P4 behave as a 

deterministic state machine anymore. Their results will depend on the results that they receive.

How can this problem be solved for this example? In fact, with the use o f nested calls, the 

outputs from a state machine are not completely determined by the sequence of requests it 

processes. For example, in our case, the results from P, depend on whether Ps has processed the 

command M31 before M4, or not. However, once this sequence o f commands has been executed, 

its order is not going to change anymore - i.e. its execution order will be determined.

Using R2PC, it does not matter whether Ps processes M31 first or M41 first. However, once Ps has 

taken a decision and executed these commands in a particular order, this order does not change 

anymore. If any state machine is restarted again, it has to execute the same sequence of 

commands that had been executed in first instance.

The restart o f a state machine by itself is not a problem. The only task to be done is the execution 

of the same sequence o f commands that had been invoked in the first instance. However, the 

system needs to identify uniquely each message generated by any process, in such a way that in
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case of a repeated invocation, the server can return the results already evaluated without the need 

o f re-execution. How is this going to be achieved?

The message identifier cannot be a simple sequence number per connection because, although 

this technique works for client-to-server connections due to the fact that client processes are 

deterministic upon reception o f the same results, server-to-server connections (nested RPC calls) 

are not. As we have seen, the sequence of messages that a server generates is not deterministic 

upon reception of the same results. This sequence also depends on the order o f calls received 

from its client processes.

In the first instance, this factor should not be such a problem because, in the case o f restart o f a 

server process, re-evaluating the calls that the server had received in the same order as the calls 

arrived from the clients could regenerate the same sequence of calls. However, this would force 

the server to process each client call in a sequential way. Serialisation o f calls would be needed to 

ensure that the sequence order o f the calls generated at the restart o f a server is exactly the same 

as the order generated in the first instance. Otherwise, in the case of service calls that implied the 

use of two or more nested calls, the system could not guarantee that the sequence of calls 

generated by the server would be the same because different server threads could interact between 

the service of different calls.

Therefore, instead of using simple sequence numbers, each command to execute in the system 

has to be identified precisely, not only among the requests that have been received in our state 

machine, but also among all the requests generated in the system.

In the R2PC system, each client process is a deterministic process upon reception of the same 

results from the same sequence o f calls. Therefore, the execution o f a client process will precisely 

determine a unique sequence of calls. Consequently, to identify each message completely, the 

group id o f the client will be used together with the sequence number o f this message within the 

sequence of messages originated by this client1.

The Figure 8 presents a case where the invocation of Mu in C1 determines the execution of M12 

followed by M1}, and Mu. The results from these operations will determine the execution o f other

1 [Jalote 89] presents another scheme for identifying each call globally in the system. However, its format presents
the problem that to identify a nested call of N levels, we need to use N different numeric fields.
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commands (Mw) until the formation o f unique chain o f commands formed by the execution of 

C ,

As each call can now be uniquely identified in the system, we can ensure that the same results are 

returned for the evaluation o f any previously executed command.

Figure 8 Possible deterministic command sequence generated by a client (the vertical axis represents time)

The use o f the global identifiers solves the problem o f recovering client and server processes with 

nested R2PC calls. As a result o f this mechanism of global identification, it is not necessary to 

impose an order of execution in the processing o f the calls. In consequence, server processes can 

use concurrent threads to process different calls. However, it is task o f the programmer to define 

the proper critical sections to ensure that the execution of concurrent calls in a server do not 

interfere with each other.

On the other hand, programmers need to ensure that their applications are deterministic, i.e. the 

behaviour of each client process (or server in case o f a nested call) can be determined from the 

results obtained in the execution o f the R2PC calls evaluated. This is due to the fact that the client 

processes are used to fix the order o f execution o f the calls in the system.

3.2.3 Fault Recovery

During normal operation, the primary process will send enough information to the replicas to 

permit them to resume operation o f the group in case of failure.

On the client side, replicas will store the results returned for each call number. In this way, when a 

client crashes and restarts, it will not ask the server processes to re-evaluate the calls that had
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already been made. It will merely need to retrieve the results from these calls to return to its 

previous local state.

On the server side, replicas will have to know what calls had been processed by the primary 

process from the last checkpoint. The new server will have to re-execute all these calls again to 

return to its previous local state.

After the failure of a primary process, the system will elect a new one. Then, this new primary 

process will execute a recovery algorithm. During recovery, the system ensures that the calls are 

re-evaluated in the same order that had been determined by the evaluation o f the primary process. 

It does this by using only one thread to re-execute all the calls previously evaluated. This order will 

be fixed by the time a call finishes its evaluation and not when the call starts being evaluated - i. e. 

If  two calls were being served simultaneously by two different threads, the call that had finished its 

execution first will be the one evaluated first during the recovery process. Otherwise, the recovery 

phase could finish in a deadlock. For example, when the first call being evaluated had to wait for a 

result provided by a second call. During normal execution, the second call to arrive could finish its 

evaluation first and then, the first call received would finish afterwards with no problem. 

However, during recovery, if the first call received was evaluated first the system would reach a 

deadlock because, at this time, only one thread was being used and the system would wait 

indefinitely for the first call to finish before processing the second one.

It is important to note that, in order to guarantee a proper recovery, programmers have to ensure 

that R2PC services include a single critical section that only releases shared resources at the end of 

the service. Unfortunately, the inclusion o f this requirement reduces considerably the potential for 

concurrency. However, this condition is necessary to guarantee serializable and recoverable 

schedules [Ullman 88].

Figure 9 presents the information that the system stores for recovery purposes.
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Figure 9 Information to store for recovery purposes

The main problem with the scheme presented is that the information required to keep the status 

of the system grows linearly with the number o f calls evaluated by the processes. This is 

intolerable, particularly for processes that are supposed to be active for long periods o f time.

One first approach to limit the amount o f information required would be to use a coordinator- 

cohort scheme in which replicas were actively re-evaluating the calls received from the primary 

process. In this way, replicas could flush the RPC calls as long as they were evaluating them. The 

system should ensure that replicas only use the information stored in their cache without 

interfering with the work processed by the primary process. This approach would be very similar 

to the one taken by [Beedubail et al. 95]. This would permit very quick recoveries because the 

state o f the replicas would be nearly the same as the one o f the primary process. The main 

drawback o f using this method on its own is that the system would be unable to permit the 

reestablishment o f new replicas into the group. Once the recovery information has been flushed, 

a new replica process will not be able to join the group as it cannot get the recovery information 

anymore. This is unacceptable because, in the long term, the process group would eventually fail 

as it would not be able to re-establish the components that had failed.

Consequently, in both cases the use o f checkpoints is required. In the R2PC system, a checkpoint 

is the action of transferring all the information about the current state o f the primary process to 

the replicas so that if the primary process is interrupted, a replica can be restarted at the point at
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which the last checkpoint occurred. Therefore, once a checkpoint has been executed, all the 

processes can flush the information about the R2PC calls processed in the group up to this last 

checkpoint.

The quantity o f information required to be stored in a checkpoint is normally quite constant 

during the lifetime of an application, particularly in the case o f control/communication 

applications in which we are interested. Checkpoints in transactional systems may require the 

transference of enormous quantities o f information because they store all the data in file systems.

The use o f shadow copies is an interesting approach for the provision of checkpoints in 

transactional systems [Parrington et al. 94] avoiding the transfer o f great quantities o f information 

during a checkpoint. However, the use of this mechanism can delay the recovery phase because it 

forces the system to wait for crashed processes to be restarted (cold standby).

Control/communication applications do not usually require holding great amounts o f state 

information [Birman 91]. This fact facilitates the use of hot standby techniques for such systems 

as it can be assumed that it is possible to transfer their state information in reasonable amounts o f 

time.

Another problem usually associated with the use of checkpoints is that the information required 

to save the state o f a process is normally machine dependent. Consequently, this information can 

only be exchanged among compatible processors. This problem can be solved using an 

externalised format that can be exchanged among different processor models.

Another interesting approach to consider is the introduction o f transfer state routines by the user. 

This facilitates the implementation of the checkpoints and also reduces the information needed to 

transfer the state o f a process. However, this forces the programmer to implement routines to 

transfer and receive the current state o f the application, which in some cases may not be that easy, 

particularly in applications that need to be reused. However, such a mechanism can be 

incorporated quite naturally in object oriented languages.

3.2.4 Implementation Details

The protocol has been implemented on a network of Personal Computers using the Windows 

Sockets 2 API as network communications platform.
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The Group Object offers the main functionality required for the implementation o f the reliable 

transaction system. The notation used to describe the design o f the components o f the system is 

based on the notation presented in [Sully 93]. An object is represented as a rectangle with the 

name of the object at the top and a series o f “buttons” . These “buttons” are labelled with the 

name o f the services that the object offers to the rest o f the application.

Figure 10 Representation of the Group Object

The creation o f a Group Object marks the start o f the monitoring of this group (start o f the 

transaction at the level o f consistency of the group). This monitoring process will not finish until 

the execution o f the Close method.

The execution o f each R2PC is treated as the execution o f a complete transaction in itself.

The refinement for the Group Object is shown in Figure 11. This basic scheme represents the 

interactions among this object and the Directory Service (DS) for the creation and termination of 

replica processes.
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Figure 11 Refinement of the Group Object

The code for a R2PC process group is included in a single program. On the server side, the 

programmer has to specify the handlers that will serve each procedure call. On the client side, the 

programmer has to define a main part that will contain the code that the group will execute at 

start time.

Normally, R2PC applications will require the use o f common services, such as a Directory Service 

(DS) that can be used to provide a mapping between logical names and group identifiers. The DS 

assigns these services permanent group identifiers that are known to the rest o f the groups (see 

section 3.3.3).

The current implementation does not provide any stub compiler because R2PCLinda (see section 

4.3) has been used as our main user-programming interface. However, the implementation of 

such a compiler should be a simple exercise due to the regular structure of the final code required 

for a R2PC application (see Appendix A).
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At run time, the system will automatically create the threads necessary to execute the main code of 

the application, to serve the incoming calls and to provide the mechanisms for fault detection and 

recovery. The replicas for each group will also be created automatically when a group is started.

3.3 Group Communication

3.3.1 Introduction

This section describes the characteristics required and provided for the group communication 

system designed to support our implementation of R2PC. The resulting mechanism is based on 

the group communication system adopted in Amoeba [Kaashoek 92]. However, due to the fact 

that our protocol has been specifically designed to be used as a platform for the development of 

R2PC, we have constructed a theoretically more efficient implementation o f reliable group 

communication. The main reason for this achievement is that Amoeba’s groups elect a process to 

sequence all the communication among group members. Therefore, any message sent to the 

group has to be redirected first to this sequencer process. This is not necessary in our case because 

the primary process o f a group automatically takes the role o f this sequencer process.

3.3.2 Group Structure

Our process groups follow the primary-backup approach - the primary process carries out the main 

computation o f the group and transfers information about its status to the replicas.

Groups are dynamic, permitting the incorporation o f new members to the group at any time of 

the process.

The first group to exist in the system is the Directory Service (DS). The DS is a special group that 

translates any group address into the particular address that identifies the current primary process 

o f each other group. Another important task o f the DS is the distribution o f replica processes 

among the different processors o f the system according to the information provided by the 

primary process o f a group.

The DS is composed of a number o f Directory Service Providers (DSP). Each active processor 

holds an active DSP. For efficiency reasons, each DSP may hold information from other DSPs 

cached in its local memory. But there is no guarantee that this replicated information will be kept 

consistently. A DSP is uniquely responsible to guarantee the consistency of information that 

refers to the groups whose primary process resides in the same processor as the DSP itself.

50



Group Identifiers (grvupld) are used to provide a unique mapping for intergroup and intragroup 

communication.

A new R2PC process notifies its existence to the system by sending a new_gmup message to its local 

DSP. At that time, the DS generates a unique grvupld for the new process and starts the execution 

of replica processes according to the reliability required for that group. Once this is done, the 

grvupld is sent back to the process that initiated the new_group call and this one becomes the 

primary process for the new group. From that moment, the primary process can start its reliable 

execution.

G e n e r a tio n  o f  C ro u p  I d e n t if ie r s

The DS reserves an address space for the allocation of permanent gmttpld used by group services. 

In the rest o f the cases (i.e. normal application groups), grouplds are generated dynamically by the 

DS.

The current implementation allocates these identifiers sequentially. The DS ensures that each 

group has a unique grvupld by using a voting protocol based on the two-phase commit protocol 

(see [Davidson et al. 85] and [Babaoglu et al. 93] for a description o f the two-phase commit 

protocol).

During initialisation, a DSP sends a start_DSP message to the rest o f the members o f the DS 

(using a multicast message, see section 3.3.5). Then, it waits for vote_start_DSP messages from 

other existing member of the group. Each vote_start_DSP message contains the last identifier that 

is believed to be assigned by the DS. After waiting for a sufficient period of time, the DSP 

processes all the vote_start_DSP messages and initialises its own state with the highest identifier 

received. This decision is then transferred to the rest o f the group members with a set_status_DSP 

message.

At reception o f a new_gmup message, the DSP creates a new identifier and sends a 

new_group_prep(m message to the rest o f the group members. The members will reply with a 

mw_gmup_vote message to notify whether they are ready to accept the new identifier or not. I f  the 

rest o f the group members accept the identifier, the DSP sends them a set_status_DSP message

3.3.3 Group Identification
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and then, it assigns that identifier to the new group. If  there is no agreement, the DSP will keep 

suggesting other identifiers until it succeeds. If  there are no replies, the DSP will assume that the 

rest of DSP’s have crashed and it will accept its initial suggestion.

In order to ensure the uniqueness property of new identifiers, the protocol guarantees that once a 

member has notified that it is ready to accept an identifier with a new_gmup_vote message, it will 

never suggest that accepted value as identifier for a new group.

During the execution of die protocol, different DSP’s can act as co-ordinators trying to create 

new identifiers. This fact requires careful examination to avoid the possibility o f deadlocks. A  

deadlock could be reached in the case when given the same initial value, die different co­

ordinators suggested the same chain of values. In this case, all the co-ordinators would suggest the 

same identifier and none would get the value accepted, then they would all try again, suggesting 

the same next identifier that would be rejected as well, and they would keep suggesting values 

forever. In order to avoid such a condition, each DSP will suggest a new identifier by increasing 

the last suggested value by a random quantity within a safe interval.

The protocol just described guarantees the condition that every new identifier accepted is unique 

using ct'asb-fauk processors. This model ensures that if processes crash we are at least guaranteed 

that communication is reliable and each message is received inside their specific time constraints.

However, with only a few changes, the protocol could increase its probability o f working properly 

in less reliable environments. In the case where the communication layer is likely to lose messages, 

a DSP that received no replies after sending a neiv̂ gmup message could not have the guarantee that 

it is the only DSP alive. In this case, if the DSP was suspicious that other DSP’s could be alive, it 

could repeat sending new_grottp messages for a while. Another option would be to use a reliable 

multicast mechanism such as the one described later on.

However, none o f these options would guarantee the uniqueness o f identifiers in case of 

temporarily partitioned networks. To deal with such a problem, we could use very long identifiers 

randomly generated as suggested in the implementation of the FLIP protocol [Kaashoek et al. 93]. 

The use of diis technique on its own does not completely guarantee the creation of unique 

identifiers, however, it leads to very scalable implementations while reducing considerably the 

likelihood of an identifier clash.
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Any group contacts the D S by communicating directly with the local D SP  at a specific network 

port. Intergroup communication to a group other than the D S is achieved by sending a message 

to the primary process o f  the destination group. The sender process has to contact the D S  to 

locate where the destination primary process is.

Each DSP keeps a routing table with the information o f  the groups that it owns -  the groups 

whose primary process is located in the same node as the D SP  - and another with information 

cached from other D SP ’s.

At reception o f  an address enquiry, the local D SP  checks for the required information in its talóles. 

If the information is not available, the D SP  sends a locate m essage asking which D SP  holds the 

information for that particular group.

Only the DSP that currently owns that group will reply with the information o f  the current 

address for the primary process. O nce this information is received by the enquiring D SP, it will 

transfer it to the primary process that originated the enquiry. Both processes, the local D SP  and 

the primary process, will hold this information in their cache for future reference.

From that moment, the sending group will be able to communicate directly with the primary 

process o f  the destination group.

3.3.4 Intergroup Communication
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Figure 12 Scheme representing the use of the Directory Sen/ice to send a message from Group k to Group m.

This intergroup communication mechanism is used to implement a R2PC call.

At the time when the destination primary process fails, it will be restarted in another node and the 

new primary process will inform o f  the new changes to its local DSP.

From that moment, the sender process will not receive any reply from its R2PC requests. After a 

certain period o f time, it will automatically flush the contents o f its cache and it will enquire the 

local DSP again. Then, the local D SP will also flush the contents o f its cache and it will send a 

new locate message.

I f  the failed nodes had been owned by the local DSP, this information would not be removed 

from the local routing table yet, however, the local D SP would send die locate message anyway. If, 

as reply o f  the focate message, the D SP realises that this information is already owned by another 

DSP, then the local D SP will remove the information from its local table.

The failure o f a DSP could represent the disconnection o f a group from the rest o f the system. In 

order to account for this eventuality, the primary process o f  each group will periodically check 

whether the local D SP is still alive. I f  the failure o f  the local DSP is detected, the primary process 

will kill itself, hoping that the rest o f the replicas will re-establish the state o f the group.
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This algorithm operates fine for reliable communication environments. In cases where the 

communication layer may omit messages, the primary process o f  each group should ensure that 

the D S holds the right information by transferring the current state o f  the group to the local DSP 

at regular intervals o f  time. As a matter o f  fact, this information is transferred every time that the 

primary process checks for the survival o f  the local DSP.

3.3.5 Intragroup Communication

In the case o f the D S group, members communicate among themselves using normal multicast 

messages.

In the case o f communication among members o f  groups other than the D S, the primary process 

o f  the group communicates with its members using a reliable multicast protocol.

Reliable Multicast

The design o f R2PC relies on the use o f  a Reliable Multicast mechanism with the following 

semantics.

•  Communication transparency:

•  Atomic message delivery: Any reliable message has to be received and processed 

either by all the members o f  the group or by none o f them.

•  Ordering: Application-level ordering is enough to guarantee the proper evaluation o f 

the algorithm.

•  Naming Transparency: Group members have to be bind to a single name.

•  Failure Transparency: After a processor failure, the protocol has to go through a recovery 

phase in which the group is rebuilt from the processors that are still alive. The protocol 

has to guarantee (1) that all the members in the rebuilt group receive all the messages 

successfully sent by the primary process o f  the original group before the failure and (2) 

that surviving members o f the rebuilt group will receive all messages successfully sent by 

the primary process o f the new group after the failure.

•  Group Structure: Groups can be either open or closed. What is important is to have 

dynamic groups where processes can join or leave the group at runtime.
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The Multicast Protocol implemented and used is based on the group communication system 

adopted in Amoeba [Kaashoek 92] with the following characteristics.

•  Communication transparency:

•  Atomic message delivery: All or none.

•  Ordering: Total ordering per group.

•  Naming Transparency: Thzgroupld is used to identify a reliable multicast address to which 

all the group members are subscribed.

•  Failure Transparency: As required.

•  Group Structure: Closed and dynamic groups.

A  reliable multicast message guarantees the delivery o f the message to at least r  members, r  being 

the resilience degree o f  the message.

When a primary process has to send a reliable multicast message, it first sends a normal multicast 

message and waits for acknowledgement messages from the replicas. I f  r replicas have replied to 

the message, the reliable multicast message is completed, otherwise, the normal multicast is sent 

again.

This mechanism requires the use o f message identifiers to distinguish among duplicated and new 

messages. As this mechanism has been designed to implement R2PC, we decided to adopt the 

identifiers described in section 3.2.2.

In our implementation another factor has been introduced, c, the c o n fid e n c e  d e g r e e  o f a 

multicast call. This factor indicates the maximum number o f times that a multicast call will be re­

evaluated in case o f  not receiving acknowledgement from all the replicas required by the resilience 

degree. Once the message has been retransmitted c times, the transmission o f  the message will be 

considered complete, independently o f the number o f acknowledgements received from the 

replicas.

In cases where the communication layer is very reliable - such as current local area networks — it 

may make sense to define a low confidence degree. Section 3.3.6 will show that during the 

execution o f a reliable multicast mechanism, the primary process tries to restart any replicas that 

may have failed. Therefore, if the primary process has been trying to restart replicas for a while
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and is not getting enough replies, it may assume that the node has crashed completely and that it 

is not going to restart anyway. In such a case, it may be sensible to continue with the execution o f 

the group, even if the resources available are below the minimum established by the resilience 

degree defined.

On the other hand, in cases where the communication layer is very unreliable or where there is a 

guarantee that any crashed nodes will be replaced, the system manager may require a very high 

confidence degree from the multicast mechanism.

3.3.6 Reliability

One method used to control the reliability o f  the system is the provision o f  a  separate monitor 

service in charge o f visioning what process groups may be in trouble. The main problem 

associated with the use o f this method is its scalability. The more process groups that exist in the 

system, the more difficult it is to keep track o f  all o f  them.

R2PC does not require such a separate service because each group is responsible to guarantee its 

own survival. This solution is scalable because the number o f members for each group if fixed by 

its resilience degree.

Fault Detection

The most common mechanism used to detect the failure o f a process is the use o f  timers. The 

monitor service sends a message to the process that is suspected to have failed. I f  this process 

does not reply after a certain interval o f  time, the monitor assumes that its target process has 

failed.

This method can work fine for crash fault processors. However, in systems where messages may 

be delayed or omitted by the network communication layer, this method on its own would not 

work because the monitor can make mistakes by assuming that a slow process is faulty.

This type o f mistake may be unavoidable. However, what is important is that once a process is 

considered to have failed, this information is propagated consistently among the rest o f  die 

processes o f  the system.

In order to provide such a consistent view, each group has associated with its state an 

in c a r n a tio n  number. The incarnation number o f  a group is incremented after recovery from a 

primary process failure. Each message sent is stamped with the incarnation number. Only messages
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equal to the current incarnation number are processed. Messages from an old primary process are 

discarded and a kill message is sent back to the old primary process. When a primary process 

receives a message with a higher incarnation number, it realises that a  more recent primary process 

exists and it kills itself.

As we have already mentioned in the introduction o f this section, group members monitor each 

other to detect the failure o f a component o f  the group.

The primary process checks the status o f  the replicas every time that it invokes the reliable 

multicast protocol (see section 3.3.5). The primary process uses a timer that triggers an automatic 

invocation o f  a reliable multicast N U LL  call after a certain period o f  inactivity.

Each replica uses a timer to control the activity o f the primary process. If the replica has not 

received any message from the primary process after the limit period, it sends an anjyou_alive2 

message to the primary process. I f  the primary process does not reply at all, the replica will 

activate the restart protocol to elect a new primary process.

The failure o f the local D SP is considered to be equivalent to the failure o f  the node. In this case, 

each group periodically updates the local information o f  the DSP. In the case o f  detecting the 

failure o f the DSP, the primary process terminates execution expecting that the group will be re­

established somewhere else. Instead o f committing suicide, the primary process could try to 

restart the DSP process. However, the current implementation o f  the protocol uses the first 

option for simulation purposes, in this way, the failure o f a D SP can be used to simulate the 

failure o f a node.

Restart & Recovery

On detection o f the failure o f a replica process, the primary process communicates with the D S  to 

request the creation o f another replica process in the system. Once the D S has created this new 

replica (possibly in a different node), the replica contacts the primary process to ask for the

current status o f  the group and this information is transferred to the replica process.

The case o f  failure o f  the primary process is more complex because replicas have to reach an 

agreement to elect the new primary process o f  the group. The election protocol used in this case 

is based on the invitation protocol presented in [Garcia-Molina 82].
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This protocol runs in two phases. The first phase is used to determine how many members are 

alive and to elect a coordinator for the second phase. A  replica that triggers the restart algorithm 

sends a restart message to the rest o f  the members and takes the initial role o f the coordinator. On 

reception o f  the restart message, replicas reply with a vote message indicating what is their current 

state and wait for a decision message from the coordinator. I f  a coordinator receives a restart 

message from another coordinator, the one with the lowest network address becomes the 

coordinator o f both. At the end o f  this invitation phase, there is only one coordinator left that 

knows exactly how many members are alive and their current state.

In the second phase, the coordinator elects as new primary process the one whose state is more 

up to date - if the coordinator notices that the previous primary process is still alive, that one will 

be elected as primary, otherwise the candidate will be chosen randomly among the more up to 

date ones. I f  one o f the members does not have the complete status o f  the group, the coordinator 

sends it die missing messages. On reception o f the decision message, die process that has been 

elected primary starts the recovery phase (see section 3.2.3) while the rest o f  the members remain 

replica process.

This algorithm operates correctiy for crash fault processors. In environments with omission failures, 

replicas that may not have been acknowledged during the first phase o f the protocol may restart 

the execution o f the first phase o f  the protocol again, delaying the final result. However, in case o f 

temporary network partitions where the multicast messages may not reach all the replicas, two 

different members may become primary processes. Once the partition problem is solved, the 

primary processes will detect the existence o f each other with the same incarnation number. The 

one with the lowest network address remains as the primary process and the other is killed. 

Unfortunately, such a situation may lead to inconsistencies when the primary process that is killed 

has already processed calls from other groups.

3.3.7 Implementation Details

The run-time part o f R2PC provides each process with a number o f threads to carry out its work. 

For the client part, the system sets up a worker thread that carries out the computation o f the 

main pari o f die program. For (lie server part, a different worker thread is set up to setvice the 

calls from each different group that is communicating with the current process. There is also one 

thread in charge o f the intragroup communications with other members o f  the same group as the
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current process. All these worker threads actually communicate with the rest o f world via the 

sender and receive threads (see Figure 13).

Primary and replica processes share the same source code. When a replica process takes the role 

o f the primary, the active thread in charge o f the intragvup communications takes care o f  the 

recovery phase and, once the recovery is over, it starts creating the necessary threads to provide 

service to the groups that communicate with it.

The timers used to monitor the survival o f  each process base their functionality on the current 

networkLateniy. This parameter is automatically adjusted by the system in order to adapt to traffic 

variations. The messages used by the monitor part are assigned with the highest priority in order 

to avoid any extra delays.

Figure 13 Thread model used in the R2PC processes

The system manager can set up the initial value assigned to the netmrkLatency parameter and to 

other parameters o f  the system through the use o f  the configuration files described in the 

Appendix B.
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3.4 Conclusions

This chapter has outlined our approach to construction o f  a Reliable Remote Procedure Call 

(RRPC) service. It also presented the implementation details o f  the group communication service 

used to implement our model. The rest o f  the dissertation is devoted to applications o f this model 

and examples that illustrate how these tools can be applied.

Our approach differs from existing approaches to the provision o f  RRPC services described in 

section 2.1 The main differences being the transparency o f  the resulting system and the creation 

o f a scalable and efficient system that permits the reliable service o f  concurrent calls.

In terms o f transparency, our system supports:

1. Use o f  nested calls (a recognised factor for the creation o f complex distributed systems).

2. Use o f  threads.

3. Provision for recovery o f any process o f  the system.

4. Use o f  transparent recovery mechanisms (although the use o f  checkpoints has not been 

covered in the current implementation).

The system can be implemented efficiently in terms o f the following:

1. Use o f a fast reliable communication protocol (the number o f messages required for each 

RRPC is 2 point to point +  2 reliable multicast).

2. Concurrent service o f different calls.

3. Provision o f a scalable solution (permitting the creation o f  many different groups with 

different degrees o f  resilience).

4. Provision o f fast recovery times (replicas are active and ready with all the information 

necessary to restart).

The main characteristics o f the resulting system can be summarised as follows:

•  There are no single processes. Any process forms part o f  a group.

•  A  new process group is automatically created when a new process is executed. The

process is automatically replicated in the available platforms according to the
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configuration parameters set for the system. Each process group is uniquely identified in 

the system with a single address.

•  A group has two member types, primary and replica processes. The primary process is the 

entity that performs all the computation o f  the group. The replica processes are passive 

entities that receive information about the computation being evaluated in the primary 

process o f  the group.

•  Each group has one and only one primary process active at any time. The members o f 

each group ensure automatically that this condition is accomplished. The primary process 

verifies that the replicas are alive and the replicas check that the primary process is alive. 

We assume that the components o f the system can only fail by crashing (fail-crash 

processors), although this requirement could be relaxed as shown in [Schneider 84]. Any 

failing component o f  the group is discarded and, if possible, restarted elsewhere. A  

component failure is detected using a timeout mechanism following the principles o f  the 

Virtual Synchrony model developed for Isis [Birman et al. 94]. A  group fails only when all 

its members fail simultaneously.

•  Any group can act as client, server or both (permitting the use o f  nested calls). Our 

protocol ensures that the restart o f  a primary process will evaluate all the calls executed 

from the last checkpoint in the same order and obtaining the same results that had been 

previously obtained in the execution o f  the previous primary process up to die moment 

o f  the crash. In our system, the provision o f fault-tolerance will be guaranteed if any 

process in the system is deterministic upon reception o f the same results from the 

execution o f the same sequence o f R2PC calls. (Note that although the sequence o f results 

to receive does not have to be deterministic beforehand, the system will guarantee that 

the execution o f a R2PC is considered a transaction, once a result has been obtained for a 

particular call, this result is not going to change anymore).
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Example Application
R2PCLinda: Adding fault-toierance to an existing distributed system

4.1 Introduction

This chapter presents the design and implementation o f  R2PCLinda, a fault-tolerant version o f  

PCLinda.

PCLinda [Manso 96] is a tool designed to develop parallel and distributed applications over a 

network o f  Personal Computers based on the Linda coordination language [Gelemter 85]. Linda 

is a powerful set o f  operations that can be included into a computational language to incorporate 

time and space distribution.

Taking PCLinda as application example o f  our model, we decided to tackle the fault-tolerant 

implementation o f a generic tool to create distributed programs. In doing so, we also proved the 

broad spectrum o f fault-tolerant distributed applications that can be constructed with our R2PC 

protocol.

The implementation o f  R2PCLinda shows the flexibility o f  the R2PC system designed by having 

facilitated the creation o f  a fault-tolerant version o f  an existing complex distributed system with 

practically no extra effort.

The next section presents a brief description o f the implementation o f PCLinda but for exact 

details and further explanations see [Manso 96], Then, we present the main changes required to 

adapt the initial system and obtain a fault-tolerant version, R2PCLinda. Finally, we present a

summary o f the tasks to do when including fault-tolerance into an existing distributed system 

using R2PC.



4.2 PCLinda

The implementation o f  PCLinda is based on the use o f the RPC model. The system represents 

the existence o f  Tuple Space as a collection o f local tuple space processes that interact among 

themselves to achieve the properties o f  the model. Figure 14 shows the basic components o f  a 

PCLinda application.

4.2.1 Overview of the System

\_ Master Process

This process emulates 
the existence of the 

virtual TupleSpace.

Figure 14 Overview of the PCLinda System

The execution o f a user program is represented as the execution o f  a collection o f  different 

processes, the master process runs the mean part o f  the program and the slave processes execute the 

eval calls o f  the program.

The Tuple Space is represented by the simultaneous execution o f  local tuple space servers. Each 

server is a daemon process executing on each processor o f  the system. When a user process 

invokes a Linda operation, it invokes a library call that communicates with the heal tuple space 

server executing in its machine. This server evaluates the required function by exchanging
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information with the other servers in the system and finally, the result is returned to the user 

process (if any result was required).

4.2.2 Implementation of PCLinda

A Linda program interacts with the Tuple Space through the use o f  the operations: out., eval, rd and 

in. These last two return the required tuple to the Linda program (a description o f  the semantics 

defined for these operations can be found in section 1.3.3 ).

Figure 15 Representation of the Tuple Space Object

The refinement o f  the context diagram o f the tuple space object is shown in Figure 16. This scheme 

represents the Tuple Space as a distributed object formed by the interaction o f  different local tuple 

«̂«objects.
The diagram describes the implementation o f each o f  the internal functions o f the tuple space 

object. For example, the invocation o f  an eval function leads to the following succession o f  events:

•  Firstly, the user program invokes an RPC to call the eval function in its local tuple space 

server.

•  Then, the eval function calls the live tuple decisor. This object decides where to evaluate the 

live tuple.
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•  The live tuple decisorrray decide to evaluate the tuple locally or in another local tuple pace, in 

which case it communicates its decision to the other local tuple pace.

•  The heal tupk pace creates a live tuple. At this point the RPC finishes its execution and the 

control is brought back to the user program.

•  Once the live tuple finishes its evaluation, the localEval function will invoke an out to insert 

the resulting tuple as a static tuple.

The implementation o f  the eval function requires the use o f a nested RPC call when the live tuple 

dedssor decides to invoke the localEval function on a different local tuple pace server.

Figure 16 Refinement of the Tuple Space Object

The diagram shows graphically the implementation o f the services offered by the tuple pace object.

•  Out. This method firstly demands the static tuple decisor (see section 4.3.2) when does it have 

to insert this tuple. I f  it has to be inserted in the same processor, it just executes a hcalOut
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call, otherwise, it issues a remote bcalOut call in the processor where the tuple has to be 

inserted.

•  Rd: This method also asks the static tuple decisor where it has to look for the tuple that 

matches with the template executing the localRd in the appropriate processor.

•  In: This method is practically the same as Rd with the difference that it will issue a localln. 

The localln method will remove the tuple from tupk pace.

•  Eval. This method addresses the live tuple decisor (see section 4.3.2) to ask where does it have 

to evaluate the tuple and then, it executes a localELvalin the designated processor.

•  localOut, localRd, localln'. These methods do not use the static tuple decisor. They insert or

remove tuples from the list o f  tuples that make up the Local Tuple Space.

•  localEval: This method creates a  new process that will execute the function to evaluate.

What is important to note in the diagram is the fact that any communication among different local 

tuple pace servers requires the use o f  nested RPC calls.

The implementation o f  PCLinda also included the creation o f  a precompiler that translates a 

PCLinda C + +  program into two C + +  modules including calls to the methods defined in the 

PCLinda library. The first module created contains the code for the main part o f  the program and 

the second one is the code for the eval manager program (see (Manso 96]).

4.3 R2PCLinda

Fault-tolerance is introduced in PCLinda by substituting the original RPC protocol with the new 

R2PC model. In order to use R2PC, a  distributed system has to be adapted syntactically and 

semantically.

4*3.1 Group Addressing

R2PC calls have to be directed to process group identifiers. As grouplds are normally created 

dynamically, there is no way that an application can learn what is the grvupld o f  a group at 

compilation time. In order to solve this problem, R2PCLinda introduces the implementation o f a 

Name Directory Service (NDS). This service can be accessed at a staticgmupld address known to 

all the process groups o f  the system.
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The N D S provides a mapping between logical names and grouplds. At start time, once the D S (see 

section 3.3.2) assigned a groupld for an application, this application publishes its address through 

the N D S service.

In R2PCLinda, each local tuple space server publishes its group address under the logical name 

“ localTS” . The first time that a Linda application requests the groupld for its “ localTS” , the D N S 

tries to provide the application with thegmupld o f  the “ localTS” service whose network address is 

the same as the process making the request. However, once a binding has been established it will 

not be changed.

For example, suppose that we have two processors, processor i and processor j .

At start time two process groups will be created, localTS, whose primary process runs in processor 

i and localTS j with primary process running in processorj .  When client̂  is created in processor i, it is 

binded to h c a lT S Now, if the primary process o f  clientt crashes and resumes execution in 

processorj ,  client.¿will not change the binding to localTS^ it will keep using localTS\ as its “ localTS” .

4*3.2 Determinism

The behaviour o f fault-tolerant programs created with R2PC has to be determined by the results 

obtained from the evaluation o f  the Reliable Remote Procedure Calls executed. This condition is 

necessary and sufficient to guarantee the recovery o f  any failing process (see section 3.2.2).

The decisor objects are the main sources o f non-determinism for the PCLinda system.

Static Tuple Decisor

The static tuple decisor influences directly in the Tuple Space distribution. The amount o f  

communication exchanged among heal tuple spaces will depend on this distribution, which implies 

that the implementation o f  the tuple decisor directly influences the efficiency o f the resulting system. 

The problem can be presented using a mathematical notation [Shekhar 93]. Let:

•  in_set(P): set o f  all tuple types that the procedure P  can refer/remove.

•  out_set(f): set o f  all tuple types that the procedure P  can place in Tuple Space.

•  access_set(P) =  in_set(i)uout_set(P). These are all the tuples related to procedure P.

If  we consider that each process Pi is executing in a different node, the m ost efficient distribution 

corresponds to the case where for each process Pt, the access_set(P) is placed on the same node
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where P; is executing. Unfortunately, this is possible only if there is no other process P} such that 

access_set(P,)ruccess_set(P) is not a null set. In practice, such a distribution is not possible as 

most o f  the applications do not fall into the above category. Consequently, other distribution 

schemes have to be used:

•  Random Selection o f  a Node: A  first possibility is to decide randomly where to place each 

tuple belonging to the out_set(P). This scheme may result in a large amount o f 

communication, because the process P  may have to send a tuple corresponding to the 

out_set(f) to another node and then, may have to check all the nodes to find a tuple 

belonging to the in_set(P).

•  Operator Partitioned Scheme: In this scheme the tuples are distributed according to the 

operator used. For example, all the tuples belonging to the out_set(P) can be mapped to 

the node i and all the requests belonging to the in_set(P^) to all the nodes. Another 

possibility is to reverse the previous scheme. That is the requests belonging to in_set(P,) 

are diverted only to node i and all the tuples belonging to out_set(P^) are sent to every 

node. There are also many variations o f  these two schemes.

•  Hash Based Schemes: In this case, each tuple type is mapped onto a node according to a 

predefined scheme. This method reduces communication because it fixes each tuple to a 

node at compilation time. Usually, the most efficient systems are the ones that define the 

mapping by analysing the dependencies o f  the application.

For the implementation o f  R2PCLinda, we need to define a system whose behaviour is 

determined by the results o f  the R2PC calls received. For this reason, the use o f a random scheme 

would have been totally inappropriate.

The static tupk decisor finally adopted uses a simple hash-based scheme. The location for a tuple is 

determined from the value o f  the first parameter o f  the tuple. The node where a request tuple can 

be found will be determined in all the cases but one, when the first parameter o f  die tuple is a 

template. In this case die system will have to check for the requested tuple in all the nodes. 

However, once a tuple has been transferred to one process, this decision will be determined by 

the system. In case o f re-execution, the same collection o f tuples will be transferred to the same 

process.
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The live tuple decisor has to decide where to evaluate new processes. This object also has an 

important influence in the efficiency o f the resulting system. Two main factors must be 

considered when making the decision:

•  Minimise the communications: Following the mathematical descriptions presented in the 

previous section, we have found that the most efficient distribution corresponds to the 

case where for each process PJ such that access_set(P,)Oaccess_set(P,) is not a null set, 

then Pj is placed in the same node as P;. Unfortunately, for most o f  the applications this 

will imply execution o f all the processes P, together on the same node. In other words, the 

execution o f our program will not be parallel, the program will merely execute as a set o f 

processes running concurrently on the same machine.

•  Maximise the use o f the computer resources: The load o f  the system has to be kept as 

uniform as possible. In this way all the nodes will have to do the same amount o f work 

and the use o f the system will be maximised.

The problem is that these two factors are normally divergent. In general, the more we distribute 

the work to do, the more communications we get. Therefore, a good option is to try to get the 

middle point by distributing the processes as much as possible but using a scheme related to the 

one used to distribute the static tuples. Some implementations use dynamic load balancing 

algorithms that distribute the processes according to the current load o f the system. However, this 

solution is not deterministic.

In R2PCLinda, the live tuple decisor uses a deterministic solution that focuses on load distribution by 

placing each ^¿//process cyclically around the different nodes o f  the system.

The invocation o f an eval procedure causes the creation o f new process groups, one for each 

function to evaluate.

I f  the process that invoked the eval procedure fails and is restarted in another node, the recovery 

process will re-execute all the calls that this process had executed since the last checkpoint in 

order to re-establish the state o f  the group. However, it is important to note that the re-evaluation 

o f the eval invocations should not create any new process groups because they had already been 

created the first time that the eval procedure was invoked.

Live Tuple Decisor
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For this reason, the implementation o f an eval procedure is implemented as the successive 

invocations o f different execute procedures, one invocation for each function to evaluate. Each 

execute procedure is defined as a system persistent call. The implementation o f R2PC had to be 

modified to guarantee that persistent calls are evaluated only once in the system’s lifetime. To do 

so, the original implementation was modified to guarantee that only system’s non-persistent calls 

would be re-executed during the recovery process.

4.4 Conclusions

In this chapter we have taken an existing distributed system o f  high complexity and easily added 

fault-tolerance properties into it by substituting the original RPC calls o f the application by the

R2PC calls defined in our model.

The process required to adapt an existing system has been quite simple.

First, we had to analyse the functionality o f the existing system and try to eliminate any source o f 

non-determinism not coming from the result o f  Remote Procedure Calls. The introduction o f

such a condition is necessary to guarantee the consistent recovery o f  crashed processes.

Once eliminated any undesirable sources o f non-determinism, we transformed the RPC 

invocations into R2PC invocations addressed to process groups. To do so, the design and 

implementation o f a Directory Service was included to map any logical name into a group 

identifier.

This chapter has demonstrated the flexibility and power o f  the resulting R2PC protocol as a 

mechanism to develop fault-tolerant applications.
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Chapter

System Evaluation
Study of the Efficiency and Reliability of the New System

5.1 Introduction

This chapter presents the results from the evaluation o f  different problems, each one specifically 

designed to test a particular characteristic o f the system.

In order to evaluate the efficiency o f  the resulting system at the application level, different parallel 

paradigms have been implemented. These paradigms have been implemented in R2PCLinda 

because this environment simplifies the creation o f  parallel applications. Furthermore, the use o f  

R2PCLmda has permitted the evaluation o f  reliable distributed applications that include the use o f 

nested calls.

The source code used to create the examples presented in this chapter is provided in Appendix B. 

The R2PC protocol has been implemented on Windows'32 using Windows Sockets 2 as network 

programming interface. However, any interface that provided support for threads and a multicast 

service could had been used.

The evaluation o f  the system has been performed on a self-contained LA N  o f Pentium-Pro 180 

processors with 32 Mbytes o f RAM memory running under Windows N T  and connected by a 10 

Mbps Ethernet.

Each value given in this section is the average resulting from the evaluation o f five different runs. 

Appendix C presents the complete list o f  results obtained.



5.2 Efficiency

5.2.1 Transmission Cost of R2PC calls

The first test is designed to study the cost o f the transmission o f  a R2PC call.

In this test, a distributed application consisting o f  two process groups was designed, one acting as 

client and the other as server. The client group evaluated 200 R2PC null calls on the server group. 

The server group did not do any processing, it merely received the parameters. In one case, there 

were no parameters and, in the other, the client sent approximately 2.5 Kbytes o f  data that were 

transmitted in five message blocks o f  512 bytes.

In order to study the scalability o f the reliable system we compared the results o f evaluating the 

null calls using different number o f replicas.

The results presented on page 74 show that the current implementation o f  the reliable multicast 

mechanism is quite inefficient. In theory, results obtained from similar implementations o f  such 

protocol give more promising results (see [Kaashoek 92]). Unfortunately, our current 

implementation did not manage to get a more efficient implementation without compromising 

the reliability o f  the algorithm. We believe that one o f the main problems for our result arises 

from the slow speed o f  the thread switching mechanism available in the environment that we are 

working with. However, we expect to get better performances in future versions o f  our system.

On the other hand, the implementation o f  our reliable multicast shows good scalability, providing 

a regular execution independent o f the number o f  replicas being used.

Note that the evaluation o f  the RPC protocol is constant due to the fact that this mechanism does 

not use any replicas.
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Figure 17 Response times for the transmission of R2PC and RPC calls
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Figure 18 Response times for the transmission of RPC calls
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5.2.2 Inherent Parallelism of R2PCLinda

The second test is designed to study the inherent parallelism o f  the resulting R2PC system at the 

application level. This test computes numerically the value o f  K by calculating the area under the 

curve represented in Figure 19.

This is done by splitting the area to evaluate into thousands o f  vertical strips and then, summing 

up the areas o f  each strip to obtain a numerical approximation to the value o f  7t.

The code for this application is based on the algorithm presented in [Lewis et al. 92]. The main 

program o f  the R2PCLinda application creates as many em/process workers as active processes in 

the system and then, it splits the area to evaluate among the evalworkers. Each evaiprocess 

receives the area to evaluate through the “ start” tuple, calculates the area and returns the result 

through the “pi” tuple. The main program collects all the result tuples and adds all the results to 

obtain the final value o f  pi (Appendix B.2 lists the source code used for this application).

Figure 19 Pi equals the area under the curve 4/(1 +x2)

As shown on page 76, the evaluation o f the unreliable version o f  Pi presents a linear speedup. 

This is logical due to the completely parallel nature o f the program. The results show that the 

speedup is remarkable only from the moment that there are more than two nodes in the system. 

This is due to the fact that the main process o f the application is executed on a node on its own
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for all the evaluations except one, the case when there is only one node. With only one node, the 

main process o f  the application is executed in the same node as the evalprocess.
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Figure 20 Evaluation of Pi for Unreliable Evaluation vs, Evaluation with Resilience 1 to 3
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Figure 21 Evaluation of Pi for Unreliable Evaluation vs. Evaluation with Resilience 6, 8 and Total
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The cost for the evaluation o f all the reliable versions o f the algorithm is greater than the 

unreliable version except for one case — when the system uses Total Resilience for only one node. In 

this situation, the system behaves exactly the same as for the unreliable case. The reason being 

that when the system uses Total Resilience, it tries to start replica processes in all the nodes existing 

in the system. However, if only one node is available, no replica processes can be started because 

the primary processes are already using the network ports assigned for the group.

However, following this reasoning the rest o f the reliable cases for only one node should also take 

the same time as the unreliable case. Why do they take longer? They take longer because in the 

cases where the resilience degree is greater than zero (and not Total), the reliable multicast 

mechanism tries to restart replica processes and then waits for replies from a number o f replicas 

defined by the resilience degree for a certain period o f time according to the confidence degree defined 

(section 3.3.5).

Unless specified to the contrary, the tests presented have a default confidence degree value o f 2, 

meaning that the reliable multicast algorithm will try to restart replicas twice before returning 

control to the application.

In theory, according to the results obtained in section 5.2.1, the evaluation o f  the reliable versions 

should follow a parallel line to the result obtained from evaluation o f  the unreliable version. This 

should be expected due to the fact that the cost o f  a R2PC call is linear, independent o f the 

number o f  replicas being used.

This is the case for resilience 4. However, the rest o f the evaluations tend to take longer as the 

number o f nodes o f die system increases. This is not surprising for evaluations with a high 

number o f  replicas, such as the evaluation for resilience degrees 6, 8 and Total. In these 

evaluations, the number o f processes executing in each node is quite substantial, consuming a 

great amount o f  resources from the system — especially virtual memory. However, this factor does 

not justify the highest evaluation time required for 9 nodes and resilience 1. The only plausible 

explanation for this result is to consider this value as a statistical outlayer, which came up as result 

o f  the relatively high variance obtained among the different sets o f results obtained. In order to 

minimise the effects o f  such variance, each value was taken as the mean o f the values obtained in 

five different runs (see Appendix Q .
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In order to devise the reason why evaluations with high number o f  replicas and nodes require the 

use o f many resources, we can consider the case o f using 9 nodes with resilience 8. In this case we 

would have 20 processes executing in each node. Each node executes a D SP  provider process 

(section 3.3.2) and the replica/primary processes for each active group in the system. In this 

example there are 19 active groups. There is 1 nameServer group (section 4.3.1), 9 locatTupleSpace 

groups (section 4.2.1), 1 mdnProcessgroup and 8 evalProcess groups (section 4.2.1).

5.2.3 Parallelism with Communication

The previous example showed the potential parallelism o f  the R2PCLinda system. The original 

problem was split into N  different tasks that could be solved completely independent from each 

other. The eval processes did not need to exchange information among themselves to evaluate 

their task. The only communication involved was the transmission o f  the tasks and results among 

the main program and the mz/processes.

However, this type o f situation is an ideal one. Very few parallel programs can be structured in 

such a neat manner. Most parallel programs require an active exchange o f information among the 

entities that perform the parallel processing (named eval processes in R2PCLinda).

This section introduces an example in which the eval processes require the exchange o f 

information in order to solve a problem.

The problem is the development o f an algorithm to count all the prime numbers between 1 and 

N . The solution is based on the work presented in [Carriero et al. 90].

The program derives parallelism from the fact that, once we know that the number k is prime, we 

can find the prime numbers between k+1  and k2.

A simple solution to the problem could create as many eval processes as numbers to evaluate, 

each eval process could determine whether its index is prime using the algorithm described in 

Figure 22.
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is_prime(indcx)
{
limii=sqri(index)+1 ; 
for (i=2; icUmii; i++)
{
rcl(“priines’\  i, ?ok); 
if (ok && index%i==0) 

return 0;
}

re tu rn  1;
}

Figure 22 Initial Solution Prime Numbers. Code to execute by evalprocesses

The main program would be in charge o f  creating the eml processes and counting the number o f 

primes found and stored in Tuple Space (TS). Its code is presented in Figure 23.

main()
{
for ( i = 2 ;  i<N; i++) 

eval("primes” , i. is_prime(i)); 
count=0;
for (i=2; i<N; i++)
{
rd(“ primes” , i, ?ok); 
if  (ok)

COU1U++;
}

prinlf(“result is %d” , count);
}

Figure 23 Initial Solution for Prime Numbers, Main program

Although this initial solution evaluates the prime numbers correctly, it is extremely inefficient. It 

creates too many eml processes, each one in charge o f  producing very little processing.

A more efficient solution can be obtained by creating only one eml process in each node available 

in the system. This is the approach taken for the algorithm to approximate the value o f  K.
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The number o f  prime numbers to evaluate has been divided into blocks o f  a fixed size to be 

processed by the mz/processes. Each block to evaluate is a different task to do. For this algorithm, 

tasks are assigned in order. The lowest block is assigned first, then the next-lowest block and so 

forth. Tasks are assigned using the “next task” tuple as shown in Figure 24.

for (;;)
{
in(“next task”, ? start); 
out(“next task” , start +  GRAIN;

// find all the primes from start to start+GRAIN 
}

Figure 24 Assigning the tasks to be done by the eval processes

However, at the moment our algorithm is still very inefficient because it requires a large quantity 

o f communication. This is because every access to TS may require communication among 

different nodes. To achieve better efficiency, the number o f  accesses to TS should be minimised.

An initial refinement to reduce the communications is to decrease the number o f  elements stored 

in TS. Instead o f  storing the complete range o f  numbers from 1 to N  specifying whether they are 

primes or not, only the prime numbers that are found need to be stored in TS. Each entry takes 

the following form:

(“primes” , i, <ith prime>, <ith prime squared>)

The square o f the ith prime is stored along with the prime itself so that workers can simply read 

instead o f having to compute each entry’s square.

After introducing these last modifications the algorithm specifies that worker processes grab tasks 

to evaluate all the primes within their assigned interval. To test for the primality o f  k, they divide k 

by all primes through the square root o f k. Worker processes find these primes in TS.
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Another easy refinement that can be introduced to our algorithm is that, once a worker process 

refers to T S to find the value o f  a prime number that has been found, it copies this value into its 

local memory to avoid referring to TS in future evaluations. In the algorithm presented in the 

Appendix B.3 workers use two local a r r a y s , a n d  p2 to store the values o f  the prime numbers 

found and their square value respectively.

Another optimisation introduced in the algorithm presented in Appendix B.3 is the fact that only 

the prime numbers from 1 to sqrt(N) are stored in TS. Process workers only need to return the 

number o f  prime numbers found in their interval using the tuple:

(“ result” , task, numberPrimesFound)
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The resulting algorithm is designed to be adaptable for different environments. In environments 

with very fast communication links, the communication delays among nodes will be lower and the 

evaluation o f the result can be split into a large number o f small tasks. Environments with slow 

communications will create a small number o f bigger tasks.

To adapt the algorithm to different environments, all that is necessary is to adjust the interval to 

be searched in each task by modifying the value o f  the parameter G R A IN  (in the tests the default 

value was 20000).

The figures presented on page 82 show the results obtained from the evaluation o f the algorithm 

to find the quantity o f prime numbers between 1 and 1000000.

Firstly we will analyse the results obtained for the unreliable evaluation o f  the algorithm (Figure 

26).

The first point to mention is that the execution time required for the evaluation for two nodes is 

much higher tiian the evaluation for one node. In both cases, only one evalprocess was used. 

However, in the case o f using only one node all the communications among the different 

processes are transmitted within die same node. Using two nodes, the main program and the eval 

process exchange messages through different nodes and the transmission times take longer.

Between 2 and 5 nodes, the speedup o f the algorithm is linear with respect to the number o f 

nodes used. From that point, the speedup o f the algorithm reaches a limit because, although die 

use o f more nodes increases the parallelism o f the algorithm, it also increases the traffic in the 

network. At this point, the time lost with communication delays is balanced with the time gained 

from the parallelism o f the algorithm.

The case for reliable evaluations requires a more careful analysis (Figure 25).

The evaluation for one node takes an excessive amount o f time due to the lack o f enough replica 

processes (point A  in Figure 25). This fact causes the primary process o f a group to try to restart 

replicas after each R2PC call (section 3.3.6) waiting for replies from the replicas according to the 

confidence degree established (section 3.3.5). However, this is also the case for the evaluation with 

resilience degree 2 using 2 nodes (point B  in Figure 25). As there are not enough replicas, die 

system is constantiy trying to restart replicas. Why is there such a gap between the execution for / 

node and the execution for 2 nodes?
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The explanation for such a result lies in the fact that the system is designed to adapt dynamically 

to different network traffic conditions. The system uses a parameter - called networki-Mtency - that 

defines the time required to send a message from one node to another. This parameter is adjusted 

dynamically as messages are exchanged among different nodes. However, if there is only one 

node available in the system, the processes in execution will not receive any message from a 

foreign node. For this reason, the value o f  the networkLateniy cannot be adjusted dynamically and 

the system keeps the initial default value set by the system manager (in the tests a default value o f  

50 milliseconds was used).

From 2 nodes onwards, the execution o f the algorithm follows the same logic than the unreliable 

case. However, as the transmission costs o f a R2PC call are much higher than a normal RPC 

(section 5.2.1), the algorithm reaches its limit speedup much earlier (at 3 nodes). From that point, 

the communication costs increase faster than the benefits obtained from the inherent parallelism 

o f the algorithm.

5.2.4 Cost of Replicas in R2PCLinda

The last examples compared the inherent parallelism o f  the R2PCLinda system versus its 

reliability. This example is focused on the study the reliability o f  the system at the application level 

independent from its inherent parallelism.

This section reused the algorithm presented in section 5.2.3 but using only one worker process, 

independently o f the number o f  nodes available.
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Evaluation for one Worker

300000

250000

50000

Unreliable 1 Replica 2 Replicas 4 Replicas 6 Replicas 8 Replicas

Figure 27 Evaluation of Prime Numbers using only one worker process

The results presented in Figure 27 confirm the results already obtained in section 5.2.1 regarding 

the transmission costs o f tine R2PC protocol. The reliable protocol has good scalability, 

performing equally well independently o f the number o f  replica processes. As seen in section 

5.2.1, the unreliable case is much more efficient than the reliable ones.

The next section takes this example as a model to study the reliability o f  the system.
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5.3 Reliability

5.3.1 Crash Faults

The time needed to recover a crashed primary process depends on two factors. The time needed 

to detect the crash o f  a node and the time needed to restart the new primary process.

•  The time needed to detect the crash o f a node depends on the parameters set in the system. 

The more often the system checks, the more traffic overload will be on the network and the 

more likely it will be to think that a node has crashed when it has not. On the other hand, the 

longer the time left before checking, the longer it will take the system to detect a failure. 

Therefore, this is a parameter that has to be set very carefully.

In R2PC, the system manager can set the value o f this parameter by adjusting the 

primarylsAlivePeriodentry in the configuration file (see Appendix A). In the example case, this 

parameter was adjusted to 8000 milliseconds.

•  The time needed to restart a primary process can vary considerably depending on the 

moment when the failure occurred. The longer the interval between checkpoints, the longer 

the restart o f  the primary process will take to be processed. On the other hand, very frequent 

checkpoints will cause delays in the normal processing o f the algorithm. Therefore, when 

setting this parameter, the system manager will have to take into account how critical the 

quick recovery o f  a primary process is versus the efficiency o f the system when no failures 

occur.

The current implementation o f  R2PC does not provide a checkpoint mechanism. Therefore, 

the time needed to recover a process group will depend on the number o f  calls that was being 

processed by the group before o f the crash.

In this section, a crash routine was introduced in all the processes o f the system (primary and 

replica processes) except for the DSP (the failure o f the DSP is equivalent to the complete crash 

o f a node in the current implementation — section 3.3.6).

The crash routine terminates the execution o f  the current process according to the probability 

specified by the system manager.

86



A timer activates this routine at an interval o f  time defined by the value o f  theprimarylsAlivePeriod. 

system parameter. By activating the crash routine at such interval o f  time, a crash probability o f 

1.0 will ensure the failure o f the system because all the processes will fail and none will have 

enough time to recover.

Figure 29 presents the percentage o f System Failures in relation to the Crash Probability and 

number o f replica processes used in each group. A  System Failure occurs when all the 

components o f a group have crashed simultaneously and the execution o f the application cannot 

reach termination. We can see that the probability o f  System Failure decreases exponentially in 

relation to the Process Failure probability defined. What is more interesting to note is that the 

probability o f System Failure tends to decrease in inverse relation to the number o f replicas set for 

each group. Therefore, the existence o f a larger number o f  replicas increases the likelihood o f 

survival o f the system.

It is interesting to note the case for Crash-Fault Probability 0.1. In this situation, the only time 

when the System finished its computation was for the case o f 4 replicas. That case was very 

fortunate. Some o f  the evaluations for 6 and 8 replicas lasted considerably and were very close to 

complete the evaluation for all the prime numbers but finally crashed before completing its 

evaluation. Why was the execution o f the system more successful for a lower number o f replicas? 

An explanation for this phenomenon can be found by studying the results shown in Figure 28.

The diagram in Figure 28 presents the average times for the successful evaluations o f  the system - 

note that only the situations in which the system failed in all the executions are represented as 

System Failures in the diagram.

These results show that in case o f  high probability o f  process crash, the evaluations with larger 

number o f replicas last much longer than the ones with a low number o f replicas. This is due to 

the fact that the larger the number o f processes in the system, the more likely is that one process 

will crash and will have to be restarted again. In situations where there is a large number o f  replica 

processes, each one with a high probability o f failure, the system takes longer to complete its 

evaluation because most o f  the time is spent in the recovery o f  failed processes.

The longer is the evaluation time, the larger is the number o f test points. This fact increases the 

probability o f system failure, i.e. the probability that all the replicas in some group crash 

simultaneously.
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Figure 28 Evaluation of the Prime Numbers problem for one worker in the presence of Crash Faults.
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Omission Faults have been introduced in all the processes o f the system (including the DSP 

processes). The sender thread omits the transmission o f  a sending block (a message may consist 

o f  a large number o f  blocks) according to the probability set in the tests. An omission probability 

o f 1.0 means that no messages can be exchanged among processes.

The evaluation o f the algorithm presented no problems for the cases shown in Figure 30. When a 

process detects that a message may not have been received, it is retransmitted until it is 

acknowledged.

Logically, the evaluation o f the algorithm takes longer as more blocks are lost and die number o f 

retransmissions grows.

Figure 30 presents only one case (1 replica) due to die fact that in this example there are no 

process crashes. Therefore, if the system works properly for one replica it will also work for other 

number o f  replicas.

5.3.2 Omission Faults

Primes Evaluation for Omission Faults
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Figure 30 Evaluation of the Prime Numbers problem for one worker in the presence of Omission Faults
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5.3.3 Omission-Crash Faults

This last section presents a combination o f the last two cases.

This example takes the case for Crash -Fault probability o f 0.02 and includes an Omission-Fault 

probability o f  0.02. In this case we are going to study the evolution o f  the algorithm for different 

values o f confidence degree, i.e. the level o f trust defined for the reliable multicast mechanism (see 

section 3.3.5). In the previous examples the confidence degree o f the system had been set to 2.

As expected from the definition o f confidence degree, the percentage o f  System Failures presented 

in Figure 32 shows that the number o f System Failures decreases as the confidence o f the system 

increases.

However, for systems belonging to the Omission-Crash fault class, the ratio o f System Failures 

does not seem to be related with the number o f  replicas being used anymore.

The main reason for this fact is that now there are two different types o f System Failures.

•  System Crash failures, where all die processes o f  a group have failed.

•  Omission Crash failures, where process groups could not recover properly from the failure o f 

a member due to the fact that the reliable multicast mechanism did not manage to transmit all 

the information of the group properly.

As it can be seen in die Appendix C.7 most o f  die System Failures where Omission Crash failures 

(although possibly they would have evolved into System Crash failures if the evaluation o f  the 

processes had continued).

The system is designed to increase its capability to recover from Omission-Crash faults as the 

number o f replica processes increases. The presence o f  a higher number o f  replicas will increase 

the probability that at least one will keep the complete state o f the group. This replica will be 

elected as new primary process o f the group (see the election protocol described in section 3.3.6).

However, the results obtained from the example show that the capability o f the system to recover 

from an Omission Failure is not directly related to the number o f  replicas being used. This is due 

to die fact that in this example only omissions from sender processes were considered. In the test, 

when a message is lost, no replica receives it. Therefore, once a reliable multicast message has 

been omitted, all the replica processes have lost it and from that moment, no replica holds the 

complete state o f the group - unless a replica fails and is restarted again by the primary process. In
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such a  situation, the primary process would transfer the complete information about its current 

state to the restarted replica and that replica would be the candidate to be elected primary in case 

o f  crash.

H ie  results presented in Figure 31 show that the evaluation for a  confidence degree o f  0 is extremely 

fast. This is due to the fact that the reliable multicast protocol does not wait for replies from the 

replica processes. However, Figure 32 shows that in case o f  failure from a primary process, this 

protocol is very unlikely to recover properly. In fact, die results presented in the Appendix C.7 

show that m ost o f  the successful executions in the use o f  the protocol for confidence 0, where the 

ones in which there was no failure from the primary process o f  any group.

In fact, as the evaluation o f  the algorithm was so fast, in the case o f  confidence 0 the crash 

probability was increased to 0.05. Otherwise m ost o f  the evaluations would have finished 

successfully because the primary processes would finish the evaluation before crashing at least 

once.
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5.4 Evaluation of results

The results show that R2PC is an appropriate mechanism for the construction o f  fault-tolerant 

applications that maintain a distributed volatile state in terms o f  transparency, efficiency and 

reliability.

Transparency

Chapter 4 had already presented the power o f the R2PC mechanism to facilitate the creation o f 

complex fault-tolerant applications. The reader can confirm the simplicity o f  using R2PC and 

R2PCLinda by reviewing the code presented in Appendix B. This appendix presents the source 

code used to perform the evaluation o f  the results o f this chapter.

Efficiency

Initially, the efficiency o f our current implementation may seem slow when compared to other 

existing systems. However, the efficiency obtained with different systems depends highly on the 

environment and conditions used for the tests. Unfortunately, we could not provide any empirical 

comparison o f the results o f  our system with any other existing system because none o f  the 

existing systems has been implemented over a Windows N T  environment. Nevertheless, section 

5.2.1 has identified and isolated the main cause for delays in the current system — the 

implementation o f reliable multicast. This mechanism has been constructed according to the work 

presented in [Kaashoek 92]. The results obtained for the evaluation o f  the reliable multicast 

mechanism running on a collection o f 30 MC68030s are very promising [Kaashoek 92]. 

Therefore, it is expected that the implementation o f  R2PC on similar environments would boost 

the efficiency results o f  the protocol accordingly.

On the other hand, the results presented in sections 5.2.2 and 5.2.3 have shown the capacity o f 

the protocol to perform the concurrent service o f  different calls by speeding up the evaluation o f 

parallel applications.

Reliability

Surprisingly enough, most o f  the papers reviewed lack o f any results to analyse the reliability o f  

the systems described.
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[Yap et al. 88] studies the failure o f a node at very specific moments during the execution o f  a 

RRPC. It compares the response time o f  the mechanism in the scenarios o f no failure, failure o f 

the primary process after sending an acknowledgement message and failure o f  the replica process 

after sending an acknowledgement message. The results show that the event o f  failure o f  a 

primary process is the more expensive scenario that may happen.

[Cannon et al. 94] present the evaluation o f  a fault-tolerant Linda system in the presence o f  trash 

faults. The results evaluate the overhead o f  the system in the presence o f  node failures.

Our results identified the faultfloor o f the resulting system for different failure classes: crashfault, 

omissionfault and omission/crashfault. This information is vital to understand the behaviour o f  a 

reliable system and to determine the failure margins o f the fault-tolerant applications developed 

with such system.

5.5 Conclusions

This chapter has tested the efficiency and reliability o f  R2PC and R2PCLinda using a diverse 

number o f  programming paradigms.

The implementation for the cases described resulted in simple but powerful fault-tolerant 

distributed applications (see Appendix B).

1116 results have shown that the new system can provide support for the development o f  parallel 

fault-tolerant applications. We have also identified areas to improve the efficiency o f  the resulting 

system.

R2PC and R2PCLinda have been tested thoroughly in terms o f reliability. In this area, the results 

have surpassed our initial expectations, showing that the resulting systems could survive under 

very extreme conditions such as Omission/Crash environments with high probability o f  failure.

In summary, this chapter has shown very promising results for the development o f  transparent 

and efficient fault-tolerant systems using R2PC and R2PCLinda.
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Conclusion
Achievements, Future Work and Concluding Remarks

6.1 Summary

This thesis addresses the problem o f  providing a transparent and efficient mechanism for the 

development o f  fault-tolerant distributed applications.

The provision o f a transparent and abstract mechanism at the programming level is an element o f 

great importance to facilitate the creation o f  the next generation o f  fault-tolerant systems. As user 

demands increase, future fault-tolerant systems will impose new challenges on the application 

programmers in terms o f reliability, complexity and efficiency.

Prior work on the development o f middle-ware for the design and implementation fault-tolerant 

software was described in chapter 2. A  number o f  systems were reviewed showing that the 

approaches taken by the existing systems either do not offer an adequate level o f  abstraction or do 

not provide an adequate framework for the development o f  efficient fault-tolerant systems.

Chapter 3 presented my new approach to constructing fault-tolerant distributed applications. Its 

main goal has been the provision o f support to the application programmer in terms o f 

abstraction and transparency. A mechanism based on the Remote Procedure Call model was 

introduced whose only restriction to the semantics o f the original RPC protocol is the 

introduction o f determinism. The determinism required to create fault-tolerant applications in the 

new system is relaxed to the extent that the only requirement is the guarantee that the behaviour 

o f the fault-tolerant programs created is determined by the results obtained from the evaluation o f 

the Remote Procedure Calls executed. This condition is sufficient and necessary to guarantee the 

recovery o f  any failing process.

Chapter 4 illustrated the application o f the approach to the development o f a complex distributed 

system. The protocol was used to implement a system to develop parallel applications based on



the Linda co-ordination model. This example was used to illustrate the steps required to convert a 

distributed system based on the RPC protocol into a fault-tolerant distributed system.

The evaluation o f the resulting system was given in chapter 5. The chapter provided very 

promising results in terms o f transparency, efficiency and reliability.

•  Transparency: The R2PC mechanism simplified extremely the creation o f  complex fault- 

tolerant distributed systems.

•  Efficiency: The mechanism permits the concurrent service o f  different calls and minimises 

the number o f messages exchanged through the use o f multicast mechanisms. Both 

characteristics together have the potential to boost enormously the efficiency o f  the system.

•  Reliability: The mechanism showed an outstanding capacity o f  survival under very extreme 

conditions, such as Omission/Crash environments with high probability o f  failure.

6.2 Future Research

The work introduced in this thesis can be expanded in many different ways. These include 

adapting our system to different environments, expanding our approach to deal with distributed 

object-oriented systems, studying methods to improve the efficiency o f the resulting system, and 

applying our approach to other fault-tolerant distributed services.

Although the approach has been successfully implemented in a Windows N T  environment, the 

work could be expanded to many other environments. In this direction we would like to study the 

incorporation o f the protocol in standard tools for the development o f  distributed applications, 

such as CO RBA [OMG 98] or Java RMI |http://www.javasoft.com]). A t the moment, none o f 

these standards provides an appropriate framework for the development o f  fault-tolerant 

distributed systems [Maffeis et al. 97]. "I here fore, extensions to these systems are already being 

studied ([D. Liang et al. 98], [Maffeis 96]).

The R2PC protocol could be introduced in CO RBA  or Java RMI resulting in the development o f  

a standard and generic environment that would benefit from all the properties o f  the new 

approach. However, the creation o f  such system requires a detailed analysis to study how to adapt 

the R2PC protocol in an object-oriented language. [D. Liang et al. 98] presents some o f  the issues 

involved when objects are introduced in distributed systems.
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A careful analysis o f  the current implementation o f  the reliable multicast mechanism should 

provide more efficient results. Further work should be introduced in the current implementation 

to include a checkpoint mechanism. Another interesting area o f research would be the study and 

introduction o f  different algorithms to increase the efficiency o f the system. For example, it would 

be interesting to consider different implementations o f  reliable multicast that could take into 

account the high reliability o f  current networks to obtain more efficient protocols.

Although the resulting system has been applied successfully to implement a generic tool to 

develop fault-tolerant and parallel applications, the protocol should now be applied on existing 

fault-tolerant environments and compare it with the results obtained for other commercial 

applications.

6.3 Concluding Remarks

The increased use o f  computers in critical environments has led to an urgent need to increase the 

reliability o f computer systems. Highly available computer systems provide fault-tolerance by 

replicating their tasks and data among different processing nodes. However, the construction o f 

such systems leads to the development o f  very complex distributed applications that are required 

to deal with many fault-tolerant problems such as synchronisation, fault-detection or fault- 

recovery.

The Remote Procedure Call (RPQ mechanism simplifies the tasks o f the programmer in the 

construction o f  distributed applications. However, the original definition o f the protocol does not 

provide a transparent mechanism to create fault-tolerant distributed applications.

For this reason, different variations o f  the original protocol (RRPC mechanisms) have been 

created. Nevertheless, the existing RRPC systems are semantically too restrictive and/or 

inefficient.

•  Most o f  the existing RRPC systems are semantically too restrictive, either excluding the use o f 

nested calls or not permitting the recovery o f client processes. These factors limit 

programmers o f  new reliable distributed systems and forces them to restructure completely 

the design o f  existing distributed applications to adapt them to the semantics required to 

achieve reliability.

•  The existing RRPC systems that do permit the use o f  nested calls are too inefficient, 

particularly because they do not permit the concurrent service o f different calls.
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This thesis presented the definition and implementation o f  R2PC, a novel RRPC mechanism with 

important features for the development o f  fault-tolerant applications.

•  R2PC facilitates enormously the introduction o f fault-tolerance into new and existing 

distributed systems thanks to the fact that the new system preserves the semantics o f  the 

original RPC protocol avoiding most o f the restrictions presented in existing RRPC systems. 

R2PC allows for the use o f nested calls and permits the recovery o f  client and server 

processes. R2PC also relaxes the determinism required to create fault-tolerant applications to 

the extent that the only requirement is the guarantee that the behaviour o f  the fault-tolerant 

program created is determined by the results obtained from the evaluation o f the Remote 

Procedure Calls executed.

•  R2PC allows for efficient scaling o f  fault-tolerant applications by including the provision for 

concurrent service o f  different calls. This feature is provided automatically by the new system, 

programmers only have to establish the appropriate critical sections in their code.

•  R2PC showed an outstanding capacity o f  survival under very extreme conditions, such as 

Omission/Crash environments with high probability o f failure.

In summary, this thesis has shown that the definition and creation o f  R2PC brings a new 

dimension to the creation o f  fault-tolerant applications.
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Appendix A -  System Configuration

The system manager can adjust tine behaviour o f  the R2PC and R'PCLinda systems through the 

edition o f two .ini files.

pclindal.ini

This file contains information that is particular to the processor in use. 'Ihis file must be included 

in the Windows or Temp directory.

The main parameters included in this file are:

[IniFiles]

•  Global In if’ile: Describes the name o f the .ini file with common information for all the 

nodes.

[Serverlnfo]

•  Namel lost: Describes the logical name assigned to the node.

(TupleSpacej

•  TupleDirectory: Describes the local directory where to save the information o f  the Local 

Tuple Space when the user wants to use Persistent Tuple Spaces (this information is 

included in the global .ini file).



pclindag.ini

The name and location o f  this file is specified in the local .ini file. This file describes the 

parameters shared between all the processors.

[Serverlnfo]

•  NumServers: Num ber o f  nodes to be used by the system.

•  NameServer 1: Logical name o f  the first node.

•  AddrServerl: T C P  address o f  the first node.

•  NameServer2, N am eServer3,..., NameServerN: The other nodes info.

•  AddrServer2, A ddServcr3,..., AddServerN

•  BaseT cpP ort Winsock specific port number used by mem bers o f the D S  group (the first 

group o f  the system).

•  BaseM CastAddress: The multicast address set for the D S  group.

Tine rest o f  the groups o f  the system obtain their addresses from the addition o f their gvupld

with the base address set for the D S  group.

•  ResilienceDegree: Resilience degree established by the groups o f  the system.

A value o f  —1 is interpreted as Total Resilience.

•  ConfidenceDegree: A value o f -1  is interpreted as maximum confidence.

•  NetworkLatency: Initial value used by the groups o f  the system. It is recommended to set 

a high value. After initialisation, the system will adjust this parameter automatically. Given 

in milliseconds. Default value - 50.
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•  PrimarylsAlivePeriod: This value describes the maximum number o f milliseconds that 

may pass between the failure o f a node and the detection o f this failure by the system. 

The minimum value set for this parameter to be equivalent to the time needed for the 

transmission o f  recovery information among nodes. Default value — 8000.

•  TimetoProcessRPCCall: This value corresponds to the average time taken to process a 

RPC call. A client process will wait the time specified for the arrival o f  results from the 

server. After such interval, the call will be invoked once again. Default value — 4000.

[ErrorSimulation]

•  CrashProbability: This value determines the probability that any process o f  the system 

crashes after an interval o f PrimarylsASvePetiodtime. Default value — 0.

•  OmissionProbability: This value specifies the probability that any process o f  the system 

omits the transmission o f a block. Default value — 0.

[Debugger]

•  IntemalLogFile: Boolean value used to specify whether the system should create a log file 

including information about all the messages exchanged by each process. This 

information is used mostly for debugging purposes.

•  IntemalLogFileDirectory: Directory where the logs are being generated.

•  DebugCommandLine: Name o f  the debugger program to execute when an eval call is 

traced.
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[TupleSpace]

•  SaveFile: I f  T R U E  it uses a persistent Tuple Space, preserving the contents o f  the Tuple 

Space permanently.

•  TupleRle: FileName to use to save the contents o f  the Tuple Space.

[EvalParameters]

•  EvalMode: Mode o f  execution o f  the eval programs. It uses the same parameters as 

defined by Windows, for example if we define SW_SI IOW M 1N1M IZED, then all the 

eval programs will run in a minimised Window.
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Appendix B -  Source Code for the Tests

B.1 R2PC Application Test

Application used to evaluate the transmission cost o f R2PC.

The current implementation o f  R2PC does not include any stub compiler to simplify the task o f 

the application programmer. This tool could have been easily added, however it was not included 

because R2PCLinda was our main developing environment. R2PCLinda includes the existence o f 

a precompiler, what simplifies the syntax and use o f  the environment (see Appendix B.2 and B.3)

////////////////////////////////// Transmission Cost ///////////////////

#include <owl/owlpch.h>
#include <owl/applicat.h>
#include <owl/framewin.h>
#include <owl/dc.h>
#include <owl/inputdia.h>
#include "lcliwport.h"

#defme GROUP_TEST 1
#defme NUM BER_CALLS_TEST 200
#define STRING_TEST "01234567890123456789012345678901234567890123456789"

int globalArgc; 
char** globalArgv;
TFrameWindow *mainWindow;

class TDSPWindow : public LCliWindowPort
{
public:

TDSPWindow(LCliWindowPort* parent =  0); 
virtual void SetupWindow();

};
TDSPWindow *windowManager;

/ *  Functions and variables to use as handlers for RPC */

void nullCall(RRPCParam &par)
{
int i;
char message[80]; 
par.seqOut++;



/ *  Main program is activated in the primary thread using the definition o f this function */ 
void mainProgramRRPC(RRPCParam &)
{
RRPCParam *par, *counterPar;
LCliWiiidowPort *cliWindowManager; 
int i, j;
char message[80];
long totalMillisec, startMillisec, endMilhsec; 
double millisecRPC;

cliWindowManager=(LCliWindowPort*)windowManager; 
counterPar=new RRPCParam;
if  (cliWindowManager->port->groupId.id != GROUP_TEST)

{
for (i=0; i<NUM BER_CALLS_TEST; i++)

{
par=new RRPCParam; 
strcpy(par->commandName, "nullCall");

// Information used to transfer around 2k of info, 50 messages 
for (j=0; j<49; j++ )

{
strcpy((*par->argvln)[j+l). s, STRING_TEST); 
par->argcln++;
}

cliWindowManager->callReliableRPC(*par, GROUP_TEST, *counterPar); 
delete par;
}

}
}

TDSPWindow: :TDSPWindow(LCliWindowPort* parent)
{
Init(parent, 0, 0);
}
void TDSPWindow: :SetupWindow()
{
windowManager=this;
try

{
LCliWindowPort::SetupWindow(globalArgc, global Argv, main Window, mainProgramRRPC); 
addHandlerRPC("nullCall", nullCall);
}

catch (LPortError *err)
{
err->defaultAction("TDSPWiiidow::SetupWindow()");
}

}
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class TDSPApp : public TApplication 
{
public:

TDSPAppO : TApplicationO {} 
void InitMainWindowO;

};
void TDSPApp::lnilMainWindow()
{
mainWindow=new TFramcWindowfO, "Tesi R2PC l'or 200 2k calls", new TDSPWindow); 
SetMainWindow(mainWindow);
}
im OwlMain{inl argc, char* aruv| |)
{
global Argc=argc; 
global Argv=argv; 
return TDSPApp().Run();
}
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B.2 Evaluation of Pi

//////////////////////////////////EVALUATION OF Pi ///////////////////

¿¿include <stdio.h>
¿¿include <malIoc.h>
¿¿include <values.h>

#definc NUM_ITERATIONS 90000000 
«define PRECISS!ON_F ACTOR 10000000000.0

evalFunct int pi()
{
int start, stop, i; 
double interval, x, area; 
char mcssage|80];

in("start", &start, &stop, ¿¿interval); 
for (i=start; i<=stop; i++)

{
x=(i-0.5)*interval; 
x/=PRECISS10N_F ACTOR;
;irea+=4.0/( 1,0+x*x);
}

oulC'pi", area);
sprintf(message, "Interval: %d -> %d, My area is; %20.15If", start, stop, area);
w riteln(m essage);
return 0;
}
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maiii(int argc, char *argvj ¡)
{
ini num_workers, grain; 
hit i, temp;
double tempArea, area;
double intcrval=PREClSSI()N_FACTOR/NUM_ITERATIONS; 
long loiaiMillisec, startMillisec, endMillisec; 
char message[81J;

II Attention! die first parameter is given in argvfO]! 
if  (argoO )

mnn_workers=atoi{argv[0]);
else

n um_ worker s= l; 
wi iteln("Parallel Evaluation o f number PI");
sprintl'(message, "Number of workers: %d, Number of iterations: %d", num_workers, 

N U M JTERA TIO NS); 
writeln(message);
writel[i("Press any key when ready to begin."); 
readln(message, sizeof(message)); 
start=new SYSTEM TIM E; 
end=new SYSTEM TIME; 
for (i=0; i<num_workers; i++) 

eval("worker",pi()); 
grain=NUM_lTERATIONS/num_workers; 
for (i=0; i<num_workers; i++)

out("start", (i*grain)+l, (i+l)*grain , interval);
area=0;
for (i=0; i<num workers; i++)

{
in("pi", &lempArea); 
area+=tempArea;
}

area=(area*interval)/PRECISSION_FACTOR; 
sprintf(message, "Approximation to PI: %20,151f". area); 
writeln(message);
H I clean tip tuple space 
for (i=0; i<num_workers; i++) 

in("workcr",&temp);
}
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C.3 Evaluation of Prime Numbers

////////////////////////////////// PRIMES EVALUATION 11IIIIIII 11II l l l l l I  
////////////////////////////////// AGENDA PARALLELISM  ///////////////////

#include <stdio.h>
#include <malloc.h>

#define N 1000000
// The value given to M AX has to be set according to the value of N and GRAIN
#define MAX N/1000
// GRAIN has to be an even number
#define GRAIN 20000
#define FA LSE 0
#define TRUE 1
#defme POISON_PILL -1

int primes[MAX], p2[MAX];
int new_primes[GRAIN], my_ _primes[GRAIN];

int init_primes(int pf |,int p2[], bool do_out)
I*  This task has to fill the first batch of primes, and out them in tuple space *1 
{
int count, ok, i, num; 
char primesld[80];

p[0]=2;
p2[01=4;
p[l]=3;
P2[1J=9; 
if (do_out)

{
out("primes",0, 2, 4); 
out("primes",l, 3, 9);
}

count=2;
// We have to initialize enough prime numbers so that GRAIN+lastprime<lastprime*lastprime 
for (num=5; p2[count-l] <=  (GRAIN+p[count-l]); num + -2 )

{
for (i= l, ok=l; i<count; ++i)

{
if  (!(num%p[i]))

{
ok=0;
break;
}

if  (num<p2[i]) 
break;

}
if  (ok)

{
p[count]=num;
p2[count]=num*num;
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if (clo_oul)
{
out("primes", count, num, num*nuni);
}

-H-count;
}

}
return count;

}
evalFunct int worker()
{
int count, col, i, limit, num, num_primcs, ok, start; 
double siart_square, my_primes_square; 
char resullld[80], primesld[80];

num_primes=mit_primes(primes, p2, FA LSE);
eot=FALSE;
while (TRUE)

{
in("nexl task", &num); 
sprintf(resuilld, "Next task: %d", num); 
writeln(resultld); 
if (num =PO ISO N_PILL)

{
outC'next task", POISON_PILL); 
return 0;
}

limit=num+GRAIN; 
if (lim ioN )

{
out("next task", POISON_PILL); 
limit=N;
}

else
out(”next task", limit); 

slart=num;
for (count=0; num<limit; num + =  2)

{
while (!eot && num>p2[num_primes-11)

{
rd("primes", num_primes, &(primes[num_primes]), &(p2[num_primes])); 
if (p2[num_primes]<0) 

eot=TRUE;
else

++num_primes;
)

for (i= l, ok=l; i<num_primes; ++i)
{
if (!(num%primes[i]))

{
ok=0;
break;
}

i f  (num<p2fi]) 
break;
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}
if (ok)

{
my_primes[count]=num;
++count;
}

}
/ *  Send the control process any primes found * /  
sprintf(resultld, "result_count_%d", start); 
out(resultId, count); 
sprintf(resultld, "result_%d", start); 
i=0;
my_primes_square=my_primes[i]*my_primes[i]; 
while ( (i<count) &&

(my_primes_square<N))
{ '
out(resultId, my_primes[i], i); 
i++;
my_priines_square=my_primes[i]*my_primes[i]; 
if  (my_primes_square<my_primes[i]) 

my_primes_square=N;
}

start_square=slart*start; 
if (start_square<start)

start_square=N;
if ( (i<count) && (start_square<N)) / / 1 transmit die last result 

out(resultId, my_primes[i], i);
}

)
main(int argc, char *argvH)
{
int eot, first_num, i, length, np2;
int num, num_primes, num_workers, rubish;
int total_primes, eot_result;
long totalMillisec, startMillisec, endMillisec;
char message[50], resultld[80], primcsld[80];

// Attention! the first parameter is given in argv[0]! 
if  (argc>0)

num_workers=atoi(arg v[0]);
else

num_workers=l; 
writehi("Primes evaluation with Agenda Paralelism");
sprmtf(message, "Number of workers: %d, Countmg number of primes upto: %d, Grain: %d", 
num_workers, N, GRAIN); 
writeln (message);
writeln("Press any key when ready to begin."); 
readln(message, sizeof(message)); 
for (i=0; i<num_workers; ++i)

eval("worker", worker()); 
num_primes=init_primes(primes, p2, TRUE); 
total_primes=num_primes; 
first_num=primes[num_primes-l]+2; 
out("next task", first_num); 
eot=FALSE; // Becomes TRUE at end of table
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for (n um=first_n um ; num<N; num += GRAIN)
{
sprintf(resultld, "result_count_%d", num); 
in(resitlUd, &lcngtli); 
total_pri mes+=l eugth ; 
sprintf(resultld, "resuit_%d", num); 
eot_result=FALSE;
// Iasi iwo conditions only added lor the count case 
for (i=0; ( ((i<lcngüi) && !cot_rcsull) && !eol ); i++)

{
in(resultld, &(new_primesfi)), i); 
if (new_primes[ i ] *new_primcs[i ]>N) 

eot_result=TRUE;
}

length=i;
for (i=0; idengdr, ++ i, -H-num_priines)

{
primes|num_primes]=new_priines(i]; 
if (leot)

{
n p2=new__pri mes[ i ] *new_primes| i ]; 
i f  (np2>N) // This is tlie last task to do 

{
eot=TRUE;
np2=P()lSON_PILL;
}

out("primes", num „primes, new_primes[i], np2); 
}

}
}

for (i=0; i<num_workers; ++i) 
inf'worker", &rubish); 

sprinlf(mcssage, "There are %d primes less than %d", totaLpriraes, N); 
writeln(message); 
writeln("Press a key to finish."); 
rcadln(messagc, sizeof(message));
}
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Appendix C -  Results

Evaluation of the protocols
C.1 Transmission Costs of R2PC vs. RPC

The following tables show the transmission results obtained from the evaluation o f  the R2PC and 

RPC mechanism as described in section 5.2.1.

In the RPC case there should be no difference among the evaluations using different replicas. To 

represent this fact graphically, we only obtained the results for one replica and replicated the value 

for the rest o f the replica cases.

R esults for 2k  R2PC

1 R e p l i c a 2  R e p l i c a s 3  R e p l i c a s 6  R e p l i c a s 8  R e p l i c a s

T e s t  1 1094.92 1085 1084.685 1096.25 1107.89
T e s t  2 1094.61 1085.155 1088.83 1089 375 1099.455
T e s t  3 1107.425 1088.28 1094.455 1099.845 1096.875
T e s t  4 1089.14 1081.405 1086.56 1108.205 1102.11
T e s t  5 1089.3 1086.64 1085.031 1086.8 1110.15

2k R2PC 1095.079 1085.296 1087.9122 1096.095 1103.296

R esu lts for Ok R2PC

1 R e p l i c a 2  R e p l i c a s 3  R e p l i c a s 6  R e p l i c a s 8  R e p l i c a s

T e s t  1 536.795 523.125 536.875 544.145 539.295
T e s t  2 535.39 524.45 539.92 535.78 545.625
T e s t  3 531.25 522.735 540.78 539.925 547.035
T e s t  4 537.265 527.185 547.81 547.345 538.332
T e s t  5 528.91 523.75 551.095 553.125 545.074

0k R2PC 533.922 524.249 543.296 544.064 543.0722

R esu lts for 2k RPC

1 R e p l i c a 2  R e p l i c a s 3  R e p l i c a s 6  R e p l i c a s 8  R e p l i c a s

T e s t  1 67.81 67.81 67.81 67.81 67.81
T e s t  2 67.11 67.11 67.11 67.11 67.11
T e s t  3 66.95 66.95 66.95 66.95 66.95
T e s t  4 64.375 64.375 64.375 64.375 64.375
T e s t 5 66.72 66.72 66.72 66.72 66.72
2k RPC 66.593 66.593 66.593 66.593 66.593



Results for Ok RPC

1 R e p l i c a 2  R e p l i c a s 3  R e p l i c a s 6  R e p l i c a s 8  R e p l i c a s

T e s t  1 33.05 33.05 33.05 33.05 33.05
T e s t  2 33.83 33.83 33.83 33.83 33.83
T e s t  3 34.61 34.61 34.61 34.61 34.61
T e s t  4 35.94 35.94 35.94 35.94 35.94
T e s t  5 33.05 33.05 33.05 33.05 33.05
Ok RPC 34 096 34.096 34.096 34.096 34.096

C.2 Evaluation of Pi

These results correspond to the evaluation o f  the example described in section 5.2.2.

Results for Unreliable Evaluation

1 N o d e 2  N o d e s 3  N o d e s 5  N o d e s 7  N o d e s 9  N o d e s

T e s t  1 44094 40250 20344 16875 12860 9360
T e s t  2 44094 40625 20359 16969 12704 9047
T e s t  3 44141 40234 20375 16844 12844 9063
T e s t  4 44141 40281 20359 16766 12813 8938
T e s t  5 44094 40281 20422 16813 12828 9328
Unreliable Evaluation 44112.8 40334.2 20371.8 16853.4 12809.8 9147.2

Results for Evaluation with Resilience 1

1 N o d e 2  N o d e s 3  N o d e s 5  N o d e s 7  N o d e s 9  N o d e s

T e s t  1 55125 43469 30719 23125 23578 29609
T e s t  2 55344 43812 26735 18891 20172 32657
T e s t  3 55218 43297 27603 20297 23157 30937
T e s t  4 55188 43469 27203 21234 19000 32656
T e s t  5 55188 43453 26859 21391 24672 33156
Resilience 1 55212.6 43500 27823.8 20987.6 22115.8 31803

Results for Evaluation with Resilience 2

1 N o d e 2  N o d e s 3  N o d e s 5  N o d e s 7  N o d e s 9  N o d e s

T e s t  1 55343 49937 28219 25172 22437 28203
T e s t  2 55187 49219 27547 21781 19906 24578
T e s t  3 55234 49125 26734 22484 20359 20625
T e s t  4 55219 49875 24594 21969 25000 26547
T e s t  5 55188 49844 25688 22047 21984 26531
Resilience 2 55234.2 49600 26556.4 22690.6 21937.2 25296.8
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Results for Evaluation with Resilience 4

1 N o d e 2  N o d e s 3  N o d e s 5  N o d e s 7  N o d e s 9  N o d e s

T e s t  1 55203 44703 29110 23907 24687 22985
T e s t  2 55203 44516 29375 24325 19094 21469
T e s t  3 55203 49469 28859 24969 24656 18859
T e s t  4 55203 49375 27844 25484 20031 19406
T e s t  5 55218 49359 25781 24156 29094 22375
Resilience 4 55206 47484.4 28193.8 24568.2 23512.4 21018.8

Results for Evaluation with Resilience 6

1 N o d e 2  N o d e s 3  N o d e s 5  N o d e s 7  N o d e s 9  N o d e s

T e s t  1 55219 49922 25140 24797 24313 23375
T e s t  2 55187 47531 28360 23656 29313 37640
T e s t  3 55234 47547 27906 27532 27375 29187
T e s t  4 55141 50109 27281 23312 31453 27359
T e s t  5 55203 46250 28109 23469 24032 31985
Resilience 6 55196.8 48271.8 27359.2 24553.2 27297.2 29909.2

Results for Evaluation with Resilience 8

1 N o d e 2  N o d e s 3  N o d e s 5  N o d e s 7 N o d e s 9  N o d e s

T e s t  1 55172 45547 25968 20610 24579 32297
T e s t  2 55203 49344 27687 22516 34062 28484
T e s t  3 55157 44132 26171 25234 31640 28000
T e s t  4 55219 43844 30500 28203 24360 31344
T e s t s 55234 49969 26688 25000 23844 34500
Resilience 8 55197 46567.2 27402.8 24312.6 27697 30925

Results for Completely Reliable Evaluation

1 N o d e 2  N o d e s 3  N o d e s 5  N o d e s 7 N o d e s 9  N o d e s

T e s t  1 44141 43547 28328 24859 26219 27422
T e s t  2 44094 43406 26297 23750 25219 24547
T e s t  3 44093 42891 26969 23937 22500 28125
T e s t  4 44094 42843 25875 25047 25954 24125
T e s t s 44094 44016 25204 22140 24797 24922
Total Resilience 44103.2 43340.6 26534.6 23946.6 24937.8 25828.2
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C.3 Evaluation of Prime Numbers

These results correspond to the evaluation o f  the example described in section 5.2.3.

The average values for the reliable cases with one node have not been depicted in the graphs 

represented in page 82 due to its disproportion with the rest o f  the results obtained.

Results for Unreliable Evaluation

1 Node 2 Nodes 3 Nodes 5 Nodes 7 Nodes 9 Nodes
Test 1 30610 39609 32719 23657 28125 29031
Test 2 26968 36750 36719 28031 31828 33000
Test 3 26750 38078 35656 30984 32390 27985
Test 4 24187 39094 33672 24594 28609 24968
Test 5 26469 38594 35281 27844 28843 32203
Unreliable Evaluation 26996.8 38425 34809,4 27022 29959 29437.4

Results for Evaluation with Resilience 1

1 Node 2 Nodes 3 Nodes 5 Nodes 7 Nodes 9 Nodes
Test 1 2304015 415219 309406 330031 356328 374015
Test 2 2308172 410625 301531 342704 345453 432218
Test 3 2308297 411875 298078 340563 382141 371859
Test 4 2306781 409156 315609 347984 341469 360265
Test 5 2308094 409125 353062 318188 374344 403094
Resilience 1 2307071.8 411200 315537.2 335894 359947 388290.2

Results for Evaluation with Resilience 2

1 Node 2 Nodes 3 Nodes 5 Nodes 7 Nodes 9 Nodes
Test 1 2308781 485094 319125 337640 351422 357703
Test 2 2309003 484266 314609 341015 341609 350907
Test 3 2305142 492203 308453 323547 349890 352579
Test 4 2308121 481342 314078 325937 353828 379203
Test 5 2305277 492003 325281 318875 338359 421235
Resilience 2 2307264.8 486981.6 316309.2 329402.8 347021.6 372325.4
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C A  Prime Numbers Evaluation for one Worker Process

These results correspond to the evaluation o f the example presented in section 5.2.4.

Unreliable 1 Replica 2 Replicas 4 Replicas 6 Replicas 8 Replicas
1 Node 2 Nodes 3 Nodes 5 Nodes 7 Nodes 9 Nodes

Test 1 36640 272031 262593 272375 276750 271890
Test 2 31218 258000 266687 261438 265141 263406
Test 3 32250 261937 267096 257656 273219 278437
Test 4 32906 258437 266125 262109 263937 240110
Test 5 32547 256125 247141 264547 265328 299454
1 Worker 33112.2 261306 261928.4 263625 268875 270659.4

C.5 Evaluation of Crash Faults

These results correspond to the evaluation presented in section 5.3.1.

The results that start with a C followed by a number indicate that the evaluation o f  the system 

crashed after the number o f  milliseconds specified.

The average time taken by the evaluation o f  the system is not taken when all the evaluations o f  

the system had crashed.

Crash Probability 0.1 (1/10)

1 Replica 2  Replicas 4 Replicas 6 Replicas 8 Replicas
Test 1 C 96000 C 43000 740359 C 242000 C 115000
Test 2 C 391000 C 221000 C 299000 C 187000 C 1016000
Test 3 C 30000 C 372000 C 570000 C 777000 C 690000
Test 4 C 42000 C 26000 C 516000 C 740000 C 931000
Test 5 C 149000 C 203000 C 311000 C 602000 C 1813000
Crash-Fault Probability 0.1 740359

Crash Probability 0.05 (1/20)

1 Replica 2  Replicas 4 Replicas 6 Replicas 8 Replicas
Test 1 C 281000 C 302000 503485 793610 C 910000
Test 2 C 330000 C 610000 425953 C 424000 651891
Test 3 C 21000 C 396000 C 756000 575156 C 923000
Test 4 C 375000 C 30000 965390 772578 643531
Test 5 C 302000 C 23000 443968 707110 1160172
Crash-Fault Probability 0.05 584699 712113.5 818531.33
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Crash Probabiiity 0.02 (1/50)

1 Replica 2  Replicas 4 Replicas 6 Replicas 8 Replicas
Test 1 313984 339625 331203 314234 474937
Test 2 308157 376547 529266 421578 597828
Test 3 C 60000 300547 312234 327969 324719
Test 4 266282 321563 367782 389516 427735
Test 5 330844 318437 C 425000 311594 273016
Crash-Fault Probability 0.02 304816.75 331343.8 385121.25 352978.2 419647

Crash Probability 0.01 (1/100)

1 Replica 2 Replicas 4 Replicas 6 Replicas 8 Replicas
Test 1 281718 269485 299907 395609 275360
Test 2 C 145000 318938 279704 273329 309438
Test 3 265531 264234 261719 323687 338906
Test 4 312046 265203 258781 291297 284500
Tests 333219 271203 349031 322375 336110
Crash-Fault Probability 0.01 298128.5 277812.6 289828.4 321259.4 308862.8

Crash Probability 0

Test 1
1 Replica 2 Replicas 4 Replicas 6 Replicas 8 Replicas

272031 262593 272375 276750 271890
Test 2 258000 266687 261438 265141 263406
Test 3 261937 267096 257656 273219 278437
Test 4 258437 266125 262109 263937 240110
Tests 256125 247141 264547 265328 299454
Crash-Fault Probability 0 261306 261928.4 263625 268875 270659.4

C.6 Evaluation of Omission Faults

The results presented correspond to the evaluation o f  the system described in section 5.3.2.

1 Replica

Probability 0 Probability 0l01 Probability 0.02 Probability005 Probability 01
Testi 272031 299532 349328 485640 892312
Test 2 258000 305344 364500 537765 806953
Test 3 261937 312860 379218 578844 870141
Test 4 258437 308860 328531 586828 853985
Tests 256125 310156 348562 483110 816188
1 Replica 261306 307350.4 354027.8 531437.4 847915.8
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C.7 Evaluation of Omission/Crash Faults

These results correspond to the evaluation presented in section 5.3.3.

The results that start with a C followed by a number indicate that the System Crashed after the 

number o f  milliseconds specified.

The results that start with an O followed by a number indicate the time when the System Failed 

with an Omission error.

The squares in white colour identify executions where the primary processes did not crash at all. 

The execution times for confidence degree 0 were very fast, for this reason the probability o f  a 

crash was increased to 0.05.

The rest o f the cases use crash and omission probability equal to 0.02.

The average time taken by the evaluation o f  the system is not taken when all the evaluations o f 

the system had crashed.

Gorfidence Degree 0 (Crash FVob: 0.05)

Test 1
1 Replica

O 156000
2 Replicas

Test 2 ■  128438 O 212000
Test 3 O 133000 155141
Test 4 C 151000 O 59000
Test 5 O 145000
Confidence 0 128438 138765.6667

2  Replicas 4 Replicas 6 Replicas 8 Replicas
214375 
151922 

O 76000 
143109

154910

148672 
O 170000

1081055

125094 
158407 
140594 

O 172000 
0228000 

141365

Gorfidence Deg-ee 2

1 Replica 2  Replicas 4 Replicas 6 Replicas 8 Replicas 
Test 1 380906 504359 492610 478547 942297
Test 2 O 465000 507969 588547 O 45GCG0 513453
Test 3 C 43000 634844 444875 O 556CC0 726922
Test 4 C 202000 615969 862094 758250 524765
Test 5 O 318000 O 311000 755731 O 490000 O 931000
Confidence 2 380906 565785.25 628772 618398.5 684359.25
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GorfidenceDayee4

1 Replica 2 Replicas 4 Replicas 6 Replicas 8 Replicas
Test 1 535328 628734 815688 590062 814968
Test 2 368719 480672 O 347000 547343 001609
Test 3 363094 500703 616563 678984 899594
Test 4 C 99000 444781 681218 541454 808829
Test 5 414141 547312 556563 755015 1066703
Confidence 4 420320.5 520440.4 667508 622571.6 838340.6

119



Bibliography

[Avizienis et al. 84] A. Avizienis and J. Kelly, Fault Tolerance bv Design Diversity: Concepts and Experiments. IEEE Computer, vol. 
17, no. 8, pp. 67-80, Aug. 1984.

[Babaoglu et al. 93] Ö. Babaoglu and S. Toueg, Understanding Non-blockina Atomic Commitment. Tech. Report UBLCS-93-2, 
Laboratory for Computer Science, University of Bologna, Italy, Jan. 1993.

[Bakken et al. 95] D. Bakken and Ft. Schlichting, Supporting Fault-Tolerant Parallel Programming in Linda. IEEE Trans, on Parallel 
and Distrib. Systems, vol. 6, no. 3, pp. 287-302, March 1995.

[Barborak et al. 93] M. Barborak, M. Malek and A. Dahbura, The Consensus Problem in Fault-Tolerant Computing. ACM Computing 
Surveys, vol. 25, no. 2, pp. 171-220, June 1993.

[Beedubail et al. 95] G. Beedubail G, A. Karmarkar, A. Gruijala, W, Marti and U. Pooch. Fault Tolerant Objects in Distributed 
Systems using Hot Replication. Technical Report TR-95-023, Department of Computer Science, Texas A&M University, USA, April 
1995.

[Berkeley 86] UNIX Reference Manual. 4.3 Berkeley Software Distribution, Computer Systems Research Group, Computer Science 
Division, Univ. of California, Berkeley, USA, Apr. 1986.

[Bhatti et al. 98] N. Bhatti, M. Hiltunen, R. Schlichting and W. Chiu. Covote: A System for Constructing Fine-Grain Configurable 
Communication Seivices. ACM Trans. Comp. Syst., vol. 16, no. 4, pp. 321-366, Nov. 1988.

[Birman 91] K. Birman, Maintaining Consistency in Distributed Systems. Tech. Report TR 91-1240, Dept, of Computer Science, 
Cornell University, USA, Nov. 1991.

[Birman 93] K. Birman, The Process Group Approach to Reliable Distributed Computing. Communications of the ACM, vol. 36, no. 
12, Dec. 1993.

[Birman et al. 94] K. Birman and R. van Renesse eds., Reliable Distributed Computing with the Isis Toolkit. IEEE Computer Society 
Press, 1994.

[Birrell et al. 84] A. Birrell and B. Nelson, Implementing Remote Procedure Call. ACM Trans. Comp. Syst., Vol. 2, No. 1, pp. 39-59, 
Feb. 1984.

[Cannon et al. 94] S. Cannon and D. Dunn, Adding Fault-Tolerant Transaction Processing to Linda. Software - Practice and 
Experience, vol. 24, no. 5, pp. 449-466, May 1994.

[Carriero et al. 90] N. Carrlero and D. Gelernter, How to Write Parallel Programs: A First Course. The MIT Press, Cambridge, MA, 
USA, 1990.

[Carriero et al. 93] N. Carriero, D. Gelernter, D. Kaminsky and J. Westbrook, Adaptive Parallelism with Piranha. Tech, Report 954, 
Yale University, February 1993.

[CEI/IEC 97] CEI/IEC 61508, Functional safety of electrical/electronic/proarammable electronic safety-related systems. Parts 1-7, 
1997.

[Cheriton 84] D. Cheriton. The V Kernel: A Software Base for Distributed Systems. IEEE Software, vol. 1, no. 12, pp. 19-43,1984.



[Cheriton 88] D. Cheriton. The V Distributed System. Communications of the ACM, vol. 31, no. 3, pp. 314-333, March 1988.

[Cooper 85] E. Cooper, Replicated Distributed Programs. Proceedings of the 10th Symposium on Operating System Principles, 
ACM, pp. 63-78,1985.

[Coulouris et al. 88] G.Couloris and J. Dollimore, Distributed Systems: Concepts and Design. Addison-Wesley, California 1988.

[Cristian 91] F. Cristian, Understanding Fault-Tolerant Distributed Systems. Communications of the ACM, pp. 56-78, vol. 34, no. 2, 
Feb. 1991.

[D. Liang et al. 98] D. Liang , S. Chou and S. Yuan, A fault-tolerant object service in the OMG's object management architecture. 
Information and Software Technology, vol. 39, pp. 965-973,1998.

[Davidson et al. 85] S. Davidson, H. Garcia-Molina and 0. Skeen, Consistency in Partitioned Networks. ACM Comp. Surveys, vol. 
17, no. 3, pp. 341-370, Sept. 1985.

[Dolev et al. 1985] D. Dolev and R. Reischuk, Bounds on Information Exchange for Byzantine Agreement. Journal of the ACM, vol. 
32, no. 1, pp. 191-204, Jan. 1985.

[Elmasiri et al. 94] R. Elmasiri and S. Navathe, Fundamentals of Database Systems. Addison-Wesley, 1994.

[Garcia-Molina 82] H. Garcia-Molina. Elections in a Distributed Computing System. IEEE Trans, on Computers, vol. 31, no. 1, pp. 
48-59, Jan. 1982.

[Gelernter 85] D. Gelernter, Generative Communication in Linda. ACM Trans. Program. Lang. Syst., vol. 7, no.1, Jan. 1985.

[Heimerdinger et al. 92] W. Heimerdinger and C. Weinstock, A Conceptual Framework for System Fault Tolerance. Tech. Report 
CMU/SEI-92-TR-33, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, Oct. 1992.

[ISO/IEC 98] ISO/I EC T R 15504-9, Information technology - Software process assessment. Parts 1-9. (SPICE), 1998.

[Jalote 89] P. Jalote. Resilient Objects In Broadcast Networks. IEEE Trans. Soft. Eng., vol. 15, no.1, pp. 68-72, Jan. 1989.

[Jeong et al. 94] K. Jeong and D. Shasha, Plinda 2.0: A Transactional/Checkpointing Approach to Fault Tolerant Linda, in Proc. of 
the Thirteenth Symp. on Fault-Tolerant Distributed Systems, Oct. 1994.

[Kaashoek 92] F. Kaashoek, Group Communication for Distributed Systems. PhD Thesis, Vrije Universiteit, Amsterdam, 1992.

[Kaashoek et al. 93] M. Kaashoek, R. van Renesse, H. van Staveren and A. Tanenbaurr^ FLIP: an Internetwork Protocol for 
Supportino Distributed Systems. ACM Trans. Comp. Syst., vol. 11, no. 1, pp. 73-106, Feb. 1993.

[Kambhatla 90] S. Kambhatla, Recovery with Limited Replay: Fault-Tolerant Processes in Linda. Tech. Report CS/E 90-019, Dept, 
of Comp. Sci., Oregon Graduate Institute, USA, 1990.

[L. Liang et al. 90] L. Liang, S. Chanson and G. Neufeld. Process Groups and Group Communications: Classifications and 
Reguirements. IEEE Computer, vol. 23, no. 2, pp. 56-66, Feb. 1990.

[Lamport et al. 82] L. Lamport, R. Shostak and M. Pease, The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst., vol. 
4, no. 3, pp. 382-401, July 1982.

[Landis et al. 97] S. Landis and S. Maffeis, Buiding Reliable Distributed Systems with CORBA. Theory and Practice of Object 
Systems, ed: John Wiley, New York, Apr. 1997.

121



[Laprie et al. 90] J. Laprie, J. Arlat, C. Beounes and K. Kanoun. Definition and Analysis of Hardware and Software Fault-Tolerant 
Architectures. IEEE Computer, vol. 23, no. 7, July 1990.

[Lewis et al. 92] T. Lewis and H. El-Rewini, Introduction to Parallel Computing. Prentice-Hall, 1992.

[Maffeis 96] S. Maffeis, PIRANHA -  A hunter of crashed CORBA Objects. Technical Report TR96-1569, Department of Computer 
Science, Cornell University, Jan. 1996.

[Maffeis et al. 97] S. Maffeis and D. Schmidt, Constructing Reliable Distributed Communication Systems with CORBA. IEEE 
Communications, pp. 56-60, Feb. 1997.

[Manso 96] 0. Manso, PCLinda: A Tool for Parallel Programming. MSc Thesis, Dublin City University, Ireland, Oct. 1996.

[OMG 98] Object Management Group, The Common Object Request Broker Architecture and Specification. MA, USA 1998.

[Parrington et al. 94] G. Parrington, S. Shrivastgava, S. Wheater and M. Little, The Design and Implementation of Arjuna, 
BROADCAST Project deliverable report, vol. 4, Oct. 1994.

[Powell 95] D. Powell, Failure Mode Assumptions and Assumption Coverage. Tech. Report 91462, LAAS-CNRS, 31077 Toulouse, 
France, March 1995.

[Resnick 96] R. Resnick, A Modern Taxonomy of High Availability. httpy/www.interloa.com/~resnick/HA.htm. 1996,

[Schlichting et al. 83] R. Schlichting and F. Schneider. Fail-Stoo Processors: An Approach to Designing Fault-Tolerant Computing 
Systems. ACM Trans. Comp. Syst., vol. 1, no. 3, pp. 222-238, Aug. 1983.

[Schneider 84] F. Schneider, Bvzantine Generals in Action: Implementing Fail-Stoo Processors. ACM Trans. Comput. Syst., vol. 2, 
no. 2, pp. 145-154, May 1984.

[Schneider 90] F. Schneider, Implementing fault-tolerant services using the State Machine approach: A tutorial. ACM Computing 
Surveys, vol. 22, no. 4, pp. 299-319, Dec. 1990.

[Shekhar 93] K. Shechar and Y. Srikant, Linda Sub System on Transputers. Computer Languages, Vol. 18, No. 2,1993.

[Shrivastava 94] S. Shrlvastava, Lessons Learned from Building Ariuna Distributed Programming System. Dagstuhl Seminar on 
Distributed Systems, pp. 17-32,1994.

[Slewiorek 90] D. Slewiorek, Fault-Tolerance in Commercial Computers. IEEE Computer, vol. 23, no. 7, July 1990.

[Sully 93] P. Sullv. Modelling the World with Objects. Prentice Hall, 1993.

[Ullman 88] J. D. Ullman, Principles of Database and Knowledge-Base Systems, vol. 1, Computer Science Press, 1988.

[van Renesse et al. 96] R. van Renesse, K. Birman and S. Maffeis, Horus. a Flexible Group Communication System. 
Communications of the ACM, vol. 39, no. 4, pp. 76-83, Apr. 1996.

[Vlnoski 97] S. Vinoski, CORBA: Integrating diverse applications within distributed heterogeneous environments. IEEE 
Communications, vol. 14, no. 2, Feb. 1997.

[Wood 93] M. Wood, Replicated RPC using Amoeba Closed Group Communication. 13th Conference on Distributed Computer 
Systems, IEEE Computer Society, pp. 499-507, Pittsburgh, PA, USA, 1993.

122

http://www.interloa.com/~resnick/HA.htm


[Xu et al. 89] A. Xu and B. Liskov, A design for a fault-tolerant, distributed implementation of Linda. In Proc. Nineteenth Int. Symp. 
Fault-Tolerant Comput., pp. 199-206, June 1989.

[Yap et al. 88] K. Yap, P. Jalote and S. Tripathi, Fault Tolerant Remote Procedure Call. 8th International Conference on Distributed 
Computing Systems, IEEE Computer Society, pp. 48-54,1988.

123



Index

A

active rep lica tio n ............................................... 21

arb itrary  tun ing fa u lt ............................................8

auth en ticated  byzantine fa u lt ............................... 7

B

byzantine fa u lt ..................................................... 7

C

ch eckpoin t......................................................... 46

c lien t.................................................................. 11

co ld  stan dby ......................................................... 6

com ponent........................................................... 4

atom ic .............................................................4

replaceable h ardw are  ............................. 8

com puter se rv ic e  .......  10

confidence degree .............................................. 56

coord in ator/coh ort.............................................22

crash  f a u l t     ................................................8

D

determ inistic execu tio n ......................................21

distributed sy stem ...............................................10

F

fa il-sile n t.............................................................. 8

fa il-sto p ................................................................ 8

fa ilu r e ..................................................................2

f a u l t .....................................................................2

detected........................................................... 3

laten t............................................................... 3

observable....................................................... 3

fa u lt- flo o r ............................................................4

fau lt-to leran t ap p licatio n .............................. ...... 9

fau lt-to leran t softw are system ...............................9

fau lt-to leran t sy stem ............................................ 2

G

grou p  com m u n ication ...............    11

closed  g ro u p ...................................................12

dynam ic gro u p ................................................12

intergroup com m unication ............................. 12

intragroup com m unication ............................. 12

open g ro u p .....................................................12

p ro cess g ro u p .................................................11

static group .....................................................12

H

highly av ailab le  sy stem ........................................ 6

hot stan dby ...........................................................7

/

in carn ation  n um ber........................................... 57

in correct com putation  f a u lt ..................................8

M

m an u al m ask in g .................................................. 6

N

no fa u lt .................................................................8

O

om ission  f a u l t ...................................................... 8

P

p assiv e  rep lication .............................................. 21

prim ary -b ack u p ................................................. 21

R

R 2P C ..................................................................36

124



redundancy .......................................................... 5

reliab le rem ote procedure c a l l ........................... 21

rem ote procedu re c a ll......................................... 14

at least once senan tics.................................... 15

at m ost once sem antics....................................15

Exactly  once sem an tics.................................. 15

resilien ce d egree .................................................. 7

R P C ..............................See rem ote procedure ca ll

R R P C ............... See reliable rem ote procedure ca ll

s

se rv e r................................................................. 10

span  o f  co n cen t................................................... 4

state m ach in e ...........................     41

sym ptom ...............................................................2

system ...................................................................2

system  b o u n d ary .................................................. 4

T

T S .................................................. See tuple space

tu p le ................................................................... 16

tuple sp a c e ..........................................................16

W

w arm  stan dby ....................................................... 6

125


