
Global Data Flow Analysis of Syntax Tree Intermediate Code

A Thesis by : Richard McCabe BSc.

Supervisors: Micheál O'hEigeartaigh

Heather Ruskin

Mervyn Barman

Declaration :

No portion of this work has been submitted in support of an application for another degree c

qualification in the Dublin City University or any other University or Institute of Learning.

Global Data Flow Analysis of Syntax Tree Intermediate Code

Abstract

Author: Richard McCabe BSc.

While software developers make every effort to develop correct, easily maintainable and efficient

programs, it is always possible to make improvements. These improvements may be made to the

program code or to the data which is manipulated by the program. The process of measuring the

efficiency of program code can be performed by the use of the many tools which are available today,

such as performance analyzers. The processs of detecting inefficiency in data manipulation is a more

complex task but can nevertheless be represented as the result of data flow analysis. This is

analogous to program flow analysis.

Performing a data flow analysis on a computer program yields data which can be of use in many

areas. It can be considered as bringing relevant information from each part of a program to every

other part. It becomes possible to make certain optimizations on the code representation. Decisions

as to which types of optimizations are best will be made as a result of consulting the data flow

analysis results. Tools can also be constructed which will provide the programmer with information

about the state of data which is used by the program.

The issue of performing Global Data Flow Analysis on a particular intermediate code

representation of a computer program are discussed in this thesis.

Preface

The work carried out in this thesis was done so under certain constraints. The programming

language, compiler and intermediate representation used are the property of a software house. No

disclosure of the internals of this software is allowed by the company on legal grounds. For this

reason what can be shown and referred to in the thesis has certain limitations. To overcome this

problem the author has created a hypothetical intermediate language.

Contents

1 DATA FLOW ANALYSIS OF SYNTAX TREE INTERMEDIATE CODE 1

1.1 Introduction .. i 1
1.2 Objectives 4
1.3 Thesis overview ...4
2 DATA FLOW ANALYSIS OVERVIEW ..6\

2.1 Intermediate Code Representation — 6
2.2 Optimization .. 8
2.3 Data Flow Analysis ... 9
2.3.1 Basic Blocks .. 10
2.3.2 Flow graphs ... 11
2.3.3 Iterative analysis technique ... 12
2.3.4 Data flow problem types .. 16
2.3.5 Set Operations .., ... 17
3 DATA FLOW ANALYSIS ALGORITHMS .. 19
3.1 BASIC BLOCK DIVISION .. 24
3.2 DEF LIST ALGORITHM ... 27
3.3 USE LIST ALGORITHM .. 30
3.4 GEN SET ALGORITHM .. 32
3.5 KILL SET ALGORITHM .. 34
3.6 IN-OUT SET ALGORITHM .. 36
3.7 USE-DEF SET ALGORITHM ... 38
4 ANALYSIS.. 41
4.1 Test Of Flow Analysis .. 41
4.2 A Detailed Example .. 41
4.3 Performance Factors .. 47
4.4 Summary 48
5 CONCLUSION ... 49
APPENDIX A SYNTAX TREE INTERMEDIATE FORM .. 51
APPENDIX B DATA STRUCTURES ... 54
B.1 Basic block information ... 54
B.2 Definition points ... 55
B.3 Use points ... 55
B.4 Label Definition ... 56
APPENDIX C SET MANIPULATION FUNCTIONS .. 57
APPENDIX D EXAMPLES .. 67
Bibliography .. 75

List of Figures

Figure Page

Figure 1.1: The compilation process.. 2
Figure 2.1: An assignment statement ... 7
Figure 2.2: Syntax tree representation ...8
Figure 2.3: Sample code .. 11
Figure 2.4: A Flow Graph .., 12
Figure 2.5: Data Flow Equations... 17
Figure 2.6: Code sample .. 17
Figure 2.7: Bit vectors... 18
Figure 4.1: Example code... 42
Figure 4.2: Flow Graph .. 42
Figure 4.3: GEN and KILL sets... 43
Figure A1: Intermediate Code Node ... 51
Figure A2: Node Type Table ... 53
Figure B.1: Basic block information ... 54
Figure B.2: Definition points.. 55
Figure B.3: Use points .. 55
Figure B.4: Label Definition ... 56
Figure D.1: Code example... 67
Figure D.2: Test result... 74

1 DATA FLOW ANALYSIS OF SYNTAX TREE INTERMEDIATE CODE

1.1 Introduction

Today there are a great number of computer programming languages available to the software

developer. It cannot be said, simply, that any one programming language is better than any other,

but only that one language may be more suited to the development of a particular application than

another. Because of the great diversity in computer applications there are also a great number of

programming languages.

The compiler is a fundamental tool in modern computer science. It acts as a translator between

a human oriented programming language and computer oriented machine language. Compilation is a

task which must be carried out for all languages which are not interpreted. Even some interpreted

programming languages may be compiled into a pseudo machine language. The general structure of

most compilers has a great degree of similarity. [Fis 86] [Hec 77].

The first step in the compilation process is that the source program is read in. This is stored in a

disk file normally. The source program is broken into lexical units by a lexical analysis phase of the

compiler, as it is read in. The next phase is the semantic analysis of the tokens which have been

read. This imparts a meaning to the tokens which have been read as well as reporting if any

grammatical errors have occurred in the input stream. The output of this phase is to store the

program in some intermediate code form. This form is of a lower level than the source language.

Many of the high level constructs such as for and case statements will have been simplified into test

and jump statements . A description of intermediate languages is contained in [Aho 86]. There are

several popular forms of intermediate code. The most popular forms are 3-op code, quadruples and

syntax tree representation.

The computer oriented machine code is generated by the code generation phase. This maps the

intermediate code statements on to machine code statements. This is a highly architecture dependent

phase of compilation. The code generator may produce code to run in native mode on the

architecture, or it may cross generate code for another architecture. This phase handles the allocation

of the resources of the target architecture. Examples of these resources would be machine registers

and memory. The final phase of compilation is to take the produced machine code and assemble it to

produce the object code .The system supplied assembler might often be used for this phase. This

object code may then be linked with the system library code to form the executable image of the

program. From this step the program may now be loaded into memory and executed. The following

diagram indicates the compilation process.

Figure 1.1: The compilation process.

The compilation process as described takes a source program and makes an exact translation

of every statement which it contains. No attempt is made by the compiler to make any judgement as

to the efficiency of the source or Intermediate code. It may become apparent that optimization or

improvement may be possible. Optimization means rewriting of a representation of the original source

program in a more efficient manner while at the same time fully retaining the functionality of the

original program [Aho 77]. A program can be optimized in terms of execution time or in terms of

executable code size. Most optimizers will have switches which will allow the user to choose the

specific type of optimization desired. Normally a program would be developed with optimizing

switched off. This would enable the developer to use a source code debugger on the code under

2

development. When the program has been fully tested and goes Into a production run then full

optimizing would be switched on.

Sources of optimization can come from two places. In the first place the original source program

may have been written in an inefficient manner so that it lends itself to optimization [Aho 86].

Secondly in translation and simplification of the source program, as the high level constructs are

broken down, certain opportunities for optimization may arise. The translation of the high level source

language statements can cause sequences of code to be produced repeatedly in the output

intermediate code, for example, common subexpressions may occur many times, due to simplification

of a sequence of source statements.

Before any optimization can take place some measure of the program's efficiency must be

established. This measurement can be performed on isolated program segments or on the entire

program itself. The former type of measurement is known as local whereas the latter is known as

global. This type of measurement is known as data flow analysis.

Data flow analysis is the examination of how data is affected as the program is executed. This

involves studying the possible paths which a program can take in the course of execution and which

data items are affected in terms of having their values altered or used [Aho 86] [Fis 88]. The

analysis is carried out on the program routines as a whole and the results of these computations are

stored in some convenient form. This form should be as compact as possible because of the great

amounts of data which may occur. Once this step has been completed the resulting data can be used

to determine cases for optimization.

As an example of data flow analysis and optimization consider the following case. A variable A

is assigned a constant value 5 at some point in a program. This value of A is used at a second point

later on in the program in another assignment statement. If after carrying out data flow analysis, it is

observed from the data gathered that the variable is only assigned a value at one point in the

program, and that this value is a constant, then there is no reason why the constant value cannot be

substituted directly into the expression at the second point. This could save on memory-register

transfers required to retrieve the value of A. Furthermore if it is discovered that the value of A is not

required anywhere else in the program, then this first assignment may be removed altogether. This

would enable a code saving.

1.2 Objectives

This thesis has come about as the result of a study of a commercially available programming

language with a view to developing an optimizer for it. It is the intention to optimize the intermediate

code in order to provide an architecture independent tool for the may varied and numerous

architectures on which this language is available. In order to develop the optimizer a method for data

flow analysis would have to be designed. The compiler of this language produces a syntax tree type

of intermediate form similar to the hypothetical intermediate code presented in Appendix A.

On carrying out a study of the methods of optimization it is observed that most of the standard

algorithms used in the data flow analysis are related to a particular type of intermediate code. A

major problem facing this project is that no method of carrying out a data flow analysis for syntax tree

intermediate form has been found, even though many of the classical texts and papers on

optimization were searched. In order to overcome this problem, the chosen solution is to take the

standard data flow analysis algorithms and to modify them to enable them to operate on syntax tree

intermediate form. This modification of the algorithms forms the main body of the research work

carried out and forms the main objective.

1.3 Thesis overview

The first chapter presents the subject in general terms. It is intended to introduce the reader to

the subject matter of the thesis in a high level manner.

4

The second chapter presents an introduction to the terminology and theory behind global data

flow analysis. It starts by presenting the form of intermediate code which is of interest throughout the

thesis. We then present a short discussion on optimization. Optimization is the major motivating

factor in performing data flow analysis on a program in the first place. Then we consider the

techniques and methods employed. This chapter concludes with a discussion on set handling

functions.

Chapter three presents the data flow analysis algorithms which are developed. Firstly a

presentation of the order of the algorithms is presented followed by the algorithms themselves. The

input and output data of these algorithms are described. The algorithms are presented in a

pseudo-code form which is self documenting. A short description is also presented.

Chapter four presents an analysis of the algorithms which are developed. The analysis is

illustrated by use of an example data flow analysis and a discussion on the efficiency of the

algorithms

Chapter five is the concluding chapter. This chapter considers some future directions which this

research could take, The development of an optimizer based on this data flow analysis is discussed.

Also some tools which could be developed to assist programmers by giving them information on the

use of data within programs are discussed.

The appendices contain a description of a hypothetical intermediate code similar to the one used

in the development of the code to test out the developed algorithms. The intermediate code is

represented as C structures and constant definitions. The principal data structures which are used in

development of the data flow analysis algorithms are also included. These data structures are

presented more in diagrammatic form to illustrate the principal data of interest. Included here, also, Is

the set handling code which is used in the course of data flow analysis. Finally some examples are

included to illustrate the techniques used and also with a view to tying the thesis together.

5

2 DATA FLOW ANALYSIS OVERVIEW

Before embarking on a discussion of data flow analysis algorithms it is helpful, at this point, to

present the basic material from which a data flow analysis method is constructed. This takes the form

of a brief introductory discussion of the terminology which will be met throughout the thesis,

illustrated with diagrams wherever it is thought these are helpful in clarifying a point. This terminology

is the common language of this subject and can be found in ail the standard literature on the subject.

2.1 Intermediate Code Representation

Intermediate code is a representation of a computer program which is created during the

compilation process by most compilers. This representation is the result of breaking down and

simplifying the original source program by the compiler's syntax analyzer stage. The intermediate

representation falls in complexity somewhere between the original source program, understood by the

human programmer, and the machine code representation, understood by the computer. Intermediate

code representation is rarely referred to by programmers, the prime function of it is to present a more

simple construct of the source program for mapping to machine code. It is usual to have a

representation where one intermediate code statement maps to exactly one machine instruction, this

also makes the allocation of machine registers for the statement an easier task.There are several

forms of intermediate code representation, each with its own particular merits and drawbacks. The

most common forms are postfix notation, three-address codes and syntax tree representation

Postfix notation is known to mathematics as polish notation. In this notation the operators appear

after the operands to which they apply, giving a parenthesis-free notation. The main attractions of

this notation are the simplicity of translation and the conciseness of representation. This notation

lends itself more to the implementation of an interpreter because of the stack based characteristics

which it possesses. For this same reason also it is not such a useful intermediate language.

6

Next come the category of representation sometimes known as the three-address codes. As the

name implies, three addresses and one operator are used in each statement. The addresses refer to

data locations where data is read from or results of calculations are stored . Two addresses are used

for the storage of the operands and one address is used to store the result. In an intermediate code

statement in this language only one operation on the data per statement is carried out. This is

convenient when it comes to code generation, as the statement can often map directly on to a

machine instruction. This category divides into two sub-categories known as triples and quadruples.

The big difference between these notations and postfix notation is the way in which results are

referenced. In postfix notation the results have to be referenced by means of stack manipulation,

whereas triples and quadruples generate explicit references to results. The difference between

triples and quadruples is that the former reference intermediate values by means of the number of

the triple which created them, whereas the latter type uses explicit intermediate value names to

reference values. This means that quadruple form would lend itself more readily to register allocation.

The syntax tree intermediate form gives a hierarchical representation of the source program.

Here nodes in the tree represent the elements, such as operators and operands, making up the

intermediate language statements. Attributes of the language statement may also be stored in the

syntax tree nodes. These attributes would typically contain type information and other such detail,

built up as the intermediate code is scanned, and would be of use at code generation time. The

advantage of this form of representation is that it is easy to manipulate when it is necessary to

restructure the syntax tree In performing optimization [Aho 77]. Also the syntax tree structure can

be easily mapped to data structures available in most modern computer high level languages. For

example it could be represented as a linked list of records, with node information contained in a

record which also contains pointers to the nodes further down the hierarchy. Functions which traverse

tree and list structures are generally simple to implement in high level recursive programming

languages. These functions can be found in [Wir 76].

As an example consider the following assignment statement:

7

a = b * c + d

The syntax tree representation of this statement would be :

/ \
a +

/ \
d

/ \
b c

Figure 2.2: Syntax tree representation

The internal nodes of the tree would contain the operators and the leaves would contain the

operands. Any attribute information would be stored in the node's extra record fields.

For the purpose of the discussion on the algorithm design a syntax tree representation is

included . While this representation is designed for the purpose of illustration, it contains most of the

elements which would be found in an actual syntax tree representation. This hypothetical

intermediate language Is implemented in terms of C structures and constant definitions and is

contained in Appendix A.

2.2 Optimization

Optimization is the term given to transforming a program in order to achieve an improvement in

the characteristics of the executable program. The main goals of optimizing a program are to produce

a reduction in the executable code size and a decrease in the execution time of the program [Fis 88]

[Aho 77] [Aho 86]. These conditions are not necessarily connected. Satisfying one does not

automatically guarantee satisfying the other. Optimization can only improve the translation of an

algorithm, it can never replace a poorly written algorithm with a better one. When dealing with

Figure 2.1: An assignment statement

8

program performance questions it is useful to start by considering whether the programmer could

improve any of the algorithms, before considering optimization. A fundamental condition in carrying

out any optimization is that the correctness of the program be maintained no matter what

modifications are made. It is better to perform only the safe optimizations of a program in order to

meet this condition. Many of the valuable optimizations can, in some circumstances, be unsafe.

Optimizations guaranteed to always produce the same program results, between the original program

and the optimized version, are known as safe, those which could cause a difference in results are

known as unsafe. One of the richest areas of optimization is any improvement which can be made in

the performance of tight program loops. As a rule, a lot of programs spend most of their execution

time in a very small area of the program code. If these areas can be identified and optimized, then a

performance improvement is bound to be made. There is a question of trade off between the amount

of effort required to produce a complex optimization and the benefit to the program execution time or

size.

One of the more difficult problems in dealing with optimized code is where the program results

become incorrect. These situations can be difficult to locate as the optimized code can interfere with

the behaviour of debugging tools, and removing the optimization will remove the problem.

Program optimization may take place at various levels such as at the machine code level and

intermediate code level. Optimization of intermediate code has the greater advantage in that it is

independent of the target architecture on which the program will be executed. It also means that if the

optimization stage of the compiler Is written in a portable manner, then it a simple task to re-target it

to new architectures.

Optimization of intermediate code means that the syntax tree is rearranged according to certain

rules followed by the optimizer. These rules can mean that code or data can be removed from a

program altogether, or that they may be moved in order to improve efficiency of the program. The

rules used are based upon decisions made by the optimizing program once it has consulted the

results of program and code flow analysis. This implies that a first step in writing an optimizer is to

perform data flow analysis.

2.3 Data Flow Analysis

Data flow analysis is the collecting of information about the history of the data contained in a

program segment [Hec 77] [Muc 81]. This is a static analysis carried out after the semantic

analysis phase during compile time. The information is gathered into tables within the data flow

analyzer following traversals of the program intermediate code. This data collection Is carried out prior

to any optimization being performed. What is of interest about a data item is where in the program it

is defined, where it is modified and where it is used.

2.3.1 Basic Blocks ,

The first step in performing data flow analysis is the division of the program intermediate code

into basic blocks. This allows the analysis to be carried out on discrete fragments of the entire

program. Blocks are simply sequences of program code which will be executed in their entirety once

entered. This means that a block will begin execution at its first statement and end execution at its

last statement.

The method of creating basic blocks is straightforward and is defined by the following rules

adapted from [Aho 77].

The first statements of basic blocks are first determined.

i) The first program statement is a basic block first statement.

ii) Any statement which is the target of a jump statement is a basic block first statement.

iii) Any statement which follows a conditional jump statement is a basic block first statement.

From these simple rules the intermediate code is partitioned into basic blocks. Basic block

information must be ordered, each basic block must contain information telling it which basic blocks

are its predecessors and which are its successors. The most suitable structure for basic block

information would be a linked list of records. Each record would contain pointers to the start

10

statement and end statement of the block, as well as pointers to the lists of predecessors and

successors.

A simple code optimization opportunity can be derived from the basic block information. Consider

the case where a basic block, other than the first block, has no predecessor. This would imply that

the code can never be entered, and therefore never executed. Such a basic block may be removed

as unreachable code.

2.3.2 Flow graphs

A useful representation of the relationships between basic blocks and their predecessors and

successors is presented by a directed graph called a flow graph. Each node of the graph represents

a basic block, and the graph edges are the paths to successor blocks [Aho 77]. One block has the

property of being the initial block. This initial node would be the basic block containing the entrance

into a function.

As an example of a flow graph, consider the following code fragment:

if (a == 1)
{

b = 1;
}
else
{

c = 1;
}
d = a + b;

Figure 2.3: Sample code

The flow graph for this code fragment would be:

11

Figure 2.4: A Flow Graph

Here b1, b2, b3, and b4 are the nodes of the graph representing basic blocks. The control flow

is represented by the graph edges joining the nodes. As can be seen, control can pass from block

b1 to either block b2 or b3 depending on the value of a.

Block b2 has a predecessor block b1 and a successor block b4. Block b4 has two

predecessors, blocks b2 and b3, and no successors.

2.3.3 Iterative analysis technique

The problem of data flow analysis can be considered as finding the data flow of a program

from the control flow structure. The information which is built up by data flow analysis involves the

definition and use information for the program variables. This information is constructed to show

which definitions of a program variable affect the uses of the variable. The control flow structure is

discernible from the ordered basic block Information, given that, by definition, these ordered basic

blocks map out the program flow.

The data flow questions fall Into two classes:

Class 1

12

Given a particular statement in a program, what happens to the program variables before

control reaches that point in the program, (i.e., what variable definitions can affect computations at

that point)?

Class 2.

Given a particular statement in a program, what happens to the program variables after control

leaves that point, (i.e., what variable uses can be affected by definitions at that point)?

Class 1 questions are known as forward-flow problems while class 2 questions are known as

¿ac/civard-/fowproblems.Solutions to both of these problems are possible.

An analysis which spans more than one block is called a global data flow analysis. With this type

of analysis it is impossible to statically determine in what sequence the basic blocks will be executed.

The analysis must consider that all paths are possible. In this way any optimizations based on the

analysis are valid no matter what the execution path.

The method of solving flow analysis problems is best described by considering the solution of a

simple flow analysis problem. Take, for example, the live variable analysis problem. By definition a

live variable is a variable whose current value will be used before it is assigned a new value. In the

context of global data flow analysis a variable is considered live if along any possible path it is used

before being reassigned a new value.

Let b be the index of a basic block. Define ln(b) as the set of variables live on entry into basic

block b. Define Out(b) as the set of variables live on exit from basic block b. Let S(b) be the set of

basic blocks which are successors of b. It is then the case that the OUT set is the set union of all the

IN sets of successor blocks of b :

Out(b) = yjln (i)
i e S(b)

13

That is to say that a variable Is live on exit from a block when It is live on entry to some

successor block.

Let Use(b) be a set of variables within basic block b which are used before they are re-defined.

The definition of a variable is the action of assigning a value to it. The set Use(b) is a constant set

whose value depends entirely upon the program statements within basic block b. If v e Use{b) then
v e In{b).

Let Def(b) be the set of variables that are defined in basic block b. Def(b) is also a constant set

whose value depends on the statements contained in b. The value of Def(b) is obtained by scanning

the statements in block b and finding where a variable is assigned or read. If a variable is live on exit

from block b, it is also live on entry to block b unless it is defined in the block. That is, v 6 Defib).

14

This also means that the set ln(b) in given by the difference between sets Out(b) - Def(b) which is

stated as :

In{b) 2 Out(b) - Def{b)

Careful consideration of live variables shows that the only way a variable can be live on entrance

to a block is either for it to be in the set of variables used by the block, Use(b), or for it to be live on

exit from the block and not redefined within the block. This is stated by the equation :

In(b) = Use{b) u (Out(b) -D ef ib))

This equation, relating IN and OUT sets, exists for each basic block.

It is always possible to solve data flow equations for a flow graph which has a unique starting

node, with no predecessors, and one or more terminating nodes, with no successors [Fis 88]. The

technique used to solve the live variable analysis problem is to start with the values generated In the

basic blocks , the USE sets. These values are then propagated to the set of predecessor blocks.

The values killed in each block, the DEF sets, are excluded. This process is iterated until the IN and

OUT sets converge. The sets have converged when there are no more changes in the IN and OUT

sets for an iteration.

This data flow problem considered, live variable analysis, assumes the property to be true If it

could be seen to hold along any path. This is known as an any-path type of problem. A solution to an

any- path problem dos not require that a property must hold, only that it may hold.

Data flow problems can also exist in an all-path form. In this case the desired property is stated

to hold along all possible paths. In the solution of an all-path problem the desired property can be

guaranteed to hold along all possible paths.

15

2.3.4 Data flow problem types

Data flow problems follow a very clean grouping. For each basic block there is an IN and an OUT

set. These sets are the definitions live on entry into a basic block and live on leaving a basic block

respectively.

In solving forward-flowdata problems, OUT sets are computed from IN sets within a particular

basic block and IN sets are computed from OUT sets across a basic block. For backward-flow

problems, IN sets are computed from OUT sets within a basic block, and OUT sets are computed

from IN sets across a basic block.

Within a basic block the IN and OUT sets are related by equations of the form :

In{b) = Use{b) u (Out(b) - Kill{b))

or

Out(b) = Use{b) u (In{b) - KillQ?))

depending on whether a backward-flow problem or a forward-flow problem is under consideration.

On an any-path problem a union of predecessor (or successor) values Is computed; on an

all-paths problem the intersection of predecessor (or successor) values is computed.

Boundary conditions are that the IN set of the initial basic block in a forward-flow problem and

the value of the OUT sets of the final basic blocks for a backward-flow problem are specified. These

boundary condition sets are either empty or contain the set of all possible values depending on the

interpretation of the problem.

These equations can be summarized as follows :

16

F o r w a r d - flow B a c k w a r d - flow

A n y - p a t h Out(b) = Gen{b) u (In(b) - KilKb)) In{b) = Gen(b) u (Out(b) - Kill(b))

In(b) = U Out(i) Out(b) = u In{i)
i e P(b) i s S(b)

A l l - p a t h Out(b) = Gen(b) u (In(b) -Kil l(b)) In(b) = Gen(b) u (Out(b) - Kill(b))

In(b) = r\Out(i) Out(b) = rJn(i)

i e P(b) is S(b)

Figure 2.5: Data Flow Equations

2.3.5 Set Operations

In performing data flow analysis bit vectors provide a very convenient and compact form of data

representation. A bit vector is a set of bits with the following interpretation : a bit position represents

the number of an object in which the observer is interested, and its value, 0 or 1, represents the state

of this object. This technique allows large amounts of information to be stored in a compact manner.

As an example, consider the use of a bit vector to represent the GEN variable information in the

following basic blocks :

i = 1; d1

j = 2; d2

k = 3; d3

I = 4; d4

Figure 2.6: Code sample

17

The bit vectors in this case would be :

Block[b] Gen[b] bit vector

b1 {d1,d2} 1100

b2 {d3, d4} 0011

Figure 2.7: Bit vectors

The bit vectors are considered as sets, with a one representing the presence of a quantity, and a

zero representing the absence of a quantity. In performing data flow analysis the operations required

to be carried out on bit vectors are as follows: the creation and removal of sets, the insertion and

removal of a set element, union, intersection of sets, comparison of sets and check for membership

of a particular set.

Not all high level programming languages contain set handling functions as part of their standard

library, or if present then they may not be capable of handling the large sets required for the purpose

of data flow analysis. It is desirable to be able to allocate sets dynamically as the flow analysis

proceeds. It is possible to write set handling functions to suit the application. (See Appendix B).

The sets are'implemented by obtaining a block of memory from the operating system and then

performing the required operations by means of set functions. These functions are necessary as the

algorithms require set operations to be carried out on data.

18

3 DATA FLOW ANALYSIS ALGORITHMS

This chapter presents a method and algorithms which are developed to carry out a data flow

analysis. The material presented here is the first stage in the development of an optimizer for a

commercially available compiler for a high level programming language. Before presenting the

algorithms it is of interest to examine existing methods of carrying out data flow analysis, and point

out why these methods could not be applied to the problem at hand. This discussion will give some

insight as to why these methods were unsuitable and had to be modified.

The subjects of data flow analysis and code optimization have been under development since the

early days of computer science. In the past the necessity for optimization, and hence data flow

analysis, was much greater because of the lower power of the processors available, by comparison

with today's standards. The main objective of optimization then was to reduce both storage size and

execution time of a program. Today the trend is more toward improving execution speed, as the cost

and availability of memory is not as restrictive as it once was. Nevertheless the use of data flow

analysis in compilers has increased dramatically, both in potential and actual usage, since its

inception. Much pioneering work on the subject was carried out in the early to mid seventies.

A wide range of literature is available today on the subject of data flow analysis which provide

solutions to the problems encountered. From this literature come a large number of standard methods

and algorithms which have been implemented and tested over time. Proof of the correctness of these

methods is also available. The methods and algorithms presented in the standard literature solve

particular data flow problems fora particular type of intermediate cocfe.Two forms of Intermediate

code are most popular and are widely used in the algorithms contained in the literature which was

studied by the author. These forms are commonly known as three-address code and quadruples

respectively. They tend to be a very simple representation of the original source code statement.

The complexity of the original statement is broken down into multiple simple steps. There is an

abundance of material available which deals with the subject of data flow analysis for three-address

code and quadruples.

These forms of intermediate code have been in use for many years and have several

advantages. These representations may have been popular when more strict memory constraints

were in force on earlier computers. As the name suggests, the usual format for this representation is

two addresses for the operands and one for the result. There is at most one operator per statement.

This representation is convenient in that the amount of space required per statement Is small.

These simple three operand statements map on to most assembler instructions in a convenient

manner, making code generation a simple process. Temporary values are created as needed in the

code, and these conveniently map to temporary register loads and stores. In fact this type of code

simplifies the task of register allocation for a particular machine.

As pointed out earlier the problem being dealt with here was the fact that the requirement was to

provide a data flow analysis of a certain type of intermediate code. The code of interest to this

project was of the syntax tree type, which is discussed in section 2.1 of this thesis. None of the

standard literature contains detail as to how this could be accomplished. As the standard algorithms

stand, they are not adequate to apply to this problem.

A point about syntax tree representation is that it is rather expensive in terms of memory usage.

This point does not have so much relevance to modern computers with 32 bit addressing and virtual

memory. The fact that syntax tree representation is conveniently restructured makes it ideal as a

language which has to be optimized.

There are a number of possible solutions which could be applied to solve the problem. Among

the most feasible of these is the possibility of carrying out a translation of the intermediate code as it

stands, in order to create the form which will be accepted by the standard flow analysis algorithms.

This is ruled out on the grounds that the code generators will have to be modified or else another

translation will have to be made in order to get the code back to its original form after flow analysis

and optimization. The alternative to this is to modify the algorithms so that they will accept the syntax

tree representation. This approach appears to give a better return on the time invested. It will also

20

greatly reduce the compile time if no translations of the intermediate code have to be carried out. For

these reasons this is the chosen method.

It has taken a considerable amount of effort to arrive at the solution to this problem. In the first

place it is necessary to be familiar with the compiler and intermediate language which is the subject of

this work. A copy of the compiler and intermediate code description has been made available for the

project. On becoming familiar with the workings of the compiler and its internals, a wide range of

literature on the subject of data flow analysis has been acquired and studied. There are may classic

papers on the subject as well as material contained in text books on compilers. Some of the authors

whose papers have been studied are [All 71] [All 76] [Ken 72] [Mor 79] [Ull 75]. Also the

many years of experience by the author in the area of systems software has proven to be

advantageous in the design and implementation of the data flow analyzer.

The first decision is which algorithms are to be implemented, mindful of the fact that the objective

of the data flow analysis is to provide information for an optimizer stage. Having decided upon a set of

algorithms, it is then necessary to take each of the algorithms and try to prove empirically that the

problem can be solved for the type of intermediate language on hand. The correctness of the

standard algorithms is assumed to hold. The assumption is also made that the algorithms will still

produce correct results if modified for syntax tree intermediate code. Initially examples have been

traced through the algorithms by hand and result data checked. Once satisfied with these results, the

algorithms can be implemented, one by one, and their output checked against known results.

The material contained in this chapter will be of benefit to anyone who is considering

implementing data flow analysis, or code optimization in two ways. Firstly, as an educational tool,

the material presents an implementation of the subject of data flow analysis, which would serve to

broaden the readers knowledge In the area. Secondly, it would solve the problem being faced by

anyone implementing data flow analysis if dealing with a syntax tree representation of intermediate

code. The modified algorithms presented here will carry out the task if implemented. The terms data

flow analysis and code optimization are very closely related, since it is not possible to make a

thorough job of the latter without implementing the former. Although no optimization is carried out in

this work, the more complex task of data flow analysis is tackled. The material should also be of

interest to students of computer science, since most text books consider the basic principles of data

flow analysis without going deeply into implementation details.

The algorithms are presented in a pseudo-code form, the language constructs of which should

be familiar to most readers. Set handling functions are implemented in the C programming

language. These functions could be called from the data flow analyzer program. (See Appendix C).

These algorithms are implemented in one such programming language and tested on a particular

intermediate code form. When these algorithms are implemented then the data collected constitutes

a data flow analysis, the results of which can be fed to an optimizing stage of the compiler or can

sen/e as input data to some other form of tool.

The order in which the data flow analysis is carried out [Aho 77] is as follows :

The first step is to break the program intermediate form into basic blocks. The blocks are then

ordered in terms of predecessors and successors for each basic block. These lists of predecessors

and successors will be used by later algorithms. Rules for deciding the basic block subdivision have

been discussed earlier.

The next step is to collect all static information about the program. This information is obtained

from both the symbol table information and by a traversal of the intermediate code. Here, what is of

interest are the DEF and USE information. The DEF information is a linked list of records which hold

information about the points in the program where a local or static variable is assigned or read. Static

variables retain their values over repeated calls to the function. Only variables local to a routine are

considered, since treating arrays or pointers is a more complex task. This means that each routine

has data flow analysis carried out on it in isolation from the other routines making up a program, so

that no interprocedural analysis is performed. Global variables would be handled by considering

interprocedural data flow analysis.

22

Likewise the USE information is a linked list containing information about where each local or

static variable is used. Since this could occur anywhere in the syntax tree, routines must be written

which will traverse an expression tree to any depth and mark all usage points of the variables of

Interest [Wir 76].

To prepare for the data flow analysis, certain information about the state of variables within each

basic block will be necessary. This information is known as the GEN and KILL information. The GEN

set information is information about local and static variable definitions which reach the end of the

basic block. These would be the definitions or re-definitions of a variable. The result is a bit vector

representing the variables live at the end of the block. The KILL set is a set of local or static variable

definitions outside of the basic block which also have definitions inside of the block. That is to say that

the KILL set marks all those definitions which are destroyed by this latest re-deflnition.The GEN and

KILL information is represented per basic block as a bit vector.

The next step is to build what are known as the IN and OUT sets for each basic block. These are

again bit vectors which represent the following variable definition properties. The IN set is the set of

all variable definitions which are live before the first statement of the basic block Is executed. The

OUT set is the bit vector representing the set of variables which are live after executing the last

statement in the basic block. The algorithm involved in the building of these sets is different from the

previous algorithms in that the previous algorithms carry out their task by observation of certain rules,

whereas the IN-OUT sets are computed by the iterative technique.

The final algorithm is that which builds use-def chain information. The UD chain information is

represented by a bit vector for each use of a variable. It Is computed as follows. If a usage of a

variable is preceded in its basic block by a definition of the same variable, then the UD chain consists

only of the last definition of the variable. Otherwise the UD set consists of all definitions of this

variable in the IN set.

23

3.1 BASIC BLOCK DIVISION

ALGORITHM : Divide a routine into its basic blocks.

DATA IN The routine Intermediate code linked list.

DATA OUT : A linked list of basic blocks.

METHOD :

The following rules are used to identify basic blocks In the intermediate code :

i) The first program statement forms the start of the first basic block.

Ii) Any statement which is the target of any go to statement is the start of a basic block,

iil) Any statement following a go to statement forms the start of a basic block.

The algorithm first gets the start node of the intermediate code. This by definition i) is the

start of the initial basic block. A basic block record is created and the basic block pointer,

block_start, is set. The local basic block counter is initialized to 1, and this value is set in

block_number. Now the intermediate code is traversed to identify the subsequent basic blocks,

searching for occurrences of BRANCH, COMPARE and LABELDEF nodes. From the rules

above these nodes signify the start and end of basic blocks. Each time such a node is

encountered the end of the previous basic block is marked, the local block counter Is incremented

and a new basic block record is created. For label definition nodes, LABDEF, a temporary record

is created to identify the block which contains the label. This information will be necessary when

finding basic block predecessors and successors. This algorithm terminates after reading the last

program statement of the last basic block. The last basic block record is completed once the main

traversal loop completes. (See example in Appendix D).

24

ALGORITHM START

get start_pointer to beginning of intermediate code

block_count = 1

create the initial basic block record

initialize record with block_count and block_start pointer

while NOT last node

do

case nodejype of

BRANCH,

COMPARE,

LABELDEF:

set record block_end pointer

link basic block record into basic block list

increment block_count

create a new basic block record

initialize record with block_count and block_start pointer

if (nodejype == LABELDEF)
\

create a label definition record

initialize record with label number

and owner basic block

link this record into label list

endif

default:

endcase

next node

loop

25

set last record block_end pointer

link last basic block into basic block list

for each basic block

do

find all predecessor and successor blocks to this block

store the information in this basic block record

loop

ALGORITHM END

3.2 DEF LIST ALGORITHM

ALGORITHM : Mark all definition points of local variables in the routine.

DATA IN : A linked list of basic block information containing the syntax tree intermediate
code.

DATA OUT : A linked list of definition points for the routine.

METHOD :

The DEF list is created as auxiliary data which is used to build up the data flow analysis. The

previously defined basic block structures are used in this algorithm. Definition of data can occur in

the EVAL node and also as part of the CALL and CALLPTR nodes. In this case the argument

lists may be assigned values. The intermediate code contained in each basic block is traversed

as the definition information needs to know the basic block number. The linked list of basic blocks

presents a convenient structure for traversal. The linked list is traversed from the beginning of the

list. The intermediate code nodes contained in each basic block are examined to find EVAL

nodes as well as the CALL and CALLPTR nodes. These nodes are the points where data are

defined. For the CALL and CALLPTR nodes the ARGREF nodes are marked as definition

points. Each time one of the above mentioned nodes are encountered in the intermediate code a

DEF record is created. Information stored in the DEF record is the definition number, and the

node pointer. The definition number is given by a local definition counter which is incremented

each time a new definition is encountered. The counter is set to one for the first definition. The

algorithm terminates after the last basic block structure is traversed.

27

for each basic block

do

while NOT last node of basic block

do

case node_type of

ALGORITHM START

EVAL :

CALL,

CALLPTR

default :

endcase

next node

if left_node type is a local or static variable

increment definition counter

create a DEF record

set DEF count to definition counter

set DEF node to this node

link this DEF record into definition point list

endif

foreach argument of arg list

do

if argument Is an ARGREF

Increment definition counter

create a DEF record

set DEF count to definition counter

set DEF node to this node

link this DEF record into definition point list

endlf

loop

28

loop

loop

ALGORITHM END

29

3.3 USE LIST ALGORITHM

ALGORITHM : Mark all use points of local variables in the routine.

DATA IN : A linked list of basic block information containing the syntax tree intermediate
code.

DATA OUT : A linked list of use points for the routine.

METHOD :

The USE list is also auxiliary data list used by data flow analysis, used by the subsequent

algorithms. The linked list of basic block information is traversed from start to finish. The syntax

tree intermediate code contained in each basic block is traversed. As a use of data can be

embedded anywhere in an expression tree, the entire expression tree structure must be

traversed. The syntax tree parent nodes can be one of the following types, a BRANCH node, a

COMPARE node, an EVAL node or a RETURN node. The intermediate code is scanned for

occurrences of these node types, as the children of these node types could contain variable

uses. Once one of these nodes is encountered the underlying tree must be traversed. This

traversal is carried out by the NODE_TRAVERSE function. This is a binary tree traversal function

[Wir 76]. On meeting a data reference in the tree traversal, a USE record is created. The

record is initialized with the block number and a pointer to the tree node. The algorithm terminates

after the last basic block structure is traversed.

30

for each basic block

do ,
while NOT last node of basic block

do

case node„type of

BRANCH,

COMPARE,

EVAL,

RETURN : call NODE_TRAVERSE(node)

default :

endcase

next node

loop

loop

START routine NODE_TRAVERSE(node)

do a recursive NODE_TRAVERSE() of the tree whose root is

the given node searching for all data references.

if a data reference

create a USE record

set USE node to node

set USE basic block number

link USE record into linked list of USE records

endif

END routine NODE_TRAVERSE

ALGORITHM END

ALGORITHM START

3.4 GEN SET ALGORITHM

ALGORITHM : Build a GEN set for each basic block

DATA IN : A chain of basic blocks, and the definition information for all basic blocks.

DATA OUT : A GEN set for each basic block.

METHOD:

This is a set of data which is created to identify which data definitions are made within a

basic block. An element of the GEN set represents a definition of a variable made within a basic

block which reaches the end of the block. If there are several definitions of the same variable

made in a basic block, then the GEN definition is the last such definition. The set handling

functions are used to create and enter data into the sets. The sets are stored by storing their

pointers in the basic block data structure. The intermediate code contained in the basic block

structures is traversed from start to finish. For every variable definition the block is searched in a

forward direction to find the last definition of the variable. Last definitions are then stored in a

temporary data structure. This process is repeated until the entire block has been traversed. The

GEN set is then built up from the temporary GEN list by traversing it and entering each definition

into the set. Finally the GEN list can be deallocated in order to recycle memory.

32

for each basic block

do

for each variable definition in this basic block

do

find last definition of each variable

loop

for each GEN record in list

do

if this definition NOT found

create a GEN record and enter this variable

link this record into GEN list

endif

loop

loop

for each basic block

do

if GEN list exists for this block

allocate a set

for every item in GEN list

do

insert each member of GEN list into GEN set

deallocate GEN record

loop

endif

loop

ALGORITHM END

ALGORITHM START

3.5 KILL SET ALGORITHM

ALGORITHM : Build a KILL set for each basic block.

DATA IN : A chain of basic blocks, and the definition information for all basic blocks.

DATA OUT : A KILL set for each basic block.

METHOD :

The KILL set represents those variables defined outside the basic block which also have

definitions inside the block. Those definitions outside the block are destroyed by the redefinitions

inside the block. These sets of information will be used later in the flow analysis. Again the KILL

sets are economically represented by bit vectors. The sets are manipulated by making calls to the

supplied set handling functions. Temporary records are created to gather the information prior to

building the sets. This temporary storage is released on termination. The global linked list of

definitions is scanned to find all those definitions of a variable which are contained in the block as

well as outside it. The definitions outside the block are considered to have been destroyed. For

each of these instances a KILL record is created. This record is initialized with the block number,

variable name and the value of the definition number. This record is then linked into a linked list.

On completion the basic block list is once again scanned and for each block containing a KILL

list a set is allocated and the killed definitions are transferred to the set by looping over the list of

KILL records. The temporary storage is relinquished at this point.

34

for each basic block

do

for each variable definition outside this basic block

do

for each GEN record in this basic block defining the same variable

do

create a KILL record

enter this variable

link into temp KILL list

loop

loop

loop

for each basic block

do

if a temp KILL list exists for this block

allocate a set

for every item in KILL list

do

insert each member of KILL list into KILL set

deallocate KILL record

loop

endif

loop

ALGORITHM END

ALGORITHM START

3.6 IN-OUT SET ALGORITHM

ALGORITHM : Build the IN and OUT sets for each basic block.

DATA IN : A chain of basic blocks, for which the GEN and KILL sets have been
computed.

DATA OUT : The IN and OUT sets for each basic block.

METHOD:

This algorithm computes the IN and OUT sets. These sets represent data which reach a point

just before the first statement of a basic block and those definitions which reach a point just after

the last statement of a basic block respectively, The iterative method, described earlier, is used

to compute these sets. The equations relating IN and OUT sets are :

Out{b) = In{b) - Kill(b) u Gen{b)

and

In(b) = u Outip)
P s P{b)

The initial condition is that the IN set is NULL. The algorithm starts by allocating IN and OUT

sets for every basic block, and by assigning each GEN set to each OUT set. A boolean flag

CHANGE is used to mark any changes in the IN sets. For each basic block the set of

predecessors is traversed and the set union is taken of all the predecessors. The list of

predecessors was already computed by the Basic Block Division Algorithm. If the IN set has

changed the CHANGE flag is set. This propagation of definitions is carried as far as it can go

without being killed.

36

ALGORITHM START

for each basic block

do

allocate the IN set

allocate the OUT set

initialize the IN set to zero

copy the GEN set to the OUT set for this block

loop

allocate a NEWIN set

CHANGE = TRUE

while CHANGE = TRUE

do

CHANGE = FALSE

for each basic block b

do

for each basic block a which is a predecessor of block b

do

NEWIN = set union of NEWIN and OUT[a]

loop

if NEWIN != IN[b]

CHANGE = TRUE

endif

copy the NEWIN set to the IN[b] set

OUT[b] = set union of set complement of IN[b] and KILL[b] with GEN[b]

loop

loop

ALGORITHM END

3.7 USE-DEF SET ALGORITHM

ALGORITHM : Build the USE-DEF chain for each basic block.

DATA IN : Basic block list, DEF list, USE list and IN set

DATA OUT : The UD set for each USE point.

METHOD:

The UD set is a set of information which tells where particular uses of a variable within a

basic block are defined. The USE-DEF set is computed from the DEF and USE lists. By definition

the ud-chain is a set of information with the following meaning. If a variable is preceded by a

definition within a basic block, then only the last definition forms the UD chain. If a use of the

variable has no definitions within the basic block then only those definitions contained in the IN

set form the UD chain. From these definitions the set is computed as follows. The USE points of

each basic block are examined to find definitions within the block.The intermediate code is

traversed from the end of a block to the beginning looking for definitions as only the last definition

is of interest. When a definition occurs a UD set is created and the definition is entered into it. If

no definitions are found in the block the definitions of the variable In the in the IN set form the UD

38

for each basic block

do

for each use point In this basic block

do

get pointer to use node

while NOT start of basic block

do

for each DEF record in list

do

if DEF point == node

make UD set

insert this definition in the UD set

FOUND = TRUE

leave

endif

loop

if FOUND == TRUE

leave

endif

get previous node

loop

if FOUND == FALSE

make UD set

for each DEF of this USE variable

do

if DEF is a member of IN set

insert this definition in the UD set

endif

ALGORITHM START

39

loop

endif

loop

loop

ALGORITHM END

40

4 ANALYSIS

4.1 Test Of Flow Analysis

All algorithms and methods of data flow analysis discussed in this thesis are fully implemented

in a high level programming language and have been tested by the author. The set handling code,

presented in Appendix C, is also implemented, tested and incorporated into the analyzer. This C code

proves to be functionally correct. To verify that the entire implementation is correct a large number of

function tests have been carried out on each algorithm. To carry out tests on the correctness of the

analyzer, the test programs are written in the source language producing the intermediate code.

Some of these tests include test material from [Aho 77] which provide intermediate test results. All

the documented intermediate results are compared with actual test results. A hard copy of the full

implementation of the data flow analyzer and test results are retained by the author.

4.2 A Detailed Example

The best method of describing the complexities of the computations in data flow analysis is by

means of taking a simple example. The output of each step of the data flow analysis is explained with

reference to the particular algorithms which produce the output. In this example the algorithms which

compute the IN and OUT sets for an example piece of source code are examined. Although the

piece of code in itself is meaningless, it will yield several basic blocks and definitions as well as

uses of variables. The output from a test run by the analyzer is included in Appendix D. The

example code is as follows :

41

main

define I, J as integer variables

'L1'

'L2'

'L3'

'L4'

end

I =2
J = l + 1

1 = 1
if J = 999

go to L1
endif

J = J + 1
if J = 999

go to L4
endif
J = J - 4

go to L2

Figure 4.1 : Example code.

The flow graph for this code is as follows:

B12 d5

B4

B5

B9

B13

Figure 4.2: Flow Graph

42

Many of the basic blocks are omitted fom the flow graph as these form the system prologue and

epilogue and are of no interest to the example. The basic blocks are B4, B5 B9, B12 and B13, the

program variables are I and J and the definitions of these variables are marked d1, d2, d3, d4, and

d5..

First consider the computation of the GEN and KILL sets. These computations are carried out by

Algorithms 3.4 and 3.5 respectively. Prior to running these algorithms the basic blocks are formed

and scanned to create lists of all DEF and USE points. From the GEN set algorithm , (Algorithm

3.4) each of the basic blocks are scanned to find the last definition of a variable within them. Once

found these definitions are temporarily saved. On scanning all basic blocks the temporary data is

transferred to a set. For the KILL set generation, (Algorithm 3.5), the definitions inside the basic

block kill all definitions outside it. All such definitions are temporarily stored and finally transferred to

sets on termination of the algorithm. For the example thTs yields the following GEN and KILL sets:

In B4 the definitions d1 and d2 of I and J respectively kill all definitions outside of B4 giving

KILL[B4] = { d3, d4, d5}, and also as d1 and d2 are the last definitions of I and J in the block B4,

GEN[B4] = { d1, d2 }. For block B5 the definition d3 of I kills all definitions which exist outside it, so

that KILL[B5] = { d1 } and also GEN[B5] = { d3}. This process is repeated for the remaining blocks

so that in summary :

Block GEN Set Bit Vector KILL Set Bit Vector

B4 {d1, d2 } 11000 {d3, d4, d 5} 00111

B5 { d 3 } 00100 { d1 } 10000

B9 { d4} 00010 { d2, d 5 } 01001

B12 { d 5 } 00001 { d2, d 4 } 01010

B13 NULL 00000 NULL 00000

Figure 4.3: GEN and KILL sets.

43

Having computed the GEN and KILL sets the IN and OUT sets can be generated. Considering

Algorithm 3.6, the IN and OUT sets are allocated and initialized for all basic blocks. The IN set is

initialized to the null set and the OUT set is initialized to the contents of the GEN set, or in other

words a set copy is made. A temporary work set, NEWIN, is also allocated. Now consider the

iterations over the basic blocks. For block B4 the algorithm gives NEWIN = OUT[B5], as this is the

only predecessor in the chain. This value of NEWIN at this point is GEN[B5] = 00100, from Figure

4.3. The test of NEWIN = IN[B4] fails and the boolean variable CHANGE is set to TRUE. The

computation of OUT[B4] is : .

From the equation

Out[B] = In[B] - Kill[B] u Gen[B]
we have

OUT[B4] = 00100 - 00111 + 11000

11000

Next consider the case for block B5. Here the computation yields

NEWIN = OUT[B4] + OUT[B13]

11000 + 00000

11000
This is the value for IN[B5]

OUT[B5] = IN[B5] - KILL[B5] + GEN[B5]

OUT[B5] = 11000 - 10000 + 00100

01100

For the next block, B9, the computation is

IN[B9] = OUT[B 5]

01100

and also

OUT[B9] = IN[B9] - KILL[B9] + GEN[B9]

01100 - 01001 + 00010

00110

44

00110

and for OUT B12

OUT[B12] = IN[B12] - KILL[B12] + GEN[B12]

00110 - 01010 + 00001

00101

And finally for block B13

IN[B13] = OUT[B9] +OUT[B12]

00110 + 00101

00111

Then

OUT[B13] = IN[B13] - KILL[B13] + GEN[B13]

00111 -00000 + 00000

00111

To summarize tables are given to demonstrate the values Initially and over the iterations of the

algorithm.

Initially the values of the IN and OUT sets are :

Next for block, B12 we have

IN[B12] = OUT[B9]

Block IN[B] OUT[B]

B4 00000 11000

B5 00000 00100

B9 00000 00010

B12 00000 00001

B13 00000

45

After Iteration 1

Block

B4

B5

B9

B12

B13

IN[B]

00100

11000

01100

00110

00111

OUT[B]

11000

01100

00110

00101

00111

After Iteration 2 :

Block

B4

B5

B9

B12

B13

IN[B]

01100

11111

01111

00110

00111

OUT[B]

11000

01111

00110

00101

00111

After Iteration 3:

Block

B4

B5

B9

B12

B13

IN[B]

01111

11111

01111

00110

00111

OUT[B]

11000

01111
00110
00101

00111

Any iterations after the third will produce the same results for the IN and OUT sets, so that the

algorithm terminates since there are no more changes. Note that the solution was arrived at after only

three iterations,

4.3 Performance Factors

The performance of the flow analysis, in terms of program time is not really treated as an issue

here. What is of interest in the algorithms is how long it takes the sets to converge. Although no

formal proofs of these algorithms are presented, the bibliography contains references to texts where

such proofs can be found.

If the IN- OUT algorithm (Algorithm 3.6) is considered it can be seen that the iteration will

eventually halt. An induction on the number of times the algorithm statement

NEWIN = set union of NEWIN and OUT[a]

will show that IN[b] is always a subset of NEWIN. The IN's are always increasing and as they are

subsets of a finite set they cannot increase in size in an indefinite manner. In the iterative loop there

must come a pass where NEWIN = 1N[b] for every block, This situation will cause termination of

the algorithm, since the flag CHANGE will remain FALSE.

Theory shows that the upper bound on the number of iterations around the WHILE loop is the

number of nodes in the flow graph. Intuitively, the reason is that if a definition reaches a point, it can

do so along a cycle-free path, and the number of nodes in a flow graph is an upper bound in the

number of nodes in a cycle-free path. So that each time around the while-loop the definition

progresses by at least one node along the path In question. For a properly ordered set of basic blocks

there is empirical evidence to suggest that the number of iterations may be under 5.

47

4.4 Summary

As the motivating factor behind this work is to study the subject of optimizing a programming

language, an important decision to be made is which approach should be used to achieve this aim.

One of the first decisions is that any design carried out will be architecture independent. This will

avoid the great cost and futility of repeating the effort for other architectures. Also this decision fits

in with the software engineering principle of implementing code which is reusable. In order to port the

tool developed it will be a simple matter of compiling and linking the tool on the new platform.

The main body of work is in the choice of an appropriate method of performing data flow analysis.

The criterion to be satisfied here is the assessment of how well a particular method will suit the type

of language with which we have to work. This means that the author had to become familiar with

current methods of data flow analysis. It is found from this study that there are no immediate off the

shelf methods which will suit the abstract syntax tree representation. The natural question then

arises : "Is it possible to take a standard method and modify it to suit the problem on hand ?" The

reasoning behind choosing this approach is that all algorithms presented solve sets of data flow

equations and appear to be independent of the form of intermediate code employed. If this path is

followed then it will be possible to develop data flow analysis for the language at hand. Although no

formal proof that this is the case is presented here this conclusion is arrived at by empirical means.

Proof of the solutions to data flow equations are available in the standard texts. (See

Bibliography). Firstly a pencil and paper model of the flow analysis algorithms are constructed and

followed through by means of tracing with a pencil. Once satisfied that these are functionally correct,

the algorithms are coded. To test these algorithms simple test examples are written and then worked

examples from text books are analysed and the results checked [Aho 77]. As well as modifying data

flow algorithms it is also necessary to provide set handling functionality.

A debugging routine is also implemented as part of the flow analysis which dumps the

intermediate code in ASCII form as well as the basic block divisions and the contents of all sets and

lists of data collected. This function allows the testing of the analysis results. (See Appendix D).

48

5 CONCLUSION

The goal of this thesis is to propose algorithms which will solve the problem of data flow analysis

for an intermediate code representation of the abstract syntax tree type. The author would like to

provide some insight into the reasons for performing a data flow analysis, as well as point out future

directions which this work could take. The usefulness of data flow analysis results are also discussed.

Data flow analysis provides a wealth of information about a program's data usage. This

information could never be constructed by a reader of a program because of the complex data paths

which are possible. Data flow analysis results can be utilized in a number of ways. The main category

of application is the construction of optimizing tools. It is fundamental to the development of an

intelligent optimizer to perform data flow analysis. Only a limited local peephole optimization is

possible without adequate information of a type provided by data flow analysis. This type of

optimization is usually highly architecture dependent as it is performed on a small window of machine

code.To illustrate this type of optimization, consider the elimination of the store instruction as an

example in the following piece of code :

LOD R1.LOC1

STO R1.LOC1

An optimizer is implemented as a program which reads the intermediate code statements and

follows built in optimization rules. The decision as to whether a certain rule applies, or not, is made

by consulting the results of the data flow analysis. The amount of program optimization is therefore

dependent on the level of data flow analysis.

There is another category of application which utilizes the results of data flow analysis. This

category encompasses the tools which provide information about the structure of a computer

program to the user. These tools can be implemented to provide a rich set of information. Examples

of such information are unreachable code, unused variables, unused parameters and uninitialized

variables. Such tools could be gainfully employed in the quality control area of software development.

49

For example, rules as to what constitutes an acceptable program could be drawn up and these tools

would tell the user if any of these rules are being broken.

Future work in this area would be to complete the data flow analysis. This work proves the point

that it is possible to modify and implement algorithms to carry out data flow analysis to suit the type of

intermediate code on hand. The analysis has been implemented to the point of collecting data which

will be of use in certain types of optimization. There is a wider range of data which could be

collected, such as def-use chain information, and very busy expressions. In order to implement this it

will simply be a matter of building on the work which has already been carried out by the author.

Once the data flow analysis is brought to its conclusion it will be possible to implement some of the

applications which utilize it.

An obvious application would be to implement an optimizer from the results of the data flow

analysis. The intermediate code should be studied to find which cases of optimization would prove

most fruitful. Only those cases yielding an appreciable gain in performance or reduction in size should

be considered.

Secondly the analysis results can be used to construct tools which will Indicate the quality of the

program code under observation. As mentioned previously these tools will point out poor use of data

such as non-use or failure to initialize them. Dead code regions might point to coding errors. Tables

can be drawn up to give statistics on the use of data.

Finally it is intended that the material contained in this thesis should provide a student reader

with an introduction to the field of data flow analysis and code optimization. It should be pointed out

that the material contained here is concerned with the practical rather than to the theoretical aspect of

dealing with a problem. This introduction is by means of demonstrating a practical solution to the

problems encountered in developing a complex piece of software. It should demonstrate to the

student the type of problem encountered in software engineering.

50

In conclusion, the author believes that the original goal of implementing a data flow analysis for

abstract syntax tree representation has been reached.

51

APPENDIX A SYNTAX TREE INTERMEDIATE FORM

The intermediate code is presented in this appendix. This form is a simplified version of a real

case, for the purpose of illustration. The fundamental layout is a record containing the intermediate

code node. Here the record is presented as a C struct. These nodes are dynamically created in

memory as part of the semantic analysis phase of the compiler front end. The intermediate code

takes the shape of a binary tree. Each node may have one or two children, or it may be a terminating

node. Each node has the ability to point to its children. The node type is held in the nodejype field.

Constants defining the node types are held in the #define table. Any text which a node may own is

also stored as a pointer. Such text could be identifier names, function names and textual

representation of constants. Miscellaneous flags are also stored.

/* intermediate code node definition 7

struct tnode

{
struct tnode *p_node;

struct tnode *s_node;

struct tnode *left_node;

struct tnode *right_node;

int nodejype;

int nodejlags;

char *text;

};

Figure A1 : Intermediate Code Node

52

I * node types #define table

#define EOF 1 / *

#define ENDFUNC1 2 r

#define ENDFUNC2 3 r

#define LINE 4 r

#define LABELDEF 5 r

#define ARG 6 r

#deflne LOCDEF 7 /*

#define STATICDEF 8 r

#define GLOBALDEF 9 r

#define EVAL 10 r

#define BRANCH 11 r

#define COMPARE 12 /*

#define ERROR 13 r

#define RETURN 14 r

#define CONSTANT 15 r

#define NULL 16 r

#define LABELREF 17 r

#define LOCALARG 18 r

#define LOCALVAR 19 i*

#define STATICVAR 20 r

#define GLOBAL VAR 21 r

#define ARRAYREF 22 r

#define RECORDREF 23 r

#define NEGATE 24 /*

#define ABSOLUTE 25 r

#define CONVI NT 26 r

#define CONVFLOAT 27 r

#define ADD 28 r

end of file marker 7

end of function 1 7

end of function 2 7

line number 7

label reference 7

function argument 7

local variable definition 7

static variable definition 7

global storage 7

assignment statement 7

control flow statement 7

comparison statement 7

error code 7

return statement 7

constant information 7

empty statement 7

label reference 7

local argument 7

local variable 7

static variable 7

global variable 7

array reference 7

record reference 7

negate statement 7

absolute value 7

convert to integer 7

convert to float 7

7

addition operator 7

53

#define SUBTRACT 29

#define MULTIPLY 30

#define DIVIDE 31

#define POWER 32

#define MOD 33

#define MAX 34

#define MIN 35

#deflne ARGVAL 36

#define ARGREF 37

#deflne FUNCVALUE 38

#define TEXTERASE 39

#define CALL 40

#define CALLPTR 41

#define RESERVE 42

#define TRUNCATE 43

#define CREATE 44

Figure A2: Node Type Table

I* multiplication operator 7

/* division operator 7

/* power operator 7

/* remainder operator 7

r maximum function 7

/* minimum function 7

/* argument value 7

/* argument reference 7

/* function value 7

I* erase text 7

/* function call 7

/* indirect function call 7

/* resen/e array storage 7

/* truncate float 7

/* allocate dynamic record 7

/* subtraction operator 7

54

APPENDIX B DATA STRUCTURES

The following data structures are referred to in the flow analysis algorithms. Very general

structures are presented which would ideally be records in any high level language, without any

attempt to define types for the fields. The fields can be considered as 32 bit fields for the purpose of

discussion, since this would allow the storing of integers, pointers and string information. The

intention is to give a guide-line as to what data may be required in reality.

•B.1 Basic block information

linked list pointer to next block

block id

pointer to block start node

pointer to block end node

generated definitions bit vector

killed definitions bit vector

definitions live on entry to basic block

definitions live on basic block exit

temporary linked list of generated definitions

temporary linked list of killed definitions

basic block predecessors

basic block successors

Figure B.1 : Basic block information

next_block_ptr

block_number

block_start

block_end

gen_set

kill „set

in_set

out_set

genjist

kllljist

block_pred_llst

block_succ_list

55

B.2 Definition points

definition node

parent node

definition variable

definition number

owner basic block

pointer to next record

Figure B.2: Definition points

B.3 Use points

use node

parent node

use variable

use-def set pointer

owner basic block

pointer to next use record

use _node

use_pnode

use_variable

ud_set

use_bb

next_use

def_node

def_pnode

def_variable

def_number

def_bb

next_def

Figure B.3: Use points

B.4 Label Definition

labeLnumber

block_number

next Jabel

label identifier

owner basic block

pointer to next record

Figure B.4: Label Definition

APPENDIX C SET MANIPULATION FUNCTIONS

/*

GENOPT - Set handling routines

7

#define TRUE 1

#define FALSE 0

#include <malloc.h>

#define SETSIZE(x) (x+32)/32

r

GENOPT - Set handling routines

Create a dynamic set

7

long *MakeSet(Size)

long Size;

{
long *SetPtr;

SetPtr = (long *)calloc((int)(SETSIZE(Size)+1), sizeof(long));

*SetPtr = Size;

return(SetPtr);

}

58

GENOPT - Set handling routines

Compare two similar sized sets.

Return 0 if sets are equal.

Return 1 otherwise.

7

long CompareSet(Set1, Set2)

unsigned long *Set1, *Set2;

{

int i, Size;

if((Set1 == 0L)&(Set2 == OL))

return(1L);

Size = SETSIZE(*Set1);

for(i = 0; i <= Size; i++) {

lf{*Set1 l= *Set2)

return(H);

Set1 ++; Set2++;

}

return (OL);

/*

59

long *ComplementSet(Set1, Set2)

unsigned long *Set1, *Set2;

int i;

long ‘ RetPtr, *ReturnSet, Size;

if (Sell == 0) /* NULL set 7

return(OL);

if(Set2 == 0){ /* return the A set 7

ReturnSet = MakeSet(*Set1);

CopySet(ReturnSet, Set1);

return(ReturnSet);

}

if(*Set1 == *Set2) /* make correct size 7

Size=*Set1;

else

if(*Set1>*Set2)

Size = *Set1;

else

Size = *Set2;

RetPtr = ReturnSet = MakeSet(Size);

for(i = 0; i < SETSIZE(Size); i++) {

Set1++; Set2++; ReturnSet++;

‘ReturnSet = *Set1 & ~*Set2;

GENOPT - Set handling routines

Perform the complement of two sets.

7

}

60

}

GENOPT - Set handling routines

Copy a set.

CopySet(SrcSet, DestSet);

unsigned long ‘SrcSet, *DestSet;

int i;

long Size;

Size=*SrcSet;

if(*DestSet<Size) /* make correct size */

DestSet = MakeSet(Size);

for(l = 0; i < SETSIZE(Slze); i++)

{

SrcSet++; DestSet++;

*DestSet = *SrcSet;

}

return(RetPtr);

61

lntersectSet{ setl, set2, set3)

unsigned long *set1, *set2, *set3;

{

int size, group;

size = *set1;

set1++; set2++; set3++;

*set3 = *set1 & *set2;

for{ group = 1; group < size; group++) {

set1++; set2++; set3++;

*set3 = *set1 & *set2;

}

/*

GENOPT - Set handling routines

Perform the union of sets

long *UnionSet(Set1, Set2)

unsigned long *Set1, *Set2;

int i;

long 'RetPtr, *ReturnSet, Size;

if ((Set 1 == 0L)&(Set2 == OL)) /* both NULL 7

return(OL);

if(Set2 == 0L){

ReturnSet = MakeSet(*Set1);

GENOPT - Set handling routines

Perform the intersection of sets

7

62

CopySet(RetumSet, Set1);

retum(ReturnSet);

}

ReturnSet = MakeSet(*Set2);

CopySet(ReturnSet, Set2);

return(RetumSet);

if(*Set1 == *Set2) /* make correct size

Size=*Set1;

else

if(*Set1 >*Set2)

Size = *Set1;

else

Size = *Set2;

RetPtr = ReturnSet = MakeSet(Size);

for(i = 0; i < SETSIZE(Size); i++) {

Set1++; Set2++; ReturnSet++;

‘ ReturnSet = *Set1 I *Set2;

return(RetPtr);

if (Set 1 == 0L){

long lnsSet(Set, Entry)

*Set; long Entry;

int Stop, Group;

Set++;

Entry = Entry -1;

Stop = Entry/32;

for(Group = 1; Group <= Stop; Group++) {

Set++; Entry = Entry - 32;

*Set = *Set I (1 L « Entry);

}

r
GENOPT - Set handling routines

Insert a member into a set

64

GENOPT - Set handling routines

Set debugging routine

long WrlteSet(Set)

long *Set;

int Size, i, j;

Size = SETSIZE(*Set);

Set++;

forO = 1; j <= Size; j++) {

for(i = 0; i <= 31; i++) {

if(*Set & (1 L « i))

printf("1");

else

printf("0");

}

Set++;

printf(" •);

}

printf("\n");

r

65

GENOPT- Set handling routines

Remove a set member - First see if it's there

long RemSet(Set, Entry)

long *Set; long Entry;

{

Int Stop, Group;

Set++;

Entry = Entry -1;

Stop = Entry/32;

for(Group = 1; Group <= Stop; Group++) {

Set++;

Entry = Entry - 32;

}

if(*Set&(1L « Entry» {

*Set = *SetA(1 L « Entry);

}

66

7

long MemberSet(Set, Entry)

long *Set; long Entry;

{

int Stop, Group, Tmp;

Set++;

Tmp = Entry ■ 1;

Stop = Tmp/32;

for(Group = 1; Group <= Stop; Group++) {

Set++;

Tmp = Tmp-32;

•}

if (*Set & (1 L « Tmp))

return(TRUE);

else

return(FALSE);

r
GENOPT - Set handling routines

Check for set membership.

67

APPENDIX D EXAMPLES

main

define I, J as integer variables

1=2
J = l + 1

I = 1
if J = 999

go to L1
end if

J = J + 1
if J = 999

go to L4
endif
J = J - 4

'L4-
go to L2

Figure D.1 : Code example.

SUCC list of block 1
SUCC: 3

IN.SET of block 1 :

OUT.SET of block 1 ;

CODE:

system prologue 1

— BB.NO # 2 ------

SUCC list of block 2
SUCC: 3

IN.SET of block 2:

OUT.SET of block 2:

CODE:

system prologue 2

...— BB.NO # 3 ------

PRED list of block 3
PRED: 1
PRED: 2

SUCC list of block 3
BLOCK: 4

IN.SET of block 3:

OUT.SET of block 3:

CODE:

system prologue 3

 BB.NO # 1 ------

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

69

BB.NO #4

PRED list of block 4
PRED: 3
PRED: 6

SUCC list of block 4
BLOCK: 5

GEN.SET of block 4 : 11000000000000000000000000000000

GEN.FILE of block 4
Var : I Def : 1
Var : J Def : 2

KILL.SET of block 4 : 00111000000000000000000000000000

KILL.FILE of block 4
Var : I Def : 3 BB : 5
Var : J Def: 4 BB : 9
Var : J Def: 5 BB : 12

IN.SET of block 4 : 01111000000000000000000000000000

OUT.SET of block 4: 11000000000000000000000000000000

CODE:

J = l + 1

1 L2 1
 BB.NO # 5

PRED list of block 5
PRED: 4
PRED: 13

SUCC list of block 5
SUCC: 8
SUCC: 6

GEN.SET of block 5 : 00100000000000000000000000000000

GEN.FILE of block 5
Var : I Def : 3

KILL.SET of block 5: 10000000000000000000000000000000

KILL.FILE of block 5
Var : I Def : 1 BB : 4

IN.SET of block 5 : 11111000000000000000000000000000

OUT.SET of block 5 : 01111000000000000000000000000000

70

CODE:

1 = 1

IF J = 999

- BB.NO # 6 ------

PRED list of block 6
PRED: 5

SUCC list of block 6
SUCC: 4

IN.SET of block 6:

OUT.SET of block 6:

CODE:

GO TO L1

 BB.NO # 7 ------

SUCC list of block 7
SUCC: 8

IN.SET of block 7:

OUT.SET of block 7:

CODE:

ENDIF

 BB.NO # 8 ------

PRED list of block 8
PRED: 5
PRED: 7

SUCC list of block 8
SUCC: 9

IN.SET of block 8:

OUT.SET of block 8:

CODE:

1 L3 '

01111000000000000000000000000000

01111000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

01111000000000000000000000000000

01111000000000000000000000000000

71

BB.NO #9

PRED list of block 9
PRED: 8

SUCC list of block 9
SUCC: 12
SUCC: 10

GEN.SET of block 9 :

GEN.FILE of block 9
Var : J Def : 4

KILL.SET of block 9:

KILL.FILE of block 9
Var : J Def : 2 BB : 4
Var : J Def: 5 BB : 12

IN.SET of block 9:

OUTSET of block 9:

CODE:

J = J + 1

IF J = 999

 - BB.NO # 10------

PRED list of block 10
PRED: 9

SUCC list of block 10
SUCC: 13

IN.SET of block 10:

OUT.SET of block 10:

CODE:

GO TO L4

00010000000000000000000000000000

01001 OOOOOOOOOOOOOOOOOOO'OOOOOOOO

01111000000000000000000000000000

00110000000000000000000000000000

00110000000000000000000000000000

00110000000000000000000000000000

72

SUCC list of block 11
SUCO: 12

IN.SET of block 11 :

OUT.SET of block 11 :

CODE:

ENDIF

 BB.NO # 1 2 -------

PRED list of block 12
PRED: 9
PRED : 11

SUCC list of block 12
SUCC: 13

GEN.SET of block 12 :

GEN.FILE Of block 12
Var : J Def : 5

KILL.SET of block 12:

KILL.FILE of block 12
Var : J Def: 2 BB : 4
Var : J Def : 4 BB : 9

IN.SET of block 12 : '

OUT.SET of block 12:

CODE:

J = J - 4

1 L 4 1

. ..— BB.NO #11-----«

00000000000000000000000000000000

00000000000000000000000000000000

00001000000000000000000000000000

01010000000000000000000000000000

00110000000000000000000000000000

00101000000000000000000000000000

73

PRED list of block 13
PRED: 10
PRED; 12

SUCC list of block 13
SUCC: 5

IN.SET of block 13;

OUTSET of block 13:

CODE:

GO TO L2

 BB.NO #14-----

SUCC list of block 14
SUCC: 15

IN.SET of block 14:

OUT.SET of block 14:

CODE:

END

 BB.NO #15 —

PRED list of block 15
PRED: 14

IN.SET of block 15:

OUT.SET of block 15:

CODE:

system epilog

 BB.NO #13—~

00111000000000000000000000000000

00111000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

74

Definition points for this block

V a r : I BB : 4 D e f : 1
V a r : J BB : 4 D e f : 2
V a r : I BB : 5 D e f : 3
V a r : J BB : 9 D e f : 4
V a r : J BB : 12 D e f : 5

Use points for and UD set these blocks

V ar: I BB : 4

UD.SET(4) 10000000000000000000000000000000

Var: J BB : 9

UD.SET(9) 01011000000000000000000000000000

Var: J BB : 12

 Program Data-----

UD.SET(12) 00010000000000000000000000000000

Figure D.2: Test result.

Bibliography

Aho 77

Aho 86

All 71

All 76

Fis 88

Hec 77

Ken 72

Mor 79

Muc 81

UII75

Wlr76

Aho, A. V. and J. D. Ullman [1977]. Principles of Compiler Design, Addlson-Wesley,
Reading, Mass.

Aho, A. V . , Ravi Sethi and J. D. Ullman [1986], Compilers: Principles, Techniques
and Tools, Addison-Wesley, Reading, Mass.

Allen, F. E. and J. Cocke [1971]. A Catalogue of Optimizing Transformations,
IBM Research, RC 3548, Yorktown Heights, New York.

Allen, F. E. and J. Cocke [1976]. A Program Data Flow Analysis Procedure,
Communications of the ACM, Volume19, Number 3, March 1976.

Fischer, C. N. and R. J. LeBlanc [1988], Crafting a Compiler, Benjamin / Cummings,
Menlo Park, California.

Hecht, M.S. [1977]. Flow Analysis of Computer Programs, North-Holland, New York.

Kennedy, K. [1972]. Safety of Code Motion, Computer Math, Gordon and Breach,
Science Publishers Ltd.

Morel, E. and C. Renvose [1979]. Global Optmization by Supression of Partial
Redundancies, Communications of the ACM, Volume 22, Number 2, February
1979.

Muchnick, S. S. and N. D. Jones [1981]. Program Flow Analysis: Theory and
Applications, Prentice-Hall, Englewood Cliffs, N. J.

Ullman, J. D. [1975]. A Survey of Data Flow Analysis Techniques, Second
USA-JAPAN Computer Conference.

Wirth, N. [1976], Algorithms + Data Structures = Programs, Prentice-Hall,
Englewood Cliffs, N. J.

76

