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Summary

In this project, the production of the antifungal antibiotic, Pimaricin, 
by Streptomyces natalensis was investigated with a view to developing an 
Industrial fermentation process. A suitable medium was developed to 
produce dispersed growth in submerged culture, which was desirable for 
optimum antibiotic production. A spectrophotometric assay was 
successfully developed to rapidly determine the concentration of the 
antibiotic in culture supernates. Results from this assay were shown to 
be in agreement with the traditional microbiological assay. Factors 
affecting pimaricin production were investigated in shake flasks. Dosing 
the fermentation with sodium citrate was shown to have a significant 
effect on production. A rapid method for screening large numbers of 
survivors from a mutagenesis programme was developed. EMS and UV 
mutagenesis provided a number of isolates with increased productivity. 
Scale-up of the process in a 16 litre stirred fermenter proved difficult 
with the culture showing a strong requirement for oxygen. However, 
yields were equivalent to, and in some cases higher than those obtained 
in shake flasks. Although, improvements were made to the overall 
process, yields that would make the process economically viable were not 
obtained.

This project was funded by Biocon Biochemicals Ltd., Cork, Ireland. All 
of the research work was conducted at Dublin City University, formerly 
the National Institute for Higher Education (NIHE), Dublin.
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CHAPTER 1.
INTRODUCTION
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1.1. The Actinomycetes.

The actinomycetes have always been an unusual group of organisms for the 

bacterial taxonomists. The number of investigators studying this group 

of microbes has always been small and for the most part these organisms 

have been neglected by medical bacteriologists, physiologists and 

biochemists. It was only in comparatively recent times that their 

taxonomic position has been decided on (Breed et, al.. 1957).

Bacteriologists considered them as bacteria and mycologists generally 

considered them as fungi. The diseases caused by them have been 

described in literature on medical mycology (e.g. Conant et al.. 1954). 

This era is now over and the actinomycetes are generally accepted as 

procaryotes with filamentous growth habits. They are gram positive with 

DNA rich in guanine plus cytosine and they form a distinct group on the 

basis of nucleic acid sequencing (Nolan and Cross, 1988). They have no 

nuclear membrane, are sensitive to lysozyme for the most part and to the 

common antibacterial agents. Their cell walls also resemble those of 

bacteria.

Genera in actinomycetes consist of varied groups whose common 

feature is the formation of hyphae at some stage of development. The 

hyphal diameters are much smaller than those of fungi and are close to 

those of bacteria. The formation of hyphae is often tenuous, in some 

species of the genus Mycobacterium hyphae are never seen, whereas other 

species have hyphae only in young cultures. Genera of the 

actinomycetaceae form microcolonies which have very transitory filaments 

that are difficult to see. Hyphal development is more pronounced in the 

nocardias but they, too, fragment. The culture time at which this 

fragmentation occurs varies with the species and determines the types 

of colonies which form. Colonies in which the filaments break up early 

tend to be soft or mucoid whereas those whose filaments break up after



a few days have time for a branched mycelium to form and develop a harder 

texture. In the Streptomycetaceae, filament development is strong and 

fragmentation is rarely found. Examples are in the Streptomyces, 

Mlcromonospora and Actinoplanes spp.

Reproduction is usually asexual and in nonhyphal forms, asexual 

reproduction is by fragmentation or even by the fission of single cells. 

Where stable hyphae are produced, vegetative reproduction is by 

well-formed spores resembling fungal arthrospores, produced either free 

or in sporangia, as in the Actinoplanaceae. The free spores are in the 

form of sporophores and may consist of one, two or more spores in chains 

arising from primary hyphae. Except for the Actinomycetaceae, which 

contain aerobic or micro-aerophilic genera, the actinomycetes are 

generally aerobic (Gottlieb, 1973).

The genus Streptomyces belongs to the family Streptomycetacea and 

is an aerobic actinomycete with extensive branching substrate and aerial 

hyphae. Fragmentation of the substrate mycelium is rare (Gordon and 

Mihm, 1962) and spores are rarely produced on the substrate mycelium. 

The aerial mycelia usually bear long chains of spores (more than 50), but 

in certain species relatively short chains (5-10 spores) are the rule 

e.g. Streptomyces ramulosus. The spores are arthrospores formed by the 

regular septation of hyphae enclosed within a fibrous sheath (Wildermuth, 

1970). In some species the sheath persists and coats each detached 

spore, e.g. S. viridochromogenes (Rancourt and Lechevalier, 1964), in 

others the arthrospores mature within a loose sheath and can become 

detached from the chain quite free of sheath material, e.g. S. venezuelae 

(Bradley and Ritz, 1968), and S. griseus (Vernon,1955; Williams and 

Sharpies, 1970). This sheath is responsible for the surface appearance 

of streptomycete spores which may appear smooth, warty, spiny or covered 

with hair like protrusions when viewed under an electron microscope. As
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the culture matures the spores may often appear grey in colour or remain 

white. The spores are heat sensitive, 70°C for 10 minutes proving lethal 

(Dorokhova et aK , 1970). Streptomycetes are common in soil and

consequently can contaminate a wide variety of plant and animal products. 

However, they are rarely the primary agents of spoilage and 

biodeterioration. There are many reports of strains isolated from 

diseased animals or human infections but the organisms appear to be 

opportunists rather than pathogens. Streptomycetes have a characteristic 

earthy smell which can taint drinking water and foods in cold stores. 

They show a pronounced antibiotic activity and are the source of several 

very useful antibiotics.

1.2. Antibiotics and the actinomycetes.

Actinomycetes have been described as the greatest source of antibiotics 

since Waksman introduced Streptomycetes into his systematic screening 

programme for new antibiotics in the early 1940s (Okami and Hotta, 1988). 

They have provided about two-thirds (more than 4000) of the naturally 

occurring antibiotics discovered, including many of those important in 

medicine, such as aminoglycosides, chloramphenicol, p-lactams, macrolides 

and tetracyclines. Actinomycetes produce large numbers of antibiotics 

with a wide variety of chemical structures (Okami and Hotta, 1988). 

However, not all actinomycete strains produce antibiotics and no obvious 

function is known for antibiotics in the life cycle of actinomycetes. 

Indeed, antibiotics have been regarded as typical secondary metabolites 

(Bu’lock, 1965). Within the Actinomycetales, the Streptomyces spp. 

account for approximately 93I of reported secondary metabolites (Bushell, 

1982). This figure probably reflects the relative ease of isolation of 

the streptomycetes (Bushell, 1983), rather than the product-forming 

potential of members of other actinomycete genera.



Production of antibiotics by actinomycetes is characterised by strain 

specific production, structural diversity of the antibiotics, production 

at idiophase as a mixture of structurally related antibiotic metabolites, 

self resistance, and instability of productivity.

1.2.1. Strain specificity of antibiotic production.

It has long been known that there are actinomycete strains belonging to 

the same species that produce antibiotics different from one another; and 

also that there are strains belonging to different species that produce 

the same antibiotics (Lechevalier, 1975; Kurylowicz, 1976). Antibiotic 

production by actinomycetes, therefore is not species specific but strain 

specific. This means that the taxonomic characterization of actinomycete 

strains is not useful for the prediction of the type of antibiotics they 

produce. However, there should be specific genotypes conferring 

strain-specific antibiotic production. Such specific genotypes might 

correlate with specific gene clusters for biosynthetic enzymes as 

reported in streptomycetes that produce actinorhodin (Malpartida and 

Hopwood, 1986), streptomycin (Ohnuki et. al. , 1985) and erythromycin 

(Stanzak .et. al., 1986). If phenotypes were found and were easy to 

detect, they should be very useful in searching for new antibiotics.

1.2.2. Diversity of chemical structures of antibiotics.

Antibiotics of actinomycete origin show wide varieties of chemical 

structures encompassing aminoglycosides, anthracyclines, glycopeptides, 

3-lactams, macrolides, nucleosides, peptides, polyenes, polyethers and 

tetracyclines. These varied structures do not reflect a multiplicity of 

basic building blocks but rather a series of biochemical reactions such 

as condensation, methylation, oxidation, polymerisation and reduction. 

Relatively small numbers of primary metabolites serve as basic building 

units (Turner, 1973).



It has been shown that antibiotics are biosynthesised through pathways 

relating to the metabolism of sugars, shikimate, acetate/malonate, 

nucleosides, mevalonate and amino acids as well as through composite 

pathways. Antibiotics thus synthesised are usually accumulated at the 

idiophase (from the late log to stationary phase of growth) as a mixture 

of structurally related metabolites (Bu’lock, 1967). Antibiotics 

produced by the actinomycetes are therefore classed as secondary 

metabolites in contrast to primary metabolites which are produced in the 

tropophase or logarithimic phases of growth. Primary metabolites are 

those compounds which are important for growth of the organism and 

include enzymes and amino acids (Rose, 1979). It seems likely that 

structural variations of antibiotics occurs mainly in the later steps of 

biosynthesis. Biosynthetic enzymes involved in the later steps should 

vary among strains producing members of the same group of antibiotic.

1.2.3. Regulation of antibiotic biosynthesis.

Actinomycetes are usually cultivated in nutritionally rich media, and 

antibiotics begin to accumulate at idiophase. In addition, antibiotics 

are sometimes produced in nutritionally limited media or under limiting 

cultural conditions. This indicates that antibiotic biosynthesis is 

subject to various regulatory mechanisms. Carbon and nitrogen 

catabolites, phosphate and bioregulators may all represent major factors 

in these regulatory mechanisms (Demain et al., 1981).

Carbon catabolite regulation (glucose effect), which refers to the 

inhibition of synthesis (or activity) of catabolite enzymes by rapidly 

consumed carbon sources like glucose are well known in various antibiotic 

fermentations (Demain, 1968). Many biosynthetic enzymes (Gallo and Katz, 

1972) involved in the biosynthesis of antibiotics such as actinomycin, 

kanamycin and puromycin, have been found to be repressed by carbon 

catabolites. Similarly, ammonia type nitrogen sources and inorganic



phosphate also significantly influence the production of various 

antibiotics. For example, a high concentration of NHA+ represses the 

catabolism of amino acids, which results in the limited supply of lower 

fatty acids necessary for the synthesis of the aglycones of the macrolide 

antibiotics (Omura et. al_. , 1984). The use of slowly catabolised carbon 

(e.g. starch and soyabean oil) and nitrogen (e.g. soyabean meal) sources, 

NH++-trapping agents (Omura et al., 1980) and phosphate trapping agents 

(Omura _et_ al.. 1986) have been reported to be effective for the

enhancement of various types of antibiotics.

Cations are another factor influencing antibiotic production. 

Metal ions, such as, Ca++, Cu++, Mg++, Na+ and Zn+ have been shown to 

stimulate the production of aminoglycoside antibiotics (Garner et al., 

1953; Demain and Inamine, 1970; Hotta and Okami, 1976).

1.2.4. Antibiotic resistance.

Antibiotic-producing actinomycetes generally possess the metabolic or 

structural "target" of their own antibiotics but have resistance 

mechanisms against them to survive in the presence of the antibiotics 

they produce (Demain, 1974; Vining, 1979). Consequently, resistance has 

been regarded as an essential factor for antibiotic production. High 

yielding antibiotic strains have been obtained by generating and 

selecting clones or mutants with higher levels of resistance compared to 

parental strains (Katagiri, 1954; Unowsky and Hoppe, 1978; Crameri and 

Davies, 1986).

Many actinomycete strains that produce antibiotics of the 

aminoglycoside group have been shown to have multiple antibiotic 

resistances (Hotta et al. , 1983). Analysis of the mechanisms of the 

antibiotic resistance revealed that the resistance patterns of the 

strains tested were unique, being exclusively dependent on resistance 

determinants such as inactivating enzymes and ribosomal resistance. This



opened up a way of predicting the type of antibiotics that each 

actinomycete strain can be expected to produce. Similar antibiotic 

resistance patterns have been reported in macrolide antibiotic producers 

(Fujisawa and Weisblum, 1981). The biochemical correlation between 

individual resistance patterns and the types of antibiotics produced 

suggested a close genetic linkage between antibiotic resistance and 

biosynthetic genes. This has been supported by cloning experiments that 

revealed gene clusters comprising biosynthetic and resistance genes 

(Okami and Hotta, 1988). Antibiotic resistance in actinomycetes is 

usually stable. However, when a streptomycin producing strain of S. 

griseus was subjected to protoplast regeneration (Yamashita et_ al. .

1985), clones with resistance to high levels of streptomycin were 

generated. Further study of antibiotic resistance at the genetic level 

may lead to the generation of highly resistant strains which may 

over-produce certain types of antibiotics at a commercial level.

1.2.5. Genetics of antibiotic production.

Gene manipulation and conventional genetic analysis of actinomycetes 

(mainly Streptomyces) that produce antibiotics have highlighted the 

possible involvement of plasmids and clusters of genes in biosynthesis 

of antibiotics.

Plasmid involvement was first suggested by the loss of antibiotic 

production after plasmid curing treatment and by genetic mapping data 

showing no linkage between productivity and chromosomal genotypes 

(Okanishi et al. . 1970; Vivian, 1971; Hopwood, 1978; Okanishi and 

Umezawa, 1978). Detection of plasmids from various antibiotic-producing 

strains has strengthened the evidence for plasmid involvement in 

antibiotic production. However, plasmids have not been shown to be 

directly involved in antibiotic biosynthesis with some exceptions (Kirby
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et al. . 1975; Aguilar and Hopwood, 1982; Chater and Bruton, 1985).

Recently, giant linear plasmids (130-590 Kb) were detected from various 

antibiotic-producing strains of Streptomyces whose antibiotic production 

has been suggested by genetic mapping to involve plasmids (Kinashi and 

Shimaji, 1987).

Development of gene technology using Streptomyces host-vector 

systems (Hopwood et, al_. , 1985) has made it possible to clone antibiotic 

biosynthesis genes. It was found that antibiotic biosynthesis genes were 

clustered together with resistance genes in Streptomyces strains. These 

gene clusters seem likely to encompass genes directing enzymes which 

catalyse steps following the branching from primary metabolic pathways.

These procedures should aid in the understanding of gene 

organisation, structure and regulation. They may also be of use in 

solving specific problems in antibiotic fermentations (Baltz, 1982). 

However, most antibiotic biosynthetic pathways are complex processes 

which are poorly understood. Thus, in terms of commercial production, 

random chemically induced mutations continues to be the most widely 

applied and successful genetic procedure to improve the antibiotic 

productivity in many actinomycetes especially Streptomyces species.

1.3. Pimaricin and the polyene macrolide antibiotics.

The polyene macrolide, Pimaricin, was first discovered in 1955 when a 

group of Dutch investigators isolated a new, highly active antibiotic 

from the culture medium of a Streptomyces strain (Struyk et al., 1958). 

The Streptomyces strain originated from a soil sample taken in Natal, 

South Africa and the strain was named Streptomyces natalensis. The 

antibiotic it produced was called "Pimaricin". However, this name was 

not accepted by the World Health Organisation (WHO) and had to be changed
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to "Natamycin". Both names are frequently used in the literature. The 

antimicrobial effectiveness of this antibiotic against dermatophytes, 

yeast, fungi and trichomonas species was demonstrated. Further study was 

immediately conducted into this new antibiotic.

In 1959, American investigators isolated an antibiotic from the 

culture medium of a particular Streptomyces strain (Burns and Holtman, 

1959). This organism originated from a soil sample collected in 

Chattanooga, Tennessee (USA). This Streptomyces strain was called 

Streptomyces chattanoogensis and the antibiotic it produced called 

tennecetin. Tennecetin exhibited antibiotic activity against a variety 

of fungal organisms (Welsh, 1960). However, investigations on the 

chemical structure of tennectin revealed the antibiotic was identical to 

pimaricin (Divekar et al_., 1961). As a result the name tennectin

disappeared from the literature. Commercially, pimaricin is now produced 

from either Streptomyces natalensis or Streptomyces gilvosporeus.

The polyene macrolide antibiotics form a large group of antimicrobial 

substances belonging to the macrolide class of antibiotics (Berdy, 1974). 

Their chemical structure is characterised by a 26-38-membered macrolide 

ring closed by a lactone bond similar to that found in nonpolyene 

macrolides but much larger in size. The distinctive characteristic of 

polyene macrolide antibiotics is a polyene chromophore of three to seven 

alternate double bonds that forms part of the macrolide ring. Figure

1.1. shows the structure of pimaricin, the polyene macrolide under 

investigation in this project. This chromophore is absent from the 

nonpolyene macrolides. The polyene chromophore has a strong ultraviolet 

and short visible radiation absorption at the 280 to 410 nm region and 

this facilitates characterisation of the polyene macrolide antibiotics.
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Fig. 1.1.
All polyene macrolides show spectra of the same pattern in which the main 

absorption band is resolved into four tall narrow peaks. Figure 1.2.

shows the spectrum for pimaricin.
fl*ltm

Wive<*ngtf>. mp Fig. 1.2.

According to the characteristic absorption peaks of the different 

polyenes, they may be classified as trienes, tetraenes, 

pentaenes, hexaenes and heptaenes (Mechlinski, 1973). Pimaricin is a 

tetraene. Most polyene macrolides carry an aminosugar moiety attached 

by a glycoside bond to the macrolide ring. Two such aminosugars moieties 

have been found, namely mycosamine and perosamine. With pimaricin, a



mycosamine moiety is linked to the macrolide ring which is the case for 

most polyene macrolides.

Biosynthesis of the polyene macrolide group has not been studied 

in detail (Martin, 1979). Little is known about the biosynthetic 

intermediates and still less about the enzymes involved and the 

regulatory mechanisms that control them. The complexity of enzymes and 

genetic controls has been discussed earlier for antibiotics produced by 

the actinomycetes. From the biosynthetic point of view, both polyene and 

nonpolyene macrolides are almost identical. Both types are formed 

through the so-called "Polyketide pathway" involving a head-to-tail 

condensation of active two- and three-carbon units to form the macrolide 

ring, to which the macrolide sugars are later attached. There is some 

evidence to suggest that all macrolides are synthesised by mechanisms 

similar to that in fatty acid synthesis (Omura and Takeshima, 1974). The 

polyene macrolide antibiotics are essentially antifungal agents in 

contrast to the nonpolyene macrolides which are antibacterial (Martin, 

1979). It is known that the primary site of action of the polyene 

macrolide antibiotics are the sterols of the sensitive eucaryotic cells. 

The polyene-induced distortion of selective membrane permeability results 

in a leakage of potassium and magnesium ions and a decrease in 

macromolecule synthesis leading to destruction of the cells (Liras and 

Lampen, 1974).

In its solid state, pimaricin exhibits a crystalline structure. 

Temperatures up to 120°C do not impair the antibiotic’s activity as long 

as exposure does not exceed 1 hour. This is of importance when pimaricin 

media are sterilised (Raab, 1972). In the dry state pimaricin is 

relatively stable and when stored at room temperature or at 37°C, 

protected from ultraviolet light, there is no loss of antimicrobial 

activity. Pimaricin may be inactivated under the influence of UV light 

with wavelengths of 300-350 nm (Posthuma, 1965a; Posthuma, 1965b). In
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aqueous solutions, pimaricin reacts amphoterically. It has an 

isoelectric point of pH 6.5 and at pH values between 5.0 and 9.0, 

solutions of pimaricin are quite stable when stored in the dark. At the 

extreme pH ranges, pimaricin is rapidly inactivated.

Pimaricin exhibits good solubility in polar organic solvents and 

rather poor solubility in water. In some instances, the presence of a 

low quantity of water may increase its solubility (Raab, 1972). Suitable 

solvents for pimaricin are glacial acetic acid, methanol, butanol and 

propylene glycol (Clark, 1964). Methanol and butanol are used frequently 

when solubilising other polyene macrolide antibiotics such as candicidin 

(Liu, et. al_. , 1975). Pimaricin is soluble in the higher alcohols,

ethers, esters, aromatic or aliphatic hydrocarbons, chlorinated 

hydrocarbons, ketones, dioxane, cyclohexanol and various oils (Struyk and 

Waisvisz, 1975).

The most common method used to determine the presence of pimaricin 

is the microbiological assay. This is the classical method used to 

determine the biological activity of most antibiotics. However, as with 

all polyene macrolide antibiotics, pimaricin exhibits strong UV 

absorption and this can also be used as a basis of physical detection. 

Both these assay methods were investigated in detail during the course 

of this project. Other methods which have been used to detect pimaricin 

in food such as cheese, are thin-layer chromatography and liquid 

chromatography (Thomas, 1976).

Early studies indicated that the ability to. produce polyene 

macrolide antibiotics is widespread among the species of streptomycetes 

(Ball et al.. 1957). The exclusive distribution of production of polyene 

macrolide antibiotics among streptomycetes may be related to their 

postulated role as chemical components of the sheath of aerial mycelium 

(Cherny et al., 1972). This may have implications for recovery of 

polyene macrolide antibiotics from fermentation broths.
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The polyene macrolides, including pimaricin, are used as antifungal 

agents in the treatment of external and deep seated mycoses. They have 

also been used in conjunction with other drugs in which they appear to 

facilitate a more efficient uptake of the drugs (Kobayashi et. al., 1972; 

Medoff et. al., 1972). As a therapeutic agent, polyene macrolides are 

somewhat toxic making it difficult to administer large doses. However, 

in spite of their toxicity, polyene macrolides have a good market as 

antifungal agents, especially for topical use (Martin, 1979). Polyene 

macrolide antibiotics have also found use as food preservatives in the 

food and dairy industries. In the dairy industry, pimaricin is applied 

in cheese coatings and is superior to alternative products in preventing 

mold formation without affecting the taste and appearance of the cheese. 

Because it is an antifungal agent, important ripening and flavouring 

bacteria are not harmed (De Ruig and Van Oostrom, 1987; De Ruig, 1987).

1.4. Growth of actinomycetes in submerged culture.

The lack of reproducibility of product formation in liquid culture is 

well known for the actinomycetes (Nisbet, 1982). In many cases this may 

be due to the diversity of hyphal morphology obtained in liquid cultures. 

This may range from "pellets" of mycelium up to 0.5 cm through to 

cultures consisting of fragments of hyphae of 2-3 mm in length. The 

tendency to form fragments in submerged, agitated cultures has been 

correlated with loss of antibiotic producing ability upon transfer from 

agar to liquid culture (Shomura et. al.., 1979). Mycelia grown in more 

dilute complex medium tend to be less "fragile" than those produced in 

medium developed for biomass production. The apparent effect of nutrient 

concentration on this tendency to fragment has not been fully explained.

The pelleted growth form is frequently observed in submerged liquid 

culture. Most pelleting strains will also produce filamentous cultures,
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the morphology depending on inoculum concentration, dissolved oxygen 

tension, culture shear, pH and medium composition. Many studies have 

been carried out on fungal pellets, but very little information is 

available for actinomycetes (Standbury and Whitaker, 1984). The 

production of fungal secondary metabolites is inhibited by pellet 

formation (Smith and Calam, 1980), whereas pellet morphology is usually 

essential for tricarboxylic acid (TCA)-cycle associated organic acid 

secretion (A1 Obaidi and Berry, 1980). It appears that similar 

principles apply to actinomycete cultures. In fungi and actinomycetes, 

pellet structure varies between members of different species, ranging 

from densely packed mycelium, where oxygen supply occurs by molecular 

diffusion to loosely structured pellets into which the penetration of 

currents by turbulence in the medium can increase the supply of oxygen 

to the interior (Pirt, 1975).

It appears that the two extremes of submerged culture morphology, 

pelleted and fragmented hyphae, are unsuitable for many types of product 

formation, particularly if antibiotic production is desired. The 

intermediate type of well dispersed exponentially growing mycelium is, 

therefore, the morphology of choice. Most streptomycetes have an 

oxidative metabolism, especially Streptomyces. Therefore the importance 

of aeration and agitation, in both shake flasks and stirred fermenters, 

cannot be understated. This is discussed in more detail later.

1.5. The fermentation process for polyene macrolide antibiotics

Development of the industrial production of polyene macrolides has been 

largely empirical as large-scale production was developed prior to the 

establishment of the biosynthetic pathways leading to the formation of 

antibiotics (Martin, 1979).
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1.5.1. Inoculum development.

Inoculum development procedures must be standardised as these affect 

subsequent growth and production capabilities (Calam, 1976; Meyrath and 

Suchanek, 1972). As already mentioned, little information is available 

concerning the growth of actinomycetes in submerged culture. However, 

it does appear that growth morphology is similar to that of fungi and 

that a balance is required between pelleted and fragmented forms. In 

some polyene macrolide fermentations the amount of mycelia inoculated 

affects overall antibiotic production. In the candicidin fermentation, 

the larger the inoculum (washed mycelia), the higher the yield after 5 

days of fermentation. A smaller inoculum could be used only if extra 

yeast extract was added in the production medium (Liu et. al_. , 1975).

In the case of the pimaricin fermentation it is important to 

determine the optimum inoculum level and also to decide whether a 

mycelium or spore inoculum is more advantageous. For' Streptomyces and 

other actinomycetes a spore inoculum is a convenient standardised method 

of inoculating culture media and spore numbers can be determined by 

plating out the suspension or by using counting chambers (Collins and 

Lyne, 1979). The inoculum itself should be designed to give optimum 

growth rather than antibiotic production. For this purpose the 

composition of the inoculum may differ from the production medium.

1.5.2. Production media.

Optimisation of medium formulation has usually been performed by changing 

nutritional parameters, individually or in combination.

The most frequently used carbon source is glucose. Studies have 

shown that glucose, or substrates which produce glucose after hydrolysis, 

support the highest yield of several polyenes (Brewer and Frazier, 1962; 

Acker and Lechevalier, 1954; Ethiraj, 1969; Abou-Zeid, 1973; Tereshin, 

1976). British gum (a dextrin) was used instead of glucose in the
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amphotericin B fermentation to increase the ratio of amphotericin B to 

amphotericin A. Starch is also a good carbon source for nystatin 

production (Tereshin, 1976). However, the high concentrations of glucose 

required for maximal polyene production in the candicidin fermentation 

(Liu et al. , 1975), appear to inhibit antibiotic synthesis by catabolite 

regulation. This has been discussed as a general problem with 

antibiotics produced by the actinomycetes. Slow feeding of glucose, on 

the other hand, resulted in an increased synthesis of the two polyene 

antibiotics, candicidin and candihexin (Martin and Me Daniel, 1974). 

Similar increases in antibiotic synthesis when catabolite repression is 

by-passed by glucose feeding has been described in a large number of 

fermentations (Demain, 1968; Martin and Me Daniel, 1977).

Other important carbon sources are the short-chain organic acids 

and alcohols which are biosynthetic precursors of polyene macrolide 

antibiotics. Acetate, propionate, malonate, malate, lactate, succinate 

and citrate are unable to support antibiotic synthesis on their own 

(Acker and Lechevalier, 1954; Abou-Zeid, 1973). When acetate, 

propionate, or malonate, however, is added to a glucose basal medium, 

they stimulate candicidin synthesis (Martin and Me Daniel, 1976). It is 

thought that glucose provides, in addition to acetate and propionate, 

other precursors of the aminosugar and aromatic moieties which are 

essential for antibiotic production.

Lower alcohols behave in a similar fashion. n-propanol is an 

affective stimulator of candicidin synthesis (Martin and Me Daniel,

1976).

A complex nitrogen source is preferentially used in polyene 

macrolide production. Soya bean meal or soya peptone are probably the 

best nitrogen sources because of their slow hydrolysis. Other complex 

sources, such as corn meal, cottonseed meal, corn-steep liquor, casein 

and its hydrolysates, distiller’s solubles and yeast extract have also
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been used. Phosphate content of these media is of special relevance 

since phosphate is strongly inhibitory for polyene production. Also 

important is the content of trace metals, especially divalent cations 

some of which stimulate, and others which inhibit polyene production. 

Inorganic salts are not adequate nitrogen sources; some amino acids are 

good but their industrial use is uneconomical.

1.5.3. Agitation and aeration.

As already mentioned oxygen requirement for growth and antibiotic 

production has to be met by adequate agitation and aeration so that 

microbial metabolism is not limited by lack of oxygen. It is well 

established that fermentations of polyene macrolides are strongly aerobic 

processes. Studies have been carried out in shake flasks and fermenters. 

In flasks, the use of baffles is often required for optimal production 

(Me Daniel and Bailey, 1969). For candicidin production in fermenters, 

a minimal dissolved oxygen level of 20% of saturation has to be 

maintained throughout the fermentation. Production was decreased at a 

dissolved oxygen tension below 20% (Ethiraj, 1969). At 402 saturation 

and above, the yields were constant.

Consumption of oxygen in complex media is very rapid during the 

growth phase, thus necessitating higher agitation rates. A mixing speed 

of 300 rpm. has been reported in the nystatin fermentation (Lopatnev e_t 

al.. 1973). In the candicidin fermentation, 400 to 420 rpm. was

considered to give optimal production (Martin and Me Daniel, 1974). 

Dissolved oxygen concentrations above 50Z of saturation were thus 

maintained (Martin and Me Daniel, 1975).

This strong requirement for oxygen occurs only during the growth 

phase and the transition phase, decreasing during the antibiotic 

production phase or idiophase. Since auto-oxidation of most polyenes 

occurs easily (Martin, 1979), it seems probable that maintaining high
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aeration during the production phase is unnecessary.

1.5.4. Dynamics of the fermentation.

The concept of secondary metabolism, as opposed to primary metabolism, 

becomes less and less adequate as progress is made in the field of 

regulation and the production of the so-called "secondary metabolites". 

Biosynthesis of these metabolites is not biochemically "peculiar" and the 

enzymic and regulatory mechanisms involved are similar to those of the 

primary metabolism of the cell. These secondary metabolites are produced 

by single species or strains, and have no general function in all living 

cells (Martin, 1979). It is therefore more proper to refer to the two 

phases as the growth phase and the production phase. In the production 

of polyene macrolides in complex medium, these two phases are clearly 

distinguishable (Martin and Me Daniel, 1975).

It has been proposed that it is the specific growth rate of the 

culture that controls the onset of secondary metabolism (Bu’lock, 1974). 

The growth rate of the culture has to decrease below a certain value in 

order for secondary metabolism to be derepressed.

There is a correlation between the change in oxygen-uptake rate and 

the onset of the synthesis of polyene macrolides. This was shown for the 

candicidin fermentation (Martin and Me Daniel, 1975). Cell growth 

increases rapidly during the growth phase and in parallel with oxygen 

uptake. It would appear that some essential nutrient is depleted at this 

time and that this is phosphate in most cases. Phosphate exhaustion 

occurs a few hours before the culture reaches the transition stage in the 

candicidin fermentation. Following phosphate exhaustion a change in the 

metabolism occurs. Synthesis of RNA decreases rapidly, as does the 

intracellular ATP pool. Both the levels of RNA synthesis and the ATP 

pool remain very low during the production phase. It is, therefore, 

speculated that either phosphate or ATP is the regulatory signal that
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controls the onset of polyene macrolide synthesis. The production phase 

is usually accompanied by a decreased rate of metabolism and can be 

extended for long periods if enough glucose is supplied (Liu et al.. 

1975).

1.6. Regulation of biosynthesis of polyene macrolides.

Regulation of antibiotics synthesised by the actinomycetes has already 

been briefly discussed, however, this section describes those mechanisms 

which regulate the biosynthesis of the polyene macrolide group. 

Regulation of antibiotic biosynthesis is of great importance when 

considering the fermentation process of the polyene macrolide 

antibiotics.

In wild-type microbial strains regulatory mechanisms avoid the 

waste of useful metabolic intermediates. Some regulatory mechanisms have 

been more closely studied than others, but there is evidence which 

suggests that phosphate regulation, catabolite regulation and end-product 

regulation do play some role in the biosynthesis of polyene macrolides.

1.6.1. Phosphate.

Phosphate depresses the synthesis of antibiotics belonging to different 

biosynthetic groups. Biosynthesis of polyene macrolides is especially 

sensitive to phosphate. Phosphate concentrations of 5 mM and above 

strongly inhibit polyene macrolide synthesis, whereas optimal phosphate 

concentrations for growth are up to 300 mM (Liu £t al. , 1975; Martin and 

Me Daniel, 1976). Industrial production of these antibiotics has to be 

carried out under phosphate-limiting conditions and the phosphate content 

of industrial media is therefore very important.

Several mechanisms have been proposed to explain the phosphate 

regulatory effect. These include the shifting of carbohydrate catabolic
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pathways (Hostalek, 1964), inhibition and repression of biosynthetic 

phosphatases (Miller and Walker, 1970; Robbers et al_., 1972) and

limitation of the formation of inducers (Robbers et al.t 1972). However, 

there is no clear understanding of the mechanisms involved. Phosphate 

in the plating media could be used to select for derepressed mutants 

which in turn may over-produce a particular antibiotic.

1.6.2. Catabolite Regulation.

Several researchers have observed that use of high concentrations of 

glucose results in a lower production of polyenes than when the same 

concentration of glucose is added in several fractions. Slow feeding of 

glucose results in an increased synthesis of the polyenes candidin and 

candihexin (Martin and Me Daniel, 1974). When the glucose concentration 

in the fermenter was maintained at 5 g/1 or 15 g/1, there was a higher 

production of polyenes than in the control fermentations in which glucose 

was added initially at 60 g/1. In slow feeding fermentations, glucose 

was utilised at a higher rate, but biomass accumulation was smaller 

suggesting that carbon was channelled into polyene formation (Martin and 

Me Daniel, 1974). Periodical addition of sugars has been used in the 

production of the polyene macrolides amphotericin B (Brewer and Frazier, 

1962). High concentrations of glucose during the growth phase probably 

favour a rapid glycolysis and biomass accumulation, but glucose 

concentrations should be low when production starts (Martin, 1979).

Thus it appears that polyene macrolide synthesis is subject to 

carbon catabolite regulation, this being by-passed by slow feeding of 

glucose. Catabolite repression can also be useful as a selection system 

for mutants that can produce high levels of an antibiotic even in the 

presence of high levels of glucose.
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1.6.3. Metal ions.

It has already been mentioned that various metal ions affect the 

production of secondary metabolites produced by actinomycetes. 

Researchers have shown that some metal ions have a profound effect on the 

biosynthesis of candicidin (Liu et al,, 1975). The maximum stimulatory 

effect on candicidin synthesis depended on the type of metal salts and 

the concentrations used. The most effective salts were ferrous sulphate, 

zinc sulphate and magnesium carbonate. At the metal ion concentration 

which gave highest candicidin yields, a significant suppression of 

mycelial growth of Streptomyces griseus was always observed. The 

suppression of mycelial growth was not caused by changes in other 

parameters, such as pH, due to the addition of the metal ion.

It was noted that, like phosphate, zinc sulphate also exerted its 

effect on both primary and secondary metabolic activity of the organism. 

The addition of zinc sulphate at the time of inoculation caused both a 

sharp increase in the rate of antibiotic synthesis and accelerated rate 

of sugar utilisation, but suppressed mycelial growth. Studies indicated 

that the optimum zinc ion concentration for both mycelial growth and 

candicidin production was around 5 x 10~6M. Concentrations higher than 

this had an inhibitory effect on production.

1.6.4. Feedback Regulation.

Biosynthesis of a large number of antibiotics is sensitive to the 

accumulation of its own antibiotic (Jones and Westlake, 1974; Liu et al.. 

1977; Kominek, 1975). In the polyene macrolides, it has been reported 

that addition of fungicidin to a Streptomyces noursei culture that 

synthesises both cycloheximide and fungicidin inhibits production of 

fungicidin but stimulates cycloheximide synthesis (Spizek et_ al.. , 1965). 

It was proposed that fungicidin and cycloheximide are derived from a 

common precursor, namely malonate. Incorporation of malonate into
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fungicidin is inhibited by fungicidin addition and, therefore the 

precursor is channelled into cycloheximide. Addition of cycloheximide, 

in turn, has the opposite effect. Similar results were obtained for the 

candihexin fermentation (Martin and Me Daniel, unpublished results). 

When exogenous candicidin was added to a candihexin-producing culture of 

S. viridoflavis, the concentration of the total antibiotic in the broth 

was maintained, suggesting that it either causes feedback inhibition of 

de novo antibiotic synthesis or is degraded in the fermentation. Using 

mutation and selection it may be possible to select for mutants which 

have overcome feedback inhibition and continue to produce the antibiotic 

even in the presence of high concentrations of the antibiotic.

1.7. Strain development of antibiotic producing streptomycetes.

Induced mutagenesis remains the single most versatile and widely 

applicable genetic procedure for strain development to improve antibiotic 

yields in Streptomyces for several reasons. First, it is very flexible 

in that it can be used with any species regardless of the state of 

knowledge of the parameters that influence antibiotic yields. A second 

advantage is that methodologies for chemical mutagenesis are usually 

simple. Procedures can be rapidly developed which can be used for many 

different species. A third advantage is that it can be very efficient. 

With the most potent mutagenic agent, a population of cells surviving the 

mutagenic treatment can be obtained all of which, on average, contain one 

mutation affecting antibiotic yield (Baltz and Stonesifer, 1984).

The techniques associated with the isolation of improved mutants 

focus on the alteration of the producing organism to a culture which 

permits a more economic fermentation, in terms of grams of product 

isolated from the culture broth as well as the cost of the fermentation
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As described earlier, antibiotics are most frequently the end 

product of often very complex, multigenic biosynthetic pathways. As 

secondary metabolites they form a diverse group of compounds often only 

produced under very specific cultural conditions. Indeed, in 

Streptomyces as in other organisms, many of the largest improvements in 

yields are achieved by careful adjustment of fermentation conditions such 

as nutrient availability, temperature, pH, aeration, etc. (Kralovcova .et 

al.. 1984; Mandal et al., 1983). It is thus important to remember that 

improved strains may require special conditions to be able to express a 

beneficial mutation.

1.7.1. Genetic basis of strain improvement methods.

To generate an improved strain requires altering the informational 

content of the DNA in such a way as to increase the levels of enzymes 

involved in biosynthesis, eliminate or reduce the effects of control 

mechanisms, eliminate detrimental characteristics of the organism, or 

generate a novel and more efficient route to the desired product. All 

of these limitations to the rate at which an antibiotic can be produced 

are controlled by the genetic information of the organism, and it is here 

that the desired change must be induced.

It is now possible to choose from a wide variety of mutagens, ones 

which will give the required mutation (e.g. deletion, base change, frame- 

shift, duplication, clustered etc). In this project, ultra-violet light 

and ethyl methanesulphonate (EMS) were the two mutagens used.

UV light induces all types of base pair substitutions (Coulondre 

and Miller, 1977; Miller, 1983) by error-prone repair or replication of 

lesions which survive error-free excision. UV light is mutagenic for 

Streptomyces coelicolor (Clark and Hopwood, 1976) and S. clavullgerus 

(Saunders and Holt, 1982; Saunders et al., 1982). UV-sensitive mutants

(Normansell, 1984).
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of S. coelicolor have been mapped (Harold and Hopwood, 1970) and appear 

to be defective in pyrimidine dimer excision. It has also been 

demonstrated that caffeine, an inhibitor of pyrimidine dimer excision 

(Fong and Bockrath, 1979) has a substantial mutator effect in conjunction 

with UV treatment (Saunders and Holt, 1982).

Ethyl methanesulphonate is an alkylating agent which causes 

mutations primarily by 06-alkylation of guanosine residues in DNA. The 

alkylations cause shifts in base pairing which results in 6C-AT 

transition mutations (Drake and Baltz, 1976; Coulondre and Miller, 1977). 

In procaryotes, EMS generally causes such mutations by direct 

misincorporation of bases during DNA replication independent of 

error-prone repair systems (Drake and Baltz, 1976). EMS is a potent 

mutagen for Streptomyces fradiae and other Streptomyces species (Baltz,

1986). The development of genetic manipulation techniques for 

Streptomyces has permitted a complete reappraisal of the achievable 

targets in strain improvement. However, these techniques were not used 

in this project and are not discussed here.

1.7.2. Factors affecting screening strategy.

When devising a screening method for isolating mutants of improved 

productivity a number of considerations must be taken into account.

The nature and characteristics of the antibiotic itself can have 

a major influence on the methods used for strain improvement. In most 

strain improvement programmes large numbers of isolates will be screened, 

so rapid methods of assay, such as chemical assays, are advantageous. 

Direct assay of antibiotic activity using a sensitive test organism can 

also be adapted to very rapid screens. However, the more rapid the 

screen the less accurate it is. It is also important to ensure that the 

assay does not highlight false positives, e.g. over-production of
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compounds with a similar chemistry. Direct assessment of antibiotic 

activity is perhaps the best way of reducing the frequency of such 

occurrences.

The number of genetic targets may influence the mutability of an 

antibiotic. The total number of genes affecting production may total in 

excess of 100 (at least 1% of genes in a Streptomyces genome). However, 

in any one strain, at any one time there is only a single rate-limiting 

step. To improve antibiotic yield this rate limitation must be overcome 

and this therefore, reduces the number of available targets. From this 

it is clear that the number of potentially beneficial mutations is small 

and so the frequency of their occurrence will also be small. 

Consequently the majority of methods for isolating improved mutants have 

been devised to permit screening of large numbers of isolates in as short 

a time as possible.

When the probability of producing an improved strain is low, as in 

the case of random mutation and selection, then the frequency of its 

occurrence in a given population is also low. Under these circumstances 

the screen must be designed to test large numbers of cultures in the 

shortest possible time. The feature common to all these screens is that 

accuracy and reliability will decrease as the number of strains tested 

increases.

1.7.3. Screening methods.

Shake flask screens have for many years been the main method employed by 

the fermentation industry to isolate improved mutants and is still 

widespread today. These techniques have been successful, but they are 

labour intensive and very time consuming. All shake flask screens rely 

on direct assessment of antibiotic yield either by biological or chemical 

means.

Normal usage of random screens involves the mutagenic treatment of
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a population of cells (usually spores in the case of Streptomyces). It 

is important to ensure that the targets being mutagenised are uninucleate 

since the expression of a mutant phenotype may be masked if the culture 

is not homogeneous (Rowlands and Normansell, 1983). Following 

mutagenesis the cells are allowed to develop as individual colonies on 

the surface of agar and each colony is then used as a source of inoculum 

for a shake flask.

The use of shake flask screens as a means of assaying productivity 

has many advantages and disadvantages. It will permit the testing of, 

perhaps, several thousand cultures per week, although this may be limited 

by shaker space and available manpower. Liquid cultures also allow the 

widest variety of product assays to be used, including biological 

diffusion assays. Mutants isolated from this protocol which consistently 

over-produce the antibiotic can then be investigated at different levels 

of scale-up. The major drawback is the reliability with which an 

improved strain can be identified within a variable background. One way 

in which reliability can be improved is to increase the number of 

replicates of each culture, but of course this will reduce the total 

number of cultures which can be screened.

Plate-based screens allow for colonial productivity to be directly 

assessed. This technique allows for a dramatic increase in throughput 

of cultures, and although it was designed for the assessment of fungal 

cultures, it is also applicable to Streptomyces screening. Many 

plate-based screens exist but they all have in common the assessment of 

cultures growing on solid support, such as agar, and rely on diffusion 

of antibiotic away from the producing colony and into a population of 

antibiotic-sensitive organisms. The simplest plate-based assay is the 

"overlay technique", in which colonies of the producing culture are 

overlaid with agar containing the test organism. Upward diffusion of the 

antibiotic into the overlay results in a clear zone of inhibition. This

27



procedure has been used in the isolation of mutants of Acremonium 

chrysogenum (Chang and Elander, 1979) capable of over-producing 

cephalosporin C and for the isolation of improved mutants of Penicillium 

chrysogenum (Ball and Me Gonagle, 1978). A variation of this technique 

involves the growth of the colony on an agar plug and the subsequent 

transfer of this plug to an agar medium containing the test organism. 

The antibiotic will diffuse from the plug to give a zone of inhibition. 

This procedure has been used to isolate improved penicillin-producing 

mutants of Aspergillus nidulans (Ditchburn et al.. 1974) and for improved 

cephalosporin C producers (Trilli et al., 1978). It has also been used 

to improved streptothricin production Streptomyces fradiae (Prakash and 

Tan, 1977).

The main advantage of the plate-based screens is the large numbers 

of cultures that can be screened. The main limitation is that screens 

of this nature are generally of low resolution, and are not efficient at 

discerning small increments in yields. This is particularly the case 

when the zone of inhibition for the parental strain is large because, 

under the conditions provided, a further increase in productivity will 

only give a small increase in zone diameter. To combat this, the zone 

diameter can be reduced by either using a less sensitive test organism, 

including a product-destroying agent in the agar, or by inhibiting the 

growth of the producing organism. Compounds which inhibit the 

biosynthesis of the antibiotic e.g. phosphate can also be used.

Another limitation of plate-based screens is separating biomass (a 

function of colonial size and morphology) from productivity. This 

problem has been highlighted in a study of Streptomyces erythreus (Trilli 

et al., 1982). The specific productivity of a colony may, however, be 

defined in terms of "potency index" which is the diameter of the colony 

relative to the diameter of the zone of inhibition. This has been used
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in the work described by Ball and Me Gonagle, (1978) and Chang and 

Elander, (1979). The plate-based screening technique, though of limited 

use, has been used successfully in some Streptomyces (Dulaney and 

Dulaney, 1967; Ichikawa .et al.. , 1971; Santos, 1974; Prakash and Tan,

1977).

Besides random screening, it is also useful to screen for "blocked 

mutants". Blocked mutants are those which are impaired in antibiotic 

production and they play an important role in strain improvement 

programmes. During random screening procedures mutants which are 

significantly depressed in antibiotic production should be isolated. The 

frequency of their occurrence may give an indication of the efficiency 

with which the mutagenic techniques being used can effect an alteration 

in genes involved in antibiotic biosynthesis.

Genetics and biochemical characterisation of nonproducing mutants 

can provide valuable information for identifying the most appropriate 

strain improvement techniques as well as the fermentation conditions for 

maximum yield. There have been several reports of such investigations 

in the field of antibiotic production by filamentous fungi and 

Streptomyces, (Rhodes et. al.. , 1981).

Of far greater importance from an industrial viewpoint is that 

blocked mutants can have a direct influence on screening programmes when 

they are subjected to mutagen-induced "phenotypic reversion". The 

reversion or suppression of a nonproducing phenotype, usually with the 

use of a mutagen, can lead to the isolation of three classes of strains: 

those producing less than parental; those producing parental, and those 

producing greater than parental yields of antibiotic. The last of these 

is of most direct relevance to industrial strain improvement programmes. 

As a result, nonproducing reversions can be a source of high-yielding 

strains (Dulaney and Dulaney, 1967; Unowsky and Hoppe, 1978).

The use of blocked mutants enables the application of rapid
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screening procedures and also this approach guarantees the isolation of 

mutants "hit" twice in a gene or genes involved in antibiotic 

biosynthesis. As described earlier, a major limitation inherent in the 

use of screens assessing colonial antibiotic productivity on agar is the 

discernibility of small increases in antibiotic yields in a 

high-producing background. Blocked mutants would be useful in these 

screens because background production is very low.

This project was concerned with the use of pimaricin as a food 

preservative and not as a therapeutic drug. One of the most important 

aspects of this project was the fermentation process and the production 

of the antibiotic. It was hoped to improve antibiotic production by 

fermentation development and also by mutation and selection to generate 

high-yielding mutants. The first patent on pimaricin and its commercial 

production is owned by the Dutch company, Gist-Brocades, N.V., who made 

the original discovery, and the second by a US company, American Cyanamid 

Corporation. Both patents comprise principally the same method of 

production. The patent, however, does not give precise information on 

the production of pimaricin (Sruyk and Waisvisz, 1975) and outside of the 

patent very little appears to have been published on the production of 

the antibiotic in submerged culture fermentation. Consequently, 

development of the pimaricin process in this project was modelled on 

improvements made to other closely related polyene macrolides. These 

included Candicidin (Liu et al., 1975), Candidin and Candihexin (Martin 

and Me Daniel, 1974) and Amphotericin B (Cheung et al., 1975).
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CHAPTER 2. 

MATERIALS AND METHODS
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2.1. Chemicals.

Chemicals used for antibiotic assays and other biochemical analyses were 

of Analar or analytical gradeunless otherwise stated. Those used for 

laboratory cultures were of general purpose reagent grade. Materials 

used for 250 ml shake flask cultures and the 10 litre fermentations were 

of industrial or food grade. These were obtained from Biocon Ltd., 

Ireland. The sources of laboratory chemicals were either B.D.H. Ltd., 

England, or Reidel-de-Haen AG, Germany. Routine microbiological agar and 

media were of Oxoid or Merck brand.

Pimaricin, under the commercial name "Delvocid" was obtained from 

Gist-Brocades, Delft, Holland. Delvocid contains 50Z active pimaricin 

and 502 lactose. Methanol used for pimaricin preparation was general 

purpose grade obtained from B.D.H. Ltd. Water used for media preparation 

and for batching the 16 litre fermenter was distilled.

2.2. Bacterial culture.

2.2.1. Source of strain.

Cultures were obtained from the American Type Culture Collection, U.S.A. 

(ATCC) number 13326, and the Northern Research Laboratory, U.S.A. (NRRL) 

2651. These were equivalent to the Central Bureau Voor Schimellcultures, 

Holland. (C.B.S.) 700.57. The organism was named Streptomyces

gllvosporeus by ATCC, but as Streptomyces natalensis by NRRL.

2.2.2. Culture maintenance.

Stock cultures were maintained on yeast malt extract agar slopes, 

subcultured regularly and stored at 4°C. Cultures required 10-14 days 

to grow and sporulate at 26°C. White mycelia, of a white chalky texture, 

formed initially. In some cases this type of growth prevailed but
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generally a dark grey sporulating mass appeared after 14 days incubation.

Yeast-Malt Extract Agar contained; (g/1), yeast extract, 3; malt 

extract, 3; mycological peptone (Oxoid), 5; glucose, 10; Oxoid agar NO.3, 

20. The pH of the agar was adjusted to pH 6.5 before autoclaving. The 

glucose, malt and yeast extract were of food grade.

Yeast-malt extract broth was also prepared using these ingredients but 

without agar.

Sporulation media:

Ground Oatmeal agar (ATCC catalogue). Boil 3g of oatmeal for 1 hour in 

100 mis of distilled water and filter through muslim. Use filtrate only. 

Add 20 g/1 of agar, boil and autoclave in 20 ml glass universals.

"Sporulation" agar (g/1) (Williams et al. , 1974). corn steep solids, 5; 

starch, 10; (NHA)ZS04, 3; NaCl, 3; CaC03, 3; Oxoid agar No. 3, 13

(Williams et_ al.., 1974).

2.2.3. Detection of contamination.

Bacterial contamination of stock cultures, spore suspensions or 

fermentation samples was tested for by plating samples onto yeast-malt 

extract agar and incubating overnight at 26°C.

2.2.4. Pimaricin productivity test.

Stock cultures were routinely checked for pimaricin productivity by 

inoculating 250 ml shake flasks containing 50 mis of standard medium 

(section 2.7.1.) with a standard spore inoculum (5x 107/ml) and

incubating under standard conditions (section 2.4). Pimaricin was then 

assayed after 5 days growth. Under these conditions up to 400 p-g/ml was 

obtained from stock cultures.
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2.3. Spore inoculum preparation.

Streptomyces natalensis was cultured on yeast-malt extract agar slopes 

(section 2.2.2.) for 14 days at 26°C to give well sporulated growth. 

Spores and mycelia were washed from the slope with 7 mis of 0.1 M 

phosphate buffer, pH 7.00 and Triton X-100 (0.01Z v/v). 1Z (v/v) of this 

suspension was then used to inoculate 50 mis of medium in 250 ml shake 

flasks. It was later found that inoculating the flask medium directly 

from a slope using an inoculating loop was sufficient to give optimum 

growth and antibiotic production.

2.4. Shake flask cultivation.

Throughout the experimental work, shake-flask cultures were incubated at 

30°C on two orbital incubators. One was an LH engineering, single-tier 

shaker (model MK-X), set at 250 rpm with a throw of 30mm. The second 

was an LH engineering, 2-tier shaker (Model MK-II/III), set at 150 rpm 

with a throw of 50 mm. The single-tier model had accommodation for 250 

ml flasks only whereas the 2-tier model had accommodation for both 250 

ml and 1 litre flasks.

2.5. Fermenter cultivation.

The fermenter used was a Microgen, New Brunswick scientific and had a 16 

1 gross capacity. This was run with 10 litres of media. Inoculation and 

sampling was carried out aseptically. The vessel was pressure-tested 

each time before a run commenced. This was performed by allowing a 

pressure (10 psi) to build up within the vessel, using air through the 

sparger. A pressure drop would then indicate a leak, either in the 

vessel or in the plumbing system. The vessel was sterilised in-place
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with steam and maintained at 15 psi, and 121°C for 1 hour or longer. 

Components such as soya bean meal required longer sterilisation periods. 

The fermenter was run at 5 psi back-pressure to minimise foaming and 

reduce the risk of contamination. However, when addition ports were in 

use, during feeding experiments, a back pressure could not be used. 

Levels of aeration and agitation used were as indicated with individual 

experiments in Results section. All fermentations were run at 30°C. 

Foaming was controlled by the addition of KG-antifoam (Biocon, Ireland). 

pH was monitored continuously using an in-situ Ingold InFit 764-50 pH 

probe which was connected to a pH controller and chart recorder, model 

pH-22 (New Brunswick Scientific). Dissolved oxygen was also monitored 

using an in-situ galvanic probe, 900 series, which was connected to a 

dissolved oxygen analyzer and recorder, model D0-50 (New Brunswick 

Scientific).

2.6. Fermentation media.

2.6.1. Inoculum and production media (g/1).

Glucose, 30; soya peptone, 5; soya bean meal, 20; calcium carbonate, 5; 

approximate pH 6.80.

Materials used were of food grade and were obtained from Biocon Ltd., 

Ireland. This medium was used as the standard inoculum and production 

media for both shake-flask and 16 1 fermentations.

MD01 and MD05 were used as alternative carbon sources during the 

development of the fermentation media (Section 3.4.2.). These are 

different forms of hydrolysed dextrins, derived from starch, which are 

graded 1 to 40 (approximately). MD01 has a dextrose equivalence (DE) of 

5, whereas, MD05 has a DE of 25. MD01, therefore, is less hydrolysed

than MD05 and is similar to starch. Both were supplied by Biocon Ltd.
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2.6.2. Patent media (g/1).

(a) Glucose, 30; corn steep powder, 5; ammonium sulphate (NH4)2 S04,

5; potassium chloride (KC1), 4; di-potassium hydrogen phosphate 

(K2HP0^), 0.2; calcium carbonate (CaC03), 8.

(b) Beet molasses, 40; lactose, 20; corn steep powder, 10; sodium 

sulphate (Na2S04), 1; CaC03, 5.

(c) Mycological peptone (Oxoid), 5; beef extract (Gibco), 5; glucose, 

10; sodium chloride (NaCl), 5.

(d) Soya bean meal, 50; soya oil, 5; corn steep powder, 1; glucose, 

10; K2HP04, 0.2; (NH)2S0A, 5; CaC03, 10.

(e) Soya bean meal, 50; peanut oil, 5; corn steep powder, 1; glucose, 

10; K2HPOa, 0.2; (NH^SO*, 5; CaC03, 10.

2.6.3. Source of media formulations.

Patent media were obtained from the United States Patent, No. 3,892,850 

(Struyk and Waisvisz, 1975), entitled "Pimaricin and process of producing 

same". The inoculum and production medium was developed during the 

course of this project. The components of this medium were based on 

those used in the production of other polyene antibiotics, (Martin, J.F. 

and Me Daniel, L.E. 1974).

2.6.4. Sterilisation procedures.

Media were sterilised in flasks at 121°C and 15 psi for 20 minutes. 

Metals which were added to the media were sterilised separately. 

Pimaricin was filter sterilised through 0.45 jun PTFE membrane filters, 

Gelman Sciences. Media in the 16 1 Microgen fermenter were sterilised
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by the passage of steam through hollow baffles and held at 121°C at 15 

psi for 1 hour or longer if necessary.

2.7. Analytical procedures.

2.7.1. Estimation of reducing sugars.

Reducing-sugars were estimated using the DNS method (Miller, 1959). 

Results were expressed as reducing equivalents mg/ml, using glucose as 

standards.

DNS reagent (g/1).

3,5,-dinitrosalycylic acid, 10; potassium sodium tartarate, 300; sodium 

hydroxide, 16; were dissolved in 600 mis of water by heating without 

boiling. The solution was cooled and diluted to 1 litre.

Procedure.

Samples and glucose standards were diluted to 0.3-1.5 mg/ml reducing 

sugar equivalents. 1 ml samples were added to 1 ml water and 2 mis DNS 

reagent. The tubes were placed in a boiling water bath for 10 minutes 

and then cooled. 10 mis of water was then added to each tube, the 

contents mixed thoroughly and absorbance at 540 nm was measured on a Pye 

Unicam SP6-550 spectrophotometer. The instrument was set at zero using 

a reagent blank, made by adding 2 mis of water to 2 mis DNS reagent and 

treated in the same way as for samples. Reducing-sugars in unknown 

samples were determined using a standard curve of glucose 0.1-1.5 mg/I 

plotted against absorbance at 540 nm after DNS treatment.
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Two assays were used to measure the amount of pimaricin produced by the 

organism. The first method incorporated the classical method for 

assaying antibiotics, namely the microbiological assay or bioassay. The 

second method used was a spectrophotometric assay.

Bioassay Procedure.

This method was adapted from an bioassay already used for the detection 

of pimaricin, (Raab, W.P. 1972).

An overnight culture of the indicator strain (Sacchromyces cerevisiae 

ATCC 9763) was prepared. This was carried out by loop-inoculating 

yeast-malt extract broth (Section 2.2.2) from a prepared slope of the 

indicator strain and then incubating the culture at 30°C for 18-24 hours. 

After this incubation time 300 mis of molten yeast-malt extract agar was 

seeded with 0.1 ml of the indicator strain and this was then poured into 

a glass bottomed, autoclavable, bioassay plate (25mm x 25mm) and allowed 

to set. Wells were punched at regular intervals with a 7mm sterile cork 

borer. Particular attention was paid to pouring level agar plates using 

a level table and spirit level. A random pattern of numbers was used to 

assign samples (in triplicate) to different wells. Fermentation samples 

were centrifuged and the supernates diluted in methanol water (2:1). 

Pimaricin standards were prepared by dissolving O.lg of Delvocid powder 

(Section 2.1) in 100 mis of methanol to give a stock concentration of 500 

jig/ml pimaricin. Using this, a range of dilutions were prepared in 

methanol:water (2:1) to give between 50-400 (JLg/ml pimaricin standards. 

150 |j,l of each sample and standard was placed in their appropriate wells 

and diffusion allowed to proceed at room temperature for 2 hours. Plates 

were then placed in a 30°C incubator overnight. Clear zones around the 

wells, where the indicator strain had been inhibited, were highlighted

2.7.2. Quantitative analysis of Pimaricin.
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by placing the plates on a light box. The diameter of each zone was 

measured using a vernier calipers to 0.02 mm.

Calculation;

A standard curve was plotted of log concentration versus zone diameter 

(mm) and unknown samples read from this.

Spectrophotometric Assay Procedure.

This method was adapted from the work carried out by other researchers 

on the detection of pimaricin in cheese rind (De Ruig and Van Oostrom,

1987). This assay utilizes the UV absorption "finger print" of pimaricin 

to measure quantities present, (see Figure 2.1.) It can detect down to 

1 jig/ml of the antibiotic. Samples of culture supernates were diluted 

in methanol water (2s1), and the UV absorbance scanned on a Pye Unicam 

SP-100 UV/VIS spectrophotometer from 340 nm to 300 nm. Aqueous methanol 

was used to blank the instrument. The height of the characteristic 

pimaricin peak at 317 nm is directly proportional to the amount present 

between 1 and 17 p-g/ml. Standard pimaricin solutions of 5 (ig/ml and 15 

H-g/ml were run with every batch of samples. The peak heights obtained 

for these standards were used to calculate the concentration of pimaricin 

in the unknown samples.
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WAVELENGTH Cnm]

Fig. 2.1. UV absorption spectrum of Pimaricin showing measurement 

of peak height.
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Calculation:

From the plotted chart the absorbance was examined at 317 nm (maximum 

point), 311 nm (minimum point) and at exactly 329 nm. A base line was 

drawn from the readings at 329 nm and 311 nm and the peak height at 317 

nm was measured. Standards of 5 |xg/ml and 15 M-g/ml pimaricin were run 

and an average peak height for the two obtained for 1 [i,g/ml. This was 

used to calculate the concentration of pimaricin in the unknown samples 

as follows;

Ca = P3 x Cn x dilution factor 

Pn

Ce = Concentration of pimaricin in sample (|xg/ml).
Pa = Peak height of sample at 317 nm (mm).
Pn = Peak height of pimaricin standard (mm).
Cn = Concentration of pimaricin in standard (p,g/ml).

2.8. Mutagenesis procedures.

2.8.1. Ultra-violet mutagenesis.

Two methods were used;

(a) Spore suspension method.

(b) Plate method.

Solutions.

A phosphate buffer (0.05 M, pH 7.00) was prepared by combining 0.1 M 

Na2HP0A and 0.1 M NaH2P0Z|. Then 30.5 mis of 0.1 M Na2HP0A was added to 

19.5 mis of 0.1 M NaH2P0A, mixed well and diluted to 100 mis giving 0.05
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M. The pH was checked to read pH 7.00. If required 0.01Z or 0.1Z of the 

detergent triton X-100 was added to this buffer in order to prevent 

clumping of spores. If, also, required 1 mg/ml of caffeine was added to 

this buffer (Section 3.6.1.).

Spore suspension procedure.

A slope of the culture to be mutated was resuspended in 7 mis of 0.05 M 

phosphate buffer containing 0.1% triton X-100. The suspension was 

transferred to a sterile test tube, vortexed and allowed to settle. This 

was carried out to separate clumps of spores from the suspension which 

were not desirable. Using this homogeneous spore supernate 1.0 ml was 

transferred to 9 mis of 0.05 M phosphate buffer containing 0.01Z triton 

X-100. This dilution (10 mis of a is 10) of the spore suspension was 

transferred to a sterile petri-dish, ready for UV treatment. The 

ultra-violet lamp used was a model UVG-11 minaralight lamp, short wave 

UV-254nm. The lamp was positioned 15 cm above the petri-dish and the 

suspension was exposed to UV light for a certain period (15 minutes was 

found to almost kill the organism completely at this height) while being 

stirred occasionally with a sterile glass rod. Using a automatic pipette 

with sterile tips, 0.1 ml aliquots were removed aseptically and added to

9.9 mis of 0.05 M phosphate buffer with 0.01Z triton X-100. Serial 

dilutions were prepared and plated onto yeast-malt extract agar plates. 

These plates were incubated at 26°C to detect surviving colonies. All 

plates were placed in the incubator as quickly as possible to prevent 

photo-reactivation of the cells. When using caffeine in the plating 

medium, 1 mg/ml was dissolved in the agar before autoclaving.

A survival-curve for each mutated strain was prepared by plotting 

the number of survivors against the exposure time. The exposure time 

equivalent to a 90% kill was determined. Surviving colonies from this
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exposure time and longer were checked for pimaricin productivity either 

on bioassay plates or in shake flasks. Isolates giving increased yields 

were subcultured onto slopes and re-checked to confirm these results.

Plate procedure.

This was carried out in a similar way to the spore suspension procedure, 

however the appropriate dilutions were first plated out and the plates 

then exposed to UV light individually. The plates were then incubated 

and surviving colonies checked for pimaricin productivity.

2.8.2. Ethyl-methyl-sulphonate (EMS) mutagenesis.

A slope of the culture to be mutated was resuspended as previously 

described with 7 mis of 0.05 M phosphate buffer and 0.12 triton X-100. 

Using the particulate-free spore suspension, 5 mis was added to 4.6 mis 

of 0.05 M phosphate buffer and 0.012 triton X-100 in a sterile reaction 

vessel. With the aid of an automatic pipette and extreme caution, 0.4 

mis of EMS was added to the reaction vessel and this was incubated at 

30°C in an oscillating water bath. At appropriate time intervals, 

(between 0 and 60 mins was sufficient for S t r e p to m y c e s  n a t a l e n s i s ) 100 

111 (0.1 ml) of the reaction mixture was transferred to 10 mis of 102 

sodium thiosulphate in sterile glass universal bottles and left for 15 

minutes. The sodium thiosulphate was used to neutralise the EMS. Serial 

dilutions were prepared from this in 0.05 M phosphate buffer and 0.012 

triton X-100. Plates were incubated at 26°C until surviving colonies had 

fully grown. A survival curve was prepared and surviving colonies from 

a 902 or higher kill rate were checked for productivity as described 

previously.

A safety protocol was devised for the handling and safe disposal 

of EMS. All operations were carried out in a fume hood which had an
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impervious surface. A covering was place over the hood surface which 

could soak up any spillages (Whatman Benchkote). Protective clothing, 

gloves and a mask were worn at all times during the operation. Sodium 

thiosulphate (62) was used to soak pipette tips and it was also used to 

neutralise the EMS in the reaction vessel. To further minimise any 

risks, 2 mis of concentrated hypochlorite was added to all glass 

universals containing dilutions and left overnight in the fume hood. All 

disposable items, such as pipette tips, gloves and benchkote were placed 

in a biohazard bag for disposal by incineration (Leigh Environmental Co. 

UK). All neutralised liquid wastes were held for a long period in glass 

containers containing hypochlorite before being disposed of down waste 

disposal drains.

2.9 Routine measurements and instrumentation.

pH was measured using an Orion Ionalyser Model 501. Fermentation media 

and other chemicals were weighed on a Sartorious 1219 MP electronic 

balance (600g + O.Olg). Centifugation was carried out using a bench-top 

Heraeus Christ Model 6000 (maximum speed , 5000rpm or 4199g), and a 

Heraeus Christ model Biofuge A (maximum speed, 13000rpm or 16085 g). All 

aseptic procedures were conducted in a Laminar flow cabinet (Microflow 

pathfinder, Inter med). All microscopic examinations were carried out 

using a Nikon Optiphot microscope.
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CHAPTER 3.

RESULTS
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3.1 Growth of the Production organism on agar media.

A number of suggestions from the literature were obtained for agar media 

supporting good growth and sporulation of S t r e p to m y c e s species (Williams 

et al., 1974j Di Marco and Pennella, 1959). These are listed below. 

Plate and slope agar media (g/1):

1. Beef extract, 20; Asparagine, 0.5; Glucose, 10;
K2HP0A, 0.5; Oxoid agar No. 3, 13.

2. Beef extract, 1.0; Yeast extract, 1.0; Glucose, 2.0;
Casein hydrolysate, 2.0; Oxoid agar No. 3, 13.

3. Asparagine, 1.0; Beef extract, 2.0; Glucose, 10;
K2HP0A 0.25; Oxoid agar No. 3, 13.

4. Corn Steep solids, 5.0; Starch, 10; (NH4)2 S0A, 3.0;
NaCl, 3.0; CaC03, 3.0; Oxoid agar No. 3, 13.

5. Oatmeal agar (see Section 2.2.2).

6. Yeast-malt extract agar (see Section 2.2.2.).

pH of all media was adjusted to pH 6.5 with NaOH.

In this experiment media were prepared as plates and as slopes. They 

were then inoculated from a culture slope and incubated at 26°C under 

standard conditions. Growth of S t r e p to m y c e s  n a t a l e n s i s  appeared sooner 

on agars Nos. 1, 2, 3 and 6 than it appeared on agars Nos. 4 and 5, eg. 

2-4 days against 4-6 days, respectively. A number of different growth 

morphologies appeared on both plates and slopes when using these media. 

On plates of media Nos. 1, 2, 3 and 5, after 14 days incubation at 26°C, 

colonies appeared white and chalky and were embedded into the agar. Some 

of these colonies had a star-shape appearance and proved difficult to
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break up or subculture. When growing on slopes of the same media, the 

organism grew in a similar fashion but covered the entire slope. On 

plates of media Nos. 4 and 6, after 14 days at 26°C, colonies formed a 

grey sporulating mat. These colonies were friable and proved easier to 

subculture. When growing on slopes of these media the organism covered 

the entire slope producing the same grey sporulating mat. This type of 

growth proved ideal for subculturing and for preparing spore suspension 

inocula for shake flasks. It was found that agar medium No. 6, 

yeast-malt extract agar, (Section 2.2.2) produced very dense sporulated 

growth and so was used routinely throughout this project when culturing 

S t r e p t o m y c e s  n a t a l e n s i s .

3.2. Growth in shake flasks

There is little information available on the morphology of streptomycetes 

grown in submerged culture (Williams et al., 1974). It is thought that 

pelleting does not play as critical a role in streptomycete fermentations 

as, it does in fungal processes. However, researchers have demonstrated 

that a wide range of morphological forms are found among the 

streptomycetes and that these are often influenced by the concentration 

of spores in the inoculum, the medium composition and the shear forces 

operating during culture (Lawton et. al. , 1984). Little information 

appears to be currently available on the effect of morphological form on 

product formation by streptomycetes in submerged culture.

Initial studies on the growth and antibiotic production by 

S t r e p t o m y c e s  n a t a l e n s i s  were carried out using 50 ml aliquots of media 

in 250 ml shake flasks. The media used for these initial studies are 

listed in Table 3.1., and were developed using ingredients obtained from 

Biocon Ltd. Some of these ingredients were also used in the production 

of similar antifungal antibiotics (Martin, J.F. & Me Daniel, L.E., 1974).
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Table 3.1. Media used to test the growth of 

S t r e p to m y c e s  n a t a l e n s i s ,

Medium Composition pHi
(g/1)

A Glucose, 30; Soya peptone, 10. 5.68
B Lactose, 30; Soya peptone, 10. 6.00
C Sucrose, 30; Soya flour, 10. 6.25
D Glucose, 30; Soya flour, 10. 5.82
E Glucose, 30; Yeast extract, 10. 5.67
F Glucose, 30; Soya bean meal, 10. 5.60
G Glucose, 30; soya peptone, 10;

CaC03, 5 * 7.35

The media listed were used for both primary and secondary shake fl

cultivation. A 1X inoculum, of a slope culture suspension, was used

primary flask cultures. Incubation of flasks was at 30°C, 250 rpm and 

growth was observed visually each day. After 3 days, a 51 vegetative 

inoculum from each flask was used to inoculate the secondary flasks. 

Incubation conditions were the same as for primary flasks. Pimaricin was 

assayed from samples taken after 3 days for the primary cultures and 5 

days for secondary cultures using the bioassay (Section 2.7.2.). These 

preliminary experiments were later repeated and pimaricin was assayed 

using the spectrophotometric assay (Section 2.7.2.). Results from this 

work showed that pelleted growth was observed in all flasks except with 

medium F, which gave little growth and produced no pimaricin. Large 

pellets were associated with media A, B, C, D and E and productivity was 

less than 20 |xg/ml. Medium 6 contained very tiny, dense pellets of 

growth and produced 350 n-g/ml pimaricin. Medium 6 was the only medium 

of all 6 to contain CaC03 and it was thought that this contributed to the 

dispersal of the mycelia and higher antibiotic production. There was
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very little difference in either growth or antibiotic production between 

primary and secondary flask cultures. Medium G, containing glucose, soya 

peptone and CaC03, was used as a starting point for subsequent studies 

to observe the growth and antibiotic production of S t r e p to m y c e s  

n a t a l e n s i s .

In another experiment the ratio of these three components were 

varied and two other nitrogen sources were tested, yeast extract and soya 

bean meal. These different media combinations are listed in Table 3.2. 

Primary and secondary shake flasks were again used and incubation 

conditions were as before. The secondary flasks were inoculated with a 

10% (v/v) primary vegetative inoculum after 2 days incubation. The

secondary flasks were assayed for pimaricin after 3 days and the growth 

morphologies of each culture were recorded. The primary flasks were 

allowed to incubate for 1 further day before assaying and observing 

growth morphologies.

Table 3.2. Media used to test for pimaricin

production by S t r e p to m y c e s  n a t a l e n s i s .

Medium Composition
(g/1)

pHi

G (control) Glucose, 30; Soya peptone, 10; CaC03i 5 7.45
H Glucose, 15; Soya peptone, 10; CaC039 5 . 7.52
I Glucose, 15; Soya peptone, 5; CaC03f 5. 7.53
J Glucose, 30; Soya peptone, 10; CaC03f 1. 7.47
K Glucose, 30; Soya 

Yeast extract, 5.
peptone, 5; CaC03t 5;

7.48
L Glucose, 30; Soya 

Soya bean meal, 5
peptone, 5; CaC03f 5;

7.46
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Medium G, H, I, J and K gave rise to pelleted growth. The average 

diameter of these pellets was recorded as approximately 0.2 mm. 

Microscopically, these pellets appeared as clumps of densely packed 

mycelia with some loose hyphae at the periphery. Medium K contained 

particularly large pellets which may be attributed to the presence of 

yeast extract. Medium L contained very dispersed mycelial growth with 

very few pellets. Microscopically, very little clumping was observed 

with this medium and in general the mycelia were well separated and 

dispersed throughout. Pimaricin production in medium G, H, I, J and K 

was low with only 245 |xg/ml being obtained as the highest yields. Medium 

L produced the highest yield of all i.e. between 300 and 350 (xg/ml. The 

control flasks (medium G) produced less than 100 fJLg/ml which was lower 

than yields obtained for the same medium in the previous experiment. The 

reason for this difference is not known. The final pH readings for all 

primary flasks were between pH 6.98 and pH 7.43.

Secondary flask results:

The growth patterns in the secondary flasks were similar to those 

observed in the primary flasks. Medium G, H, I, and J produced pellets 

of similar sizes to those found in the primary flasks. Medium K produced 

larger pellets, while Medium L again gave very dispersed growth. 

Pimaricin production was again highest in medium L (approximately 350 

jig/ml). All pimaricin assays were carried out using the bioassay 

(Section 2.7.2). Final pH readings for all secondary flasks were between 

pH 6.63 and pH 6.93. It was thought that the presence of soya bean meal 

in Medium L along with CaC03 may have been responsible for dispersing the 

growth of S t r e p to m y c e s  n a t a l e n s i s  in submerged culture. This type of 

growth appears to be important for antibiotic production. Other 

researchers have demonstrated that glucose and soya bean meal or soya

Primary flask results:
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peptone are the best carbon and nitrogen sources for the production of 

polyenes of the candidin-candicidin group (Ethiraj, 1969). Medium L was 

used as a control medium for the next stages in the study of growth and 

antibiotic production in submerged culture.

Studies on the performance of the organism when transferred from 

primary to secondary flasks were later continued using the more accurate 

spectrophotometric assay to analyse antibiotic yields (Section 2.7.2.). 

In these studies the primary flask media were prepared according to the 

United States Patent No. 3,892,850 (Section 2.6.2.). Other results 

showed that the patent media supported dense, dispersed mycelial growth, 

even though pimaricin production was very poor. It was hoped that some 

of these media would provide a well-grown vegetative inoculum for 

secondary flask cultivation. The secondary flask medium in this case was 

Medium L from the previous experiments which had already been shown to 

give high antibiotic yields. In this experiment the primary flasks were 

grown for 3 days and a 51 inoculum from each patent medium was used to 

inoculate the secondary flasks. These secondary flasks were then 

incubated for 5 days and assayed for pimaricin production. Control 

flasks were set up whereby both primary and secondary flasks contained 

Medium L (control medium).

Growth in all secondary flasks was good and consisted of dense 

cultures with very tiny pellets. Pimaricin yields from all secondary 

flasks were between 175 and 245 |JLg/ml. The flasks with control Medium 

L as the inoculum gave the highest yields (245 (ig/ml). These results 

indicate that Medium L itself is capable of producing a good vegetative 

inoculum for secondary flask cultivation. With experience it was shown 

that the size of the inoculum should be between 52 and 102 and the 

inoculum incubation time between 2 and 3 days. Growth and antibiotic 

production appear to be more dependent on media composition than on 

inoculum levels or inoculum stage of growth. Further media development
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studies were confined to primary flask cultures until a medium was 

obtained which could be scaled-up to the 10 L fermenter.

However, before proceeding with further media development work, 

problems were encountered with the pimaricin assaying techniques. 

Initial shake flask experiments relied solely on the bioassay method to 

determine the concentration of pimaricin produced. The bioassay, when 

first developed however, estimated antibiotic yields at greater than 1000 

H-g/ml for shake flask cultures (See Table 3.3). This was suspiciously 

high and because no other quantitative assay was available, at the time, 

it was not possible to substantiate these results. The

spectrophotometric assay was, therefore, initially developed as an 

confirmatory assay for the bioassay. The following section deals with 

the development work conducted on both assays in order to obtain an 

overall reliable antibiotic assaying procedure.

3.3 Development and Improvement of the assay techniques for 

pimaricin.

Two assay techniques were developed for the detection of pimaricin, both 

in solid agar media and in submerged culture, ( Section 2.7.2.). The 

bioassay is the classical method for the detection of antibiotics and was

used for some of the initial shake flask studies in this project. The

bioassay appeared to over-estimate the level of pimaricin in the

cultures. Initially the pimaricin powder, Delvocid (Section 2.1) was 

dissolved in aqueous methanol (1:1) with further dilutions being prepared 

using this solvent solution. However, it was discovered that if the 

standards were left at room temperature for a number of days and then 

assayed, using the bioassay, inhibition zones had increased in diameter 

by up to 5% (Note: a small increase in zone size corresponded to a

significant increase in calculated potency). This seemed to indicate

52



that the potency of the pimaricin standards was increasing with time and 

that this had the effect of over-estimating the potency of the antibiotic 

in culture broths. It was suspected that the aqueous methanol (1:1) was 

insufficient to completely solubilize the pimaricin. Pimaricin exhibits 

good solubility in polar organic solvents but poor solubility in water 

(Raab, 1972), It was also found that dilutions of culture broths from 

shake flasks gave a disproportional decrease in zone size whereas the 

standard pimaricin solutions gave a linear decrease on dilution. A 

number of methods were tested to try and overcome this solubility 

problem.

Calcium chloride (CaCl2), from 0.5-2.02, was added to the aqueous 

methanol (1:1) when preparing dilutions. CaCl2 in conjunction with 

aqueous methanol has been shown to increase the solubility of pimaricin 

from 0.152 to 1.52 (Raab, 1972). However, the use of CaCl2 had no 

affect on zone sizes for either the standards or broth samples. It was 

thought that perhaps the bioassay medium itself was inhibiting the full 

diffusion of the antibiotic. Oxoid agar No. 1 was substituted with Oxoid 

agar No. 3 and all other ingredients in the bioassay medium were changed 

to Analar grade. However, these changes had no effect on zone sizes. 

Ultra-violet light at 366 nm was used to inactivate the pimaricin both 

in the standards and in the culture broths. Pimaricin has already been 

shown to be inactivated by exposure to UV (Raab, 1972). It was hoped 

that by inactivating the antibiotic in the culture broths, that any other 

antifungal chemicals present would be highlighted. These chemicals may 

have been contributing to the variation in zone size. However, no zones 

occurred after UV treatment of either standards or broths samples.

Reports in the literature outlined the use of a spectrophotometric 

assay to determine the concentration of pimaricin in cheese (De Ruig et. 

al. 1987). These researchers used methanol to initially dissolve the 

pimaricin powder and then they prepared all subsequent standards in
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methanol:water (2:1) mixture. This method of preparing standards was 

adopted and used in the bioassay to recheck the accuracy of previous 

standard curves. Results from this experiment confirmed suspicions that 

the aqueous methanol (1:1) was unable to fully solubilize the pimaricin. 

Zone sizes for the standards were now much larger than previously 

recorded, and could therefore be used to give an accurate measure of 

pimaricin concentration in culture broths.

The spectrophotometric assay was developed into a standard 

pimaricin assaying technique using the work of De Ruig et al., 1987. It 

was found that using this procedure, broths gave a proportional decrease 

in absorbance reading on dilution. An experiment was set up to compare 

results obtained from the spectrophotometric assay with those of the 

bioassay. The samples used were culture broth supernates which had been 

obtained from previous shake flask studies on media variation. They had 

originally been assayed using the bioassay with the standards and samples 

diluted in methanol:water (1:1). These were now re-assayed using both 

methods with methanol:water (2:1 ) as diluent. Methanol was used to 

prepare the initial Delvocid standard. The results of this experiment 

are shown in Table 3.3.

These results show that both the bioassay and the 

spectrophotometric assay agree to within 102 of each other when using the 

revised method for preparing standards and samples. From Table 3.3. it 

can be seen that the bioassay had originally been over-estimating the 

concentration of pimaricin in culture broths by as much as 4 times their 

true value. Further studies showed that using methanol/water (2:1) to 

prepare dilutions of sample H (Table 3.3), resulted in a proportional 

reduction in zone size when tested on the bioassay. It was decided to 

use the spectrophotometric assay on a routine basis for future assay work 

because of its speed and convenience. The bioassay could be used to 

confirm biological activity of preparations. With this reliable and
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rapid method for quantifying pimaricin in submerged culture now 

available, it was possible to continue with further media development 

work.

Table 3.3. Comparison between the spectrophotometric assay 

and the bioassay

Sample
No.

Pimaricin
Original
Bioassay
(1*1)

Concentration
Improved
Bioassay
(2:1)

(H-g/ml)
Spec. assay

(2:1)
A 1954.5 227.6 246.0
B 1074.1 249.5 250.0
C 1824.0 222.4 263.4
D 873.0 180.8 161.3
E 1096.5 98.7 121.0
F 1552.5 285.3 306.5
G 562.3 90.2 112.9
H 1352.2 255.3 281.6

3.4. Medium Development Studies in Shake Flasks

The control medium which gave the highest pimaricin yields (350 |JLg/ml) 

from the initial shake flask studies contained (g/1): Glucose, 30; Soya 

peptone, 5; CaC03, 5; and Soya bean meal, 5. The composition of this 

medium was then examined in more detail in order to determine the best 

concentration for each component. Each component of the medium was 

varied and, in some cases, soya bean meal was omitted to see how critical 

its presence was. Soya flour was also included as an additional nitrogen 

source to observe its effect on growth and antibiotic production. Table

3.4. lists the main variations on the control medium.
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Table 3.4. Composition of the different Media to be examined:

Medium
Glucose Soya

Composition (g/1) 
peptone *SBM CaC03 Soya flour

ft

A 30 5 5 5 - 703
B 30 5 10 5 - 7.06
C 30 5 5 10 - 7.25
D 30 5 5 5 1 7J2
E 30 10 5 - - 6J&

F 30 5 5 - - 7.49
6 15 10 5 - - 6.89
H 15 5 5 - - 7ML

*SBM= Soya bean meal. 
pHi = Initial pH

Flasks were inoculated and incubated under standard conditions. Samples 

were assayed for pimaricin after 3 days using both the bioassay and the 

spectrophotometric assay. These initial media experiments were conducted 

over a 3 day incubation period. Residual sugars were analysed using the 

DNS method (Section 2.7.1.) and the type of growth morphologies in each 

medium was observed. This experiment was repeated a second time and the 

results were averaged. These are listed in Table 3.5.
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Table 3.5. Results of media variation on control medium

Medium pHi Pimaricin Yields (|ig/ml) Residual sugars
Spec, assay Bioassay (mg/ml)

A 6.50 327.6 285.9 14.20
B 6.55 263.0 285.3 11.97
C 6.63 295.3 277.0 13.90
D 6.60 321.1 304.0 13.60
E 7.12 47.1 42.4 25.95
F 7.10 168.2 166.8 27.79
G 7.10 84.1 63.3 11.63
H 7.12 168.1 160.8 8.90

Conditions: 50 mis in 250 ml flasks, 12 spore inoculum, 30°C at 
250 rpm for 3 days. 
pHL = Initial pH

In general, media containing SBM as a secondary nitrogen source produced 

the highest yields. Varying glucose with respect to soya peptone gave 

poor results in the absence of SBM. These results are not included in 

the table because yields were particularly low in the absence of SBM. 

Increasing CaC03 beyond 5 g/1 did not improve yields. The presence of 

soya flour did not have any appreciable effect on yields. It appeared 

that there was still about 502 residual sugar left at the end of the 3 

day fermentation which indicates that maximum growth may not have been 

attained. Media containing SBM produced dense growth with very tiny 

pellets, whereas media without SBM produced much larger pellets.

It was decided to conduct a time-course fermentation in flasks to 

determine at what stage antibiotic production was at its highest. This 

would indicate whether a 3 day incubation was sufficient.
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Medium A (control, Section 3.4.) was selected as the best medium for this 

experiment. The flasks were inoculated and incubated under standard

conditions. Samples of 4 mis each were aseptically removed every 24 

hours and assayed for antibiotic production and residual sugars. This 

time-course sampling was carried out in quadruplicate and all results 

were averaged. These are illustrated in Figure 3.1.

Results showed that maximum pimaricin production occurred after 5 

days (325 jLg/ml). Beyond this time yields levelled off. Antibiotic 

production coincided with a decrease in residual sugars and pH, which was 

expected. On the basis of this it was decided to extend all shake flask 

incubations to 5 days. Bioassay results mirrored spectrophotometric 

assay results.

3.4.1. Time-Course of fermentation in flasks.
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Fig. 3.1. Time-course of Pimaricin production in shake flasks.
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Conditions: 50mls in 250 ml flask, 1% inoculum, 30°C for 7 days at

250 rpm.
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In this experiment different carbon sources were used to substitute for 

glucose in medium A (control, Section 3.4.). These were of food grade 

quality and obtained from Biocon Ltd., Ireland. These included sucrose, 

lactose, corn starch, ground maize, MD05 and MD01. MD05 and MD01 are 

different grades of malto dextrins and are graded 1 to 10. 10 is

equivalent to starch while 1 is equivalent to glucose. Flasks were 

inoculated and incubated under standard conditions (5 day fermentation). 

Pimaricin was assayed using both assay methods and the growth 

morphologies were observed for each medium. This experiment was repeated 

and the results averaged. These are listed in Table 3.6.

3.4.2. Carbon Source Studies.

Table 3.6. Pimaricin productivity in media with different carbon 

sources.

Medium Carbon
Source

pHi pHi Pimaricin (jxg/ml) 
Bioassay: Spec, assay:

Reducing sugars 
(mg/ml) 

T0 5 dŝs
A Glucose 7.02 6.90 255.0 274.0 27.3 1.2
B Sucrose 7.36 8.74 0 0 0 2.7
C Lactose 7.25 8.70 0 0 9.9 27.8
D MD05 7.24 6.72 329.8 312.5 9.6 12.8
E MD01 7.30 6.67 293.5 280.0 3.8 14.42
F Corn starch 7.42 6.72 173.5 170.0 0 12.89
G Ground maize 6.98 7.25 269.0 263.0 0 1.0

Conditions: 50 mis in 250 ml flasks, 1Z spore inoculum, 30°C at 250
rpm for 5 days.
pH£ = Initial pH; pHf = Final pH

Growth in media A, D, E, F, and G consisted of very dense and consisted 

of very tiny pellets. Media F and G were particularly viscous due to the 

presence of corn starch and ground maize. Media B and C supported poor 

growth and this was reflected in the absence of antibiotic yields
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obtained for these media. Both MD01 and MD05 proved to be good carbon 

sources and produced the highest pimaricin yields. The control medium 

with glucose as the carbon source did not produce as high a yield as 

before. Further work was envisaged using MD05 or MD01 as carbon sources. 

It is possible that less available forms of carbon may be more desirable 

along with glucose in the medium. The glucose could favour exponential 

growth whereas the malto-dextrins could help prolong the stationary phase 

and possibly encourage greater antibiotic production.

3.4.3. Media from the U.S. Patent and its effect on pimaricin 

production.

A list of media was obtained from the United States Patent, No. 3,892,850 

(Struyk and Waisvisz, 1975). This patent outlined the commercial 

production of pimaricin and listed five different media which could be 

used to produce the antibiotic in submerged culture. These media are 

listed in Section 2.6.2. Flasks were inoculated and incubated under 

standard conditions. Medium A (Section 3.4.) was used as the control. 

Pimaricin was assayed after 5 days using the spectrophotometric assay 

only and the growth morphologies in each medium were observed. This 

experiment was repeated a second time and all assay results were 

averaged. These results are listed in Table 3.7.
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Table 3.7. Pimaricin productivity results obtained from U.S. Patent 

media.

Medium pHi pHf Pimaricin 
(n-g/ml)

control 7.16 6.60 267.5
(a) 7.13 8.10 92.0
(b) 6.56 8.10 0
(c) 5.82 8.48 98.0
(d) 7.14 7.50 233.0
(e) 7.19 7.50 221.5

Conditions: 50 mis in 250 ml flasks, 1% spore inoculum, 30°C at 250
rpm for 5 days.
Pimaricin was assayed using Spectrophotometric assay.
pHi = initial pH, pHf = final pH.

Visual observations of growth in the different media revealed the 

following: Medium (a) produced densely packed pellets; whereas Media (b), 

(c) and (d) produced loosely packed pellets; and Medium (e) produced 

large clumped growth. Similar morphologies were described previously 

for fungal cultures (Byrne, 1985). In general, the media described in 

the US patent produced poor pimaricin yields. Medium (b) contained 

lactose and produced no pimaricin. This was also the case when lactose 

was substituted for glucose in the carbon source experiment (Section

3.4.7.). The control medium still produced the highest yields and so was 

the medium of choice for further development studies. It was then 

decided to incorporate MD05 with glucose at different ratios in this 

medium and to observe its effect on pimaricin production. This was to 

follow on from the previous work conducted with the MD05/MD01 dextrins 

in Section 3.4.2.
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3.4.4. Effect of MD05 and glucose as a combined carbon source on 

production.

Two sets of experiments were conducted using different ratios of MD05 to 

glucose in the control medium. The first experiment maintained glucose 

constant at 10 g/1 but varied the concentration of MD05 from 5 to 30 g/1. 

The second experiment maintained MD05 at 5 g/1 but varied the 

concentration of glucose from 5 to 30 g/1. Flasks were inoculated and 

incubated under standard conditions. Pimaricin was assayed after 5 days 

using the spectrophotometric assay. This experiment was repeated a 

second time and the results averaged. These are listed in Table 3.8.

Table 3.8. Effect of different combinations of MD05 and glucose on 

production.

Medium Concentration of 
MD05:Glucose 

(g/1)

pHt pHi Pimaricin
((jug/ml)

A control 7.16 7.60 235.3
B 30:10 7.40 7.22 266.9
C 20:10 7.46 7.00 259.8
D 10:10 7.40 8.06 280.9
E 5:10 7.52 7.02 326.6
F control 7.28 6.90 341.7
G 5:5 7.52 8.41 229.2
H 5:10 7.58 7.50 283.5
I 5:20 7.45 7.36 347.5
J 5:30 7.47 7.20 292.5

Control (g/1): glucose, 30; soya peptone; 5; S.B.M. , 5; CaC03, 5.
Conditions: 50 mis in 250 ml flasks, 1Z spore inoculum, 30°C at 250

rpm for 5 days.

From these results it appears that combining MD05 with glucose as a 

carbon source does not significantly increase pimaricin yields. However,
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from the first set of results it appeared that if the glucose 

concentration was maintained at 10 g/1 and the MD05 decreased from 30 g/1 

to 5 g/1, pimaricin yields increased. This trend was not substantiated 

in the second set of results whereby the same ratio of MD05 to glucose 

(5 g/1:10 g/1) gave a lower yield when compared to the control. Allowing 

for the inaccuracies inherent in the spectrophotometric assay it is 

difficult to know whether combining MD05 with glucose is consistently 

beneficial to improving antibiotic yields.

With the information provided by the time-course experiment and 

having tried unsuccessfully to increase yields using different carbon and 

nitrogen sources, it was decided to repeat the original studies carried 

out on the components of the standard control medium.

3.4.5. Further studies on the composition of the control medium.

Studies on individual components in the control medium have already been 

documented in Section 3.4. However this development work was conducted 

with only 3 day flask cultures. The time-course assay (Section 3.4.1.) 

indicated that maximum pimaricin production occurred after 5 days. As 

a result, individual components of this control medium were now looked 

at again in greater detail over a 5 day incubation period. In these 

experiments, levels of glucose, soya peptone, CaC03, and SBM were varied 

in relation to each other in an attempt to optimise production. Flasks 

were inoculated and incubated under standard conditions and pimaricin 

assayed using the spectrophotometric assay. The results of these studies 

are described in the following paragraphs.

Increasing glucose beyond 30 g/1 (control level) had no significant 

effect on antibiotic production. Residual sugars increased as the 

initial glucose concentration increased, indicating that the organism was 

not utilising the increased level of glucose. Decreasing glucose from 

30 g/1 to 20 g/1 caused no decrease in yields. However, below 20 g/1,
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Increasing soya peptone from 5 g/1 (control level) to 10 g/1 

increased antibiotic yields by 52. However a further increase to 20 g/1 

caused a decrease of 122. There appeared to be a limit to the amount of 

soya peptone that could be tolerated.

Calcium carbonate (CaC03) at 5 g/1 (control levels) appeared to 

give optimum antibiotic production. Increasing the concentration beyond 

this level had no effect on production, however below 5 g/1 pimaricin 

yields dropped by 502.

The most significant component in the control medium was found to 

be soya bean meal. Increasing SBM beyond 5 g/1 caused a dramatic 

increase in pimaricin production. It was found that 50 g/1 SBM gave 

optimum production with an increase of 1752 over the control. The 

maximum yield obtained was 861 jJig/ml compared with 312 (JLg/ml from the 

control. All components of the standard control medium were maintained 

at their original levels. Soya bean meal was now increased to 50 g/1 for 

further work. Growth of S t r e p to m y c e s  n a t a l e n s i s  in flasks with 50 g/1 

SBM was particularly good. There were no pellets or clumps of growth and 

mycelia were very dispersed. However, problems were experienced when a 

new batch of soya bean meal was used. Table 3.9. shows the results of 

flask cultures with 50 g/1 of the new and old SBM in the control medium.

yields decreased.

Table 3.9. Variation in pimaricin yields using

different batches of soya bean meal.

Medium pHf Pimaricin (n,g/ml)
Old SBM 7.55 944.2
New SBM 8.10 236.1

Conditions: 50 mis in 250 ml flasks, 12 spore inoculum, 30°C at 250
rpm for 5 days.
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Pimaricin yields had dropped to one quarter with the introduction of a 

different batch of SBM. Growth in the new batch was as dense and as

dispersed as that found in the older batch. The reason for this

variation was unknown. Further studies on the new batch of SBM revealed 

that 20 g/1 gave optimum production with highest yields obtained of 390 

(jig/ml. Yeast extract and corn steep solids were also used to supplement 

the new batch of SBM with the hope of restoring original yields.

However, both gave poor results. The composition of the new standard

control medium became (g/1);

Glucose, 30;
Soya peptone, 5;
CaC03, 5;
Soya bean meal, 20;

Using this new control medium it was decided to study the effects of, 

inoculum level and medium volume in shake flasks, on pimaricin 

production.

3.4.6. Effect of Inoculum level on production.

Up to now IX of a spore suspension from slopes had been used to inoculate 

shake flasks. An experiment was carried out whereby the inoculum size 

was varied from 0.5X to 5.02 (v/v), using the new control medium (Section 

3.4.5.). The results from this study are listed in Table 3.10.

The results showed that the inoculum level had very little effect 

on pimaricin yields. Further experiments were conducted, whereby, flasks 

were inoculated directly from slopes using an inoculating loop. These 

studies showed that loop inoculated flasks gave the same yields as those 

inoculated with spore suspensions.
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Table 3.10. Effect of inoculum size on pimaricin 

production in shake flasks.

Inoculum size Z (v/v) Pimaricin
(spore suspension) (jxg/ml)

0.5% 517.2
1.0Z (control) 517.3

to o 543.1
5. 0Z 586.2

Conditions: 50 mis in 250 ml flasks, 30°C at 250 rpm for 5 days.
Pimaricin assayed using spectrophotometric assay.

3.4.7. Effect of different volumes of media in flasks on production.

In this experiment different volumes of the control medium were added to 

250 ml shake flasks to see if there was any variation in pimaricin 

production due to different levels of aeration. Standard conditions of 

inoculation and incubation were used. The results of this experiment are 

listed in Table 3.11.

Table 3.11. Effect of different volumes of media in 250 ml shake flasks 

on pimaricin production.

Medium Volume pHi Pimaricin
(mis ) (jig/ml)
25 7.30 467.9
50 (control) 7.07 434.5
100 6.55 106.5

Conditions: 1Z spore inoculum, 30°C at 250 rpm for 5 days.
Pimaricin was assayed using the spectrophotometric assay. 
Note: Accurate, consistent pH readings of media were

difficult to obtain because of the consistency of 
the complex media used in this project.

67



These results showed that 25 ml or 50 ml aliquots of media in 250 ml 

flasks gave optimum production. There was a sharp decrease in production 

when 100 ml aliquots of media were used which indicates that aeration and 

agitation are important factors for antibiotic production.

3.4.8. Effect of glucose dosing on production.

Slow-feeding with different levels of glucose in the broth has been shown 

to increase the yield of the polyene antibiotics, candidin and candihexin 

(Martin and Me Daniel, 1974). It was hoped that this would also be the 

case for the pimaricin fermentation.

Firstly, the normal depletion of glucose was monitored in the 

standard control medium in flasks using the DNS method (Section 2.7.1.). 

This was to determine at what stage during the fermentation additional 

glucose could be introduced. It was found that after 72 hours residual 

sugars had dropped from 30 g/1 to 10 g/1 and levelled-off at 4 g/1 for 

the remainder of the fermentation. It was calculated that glucose was 

depleted by approximately 10 g every 24 hours. The literature suggested 

that glucose should be maintained between 15 g/1 and 5 g/1 throughout the 

fermentation (Martin and Me Daniel, 1974). Using this information it was 

decided to begin with two initial glucose concentrations in the medium, 

20 g/1 and 30 g/1. A stock glucose solution of 50 g/1 was prepared and 

from this, glucose was dosed at two concentrations. One set of flasks 

with 20 g/1 (10 mis of stock) and a second with 10 g/1 glucose (5 mis of 

stock). The dosing scheme is summarised in Table 3.12. In order to find 

the dose time which would give maximum production, a range of dose times 

was used. Control flasks with initial glucose concentrations of 30 g/1 

and 20 g/1 were set up to monitor normal antibiotic production. All 

flasks were inoculated and incubated under standard conditions. 

Pimaricin was assayed after 72, 96, 120 and 144 hours using the

spectrophotometric assay.
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Table 3.12. Glucose dosing scheme

Flask Initial glucose Glucose dosing Dose Times
No. (g/1) concentration (g/1) (hours)
A 30(control) - -
B 30 10 96, 120.
C 30 20 72,96, 120.
D 20(control) - -
E 20 10 72, 96, 120.
F 20 20 48, 72, 96, 120.

Results from these studies showed that dosing the fermentation with 

glucose at different times did not increase antibiotic production to any 

large extent. The dosed flasks which gave the highest yields were Flasks 

C and D. Pimaricin yields rose from 300 to 350 (jig/ml, for C and from 375 

to 425 n-g/ml for D. Flask A showed a decrease in production when glucose 

was added and Flask B showed no change with pimaricin yields maintained 

at 380 fig/ml. The control flasks gave the highest yields of all with 

antibiotic production rising to 500 )ig/ml after 96 hours. This level was 

maintained until the end of fermentation (144 hours).

3.4.9. Effect of ammonium chloride supplementation on production. 

Researchers have shown that ammonium chloride (NHACl) stimulates 

antibiotic production by S t r e p to m y c e s  a n a n d i i  v a r  t a i f i e n s i s  when used 

as a source of inorganic nitrogen (Kamel and Al-Zahrani, 1986). It was 

decided to use NH^Cl to supplement the standard control medium or replace 

the soya bean meal and observe the effect on antibiotic production. The 

concentration range of nitrogen used by these researchers was between 40 

mg/1 and 360 mg/1. A stock solution of NHAC1 was prepared to a final 

concentration of 360 mg of nitrogen/1 which was equivalent to 1384.6 mg/1
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NHAC1. Using this stock solution a range of concentrations of NHAC1 was 

prepared in 50 mis of production medium in 250 ml flasks. A second set 

of flasks was prepared whereby NHAC1 was used to replace the soya bean 

meal as a source of inorganic nitrogen. Control flasks were prepared in 

which no supplementations were made. All flasks were inoculated and 

incubated under standard conditions and assayed for pimaricin using the 

spectrophotometric assay. Results from these studies showed that 

supplementing the standard control medium with NHAC1 did not 

significantly increase antibiotic yields. The highest yield obtained was 

528 ^g/ml with 200 mg/I nitrogen compared to 445 jJLg/ml from the control. 

They also showed that NHAC1 in place of soya bean meal produced less than 

80 jJLg/ml pimaricin.

3.4.10. Effect of Sodium acetate, sodium citrate and sodium malonate 

supplementation on production.

Supplementation with either of these three salts was shown to increase 

the production of the polyene antibiotic candicidin (Martin and Me 

Daniel, 1976). These researchers suggested using between 0.1 and 20 g/1 

of each to supplement the production medium. Stock solutions of each 

were prepared at 200 g/1 and dispensed in 50 mis of control medium to 

give the required concentrations. Each supplementation study was 

carried out individually. Flasks containing sodium citrate were 

adjusted to pH 6.5 before autoclaving. All flasks were inoculated and 

incubated under standard conditions. Pimaricin was assayed using the 

spectrophotometric assay.

Results from this study showed that supplementation of the control 

medium with sodium citrate, malonate and acetate did not increase 

pimaricin yields. Further experiments were planned whereby the control 

medium was dosed with sodium citrate and sodium acetate in a similar way 

to the glucose dosing experiments.
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3.4.11. Effect of dosing with sodium citrate and sodium acetate on 
production.

In this experiment the initial glucose concentration used was 20 g/1 and 
not 30 g/1 as was normal for the control medium. This was to ensure that 
the glucose would be used up quickly allowing for earlier utilisation of 
the acetate and citrate. Both salts were dosed after 72 hours 
fermentation to give either 4 g/1 or 2 g/1 in each flask. Controls were 
set up whereby no additions were made and antibiotic production was 
monitored throughout using the spectrophotometric assay. These results 
are presented in Figure 3.2.

These illustrate how dosing with sodium citrate caused a dramatic 
increase in pimaricin production (30Z increase over control). Dosing 
with sodium acetate on the other hand had no effect. It was decided to 
continue these studies by dosing with sodium citrate under varying 
initial glucose concentrations.

3.4.12. Effect of dosing with sodium citrate with varying initial 
glucose concentrations.

The concentrations of initial glucose used for this experiment were 10 
g/1, 15 g/1 and 20 g/1. Sodium citrate at a concentration of 2.0 g/1 was 
dosed after 72 hours to one set of flasks and after 72 hours plus 96 
hours to a second set. Control flasks were set up with initial glucose 
concentrations of 20 g/1 and 30 g/1. All flasks were incubated under 
standard conditions and pimaricin assayed using the spectrophotometric 
assay. The results from this study are illustrated in Figures 3.3. and
3.4.

Dosing with sodium citrate clearly increased pimaricin production 
which confirmed the findings of the previous experiment. The highest 
yield obtained was 700 (JLg/ml when the control medium with 20 g/1 glucose 
was dosed with 2 mg/ml sodium citrate after 72 hours and 96 hours. It 
now appeared that dosing with sodium citrate was definitely beneficial 
to the pimaricin fermentation and could be scaled-up in the 10 1 
fermenter.
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Fig. 3.2. Effect of dosing with different concentrations of sodium 

acetate and sodium citrate after 72hrs.

H  2 mg/ml sodium acetate. ^  control

| 4 mg/ml sodium acetate.

2 mg/ml sodium citrate.

( D  4 mg/ml sodium citrate.

^ Dose point.

Conditions: 50 mis in 250 ml flasks, 1% inoculum, 30 C for 5 days at

250 rpm.
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Fig. 3.3. Effect of dosing with sodium citrate (2 mg/ml) after 72

hrs under different concentrations of glucose.
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Fig. 3.4. Effect of dosing with sodium citrate (2 mg/ml) after 72

and 96 hrs under different concentrations of glucose.
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3.4.13. Effect of dosing with zinc and ferrous sulphate on 

production.

Dosing with zinc and ferrous sulphate was found to stimulate the 

biosynthesis of the polyene antibiotic, candicidin (Chao-min Liu et al. . 

1975). These researchers found that the optimum concentration of zinc 

and ferrous sulphate which stimulated production was 0.5 mM. In this 

experiment 0.5 mM of both these salts were added separately to the 

control medium at T0 and after 48 hours. Control flasks were set up 

whereby no additions were made. All flasks were inoculated and incubated 

under standard conditions. Pimaricin was assayed using the 

spectrophotometric assay.

The results from this study showed that additions of ferrous and 

zinc sulphate to the standard control medium did not increase antibiotic 

production. Addition of zinc sulphate at T0 actually inhibited 

production by 502. The control flasks with no additions produced the 

highest yields.

Other additions to the control medium included potassium citrate, 

Tween 80 and soya oil. However, in all cases, these did not increase 

antibiotic yields.

3.5 Strain Selection Methodologies.

Increases in pimaricin yields obtained due to media development had now 

been thoroughly investigated. Dosing with sodium citrate proved to be 

the most successful, increasing yields by 332 above the control. Target 

yields which were required to make the process commercially viable were 

between 5 and 10 g/1 (5000-10000 jig/ml). In order to attain this level 

of production an improved strain had to be obtained. A number of methods 

were developed in order to select for an over-producing natural variant 

from the wild-type strain.
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This is one of the classical methods for improving antibiotic yields 

(Calam, 1976), as poorer producing organisms are often sensitive to their 

own antibiotic. It was important to know the relative resistance of 

S t r e p to m y c e s  n a t a l e n s i s  to its own antibiotic. The minimum inhibitory 

concentration (MIC) is defined as the lowest antibiotic concentration 

that will inhibit the growth of a specific organism and was used here to 

determine how resistant our production organism was to pimaricin.

A stock pimaricin solution of 5000 |xg/ml was prepared in methanol. 

This was used to prepare a range of standards (250 jJLg/ml-1000 jig/ml) in 

20 ml aliquots of yeast-malt extract agar (Section 2.2.2.). The plates 

were poured and, when set, a suitably diluted spore suspension of 

S t r e p t o m y c e s  n a t a l e n s i s  vras spread-plated onto each. Methanol agar plate 

controls were prepared to observe its effect on the growth of the 

organism. Positive controls were also set up whereby no pimaricin or 

methanol were added to the plates. All plates were incubated at 26°C for 

10 days and a colony count carried out. The presence or absence of 

growth was then observed.

Results from this experiment indicated that the organism was 

sensitive to between 250 n-g/ml and 500 |xg/ml of pimaricin. However, the 

methanol had an inhibitory effect on growth and this could have distorted 

the results. Contamination was also observed on the plates and so it was 

decided to filter-sterilise the pimaricin for future MIC work. Stock 

pimaricin solutions of 5000 |ig/ml and 20,000 jig/ml were prepared in 

methanol + 21 CaCl2. These were sterilised through a 0.45 jun PTFE filter 

(Section 2.6.4.) and their concentrations checked using the 

spectrophotometric assay. This was to ensure that all of the pimaricin 

had solubilised and that filtration had not diminished potency. The 

results of this study showed that pimaricin concentration was not 

diminished by the filtration process. The 5000 |JLg/ml pimaricin solution

3.5.1. Resistance to pimaricin.
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gave a concentration reading of 5089.3 (xg/ml before filtration and 5357.1 

(jig/ml after filtration. The 20,000 |xg/ml solution gave a concentration 

reading of 19963.2 jj-g/ml before filtration and 20692.6 |ig/ml after 

filtration.

Therefore, it was possible to filter-sterilise solutions of 

pimaricin without losing antibiotic concentration and secondly, the 

antibiotic was soluble in methanol + 2% CaCl2 to at least 20,000 (ig/ml 

or 2%. This allowed for the introduction of pimaricin into agar plates 

using smaller sub-inhibitory volumes of methanol. Using this 20,000 

|xg/ml stock solution of pimaricin, a second MIC experiment was set up. 

The range of pimaricin concentrations used was again between 250 and 500 

jig/ml. Methanol controls were again set up to assess for solvent 

toxicity. Results from these experiments showed that volumes of methanol 

from 1.4 mis to 2.0 mis in the agar medium were inhibitory to 

S t r e p t o m y c e s  n a t a l e n s l s . Therefore, in order to add 1000 jig/ml or more 

pimaricin to YME plates, the volumes of methanol required could not 

exceed 1.4 mis. As a result the stock pimaricin standard was increased 

to 40,000 n-g/ml and filter sterilised through a 0.45 |im PTFE filter. The 

actual concentration of pimaricin in this solution was confirmed using 

the spectrophotometric assay. It was decided that, rather than carry out 

another MIC test, 2000 n-g/ml of pimaricin would be introduced into the 

YME plates and strains inherently resistant to this level would be 

screened for. Only 1.0 ml of a stock pimaricin solution (40,000 fig/ml) 

in 20 mis of molten agar was required to provide a final concentration 

of 2000 |ig/ml in the plates. This volume of methanol was below the 

inhibitory level and did not affect the growth of the organism.

3.5.2. Effect of time on the potency of pimaricin in agar plates. 

Before proceeding with this selection method it was necessary to 

establish whether pimaricin would be uniformly distributed throughout the
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agar plates and if the antibiotic would lose its potency after several 

days incubation at 26°C. This was to ensure that surviving colonies on 

these antibiotic plates were in fact resistant to 2000 (ig/ml of 

pimaricin. An experiment was set up whereby different concentrations of 

pimaricin (500 n-g/ml - 2000 ng/ml) were introduced into YME agar plates, 

five plates of each concentration. One plate from each concentration had 

five agar plugs removed, aseptically, and transferred to a bioassay 

plate. The bioassay plate was incubated under standard conditions 

(Section 2.7.2.) and zone sizes measured. All remaining plates were 

placed in a 26°C incubator and plugs were removed every 24 hours, for a 

total of 8 days, from each concentration to check that potency had not 

diminished. The results showed that pimaricin was very stable over long 

periods of time when introduced into agar plates, with only slight 

deterioration after 8 days. Results from this experiment also showed 

that the antibiotic was evenly dispersed throughout the entire plate. 

With this information YME plates with 2000 jig/ml of pimaricin were 

prepared and a diluted spore suspension of S t r e p to m y c e s  n a t a l e n s l s  was 

plated out onto these. Control plates were prepared which contained no 

antibiotic. All plates were incubated at 26°C for 8-10 days. 

Approximately 70Z of the culture did not survive, but those that did were 

subcultured onto YME slopes. These resistant isolates were then checked 

for productivity in shake flasks. In all, 50 resistant isolates were 

screened, most of which produced similar yields to the wildtype. 

However, one isolate (designated NIHE 29 ) produced 472.2 n-g/ml compared 

to 361.4 |ig/ml for the wild-type (a 23% increase). These resistant 

strains grew slowly on the antibiotic media (7 days compared to 5 days 

normally) but, when subcultured several times onto YME plates, 

productivity was still higher than the wildtype. A number of isolates, 

resistant to 2000 n,g/ml, were found to produce no pimaricin either on 

bioassay plates or in shake flasks. Taking these findings together, it



appeared that there was little correlation between pimaricin resistance 

and production potential. It was found that none of the resistant 

isolates were capable of producing more than 472 pug/ml of pimaricin.

3.5.3. Agar plug/colonies onto bioassay plates.

This methodology was developed from the pimaricin bioassay to enable 

rapid visual appraisal of multiple isolates on plates, to be used prior 

to subculturing and productivity testing. Potency indices were 

calculated for the standard control strain (i.e. diameter of zone 

relative to the colony diameter). The non-producing strains mentioned 

above gave a zero potency index when colonies were placed onto a bioassay 

plate. It was hoped to easily distinguish high from low producers from 

amongst mutants or natural variants using this method. This selection 

basis was extensively studied using two experiments, involving glucose 

and phosphate repression of pimaricin production. These are common 

selection procedures used in antibiotic research (Martin and Me Daniel, 

1974, Calam, 1976).

3.5.3.1. Catabolite repression.

Addition of higher glucose levels, from 10 to 100 g/1 were used to test 

colonies for their ability to produce pimaricin under conditions of 

catabolite repression, using both the agar plug method and by culturing 

the strains in shake flasks. In the agar plug method S t r e p to m y c e s  

n a t a l e n s i s  was cultivated for 8 days on YME agar plates which contained 

different concentrations of glucose. Isolated colonies were then 

transferred from each plate to the bioassay plate in the form of agar 

plugs. Potency indices (diameter of zone / diameter of colony) were then 

measured for each colony to observe if production had been inhibited. 

In the shake flask method the same strain was cultivated under standard 

conditions in the control medium containing different concentrations of
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glucose and assayed for pimaricin as normal. It was hoped that different 

levels of production in shake flasks would also correlate with production 

on agar plates and that this would be reflected in different zone sizes 

for colonies growing on different concentrations of glucose. The results 

of this experiment are listed in Table 3.13.

Table 3.13. Comparison between antibiotic production in submerged

culture and on agar medium in the presence of different 

concentrations of glucose.

Glucose Concentration 
(g/1)

SOLID MEDIA

Potency
Index

LIQUID MEDIA

Pimaricin Yields in 
flasks (fig/ml)

101* 3.55 161.6
20 3.38 382.7
302) 3.47 348.6
50 3.39 272.1
80 3.43 191.4

1) Normal concentration of glucose used in standard plating 
medium.

2) Normal concentration of glucose used in control liquid medium.

These results showed that zone sizes were not affected when colonies were 

grown on agar media with different concentrations of glucose. However, 

when the strain was grown in submerged culture, glucose levels above 30 

and below 20 g/1 caused a decrease in pimaricin production.

3.5.3.2. Phosphate repression.

This work was carried out in a similar way to the catabolite repression 

studies. Additions of phosphate in the form of KH2P04 (5-20 g/1) were 

used, both in the flask medium and in the agar plate medium. It was 

found that even the addition of 5 g/1 KH2P0A caused antibiotic yields to
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drop by 60Z in shake flasks. However, this decrease was not observed on 

the bioassay plate where zone sizes remained the same even in the 

presence of high levels of phosphate.

It now appeared that the agar plug method, for the rapid detection 

of improved strains, was of very limited use. The bioassay was not 

accurate to enough detect small increases in antibiotic production and 

did not correlate with results obtained in shake flasks. The plate 

method would also be of limited use when screening large numbers of 

survivors from a mutagenesis programme. The only accurate method was to 

transfer individual isolates onto slopes, cultivate these in shake 

flasks and then assay for pimaricin in the normal way.

3.5.3.3. Random selection.

In the absence of a selection system which could readily highlight 

improved variants, in the case of natural variants resistant to high 

concentrations of pimaricin, or mutants, it was decided to select and 

test isolates randomly. Mutants or variants could be chosen randomly 

from plates, subcultured onto slopes and then tested for productivity in 

shake flasks. This method is one used by many researchers (O.L. Davies, 

1964) and is dependent on the availability of sufficient orbital shaker 

space for shake flask fermentations. Approximately 50 isolates were 

checked for productivity in this manner. Many of the isolates were 

selected from plates which had been put through a UV mutagenesis 

programme. These isolates were randomly chosen from different UV 

exposure times (Section 2.8.1.), other isolates tested were natural 

variants resistant to high levels of pimaricin (2000 |JLg/ml) and some were 

normal isolates under no selection pressures. Many of these isolates 

were cultivated both in the standard productivity medium and in medium 

with glucose increased to 50 g/1 to detect glucose de-repressed mutants. 

However, no over-producers were detected with the exception of one strain

81



mentioned previously, designated NIHE 29 (Section 3.5.1.) which produced 

23Z more than the wildtype.

3.5.4. Improvement in screening methods.

It was found that the use of 250 ml shake flasks was limiting progress 

when screening large numbers of survivors because of the shortage of 

orbital shaker space. This was particularly the case when screening 

survivors from a UV and EMS mutagenesis programme. A new method to 

miniaturise this screening process was devised using 20 ml glass 

universal bottles. The bottles were filled with 5 mis of the standard 

control medium with cotton wool bungs in place of screw caps. Using 

cocktail sticks, colonies were aseptically inoculated, in duplicate, into 

the universals and incubated in the normal way, (250 rpm, 30°C for 5 

days). Using this method, it was found that yields were slightly

lower than those obtained in flasks (e.g. 500 |xg/ml for flasks and 416 

|ig/ml for universals). However, results were consistent and high 

yielding strains could be identified. This method also allowed for the 

screening of larger numbers of plate isolates without the need to 

cultivate slopes. Any high-yielding isolates were then subcultured onto 

YME slopes and checked for productivity in shake flasks to confirm these 

increases.

3.6. Mutagenesis:

The mutagenic agents used in this project were ultra-violet (UV) light 

and Ethyl-methyl-sulphonate (EMS). The procedures for both of these are 

described in Section 2.8. The following sections describe the yield 

results obtained using both methods. In the case of UV mutagenesis the 

spore suspension method was favoured over the plate method.
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3.6.1. UV mutagenesis.

Initial UV work involved screening 30 survivors using the shake flask 

method. All isolates tested gave similar yields to the wildtype strain 

but none proved better than the natural variant, NIHE 29 (Section

3.5.1.).

UV mutagenesis with caffeine in the plating medium. It has been 

shown that caffeine inhibited single stranded DNA repair in wildtype E. 

c o l i after irradiation with UV (Fong and Bockrath, 1979). Caffeine at 

1 mg/ml was shown to be the most suitable concentration to add to both 

the diluent and plating medium. Concentrations above this inhibited the 

growth of S t r e p to m y c e s  n a t a l e n s i s . Using this procedure UV mutagenesis 

was carried out on NIHE 29. A total of 100 survivors were screened using 

the universal bottle method (Section 3.5.2.). The highest yielding 

mutant obtained was designated UV/CAFF. 172 and produced 483.2 (ig/ml of 

pimaricin compared with 417.9 |ig/ml for the wildtype (a 14£ increase).

3.6.2. EMS mutagenesis.

EMS mutagenesis on NIHE 29.

Using the universal bottle procedure for screening, a total of 100 

survivors were screened. The highest producing isolates were designated:

EMS 49 (496.1 (jLg/ml) and

EMS 53 (498.5 (ig/ml) respectively.

Their productivity compares with 445.3 n-g/ml for the control (NIHE 29). 

This represented a 11% increase in production.

EMS mutagenesis on a non-producing natural variant and screening for 

revertants:

A number of natural variants were isolated which produced no pimaricin
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either in flasks or on the bioassay plate. It was hoped that some of 

these non-producers could be reverted using EMS mutagenesis and that some 

of these revertants would produce higher than normal levels of pimaricin. 

In all, 100 survivors were screened in universal bottles, however no 

improved mutants were isolated.

A second round of EMS mutagenesis was carried out on one of the EMS 

mutants (EMS 53). In all, 100 survivors were screened. However, no 

further improved isolates were obtained.

3.7. Production of pimaricin in 10 1 stirred fermenters.

In general it was difficult to grow S t r e p to m y c e s  n a t a l e n s i s  and produce 

optimum yields of pimaricin in the 16 1 (10 1 capacity) microgen

fermenter. Initially, antibiotic production was low (between 200 and 250 

(jLg/ml) compared to productivity in the shake flask controls (300-350 

H-g/ml). The medium used was the standard control medium that had been 

optimised in shake flasks (Section 3.4.5.). A 5 Z, 72 hours inoculum was 

prepared using the same medium to inoculate the vessel. Aeration was set 

to 1 liter of air per litre of medium per minute (10 1/min) and the 

agitation was set at 300rpm. Temperature of growth for both the inoculum 

flasks and fermenter was maintained at 30°C throughout the fermentation. 

Culture purity in the fermenter was monitored regularly by plating out 

samples onto YME agar plates and then incubating these at 30°C for 24-48 

hrs. The inoculum was also checked in a similar manner. 10 mis of 

sterile KG antifoam (Section 2.5.) was added after inoculation and again 

after 24 hrs to control foaming. Because of the high concentration of 

soya bean meal (20 g/1) in the medium, samples had to be centrifuged in 

order to collect a supernate for assay purposes.

Bacterial contamination proved to be a persistent problem
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throughout the microgen fermentations and normally appeared early on 

(between 0 and 24 hrs). The contaminant appeared to be a homogeneous 

culture, very likely a B a c i l l u s  species, when viewed under a microscope. 

It was thought that insufficient sterilisation of the medium was 

contributing to this problem. Because of the high concentration of SBM, 

it was decided to pre-sterilise this separately in water for 30 mins. 

It was possible that due to the physical nature of the SBM, heat stable 

B a c i l l u s  spores were not being destroyed. The remaining ingredients were 

then batched and the medium further sterilised for 60 mins. This 

treatment greatly reduced the incidence of contamination. However, in 

some cases bacterial contamination was still observed later in the 

fermentation (after 72 hrs.). Initial measurements with the dissolved 

oxygen probe (Section 2.5.) revealed that the culture was oxygen limited. 

Dissolved oxygen dropped from 100Z saturated to between 0 and 5% after 

24 hrs and remained at this level throughout the fermentation. As a

result the agitation rate was adjusted. It was found that 500 rpm

produced maximum pimaricin yields of 500 (JLg/ml after 72 hrs. Dissolved 

oxygen now dropped from 100Z saturated to approximately 20% after 24 hrs 

and remained at this level for the duration of the fermentation. The 

shake flask controls gave yields of between 400 and 450 (JLg/ml. The

strain used for these fermentations was an EMS mutant, EMS 53 which had

already been shown to give yields of almost 500 jtg/ml in shake flasks 

(Section 3.6.2.). Figure 3.5. illustrates the time-course for this 

fermentation. It was not practical to measure biomass, by using either 

wet or dry weights, because of the nature of the medium. The level of 

aeration was adjusted, but 10 1/min still gave optimum results. The 

graph also shows the pH and reducing sugar profile throughout the 120 hr 

fermentation. The pH profile was similar to that found in shake flask 

fermentations. pH dropped slightly during exponential growth 

(tropophase) and rose during the production phase (idiophase). Reducing



sugars dropped, during the exponential phase as glucose was utilised for 

growth and levelled off during the production phase. From this graph 

it would appear that between 48 hours and 72 hours would be the most 

appropriate time in the fermentation to start feeding experiments.

Experiments were also carried out whereby the inoculum level and 

the inoculum incubation time were varied in order to see the effect on 

production. It was found that 72 hours provided the best inoculum with 

dense, well dispersed culture morphology. Inoculum levels below 5X 

resulted in optimum yields being produced after 72 hrs and in some cases 

yields were below 500 |xg/ml. Generally an inoculum level of between 5 

and 10Z gave the best results.

With the agitation increased to 500 rpm, extensive foaming occurred 

throughout the fermentation period. An antifoam probe was fitted to the 

vessel which was connected to a peristaltic pump and reservoir of sterile 

KG antifoam. This allowed automatic addition of antifoam at the precise 

time of foaming. However, in order to allow for addition of antifoam, 

a back pressure could not be placed on the vessel which increased the 

likelihood of outside contamination.

Glucose feeding was not introduced into the microgen fermentations 

because of the poor results obtained when using shake flask cultures 

(Section 3.4.8.). However, sodium citrate feeding was attempted. A 

number of runs were carried out using first, a sodium citrate dose of 2 

g/1 after 72 hours, followed by a continuous feed of the same salt which 

was delivered at approximately 0.1 g/hour. These feed quantities were 

chosen to mimick the conditions which had given the yield increases in 

shake flasks (Section 3.4.11.). However, pimaricin production was not 

increased beyond the yields obtained in the control flasks. A 2 mg/ml 

sodium citrate feed was also started after 24 hours in case that 72 hours 

was too late, however, no yield increases were observed.
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Fig. 3.5. Time-course of Pimaricin production in the 16 1 microgen 
fermenter.
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Studies on pH control and its effect on production were also carried out 

in the microgen fermenter. When the pH dropped during the exponential 

growth phase, the pH controller was used to prevent the pH rising again 

by adding in HC1. However, these experiments did not improve yields. 

Studies were also conducted on microgen fermentation samples to see if 

some pimaricin was still attached to the mycelia. It has been postulated 

that polyene antibiotics may play a role as chemical components of the 

sheath of aerial mycelium in streptomycetes (Cherny et. al̂ ., 1972).

Fermentation samples were filtered through Whatman No. 1 filters under 

vacuum and the cake washed several times with distilled water. A sample 

of the cake was removed, weighed, and methanolswater (2:1) was used to 

extract any remaining pimaricin. Results of this work were inconclusive. 

In some samples, small amounts of pimaricin were detected in the cake 

(10-100 jxg/ml), in others, no traces of the antibiotic were detected. 

It was also found that as the fermentation time proceeded, less and less 

pimaricin was detected in the cake samples. It is possible that the 

antibiotic is shed completely from the mycelia as the culture ages.
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CHAPTER 4.
DISCUSSION
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In general it was found that slopes which produced a grey sporulating mat 

were most suitable when preparing spore suspensions to inoculate shake 

flasks. Both S. n a t a l e n s i s  and S. g i l v o s p o r e u s also produced a white 

sporulating mat. However, this type of growth did not perform well when 

used as an inoculum for flasks (Section 3.1.). These different patterns 

of growth have also been found for other S t r e p to m y c e s species (Dorokhova 

et al.. 1970). It was also found that yeast and malt extract were 

important ingredients of agar slope and plating medium if dense 

sporulated growth was required.

The growth morphology in submerged culture was important in 

relation to pimaricin production. Large pellets of growth produced low 

levels of the antibiotic, whereas dispersed mycelia (with some small 

pellets) gave optimum production in flasks (Section 3.2.). It was found 

that the addition of CaC03 contributed to the dispersal of the mycelia. 

There is little information available regarding actinomycete pellets 

(Stanbury and Whitaker, 1984). However, it does appear that supply of 

oxygen to the interior of the pellet is critical (Pirt, 1975) and it is 

likely that this would be restricted in the case of large pellets. 

Because S t r e p to m y c e s have an oxidative metabolism, oxygen supply for 

growth is critical. This is particularly important when scaling up the 

process in stirred fermenters.

Investigations into methods to detect pimaricin in culture broths 

led to the development of a rapid spectrophotometric assay (Section

3.3.). Initially pimaricin was assayed using a microbiological assay, 

the classical method for detecting antibiotics. Because of the 

antibiotic’s insolubility in water, the microbiological assay 

over-estimated the concentration of pimaricin present in samples. Poor 

solubility in water is a feature of the polyene macrolide group as a 

whole (Raab, 1972). Methanol was the solvent of choice when preparing
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pimaricin standards and samples. Other solvents, which were also 

effective in solubilising the antibiotic, such as glacial acetic acid 

and glycerol were not used because they were impractical or unsafe to use 

routinely. By using methanol the standard pimaricin powder "Delvocid" 

could be completely solubilised and a methanoltwater mixture (2:1) was 

found to be sufficient to prepare dilutions of both the standard and 

culture supernates. By overcoming the solubility problem, both assay 

techniques were found to be in agreement with each other. This allowed 

pimaricin to be detected quantitatively by chemical characterisation and 

also by it’s biological activity. This rapid spectrophotometric assay 

was particularly useful for its ability to detect small increases in 

production.

The main media components which were found to be essential for both 

the optimum growth of S. n a t a l e n s i s and pimaricin production were: 

glucose, soya peptone, soya bean meal and CaC03 (Section 3.2.). Glucose 

proved to be the best carbon source, as reported for the production of 

other polyene macrolides (Brewer and Frazier, 1962; Acker and 

Lechevalier, 1954; Ethiraj, 1969; Abou-Zeid, 1973; Tereshin, 1976). 

Sucrose and lactose produced poor growth and no pimaricin when used in 

place of glucose in the standard medium. This would seem to indicate 

that the organism lacks the enzymatic ability to utilise sugars other 

than glucose. Corn starch and ground maize were utilised as carbon 

sources, however, they produced very viscous media which were difficult 

to process (Section 3.4.2.). MD05 and MD01 dextrins also proved to be 

good carbon sources and produced equivalent levels of pimaricin to 

glucose. MD05 was then combined with glucose in different ratios to 

observe the effect on production. It was thought that glucose would 

provide the initial energy for growth (tropophase) and once depleted, the 

MD05 would be more slowly utilised as a secondary carbon source, thus 

prolonging secondary metabolism (idiophase) and antibiotic production.
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However, these studies did not show any increases in yield (Section

3.4.4.) and in all cases the control medium with no MD05 produced as much 

if not more pimaricin. It is possible that production .of the antibiotic 

is under catabolite repression.

Soya peptone and soya bean meal were found to be good organic 

sources of nitrogen for the pimaricin fermentation as is the case with 

the production of most polyene macrolides (Section 3.4.5.). Soya peptone 

at 5 g/1 was found to give optimal production, however, concentrations 

of 20 g/1 or more caused a significant decrease in yields. It was found 

that increasing the soya bean meal content beyond the control level 

(20g/l) caused a considerable increase in antibiotic production. With 

a maximum soya bean meal concentration of 50 g/1, production was 

increased from 312 mg/ml to 816 mg/ml. It was also noticed that growth 

in this medium was very dense and well dispersed. However, when a new 

batch of soya bean meal was introduced, yields dropped again to only 216 

mg/ml. The reason for this variation between batches is unknown. 

However, batch to batch variation in soya bean meal has been known to 

occur during the production of the polyene macrolides candidin and 

candihexin (Martin and Me Daniel, 1974). Other complex nitrogen sources 

such as yeast extract and corn steep solids did not improve production 

either in combination with soya bean meal or on their own. Inorganic 

nitrogen sources such as ammonium sulphate, also, did not prove 

successful as a replacement for the complex nitrogen sources.

The patent describing the production of pimaricin (Struyk and 

Waisvisz, 1975, Section 3.4.3.) listed a series of ingredients which were 

designed to give optimal antibiotic production. These included the use 

of beet molasses, mycological peptone, beef extract, peanut oil and soya 

oil, dipotassium hydrogen phosphate and sodium sulphate. However, the 

standard control medium already in use, gave higher production. Calcium 

carbonate was an essential component of the production medium.
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Increasing the CaC03 content beyond the standard concentration (5 g/1) 

had no effect on production, however, below this level or if omitted 

altogether, yields decreased considerably. As already mentioned, CaC03 

may have an important role in dispersing the mycelia and also as a pH 

buffer in preventing significant fluctuations in pH.

Glucose dosing of the standard medium did not prove successful 

(Section 3.4.8.). Slow-feeding with different levels of glucose has been 

shown to increase the yield of the polyene antibiotics, candihexin and 

candidin (Martin and Me Daniel, 1974). Time course studies for pimaricin 

production showed that most of the glucose was utilised after 72 hrs 

(Section 3.4.1.). This indicated the start of secondary metabolism. It 

was hoped that by dosing with different concentrations of glucose at 

different times would result in a prolonged stationary phase and extend 

the production of secondary metabolites. It was also thought that small 

doses of glucose would overcome catabolite repression. However, 

production was not increased above the controls. There is no clear 

explanation for this.

Dosing the standard medium with sodium citrate increased production 

from 300 mg/ml to 700 mg/ml (Section 3.4.10.). Supplementation with 

sodium salts such as acetate, citrate and malonate has been shown to 

increase the production of the polyene antibiotic candicidin (Martin and 

Me Daniel, 1976). Citrate has been shown to increase the synthesis of 

the polyenes by providing important precursors and therefore, may have 

some regulatory role to play in overall biosynthesis (Volpe and Vagelos, 

1973). Initially, supplementing the pimaricin medium with these salts 

had no effect on production. However, dosing the fermentation after 72 

hrs and 96 hrs with 2 mg/ml of sodium citrate gave the increase shown. 

This was repeated several times and each time production was increased. 

From these studies, it was found that while the concentration of sodium 

citrate dosage was not critical, the stage of growth at which doses were
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Trace metals have been implicated as inducers or activators of 

secondary metabolite synthetases. Metal ions such as ferrous and zinc 

sulphate have a significant effect on the biosynthesis of candicidin (Liu 

et al.. 1975). However, dosing the pimaricin production medium with 

these metals had no effect on production (Section 3.4.13.).

In the candicidin fermentation it was found that a larger inoculum 

resulted in an increase in yields (Liu et_al., 1975). However, inoculum 

size was not found to be critical for the pimaricin fermentation (Section

3.4.6.). Inoculum levels of between 0.5Z and 5.0Z for flask cultures did 

not affect yields. In fact it was possible to inoculate flasks directly 

from slopes using a loop.

Resistance of the producing organism to high levels of its own 

antibiotic is a common selection system used to isolate possible 

high-yielding strains (Calam, 1976). It was hoped that a definite MIC 

(Minimum Inhibitory Concentration) value could be established for 

S t r e p t o m y c e s  n a t a l e n s i s  (Section 3.5.1.). This could then be used as a 

positive selection system for isolates (either induced mutants or natural 

variants) which could survive on plates with high concentrations of 

pimaricin. These resistant isolates may then produce higher yields of 

pimaricin in submerged culture fermentations. Initial difficulties were 

experienced when attempting to introduce standard pimaricin solutions 

into YME agar plates. Volumes of methanol above 1.4 mis were inhibitory 

to S. n a t a l e n s i s  and this had the effect of under-estimating the MIC for 

the organism. This difficulty was overcome by preparing a more 

concentrated stock solution of the antibiotic (40,000 mg/ml) which 

allowed for the introduction of smaller non-inhibitory volumes of 

methanol into the plates. It had been suggested in the literature that 

pimaricin was only soluble to a maximum of 1% (v/v) in methanol (Raab, 

1972). However, the spectrophotometric assay confirmed that the

added was important.
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concentration of the stock solution was 40,000 mg/ml (42 v/v). It was 

also shown that standard pimaricin (Delvocid), when introduced into agar 

plates, retained potency for up to 8 days (Section 3.5.2.)* This 

stability, over time had also been found for pimaricin in culture 

supernates that had been stored at 4°C. However, isolates that had been 

shown to be resistant to 2000 mg/ml (2 g/1) on plates did not produce 

pimaricin even above lg/1. One naturally occurring resistant isolate was 

shown to produce 232 more than the wildtype. It is possible that 

catabolite or phosphate repression is limiting production of the 

antibiotic beyond a certain level.

It was hoped that the bioassay plate technique would allow for 

rapid visual appraisal of isolates which showed increased productivity. 

Using this method, agar plugs of individual mutagenesied colonies were 

transfered onto bioassay plates and their potency indices measured. 

However, it has been found that antibiotic yield increases brought about 

by mutation are usually small (5-102) and this procedure was not 

sensitive enough to detect this (Calam, 1970).

For this reason, phosphate and glucose (catabolite) repression 

were used in order to reduce the wildtype zone size on the bioassay 

plates, thus highlighting mutants which could overcome repression and 

over-produce pimaricin. It was found that increasing glucose beyond 30 

g/1 in shake flask medium repressed antibiotic production significantly, 

but did not reduce zone sizes when colonies, that had been cultivated on 

plates with higher glucose, were transfered to bioassay plates (Section

3.5.3.I.). Thus, there was no correlation between the effect of 

different glucose concentrations on pimaricin production when using both 

shake flasks and colonies transferred to bioassay plates. This was also 

found to be the case for phosphate repression (Section 3.5.3.2.). It is 

not known why the bioassay did not show up the repression effect. It is 

possible that diffusion of the antibiotic throughout the agar from a
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colony is governed by other factors, such as the composition of the agar 

medium itself.

As a result, the bioassay plate technique was not used as 

a preliminary screen to detect high-yielding mutants. Isolates, now had 

to be randomly selected and tested for productivity in shake flasks 

(Section 3.5.3.3.). This method was more labour intensive and required 

much shaker space in order to screen enough isolates. However, for 

accuracy isolates had to be cultured in duplicate and for our purposes 

only one shaker cabinet was available with 35 flask holders. This 

problem was alleviated with the development of the 20 ml universal bottle 

method to culture isolates directly without having to first prepare 

slopes (Section 3.5.3.4.). This proved an ideal rapid pre-screening 

method and allowed a greater number of isolates to be cultured. In 

total, approximately 400 isolates, chosen from both UV and EMS 

mutagenesis were screened. In general, large shake flasks (500 ml) are 

more desirable for screening purposes than small flasks or test tubes 

which tend to give less reliable results even though more can be handled 

(Calam, 1970). However, results showed (Section 3.5.3.4.) that even 

though yields were lower in the universal bottles, they were consistent 

and high-yielding isolates could be identified. Ideally, approximately 

1000 survivors should have been screened for each mutagenic treatment 

used in order to have a reasonable chance of detecting significant 

increases (Calam, 1970). In this project, time did not allow this. A 

more rapid or possibly an automatic screening system would be required 

in order to achieve this goal.

Both UV and EMS provided improved mutants (Section 3.6.). The 

percentage increase in yields (142 and 112) was about average for small 

antibiotic increases when using mutation and selection (Calam, 1970). 

Caffeine in the plating media appeared to increase the frequency of 

mutations leading to higher antibiotic production. It was hoped that a
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second round of EMS treatment on a previously mutated strain (EMS 49) 

would produce a further improved mutant. However, no improvements were 

made. The non-producing strain also could not be reverted. It is 

possible that much larger numbers would need to be screened in order to 

detect such improved mutants.

N-methyl-N-nitro-N’-nitrosoguanidine (NTG) is one of the most 

potent chemical mutagens yet discovered (Godfrey, O.W. 1974). This 

mutagen may have been more successful in producing mutants with improved 

pimaricin production. However, NTG is particularly dangerous and 

requires stringent safety precautions. As a result, it could not be used 

with the facilities which were available to us.

The pimaricin fermentation was difficult to scale-up in the 16 1 

microgen vessel. The culture showed a high requirement for dissolved 

oxygen and initial fermentation runs produced low yields because of 

oxygen limitations. This was demonstrated using the dissolved oxygen 

probe in the microgen (Section 3.7) and also using shake flask cultures 

(Section 3.4.7). In shake flask, volumes of media above 50 mis in 250 

ml flasks showed a sharp decrease in productivity whereas 25 and 15 ml 

aliquots gave optimal yields. A high agitation rate (500 rpm) gave 

optimal yields in the microgen (500 mg/ml). However, high aeration 

resulted in extensive foaming which had to be controlled by automatic 

addition of antifoam. The medium had a high protein content (soya 

peptone and soya bean meal) and this may have contributed to foaming.

Periodic contamination by bacteria was also observed during the 

fermentations. When automatic addition of antifoam was linked to the 

vessel, a back-pressure could not be applied to the vessel. This would 

have increased the risk of contamination, especially in the latter stages 

of the fermentation. In general, there was no difficulty in transferring 

the culture from the inoculum flask stage to the microgen fermenter and 

the culture remained dispersed. It was also possible to inoculate the

97



inoculum flasks (200 mis in 1 1 flasks) directly from slopes with an 

inoculating loop without any loss in productivity.

Feeding with sodium citrate did not prove successful when scaled-up 

to the microgen. Shake flask studies (Section 3.4.12) with sodium 

citrate dosing had been shown repeatedly to increase pimaricin 

production. It is not known why this increase was not repeated in the 

microgen fermentations.

The aim of this project was to obtain a final pimaricin yield of 

between 5 and 10 g/1 in submerged culture fermentation. This level of 

production was required in order to make the process commercially viable. 

It was hoped to scale-up the process to production level in large scale 

fermenters in Biocon Ltd. The downstream processing and recovery of the 

antibiotic was not studied in this project. However, these aspects would 

also need to be thoroughly investigated in order for the process to be 

brought on-line commercially. Production was increased by over 502 (300 

to 700 mg/ml) during the course of this project, the majority of this 

increase was due to sodium citrate dosing. Further studies are required 

in order to determine why citrate feeding in the microgen did not improve 

yields. Only one 16 1 fermenter was available during the project and 

this limited the number of runs that could be carried out during the 

scale-up process. Mutation and selection provided a number of mutants 

with increased productivity. However, limited time and manpower did not 

allow a larger number of mutants to be screened, which could have 

produced even higher yielding isolates.
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