
Thesis:

PETRI NET MODELLING OF A
COMMUNICATIONS PROTOCOL

Author:
Colin J. McAllister B.Sc.

Supervisor:
Dr. Michael Scott Ph.D.

Submitted to:
The Dublin City University

School of Computer Applications
For the Degree of Master of Science.

Date: 2 8th July 1989

ACKNOWLEDGEMENT

I wish to thank Dr. Michael Scott for
his helpful direction during this project,

DECLARATION

This dissertation is based on the author's own work,
It has not previously been submitted for a degree
at any academic institution.

Colin McAllister
28th July 1989.

PETRI NET MODELLING OF A
COMMUNICATIONS PROTOCOL

Thesis :

Author: Colin McAllister B.Sc.
Supervisor: Dr. Michael Scott Ph.D.

ABSTRACT

The Petri net is a formal modelling tool applicable to
distributed systems and communication protocols. Two
methods of analysis are applied to formal models of the
"Alternating Bit Protocol".

(i) A timed Petri net model is simulated
to measure protocol performance.

(ii) A modular numeric Petri net model is validated
by reachability analysis.

The simulation and validation tools are programmed in
(i) "C" language and (ii) Prolog. A specification language
"Needle" is developed. It describes the model system as a
hierarchy of modular state transition networks. The model is
searched for all possible event sequences, and the result
displayed as a reachability tree. The specification language
is capable of describing models which execute backwards in
simulation time. The modular numeric Petri net is the basis
of a powerful computer architecture, capable of parsing its
own specification language to build complex models.
Attention is drawn to the similarities between Petri net
theory and quantum mechanics.
KEY WORDS: Petri Nets, Prolog, Formal Specification,

Protocol Validation, Timed Simulation.

1 TABLE OF CONTENTS
1 INTRODUCTION 1
1.1 Formal Methods For Communications Software 1
1.2 Two Methods of Protocol Analysis 2
1.3 Definition of Petri Net and Reachability Tree 3
1.4 Analysis Method-I: Performance Modelling 3
1.5 Analysis Method-II: Formal Validation 4
1.6 The Petri Net Analysis Tools 4

METHOD - I TIMED SIMULATION (Chapters 2 to 4) 5
2 VARIOUS APPROACHES TO TIMED SIMULATION 5
2.1 Analysis Tools for Discrete Event Systems 5
2.2 Representations of Time 5
2.3 Basic and Complex Petri Net models 6
2.4 Petri Nets Mapped onto Concurrent Processes 6
2.5 Integration of Petri and Queueing Models 7
2.6 Stochastic Petri Net Analysis with 'C . 8
2.7 Discrete Event Simulation with Prolog 8
2.8 Temporal Extension to a Specification Language 9
2.9 Development of the "SIM" Simulation Tool 9

3 THE TIMED PETRI NET SIMULATION TOOL 11
3.1 Brief Description of the Simulation Tool 11
3.2 Timed Petri Net Specification Language 11
3.3 Execution of a Simulation 12
3.4 Underlying Concurrent Process Model 12
3.5 Petri Net Components 13
3.6 Standard Petri Net Places 14
Figure 3.1 Simulator Step by Step Event Screens 15
3.7 The Simulation Environment and Report Files 16
3.8 Structure of the Simulation Program 17

4 SIMULATION OF THE ALTERNATING BIT PROTOCOL 19
4.1 Communication Via an Unreliable Channel 19
Figure 4.1 Alternating Bit Protocol Model 20
4.2 Concurrent Process Model and Implementation 21
4.3 Protocol Error Recovery 21
4.4 Protocol Performance Reports 22
4.5 Protocol Performance Graph 23
4.6 Conclusion of Protocol Simulation 24
Figure 4.2 Protocol Performance Graph 25
4.7 Further work required 26

METHOD - II FORMAL VALIDATION (Chapters 5 to 10)
5 VARIOUS APPROACHES TO PROTOCOL VALIDATION 27

27

5.1 A Numerical Petri Net Validation Tool 27
5.2 Database Methods Overcome State Explosion Limit 27
5.3 Logic Programming as a Validation Environment 28
5.4 Using Temporal Logic with Concurrent Prolog 29
5.5 Validation of a Modular Specification 29
5.6 Development of the "TRAV" Validation Tool 29
5.7 Conclusions for Protocol Validation 30

6 SCHEMATIC DESCRIPTION TECHNIQUE 31
6.1 SDL Model of Alternating Bit Protocol 31
6.2 Extensions to Petri Net Model 32
6.3 Schematic Protocol Representation 32
6.3.1 Hierarchical System Model 32
6.3.2 Channel Module 33
6.3.3 Sender Module 34
6.3.4 Receiver Module 34
6.4 Numerical Petri Net Model 35
6.5 Summary of Schematic Representation 36
Figure 6.1 Hierarchical Structure of the Protocol 36

7 THE "NEEDLE" SPECIFICATION LANGUAGE 37
7.1 Specification and Validation Using Prolog 37
7.2 Petri Net Analysis of Needle Specification 37
7.3 Structure of Needle Specification in Prolog 38
7.4 Needle Programming Statements 39
7.5 Modular Program Block 40
7.6 Declaring a Petri Net Place 41
7.7 Declaration of Transition and its Arcs 41
7.8 Conclusion - Needle Replaces the SDL Language 42

8 "NEEDLE" SPECIFICATION OF ALTERNATING BIT PROTOCOL 43
8.1 Sender and Receiver Modules 43
8.2 Integers Tokens Reduce Number of Places 44
8.3 Hierarchical and Flat Petri Net models 45
8.4 Translation to Flat Petri Net Model 45
8.5 Efficiency of Search Algorithm 46
8.6 Analysis of the Protocol Event Sequence 46
8.7 Conclusion - The Needle Specification is Executable 47
Listing: 8.1 Sender Module Specified in Needle 48
Listing: 8.2 Receiver Module Specified in Needle 49

9 ANALYSIS OF PROTOCOL ERROR RECOVERY 51

9.1 Event Sequence Recovers from Data Error 51
9.2 Transmission Errors in Both Directions 52
9.3 Reachability Tree of The Protocol 53
Figure 9.1 Reachability Tree of Cyclic Sequences 53
9.4 Lost Messages Cause Deadlock 54
Figure 9.2 Reachability Tree of Deadlock Sequences 55

10 PROTOCOL MODEL WITH TIMEOUT FACILITY 57
10.1 Specification of Timeout Transitions 57
10.2 Timer Retransmits Lost Data Message 58
10.3 Timer Retransmits Lost Acknowledge Message 59
10.4 Prove Absence of Protocol Deadlock 60
10.5 Reachability Tree of Protocol with Timeout 60
Figure 10.1 Reachability Tree of Cyclic Sequences 61

11 POTENTIAL DEVELOPMENTS FROM PETRI NET THEORY 63
11.1 A Packet Petri Net for Modelling Layered Protocols 63
11.2 The Petri Net as a Powerful Computer Architecture 63
11.3 A Petri Net Parses its own Language 64
Figure 11.1 Petri Net of A Petri Net Constructor 66
Figure 11.2 Initial Marking Parser 67
Figure 11.3 Constructed Petri Net 67
11.4 Neural Petri Nets Capable of Learning 68
11.5 A Time Reversible Specification Language 68
Figure 11.4 Time Reversible Specification 70
11.6 Quantum Mechanics of Finite State Machines 70

APPENDICES

A Standard Petri Net Places
B Performance Simulation of Alternating Bit Protocol
C Protocol Simulation 'C' Language Modules
D SDL Specification of Alternating Bit Protocol
E Schematic Specification of Alternating Bit Protocol
F "Needle" - A Specification Language for Modular

State Transition Networks. (Backus Naur Format).
G Needle Specification of Alternating bit Protocol
H "TRAV" Specification Traversal Program - Menu Screens
I Analysis of Protocol Error Recovery
J Protocol Deadlock Recovery by Timeout
K References (11 pages).

1 INTRODUCTION

This research project examined formal methods for the development
of data communications software. The techniques studied apply
generally to the analysis of complex systems.

Communications software is particularly conplex for several
reasons:

o It executes concurrently at multiple locations and on different
levels of hardware. E.g. host computer, front end processor and
packet switching exchange.

o It must perform at sufficient speed to interact with the
communications hardware.

o It must communicate data reliably, despite noisy transmission
channels and intermittent equipment failure.

o It is designed as separate functional layers, and possibly by
separate companies. The interfaces between layers must be
specified and tested.

The software algorithms used for transmitting and receiving data
are referred to as a protocol. The "Alternating Bit Protocol" is a
simple example, which can communicate data reliably over a noisy
transmission channel.

Application of validation methods to a conplex design can produce
significant savings in project development costs, by high-lighting
design difficulties at an early stage. This thesis presents two
complementary methods of analysing Petri net models of the
"Alternating Bit Protocol".

1.1 Formal Methods For Communications Software

1

1.2 Two Methods of Protocol Analysis

This project examines two methods of protocol analysis:
"Performance Modelling" by timed simulation and "Formal Validation" by
reachability analysis. A specification language is developed for each
method. The methods use a Petri net model which is extended to
represent:

timed events,
numeric operations,
and modular structure.

Following the introduction (chapter 1), this paper contains two
sections, Method-I and Method-II, describing distinctly different
approaches. Finally, chapter 11 discusses potential developments from
Petri net theory.

Method-I Performance Modelling:

Analyses the performance of the protocol by timed
simulation. A simulation tool "SIM" is developed in the "C"
language. The method is based on a timed Petri net model. A
simulation language builds timed models from standard
components. (Chapters 2 to 4, appendices A to C).

Method-II Formal Validation:

A formal specification of the protocol is validated by
reachability analysis. A validation tool "TRAV" is developed in
"Prolog". The method is based on a modular numeric Petri net model,
for which a formal language "Needle" is developed. (Chapters 5 to 10,
appendices D to J) .

2

1.3 Definition of Petri Net and Reachability Tree

The standard Petri net model is a directed graph containing
places, transitions and directed arcs. These are drawn as circles,
bars and connecting arrows. The Petri net executes by moving tokens
from place to place. Each movement of tokens is a discrete event
corresponding to the firing of a transition.

A Petri net marking M is an instantaneous state of the model,
characterised by the number of tokens at each place. A marking Mi is
said to be reachable from an initial marking MO, if their exists a
possible firing sequence MO, Ml Mi by which marking Mi can be
reached. A reachability tree is a structured representation of all
possible markings reachable from MO. Every possible firing sequence is
represented by a path though the tree, from its root MO. Leaf nodes of
the tree are either duplicate markings or deadlock markings. A
duplicate marking occurs when a firing sequence loops to a previous
state of the model. A deadlock marking is a state of the model in
which no further events are possible.

Reachability analysis is an automatic method of generating a
reachability tree from the specification of a Petri net.

[AJM086] for instance, gives a good description of Petri nets and
reachability trees.

1.4 Analysis Method-I: Performance Modelling

This method uses a Timed Petri Net model (TPN), to simulate
protocol performance. Data corruption on a noisy communications
channel is simulated, and the effect on transmission rate measured.

3

The simulation tool "SIM" is developed in "C". The execution speed of
a concise "C" program allows fast iteration through long pseudo-random
simulation runs. The results of the simulation are presented as a
performance graph of the protocol.

1.5 Analysis Method-II: Formal Validation

This method examines a modular Numeric Petri Net model (NPN) . A
structured specification language "Needle" is developed to describe a
complex system as a hierarchy of modular state-transition networks.
The validation tool "TRAV" is developed in Prolog. The inherent
backtracking search of Prolog traverses all possible execution
sequences of the model system. The search result is reported as a
reachability tree, with identification of deadlock and looping
conditions. Prolog was found to be an ideal language for developing a
validation tool. Among its useful features are:

declarative programming,
backtracking execution,
conciseness in manipulating lists,

idatabase facilities.

1.6 The Petri Net Analysis Tools

The research resulted in development of two analysis tools. Both
tools process the model specification as a text file, and print
analysis reports. The simulation tool "SIM" provides an animated
display of model execution. The validation tool "TRAV" provides menu
driven control of validation experiments. Both tools run on an IBM
personal computer.

4

2 VARIOUS APPROACHES TO TIMED SIMULATION

2.1 Analysis Tools for Discrete Event Systems

An international epidemic of analysis tools for "Discrete Event
Systems" is now emerging from computer research establishments. Over
20 of these [FELD86, BILL88] have the Petri net model as their
mathematical foundation. When analysing the efficiency of systems, it
becomes essential to analyse timing properties. Petri net models,
extended to represent time, have found their niche [MQLL89] .
[COHE89] conclude that the mathematical theory of discrete event
systems is still in its infancy.

The favourite areas of application are manufacturing models
[FAN_88, GERS89] and communication protocols [PETR66, BILL88], but
this will broaden as the technology becomes established. The Petri net
is a completely general model, with potential applications ranging
from fundamental particle theory [HASS89], to satellite control
systems [CIAR87].

2.2 Representations of Time

There are different approaches to modelling time. The simulation
method represents time as a real number T which increments in measured
amounts. Measurement is necessary to make observations about the
performance efficiency of a protocol.

The "Temporal Logic" approach [SANT88], which reasons logically
about the passage of time, is suitable for verifying that a protocol
is correct, but not for quantitative performance assessment.

5

2.3 Basic and Complex Petri Net models

Petri net theory, originated in 1962 by C.A. Petri [PETR62,PETR66]
now has a bibliography of over 2000 articles [BILL88, ROZE87].

The Petri net model is a directed graph with two types of node. In
its simplest form the graph is specified by a 2-dimensional incidence
matrix. Execution of the model is a simple matrix operation on a 1-
dimensional state vector. Many analysis techniques are available.

At greater conplexity, modelling concepts related to the Petri net
are specified by powerful visual formalisms [HARE86, KARA88, SCHI88],
and executed as hierarchical multiprocess computations [AGHA86,
ARCH87, SEVI88].

2.4 Petri Nets Mapped onto Concurrent Processes

The Petri net is a model with very fine grained concurrency, the
model is composed of many small processing units, all in activity at
the same time. Contrast this with the sequential architecture of a
microcomputer, at any instant only one single "byte" of memory (RAM)
is active in the whole address space of the processor (CPU).

In this project, I have taken the approach of mapping the Petri
net model onto a concurrent process model. The application is
specified as a Petri net model. Concurrent processing is the internal
model of the simulation tool. The tool is written in ' C', a
sequential language for a single processor, so the concurrency is just
a model, and not physical.

6

A concurrent process model is also the basis of [BERZ88] on
"Rapidly Prototyping Real-Time Systems". Their modelling tool is part
of an integrated development environment. Their specification language
PSDL describes a directed graph with timing and control constraints.
They errphasis the importance of a unified representation of data flow
and control flow. This is a natural property of the Petri net, which
has only one type of directed arc for representing all classes of
flow. [BERZ88] benefits from previous work on Petri nets, of which
[BRUN86] is relevant here, "Process Translatable Petri Nets for the
Rapid Prototyping of Process Control Systems".

2.5 Integration of Petri and Queueing Models

Queuing models have long been used to analyse the performance of
data processing systems. But they are inadequate to express the
synchronisation requirements of concurrent systems. [CHAN89] presents
a combined approach in a modelling tool TPQN or "Timed Petri/Queuing
Network". A textual specification language TPQL allows a model to be
built from the interconnection of component places, queues and
transitions. Simulation is applied to a model of an operating system
scheduler, and performance graphs are generated. This is very similar
to my approach (Chapter 3), a structured classification of standard
Petri net components is provided in Appendix-A.

7

2.6 Stochastic Petri Net Analysis with 'C r .

Stochastic analysis of Petri nets is a well established method of
performance analysis, based on the Markov chain [AJM086]. A stochastic
Petri net is a timed model with exponentially distributed firing
times. [DUGA89] use the method to develop voting algorithms for a
distributed file system. The performance model is sufficently detailed
to simulate the failure and repair of host computers. The Stochastic
Petri net specification language is based on the 'C' language. The
specification is written as a 'C program and calls a set of
predefined functions e.g. place(), transition(), output_arc(),
input_arc() .

2.7 Discrete Event Simulation with Prolog

The "Chameleon" simulator [FAN_88] is built in the Prolog
language. It models time based discrete event simulation. The system
to be modeled, in this case a manufacturing system, is broken up into
logical modules, and encoded in Prolog. The simulator regulates the
occurance of events and drives an animated display of the system
state. Their project explains some of the practical difficulties,
e.g. running Prolog on a personal computer with only 640 kilobytes of
memory. They stress the importance of modular design, and use a system
of replaceable modular units which communicate via queues.

2.8 Temporal Extension to a Specification Language

Another approach to timed modelling is to take an existing
specification language and extend it with teirporal logic [NIX089]. A
functional specification language "Ina Jo" has its assertion language
enriched with a branching time temporal logic system. The extension
method was carefully chosen, and fitted in with the state transition
model on which the specification language was based. A limitation of
the language is the absence of support for modular programming.

2.9 Development of the "SIM" Simulation Tool

A simulator "SIM" was developed [MCAL87] for performance analysis
of distributed systems and communication protocols. The model system
is expressed as a timed Petri net model. Simulation of the model
confirms its correct behavior, and measures its performance. The tool
has been tested on a number of small case studies, including the
alternating bit communications protocol, manufacturing work flow and
an alarm system.

9

10

3 THE TIMED PETRI NET SIMULATION TOOL

3.1 Brief Description of the Simulation Tool

A simulation tool "SIM" was developed to carry out performance
analysis. It simulates a Petri net model, extended to represent time.
The Petri net is appropriate for analysing any system of component
parts which interact in a logically defined manner.

The tool has a specification language for defining application
models. A specification is a formal statement of a model, including
its time dependent properties. The simulator executes the
specification, displaying the sequence of events.

The specification language controls automated collection of
performance statistics. The results can be presented as a performance
graph using a standard spreadsheet program. The simulation uses
randomised numbers, so accuracy of results depends on the number of
program runs.

The simulation tool is programmed in ' C and has a modular
structure, allowing it to be extended with new features.

3.2 Timed Petri Net Specification Language

The specification language defines application models as timed
Petri nets. The specification describes a network of named places and
transitions. The connecting arcs are described by the key words FRCM
and TO which identify the source and destination places of every
transition. The language calls up a standard place type for each
simulation function required; queues, timers etc. Parameter values

11

specify the place characteristics such as time delays, and event
probabilities. Customised collection and reporting of statistics is
also controlled via the specification language.

I have not formalised the language, but its syntax can be seen
from the example specifications (Appendix-B) and [MCAL87].

[CHAN89] define an almost identical language for the same purpose,
performance analysis of Timed Petri/Queue Nets.

The "Needle" language developed later (Chapter 7), is based on
Prolog, and has been formalised in Backus Naur Format (Appendix-F) .

3.3 Execution of a Simulation

The simulator translates the model specification and executes the
model as a computer program. The simulator runs interactively,
displaying each event and system state (Figure 3.1) . The passage of
time is simulated by an integer T which increments in randomised
jumps. Branching decisions are chosen randomly to test out all event
sequences. On completion of a run, the simulator generates report
statistics which analyse the performance of the model.

3.4 Underlying Concurrent Process Model

The simulator accepts application models specified as timed Petri
nets. Internally the simulator converts these to a concurrent process
model before execution. Each place in the Petri net is represented by
a process. A different type of process is available for each
simulation function. Figure 4.1 illustrates the protocol model, built
from eight concurrent places. Figure 3.1 displays execution of this
model, (with two extra stopwatch places).

12

Each process was initially given one input and one output port,
but this was found to be inadequate for the modelling features
provided. An extra pair of alternate ports was added to the standard
structure of a process, and this proved sufficient for all the
standard process types defined in Appendix-A. For example (Appendix-
A.2) the METER stopwatch place requires two input ports. In chapter 7,
the Needle specification language generalises the Petri net model, to
allow any number of named ports.

The Petri net specification defines a network of interprocess
connections. The model executes by passing messages (tokens) between
processes. Message transfer is a discrete event representing the
firing of a Petri net transition. Message events are illustrated in
the display (Fig. 3.1) by arcs "— >", "<■— " and alternate arcs "— >",
"<v— ». An alternate arc is simply an arc from the secondary output
port, or to the secondary input port of a place. For example the
alternate output "— >" of S-node is shown, sending a message to
Channel-to-R.

3.5 Petri Net Components

The Petri net model is composed of four components: place, token,
arc and transition described below. These are conventionally drawn as
circle, dot, arrow and bar.

o Place:
A place is implemented as an independent process. It has
internal states which change as a function of time. Inputs and
outputs allow it to interact with the other connected places.

13

o Token:
A token is emitted by the output of a place and collected by
the input of a place. A basic token contains no internal data,
it provides a means of synchronising the output of one place
with the input of another.

o Arc:
A directed arc in a Petri net diagram indicates the transfer of
a token. An arc is directed from the output of place to a
transition, or from a transition to the input of a place.

o Transition:
A token transfer is instantaneous and is referred to as a
transition or an event. At the instant when all its source
places provide tokens an event is enabled, and passes tokens to
all its destination places.

3.6 Standard Petri Net Places

A set of standard Petri net places is supplied for building timed
models. They provide simulation features such as time delays and
branch decisions. They are called up via the specification language,
and customised by supplying parameters. A classification of standard
places is given in Appendix-A, and one type, the METIER PIACE is
specified in detail. Meter places control collection of simulation
statistics and provide automated generation of performance analysis
reports. For instance they are used as stopwatches in the protocol
simulation (Appendix-B) to measure transmission and response
performances. Refer to [MCAL87] for a more complete description.

14

Figure 3.1 SIMULATOR STEP BY STEP EVENT SCREENS

SIMULATION SCREEN LAYOUT
TIME: Time (+Time Increment) CURRENT-EVENT
[Pending Timer] Output Arc — >
{Alternate Timer} Alternate Output — >

Input Arc <—
Places Alternate Input <—

SCREEN 1
TIME: 3 ms (+3 ms)

S-host
R-host

(READY) S-node
R-node
Channel-to-R
Intact-to-R
Channel-to-S
Intact-to-S
transmit-watch
response-watch

S-host-emit-data
— >
<—

<—
<—

--------------- SCREEN 2
TIME: 3 ms (+0 ms)

S-host
R-host

{50 ms} S-node
R-node

[10 ms] Channel-to-R
Intact-to-R
Channel-to-S
Intact-to-S
transmit-watch
response-watch

-+
S-tx-data

— >

<—

SCREEN 3
TIME: 13 ms (+10 ms)

S-host
R-host

{40 ms} S-node
R-node
Channel-to-R

[READY] Intact-to-R
Channel-to-S
Intact-to-S
transmit-watch
response-watch

R-arrive-data

— >
<—

15

The simulator processes an input text file, the specification of
the application system. Execution of a model can be displayed
interactively on the screen. A randomised simulation is re-run many
times, and analysis reports automatically generated.

The simulator illustrates execution of model on the screen (Figure
3.1) . Three successive screens are shown from the alternating bit
protocol model (Figure 4.1), also listed as an event sequence report
file (appendix-B.2). The event sequence is displayed step by step.

At each step the screen displays:
o Simulation time and time increment since previous step,
o The name of the current event.
o Arcs from places which enabled the current event,
o Arcs to places driven by the current event,
o Places ready to activate future events,
o Pending timers and their remaining time periods.

The simulator generates six different kinds of report files of
which the three most useful are trace report , module report and
analysis report (Appendix-B).

Trace Report: The events and time of occurance are listed in
sequence. Recording is triggered by a specific event, permitting the
detection of an improbable event by letting a random simulation run on
the computer for a long time.

Module Report: Each place in the Petri net is reported, with
appropriate statistics. For example the ADMIT place type simulates a
randomised branching decision. It reports the number of decisions
recorded, and the percentage of positive decisions.

3.7 The Simulation Environment and Report Files

16

Analysis Report: This is a table of performance measurements
suitable for presentation in graph form. The simulator carries out
repeated tests, automatically varying a key parameter of the
application model, this is the X-axis variable. Selected measures of
performance are plotted on the Y-axis (Appendix-B) .

3.8 Structure of the Simulation Program

The simulator is programmed in ' C language for a personal
computer. It has a modular program structure. It executes as a
sequential 'C' program, but simulates a concurrent process model. The
process interface is a rigidly defined structure with two input ports
and two output ports by which messages are passed. This arose from
limitations in the way the program was written. An array of data
structures (Appendix-C.l) maintains the internal state of each
process. The simulation kemal advances the process states according
to the execution rules of a timed Petri net model. Firing of
transitions is represented by message passing between the concurrent
processes. An unusual feature of the program is, storage of function
pointers in the process data structures, to provide control of the
programs execution, from the specification language.

The specification language calls up a set of standard process
modules. The specification language is limited to the timed Petri net
model and does not express numeric operations or modular structure.
The limitations are overcome by allowing components of the application
system to be programmed as 'C' modules.

Work continues in subsequent chapters to develop a more powerful
model based on hierarchical numeric Petri nets. It has a specification

language 'Needle' capable of describing communications protocols.

17

18

4 SIMULATION OF THE ALTERNATING BIT PROTOCOL

4.1 Communication Via an Unreliable Channel

The model simulates transmission of data packets from a sending
host to a receiving host via an unreliable communications channel. A
software layer represented as interface nodes takes care of
transmission errors on the channel, providing a secure communications
service to the hosts. The model is a simple protocol, but is intended
to indicate potential applications to the performance analysis of
standard protocols and layered communications software.

Figure 4.1 describes the system configuration and message paths.

S-HQST and R-HQST represent the two entities which require peer to
peer data transfer.

S-NCDE and R-NODE represent the entities (software or hardware)
which provide a secure interface to the channel.

CHRNNEL-TO-R and CHRNNEL-TO-S model the time delay of the
communication channel in each direction.

INTACT-TO-R and INTACT-TO-S model the probability of uncorrupted
packet transmission.

Each message event in the diagram is given a name. For example
S_RX_GOCD_ACK indicates that the sending node (S_) receives (_FX_) an
uncorrupted (_GOCD) acknowledgement (ACK) packet.

19

Figure 4.1 ALTERNATING BIT PROTOCOL MODEL

Hosr tecewwcr

2 0

4.2 Concurrent Process Model and Implementation

The model of the alternating bit protocol is constructed from
eight modules shown in the diagram (Figure 4.1). The protocol
specification is listed in Appendix B.l. It is built from standard
simulation components CHANNEL, ADMIT and METIER (Appendix-A) . In
addition there are four user defined 'C' program modules:

S-HOST = Sending Host (Appendix-C.2 program listing),
R-HOST = Receiving Host,
S-NODE = Sending Node,
R-NODE = Receiving Node.

All modules have a standard interface consisting of two input
ports and two output ports. The modules communicate messages via
inter-port connections indicated by arrows in the diagram. The
secondary ports are denoted in the diagram and in the listing by the
tilde symbol ' ~r. For example the S-NQDE and R-NODE modules use the
primary ports to interact with the hosts and the secondary ports to
interact with the channels. The messages carry data and control
information between modules.

4.3 Protocol Error Recovery

The protocol transmits data packets in one direction and
acknowledge packets in the other.

Between S-NODE and R-NCDE the packets carry sequence numbers so
that duplicate messages can be detected. The modulus-2 sequence number
is a single binary digit which alternates between 0 and 1. Hence the
name "ALTERNATING BIT PROTOCOL".

21

The protocol has two security mechanisms:

o Timeout:
Data packets are resent by S-NODE if no acknowledgement is
received within a specified timeout. (In the event of DATA, or
ACK being lost).

o Sequence numbers:
The packets have a modulus 2 sequence count, so duplicate
DATA packets are ignored by R-NODE. (In the event of ACK
being lost and retransmission of the DATA) .

The model represents a real protocol which would use checksums to
detect corrupted packets. The simulation does not need to model the
checksum. The ADMIT place introduces simulated transmission errors.
The error event simulates the case of incorrect checksum calculation
on the received packet, or complete failure to receive.

The packets sent from S-HOST carry dummy data so that R-HOST can
verify its correct arrival. By this means we not only simulate the
protocol, but verify that it is a valid protocol, delivering all the
data packets in the correct sequence, and without duplication.

4.4 Protocol Performance Reports

The simulation specifies that S-HOST sends 50 packets to R-HOST.
A transmission probability of 80% is specified in each direction.

The Trace Report (App. B.2) shows the sequence of timed events.
The Occurance Report (App. B.3) shows how often each event occurred.

22

The Module Report (/pp. B.4) prints an individual summary for each
module. This includes reports for two METER places which record timing
statistics. TRANSMIT-WATCH measures the host to host transmit time.
RESPONSE-WATCH measures the turnaround time for transmission and
acknowledgement.

4.5 Protocol Performance Graph

Automatic generation of performance data is controlled from the
model specification file (Appendix B.l) . Specify the number of
simulation runs at the beginning of the specification file:

SIMULATION
REPEAT 7

Modify the place definitions to specify a range of parameter values,
i.e. the channel transmission probability for each simulation run:

PLACES
ADMIT Intact-to-R PROB 40%; 50%; 60%; 70%; 80%; 90%; 100%
ADMIT Intact-to-S PROB 40%; 50%; 60%; 70%; 80%; 90%; 100%

The analysis report (App. B.5) is output by the simulator. The
performance graph (Figure 4.2) is generated using a spreadsheet
package. The channel reliability is adjusted from 40% through to 100%
to demonstrate how this affects transmission and response times.

With 100% transmission success, the host to host transmit time is
10 msec, and the transmit-response time is 20 msec. With 40%
transmission success, these times increase to 92 msec and 258 msec
respectively.

The performance graph demonstrates that large error rates result

23

in extremely long response times. It also provides for tuning of
system parameters to obtain optimum performance. E.g. reducing the
S-NCDE timeout from 50 milliseconds to 25 msec improves performance at
high error rates. Reducing it to less than 20 msec, the model detects
collapse of the protocol.

4.6 Conclusion of Protocol Simulation

A simulation program has been developed, and the given examples
show that it is capable of analysing the performance of a simple
communications protocol. Previous case studies [MCAL87], show that the
simulator has a broad range of application. For any chosen
application, implementing a model system will have two useful outputs:

o The simulation language definition of the model contains a
formal statement of the problem, including all significant
time dependent relationships (Figure 4.1, Appendix-B.1).

o The single stepping event display (Figure 3.1), and the
reports generated by the simulator (Appendix-B.2 to B.5)
verify that the formal definition is consistent, and that the
model behaves as expected.

The reports generated contain useful statistics, particularly if a
real system were being modelled. The simulations are pseudo-random, so
accuracy and degree of coverage of all possible event sequences will
depend on the number of times that process cycles are repeated.
The reports are suitable for export as ASCII files to a spreadsheet
package, to produce performance graphs (Figure 4.2).

24

Figure 4,2 PROTOCOL PERFORMANCE GRAPH

Z o o n s ec

Uosr ro h o s t

COMMVdlCATtori

P 6 LA y t mì l lì seconds

IT
?l u <,
(Ztsfonse
PEL A/

lAArtSMiT

Ff6cUA£S
£&oh

X = FAe&,
V *■ fìVCr. T.

 lOms CHAtMCL OfLA/

too% <?o
R e l i a b i l i t y
OF CHMrf€ L

4.7 Further work required

The simulation program began as a method of implementing timed
Petri net models and evolved into a multitasking message passing
simulation. It is written in 'C' and has a modular program structure
which will allow it to be easily extended to incorporate new features.
The inclusion and testing of 'C program modules provides a migration
path towards implementation of the model under test as working
software.

Work done on the definition language was the minimum necessary to
implement the chosen examples. For example any syntax errors in the
specification crash the simulator. This report has not examined the
state explosion problem which occurs with state-transition models of
large complex systems. The problem was avoided, for example in the
protocol model (Figure 4.1) where the Host and Node entities were
defined internally as ' C programs (Appendix-C.2), rather than as
state transition machines.

Work is continued in subsequent chapters to implement hierarchies
of entity-transit ion machines, where each entity may be a simple
state, or a further hidden entity-transition machine. When this is
acheived, effective application to complex problems may be considered,
e.g. modelling of ISO OSI reference model protocols [DAG085,FLEI87].

26

5 VARIOUS APPROACHES TO PROTOCOL VALIDATION

5.1 A Numerical Petri Net Validation Tool

"Protean" [BILL88] (85 references) is a protocol validation tool
based on numeric Petri nets. Protocol designs may be formally
specified using text or graphics. The test environment provides
simulation, tracing of event sequences and reachability analysis. The
advantage of the Petri net model is a solid mathematical foundation
and various analysis techniques. They refer to a survey of available
Petri net tools [FELD86]. For effective use, a validation tool should
be integrated into a workstation environment for the coirputer aided
design of protocols. Protean has been applied to several protocols
including an OSI Transport Protocol. Since validation techniques apply
to distributed systems in general, Protean is also being used to
design a protocol engineering workstation.

5.2 Database Methods Overcome State Explosion Limit

The problem with conplex protocol models is the huge number of
possible system states, exceeding the available computational power.
This is often refered to as the state-space explosion.

Protocol validation tools are being developed using database
methods. The relational data model introduced by Codd in 1970 includes
a relational algebra and relational calculus.

[LEE_88] have implemented a protocol verification tool on the
INGRES relational database. A protocol is formally defined by its
state transitions, and expressed as a data table. Database theory is

27

used to derive the global properties of the protocol model and detect
logical errors. Since databases are designed to process large amounts
of data, the technique can be applied to complex protocols.

[FRIE89] design a binary tree protocol specifically to demonstrate
the state space explosion. They employ relational algebra to verify
the protocol. A model with 7540 reachable global states was verified
in 15 hours on a microcomputer. They simulate employing the power of
a 100 processor "hypercube multiconputer" to search the state space in
a fraction of a second. For application to real protocols, the
"Finite State Machine" model requires extension and the search
algorithm should use backtracking to locate undesirable states.

5.3 Logic Programming as a Validation Environment

Some researchers are turning to logic programming systems as an
environment for validation of formal specifications. A profitable
research feedback situation arises because logic programming itself
becomes the object of study by formal methods [MLJRA88,PETE89]. This
will result in new models of logic programming systems, including
performance models. Inefficient use of computer hardware is a major
obstacle to the commercial exploitation of logic programming. This
cycle of research will lead to the development of viable logic
programming systems running on specially designed coirputer
architectures. The Prolog language [CLOC87] has most potential, and is
used for the development of fifth generation computers [M0T085].

28

5.4 Using Temporal Logic with Concurrent Prolog

There are alternatives to the Petri net approach. [SANT88] use
"Terrporal Logic" as a specification language with "Concurrent Prolog"
for implementing prototypes. This approach provides an unrivalled
method of protocol specification. Their paper lists a full
specification and implementation of the alternating bit protocol. They
are successful in specifying the behavior of the protocol, including
timer initiated retransmission of lost messages.

5.5 Validation of a Modular Specification

[REEDS8] illustrates a hierarchical system of concurrent modules
which communicate according to "Communicating Sequential Process"
semantics [HQAR78] . Each module has a set of ports via which it links
to its neighbours. A proof system verifies the safety and liveness
properties of a specification. Their approach allows verification of
an individual module without concern for the internal structure of its
neighbours.

5.6 Development of the "TRAV" Validation Tool

A Petri net specification language and validation tool were
developed in Prolog. The specification language "Needle" specifies
Petri nets which have a modular structure and carry out numeric
operations. A specification of the alternating bit protocol is
validated by reachability analysis, (an exhaustive search of all

29

possible event sequences). The "TRAV" tool is written in Turbo Prolog
for a personal corrputer, and makes extensive use of Prolog's
backtracking, list processing and database facilities.

[KIM_87] (among many others) also use numeric Petri nets for

protocol validation.

5.7 Conclusions for Protocol Validation

For ease of analysis, protocol models must be based on a sound
mathematical model. The Petri net is such a model, and with various
extensions is suitable for modelling real protocols. The validation
tool should be an integrated part of a protocol development
environment. The environment should control modular construction of
complex specifications from reuseable modules. Special conputer
architectures may be required to carry out efficient analysis of
complex models.

Several researchers are implementing logical formalisms, such as
Petri net theory or tenporal logic, using the Prolog programming
environment. This could indicate a general trend in the development
of computer aided tools for various branches of scientific research. A
specialised logical formalism (a scientific model) is implemented in
the Prolog environment, creating a powerful tool for the validation of
theories and models.

30

6 SCHEMATIC DESCRIPTION TECHNIQUE

6.1 SDL Model of Alternating Bit Protocol

This chapter examines a protocol model from [CAVA.87] specified
in the CCITT's "Specification Description Language", "SDL". The
language describes state transition machines. States are identified by
the keyword STATE, and transitions by the keyword NEXTSTATE. An SDL
simulation tool verifies the protocol, which is designed to recover
from communication errors.

The SDL specification is listed in Appendix-D. It models
transmission of data from a SENDER process to a RECEIVER process via
a CHANNEL process. Data flow errors are introduced on the channel by
"yes/no" input from the user.

A summary of the component terms gives a quick idea of how the
protocol model is represented:

sender process - transmits data, receives acknowledge
receiver process - received data, tranmits acknowledge
channel process - communicates between sender and receiver
idle state do nothing until there is data to transmit
wait state wait to receive a message from the channel

0,1 modulus 2 sequence counter (ALTERNATING BIT)
dm data message
am acknowledge message
content a message passing through the channel

31

6.2 Extensions to Petri Net Model

The eventual goal is to implement the protocol specification in
Prolog instead of SDL. The first step is to transform the SDL model
into a precise graphical representation, based on extensions to the

Petri net model. The extensions are:

o A modular Petri net, using top down design to specify the
system as a hierarchy of modules.

o A numerical extension to the Petri net, where each token (or
message) carries an integer value.

6.3 Schematic Protocol Representation

6.3.1 Hierarchical System Model

Figure 6.1 shows the hierarchical model of the protocol system.
The main module contains four sub modules: SENDER,
CHANNEL_DAXA, CHANNEL_ACK, and RECEIVER. Only two levels are
required, but this structure is applicable to complex multilayer
systems.

Appendix-E.2 gives a schematic of the main module, defining the
overall structure of the communicating system. Instead of
the SDL bidirectional channel, I have used separate channels,
CH_DA3A and CH_ACK, for the message flow in each direction. Four
transitions define the direction of message flow within the system:

32

s__tx - sender transmits data
r_rx - receiver receives data
r_tx - receiver transmits acknowledge
s rx - sender receives acknowledge

The complete graphical specification of the system is defined by
four schematics (Appendix-E.2 to E.5) . The MAIN module and CHANNEL
module declare the system and its circumstances, i.e. communication
over unreliable channels. The SENDER module and RECEIVER module
declare the protocol entities which implement the error correcting
algorithm.

6.3.2 Channel Module

The channel module (.Appendix-E.3) . It's external features are
simply its identity C-M3D, and two interface ports IN and OUT.
Internally the module contains three transitions:

tx_msg - transfer a message from IN to OUT
tx_err - take an input message, but force an error in

its contents before transferring it to output.
lose_msg - accept a message from the input and lose it.

The three transitions are mutually exclusive, and of equal
priority. When a message arrives at the input port of the channel,
any transition may occur, giving one of the three possible
results. The MAIN module contains two instances CH_DAIA and CH_ACK
of the channel module. The SDL channel (Appendix-D.6) contained
5 states and 12 transitions. The channel module C-MDD is much
simpler, containing only 3 transitions and no states.

6.3.3 Sender Module

The sender module S-M3D (Appendix-E. 4), corresponds to the SDL
sender process. The schematic represents a Petri net with four
places: IDU20, WAITO, IDLEl, WAIT1; corresponding to the four SDL
states. At any instant, the module contains one token. The place
containing the token indicates the state of the protocol entity. The
initial state is IDTF.O - do nothing until there is data to transmit.
Six transitions define how the token moves about the module.
The diagram shows multiple arcs to the boundary of the module.
This is simply for clarity, there are in fact only two ports,
labelled IN and OUT.

6.3.4 Receiver Module

The receiver module R-MDD (Appendix-E. 5) corresponds to the SDL
receiver process. The schematic represents a Petri net with two
places: WAITO and WAITl; corresponding to the two SDL states. At
any instant, the module contains one token. The place containing the
token indicates the state of the protocol entity. The initial state
is WAITO - wait to receive a message from the channel. The
module has six internal transitions, and two ports.

34

6.4 Numerical Petri Net Model

The diagrams use a numerical Petri net extension. This is
indicated by integers [0], [1] and [-1] associated with each
transition. The integers are represented in two senses:

o On an INPUT ARC to the transition. The transition is only
enabled if the incoming token matches the specified value. A
transition with multiple input arcs will only be enabled when
all arcs provide acceptable tokens.

o On an OUTPUT ARC of the transition, the specified value will
be inserted into the transmitted token. When no value is
specified on the arc, the default value is a merge function
of the input values.

When a transition with multiple incoming arcs occurs, a merge
function is performed on the token values. The function is:

maximum_integer (token_l,..., token_N).

The result is the default value for tokens on outgoing arcs.
As an example consider the transition S0_RX_A1 in the sender

module (Appendix-E. 4) The name indicates that the sender is in the
WAITO state, and receives an acknowledge message with sequence count
'V . The event will occur if the WAITO place contains a token, and
if a token of value [1] arrives on the input port. The result of
the transition is that a token will be returned to the WAITO place,
and another token of value [0] will be sent to the output port of the
module.

35

6.5 Summary of Schematic Representation

That completes schematic specification of the protocol system.
The schematics use a hierarchical numerical Petri net model. It is
not immediately clear how the protocol will function. Operation may
be analysed mentally, by tracing through the arcs of the
schematics, noting the movement of tokens. It is the function of this
project to automate the analysis process. The method of
automation, is to construct an executable logical model from the
schematics.

FIGURE 6.1
HIERARCHICAL STRUCTURE OF THE PROTOCOL

The model system is designed as a hierarchy of modules. MAIN is the
top level (or system, or root module) . The SENDER and RECEIVER
modules, along with the CHANNEL modules are at the next level.
Elementary Petri net places are at the lowest level. The transitions
are also in the hiererarchy, though not represented here.

I
SENDER

MAIN
I
I

I I I
I I I

RECEIVER CHANNEL DATA CHANNEL ACK

 + +— +--+

IDLEO IDLE1 WAITO WAIT1 WAITO WAIT1

36

7 THE "NEEDLE" SPECIFICATION LANGUAGE

7.1 Specification and Validation Using Prolog

I have shown in the previous chapter, how a protocol model may be
represented by diagrams of state transition networks. This chapter
describes the transformation of these diagrams into a logical
specification. The specification is written using an appropriate logic
programming language - "PROLOG" [CLOC87]. In order to do this, I have
designed a block structured specification language "NEEDLE" (Appendix-
F), and show how the specification may be written as a Prolog program.
The language name "Needle" is chosen, on the analogy that a network of
places is "stitched" together by the interconnecting arcs.

The underlying mathematical model is a numerical hierarchical
Petri net [BILL88]. I have written a reachability analysis program
"TRAV.PRO", which validates the specification, by TRAVersing all
possible execution paths. The program makes extensive use of Prolog's
list processing, backtracking, and database facilities.

7.2 Petri Net Analysis of Needle Specification

The analysis tool TRAV.PRO translates the Needle specification and
carries out reachability analysis. Validation experiments are
controlled interactively by commands, or by menus:

Main analysis commands - spec, search
Terminal conditions initial, end option, end_state
Event control avoid, occur
Search control depth, permit_loops, first_result
Display control show, tree, track

37

Analysis commands:
The SPEC command translates the modular specification into a

numerical Petri net model.
The SEARCH command executes event sequences, and carries out
reachability analysis.

The menu interface is described in appendix-H. The "TRAV" program also
has a manual describing entry of the same commands in dialog mode.

7.3 Structure of Needle Specification in Prolog

A specification file e.g. (Appendix-G.l) has two sections:
o The predicates section, only a few lines,
o The clauses section, containing the specification.

A Prolog clause has the general structure:
QQRL :- SUBGOAL, SUBGOAL, ... SUBGOAL.

A model is specified by a sequence of subgoals. Every entity in
the model (module, place or transition) requires a subgoal to declare
it. The specification takes the form:

spec begin_spec, SUBGOAL, ..,SUBGOAL, end_spec.

You may ask "But doesn't Prolog implement backtracking, so how can
the subgoals be described as a sequence ?". In answer, all subgoals of
the SPEC clause are designed to return "true", backtracking would only
occur if they returned "false". There is enough backtracking done
elsewhere in the program to keep the Prolog interpreter happy!

38

Execution of the clause stores the specified model in the Prolog
database. The first subgoal BEGIN_SPEC prepares the database. Each
subgoal executes in turn, storing the declaration of an entity. The
final subgoal END_SPEC processes the contents of the database,
verifying the specification for "Needle" syntax errors.

7.4 Needle Programming Statements

The structure of a model system is built of five static entities:
module,
ports,
place,
transition,
arc.

And one dynamic entity:
token.

Needle program block
Inputs and outputs of a module
Instance of module, as a concurrent process
Transfers tokens between places
Connection between place and transition

Message carrying an integer value.

There are nine program statements used to declare the static
entities in a Needle program:

(a) module(module name)
(b) end (module name)
(c) port (port name)
(d) place(module type,place name)
(e) transition(transition name)

(f) from(input arc) (g) get(input arc,value)
(h) to(output arc) (i) put(output arc,value)

Specification of a module may use all statements. The
specification is block structured, each module is a program block.

39

7.5 Modular Program Block

A module is described by a program block. The subgoal module()
begins the block, and the subgoal end() ends the block. Places,
transitions and port names are local to the module in which they are
declared. The general structure of a module is:

module(module_ name),
ports...
places...
transitions and arcs...

end(module_name),

E.g. the M AIN module of the alternating bit protocol
(Appendix G.l) is declared:

module(main),
place(s__mod,sender),
place(r_mod, receiver),
place(c_mod,ch_data),
place(c_mod,ch_ack),
transition(s_tx), from(sender), to(ch_data),
transition(r_rx), from(ch_data), to(receiver),
transition(r_tx), from(receiver), to(ch_ack),
transition(s_rx), from(ch_ack), to(sender),

end (main),

The main module has no ports, because it is the highest level module,
and has no peers to communicate with.

40

7.6 Declaring a Petri Net Place

General declaration of a place:
place (module_type,place_name)

Example: place(c_mod, chjdata)

This subgoal declares a Petri net place. The place is local to the
module in which it is declared.

argument 1 - the module which defines the internal structure,
"elementary" specifies no internal structure,

argument 2 - assigns a name to the place.

7.7 Declaration of Transition and its Arcs

Five types of subgoal are used in declaring a transition:
1. transition(transition_name),
2. from (input_arc),
3. get(input_ arc,value),
4. to(output_arc),
5. put(output_arc,value)

For example the SEND_D0 transition in Appendix-G.l, declared:

transition(send dO), get(idle,0),
put(wait,0), put(out,0),

It inputs one token of value 'O', and emits two tokens of value 'O'.
It is local to the sender module in which it is declared.

41

An input arc defines the source of a token:
from (source) - source may be a place, local to the

module, or may be a port of the module,
get(source,value) - The second argument specifies an integer

value which the available token must
contain in order to enable the transition.

An output arc defines the destination of a token:
to(dest) - destination may be a place, local to the

module or may be a port of the module,
put(dest,value) - The second argument specifies an integer

value to be carried in the output token.

7.8 Conclusion - Needle Replaces the SDL Language

In conclusion, it is shown (Chapter 6) that an SDL specification
(Appendix-D) of the alternating bit protocol, can be transformed
manually into a graphical Petri net representation (Appendix-E).
Secondly (this chapter), the Petri net is easily defined using the
Needle specification language in a Prolog environment. Thus an SDL
protocol specification can be translated to a Needle language
specification (appendix-G) . Needle is a Petri net language, giving
potential access to the analytic tools of Petri net theory.
Reachability analysis is the specific Petri net tool, which we will
apply in the next chapter.

42

8 "NEEDLE" SPECIFICATION OF ALTERNATING BIT PROTOCOL

8.1 Sender and Receiver Modules

The alternating bit protocol model is specified in the Needle
language. Listings 8.1 and 8.2 specify two modules, SENDER and
RECEIVER. They are an exact translation of the schematics (Appendix
E.4,E.5). The modules are state transition machines which together
inplement the error correcting algorithm of the protocol.

The SENDER module has four places corresponding to its four
possible states.

idleO - Doing nothing, sequence counter is 0
waitO - Pending ack message, sequence counter is 0
idlel - Doing nothing, sequence counter is 1
waitl - Pending ack message, sequence counter is 1

The RECEIVER module has two places corresponding its two possible
states.

waitO - Pending data message, sequence counter is 0
waitl - Pending data message, sequence counter is 1

The modules should be compared with their original SDL
specification (Appendix-D).

The Needle to SDL translation of the main terms is:
module() = PROCESS
place () = STATE
transition () = NEXTSTATE

43

8.2 Integer Tokens Reduce Number of Places

I have made use of the properties of numerical Petri nets to
compress the representation, (Appendix-G.l) . The token within a place
can contain an integer value. Values 0 and 1 are used to represent
the sequence counter, reducing the number of places required. The
sender module has only two places: idle and wait, but effects
four distinct states. The receiver module has only one place: wait,
but effects two distinct states.

Examine one transition, as an illustration of how the model
functions. Take the send_dO transition, in the sender module of
Appendix-G.l:

transition(sendjdO), get(idle,0),
put (wait, 0), put (out, 0),

It has one input arc get (idle, 0), i.e. is only enabled if the idle
place provides a token with value 0. On activition, tokens are put on
the two output arcs. A token with value 0 is put to the wait place,
and a token with value 0 is put to the out port of the module. A
subsequent transition s_tx in the main module is thus enabled. It
accepts the token output by the sender module, and in isolation of the
internal behavior of sender. That is the advantage of abstraction,
the sender module is abstracted in the next level, as a black box with
simply an input port and an output port. The s_tx transition forwards
the token to the ch data module, and so on.

44

8.3 Hierarchical and Flat Petri Net models

The modular specification is a hierarchical Petri net model
(Appendix-G.2) . It is structured as a tree of modules, and has a
multi-level network of interconnecting transitions.

The spec command translates the specification into a single level
(flat) Petri net model. The flat Petri net is stored in the Prolog
database as a one dimensional list of places, and a one dimensional
list of transitions (Appendix-G.3).

8.4 Translation to Flat Petri Net Model

Transformation from the hierarchical model to the flat model
maintains the identities of places. Each place in the place list
(Appendix-G.3) is identified by its path.

The path of a place is the list of modules by which it is
descended from the main module. For example [] is the path of the top
level main module, [sender,idle] is the path of the idle place in the
sender module. The list manipulation features of Prolog are ideal for
representing paths as lists [...] of symbols.

Similarly a specified transition is identified by the path of the
module which contains it, and the name of the transition. For example
[ch_data] tx_jnsg and [ch_ack] tx_msg are two distinct transitions,
because they are in different instances of the channel module.

45

8.5 Efficiency of Search Algorithm

The flat Petri net model is an intermediate stage in analysis of
the specification. The search command traverses the flat model. It is
not essential to flatten the specification before analysis. If the
search algorithm were being implemented on a parallel computer, it
would be more efficient to process the hierarchical model directly,
because the different protocol entities would execute concurrently.

I found the flat search to be much faster than the hierarchal,
presumably because I am carrying out the testing on a single processor
computer.

8.6 Analysis of the Protocol Event Sequence

An analysis of the protocol is carried out to investigate its
properties under conditions of error free communications. A search of
event sequences is carried out interactively. Appendix-G.4 shows the
resultant display. The display has three sections:

Test conditions:
The test conditions detail the environment as set up by previous test
control commands. The model initially has two tokens of value 0. A
final state is required, with [sender,idle] place containg a 0 token.
Error events lose_mg and tx_err are to be avoided on the search path,
thus investigating the protocol under error free conditions.

46

Indicates that the final condition is reached after 18 executed
events. Shows that the final state contains the same pattern of
tokens as the initial state. The protocol model has executed a
complete cycle, completing the transfer of two data packets.

Valid event sequence:
Events 1 to 9 show communication with sequence count of 0.
Events 10 to 18 show communication with sequence count of 1.
If we are interested in traffic on the channels, then four events
are significant:

3 [ch_data] tx_msg /* SENDER — > DATA 0 — > RECEIVER
7 [ch_ack] tx_msg /* SENDER <— ACK 0 <— RECEIVER
12 [ch_data] tx_rnsg /* SENDER — > DATA 1 — > RECEIVER
16 [ch_ack] tx_msg /* SENDER <— ACK 1 <— RECEIVER

They show: DATA transmission from sender to receiver, and
ACK transmission from receiver to sender.

Test result:

8.7 Conclusion - The Needle Specification is Executable

In conclusion, the analysis tool TRAV.PRO has succeeded in
translating a Needle specification and executing it as a sequence of
events (Appendix-G.4) . The event sequence shows that under error free
communications, the protocol transfers two data messages from sender
to receiver, and returns both protocol entities to their initial
state. Further aspects of the protocol behaviour can be investigated
in a similar manner.

47

Listing: 8.1 SENDER MODULE SPECIFIED IN NEEDLE

This is an exact specification of the schematic (Appendix-E.4).

The sender module is defined with places:
idleO - Doing nothing, sequence counter is 0
waitO - Pending ack message, sequence counter is 0
idlel - Doing nothing, sequence counter is 1
waitl - Pending ack message, sequence counter is 1

Presence of a token in a place indicates the state
and sequence count of the module.
/* Sender module */
module (s_mod),
port(in), port(out),
place(elementary,idleO),
place(elementary, idlel),
place(elementary,waitO),
place(elementary,waitl),
transition(send_dO), from(idleO),

to(waitO), put(out,0),
transition(send_dl), from(idlel),

to(waitl), put(out,1),
transition(s0_rx_err), from(waitO), get(in,-1),

to (waitO), put (out,0),
transition(sl_rxjsrr), from(waitl), get(in,-1),

to(waitl), put (out,1),
transition(s0_rx al), from (waitO), get(in,1),

to(waitO), put (out,0),
transition (sl__rx_a0), from (waitl), get (in, 0),

to(waitl), put(out,1),
transition(s0_rx a0), from(waitO), get(in,0),

to(idlel),
transition (sl__rx_al), from (waitl), get (in, 1),

to(idleO),
end(s mod),

48

Listing: 8.2 RECEIVER M3DUUE SPECIFIED IN NEEDIE

This is an exact specification of the schematic (Appendix-E.5) .
The receiver module is defined with places:

waitO - Pending data message, sequence counter is 0
waitl - Pending data message, sequence counter is 1

Presence of a token in a place indicates the state
and sequence count of the module.

/* Receiver module */
module(r_mod),
port(in), port(out),
place(elementary,waitO),
place(elementary,waitl),
transition(rO_rx_err), from(waitO), get(in,-1),

to(waitO), put(out,1),
transition(rl_rx_err), from(waitl), get(in,-1),

to(waitl), put(out,0),
transition(r0_rx_dl), from(waitO), get (in,1),

to(waitO), put(out,1),
transition (rl__rx_d0), from (waitl), get (in, 0),

to(waitl), put(out,0),
transition(r0_rx_d0), from(waitO), get (in,0),

to(waitl), put(out,0),
transition(rl_rx_dl), from(waitl), get(in, 1),

to(waitO), put(out,1),
end(r mod),

49

\

50

9 ANALYSIS OF PROTOCOL ERROR RECOVERY

9.1 Event Sequence Recovers from Data Error

The protocol model was formally specified using Needle in
Appendix-G.l. This chapter describes the results of analysis carried
out on the protocol model. The protocol specification ALT.PRO and the
analysis tool TRAV.PRO are both written in Prolog.

Appendix-1.1 taken from the screen display, shows the results of
interactive analysis by the search command. The search algorithm
discovers the displayed event sequence, by rigorous search of all all
events reachable from the initial state. The search is a depth first
algorithm which makes use of Prolog's in-built backtracking.

Test conditions force a transmission error on the data channel.
The results show that the protocol recovers from the error, and
reaches the required final state after 17 events. The event sequence
which achieved error recovery is listed.

Event 1, [sender] send_dO, transmission of a data message
with sequence number [0].

Event 3 [ch_data]tx_err is the forced error, a transmit error on
the data channel, which puts a [-1] in the message.

Event 5 shows detection of the error by the protocol machine of
the receiver entity.

Event 9, the sender gets an acknowledge message with unexpected
sequence number [1] , so retransmits the original data message.

51

Event 13, the receiver acknowledges receipt of a correct message.

Event 17, the sender gets an acknowledge message with the correct

sequence number [0].

Appendix-G.4 showed the same state being reached in only 9 events,
if no transmission errors occured.

Conclusion: The protocol recovers from a data transmission error
but at the expense of doubling the amount of traffic and processing
required for that message. This conclusion is for one message, it
doesn't extrapolate to a performance prediction for large message
volumes.

9.2 Transmission Errors in Both Directions

Appendix-1.2, This is a repetition of the previous test, which
forced a data error [ch_data]tx_err. This test also forces the
occurance of [ch_ack] tx_err. The show command (Appendix-H. 6) has been
used here, to zoom in on the transmission channels. Only events in the
modules [ch_data] and [ch_ack] are selected for display. The listing
shows two experiments; the first forcing an error on the data channel,
and the second forcing an error on the acknowledge channel.

Conclusion: The protocol recovers when an error occurs either in
a data message or in an acknowledge message.

52

9.3 Reachability Tree of The Protocol

Figure 9.1, the test conditions specify a complete search of all
events reachable from the initial state. The end_option (cycle)
terminates each sequence when it loops back to a previous state. The
option tree (yes) presents the results as a reachability tree. Only
transmission events are shown, those in the [ch_data] or [ch_ack]
modules.

Figure 9.1 Reachability Tree of Cyclic Sequences

depth(30), search depth /* Test conditions */
Initial state:

["sender","idle"] 0
["receiver","wait"] 0

end_option(cycle)
Show nodes:

["ch data”]
["ch_ack"]

Option: tree(yes), display reachability tree
— +-tx_msg— +-tx_msg— +-tx_msg— +-tx_msg

I I I I
I I I +-err_msg-+-tx msg
I I I I
| | | +-err_msg
I I I
I | +-err_msg-+-tx_msg
I I I
I I +-err_msg
I I
I +-err_msg-+-tx msg
I I
I +-err msg
I
+-err_msg-+-tx__msg

I
+-err_msg

Search for all solutions complete -
9 valid sequences end in cycles.
Depth sufficent to find all cycles.

53

The algorithm reports that the search depth was sufficient,
therefore the tree is complete. The tree should be read as an
execution sequence, from left-hand root node to the right-hand leaf
nodes. Nine valid execution paths can be seen. The first path
represents a conversation of four txjnsg messages on error free
channels. The last path represents errjnsg on the data and on the
acknowledge channels.

9.4 Lost Messages Cause Deadlock

The protocol is explored for all event sequences which lead to
deadlock. A search of depth 30 found eight deadlock conditions. Figure
9.2 displays the results as a reachability tree. The leaves of the
tree (right hand side) indicate the last transmission event before
deadlock. It can be seen that in all cases lose_mg deadlocks the
model, and no other event leads to deadlock. It can be concluded that
the alternating bit protocol, as specified in Appendix-G.l, is unable
to recover from loss of messages during transmission.

54

Figure 9.2 Reachability Tree of Deadlock Sequences

depth (30)/ search depth /* Test conditions */
Initial state:

["sender","idle"] 0
["receiver","wait"] 0

end_option(deadlock)
Show nodes:

["ch_data"]
["ch_ack"]

Option: tree(yes), display reachability tree.
Option: permit_locps (no), search until loop.
— +-tx_msg— +-tx_msg— +-tx_msg— +-err_msg lose_mg

I I I I| | | +-lose_mg
I I I
I | +-err_msg-- losejmg
I I I| | +-lose_mg
I II +-err_msg losejmg
I I| +-lose_mg
I
+-err_msg losejmg
I
+-lose_rng

Search for all solutions complete -
8 valid sequences to deadlock.
Depth sufficent to find all cycles.

55

56

10 PROTOCOL MODEL WITH TIMEOUT FACILITY

10.1 Specification of Timeout Transitions

The protocol model was formally specified in Appendix-G.1.
Chapter-9 showed that the protocol doesn't work if messages are lost
in transmission. To fix this, add a timer module tjnod to the
specification (Appendix-J. 1) . The sender module s_mod has two new
transitions sO_tiirveout and sl_timeout, activated by the timer module,
to retransmit lost messages.

The underlying Petri net is still a purely logical model. It has
NO extensions to simulate the passage of time. Hie timer module is a
quick fix to correct the protocol without overhaul of the underlying
model. The logical model has only two measurements of time:

no time at all
a long time indeed

and these are sufficient to solve the timeout problem.

A new place called deadlock is embedded in the model environment.
It is a public place, any transition can declare an arc from it.
During analysis, if the search algorithm detects a deadlock situation,
it puts a token in the deadlock place. The token represents that
"a long time indeed" has passed. The token activates any connected
transitions, releasing the model from deadlock. In the protocol model,
the timer module t_mod accepts the deadlock token, and uses it to
initiate timeout transitions.

57

10.2 Timer Retransmits Lost Data Message

Appendix-J.2 shows test conditions forcing loss of a data message.
The results show that the protocol recovers and reaches the final
state after 13 events. The event sequence is listed:

Event 1, [sender]send_d0, transmission of a data message
with sequence number [Q].

Event 3 [ch_data]losa_mg is the forced event.
Event 4 shows elapse of the timer in the sender module.
Event 5 is the timeout event which retransmits the data msg.
Event 9, the receiver acknowledges receipt of a correct message.
Event 13, the sender gets an acknowledge message with the correct

sequence number [0].

58

10.3 Timer Retransmits Lost Acknowledge Message

Similar to the previous test, but tests the case of a lost ack
message. The test conditions force the occurance of [ch_ack]lose_mg.
The shew command (Appendix-H.6) has been used here, to display events
only in the channel modules, and in the module [sender, timer].

Initial state:
["sender","idle"] 0
["receiver","wait"] 0

Final conditions:
["sender","idle"] 1

Show nodes:
["ch data"]
["ch_ack"]
["sender","timer"]

Occur event sequence:
1 ["ch_ack"] lose_mg

17 events to final state:
["receiver","wait"] 1
["sender","idle"] 1

Valid event sequence:

/* Test conditions */

/* Show events in
channel and timer
nodes only */

/* Force a lost ACK

/* Test result */

3 ["ch data"] tx msg /* DATA 0 — > RECEIVER
7 ["ch ack"] lose mg /* LOST <— ACK 0
8 ["sender","timer"] elapse /* SENDER TIMEOUT OCCURS
11 ["ch data"] tx msg /* DATA 0 — > RECEIVER
15 ["ch ack"] tx msg /* SENDER <— ACK 0

Conclusion:
We have successfully modified the protocols error recovery

algorithm by the addition of two timeout transitions to the sender
module. This provides recovery from either a lost data message, or a
lost ack message, situations which previously caused deadlock.

59

10.4 Prove Absence of Protocol Deadlock

Appendix-J.3. The protocol is explored by reachability analysis,
specifying a search for all event sequences which lead to deadlock.
With a search depth of 30 events, no deadlock situations are found.
The algorithm reports that the search depth was sufficient to complete
the search. Since the backtracking search algorithm completes an
exhaustive search of all event sequences, we can conclude that no
deadlock states are reachable from the given initial state.

Conclusion -
Beginning from the given initial state, the protocol model is
deadlock free. Thus we have defined and proven a protocol which
recovers from both messages with errors, and lost messages.

10.5 Reachability Tree of Protocol with Timeout

The test conditions (Figure 10.1) specify a search of all events
reachable from the initial state. Each explored sequence is
terminated when it loops back to a previous state of the model. This
test was previously done in Figure 9.1, but now we have a corrected
protocol machine capable of recovery from lost messages. The test
reports that the reachability tree is complete.

The analysis reports 21 distinct event sequences, all of them
taking the protocol machine to either a successful, or a recoverable
state. Every joint on the tree corresponds to one state of the model
system. In the interest of simplicity the tree only shows events on
the communications channels, and omits the channel names.

60

Figure 10.1 Reachability Tree of Cyclic Sequences
depth (30), search depth /* Test Conditions
Initial state:

["sender","idle"] 0
["receiver","wait"] 0

end̂ option(cycle)
Show nodes:

["chdata"]
["ch_ack"]

Option: tree(yes), display reachability tree.
— +-tx_msg— +-tx_msg— +-tx_msg— +-tx_msg

I I I I
| | | +-err_msg-+-tx_msg
I I I I I
| I | | +-err_msg
I I I I I
I I I 1 +-lose_mg
I I I I
I | | +-lose_mg-+-tx_msg
I I I I
I ! | +-err_msg
I I I I
I | | +-lose_mg
I I I
I | +-err_msg-+-tx_msg
I I I I
I | | +-err_msg
I I I I
I | | +-lose_mg
I I I
! | +-lose_mg
I I
I +-err_msg-+-tx_rnsg
[I I
I | +-err_msg
I I I
I I +-lose_mg
I I
i +-lose_mg-+-tx_msg
I I
I +-err_msg
I I
I +-lose_ing
I
+-err_msg-+-tx__msg
I I
(+-err_msg
I I
I +-lose_mg
I
+-lose_mg

Search for all solutions conplete -
21 valid sequences end in cycles.
Depth sufficent to find all cycles.

61

62

11 POTENTIAL DEVELOPMENTS FROM PETRI NET THEORY

11.1 A Packet Petri Net for Modelling Layered Protocols

A packet Petri net is an extension of the numeric Petri net, each
token containing a list of integers. An application can be seen
immediately to the modelling of communications protocols, the packet-
token can represent a message of the protocol under analysis [BILL88].
The "TRAV" analysis tool, and "Needle" specification language
(Appendix-F.ll) could be extended to describe packet Petri nets, due
to the excellent list processing ability of Prolog.

11.2 The Petri Net as a Powerful Computer Architecture

Define a Binary Petri Net as a Petri net where each token is a
'bit' carrying 'O' or '1'. A physical implementation of a Binary
Petri Net would be a very useful computer architecture. It could serve
as the hardware host for implementing a 'virtual' packet Petri net
architecture. A packet token in the virtual net will be implemented by
a stream of tokens in the physical net. This is possible because the
Binary Net is capable of parsing the stream, identifying its head and
tail tokens.

Although put forward here as a vague speculation, current
simulation tools [AJM086] are capable of analysing such a
configuration. The simulation would include a formal specification of
the token stream parsing mechanism. Given an appropriate benchmark
application, quantitative comparisons could be made for two choices of
host hardware; Binary Petri net and 16-bit microcomputer.

63

11.3 A Petri Net Parses its own Language

Figure 11.1 shows a numerical Petri net capable of parsing its own
specification language to build Petri net models. Indeed it would
construct another copy of itself when supplied with the specification.
By distributing many parsing modules in a hierarchical tree, a very
interesting Petri net machine could be constructed.

The constructor builds the Petri net with raw materials from
resource pools, place_jpool, trans_pool, etc. A stream of program
instructions arrive at the IN port of the constructor. The IN port is
not shown, but it is implied that it has an arc going to every
transition in the diagram. Each transition has a get(IN,X) arc where X
is the numeric code of a statement in the instruction set. The
instruction stream is parsed by the illustrated network, and a Petri
net is built at the oonstruction_site. The constructed net is stored
as lists, place_list, trans_list, etc.

During parsing, context places place_context and trans_context
store the name of the current place or transition being constructed.
The network propagates tokens which carry integer lists. For example
the source_name transition sends a token [tr, source] to the frcm_list
place.

An extension to the parser Initial Marking Parser (Figure 11.2)
supplies the initial pattern of tokens into the constructed Petri net.
Each initial token packet is constructed as an integer list held in
the buildjtoken place, by the instruction sequence:

begin_token, integer, integer, ... end_token

64

The begin and end token instructions can be represented by brackets [
and]. On receiving the end_token instruction, the token is positioned
in the place_list at the relevant location defined by plaoe_context.
Figure 11.3 illustrates the Petri net constructed from the following
instruction sequence:

INSTRUCTION SEQUENCE
module M
place A

[1 2 3]
place B
transition C
from A
to B

module end

The parser is a numeric Petri net, therefore the instruction set
can be encoded numerically as follows.

CODE INSTRUCTION
0 place
1 transition
2 from
3 to
4 get
5 put
6 module
7 end-module
8 [begin-token
9] end-token

References relating to network architectures with the potential for
self-programming are:

[Valk78] describes "Self-modifying nets, a natural extension of
Petri nets". [BURT84,BURT88] describes virtual tree machines. [AGHA86]
describes actors, a hierarchical model of concurrent computation.

/* Place A initially contains one
/* token of three integers
/* Transition connects A to B

65

Figure 11.1 Petri Net of A Petri Net Constructor

) N \7 l f \L -

66

(Extension to Petri Net Constructor)
Figure 11.2 Initial Marking Parser

CorJSl/lOCT)OrJ

Figure 11.3 Constructed Petri Net
(fg-ùH P& oCr&4H , fflCrd e 5)

CorJ^-raucTtotJ s i r e

67

11.4 Neural Petri Nets Capable of Learning

Artificial neural networks have been demonstrated to be capable of
"learning", defined as use of feedback from the task in hand, to make
a positive behavior adjustment. [LOON88] decribes a new type of neural
network, obtained by extending a Petri net with "Fuzzy" valued rules
and tokens. The Petri net having relevant interconnections only, is an
advancement on previous neural networks which relied on mass
interconnection between layers.

11.5 A Time Reversible Specification Language

The Needle specification language is time reversible. This means
that a language translation exists which causes the specified model to
run backwards in simulation time. "Running backwards" refers to the
reachability analysis algorithm, which will now generate a
reachability tree of possible pasts, instead of possible futures.

The required translation of Needle statements is:
IN <--> OUT
TO <--> FROM
GET <--> PUT

Graphically this means that all arrows in the specification reverse
their direction, and input ports are exchanged with output ports.

[LOON88] in "Fuzzy Petri Nets for Rule-Based Decisionmaking"
describes such a reversal. By reversing all arrows, he propagates the
tokens backwards, thus causing the network to reason about its
previous states.

68

The example below (Figure 11.4), shows time reversal of the
Channel Module from the alternating bit protocol model (Appendix-E. 3,

Appendix-G.l) .
Looking at the transmit event in the channel module; its function

is unchanged by time reversal. It still takes a 'O' or ' 1' from the IN
port and transmits the value to the OUT port.

Time reversal of the error event is a different matter. The
reversed error event is now enabled by a '-V (error) token, and has
two possible futures; 'O' goes out , or '1' goes out.

The lose event is a sink for all received tokens. Time reversal
turns it into a spontaneous source of tokens. This would have
disastrous consequences for computability of the reachability tree,
which would quickly diverge due to all the spontaneous events. There
is a simple solution, by adding a bin place, for disposing of lost
tokens. This does not upset the original model, it simply acts as a
means of counting the lost message events. With time reversal, the bin
puts a ceiling on the number of spontaneous lose events, making the
reachability analysis computable. This minor modification gives us a
protocol model which we can run backwards in time, to predict its
previous states.

To ensure that all application models are time reversible, some
restrictions would have to be placed on the Needle specification
language. The model may have to be built from get and put arcs only.
Omitting to and from arcs, because they would propagate integer tokens
with unknown values. Although if a Fuzzy Petri net were used,
[LOON88], it would be capable of processing tokens with uncertain
value.

69

Figure 11.4 Time Reversible Specification

Normal
Specification

IN OUT

0,1

0,1

0,1

transmit
s.■K

er
I

f
ror

hr
lo
»

*
se
r

0,1

-1

Channel Module

Time Reversed
Specification

OUT IN

11.6 Quantum Mechanics of Finite State Machines

This section discusses common concepts between two seldom related
disciplines, quantum mechanics, and Petri net theory. The obvious
connection is that both disciplines use directed graphs for
descriptive purposes. [HASS89] gives a good example of a complex
directed graph, the Feynman diagram of a high energy particle which
comes into existance for a short time period, according to the
Heisenberg uncertainty principle.

The second connection is that both describe systems which contain
a discrete number of states, e.g. the Baryon octet classifies eight
distinct states of a fundamental particle. See also Isospin and SU(3)
Symmetry [Sakata '56], [Feynman, Lecture Notes III, Quantum Mechanics] .

The third connection is that both disciplines provide mathematical
methods for reasoning about timed events and probability. Petri net
theory applies classical concepts of probability and time, for example
to simulate the performance of a coitputer operating system [CHAN89].

70

Quantum reasoning about time and probability portrays a different
reality. For example [Gell-Mann & Pais] the model for the transition
of the KO-meson into its antiparticle. In simplistic terms, it could
be said that the KO-meson and its antipartical are two states of a
Finite State Machine. The transition from one state to the other has a
particularly unusual time dependent formula, due to the interference
of probability amplitudes.

The similarities between the two disciplines could be productive,
if it is possible to make meaningful cross-application of their
mathematical methods.

Transferring Petri net mathematics into particle physics, it would
be possible to describe a Feynmann diagram using a Petri net
specification language, because both are directed graphs. In both
cases there is an operational significance in reversing the directions
of all the arrows; CPT invariance, and backward execution.

Transferring the laws of quantum mechanics into a Petri net, every
place would contain a probability amplitude instead of a token ! A
Hamiltonian operator would be required, to describe how the system
evolves from one state into another. This is by analogy with the
mechanics of a half-spin particle in a magnetic field. Petri nets and
spin mechanics both apply matrix transformations to a state vector.
The Petri net uses an incidence matrix, quantum mechanics uses the
Pauli spin matrices. Coincidentally, this text is being projected to
the screen by a beam of half-spin particles in a magnetic field.

Analogy can also be drawn between a physical system, and a
reachability analysis tool, otherwise reachability analysis wouldn't
be of any use! The analysis tool pursues all possible branches of the
reachability tree, but quickly consumes the available coirputing
resources, a severe case of the finite-state explosion problem.

71

A physical system pursues all possible branches of its reachability
tree, but is successful in managing its resources at a local scale in
physical space. The resources are allocated in packets, called
particles. The resource management method applies a probability
amplitude to each branch of the reachability tree, and ensures that
the sum of probabilities over alternative branches is unity. This is
demonstrated by the Young's slits optical interference experiment.
There are two alternative events, the choices of which slit the photon
will pass through. The wave equations describe that both events are
investigated concurrently. By analogy therefore, the wave equations of
a photon describe the perfect algorithm for concurrent analysis of the
reachable states of a system.

.oOo.

72

APPENDIX - A

Contents: A.l Classification of Place Types
Table A.l Functional Characteristics
A. 2 Specification of the Meter Place

Reference: [MCAL87], Chapter 4.

A.l CLASSIFICATION OF PLACE TYPES

A set of standard Petri net places is supplied for building timed
models. They provide simulation features such as time delays and
branch decisions. They are called up via the specification language,
and customised by supplying parameters.

The table below classifies place types by the following
characteristics:

O COLLECT TOKEN, EMIT TOKEN or PASS TOKEN defines whether it is
the function of the place to detect events, drive events or
both.

o DIRECT PASS indicates that an input event directly causes an
output event. STORED PASS defines that the place has an
internal memory of previous events.

o A TIMED place has internal timers which determine when a token
will be made available at the output.

STANDARD PETRI NET PLACE TYPES

1

APPENDIX - A

o TRANSIENT OUTPUT means that an output token is available for
only a momentary instant, and is lost if not collected by an
event. In the case of STORED OUTPUT, the available output token
is stored until an event enables it to be output.

o The output of a DETERMINATE place is a function of its past
sequence of input and output events. A RANDOM place simulates
unpredictable output by using randomised numbers.

o Whether the place makes use of SINGLE or MULTIPLE tokens. The
two types QUEUE and CHANNEL which are specified as using
multiple tokens have applications in communications modelling.

2

APPENDIX - A

Table A.l: Functional Characteristics of
Timed Petri Net Places.

PLACE TYPE

CHARACTERISTIC

COLLECT TOKEN
EMIT TOKEN
PASS TOKEN

ADMIT
STATE

TRAIN
I METER

TIMER
DELAY

QUEUE
I

DIRECT PASS
STORED PASS

NA NA
NA NA

UNTIMED
TIMED

Y Y
Op Op Y

TRANSIENT OUT
STORED OUTPUT

Y NA
Y . NA Y

DETERMINATE Y Y Y Y Y NA
RANDOM Op Op Op Op Op NA

SINGLE TOKEN
MULTI TOKEN

NA
NA

NA
NA

Key: . = No
Y = Yes
NA =- Not Applicable
Op = Option

3

CHANNEL
I
I
I

Y

Y

Y

Y

Y
Op

Y

APPENDIX - A

Place types are called up from the specification language. The
METER place is only one of the available types, and is described here
to illustrate operation of the simulator.

Metering places are declared as part of the application model
being simulated. They control collection of simulation statistics and
provide automated generation of performance analysis reports.

The METER is a module with two input ports; INPUT and ALTERNATE-
INPUT. It has no output events, but simply records and reports on
monitored input events. Instances of the METER are declared as
required, to collect specific statistics from the Petri net model.
They plug into the model via connecting arcs from the transitions
being monitored. Qualifying parameters COUNTER, STOPWATCH, UPTIME and
EVENTS select the mode of recording according to the application.

The four recording modes are described below:

Counter mode:
During simulation the meter monitors a particular event and counts

the number of times it occurs. The second input of the meter allows a
series of counts to be stored and averaged. On completion of the run,
the meter generates reports of minimum, average and maximum recorded
counts.

INPUT: Count - increment event counter
ALT INPUT: Restart - store count and restart

A.2 SPECIFICATION OF THE METER PLACE

4

APPENDIX - A

Measures the simulated time interval between two specified events.
A series of measurements may be recorded. The reports give minimum,
average and maximum time measurements.

INPUT: Start watch
ALT INPUT: Stop watch

Equipment Uptime mode:
Used for performance simulation of manufacturing plants, or

computer networks which contain equipment prone to failure. The meter
monitors a process, measuring the active interval (uptime), and
inactive interval (downtime). It reports appropriate statistics, for
example a count of the number of equipment failures which exceed the
permitted downtime period.

INPUT: Up - Start of uptime (Equipment recovery event)
ALT INPUT: Down - Start of downtime (Equipment failure event)

Event Recording Mode:
Used to capture the trace of an event sequence, e.g. leading to

an exception condition. The simulator records the trace in circular
trace buffer. An effective method of letting the simulation run
randomly for a long time, only capturing information, when a
particular events occur.

INPUT: Enable recording of events.
ALT INPUT: Stop recording, and store trace buffer.

Stopwatch mode:

5

APPENDIX - B

Contents: B.l Specification of Alternating Bit Model
B.2 Trace Report of Event Sequence
B.3 Event Occurance Report
B.4 Module Report (Place Statistics)
B.5 Analysis Report (Repeated Simulations)

Reference: [MCAL87], Chapter 6.

PERFORMANCE SIMULATION OF ALTERNATING BIT PROTOCOL

Introduction

This is a timed model of the alternating bit protocol, simulating
transmission on an -unreliable communications channel.

Listing B.l is the model specification processed by the simulator.
The simulation also requires some ' C' language modules (Appendix-C).

Listings B.2 to B.5 are the output reports of the simulator.
B.5 is suitable for generating a performance graph of the protocol.

1

APPENDIX - B

B.l SPECIFICATION OF ALTERNATING BIT MODEL

SIMULATION PACKET-1.SIM
UNIT ms
MAXTIME 20000 ms
REPORT
TRACE
OCCUR
MODULE

PLACES
AHOST S-host 3 ms
BHOST R-host 5 ms

Sending and Receiving Nodes
/* millisec time unit.
/* Max simulation time
/* Report options..

/* Listing B.2
/* Listing B.3
/* Listing B.4

50 packets /* Sending host
/* Receiving host

OUTNODE S-node 50 ms /* Retransmit timeout
INNODE R-node

CHANNEL Channel-to-R 10 ms
ADMIT Intact-to-R PROB 80%

/* Transmission delay
/* Msg rxd valid checksum

CHANNEL Channel-to-S 10 ms
ADMIT Intact-to-S PROB 80%

/* Transmission delay
/* Msg rxd valid checksum

METER transmit-watch STOPWATCH
METER response-watch STOPWATCH

EVENTS
(continued...)

/* Measure transmission
/* Measure turn around

/* The EVENTS specify the interconnection of
/* of places. EVENT = a Petri net transition.
/* Order in which they are declared is irrelevant.

2

APPENDIX - B

B.l SPECIFICATION (continued)
EVENTS
EVENT S-host-emit-data /* Pass data packet from host to node

FROM S-host
TO S-node

TO transmit-watch
TO response-watch

EVENT S-tx-data /*
FROM ~S-node
TO Channel-to-R

EVENT R-arrive-data
FROM Channel-to-R /*
TO Intact-to-R /*

EVENT R-rx-bad-pkt /*
FROM -Intact-to-R

EVENT R-rx-good-data /*
FROM Intact-to-R
TO ~R-node

EVENT R-tx-ack /*
FROM ~R-node
TO Channel-to-S

EVENT S-arrive-ack
FRCM Channel-to-S /*
TO Intact-to-S /*

EVENT S-rx-bad-pkt /*
FRCM -Intact-to-S

EVENT S-rx-good-ack /*
FRCM Intact-to-S
TO ~S-node

EVENT S-host-collect-ack /*
FRCM S-node
TO S-host

TO -response-watch
EVENT R-host-collect-data /*

FRCM R-node
TO R-host

TO -transmit-watch
EVENT R-host-emit-ack /*

FRCM R-host
TO R-node

END

/* (Arc from source place)
/* (Arc to destination place)
/* Start the two stopwatches
Node transmits data to channel

End of transmission delay
Now introduce random signal errors
Data packet lost or damaged

Data packet received intact

Receive node transmits ACKnowledge

End of transmission delay
now introduce random signal errors
ACKnowledge lost or damaged

ACK received intact

Node passes ACK to (Sending) host

/* Stop the stopwatch
Node passes data to receiving host

/* Stop the stopwatch
Receiving host passes ACK to node

3

APPENDIX - B

B.2 TRACE REPORT OF EVENT SEQUENCE

SIMULATION PACKET-1., SIM Sending and Receiving Nodes
1 IMLirUEVL ; U1 UVdiUO

Time (+increment)
Unit: ms

/* Event cycle for 1st packet
3 (+3) S-host-emit-data
3 (+0) S-tx-data
13 (+10) R-arrive-data
13 (+0) R-rx-good-data
13 (+0) R-host-collect-data
13 (+0) R-host-emit-ack
13 (+0) R-tx-ack
23 (+10) S-arrive-ack
23 (+0) S-rx-good-ack
23 (+0) S-host-collect-ack

/* Event cycle for 2nd packet
26 (+3) S-host-emit-data
26 (+0) S-tx-data

B .3 EVENT OCCURANCE REPORT

ni venu uuuuLOiiut: i\cpui L,
OCCURANCES TRANSITION

50 S-host-emit-data
78 S-tx-data
78 R-arrive-data
16 R-rx-bad-pkt
62 R-rx-good-data
62 R-tx-ack
62 S-arrive-ack
12 S-rx-bad-pkt
50 S-rx-good-ack
50 S-host-collect-ack
50 R-host-collect-data
50 R-host-emit-ack

4

APPENDIX - B

B .4 MODULE REPORT

SIMULATION PACKET-1.SIM Sending and Receiving Nodes
 MODULE REPORT: Place Definitions and Statistics —

MODULE REPORTS
SENDING HOST S-host Send interval: 3 ms Pkts/session: 50

Packets sent in new session: 50
RECEIVING HOST R-host Session length: 50

Ready for next session

OUT-NODE S-node Retransmit timeout: 50 ms
Tx 1st attempts: 50 Tx retries: 28

IN-NODE R-node
Rx accept count: 50 Rx reject count: 12
Frames received: 62 Acks transmitted: 62

CHANNEL Channel-to-R Delay: 10 ms

ADMIT Intact-to-R PROB 80 % Count 62 successes, 16 failures
Success frequency 79.49 %

CHANNEL Channel-to-S Delay: 10 ms
ADMIT Intact-to-S PROB 80 % Count 50 successes, 12 failures

Success frequency 80.65 %

METER transmit-watch STOPWATCH
Average time 23.00 ms
Minimum time 10 ms
Maximum time 160 ms

Number of samples: 50

METER response-watch STOPWATCH
Average time 48.00 ms
Minimum time 20 ms
Maximum time 170 ms

Number of samples: 50

5

APPENDIX - B

B.5 ANALYSIS REPORT
(For generating a performance graph. X = Frequency, Y = Average-T)
SIMULATION PACKET-2.SIM Sending and Receiving Nodes
------- ANALYSIS REPORT: Repeated Simulations --------

Controlled Probability of Packet Transmission
Channel-to-R Channel-to-S

Run
No. Prob--Frequen--Samp Prob--Frequen--SantE
1 40 42.01 288 40 41.32 121
2 50 45.29 223 50 49.50 101
3 60 61.54 169 60 48.08 104
4 70 71.29 101 70 69.44 72
5 80 85.33 75 80 78.13 64
6 90 94.74 57 90 92.59 54
7 100 100.00 50 100 100.00 50

Resultant Measurement of Response Times
Run
No.
transmit-watch response-watch
AverageT-MinTim-MaxTim-Samp AverageT-MinTim-MaxTim-Samp

1 92.00 10 610 50 258.00 20 920 50
2 67.00 10 510 50 193.00 20 1070 50
3 45.00 10 310 50 139.00 20 670 50
4 30.00 10 110 50 71.00 20 370 50
5 17.00 10 110 50 45.00 20 220 50
6 13.00 10 110 50 27.00 20 170 50
7 10.00 10 10 50 20.00 20 20 50

6

APPENDIX - C

PROTOCOL SIMULATION 'C' LANGUAGE MODULES

Contents: C.l Data Structure File SIMUL.H
C.2 Sending Host Module SHOST.C

Reference: [MCAL87], Chapter 6.2

Introduction

These listings illustrate 'C' language modules required for the
alternating bit protocol model. SIMUL.H is an include file common to
all modules, it defines the program constants and data structures used
by the simulator. SHOST.C is one of four application modules used by
the specification in appendix-B. (The other three RHOST, OUTNODE,
INNODE follow a similar program structure.)

C.l 'C' LANGUAGE INCLUDE FILE SIMUL.H
/**/
/*
#define
#define
#define
#define
#define
Idefine
#define
#define
#define
#define
#define
#define
Idefine
#define

1

ll/Sep/86
FALSE 0
TRUE -1
EMIT -1
COLLECT 1
ALTEMIT -2
ALTCOLLECT 2
PERCENT ’\045'
FOREVER 0x7fff
pmax 20
tmax 20
MAXLINE 81
name_size 20
var_num 8
attr num 4

SIMUL.H Constants and data structures */
/* Boolean logic */

/* Primary interface ports, output and input */
/* Secondary (ALTernate) interface ports */

/* the ASCII percent character for reports */
/* Max signed 16 bit integer */
/* Max number of Petri net places */
/* Max number of Petri net transitions */
/* 80 character line plus 'O' terminator */
/* Length of names of places/transitions */
/* Number of local variables in a place */
/* No. of attributes passed by a transition */

APPENDIX - C

/* The data structure for each place, the model has array of these */
typedef struct Place_struc {

char name [name_size]; /* the name of the place */
int ptype; 7* selects type of predefined place module */

/* and thus pointers of 6 functions below */
int sleep; /* How long before port outputs a token */
int altsleep; /* How long before alternate port.. */
int last_input; /* Store value which was last input */
int last_altinput; /* Store value on alternate input */
int last_output; /* Store value which was last output */
int last_altoutput; /* Store last alternate output */
int countin; /* Statistics, count input events */
int altcountin; /* Count of alternate input events */
int countout; /* Count of events on output port */
int altcountout; /* Count of alternate output events */
int v[var_num]; /* Local variables for place process */

/* 6 function pointers make calls to predefined modules */
int (*elapse)(); /* Ptr to function which elapses time */
int (*input)(); /* Pointer to func. does input event */
int (*altinput)(); /* Function does event on alt input */
int (*output)(); /* Func. does output port event */
int (*altoutput)(); /* Function does alternate output */
int (*report)(); /* Func. prints report for this ptype */

} Place_struc, *Place_ptr;

/* The structure for each transition, the model has array of these */
typedef struct Trans_struc {

char name [name_size] ;
char ttype[name size];
int a[attr num] ; /* The msg packet passed from src

places to destination places */
int fireable; /* Firable if source places have tokens */
int countfire; /* Statistics of number of firing events */

} Trans__struc, *Trans_ptr;

/* The structure for each specific type of predefined place */
/* Used in PTYPE.C */

typedef struct Pl_type_ struc {
char type^name [name_size];
void (*place init) ();

} Pl_type_struc, *Pl_type_ptr;

/**/

2

APPENDIX - C

I ***** ********************* * ********* ******************************** j

/* SHOST.C
Sending HOST.

C. 2 SENDING HOST 'C' LANGUAGE MODULE

*/
6 Mar 1987

Transmits messages at specified interval
Specified number of packets in session.

#include
#include
#include

<stdio.h>
"menu.h"
"simul.h"

extern Place_struc p [];
extern Trans_struc t [] ;
extern char t__unit [] ;

/* Send interval */
#define delay p[pi].v[0]

/* Constants and data structures */
/* Array of structures for places */
/* Array of structs for transitions */
/* Unit of time eg. "sec" or "hour" */

/* v[0..7] are internal variables */
/* Total num of msgs to send */

#define seslen p[pl].v[l]
/* Dummy msg contents is send counter e.g. msg sequence 5 2 3 4 5

sent in first msg is size, in subsequent msgs is counter */
#define sent p[pi].v[2]

/* Contents of message packet , 3 integer values */
#define msg type
#define msg seq
#define msg data

t[tn].a[0] /* Message packet */
t[tn].a[l] /* Sequence number */
t[tn].a[2] /* 3rd word of packet */

void shost_elapse(),
shost_send(),
shost_receive (),
shost report ();

/* Functions in this module, see below */

3

APPENDIX - C

/* Function initialise the data structures for this place type */
extern void shost_init (pi, cmd)
int pi;
char cmd[];
{
char s[MAXLINE];
p[pl].elapse = shost_elapse; /* Assign function ptrs */
p[pl] .output = shost_jsend;
p[pl].input = shostjreceive;
p[pi] .report = shost_report;

/* Parse 1 line of the specification file for parameter values */
/* Command format "A_HOST name interval tunit session_len" */

sscanf(cmd, "%s %s %d %s %d",s ,p[pi].name, Sdelay, s, Sseslen);
sent =0;

/* This module is unusual in that it is capable */
/* of initiating its first output i.e. finite sleep */
/* is defined at init. */

p[pl].sleep = delay; /* Interval to first msg */

/* */

/* Function simulates passage of time,
"elapse" is the number of time units to elapse,
as supplied by the simulator kemal at each step */

void shost_elapse (pi, elapse)
int pi,elapse; /* pi is index to array of place structures */
{
if (p[pl] .sleep < FOREVER)
{ p[pl].sleep = p[pl].sleep - elapse;

p[pl] .sleep = max(0,p[pl] .sleep) ;
}

4

APPENDIX - C

/* Function outputs a message on output port */
/* Message represents transmit of protocol data packet to S-node */
void shost_send(pl,tn)
int pl,tn;
{
++scnt; /* Count number of packets sent by Sending host */
if (scnt=l) msg_data = seslen;

/* First msg tells total num of packets */
else msg_data = sent; /* Put sent in packet as dummy data */

p[pl].sleep = FOREVER;
/* Wait till msg is acked by our node */

}

/* */

/* Function inputs a message on input port */
/* Message represents receipt of acknowledge packet from S-node */
void shost_receive(pl,tn)
int pl,tn;
{
if (scnt<seslen)

p[pl].sleep = delay; /* interval to next msg */
else

p[pl].sleep = FOREVER; /* No more messages */
}

/* */
/* At end of simulation function prints statistics to report file */
void shost_report (pl,dst_ptr)
int pi;
FILE *dstj?tr;
{
fprintf(dst_ptr,

" SENDING HOST %s Send interval: %d %s Pkts/session: %d\n"
,p[pi].name, delay, t_unit, seslen);

fprintf (dst_ptr,
" Packets sent in new session: %d\n", sent);

}

5

APPENDIX - D

Contents: D.l SDL Specification of Interacting Processes
D.2 Internal States of Each Process
D.3 Message Names and Terminology
D.4 SENDER Process Specification
D.5 RECEIVER Process Specification
D.6 CHANNEL Process Specification

SDL Specification of Alternating Bit Protocol

D.l SDL Specification of Interacting Processes

The examples and listings given in this appendix are from
[CAVA87], to which reference should be made for a more complete
description. The protocol modelled is the "ALTERNATING BIT PROTOCOL",
a classic protocol used to provide reliable message flow between
sender and receiver via an unreliable channel. The model implements an
interactive simulation of the protocol. It is written in "SDL", the
Specification and Description Language standardised by the CCITT. The
specification is listed in full below.

The specification program defines three interacting processes:
sender, receiver and channel.

The function of the system is to model transmission of data from
sender to receiver via the channel. The channel introduces
errors in the data flow. The alternating bit protocol is designed to
recover from errors. The protocol is implemented by the sender and
receiver processes. The SDL specification defines the processes as

1

APPENDIX - D

state machines which communicate by input and output of messages. The
model runs interactively, and errors are introduced on the channel by
"yes/no" input from the user. The model is a state transition
machine, states are identified by the keyword "STATE", transitions by
the keyword "NEXTSTATE".

D.2 Internal States of Each Process

Sender has 4 states:
idleO - pending data from input queue,

sequence counter is 0
waitamO - pending ack with sequence count 0
idlel - pending data from input queue,

sequence counter is 1
waitaml - pending ack with sequence count 1

Receiver has 2 states:
waitdmO - pending data msg with sequence count 0
waitdml - pending data msg with sequence count 1

Channel has 5 states:
empty

content_dmO
content_dml
content_amO
content ami

channel contains no message
data message with sequence count 0
data message with sequence count 1
ack message with sequence count 0
ack message with sequence count 1

2

APPENDIX - D

The following messages are used by the SDL program:
User messages (between user and program):

dm - data message to send
dm_zero - received data msg
dm_one - received data msg
clear - yes/no decision to generate error

Protocol messages (between processes):
dmO, dml - data messages
amO, ami - acknowledge messages
error - generated error message

Terminology used in constructing names of states or messages:

D.3 Message Names and Terminology

idle do nothing until there is data to transmit
wait wait to receive a message from the channel
0,1 modulus 2 sequence counter
dm data message
am acknowledge message
content - a message passing through the channel

3

APPENDIX - D

/*** SDL SPECIFICATION OF ALTERNATING BIT PROTOCOL ***/
/*** Listings from [CAVA87] with minor modifications ***/

/* D.4 SENDER PROCESS SPECIFICATION
PROCESS sender;
STATE idleO;
INPUT dm;
OUTPUT dmO TO channel;
NEXTSTATE waitamO;

STATE waitamO;
INPUT ami;
OUTPUT dmO TO channel;
NEXTSTATE waitamO;

INPUT amO;
NEXTSTATE idlel;

INPUT error;
OUTPUT dmO TO channel;
NEXTSTATE waitamO;

STATE idlel;
INPUT dm;
OUTPUT dml TO channel
NEXTSTATE waitaml

STATE waitaml;
INPUT amO;
OUTPUT dml TO channel;
NEXTSTATE waitaml;

INPUT ami;
NEXTSTATE idleO;

INPUT error;
OUTPUT dml TO channel;
NEXTSTATE waitaml;

ENDPROCESS;

/* Accept message
/* transmit with sequence
/* count of 0
/* Expecting ack msg 0
/* but get ack msg 1
/* retransmit data msg

/* Get correct ack msg

/* Get damaged msg

/* Accept message
/* transmit with sequence
/* count of 1
/* Expecting ack msg 1
/* but get ack msg 0
/* retransmit data msg

/* Get correct ack msg

/* Get damaged msg

4

APPENDIX - D

/* D.5 RECEIVER PROCESS SPECIFICATION
PROCESS receiver;
STATE waitdmO;
INPUT dml;
OUTPUT ami TO channel;
NEXTSTATE waitdmO;

INPUT dmO;
OUTPUT amO TO channel;
OUTPUT dm_zero;
NEXTSTATE waitdml;

INPUT error;
OUTPUT ami TO channel;
NEXTSTATE waitdmO;

STATE waitdml;
INPUT dmO;
OUTPUT amO TO channel;
NEXTSTATE waitdml;

INPUT dml;
OUTPUT ami TO channel;
OUTPUT dm_one;
NEXTSTATE waitdmO;

INPUT error;
OUTPUT amO TO channel;
NEXTSTATE waitdml;

ENDPROCESS;

/* Expecting data msg 0

/* but get data msg 1

/* Get correct msg
/* acknowledge it
/* and forward to user

/* Get damaged msg

/* Expecting data msg 1
/* As above for waitdmO
/* but the zero's and
/* one's are exchanged ...

5

APPENDIX - D

PROCESS channel;
STATE errpty; /* Channel initially ertpty
INPUT dmO; /* msg from sender
NEXTSTATE content_dmO; /* store the msg

INPUT dml; /* msg from sender
NEXTSTATE content__dml;

INPUT amO; /* msg from receiver
NEXTSTATE content_amO;

INPUT ami; /* msg from receiver
NEXTSTATE content_aml;

STATE content_dmO; /* Channel contains msg
INPUT clear; /* decide to damage it
DECISION 'error?';
'yes' : OUTPUT error TO receiver;

NEXTSTATE errpty;
'no' : OUTPUT dmO TO receiver;

NEXTSTATE errpty;
ENDDECISION;

STATE content_dml;
INPUT clear; /* decide to damage it
DECISION 'error?';
'yes' : OUTPUT error TO receiver;

NEXTSTATE errpty;
'no' : OUTPUT dml TO receiver;

NEXTSTATE empty;
ENDDECISION;

STATE content_amO;
INPUT clear; /* decide to damage it
DECISION 'error?';
'yes' : OUTPUT error TO receiver;

NEXTSTATE errpty;
'no' : OUTPUT amO TO receiver;

NEXTSTATE errpty;
ENDDECISION;

STATE content_aml;
INPUT clear; /* decide to damage it
DECISION 'error?';
'yes' : OUTPUT error TO receiver;

NEXTSTATE errpty;
'no' : OUTPUT ami TO receiver;

NEXTSTATE errpty;
ENDDECISION;

ENDPROCESS;

/* D.6 CHANNEL PROCESS SPECIFICATION

6

Q P P £ N » i X - £

¿cueMQT(c sPecificAT(QA/ or

F\ LT6 /L V >4t i**Gc ß l T Q T ocoU

£ . I H l e & f t ß c H l C A L Ho PCL

nn/A/

i i
SErfoe/Z. CHAtf- Ch a n - decet\/c^

Df) ta A c k

£ , 2 . SCHCrtATtC CF MöPül Z

H J X K

k e / i

Q ftAce
-fj -TtZft^smoAJ

f>, I of 4- *. ft&c

MPehvix - e

E . Z

SC H € tiAVC o £ CHM ÜÇ L Ho 90L e

TflfirJSmoAJ T 'K-e&Z
C H W G cC ^ T h £ 'T o l t e * !
VA LUe To

n„ 1 oP

ScríeMA-rrc o f s e r v e d tic poce

EvetlY T/IAa/SITIoaJ has ft/zc is)
~To (N p U T 0(L OUTPUT Pp /Z T £ j

o M irreo Çod c l a z i r/

p. Z o C Lb

'S CH E t f A f i C ö £ d £ c H o OOl C

£ \J € £ Ÿ -T # .M £(T (O a / H # s O r te fy/Cc T o ¿ A í f o r

P ö & T /ÍA Ip OAte m c T o OVT^UT pO & Tj

o m /ttttd c t-A & tT y

ÿ>, l¡ r o f tf-

APPENDIX - F

"Needle" - A SPECIFICATION LANGUAGE
FOR MODULAR STATE TRANSITION NETWORKS

Syntax Definition in Backus-Naur Format.

1. Introduction
"Needle" is a language for specifying state transition networks

such as Finite State Machine and Petri net models. A modular numerical
Petri net model provides the abstract basis for expressing and
validating complex systems.

The language is highly parallel, composing a model from directed
arcs as opposed to sequential statements. It may be suitable for
future implementation on a highly parallel computer architecture.

The system specification satisfies the syntax defined below. The
system is specified as a text file, in the form of a Prolog program.
The Prolog compiler is Borland Turbo Prolog version 2.0 for the IBM
Personal computer. The specification is compiled and validated by the
network traversal program TRAV.PRO, also written in Prolog.

For comparison with the syntax definition of another language, see
[JENS75] "Pascal User Manual and Report", p.110-115 Appendix-D Syntax.

Underlines Key words in Prolog or Needle languages.
<> A term expanded elsewhere.
::= Indicates expansion of a term.
{} A term occuring zero or more times
I Indicates a selection from alternative terms

1

APPENDIX - F

<specification> identifies the system specification held in a text
file. Turbo Prolog requires declaration of predicates in a
<predicates section>. The cclauses section> contains the system
specification as a Petri net model.

<specification> ::= <predicates section> cclauses section>

<predicates section> ::= predicates
spec
conditions
<module predicates>
main

<module predicates> ::= { <module name> }

<clauses section> ::= clauses
<spec clause>
<conditions clause>
{ <module clause> }
<main clause>

2. Top Level Structure of Specification Program

2

APPENDIX - F

3. The Specification Clause

The <spec clause> provides a single clause by which the analysis
program can call up all the other clauses in the specification file.

<spec clause> ::= spec
beain_spec,
conditions,
{ <module name> , }
main,

endjspec.

4. Specifying Test Conditions

Test conditions are normally controlled interactively during
analysis of the model. This section allows default test conditions to
be defined. For further details on the commands refer to the User
Instructions of the analysis program.

cconditions clause> ::= conditions
{ ccondition cormtand> , } .

ccondition command> ::= <search control command>
I <terminal condition command>
I <event control command>
I <display control command>

3

APPENDIX - F

depth(<integer>)
I permit_loops(yes I no)
I first_result(yes | no)

cterminal condition command> ::=
initial (ctoken list> >
I end_option(cycle | state | deadlock)
I end_state(<token list>)

<event control coircnand> ::=

avoid (<event list>)
I occur (cordered event list>)

<search control command> ::=

<display control command> ::=
show (<path list>)
I tree(yes I no)
I track(yes | no)

4

APPENDIX - F

5. Module Declarations

Each module is written as a program block, bounded by the keywords
module 0 and endO . A module defines a state transition network. The
place0 declaration will be used to declare instances of the module.

Module instances may be nested to various depths, and ultimately
nested in the main module. Basic modules must be declared before
compound modules of which they are a component.

Note that the specification language has placed scope limitations
on ports, places and transitions, but not on module declarations.
I.e. module declarations must have unique names, and cannot be nested.

<module clause> ::= <module name>
module(<module name>) ,

{ <port declaration> , }
{ <place declaration> , }
{ ctransition declaration> , }

end(<module name>).

6. Main Module Defines the Overall System.

The main module is the last block specified in the file. Its
places declare instances of previously declared sub-modules. The main
module may be declared with no ports since it is an isolated system.

5

APPENDIX - F

<main clause> ::= main
module(main) ,

{ <port declaration> , }
{ <place declaration> },
{ <transition declaration> },

end(main) .

7. Structure of a Module

Each module may contain a state transition network. The places
and transitions are local to the module in which they are declared.

The transition network is defined by directed arcs. Arc
connections are local to the module, with the exception of arcs which
connect from the public deadlock place.

Communication beyond the module is via ports. A module may have
any number of ports. Where modules have only one input or one output,
the ports should be declared with the default names port (in) and
port (out).

Arcs can only connect to ports of the local module, or to places
within that module. By default, arcs from a place come from port (out)
of that place. Arcs to a place go to port (in) .

When places have multiple ports, the arcs will accept an extra
parameter after the <place name> to explicitly specify the port.

6

APPENDIX - F

<place declaration ::= place(<place type> , <place name>)

<place type> ::= elementary | <module name>

<transition declaration> ::= transition(<transition name>) ,
{ <arc from> , }
{ <arc to> , }

<arc from> ::= from(<source>)
I get(<source> , <integer>)

<arc to> ::= £q (<destination>)
I put (<destination> , <integer>)

<source> ::= <port name> /* of local module */

<port declaration : := port (<port name>)

I <place name> /* implicit */
I <place name> , <port name> /* explicit */
I <public place>

<public place> ::= deadlock

<destination> ::= <port name> /* of local module */
I <place name> /* implicit */
I <place name> , <portname> /* explicit */

7

APPENDIX - F

8. Numerical Extension to Petri Net

The get 0 and put 0 arcs provide numerical operations to the Petri
net model. All arcs communicate tokens which contain an integer
value. An arc get (<source>.<intecrer>) may enable a transition only if
the token has the correct value. All input arcs must be enabled for a
transition to fire, put 0 arcs emit a token with a specified integer
value, to0 arcs emit a token containing the maximum integer of all
input arcs.

9. Extension to a Neural Network Model

It may be desirable in future to extend the the Petri net model to
have more complex transition firing rules. This could be done by an
extra field in the transition declaration. For example neural
networks are capable of learning, by summing the input integers and
emitting a value which is a non linear function of the total.

ctransition declaration : :=
transition(ctransition name> , cfiring rule>) ,

{ carc from> , }
{ carc to> , }

8

APPENDIX - F

Data structures are required as parameters to the test condition
commands in (4.) above. They are used internally during analysis of
the model, and are also displayed on result reports.

The square brackets [] are used in Prolog to denote a list. In
the case of the <path list> used by the show() command, we have a list
of lists. These data structures are the foundation of the modular
Petri net model. Implementation of the validation tool was feasable
because of Prologs excellent list processing ability.

<token> indicates that the place at a specified path contains a
token with an integer value. (More precisely, <token> is stored at
port (out) of the place) . When <token> is used for pattern matching
for a given state of the model, <wild card> says that any integer
value is acceptable. Temporarily, the analysis program uses -99 as
the wild card, on the assumption that protocol models use only
positive integers.

<token list> [] |
[<token> {,<token>}]

<token> ::= token(<path> , <integer>)
| token(<path> , <wild card>)

10. Syntax of Data Structures

9

APPENDIX - F

<path> ::= [] I
[<plaee naine> {, <place nairifi>}]

<path list> ::= [] |
[<path> {,<path>}]

<event list> ::= [] I
[<event> {,<event>}]

<event> ::= event(<path> , <transition name>)

11. Extension to Packet Petri net model.

The current model is a modular numerical Petri net. Tokens carry
integer values, to enable the modelling of protocols. The
computational power of the model could mushroom, if tokens were
allowed to carry lists of integers, i.e. packets. This is a feasable
extension to the current program, given the list processing features
of Prolog.

The following extension would be required to the identification of
a token.

<token> ::= token(<path> , <packet>)

<packet> ::= [] I
[<integer> { , <integer> }]

10

APPENDIX - G

Contents: G.l Specification of Alternating Bit Protocol
G.2 Hierarchical Structure of the Model
G.3 Translation of Modular Specification
G.4 Full Event Sequence of the Protocol

"Needle" Specification of Alternating Bit Protocol

The alternating bit protocol provides reliable message flow
between sender and receiver via an unreliable channel. The model is
specified in "Needle", a specification language for the modular
numeric Petri net model. The "Needle" specification language is
implemented on top of the Prolog language. Validiation is carried out
by the Prolog program TRAV.PRO, which processes the specification G.l
and prints the event sequence G.4.

1

APPENDIX - G

NEEDLE SPECIFICATION OF ALTERNATING BIT PROTOCOL
Places store sequence count as an integer:
Use the 'idle' place with values of 0 and 1 to represent
two states ' idleO' and 'idlel'. Similarly the 'wait'
place represents two states 'waitO' and 'waitl'.
Otherwise the specification corresponds exactly to
the schematics (Appendix-E).

predicates
spec

clauses
spec :-
begin_spec,
/*** Model execution definitions ***/
initial([token([sender,idle],0),

token([receiver,wait],0)]),
end_option(state),
end_state([token([sender,idle],1)]),

Listing: 6.1 (Filename: ALT.PRO)

/*** Model specification ***/

/* Sender module. Transmits data packets from its output port. */
module (s_mod),
port (in), port(out),
place(elementary,idle), /* idle place stores integer 0,1 */
place(elementary,wait), /* wait place stores integer 0,1 */
transition(send_d0), get(idle,0),

put(wait,0), put(out,0),
transition(send_dl), get(idle, 1),

put(wait,1), put (out,1),
transition(s0_rx_err), get(wait,0), get(in,-1),

put(wait,0), put(out,0),
transition(sl_rx_err), get(wait,1), get(in,-1),

put(wait,1), put (out,1),
transition(s0_rx_al), get(wait,0), get(in,1),

put(wait,0), put(out,0),
transition(sl_rx_a0), get(wait,1), get(in,0),

put(wait,1), put(out,1),
transition(s0_rx_a0), get(wait,0), get(in,0),

put(idle,1),
transition(sl_rx_al), get(wait,1), get(in,1),

put(idle,0),
end(s_mod),

(continued...

2

APPENDIX - G

/* Channel module. Transmits, corrupts or loses messages. */
module (cjnod),
port(in), port(out),

transition(txjnsg), from(in), to (out),
transition(tx_err), from(in), put(out,-1),
transition(lose_mg), from (in),

end (c mod),

Listing: G.l (continued)

/* Receiver module. Inputs data packets and echoes ACK pacckets. */
module(r_mod),
port (in), port (out),
place(elementary,wait), /* wait place stores integer 0,1 */
transition (r0__rx_err), get (wait, 0), get (in, -1

put(wait,0),put (out,1
transition(rl_rx_err), get(wait,1),get(in,-1

put(wait,1),put(out,0
transition(r0_rx_dl), get(wait,0), get(in,1)

put(wait,0), put(out,1
transition (rl_rx__d0), get (wait, 1), get (in, 0)

put(wait,1), put(out,0
transition(r0_rx_d0), get(wait,0), get(in,0)

put(wait,1), put(out,0
transition(rl_rx_dl), get(wait,1), get(in,1)

put (wait, 0), put (out, 1
end (r mod),

/* Main module. Defines the communication paths between sender */
/* and receiver via data and ack channels */

module (main),
place(s_mod,sender),
place(r_mod,receiver),
place(c_mod,chjdata),
place(cjnod,ch_ack),

transition(s_tx), from (sender), to(chjdata),
transition(r_rx), from (chjdata), to(receiver),
transition(r_tx), from(receiver), to(ch_ack),
transition(s_rx), from(ch_ack), to(sender),

end (main),

end spec.

3

APPENDIX - G

HIERARCHICAL STRUCTURE OF THE MODEL

The model system is designed as a hierarchy of modules. MAIN is the
top level module. The SENDER, RECEIVER and two CHANNEL modules are at
the next level. Elementary Petri net places are at the lowest level.
The transitions are also in the hierarchy, though not represented
here.

Each place in the hierarchy is identified by its path, specified
as a Prolog list. For example, the empty list [], is the path of the
top level MAIN module. [SENDER,WAIT] is The path of a WAIT place in
the SENDER module.

MAIN
I
I

I I I
I I I

RECEIVER CHDATA CHACK
I
I
I
I

WAIT

The following figure represents translation of the hierarchy into a
flat Petri net consisting of individual places, all at the same level.
Five of these places [SENDER, IDIE], [SENDER, WAIT], [RECEIVER, WAIT],
[CH_DAIA] and [CH_ACK] are shown below:

MAIN MAIN MAIN MAIN
I I I I

SENDER SENDER RECEIVER |
I I I I

IDLE WAIT WAIT CH DATA

Listing: G.2

MAIN

CH ACK

\

I
SENDER

I
+ + (-
I I
I I

IDLE WAIT

4

APPENDIX - G

Listing: 6.3

Translation of modular specification.

The specification of modules and submodules is translated
to a list of Petri net places and transitions.
Each place is uniquely identified by its path:

[module, submodule, submodule...]
The main module is identified by its path: [].
Transitions are identified by their path and event name.

SPECIFIED PLACES
[]
["sender"]
["sender","idle"]
["sender","wait"]
["receiver"]
["receiver","wait"]
["ch_data"]
["ch_ack"]
["deadlock"] /* predefined place */

SPECIFIED EVENTS
[]s_tx /* main module */
[] r_rx
[]r_tx
[]s_rx
["sender"]send_dO /* sender module */
["sender"]send_dl
["sender"]sO_rx_err
["sender"]sl_rx_err
["sender"]sO_rx_al
["sender"]sl_rx_aO
["sender"]sO_rx_aO
["sender"]sl_rx_al
["receiver"]rO_rx_err /* receiver module */
["receiver"]rl_rx_err
["receiver"]rO_rx_dl
["receiver"]rl_rx_dO
["receiver"]rO_rx_dO
["receiver"]rl_rx_dl
["ch_data"]tx_msg /* channel modules */
["ch_data"]tx_err
["ch_data"]lose_mg
["ch_ack"]tx_msg
["chjack"]tx_err
["ch_ack"]lose_mg

5

APPENDIX - G

Listing: 6.4
Full Event Sequence of Alternating Bit Protocol.

The test conditions specify that the sender module is
initially in ID1E state with sequence count 'O', and must
execute an event sequence which returns to that state.
The event sequence is over two cycles of transmission of data
and receipt of ack. Sequence count is 0 in the first
cycle and 1 in the second cycle. No errors occur.

Initial state:
["sender","idle"] 0
["receiver","wait"] 0

Final conditions:
["sender","idle"] 0

Avoid events:
1 ["ch_data"] lose_mg
2 ["ch_data"] tx_err
3 ["ch__ack"] lose_mg
4 ["ch ack"] tx err

/* Test conditions */

18 events to final state: /* Test result */
["receiver","wait"] 0
["sender","idle"] 0

Valid event sequence:

1 ["sender"] send dO
2 [] s tx
3 ["ch data"] tx msg /* DATA 0 — > RECEIVER
4 [] r rx
5 ["receiver"] rO rx dO
6 [] r tx
7 ["ch ack"] tx msg /* SENDER <— ACK 0
8 [] s rx
9 ["sender"] sO rx aO
10 ["sender"] send dl
11 [] s_tx
12 ["ch data"] tx msg /* DATA 1 — > RECEIVER
13 [] r rx
14 ["receiver"] rl rx dl
15 [] r tx
16 ["ch ack"] tx msg /* SENDER <— ACK 1
17 [] s rx
18 ["sender"] si rx al
(Note: [] = main module)

6

APPENDIX - H

SPECIFICATION TRAVERSAL PROGRAM - TRAV.PRO

INTERACTIVE MENU SCREENS

Contents: H.l Compiling the Traversal Program
H.2 The Assist Menu and Analysis Menu
H.3 Choose terminal Conditions
H.4 Event Control
H.5 Control of Search Algorithm
H. 6 Control of Display Filter
H.7 Display of Petri Net components
H. 8 Search Generates Reachability Tree

H.l COMPILING THE TRAVERSAL PROGRAM

The Turbo Prolog programming environment is used on an IBM compatible
personal computer. Two program source files are required:

TRAV.PRO - The specification traversal main program
ALT.PRO - The specification under analysis, in this case the

alternating bit protocol.

Execute Turbo Prolog and continue interactively by use of its menus.
Load TRAV.PRO and edit the last line:

include "alt.pro"
so that the specification under analysis will be included.
Finally compile TRAV.PRO with the included file.

1

APPENDIX - H

H.2 THE ASSIST MENU AND ANALYSIS MENU

Run TRAV.PRO, interactive operation is carried out in the dialog
window of the Turbo Prolog environment. The prompt "goal:-" appears
on the screen. Enter the assist command to bring up the main menu:

+------------- Prolog Dialog Window------------- +
I goal:- assist <ret> !
+-- +

+-------------TRAV.PRO Assist Menu------------ +
|DIALOG - Return to Prolog goal: prompt
IAnalysis Commands - Execute analysis of the model
|Terminal Conditions - Set up initial & final cond's
¡Event Control - Set up of valid event sequences
I Search Control - Set up properties of search algor'm
|Display Control - Set up format of displayed results
IDisplay Model - Display internal structure of model
H----------------- h

Select "Analysis" from the main menu. Analysis of the specification
is in two phases initiated by the following commands:

DO spec - Translate the specification ALT.PRO into a flat
Petri net model, store it in the Prolog database.

DO search - Search the execution paths of the model,
and display the results.

+-------- TRAV.PRO Analysis Commands---------h
IRETURN |
IDO spec - Model specif'n (Resets test conditions)I
I DO search - Search event sequences of model I
+---f

Select "DO spec", processing the specification and bringing up the
specified experimental conditions in the test status window.

+-------------- Test Control Status--------------+
I depth(30), search depth
|Initial state:
I ["sender","idle"] 0
| ["receiver","wait"] 0
Iend_option(cycle)
I Show nodes:
I ["chan_data"]
I ["chan_ack"]
I Option: tree(yes), reachability tree.
+----------------------------------- — ™ -----------

2

APPENDIX - H

A terminal condition is the specified state of the model system at the
beginning or end of its event sequence. Initial conditions specify the
inital marking of the Petri net; the position of all tokens and the
numeric value which they contain. The final marking specifies the
required final position of all tokens. The search algorithm searches
for every possible event sequence which will lead from the initial
marking to the final marking.

Instead of terminating on final marking, it is possible to
terminate the event sequence on deadlock situation, or on looping to
a previous marking of the model.

The experimental test conditions are adjusted interactively via
the available menus. For example the following two menus provide
choice from three different "end_options".

H.3 CHOOSE TERMINAL CONDITIONS

+--------- TRAV.PRO Terminal Conditions-------- +
¡RETURN |
|initial(TOKENS) - Initial state of model system. |
|end__option - Select option which ends event sequence I
Iend_state(TOKENS) - Conditions for final state I

-j 1»

Selecting "end_option" brings up a menu of three alternative options:

+--------------- Select End Option-------------- +
INO CHANGE |
I cycle - Search until model cycles to previous state|
I deadlock - Search until no further events can occur |
I state - Search until specified end state satisfied |
H-- f-

3

APPENDIX - H

H . 4 EVENT CONTROL
The search algorithm identifies possible execution sequences of the
specified model. By selecting events from two pick lists, it is
possible to ask complicated questions such as:

Can events 'A' and ' C' occur in that order,
avoiding event 'B' ?

+-----------TRAV.PRO Event Control---------- +
IRETUEN |
I avoid(EVENTS) - Explored sequence must avoid these|
I occur(ORDERED EVENTS) - Events must occur in order|
+--- +

+— Avoid Events - CHOOSE SEVERAL— +
I[] senderjtx
I[] receiver_rx
I[] receiverjtx
t[] sender_rx
![sender] send_dataO
I[sender] send_datal
I [sender] waitO_error

waitl_error
waitOjackl
waitl_ackO
waitO_ackO
waitl_ackl
waitO_error
waitl__error
waitO_datal
waitl_dataO
waitO_dataO
waitl datai

sender]
sender]
sender]
sender]
sender]
receiver]
receiver]
receiver]
receiver]
’receiver]
receiver]
chan_data] tx_msg
chan_data] errjmsg
chan_ack] tx_msg
chan ack] err msg

+— Occur Events
I[] sender_tx
I [] receiver rx

- SELECT ORDER— +

I [chan_ack]
I [chan ack]

tx_msg
err msg

I
1
-+

4

APPENDIX - H

Control is provided over the search algorithm. The first control,
search depth specifies an integer value. The last two controls are
YES/NO options.

H.5 CONTROL OF SEARCH ALGORITHM

+---------- TRAV.PRO Search Control---------- +
IRETURN I
I depth - Limit length of event sequence searched |
|permit_loops - Enable looping by search algorithm |
Ifirst_result - Enable search of one or all results|
+--- +

H.6 CONTROL OF DISPLAY FILTER

Control is given on the amount of information displayed during an
event sequence search. The first two options control a filter,
displaying events at selected modules only.
The TREE option chooses between event sequence display or display
of the reachability tree. The last option enables a debug display.

+-----------TRAV.PRO Display Control-----------h
IRETURN I
I Show All - Enable events to be shown at all places j
I show (PLACES) - Show events only at selected places I
I Select Tree - Sequence display or reachability tree|
I Select Track - Debugs search algorithm \
H ------ — ------ —----- — ---— — — --\-

5

APPENDIX - H

H.? DISPLAY OF PETRI NET COMPONENTS

The "Display Model" menu displays the Petri net components of the
specified model. The result of selecting "Modules" and "Places" is
shown below:

+-------- TRAV.PRO Display Model-------- +
¡RETURN I
I Modules - Display specified modules and ports I
IPlaces - Display all instances I
¡Transitions - Display all instances |
H--h

Modules: Ports:
elementary ["out"] /* Basic place */
send_module ["in","out"]
channel_module ["in","out"]
receive_module ["in","out"]
main []

Places:
[]
["sender"]
["sender","idle"]
["sender","wait"]
["receiver"]
["receiver","wait"]
["chan_data"]
["chan_ack"]
["deadlock"]

6

APPENDIX - H

H.8 SEARCH GENERATES REACHABILITY TREE

Having set up the test conditions, running the 'DO search' commmand
from the 'Analysis' menu, will display a reachability tree as follows:
The symbol indicates "same as above", and the joints between
the branches are omitted, as a join up the dots puzzle !
Their is one event sequence (from left to right) displayed per line.

+-------- TRAV.PRO Analysis Commands-------- +
IRETURN |
I DO spec - Model specif'n (Resets test conditions)|
IDO search - Search event sequences of model |
+-- +

Enter filename to store results,
or press RETURN for screen display:
depth (30), search depth
Initial state:

["sender","idle"] 0
["receiver", "wait11] 0

end_option(cycle)
Show nodes:

["chan_data"]
["chan_ack"]

Option: tree(yes), reachability tree.
tx_msg tx_msg tx_msg tx_msg
 - - - - _ _ _ err_msg tx_msg
 - - - - _ _ _ _ _ _ err_msg
 - - - - err_msg tx_msg
 - - - - - - err_msg
 err__msg tx_msg
 ----- - - err_msg
err_msg tx_msg
- - - errjmsg
Search for all solutions complete -
9 valid sequences end in cycles.
Depth sufficent to find all cycles.
Press RETURN for Assist menu

7

APPENDIX - I

ANALYSIS OF PROTOCOL ERROR RECOVERY

Contents: 1.1 Recovery from error in data message.
1.2 Recovery from errors in data or ack messages

1.1 Recovery from error in data message.

Event sequence from transmission of data to receipt
of ack. Force a data message error showing recovery.
Listings are direct output from TRAV.PRO program.

Initial state:
["sender", "idle"] 0
["receiver","wait"] 0

Final conditions:
["sender", "idle"] 1

Occur event sequence:
1 ["ch_data"] tx__err

Avoid events:
1 ["ch_data"] lose_mg
2 ["ch ack"] lose mg

/* Test conditions */

/* Force a data error */

17 events to final state:
["receiver","wait"] 1
["sender","idle"] 1

Valid event sequence:

/* Test result */

1 ["sender"] send dO
2 [] s tx
3 ["ch data"] tx err /* DATA 0 — >
4 [] r rx
5 ["receiver"] rO rx err
6 [] r tx
V ["ch ack"] tx msg /* <— ACK 1
8 [] s rx
9 ["sender"] sO rx al
10 [] s tx
11 ["ch data"] tx msg /* DATA 0 — >
12 [] r rx
13 ["receiver"] rO rx dO
14 [] r tx
15 ["ch ack"] tx msg /* <— ACK 0
16 [] s rx
17 ["sender"] sO rx aO

1

APPENDIX - I

Listing: 1.2

Recovery from errors in data or ack messages,

Event sequence from transmission of data to receipt
of ack. Force errors on each channel showing recovery.
The 'show' command selects relevant events for display.

Initial state:
["sender","idle"] 0
["receiver","wait"] 0

Final conditions:
["sender","idle"] 1

Show nodes:
["ch_data"]
["ch ack"]

/* Test conditions */

/* Show events on
the channels only */

Force data message error

Occur event sequence:
1 ["ch data"] tx err

/* Test conditions */

17 events to final state:
["receiver","wait"] 1
["sender","idle"] 1

/* Test result */

Valid event sequence:
3 ["ch_data"] tx_err
7 ["ch_ack"] tx_msg
11 ["ch_data"] tx__msg
15 ["ch ack"] tx msg

DATA 0 — > ERROR
<— ACK 1
DATA 0 — >
<— ACK 0

Force ack message error

Occur event sequence:
I ["ch ack"] tx_err

17 events to final state:
["receiver","wait"] 1
["sender","idle"] 1

Valid event sequence:
3 ["ch_data"] tx_msg
7 ["ch_ack"] tx_err
II ["chjdata"] tx__msg
15 ["ch ack"] tx msg

/* Test conditions */

/* Test result */

DATA 0 — >
ERROR <— ACK 0
DATA 0 — :>
<— ACK 0

2

APPENDIX - J

Contents: J.l Specify Timer Module and Timeout Transitions
J.2 Timer recovers from lost data message
J.3 Reachability Tree of Deadlock Sequences

J.l Specify Timer Module and Timeout Transitions

PROTOCOL DEADLOCK RECOVERY BY TIM EOUT

Define a timer module which is activated by deadlock of
the system. Use this timer within the sender module to
activate the sO_timeout or sl_timeout transitions. The rest
of the specification is unchanged, only changes are listed.

/* Timer module */ /** NEW **/
/** CODE **/

module(t mod), /** **/
port(out), /** **/

transition(elapse), from (deadlock), to(out), /** **/
end(t mod), /** **/

/* Sender module */
module (s_mod),
port (in), port (out),
place(elementary,idle),
place(elementary,wait),
place (t_mod, timer), /*** NEW TIMER MODULE ***/
transition(send_dO), get(idle,0),

put(wait,0), put(out,0),
transition(send_dl), get(idle,1),

put (wait, 1), put (out, 1),
transition(s0_rx_err), get(wait,0), get(in,-1),

put(wait,0), put(out,0),
transition(sl_rx_err), get(wait,1), get(in,-1),

put(wait,1), put (out,1),
transition(s0_rx_al), get(wait,0), get(in,1),

put(wait,0), put(out,0),
transition(sl_rx_a0), get(wait,1), get(in,0),

put(wait,1), put(out,1),
transition(sO_rx_aO), get(wait,0), get(in,0),

put(idle,1),
transition(sl_rx_al), get(wait,1), get(in,1),

put(idle,0),
/** NEW TRANSITION **/

transition(sO_timeout), get(wait,0), from(timer),
put(wait,0), put(out,0),

/** NEW TRANSITION **/
transition(sljtimeout), get(wait,1), from(timer),

put(wait,1), put(out,1),
end(s mod),

1

APPENDIX - J

Listing: J.2

Timer recovers from lost data message,

Event sequence from transmission of data to receipt
of ack. Force a lost data message showing that timer
elapse and sCHbimeout provides recovery from deadlock.

Initial state:
["sender","idle"] 0
["receiver","wait"] 0

Final conditions:
["sender","idle"] 1

Occur event sequence:
1 ["ch_data"] lose_mg

Avoid events:
1 ["ch_data"] tx_err
2 ["ch ack"] tx err

/* Test conditions */

/* Force lost data message */

13 events to final state:
["receiver","wait"] 1
["sender","idle"] 1

/* Test result */

Valid event sequence:
1 ["sender"] send_dO
2 [] s_tx
3 ["ch_data"] lose__mg
4 ["sender","timer"]
5 ["sender"] sOjtimeout
6 [] s_tx
7 ["ch_data"] tx_msg
8 [] r_rx
9 ["receiver"] rO_rx_dO
10 [] rjtx
11 ["ch_ack"] txjnsg
12 [] s_rx
13 ["sender"] sO rx aO

/* DATA 0 — > LOST

/* DATA 0 -->

/* <— ACK 0

2

APPENDIX - J

Reachability Tree of Deadlock Sequences
Listing; J.3

This analysis explores all possible event sequences,
which lead the model to a terminal state. Since the
model is of a cyclic protocol system, terminal states
represent the unwanted deadlock condition.
The results generate NO tree, therefore we have a
deadlock free protocol.

depth(30), search depth /* Test conditions */
Initial state:

["sender","idle"] 0
["receiver","wait"] 0

end_option(deadlock)
Show nodes:

["ch_data"]
["ch_ack"]

Option: tree(yes), display reachability tree.
Option: permit_loops(no), search until loop.
/* Test result */
Search for all solutions complete -
No valid sequence to deadlock.
Depth sufficent to find all cycles.

3

APPENDIX - K References

REFERENCES

[AGHA86] Agha, G.
"Actors: A model of concurrent computation in distributed
systems (TEXTBOOK)",
MIT Press 1986 , series in artificial intelligence,
ISBN 0-262-01092-5

[AJM086] Ajmone Marsan, M.
"Performance models of multiprocessor systems (TEXTBOOK)",
MIT press series in computer science,
1986 ISBN 0-262-01093-3 , 280 pages

[ANAG86] Anagnostou, M. and Protonotarios, E.
"Performance analysis of the selective repeat ARQ protocol",
IEEE Trans. Communications,
vol. COM-34, No. 2, Feb. 1986, pp. 127-135

[ANDE85] Anderson, D. and Landweber, L.
"A Grammer Based Methodology for Protocol Specification and -
Implementation",
Proc. 9th Data Comms Sympos. IEE Comput. Soc. Press,
vol. 1985 pp. 63-70

[ARCH87] Archetti, F.
"Petri net modeling of a highly concurrent machine",
CH2480-2/87/0000-0389 (C) 1987 IEEE,
vol. pp 389-393

[BART83] Barto, A. et al
"Neuronlike adaptive elements that can solve difficult
learning control problems",
IEEE Trans. Systems, Man and Cybernetics,
vol. SMC-13, No. 5, Sept. 1983 pp. 834-846

[BERZ88] Berzins, L.
"Rapidly prototyping real time systems",
IEEE Software,
vol. Sept. 1988 pp 25-36

[BILL85] Billington, J. (see also pn8806)
"On Specifying Performance Aspects of Protocol Services",
International Workshop on Timed Petri Nets. Conference
proceedings Turin Italy.,
vol. 13 July 1985, pp. 288-295

[BILL88] Billington. J., Wheeler, G. and Wilbur-ham, M.
"PROTEAN: A high level Petri net tool for the specification -
and verification of communication protocols",
IEEE trans software eng,
vol. 14, No. 3, Mar 1988, pp. 301-316

1

APPENDIX - K References

[BOUC87] Boucher, C. and Bouvet, C.
"Designing a simulation language on the basis of composite
Petri nets",
Proc. 1987 summer computer simulation conf. Publ. sandiego -
CA VSA:SCS 1987, Montreal Que. Canada,
vol. 27 Jul 1987, pp. 701-706

[BRIN83] Brinksma, E.
"An Algebraic Language for the Specification of the Temporal-
Order of Events",
EUTECO European Teleinformatics Conference,
vol. 1983 pp. 533-542

[BRUN86] Bruno, G.
"Process translatable Petri nets for rapid prototyping of
process control systems",
IEEE Trans. Software Eng.,
vol. Feb 1986 pp 346-357

[BURT84] Burton, F. and Huntbach, M.
"Virtual tree machines",
IEEE Trans Comput.,
vol. c-33, No. 3, Mar 1984, pp. 278-280

[BURT87] Burton, F.
"Functional programming for concurrent and distributed
computing",
The Computer Journal,
vol. 30, No.5, 1987, pp. 437-

[BURT88] Burton, F.
"Storage management in virtual tree machines",
IEEE trans computers,
vol. 37, No. 3, Mar. 1988, pp. 321-328

[CAVA87] Cavalli, A. and Horn, F.
"Proof of specification properties by using finite state
machines and temporal logic",
Protocol spec, testing and verification VII, Elsevier Science
Pub.,
vol. VII, 1987, pp. 221-233

[CHAN89] Chang, C.
"Modeling a Real time multitasking system in a timed PQ net",
IEEE Software,
vol. Mar. 1989 pp 46-51

[CHAR83] Ansart, J., Chari, V., Simon, D. and Rafiq, 0.
"VADILOC: A Protocol Validator and PDIL: A Language for
Protocol Description and Implementation.",
EUTECO European Teleinformatics Conf. (Italy),
vol. 1983, pp. 543-556

2

APPENDIX - K References

[CHOI85] Choi, T.
"Formal Techniques for Specification, Verification and
Construction of Protocols",
TEF.F. Communications Magazine,
vol. 23, No. 10, 1985, pp. 46-52

[CHOU87] Chou, C.
"Performance evaluation of concurrent programs modeled by
timed PQ-Net",
Proc.Compasc 87 11th Inter.Conf.Software & Applic. Conf. 1987
Cat. 87CH2447-1 Tokyo 7th Oct pp. 465- (IEEE CoirpSoc press)

[CIAR87] Ciarlo, A.
"Satellite On-Board Applications of Expert Systems",
European Space Agency Journal,
vol. 11, No. 1, 1987, pp. 31-44

[CLAR86] Clarke, E., Emerson, E. and Sistla, E.
"Automatic Verification of Finite-State Concurrent Systems
Using Temporal Logic Specifications",
ACM Transactions on Programming Languages and Systems.,
vol. 8, No. 2, April 1986, pp. 244-263

[CLOC87] Clocksin, W. and Mellish, C.
"Programming in Prolog",
Springer Verlag pubi.,
1987, 3rd ed., ISBN 0-378-17539-3, 281 pages

[COHE89] Cohen, G.
"Algebraic tools for Performance evaluation of discrete event
systems",
Proc. IEEE,
vol. 77 No. 1, Jan 1989, pp 39-57

[DAG085] D'Agostini, V. and Grillo, M.
"Experiences in OSI Protocol Specification Using SDL",
CSELT Tech.Rep.(Italy),
vol. XIII, No. 3, June 1985, pp. 167-173

[DUGA89] Bechta, J.
"Stochastic Petri net analysis of a replicated file system",
IEEE trans, Software eng.,
vol. 15, No. 4, Apr 1989 pp 394-401

[ELL086] Elloy, J. and Roux, 0.
"Electre: A Language for Control Structuring in Real Time",
The Coirputer Journal,
vol. 29, No. 3, 1986, pp. 229-234

APPENDIX - K References

[FÄN_88] Fan, I.
"A Prolog simulator for interactive flexible manufacturing
systems control",
Simulation (CA. USA),
vol. June 1988, p. 239-247

[FELD86] Feldbrugge, F. (editor Brauer,W.)
"Petri net tool overview 1986",
Petri Nets: Applications and Relationships to other models
of concurrency,
LNCS voi 255, Berlin: Springer-Verlag, Feb 1987, pp 20-61

[FLEI87] Fleiscbmann, A., Chin, S. and Effelsberg, W.
"Specification and implementation of an ISO session layer",
IBM Systems Journal,
vol. 26, No. 3, 1987, pp. 255-275

[FRIE89] Frieder, 0.
"Protocol verification using database technology",
IEEE jour. Selected areas of communications,
vol. 7, No. 3 April 1989, pp 324-334

[GALL87] Gallard, R.
"An extension in the definition of a Petri net execution",
Comput. Jour.,
vol. 30, No. 1, 1987, pp. 16-19

[GARG85] Garg K.
"An Approach to Performance Specification of Communication
Protocols Using Timed Petri Nets",
IEEE Transactions on Software Engineering,,
vol. SE-11, No. 10, Oct. 1985, pp.1216-1225

[GERS89] Gershwin, S.
"Hierarchical Flow control: A framework for scheduling and
planning discrete events in manufacturing systems",
Proc. IEEE,
vol. 77, No. 1 Jan 1989 pp 195-

[GIAC88] Giacalone, A.
"Integrated Environments for formally well founded design
and simulation of concurrent systems",
IEEE Trans. Software Eng.,
vol. 14 No. 6, June 1988, p. 787-801

[HARE88] Harel, D.
"On visual formalisms",
Communications of the ACM,
vol. 31, no. 5, May 1988, pp. 514-530

[HASP89] Hass, P.
"Stochastic Petri net Repres'n of discrete event simulations",
IEEE trans Software Eng.,
vol. 15, No. 4 Apr. 1989 pp 381-393

4

APPENDIX - K References

[HASS89] Hassard, John.
"Light at End of the tunnel. (Fundamental Particle Physics).",
New Scientist (U.K.),
vol. 8th July 1989, pp. 65-67

[HOAR78] Hoare, C.
"Communicating Sequential Processes",
Commun. ACM,
vol. 21, 8 (Aug 1978) pp 666-677

[HOLL87] Holliday, M. and Vernon, M.
"Exact Performance Estimates for Multiprocessor Memory and
Bus Interface.",
IEEE Trans. Computers,
vol. C-36 no. 1, Jan 1987, pp. 76-85

[HOLZ87] Holzmann, G.
"On limits and possibilities of automated protocol analysis",
Protocol specification, testing and verification proc. IFIP-
wg 6.1, 7th Internat conf. Zurich Switzerland,
vol. 5th May 1987, North Holland Amst., pp. 339-344

[HO 89] Ho, Y.
"Proc. IEEE. Special Issue on dynamics of discrete event
systems",
Proc. IEEE,
vol. 77 No. 1 Table of contents, Jan 1989

[INAN89] Inan, K.
"Algebras of discrete event models",
Proc. IEEE,
vol. 77, No. 1, Jan 1989 pp 24-38

[JARD88] Jard, C. et al
"Development of Veda, a prototyping tool for distributed
algorithms",
IEEE Trans software eng.,
vol. 14, No. 3, mar 1988, pp. 399-

[JENS75] Jensen and Wirth
"Pascal User Manual and Report",
1975.

[JENS87] Jensen, K.
"Coloured Petri nets",
CH2480-2/87/0000-0395 (C) 1987 IEEE,
pp 395-401

[JONS83] Jonsson, B. and Pehrson, B.
"An Extended Finite State Machine Approach to Specification,
Validation and Testing of Protocols.",
EUTECO European Teleinformatics Conference,
1983 pp. 569-576

5

APPENDIX - K References

[KARA88] Karam, G.
"An icon based design method for Prolog",
TEF1F1 Software,
vol. July 1988 pp 51-65

[KAVI86] Kavi, K., Buckles, B. and Bhat, U.
"A Formal Definition of Data Flow Graph Models",
tfff Transactions on Computers,
vol. C-35, No. 11, Nov. 1986, pp. 940-947

[KIM__87] Kim, D., Choi, H. and Choi, Y.
"An automated protocol validation tool based on extended
numerical Petri net.",
Tencon 1987, Seoul, S.Korea,
IEEE 1987, ch2423-2/87/0000-0351

[KOES67] Koestler, A.
"The ghost in the machine",
Picador, Pan Books Ltd. U.K.,
ISBN 0 330 24446 9 , year 1976, written 1967

[KOSK87] Kosko, B.
"Constructing an associative memory",
BYTE (USA),
vol. Sept 1987 pp. 137-144

[KOUN8 8] Kountanis, D.
"Petri net representation of rule based expert systems",
Western Michigan University, Kalamazoo, Mich 49008 USA,
1988, pl43-152

[KRIT86] Kritzinger, P.
"A Performance Model of the OSI Communication Architecture",
tfff Trans. Communications.,
vol. CCM-34, No. 6, June 1986, pp. 554-563

[LAIR87] Laird, J. et al.
"SOAR: An architecture for general intelligence",
Artificial Intelligence,
vol. 33, 1987 pp. 1-64

[LEBL83] LeBlanc, T, and Cook, R.
"An analysis of language models for high performance communi­
cations in Local Area Networks",
ACM 0-89791-108-3/83/006/0065,
1983, pp. 65-72

[LEE_85] Lee, K. and Favrel, J.
"Hierarchical Reduction Method for Analysis and Decomposition
of Petri Nets",
TFFFi Transactions on Systems, Man and Cybernetics,
vol. SMC-15, No. 2, March 1985, pp. 272-280

6

APPENDIX - K References

[LEE_88] Lee, T. and Lai, M.
"A relational algebraic approach to protocol verification",
IEEE Trans Software Eng,
vol. 14, No. 2, Feb 88, pp. 184-

[LIN_86] Lin, T. and Mead, C.
"A Hierarchical Timing Simulation Model.",
teee Transactions on CAD,
vol. CAD-5, No. 1, Jan. 1986, pp. 188-197

[LOON88] Looney, C.
"Fuzzy Petri nets for rule based decision making",
tf.ee Trans. Systems, Man and Cybernetics,
vol. 18, No. 1, Jan. 1988, pp. 178-183

[MARS87] Marsan, A., Chiola, G., Fumagalli, A.
"Timed Petri net model for the accurate performance analysis
Of CSMA/CD bus LANs",
Computer Communications,
vol. 10 No. 6, December 1987, pp. 304-312

[MART83] Martikainen, 0. and Ahtianen, A.
"Modular Specification of OSI Subsystems",
EUTECO European Teleinformatics Conf. (Italy),
vol. 1983, pp. 587-597

[MART86] Martin, J.
"Abstract Data Networks and Application to Communication
Protocols. IN FRENCH - Reseaux de Donnees Abstrait...
Thesis of L'universite Paul Sabatier de Toulouse (Sciences),
No. 3327, Jul. 1986, pp. 1-164

[MCAL87] McAllister, C.
"The Simulation of Systems as Timed Sequences of Events",
National Institute for Higher Education, Dublin,
Working paper CA-0387, Oct 1987, pp. 1-61

[MEAN88] Meandzija, B.
"Archetype: A unified method for the design and implementation
of protocol architectures",
TFFFi Trans, software eng.,
vol. 14 No. 6, june 1988, p. 822-837

[MIER87] Mier, S. and Talavage, J.
"A hybrid paradigm for modeling of complex systems",
Simulation (USA),
vol. 48, No. 4, .fpr 1987, pp. 135-141

[MILN85] Milne, G.
"CIRCAL and the representation of communication, concurrency
and time",

ACM Trans. Prog. Lang, and Systems,
vol. 7, No. 2, Apr. 1987, pp. 270-298

7

APPENDIX - K References

[MOLL89] Molloy, M.
"Special section on Petri net Performance models",
IEEE trans. Software Eng.,
vol. 15, No. 4, Apr 1989

[M0T085] Moto-oka, T. and Kitsuregawa, M.
"The fifth generation computer",
Wiley 1985,
ISBN 0 471 90739 1

[MURA88] Murat a, t. and Zhang, D.
"A predicate-transition net model for parallel interpretation
of logic programs",
IEEE trans software eng,
vol. 14, No. 4, apr 1988, pp. 481-497

[NIX089] Wing, J. and NIXON, M.
"Extending Ina Jo with Temporal Logic",
IEEE trans. software eng.,
vol. 15, No. 2 feb 1989 pp 181-197

[PACH87] Pachl, J.
"Protocol description and analysis based on a state transition
model withchannel expressions",
Protocol specification, testing and verification VII Zurich-
Switzerland, North Holland Amsterdam,,
vol. 5 May 1987, pp. 207-219

[PETE89] Peterka, G.
"Proof procedure and answer extraction in Petri net model of
logic programs",
IEEE trans. Software eng.,
vol. 15, No. 2, Feb 1989 pp 209-217

[PETR62] Petri, C.
"Kommunikation mit automaten",
Schriften des Rheinisch-Westfalischen Institute fur Instrum­
entelle Mathematic an der Universität Bonn,
W. Germany 1962.

[PETR66] Petri, C.
"Communication with automata",
Rome Air Development Center, Griffiths Air base, New York,
USA,
vol. RADC-TR-65-337, Jan 1966

[PS8901] Sidhu, D.
"Formal methods for protocol testing: A detailed study",
IEEE Trans. Software Eng.,
vol. 15, No. 4, Apr 1989

8

APPENDIX - K References

[RAMA85] Ramamoorthy, C., Dong, S. and Usada, Y.
"An Implementation of an Automated Protocol Synthesiser (APS)
and its Application to the X.21 Protocol",
IEEE trans. Software Eng.,
vol. SE-11, No. 9, Sept. 1985 pp. 886-908

[REED88] Reed, J. and Yeh, R.
"Specification and verification of liveness properties of
cyclic concurrent processes",
ACM Transactions on Programming Languages and Systems,
vol. 10, No. 1, Jan. 1988, pp. 156-177

[REGG88] Reggiani, M. and Marchetti, F.
"A proposed method for representing hierarchies",
IEEE Trans. Systems, Man and Cybernetics,
vol. 18, No. 1, Jan. 1988, pp. 2-8

[ROUX85] Roux, J.
"Analysis of Distributed Systems using Timed Petri Nets.
IN FRENCH - Analyse des Systemes Distributes ...",
Thesis of L'Institut National des Sciences Appliquées de
Toulouse,
vol. No. 156, Dec. 1985, pp. 1-149

[ROZE87] Rozeriberg, G.
"Advances in Petri nets 1987 (with bibliography of 2000 papers) "
Pub. Springer Verlag (Berlin),
vol. Apr. 1987, pp. 309-451

[RUDI83] Rudin, H.
"From Formal Protocol Specification Towards Automated
Performance Prediction.",
Protocol Specification, Testing and Verification III, IBM
Zurich,
vol. Ill, May 1983, pp. 257-269

[SANT88] Santos, A., Freitas, V. and Neves, J.
"The specification and prototyping of communication protocols
from heterogeneous temporal logic to concurrent prolog",
Ibercom 87 1st Iberian conf on data communications vol 2,
Computer Communications System, Elsevier Science Pub. 1988

[SARI85] Sarikaya, B. and Bochmann, G.
"A Test Design Methodology for Protocol Testing",
Proc. 18th Hawaii Int. Conf. on System Sciences,
vol. 2, 1985, pp. 710-721

[SCHI88] Schindler, M.
"Computer-supported graphics ease software specifications.",
Electronic Design,
vol. 3 Mar. 1988, pp. 87-98

9

APPENDIX - K References

[SEIT84] Seitz, C.
"Concurrent VLSI architectures",
IEEE Trans computers,
vol. C-33, No. 12, Dec 1984, pp. 1247-1265

[SEVI88] Sevinc, S & Zeigler, B.
"Entity structure based design method: IAN protocol example"
teee Trans. Software Eng.
vol. 14, No. 3, Mar 1988.

[SHAF87] Shafer, D.
"Advanced Turbo Prolog programming (TEXTBOOK) ",
Howard W. Sams & Company 1987,
ISBN 0-672-22573-5

[SHAT87] Shatz, S.
"Petri net modeling and analysis of the LAPD protocol standard"
Proc.Compasc 87 11th Inter.Conf.Software & Applic. Conf. 1987,
Cat. 87CH2447-1 Tokyo 7th Oct pp. 694-700 (IEEE CompSoc press)

[SIDH86] Sidhu, D. and Blumer, T.
"Verification of NBS Class 4 Transport Protocol",
TFiF.Fi Transactions on Communications,
vol. COM-34 No. 8, August 1986, pp. 781-789

[SIDH88] Sidhu , D. and Crall, C.
"Executable logic specifications for protocol service
interfaces",
IEEE trans software eng,
vol. 14, No.1, Jan 1988, pp. 98-121

[TABA85] Tabak, D. and Levis, H.
"Petri Net Representation of Decision Models",
IEEE Trans. Systems, Man and Cybernetics.,
vol. SMC-15, No. 6, Nov. 1985, pp. 812-818

[UCHI87] Uchihira, N.
"Concurrent program synthesis with reusable conponents using
temporal logic",
Proc.Compasc 87 11th Inter.Conf.Software & Applic. Conf. 1987,
Cat. 87CH2447-1 Tokyo 7th Oct pp. 455-64, (IEEE CompSoc press)

[VALK78] Valk, R.
"Self-Modifying nets, a Natural extension of petri Nets",
Automata, Languages and Programming, Udine (Lecture notes
vol. 62),
Springer-Verlag (Berlin) 1978 pp. 464-476

[VERN87] Holliday, M. and Vernon, M.
"A generalised timed Petri net model for performance analysis",
IEEE trans software engineering,
vol. SE-13, no. 12, Dec 1987, pp. 1297-1310

10

APPENDIX - K References

[VUON88] Vuong, S. , Lau, A. and Chan, R.
"Semiautomatic implementation of protocols using an Estelle-C
compiler",
IEEE trans software eng.,
vol. 14, No. 3, Mar 1988, pp. 384-

[ZEIG87] Zeigler, B.
"Hierarchical modular discrete event modelling in an object
oriented environment",
Simulation (USA),
vol. 49, No. 5, Nov 1987, pp. 219-230

[ZOBR87] Zobrist, G.
"Modified computational graph and its usage in concurrent
design",
CH2480-2/87/0000-0385 (C) 1987 IEEE,
pp 385-388

11

