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ABSTRACT

Conventional computerized axial tomography images show the 
spatial variation in the linear attenuation coefficient in a 
cross-section of a specimen. However, no information is present to 
enable one to predict the location nor concentration of an atomic 
element in the image. Differential X-ray absorptiometry is a well 
established analytic technique for determining the concentration of 
an atomic element in a specimen. In this thesis, it is shown that 
by applying differential X-ray absorptiometry to computerized axial 
tomography, element specific images of a cross-section of a 
specimen can be produced using either radioisotope or tube sources.

Differential X-ray absorptiometry involves the measurement of 
incident and transmitted photon fluxes, in narrow energy bands 
which straddle an absorption edge of the atomic element of 
interest, for a collimated beam through a specimen. At an 
absorption edge there is a sudden jump in the element’s attenuation 
coefficient. It is this phenomenon that is the basis of 
differential X-ray absorptiometry. From the measured photon counts, 
the equivalent thickness (kg/m2) of an element along a path length 
can be determined. Two technique are developed here. The first is 
for the case when radioisotopes are used. It involves two 
measurements, i.e. with and without the element of interest 
present. The second is for the case when an X-ray tube source is 
used. In this case, the equivalent thickness is found by 
extrapolation of the count data to the absorption edge of the 
absorption edge. Using this technique, several elements can be 
imaged simultaneously. By measuring the equivalent thickness at 
many different orientations to the specimen, enough data can be 
collected so that an image of the cross-section, showing elemental 
concentration, can be produced. Special mathematial algorithms, 
called reconstruction algorithms are required.The computer programs 
written to generate reconstructed images are outlined.

The sensitivities of the techniques developed for imaging atomic 
elements are studied both experimentally and theoretically. 
Equations are derived herein to calculate the minimum concentration 
of an element that can be imaged in a specimen. Using these



equations, the most sensitive X-ray energy to an element in a 
chosen specimen can be determined. In addition, some example 
calculations are given and these are compared with experimentally 
obtained values to verify the equations.

Finally, descriptions of the experimental apparatus setup and 
the experiments undertaken are given. The elements which are imaged 
include palladium, silver, cadmium, indium and caesium. In all 
cases the concentrations are of the order of several kilogrammes 
per cubic metre. Finally, possible future developments are 
considered.



TABLE OF IMPORTANT SYMBOLS.

N , N incident and transmitted photon counts,o
U linear attenuation coefficient,
y beam path.
E photon energy.
R number of rotation steps per linear scan.
S number of steps per linear scan.

2 -1u mass absorption coefficient m kg
- 2t equivalent thickness kg m .

p density,
w weight fraction.
a,m analyte, matrix.
l, h low, high energy sides of absorption edge,
a+m analyte plus matrix.
Ek K-absorption edge energy.
Yh, Yi extrapolated projection values.
ta, tm analyte, matrix equivalent thickness.
Z, z dead-time correction factors for MCA.
Ei ,  Eh low, high energy side of absorption edge.
Ka, K/3 characteristic K-lines of an element,
dy small path length.
Ca analyte concentration,
r , <p polar co-ordinates system.
f(r,<£) analyte concentration or linear attenuation coefficient.
0 origin of (r,<£) co-ordinate system
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1,8 radon transform co-ordinate system.
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R inverse radon transform.
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U+dU linear attenuation coefficient for matrix plus analyte.
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plus analyte scan 
B multiplication factor to account for noise amplification

in an image.
Q machine dependent factor.
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Chapter I

1.1 Introduct ion.
For three quarters of a century after Röntgen had discovered 

X-rays in 1895, and showed that bones could be seen when he X-rayed 
his wife’s hand, X-rays were linked to photographic film. Despite 
its high spatial resolution, a conventional X-ray transmission 
photograph is a two-dimensional image of a three-dimensional
structure, where many layers are imaged on the film giving rise to 
overlap and poor contrast. See figure 1.1.

In the twenties, the French surgeon Bocage [1], suggested a 
method to isolate a single layer of a three-dimensional object. See 
figure 1.2. This involves displacing any two of the three 
participating components, i.e. (X-ray-tube, patient and
photographic plate) in parallel planes, while leaving the third one 
fixed during the taking of the photograph. In this way, only one 
layer produces a sharp image on the film, while the other layers 
are smeared over the whole film. This is known as focal plane 
tomography. However such images have poor contrast and there is a 
penumbra effect around the images of the objects that are in focus.

More recently, the development of Computerized Axial 
Tomography, (CAT), led to a totally different approach to 
extracting cross sections of interest. No longer were X-rays linked 
to photographic film. It was Cormack [2], who laid the foundations 
of computerized tomography when he reconstructed an image of some 
simple aluminium and wood phantoms which he had manually scanned 
with collimated gamma rays. In the late sixties and early
seventies, Hounsfield [3] developed the first operational medical 
X-ray CAT scanner for high contrast reconstruction of
cross-sections of the human brain. This involved taking a large

1



Fig 1 .1
Schematic diagram o f  a con ven tion a l X-ray tra n sm iss io n  

photograph. The two o b je c t s  are overlapped  on the f i lm  
p la n e .

and f i lm  are d isp la c e d  in  p a r a l l e l  p la n es .  Only the "x" plane  
o f  the p a t ie n t  produces a sharp image. The "a" and "b" p lanes  
are smeared over the whole f i lm  p lane.
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number of one-dimensional views of a two-dimensional transverse 
axial slice through the patient. and then mathematically 
reconstructing the structure within the slice. The X-rays used for 
imaging only traversed the plane under examination so unwanted 
planes were completely omitted. X-ray computerized tomography is 
now a widely used medical diagnostic technique with CAT systems 
operating in most developed countries. As a result of the 
revolutionary advances in medical radiography due to computerized 
axial tomography, both Cormack and Hounsfield were awarded the 
Nobel prize for Medicine in 1979.

A conventional CAT image shows the spatial variation in linear 
attenuation coefficient, i.e. "density", through the cross-section 
of interest. In such an image it is possible to differentiate 
between density variations of less than 1% in water like objects. 
However, there is no information present in conventional CAT images 
to identify the atomic elements present nor to distinguish between 
elements close in atomic number. In recent years, several 
researchers have investigated techniques to image individual 
elements for both medical and non-destructive testing applications.

One approach using the broad continous energy spectrum from an 
X-ray tube source has been investigated by several researchers. 
Several methods based on this have been developed. In one such 
method, by Van Riet et al. [4], calcium and water like components 
can be imaged separately by switching the X-ray tube voltage while 
scanning. In a second method using an X-ray tube source, by 
Riederer and Mistretta [5] ,  a contrast agent like iodine is imaged 
by scanning the object with three beams whose mean energies 
straddle the contrast agent absorption edge. However, these methods 
are limited in the number of elements that can be imaged 
simultaneously and also they are not capable of distinguishing 
between elements which are close in atomic number. These methods 
are outlined in more detail in section 1.3.1.

Another technique developed, which is based on differential 
absorption across an element absorption edge, requires two or more 
monochromatic X-ray energy beams which straddle the K- or L- 
absorption edge of the atomic element of interest ( t h e  a n a l y t e ) .  

When using energies close to the analyte absorption edge, the

3



effect of the other atomic elements present ( t h e  m a t r i x ) is 
removed. In this way element specific CAT images can be produced. 
Grodzin [6] has investigated the suitability of a synchrotron as a 
source for imaging elements in this way. The high intensity, nearly 
monochromatic and well collimated X-ray beam, which can be obtained 
from a synchrotron is particularly suited to imaging elements in 
small samples, for example in water like samples. Several 
researchers have used synchrotron radiation to produce element 
specific images. Flannery et al. [8] have produced three- 
dimensional copper specific images in a sample less than 1mm in 
diameter with micrometre spatial resolution. Thompson and Llacer [9] 
using a synchrotron, have produced iodine specific images of an 
excised pig heart, whose chambers had been filled with iodine as 
the contrast agent, by scanning just above and below the iodine 
K-absorption edge (33.17keV). However, as shown by Grodzin [7], 
synchrotrons are not particularly suited for imaging human 
subjects. Also, their main use has been in research since 
synchrotrons are not very numerous. These techniques are described 
in more detail in section 1.3.1.

There are several other imaging techniques, other than X-ray 
imaging techniques, which are now well established. These include 
gamma computed tomography, ultrasound scanning, neutron computed 
tomography and nuclear magnetic resonance (NMR). To date, element 
imaging techniques based on gamma computed tomography or ultrasound 
scanning have not been developed. In the case of neutron computed 
tomography, it is possible to image some low atomic number elements 
in high atomic number specimens. In NMR the density variation of 
hydrogeon and some isotopes of other elements can be imaged 
individually. In both cases the number of elements than can be 
imaged is limited. These techniques are outlined in more detail in 
section 1.3.1.

In this thesis, X-ray energies which straddle the analyte 
absorption edge are monitored in order to produce element specific 
images. In the first method developed, nearly monochromatic 
radiation produced either by fluorescence from a suitable target or 
by electron capture within a suitable radioactive isotope is used. 
However, this method is limited to samples where the analyte can be 
added to the matrix specimen. In the second of the methods

4



developed, an energy dispersive detector allows several elements to 
be imaged simultaneously in a single scan. In this case the 
continous spectrum from an X-ray tube is used. In both methods, the 
differential absorption of X-ray beams which straddle the analyte 
absorption edges is monitored. Thus in theory, if suitable sources 
can be found, all elements with an absorption edge energy which 
lies within the energy range of the detector used can be imaged.

Computerized axial tomography has been sucessfully used in 
non-desructive testing, by Gilboy [10] and Kinney et al. [11], 
using both X-rays and gamma rays. In my thesis it is applied to 
imaging atomic elements in small non-living samples. Mid-periodic 
table elements such as palladium, silver and cadmium are imaged. 
The constraints which apply to living samples do not apply here. 
These include dose considerations; a medical scan gives a maximum 
surface dose of approximately 2 rads, to a patient’s head [12], but 
such considerations do not apply to non-living samples. Similarily, 
artifacts due to patient motion and long scan times are not a 
problem.

Some work [7] has also been done to investigate the sensitivity 
of elemental imaging in CAT. However, no easy method to calculate 
the minimum analyte concentration detectable in a matrix specimen 
has been developed. In my thesis equations to calculate the minimum 
analyte concentration detectable in a CAT image have been derived 
and experiments done to verify the theory. These equations are 
applied to the two possible situations, namely the case when 
analyte is added to the matrix and the case when analyte is already 
present in the matrix.

In the rest of this chapter, the principles of computerized 
axial tomography are outlined and the factors influencing image 
contrast, spatial resolution, etc. are described. The other 
techniques for elemental imaging, which were mentioned earlier, are 
described in more detail. In the next chapter, the principles of 
differential X-ray absorption and the techniques developed to 
produce element specific images are described. In the same chapter, 
the reconstruction algoritmhms used and their application to image 
reconstruction are also described. In subsequent chapters, the 
equations to calculate element sensitivities are derived and the 
experimental work undertaken is outlined.

5



1.2.1 Principles of Computerized Axial Tomography.

The aim of computerized axial tomography is to construct an 
image of a cross-section through an object without interference 
from other planes. The basic principles of CAT are based on well 
accepted physics principles, which are outlined here. Computerized 
axial tomography systems can be divided into three sections. These 
include the data collection system, the data processing section and 
the image display system. The first, the data collection, is now 
considered. Consider a monochromatic pencil beam of X-rays incident 
on a homogenous object. In practice, the X-ray beam is normally, 
but not necessarily, polychromatic. For simplicity it is considered 
to be monochromatic. If the incident beam flux is N , then the

where Ui is the linear attenuation coefficient of the material in 
the object and yi is the path length through the object. The 
transmitted flux is always less than the incident flux due to 
attenuation of the X-rays in the object. If a second homogenous 
object, with linear attenuation coefficient U2 and thickness y2, is 
placed in the beam path then the exponential term of equation 1.1 
is given by the sum of the values for both objects.This is given by

If more homogenous objects are put in the beam path the exponential 
term becomes the sum of the attenuation and thickness values.

For the range of energies used in diagnostic applications, 
typically from a few keV to several hundred keV, photoelectric 
absorption and Compton scattering are the main processes 
contributing to the X-ray attenuation. Photoelectric absorption 
predominates over Compton scattering in materials at these energies 
except for the very lightest elements at high energies. See figure
1.3. Thus, different elements attenuate an X-ray beam of a fixed 
energy by differing amounts. In fact, the attenuation cross section 
for X-ray photons increases with the atomic number. Also, as the 
X-ray energy is increased the X-rays become more penetrating, 
except at discontinuties called absorption edges. It is these

o
transmitted flux through an object is given by

1. 1

1.2

6



absorption edges which are important in differential X-ray 
absorption.

If N̂ , N, y and the photon energy E are known for the pencil 
beam incident on the homogenous object, the linear attenuation U 
can be determined from equation 1.1 and hence the material present 
in the homogenous object. On the other hand, if the object is a 
heterogenous mixture of many elements, the transmitted flux is 
given by

N = Nq exp -j-Jlldyj- .... 1.3

where dy is a small path length. Equation 1.3 can be rearranged as

  1.4

which is the fundamental equation in computerized axial tomography 
The left-hand side of equation 1.4 is called the projection value. 
In the case of the hetrogenous object, it is not possible to 
determine the localized U values along the path length from a 
single measurements as there are too many unknowns in equation
1.4. Thus more measurements, taken at different directions through 
the specimen are required. The techniques commonly used to collect 
the data are described in the following section.

1.2.2 Scan Geometry.
In medical and non-destructive applications, it is required to 

image a cross-section through the patient or sample. In order to
collect the data, the specimen is scanned by a collimated pencil or
fan beam of X-rays in synchrony with a detector, or detectors, on 
the opposite side of the specimen. In the first generation of CAT 
scanners, the scan geometry consisted of linear scans interspersed 
by rotations of the source and detector. See figure 1.4. In
Hounsfield’s scanner the linear scan consisted of two hundred and 
forty 1mm steps. Then, at the end of each linear scan the X-ray 
tube source and the scintillation detector were rotated about the 
specimen by a small angle and the linear scan was repeated. In 
total, one hundred and eighty angular rotations were made to cover 
a complete rotation of 180 degrees. Further rotations would have 
resulted in measurements being repeated. At each step position, the

7



At
om

ic 
Nu

m
be

r 
of 

A
bs

or
be

r

Energy (MeV)
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The relative importance of the three principal interactions 
of X- and 7 -rays as a function of photon energy. In this work, 
photons of energy less than O.IMeV are of most interest.
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transmitted photon flux was measured and stored. Typically, in 
these first generation scanners a complete scan took several 
minutes to complete. In later generations of CAT scanners, see 
figure 1.5, the scan times were decreased to a few seconds by 
increasing the number of detectors and by using a fan beam of 
X-rays. The principles are the same as for the first generation 
scanners and the resultant images are the same.

In all scanners, it is required that R rotations should be 
made, where R is given by

and where S is the total number of step positions per linear scan. 
This number of rotation positions is required in order to ensure 
that an adequate number of measurements is made. If insufficient 
measurements were made, this would give rise to streak artifacts in 
the reconstructed image [13]. Also, in order to ensure that the 
scan area is covered as uniformly as possible, so as to provide an 
accurate representation of the cross-section of the body, the step 
rotation angle must be constant.

The scan geometry used for this thesis is based on that used in 
the first generation CAT scanners. It is used because of the 
simplicity and ease of implementation of the method. Also, scan 
times are not important with non-living samples. There is a slight 
difference in the motions however, which does not affect the 
resultant images. In the apparatus built for this work, the source 
and detector are stationary due to their bulk. Instead, the 
specimen is stepped and rotated. Stepping the specimen through the 
X-ray beam and then rotating it at the end of each linear scan is 
exactly analagous to the normal scan motions previously described. 
Figure 1.7 shows a schematic diagram of the scan motions. A typical 
scan of a specimen several centimetres in diameter, consisted of 
forty 1 millimetre steps and forty 4.5 degree rotations.

When all the data has been collected, the problem is then to 
reconstruct an image of the cross-section of interest from this 
data. This is done by computers using computer programs which are 
based on special reconstruction algorithms.
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Fig. 1.4
A schematic diagram of the scan motions of a first generation 
CAT scanner. The source and detector are stepped in linear 
steps and rotations about the sample. In this work, the source 
and detector were stationary while the sample was stepped and
rotated through the beam.
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Schematic diagrams of the A) 1st, B) 2nd, C) 3rd, and D) 4th 

generation CAT scanners.
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As previously noted, the attenuation coefficients at each point 
in the object cannot be determined from a single projection 
measurement. Instead many measurements are needed. The problem now 
is to produce an image of the spatial distribution of the linear 
attenuations in the slice through the object from the projection 
values calculated using equation 1.4. A mathematical routine called 
a reconstruction algorithm, which is implemented on a computer, is 
required for this. Prior to reconstruction, an area in the image 
plane called a reconstruction grid, is defined by the computer. 
This grid is divided into small areas, called pixels. In the 
reconstruction process, the attenuation coefficient in each pixel 
is determined from the projection data. The value in each pixel is 
the average attenuation value of all points covered by that pixel. 
It is not possible to determine the attenuation coefficient of all 
individual points because of the finite nature of the data. The 
resultant reconstructed image is a representation of the slice 
through the specimen.

Several different types of algorithms have been developed most 
notably the iterative solutions, as used by Hounsfield [3] in the 
first CAT scanners and the analytic solutions, such as the filtered 
back-projections and fourier methods. The fourier methods are now 
favoured in modern machines. The iterative solutions require that 
all the projection data has been obtained before the reconstruction 
can begin. The process begins with an initial guess at the image. 
This is then corrected by comparing the object and image 
projections. However, this method is slow as it involves much 
computation. On the other hand, the filtered back-projection 
methods can be implemented as the data is collected. These methods 
involve filtering the projection data with a suitable filter 
function prior to back-projecting the filtered data across the 
image plane. This is a much faster method. Also, a suitable filter 
can be chosen to suit the situation. In both cases, high speed 
computers are required due to the large amount of data and 
computations involved. Both methods are used in this work and in 
Chapter II the algorithms and their implementation are explained in 
more detail.

1.2.3 Image Reconstruct ion.
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I. 2.. 4 Image Display.

The reconstructed image is stored as a matrix of numbers, each 
of which represents the attenuation coefficient in a pixel. A 
viewing system converts this numeric matrix into a picture. In 
order to facilitate the displaying of images in conventional 
computerized axial tomography, an arbitary scale of CAT numbers was 
devised by Zatz and Alvarez [14] to represent attenuation 
coefficient in each pixel. These CAT numbers are calculated using 
the formula

, U m a t e r i a l  -  U w a t e rCT number = ---- —--- ----*---- .... 1.6
U w a t e r /  1 0 0 0

where * indicates the average linear attenuation coefficient value 
in the pixel. The usual background material is water so the CT 
number of water is zero. The scale is adjusted so that the CT 
numbers range from -1000 for air, 0 for water, to several thousand 
for bone. The normalized CT numbers are called Hounsfield units. 
They are useful as they provide a range of several CT numbers for a 
1% change in attenuation coefficient. Figure 1.6 shows the range of 
CT numbers for various materials normally encountered in a medical 
CAT scan. Normally, the CT numbers are displayed as a grey scale on 
a visual display unit and the full range of shades can be used for 
different ranges of the CT numbers.This contrast enhancement 
feature is essential when trying to distinguish between tissues 
since the X-ray attenuation coefficient for most tissues are 
similar.

CT numbers are a convenience for displaying rather than a 
necessity. In this work, pixels contain either the voxel 
concentration or the attenuation coefficient. Computer programs 
have been written, so that, as in conventional CAT images the 
images can be displayed using either grey shades or false colours. 
Also, the pixels within any range of interest can be enhanced as 
above and printouts of the reconstructed image can be produced. 
This is discussed in more detail in Chapter II.

1.2.4.1 Image Resolution.

The two most important contributions of computerized axial 
tomography are the greatly improved abilities to distinguish
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Fig. 1.6
The range of CAT display values used for body components in 

conventional scanners in which water is 0 and air is -1000 
at 120kV.
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structures with different transmittance and also to separate 
overlying structures. Compared to conventional diagnostic radiology 
images, which have a contrast resolution of a few percent, the 
contrast resolution in CAT images can be better then one percent. 
However, the spatial resolution in computerized axial tomography
images is much poorer than in radiograph pictures. Many factors 
influence the contrast and spatial resolutions of a CAT image and 
these are outlined here. Some of these do not affect the images 
produced for this work, for instance beam hardening due to a 
polychromatic X-ray beam, but none the less they are included.

I.2.4.2 Contrast Resolution.

Contrast resolution in an image can be defined as the ability 
to detect and distinguish between small contrast differences in 
adjacent regions. Quantitatively, it is given by the formula

. . LI ( s i g n a l  ) -  U ( b a c k g r o u n d ) v  _/. contrast = ---- ^ ---------- ------- X 100 .... 1.7
U ( b a c k g r o u n d )

which can be defined as the minimum contrast of a signal of a 
specified size or shape which can just be discriminated. Thus the 
ability to detect or perceive a low contrast signal within an image 
depends on the contrast of the signal as compared to the amplitude 
of the background signal.

The factors which influence the contrast resolution in a CAT 
image can be divided into two groups. These include the group which 
is influenced by the object that is being scanned and the group 
which is Influenced by the inherent background noise in the data.
In both cases, many factors contribute and these include

A) Object Contrast
i) Attenuation of the X-rays in the object relative to that in 

the background at the effective energy used.
The closer the X-ray attenuation of the object to that of 
the background or the lower the analyte concentration, the 
more difficult it is to distinguish between the two in an 
image.

ii) Scatter of the X-ray photons in the beam
Scatter of photons is a major problem in conventional 
radiographs and results in a fuzziness in the image. In
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comparison, scatter is not such a major problem in CAT when 
well collimated X-ray beams are used when scanning. It can 
however be a problem with fan beam scanners.

iii) Partial volume effects
Since the slice thickness is not infinitely thin, the 
attenuation value in the pixel is the average for all the 
material in the the full thickness of the slice. Because of 
this, perception of low contrast features may be diminished. 
Typically, the slice thickness is between 1.5mm and 15mm in 
commercial machines. Making the slice thinner increases the 
exposure to the tissue being imaged. Alternatively, keeping 
the exposure constant when reducing the slice thickness 
reduces the number of incident X-rays on the detector which 
increases the statistical noise in the image. In this work 
the beam diameter is 1mm so partial volume effects are not 
negligible

B) Background Noise
i) Photon statistical noise

If a uniform cylindrical object is imaged, the resultant 
imaged will have a speckled apperance due to the Poisson 
noise on the detected photon count. Typically, the noise 
power spectrum, which is the plot vs. spatial frequency of 
the average power (square of the amplitude) of the noise is 
uniform over all spatial frequencies. However, the lower 
spatial frequencies are removed by the filter function in the 
reconstruction process. Also, increasing the number of 
incident photons by a factor of four decreases the noise by a 
factor of two. Statistical noise is an important factor when 
determining the minimum analyte concentration detectable in 
chapter III.

ii) Polychromatic X-rays
If the X-ray beam is polychromatic, beam hardening effects 
as well as the variation of detector efficency with X-ray 
energy may affect the resultant image. This does not occur 
with monochromatic X-rays.

iii) Mechanical and electrical noise
Noise due to mechanical or electrical defects usually give
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rise to structural noise in the image. This type of noise is 
usually system dependent and can be reduced by good design.

iv) Filter function
The choice of filter function used in filtered back- 
projection can have an important effect on the contrast 
resolution. If large low contrast features are of interest 
then the Hann filter is preferred, while the Ram-Lak filter 
enhances detectability for small high contrast features [12].

v) Artifacts
Some common artifacts which affect contrast resolution 
include beam hardening , misalignment artifacts, specimen 
motion artifacts and streaking due to an insufficient number 
of projections.

a) beam hardening
Because of the polychromatic nature of X-rays beams, lower 
energy photons are more readily absorbed in the first few 
layers of the object. This gives rise to cupping artifacts 
in the centre of the image. This does not occur with 
monochromatic X-ray beams.

b) misalignment
If the centre of rotation of the machine is misaligned, even 
by a few millimetres, then positive streaks arise on one 
side of the image while negative streaks arise on the other 
side of the image. In this work, computer programs are used 
to align the centre of rotation prior to starting a scan and 
thus remove misalignment artifacts.

c) streaking
Streaks radiating from a dense object may be due to an 
insufficient number of angular rotations. In this work, 
equation 1.5 is applied when determining the number of 
rotation angles.

d) patient motion
In older CAT scanners, patient motions was a major problem 
due to the long scan times required. Nowadays, it is not a 
major problem due to very fast scanners. It is not a problem 
in this work where only non-living samples are imaged.

As stated, the contrast resolution or the perception of an
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object is dependent on the percentage contrast between the object 
and the background, as well as on the noise. For instance, the 
signal in a single pixel should be at least ten times the amplitude 
of the pixel noise in order to distinguish the pixel from the 
background. In a good scanner, the noise level is about 0.57». Thus 
the lowest signal that can be observed in one pixel is about 5% 
contrast. This is poorer than that for a photographic film which is 
about 2% [12]. Thus, only small structures with high contrast can
be distinguished in an image. On the other hand, if the pixel size

2is 1mm and the feature of interest covers 10 by 10 pixels in area, 
the noise is now 0.5% / v'lOO or 0.05%. which gives a contrast of
0.5%. Thus if the feature is big enough, the contrast resolution 
available in CAT is much better than that for a photographic image.

In summary, it can be said that for small high contrast 
objects, the detectability is dependent on the spatial resolution 
of the system whereas, the low contrast detectability is relatively 
independent of the spatial resolution but depends on factors 
relating to image noise.

I.2.4.3 Spatial Resolution.

The spatial resolution of a CAT image can be defined both 
qualitatively as well as quantitatively. Qualitatively, It is the 
ability to distinguish between two small high contrast objects 
located a small distance apart. Quantitatively, it is commonly 
related to the full-width half-maximum (fwhm) of the point spread 
function (PSF) of a small high contrast object. Many factors 
influence the spatial resolution of a CAT system and these can be 
divided into two groups [14], The first group includes those 
factors which are inherent in the CAT scanner, while the second 
group includes such factors as the spacing considerations, the 
filter function used and the grid matrix used. These factors are 
listed and outlined in more detail here.

A) Inherent limitations
i) Focal spot size

ii) Detector aperture size

iii) Effective detection area 
The inherent spatial resolution, as shown, is determined by factors
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which are related to the data collection system. In order to
maximize the spatial resolution, in relation to these factors, it
is required that the X-ray tube produce a uniformly distributed
beam, that the detector has uniform sensitivity over the detection
area and that the X-ray beam is well collimated. In the system

2built for this work a well collimated beam of X-rays, 1mm in area,
is produced using lead collimators. See chapter IV. The Si(Li)

2detector used has a uniformly sensitive area of 28mm . In addition, 
the lower collimator was adjustable and was positioned so that the 
photon count was uniform across the beam area.

B) Other factors
i) Step size
The beam profile of the incident beam places a fundamental 
constraint on the spatial resolution. For instance, two 
small features separated by less than the full-width at 
half-maximum (fwhm) of the beam at the centre of rotation 
cannot be distinguished from a single large feature no 
matter how frequently the projections are sampled. Applying 
the Nyquist theorem [15], the projections should be sampled 
at least twice the fwhm. Sampling at a greater spatial 
frequency does not enhance the image. In this work, the 
step size was equal to the beam width in order to reduce 
the scan times. Improved spatial resolution could have been 
achieved by increasing the sampling frequency but it was 
not of paramount importance.

ii) Rotation step size
Provided that there is an adequate number of rotation step 
positions, as stipulated by equation 1.5, neither the 
contrast resolution nor the spatial resolution depend on 
the number of rotation steps, [13]. However, insufficient 
rotations result in streaking artifacts in the image, which 
results in a reduction in the spatial resolution.

iii) Mechanical accuracy of the scanner
Inaccurate positioning of the centre of rotation of the scan 
system results in artifacts, called tuning fork artifacts, 
which may reduce the spatial resolution of the image. Such 
artifacts can be suppressed by including rotations between
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ISO and 360 degrees. However, this results in poorer spatial 
resolution although the contrast resolution is unaffected.

iv) Filter function
Once the data has been collected, the spatial resolution can 
be altered by the filter function chosen in the back- 
projection reconstruction process. For instance, the Ram-Lak 
[13] filter is a high spatial resolution filter function 
while the Hann filter reduces the spatial resolution.

v) Reconstruction matrix
When the reconstruction grid pixel size is equal to the 
linear step size, the image resolution is optimum. Smaller 
pixels will not improve the resolution but may make the 
image more pleasing to the eye. On the other hand, larger 
pixels will decrease the spatial resolution, while reducing 
the pixel noise [12].

vi) Display matrix
The spatial resolution of a CAT image can be no greater 
than that provided by the display matrix. Making the 
display pixels smaller than the reconstruction pixels does 
not contribute to the information available while 
increasing the display pixel size may cause information to 
be lost.

As previously stated, many of the factors listed do not affect 
the quality of the images produced. In this thesis, however, some 
factors including partial volume effects, statistical noise and 
mechanical and electrical noise are inherent to all systems and 
affect the images produced.

It should also be noted that the minimum size of object that 
can be resolved is not equal to the minimum size of object that can 
be detected. For example, an object which is smaller than the pixel 
size and contained within the pixel may have high enough 
attenuation to raise the average attenuation value of the pixel. 
Also, when compared to a conventional radiograph, the spatial 
resolution in a CAT image is much poorer.

So far in this discussion, the X-ray beam has been assumed to
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be monochromatic but in comercial scanners the X-ray tube generates
a broad spectrum of X-rays. This gives rise to the beam hardening
artifact, which is due to the lower energy X-rays being more
rapidly attenuated and so changing the shape of the energy 
spectrum. Because of this, the CT values vary from those which 
would be expected using a monochromatic source. Some scanners 
reduce this by correction of the measured data using a reference 
phantom or by prior filtering of the X-ray beam to remove the lower 
X-ray energies. Also, since a structure in the slice may be
composed of many atomic elements, the individual effect of a single 
element cannot be distinguished from the whole. However several 
techniques have been developed to overcome these problems. Some of 
these have been successful but are limited in some way. These are 
described below.

1.3 Techniques to Image Atomic Elements.

In recent years much work had been done to investigate ways to 
image the spatial distribution of individual atomic elements in a 
cross-section for both medical and non-destructive testing 
applications. In conventional computerized tomography, the CAT 
image is a map of the spatial variation in the linear attenuation 
coefficient through the cross-section. However, it gives no 
Information about the elements present nor of the distribution of 
these elements. The reason for this can be understood by 
considering an object which contains two separate structures within 
the cross-section of interest. Typically, such structures contain a 
mixture of several different atomic elements. If these structures 
have the same total attenuation then it is not possible to 
determine the distribution nor the concentration of the atomic 
elements for a conventional CAT image. This is true if the shape of 
the spectrum is not recorded when the object is scanned with a 
single polychromatic X-ray beam. Even if the total attenuations 
were different it still might not be possible to determine the 
attenuation due to each element when scanning at a single tube 
voltage. However, several methods have been developed to enable 
elemental specific images to be produced.

One such method is based on the use of a contrast medium as 
used in conventional radiographs. Iodine is commonly used as a 
contrast agent. If the attenuation of the iodine is high enough, it
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may be clearly seen in a single image. If not, it may be necessary 
for images with and without the contrast agent to be subtracted. 
The resultant subtracted image shows the spatial distribution of 
the contrast agent. This technique is limited to situations where a 
contrast agent can be added to the object.

One such technique, based on this idea, was developed by 
Riederer and Mistretta, [5], and enables quantitative selective 
images of the iodine concentration in a cross-section of a patient 
to be made by switching the tube voltage. The method employs scans 
using three heavily filtered polychromatic X-ray beams, two having 
mean energies which straddle the iodine K-absorption edge at 
33.17keV and another at a slightly higher energy. By choosing 
energies which straddle the iodine K-edge, the sensitivity to 
iodine is maximised. Two energies are sufficient if only iodine and
tissue like materials are present. If the slice contains any other
materials, such as bone, then three beams are necessary. This is 
because, for X-ray energies up to several hundred keV, the
attenuation properties of all the materials present in the slice 
can be characterised by only two components, photoelectric and
Compton. In fact, they can be expressed as linear combinations of 
the bone and tissue coefficients. Thus, three energies are 
sufficient, provided that the mean beam energies do not straddle 
the K-edges of any other elements present. Using this method for a 
simulated phantom, selective iodine images with sensitivity and 
precision of 1+0.25 kg/m3 and spatial resolution of 3X10 3m were 
obtained for slices with diameters 0.3m using doses comparable to 
conventional CAT [3].

A second technique, called 'Dual-energy scanning’, has been 
developed by Van Riet et al, [4], where the attenuation due to a 
succession of materials along an X-ray beam path is expressed as 
resulting from equivalent contributions of two base materials. 
Typically, in diagnostic cases, these consist of a water like part 
(tissue) and a calcium like part (bone). Knowing the incident 
spectrum, the attenuations corresponding to different combinations 
of thicknesses of water and calcium can be calculated for each tube 
voltage, and inversely, the combinations of thicknesses which give 
rise to the same attenuation. In figure 1.8, iso-attenuation curves 
for two different tube voltages are shown. Each curve represents
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Detector
Fig. 1.7

A schematic diagram of the scan table scan motions. The 
sample was stepped through the beam along the X-direction and 
was rotated about the Z-axis. The sample was also moved in the 
Z-direction when choosing the cross-section of interest.

C M

Fig. 1.8
Iso-attenuation curves for two different tube voltages (125 

and 96kV) for the "dual-energy scanning" technique. These 
represent the combinations of thicknesses of water and calcium 
yielding the observed attenuation.The crossing point represents 
the unique combinations of thicknesses (1.4cm of calcium and 
15cm of water) yielding the measured attenuations at both 
voltages.
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the combinations of thicknesses of water and calcium which yield 
the observed attenuation for that tube voltage. The crossing point 
of the curves represents the unique combination of thicknesses 
which yields the measured attenuation at both voltages. By 
repeating such measurements for all step positions and rotation 
angles, it is possible to construct separate images of the two 
components.

In both methods, the radiation dose is comparable to ordinary 
CAT scans and the errors due to beam hardening and multicomponent 
mixing are considerably reduced. However, these techniques are not 
capable of imaging elements which are close in atomic number. In 
fact, the method described by Mistretta and Riederer [5] requires 
that no other elements with similar atomic numbers are present in 
the slice. These problems can be overcome by scanning the object 
with at least two monochromatic beams which straddle the 
K-absorption edge or L-absorption edge of the analyte element of 
interest. The radiation required might come from a synchrotron, 
from fluorescence of a suitable target or from electron capture 
within a suitable radioactive source.

Grodzin, [6] and [7], has theoretically studied the application 
of synchrotron radiation to computerized tomography and has shown 
it to be especially suitable to the study of small samples. In [6], 
Grodzin shows that there is an optimum X-ray energy for a given 
sample size and material which minimizes the time for obtaining a 
given resolution/sensitivity. At the optimum energy, the 
resolution/sensitivity is determined by the total number of photons 
per scan. This optimum energy is quite sharp, for instance for a 
1mm sample of tissue it is 6-7keV and the effectiveness at 4keV or 
at 12keV is an order of magnitude worse.

In the second paper, [7], Grodzin suggests taking successive 
tomographs, one at an energy above and another at an energy below 
an absorption edge of the element to be imaged. Then by making a 
comparison between the reconstructed images the spatial variation 
in the element of interest could be determined. A synchrotron is 
especially suited to this technique as it provides high intensity 
collimated beams of nearly monochromatic photons whose mean energy 
can be tuned across the absorption edge of the elements. For
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instance, the National Synchrotron Light Source at Brookhaven 
Laboratory provides fluxes of 101S photons/sec • mrad • AE/E-17., at 
energies below 25keV, [7], Due to dose considerations, the method 
is only suited to imaging heavier elements (Z>50) in medical 
subjects. The imaging of lighter elements in humans would require 
incident fluxes in excess of permitted radiation dose limits 
because of the higher absorption at low energies. Thus light 
elements can only be imaged in small non human samples.

Grodzin, [7], also investigated the sensitivity to an element 
in a single picture element for this technique. Since the scan 
energies in this case are determined by the element absorption 
edge, a sample of a given diameter cannot always be scanned at the 
optimum energy which maximizes the sensitivity/resolution for that 
sample. Thus only for a sample diameter where the element 
absorption edge energy corresponds to the optimum energy will the 
resolution/sensitivity be maximized. With this in mind, Grodzin 
calculated the sensitivity, in terms of the minimum fraction of 
critical atoms detectible in a pixel, for all elements in samples 
whose diameters are optimum for the energy of the element
absorption edge. Note, however that the sensitivity in terms of the 
minimum concentration of an element was not determined by Grodzin, 
[7], As an example, see figure 1.9, for a scan of a water like 
medium using 4X1010 incident photons, 100 steps per linear scan and 
requiring a 17. accuracy in each pixel. In this case, the
sensitivity in a pixel falls rapidly from Z=40 to Z=20 by a factor 
of 10 and a further factor of 10 to Z=13. Furthermore, a factor of 
100 increase in the incident photon flux only increases the
sensitivity in a pixel by one order of magnitude. Also, as seen in 
figure 1 . 9 ,  the sensitivity to trace elements worsens as the matrix 
gets heavier. For example, for elements above lead the sensitivity 
in silicon is about the same as in water but in iron the 
sensitivity falls by an order of magnitude. For elements around 
Z=50 the sensitivity deteriorates again by a factor of ten in 
silicon and by a further order of magnitude in iron. The 
corresponding values for the L-absorption edges are not shown as 
the sensitivities are much poorer.

Thompson and Llacer, [9], have studied the application of
synchrotron radiation to elemental imaging by scanning an excised
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pig heart, in which the cardiac chambers were filled with iodinated 
vaseline. By making use of the sharp increase in the iodine 
absorption at the iodine K-absorption edge at 33. 17keV, the 
difference in the photon transmission for monochromatic X-ray beams 
below and above this edge is due to the iodine only. This is 
because, across the iodine K-absorption edge there is no change in 
the attenuation coefficients of all the other elements present,
i.e. the matrix. In the experimental work, a tomograph was taken at 
25eV below the iodine K-edge and a second one was taken at 25eV 
above the K-edge. An iodine specific image was obtained by 
logarithmically subtracting the lower energy data from the higher 
energy data and then reconstructing the data. The resultant images 
showed the spatial distribution of the iodine in the slices through 
the pig heart. However no quantative evaluations were made. Beam 
hardening artifacts were not present as the photons were almost 
monochromatic. Also the background signal due to scattered photons 
was reduced since the beam has a divergence of only several mrad.

Flannery et al, [8], describe a system that they have developed 
to construct three-dimensional maps of density and elemental 
distribution in submillimetre samples by scanning above and below 
the elemental K-absorption edge with synchrotron generated 
X-radiation. One aspect of their work involved the development of a 
digital imaging X-ray detector system capable of submicrometre 
resolution and very high count rates. Because of the vast amount of 
data generated, very fast computers were required to reconstruct 
images in reasonable times. Experiments were done, using nearly 
monochromatic beams at energies Just above and below the copper 
K-absorption edge (8.99keV), to produce three-dimensional images of 
a nested set of thin walled glass tubes filled with copper sulphate 
solutions of known concentrations. Two sets of images were 
reconstructed corresponding to the lower and higher energy data. 
Although the images were not subtracted the location of the copper 
was clearly visible [8]. The experiment showed that images with 
10 6m resolution and showing the distribution of an element can be 
made using synchrotrons.

As stated previously, the sensitivity to the low atomic number 
elements in large samples when using X-ray techniques is very poor. 
This is because of the high attenuation in all materials for X-ray 
energies of a few keV. However, alternative techniques allow such
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Fig. 1.9
The minimum fraction of atoms detectible in water, silicon and 
iron matrices as a function of atomic number and K-edge energy. 
For all cases the sample size is optimum for the analyte K-edge 
energy.
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elements to be imaged. These include neutron computerized 
tomography and Nuclear Magnetic Resonance. With these methods, it 
is possible to image some of the low atomic number elements even in 
high atomic number specimens.

In the first case, neutrons are uncharged and are thus highly 
penetrating. They interact with the nuclei in a material to an 
extent that depends on the existence of stable configurations of 
protons and neutrons in the nuclei. For a few types of nuclei, the 
addition of a neutron forms a particularily stable configuration so 
that the probability of interation is very high. As seen in figure
I. 10, hydrogen, boron, lithium and cadmium have much higher 
attenuation coefficients for neutrons than most elements and so can 
be readily imaged. On the other hand lead, natural uranium and 
aluminim have high transparencies. The principles used in neutron 
CAT for data collection and image reconstruction are similar to 
those in conventional CAT. However the neutron sources and 
detectors differ considerably [16]. Neutron CAT images have been 
sucessfully produced by G. Pfister et al. [17] and by G. Matsumoto 
and S. Krata [18]. However, the nature of the sources required i.e. 
nuclear reactors, accelerators and Van der Graff generators, limit 
the widespread use of the technique, especially as a medical 
diagnostic tool. Also, as shown, the number of elements that can be 
imaged is limited.

Another imaging technique which is now widely used in medical
applications is Nuclear Magnetic Resonance, [19]. This method is
based on the magnetic moment that is present in a wide variety of
organic and inorganic materials. To possess a magnetic moment the
nuclei must contain an odd number of protons and neutrons. The

1 2usual atoms of many elements do not show this effect eg, C and
160 but most elements involved in biological systems have a useful

4. v 2 3 »i 1 4 m 31 _  1 9 _  13  1 7 _  , i„ T , ,isotope such as Na, N, P, F, C, 0 and H. In the
presence of an external magnetic field the magnetic moments tend to
align with the field. These can be caused to precess by an
externally applied radio-frequency signal. When excitation ceases,
the magnetic moment decays to it equilibrium state and emits a
signal at its resonant frequency. This resonant frequency is
characteristic of the element. Hydrogen provides by far the most
intense signal and is thus most commonly imaged. From these signals
a spatial image of the distribution of hydrogeon can be produced.
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Other elements can be distinguished by their characteristic 
procession frequencies but unlike hydrogen they require very long 
data acquisition times. In fact only a few elements have been 
sucessfully imaged to date, most notably, fluorine in the form of a 
tracer, by Holland et al. [20], sodium-23 by De Layre et al. [21]
and phosphorous-31 by Haselgrove et al. [22]. To date, NMR has been
mainly used in medical applications.

In all of the techniques described, the number of elements and 
the range of atomic numbers that can be imaged is limited. In the 
presence of other elements of similar atomic number some of these 
techniques fail, [4] and [5], Also, in all the methods so far 
described only one element can be imaged in a single scan. Even
though synchrotrons are well suited to producing elemental specific
images when using differential absorption across the element 
K-absorption edge, they are not very common. There are only 25 
synchrotrons worldwide. In this thesis, element specific images are 
produced using both radioisotopes and X-ray tube sources. An energy 
despersive Si(Li) detector is used, so that, in principle, all 
elements whose absorption edges lie within the energy range of the 
detector can be imaged. In fact, by doing a pulse-height analysis 
of the tube spectrum using a multi-channel analyser, several 
elements close in atomic number can be imaged simultaneously. In 
addition, theory is developed so that quantative images can be 
produced for the cases when the analyte element is added to the 
matrix and when the anlyte element is already present.

In previous works on sensitivity, no easy method has been 
developed to calculate the minimum detectable concentration of an 
element in a given matrix sample. In this work, equations to 
calculate the minimum concentration of an element in any matrix are 
derived for the cases when analyte can be added to the matrix and 
when it is already present. This is described in detail in chapter 
II. Finally, comparisons of calculated concentrations are made with 
experimentally determined minimum detectable concentrations.
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C h a p t e r  I I

II.1 Introduction to Differential X-ray Absorptiometry.

After the discovery of X-rays by Roentgen [23], one of their 
first properties noted was that the X-ray photons are absorbed by 
differing amounts by different materials of the same thickness. 
Within a year of their discovery, the absorption properties of 
X-rays was widely applied in medical and industrial radiography. In 
1901, Roentgen received the first Nobel Prize for his discovery and 
his pioneering work with X-rays. In 1909, Barkla [24] noted 
evidence of the presence of absorption edges. However, it was 
Glocker and Frohnmoyer [25], who in 1925 first used these 
absorption edges, in X-ray absorptiometry, to determine elemental 
concentration in specimens. This involved passing one or more X-ray 
energies on both sides of analyte element absorption edge through a 
cell, containing both the analyte and matrix solution. The process 
was then repeated for a cell containing matrix only. Knowing the 
absorption coefficients of the analyte element at the bracketing 
energies and the cell thickness, the analyte equivalent thickness 
along the path length, as well as the analyte element 
concentration, could be calculated. Since then, the procedure has 
been refined and is now used to measure the concentration of 
analyte elements in solutions, solids, briquets and even gases.

In this thesis, differential X-ray absorptiometry is applied to 
Computerized Axial Tomography (CAT) to determine the analyte 
concentration distribution through a slice in a specimen. In a 
typical CAT scan, the analyte equivalent thickness is determined 
for many path lengths through the cross-section and these are then 
used to construct an image of the slice. In this section, the 
equations to calculate the equivalent thickness for the case when
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analyte can be added to the matrix specimen and for the cases when 
the analyte is already present are derived.

II.2.1 Principles of X-ray Absorptiometry.

Consider a pencil beam of X-rays directed onto a homogenous 
specimen of uniform thickness "P" (metres) and density "p"

3
(kilogrammes/metre ). The resultant transmitted X-ray beam has flux 
N, which is always less than Nq> the incident beam flux, because of 
absorption. The transmitted beam flux is given by

N = N exp (-U P) .... 2.1o

where U (metres ) is the linear attenuation coefficient. 
Alternatively, this equation can be rewritten as

N = N exp ( - u t )  .... 2.20

where u is the mass absorption coefficient of the material (m2/kg)
2and t is the equivalent thickness (kg/m ) along the beam path. The 

mass absorption coefficient (m2/kg) is defined as the linear
- 1 3

attenuation coefficient (m ) divided by the density p (kg/m ). The 
equivalent thickness can be written in terms of the specimen 
thickness and the specimen density as t=pP. From now on, the 
variables t and u are used.

The mass absorption coefficient u is a property of an element 
and it is Independent, for practical purposes, of the chemical or 
physical state. It varies only with atomic number and X-ray energy. 
If a specimen consists of several elements, then for any X-ray 
energy, the total mass absorption coefficient at any point in the 
specimen is given by

u = £  Wn Un .... 2.3

which is the sum of the weight fraction w of each element times its
mass absorption coefficient. For the case where a specimen consists
of one element of interest, called the analyte, in a matrix of
other elements, equation 2.3 can be given by

u = Wa Ua + Wm Um .... 2.4 

where subscripts a and m refer to analyte and matrix respectively.
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Substituting for u in equation 2.2 with equation 2.4, it becomes

N = N exp o Wa U a  + Wm Urn .... 2.5

The mass absorption coefficient of an element is the result of 
several phenomena. These include photoelectric absorption, which is 
dominant at low energies, Compton scattering which is dominant at 
energies greater than several hundred keV and pair production which 
occurs at energies greater than IMeV. See figure II. 1 which shows 
the relative contributions of each effect as a function of X-ray 
energy for some atomic elements. In general, for a given X-ray 
energy, the mass absorption coefficient increases with atomic 
number since the "heavier" the element the greater its stopping 
power for X-rays. Similarily, for a given element, the mass 
absorption coefficient should decrease with increasing X-ray energy 
as X-ray penetration increases with energy.

However, there are abrupt discontinuties in the absorption 
coefficients, first noted by Barka [24]. It is these 
discontinuties, called absorption edge jumps, which are significant 
in differential X-ray absorptiometry. See figure II.2. At low X-ray 
energies, less than lOOkeV, the photo-electric effect dominates 
over Compton scatter and pair-production. In the photoelectric
effect, the minimum X-ray energy required to expel an electron from 
a given level in an atom is called the absorption edge energy. This 
gives rise to the abrupt increase in the mass absorption
coefficient on the high energy side of the absorption edge. Each 
element has as many absorption edges as it has excitation 
potentials, one K, three L, five M etc. In general, only K and Lin 
absorption edges have absorption edge differences (uh-ul) large 
enough to be useful for differential absorptiometry. For most
elements the K-edge difference is greater. For heavier elements the 
Liii edge difference is greater but the overall absorption may be 
higher due to their low energy. It is for this reason that the
K-absorption edges are prefered in this work. The absorption curves 
of the chemical elements showing the K-absorption edges are shown 
in f igure 11. 3.

Differential X-ray absorptiometry was first applied by Glocker 
and Frohnmeyer [25], for the determination of the quantity of an
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Fig. II.1
Linear attenuation coefficients as a function of photon 
energy for a collimated monochromatic beam In lead. The 
relative contributions of photoelectric, Compton effect, 
Rayleigh and pair production are shown. The Compton (a) and 
(b) curves are those pertaining to free and bound electrons.
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Fig. II.2
The mass absorption coefficient of lead as a function of 
photon energy. It shows one K-edge, three L edges and five M 
edges.
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element in a homogenous specimen. In differential X-ray 
absorptiometry, one or more X-ray energies, which straddle the 
analyte absorption edge, are passed through the homogenous 
specimen. Knowing the beam path length, the analyte concentration 
in the specimen can be calculated using the measured transmitted 
intensities if the analyte absorption coefficients are known. In 
this work, analyte elements are distributed unevenly in non- 
homogenous specimens. Applying differential X-ray absorptiometry to 
CAT the elemental distribution in a slice through the specimen and 
their concentrations can be determined for such specimens. In the 
next section, the mathematical background for differential X-ray 
absorptiometry is given. In section II.4 the methods for producing 
the images are described.

II.2.2 Mathematics of Differential X-ray Absorptiometry.

Consider two monochromatic co-linear X-ray beams, one on either 
side of the analyte K-absorption edge, see figure II. 4, being 
incident on a specimen. The emergent fluxes are given by

and

N = N exp 1 oi ^ { - (

\  = N0„ exp {  - (

Wa Ual + Wm Uml

Wa Uah + Wm Umh

) , }  . . . .  

) , )  ....

2. 6

2.7

where the subscripts 1 and h refer to the low energy beam El and 
the high energy beam Eh respectively. Division of equation 2.6 by 
equation 2.7 gives

N N
01

Oh
exp^Wa| Uah-Ual j t| exp-jwm | Umh-Uml tj-

Rearrangement of equation 2.8 gives

Wa t = •In
N N1 Oh
N Nh 01

| Uah-Ual j
-1 
+ Wm t f ( Umh - Uml )!

|(Uah - Ual)]

. . 2.8

. 2.9

Since the composition of the matrix may be unknown it is 
desirable to remove the matrix term on the right hand side of this 
equation. Hence, the bracketing X-ray beam energies should be close 
enough together in energy and therefore also close to the
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Fig. II.3
The mass absorption coefficients of the elements as a 

function of photon wavelength showing the K-absorption edges. 
The conversion factor to photon energy is Ekev= 1 2 .396/A.
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matrix elements near t h e  K - a b s o r p t i o n  edge of the analyte. The 
difference in the analyte m a s s  absorption coefficient at 
energies El and Eh is m u c h  greater for the analyte chan the 
matrix. Note, Uah-Uai is p o s i t i v e  w h i l e  Uah-Umi is negative.



K-absorption edge in order to minimise the effect of the matrix 
absorption. However, both energies should be far enough from the 
absorption edge, especially on the high energy side, to avoid the 
absorption edge fine structure. In general fine structure is 
confined to within 200eV of the absorption edge, [26], If the 
matrix undergoes little change in its absorption coefficient 
between the bracketing X-ray energies, i.e. umh=umi, then equation 
2.9 becomes

where ta = wa t is the analyte equivalent thickness along the beam 
path.

Without the use of a synchrotron it is unlikely that available 
X-ray energies will be close enough to the analyte K-absorption 
edge in order that the matrix term can be dropped from equation 
2.10. Near the K-edge of the analyte, the term ( u a h -u a i )  is 
positive while the term (umh-umi) is negative. See figure II. 4. 
Thus the effect of the matrix term on equation 2.9 is to reduce the 
measured analyte equivalent thickness. Since, the composition of 
the matrix is unknown in most cases, a technique to correct for the 
matrix effect is required. Here, two such techniques are described.

II. 3. Correction Techniques for Matrix Effect.

II.3.1 Technique to Correct for Matrix Effect when the Analyte

The technique of determining analyte equivalent thickness using 
the transmitted X-ray fluxes through specimens when the anaylte can 
be added to the matrix specimen are well established. Such 
techniques are described by Bertin [27], where the Ka and Kj3 lines 
of a suitable element which straddle the analyte K-absorption edge 
are used. Since the energies of the K-lines may lie at several keV 
from the analyte K-edge, it is first necessary to make measurements 
on a matrix, before making measurements on the matrix plus analyte, 
so that the effect of the matrix on the analyte equivalent 
thickness can be removed. An equation, for this technique, to 
calculate the corrected analyte equivalent thickness has been 
formulated by J. Fryar and K.J.McCarthy [28] and it is described in

2 . 10

can be Added to the Matrix.
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d e t a i l  h e r e .

The transmitted fluxes for a monochromatic pencil beam of 
X-rays through the matrix only specimen are given by

N = N exp-< - I Win Uml ml Oml 1 1 M . . .  2.11

on the low energy side of the analyte K-edge

jtj ___  2.12N = N exp-4mh Orah 1
( r
{- Wm Umh l}

on the high energy side of the absorption edge. Dividing equation 
2.11 by equation 2.12 gives

ml

mh

NOml
NOmh

expj U m h-U m l tmj . . . . 2.13

where tm = wmt is the matrix equivalent thickness along the path 
length. Cross multiplying the Nq terms, equation 2.13 becomes

exp I Umh-Uml j tm j- = ml
Nmh

r nOmh
NOml

  2.14

Similarily for the specimen containing both the analyte and the 
matrix, the transmitted fluxes are given by

N, . = N exp(a+m)1 0(a+m)1 r H Wa Ual + Wm Uml

and by

N.(a+m)h = N , exp { - I0(a+»)h \ ( Wa Uah + Mi UmhI j t j ___

2.15

2.16

for the same X-ray energies. Division of equation 2.15 by equation 
2.16 gives

N (a+m) 1
N (a+m)h

r n0 (a+m)1
N0 (a+m)h

[ exp-j |umh-uralj tmjexpj|uah-ualj taj- .2. 17

Substitution of the matrix exponential term of equation 2.17 with 
equation 2.14 gives

NN (
N
(a+m)1

—  "(a+m)h

Nc
N
0 (a+m)1

Ï
0 (a+m)h

ml
Nmh

Nc
N~
Omh

Oml
exp| Uah-Ualjtaj .. 2. 18
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If the same source of X-rays is used in both cases then the ratios 
of the incident low and high X-ray energies are the same i.e.

' N i N0 (a+m)1 0ml
N N0 (a+m)hV > Omh /

so these cancel each other in equation 2.18. This leaves equations
2. 18 as

' N 1(a+m)1 r nml if f 1
N (a+m)h N "mh

exp- Uah-Ual ta

By cross-multiplying the N terms and then taking the naturalm
logarithms of both sides of equation 2.20, an equation for the 
analyte equivalent thickness along the beam path between the source 
and detector results. It is given by

N
ta = In (a+m)1

(a+m)h

Nmh

ml

-1
Uah-Ual   2 . 21

Using equation 2.21, the analyte equivalent thickness, ta, along 
any beam path through a specimen can be calculated. In this case, 
the effect of the matrix, which was previously present in equation 
2. 10, has been removed. To calculate ta, the transmitted fluxes 
through the matrix, , are measured initially. Then, when the 
analyte has been added, the matrix plus analyte transmitted fluxes, 
N , are measured for the same path. As stipulated in equation(a+m)
2. 19, the same source of X-rays should be used for both 
measurements. Finally, the values of mass absorption coefficients, 
uah and u«i, can be found in published tables [29].

When applied to Computerized Axial Tomography, this technique 
requires that two scans of the specimen be made. The first scan is 
made of the matrix only. When completed, an identical scan is made 
of the matrix plus analyte. In this work, a scan consists of linear 
and rotational steps. At each step position, when all the data has 
been collected, the analyte equivalent thickness along each beam 
path between the source and detector is calculated using equation 
2.21. These analyte equivalent thicknesses are then stored and used 
in the reconstruction of a slice through the specimen. The 
resultant reconstructed image shows the distribution of the analyte 
in the slice and also the concentration values. See section II. 4,
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As described, the distribution of analyte in a slice through a 
specimen can be obtained using this technique. However, there are 
several drawbacks to this method. The first is that it is limited 
to samples where the analyte can be added to or removed from the 
matrix. Secondly, the technique requires two identical scans. This 
means that the specimens must be aligned exactly for both scans. 
Finally, a complete scan using the K-lines form a radioisotope 
takes much longer than an ordinary CAT scan. The reason for this, 
is that the radioisotope sources used have low photon fluxes thus 
requiring longer count times. In order to overcome these drawbacks, 
a second technique was developed which made it possible to collect, 
in a single complete scan, the data required to image multiple 
analyte elements.

II.3.2 Technique to Correct for Matrix Effect by Extrapolation to 
The Analyte Absorption Edge.

Since it may not always be possible to add analyte to the 
matrix, a second technique for matrix correction was developed by 
J. Fryar, K. J. McCarthy and A. Fenelon [30], In this method the 
analyte equivalent thickness along a path length can be determined 
in a single measurement. This involves measuring the transmitted 
beam fluxes through the specimen at two or more energies on both 
sides of the analyte absorption edge. Then, by extrapolating the 
photon counts to the analyte absorption edge, the effect of the 
matrix is removed to give analyte equivalent thickness only.

For the case where two energies on both sides of the analyte 
absorption edge are considered, see figure II.5, the transmitted 
fluxes are given by the equations

{ - ( Wa Uall + Wm Umll . . 2.22

Wa Ual2 + Wm Uml2 .. 2.23

Wa Uahl + Wm Umhl .... 2.24

Uah2 + Wm Umh2 2. 25
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X-Ray Energy

Fig. II.5
Schematic diagram to Illustrate the extrapolation of 

projection data, taken at two X-ray energies on both sides 
of the analyte K-edge energy. Yb and Yi are the extrapolated 
values of in (No/ N)
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for X-ray energies E 1 1<E12<E1<; and for EK<Ehi<Eh2, where Ek is the 
analyte absorption edge energy. Cross multiplying by the Nq term in 
each equation above and then taking the natural logarithm of both 
sides of the resultant equation gives

N
In

In

In

In

Oil

n

N
0 1 2

12

Ohl

hi

N0h2
N 2

= ta Uall + tm Uroll

= ta Ual2 + tm Ujnl2

= ta Uahl + tm Urohl

= ta Uah2 + tm Umh2

2.26

2.27

2.28

2.29

where ta=wa t and tm=wm t. Since uai>ua2 and umi>um2 for energies 
both above and below the absorption edge, it is clear that

In
N ( NOil

> ln
012
NNll > 12

2.30

and

In
N NOhl

> ln
0h2

N Nhi h2V

2.31

A plot of ln(No/N) against X-ray energy is shown in figure II.5. 
Extrapolation to the analyte absorption edge Ek on the low and high 
energy sides gives the values of ln(No/N) at the low and high 
energy sides of the K-absorption edge as Yi and Yh respectively, 
where

and

Yl = Ual ta + UjbI tm .... 2.32

Yh = Uah ta ♦ Umh tm......... 2.33

The difference in the ln(No/N) terms at the absorption edge is 
Yh-Yi which is given by

- (
Yh - Yl = Uah -Ual ta. .... 2.34
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The um term disappears since umi=umh across the analyte absorption 
edge while the difference in the analyte absorption is ( u a h - u a i ) .  

Rearrangement of equation 2.34 gives the analyte equivalent 
thickness along the beam path as

which becomes

  2.36

when the Y’s are replaced by the ln(No/N) terms. The term e 
indicates the extrapolated values. Now, if the number of photons 
per unit energy interval is the same just above and below the 
analyte absorption edge then the Nq terms in equation 2.36 cancel. 
Thus equation 2.36 becomes

Uah - Ual

In both equation 2.36 and 2.37 the effect of the matrix has been 
removed by extrapolation to the absorption edge. Thus if two or 
more monochromatic co-linear X-ray energies on both sides of the 
analyte absorption edge are available, the analyte equivalent 
thickness can be determined in a single measurement.

The energies required can be easily obtained if a continuous 
spectrum of X-rays is used. Narrow energy bands can be defined on a 
multi-channel analyser if an energy dispersive detector is used. 
See chapter IV for the experimental setup.

During a CAT scan of a specimen, which contains both analyte 
and matrix, the transmitted fluxes through the specimen are 
measured for each narrow energy band at each step position. The 
ln(No/N) values for each energy band are then calculated and 
extrapolated to the analyte absorption edge. Then the analyte 
equivalent thickness along the beam path can be calculated using
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equation 2.36. The mass absorption coefficients are obtained from 
published tables [29]. In this way, the required data to 
reconstruct an image showing the analyte distribution and its 
concentration in a slice through the specimen, containing both 
analyte and matrix, can be collected in a single scan.

This technique also allows the analyte equivalent thicknesses of 
several elements which are close in atomic number, to be determined 
simultaneously. For two elements, six energy bands are required, 
since the data taken between two absorption edges is extrapolated 
to both edges. Similarily, for n analyte elements, 2n+2 energy 
bands are required. See figure 11.6. In chapter IV, several
elements in a specimen are scanned and imaged in a single scan.

It is reasonable to assume that corrections for dead-time in
the pulse counting apparatus, especially for high count rates, and
for source fluctuations may be important. Consider the case where
the dead-times in the incident flux N and transmitted flux N areo
different. In this case, if ZN and zN are the corrected values foro
Nq and N for each energy band, then the resultant equations are 
ln(ZNQ /zN) or ln(Z/z)+ln(NQ /N). Thus the effect of dead-time
correction is an equal displacement along the ordinate axis for
each point in figure II.7. In effect, the extrapolated value of
Yh-Yi is unaffected. However, high dead-times are undesirable as 
they gives rise to to poorer counting statistics. In order to 
reduce dead-time, the beam from the X-ray tube source is filtered. 
The filtering reduces the flux and also removes unwanted energies, 
thus reducing the dead-time. See section IV.3.3.1c Similarily, 
equation 2.36 is unaffected by changes in the intensity of the 
source. This is because the photon counts appear as ratios within 
the logarithms, so fluctuations in the source between recording the 
incident and transmitted spectra are eliminated upon subtraction of 
the logarithms. In equation 2.37, fluctuations in the source 
between measuring the incident and transmitted fluxes are 
insignificant since the term Nq does not appear in the equation.
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Fig. II . 6
Extrapolation to the Pd, Ag and Cd K-absorption edges of the 

ln(No/ N) values in narrow energy bands. This data is taken 
from the expereiment described in section IV.3.3.4.
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Fig. II.7
The effect of dead*time corrections to the ln(No /N) data is 
shown here to be an equal displacement along the ordinate axis 
on both sides of the analyte K*edge. In this case Z and z are 
the correction factors to the incident beam No and transmitted 
beams N respectively.
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I I.4 Reconstruction Algorithms.

11.4.1 Introduction to Reconstruction Algorithms.

The problem of reconstructing a two dimensional section of an 
object from a set of one dimensional projections arose and found 
solution independently and more or less simultaneously in the 
fields of electron microscopy (Crowther et al. [31]), 
radio-astronomy (Bracewell and Riddle. [32]) and X-ray computerized 
tomography (Gordon et al. [33]). The process of image 
reconstruction has been defined by Herman [34]; “image  

r e c o n s t r u c t i o n  f r o m  p r o j e c t i o n s  i s  t h e  p r o c e s s  o f  p r o d u c i n g  an  

image o f  a two d i m e n s i o n a l  d i s t r i b u t i o n  f r o m  e s t i m a t e s  o f  t h e  l i n e  

i n t e g r a l s  a l o n g  a f i n i t e  n u m b e r  o f  l i n e s  o f  known l o c a t i o n s " . 

Historically, the solution to the problem of image reconstruction 
in CAT has polarised into two distinct and mathematically 
dissimilar classes of algorithms. These include

1) Analytic Solutions.

These reconstruction techniques, which are used in many 
commercial CAT machines because of their speed, include the 
filtered back-projection methods. With these algorithms, the 
reconstruction process can be implemented as the data is collected 
and the image can be produced in a single iteration. Without prior 
filtering of the projection scan data, simple back-projection 
produces a blurred image. See figure II.8. Filtration was 
introduced to eliminate this blurring but it is not without side 
effects. Some filters commonly used include the Shepp-Logan filter 
[35], the Ramachandran-Lakshminarayanan (Ram-Lak) [36], which is 
used in this work and the Hann filter.

2) Iterative Solutions

In the first commercial EMI scanner, by Hounsfield [3], the 
reconstruction technique used was one form of a general class 
called iterative solutions. In its simplest form, the iterative 
technique is essentially a mathematical trial and error procedure 
that gradually approaches the best estimate of the object. It is no 
longer favoured by commercial manufactures for several reasons. For 
instance, before starting the reconstruction, all the projection 
data is required. The technique is also slower than the now
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Fig. II . 8
A schematic diagram to illustrate how simple back-projection 
of the scan profiles of a small cylindrical object produces a 
blurred image.

Source

N,

Detector

Fig. II.9
A schamatic diagram to illustrate the transmiitted beam flux 
N for a well collimated monochromatic X-ray beam No incident on 
a nonhomogenous body.
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favoured analytic technique. This is because several iterations are 
normally required before an acceptable image is produced. In this 
work, the Algebraic Reconstruction Technique, ART, is one of the 
two reconstruction techniques used. Although slower, the resultant 
concentrations were found to be closer to the expected values.

These algoritms are described in more detail further on in this 
chapter. Before that, the scanning method employed and the idea of 
ray-sums are described.

II.4.2 Parallel Mode of Data Collection.

In the parallel mode of data collection, one X-ray source and
one X-ray detector are used. See figure 1.4. Two motions are
required. First, the source and detector are stepped in parallel 
along a direction which is perpendicular to the line connecting the 
source and detector. At each step position, for a set period of 
time, the detected transmitted photons are counted, and the source 
and detector are then moved to the next position. After a set 
number of linear steps, the source and detector are rotated about 
the object by a few degrees and the linear stepping procedure is 
repeated.

In first generation medical scanners, the source and detector 
were stepped and rotated as described above, but in this work the 
specimen was stepped and rotated while the source and detector were 
stationary. This is because the preamplifier of the Si(Li) detector
was immersed in a liquid nitrogen dewar. The two methods are
geometrically analogous and the resultant projections are the same. 
This method of scanning has been used with synchrotron sources by 
Suzuki et al. [45].

II. 4.3 Rav-Sums.

Consider a monochromatic collimated X-ray beam as it passes 
through a specimen. See figure II.9. Since the specimen is 
inhomogenous, the attenuation of the X-ray beam is given by Beer’s 
law as

N = Nq exp| -J U(y) dy j .... 2.38 

where N and N are the transmitted and incident photon counts, U(y)
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is the linear attenuation coefficient at a point y along the line 
joining the source and detector and dy is the differential of path 
length along the beam. The ray-sum for the corresponding beam, i.e. 
the total attenuation of the beam between the source and detector, 
is defined as

Using such ray-sums as the one dimensional projections, the 
resultant reconstructed image shows the spatial variation in linear 
attenuation coefficient through the slice of the specimen.

Similarily, for differential X-ray absorptiometry applied to 
CAT, where the projection data is analyte equivalent thickness, ta, 
the ray-sum is defined as

where the right-hand side of the equation is the integral along the 
line joining the source and detector of the analyte concentration, 
Ca(y), at the point y. In section II.3, the analyte equivalent 
thickness was defined in equations 2.21 and 2.36. When equation 
2.36 is substituted for ta in equation 2.40 it gives

The resultant reconstructed image, using such ray-sums shows the 
spatial distribution of analyte concentration in the cross section 
through the specimen. The resultant image is the same when equation 
2.21 is substituted into equation 2.40.

In conventional medical CAT, the images are usually 
reconstructed using the ART and filtered back-projection 
algorithms. These images normally show the spatial variation of 
linear attenuation coefficient through the patient. It is proposed 
to use the same algorithms to reconstruct images showing analyte 
concentration from the ray-sums of analyte equivalent thickness. In 
some cases these algorithms are used to reconstruct images showing 
linear attenuation coefficients. Such images act as a useful

ray-sum

ray-sum = ta = I Ca(y) dy .... 2.40

C*(y) Sy ___  2.41

(u«h - Ual)
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reference to show the relative coefficient of the analyte within
the object.
II.4.4 Filtered Back-projection.

11.4.4.1 Introduction to Convolution Methods.

In this section the theory of the convolution or filtered 
back-projection method is described. In II.4.1, it was stated that 
back-projection of the projection data can never give a proper 
"unblurred" image. However, if the scan projections, i.e. ray-sums, 
are modified appropiately prior to back-projection then an accurate 
reconstruction image can be achieved. For this, negative values are 
introduced into the projection data before back-projection is 
performed. These negative values cancel contributions to the images 
except at the appropiate positions. This is the basis of the 
convolution reconstruction method.

In this section, the theory of Radon transforms and transform 
methods, the determination of the convolution function and the 
implementation of the resultant algorithm are described.

11.4.4.2 Radon Transforms.

Before describing the theory of the reconstruction algorithms, 
it is first necessary to describe the co-ordinate systems used and 
the mathematical way in which the ray-sums and the reconstructed 
images are represented. The problems of reconstructing an image 
from discrete measurements can then be defined. In the sections 
following this, the theory of the filtered back-projection and ART 
methods are described in more detail.

A polar co-ordinate system is used to describe the location of 
any point within the cross section of interest of the object. See 
figure 11.10. The point 0 in figure 11.10 is the origin and the 
line B is defined as the baseline. Any point p in the cross section 
can be described by two variables, r its distance from the origin 
and <p the counter clockwise angle between the baseline and the line 
joining Op. For now, the analyte concentration or the linear 
attenuation coefficient at any point is given by f(r,0).

Similarily, beam paths through a cross section can also be 
described by two co-ordinates. The line L, i.e. the beam path, in

53



figure 11.10 is described by (1,0) where 1 is the perpendicular 
distance from the origin 0 to the point Q on the line L. 9 is the 
angle the line 1 makes with the baseline. The analyte equivalent 
thickness or the total linear attenuation, i.e. the ray-sum, along 
this line is denoted by [ftf](l,0). This function depends on f, the 
linear attenuation coefficient or the analyte concentration at the 
point (r,</>), and is called the Radon Transform.

The function [ftf] can be plotted on a two dimensional
rectangular co-ordinate system. See figure 11.11. A single point in 
this (1,0) space can be thought of as corresponding to a ray-sum, 
or line, in (r,0) space. Figure 11.10 further emphasises the
relationship between the (r,(p) and (1,0) spaces. First, consider 
the line 'i, which is perpendicular to the beam path L and makes an 
angle 0’ with the baseline. Any other beam path which is 
perpendicular to ^ has an orientation 0 ’ so that the ray-sums, 
corresponding to the beam paths correspond to the points along the 
straight line 0 = 0 ’ in figure 11.11.

Similarily, for a point (r,$) in the (r,0) space. The locus of 
the set of points (1,0), which correspond to lines passing through
the point (r,tf>) is given by the equation

1 = r Cos | 0 - <j> j .... 2.42

The locus is a cosine wave on the (1,0) plane of amplitude r and 
phase -<p. This can be seen in figure 11.11. However, in practice 
the ray-sums are measured at discrete step positions and rotations. 
Thus the set of discrete points in (1,0) space in figure 11.12 
correspond to measurements at these discrete step and rotation 
positions. The points form a rectangular grid with horizontal 
spacing s which is the linear step size and vertical spacing d0 
which is the angular step size. The problem of reconstruction can 
now be stated, that given the data ftf[l,0] estimate the image of 
the object in the (r,</>) plane. In conventional CAT, this 
representation of ray-sums is called a sinograph. Although not 
essential to this work, it is useful in showing the difference in 
the representations of the functions f and [/?f].

With this in mind, the reconstruction problem can now be stated;
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Fig. 11.10
The polar co-ordinate system to describe the location of a 
point p in the plane of interest. This is the r,0 space. Here,
0 is the origin, B is the baseline, r is the distance from 0 to 
p, <p is the counter clockwise angle between the baseline B and 
the line 0 joining 0 and p, L is the beam path, 1 is the 
perpendicular distance from 0 to Q and 0 is the angle between 
the line L and B.
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0- $' corresponds to all rays-sums which are parallel to the 
line L In r,^ space. The locus of the set of ray-subs 1,§
which pass through a point r,+ in t , 4  space is described by 
the equation shown. This is known as a sinograph.

Each discrete point corresponds to a ray-sums in r,i space. 
The variable s is the linear step size while d0 is the 
rotation step angle.
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given [/if] (1,0) for a large number of ray-sums, find an algorithm 
that provides f {r , <p) at points of interest (r , <p). This problem was 
first solved by Radon [37], but there are some difficulties in 
applying it to the reconstruction of CAT images.

1) In CAT, measurements of [Rf](l,0) are made along a finite 
number of beam paths, while the Radon formula assumes the 
availability of [Rf](1.0) for all lines (1,0).

2) Radon’s formula is sensitive to inaccuracies in the ray-sum 
data such as noise, width of the X-ray beam etc.

3) Radon gives a mathematical formula, but an effective 
algorithm that can be evaluated on a computer is required.

II.4.4.3 Transform Methods.

The Radon transform of the function f, i.e. the ray-sum, can be
defined as

[ Rf ] (1,0) = | fj(l2+ y2)J/f 0 + tan’^ - j j  d y   2.43

r°0
[Rf](O,0) = j f[ y, 0 + \  ] dy .... 2.44

-0 0

where the variables are as defined previously. In equation 2.43,
2 2 2  - i f  y )r = (1 + y ) by Pythagoras’ theorem and <j>= 0 + tan I— I. The zero

of this integral on the line L is the point Q. See figure 11.10. 
Now, the Radon transform associates a function [Rf] of two 
variables, with a function f of two polar variables. An operator 
R~) called an inverse Radon transfrom, is now sought such that 
[R *Rf] is equal to f, (i.e. R 1 associates the function f with the 
function [Rf]). If such an operator can be found, then as proved by 
Radon [37], for any function of two polar variables, [R *Rf] equals 
f for all points (r,0) such that

[R_1R f] (r,<A) = f (r,<p) .... 2. 45

Thus, if a suitable R 1 can be found, it is possible to reconstruct 
a slice through the object showing f(r,<f>), the spatial distribution 
of the linear attenuation coefficient or the analyte concentration, 
from [Rf](1,0), the ray-sums of total attenuation coefficient or 
analyte equivalent thickness respectively.
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The operator R 1 can be expressed as a sequence of simple 
operators. Herman [34], shows how these operators are derived, see 
Appendix A, and expresses R 1 as

/ f 1 = -  —  B Hz flz _____ 2.  46271
where

1) Dz is the partial derivative of [Rf](l,0) with respect to
its first variable to obtain a function q(l’,0)

2)  H z is a Hilbert transform of the function q(l',0) with
respect to its first variable to obtain the function t(1’,0) 
The Hilbert transform is given by

[H q](1*,0) = - i [ dl .... 2.47
- CO

3) B is the back-projection of the function t(l,0) which
results in a function of two polar variables [Bt](r,0) which 
is given by the equation.

r71[Bt](r,0) = t (rcos {Q-<p), 0) d0 .... 2.48 
o

and

4) the resultant function is then multiplied by the function

which is called normalization.2 n

Such a process assumes that the values of [Rf](l,0) are known 
for all 1 and 0, i.e. for all ray-sums, and that the required 
operations can be carried out precisely. The former of these 
requirements cannot be satisfied in practice since the projection 
data is measured at a finite number of step positions and rotation 
angles. The latter assumes perfect data, but in pratice the data 
contains errors due to noise etc. However, such operators are in 
fact integrals and are difficult to implement on computers. None 
the less, the transform method can be approximated by a convolution 
function which can be easily implemented on a computer.

The first two stages of evaluating the inverse Radon transform, 
namely differentation of the projection data with respect to its 
first variable and then taking its Hilbert transform can be 
approximated by a single convolution of the data with a fixed 
convolution function. This is done because the numeric evaluation

58



of the Hilbert transform may be far from straight forward, Herman 
[34], Having found such a convolution function, an estimate of f 
can be made. It is given by

where (p * q) is the convolution of the projection data p, i.e.
[/if ] (1,0), with respect to 1 along a scan projection, when 0 is 
fixed, with a function q (the convolving function). Having 
convolved p with q, the resultant is then back-projected onto the
(r,$) plane to give the estimate f (r,<£).

Mathmetically the convolution of any two functions, say w and 
ip, can be given by

where v and p are variables associated with w and <p. Some examples 
of convolution functions are shown in figure 11.13 as smoothly 
varying curves. The negative side lobes of the convolution 
functions introduce negative values into the scan profiles. In this 
way the blurring in the back-projected images is removed. In 
summary, the convolution method approximates to the inverse Radon 
transform in two steps

1) a convolution with respect to step position of the 
projection ray-sums

2) a back-projection,

In what follows, the application of the convolution function or 
filter function, as it may now be called, for discrete steps and 
rotations is described. An algorithm, based on equation 2.49, that 
can be implemented on a computer for filtering and back-projection 
is also described.

II.4.4.4 Implementation of Convolution Methods.

In practice, the projection data is collected at many discrete 
steps positions at a similar number of discrete rotation angles. 
Thus a discrete form of the convolution function is required. Since 
most of the images reconstructed in the course of this work show 
the spatial distribution of analyte concentration, only analyte

«
f = B (p « q) .... 2.49

-oo
2. 50
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Flg. 11.13
a) The continous form of the Ramachandran-Lakshminarayanan 

filter function.
b) The continous form of the Shepp-Logan filter function.

60



equivalent thickness and concentration will be considered. The 
algorithms to determine the linear attenuation coefficients from 
projections of total attenuation are in fact very similar. In the 
discrete form, the analyte equivalent thickness is given by ts,ra
where s is step position and r is rotation step position. Also, 
since a computer is used for the calculations, the reconstruction 
space is limited to a finite area. This area is divided into pixels 
which form the reconstruction grid. See figure 11.14. When 
reconstructing an image the pixel values C  ̂ are first set to zero.

When the projection data has been collected at all step 
positions at some rotation step position and the ray-sums have been 
calculated, filtering of that profile can commence. The resultant 
filtered analyte equivalent thickness, ts'r, when ts,r is filtered

d d
with the filter function q(s-s’) centred on the step position (s,r) 
is given by

S ’ / 2

ts,r = £ ts,r q(s-s’ )   2.51
*  - S ’ / 2  “

where q(s-s’ ) is the spread of the filter function along the scan 
profile and S’ is the width in step positions of the filter 
function. The discrete form [36] of the Ramachandran and
Lakshminarayanan (Ram-Lak) filter function used is given by

q(s ' )  = j i j )S «• = 0

q(s,,) = ‘ lid •* )2 S’ “ ±1, ±3- ±S---  ... 2.52
q(s’) = 0  s’ = ±2, ±4, ±6___

where d is the sampling spacing and s’ is the filter step position
relative to the step position s. This is the discrete form of the
convolution function curve in figure 11.13 sampled at positions of 
spacing "d" apart. See figure II. 15. The discrete form of the 
convolution function is entirely equivalent to the continous form 
once the sampling spacing is less than or equal to the step size
[15]. The filter function introduces negative values into the
equivalent thickness profile which cancels the contributions to the 
image except at the appropriate locations. As an example, the
filter function is applied to a profile of a scan of a cylindrical 
object in figure 11.16.
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Fig. 11.14
A schematic diagram of the reconstruction grid used in 
reconstruction. The pixels are labelled j ,k and the beams are 
labelled s,r. The value'of a pixel Is given by Cj.k.
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In figure 11.16, the Ram-Lak filter function is just below the 
scan profile. Starting with the first rotation step position, the 
filter function is applied sequentially to the ray-sums at each
step position, i.e. starting with s=l and then to s=2 and so on, 
along the scan profile. The sequence is shown in figure 11.16. The 
same procedure is applied to each subsequent rotation.

When each scan profile is completely filtered it is back- 
projected across the reconstruction grid along a line which is 
perpendicular to the scan profile, i.e. the rotation angle. The
discrete back-projection procedure is described by

c =y t srwsr ___  2 . 5 3
J k " a  Jks r

where = 1 if the centre of the X-ray beam s.r crosses the pixel
j,k else W "  = 0. As subsequent scan profiles are filtered and
back-projected, the image of the slice through the object is built 
up. Thus the concentration value in a pixel J,k is equal to the sum
of all the modified ray-sums that pass through that pixel. The
reconstructed image of the cylindrical object using the ray-sums 
modified by equation 2.51 is shown in figure 11.17. When compared
with figure 11.18, showing the unfiltered back-projected image of
the same object, it can be seen that the blurring that is present 
in figure 1 1 . 1 8  has been removed In figure 1 1 . 1 7  by the effect of 
the negative values. See also figure II.8.

Figure 11.19 shows reconstructed images of some dummy data. The 
phantom object consisted of two 3X3 pixel sized solids. In figure
II.19a, it is difficult to distinguish between the two objects.
This was reconstructed using unfiltered data. In figure II.19b, the 
two objects can be clearly distinguished. The data was filtered 
using the Ram-Lak filter function prior to back-projection. The
improvement in the reconstructed image when the data is filtered is 
clearly seen from these images.

It should be noted that the final pixel values in the
reconstructed image are not the expected concentration values. This 
is due to the error introduced by not taking into account the
fractional overlap area of the pixel and the X-ray beam. However, 
the ratios of the pixel to pixel values are similar to those
produced by the more accurate ART method. Also, filtered
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Fig. 11.15
a) The contlnous form of the Ramachandran- Lakshminarayanan 

filter function.
b) The discrete form of the Ramachandran-Lakshminarayanan 

filter function.
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Fig. 11.16
A schematic diagram of the the discrete form of the Ram-Lak 
filter function being applied to a typical scan profile of a 
cylindrical object. The diagrams shows how the filter function 
Is applied sequentially to each step position.
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FILTERED BACK-PROJECTION

(FILTERED PROJECTIONS)

NOTE: NEGATIVE LOBES

Fig. 11.17
A schematic diagram which illustrates the back-projection 
across the reconstruction grid of filtered scan profiles.
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BACK- P R O J E C T IO N

NOTE: IMAGE IS  SMEARED

Fig. 11.18
A schematic diagram which illustrates the back-projection 
across the reconstruction grid of unfiltered scan profiles.
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back-projection is a fast and easily implemented reconstruction 
method. Only one iteration is required to produce a good image. 
This makes it a fast reconstruction method as further iterations do 
not improve the image.

II. 4. 4.5 Computer Programs for Filtered Back-projection.

A BASIC computer program for the VAX 11/785 to reconstruct 
images, using the Ram-Lak filter, from the data collected by 
experiment is shown in Appendix B. This program was written for 
scans using 40 step positions and 40 rotation positions. The 
ray-sums which form the basic data for this program are calculated 
and stored on file. It was found that an improved image is formed 
if the pixels are divided into quarters and the beam into halves 
(mathematically speaking) for back-projection.

Lines 110 to 310
The reconstruction program starts by inputing the ray-sums from 

a file and storing this data in an array, "stp(T)". Side lobes, 
five step positions wide, containing zero are added to both ends of 
each profile. This is done to facilate the filtering process.

Lines 320 to 430
Starting with the first profile, "R=0", each profile is 

modified in turn using the discrete form of the Ram-Lak filter 
function, as given by equation 2.52. Since the filter function 
value is insignificant beyond five step positions from its centre, 
the filter function is limited in width to five steps on either 
side of its centre. It is for this reason that the sides lobes are 
required. The filter is applied to each step position along the 
profile starting at the first ray-sum. When the filtering is 
completed, the sides lodes are removed, leaving 40 steps per
profile. The back-projection process can then begin.

Lines 450 to 830 and 910 to 1010.
The back-projection process starts with the first rotation. 

Firstly its angle with respect to the zero angle and its slope with
respect to the reconstruction grid are determined. Knowing this,
the pixel quarters inside the reconstruction grid which are
intersected by either half of the beam can be determined. If a 
pixel quarter is intersected, i.e. if the centre line of the beam
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Fig. 11.19
Reconstructed images of a phantom containing two 3X3 pixel 
cylinders.^ y  jl a >
a) Using unfiltered scan profiles,
b) using Ram-Lak. filtered scan profiles.
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half passes through the pixel quarter, then the filtered ray-sum of 
that beam is added to that pixel quarter. This is repeated for all 
intersected pixel quarters and then in turn for each beam. This is 
back-projection. There is a special case when the beam is at right 
angles to the first rotation. Here the program jumps to lines 910 
to 1010, does the back-projection and then returns to the normal 
process.

Lines 840 to 900.
Having completed the back-projection, the final image is stored in 
a file on the VAX 11/785.

Only one iteration is required as this is adequate to produce a 
satisfactory image. Typically, an image is reconstructed in less 
than 30 seconds CPU time. Such images were used to check the image 
before starting the ART reconstruction program which normally takes 
35 minutes per iteration. In order to display these images the data 
is transfered as ASCII code from the VAX file to a BBC 
microcomputer using a Termulator ROM, by Acornsoft. Once 
successfully transferred, the ASCII code is decoded and saved as 
bit characters in a Random Access File. In this way the file can be 
read and displayed in a few seconds on the BBC. The program used to 
display the images is shown in Appendix D.

II.4. 4.6 Other Filters for Back-projection.

The Ramachandran-Lakshminarayanan filter is essentially a 

filter for removing the blurring which is inherent in 
back-projection. The filter is best when high spatial resolution is
required and it also enhances the detectibi1ity for small high 
contrast features. Many of the specimens used in the experiments 
have small high contrast features, eg. small test tubes containing 
analyte in a large cork bung. The Ram-Lak filter is especially 
suited for such objects. A second filter commonly used for CAT is 
the Hann filter [13]. It is preferable when large low contrast 
features are of interest. A third filter, which is a compromise 
between the previous two, is the Shepp-Logan filter [35]. This 
filter is useful when a compromise between high spatial resolution 
and high contrast is required. The three filters can be implemented 
in the same way as described.
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11.4.5.1 Introduction to Algebraic Reconstruction Technique.

A second and quite different approach to the reconstruction 
problem is the use of an iterative process, in which a series of 
successive approximations to the slice through the object finally 
converge on a solution. The method differs from the filtered 
back-projection method in several ways. Firstly, the problem is 
discretized at the very beginning by defining the reconstruction 
domain as a grid. Then having made an initial guess at the object, 
the process continues by refining the image of the object until its 
projections satisfactorily match the measured object projections.

One such, technique, called the Algebraic Reconstruction 
Technique (ART), which was developed by Gordan [33], was used by 
Hounsfield [3] in the original CAT scanner.The version used in this 
work, is based on the unconstrained ART, which was modified by 
Herman [40]. A computer program based on this algorithm was written 
for the VAX 11/785 and this was used to reconstruct all the images 
showing analyte concentration.

11.4.5.2 Theory of ART.

Consider an object with an unknown two-dimensional distribution 
of linear attenuation coefficient or analyte concentration, and a 
limited set of ray-sums, of total attenuation or analyte equivalent 
thickness, calculated using experimentally obtained data. The 
problem is to construct the best representation of the object from 
these ray-sums. This is called the best estimate of the object or 
the image.

As in the previous case, the parallel mode of data collection 
is used to scan the object. See figure 1.4. While scanning the 
object, the X-ray source and detector are stepped in parallel 
across the object and then rotated. At each of the R rotation angle 
positions, the photon beam is measured at S linear step positions. 
The individual step positions and rotation angle positions are 
denoted s and r respectively.

In ART, it is necessary to define a reconstruction grid before

II.4.5 Algebraic Reconstruction Techniques,

71



starting to reconstruct the object. See figure 11.14. The grid is 
composed of picture elements called pixels which are labelled as 
j,k. During reconstruction, the value attributed to a pixel is 
distributed evenly over the whole pixel. This produces a digitized 
image of the object. Also, because there are a limited number of 
projections, the image can only be a representation of the real 
object. Thus, in order to be able to produce a good estimate of the
object, it is necessary to have an adequate number of projections.
Taylor [13], argues that the number of independent measurements
must at least equal the number of pixels in the image and that the
number of rotation angle positions must be at least n / 4  times the 
number of step positions per rotation angle position. If this is 
satisfied then, providing that the data is good, a good estimate of 
the object can be determined.

In order to reconstruct the object, it is first necessary to 
decide on an initial image for the reconstruction grid, i.e. an 
initial guess at the object. There are an infinite number of 
possible initial guesses. For example, all pixels could be set to 
zero or to some other finite value. Alternatively, the image 
reconstructed by the filtered back-projection method could be used. 
Having decided on an Initial image, ray-sums of the image, which 
are analagous to the calculated ray-sums, are calculated from the 
image in the reconstruction grid. Figure II.14 shows a typical beam 
path through the reconstruction grid.

With these points in mind, the problem of reconstruction can
now be stated; given a set of object projections, an image is
sought such that the image ray-sums most closely resemble the
object ray-sums. For this, a criterion, which is described later,
is needed. In fact, several iterations may be required before this 
can be satisfied. Then, when such an image has been found, it is
regarded as the best estimate to the object. However, due to noise
in the object projections there can never be an exact agreement 
between the object and the image ray-sums.

II.4.5.3 Implementation of ART.

The ART method is easily implemented on a computer since it is 
a discrete problem. Here the steps followed and the algorithm used
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are described. Since most of the images reconstructed using this
method show analyte concentration, only analyte equivalent
thickness, t and analyte concentration, C , will be considered, 

a j k
As before, reconstructions showing linear attenuation coefficient 
can be produced using the same steps and algorithm.

The ART method can be described by the following set of 
operat ions

i) Assume an initial image C*jk
ii) Compute the image ray-sum tsrai

iii) Compare to the corresponding object ray-sum tsr
aO

iv) Compute a correction factor and update the C*fc values which 
lie along the projection 

v) Repeat from ii) for all projections and then keep repeating 
from ii) with new iterations until a satisfactory image is 
produced that satisfies the set criterion.

There are several ways in which the comparisons can be made and 
several ways in which the corrections can be applied. In this work 
the direct additive algebraic reconstruction technique, by Herman 
[15], is used. The operations stated above are described in more 
detail below. The computer program written for the VAX 11/785 to 
reconstruct images follows the operations above and is shown in in 
Appendix B. It is described in II.4.5.5.

The first operation undertaken is an initial guess at the 
concentration distribution in the object. In order to have a 
reasonable guess at the concentration in the object the average of 
all the measured ray-sums is calculated. This is a reasonable guess 
since the effect of the total analyte present is distributed evenly 
among all pixels. This initial value is calculated using

sr
= L  T

Jk
C* = E ta0 ___ 2.54

JK d
where JK is the total number of pixels and d is the pixel size. All 
pixels in the reconstruction grid are given this value.

The next operation is the process of computing image ray-sums. 
It begins with the first projection, i.e. s=l and r=0. The image

73



ray-sum for the first projection is calculated by summing the 
contribution of the concentration in each of the pixels in the 
reconstruction grid overlapped by the projection beam s=l, r=0. The 
contribution of each pixel is weighted according to how much of the 
overlapped pixel is intersected by the X-ray beam. The calculated 
ray-sum is given by

t sr = y  * sr c 1 d ____  2 - 55a 1 u Jk Jk

s rwhere À is the fractional overlap area of beam s, r with pixel 
j,k, and d is the pixel width. The fractional overlap areas are 
calculated using the computer program in Appendix FI. The factor d 
is included in order to compensate for the fact that the 
reconstruction grid is a two-dimensional structure which contains 
concentration values, i.e. kilogrammes per cubic metre.

The next two steps of the procedure involve the comparison of 
the image and object ray-sums and the calculation of the correction 
factor for the beam of interest. The comparison involves a simple 
subtraction of the two ray-sums and their difference is then used 
to calculate the correction factor x  for the s,r beam. The 
correction factor is given by

sr
X =

t8r - t’raO al

7 ^ 7
Jk

2.56

This correction factor is then applied to all the pixels along the 
s,r beam according to

C1 (new) = C 1 (old) + t *9r A" .... 2.57Jk Jk Jk

where t is a relaxation constant whose value is open to choice. The 
correction to the concentration value in a pixel is applied 
according to the fractional overlap of the pixel and the X-ray
beam. The choice of relaxation constant in the equation has a large 
significance on the final image. This will be discussed in more 
detail later. For now it is enough to say that choosing a low value
(0.1 to 0.5) for r suppresses the oscillations in pixel
concentration with successive iterations which occurs when higher 
values of x are chosen. See II.4.5.4.

When all the corrections to the pixels along the s,r beam path
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have been completed, the comparison and correction procedures are 
repeated for the next beam and then in turn, continued for all 
beams. When this has been done for all step positions and rotation 
angles the first iteration is completed and an estimate of the
object results.

Having generated an estimate of the object it is then necessary 
to determine the nearness of this image to the object. To do this, 
the standard deviation of the initial guess and of the image after 
the first iteration are calculated and compared. The standard 
deviation of the image is calculated using

_q _ 1
JK E ( jk ^

Cq - C qjk jk
1 / 2

  2.58

where q is the Iteration number and C is the average of the pixel 
values. The estimate of the object is said to be the best if the 
following criterion is satisfied; that the difference in standard 
deviations of the images between successive iterations is less than 
one hundredth of the standard deviation of the qth iteration image. 
If this criterion is satisfied then the process is terminated and 
the resultant image after the qth iteration is taken to be the 
best estimate of the object. Mathematically the criterion is given 
by

< m  * • »

It is unlikely that the image after the first iteration will 
satisfy this criterion; In this case, operations 11} to v) are 
repeated until a best estimate of the object is obtained. If one 
was to continue with more iterations after the best estimate was 
found, then the image would gradually start to deteriorate.

The resultant image is displayed on a VDU monitor. The image is 
the best approximation to the distribution of analyte concentation 
in the object slice but not a perfect image. This is because it is 
not possible to generate image ray-sums which are in exact 
agreement with the object ray-sums, which contain noise due to 
statistics in the measured photon counts. With high levels of noise 
more iterations are needed to produce a best estimate. See Webb
[39], Also, the value of the relaxation constant t used has an
important bearing on the pixel concentration values. The effect of
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this constant is described below.

II. 4. 5. 4 Relaxation Constant.

The choice of relaxation constant x in equation 2.57 is critical 
in determining the final pixel values and the number of iterations 
required. In order to see its effect, consider a phantom, a solid 
with sides of length equal to three step sizes and having a uniform 
concentration equal to one, being scanned by a pencil beam of 
X-rays. The phantom is scanned in the parallel mode. Dummy data for 
such a phantom was calculated on the VAX 11/785 using the computer 
program in Appendix E.

Reconstruction of the phantom with x = 1 produces an image 
which is 3X3 pixels in size. With x= 1 the pixel values oscillate 
with each iteration before converging. See figure 11.20. The centre 
pixel value converges to a value which is well above 1 while the 
average pixel value is below 1. This shows that there is a smearing 
of the concentration values in neighbouring pixels. Using values 
between 1.0 and 0.1 in equation 2.57, the oscillations are removed 
and the pixel concentrations converge to a final value which nears 
1 as x is decreased. See figure IV.14.

Figure 11.21 shows the variation in <r with Iteration number for 
the same relaxation constant values as before. With t=1 the 
standard deviation oscillates to a final value which satisfies the 
criterion in equation 2.59 after 9 iterations. As x is decreased, 
the number of iterations required to obtain the best estimate of 
the object Increases while <r rises monotonically to its final 
value. For x=0. 1 the number of iterations required is 18. This 
makes reconstruction by ART a very slow method. These observations 
are in agreement with the observations made by Webb [39]. However, 
the reason ART is used in reconstructing the analyte concentrations 
is that the pixel concentration values have a small error, for 
example the error is less than 5% for x=0. 1. This is because the 
fractional overlap areas are calculated to within an error of 2%.

II.4.5.5 Computer Programs for ART.

The computer programs used to generate the images of the object 
slice by the ART additive method described above are shown in
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Iteration No.

Fig. 11.20
The variation in the pixel concentration as a function of the 
iteration number. This is for a 3X3 pixel sized phantom. The 
variation in the centre pixel and in the average over the 9 
pixels are shown.
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Appendices FI & F2. The programs are written in BASIC computer 
language. An attempt was made later to write the program in C. The 
first program generates the pixel and beam fractional overlap 
areas. The second program produces a CAT image which is the best 
estimate of the object. Both were written for the VAX 11/785. A 
third computer program, written in BASIC for a BBC microcomputer, 
is used to display the images. Programs were written for scans 
using 20 steps at 24 rotation postions and for scans with 40 steps 
and 40 rotation positions. The programs for both cases are similar 
and the programs for the case of 40 steps and rotations are 
described here.

a) Program to calculate the fractional overlap areas.

The program in Appendix FI was used to calculate the fractional 
overlap areas of each beam r,s with each pixel j,k of the 
reconstruction grid. These fractional overlap areas are required 
for ART in order to calculate the image ray-sums, equation 2.55, 
the correction factor, equation 2.56, and then to correct the pixel 
concentrations, equation 2.57. The values are stored in a file on 
the VAX 11/785.

Lines 100 to 220.
The program starts by calculating the angle, "THETA" and the

slope "SLOPE" of each rotation position with respect to the first 
rotation. Then, for the beam corresponding to each step position of 
a rotation, "SX","R%", the distances from the top, "CEPTA", and 
from the bottom, "CEPTB", of the beam path to the centre of the 
grid along the Y-axis is calculated. These distances, "CEPTA", and 
"CEPTB", are shown in figure 11.22.

Lines 230 to 280,
Starting with pixel, J%=1, K%=1, the program firstly calculates

the X and Y positions, "XP" and "YP" respectively. The program then
determines whether the beam path S%, R% overlaps this pixel knowing
the slope and Y intercept of the beam.

Lines 290 to 600,
If the beam overlaps a certain pixel, then the pixel is divided

into fifty narrow vertical strips. The fractional overlap of the 
beam with each strip is summed to give the total fractional overlap 
area of the beam and pixel. This fractional overlap area, together
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Iteration No.

Fig. 11.21
The variation in the standard deviation between sequential 
images, as calculated using equation 2.56, as a function of 
relaxation constant x and iteration number.
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with the beam and pixel coordinates are saved on file string 
variables code. The sequence is

Overlap area, Pixel, Beam,

AREA , K , J , S , R

This procedues is continued for each pixel in the grid. The 
procedure is repeated for all the step positions at that rotation 
and then moves on to the next rotation. When the procedure reaches 
the beam slope equal to 90 degrees the whole procedue begins again. 
In this case, the fractional overlap areas, the pixel coordinates 
and the r beam coordinate plus 20 is saved. The file is closed with 
a code which is easily recognisable. Storing these overlap areas 
and the co-ordinates consumes a large quantity of computer memory, 
approximately 5000 blocks in VAX 11/785 for 40 steps by 40 
rotations. However, the values need only be calculated and stored 
once and can be used repeately.

b) ART Program

This program, written in BASIC on the VAX 11/785, generates 
reconstructed image of an object by the additive ART method. The 
program requires a file containing the analyte equivalent thickness 
and another containing the fractional overlap areas. The program 
shown in Appendix F2 is for scans using 40 steps and 40 rotations.

Lines 110 to 280
The analyte equivalent thickness values are read from a file

and stored In the array "lambda(s,r)". Using these, an initial
guess is made at the object according to equation 2.54 and all the
reconstruction pixel variables "f(k,j)" are given this value.

Lines 290 to 390
This is the main control section of the program. It is here

that the fractional overlap areas "v,k,j,s,r" are read individually
from file and sent to be interpretted, lines 620 to 790. The two
running summations required in equation 2.56 are made in the
subroutine at lines 800 and 830 so that once the overlap area is
interpreted for a particular beam and pixel, the summation of the
ray-sum "suml" and the overlap area squared "sum2" is incremented.
Starting with the first step position of the first rotation angle,
the program continues to interpret and store the overlap areas
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"areaS(a)" until the next step position is reached.

At this point, the program jumps to the subroutine which 
applies the correction as given by equation 2.57 to each pixel 
along the beam path, lines 840 to 900. The program then returns to 
interpreting and storing the overlap areas for the next step 
position and so on to the next rotation angle position.

At the end of a complete iteration, the program calculates the 
standard deviation of the image "standev", as in equation 2.58, and 
compares this values with the value for the previous iteration 
"oldstandev". If the criterion of equation 2.59 is not satsifed, 
then the latest image is saved on file, lines 1020 to 1190, and the 
programs starts on another iteration. If the criterion is satisfied 
the program is stopped and the image from the previous iteration is 
taken to be the best estimate of the object.

It now can be clearly seen why this method is much slower that 
the filter back-projection method. The reason is that the overlap 
areas and their co-ordinates need to be read and interpreted many 
times. A single iteration takes thirty five minutes CPU time to run 
for the case of 40 steps by 40 rotations. For each reconstruction 
many iterations are required so that it normally takes several 
hours to produce an image.

As with the filtered back-projected images, the resultant 
analyte concentrations are transfered as ASCII code to a BBC 
microcomputer using a Termulator ROM, by Acornsoft. Once 
successfully transferred, the ASCCI code is decoded and saved as 
bit characters in a Random Access File. In this way the file can 
be read and displayed in a few seconds on the BBC. The maximum 
concentration is also noted so when the image is displayed on a 
VDU, the pixel concentrations can be displayed as chosen. The 
program used to display the images is shown in Appendix D.
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Fig. 11.22
A schematic diagram showing the overlap of pixel J%, K% with 
the ray S/4, R%. The variables CEPTA and CEPTB are the 
distances from the centre of the grid to the top and bottom 
of the ray respectively.
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Chapter III.

III.l Introduction to Sensitivity for Elemental Imaging.

In previous works, [7] and [8], the authors have investigated 
the sensitivity of CAT to elemental imaging but neither provide an 
easy method to determine the minimum detectable concentration of a 
chosen analyte element in a particulat matrix. In this chapter, the 
factors which influence the detectibility of an element are 
investigated for two common situations and easily implemented 
equations are formulated. The first, is the case when the analyte 
element is added to the matrix and the second is when the analyte 
element is already present in the matrix. In both cases the analyte 
is uniformly distributed in a homogenous cylindrical matrix and the 
object is assumed to be scanned with monochromatic X-ray beams. 
Having formulated equations, calculations are made for a range of 
elements whose absorption edges lie within the detection range of 
the high resolution energy dispersive detector.

As might be expected, synchrotron sources provide the highest 
sensitivity to elements due to the high intensities available. In 
the two previously referenced works, the authors consider 
synchrotron sources, in particular Grodzin [7] who has investigated 
the suitability of using such sources for elemental imaging. 
Grodzin investigates the minimum elemental concentration detectable 
in a single image pixel in terms of the minimum fraction of analyte 
"critical" elements. In pratice, it is difficult to verify this 
experimentally for a single image pixel. In this work, a 
conventional X-ray tube source is used and the calculated results 
using the equations formulated for both situations are investigated 
experimentally.
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I I I.2 The Influence of Noise on the Image.

In chapter I, it was stated that noise in the measured data 
reduces the ability to distinguish low contrast objects in a 
conventional CAT image by causing fluctuations in the reconstructed 
attenuation coefficient values. In the same way, noise in X-ray 
differential CAT images causes fluctuations in the values of the 
analyte concentration and thus limits the sensitivity of the method 
to analyte elements .

The noise in a CAT image arises from two sources [41],

i) noise in the projection data
and

ii) noise amplification introduced in the reconstruction.

For the first case, i.e. noise in the projection data, two 
types of noise are considered. The first type is statistical noise, 
i.e. Poisson noise in the detected counts, while the second is 
systematic noise which is machine dependent. Statistical noise in 
the projection data causes images to display a mottled appearance 
with random pixel to pixel variations from the true image. This is
due to the amplification of the statistical noise when the image is
reconstructed [41] and [42]. Ideally, there should be no 
amplification of the noise when reconstructing an image. On the 
other hand, systematic noise, which may be due to scattering of
photons, insufflcent projections or misalignment of the detector, 
gives rise to artifacts in the images such as streaking or
tuning-fork artifacts. The overall effect of the noise in CAT is to 
reduce the quality of the image and limit the elemental 
concentration that can be detected.

In this analysis, only statistical noise and its amplification 
due to reconstruction are considered. Noise due to poor alignment 
of source and detector or due to insufficent projections are 
machine dependent and are difficult to quantify. These were 
outlined in Chapter I. In this chapter, the equations to calculate 
minimum analyte concentrations based on statistical noise and its 
amplification due to reconstruction are derived.
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lil. 3 Fractional Transmission through Cylindrical Matrix.

111.3. 1 Introduct ion.

A scan of a slice through a homogenous cylindrical object by a 
pencil beam of X-rays, with linear and rotational steps, produces 
scan profiles which are similar for all rotation angles. A cylinder 
is considered in order to simplfy the mathematics.lt is also a good 
approximation to many of the objects scanned. Since the object is 
homogenous, it is possible to calculate the transmitted beam flux 
for any path length knowing the linear attenuation coefficient of 
the object. In this way, the transmitted beam fluxes for all step 
positions can be calculated and by summing these, since the 
projections for all rotations are similar, an equation for the 
total transmitted beam flux for the whole scan can be found. 
Finally, a simplified equation which approximates to this is 
determined. For simplicity, the detector width and the linear scan 
step size are assumed to be equal.

III.3.2 Calculation of Fractional Transmission for Uniform Matrix.

Consider a homogenous cylindrical matrix of diameter D. A 
monochromatic X-ray beam in narrow beam geometry (a pencil beam) is 
incident on the specimen. The transmitted X-ray beam flux after 
passing through a path length P of the matrix, in the absence of 
scattering, is given by Beer’s law as

where U is the linear attenuation coefficient of the uniform
specimen and Nq Is the incident flux. A complete scan of the
specimen consists of S linear steps of step size dx, at each of R
rotation angle positions. See Figure III.1. For any rotation angle
and any step position, the beam path length P through the matrix 
can be given by Pythagoras’ theorem as

where s is the step position with respect to the centre of 
rotation. Substituting for P in equation 3. 1 gives

N = NQexp - U P  ___ 3.1

P = 2 r2-((s-0.5)dx)2 1/2 . . . 3.2

N = N exp -2U r2-((s-0.5)dx)2 o . . . 3. 3
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Source I I

0

FThe scan1geometry as used in the theory for sensitivity.
The sample diameter is D, the radius is r, the path length is 
P, step position is s and the beam width is dx.
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transmitted photon counts for all step positions for any rotation 
angle position, the total transmitted count for that profile is

Nt = 2 I N0 exp|-2tl|r2-( (s-0. 5)dx)2
s= 1

1/2 .... 3. 4

There are R rotations, so the total number of transmitted photons 
for a complete scan is

S/2 r r i \
Nt = 2R £ Nq exp -2U r2-((s-0.5)dx)2 1/2   3.5

Now, bringing the U term of this equation inside the [] brackets 
it becomes

S/2
Nt = 2R £ Nq exp|-2^r2U2-(s-0. 5)2dx2U2j1/2j . . 3.6

Now, the mean free path L for a pencil beam of X-rays is defined as
L = 1/U   3.7

so the matrix diameter D can be rewritten in terms of x, the number 
of mean free paths in the specimen diameter. Since D=2r=xL and the 
step size dx=(D/S) = (xL/S), equation 3.6 becomes

S / 2

* z
s= 1

f

x2L2 1 (s-0.5)2 x 2L2 1 1/2
exp -2

4 L2 S2 L2 j

3.8

The L terms cancel, so when rearranged equation 3.8 becomes, 
s/2 / r ,, „ r,2 1 1/2-\2 „ f T, 4(s-0.5) Y  \N = ? N Y exp -x 1 ---------T S O T ^  L S2 J J   3.9

where N = R. N . S is the total number of Incident photons in a 
o t  o

scan. A plot of N /N (the fractional transmission) vs. x (the
T OT

specimen diameter in mean free paths) is shown in figure I I I . 3.The 
fraction Nt/Nqt is for the purpose of this work, independent of S 
if S>20. The curve in figure III.3 can be approximated, for x =0.1 
to 10, by the expression

Nt = NoTexp|-|o.0275+0.762x-0.0279x2 jj __  3.10

In this way it is quite easy to determine the total number of
transm 
paths.
transmitted photons, N̂ , knowing the object diameter in mean free
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Fig. III.2
The X-ray beam transmission as a function of step position 
for a sample diameter of two mean free paths. The shaded area 
divided by the total enclosed area is the total fractional 
transmission for two mean free paths, i.e. Nt/Noi - 0.21.
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TRANSMISSION THROUGH CYLINDRICAL MATRIX

X (DIAMETER IN MEAN FREE PATHS)

Fig. III.3
The transmission Nt/Noi through a cylindrical matrix as a 
function of the diameter in mean free paths. The curve is 
approximated by the equation shown for x - 0 . 1  to 1 0 .
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III.4 Calculation of the minimum analyte concentration detectable 
in a homogenous cylindrical matrix for the first case when analyte 
can be added to the matrix.

111.4. 1 Introduct ion.

For this first case, an expression is formulated to calculate 
the minimum analyte concentration detectable in a homogenous 
cylindrical matrix when the analyte material can be added to the 
matrix specimen. The specimen is scanned, as previously described, 
by X-ray beams of the same energy both before and after the analyte 
is added. After reconstructing the images, the matrix image is 
subtracted from the analyte plus matrix image to leave an image 
showing the analyte only. The equation formulated here is used to 
determine the minimum analyte concentration detectable above the 
noise in the subtracted image. This equation takes account of the 
statistical noise in the detected photon count, its amplification 
due to reconstruction and also includes parameters which are 
machine dependent. However, before such an expression can be 
derived, an expression is required to determine the minimum change 
in the specimen linear attenuation coefficient that can detected 
when the analyte is added to the matrix. This expression is derived 
below.

III. 4.2 The minimum detectable fractional change in the linear
attenuation coefficient.

Consider the case where the specimen, a homogenous cylindrical 
matrix, is scanned by an X-ray beam in narrow beam geometry. The 
total number of detected X-ray photons Nt at any energy E, is given 
by equation 3. 10 as

While keeping the specimen diameter constant, a small concentration 
of analyte is added to the specimen. In doing so, the mean free 
path, L, for X-rays of energy E, becomes L ’ . Similarily there are 
now x’ new mean free paths along the diameter so that

When the analyte plus matrix specimen is now scanned at the same

3. 10.

diameter = D = xL  = x’L’........3.11
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X-ray energy, the total detected X-ray count is given by

N’ = N’ exp
T OT

0. 0275+0. 762x’-0.0279x’2   3.12

Recalling equation 3.7, where L = 1/U and rearranging equation 3.11, 
gives x ’ as

*■ 3 1 3

where U is the linear attenuation coefficient of the matrix and 
U+dU is that for the matrix plus analyte. Substituting for x’ in 
equation 3.12 with equation 3.13, the total detected X-ray count 
for the analyte plus matrix specimen is now given by

hT = N^Te x p | - | o .  0275+0. 762x |  j - 0 . 0 2 7 9 x 2 |  1+^ j  j 2j j  . . 3 . 1 4

Having determined equations for the transmitted photon counts 
for the scans before and after analyte is added, a criterion for 
the detectibility of the analyte can now be stated; that the 
analyte is statistically detectable if the difference in the total 
detected X-ray counts of the two scans is greater than or equal to 
p standard deviations, where p has yet to be determined. One 
standard deviation is equal to the square root of Nt and it is 
assumed for small analyte concentrations that is equal to
y  N \  Mathematically the criterion is satisfied at the limit of 
detection if the difference dN in the total count is given by

dN = NT ]1/2 = Nx - n ; .... 3.15.

Unfortunately, amplification of the statistical noise occurs
during reconstruction so equation 3. 15 needs further modification
to take account of this. Since a typical image consists of KxK
pixels, then on average the number of photons which pass through a
pixel is N / K and N’/ K for the two beams. Taking this into 
K T T
account, the analyte is detectable in the subtracted image if

N N’
T T

i t  “ ~ r  * p B
N t  .... 3.16

or when rearranged

N - N’ i p B K1/2 N1/2___  3. 17
T T T
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where B is a factor (-2) introduced in the reconstruction algorithm
by Chesler [41]. The factor B is dependent on the reconstruction
algorithm used and is approximately equal to 2 for filtered
back-projection. It is introduced as a multiplication factor which
amplifies the statistical noise in the detected photon count. The 

1 / 2factor N is a measure of the statistical noise, i.e. Poisson
T

noise, present in the total detected photon count [41]. Equation 
3. 17 can be rewritten as

N - N’ i Q N1/2____ 3. 18
T T T

1/2where Q= p B K . Substituting for and NT with equations 3. 10 
and 3.14 in equation 3. 18, it becomes at the limit of detection,

Q(Nq t ) 1/2 e x p j - 0 .  5 ^ 0 . 0 2 7 5 + 0 . 7 6 2 x - 0 . 0 2 7 9 x 2j j  =

Nqt ^ e x p j - | o . 0 2 7 5 + 0 .7 6 2 x - 0 . 0 2 7 9 x 2j j

-  e x p | - | o .  0275+0.  762x j - 0 . 0 2 7 9 x 2 j
Expansion and rearrangement of the terms on the right hand side of 
equation 3.19 gives

Q(No t )1/2 expj"0 -5 (0 0 2 7 5 + 0 -762x_0-0279x2]} =

NoT^exp|-|o. 0275+0.762x-0.0279xZj |    3.20

| l - e x p j - | o . 762xdU/U-0.0558x2dU/U-0. 0279x2dU2/U2 j jJ J  

Multiplying both sides of equation 3.20 by the term

- e x p | | o .  0275+0.  7 6 2 x - 0 .0 2 7 9 x 2J |    3 .21

and then rearranging the result gives

  3.19
2]

p|-[o. 762xdU/U-0.0558x2dU/U-0. 0279x2dU2/U2J | = 

l - Q | e x p j o .  5^0.0275+0.762x-0. 0279x2j|
3.22

N1/2
0T

After taking the natural logarithm of both sides of equation 3.22,
2 2the dU / U term can be dropped as it is insignificant for small
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analyte concentrations, i.e., dll/ U >> dU / U , when dU << U. This2 2

leaves

0 .0 5 5 8 x  - 0 . 7 6 2 x dU/U =

Ln^l-Q^exp|o. 0.0275+0.762x-0. Q279*

3. 23

} ] /  N,/2 ]
'  J  OT J

which becomes, when both sides of this equation are divided by the 
term ( 0 . 0588x2-0 .  7 6 2 x ) ,

1
dU
U

n j l - o j e x p j o .  5^0. 0275+0. 762x-0 .  0 2 7 9 x 2j j ,1 / 2V
0T

0.0558X -0.762x 3. 24

where dU/U is the minimum fractional change in the linear 
attenuation coefficient that can be distinguished in a subtracted 
image. Since the term ln[l-Z] can be approximated by -Z when Z is 
small, equation 3.24 can be approximated to

dU _ Q F
U N 1 / 2

OT

3.25

provided Nqt > 10 and 0.1 < x < 10. The function F is given by

F =
|exp|o. 5^0. 0275+0. 762X-0. 0279x'1}) .... 3.26

762x-0.0558x

The function F is plotted against x to produce a universal
curve as shown in figure III.4. Its minimum occurs at 2.5 mean free
paths. Similarily, the corresponding minimum for dU/U for any Q or
N also occurs at this diameter. This is in good agreement with 

OT
Grodzin [7] and Flannery [8] who have shown that the most sensitive 
diameter is between 2 and 3 mean free paths.

Equation 3.25 gives the minimum detectable fractional change in 
the linear attenuation coefficient when analyte is added to the 
matrix for any diameter. It is now required to find an expression 
for the corresponding minimum analyte concentration detectable.
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Diameter in Mean Free Paths (x)
Fig. III.4
The function F, equation 3.25, plotted against the sample 
diameter in mean free paths (x). This curve is a universal 
curve and its minimum occurs at x - 2.5 where F - 1.54.
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III.4.J Minimum analyte concentration detectable when analyte can 
be added to the matrix.

Having determined an equation for the minimum fractional change 
in the 1 inear attenuation coefficient detectable at any X-ray 
energy, when analyte can be added to the matrix, it is now possible 
to formulate an equation to calculate the corresponding minimum 
analyte concentration detectable. Then, by plotting the calculated 
analyte concentration against X-ray energy for a chosen matrix 
material, the most sensitive X-ray energy to the analyte element in 
that particular matrix can be determined.

Matrix Only Matrix + Analyte

Fig. III.5
Diagrams of the matrix and matrix plus analyte samples for 
the case when analyte can be added to the matrix. Their 
volumes and densities are, Va and V*, and, pa and pa, 
respectively.

Consider the homogenous cylinder to have a volume Va and a
density pm. To this Is added a volume Va of analyte mixture
containing a density p® of analyte. See figure III.5. The volume of
this analyte and matrix mixture is Va+V«. The concentration of the
analyte in this mixture Is

n - (p»Va) 
(Va+Vffl) 3.27

while the concentration of the matrix in the same mixture is

.. 3.28

Dividing equation 3.27 by equation 3.28 and then rearranging gives

.. 3.29

which will be requred later in this discussion.

n (pmVm)
^  = (V a + V m ) .

n _ (VapaCm)
La = ~JV^Pm T
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Now, the change in the linear attenuation due to analyte being 
added to the matrix can be defined as

dU = Ua+ra - Urn .... 3. 30

where the subscript a+m refers to the analyte plus matrix mixture. 
The linear attenuation coefficient of an element can be defined as 
U = uC where C is the element concentration and u is the element 
mass absorption coefficient. Therefore, replacing the linear 
attenuation coefficients on the right hand side of equation 3.30 
with their concentrations and mass absorption coefficients gives

dU — (CaUa + CmUm) ~ pmUm .... 3. 31

where pm is the density of the original matrix. Substituting for Ca 
and Cm in equation 3.31 with equations 3.27 and 3.28 it becomes

pmUm 3. 32du ' p*u*( V S ? :  ) + p"u"( V IW . ) -

Collecting the pmUm terms together gives

dU = f”u*( ) * f“u*( - 1 ) ■ ■ ■ ■ 3.33

which can be rewritten as

dU ■ )  ♦ ' “ ( v ^ - v b v s ) .  ••••  3 3 4

Subtraction of the V« terms on the right hand side of this equation 
and rearrangement of the remainder gives

dU = (  v z k  ) (  ) .  ••••  3 35

Since the original specimen was a homogenous matrix, dividing both 
sides of equation 3.35 by the matrix linear attenuation coefficient 
gives

dU dU
'  ( v S w ) ( ( g = )  - 1 ). 3-36Um praUm

This equation can be rearranged to give the ratio of volumes as

dU Ï

ÿ  = _______________________   3.37
Vm

(( ^  ) - > - (-£-)) 

which can be substituted into equation 3.29 The resultant

96



substitution gives the equation

  3.38

In equation 3.29, it was assumed that the change in the matrix 
concentration is negligible when the analyte is added so that Cm = 

pm. If the term dll/Um is taken to be the minimum detectable 
fractional change in the linear attenuation coefficient, as defined 
by equation 3.25, which is given by

dU Q F
U N1 / 2OT

  3.25

then equation 3.38 gives the minimum analyte concentration Ca, 

which is detectable in the resultant subtracted image when analyte 
is added to the matrix.

Close examination of equation 3.38 shows that Ca is dependent 
on several factors. These include the nature of the analyte and the 
nature of the matrix, l.e, their mass absorption coefficients and 
their densities. The densities are the elemental densities at 
S.T.P. The other factors include the specimen diameter in terms of 
matrix mean free paths, the total number of incident photons and 
the machine dependent factor Q. These last factors are Included In 
the equation for dU/U.

In pratice, the specimen is scanned with a pencil beam of 
X-rays of energy E both before and after the analyte has been 
added. Then, after calculating the projection values, two images 
are reconstructed, one showing the spatial variation of the matrix 
linear attenuation coefficient, the other showing the spatial 
variation of the matrix plus analyte linear attenuation 
coefficient. When the first image is subtracted from the second, 
the resultant image shows the spatial variation of the analyte. In 
the next section, equation 3.38 is used to calculated the minimum 
analyte concentrations detectable above the noise in the resultant 
image when cadmium is added to a water matrix.
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III.4.4 Calculations of minimum detectable analyte concentrations
for cadmium in water and in silicon matrices.

Figure III.6 shows the minimum detectable concentrations, 
calculated using equation 3.38 and figure III.4, plotted against 
X-ray energy with Q=1 for cadmium analyte in a water matrix of

7diameter 2.5 mean free paths using 10 incident photons. Using this 
graph, the minimum cadmium concentration detectable can easily be 
determined for any machine if the factor Q is known. Similarily, 
the analyte sensitivity at any other matrix diameter can be 
determined by multiplying the result at 2.5 mean free paths by the 
appropriate multiplying factor from figure III. 7, which is a plot 
of Fx/ F2.5 against diameter in mean free paths. Note, that the 
actual physical diameter changes with X-ray energy, as the linear 
attenuation coefficient changes with energy.

Figure III.8 shows Ca plotted against X-ray energy for cadmium
in a water matrix with the machine factor Q=38. Previously, Q was

1/2defined as Q= p B K . Normally p, the separation in standard 
deviations between the images is 3 and for a good algorithm B=2
[41]. In this work K=40 since the step size is equal to the pixel
size.

The calculations above show that the technique is most 
sensitive to cadmium in water just at the high energy side of the 
cadmium K-absorption edge. For the case of cadmium in silicon the 
maximum sensitivity occurs several keV above the cadmium K-edge. 
See figure III. 9. Thus, it is important to note that the highest 
sensitivity does not necessarily occur at the high energy side of 
the K-edge of the analyte in all cases.

In III. 4.2, it was shown that the technique is most sensitive
to a matrix of diameter 2.5 mean free paths. In figure III. 7 the
sensitivity multiplying factor to determine the sensitivity at any
other diameter, when the sensitivity at 2.5 mean free paths is
known, is shown. Combining figures III.7 and III.8, the minimum
cadmium concentration detectable in a water matrix is plotted for
diameters .1 to 10 mean free paths and for all energies within the

7range, 4-60keV, for 10 incident photons. See figure III.10.
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X-Ray Energy (keV)

Fig. III. 6
The minimum cadmium concentration detectable in a cylindrical 
water matrix of diameter 2.5 mean free paths. This is for the 
case when analyte can be added to the matrix. These values 
were calculated using equation 3.38 and figure III.4 for the 
machine factor Q-l. Knowing the machine factor for a machine, 
the minimum cadmium concentration can be calculated.
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Fig. III.7
A plot of the concentration multiplying factor F*/F2.s 
against matrix diameter for x-0.1 to 10. At x-2.5, Fx/F2.5-<1 .
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X-Ray Energy (keV)

Fig. III. 8
The minimum cadmium concentration detectable in a cylindrical 
water matrix of diameter 2.5 mean free paths with machine 
factor Q- 38 for the case when analyte can be added to the
matrix.
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11 1. 5
Calculation of the minimum analyte concentration detectable in a
homogenous matrix when analyte is already present in the matrix.

III.5. 1 Introduct ion.

In this section, an equation to calculate the minimum analyte 
concentration detectable in a homogenous specimen when the analyte 
is already present in the specimen is formulated. For this case, it 
is not possible to determine this concentration by scanning the 
specimen at a single fixed X-ray energy. However, by scanning with 
two or more X-ray beams, which are close in energy, the effect of 
the matrix can be removed. It has been shown by J. Fryar, K.J. 
McCarthy and A. Fenelon [28] that energies which straddle the 
analyte attenuation edge are most effective for this purpose.

III.5.2 Calculation of the number of mean free paths in object 
d i ameter.

Consider a specimen of diameter D being scanned by two X-ray 
beams of energy Ei and Eh, where the subscripts 1 and h refer to 
the low and high energy sides of the analyte K-absorption edge. The 
diameter of the cylindrical object is defined, as in equation 3. 11, 
by

diameter = D = xiLi = xhlh .... 3.39

where L is the mean free path for an X-ray beam of energy E and x 
is the number of mean free paths in the diameter. Rearrangement of 
equation 3.39 gives xh In terms of xi as

Xh = xi ( £ ) •  » ( £ )  - - 3 . «

where L = 1/U by definition. The linear attenuation coefficient U 
of the specimen can be seperated into its two parts, Ua and Um, 

which are the analyte and matrix linear attenuation coefficients 
respectively. Substituting the U ’s into equation 3.40 gives

Uah+Umh
X h  =  X I Ual+Uml 3. 41

Examining figure II.4, it is seen that at the analyte K-absorption 
edge, Umi=Umh, which are now called Um. Equation 3.41 now becomes

Xh = xi
Uah+Um 
Ual+Uœ 3. 42.
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Fig. III.9
The minimum cadmium concentration detectable in a cylindrical 
silicon matrix of dimeter 2.5 mean free paths plotted against 
X-ray energy. Thé curve was plotted using equation 3.38 and 
figure III.4. In this case Q - 38, Not - 107 and F - 1.54.

103



i

Fig. III.10
A three-dimensional plot showing the minimum cadmium 

concentration detectable in a cylindrical water matrix 
against X-ray energy and against diameter In mean free paths. 
The minumum concentration detectable occurs for all energies 
at 2.5 mean free paths. This is for the case when analyte can
be added to the matrix.
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Since xi = (1/ Uai+Um), addition of the term xi(Uai-Uai/ Uai+Um) to 
the right hand side of equation 3.42 gives

xh — x l Ua 1+Um+Uah_Ua 1
U a1+Um

which can be rewritten as
dU

3. 43

Xh — XI 1 + 3. 44
Um+Ua 1

where dU=Uah-Uai, the change in the linear attenuation coefficient 
across the analyte K-absorption edge. Note that dU is due entirely 
to the analyte present in the specimen, i.e. Umi=Umh. Equation 3.44 
gives the number of mean free paths of energy Eh in the specimen
diameter in terms of the number of mean free path of energy El in
the same diameter. This is required further on in this discussion.

III.5.3 The minimum fractional change detectable in the linear 
attenuation coefficient for the case when analyte is present in 
the specimen.

The form of the arguement used in this case is similar to that 
used when the analyte is added to the matrix. Thus, it is first
necessary to formulate an equation to determine the minimum
fractional change in the linear attenuation coefficient that is 
detectable in the specimen. Since the specimen is cylindrical and 
homogenous, the total transmitted photon count for an X-ray beam 
scanning a homogenous cylindrical specimen is approximated, as in
III.4.2, by

Nt = NQTexp|- 0̂. 0275+0. 762x-0.0279x2j| ---  3.10

where x is the number of mean free patyhs in the diameter.Now, when 
the analyte plus matrix specimen is scanned by X-ray beams of 
energy El and Eh, the total detected photon count is given by

Nti = NOT1eXp{"[0 ‘ 0275+0- 762xi-°-0 279x iZJ j  ---  3.45

and

N = N exTh OTh pj-|o. 0275+0. 762xh-0.0279xh2Jj   3.46

respectively, where N and N are the total incident photonK 0T1 OTh
counts. Substituting for xh in equation 3.46, with equation 3.44, 
gives
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N =N exp- 
Th OTh

0.0275+0.762xi 1+ 3 1)-“ 0279x1 1+ dU
U 3. 47

where U = Um+Uai.

The presence of analyte in the specimen can be detected if the 
difference in the total counts for the two X-ray energies is 
greater than or equal to p standard deviations, where one standard
deviation is N At the limit of analyte detection, this
difference is given by

NdN = N
T T1 Th

3. 48

and since N and N are approximately equal, this difference can 
be given by

dN =T - 4  NT1 )
1 / 2

3. 49

However, because of the amplification of the statistical noise
during reconstruction of the image, it is not possible to observe
this change in the linear attenuation coefficient, due to this
analyte concentration, in the image. Now, noting that on average,
the number of photons of energy El and Eh passing through a pixel
in the image is N / K and N / K respectively, a criterion forTL TH
observing analyte in the reconstructed Image can be stated. It is, 
that the difference in the average number of photons passing 
through a pixel should be greater or equal to Q standard 
deviations. At the limit of detection this is given as

NTL NTH N TL 3.50

or

N - N i p  B K 1 / 2  N 1 / 2TL TH TL
r 1 /2

3.51

,1 /2where Q= p B K and one standard deviation is equal to N^ , which 
is a measure of the Poisson noise. As before B is a factor 
introduced by the reconstruction algorithm, Chesler [41], and K is 
the number of the average number of pixels along a beam path. 
Substituting for N^ and N^ with equations 3.45 and 3.47 gives
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Q (N )1/2 expJ-O.5 0. 0275+0 762x1-0.0279x12 or (
•- f *

Nqt I exp-{ - I 0. 0275+0. 762xi -0. 0279xi 2 . .. 3.52|expj

- exp|-|o.0275+0.762xi |l+ ^  -0.0279xi2 |l + ^  J2J|

where it is assumed that N = N , which is now given by N .
OTl OTh & * OT

Expansion and rearrangement of the terms on the right hand side of 
equation 3. 52 gives

Q(Nqt)1/2 expj-0.510.0275+0.762xi-0.0279x12)}■
NQT| e x p j - | o .  0275+0.  762x1 -0 .  0 2 7 9 x i 2j |

| l - e x p | - |o .  762x1 -0 . 0558x1 2 ^JjJ -0 . 0279x1 2 J jJ J

Multiplying both sides of this equation by the term 

- e x p j  0 .0275+ 0 .  762x1-0 .  0279x i2j |    3 . 5 4

and then adding 1 to both sides, it becomes

expj- |o. 762x pjjj -0. 0558x l2 |^J -0. 0279x l2 j j =

1-Q^expjo. 5^0.0275+0.762x1-0.0279x1 I I  I / .

  3 .53

3.55
1 / 2
0T

By taking the natural logarithm of both sides of equation 3.55, the 
term dU2/ U2 becomes insignificant for small concentrations of 
analyte, i.e. dU/ U »  dU2/ U2 when dU «  U, and it disappears from 
the equation leaving

|o.0558xi2-0.762xijdU/U =   3.56

In ĵ l-Q jexpjo. 5 |o. 0275+0. 762xl -0. 0279xl I } ] /  N 1 / 2  ]

Dividing both sides of this by the term (0.0588xi2-0. 762xi) gives
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_dU 
Um+Ua1

l n < 1-Q exp< 0. 5 0. 0275 + 0 .762x1-0 .  0279xi ‘ N/  N ,/2|
J OT >

0 . 0 5 5 8 x 1 - 0 . 762xi 3. 57

where U, the linear attenuation coefficient has been replaced by 
Um+Uai, its matrix and analyte components. This equation can be 
simplified by considering the term lntl-Z] which can be 
approximated by -Z when the term Z is small. In equation 3.57 the 
term inside the [] brackets is small provided both Not > 106 and 
0.1 < xi < 10. Thus equation 3.57 can be simplified to

dU Q F
Um+Ua1 (N ,1 /2 3. 58

0T

where the function F is given by

F =
| e x p j o . 5 |o. 0275+0.762x1-0. 0279xi ’)}) 3. 59

0.762xi-0.0558xi'

Using equation 3.58 it should be possible to calculate the 
minimum change in the linear attenuation coefficient detectable in 
a specimen, containing both analyte and matrix, when scanned by two 
X-ray beams whose energies straddle the analyte K-absorption edge. 
However, in its present form It is not possible to evaluate 
equation 3.58. Since the analyte concentration is unknown, the 
analyte and matrix linear attenuation coefficients cannot be 
determined. For the same reason, the mean free path of an X-ray 
beam through the specimen cannot be found. Therefore, the number of 
mean free paths in the specimen diameter, xi, for an X-ray beam of 
energy El, is unknown. However, by making two approximations [43], 
it is possible to overcome this problem. They are

i) Um+Ual is approximated by Um

and

ii) xi is approximated by xm.

The first approximation can be considered if the matrix and 
analyte linear attenuation coefficients in equation 3.58 are 
rewritten in terms of their concentrations, On and Ca, and their 
mass absorption coefficients, um and uai. The left-hand side of
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— —  —  = ----— -- - .... 3. 60
Um+Ual C m U m +C aU al

For the purpose of this work it can be assumed that the minimum
analyte concentration detectable is at least one hundred times less
than the matrix concentration. This is reasonable as the analyte
concentrations are small. When applied to equation 3.60, this
assumption gives

dU dU .... 3.61

equation 3.58 can be rewritten as

Um+Ual Cm (um + ( Ua l/l 00 ) ) .
A second assumption can also be made here. Examination of a plot of 
mass absorption coefficients against X-ray energy for all elements 
reveals that the mass absorption coefficient on the low energy side 
of an analyte K-edge, uai.is at most 10 times greater than the mass 
absorption coefficient of any matrix at the same energy.This can be 
seen in figure II. 3 and is true for all analyte and matrix 
elements. Applying this assumption to equation 3.61 when uai= 10um, 
gives

dU _ d U __
Um+Ual Cm(Um(1+1/10 ) )

The term um( 1+1/10) in this equation can be approximated to ua
which gives

dU = _dU_ = dU 
Um+Ual CmUm U®.

In this way the specimen can be approximated to a homogenous matrix
specimen. This is reasonable for analyte concentrations of the

3 ,order kilogrammes/metre or less, in matrices with densities of the
3 3order 1 0 kilogrammes/metre .

The second approximation, which is made to xi, the number of 
mean free paths in the specimen diameter at the X-ray energy El, 
can now be described. The mean free path, Li , is defined as the 
inverse of the linear absorption coefficient at that energy. It can 
be rewritten in terms of the mass absorption coefficients, um and 
uai, and the concentrations, Cm and Ca, giving

Ll = }T = ■= -i  ---  3.64Um+Ual CmUm+CaUal .

The two assumptions made previously can also be applied here, the 
first being that Cm is at least one hundred times greater than Ca,
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i.e., CmilOOCa, the second that uai<10um. At the extremes, where 
Cm=100Ca and uai=10um, equation 3.64 becomes

Ll = Cm(un>( 1 + 1/10) ) ' ' ■ ' 3'65
which can be approximated to

Li = .... 3. 66
Lm Um .

The right-hand side of this equation is the mean free path through 
the matrix, Lm. Thus the specimen containing matrix plus analyte 
can be approximated to a homogenous matrix specimen since Li can be 
approximated by Lm. In this way the number of mean free paths in 
the specimen diameter xi can be approximated by xm.

The two approximations are applied to equation 3.58 to give

II
T3 Q F

Um (N ) 1 / 2OT
3. 67

were the function F is now given by

F =
|e x p jo . 5 |o . 0275+0. 762xn>-0. 0279xm2j j j

3.68

|o. 762xœ-0. 0558xd>2j

When plotted against x*, the function F has the same shape as 
in figure III. 4. The minimum of the function occurs at 2.5 mean 
free paths. Equation 3.67 is also similar to equation 3.25, which 
holds for the case where analyte can be added to the matrix. 
However, there Is a different Interpretation. In the latter, dU is 
the minimum detectable difference in linear attenuation 
coefficients when the specimen is scanned by two X-ray beams which 
straddle the analyte absorption edge. Also, in the present case, 
the analyte is present in the specimen when the scan is started. In
III. 4.2, dU was the minimum change in the linear attenuation 
coefficient detectable when the the specimen is scanned at the same 
X-ray energy before and after analyte is added.

III.5.4 The minimum analyte concentration detectable when analyte 
is present in the matrix.

Knowing the minimum detectable difference in the linear 
attenuation coefficients it is now possible to formulate an
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equation to calculate the minimum analyte concentration detectable 
in the speciemn. The difference in the linear attenuation 
coefficient for the two X-ray beams can be rewritten as

dU — Uh —Ul — Uah+Umh— (Ua1+Um1 ) . .... 3.69
At the analyte absorption edge the matrix linear attenuation terms 
cancel, i.e., Umh=Umi, leaving

dU = Uah - Ual .... 3.70

The analyte linear attenuation coefficients can be rewritten in 
terms of the analyte concentration and analyte mass absorption 
coefficient so that equation 3.70 becomes

dU = Ca ( Uah-Ual )......  3.71
Dividing both sides of this equation by the matrix linear 
attenuattion coefficient Um and rearranging the resultant gives

„ f _ p . I f « )  .... 3 . 72
( Uah-Ual  ̂Um J 

where Um = pmum and the term dU/Um is given by

Q -F- -  .... 3.67
Um (N ) 1 / 2OT

Using equation 3.72, the minimum analyte concentration detectable 
in a cylindrical homogenous specimen when the analyte is alredy 
present can be calculated. This concentration is dependant on
several factors. These include the nature of the matrix, I.e. its 
density and its mass and linear attenuation coefficients, the jump 
in the analyte absorption coefficient at its absorption edge. All 
these factors can be found in published data, [29] and [44]. The 
other factors include the number of mean free paths in the specimen 
diameter, the total number of incident photons and the machine 
dependent factor Q, which are all included in the dU/Um term.

In the foregone discussion it was assumed that the two X-ray 
beam energies are very close in energy to the analyte absorption 
edge. In practice however, counts measured in two energy bands
close to the analyte absorption edge are extrapolated to the edge 
to give N and N . This introduces an extra error into the total& T1 Th
detected photon count on both sides of the absorption edge as shown
by McCarthy and Fryar [43].
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By considering figure III.11, which shows a typical spacing of 
two energy bands, it can easily be shown how this increased error 
due to extrapolation can be determined. During the normal process 
of extrapolation, the counts are projected to the absorption edge. 
If the statistical variations of the counts are also extrapolated 
to the absorption edge, then it can easily be shown, as in figure
III.11, that the standard deviation in the extrapolated value is 
approximately a factor f times the standard deviation in the counts 
in the band closest to the absorption edge. This factor J should be 
included in equation 3.67 as a multiplying factor, to account for 
extrapolation to the absorption edge. Equation 3.67 is now given by

dU Q f F
Um (N )1/2OT

1/2where Q = p B K .Substituting this equation into equation 3.72 
gives

Ca = pmUm \ f Q / F_ 1
Uah-Ual J I N"2 J

OT

which can be used to calculate the minimum analyte concentration 
detectable in a reconstructed image using the differential X-ray 
absorptiometry technique described in section II.3.2.

III.5.5 Discussion.

In order to illustrate equation 3.74, values for Ca for analyte 
elements in the range Z=20 to Z=80, where Z is atomic number, were 
calculated for a water matrix of diameter 2.5 mean free paths. This 
diameter was shown in figure III.4 to be the optimum diameter for
greatest sensitivity to analyte elements in a homogenous 
cylindrical matrix, i.e. (F = 1.54). The separation in standard 
deviations was taken to be three, so p=3. Again, B=2 [41] for the 
algorithm used and K was taken to be 40. The term J, to account for 
extrapolation to the absorption edge, was 3 [43]. Figure III.12
shows the calculated Ca values for 10? incident photons plotted 
against atomic number.

1 3Using 10 photons, it is possible to detect from 6 kg/m , (6X
— 3 3 3 310 g/cm ), at Z=20 down to approximately 0.5 kg/m , (5X10 g/cm )
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Fig. III.11
Extrapolation of.the statistical variation in the photon 
counts in the two narrow energy bands, Eli and Eu, to the 
analyte edge Ek . The counts are shown as dots. The standard 
deviation in the extrapolated value is a factor f times the 
standard deviation in the narrow energy bands. The factor f 
is given by the ratio B/A.
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between Z=40 to 55.The sensitivity falls to about 2 kg/m3 at 2=80. 
The sensitivity for any other specimen diameter can be found by 
multiplying Ca at 2.5 mean free paths by the appropriate factor 
determined from figure III.7. Figure III.7 is a plot of Fx/Fx=2.5 
against the specimen diameter in mean free paths. Note also, there 
is a factor of 10 increase in element sensitivity for all elements 
for a factor of 100 increase in the incident photon count.

Examination of equation 3.74 would suggest that the sensitivity 
to an analyte element decreases as the density and linear
attenuation coefficient of the matrix increases. This can be seen 
in figure III.13, where the minimum analyte concentration 
detectable in water, silicon and iron matrices are shown. In each 
case the matrix diameter is 2.5 mean free paths, p=3 and the total

7incident photon count is 10 . For the elements below Z=50 there is 
a factor of 10 decrease in sensitivity in a silicon matrix as
compared to a water matrix. Above Z=50 the decrease in sensitivity 
in a silicon matrix is not so great. In an iron matrix, the
sensitivity to analyte elements above Z=26 has deteriorated by a 
further order of magnitude. Below Z=26 the decrease in sensitivity 
is only a factor of five compared to a silicon matrix. This is 
because these analyte elements have their K-absorption edge 
energies below the Iron K-absorptlon edge at 7.llkeV. The reduced 
Iron mass absorption coefficient below 7.llkeV increases the 
sensitivity to these elements.

Grodzin [7] has produced some similar graphs, see figure 1.9, 
which show the minimum fraction of critical atoms in water, silicon 
and iron matrices for all elements between Z=10 and Z=90. Although 
it is difficult to relate these curves directly to analyte
concentrations, the relative decreases in sensitivity for a given 
analyte element in going from a water matrix to a silicon matrix 
and from an silicon matrix to an iron matrix are similar. Also, 
note, that in both figures III. 13 and 1.9 the maximum sensitivity 
occur at approximatly Z=50.

III.6.1 ^Example calculation.

As a worked example, it is required to determine the minimum 
cadmium concentrations detectable in a water matrix for the case
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Fig. III. 12
The minimum analyte concentration detectable in a cylindrical 
water matrix of diameter 2.5 mean free paths plotted against 
X-ray energy. The curve is drawn for Q - 38, f - 3 and Not -  

10 . This is for the case when the analyte is already present 
in the matrix.

115



Mi
nim

um
 

An
al

yt
e 

Co
nc

en
tr

at
io

n 
(k

g
/m

J)

Analyte Atomic Number
Fig. III.13
The minimum analyte concentration detectable in cylindrical 

water, silicon and iron matrices of diameter 2.5 mean free 
paths plotted against analyte atomic number. The X-ray 
energies required are dependant on the analyte K-edge. The 
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when cadmium analyte is added to a water matrix and for the case 
when cadmium analyte is already present in the water matrix. In

7both cases the water matrix diameter is 0.03 metres, there are 10 
incident photons and the factor Q=38, i.e. p=3, B=2 and K=40.

Example 1.

In this case, where cadmium is added to the water matrix, the 
specimen is scanned at 30keV before and after the cadmium is added. 
This X-ray energy was chosen because, as can be seen in figure
III.8, the sensitivity to cadmium in a water matrix is highest at 
energies just above the cadmium K-absorption edge. The cadmium 
K-absorption edge occurs at 26. 73keV [44]. It is first necessary to 
calculate the minimum cadimum concentration detectable in the 
subtracted image for a matrix diameter of 2.5 mean free paths. In 
order to calculate this concentration, the minimum change in the 
linear absorption coefficient detectable is required. Using 
equation 3.25 which is given by

  3.25
U N1/2OT

where F=1.54 from figure III. 4 for a diameter of 2.5 mean free
paths, Q=38 for the machine used and N =107, dU/U is calculated asOT

1.8X10-2.

Using equation 3.38, which is given by

R )
(IS) - ' -  (-£-)]

P«|
Ca = __________        3.38

and the values for mass absorption coefficient and density in table
3.1 the calculated minimum cadmium concentration detectable for 2.5 
mean free paths is

Ca = 1. 8 x 10 1 kg/ m3
2 . s s
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Mass Absorption 
Coefficient at 30keV

Densi ty

Water 3.72 x 10'2 m2/kg 10 3kg/m 3
Cadmium 3.74 m2/kg 8.65 x 103 kg/m3

Table 3a
V a l u e s  f o r  M a s s  A b s o r p t i o n  C o e f f i c i e n t  a t  3 0 k e V
a n d  e l e m e n t a l  d e n s i t y  f o r  w a t e r  a n d  c a d m i u m .

A simple multiplication factor from the graph of Fx/F2.5 is all 
that is now needed to determine the minimum cadmium concetration 
detectable. The specimen diameter is 0.03 metres and at 30keV in 
water, one mean free path is 0.027 metres, where L=l/U. Thus, there 
are 1.11 mean free paths in the matrix diameter. The multiplying 
factor from figure III.7 is 1.29. Multiplying Ca for 2.5 mean free 
paths by 1.29, the resultant minimum cadmium concentration 
detectable, in the subtracted image, when cadmium can be added to 
the water matrix is

Ca = 2.4 x 10"1 kg/ m3
or

Ca = 2.4 x 10 4 g/cm3.
Example 2.

In this second example the cadmium analyte is already present 
in the water matrix. In theory, the specimen should be scanned at 
two energies which are close to the analyte absorption edge and 
also straddle it. In practice, the specimen Is scanned at two X-ray 
energies above and below the cadmium K-absorption edge and the 
projection data is then extrapolated to the absorption edge. This 
Introduces the factor f'due to amplification of the noise due to
extrapolation. In this case / is approximately equal to three.
Again, as in example 1, the specimen diameter is 0.03 metres and 
the specimen is considered a water matrix when determining the mean 
free path.

In order to determine the analyte concentration, it is first 
necessary to determine the minimum linear attenuation coefficient 
detectable using equation 3.73 which is given by

^ = - A U _  .... 3.73
Urn (N ) 1 / 2

OT

As in example 1, F=1.54 for 2.5 mean free paths, Q = 38 and Nqt =
107. Putting these values in the equation gives
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Using equation 3.74, which is given by,
pmUm ( dU '

[ Uah-Ual i Um
the minimum cadmium concentration detectable in a specimen of 2.5 
mean free paths is

Ca = 5.5 x 10"1 kg/ m32.5

At the cadmium K-absorption edge, the mean free path for X-rays
of energy 26.73keV is 0. 025metres. Thus there are 1.2 mean free
paths in the specimen diameter. The multiplying factor, from figure
III.7, is 1.25 so the minimum cadmium concentration detectable in a
water matrix of diameter 0.03 metres when the analyte is already 
present in the water is

Ca = 0.69 kg/ m3
or _4 3

Ca = 6.9 x 10 g/cm .
In the next chapter, experiments are carried out to determine the
minimum cadmium concentrations detectable for both examples and a
comparison is made between these predictions and experiment.



Chapter IV.

In order to produce element specific images using differential 
X-ray absorptiometry, as described in chapter II, it was necessary 
to build working CAT systems. Previous researchers, [8] and [9], 
had produced element specific CAT images using synchrotron sources 
but in both cases, only one element could be imaged in a single 
scan. Also, quantitative element specific images were not produced 
in either work. In this chapter, the CAT systems built, the 
experiments undertaken and the results obtained are described.

In this work, two systems were built, one using radioisotope 
sources, the other using an X-ray tube source. In the first of 
these, quantitative element specific CAT images of specimens were 
produced for cases where the analyte could be added to the matrix. 
This was based on the theory developed in section II.3.1. The 
second system built, using an X-ray tube source, was the first CAT 
system built which could produce multiple element specific images 
in a single scan. It was also the first system which could image 
adjacent atomic elements [30], The theory for this was derived in 
section II. 3.2. For both systems, some experimental images were 
produced before the theory for sensitivity in chapter III was 
developed. In these cases, the analyte concentrations used in the 
specimens were based on sensitivities that could be detected 
according to the work done on sensitivity by Grodzin [7].

The sensitivity of the techniques developed was also 
investigated experimentally using this second system. In section
III.6.1, the minimum cadmium concentrations detectable in a water 
matrix were calculated for the cases when the analyte element was 
added to the matrix and when the analyte was already present in the

IV. 1 Introduct ion.



matrix. In this chapter, these calculated concentrations are 
compared with experimentally determined values to verify the theory 
developed in chapter III.

IV. 2. A brief overview of the apparatus.
The CAT system developed can be divided into three sections. 

The first was the data collection system. This consisted of an 
X-ray detector, an X-ray source, pulse shaping and counting 
apparatus, a scan table and a microcomputer, which stored and saved 
the data, and also controlled the whole system.See figure IV.1. The 
second section was a mini computer, the VAX 11/785, which sorted 
the data and generated the reconstructed images. It was necessary 
to use the VAX 11/758 due to the large number of computations 
involved in reconstructions. Finally, the third section was the 
display section, which consisted of a BBC microcomputer and VDU, 
and a printer to produce hard copies. Also, as in conventional CAT 
displays, regions of interest in an image could be enhanced.

IV.2.1 Si(Li) Detector.
The X-ray detector used was an energy dispersive Si(Li) 

detector, model SLP-06180 by EG+G Ortec, which has a quoted 
resolution of better than 200eV at 5.9keV. By using an energy 
dispersive detector, the required energy bands for several elements 
could be defined and their fluxes measured simultaneously as shown 
by J. Fryar, K. J. McCarthy and A. Fenelon [30]. Figure IV. 2 shows 
the detector efficency against X-ray energy. The detector has 50% 
or greater efficency for photons with energies between 1.5 and 
35keV. Thus the detector is most suited for imaging elements 
between 1 3 A1 and 55Cs using analyte K-edges and elements above 55Cs 
using L-edges.

The Si (Li) detector was biased at -1.5kV by an EG+G model 459 
bias supply. The detector and its pre-amplifier were kept at liquid 
nitrogeon temperature (77K) to minimise the electronic noise in the 
pre-amplifier output signal. It is because of the liquid nitrogen 
dewar required, that it was not possible to rotate the detector 
about the specimen as is normal in CAT scanners. The output signals 
from the pre-amplifier were amplified and shaped by an amplifier.

IV. 2.2 The X-ray sources.

In section II.3, it was noted that X-ray energies which straddle
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Fig. IV.1
Schematic diagram of the CAT apparatus.

Plate 4.1 The scan table and the stepper motors.
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the analyte absorption edge are required for differential X-ray 
absorptiometry. Several possible sources of X-rays are available.
One possible source is to fluoresce a suitable target with a
primary beam in order to produce the target’s characteristic lines. 
In many cases, these lines straddle the absorption edge of an 
analyte element. It is also possible to obtain the desired 
monochromatic lines from a radioactive source. For instance, some
radioisotopes emit the characteristic K-lines of an element of
lower atomic number after decaying by electron capture. These lines 
may be suitable if they straddle the K-absorption edge of the 
analyte element, as shown by J. Fryar, K.J. McCarthy and A. Fenelon 
[28], Another possible source is the monochromatic lines from 
crystal diffraction of a primary continuum of an X-ray tube [28], A 
synchrotron which produces a very high photon flux and which is 
tunable, using a crystal spectrometer [45], has also proved to be a 
suitable source. The advantage of these methods is that a clean 
spectrum can be obtained. Alternatively, the primary beam of an 
X-ray tube can be filtered to give a narrow continum of X-rays. By 
choosing a suitable filter it is possible to image several elements 
simultaneously. This has been done by J. Fryar, K.J. McCarthy and 
A. Fenelon [30] and J. Fryar and K.J. McCarthy [43].

In this work three sets of experiments are described. X-ray 
radiation derived by fluorescence and directly from radioisotopes 
is used in the first set of experiments. In the second and third 
sets of experiments the filtered primary X-ray beam of an X-ray 
tube is used. The sources used are described later.

IV.2.3 Pulse shaping and counting apparatus.

The pulses from the pre-amplifier in the detector required 
amplification and shaping before being counted. The pulse shaping 
was done using NIM modules by EG+G Ortec. The modules used in each 
of the experiments are described later as are the pulse counting 
apparatus. In the first set of experiments a scaler ratemeter was
used while a multi-channel analyser was used for the second and
third sets of experiments.

IV.2.4 The specimen scan system.

The scanning system used was a converted Feedback CNC932 
computer controlled drilling machine. See plate 4.1. It allowed
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linear and rotational motion as required. A typical scan consisted 
of stepping the specimen through the X-ray beam and then rotating 
the specimen before moving the specimen back through the X-ray 
beam. See figure IV. 3. This scan method is similar to the scan 
pattern used in first generation CAT scanners. In these scanners, 
the X-ray source and the X-ray detector are rotated about the 
patient. However, due to the detector’s liquid nitrogen dewar, it 
was easier to move the specimen. This technique of scanning has 
been used by several experimenters, most frequently by those using 
a synchrotron, [9], The scan results obtained in this way are the 
same as when the specimen is stationary and no corrections are 
needed. A similar scan method in which the specimen was rotated 
through all the rotation step positions at each step position was 
also used. This method was used for the final set of experiments.

IV. 3 Experiments.

IV.3.1 Introduction to Experiments.

In this work, three sets of experiments were completed. The 
object of the experiments was to produce cross-sectional images, 
showing the analyte element distribution in a thin slice of the 
specimen. This section is divided into three sub-sections 
corresponding to the three sets of experiments. In each set of 
experiments there are two separate experiments and these are listed 
here.

i) Experiments using radioisotope source(s) to produce element
specific images
a) Experiment to image a single analyte element in a specimen. 

See IV. 3.2.3.
b) Experiment to image two analyte elements in a specimen. See

IV. 3. 2. 5.

ii) Experiments using an X-ray tube source to produce element 
specific images.

a) Experiment to image three analyte elements simultaneously. 
See IV. 3. 3. 4.

b) Experiment to image two analyte elements in a specimen 
containing a mixture of both elements. See IV.3.3.7.

iii) Experiments to determine the sensitivity to analyte elements
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Fig. IV.3
The source, the specimen and the detector.
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of Differential X-ray Absorptiometry when applied to CAT.
a) Experiment to determine sensitivty when analyte can be 

added to the matrix. See IV.3.4.3.
b) Experiment to determine the sensitivity when analyte is 

already present in the specimen. See IV. 3. 4. 4.

In each case, the sources used and the elements imaged are 
detailed. The set-up of the apparatus is also described and the 
resultant images are analysed.

IV.3. 2 Experiments to image analyte elements using radioisotopes.

Examination of the absorption edge energies and the 
characteristic X-ray lines of the elements shows that the 
absorption edges of many elements are straddled by the 
characteristic lines of elements which are slightly higher in 
atomic number. See appendix K. This makes the X-rays spectral lines 
of such elements, produced by fluorescence or by K- or L-orbital 
electron capture, very suitable for differential X-ray 
absorptiometry. However, using the spectral lines from a single 
radioisotope, it is only possible to image one analyte element at a 
time. In section II.3, it was required that these lines should be 
as close to the analyte absorption edge as possible in order to 
reduce the matrix effect. Since the X-ray spectral line energies 
may be several keV from the absorption edge it is therefore 
necessary to remove the resultant matrix effects. To do this, the 
matrix only is scanned first and then the matrix plus analyte. The 
theory to determine analyte equivalent thickness along a beam path 
and to remove the matrix effect was derived in section II. 3.

IV.3.2.1 Radioisotopes.

The analyte elements imaged in these experiments were palladium 
and caesium. Palladium, with its K-edge at 24.36keV, was imaged 
using silver Ka and K/3 X-ray lines at 21.99-22.31keV and 24.71- 
25.46keV respectively. These silver X-ray lines were obtained from 
3mCi(lllMBq) of cadmium-109 (by Amersham International ref. no. 
CUC.13053) which emits silver X-rays after electron capture.

Caesium, with its K-edge at 35.96keV, was imaged using barium 
Ka and K£ X-ray lines at 31.73-32.44keV and 36.12-36.63keV
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respectively. The barium lines were derived by fluorescence, the 
fluorescence being excited by primary radiation from lOmCi (370MBq) 
of americum-241. The source was a variable energy source by 
Amersham International (ref. no. AMC.2084). Figures IV. 4 and IV. 5 
show the X-ray energy spectra for both sources and the positions of 
the K-edges.

In both cases the lines are several keV from the K-edges. For 
example, the barium Ka line is 3. 8keV below the caesium K-edge. 
This would have given rise to a matrix effect which is not 
negligible when compared to the analyte equivalent thickness, 
unless as described in II. 3, two scans were made, one of the matrix 
only and a second with the analyte added.

IV. 3.2.2 Apparatus to image elements using radioisotope sources.

Two experiments to image elements were completed using 
radioisotope source and these are described in the next sections. A 
diagram of the apparatus used is shown in figure IV. 6. The 
radioisotope source was positioned about 10cm above a lead 
collimator which was placed on the Si(Li) detector. During a scan 
the specimen was stepped through the X-ray beam using the converted 
Feedback CNC932 computer controlled drilling machine. The scan 
table of the drilling machine was driven by stepper motors which 
were controlled via an interface by a BBC microcomputer. See 
Appendix G. Pulses from the BBC "User Port" controlled the
direction and motion of the stepper motors. Specimens were mounted
onto the socle of the rotation stepper motor which was positioned on 
top of the drive table.

The pulses from the Si(Li) detector preamplifier were amplified 
using a delay line amplifier, model 460 by EG+G Ortec. See figure
IV.7a. The pulse counters used were the logic pulse counters of a 
Nuclear Instruments scaler ratemeter SR7. The SR7 has two logic 
pulse counters, so that photon pulses from two energy regions could 
be counted at the same time. The regions of interest for the narrow 
energy bands were defined by the windows of two timing single
channel analysers (TSCA) model 551 by EG+G Ortec. One TSCA was set 
to allow the Ka pulses to pass, the other to pass the Kfi X-ray
photon pulses.

Timing NIM modules were not essential but they allowed quick
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setting of the TSCAs’ windows and threshold levels. This was done 
prior to starting a scan by using a model 427A delay amplifier in 
parallel with a TSCA. See figure IV. 7b. Pulses from the delay 
amplifier were compared with logic pulses from the TSCA for 
coincidence by a multi-channel analyser (MCA). Only when the pulses 
were coincident would a pulse height analysis of the photon pulses 
be made and the pulses would appear on the MCA display.

At each step position during the specimen scan, after a preset 
counting period, the data in the SR7’s counters was transferred in 
serial bit form to the RS423 serial port of the BBC microcomputer. 
A computer program in the BBC interpreted the ASCII code and then 
stored these photon counts. See appendix G. The SR7 reset its logic 
pulse counters and after a short pause, while the scan table was 
moved, it began counting again. At the end of each scan, the data 
stored in the BBC memory was copied onto a floppy disc. The process 
was repeated until the end of the scan.

IV.3.2.3 Experiment to image a single analyte element.
This was the first attempt to produce an element specific image 

of a slice through an object. The analyte element chosen was 
caesium. A quantity of caesium hydroxide, dissolved in water, with

3a concentration of several tens of kg/m was soaked onto papers, 
which were then placed into hollows in a 3cm diameter cork bung. At 
the time of the experiment, the sensitivity of the method to 
element concentration was unknown. This is why a high concentration 
was used.

The caesium, with its K-edge at 35.97keV was imaged using the 
Ka and K/3 lines of barium, at 31.73-32.44keV and 36. 12-36.63keV 
respectively. The energy spectrum is shown in figure IV.5. These 
lines were obtained by fluorescence excited by primary radiation 
from 370MBq of americum-241.

The complete scan of the cork bung consisted of twenty 2mm 
linear steps and twenty rotations of 9 degrees each about the 
horizontal axis. A lead sheet, 2mm thick, with a 2mm aperture was
used to collimate the beam. See figure IV. 3 and plate 4.2. The

2resultant collimated beam had a flux of 2X10 photons/sec. Pulses 
from the detector were amplified and passed through two single 
channel analysers. The pulses were counted by the logic counters of
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the SR7. See figure IV.7a. The count data was stored on floppy disk 
and used to produce the element specific images.

V.3.2.4 Analysis of experimental results.

In this case, only one scan was made of the analyte plus 
matrix, no scan was made of the matrix only. The analyte equivalent 
thicknesses were calculated using equation 2.10 which is given by

where No and N are the incident and transmitted photon counts and 1 
and h refer to X-ray energies below and above the analyte 
K-absorption edge. Figure IV. 8 shows caesium equivalent thicknesses 
for a projection scan. No corrections were made for the matrix 
effects, because at the time of doing this experiment, a technique 
to remove the matrix effects had not yet been developed. Also, the 
low photon counts, (there were 2X106 detected Ka photons and 3X105 
detected K|3 photons), resulted in large statistical fluctuations. 
For example, along beam paths with high caesium concentration, the 
errors due to statistical fluctuations were higher than 10%.

The images were reconstructed using the ART reconstruction 
algorithm described in chapter II, for twenty steps at each of 
twenty rotation positions. In this case, the relaxation constant r 
was set to one, ie. t=1, and only one iteration was completed. The 
reconstructed image showing the caesium distribution is shown in 
figure IV. 9. When compared with the diagram of the cross-section of 
the specimen they are compatible. The positions and shapes of the 
caesium in the reconstructed image is in good agreement with the 
positions and shapes of the caesium hydroxide papers.

This experiment was a test run to determine the feasibility of 
the technique. When the matrix correction technique in section II.3 
had been developed the next experiment was completed.

V.3.2.5 Experiment to image two analyte elements.

In this second experiment using radioisotope sources, element 
specific images for two analyte elements were produced. The analyte 
elements chosen were palladium and caesium. As previously noted, it 
is not possible to image these elements using spectral lines from 
the same radioisotope. This is because their K-edges are 11.61keV

[
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apart. Instead, two sets of scans were made using two different 
radioisotopes. Also, since matrix effects were present, due to the 
spectral lines being several keV from the K-edges, two scans were 
needed for each radioisotope. The first in each case was of the 
matrix only, the second of the matrix plus analyte. The theory is 
detailed in section II.3.1.

The specimen consisted of three epoxy rods, 5mm in diameter, 
inserted into a cork bung, 3cm in diameter. See plate 4. 3. The 
epoxy was made with 5 parts Araldite epoxy resin MY753 to 1 part 
Araldite hardener HY956. Palladium, in the form of 57. palladium 
metal in charcoal, was added to two of the rods while caesium, in
the form caesium hydroxide, was added to the third rod. In all

3cases the concentrations were several kg/m .

In the first scans the palladium was imaged using the Ka and K£ 
lines of silver, which were obtained from lllMBq of cadmium-109. 
During these scans the caesium was considered as a matrix element. 
The scan was repeated with epoxy rods containing no palladium.

In the second scan the caesium was imaged using the K-lines of 
barium. These were produced by fluorescence of a barium target by 
the primary radiation from 370MBq of americium-241. For this scan, 
the palladium was considered as a matrix element. Table 4a shows 
the energies of the K-lines and the K-edges for both cases and the
regions of interest defined by the TSCAs.

Analyte Analyte Ka Ka K0 K0
Element K-edge ROI ROI

keV keV keV keV keV

Palladium 24. 36 22. 16 21.99- 24. 94 24.71-
22.31 25. 46

Caesium 35.97 32. 19 31.73- 36.38 36.12-
32. 44 36. 63

Table 4a.
The regions of interest defined by the SCA’s for the Ka 
and Kb lines. The lines are broadened because of the 
energy resolution of the Si(Li) detector. Its resolution 
is quoted as 200eV at 5.9keV.

A complete scan consisted of twenty linear steps of 2mm and 
twenty four rotation steps of 7.5 degrees. Before starting a scan,
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the rotation axle centre was centered with respect to the beam. 
This was done to avoid ring artifacts. Also while scanning,
allowances were made for backlash in the scanning table. The 
computer program written for the BBC microcomputer to control the 
scan table, the data collection and the data storage is shown in 
appendix G.

IV.3.2. 6 Generation of scan profiles.

When all scans had been completed, the stored count data was 
sorted into a few large computer files and transferred to the 
VAX11/785. It was then decided to generate normal CAT images, as 
well as uncorrected and corrected element specific images.
Conventional CAT images were reconstructed from the attenuation 
along the beam path. These were calculated using the equation

In { FT } “ |  U(y) dy ---  1-4

where U is linear attenuation coefficient and dy is a small path
length. The uncorrected equivalent thicknesses were calculated 
using equation 2.10, derived in section II.2.2. It is given by

r N N n
ta = In rji 55̂  . ___ 2 . 1 0N N /  (Uah-Ual).

L h 01 J

Finally, the corrected analyte equivalent thicknesses were 
calculated using equation 2 .2 1 , which is given by

t. - In [ 1 / ,  , ....2 . 2 1

This equation was derived in section II. 3.1. The N , terms are(a+a)
the detected photons counts for the specimen containing both matrix 
and analyte while the N terms are for the matrix only specimen.m

Figure IV.10 shows scan profiles of palladium equivalent 
thicknesses for three different cases. The first, see figure 
IV.10a, shows the equivalent thicknesses for the scan of the matrix 
only, i.e. the cork and epoxy rods. The equivalent thickness 
values, calculated using equation 2 .1 0 , are negative as predicted 
in section II.3. Figure IV.10b shows the uncorrected equivalent 
thicknesses when palladium and caesium were added to the matrix. No 
corrections were made for the matrix effects and so the caesium
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appears as a negative peak. When corrected equivalent thickness 
values were calculated using equation 2.21, see figure IV.10c, the 
base line of the profile was restored to zero except where the 
caesium occurs. This was because the caesium was not present during 
the scan of the matrix. Note also, the palladium equivalent 
thicknesses have increased with correction, as expected.

For the second case, when imaging the caesium using lines from 
fluorescence of barium, only one scan, with palladium and caesium 
in the rods, was completed. No scan was made of the matrix alone 
because of the low photon counts. In figure IV.11, the caesium 
gives a positive peak while palladium produces negative peaks. No 
corrections for the matrix effect were made.

IV. 3.2.7 Image reconstruction and analysis.

When all the scan profiles had been calculated the next step 
was to reconstruct the Images. A computer program based on the ART 
reconstruction algorithm was used. See appendix F2. The VAX11/785 
computer was required because of the large amount of memory space 
needed, mainly for the pixel overlap areas, and the large number of 
computations involved. The resultant images consisted of twenty by 
twenty pixels. Each pixel contained either the average attenuation 
or concentration In the corresponding voxel. The first Images are 
conventional CAT images at energies both above and below the 
analyte K-edge. In these images, the effect of the absorption edge 
is clearly visible. The other images show the uncorrected and 
corrected element specific Images.

The first two images in figure IV.12, show conventional CAT 
images of the matrix specimen. Figure IV.12a was reconstructed from 
projection data calculated using equation 1.4 for the silver Ka 
count data only. The K|3 projection data was used to produce the 
image in figure IV.12b. In both images all three rods and the cork 
bung are visible and they are similar as might be expected, i.e. if 
palladium were present there would be a noticeable difference in 
the attenuations of such rods. In the next two images, figures 
IV. 12c and IV.12d, palladium and caesium have been added to the 
rods. The differential absorption of the palladium is clearly 
visible here. In the lower energy Ka image, the caesium rod is 
dominant, since it is the heavier element. In the higher energy K/3
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Fig. IV.11
An example of equivalent projection data obtained by 
scanning the specimen with barium fluorescence X-rays.

Plate 4.3
Three epoxy rods in cork bung. The black rods contain 
palladium and the light rod contains caesium.



image, the palladium becomes dominant because of the jump in mass 
absorption coefficient at its absorption edge.

Finally, figures IV.12e and IV. 12f show palladium specific 
images. Figure IV.12e is reconstructed from the uncorrected 
equivalent thicknesses so that its concentration values are lower 
than in figure IV.12f, which was reconstructed from corrected 
equivalent thickness values.

The reconstructed image showing the caesium rod is shown in 
figure IV.13. The caesium is clearly seen above the general 
background. However, the background is much higher because of the 
poorer statistics due to the lower photon counts. No corrections 
were made for the matrix effects.

The final concentration values obtained in the reconstructed 
images depended on two factors in the reconstruction algorithm. The 
first was the number of iterations completed, the second the value 
of the relaxation constant t . If x=l, the maximum concentration

3value oscillated to the final value of 18.4 kg/m . As lower values 
of x were chosen the concentration rose monotonically to a lower 
value. See figure IV.14. With r= 0.1 the final palladium 
concentration was 16 kg/m3. However, more iterations were required. 
See table 4b.

Relaxation 
constant r

Final Iteration 
number

Maximum Palladium 
concentration (kg/m )

1 5 18.4
0.4 8 17.7
0 . 2 1 1 16.9
0 . 1 17 16.0

Table 4b. [28]
The variation of the maximum palladium concentration 
Mith the relaxation constant t. The final Iteration 
Is the Iteration as determined by equation 11.56.

A comparison of the analyte concentrations and equivalent 
thicknesses was made to determine the accuracy of the results. In 
order to make the comparison, measurements were made on the rods, 
with and without the analyte being present, by conventional 
differential X-ray absorptiometry. In table 4c, concentrations from 
the element specific images are compared with concentrations



Fig. IV.12

A sequence of reconstructed images which show steps in the imaging of palladium, (a) and (b): Reconstructed images derived 
from absorption data for Ag K . (a) and (b) X-rays. Palladium and caesium have not been added, (c) and (d): Reconstructed 
images derived from absorption data for Ag K . (c) and K.  ̂ (d) X-rays. Palladium and caesium have been added. Note the change in 
emphasis is from caesium to palladium on going from the lower energy K . to the higher energy X-rays, (e) and (f): Reconstructed 
images of palladium, (e) has not been corrected for matrix effects (maximum concentration: 14.1 Itg/m3). (0  has been corrected

(maximum concentration: 16 kg/m 3). ,

Fig. IV.13
A reconstructed image of rod containing the caesium. No 
correction has been made for matrix effects (maximum 
concentration: 9kg/m ).
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determined by differential X-ray absorption. A second comparision 
is also made in table 4c between projection scan equivalent 
thicknesses and those obtained by differential X-ray absorption. 
The errors in the equivalent thicknesses were determined from 
statistical variations in the X-ray counts. In the case of the 
palladium, both the concentrations and the equivalent thicknesses 
are in good agreement. However, the agreement for the caesium was 
not so good. This was due to the poorer counting statistics. In the

7case of palladium the total number of JC/3 photons used was 10 while 
106 K£ photons were used for caesium.

Rod Concentration (kg/m3)
by differential 
absorption

from reconstructed 
image

Palladium 15 ±0.6 16
Palldaium 7 + 0.6 8

Caesium 5 ± 2.5 9

Equivalent Thickness ( 10” 2 kg/m2)

Palladium 6 . 2  ± 0.3 6 + 0.5
Palladium 3.2 ± 0.3 3 ± 0. 5
Caesium 2.5 ± 1.2 3.8 ± 2

Table 4c. [28]
C o a p a r l s o n  o f  t h e  e q u i v a l e n t  t h i c k n e s s  and c o n c e n t r a t l o n a  
o b t a i n e d  I n  s t a t i c  d i f f e r e n t i a l  a b s o r p t i o n  a e a a u r e a e n t s  
a n d  f r o m  t h e  s c a n  d a t a .

IV.3. 3 Experiments to Image analyte elements using an X-ray tube.
In the previous experiments using radioisotopes, It was only 

possible to Image one analyte element at a time. In these 
experiments, using an X-ray tube, several elements with adjacent 
atomic numbers are imaged simultaneously. For each element, the 
analyte equivalent thicknesses along the beam paths were determined 
by extrapolation of the photon counts In narrow energy bands to the 
low and high energy sides of the analyte absorption edge. The 
theory for this work and the equation required were derived in 
section II. 3. The equation to calculate the analyte equivalent 
thickness from the extrapolated values Yh and Yi is given by

t a  =  [  - Yh Yl ■ 1   2.35|_ Uah - Ual J
In section II.3, it was described how adjacent elements can be 
imaged simultaneously by extrapolating the photon counts in the
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narrow energy bands to both the high energy side of one element’s 
absorption edge and to the low energy side of the absorption edge 
of the next highest element.

In order to provide the required X-ray energies, an X-ray 
spectrometer unit was converted to provide a broad continuum X-ray 
beam. Filtering of this beam was required to remove unwanted 
photons and shielding was installed to provide protection. The 
pulse shaping and counting apparatus differed from that used in the 
first experiments. See figure IV. 15 and plate 4.4. In these
experiments a multi-channel analyser was used. The scan system used 
was the same as before as was the scan method. These are now
described in more detail.

IV.3.3.la The X-ray tube.

The second source of X-rays was the primary beam from an X-ray 
tube. This had the advantages of a high flux density, which reduced 
the specimen scan times, and also of a broad X-ray spectrum, which 
allowed the analyte equivalent thicknesses of several elements to 
be determined simultaneously. However, since high photon fluxes 
would saturate the photon counting apparatus, it was necessary to 
filter the primary beam. Also, since most of the primary photons 
were superfluous they could be removed with a suitable filter. This 
resulted In a X-ray beam with a low flux and a narrow energy 
spectrum. Here, the X-ray system, the X-ray tube and the shielding
required are described first. Then the filter used and the
resultant spectra are described.

The X-ray tube system used was part of a modified Philips PW
1270 automatic simultaneous X-ray spectrometer. The modified system 
consisted of the original X-ray tube, the H.T. power supply, the 
water cooling system and the power supply cabinet. See figure IV. 16 
and plate 4.5. A lead cabinet with an internal mild steel box was 
built around the X-ray tube to reduce the external exposure to 
radiation and also to hold the scan table and beam filters. The 
X-ray detector was placed below the lead cabinet.

The X-ray tube was a Philips type PW2184/00 with a tungsten 
target and a 1mm thick beryllium window. The filament current and 
the target potential were provided by the high tension power
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supply. The tube potential could be stepped from 20 to 60kV, in 
lOkV steps. The filament current had settings at 5mA and at 10mA 
intervals between 20mA and 80mA inclusively. The X-ray energy 
spectrum was determined by the tube voltage while the beam flux was 
determined by the tube current. The maximum operating tube power to 
avoid damage due to overheating was 3kW.

IV.3.3.lb Shielding for the X-ray tube.

In order to minimize the radiation risk to persons working with 
the X-ray system and to prevent accidental exposures, the X-ray
tube was shielded with mild steel and lead surroundings and
interlocks were fitted to prevent the machine from working if any
of the shielding doors were not fitted or locked properly. With 
this in mind, the radiation outside the machine was calculated.

At the maximum operating voltage of 60kV, the tube output at
2constant potential is 10 Gray/A. min at lm from the target, [46], 

Thus, the tube output for 0.05A (50mA) is given by

0.05 X 102 X 60 = 3X102 Gray hr?1 at lm.
The conversion factor from flux density to exposure rate for 60keV

—1 3  —1 _ 2 —1gamma rays is 1.2x10 Gray hr. per Photon m sec. , [47], This
is the maxiumum numbers of photons possible as the conversion 
factor curve is a minimum at 60keV. Using this conversion factor 
the calculated beam flux density at lm below the tube is

3X102 „ c v , n 15  ,, - 2  - 1---------- = 2.5X10 photons m sec.
1. 2X10-13

The floor of the mild steel box is 0.18m below the tube. See figure 
IV. 17 and plate 4.6. The beam flux density at that point can be 
calculated using the inverse square law and is calculated as

2
—   X 2.5X1015 = 8X1016 photons m-2 sec?1
0. 182

The transmission for 50kV constant potential X-rays through the 
3X10 3m mild steel plate which lies on the floor of the mild steel 
box is 10 5, [48]. The resultant transmitted beam flux density
through this plate is calculated to be

8X1016 X 10"5 = 8X1011 photons m-2 sec?1
-  3 “ 2Below this plate, a 2X10 m diameter hole was drilled in the 10 m
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ToVAX T1/785 ^

X-ray Cabinet
Fig. IV.15
Diagram of the apparatus used to produce images using 
the X-ray tube source.

Plate 4.4
The X-ray machine and the pulse counting apparatus.



Fig. IV.16 
Diagram of the X-ray tube cabinet.



Plate 4.5
The X-ray tube and the high tencinr,6 tension power s u p p l y



thick floor of the mild steel box. The transmission for 50kV
—  2 -  8 constant potential X-rays through 10 m of mild steel is 10 [48]

_ g
and so the transmitted flux through the mild steel floor is 10 X

11 - 2 -1 8X10 photons m sec. This is small compared to the calculated
beam flux through the 2 millimetre diameter hole which is

H X (10-3)2 X 8X1011 = 2. 5X106photons sec?1 
and so can be neglected.

-  2  -  3A 10 m diameter hole was made in the 3X10 m thick floor of the 
lead box which is 0.2m directly below the aperture in the mild

_  3steel box. The transmission through 3X10 m of lead for 50kV
- 1 2constant potential X-rays is 6X10 , [49]. Since the 2mm aperture

in the mild steel box resulted in a narrow diverging beam, it is 
reasonable to assume, since the transmission through the lead is so 
small, i.e. 6X10-12 X 2.5X106, that the beam flux through the 10 2m 
aperture in the lead box can be approximated as

2.5X106photons sec.1
“2 -1This is equivalent to an exposure rate of 2.5X10 Gray hr.

When X-ray radiation impinges upon any material, radiation is 
scattered in all directions. In the lower cabinet, the pencil beam 
is scattered to the walls of the cabinet. This scattered radiation 
has a much lower exposure rate and it can be calculated using
equation (1) of [50]. For a 45°/45°scatter angle, there is a

2maximum of 0.05% of the incident beam scattered to lm per 100cm 
irradiated area, [51]. Using the equation referred to in [50], the 
maximum exposure-rate of the scattered beam on the inside of the 
lead shield of the cabinet door is

2.5X10-2 X IT X (0.1)2 X 5X10-4 _ 3. 9X10'9 Gray hr?1
100

- 3The walls of the lower cabinet were lined by 1.5X10 m thick lead
-3

shielding. Transmission through the 1.5X10 m lead for 50kV
_ 7

constant potential X-rays is 3X10 , [49]. The maximum calculated
exposure rate of the scattered beam outside the door of the cabinet 
is

3.9X10"9 X 3X10~7 = 1.2X10-15 Gray hr?1

In this way the radiation outside the X-ray cabinet is kept 
extremely low. The machine was passed for operation by the Nuclear 
Energy Board.
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X-Ray Tube
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s

Fig. IV.17
Diagram of the lead and mild steel cabinets.

Plate 4 . 6
The lead and mild steel chambers and the scan table.
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For the purpose of differential absorptiometry, many of the
photon energies produced by the X-ray tube were superfluous and 
added to the dead-time in the detector and in the pulse counting
equipment. In the second and third set of experiments, elements
close in atomic number were imaged. For this, only a narrow energy 
band of photons, which straddled the analyte K-absorption edges,
were required. By filtering the X-ray beam with a suitable absorber 
the unwanted photon energies were removed. This had the added 
advantage of reducing the beam flux, thus reducing dead-times.

In order to find a suitable filter, a computer program was 
written to calculate the filtered spectrum of the primary spectrum 
for possible filters. This program, see appendix J, is based on 
Beer’s law for a pencil beam of X-rays which is given by

N(E) = Nq (E) expj U(E) P j   4.1

where N and N are the incident and transmitted beam fluxes at o
energy E, U is linear attenuation coefficient and P is absorber
thickness. The program calculated the transmitted flux at each
energy, knowing the incident fluxes and linear attenuation 
coefficients at that energy. This was repeated for several 
different filter materials and thicknesses. Then, having produced 
many spectra, a suitable one was chosen.

For example, In the second set of experiments the analyte 
elements of interest were palladium Pd, K-edge at 24.36keV,46
silver 4?Ag, K-edge at 25.53keV, and cadmium 48Cd, K-edge at 
26.73keV. The X-ray energy spectrum most suited for imaging these 
elements was one with low flux for energies both below 25keV and 
above 29keV.

It was found, using the computer program in appendix J, that 
tin 5QSn produces a suitable profile for the desired energy range. 
Figure IV.19a, shows the unattenuated spectrum for a tube voltage 
of 40kV, [52]. Figure IV.19b shows the calculated spectrum for a
0.5mm Sn filter. Note the sudden drop in the photon count above 
29.2keV. This is due to the sharp increase in the tin mass 
absorption coefficent at this energy, see figure IV.18. The program

IV.3.3.1c Filtering the X-ray beam.



calculated a drop of 4X10 2 in the measured beam flux. When a 
0.29mm tin sheet was placed in a slide below the 2mm aperture in 
the mild steel box the resultant energy spectrum, when corrected 
for detector efficency, was in good agreement with the calculated 
energy spectrum. See figure IV. 19. This filter was used for the 
second and third sets of experiments.

IV.3.3.2 The Multi-Channel Analyser (MCA).

It was required to image several elements in these experiments. 
In order to count the photon pulses, either eight single channel 
analysers or a multi-channel analyser was needed. A model 7100 MCA 
by EG+G Ortec was available and was thus used. A schematic diagram 
of the apparatus used, which was the same for both experiments, is 
shown in figure IV.15. A serial remote control interface board had
been inserted into the MCA so that it could be controlled by the
BBC microcomputer. In this way the complete scan system was
controlled by the BBC microcomputer.

During a scan, the output pulses from the energy dispersive
Si(Li) detector, which were amplified by a spectroscopy amplifier, 
model 575 by EG+G Ortec, were firstly fed to the MCA. In the MCA, a 
pulse height analysis was performed. This involved measuring and 
sorting the pulse heights, according to height, into a histogram of 
photon energy versus photon count. After a preset counting period, 
the pulse counts in each of the regions of interest, which had been 
defined prior to starting the scan, were summed. The summation 
values were then transferred via the serial port as ASCII code to 
the RS423 serial port of the BBC. In the BBC, the ASCII code was 
interpreted by a computer program and the count data was stored in 
BBC memory. At the end of every second linear scan the data was 
sorted and stored on floppy disc.

As in the first set of experiments, the scan table consisted of 
a converted feedback CNC932 computer controlled drilling machine. 
Again, the scan stepper motors were controlled via an interface by 
the BBC microcomputer. A typical scan consisted of 40 X 1mm linear 
steps and 40 X 4.5 degree rotation steps. The BASIC computer 
program which controlled the data collection and the scan system is 
shown in appendix H.
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Fig. IV.18
The variation In mass attenuation coefficient for
tin in the vicinity of the tin K-edge.
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X-ray energy (keV)

Fig. IV.19
The calculated effect of a tin filter on an X-ray tube 
spectrum (for each case,the first number gives the filter 
thickness, the second the calculated transmission)

a) none, 1
b) 0.2mm, 9X10_'2
c) 0.3mm, 4X10 2
d) 0.5mm, 8.4X10' 3

The dashed line is Che measured X-ray spectrum for 0.29iTim Lin



The advantage of using a MCA for these experiments was that it 
allowed many regions of interest to be defined simultaneously. This 
meant that several elements could be imaged in one scan. However, a 
disadvantage of the MCA was that scan times were long, as the 
dead-time in the MCA was high. For example, the dead-time was 22% 
for 10,000 pulses/sec but this could be reduced to 14“/. by 
increasing the level of the low level discriminator of the MCA. No 
corrections for dead-times were necessary, as described in section 
II. 3.2.

IV.3.3.3 Method to centre rotation axle.

Before starting a scan, it was first necessary to align the
scan apparatus so that the centre of rotation of the scan coincided
with the centre of the rotation stepper motor axle. It was not 
possible to do this manually as the scan system was enclosed in the 
lead box which surrounded the X-ray tube. Incorrect centring would 
have resulted in ring artifacts in the images as described in 
chapter I. A computer program was written for the BBC microcomputer 
to find the centre of the rotation stepper motor axle and then, 
having found it, to position the motor at the scan starting
position. See appendix I.

In order to find the centre of rotation the scan system was 
firstly driven forward towards the X-ray beam in the Z-directlon 
until the rotation motor axle was in line with the X-ray beam. The 
rotation axle was then stepped through the X-ray beam in 0.1mm 
steps and the X-ray flux at each postion was measured. As the 
rotation axle passed through the beam the photon flux fell and then 
rose again as it passed out of the beam. The computer program 
recognised this fall and rise in the beam flux. The change in flux 
was not sudden, it was in fact a gradual change. See figure IV.20. 
From the intercept of the slopes the position of the centre of the 
axle relative to the scan starting position was found. The scan
system was then moved to the starting position and the specimen was 
moved into line with the X-ray beam. In this way the rotation 
centre was found to within 0 .1 mm.
IV.3.3.4 Experiment to image three analytes in a matrix.

In this experiment the three analyte elements were palladium 
Pd, silver Ag and cadmium Cd. Their K-edges are at 24.36keV,

4 6  4 7  48
25.53keV and 26. 73keV respectively, [44]. The specimen consisted of



six epoxy rods in glass test tubes, with outside diameter 6mm, 
inserted into a cork bung, 36mm in diameter. To two of these rods 
was added, 5% palladium metal in charcoal. Silver, in the form 
silver nitrate, was added to two more rods, while cadmium, in the 
form cadmium sulphate, was added to the final two rods. The analyte 
concentration in each case was several kg/m3. A diagram of the 
cross section of the specimen is shown in figure IV.21.

The X-ray tube potential for the scan was set at 40kV and the 
filament current at 5mA. The X-ray beam was collimated to give a 
1mm diameter pencil beam. The beam was filtered with a 0.29mm thick 
sheet of tin. Tin was a suitable filter since its K-edge occurs at 
29.21keV. The resultant transmitted spectrum is shown in figure 
IV.19. Prior to scanning, eight regions of interest were defined on 
the multi-channel analyser, two on each side of the analyte 
K-absorption edges. Their energy ranges are shown in table 4d.

Region of 
Interest

Lower
Energy

k e V

Higher
Energy

k e V

Centre
Point

k e V

1 23.20 23.50 23. 36
2 23. 90 24.20 24.04
3 24.54 24.70 24.70
4 25. 40 25.20 25.20
5 25.72 25.88 25.88
6 26.24 26.38 26.38
7 26. 94 27. 10 27. 10
8 27.44 27.60 27.60

Table 4d.
The r e g i o n s  of  I n t e r e s t  d e f i n e d  o n  t he  MCA.
T h e i r  c e n t r e s  w e r e  u s e d  t o  e x t r a p o l a t e  t o  t h e  
a n a l y t e  a b s o r p t i o n  e d g e s .

A complete scan took 40 hours to complete. It consisted of forty 
1mm steps at forty rotation positions, 4.5 degrees apart. The 
computer program used to control the scanning and to store the data 
is described in appendix H.

IV. 3.3.5 Scan Profiles.

When the scan was completed, the data stored on floppy disc was 
transferred to the VAX11/785. This data consisted of the counts at 
each step position for each region of interest on the MCA. Figure 
IV. 22 shows a typical X-ray absorption spectrum in which the effect 
of the palladium, silver and cadmium present in the beam path is



Fig IV.20
The variation in the measured photon count as the rotation 
stepper motor axle is stepped through the collimated X-ray 
beam. The dotted lines represent the extrapolation of the 
slopes.From the extrapolated lines the mid-point of the axle 
is determined.
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clearly seen. Using the extraoplation method described in section
II. 3, the analyte equivalent thicknesses for each of the three 
elements were calculated. See figure IV.23. Here, scan profiles and 
reconstructed images are described and analysed.

In order to generate conventional CAT images, scan profiles 
were generated on the VAX11/785 using the count data from a single 
ROI. The projections, as shown in figure IV.24a for a typical scan, 
are due to all elements present, both matrix and analyte. These 
were calculated using equation 2.1. There is no elemental 
discrimintion, unlike in the projection scan in figure IV.24b. This 
shows palladium equivalent thicknesses calculated, using equation
2. 10, with the counts from regions of interest 2 and 3 only. In 
this case there is no extrapolation so the palladium peaks sit on a 
negative background. In the same figure, the negative background 
due to the matrix has been removed by the extrapolation method. 
Note, for this case, the the other elements, silver and cadmium, 
are considered to be part of the matrix.

IV. 3. 3.6 Image reconstruction and analysis.

Two methods of image reconstruction were used, the first being 
the filtered back-projection method, the second being the iterative 
ART method. The filtered back-projection method was used to 
reconstruct images from projections for a single ROI as it was fast 
to implement and the absolute pixel were not critical. On the other 
hand, the ART method was much slower, several minutes CPU tine per 
iteration compared to 30 seconds CPU time in total for filtered 
back-projection. Several iterations were required for ART before a 
final image was produced which satisfied the criteria for 
convergence as defined in section II. 4.5. However, the elemental 
concentrations are close to the expected values. See table 4e. This 
is because of the use of fractional overlap ares to 2% accuracy.

The first image reconstructed was a conventional CAT image 
showing the spatial variation in attenuation through the slice at 
24.04keV, the average energy of region of interest 2. Plate 4.7a 
shows the six test tubes in the cork. However, it is not possible 
to say which element is present, nor tell its concentration, in 
each of the test tubes. On the other hand, it is possible to say 
that the two tubes on the left have higher densities. Overall, this



PALLADIUM

CADMIUM

O SILVER

Fig. IV.21
Diagram of a cross-section through the specimen showing 
the relative^ positions of the test tubes in the cork.
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type of image is useful in seeing the spatial relationships within 
the specimen but no element information is present.

The CAT images reconstructed using analyte equivalent 
thicknesses show the variation in concentration of each analyte 
element through the slice. In plates 4.7b, 4.7c and 4.7d, there are 
three images which show the spatial distribution of the palladium, 
silver and cadmium respectively. When compared to plate 4.7a and 
figure IV. 21, it is possible to tell what element is in each test 
tube. In these images, the display colour for each pixel is 
determined by the pixel concentration. By placing the screen cursor 
on a pixel, the display program printed the concentration in that 
pixel. Having found the maximum elemental concentrations in this 
way, a comparison was made with the expected concentrations in 
Table 4e. The differences may be due to uneven mixing, especially 
in the case of the silver nitrate in the epoxy. However, the test 
tubes with low and high concentrations are correctly identified. 
Overall, this experiment shows that it is possible, using this 
technique, to produce in a single CAT scan, element specific images 
of several adjacent elements showing the elemental distribution and 
concentration in a slice through a specimen. These were the first 
multiple element specific CAT images produced using a tube source 
of X-rays. In previous methods, by Van Rlet et al. f4] and RIederer 
and Mistretta [5], only one element could be Image in a single scan 
and the methods failed when another element, close in atomic number 
to the element of Interest, was present.

Element 3Concentration [kg/m ]

Maximum 
from Image

Expected from 
amounts added

Pd 2 1 15
Pd 1 0 7
Ag 17 25. 4
Ag 1 2 12. 7
Cd 15 22
Cd 1 0 1 1

Table 4e. [30]
A c o m p a r i s o n  o f  t h e  a v e r a g e  c o n c e n t r a t i o n  o f  

P d ,  Ag a n d  Cd i n  e a c h  r o d  w i t h  t h o s e  o b t a i n e d  

b y  D i f f e r e n t i a l  X - r a y  A b s o r p t i o m e t r y  CAT.

7A total of 10 photons were detected during the complete scan.
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Fig. IV.22
An example of the filtered spectrum after transmission 
through the specimen. The dips are due to the increased 
absorption near the Pd, Ag and Cd K-edges. These edges are 
marked by arrows. The regions of interest are given in table 
4e .
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values are used in equation 2.21 to determine the equivalent thickness 
of each analyte element for this particular beam direction.
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Fig. IV.24
a) Projection data obtained using equation 2.1 from the 

counts in region of interest 2 of table 4e. These are 
conventional CAT projection data but for a narrow energy 
band.
b) 1) A typical scan profile showing the variation in 

palladium equivalent thickness. The data was generated using 
equation 2.11 for regions of interest 2 and 3. No corrections 
were made for matrix effects hence the negative background.

2) As in 1) but obtained using equation 2.21 which was 
extrapolated data. The negative background has been 
effectively removed.
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Using equation 3.74 in section III.5, for a water like matrix of
similar diameter and the same range of energies, the sensitivity to

3these elements is of the order of kg/m for differential X-ray 
absorption CAT. This is in agreement with the pixel to pixel 
variation in the images.

IV.3.3.7 Experiment to image analyte elements in a mixture.

In all the experiments so far described, the analyte elements 
have been separated into test tubes containing only one analyte. 
There has been no mixing of the analytes. In this experiment, two 
analyte compounds are mixed nonuniformly together in a silicon 
rubber mould. In order to visually distinguish between the two 
compounds, fluorescent dyes were added to the mixture. The sample 
was scanned using the X-ray tube source and the resultant images 
were compared with the distribution of the dyes in the slice.

The two analyte elements chosen were cadmium and indium which 
are one atomic number apart. Cadmium has its K-edge at 26.73keV 
while indium’s K-edge occurs at 27.95keV, [44]. Prior to mixing,
two separate mixtures were made. The first consisted of cadmium 
sulphate and fluorol green gold dye in silicon rubber while the 
second consisted of indium(1 1 1 )-chloride and pyrenebutyric acid in 
the silicon rubber. In both cases, the concentration of the analyte

3element was several kg/m . The two mixtures were mixed together in 
a cylindrical mould, 3cm in diameter, and then left to solidify. 
When solid, the sample was mounted onto the axle of the rotation 
stepper motor.

The tube filament current was set to 20mA, due to the higher 
attenuation of the silicon rubber while the tube potential was set 
to 40kV. The tin filter, 0.29mm thick, which was used in the 
previous experiment was also suitable for imaging these two analyte 
elements. The shape of the resultant filtered spectrum is shown in 
figure IV.19. Six regions of interest were defined on the MCA prior 
to scanning. They are shown in Table 4f. The apparatus used and the 
procedures followed were the same as in the previous experiment. 
Again, the scan consisted of forty 1mm steps at forty rotation 
positions.
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Plate 4.7a
Reconstructed image showing the six test tubes.
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Plate 4.7b 
Palladium specific image.
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Plate 4.7c 
Silver specific image.

Plate 4.7d 
Cadmium specific image.
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Region of Lower Higher Centre
Interest Energy Energy Point

k e V  k e V k e V

1 25. 72 26. 02 25. 87
2 26. 25 26. 54 26. 40
3 26. 94 27. 24 26. 09
4 27. 44 27. 74 27. 59
5 28. 14 29. 44 27. 29
6 28. 64 28. 94 26. 79

Table 4f
T h e  r e g i o n s  o f  i n t e r e s t  a s  d e f i n e d  on t h e  MCA.

T h e i r  c e n t r e s  y e  r e  u s e d  wh e n  e  x t  r a p i  o a  t  i n g  t o  
t h e  a n a l y t e  a b s o r p t i o n  e d g e s .

IV.3. 3.8 Image reconstruction and analysis of results.

One scan of the specimen was made. When completed, the data was 
transferred to the VAX11/785 for reconstruction. Prior to 
reconstructing the images, the scan projections and equivalent 
thicknesses were calculated. Figures IV.25a and IV.25b show the
equivalent thicknesses of the cadmium and indium respectively which 
were calculated using the extrapolation method. In both profiles, 
the matrix effects have been removed by the extrapolation. The 
filtered back-projection reconstruction method was used in this 
case as it was faster and the concentration values were not
required. The first linages were reconstructed using the projection 
data from region of interest 2. The image to the right in plate 4.8 
shows density variations across the slice but there is no elemental 
discrimination.

Element specific images of the object were reconstructed from 
extrapolated equivalent thicknesses. The first is on the left in 
plate 4.9 and shows cadmium. Note the "scottie dog" in the left 
hand side of this image. The second on the right of figure 4.9 
shows indium. If these two images are overlapped the match is very 
good. Note that there is some mixing of the two elements in the top 
right hand corners. When these images were compared with the 
original specimen the match was excellent. Unlike the previous 
experiments, the elements were mixed unevenly in the specimen so no 
comparisons of concentrations could be made. However, this
experiment showed that the technique can image separately two
unevenly distributed and adjacent elements in a single scan of the 
specimen.



IV.3.4 Experiments to determine the sensitivity of CAT to 
elemental imaging.

IV.3.4.1 Introduct ion.

Equations to determine the sensitivity of CAT to an analyte
element in a uniform matrix were derived in chapter III for two 
common situations. The first, using equations 3.25 and 3.38, was 
for the case when analyte can be added to the matrix and the 
second, using equations 3.73 and 3.74, was for when analyte is 
already present in the matrix. Then, using the calculated examples 
which were from section III.6, the theoretically determined
sensitivities are compared with sensitivities which were determined 
experimentally. In this way, it was hoped to verify the theory for 
sensitivity to analyte elements derived in chapter III.

The experiments involved scanning in turn, specimens which 
contained successively lower concentrations of analyte. Then, from
the reconstructed images of the specimens, the minimum detectable
analyte concentration in the matrix could be determined. Note, in 
order to reduce the number of scans required, only one set of scans
was made. One scan of each specimen was sufficient as the same
count data could be used for both situations.

IV.3.4.2 Description of specimen and apparatus.

Water was chosen as the matrix for the experimental work while
cadmium, Cd, in the form cadmium sulphte was chosen as the4 8
analyte. Solutions of cadmium sulphate dissolved in distilled water 
were made having cadmium concentrations of 1 0 , 1 , 0 . 1  and 0 . 0 1

kg/m . A matrix sample containing distilled water only was also 
made. The samples were sealed with a layer of paraffin wax in a 
light plastic cylindrical container. The container had an outside 
diameter of 3.2cm with walls 0.1cm thick. Plastic was chosen as the 
container material because it’s attenuation coefficients are
similar to those of water for energies near the cadmium
K-absorption edge at 26. 73keV. The linear attenuation coefficients 
of water and polyethylene at 26. 73kev are 44m 1 and 30m 1 
respectively [29].

The apparatus is the same as that used in the second set of 
experiments. Again, the X-ray tube was the source used. In order to
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Fig. IV. 25
a) A typical scan profile showing the variation in cadmium 

equivalent thickness. The data was obtained from the 
extrapolated ln(No/N) values.
b) The corresponding scan profile showing the variation in 
the indium equivalent thickness.

168



Plate 4.8
Reconstructed images of silicon rubber specimen. The bottom 
left shows cadmium while the bottom right is a conventional image.

Plate 4.9
Element specific CAT images showing cadmium (bottom left) and 
indium (bottom right). The top images are similar.

169



image cadmium, X-ray energies which straddled the cadmium K-edge at 
26.73keV were required. The 0.29mm thick filter tin filter was used 
to remove unwanted photons. The filtered spectrum is shown in 
figure IV. 19. The tube voltage and filament current were set at 
40kV and at 20mA respectively. Prior to scanning, two regions of 
interest on both sides of the cadmium K-edge energy were defined on 
the multi-channel analyser. See table 4g. The 1mm diameter pencil 
beam of X-rays was obtained by using 1mm diameter apertures in 
0.01m thick lead sheets which were placed on the floors of the 
steel box and lead cabinet.

Region of 
Interest

Lower
Energy
keV

Higher
Energy
keV

Centre
Point
keV

1 25. 72 26. 02 25. 87
2 26. 25 26. 54 26. 40
3 26. 94 27. 24 26.09
4 27. 44 27. 74 27. 59

Table 4g
The regions of Interest as defined on the MCA.

Their centres were used when extrapolating to 
analyte absorption edges.

Scans of the specimens consisted of forty 1mm linear steps and 
forty 4.5 degree rotations. The specimens were mounted onto 
rotation the axle. In order to ensure the reproduciblity of the 
scans, the scan start position was found by using the centre of 
rotation program described in section IV.3.3.3 and appendix I. It 
was important to be able to reproduce the scans exactly as Images 
were subtracted when determining the sensitivity. Incorrect 
positioning would result in artifacts in the subtracted images and 
might lead to incorrect determination of the sensitivity.

IV.3.4.3 Experiment to determine the elemental sensitivity when 
analyte can be added to the matrix.

In section III. 6, example 1, it was predicted by calculation 
that the sensitivity to cadmium analyte in a water matrix of 
diameter 0.03m, using 10? incident photons of energy 30keV and with 
a machine factor Q=38 is 0.24kg/m3. It would therefore be expected 
that for a similar water matrix using a similar number of X-ray 
photons of an energy which is just above the cadmium K-edge energy,



that the experimentally determined sensitivity would be close to 
this calculated sensitivity. This comparison is made here by 
considering the scan data for region of interest 3. This region of 
interest encompasses photons of energies 26.94keV to 27.24keV and 
for each scan the estimated incident photon count was approximately 
8.5X106 photons. Thus using region of interest 3, it would be 
expected that the experimentally determined sensitivity should be 
in good agreement with the calculated sensitivity.

In figure IV.26, scan profiles of ln[No/N] are shown for 
typical scans of the sample for each cadmium concentration. Images 
of the slices through the specimens were reconstructed using the 
computer program in appendix B which is based on the Ram-Lak. 
filtered back-projection method. In order to show the density 
distribution of the cadmium analyte only for each scan, the image 
of the water matrix was subtracted in turn from each of the water
plus cadmium images. The resultant images, see the top of plate
4. 10, show the resultant cadmium density distribution through the 
slice. The cresent shaped artifact is due to imperfect matching of 
the water and water plus cadmium images. Also, the unevenness in 
the images is due to amplification of the statistical noise in the 
count data. However, because of the noise in the images and the 
small concentration of cadmium, the cadmium is not visible in the 
subtracted images for 0.1 and 0.01kg/m3. On the other hand, the 
cadmium is quite visible in the subtracted images for 1 0 and

3lkg/m . See plate 4.10.

Subsequently, a scan was made of a specimen with a cadmium 
concentration of 0.25kg/m3. In the resultant subtracted image, the 
cadmium is just distlnguishible above the background. See bottonm 
left image of plate 4. 10. This is in fact in good agreement with

3the previously calculated cadmium sensitivity of 0.24kg/m and so 
it is a good verification of the theory developed for sensitivity 
when analyte can be added to a matrix.

IV.3.4.4 Experiment to determine elemental sensitivity when the
analyte is already present in the matrix.

In this second situation, when the analyte is already present 
in the matrix, the count data from all four regions of interest was 
required to compensate for the lack of matrix data. Although a
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Linear Scan Positions

Fig. IV.26
Projection data obtained using equation 2.1 from the counts 

in table 4g for water and cadmium. The data obtained for 
cadmium concentrations of 10, 1, 0.25 and 0.1 kg/m are shown.
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Loin level = 1.54 
High level = 17.«

Lou level = I . N  
High level = 13.11

Plate 4.10
Resultant images when water images are subtracted from water plus

cadmium images. The top Images are for 10, 1 . 0.25, 0.1 and 0.01
3 3kg/m . The bottom left shows the subtracted image for 0.25 kg/m

3
and the bottom right shows the subtracted image for 0.1 kg/ra .

Plate 4.11
The images for extraploation to cadmium K-edge. The top images

are 10, 1, 0.25, 0.1 and 0.01 kg/m3. The bottom left is for
3 31 kg/m and the bottom right is for 0,25 kg/m .The cadmium is just

visible in the bottom left image but not in the bottom right.
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matrix sample was available for this experiment, it was not used in 
order to simulate a situation where a matrix specimen would not be 
available. Instead, the count data in the regions of interest were 
extrapolated to both sides of the analyte K-edge to remove the 
effect of the matrix. Thus, there was no need for image subtraction 
and the analyte was said to be detectable if it was visible above 
the background in the image. In example 2 of section III. 6 it was
calculated, that the sensitivity to cadmium in a 3.2cm diameter

7 3water matrix using 10 photons is 0. 69kg/m . Included in this
calculation was a machine factor Q=38 and a factor f=3 to account
for the noise amplification due to extrapolation.

In the experiment the scan data collected in all four regions 
of interest was considered. Only the matrix scan data was 
disregarded. The cadmium equivalent thicknesses were calculated 
using equation 2.21 which is given by

r Yh - Yi
L Uah - Ual

where the terms Yh and Yi were obtained by extrapolation of the 
counts to the cadmium K-absorption edge. The cadmium absorption 
edge jump (uah-uai) is 3.6m2/kg [29]. The images of the slice
through the specimen were reconstructed using the cadmium 
equivalent thicknesses by the Ram-Lak filtered back-projection 
method. See the top images of plate 4.11. The cadmium is cleary 
visible in the 1 0kg/m3 image and it is still visible in the lkg/m3 

image, (see bottom left- Image of plate 4.11). In the 0.25, (see 
bottom left image of plate 4.11), 0.1 and 0.01kg/m3 images it is 
not possible to distinguish the cadmium above the background. Thus, 
it is obvious that the sensitivity must lie between 1 and 
0.25kg/m3. It would be difficult to determine an exact value of the 
sensitivity, as it is subjective, and depends on the visual 
perception of the viewer. However, it can stili be said that the 
experimentally determined sensitivity is in good agreement with the

3calculated sensitivity of 0.69kg/m .



Summary.

In the course of this thesis, the application of differential 
X-ray absorptiometry to computerised axial tomography to produce 
element specific images of the distribution and concentration of 
atomic elements in non-living specimens was investigated both 
theoretically and experimentally. The sensitivity of the techniques 
developed, in terms of the minimum analyte concentration detectible 
in a reconstructed image of the specimen was also investigated. 
Finally, the equations derived to calculate the minimum analyte 
concentrations detectible in a cylindrical matrix were compared 
with experimentally obtained values. In this summary, the 
theoretical and experimental work undertaken is summarized and the 
main observation noted are outlined briefly.

In the theory developed in chapter II, equations based on 
differential X-ray absorptiometry were derived and applied to
computerised axial tomography in order to produce element specific 
images. The theory derived and outlined in chapter II was centred 
on two situations. This Included the situation where the atomic 
element of interest, i.e. the analyte element, could be added to or 
removed from the specimen, i.e. the matrix, and the situation where 
the analyte element was already present in the matrix. For both 
situations, equations were derived, see equations 2.21 and 2.35, to 
calculate the analyte equivalent thickness (kg m ) along a path 
length through the specimen from the measured incident and 
transmitted photon counts. Using such calculated equivalent 
thicknesses, it was then possible to produce element specific 
images which were completly free from matrix effects and beam 
hardening effects. For the first case, where the analyte was added 
to the matrix, two scans were required. The first was a scan of the 
matrix only while the second was a scan of the matrix plus analyte. 
Two scans were necessary since the X-ray energies which straddled
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the analyte absorption edge were typically several keV from the 
analyte absorption edge. In the second case, where the analyte 
element was already present in the matrix, only one scan was 
required. Only one scan was required because the incident and 
transmitted photon counts were monitored at several narrow energy 
bands on both sides of each analyte absorption and the effect of 
the matrix was removed by extrapolation of the projection values to 
the analyte absorption edge. Using this technique, several elements 
could be imaged simulateously in a single scan. This was possible 
by extrapolating the projection values in the narrow energy bands, 
which lay between two analyte absorption edges, to both analyte 
absorption edges.

In order to produce reconstructed images of a cross-sectional 
slice through a specimen, reconstruction programs were written on 
the VAX11/785. These programs were based on well established 
reconstruction algorithms which are normally used to reconstruct 
conventional CAT images. Using these reconstruction algorithms,

_ 3images showing analyte concentration (kg m ) through a cross- 
section were reconstructed from analyte equivalent thickness data. 
The first algorithm used was the additive algebraic reconstruction 
technique (ART) [15]. Using ART, it was found that the resultant 
analyte concentration values were in good agreement with the 
expected values to within 5% error [28]. However, this method was 
very slow. It required 35 minutes of CPU time per iteration for a 
40X40 pixel image on the VAX11/785 and many iterations were 
normally needed to obtain a satisfactory image: Also, a large
amount of computer memory was needed to store the beam path and 
pixel overlap areas. The second reconstruction technique adopted 
was a modified version of the Ram-Lak filtered back-projection 
reconstruction technique [36], Again, a computer program was 
written on the VAX11/785. It was found that the filtered 
back-projection reconstruction technique was much faster to 
implement than the ART reconstruction technique. It took less than 
1 minute CPU time to reconstruct a 40X40 pixel image. However, the 
resultant and expected analyte concentration values were not in 
such good agreement as with ART. Conventional CAT images, which 
were used as reference images for the element specific images were 
also produced using the filtered back-projection reconstruction 
method from conventional projection data.
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In chapter III, the sensitivity in terms of the minimum analyte 
concentration detectible in a cylindrical uniform matrix was 
investigated. Grodzin [7] had previously investigated the 
sensitivity to critical atoms for differential X-ray absorptiometry 
applied to CAT using synchrotron radiation. However, Grodzin [7] 
did not derive equations to calculate the minimum analyte 
concentration detectible in a chosen matrix. In this chapter, 
equations to calculate sensitivity were derived for the two 
situations. The first equations, equations 3.25 and 3.38, were 
derived for the case where analyte can be added to the matrix. For 
this case, the minimum analyte concentration detectible in a matrix 
was investigated as a function of X-ray energy for cadmium analyte 
in water, silicon and iron matrices. It was found that the
sensitivity was a maximum at energies above the cadmium
K-absorption edge for all matrices. The second set of equations, 
equations 3.59 and 3.74, were derived for the case when the analyte 
is already present in the matrix. For this second case, the 
sensitivities of all analyte elements between atomic number Z=20 
and Z=90 were calculated for water, silicon and iron matrices. The 
calculations showed that the sensitivity decreased as the atomic 
number of the analyte decreased, except for analytes which were 
lower in atomic number than the matrix where there was a sudden 
increase in sensitivity. For both the former and latter cases, it 
was found that the minimum concentration detectible in a specimen 
was dependent on several factors. These included the specimen 
diameter, in terms of mean free paths, the total number of incident 
photons, the separation in standard deviations between images with 
and without analyte, the.number of steps per linear scan across the 
matrix diameter and the matrix and analyte densities and mass 
absorption coefficients. It should be noted that, for all total 
incident photon counts greater than 1 0 6 photons and for any number 
of linear steps greater than twenty per linear scan, the 
sensitivity to any analyte in any matrix is a maximum when the 
specimen diameter is equal to 2.5 mean free paths. A further factor 
f  was included for the case when the analyte is present in the
matrix. This was to account for the projection of the Poisson
distribution of the photon counts during the process of 
extrapolation. In order to test these equations, example 
calculations were made for cadmium in a water matrix. These proved 
to be in good agreement with the experimentally obtained values in



section IV.3.4.

In the experiments undertaken to produce element specific 
images, the use of a high resolution energy dispersive Si(Li) 
detector was the key which allowed such images to be produced. It 
was because of the high resolution of this detector, that it was 
possible to define narrow energy bands close to and straddling the 
analyte absorption edge. The scan principles used to collect the 
data were based on the scan principles used in the first generation 
CAT scanners [3]. However, since the Si(Li) detector was mounted in 
a liquid nitrogen dewar, the specimen was stepped and rotated. This 
was completly analogous to stepping and rotating the source and 
detector. In the experiments, the spatial resolution of the images 
was limited by the diameter of the X-ray beam collimators which 
were 1mm in diameter. In addition, the use of timing single channel 
analysers allowed one analyte element to be imaged while the use of 
a multi-channel analyser made it possible to image several analyte 
elements simultaneously. The multi-channel analyser was not suited 
to coping with high photon fluxes and hence producing element 
specific images in short scan times. This would have required pulse 
counting apparatus with high count capabilities.

The experiments undertaken in chapter IV were based on the 
theory developed in chapter II. In the first set of experiments, 
the analyte equivalent thicknesses were calculated, using equation 
2 .2 1 , from the scan data which was collected when using
radioisotope sources. When using the radioisotope sources, the 
specimens were scanned both before and after the palladium and 
caesium analytes were added. Two scans were required in order to 
remove the matrix effect. Since the output photon flux from the 
radioisotopes was low, long scan times were required. Also, the 
number of analyte elements that could be imaged was limited by the 
availability of radioisotopes which could provide the required
X-ray energies.

The tube source used in experiments ii) and iii) of chapter IV
was part of a converted Philips PW 1270 automatic simultaneous
X-ray spectrometer which had been modified by A.G.R. Fenelon. 
However, because of the high output photon flux from the tube and 
the low count capabilities of the multi-channel analyser, it was 
found necessary to filter the X-ray beam. Filtering the X-ray beam
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had the effect of both reducing the photon count as well as 
removing superfluous photon energies. Even with filteration of the 
X-ray beam, large dead-times were recorded in the multi-channel 
analyser. The calculated analyte equivalent thicknesses were 
unaffected by the MCA dead-time. A computer program was written to 
help choose a suitable filter and filter thickness. It was found 
using this program that a tin filter, which is the next highest 
element above indium in the perodic table, was most suitable when 
imaging palladium, silver, cadmium or indium. Several experiments 
were carried out and element specific images of adjacent elements 
were produced both when the analyte elements were seperated into 
test tubes and mixed together. In all cases the analyte

3concentrations were several kg/m . Experiments were also carried
out which verified the theory developed on the sensitivity to
analyte for both situations. It was found that the minimum cadmium
concentration that could be imaged in a 3 centimetre diameter water 

7  3matrix using 10 photons was 0.25 kg/m for the case where the 
analyte could be added to the matrix. Similarily, it was found that 
the minimum cadmium concentration that could be imaged when the

3analyte was already present in the water matrix was 1 kg/m under
the same conditions.
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Conclusion.

In the research undertaken for this thesis, differential X-ray 
absorptiometry was applied to computerised axial tomography to 
produce element specific images, showing analyte concentration, 
using both radioisotope and X-ray tube sources. In the experiments 
undertaken using these sources, element specific images showing 
analyte concentration were obtained for analyte elements, even in 
the presence of other elements close in atomic number, which were 
free from matrix effects and beam hardening effects. These problems 
had been present in images which had been produced in previous work 
by Van Riet [4] and Riederer and Mistretta [5], Images without 
these artifacts had only previously been obtained using 
synchrotrons, i.e. by Flannery et al. [8 ] and by Thompson et al.
[9]. However, neither of these authors discussed the ability of the 
technique to measure the concentration of the analyte element. 
Finally, the sensitivity of the technique was investigated and 
equations were derived and verifed experimentally to calculate the 
minimum concentration of an element that is detectible in an image.

The images obtained using the X-ray tube source were the first 
element specific images of adjacent atomic elements obtained in a 
single scan. Despite the low output photon fluxes of the 
radioisotopes and X-ray tube, as compared to a synchrotron source, 
it is interesting to note that a factor of two increase in the 
total number of photons only results in a factor of one increase in 
the sensitivity. Even though only five different analyte elements 
were imaged, namely palladium, silver, cadmium, indium and caesium, 
the work in this thesis has shown that it is possible to image a 
wide range of analyte elements using suitable radioisotope and 
X-ray tube sources in a variety of low atomic number matrices.
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Future Developments.

The new elemental imaging techniques developed and the 
experimental findings reported herein have been the basis for
several new CAT elemental imaging techniques which are currently
under investigation. The equations derived for element sensitivity 
have also been of assistance in these projects. A dedicated system, 
which is portable, could also be designed and built using the
principles decribed in chapter II. There is also still much work
that could be done to examine possible applications of the 
techniques developed.

The spatial resolution of the apparatus described in chapter IV 
was of the order of 1 millimetre which is compatible with modern 
conventional CAT scanners. Presently, element specific images with 
better spatial resolution can only be produced using synchrotron 
sources, [8 ], [9]. A CAT scanner, using a tube source of X-rays and 
designed to produce element specific images with submillimetre 
resolution, is currrently being assembled and investigated by N. 
O’Hare. With this apparatus, it is hoped to image low atomic number 
elements, in objects of diameter less than 4 millimetre, using the 
element imaging techniques developed in chapter II. Although the 
spatial resolution will not be as great as with synchrotrons CAT 
systems, which have spatial resolutions of the order of micrometres
[8 ], the system will be portable.

A second system, which Is currently being investigated by C.E. 
Markham, involves the possibility of producing element specific CAT 
images using low resolution energy dispersive detectors and a tube 
source of X-rays. It is hoped that by sweeping the tube voltage 
across the analyte K-absorption edge, while measuring the 
transmitted photon flux using a low resolution energy dispersive 
detector in conjunction with a scaler whose low level discriminator
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is set at a fixed position behind the tube potential, data may be 
collected in the form of photon counts within an energy band. By 
deconvolution of this data, monochromatic spectral information 
should be obtained. This spectral information could then be used to 
produce element specific images. Some sensitivity would be lost, as 
compared to the present technique, but it should still be possible 
to image a few kilogrammes per cubic metre using similar total
photon counts.

It might be also possible, using an element as a contrast
agent, to diagnose damage to the muscle in the wall of the heart.
It is known that the uptake of certain atomic elements in damaged 
heart muscle is different from that in normal muscle. Thus by using 
a suitable contrast agent in conjunction with element specific 
imaging it might be possible to recognise the damaged muscle. At 
the moment the sensitivity to different elements in a chest
phantom, using the technique described in section III.4, is being 
examined by J. Fryar, N. O ’Hare and C.E. Markham to find a suitable 
element. Preliminary measurements have shown that the measured and 
calculated sensitivities are in good agreement for potassium 
iodide. However, it is expected that better sensitivity could be 
achieved using gadolinium as the contrast agent. This has yet to be 
investigated.

It was stated in chapter IV that the scan times were long when 
using the multi-channel analyser with the tube source. This was 
because of the large dead-time for relatively low count rates i.e. 
greater them 2X104 counts per second. A dedicated pulse counting 
system, using single ' channel analysers and Individual pulse 
counters might reduce such dead times and hence decrease the scan 
times. It might also be possible to reduce the time to generate 
reconstructed images. In the apparatus used for the research in
this thesis, the count data was transferred to the VAX 11/785 on 
completion of the whole scan. If instead, the data was transferred 
to a microcomputer such as an Acorn Archimedes at the end of each 
linear scan, the reconstruction process could run in parallel to
the data collection. However only filtered back-projection
algorithms could be used since the ART reconstruction process 
requires that all data is collected before beginning a
reconstruction [15]. In addition, the present system is too heavy 
and too bulky to be portable. However, a purpose built portable
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machine, based on the Hewlett Packard Faxitron X-ray photography 
machine, could be built. The Faxitron can generate X-rays up to 
120keV at a maximum tube current of 3mA. This would allow imaging 
of the heavier elements. If scan times were reduced considerably, 
three-dimensional element specific images might become a reality. 
Such a machine would be a very useful non-destructive testing tool.

There is much work yet that could be done to study possible 
applications of the techniques of differential X-ray computerised 
tomography developed. These could include medical and non-medical 
applications. Medical applications might include the detection of 
lead (K-edge 88.01keV) in bones, the distribution and concentration 
of calcium (4.03 keV) or strontium (16.11 keV) also in bones or the 
accumulation of iodine(33.17 keV) in the thyroid gland. For medical 
application however, a fast scan time system would be required. 
Also the high absorption of low energy X-rays could be a problem.
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Appendix
A: Details of the convolution function and Hilbert transfrom which

were outlined in section II.4.

B: Program to filter the projection data using the Ram-Lak filter
function and to reconstruct an image using back-projection.

C: Program to calculate analyte equivalent thicknesses by
extrapolation to the analyte absorption edge for the VAX11/785.

D: Program to display a reconstructed image using either grey or
false colour shades for the BBC microcomputer.

E: Program to calculate dummy data for a phantom consisting of two
small cylindrical objects 3X3 pixels in size on the VAX 11/785.

FI: Program to calculate the X-ray beam and pixel overlap areas for
a 40X40 pixel reconstruction grid on the VAX 11/785.

F2: Program to reconstruct the images using the Algebraic
Reconstruction Technique for 40X40 pixels on the VAX 11/785.

G: Program to  c o n tro l th e scan ta b le  m otions and to  c o l l e c t  and

s to r e  the photon cou n ts when using the SR7 s c a le r  ratem eter  

and r a d io iso to p e  so u rces  fo r  the BBC m icro-com puter.

H: Program to  c o n tro l the scan  ta b le  step per m otors and the d ata

c o l l e c t io n  and s to r a g e  when u sing  the M ulti-C hannel A nalyser

and X-ray tube source for the BBC micro-computer.

I: Program to  f in d  the s tep p e r  motor a x le  cen tre  and to  f in d  the

scan s t a r t  p o s i t io n  fo r  th e  BBC m icro-computer.

J: Program to calculate and display filtered spectra for X-ray
tube source.

K: Tables of X-ray K-absorption edges, characteristic X-ray lines
fluorescence yields.

A p p e n d i c e s
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A p p e n d i x  A * * 
♦ *

In section II. 4.4.3, it was stated that the Radon transform 
associates a function [fif] of two variables with a function f of 
two polar variables. Furthermore, it was stated that the operator 
R \ called the inverse transform associates the function f with 
the function [ftf]. It was shown that if such an operator exists, 
then for any function of two polar variables, *J?f ] equals f for 
all point (r,<£) such that

[R_1flf] (r,<fi) = f(r,4>)   2.44
The operator R 1 can expressed as a sequence of simple operators,

R~X =  - —  B H z  Dz 2rr
where

1) Dz is the partial derivative of p(l,0), where p = R f ,  with 
respect to its first variable to obtain the function q(l’,8) and it 
is given by

rn  ̂ f \  1« p(l+dl,0) - p(l,0)IDz p ] ( l ,e )  = lim —     ,
d 1*0

2) Ht. is a Hilbert transform of the function q U ’,0) with 
respect to its first variable to obtain the function t(l’,0). It is 
given by

[ f f z q H r  . 0 )  = f  - q [ ? i y  d l  
* -00

This is an improper integral, since its integrand diverges at 1=2’. 
It is instead evaluated in the Cauchy principle value sense, that 
is

[H-.„nr.e> = 4 i 4 8  [J‘
*■ -00 1 ' +E J

and
3) where fît is the back projection operator. It is a function 

of two polar variables whose value at any point (r,^) is defined by

[Bt](r,0) = J t|r cos | 0- , oj d0
o

From figure 11.11, it can be seen that the value at any point 
(r , < p ) , the back-projection of a function t can be obtained by 
integrating t on a segment (from t=0 to t=n) of the curve described



in that figure.

Combining all the equations, one gets that for ; 
two variables and for any point (r,<p)

„77 .00

[ B t f z D z p ]  (r, <p) -  — p i  ( 1 , 8 )

rcos(0-</>) - 1

funct ion

dl d0
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-0  •• data us in:- - -,r -l c i l " t ̂ *•
” 0  *  *  ANC B^CJ- .' ' t C  ~ 4 $ *  4 0  *3F I D *  *
ao •« ■ *

1 0 0  ** AFPLlCATlCN OF RAM_*_Af FIltEF « •
! 1 0  b l  g 1 = - 1 0 0 0  
120 diq2=- 1000 
1 7 0  s m a  L I  =  I 0 0
1413 i n p u t  "NA ME C-F C A TA S r  F ! l E "  t r ? i n e r
1 5 0  : p p u t  " F I L E  NA.'iE ►-OF j A t m S^O ^m GE , n c t i r ' e l /
1 6 0  o p e n  n a m e *  ♦ o r  i n p u t  3 E * i 1 e # 1  
1 7 0  a i m  s t p ‘. 2 1 0 0  , c o r r e c t  ' 2 1 1 0 '
1 0 0  f o r  r - 0  t o  3 9
1 9 0  i o r  t » ( r * 5 0 ) * l  t o  ( r * 5 0 > + 5
2 0 0  s t p  ( t  5 = 0
2 1 0  n e x t  t
2 2 0  + o r  t - i r  * 5 0  ) -* -46 t o  ? r * 5 0 ) + 5 0  
2 3 0  s t p ( t  > = 0  
2 4 0  n e x t  t
2 5 0  f  or* t  = r r - * 5 0 i  -*-6 t o  < r * 5 0 ' + 4 5  
2 6 0  l n p u t # 1 , s t p  ( t )
270 stp ( t ) *-1 o g  < t 10—stp I T ) ) ■' 10)
2 8 0  i f  s t p ( t )  b i g i  t h e n  G i g l = s t p ( t )
2 9 0  n e x t  t
3 0 0  n e x t  r
3 1 0  c 1 o s e « 1
3 2 0  f o r  r -  0  t o  3 9
3 3 0  f o r  k = ( r * 5 0 ) + 6  t o  <r + 5 0 ) + 4 5
340 corrct(^)ssstp,k)*.25“ ( (stp (k-1 ) * .  101>♦< s t p  <I +1)*. 101) > ~ ( ( 3tp ( k -3 > *.011 
350 next k 
360 next r
370 open name!!* for output as file#2 
300 for jX»0 to 39 
390 fornX*(jX*50)+6 to < jX*50) *-45 
400 print#2,corrctCnX)
410 next nX 
420 next jX 
430 cl ose#2
440 ** &ACK-PROJECTION PROGRAM FOR 40X40 PIXELS **
450 input "DATA FILE NAME”,name#
460 input “RECONSTRUCTED IMAGE FILE NAME",name2#
470 dim lambda(40,40)f f (80,80),a<B0>
480 big*0 
490 small»100
500 open name# for input as file#l
510 for rV.» 0 to 39
520 for sX*l to 40
530 input #1,1 ambda (s X ,rXJ
540 next «X
550 next rX
560 c X o*e#1
570 theta»pi/40
500 for rX-0 to 39
590 phi-rXetheta
600 co«phi-co*(phi>
610 tanphi»tan<phi)
620 if rX-20 then gosub 500 
630 if rX-20 then goto 340 
640 rartg#-Mm10;3/có*&hTr “ - 
650 if range>40 then range»40 
660 for **1 to 80 
670 cept*(40.5-»)/cosphi 
680 for x*=-39.5 to 39.5 
690 y m<x*tanphl >«-cept 
700 kXMltint(x)
710 jc»41-y
720 if jc>87 or jc<-7 then goto 320 
730 for jX*jc-range to jc+range 
740 if jX« *0 or JX 80 then goto 310 
750 s’/.=int <(a+1>/2>
760 f <l;X,JX)*f ( t X, JX) +1 ambda ( sX,r%)
770 if f (kX, J X ) -big then big*f (kX,J*/.)
780 if f (kX, JV.) • s/nel 1 then «mal l*=f ( kX, JX)
790 next jX 
900 next ::
B10 next s 
820 print rX 
830 next rX
B40 open name2# f o r  o u t p u t  as file #2 
850 for K X *  1 to 8 0  
860 for j % =  1 t o  8 0  
870 print#2,f (k*i, j'/.)
880 next jX
890 next kX
900 clcfee#2
910 goto 700
920 for s= 1 to 80
930 kX=S
940 for jX= 1 to 80 
950 sX=int((s+l)/2>
960 f (kX, JV.)-f (kX, JX * +1 ambda (B«,r'/J 
970 if f (kX, J7.) >big then bi g=*f tkX, JX)
980 if f ( kX, 3V.) < smal 1 t h e n  smal 1 =f ( k7., JX )
990 next jX 
1000 next s
1010 return ^



20 » *
7,0 # «
40 *■ »
50 * »
¿0 **
70 *■»
G0 **
90 * »

100 **
110 dim a ( 1 600 > , b ( 1 c>00 ) , c i 1 600 > , d ( 11>00 > , e i 1 600 >
1 20 mxm 1 =0\iri::m2=0\m::m7=0 m>: m4 = l3
130 input "input data -file namel" , na/riel
140 input "output dsta file namet" , nainelf
150 for nm=l to 4
160name.f = namei + stri (nm) + " . dat "
170 open namel for input as -filetti
100 for t=l to 11>00
190 l  n p u t # 1 ,<=t
200 if nm= 1 then a ( t )—c t
210 l -f nm=2 then b (t )=ct
220 if nm = 3 then c ! t ) :— c t
270 l  f nm=4 thtn d <t> = ct
240 l  f a (t) >n»;ml then m>;ml=a ( t )
250 l  f b (t) . Uix m2 then nr.-. m2=b ( t )
260 i f c (t) -m;:m3 t hen m>:m3=c ( t )
270 i-f d (t) ? m>:m4 then m>: m4=d ( t )
280 net: t t
290 c 1 o s e # 1
300 ne>:t nm
310 for an = 1 to 1600
320 ¡calculate the projection value for each ROI.
330 lml-log (m::ml/a (an) )
340 1 m2=log(mxmS/b(an))
350 1 m3=l og (m>:m3/c (an) )
360 lm4 = log (m>:m4/c (an) )
370 ! calculate the slopes 
380 siopel = <1m2 -l m l ) /.5 
390 s i o p e 2 = (1m4-lm3)/.5
400 ¡calculate the lower and higher extrapolation values. 
410 yl = (siope*-. 35)+1 m2 
420 yh=(siope2*.37)+1 m3
430 ¡calculate the analyte equivalent thicknesses.
440 e ( a n ) = (yh-yl)/4.9 
450 print e(an),yh,yl 
460 next an
470 ¡save analyte equivalent thicknesses 
480 open namel * + “ . da t" -for output as file#l 
490 for t=l to 1600 
500 print#l,e(t)
510 ne«t t 
520 close#!

A P I - E N D  I X  L

PROGRAM TO C A L C U L A T E  m M A L Y I L  
E C 'U I ' . 'h L E N T  T H I C I  N E S S E 'r  b e  

E 7 RAt- DL AT j ON TO THE m I iA L V I E  
A t< S O f-F T IO N  EDGE
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1 7 5 ■ :  : 0 * = G E r *
1 6 0  I F  at- " C "  AND Ot "h" THEN 1 4 0
1 7 0  IF  Q t = " C "  TH EN C O D E = 0  E L S E  C 0 D E = 1
1 8 0  M0DE7 
1 9 0  » .
2 0 0  M A X = 2 5 5 : R E S T O K E
2 1 0  INF^JT ' F I L E  NAME i * .  C a t a l o g ;  " . N A M E - *
2 2 0  I F  NAME»- • TH EN  GOTO 7 0 0
2 3 0  » .
2 4 0  GOTO 2 1 0
2 5 0  F R I N T T A E < < B ) C H R i  ; 1 7 0 )  1 " ♦ * » « » « * * » # » "  ; C H R *  ( 1 7 5 )
2 6 0  I N P U T " H E A D I N G 1 ' , H E A D l f  
2 7 0  I F  L E N S H E A D l i '  11 TH EN 2 6 0
2 0 0  I  NF’U T " H E A D I N G 2 " , H E A L C f
2 9 0  IF L E N I H E A D 2 * )  11 THEN 2 B 0
3 0 0  C LS
310 VDU23; 8202; 0 ; 0 ; 0 ;
320 PRINTTAB (0,10) CHR* ( 136) ; CHR* ( 1 31 ); CHR* < 157) ¡CHR* < 132) ; " LOADING FILE "

; NAME*
330 ** INPUT IMAGE DATA ■*«
340 X-OPENIN NAME*
350 INPUTiX ,ma>:
360 FOR JX*=1 TO 40 
370 FDR KV,— 1 TO 40 
300 NUM=BGET»X 
390 A (KV., JV.) *NUM 
400 NEXT KV.
4 10 NEXT JV.
420 CLOSEttX
430 »♦ PROCESS IMAGE DATA **
440 PRINTTAB10, 10)CHR* ( 136) |CHR*(132) ; CHR*( 157) |CHF*'. 131 ) J " PROCESSING DATA" 
450 Factor=00/MAX 
460 FOR JV.= 1 TO 40 
4 70 FOR KV.* 1 TO 40
460 A (!< V., JV.) =A (KV., JV.) «Factor-. 001 
490 NEXT KV.
500 NEXT JV.
510 MODE2iPRINTTAB*1,5)
520 VDU23I8202;0:0;0i 
530 VDU3
540 ** DETERMINE PIXEL DISPLAY COLOUR **
550 PROCSHOUCODE
560 PROCSCALES
570 PROCINFO
500 FOR JV.-JSV. TO JFV.
590 FOR KV.-KSV. TO ► FV.
600 PR0C6ETA
6LB-J5 XQD£«a_THEN_FROCSELECJCaL' A)_eLSE. F:ROCSELECTSHADE iji) _
620 GCOL 0.HUE
630 MOVE ( (KX-K SV.) *STPV. '/ ♦352 ,900- ( (JV.-JSV.) »STPV.) : PR I NT CHR* ; 248)
640 NEXT KV.
650 GCDL0,0:MOVE ( (►.•;-('SV.) «STPV.)+352 , 900-( (JV.-JSV.) »STPV.) i PRINT CHR* (240)
660 VDU13 
670 NEXT JV.
680 GCOL0.0
690 FOR K7.=t-SV. TO KFV.
700 MOVE ( (KV.-KSV.)*STPV.)+352,900-( (JV.-JSV.) »STPV.) ¡PRINT CHR*(24B)
710 NEXT KX 
720 GCOL0,7 
730 VDU4
740 K SOV.>=KSV. ! COLOUR 12 : PR I NT T AB ! 3,3 ) STR* (KSV. ) j C0L0UR7 ! INPUT TAB (0,5) "KS" ,► S*:KSV. 

-VAL (KS*> : IF KSV.=0 THEN KSV.=KSOV.
750 PRINTTAB (3,5) STR* U  SV.) j i IF KSV.*' 1 0 THEN PRINT" "
760 IF KS*="N" THEN 180
770 KFOV.at- FV.j COLOUR 12lPRINTTAB(3,7)STR* (KFV.) :COLOUR7: INPUTTAB (0 , 7 ) "KF " , K F * : I- FV. 

= VAL (KF*) ì IF kFV.=0 THEN I FV.=KFO/.
780 IF hF*="N" THEN i80
790 PRINTTAB(3,?)5TRi It-FV.) ; : IF r FV. , 10 THEN PRINT" "
300 IF KF*="N" THEN 1B0
810 JSOV.=JSV.s COLOUR 12: PRINTTAB (3, 9) STR* ( JSV.) : COLOUR? i I NPUTTAB (0 , 9) "JS",JS*i JSV. 

=VAL(JS*):IF JSV.»0 THEN JSV.=JSOV.
820 PRINTTAB (3, 9) STR* ( JSV.) i : IF JSV.-, 10 THEN PRINT" "
930 IF JS*="N" THEN 100
340 JFDV^JFV.: COLOUR 12: PRINTTAB (3,11) STR* (JFV.) : C0L0UR7: I NPUTTAB (0, 11) "JF" , JF*: J 

FV.=VAL ( JF*) : IF JFV.^0 THEN JFV.=JFOX
B50 PRINTTAB (3,11) STR* (JFV.) ; : IF JF-/.-'. 1 0 THEN PRINT" "
860 IF JF*=”N" THEN 180
070 IF KFV.-KSV. ¡20 OR JFV.-JSV. 20 THEN STPV.= 16 ELSE STPV.=32
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CO u i  N * TAt- ■ ’ .  ; ~ i  : i- J : COL ' : : NF u • ' A B  i 0  , 1 :  i - L l . , L L » : .
- _ . l  r H t ’ , _ v -- _ _ -_L~E L L ’-'.= v'tiL I L L I

d'-0 ► *- i N " 1 i~>fr '  . " i ' H  ^ : : 1F L l ' .  I l i  1 N r M N T
t f i o  ; f  l . x = " n '  THfcN ¡ ^ 0
-  1 2 U L O / . - j L ’ . :  ■::■ u  JUF  : : : H - l M i r i f r . , i ; i 5 I H " . L ' .  : C GL I N P U T  T A B  0  , 1 5 )  " U L  " , U L »  : :

c u l i » " "  t h e n  u l v . - i j l c v . e l ì e  u l v . = v a l  ; u l i >
° Z 0  P R I N T T A B  i 3 , 1 5 .  S T R *  ( U L V . M  s JF  U L > : - I 0  t h e n  P R I N T "
5 3 0  I F  U L I  = " N " TH EN  1 9 0
5 4 0  GOTO 5 1 0  
« 5 0  END
« 6 0  • «  0 E F 1 N E  D I S P L A Y  H U E S  « *
= 7 0  DEF F -P Q C S E L E C T C O L  ( C L f t )
* 6  £5 IF CLP- = 6 0 AND C L R 7 0 TH EN H U E - 7
* 9 0 I F Cl R = ? 0 AND C L R 6 0 THEN H U E -  1

1 0 0 P I F CLP- = 6 0 AND C L R 5 0 TH EN H U E = 5

1 0 1 0 I F CLR- = 5 0 A N D C L R 4 0 THEN HUE = 3

1 0 2 0 I F CLR* = 4 0 AND C L R 3 0 THEN H U E - 2

1 0 : 0 I F C L P ' =  7 0 A N D C L R 2 0 THEN H U E - 6
1 0 4 0 I F CLR* = 2 0 AN D C L P = 0 TH EN HUE = 4

1 0 5 0 I F C L * 0  OR: C L R • 0 0 T H E N  HUE =0
10o0 ENDPCQC
] 0 - ' 0  * .  D E - I N E  D I S F ' L A v  P I X E L  SH AD ES • *
: 0 6 0 DEF F R C C 5 E L E C T 5 H A D E  1C L R '
1 0 ^ 0 I F C L R  = 6 0 AND C L P 7 0 TH EN HUE = ->
: : 0 0 IF Ci_R- = ^ 0 AND C L P 6 0 THEN h u e = :
1 1 1 0 I F CL P *  ” ö 0 AND C L R 5 0 TH EN HUE ~to
: 1 2 0 I F C L -  - 5 0 AND C L R 4 0 THEN HUE = 2
s : 3 0 IP C L P  = 4 0 AND C L R 3 0 THEN HUE = 5
1 140 I F C L P  = 3 0 AND C L R 2 0 THEN HU E= 1
1 ¡50 I F C L P  = 2 0 AND C L R = 0 THEN HUE =4

1160 IF CLR- 0 OR CLR 80 THEN HUE=0
1170 ENDPROC
1160 DEF FRÜCGETA
1190 F ACTOR2=00/iUL%-LL'/.)
1 2 0 0  A= ' A <i* V., JV.i - L L V . ; *FACTQR2
1210 ENDPROC
1220 DEF PROCSHCWCC'DE
127.0 FOR V->5 TO 75 5TEP 1 0

1.40 ¡F CGDE=0 t h e n  PPOLSELECTCOL <VV./ ELiE PPOCSELECTSHADE ■ VV. ■
1250 SCOL0.HUE
1260 MOVE 1 1 68 , 000-W.# 2.2/10: PRINTCHR* <249) : GCOL0.0: MOVE 1 208, B00-W.* 72/ 1 0r PRINTCH 

R* 1246)
1270 NEXT V/.
12B0 GCOL0,7
1290 MOVE 1130, 850: PR1NT5TR* <LLX)JMOVE 11 30, 500: PRINTSTR* (ULX)
17-00 ENDPROC
1310 DEF PROCENDLINE
1320 IF KT%=0 THEN 1340
1330 PRINTCHR*< 248)» CHR#(240)
1340 ENDPROC
1350 DEF PROCSCALES
1360 FOR 3V.-JS7. TO JF7.
1370 IF jy./10-INT<jy./10) THEN GCOL0,1 ELSE GCOL0.3
1380 MOVE348,900-< <J X - J S X * 1 )* S T P X >  I DRAW345.900-< ( J X - J S X + 1 ) * S T P X )
1390 NEXTJX
1400 FDR KX-KSX TO KFX
1410 IF KX/10-INT<KX/10> THEN 6COL0.1 ELSE SCOL0.3 
1 420 MOVE ( <«■/.-(■ SX+1) *STPX) *352,905« DRAW ( (KX-KSX+l) *STPX) *352,920 
1430 NEXT KV.
1440 ENDPROC
1450 ** CHOOSE SECTION OF IMAGE FOR DISPLAY ••
1460 DEF» PROCINFO 
1470 QCOL 0,7 
1480 VDU4
1490 PR1NTTA B (0,5>"KS? " 3 KSX 
1500 PRINTTAB(0,7)"KF?"| KFX 
1510 PR1NTTAB(0,9)“ JS?“IJSX 
1520 PR 1 NTT AB (0,11) "JF^"j JFX 
1530 PRINTTA B (0,13)"LL?"jLLX 
1540 PRINTTAB (0,15) "UL"’" i UL'/.
1550 COLOUR 3: PRINTTAB(0,10)"NEW N"
1560 VDU5 
1570 ENDPROC
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10  H « . . « . « « * .................................................................
2 0  fif-F EN D I X  E * *
70 »* **
4 0  ♦ ♦  F'ROGRAM TCl C A L C U L A T E  DUMM< DATA *•
5 0  * *  F OR TWO S M A L L  C Y L I N D K ' I C h L * «
6 0  »« F H A N T Q M S  ♦ *
7 0  * *  * *

D IM  t e q t h  ( 4 0 , 4 0 )
1 0 0  * *  PH A N T O M S  ARE 7 X 7  P I X E L S  h ND ARE C E N T R E D  AT f = 1 5 , J = 6  AND h = 7 7 , J = 2 9  I N  1- 

E R E C O N S T R U C T IO N  G R ID  ♦ ♦
110 ** THE SCAN PF-ÙFILES ARE GREAT El’ B< DETERMINING WHICH BEAM PATH':} OVERLAF '
OBJECT PIXELS. **
1 20 ** THIS PROGRAM IS BASED ON BACt -PROJECTION *■*
1 30 h 0=15\J0=8
140 F 00=33\J00=29
150 A7.=0
160 ** THE SAME PROCESS IS REPEATED FOR ROTATIONS GREATER THAN 90DEGREES **
170 FOR W'/.=0 TO 1
1B0 FOR R7.=0 TO 19
190 if W7.=0 then RR7. = R7.
200 if W7.= l then RRV.=R7. + 20
210 THETA=F’I *R'/./ 40
220 FOR S •/.= 1 TO 40
230 TQTH=0
240 SLOPE 1=TAN(THETA)
250 IF SLOPE 1< 0 THEN SLOPE 1=-SLOFE1
260 CEPTA=(21-S)/COS(THETA)
270 IF COS(THETA)<0 THEN CEPTA=-CEPTA
2B0 CEPTB=(20-S7.)/COS(THETA)
290 IF COS(THETA)<0 THEN CEPTB=-CEPTB
300 FOR K7.= 1 TO 40
310 FOR J7.= l TO 40
320 if W7.=0 then KK7.=K7.
330 if M'/.= \ then KK7.=J7.
340 if W7.=0 then JJ7.=J7.
350 if W7.= l then JJ7.=41-K7.
360 XP= (K7.-21)
370 YP= <20-J7.)
380 IF YP>SL0PE1*XP+CEF'TA AND YP :SLOPE 1 * < X P + 1 ) +CEPTA THEN GOTO 820
390 I F  YP+1<SLOPE 1*XF'+CEF TB AND YF + H S L O P E  1* < X P + 1)+CEPTB r H E N  GOTO 6 2 0
4 0 0 A R E A = 0
4 1 0 FOR X = * X P + 0 . 0 1  TO X P + 0 . 9 9  S T E P  0 . 0 2
4 2 0 C O R T O P - 0
4 3 0 C O R B O T - 0
4 4 0 Y A = S L 0 P E 1 * X + C E P T A
4 5 0 Y B = S L O P E 1 *  X + C E P T B
4 6 0 I F  Y A > Y P + 1  AND Y B < Y P + 1  T H E N  CORTOP = 0
4 7 0 I F  YA< = Y P  + 1 AND Y A > = Y P  T H E N  C O R T O P = <Y P + 1 - Y A ) * 0 . 0 2
4 8 0 I F  Y B > = Y P  AND Y B O Y P + 1  T H E N  C O R B O T * <Y B - Y P ) * 0 . 0 2
4 9 0 I F  Y B < Y P  AND Y A > Y P  T H E N  C O R B O T = 0
5 0 0 S L I C E A R E A = 0 . 0 2 - C O R T O P - C O R B O T
5 1 0 I F  Y B > Y P + 1  T H E N  S L IC E A R E A « = 0
5 2 0 I F  Y A < Y P  T H E N  S L I C E A R E A = 0
5 3 0 A R E A = A R E A + S L IC E A R E A
5 4 0 S L I C E A R E A = 0
5 5 0 N E X T  X
560 I F  A R E A = 0  T H E N  GOTO 8 2 0
570 conc=0
580 * *  TH E  O B J E C T S  H A V E  C O N C E N T R A T IO N  E Q U A L TO  O N E ,  T H E  BACKGROUND H A 5 CONCENT

U I O N  EQUAL T O  ZERO * *
590 l-f KK7.=K0-1 and JJ/i=J0 then conc = l
600 i f KK7.=K0-1 and JJ‘/.=jo-i then conc = l
610 l-f KK7.=K0-1 and JJ7.=J0+1 then conc=l
620 i-f K>7.=K0 and JJ7.=J0-1 then conc = l
630 i-f KK7.=f'.0 and JJ7.=-J0 then conc^l
640 i-f KK.7.=K0 and JJ7.=J0+1 then conc = l
650 i-f KK7.=K0+1 and JJ7.=J0-1 then conc=l
660 if KK7.=t'0+l and JJ7.=J0 then conc = l
670 if KK7.=K0+1 and JJ7.=J0+1 then conc=l
680 if KK7.=K00-1 and OJ7.=JOO-1 then conc = l
690 if KK7.=K00-1 and JJ7.=J00 then conc=l
700 if KK7.=K00-1 and JJ7.=J0Q+-I then conc=l
710 if KK7.=K00 and J J X = J 0 0 - 1  then conc = l
720 if KK7.=K00 and JJ7.=J00 then conc=l
730 if KKX=KOO and JJ7.=J00+1 then conc=l
740 if KK7.=K00+1 and JJ7.=J00+1 then conc = l
750 if KK7.=K00+1 and JJ7.=J00 then conc = l
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~O0 i* I h V.=i 00* 1 and J J ‘;=J00-1 then conc=l
770 FR1NT conc
780 C'TH=AREH*conc
790 cor.c = 0
600 TDGTH=TDOTH+PTH
810 DTH=0
81-0 NEXT J7.
8 3 0  N E X T K7.
8 4 0  t e q t h  <S7.,RR7.>  =  T D O T H
850 rem IF teqth <57., RR7.) =0 THEN t eqth (57., RR7.) 
860 print S7., RR7., t eqt h (S7., RR7.)
870 TDGTH=0
880 QTH=0\AREA=0\conc =0 
890 NEXT 57.
900 PRINT R7.
910 NEXT R7.
920 NEXT W7.
930 'Save Areas to File
940 OPEN "point40.DAT" FOR OUTPUT AS FILE #1
950 FOR R7.=0 to 39
960 for S7.= 1 to 40
970 PRINT #1 , teqth <S7.,R7.)
980 NEXT 57.
990 NEXT R7.

1000 CLOSE »1 
1010 END

197



it? 4 » • *
:? • • mF R E ND1 * ' 1 * •
40 • 4 » »
50 • » PROGRAM TO CALCULATE t HE
£0 « * x-RAv BEAM uND P IxEl OVERLAP • «
70 • • «REAS FOP 40*40 PIXEL GRID * «
80 •  *■ #♦
*0
100 OF EN "AREA40.DAT" FOR OUTPUT AS FILE »1
1 1 0  • •  r  OF EA CH BEAM THE 5 L 0 F E  *11 TH  R E SP ERC T TO ’ HE r  I R S T  BEAM 1 3  C A L C U L A T E D  •

*

120 A'. = 0
130 FOR W".“0 TO 1
140 FOR R-.=0 TO 19
150 THETA=Fi*RV./40 
160 FOR SV.= 1 TO 40 
; 70 SLOF'E = TAN (THETA )
180 IF SLOPE 0 THEN SLOPE=-SLOPE 
190 CERTA= (21-SV.) /COS THETA)
200 IF COS I THETA) <0 THEN CEPT A=-CEF'TA
210 CEFVB= (20-57.)/COS (THETA 1
220 IF COS (THETA) * 0 THEN CEF'T&=-CEPTB
2T'0 FOR 1 TO 40
240 FOR J■.'.=■ 1 TO 40
250 XF- ()■ V.-21 )
260 VF’= (20-J7.)
270 IF YP-SLOFE»XP»CEPTA AND fP SLOPE*IXF+1■-CEFTA THEN BOTD 520 
280 IF YP+1- SLOFE*XF+CEFTB AND YP + 1.SLOPE♦ vXP + 1)«-CEPTB THEN SOTO 520 
290 AREA-0
7-00 FOR X = XF-*0.ai TO XF+0.99 STEP 0.02
310 «♦ EACH PIXEL IS DIVIDED INTO 50 SLICES »*
320 CORTOP-0 
330 CORBOT=0 
340 YA=SLOPE*X+CEPTA 
350 YB*SLOPE*X+CEPTB
360 IF YA'YP+1 AND YB‘.YF + 1 THEN CORTOP *0
370 IF YA-:»YP»1 AND YA.--YP THEN CORTOP* (YP+l-YA) *0.02
380 IF YB>«YP AND YB-. = YP«-1 THEN CORBOT=(YB-YP)*0.02
390 IF YB<YP AND YA>YP THEN CORBOT-0
400 SLICEAREA“0. 02-CORTOP-CORBOT
410 IF YB>YP+1 THEN SLICEAREA-0
420 IF YA'-YP THEN SLICEAREA“B
430 •* THE OVERLAPPED SLICES ARE SUMMED **
440 AREA-AREA+SL1CEAREA 
450 NEXT X
460 IF AREA -0 THEN GOTO 520
470 •* THE PROCESS IS SIMILAR FOR SLOPES GREATER THAN 90 DEGREES •*
400 IF NV.-0 THEN AREA*=STR*<AREA> + ","*STR*<K,/.)-t-","*STR*<jy.>+",,,+STR*<SX)»,V ,*S

TR
490 IF WX-1 THEN AREA*«STR# (AREA) + " , “+STR* (JX> ♦" , “♦STR* (41 -KV.> +" , "+STR* <SX> ♦" ," +
500 PRINT 41,AREA*
510 AX«AX*1 
320 NEXT JX 
530 NEXT KX 
540 NEXT SX 
550 PRINT RX 
560 NEXT RX 
570 NEXT WX
380 PRINT «1,"100,1,1,1,1“'
390 CLOSE «1 
600 END
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¡t) ........................
J0 « * • *
70  • •  »if-PE.ND 1 A F I  * *
4 0  * •  * *
j 0  • •  p PÜi3PAM ON V A *  1 1 rij T ü  * *
o0 * *  R E CO NS TRU CT IM A G E S  U S I N G  THE * *
70  *• A L 3 E E * P A I C  P t  CONST F* UCT IO N  * *
0 0  * *  T E C H N I  DUE FOR 4 0  < 4 0  P I / . E L S  * *
9 0  « *  *  *
100 *•♦*«***•#**♦♦* «**►*♦♦**♦•*#♦****«***
1 1 0  O lm  a r  e a *  î ô û )  , i - 4 0  , 4 0  ï . 1 a m t i d a 4 0  , 4 0  )
1 2 0  d i  i =0
17-0 o p e n  n » m e U  t o r  i n p u t  j e  h i e  # 1  
1 4 0  p r i n t  ' o p t - n i n q  f i l e “
1 5 0  tor r = 0  t o  7-9 
l o 0  ►or s = l  t o  4 0  
170 l n p u t H l , ? 1 
1 8 0  1 a m b d a  s , r  i - :
1 9 0  a l  1 = a l  1 +
2 0 0  ne * ,  t  5 
2 1 0  n e x t  r  
2 2 0  c l o s e  # 1
2 3 0  a l  1 = a l 1 '  6 4 0 0 0 \ p r i  n t  " a v e r  a g e =  ' . a l l
2 4 0  t o r  j = l  t o  4 0
2 5 0  f o r  k = 1 t o  4 0
2 6 0  f  ( M , j  ) - a l  1
2 7 0  n e : :  t  b
2 8 0  n e v t  j
2 9 0  t i m e 5 = I s  t i = 2 0
3 0 0  u n t i l  t i m e s = t i
3 1 0  a = 0  s 1 = I  \ r  1 = 0 '-  s u m  1 = 0 \ s u m 2 = 0
3 2 0  o p e n " a r e a 4 0 . d a t “ f o r  i n p u t  a s  f i l e  M 1
330 input # 1 , V « I', j , 5 , r
340 af=str* iv) "+strS( k )■*■", “♦str-* ( j )+", “strf <s) , "«-str* (r >
350 if s=sl and r=rl then gosub 400 el me gosub 450
360 i f a*' 100,1 , 1 , 1 ,1 11 then goto 330 el se gosub 500
370 times=times+1
3 0 0  n e ' : t
390 stop
400 gosub 620
410 gosub 600
420 areal(a)*a*
430 a=a*l
440 return
450 c*3a-f
460 gosub 840
470 for a=*0 to 160
400 irealli)®" "
490 ne*t a 
500 afac*
510 gosub 620\ ! decode af
520 jf *«-“100,1,1,1,1“ then return
530 sl*s\r1-r\a*0\»uml«0\»um2»0
540 gosub 600
550 area(a*)«a*
560 a«a*l
570 return
560 close #1
590 gosub 1020
600 gosub 910
610 return
620 ¡DECODE AREA&
630 plco»"0\p2co<n"0\p3com«0\p4cofti*0\h“0 
640 ior i»l to len(al)
650 111. i , 1)
660 if b**‘‘,“ than gotub 740 
670 next i
680 k>val (mid#(a*,plcom+l ,p2com-plcom-l ) )
690 j=val(mid*(al,p2com+l,p3com-p2com-l>)
700 s^val (mid* <a*,p3com-r 1, p4com-p3com-1 ) )
710 r*val (mi d* (al,p4com+l .lentall -p4com) )
720 w=*val (mi d* ( »* , 1 ,p lcom-1 ) )
730 rtturn
740 if h=l then plcDm«i
750 if h=2 then p2com=i
760 if h=7.  then p3cpm=i
770 if h=4 then p4com=i
700 h=h+1 
790 return
800 'sum the concentrations
810 if al- "100,1,1,1,1" then suml =suml*(w*fU. , j)>
820 if a*' "100,1,1,1,1" then sum2=suml+(w 2)
870 return
340 'correct the f value*
850 for : =0 to a-1 
B60 al=area*(ï>
870 gosub 620 \ 1 decode areas
8B0 f  (k,j)=f(k,jI+0.2*w«( 1 ambda(si ,r 1)-suml)/sum2 
890 next :
900 return
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9 1 0 ' s a  «e  t h e  i t o  ♦ i , p

9 1 0 n<amef = " im < ? q p F  i l £  NmHE ’ s t  r  1 1 1 i " . d a t  "
7 ^ 0 O p e n  ncwli€rl ♦ o r  o u t  ¿l= t  n % f i l e  « 1
9 4  0 * o r  j = l  t 4 0
? 5 0 f o r  i = l  t o 4 0
* 6 0 p r i n t  ft 1 , f  11 , j  i
* 7 0 n e : : t  *
9 0 0 n e  *r. j
*'-?0 p r i n t M l , “ = : aiTici= ”  , s t  ^ n d e  v
9 9 5 C 1 C'SG- M 1

1 0 1 0 r e t u r n
1 0 1 0 ¡■nean = 0
1 0 7 0 f o r  t = 1 t o 40
1 0 4 0 0 11 o 4 0
1 0 5 0 in e  ci n = ;T>e a n + f U ,.!>
1 0 6 0 n e s t  j
1 0 7 0 n e x t .  \
1 0 8 0 ( t ie a n = i7i e a n . '  1 6 0 0
1 0 9 0 d i  f t = 0
I 1 0 0 f o r  k = l  t o 4 0
1 1 1 0 f o r  j  = I t o 4 0
I 1 2 0 d i  ♦ i = d i  1 1 + i + ( I : , j  '  - i n e a n )  "2
1 1 70 n e  : t  j
I 1 4 0 n e  : t  r
1 1 5 0 5 t a n d e v = s q r ( d i  f  t  1 / 4 0
1 1 60 i f  a b s ( o l d 5 t a n d e v - s t a n d e v )  • ol  d s t a n e v / 1 0 0  t h e n  s t o p
1 1 9 0 r e t u r n
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20 •* **
~ ¡j • • * *
40 ** r - C'GR AM t0 CCNTROl SCAN THfc<LE •*
^,0 AND TO CO LLE C T PHOTON COUNTS • •  
i30 * *  i«/HEN U S IN G  THE. 3 R 7 AND * *
70 •* RADIOISOTOPE SOURCES •«
B 0  * •  * *
9 0  » « * « • * • . » • « * « « • • « » « * « « » • * * • • # » * « « + « •

1 B 0  « r k7 , 4
1 1 0  * «  FRQGRAM CONTROL PR OC ED URES * *
1 2 0  F 'R O C C E N TR E S TE P P E R  
1 3 0  PROC CENT RE ANGLE.
1 4 0  P R 0 C Q U E 5 T ] ONS 
1 5 0  P R U C S E T Z E R O  
1 1>0 P F G C D E F I N E  
1 7 0  P R O C A S S E M P  
I B 0  F 'R O C P O IN T E R S  
1 9 0  R E P E A T  
2 0 0  SC ANNUM’/ .= 0  
2 1 0  R E P E A T  
2 2 0  J U M P  7 . ^ 0  
2 3 0  P R O t lS C A N l
2‘10 RESULT'/.i 1) :KBN=RESULT-/.(3>
2 5 0  P R O C C O N C E N T R A T IO N S
2 6 0  FR O C S C A N
270 F'ROCSAVEDATA
2 3 0  F ROCRE TURN
2 9 0  SCANNUM'/. =  SCANNUMV.<-1
3 0 0  U N T I L  SCANNUMV.=24
310 END
320 ** INPUT AND DEFINE CONTROL VARIABLES »*
330 DEF PROCDEFINE 
340 OSBYTE=VFFF4
350 M=22405i NUMCHR-M-11 STORE=M-2: BREAK-M- 31 ’’PREAK=01 "’NUMCHR=i.791 SCANNUMX-0 
360 DIM REG* (7) i DIM WHERE?. < 5) i DIM HOWMANY'/. (5) I DIM RESULT?. (4) > DIM EQUIVTHICK(SC 

ANSIZE'/.)
370 DIM AA*(7)iDIM SCA(23)>DIM SCB (23)
380 ENDPROC
390 <** ASSEMBLY PROGRAM TO INTERPRET COUNT DATA FROM SR7 **
400 DEF PROCASSEMB
410 FOR N*=0 TO 2 STEP 2
420 PV. «22255
430COPT N
440 .RS423 LDA*00
450 STA BREAK
460 STA STORE
470 . IN1T LDX «01
480 LDA *02
490 JSR OSBYTE
500 .LOOP LDA«145
510 LDX «0
520 LDY «00
530 JSR OSBYTE
540 CP Y •83
550 BEQ ESC
560 LDX «254
570 LDA • 12B
580 JSR OSBYTE
59B CPX «00
600 BEO LOOP
610 LDX •01
620 LDA • 145
630 JSR OSBYTE
640 LDX STORE
*50 7 Ch
660 STA N,X
670 INX
680 STX STORE
690 CPX NUMChR
700 BEQ QUIT
710 JMP INIT
720 .ESC LDA •01
730 STA BREAK
740 .QUIT LDX *00
750 LDA «02
760 JSR OSBYTE
770 RTS
780]
790 NEXT N 
800 ENDPROC
810 •• PROCEDURE TQ CENTRE STEPPER MOTOR *•
820 DEF PROCCENTRESTEPPER 
830 *FX4,1 
840 CLS
B50 PRINT "USE EDIT K.EYS TD POSITION SCAN"
860 PRINT "SMALL STEP FORWARD", CHR*(93)
870 PRINT"SMALL STEP BACKWARDS”, CHR*<91)
880 PRINT " (QUIT)", ■,Q"
890 0*=«ET*
900 IF 0*^-CHR*(*«B0) AND Q*-' >CHR* (i<B9) AND Q*<. "Q" TMEN GOTO S40
910 IF 0*="0“ THEN GOTO 960
920 IF Q*=CHR*(S<e9) THEN DIR=0 ELSE DIR=2
930 PROCSTEF’PER (5)
940 *FX21,0
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g l ’a e -*v?y 60 *F ' 4 ,0 
3 7 0  ENDF&LC.
?c)0 * *  PP’O CEL-U F t  T L S E "  ‘■ l ' I A T Ì  0 N  3 TE» MOTOR A7 r-TA F T P O S I T I O N  * *  
g R0 DEF P F O C C E N TR EAN GLE 

1 0 0 0  « F X 4  . 1 
1 0 1 0  C L S
1 0 2 0  P R I N T  ‘ USE E D I T  h E Y Ç  TD R O T A T E  I Q T O R "
1 0 7 0  P R I N T  " C L  0 0  W I SE * 0 ? A? I  ON "  , C H R *  i <v 7 1 
1 0 4 0  P R I N T  " A N T I C u O C h W IS E  POT A T  I O N " , C H R l  1 0 1 1 
1 0 5 0  PF> I N T  " 1Q U I  T • "  , "  D ‘
1 0 6 0  D i =GE TI
1 0 7 0  I F  0 1  C W F M & .8 B )  AND 0% - C H R f  AND QS "Q" TH E N  GOTO 1 0 1 0
1 0 0 0 1F 0 * = ,,Q "  THEN GOTO 1 1 3 0
1 0 9 0  I F  G *  =  C H R *  - ?<89) THEN D I R  =  0  E L S E  D 1 R = 2
1 1 0 0  P R O C A N G L E10 >
\ 1 10 * F  < 2 !  , 0
1 1 2 0  GOTO 1 0 1 0
1 1 3 0  * F X  4 , 0
1 1 4 0  ENDPROC
1 1 5 0  DE F F R O C P O IN T E R S
: I«»¿3 R E S T G F E  12 10
11^0 FOR J ■;= 0 TO A
* .1 0 0  SE AD  W HE FE‘ 1 • i * .?  , HOWMAN>!. *. I  V. )
1 1 9 0  N E XT IV.
1 2 0 0  ENDPROC
1210 DATA 7 Q , 6 , 5 3  ,",~'1.10,(51,7,104 , 1 0 
1220 *« STEP CONTROL PROCEDURE *■* 
i230 DEFPPGCSTEFPER‘5; - - 
1240 PROCINITIALISE 
1250 PROCSTEP(S)
1 2 6 0  ENDFROC
1 2 7 0  ►* R O T A T I O N  CONTROL P R O C ED URE * *
1 2 8 0  D E F P R O C A N G L E 1S - 
1 2 9 0  P R O C I N I T I A L  I SE 
1 3 0 0  P R O C R G T A T E • S '

: " 1 0  ENDPROC
1 3 2 0  DEF P & O C I N I T I A L I S E
1 3 3 0  F A - 6 4 7 0 4  : AC=RA«- 1 : P B * P A + 2 1 E C = P A - 3
1340 '"'AC*©: nBC*0: ”’PA*207 j TB*235
1 3 5 0  ">A C » 4  s ~ '& C=4 : ° P A = 0  : ~ P & * 0
1360 ENDPROC
1370 DEFPROCROTATE(S)
1300 7PA-1
1390 FOR I%« 0  TO S
1400 ?PB=l-MDIR»3/2> I "’PB-B-'-DIR
1410 FOR DELAY-0 TO 50i NEXT DELAY
1420 NEXT IV.
1430 •’PA-B 
1440 ENDPROC
1450, *# STEP PROCEDURE *«
1460 DEF PROCSTEP(S)
1470 7PA-2
1480 FOR FI- 0 TO 5
149® 7PB-4* <DIR*2>17PB-0+DIR
1500 FOR DELAY - 8 TO MiNEXT DELAY
1510 NEXT FX
1520 ■’PA-B
1530 ENDPROC
1540DEF PROCQUESTIONS
155« CLSlINPUT“HOW MANY SCAN STEPS",SCANSIZEX
156« ENDPROC
1570 DEFPROCSETZERO
150B CLSlPRINT "SCAN MOVING TO STARTING POSITION"
1590 S-47 iDIR-0
1600 FOR J-0 TO SCANSI2EX+I
1Ó10 PROCSTEPPER(S)
1620 NEXT J 
1630 S*47ì DIR—2 
1640 FOR K-0 TO 2 
1650 PROCSTEPPER(S)
166B NEXT K 
1670 ENDPROC 
1680 DEF PROCSCAN
1690 IF SCANSI ZE7.-1 THEN GOTO 1790
1700 S=95iDIR-2
1710 FOR L» 2 TO SCANSI 2EV.
1720 PROCSTEPPER(S)
1730PRINT "START DATA TRANSFER"
1740 PROCCOUNT
1750 JUMPX-JUMPV.+ l
1760 PROCCONCENTRATIONS
1770 FOR GX= 1 TD 1000! NEXT GV.
1780 NEXT L
1 7 9 0  ENDPROC
1 0 0 0  DEF PROC RETUR N
1 3 1 0  S = 9 5 : D I R = 0
1820 FOR V= 1 TO SCANS IZEV.-M
1330 PROCSTEPFER'S)
1340 NEXT V 
1850 S=95:DIR=2 
1860 FOR N=1 TO 2 
1870 PROCSTEPPER(S)
1080 NEXT N
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i  c* ’ O ¡ j ¡ f ! -  ï F f- - t. t  »?
: W  EM¿ *-lpC 
; ; Ivi Of : fAOtSCAN!
;5;n CLs :FR]nT -í-.-i-: ;F-7 COl/HTER 
i sto ¡p T¡̂ t Then :-pto i«:o¡540 CUQCCOL'fJT
1 .«o tNffC0C
'. * : O I-F * - P '* Ii-'i '
I -~0 p-t ; w  ■■'f-Hfi'f t¡- t • - • :; «60 CAI. i. frS.427-
1 íj>í0 ► v.-a_ OC'C' f jí- i %=® T O *1 
;0!0 «»=■■ ■
;o2o pop J'̂ * <3 tç «owf-'«*";• :v. zara a***/»chr* '•m«w«e*e-.- «j»* •I’OJO mC ■ T J*.i:ato if ['.:=a then c tt = »~i. ai 
2M60 ;<E ÎULTX i i \ ‘ = VmL ai 
10̂ 0 K>.=tr.*j 
. ’0 8 0  N E x T  XX 20*0 ENI'FROC2 ! PO 2EF &ROCCONCENTRAT I2nS
2110  ̂AC=FESUL TV.* 1 . ¡t- BCtil- SL’L '•. Ti
2120 5CA IJUMF-/.) ̂ PESÜL 1 : ÍC6 < .1UMP*.;> =FE SUL TV. i 7 i2170 PRINT-St^p niimüer - ":*>UMP'*;
1140 FR 1 NT“Sl dn Ar<gie- íSCANNUm ’;*?* 5hHdegrees"
2150 PRINT "t. AC = ";KAC, •f.BC»“ ¡K&C 
2160 HI«5.9sL0=l .?•
21 70 EOUIVTHICK <JUMFV.l^ (LN< <HAC»* BN> / (I* E*C*h AN> > ) f !MI-LO>
2180 PRINT "Equivalent Thictne^s =“ ¡ EOUÏ VTHICM JUMP“'. ¡ "l g/square metre"
2190 POR T=»l TO 2000: NEXT T
2200 ENDÇROC
2210 DEFPfíQCSAVEDATA
2220 TIME=0
2230 NAME** "DATA"<-STRÍ (SCANNUMX)2240 X-OPENOUT NAME*2250 FOR GV.=0 TO SCANSI ZEX-1 2260 PRINT #X .EQUIVTHICt' <GX>2270 NEXT GV.2260 FOR EX-0 TO SCANS IZÊ7.-1 2290 PRINT #X,SCA(EX)
2300 NEXT EX
2310 FOR DV.-0 TO SCANSIZEX-1 
2320 PRINT #X,SC8(DX>2330 NEXT D7.2340 CLOSE#X 
2350 ENDPROC
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1
10 • • - ESC ì > -i • *
7 0  • •  • *
4 0  • •  f- t^OC'i-Mr '1  IC N T ^ C 'L  1 mE 3 L i Ì N
5 0  » .  T A t L L  « M  - - E  D i -TA  C O L L E C T I O N  • •
60 • *  WHEN J S I N G  ".-lE “ UL '  I - C H A N N E L  *  *
7 0  • «  ANAl  «NO ' - h A v  TUBE. * •
00 «* **
<50

1 0 0  C L E A F  i CCS
1 1 0  « *  C O N T R O L r ^ C C E D U F E  • *
1 2 0  P R Q C L O A D D A T A
1 7 0  D I M  COUNT 1 i S . r  , N U M S T E P S l  : D i r i  STOR E ( 8  , N U M S ' E f  £ i i PE *  -  -  1
1 4 0  P R O C V A R I A B L E S
150 PROCASSEMB
1 6 0  F ' F O C s e t u p
1 7 0  F R O C S E T P H A
1 0 0  R R O C S E T I 0
190 VDU3
2 0 0  PR O C SC AN
2 1 0  PR O C R E T U R N
2 2 0  CHAIN "REARP'
230 END
240 ■»« J N P U T  CONTROL P A R A M E T E R S  »*
2 5 0  D E F  PR O C LO AD D ATA 
2 6 0  X = O P E N I N “ NUMBERS"
2 7 0  I N P U T  *X , 2 , .N UM STE RS,NU MR O T S , S I Z E S T E P  , E M A X  , TT7.
2 0 0  F 'R I  NTZ , NUMSTEPS , N U M R O TS , S I  Z E S T E P  , EMAX , TTV.
290 CLOSEttX 
3 0 0  ENDPROC
310 *• S C AN CONTROL PROCEDURE »*
3 2 0  DEF PRCCSCAN 
3 3 0  GH=0
340 FDR stp;'. = 0 TO NUMSTEPS-1 
350 CL5
360 PRINT"STEP NO",*tpX 
370 D«124iR«108 
300 dir-0
390 FDR ROTAT-0 TD NUMROTS-l
400 PRINT"R0TATION No.",ROTAT
410 5=600/NUhROTS
420 PRDCCOUNT
430 PROCTRANSFER
440 PROCINTERPRET
450 PROCROTATE
460 NEXT ROTAT
4 7 0  I F  GH«1 THEN PR DC S A V E D A TA X  
4 8 0  G H - G H + 1
490 S=(S1ZESTEP»40):D=124!R=100 
500 PROCSTEP <S>
510 PROCROTATEBACI*
520 NEXT %tpV.
530 ENDPROC
540 •* PULSE SEQUENCES FOR STEPPER MOTORS **
530 DEF PROCSTEP(S)
560 B-VFE60 
570 ? < B+2>“255 
580 FOR X-l TO S 
590 ?B"D 
600 Q-TIME«-5 
610 REPEAT 
620 UNTIL TIME>-Q 
630 ->8-«
640 Q-TIME«-5 
650 REPEAT 
660 UNTIL TIME «0 
670 NEXT X 
000 ENDPROC
690 ** DATA COLLECTION AND STEP PROCEDURE •*
700 DEF PROCSTEPX 
710 CLS
720 PRINT TAB ( 4,2) "angle=": sc an 5!« 180/NUMROTS "degree*11 
730 PRINT TAB<7,3'"step"
740 PRINT TAB(15,3)"COUNT"
750 FOR *tep7.-l TO NUMSTEPS 
760 S*SIZESTEP*48
770 IF step7.= l AND dir =0 THEN S= (SIZESTEP*40) +1 
780 PROCCOUNT 
790 PROCSTEP(S)
800 NEXT step-'.
B10 ENDPROC
8 2 0  » *  D A T A  S T O R E  AND SORT PROCEDURE * *
830 DEF PROCSAVEDATAX 
840 REF»REF*1
850 NAME*="DATA"-STR* (stpV.-REF)
860 X-OPENOUT NAME*
870 FOR GH=0 TO 1
880 FOR G‘/.=0 TO NUMROTS-1
890 F0FWF:'.= 1 TO 5
900 PRINT #X , COUNT 1 (F7.,GH,G7.)
910 PRINT C0UNT1 (FX,GH,G7.)
920 NEXT FV.
930 NEXT GV.
940 NEXT GH 
950 CLOSE#X 
960 GH=0 
970 GOTO 490
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^ 0 0  ENDF'RCC
* 9 0  * «  SAMPLE R O T A T I O N  «^POCEDURE * *

1 0 0 0  DEF PRQCROT AT E 
1 0 1 0  D * 14 : R = I 2  
1 0 2 0  P R O C S T E F iS »
107.0 ENDPROC
¡ 0 4  0  •  *  DA TA SORT PROCEDURE ♦ *
101-0 DE F  FF- DC IN V E R T  
10C.0 IP  O i r' = 0  THEN 1 1 8 0  
1 0 7 0  FO P R*',= 1 TO N U M STEP S
1 0 8 0  FOR 0C *;=  1 TO 5
1 0 9 0  STORE • 00*/.  *NUM£T EPS-R* /.- *-1 ) - C O U N T  1 ( 0 D \ .  1 , RV.'
1 1 0 0  NEXT 00V.
1 1 1 0  NE X T R?'.
1 1 2 0  FOR W’/.= 1 TO N U M S TE P S
1 1 3 0  FOR QQ".= 1 TO 5
1 1 4 0  COUNT 1 ■ Û 0 ,  1 , Vi'/. > = ST O R E • 0 0 \  , W% )
1 1 5 0  PF I NTCG UN T 1 i O O \ ,  1 , W'. ’
1 1 6 0  N E * T QÜV.
1 1 ^ 0  NE a T W \
1 1 6 0  ENDFRÛC
! 1 9 0  ♦ RETURN SC AN T A B L E  TO 9 C A N  S T A R T  P O S I T I O N  * *

1 2 0 0  DEF RPO C R E TU R N  
1 2 1 0  - £ - b 0 0 ^  i f e f lB /N U M R C U S -*
1 2 2 0  P R O C S T E P I S )
1 2 3 0  C L S : P R  I  NT T A B ( 2 , 1 2 J " S c a n  F i n i s h e d  a n d  R o t o r  A n g l e = 0 d e g r e e s " 
1 2 4 0  ENDPROC
1 2 5 0  * *  M U L T I - C H A N N E L  A N A L Y S E R  C O N T F O L  PP'Ol EDU^'E * *
1 2 6 0  DEF F-ROC COUNT 
1 2 7 0  P R O C s e t u p  
1 2 8 0  p R O C c 1 e a r  
1 2 ^ 0  P R O C s t a r t p h a
17.00 V D U 7  
’. 7 1 0  T i n E = 0  

1 7 2 0  KEF'EAT
1 7 7 0  U N T I L  T 1M E - 1 7 0 0  
1 3 4 0  ENDPROC
1 3 5 0  * *  T R A N S M I T  AND I N T E R P R E T  D A TA FROM MAC * ♦
1 3 6 0  DEF P R O C T R A N S F E R  
1 3 7 0  P R O C s e t u p  
1 3 8 0  P R O C r u n i o  
1 3 9 0  C A L L  I N I T
1 4 0 0  “> h E M L O C = 0 0 :  (MEMLOC-*-1 > = t - 4 0 :  ^ S T O R E - 2 5 5
14  1 0  VDU3
1 4 2 0  ENDPROC
1 4 3 0  DEF P R O C s e t u p
1440 ♦FX5,2
1450 •FX8,6
1460 •FX7,6
1470 vDur
1480 VDUl,7
1490 ENDPROC
1500 •• CODES TO CONTROL MAC *«
1510 DEF PROCSETPHA
1520 VDUl,67tFDR tt-1 TO 10001 NEXT tt
1530 VDUl,83iFOR tt-1 TO 10001 NEXT tt
1540 V DUI, 801 FOR tt-1 TO 10001 NEXT tt
1550 VDUl,78» FOR tt-1 TO 10001 NEXT tt
1560 VDUl,64iFOR tt-1 TO 10001 NEXT tt
1570 VDUl,43l FOR tt-1 TO 10001 NEXT tt
1560 VDUl,7Bi FOR tt-1 TO 10001 NEXT tt
1590 VDUl« 65i FOR tt-'l TO 10001 NEXT tt
1600 VDUl,78i FOR tt-1 TO 10001 NEXT tt
1610 VDUl, 901 FOR tt-1 TO 10001 NEXT tt
1620 VDUl,49iFOR tt-1 TO 1000INEXT tt
1630 VDUl,501 FOR tt-1 TO 1000»NEXT tt
1640 VDUl,78i FOR tt-1 TO 1000»NEXT tt
1650 ENDPROC
1660 DEFPROCSETIO
1670 VDUl,671 FOR tt-1 TO 10001 NEXT tt
1680 VDUl,03»FOR tt-1 TO 10001 NEXT tt
1690 VDUl,73i FOR tt-1 TO 10001 NEXT tt
1700 VDUl,78s FOR tt = l TO 1000:NEXT tt
1710 VDUl,64: FOR tt = l TO 1000:NEXT tt
1720 VDUl,88* FOR tt-1 TO 10001 NEXT tt
1730 VDUl,7B: FOR tt-1 TO 10001 NEXT tt
1740 VDUl,64iFOR tt-1 TO 10001 NEXT tt
1750 VDUl,49: FOR tt = l TO 10001 NEXT tt
1760 VDUl,78: FOR tt*l TO 10001 NEXT tt
1770 VDUl,64: FOR tt=l TO 1000:NEXT tt
1 780 VDUl,85: FOR tt-1 TO 1000:NEXT tt
1790 VDUl,78:FOR t t = l TO 10001 NEXT tt
1 8 0 0 V D U l , 6 4 :  FOR t t - 1 TO 1 0 0 0 1  N E X T t t
1 8 1 0 V D U l.71 : FOR tt=l TO 1000: NEXT. t t
1820 .'DUI ,78: FOR tt=l TO 1 0 0 0 1  N E XT tt
1 8 3 0 ENDPROC
1840 DEF P R O C c 1 e a r
1850 V D U l , 6 7 : FO R t t  =  l TO 1 0 0 0 1  N E X T tt
¡ 8 6 0 VDUl,40:FOR t t  =  l TO 1 0 0 0 : NEXT t t
1 8 7 0 VDUl,62:FOR tt = l TO 1 0 0 0 : N E XT tt
1 8 8 0 V D U l , 6 5 : FOR t t = l TO 1 0 0 0 : N E XT t t
1 8 9 0 ENDPROC
1 9 0 0 DEF F R O C s t a r t p h a
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1 9  1 0  . D U l , f r ' s F - >
Jl)U 1 « 6 2 :  F OR 

1 ^ 7 0  / D U I  , 9 0 :  FO R 
1 ^ 4 0  cN D F f iQ C  
: - r e  D t *  f  R o t i n i
l '» 6 0  ‘» C-'J 1 . o  • : ** L>P 
’ > ? J  . L-Ui , 5 j : p 0F*
: -tV ✓ L !J 1 ,
1 9 9 0  - 'DU 7*
2 0 0 0  ENDPROC 
2 0 J 3  DEF P R O C I N T E R F P E T  
1 0 2 0  M E M = 1 0 7 E L  
2 0 7 0  FOR NUM = 1 TO 5  
2 0 4 0  POR mem=MEM TO M E M * 12
2 0 5 0  I F  “» (m e m )  - = 4 0  AND "* « mem) * = 5 7  TH EN  2 0 6 0  E L S E  2 1 4 0  
2 0 6 0  A *  = A * ♦ C H R *  i  < mem * •
2 0 7 0  N E X T  mem
2 0 0 0  COUNT 1 ( N U M , G H , POT A T ' =  V A L ( A I  )
2 0 9 0  A * = " "
2 3 0 0  P R I N T  COUNT 1 ( NUM , G H ,  ROT AT ) , NUM , ROT A T  , s t  p  V.
2 1 1 0  MEM=MEM+ 7 1  
2 1 2 0  N E XT NUM 
2 1 7 0  GOTO 2 2 6 0
2 1 4 0  I F  ' , ( m e f r i ) 3 ò 9  OR "  (mem J = 4 7  OR ~‘ < m e m > = 4 6  OF "M mem) * 3 2  T H E N  2 0 6 0  E L S E  2 1 6 0
2 1 5 0  GOTO 2 2 6 0
2 1 6 0  P R O C c l e ò r M E M
2 1 7 0  P R O C s e t u p
2 1 8 0  P R O C c l e a r
2 1 9 0  P R O C s t a r t p h a
2 2 0 0  V D U 3
2 2 1 0  T I M E * 0
2220 REPEAT
2 2 3 0  U N T I L  T I M E = 1 7 0 0
2240 PROCTRfiNSFER
2250 GOTO 2020
2260 PROCclearMEM
2270 ENDPROC
2280 DEF PROCclearMEM
2290 MEM-18600
2300 REPEAT
2310 ,’MEM=0
2320 MEM-MEM+1
2330 UNTIL MEM-19000
2340 ENDPROC
2350DEF PROCVAftIA6LES
2360CONREG=«<FE0Bi3TATREG-i.FE08iRECREG=!<FE09
2370MEMLOC=l<70i ST0RE«I<72! NUMCHR=*<73i C0MPAREl=fc74i C0MPARE2-*<75 
2300'"'MEhLOC*00i ? (MEMLDC+1 ) -&48s "»STORE-2531 '’COMPARE l-«<49« 7C0MPARE2-Ì9F 
2390ENDPROC
2400 •• ASSEMBLY PROGRAM TO INTERPRET DATA FROM MCA •*
2410DEE P6QCASSEJ1R------------------------ —  ..
2420FOR N-0 TO 2 STEP 2 
2430PX-30000 
24401OPT N 
2450.INIT LDA 
2460 STA
2470 LDA
2480 STA
2490.LOOP LDY 
2500 LDA
2510 BIT
2520 BEO
2530 LDA
2540 CMP
2550 BEQ
2560 CMP
2570 BEQ
2580 CMP
2590 BEO
2600 CMP
2610 BEQ
2620 CMP
2630 BEQ
2640 £<EQ
2650 CMP
2660 BEQ
2670 LDY
26B0 STA
2690 CMP
2700 BEQ
2710 INY
2720 STY
2730 CPY
2740 BEQ
2750 JMP
2760 JMP
2770.LOOP2 INC 
2780 JMP
2790.COMP LDX 
2800 CPX
2810 BEQ
2820 JMP
2830.CONP LDX 
2040 CPX
2850 BEQ

#03
CONREG
#5.12
CONREG
«00
«01
STATREG
LOOP
RECREG
#22
LOOP
#23
LOOP
#13
LOOP
#0
LOOP 
# 1 0  
LOOP 
LOOP 
#25 
LOOP 
STORE 
(MEMLOC),V 
#04 
QUIT
STORE
NUMCHR
L00P2
COMP
INIT
(MEMLOC -1) 
INIT
(MEMLOC +1)
COMPARE 1
CONP
INIT
STORE
C0MPARE2
QUIT

■ t = I ~ 3 : 0 0 0 : \ E i "' tt 
i  -  I 1 0  ! *300: NE < T 11 
11  =1 TQ 1 3 0 0 :  NE * ’ 11

: /opt-.ei 
: ¿00: Nfc «
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I 
> 

».»
 

tj
 

IJ 
I J

 »
J 

IJ

2660 v'MP IN11
:b7b .oo:j rts
: ' B 8 0 j  
B90NE * T N'•eoe.NC'-f'DC 
9  1 0 D E c F’RC'C “ t  Mf..R v
9 2 0  C L S :  F - I N T ” DO ' D U  WANT P M N T G U T  *  N ' : C » = G E T *
9J0 I F  O i =  » ' ’ HEN GOTO 29*0 
9 4 0  ¡F  O i - -  *J ' h e I I  6 Ü T 0  : - 0 i 0  

950 SOTO -'•iUl
9 & 0 D ! ~ u . i  ■ !  • !  . N F ' , 1  S A M F L E  N A M E / N O "  , A X  . 1 
9 7 0 P R J N T  "SAMPLE NAME N O "  , .A *  »1 1 
9 8 0 P R 1 N T  ' C h a n n e l  n o .  c o u n t s -
9 9 0 M E M - 1 8 4 6 ! :  I - 0

:.0 0 0 | < e f - e a t  
; « i 0 x » ' ' - - i i e m m  >
:.020IF ■‘(hEM-l. 22 AND "’(MEM »I)- 0 THEN PRINT CHR*IX>iEL3E PRINT"
30~01-I»1 
7040UNT1L 1=400 
3050VDU r
1060 RETURN ROTATION STEPPER MOTOR TO START POSITION ••
T.070 DEF PR0CR0TATE8ACK 
'080 S=600!D=14:R=12 
'090 FROCSTEPiS)
7-100 ENDPROC



**i *«m  eM. : * i
*0 FPCGP̂ -n ’ 0 PJND ¿TcF̂ L'F» MCTijF*
JJ <* AXl E c e n t r e
4 *#
*b
a 0  F & 0 C 0 U E 5 T I O N S  
7 0  P R O C S A V E D A T A  
B 0  P R O C Z F O R W A R D D R I VE
Q0  C L S l F R I N T  t a e m 2 , 1 1 3  " D o  *o u  Want a H ò r d  C o p  < r N "  : ' j i = G E T t 

1 0 0  I F  0 * -  " ( "  AND 01 ■N ' THEN Q0
M B  I F  O i  = " Y "  t h e n  1.10 E L S E  17-0
1 2 0  V D U 2
1 3 0  P R O C Xj ff i f f tDR 1 VE 
1 4 0  P R O C F I N D M I N  
1 5 0  V D U 3
1 * 0  P R O C F I N D S T A R T  
1 7 0  P R O C Z BACI- D R I V E  
1 9 0  VDU3
1 9 0  C L S i P R I N T  TAEm I , 1 2 )  "D O  VOU WANT TO C H A I N  C O U N T E f  PROG Y / N " | Q * = G E T *
2 0 0  I F  0 * '  • " / "  AND Q f '  " N "  THEN 1 9 0
2 1 0  IF a * = " Y " THEN 2 2 0  E L S E  END
2 2 0  CHA I N " CO UNTER '
2 7 0  END
2-40 REM •  * »  PR O C E D U R E  TO I N P U T  P A R A M E TER S * » *
2 5 0  DEF P R Q C 0 U E 5 T I 0 N S  
2 6 0  C L S
270 INPUT TAB',1,12' ’’Z Position mm from end ot a-. 1 e- MAX 75 mm)",Z
280 IF Z 75 GOTO 260 
290 CLS
7.00 I N P U T  T A F C 4 , ] 2 )  ’ N u m b e r  of s t e p s / s c a n  1 2 0  OR 4 0  ; ■' , NUMSTEF’S 
310 IF N U M S T E P S '  2 0  AND NUM STEPS- '  40 THEN 290 
320 CLS
330 INPUT TAB(4,12) "STEP SIZE (MAX 2mm)", SIZESTEP 
340 IF SIZESTEP:2 GOTO 320 
330 CLS
360 INPUT TAB(9,12) "Maximum X-ray Energy(keV)",EMAX 
370 CLS
300 INPUT TAB (4,12) "TIME FOR EACH STEP" ,TT7.
390 CLS
400 INPUT TAB(2,12) "Number of Rotations (24 or 40)",NUMROTS
410 IF NUMRDTS024 AND NUMROTSO40 THEN 390
420 CLSI INPUT TAB(4,12) "BOTTOM LIMIT SET ",limit
430 ENDPROC
4.35 ** SAVE DATA **
440 DEF PROCSAVEDATA 
450 X»0PEN0UT "NUMBERS"
460 PRINT # X  , Z , N U M S TE F S , NUMROTS , S I Z E S T E P ,  EMAX , T T ’ i  
4 70 C L O S E # X  
480 ENDPROC
490 DEF PROC2FORWARDDRI VE
500 CLSi PRINT TAB(1,12) "Do You Want Z Forward Drive Y/N"iQ*-GET*
510 JF 0#< >" Y“ AND Q* 0"N" THEN 500 
320 IF 0*»"Y" THEN 530 ELSE 360 
330 CLSiPR!NT“PfiOCZFORWARDDRIVE"
340 S«Z*4B:D-6jR«4 
350 PROCSTEP(S)
560 ENDPROC
565 »« DRIVE AXLE INTO BEAM PATH •*
570 DEF PROCZBACKDRIVE 
3B0 S“Z *40 « D” 14 « R“12 
390 PROCSTEP(S)
600 CLSiPRINT TAB(1,*2) "Change Plug on Stepper Interface and Hit anv K*y"iOi*

G E T *  ...........................................   - .....
610 ENDPROC
e.15 ** MOVE TO SCAN START «• * '
620 DEF PROCXSmmDRlVE
630 CLS1 PR1NT"PROC X 3mmDRIVE"
640 5-5*40!D*112:R“96 
650 PROCSTEP(S)
660 S-8iD-4BiR=32 
670 PRDCSTEP(S)
680 ENDPROC
685 *# PULSE SEQUENCE TO DRIVE MOTORS •»
690 DEF PROCSTEP(S)
700 B-&FE60
710 ->(B+2)*255
720 FOR X- 1 TO S
730 ?B-D
740 Q=TIME+5
750 REPEAT
760 UNTIL TIME>=Q
770 ?B”R
700 Q-TIME+5
790 REPEAT
000 UNTIL TIME >=Q
810 NEXT X
820 ENDPROC
025 *» FIND THE MINIMUM PHOTON COUNT ••
030 DEF PROCFINDMIN 
840 PROCCOUNT 
850 NUMsteps=NUMSTEPS*8 
860 DIM Step (NUMsteps) i A‘/.=0 
870 PRINT "PROCFINDMIN"
860 PR0CFIRST3

9 0 8



d 9 0  PROECDHF A P E D O H N S l  E : J F AV.= 1 TI -EM GOTO 3 ) 0  
9 0 p  FR O C CO NT IN U E  > 
v l B  P R O C F I N D U P  
9 2 0  P R 0 C 5 H 0 R E S T E P S  
9 3 0  P R O C A V E R A G E T D P  
<540 F'ROC A V E R  A G E BOTTOM 
9 5 0  P R O C S E T S T D B O T T O M  
9 6 0  P R O C S E T L I M 1 TS 
9 7 0  P R O C F I N D R O I N T S  
9 B 0  P R O C CH ECK 
9 9 0  P R O C S L O P E S  

1 0 0 0  ENDPROC
1 0 1 0  D E F  F'RDCCQMPAREDDWNSLD PE
1 0 2 0  P R E S = 0 I  P A S T  1 = 0 :  P A S T 2 = 0 :  A X - 0 - .  A V E R P R E S = 0
1 0 3 0  P R E S * S t e p ( T - l ) j  PA ST 1» S t e p i T - 2 )  !  F ' A S T 2 = S t e p < T - 3 >
1 0 4 0  A V E R P R E S =  ( P R E S + P A S T 1 » P A S T 2 )  / 3 :  F R I  N T "  A V E R A G E =  " , AV ER F 'R E S
1 0 5 0  I F  A V E R P R E S *  A V E R F A S T  -  *. 1 0 *  5 QR ( A V E R P R E 5) ) T H E N  1 0 6 0  E L S E  1 0 0 0
1 0 6 0  P O S I T  1 O N l = T - 3 : S L O P E 2 = P A £ T 2 :  SLOF'E 1 * P A S T  1 :  AV.= 1
1 0 7 0  P R I N T F ' O S I T I O N l  , S L O P E 0  , S L O P E  1
1 0 0 0  A V E F 'P A S T  = AVERF'RES
1 0 9 0  ENDPROC
1 1 0 0  D E F  PROCCOUNT
1 1 1 0  P R u C s e t u p
1 1 2 0  P R O C t i m e s e t
1 1 3 0  P R O C c h e c i
1 1 4 0  ENDPROC
1 1 5 0  D E F  P R O C s e t u p
1 1 6 0  A = ? .F C C 0
1 1 7 0  ' 1 ( 7 0 = 0  : ' S - / 4  = 0
1 1 8 0  A _’ 2  = S,00
1 1 9 0  A " '3 = i< i3 0
1 2 0 0  A">12=J<CE
1 2 1 0  A ^ l  2=S<CC
1 2 2 0  A ^ 1 3 = i « F F
1 2  7-0 A ' ’ 1 4 * ! < 0 0
1 2 4 0  EN DPRO C
1 2 5 0  DEF r P O C t m c i i t
1 2 6 0  A=«<FC C0
1 2 7 0  R R X - T T X *  ( 1 0 )
12B0 A->U=i<E0 
1290 A“'6«i-5B 
1300 A''5=S.C3 
1310 A-’B-RRV.MOD 256 
1320 A?9"RRXDIV 256 
1330 ENDPROC 
1340 DEF F'ROCcheck 
1350 DIM CHK 100
1 3 6 0  F O R  I X - 0  TO  2  S T E P  2 i  P X - C H K  
1 3 7 0  C OPT I X
1380 .check LDXKV00
1390 LDY#&00
1400 LDA««<EC
1410 STAiFCCC
1430 LDA4V80
1430 STAVFCC2
1440 . m t a r t  LDAtcFCCD
14S0 AND#t02
1460 BNE inermi
1470 . count*r2 LDAI<FCCO
1480 AND#I<10
1490 * BNE i ncrn2
1300 .tlMChk LDAtFCCD
1510 AND#I<20
1520 BNE next
1530 J *  itart
1S40 . increml LDA#I<02
1550 STAJ.FCCD
1560 INX
1570 BNE counter2
1580 1NCJ.72
1590 JMR counter2
1600 . incre«>2 LDA#H0
1610 STAtiFCCD
1620 INY
1630 BNE timechk
1640 INCS.76
1650 JMP tjmechk
1660 .next LDA*(<CC
1670 STAIFCCC
1680 LDANS.00
1690 STAÌ.FCCB
1700 STXS.71
1710 STYi.75
1720 RTS :] NEXT IX
1730 CALL check 
1740 AAX=A?1 i?!<70-AAV.
1750?!<FCC2=i<00 
1 760 BBX=A^0 : ‘>5.74 = 687.
1 7 7 0  C C ,/ . = A ' ,1 3 ----------
1 7 B 0  I F  (C C X  AND 2 )  = 2  THEN D D V.=256  E L S E  D D 7 .= 0  
1 7 9 0  I F  (CCV. AND 1 6 )  = l f e  t - e n  E E > := 2 5 6  E L S E  EEV. = 0  
1 B 0 0  C O U N T E R 1 7 .=  ( ' ! < 7 0 i + D D ' . . - 2  
1 9 1 0  C O U N T E R 2 X *  < ' <-74> + E E ~ - 2  
1 8 2 0  EN DPRO C
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ib.'Ji Lt-
1840 T = l : - ;
IB50 FLFEAT
18to0 P^OCCCLNT : P M N T  COUNTEPl\,T 
1 BTP Step ' • =COUNTE^ 1 V.
1 800 PROCSTEP 3 *
10Q0 7 = T♦;
i *00 jnt : i " ?
1 9 1 0  A v E F f ~ S T= 0 : h V E R F A S T = < S t e p  T - ;  i » 2 » e p i  - .  » -r ’ - l

1920 PR IN ̂ AVERF AST -",AVERPAST
1 9 3 0  EN D F ^ O C
1940 DEF F'ROCP I NDS T ART
1950 PEM Tij c IND NO OF STEPS TO START 
1960 PRINT -FINDING START*'
1970 S* ( (NUMSTEPS-1) «SIZESTEP*24 ) - ( <T-m dpoir.t) *3) -i *2 
1900 PRINT"Nd Pulses to 3tart-=»"S 
1990 D=40:R= 72 
2000 PROCSTEP(S )
2010 S=144 r D=112:R=96 
2020 PROCSTEP(S)
2030 CL3:PR I NT TAB<&,12) "Scan a t  Starting P o s i t i o n '
2040 ENDPROC 
2050 DEF -c-OCCONTINUEX 
2060 S=3:D=4B:R=72 
2070 REPEAT
2080 PROCCOUNT: PRINT COUNTERIV., T 
2090 Step (T) =C0UNTER17.
2100 T=T+1
2110 PROCCDMPAREDOWNSLOPE 
2120 PROCSTEP(S)
2130 UNTIL AV.= 1 
2140 ENDPROC 
21 SB DEF *-ROCFINDUP 
2160 S=3iD=48: Ra32 
2170 REPEAT
2180 PROCCOUNT: PRINT C0UNTER1-/., T 
2190 St*p<T)-COUNTERlX 
2200 T=T+1
2210 PROCCOMPAREUPSLOPE 
2220 PROCSTEP(S)
2230 UNTIL BV.-1 
2240 ENDPROC
2230 DEP PROCCOMPAREUPSLOPE
2260 PRES-01 PAST1-01 PAST2-0IPA9T3=0iBX»0
2270 PRES«Step(T-l) i PAST1-Step (T-2) I PAST2=Step(T-3):PAST3-St*p(T-4)
22S0 IF PRESvPAST 1 + (3*SQft (PAST 1) ) AND PRES>PAST1 -(12»S0R(PAST 1)) AND PAST2<PAST 
1-(3*SQR(PAST1)) AND PAST3<PAST2-(3«SQR(PAST2)) AND PRES>Step(1) / 2  THEN 2290 ELS 
E 2310
2290 POSIT10N2=T-21 SLOPEUP0-PAST21 SLOPEUP1 -PAST 11 BX- 1
2300 PRINT POSITI0N2 ,6LOPEUP0 ,SLOPEUP1
2310 ENDPROC
232« DEF PROC3MORE8TEPS
233« FOR MORE- 1 TO 3
234« S-3iD»40iR-32
233« REPEAT
2360 PROCCOUNT
2370 PRINTC0UNTER1X ,T
23B0 Step(T)-COUNTERIX
2390 T»T*1
240« PROCSTEP(S)
2410 NEXT MORE 
2420 ENDPROC 
24 30 DEF PROCAVERAGETOP 
2440 SUMTOPL-01 SUMTOPR-«
2430 FOR TPL- 1 TO P0SITI0N1 
2460 SUMTOPL»SUMTOPL*Step (TPL)
2470 NEXT TPL
24B0 FOR TPR- POSITIONS TO (T-l)
2490 SUMTOPR-SUMTOPR+Step (TPR)
2500 NEXT TPR
2310 AVERAGE- (SUMTOPL +5UMT0PR) / i TPL *• i IT-1) -POS I T10N2 > )
2520 PRINT "TOP AVERAGE *";AVERAGE 
2330 ENDPROC
2540 DEF PROCAVERAGEBOTTOM
J550 mi n= 1 (3000L10
2560 FOR - 1 TO (T-l>
2570 IF St ep i val > ml n THEN min =Stepival)
2590 NEXT val
2590 PRINT "min ",nun
2600 ENDPROC
2610 DEF PROCSETSTDBOTTOM 
2620 DIM AV (T)
2630 SDBl=mi n* (5*SQR (mi n) )
2640 SDB2=min-(5»SQR (min) )
2650 IF SDB2- 0 THEN SDB2=0 
2660 C=0
2670 FOR P= 1 TO (T-l)
2690 IF Step (P) *.SDB1 AND Step(P);SDB2 THEN 2700 ELSE AV(P)»0
2690 GOTO 2710
2700 AV(P)=Step (P) iC=C<-l
2710 NEXT P
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2 7 2 0  S U M A V - lS
2 ? 3 0  FO R  p = 1 TO i T -  1 »
2 7 4 0  S U M A V * S U M A V * h V i F ■
1 7 5 0  NEXT P
2 7 6 0  A V B O T T O M - S U M A V / C
2"77 0  P R l N T " B O T T O M  A V E R A G E * "  ; AVBOTTQM  
2 7 0 0  ENDPROC 
2 7 9 0  D E F > P R 0 C S E T L I M I T 5  
2 6 0 0  r a t i o = A V E R A G E / AVBOT 7 OM
2 B  1 0  T o p L I M l  T ^ A V E R A G E -  i r i t i  o * S O F  'A V E R A G E )  1
2 0 2 0  B O T T O M L I  M I  T =A VBO TTO M + I r a t i o « !  1 1 » ;  »SDR < AVBOT TOM) )
2 0 7 -0  FF  I N T "  T O P L I M I T "  . T o p L I M I T  , " BOT TOML I M I T " , B O T T O M L I M I T
2 0 4 0  EN DPRO C
2 0 5 0  DEF F R O C -  I N D P O I N T S
2 6 6 0  N o F ’T & =  1 : N o p t s - 1
2 8 7 0  D I M  D W N F ^ S ' T / D  : D I M  UFF TS ( T , 2 > :  DWNPT5 ( 0 )  =1 0 0 0 0 0 0  
2 B B 0  FOR F'TS = 2 TO ( T - l )
2 B 9 0  IF S t e p  t F 'T S )  • T o p L I M I T  AND S t  e p  IP T  S > ' BOT TOML I M  J T A N D  S t  e p  ( P T S )  < S t  ep ( P T S - 1 i 

AND S t e p  ( P T S )  . ; D W N P T S ( N o P T S - l  ! TH EN 2 9 3 0  
2 9 0 0  I F  S t e p ( P T S ) ' T o p L I M I T  AND S t e p ( P T S ) : B O T T O M L I M I T  AND S t e p ( P T S ) > S t e p ( P T S - 1) 

THEN 2 9 5 0  
2 9 1 0  N E X T  P T S  
2 9 2 0  GOTO 2 9 0 0
2930 DWNPTS> NoPTS)'=S*ep *F7Sr : PP IiiT,"DGWNFTS ’ , 'DWNPTS (NoFTS) iNoPT5=N6PTS+Ii t=PTS 

- (NoPTS-I)
2 9 4 0  GOTO 2 9 0 0
2 9 5 0  U P P T S  ( N o p t  s )  = S t  e p  ( P T S ) : N o p t  s = N o p t s  + 1 :  11  =F’T S - N o p t  *-*• 1 
2 9 6 0  P R I N T " U P P T S " , U F P T S ( N o p t s - 1 )
2 9 7 0  GOTO 2 9 1 0  
2 9 0 0  EN DPRO C 
2 9 9 0  D E F  PROCCHECI-
3 0 0 0  I F  N o P T S = N o p t s  THEN GOTO 3 0 7 0
3 0 1 0  I F  NoF'T S - N o p  t  s  TH EN GOTO 3 0 6 0
3 0 2 0  I F  N o F T S  N o p t s  THEN GOTO 3 0 3 0
3 0 3 0  FO R 1= 1 TO N o P T S
3040 U P P T S (I )- U P P T S (1*1)¡ P R I N T U F P T S (1)
3 0 5 0  N E X T  I : t t = t t * ( N o p t s - N o P T S ) : N o p t s - N o P T S : G O T O  3 0 7 0
3060 NoPTS=Nopts
3070 ENDPROC
3080 DEF F'ROCSLOPES
3090 PROCDownIntercept
3100 PROCUpIntercept
3110 Intercept l=Intercept1+t
3120 Intercept2=Intercept2+tt
3130 PRINT"Intercept 1« ",InterceptI,"Intercept2= " , Intercept2 
3140 PROCLINEIntercept 
3150 ENDPFfDC
3160 DEF PROCDownIntercept 
3170 a*=0i b*=0: c=0i d*0: e=0 
3180 FOR h*= 1 TO (NoPTS-1)
3190 a»a«-DWNPTS (h)
3200 b-b+h
3210 c»c«-(h*DWNPTS<h))
3220 d“d+(DWNPTS(h) -“2)
3230 NEXT h 
3240 h-h-1
3250 a-a/hib-b/hjc-c/hid-d/hie-a^a 
3260 »1opel«( <a»b>-c>/ <«-d>
3270 Int»rc»ptl— (<d*b)-(a»c) )/(*-d)
3280 PRINT '• Intercept 1» “ .Interceptl
329« PRINT “»lop«!« , »lopel
3300 ENDPROC
3310 DEF PROCUpIntercept
3320 a-0jb«0ic»0!d-0i«*0
3330 FOR g- 1 TO (Nopt»-l)
3340 a-a+UPPTS(g>
3330 b"b+g
3360 c»cMq*UPPTS<g> >
3370 d"d+-(UPPTS(g)"'2)
3380 NEXT g 
3390 g-g-1
3400 a*a/g:b*b/gic«c/gid”d/gi »**»»
3410 *lope2=* < (*»b) -c) / (e-d)
3420 IrTt or cep 12=- ( (d«b) - (a*c > > / (e-d)
3430 PRINT "Intercept2» ” ,Intercept2 
3440 PRINT "slope2= ",slope2 
3450 ENDPROC
3460 DEF PROCLINEInt ere ept
34 70 Midpoint=(lnterceptl+((Intercept2-Intercept 1)/2))
3480 PRINT"Midpoint=",Midpoint 
3490 ENDPROC 
3500 DEF PROCInput 
3510 INPUT #Y,COUNTER 17.
3520 ENDPROC
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I U h t  M • •
.0 htn **

J  hfcM • •*41) hbM **
“I'k'» F’ EM ♦ *  
o i 5 b E M  * «
0 F E M  *«

8 0  F fc. 1*1 « *
- u-'i P E N  - •

1 0 0  PE  M I N U I T  K - h  h  » l - . t - t  t C  • f -UM
1 1 0  C L E m R : D i M ?» E l I - 4 0  • :  Lm M Mm i . ■ 4 0  ' : L* i  M F I L  I Eh  Lm  4 0  • :  [ j  [ M ENERGY*/. ' 4 0 '
11B a = U F E N  J f r* !^Pt'_ f Mi "
I 7 0  F Oh 1 ÌU
1 4 0  F R I N Ì  "  1 MT E N fc I  I" t h T L m M L I / m -  "  1 I 
150 INPUT #X ,SPE<_ f • h <
1 ^ 0  P R I N T 5 F E C r ì m *
1 7 0  N E a  7 M 
1 6 0  C L O S E # *
1 ^ 0  C L 5
1 0 0  KEM C A L C U L A T E  ^ I L I E F E D  SPEC I RUM
1 1 0  P R I N T  " T o  C a l c u l a t e  E q u w .  T h i c k .  I n p u t  F i l t e r  D e n t i t /  a n d  I h i c k n e s s "
1 2 0  P R I N T
17.0  I N P U T  " F I L T E R  D E N S I T Y  q / c u b i c  c m "  , F  
1 4 0  P R I N T
1 5 0  I N P U T  “ F I L T E R  T H IC H N E S S  c m " , T  
2 6 0  T H = F * r  
1 7 0  C L S
1 8 0  P R I N T " D o  y o u  W a n t  t o  T y p e  i n  D a t a  o r  T a k e  f r o m  F i l e  D.* F ?  "  : Q * = G E T *
1 9 0  I F  Q * = "  D "  THEN GOTO 7 1 0
7 0 0  I F  Ü * - " F "  TH EN  GOTO 4 ö 0  E L S E  G O T Ü 1 8 0
3 1 0  REM M ASS A B S O R P T IO N  C D E F F I C E N T S
3 2 0  FOR B =  1 TO 7 9
7 7 0  P R I N T  " I N P U T  M . h . L .  A T  L m M B D h = " . I 5 - M . 0 5 + Ö )
7 4 0  I N P U T  MAC-'B«
3 5 0  N E X T  B
3 6 0  C L S ;  P R I N T  " D o  r o u  W a n t  t o  S a v e  M a s s  A b s o r p t i o n  C o e f f s “' Y / N "  : Q * = G E  T *
3 7 0  I F  Q * » " Y "  THEN GOTO 4 0 0
7 8 0  I F  Q * = n N "  THEN GOTO 5 4 0  E L S E  GOTO 3 6 0
7 9 0  REM S A V E  F I L T E R E D  SPEC TRU M  
4 0 0  I N P U T  " F I L E  Nm M E "  , N A M E *
4 10  X = O PEN OU T N h M E *
4 2 0  FOR C =  1 TO 3 9  
4 3 0  P R I N T  # X , M A C\C )
4 4 0  P R I N T  MAC I . C : N E XT C 
4 5 0  C L O S E K X  : G 0 T 0  5 4 0  
4 6 0  C L S

4 7 0  I N P U T " N a m e  o f  F i l e  w i t h  M . A . C s . " :  N A M E S #
4 0 0  X - O P E N I N  N A M E S *
A 9 0  FOR D = 1 TO 7 9  
5 0 0  I N P U T  # X , MAC <D >
510 PRINT MAC (D )
520 NEXT D 
530 CLOSENX
540 REM CALCULATION OF INTENSIY DROP 
550 FÜR E-l TO 39
560 FILTERD <E)*SPECT(E>*EXP(-TH*MAC(E))
570 PRINT FILTERD(E)
580 NEXT E
590 REM SAVE FILTERED SPECTRUM TO DISC
600 PRINT" Do you want to s a v e  Filtered Spectrum on Disc Y/N "|Q*»GET*
610 IF Q*=*"Y" THEN GOTO 630
620 IF Q*-,,N" THEN GOTO 690 ELSE GOTO 600
630 INPUT “FILTERED SPECTRUM FILE NAME"jNME*
640 X-OPENOUT NME*
,sM0  FO P  F--1 TO ~ 9
ö60 PRINT #X,FILTERD(F)
670 NEXT F 
680 CL0SE#X
6 9 0  C L S : P R I N T " D o  y o u  w a n t  a p r i n t o u t  o f  E n e r g i e s  a n d  i n t e n s i t i e s  Y N  " • " 2 CI* = G E

r
7 0 0  I F  Q * = " Y "  TH EN GOTO 7 2 0
7 1 0  I F  Q * = " N "  THEN G O i O  7 9 0  E L S E  GOTO 6 9 0
■20 MODE 0 : V D U 2
"30 PRINT "ENERGY U'ev) WhVELENGHT (*4) Io 1
7 4 0  FOR G ”  1 TO  7 9  
7 5 0  ENERGY*/. ( G ) =  1 1 +G
7 6 0  P R I N T  ENERGY?.  (G> , " ”  ,  • 1 2 .  7 9 6 /  (1  1 + G ) )  ,  "  "  , 5 P E C T  ( G)  , "  " ,  F I L T E R D  <G>
7 7 0  N E X T  G 
7 8 0  V D U 3 : M 0 D E 7
• 9 0  P R I N T  "D O  YOU WAN1 TO GRAPH'-* y '  N "  s G * = G E T *

8 0 0  I F  Q * = " Y "  TH EN GOTO 8 7 0
8 1 0  I F  Q * = " N " 1 HEN G O l U  1 1 0  E L S E  GOTO 7 9 0
8 2 0  REM D I S P L A Y  PROGRAM FOR GRAPHS
830 DIM A * (70)
8 4 0  I N P U T " G r a p h  S c a l e " , M A G  
8 5 0  M O D E4
8 6 0  I N P U T  " I n p u t  H e a d i n g  f o r  G r a p h " , H E A D *
8 7 0  FOR 1 =  1 TO L E N ( H E A D * )
080 A* ( I > -MI Lv* \ HEAD* ,1,1)
890 NEXT I
* 0 0  1 = 2 5 : I F  L E N ( H E A D * > < = 2 5  THEN GOTO 9 7 0  
9 1 0  R E P E A T  
9 2 0  X * “ A * ( I )
930 1=1-1
9 4 0  U N T I L  X * = "  M
9 5 0  F I R S T * = L E F T * ( H E A D * , I )
9 6 0  S E C L N i ^ R I G H T * ( H E A D * , L E N  * H E A D * ) -  I - 1 > :  GOTO 9 9 0
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Hr. “ -»'mi i 1 ■ r-1



* .1 r I *• T I - Mt *-l I 
' - 30  ’̂ L  -L L U I  - "
V* 0  i_l_6 

1 t . '0 0  . D U ^ 8  . (3 t  J *  . :  -  , . t?
I d  119 V D U 2 4 , 0 ;  1 5 0 :  I J  1 0 .  ; 
i 0 : 0  l -  im  e c u  i v i  h i  o  - :  -  :
I t 1 0  f - u ¡NT  “ L N E i- *G i OF Wm b !. r  - . ' H : F L U T  E W~ "  : L'-f = GL I f  
! 0 4 0  ( h ! J  *  * • £ "  hN D  u f  W  i M t U  " U l i J  1 0 3 0
1 0 L 0  l  NF U ? 1F 1 1 E N r tM t  . Mi-ME «
1 0 6 0  X = r i F E f J l N  Nm M E *
1 0 / 0  F U h  J ’ . =  l  1 0  :-9
1 0 U 0  I N P U  1# X  , t L ' U  I , ' T H I O  ■ J'.j
10913 M fc /1  J ’ .
1 1 0 0  C L U S E #  
t 1 113 V D U 5
I 1 2 0  M O V E 0  , 1 5 0  : DRAW 1 _ 0 0 , 1 5 0  
1 1 7 0  MOVE 0  , 1 0 0  : L'Hh W 0 . 1 0 0 0  
1 1 4 0  FO R l - ' . - 0  TO b O 0  s  1 EF ö ü  
1 1 5 0  MOVE 0 ,  ! * .  + 2 0 0 :  L R hmJ 1 0 , I ^ 0 0
1 1 0 0  N t .<  r i : :
1 1 "?0  MOVE 0 ,  7 4 0 :  ORr iW^-0, ’ 4 0
1 1 8 0  I F  0 * = " E M TH EN  G uTO  1 . 0 J
1 1 * 0  I F  0 * - =  " W”  THEN GOTO 1 7 . 0  E L S E  GOTO 1 0 7 0
1 2 0 0  REM P L O T  DF I N T E N S I T Y  v s .  ENEKGY
1 2 1 0  MOVE . ' 4 0  , 9 0 0 :  F'R 1N T “  I n t  e n s l  ► y  v s .  E n e r q y  ( k e v  ) "
1 2 '2 0  FO R J M = 5 V  I O  1 S l E P - t  
1 2  ; .0  G =  1 1 +■ J  7.
1 2 4 0  MOVE ( i G * 2 2 )  - 2 0 0  > , 11 )0 :  D F m W • < u * 2 2 >  - 2 0 0 )  ,  1 6 0  
1 2 5 0  N E X T  J7 .
1 2 6 0  M 0 V E 4 B ,  1 5 0 + E O U I V T H i a  C ^ ^ M h G 
1 2  7 0  FO R  J 7 .=  3 9  TO 1 S T E P - 1  
1 2 8 0  G * l l + J V .

I I I f' r.i 'J 1 < . *  * .'!< . I • 1 ' - • - I ‘ * i  If-H
. o o  '-ì e x  I j : .
. * ! 0  u l  1TQ 1 4  10
i ; j 0  R t M  F L U T  T I N G  i N f E N S i l V  / s .  Wh V E LE N G H T  
i J IO  ML>‘ ’E T-40 , V 0 0  s F'R I N  T ”  I n t e n s i t y  v s .  W a v e l e n q h t '  
i  4V3 F U R  j : ' .= 1 7  T U  1 S T E P  - I  
l . '5 0  MOVE j % * 5 0  ,  1 5 0 :  D P h WJ*/. * 5 0  . 1 o 0  
: 7 o 0  N t ; . T  J ‘*.
* ,  0  M O V E 1 7 * 5 0 , 1 5 0 + E U U I V  T H I C H  ' 1 7 ' * 5 0  
1 - Ü 0  FO P  J 1 7  TO 1 S T E P  - I  
: 7 * 0  D R A W J * / . * 5 0 ,  15 0 + E Ü U I V T H  I  O  < J % > * 5 0  
1 4 0 0 N E  *. T J*/.
1 4 1 0  MOVE 4 5 0  , 8 0 0  ì F'R I  NT F I R S T *
1 4 2 0  MUV E 5 5 0 , 7 5 0 : P R I N T  S E C L N $
14 3 0  VDU4
1 4 4 0  C L S s P R l N l " H r t R D  CO PY H , NEW SPEC N OR MORE S P E C ì Rh  M " : : 0 * = G E 1 J
1 4 5 0  I F  Q * <  " H " A N D  Q * <  " N " A N D  0 *  : " M " 7 H E N  GOTO 1 4 4 0
1 4 ö 0  C L S : I F  Q * - " H "  THEN PR O LDUM P
1 4 7 0  C L S : I F  Q * * MN M TH EN  GOTO 3 1 0
1 4 8 0  C L S
1 4 9 0  GOTO 1 0 3 0
1 5 0 0  DEF P R 0 C A 5 S E M B
1S 1 0  M = 2 2 4 0 5 1  S T O R E  1 - M - 101  S T O R E 2 * M - 2 0 1 h E M S T - l c 7 0 i  O S W O R D - fc F F F 1 
1 5 2 0  FOR N - 0  TO  2  S T E P  2  
1 5 3 0  P ‘/ . = M - 1 5 0  
1 5 4 0 C O P T  N
1 5 5 0  . P L T  L D A  # 0 0
1 5 6 0  TAY
1 5 7 0  . L 0 0 P 1  L D A  « 0 0
1 5 B 0  TAX
1 5 9 0  . L 0 0 P 3  ROR S T O R E 1 , X
1 6 0 0  R O L  A
1 6 1 0  I N X
1 6 2 0  CPX # 0 6
I © 3 0  B M I  L O O P 3
1 6 4 0  S T A  S T 0 R E 2 , V
1 6 5 0  I N Y
1 6 6 0  C P Y  # 0 8
1 ö 70  B M I  L O O P 1
1 ö 8 0  R T S
1 0 * 0 1
1 ^ 0 0  N E X T  N 
1 7 1 0  EN DPRO C 
1 7 2 0 D E F P R O C D U M P  
17 7 0 P R Ü C A S S E M B  
1 ~ 4 B V D U 2 , 1 , 2 7 , 1 , 6 5 , 0  
1 .T5 0 X ' / . = M - 3 0 :  Y 7 .=  X V.D I V 2 5 6  
1 7 ö 0 F O R Y Y * / . = 0 T O 9 9 2 0 S r E P  3 2 0  
1 ' 7 0 V D U 1 , 2 7 , 1 , 7 5 , 1 , 6 3 , 1 , 1  
1 7 S 0 F O R X X V . = 0 T O 3 1 2  S I  EP S 
t "? 9 0 M E M S T =  ( 2 2 5 2 6  +  X X / . + Ì  i  V.t 
l d 0 0 F G R  J ? . = 0  TO 7 
i b 10 S  I ORE 1 ?J 5C=F N R E A D 1 0  ( ME MS 1 ♦  J  V. )
1 0 1 0 N E X I  J*/.
1 8 3 0 L A L L  P L T  
l 8 4 0 F O R 2  7.= 7 T O 0 S i E P  - 1  
1 S 5 0 V D U 1  , ^ ( S T 0 R E 2 + Z V . )
1 8 6 0 N E X  T17.
1 Ö 7 0 N E X T X X 7 .
I 8 B 0 V D U I , 1 3  
1 0 9 0 N E X T  YY7.
1 9 0 0 V D U 3  
1 *  10 E N D P R O C
l * 2 0 D E F  F N R E A D I O  ( a d d r  > :  Y * i -X % D  I V 2 5 6 :  1 X * / .= a d d r  :  A 7 . - 5 c  C A L L  OSWORD 
1 9  7 0 =  X 7 .^4
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A l tm tc K - u r i t i A t m a t K - i m ' u A l t m i i K - i m c ;

n u m b e r  a d ----- » - ---- J n u m b e r  t t u i

e le m e n t K K N . K M . K M , K L * K L , K K N a K M . K M , K L . K L . t  U n u n i K K N „ K M , K M , K U K L ,

• i f e d g e

K -P , K p , K p , K a , K a , K P i * P i K p , K a , K a , K P , K P , K P , K a , K a ,

I n te n s i ty — ~ 5 - 3 0 ~  12 IOO ~ 5 ° h k a s i t j — ~ 5 ~ 3 0 — 12 10 0 ~ 5 ° I n te n s i ty — ~ 5 - 3 ° ~  12 100 ~ 5 °

a  B e 0 . 1 1 5  
0 . 18 S

a  10 9 4 1  N b 18 .9 8 5 18 .9 4 7  ' 18 .623 18.606 16 .6 15 ■ 6 .5 21 81 T I 8 5 5 3 2 84.924 8 2.5 7 5 82 384 7 2 .8 7 2 70  832
♦  * *  
s  B 4*  M o 9 0 . 0 0 3 19 .960 19.608 * 9 - 5 9 ° * 7 - 4 7 9 *7 3 7 4 8 2  P b 88.008 87  367 8 4 9 3 6 84 4 5 ° 7 4 9 6 9 7 2  804
J  "

4 3  T c ■ I.O 48 * 1.0 0 2 2 0 .6 19 * 0 - 5 9 9 18 .36 7 18 .2 5 1 83  B i 9 0 5 4 0 89.866 8 7 3 5 4 86.831 7 7 . 1*8 7 4 8 1 5
6  C 0 .2 8 2 o * 7 7 4 4  * » M . i t j • 2 .O7 2 2 1.6 5 6 2 1 .6 3 7 * 9 * 7 9 ■ 9 .15 0 84  P o 9 3  “ 3 9 * . 403 89  801 89 250 79 .3 0 1 76.863

- n  n 0 - 3 9 7 ° 3 9 3 4 5  * * * 3 * * * 9 * 3  » 7 3 2 2 . 7*3 22.6 9 8 2 0 .2 16 20.0 73 85 A l 9 5  7 3 ° 9 4  9 8 3 9 2.30 2 91 722 8 ' 5 * 3 7 8  9 4 3

8  O

9  F
1 0  N e

11 N a  

i *  M g

0 5 3 3
0 .6 92
0 .8 74

■ .080 

> •3 0 9

0.8

1.0

*•3

5 8

7*
0 2

« • 5 * 5
0.6 77
0.848

1.0 4 1

1 * 5 3

46  P d

4 7  A *
48  C d

4 9  •«»
■ jb  S o

* 4 -3 6 5
* 5 - 5 3 «
* 6 - 7 * 7

* 7 - 9 5 3
2 9 .2 1 1

* 4 .3 0 3

* 5 4 6 3
*6 .6 5 3
* 7 .8 7 2
2 9 .1 2 2

2 3 .8 19

* 4  9 4 3
*6 .095

* 7 * 7 5
28 .4 9 1

9 3.79 2
24 . 9 1 *
26 .06 1

* 7 * 3 7

* 8 4 3 9

2 1 . 1 7 8
2 2 .1 6 3

* 3  » 7 3  
2 4 .20 9  
2 5 .2 7 2

2 1 .0 2 1
2 1.9 9 1
22 .9 8 5
24.0 02

* 5 - 0 4 4

86  R n

87  F r

88 R a

89  A c

90  T h

98.402 
1 0 1 . 1 3 1  

10 3.909 
10 6 .738  
10 9 .6 4 1

9 7 6 1 7
10 0.30 6

10 3.0 39

■0 5 -8 37
■ 08.690

9 4 8 6 6

9 7  4 7 7  
■ 00  130 
10 2.84 6  
10 5 .6 11

9 4 2 4 6
96.807

9 9  4 3 *  
10 2 .10 1  
10 4 .8 3 1

8 3 .7 9 3  
8 6 .1 1 4  
8 8.476  
90.884 

9 3  3 5 8

8 i 065 
8 3 .2 3 1 

85  4 3 4  
8 7.6 7 5  
8 9.952

13  A i 1.5 6 2 * • 5 5 7 >-4 *7 1.4 8 6 5 « S b 3 0 - 4 9 9 3 0 4 0 2 * 9 - 7 * 5 * 9 .6 7 7 * 6 - 3 5 9 2 6 .1 1 0 91 P a 1 1 2 .5 9 9 ■ 11.6 0 6 »08 435 107.606 9 5  883 92 287
14  S i 1.8 4 0 1.8 36 1.7 4 0 « 7 3 9 5 *  T e 3 » . 8 » 7 3 « - 7 » * 3 0 - 9 9 5 3 0  9 4 4 2 7 .4 7 2 2 7 .2 0 1

9 2  U 115 -6 0 6 ■ 14 .56 1 1 1 1 .3 0 3 ■ 10 .4 24 98 4 4 ° 9 4  6 5 9
■5 f 2 .1 4 3 2 .1 3 9 * 0 1 4 2 .0 1 3 5 3  • 3 3 1 6 8 3 3 0 5 4 3 * * 9 5 3 * * 3 9 2 8 .6 12 * 8 3 1 7

9 3  N P ■ 18 .678 " 7  5 9 ' ■ 14 .2 4 3 1 1 3 . 3 1 2 10 1.0 6 8 9 7  ° 7 7

16  3

17  a

2 .4 7 1
2 .8 2 4

2.46 4
2 .8 16

2.308
2.6 22

*■307
2.6 2 0

5 4  X e

5 5  C .
3 4 - 5 5 »

S W * 6

3 4 - 4 * 8

3 5 - 8 3 3

3 3 6 2 5  

3 4  9 8 5

33.5 6 2

3 * 9 ' 8

* 9 - 7 7 9

3 0 9 7 3

* 9 4 5 9
30 .6 25 9 4  P u

9 5  A m

1 2 1 .8 1 8
12 5 .0 2 7

■ 20 .70 3
■ 23.8 9 1

■ 17 .2 6 1 
120 .36 0

11 6 .2 7 7  

1 » 9 - 3 1 7

10 3 .7 6 1 
■06 5*3

9 9  5 5 *  
i o *  o & \

18  A r 3 .2 0 3 3 .19 0 2.958 * 9 5 6 56  B a 3 7 - 4 » 4 3 7 * 7 0 3 6 3 7 8 36 .30 3 3 *  » 9 4 3 1 .8 1 7 96  C m ■ 2 8 .2 2 0 ■ 27.0 66 1 2 3 . 4*3 12 2 .3 2 5 10 9.290 104  44.1
19  K 3 6 0 7 3  5 9 0 3 3 * 4 3 -3 * » 5 7  L . 3 « - « 9 4 3 8 . 7 3 9 37.8 02 3 7 - 7 * ' 3 3  4 4 * 3 3  0 3 4 97  Bk > 3 ‘ 5 9 ° • 3 °  3 5 5 126 .6 6 3 ' * 5  4 4 3 1 1 2 . 1  38 10 7  205
20  C a 4  0 3 4 4 0 1 3 3 6 9 2 3 6 8 8 58  C e 40 -4*0 4 0 .2 4 3 3 9 * 5 8 3 9 - ' 7 0 3 4 -7 2 0 3 4 * 7 9 98  c r 13 5 .9 6 0 ■ 34.6 81 ■ 30 .8 51 ■ 29  601 1 16 .030 1 1 0  7 1 0

s i  S c  
22  T i

4 4 8 6
4  9 6 5

4.461

4 - 9 3 *

4.090 

4  5 * *

4.086

4-505

5 9  P r
60  N d

4 1.9 5 8

4 3 - 5 3 «

4 » - 7 7 8  

4 3  3 4 5

40.748
4 2 .2 7 2

40 .6 53 
4 2 .16 6

36 .026
3 7 .3 6 1

3 5 - 5 5 °
3 6 8 4 7 9 9  E*  

10 0  F m
139 .49 0  
■ 43.090

■ 3 8 .16 9  
1 4 1 .7 2 4

13 4 .2 3 8
13 7.6 9 3

13 2 .9 16  

*36  3 4 7

1 19  080 
12 2 .1 9 0

■ 13  470 
1 | 6 .28o

23  V 5 4 6 3 5 - 4 * 7 4 - 9 5 * 4 - 9 4 4 6 1  P m 4 5 - » 5 * 4 4 - 9 4 7 4 3 8 2 5 4 3  7 * 3 3 8 .7 2 5 3 8 .1 7 1 10 1  M d 14 6 .78 0 1 4 5 - 3 7 ° 1 4 1 .2 3 4 13 9 .7 6 1 H 5.390 1 1 9  1 7 0
24  C r 5 9 8 7 5  9 4 7 5 - 4 * 5 5 - 4 0 5 6 *  S m 46 -8 0 1 46 -58 4 4 5 -4 »  3 4 5 * 8 9 4 0 .1 1 8 3 9  5 * 3 10 2  N o 15 0 .5 4 0 ■ 49.092 ■ 44.852 *4 3 .29 5 1 28.660 1 2 2  IOO
25  M n 6 - 5 3 7 6.490 3 - 8 9 9 5 -88® 63  E u 4 8 4 8 6 4 8 .2 5 6 47.0 36 46 .90« 4 ' - 5 4 » 40.902 103  L w ‘ 54-38 0 15 2  9« # 148.6 70 I 46 920 1 3 2.0 20 1 2 5 . 1 DO

26  F t
27  C o

6.404
6 -9 J O

6 .3 9 1
6 .9 15

6 4  G d 5 0 * « 7

3 * 9 6 5
4 9 - 9 6 4 48.696 4 8 5 5 4 4 * 9 9 6 4 *  3 0 97 . 1 1 2  

7 .7 1 2
7 0 5 8
7 6 4 9

6 5  T b 5 » -7® 9 5 0 .38 2 5 0 .2 2 8 44- 4 8 » 4 3  7 4 4

28  N i 8 . 3 3 9 8 .26 5 7 - 4 7 8 7-4 6 1 6 6  D y 5 3 - 7 6 » 5 3  4 9 * 5 2 . 1* 9 5 *  9 5 6 4 5  9 9 9 45.20 8
29  C u 8 .9 93

9.658  1
8-905 8 9 0 3 8.048 8 .0 28 6 7  H o 5 5 - 5 9 3 5 5 3 0 8 5 3 .8 7 8 5 3 - 7 0 7 4 7 - 5 4 7 46.699

30  Z n 9 6 7 3 9 5 7 * 9  5 6 7 8.639 8 .6 16 68  E r 5 7 4 6 4 5 7  '6 4 5 5 6 8 1 5 5  4 9 * 4 9 .12 8 4 8 .2 2 1

31  G a
32  G e

10 .3 8 6

1 1 1 * 5

10 . 3 6 6 1 
1 1 . 1 0 1  '

10 .2 7 1
10 .983

■ 0 .2 6 1 
10 .9 78

9 * 5 *
9 8 8 7

9 * 3 »
9.8 56

69  T m

70  Y b
5 9 - 3 7 4
6 1 . 3* 2

5 9  0 5 9  
6 0.991

5 7  5 * 3  

5 9 - 3 7 4

5 7 - 3 0 3  

5 9  » 5 7

5 0 - 7 4 *  

5 *  389
4 9 - 7 7 3  

5 »  3 5 4

3 3  A * 1 1 .8 7 7 11 .8 6 4  • 1 1 .7 2 7 1 1 .7 2 1 > 0 -5 4 4 10 .50 9 7 1  L u 6 3 . 3 1 » 6 2.9 6 0 6 1.2 8 6 6 1.0 4 9 54 -0 7 0 5 * 9 6 5
3 4  S e 12 .6 6 6 12 .6 5 2  1 12 .4 9 6 ■ 2.48 9 1 1 .2 9 2 1 1 . 1 8 1 7 «  H f 6 5 - 3 4 3 6 4 - 9 7 3 6 3 .2 3 6 6 2.9 79 5 5  7 9 0 54.6 1  ■
35  B r ! 3 -4 ® 3 >3 4 7 0 ' ■ 3.29 2 ■ 3.28 5 « » 9 * 4 11 .8 7 8 7 3  T . 6 7-4 0 5 6 7 .0 1 1 6 5 .2 2 1 64-946 5 7 - 5 3 3 5 6 * 7 7

36  K r

3 7  R b
* * • 3 3 0
15 .2 0 2

* 4 - 3 * 5 '
1 5 . 1 8 5 '

I 2.6 50

» 3 -3 9 6

* * 5 9 8

» 3 - 3 3 6

7 4  W 6 9 - 5 »  7 6 9 .10 0 6 7 .2 4 4 66.951 5 9 - 3 * 8 57.98 2
14 . 1* 3
*4.962

■ 4 .1 0 5  
14 -9 5 2 7 5 7 1 .6 7 0 7 »  * 3 0 69-309 68.994 6 1 .1 4 0 5 9 .7 18

38  S r 16 .10 6 16 .06 5  1 *5-8 36 15 .8 2 6 14 .16 6 1 4 - 0 9 « 76  O t 73 -8 6 9 7 3  4 0 4 7 * - 4 i 6 7 1 .0 7 7 6 3.001 6 1.4 8 7
3 9  Y * 7 - 0 3 7 1 7 .0 *5 ; * 6 -7 3 7 « 6 .7 * 5 » 4 - 9 5 « 14. 8 8 « 7 7  1 ' 7 6 .1 1 1 7 5 .6 2 0 7 3 5 6 o 7 3 * 0 3 6 4.896 6 3 .28 7
40  Z r ' 7  9 9 7 ' 7  9 6 3 17 .6 6 2 17 .6 4 9 « 5 - 7 7 0 * 5 - 6 9 * 78  P i

7 9  A u

78 .40 0
80 . 7*9

7 7  8 8 3  
8 0 .18 2

7 5  7 5 *  

7 7 9 8 5

7 5  3 6 4  
7 7 - 5 8 o

6 6 .8 32
68.804

6 5 .1 2 3
66.990

80  H g 8 3 .10 9 8 * 5 3 2 8 0 .26 1 79 .8 22 7 0 .8 1 9 68.894

Appendix 
K.


