
An Experimental Design Framework for 

Evolutionary Robotics

Mr. Robert McCartney B.Eng.(Hons.)

Submitted for assessment for the award of the degree of 

Masters in Electronic Engineering by Research and Thesis.

Supervisor: Dr. Barry McMullin.

School of Electronic Engineering.

Dublin City University.

June 1996.

Volume 1 of 1



To my family...



I hereby certify that this material, which I now submit for assessment on the programme 

of study leading to the award of Masters in Engineering (M.Eng.) is entirely my own 

work and has not been taken from the works of others save and to the extent that such 

work has been cited and acknowledged within the text of my work.

Signed : ______________________

ID No.: 93700261 

Date :

2



ABSTRACT 7

LIST OF FIGURES..............................................................................................................................................8

PREFACE............................................................................................................................................................... 9

1. INTRODUCTION.............................................................................................................................................9

2. BACKGROUND THEORY......................................................................................................................... 14

2.1 Introduction..................................................................................................................14

2.2 Subsumption Architecture......................................................................................... 15

2.2.1 Introduction.......................................................................................................... 15

2.2.2 Functional Decomposition.................................................................................. 15

2.2.3 Behavioural Decomposition...............................................................................16

2.2.4 Advantages/Disadvantages of Subsumption Architecture............................... 18

2.2.5 Application of Subsumption Architecture to the Project................................. 19

2.3 Computational Neuroethology...................................................................................20

2.3.1 What is Computational Neuroethology?........................................................... 20

2.3.2 Beer’s Work.........................................................................................................21

2.3.3 Application of Computational Neuroethology to this Project.........................24

2.4 Simple Genetic Algorithms........................................................................................ 26

2.4.1 A definition of Simple Genetic Algorithms...................................................... 26

2.4.2 What’s new?.........................................................................................................27

2.4.3 Genetic Fitness.....................................................................................................28

2.4.4 Genetic Operators............................................................................................... 29

2.4.5 Application of Simple Genetic Algorithms to this Project..............................31

2.5 Computational Embryology.........................................................................   32

2.5.1 Phenotype Growth....................     32

2.6 Conclusion...................................................................................................................34

3. HARDWARE IMPLEMENTATION DETAILS.................................................................................... 35

3.1 Introduction..................................................................................................................35

3.2 Hardware Environment Overview............................................................................ 36

3.3 Robot Single Board Computer (SBC) Details......................................................... 41

3.3.1 Introduction..........................................................................................................41

3.3.2 Aspirations...........................................................................................................41

3



3.3.3 Operation of the SBC.........................................................................................43

3.3.4 Summary.............................................................................................................. 45

3.4 Robot/SBC Interface.........................................................................  47

3.4.1 Introduction..........................................................................................................47

3.4.2 Beginnings........................................................................................................... 47

3.4.3 Operation and Description..................................................................................48

3.4.4 Summary.............................................................................................................. 50

3.5 The Robot.............................................................................................................. . 51

3.5.1 Groundings........................................................................................................... 51

3.5.2 Description........................................................................................................... 51

3.5.3 Summary.............................................................................................................. 54

3.6 Behavioural Evaluation Environment....................................................................... 57

3.6.1 Introduction.......................................................................................................... 57

3.6.2 Description........................................................................................................... 57

3.7 Summary......................................................................................................................59

4. SOFTWARE IMPLEMENTATION DETAILS....................................................................................60

4.1 Introduction..................................................................................................................60

4.2 Paragon Cross compiler............................................................................................. 63

4.2.1 Introduction..........................................................................................................63

4.2.2 Operation......................................................     63

4.2.3 Summary.............................................................................................................. 64

4.3 Simple Genetic Algorithm Software.........................................................................66

4.3.1 Introduction and Reasoning............................................................................... 67

4.3.2 Application........................................................................................................... 69

4.3.3 Genetic Coding Breakdown................................................   71

4.3.4 Random Number Generation............................................................................. 72

4.3.5 SGA Operators.....................................................................................................74

4.3.5.1 The Genotype Selection Function...............................................................74

4.3.5.2 The Mutation Function................................................................................76

4.3.5.3 The Crossover Function.............................................................................. 78

4.3.5.4 Genetic Parameter Choices......................................................................... 81

4.3.6 Summary.............................................................................................................. 81

4



4.4 The Network Development Program.........................................................................83

4.4.1 Introduction.......................................................................................................... 83

4.4.2 Origin of the Idea................................................................................................. 84

4.4.3 How Does It Work? (The Rules)........................................................................ 85

4.4.3.1 General Rules................................................................................................85

4.4.3.2 Link Growth Dynamics................................................................................86

4.4.3.3 Node Division Dynamics.............................................................................86

4.4.4 Implementation of the Rules...............................................................................88

4.4.5 Network Download..............................................................................................89

4.4.6 The Genotype Parameter Decoding................................................................... 91

4.4.7 Network Growth.................................................................................................. 94

4.4.8 Summary.............................................................................................................. 95

4.5 Simulator and Simulation.......................................................................................... 97

4.5.1 Introduction.......................................................................................................... 97

4.5.2 Operation of the Neural Network....................................................................... 98

4.5.3 Simulator and Simulation Development..........................................................102

4.5.4 Simplifications...................................................................................................104

4.5.4.1 Simplification 1 (Internal Conductances)................................................ 104

4.5.4.2 Simplification 2 (Integers)......................................................................... 105

4.5.4.3 Simplification3 (Neural Node Structure)................................................ 107

4.5.4.4 Simplification 4 (Neural Node Update Routine)..................................... 110

4.5.4.5 Final Revision (Timing).............................................................................112

4.5.5 Node Types........................................................................................................ 113

4.5.5.1 Neural Node Description........................................................................... 113

4.5.5.2 Generator Nodes........................................................................................ 115

4.5.5.3 Output Nodes............................................................................  116

4.5.6 Summary............................................................................................................ 116

5. BEHAVIOURAL EVALUATION................................................................................................... 119

5.1 Introduction................................................................................................................119

5.2 What is good behaviour?......................................................................................... 121

5.3 The Rules...................................................................................................................123

5.4 Summary....................................................................................................................125

5



6. RESULTS..............................................................................................................................................126

6.1 Introduction................................................................................................................126

6.2 Two Runs................................................................................................................... 128

6.2.1 Run 1................................................................................................................... 128

6.2.2 Run 2 ...................................................................................................................133

6.3 Results Conclusions..................................................................................................135

6.3.1 Simple Genetic Algorithm................................................................................135

6.3.2 Overall Framework............................................................................................135

7. CONCLUSION..................................................................................................................................... 137

7.1 Subsumption Architecture....................................................................................... 138

7.2 Computational Neuroethology................................................................................. 140

7.3 Computational Embryology & Genetic Algorithms.............................................. 142

7.4 Other Issues................................................................................................................145

7.5 Final Conclusions..................................................................................................... 147

8. BIBLIOGRAPHY................................................................................................................................ 149

APPENDIX A ..................................... PARAGON C CROSS COMPILER CONFIGURATION FILE

APPENDIX B ........................................................................ NEURAL NODE UPDATE EQUATIONS

APPENDIX C ...................................................................RANDOM NUMBER GENERATION SUITE

APPENDIX D ................................................... INTERFACE FROM MC68000 SBC PI/T TO ROBOT

APPENDIX E .......................................................................... EXAMPLES OF NETWORKS GROWN

6



Abstract

An Experimental Design Framework for Evolutionary Robotics

Robert McCartney B.Eng. (Hons.)

Based on the failures of work in the area of machine intelligence in the past, a new 
paradigm has been proposed: for a machine to develop intelligence it should be able to 
interact with and survive within a hostile dynamic environment. It should therefore be 
able to display adaptive behaviour and respond correctly to changes in its situation. This 
means that before higher cognitive properties can be modeled, the modeling of the lower 
levels of intelligence would be achieved first. Only by building on this platform of 
physical and mental abilities may it be possible to develop true intelligence. One train of 
thought for implementing this is to control and design a robot by modeling the 
neuroethology of simpler animals such as insects.

This thesis outlines one approach to the design and development of such a robot, 
controlled by a neural network, by combining the work of a number of researchers in the 
areas of machine intelligence and artificial life. It involves Rodney Brooks’ 
subsumption architecture, Randall D. Beer’s work in the area of computational 
neuroethology, Richard Dawkins’ work in the area of biomorphs and computational 
embryology and finally the work of John Holland and David Goldberg in genetic 
algorithms.

This thesis will demonstrate the method and reasoning behind the combination of the 
work of the above named researchers. It will also detail and analyse the results obtained 
by their application.

7



List of Figures
F ig u r e  2.1 F u n c t io n a l  D e c o m p o s it io n  D e s ig n  St r u c t u r e ..................................................................................16

F ig u r e  2 .2  B e h a v io u r a l l y  Ba s e d  D e c o m p o s it io n  D e s ig n  St r u c t u r e ...........................................................18

F ig u r e  2.3 N e u r a l  N o d e  st r u c t u r e  im p l e m e n t e d  b y  Be e r ................................................................................23

F ig u r e  2 .4  T e r m s  u s e d  in  r e f e r e n c e  t o  S im p l e  G e n e t ic  A l g o r it h m s ...........................   27

F ig u r e  2 .5  A  s c h e m a t ic  o f  s im p l e  c r o s s o v e r  s h o w in g  t h e  a l ig n m e n t  o f  t w o  s t r in g s  a n d  t h e

PARTIAL EXCHANGE OF INFORMATION, USING A CROSS SITE CHOSEN AT RANDOM....................................30

F ig u r e  3.1 G r a p h ic a l  D e s c r ip t io n  o f  H a r d w a r e  En v ir o n m e n t ......................................................................37

F ig u r e  3 .2  R o b o t  M o t o r  O u t p u t  C o d in g ...................................................................................................................... 44

F ig u r e  3.3 Su m m in g  A m p l if ie r  C o n s t r u c t io n ............................................................................................................48

F ig u r e  3.3 T h e  R o b o t ................................................................................................................................................................ 53

F ig u r e  3 .4  Im p r o v e d  Se n s o r y  f r a m e w o r k .................................................................................................................. 55

F ig u r e  3.5 B e h a v io u r  E v a l u a t io n  En v ir o n m e n t ...............................................   58

F ig u r e  4.1 T e r m s  u s e d  in  r e f e r e n c e  t o  S im p l e  G e n e t ic  A l g o r it h m s ...........................................................67

F ig u r e  4 .2  C o d in g  o f  G e n o t y p e s  P r o d u c e d  b y  Sim p l e  G e n e t ic  A l g o r it h m .............................................71

F ig u r e 4.3 G e t_O n e _ B e r n o u l l i( ) ..........................................................................................  72

F ig u r e  4 .4  g e t _ O n e _ U n if o r m ( ) .......................................................................................................................................... 73

F ig u r e  4 .5  G e t_ M s r 8 8 ( ) .......................................................................................................................................................   73

F ig u r e  4 .6  Se t_ M s r 8 8 ( ) ...........................................................................................................................................................73

F ig u r e  4 .7  Th e  SG A  Se l e c t () Fu n c t io n ..........................................................................................................................75

F ig u r e  4 .8  Im p l e m e n t a t io n  o f  t h e  SG A  M u t a t io n  o p e r a t o r ........................................................................... 77

F ig u r e  4 .9  F u n c t io n  in  C  to  im p l e m e n t  t h e  c r o s s o v e r  o p e r a t o r .................................................................. 80

F ig u r e  4 .1 0  G e n e t ic  P a r a m e t e r s  U s e d .......................................................................................................................... 81

F ig u r e  4 .11 Il l u s t r a t io n  o f  n o d e  d iv is io n  d y n a m ic s .............................................................................................88

F ig u r e  4 .1 2  C o d in g  o f  G en o t y p e s  P r o d u c e d  b y  S im p l e  G e n e t ic  A l g o r it h m .......................................... 92

F ig u r e  4 .13  C o n t r o l l in g  fu n c t io n  f o r  N e t w o r k  G r o w t h .................................................................................94

F ig u r e  4 .1 4  T y p ic a l  F e e d f o r w a r d  N e t w o r k  A r c h it e c t u r e ..............................................................................99

F ig u r e  4 .15  N o n -L in e a r  N o d a l  In p u t /O u t p u t  G a in  C h a r a c t e r is t ic ........................................................ 108

F ig u r e  4 .16  O l d  a n d  N e w  St r u c t u r e s  C o m p a r is o n .............................................................................................110

F ig u r e  4 .17  E q u a t io n  u s e d  t o  u p d a t e  n o d e  in p u t  v a l u e . (V c  in  f ig u r e  3 .3 (b ) ) .................................. 111

F ig u r e  4 .18  N e u r a l  N o d e  st r u c t u r e  im p l e m e n t e d  by  B e e r ..................................... ...................................... 115

F ig u r e  4 .1 9  N e u r a l  N o d e  M o d e l  U s e d  in  P r o je c t ...............................................................................................1 15

F ig u r e  4 .20  G a in  c h a r a c t e r is t ic  fo r  O u t p u t  N o d e s ........................................................................................ 116

F ig u r e  5.1 B a s ic  B e h a v io u r a l  Sc o r i n g .......................................................................................................................124

F ig u r e  5 .2  Se n s o r  A c t iv a t io n  Sc o r in g ........................................................................................................................124

F ig u r e  6.1 O p e r a t io n  o f  SG A  f o r  R u n  1.............................    130

F ig u r e  6 .2  A n t i-C l o c k w is e  A r c  M o v e m e n t  E x h ib it e d  b y  R o b o t ..................................................................132

F ig u r e  6.3 O p e r a t io n  o f  SG A  f o r  R u n  2 .......................................................................................................................134

F ig u r e  B 1 N e u r a l  N o d e  u s e d  in  S im u l a t o r  a n d  Sim u l a t io n ................................................................................ i

F ig u r e  B 2  N e u r a l  N o d e  u s e d  B Y  B E E R   .......        m

8



Preface

This thesis represents the combination and completion of a number of works. It was 

completed with the School of Electronic Engineering while registered as a student of the 

Integrated B.Eng./M.Eng. study programme. For that reason a number of other 

documents relating to this project have previously been produced [23,24,25,26]. The 

integrated programme allows students to initiate research for the award of a Masters 

degree in Engineering while registered as an undergraduate.

9



1. Introduction

This thesis is about machine intelligence. It has been inspired by the lack of success in 

recent years in the areas of connectionism, neural networks and expert systems. All of 

these areas have promised much but unfortunately delivered very little. None of these 

areas have made significant progress in developing systems which display an 

intelligence that is not either defined within strict operational boundaries or uses 

simplistic, representationalised input data. Recently however, a number of researchers 

have attempted to approach the problem of modeling machine intelligence from a new 

direction. The new direction which they propose is very simple and is the foundation 

stone upon which this thesis is based. They propose that, in order for a machine to 

exhibit higher level cognitive properties, it is first essential that the machine be able to 

deal with the real environment in which it exists.

The evolution of human intelligence is worth considering at this point as this is the 

intelligence that is referred to when people discuss the creation of artificial intelligence. 

The planet Earth is approximately 4.6 billion years old, and single cell life first appeared 

on it about 3.5 billion years ago The first photo synthetic plants appeared about 1 billion 

years later. Two billion years after that, the first vertebrate animals and fish appeared 

and then about 450 million years ago insects appeared. Reptiles were around about 370 

million years ago and mammals arrived only about 250 million years ago. The human 

race appeared approximately 2.5 million years ago; descended from the first apes who 

appeared only 16 million years before that. Human level intelligence only first became

10



apparent with the discovery of agriculture some 19,000 years ago, writing about 5,000 

years ago and “expert” knowledge only in the last few centuries. This means that 

evolution has spent only 0.005% of 3.5 billion years of the evolutionary time span 

dealing with higher level intelligence. This could be seen to suggest that the capabilities 

of problem solving, language, reason and expert knowledge are either made more 

simple as a result of, or alternatively dependant on, the ability of a being to deal 

interactively with the hostile dynamic environment in which it finds itself.

In continuation with this theme, a machine intelligence should not be designed within a 

cotton wool model of the real world and then be expected to be capable of dealing with 

the real world at some later stage. The only valid model for the real world in all its 

chaotic glory is the real world itself. The functional and reality gap between simulation 

of intelligent behaviour and the implementation of intelligent behaviour is too great. In 

everyday operation an intelligent machine should be able to adapt to changes in its 

situation and environment. It is important that it be able to protect itself from physical 

damage (for example stop itself driving off a cliff if a bridge that existed the day before 

was now no longer present). The machine must be able to differentiate between, and 

deal with, different classes of problems and come to an optimum, scenario dependant 

solution, rather than simply follow an algorithmic path to a pre-defined answer in a pre­

defined situation.

Therefore, it is essential that the machine be multi-tasking and fully aware of the world. 

For example, even taking a parcel from a position x to another position y requires a vast

11



amount of physical and mental capabilities. The controlling intelligence must be 

continually prioritising problems and coming to optimum solutions to complete the task. 

To illustrate, consider some of the tasks which must be completed. Detect and grasp the 

parcel, plan route from x to y based on internal (or external) area map, monitor terrain to 

avoid becoming stuck or damaged, continually choose optimum path around obstacles, 

monitor progress, monitor position and physical condition, etc. all while remembering 

its primary goal of delivering the parcel.

The next question is, of course, how do we design a robot that can behave like this? Due 

to the incredible complexity of the human brain it is currently impossible to model it 

properly. So a number of researchers have proposed that to design or to create a 

machine intelligence comparable with human intelligence it is first essential to model 

the simpler intelligence of simple animals such as insects. Using this modeling and 

neurobiological knowledge it should then be theoretically simpler to work upwards from 

there. This thesis defines and evaluates a single approach to the development of a 

framework for the development of a low level adaptive machine intelligence which 

could be continually updated and augmented. The framework is designed to create a 

machine that may be continually improved using new found knowledge in the areas of 

biology, robotics, artificial intelligence and natural systems modeling.

This thesis is divided into a number of different sections. These are:

1. Thesis Overview.

2. Background theory and description of:

• Subsumption Architecture.

12



• Genetic Algorithms.

• Computational Embryology.

• Computational Neuroethology.

3. Details of:

• Adaptation of background theory to application.

• Hardware descriptions of robot, controlling microprocessor board and 

interface.

•  Software written for application.

4. Results and analysis.

• Description.

• Evaluation.

• Recommendations

5. Conclusion.

t

13



2. Background Theory

2.1 Introduction

In this section, the theories, ideas and inspirations behind the project will be outlined. 

More detailed knowledge of these topics can be obtained from the references given, as it 

is not feasible to provide more precise details and/or examples within the confines of 

this thesis.

The work of Rodney Brooks[3,4,5] whose subsumption architecture idea is one of the 

cornerstones of the masters degree project, is outlined in section 2.2. The work of 

Randall D. Beer[2] who has designed and simulated the operation of neural networks 

based on a computational neuroethological approach, along with the modifications that 

were necessary for its application to this project are detailed in section 2.3. Finally, 

based on the work of Goldberg[14] and Dawkins[9,10,ll], genetic algorithms and their 

application to this project is presented in sections 2.4 and 2.5.

The information in these sections is not sufficient to understand the complexities of the 

fields; rather it serves only as a brief introduction to their basic concepts. This is to 

make the theoretical basis of the project more tangible: to bring together, and show the 

relationship between, all the different aspects of the project work being done

14



2.2 Subsumption Architecture

2 .2 .1  In tro d u ctio n

As stated above, one of the main sources of inspiration for the Master’s project and 

which underlies the work done is the work of Rodney Brooks[3,4,5]. Brooks’ idea is 

that existing approaches to the development of machine intelligence are fundamentally 

flawed. He proposes that in order for a machine to develop intelligence it is first 

essential that the machine be able to deal successfully with a hostile external 

environment. To this end he has proposed a new design structure for intelligent 

machines which is based on a behavioural design methodology rather than the more 

accepted functional design decomposition currently used by many researchers in the 

areas of artificial intelligence and Robotics. In this section the two approaches to the 

design of controlling frameworks will be compared and the advantages of the 

subsumption architecture approach described.

2 .2 .2  F u n c tio n a l D e co m p o sitio n

Figure 2.1 represents a functional decomposed design structure for generating 

‘intelligent’ behaviour in machines. The robot control algorithm designed using this 

approach would incorporate as many solutions as were necessary/possible to enable the 

robot to interact with its environment and thus exhibit some form of intelligent 

behaviour. However, due to the serial nature of this structure as well as the complex 

interactions and message passing techniques employed by this form of design, it fails. 

This failure is illustrated by the fact that if any particular section of the robot were to fail



or become so obsolete as to be rendered useless then an entirely new robot would have 

to be designed and built to overcome the failure or to upgrade the hardware. This is at 

the expense of money, materials and time. Obviously from a robustness, as well as a 

practical viewpoint, this method of design is unacceptable in the long run.

Figure 2.1 Functional Decomposition Design Structure

2 .2 .3  B eh a v io u ra l D eco m p o sitio n

However, shown in figure 2.2 is a diagram which describes a much different approach 

to designing a robot which demonstrates at least the same functionality as the 

functionally designed one. From the diagram it can be seen that rather than a single link 

connecting the sensory input to the output, there are a number of parallel links. Each of 

these links is graded on a behavioural level and each level uses the functionality of the

16



previous levels to carry out its own tasks. To illustrate; the construction of such a robot 

begins with the design of a very simple robot which successfully implements its own 

low-level behavioural tasks such as the avoidance of objects. When this level of 

behaviour has been successfully implemented, tested and proven within a real 

environment, the next level of behaviour is designed. This level could be, for example, a 

wandering behaviour. To enable the robot to apparently wander around its environment 

a level of control is added which takes advantage of the lower level’s behavioural 

capabilities. It subsumes control of the lower level. This robot is then tested fully and 

when it has been found to wander successfully, the next level of behavioural control 

(perhaps an environmental mapping behaviour) is designed, added and tested. The 

addition of each of the completed stages offers a higher level of overall complexity and 

intelligent behaviour to the robot.

Each level of the architecture operates independently of the others but each level can 

subsume control of the levels lower than itself in the behavioural hierarchy and use them 

to its own advantage. This process, Brooks believes, will eventually lead to a machine 

which can make its own decisions on abstract, logical and pure reflex levels and thus 

potentially demonstrate an intelligence far outstripping anything currently implemented 

by functionally designed robots.

17



Avoid
Objects Wander

2

SENSORS

i

fi ji
Explore

3

Increasing Level 
of Intelligent Behaviour

1

Build
Maps

4

I
Monitor
Changes

5

I

I

Identify
Objects

I

ACTUATORS

I

Plan
changes to 
the worlds

I
Reason about 
the behaviour 
of objects g

I

Figure 2.1 Behaviourally Based Decomposition Design Structure.

2 .2 .4  A d v a n ta g es /D isa d v a n ta g es  o f  S u b su m p tio n  A rch itec tu re

The beauty of the subsumption architecture is that, due to the modular nature of both the 

robots intelligence and construction, should any particular level be found to be faulty or 

technologically redundant, then only the offending section need be redesigned - not the 

entire robot. This saves on money, materials and time. One substantial drawback 

however is that a great deal of parallel computational power is potentially necessary to 

implement such a structure. As a result, the robot could (in today’s world) be quite 

expensive to implement initially. However, due to the ease of maintenance and upgrade 

involved with a truly subsumptive robot design, the architecture prevents (as much as 

possible) the robot becoming obsolete due to the failure or redundancy of a single 

section.

18



Taken in the form as described by Brook, subsumption architecture is a long term 

design configuration. Brooks used Finite State Machines to implement each behavioural 

level in the architecture. However, as is discussed in more detail in the next section, this 

is obviously not a very biologically inspired approach to the implementation of the 

subsumption architecture ideal. Subsumption architecture is used simply as a ‘container’ 

for all the other facets of the project. It is the primary cornerstone of the project but in 

itself is not implemented fully. To be implemented fully, a second level of behaviour 

would have to be successfully implemented above a successful first level. Within the 

context of the project only the first behavioural level was implemented and explored. 

Therefore, any further reference to subsumption architecture must be seen in that 

context.

2.2 .5  A p p lication  o f  Subsum ption  A rch itectu re to the P roject

19



2.3 Computational Neuroethology

Brooks’ subsumption architecture control structure is based on the interaction of many 

Finite State Machines(FSMs)[4], This offers an ease of implementation because the 

design of FSMs is not excessively complex if the problem is well defined. However (as 

was discussed in the introduction), in the context of this project it was decided to use a 

more biologically inspired choice of control structure for each level of behaviour. 

Following research in the area of neural networks, it was decided that they could offer 

what was required. The type of neural network control structure chosen to implement 

was a heterogeneous neural network structure. The design and construction of this form 

of neural network was first encountered in the work of Randall Beer [2]. In this work he 

describes the use of a technique known as computational neuroethology.

2.3.1 W hat is Com putational Neuroethology?

Beer describes computational neuroethology as:

“...T h e  d irec t use o f  b eh a v io u ra l a n d  n eu ro b io lo g ica l ideas fr o m  

s im p le r  n a tu ra l a n im a ls  to  co n s tru c t a r tific ia l n ervo u s system s f o r  

c o n tro llin g  the  b eh a v io u r o f  a u to n o m o u s a g en ts  ”

[2][p xvi].

D. T. Cliff in his paper[8] also delivers a concise and studied discussion on 

computational neuroethology. His conclusion references the ability of networks 

designed using computational neuroethology to span the MacGregor-Lewis

20



stratification1 [26]. He references material common to the area of this thesis. Principally, 

he references extensively the work of Rodney Brooks. In this paper he provisionally 

defines computational neuroethology as the

“...s tu d y  o f  n eu ro e th o lo g y  u s in g  the tech n iq u es o f  co m p u ta tio n a l  

n eu ro sc ien ce  ”.

[8]

In particular he notes that a very specific aspect of computational neuroethology is the 

“...in c re a se d  a tten tio n  to  the en v iro n m en t th a t the n eu ra l en tity  is a  

co m p o n en t o f  ”

[8]

2.3.2 B eer’s W ork

In the previous section 2.2 on subsumption architecture, reference was made to Brooks’ 

belief that work in the area of artificial intelligence was fundamentally flawed in its 

approach[3,4,5]. Beer, in his work, makes a very similar statement in the preface of his 

book[2], saying that thinking in this area

“...h a s  b een  d o m in a ted  b y  the n o tio n  th a t in te llig en ce  co n sis ts  o f  the  

p r o p e r  m a n ip u la tio n  o f  sym b o lic  rep resen ta tio n s  o f  the w orld. ”

[2]

1 A simple taxonomy o f levels o f analysis. C liff however, makes reference to the stratification as being potentially 
non-ideal and perhaps requiring a further detailing of levels[8].

21



Certainly this seems to tie in very well on a conceptual level with Brooks’ thesis of 

using the world as its own model[4], It was viewed at the beginning of this project that a 

marriage of the work’s of these two men would be both interesting as well as being, 

potentially, a rewarding approach. This reward being based on the combination of the 

real time efforts of Brooks[3,4,5] and the perceived mental processing offered by Beer’s 

neural network structure [2], Beer himself states that simpler animals possess a degree of 

adaptive behaviour that far exceeds that available to the most complex of artificial ones 

[2]. This level of processing power seemed ideal for a real time robotic implementation.

Beer successfully implemented and documented [2] a simulated insect. Its behaviour 

was due to a neural network which was based on a map of the understood neural 

mechanics of the insect Periplaneta Americana: the American cockroach. The simulated 

insect, using a neural network constructed using neural node models of the type 

described in figure 2.3 below, successfully traversed its simulated environment. It 

achieved some of its specified goals, such as food-finding, and it emulated the 

behaviour of many real insects by, for example, performing an edge following 

behavioural pattern around its environment.

Beer attributes this success to, among other things, the closeness of the neural model he 

employed to the structure of real neurons[2]. He refers to the work of Llinas[22] and 

emphasises the findings of Selverston[32], Specifically he emphasises the fact that nerve 

cells contain a wide variety of active conductances which appear to allow them to 

demonstrate complex time-dependant behavioural responses to stimulation. They can 

also allow demonstrate apparently spontaneous activity when the network is active.

22



Selverston studied the interactions of active conductances at a cellular level and found 

that they appeared to be crucial to the function of neural circuits[32].

Firing
Frequency

Membrane Properties

Figure 2.2 Neural Node structure implemented by Beer

Unfortunately, Beer’s simulation ran as much as ten times slower than real 

time[2][p.63]. This meant that any attempt to directly recreate the same networks and 

behavioural patterns in real time would be unattainable using the existing hardware 

resources. This posed a large problem but the solution chosen was to simplify the neural 

node model. Hence, reducing the computational processing power required and thus 

allowing small networks to operate and be successfully updated in real time. This was 

necessary to achieve the first goal of the project which was to have a real time robot 

behaving in accordance with the initial behavioural levels of Brooks’ subsumption 

architecture [4],

23



The application of the computational neuroethology paradigm to this project was to 

model the construction of the nervous system of a simple animal such as an insect. It 

was decided to make the implementation as facile as possible by incorporating wheels 

into the robot structure rather than using mechanical legs. This, it was viewed, would 

allow the overall framework to concentrate on the sensory response characteristics of 

the robot. The generation of a mechanical gait controller was viewed as superfluous at 

this early stage of research.

The goal of this modeling was the production of a neural network which would control a 

robot in real time. The network, designed on a computational neuroethological basis, 

would be heterogeneous in nature. This meant that it would not be a physically fixed 

structure neural network form (as compared to a multi-layer perceptron network[31] for 

example). Also the individual neural nodes within this type of neural network have 

more than a single parameter governing their input/output behaviour. As Beer 

successfully demonstrated[2], this extra variability can mean that this form of network 

should potentially be able to display more complex functionality than a fixed structure, 

single variable neural network. This variability also allowed the use of fewer nodes and 

hence computation. This is very useful in an application concerned with real time 

operation and control such as robotics. Unfortunately it also means that none of the 

standard learning algorithms associated with existing neural network models are 

applicable. Hence each network must be designed manually.

2.3 .3  A p p lication  o f  C om putational N eu roeth o logy  to th is P roject

24



This application of this type of neural network structure as a robot controller, as well as 

the real time advantages, seems to tie in very well, on an inspirational level, with 

Brooks idea of a subsumption architecture for the implementation of machine 

intelligence. However, the networks designed by Beer (which are based on existing 

neurobiological maps of small insects) only operated in the very strictly controlled 

conditions of a simulated environment within a computer simulation[2]. When this 

project was originally started, this computational neuroethological methodology for 

neural network design had not been used to successfully develop a real time robot 

controller dealing with a real environment. However, Beer does mention this particular 

application in the conclusion of his book[2].

As stated above, one of the main problems involved with using the work of Beer as it 

stood was that the simulation which implemented his neural networks for the control of 

his simulated insect operated very slowly. The simulation ran at a speed equivalent to 

three to ten times slower than real time[2][p.63]. For the purposes of this project the 

neural node model which Beer used had to be simplified (accepting the resultant 

degradation in an individual neural node’s functional potential). This was in order to 

speed up the operation of the networks and allow real time operation. This is obviously 

essential in a real environment. This simplification was made doubly necessary as the 

networks produced in this project were to be run on a Motorola ‘Force’ board. This 

board used a MC68000 processor with a bus speed of only 8 MHz. The details of the 

simplification eventually used for the neural node are given in section 4.5.4.3.

25



2.4 Simple Genetic Algorithms

2 .4 .1  A  d e fin itio n  o f  S im p le  G en e tic  A lg o r ith m s

The third academic source for the thesis is the work of David E. Goldberg [14], 

Goldberg's work is in the area of Genetic Algorithms. Genetic Algorithms (GAs) can be 

used for finding a solution to problems in non-linear or complex problem spaces. GAs 

differ greatly from the traditional algorithms used for problem solving. GAs use a 

number of rules to ‘find’ an optimum solution to a given problem rather than derive a 

precise solution to a precise problem. They draw their inspiration from the apparent 

ability of the DNA structures contained in all living matter to solve problems in a 

gradual and optimum seeking manner.

The operation of genetic algorithms revolves around the use of parameters coded in 

string form, (which in the case of this project is in binary format). This string form is 

referred to as the genetic coding. GAs, in their simplest form, use constructive and 

destructive mutations of the genetic coding, a structured yet randomized information 

exchange between strings and a guiding ‘objective’ function in their search for a 

solution. The objective function guides the algorithm towards an optimal solution (and 

hopefully the optimum) in a given problem space. The optimal solution is evolved 

gradually as the algorithm 'traverses' the problem space. The location of the optimal 

solutions in a search is dependant on a number of parameters. These parameters include 

the availability of a smooth genetic search space, the correct setting of the genetic 

string’s internal parameters (see section 4.3.3) and a well defined objective function.

26



Simple Genetic Algorithms (SGAs) are, as the name suggests, the most basic 

implementation of genetic algorithms. The term Simple Genetic Algorithm is used 

throughout this text because the code used to implement the genetic algorithm operation 

is based on the PASCAL code given in Goldberg's book [14][chpt.l], This PASCAL 

code is called a simple genetic algorithm by Goldberg and the continued use of this term 

is purely for the sake of remaining consistent with the material in the reference text.

To prevent confusion the main terms and abbreviations used in this section and the 

remainder of the thesis in reference to simple genetic algorithms are now explained:

SGA Simple Genetic Algorithm

Search Space The problem space of the simple genetic algorithm.

Genotype Bit string which encapsulates the parameter set of an individual.

Phenotype Entity created from the decoding of a Genotype.

Individual Refers to the Genotype and Phenotype as a single unit.

Fitness Value assigned to individuals based on their performance used 

in reproduction of individuals.

Population A collection of individuals.

Generation A particular instance of a Population.

Figure 2.4 Terms used in reference to Simple Genetic Algorithms

2 .4 .2  W h a t’s n ew ?

So what are the fundamental differences between SGAs and more traditional 

algorithms? Goldberg specifies four ways in which SGAs differ from traditional 

optimisation techniques.

1. SGAs work with a coding of the parameter set, not the parameters themselves.

27



2. SGAs search from a population of points, not a single point.

3. SGAs use payoff (objective function) information, not derivatives or other 

auxiliary information.

4. SGAs use probabilistic transition rules, not deterministic rules.

[14][p.7],

SGAs require the natural parameter set of the optimisation problem to be encoded as a 

finite length string over some finite alphabet. For this project the coding is a binary 

string in order to minimise the effects of single mutations in the genetic coding. The 

precise coding used is described in section 4.3.3.

The operation of the SGA involves processing a number of strings representing a 

population of individuals. The search is carried out by using a structured yet randomised 

information exchange between the genotypes of a population. The purpose of the 

structured information exchange is optimisation of the average fitness of the population 

to find a single stable, optimal solution or individual.

2 .4 .3  G en e tic  F itn ess

The genetic fitness of an individual is a number assigned to the individual based on its 

performance. The objective function in an SGA is usually responsible for the 

assignation of this number. This is done by evaluating and comparing the performance 

of individuals relative to some known, or unknown, optimal performance points in the 

overall search space. In the case of this project: each point in the search space represents 

a controlling neural network. An individual's fitness value can be compared, in natural

28



selection terms, with the ability of an individual to survive and mate with another 

individual. The objective function is usually a function within the scope of the SGA 

program itself. However, for this project, due to the difficulty in defining what 

constitutes ‘good’ behaviour (see section 5.2), it falls upon a human tester to evaluate 

the performance and determine the fitness of the individuals.

2 .4 .4  G e n e tic  O p era to rs

This information exchange between individuals is implemented using a number of 

functions, the individuals' fitness values and what are referred to as genetic operators. In 

SGAs (as applied in this project) these are a reproduction operator, a crossover (or 

mating) operator and a mutation operator. The genetic operators are the basis of the 

operation of an SGA.

The reproduction operator is a process in which genotypes are copied according to the 

fitness of their respective individual's values. The higher the fitness of an individual, 

relative to the fitness of other individuals in the same generation, then the higher the 

probability of that individual contributing one or more offspring to the next generation.

The mutation operator is used to prevent the complete loss of important information. 

This can happen when the algorithm begins to converge towards an optimum. It is a 

probabilistic process which switches the value of a single bit location in a genotype, 

from a 1 to a 0 or vice versa for example. It allows the algorithm the possibility of

29



retrieving an important bit configuration (or schema) which may have been lost 

between generations.

Finally, the operation of the crossover operator is shown in figure 2.5 below. It is a 

process whereby the genotypes of two individuals, chosen by the reproduction operator, 

are mated and exchange information. The crossing site is chosen at random and can be 

at any point along the aligned strings. This means that simple reproduction without 

information exchange is possible (i.e. the cross site can be chosen at the end or the start 

of strings).

2

Before Crossover 

Crossing Site

After Crossover

String 1 1111 1111

Crossover >
/

11110000 New String 1

String 2 0000 D000 00001111 New string 2

Figure 2.3 A schematic o f simple crossover showing the alignment o f two strings and the partial exchange o f
information, using a cross site chosen at random.

It is important to note that the SGA may not find a perfect solution to a given problem 

(it may not exist!). It strives only to improve on existing proposed solutions using the 

genetic operators described.

2 A schema is a similarity template describing a  subset o f o f strings with similarities at certain string positions. For a 
m ore complete description refer to Goldberg [14] or Holland [20],

30



The simple genetic algorithm is the most basic form of the genetic algorithm available. 

There are many others documented even within the texts already referred to [14,19]. 

However, I think that it is pertinent to re-emphasise that this thesis offers only a primary 

investigation into the area of the combined use of many different works and areas of 

expertise. That is why the majority of modifications made to existing works were 

simplifications (e.g. use of the SGA, the neural model used, the parameterisation of the 

neural model (see chapter 4)). The simplifications were used in order to attempt to 

obtain fundamental results which would verify the potential success based on the 

combination of the underlying processes.

For the purposes of this project; reproduction, crossover and mutation are the three 

genetic operators used. As stated above, the fitness of an individual network is evaluated 

by the network designer and not by an objective function within the program. Also the 

reproduction function does not allow generations to overlap. This was a decision made 

to simplify the implementation of the SGA.

Now that the structure for the algorithm's operation has been described, how does the 

genotype become a phenotype? This is achieved by the application of computational 

embryology.

2 .4 .5  A p p lication  o f  S im ple G enetic A lgorithm s to th is P roject

31



2.5 Computational Embryology

2 .5 .1  P h en o ty p e  G ro w th .

Goldberg's work is being used in conjunction with the work of Richard 

Dawkins[9,10,11] to create neural networks for robotic control. In his work Dawkins 

uses genetic algorithms and a 'development' routine (which decodes the genotypes) to 

produce pictures on a computer screen that could be considered biological in form. He 

calls these pictures biomorphs and some do indeed resemble (in a two-dimensional 

sense) insects, some resemble trees and they can be made to produce a variety of 

‘biological’ forms.

The pictures are generated using a development routine that decodes and uses the set of 

parameters encapsulated in the genotypes. These are parameters like: the number of 

times the recursive growth routine is called; the angle that branches or divisions in the 

pictures take, the length of the branches, etc. The choice of which individual is the 'best' 

or the most fit in a genetic algorithm sense is a purely arbitrary decision made by the 

user. In Dawkins’ case this meant the reward of individuals who produced pictures that 

resembled something biological in nature.

For the purposes of this project the growth idea is adapted and used to grow the neural 

networks to control the robot. One difference lies in the fact that Dawkins does not use 

crossover in his application of the genetic algorithm. The crossover operator is used in 

the course of this project. It was hoped that by using the crossover operator that the 

SGA could come to an optimum more quickly than by depending on mutation alone.

32



The networks are grown from a decoding of growth parameters encoded in the 

genotype. The details of the genotype encoding and decoding are given in section 4.3.3.

33



In chapter 2 a general introduction to each of the main sections of the applied 

background theory was given. The concepts of subsumption architecture, computational 

neuroethology, computational embryology and genetic algorithms were introduced and 

some details of their application to this project were given. The specifics of their 

individual contributions to the project are detailed later in the thesis.

2.6 Conclusion

34



3. Hardware Implementation Details

3.1 Introduction

In this chapter, each of the relevant hardware components of the design framework will 

be described. The performance of each of the components will also be analysed and 

suggestions for improvements detailed where appropriate. The sections that will be 

described are the robot Single Board Computer (SBC) (section 3.3), the robot to SBC 

interface (section 3.4), the robot itself (section 3.5) and finally the simulation 

environment that the robot’s behaviour was observed in (section 3.6). Firstly however, a 

general introduction to the physical hardware setup and connectivity will be presented in 

order to allow the reader to see where each part of the hardware is in respect to all the 

others. Overall, the hardware chosen for the implementation performed to varying 

degrees of success. The problems, successes and recommendations for improvements in 

the setup will be given at appropriate points within this chapter.

35



3.2 Hardware Environment Overview

In this section the overall hardware environment will be described in order to allow the 

reader to appreciate the positions of all the constituent hardware sections of the 

framework relative to each other. The hardware consists of a number of very distinct 

parts, each of which is responsible for a number of different areas of the overall 

operation. A pictorial description of the environment is shown in figure 3.1.

As can be seen from the text in the picture, a large quantity of processing for the overall 

framework is done on the PC. The PC is responsible for both the implementation of the 

simple genetic algorithm and for the implementation of the artificial neural network 

development routines. The PC also controls the generation of the network simulation 

executable code which is transmitted to the SBC in MC68000 microprocessor assembly 

code.

The format of the assembly code transfer is S I9 format[30]. The transferable code is 

generated using the PARAGON C Cross Compiler[2 8] software which generates the 

MC68000 assembly code from the source code written in the C programming language.

The human user also uses the PC for controlling the input of behavioural scores. Each of 

the above software operations are detailed in chapter 4. The type of PC used varied over 

the course of the project from an 80386SX personal computer to a Pentium 

processor

36



\} - Ò

Human Observer
Network Behaviour Evaluation, 
Fitness Score Input.

MC68000 SBC 
& Interface

Simple Genetic Algorithm, 
Neural Network Development, 
& Behaviour Score Logger.

Neural Network Simulator 
& Robot D/A Interface.

Neural Network Host.
(Operating in Behavioural Evaluation 

Area. See Figure 3.6)

Figure 3.1 Graphical Description o f  Hardware Environment

37



personal computer. The 386 was more than adequate for implementation of the overall 

framework.

However, the increase in power was the direct result of the combination of a desire for 

greater support for ancillary operations in the project (such as word-processing), and the 

desire to decrease the software compilation times during development. Also, the 

improved PC performance increased the general operation speed during neural network 

evaluation runs. The evaluation of each network took approximately 4 minutes from 

beginning to end and any increase in speed was a great advantage in simply preventing 

boredom as each generation of robotic behaviour was evaluated. This was actually quite 

an important issue as maintaining concentration was very important in evaluating the 

performance of the robot objectively.

The SBC is responsible for executing the software which implements the neural 

network controlling the robot. Its sole responsibility is to run the software which reads 

the robots sensory input and controls the corresponding motor output. The SBC uses an 

MC68000 microprocessor.

Two different SBCs were used over the course of the project. The first was a 

MOTOROLA MC68000 Educational Computer Board (ECB). However, the use of the 

ECB was not satisfactory as it suffered significant hardware failure twice. The second 

time this happened was at a crucial point in the project and the failure forced the project 

to be delayed by about 6 weeks. In total, because of the attempt to continue to use this 

board by waiting for replacement parts, over two months delay occurred before testing

38



and evaluation of the overall framework could be carried out. This only became possible 

when it became obvious that it would be impossible to delay the project any further. 

Eventually, a different SBC was selected, allowing work to continue. This new board 

was also MC68000 microprocessor controlled but it had the added, and significant, 

advantages of having both an 8 MHz microprocessor and a more reliable power source. 

The previous SBC had only a 4 MHz microprocessor and significant problems with its 

power source. These difficulties and their solutions are detailed in section 3.3 which 

also discusses other issues pertinent to the SBC.

The next piece of hardware is the interface between the SBC and the robot. It acts as a 

digital to analog converter for the robot motor output signals generated by neural 

network software running on the SBC. It uses two power amplifiers to boost the power 

of this converted output in order to drive the motors. It also passes the sensory 

information, generated by the robot, to the SBC. The interface went through a number 

of significant changes throughout the project. These changes are detailed in section 3.4 

along with details of the final design of the board.

The final piece of hardware is the robot itself. The robot was constructed from Technic 

LEGO® building blocks. It was ‘inherited’ from a previous project in the School of 

Electronic Engineering and was redesigned and enhanced. A number of problems still 

remain with the robot's construction and recommendations for its future enhancement 

are detailed in section 3.5.3 along with the design as it stood at the end of the project. 

The robot operates in a closed physical environment which is described in section 3.6.

39



Overseeing the operation of all this and responsible for the evaluation of the robot’s 

behaviour in the real world is a human observer. The observer is responsible for 

synchronising the overall evaluation process and inputs the scores assigned to the 

robot’s behaviour into the PC. The details of this evaluation are given in chapter 5 .

40



3.3 Robot Single Board Computer (SBC) Details

3 .3 .1  In tro d u ctio n

In this section the robot SBC which was responsible for the implementation of the 

neural network simulator software (see section 4.5) will be detailed. The responsibilities 

of the SBC will be detailed and a description of the changes undergone in its physical 

configuration over the course of the project will be given. Also, the manner in which the 

SBC communicated with the robot interface (see section 3.4.3) and the PC will be 

described (see section 3.4.3). The difficulties encountered with the SBC, mentioned in 

section 3.1, over the course of the implementation will be described. The reasoning 

behind the choice of hardware will be given and recommendations for future 

enhancements will be explored.

3 .3 .2  A sp ir a tio n s

The neural networks designed on the PC were each to be tested on the robot. When this 

was decided, early in the project, the question of what the networks would be run on 

was broached. A long term decision was made concerning this which on reflection may 

seem a little optimistic in its aspirations. It was decided to execute the neural network 

simulator software on a dedicated SBC rather than from the PC itself. The decision to 

use a dedicated control board was made because it was hoped that, eventually, the robot 

would become a single unit incorporating physical structure, power source and 

microprocessor control board. It was hoped that this may even have been possible 

within the time frame of this project. However, a significant degree of disruption

41



occurred which slowed the progress of the project. These difficulties will now be 

detailed.

The original SBC used was a Motorola MC68000 Educational Computer Board (ECB) 

[30]. The ECB had been used for a number of years within the School of Electronic 

Engineering and was apparently quite old. It did not use a dedicated power supply and 

was powered instead using a MINILAB power unit from the School of Electronic 

Engineering laboratories and the first problem that occurred was in this power supply 

setup. The power supply problem manifested itself by causing the SBC to periodically 

reset itself. This caused more frustration than damage as all that was required was to 

download the network simulator software to the SBC again. However, as every aspect 

of the framework testing was quite time-intensive any delay was extremely discouraging 

and disrupting.

The second, and more major problem that occurred was discovered to be due to, after 

post failure analysis, to the physical condition of the original board used. Although the 

ECB may have sufficed for a shorter term project it seemed unable to satisfy the 

operational requirements it was under. Subsequently the ECB suffered two hardware 

failures. These failures may not necessarily have been due directly to the power source 

problems mentioned above (no detailed examination was carried out after the failures) 

but they may have been related. No detailed examination was carried out because the 

SBC being used was simply a tool for the project. It was perceived that it would have 

been detrimental to the progress of the overall project to spend excessive time 

examining the hardware failures.

42



The second of the hardware failures occurred at a point where all the constituent parts of 

the framework were in a position to be tested together. The delay caused by this failure 

was in excess of six weeks during which time all work effectively ceased as no testing 

could be carried out on the work already done. The board was sent away to be repaired 

but unfortunately the repair was not economical. Therefore, the ECB was replaced with 

a different SBC.

This new SBC was much more successful and also stable. This may have been as a 

result of the fact that it had a dedicated power supply. The new board was also obtained 

from within the School of Electronic Engineering and was a Motorola FORCE Board. 

As well as this dedicated and stable power source, the FORCE board also had an 8 MHz 

processor speed which was an added advantage as the ECB only had a 4 MHz processor 

speed. Any speed that could be gleaned at all from the setup was viewed, correctly I 

feel, as an advantage to the real time aspect of the framework and its testing.

3 .3 .3  O p e r a tio n  o f  th e  S B C

As mentioned previously, the SBC was responsible for the execution of the neural 

network simulator software. This neural network software was downloaded in assembly 

language format to the SBC, each time the SBC was turned on, in order to execute it. 

This was necessary as the SBC could not store any user information after powerdown. 

The software was transmitted from the PC using the KERMIT software transport 

protocol[30]. The download situation was not as complicated as it may have been 

because the SBC had a resident control system in its ROM which facilitated the

43



relatively pain-free receipt of software transmitted from an external source. The 

software on the SBC could also be executed from the remote source. This facilitated the 

implementation of a batch routine on the PC which automated the transmission of the 

neural network simulator software as well as the neural networks produced by the 

design framework.

On the other side of the operation, the SBC communicated with the robot interface using 

a Parallel Interface/Timer (PI/T) chip that was resident on the SBC. This chip transmits 

the motor outputs in a digital format to the interface board. This format is an eight bit 

binary number where the most significant 4 bits and the least significant 4 bits 

corresponded to each of the motors. The motors are bi-directional, to allow the robot the 

ability to reverse. The code relating the speed and direction of each of the motors is as 

described in figure 3.2 below.

Binary Code Motor Output
0000 Full Reverse

0100 Half Speed 
Reverse

1000 Full Stop

1100 Half Speed 
Forward

1111 Full Speed 
Forward

Figure 3.2 Robot Motor Output Coding

44



The PI/T also controls the receipt of the sensory information from the robot through 6 of 

its channels. The PI/T allows expansion to allow up to 16 I/O bits as it has three 8 bit 

ports allowing bi-directional I/O.

3 .3 .4  S u m m a ry

In summary, the problems caused by the choice of SBC, although this choice was well 

intentioned, caused a significant amount of disruption and delay. In retrospect it may 

have been more sensible to have used the PC’s serial I/O ports to communicate directly 

to the robot interface. Although this would have lead to a significantly more complex 

robot/controlling computer interface, this configuration would have been a lot more 

stable at the early stages. This stability would have due directly to the absence of the 

SBC link in the network design to network operation chain. This was the link that 

caused so many of the early difficulties in the project. This stability could potentially 

have allowed a lot more to be achieved in the time scale of this project. However, in 

opposition to this argument, it should be noted that the aspirations of the project, at 

inception, included the development of an independent robot incorporating the robot, 

the SBC and a power unit.

Certainly, there is no argument against the preference of designing the neural networks 

to operate on a SBC similar to the one used given the aspirations detailed above. Of 

course, a more powerful processor could be used which would further facilitate the real 

time operation of the robot. Choosing such a board allows an easier transition, whenever 

it would become feasible, to the development of a more autonomous robot. The addition

45



of a power source and more powerful motors and stable physical framework to support 

the SBC would be all that would be required. That said however, the feeling remains 

that more may have been achieved if the PC was used exclusively at the early stages of 

the project due simply to the inherent stability of most PCs and the ease with which they 

can be controlled. This stability would have prevented the difficulties that were 

overcome. This would have provided more time for the analysis and improvement of 

other aspects of the project and project such as the implementation details of the SGA 

and the computational embryology software.

46



3.4 Robot/SBC Interface

3 .4 .1  In tro d u ctio n

In this section the interface between the physical robot and the controlling SBC will be 

described. Its origin will be detailed as it was designed before this thesis was conceived. 

Its final design and the transitions it underwent will also be detailed in this section. 

Finally, any recommendations for its further improvement will be detailed.

3 .4 .2  B eg in n in g s

The basic interface board design and construction was originally inherited from a final 

year project in the School of Electronic Engineering in Dublin City University [21]. The 

state of the interface board on receipt was not very healthy. The interface had been 

designed but had not been completed. The board was in wire-wrapped rather than 

Printed Circuit Board (PCB) format. A number of the connections were quite loose 

when the board was first tested for its use in this project. Also, the board did not use any 

stabilising capacitors on its power supply which produced power spikes that may have 

been jointly responsible for the failures of the first SBC used (see section 3.3). Initially 

the board was simply repaired while the other more critical areas of the design 

framework were being worked upon.

Eventually however, it became obvious that it would be necessary to redesign and 

reconstruct the interface in order to enhance its reliability - thus allowing its continued 

used over the extended periods involved in neural network testing. Time would have 

been saved if the board had simply been redesigned from scratch.

47



The redesign of the interface involved primarily the simplification of its design but it 

also involved the improvement of some of its physical construction characteristics to 

improve reliability. One of the most obvious redesigns was in the reduction in the 

number of Operational Amplifiers (Op-Amps) on the interface board. The number of 

Op-Amps was reduced from four to two. Originally the board used two Op-Amps per 

channel (i.e. two for each robot motor). The first Op-Amp in each channel decoded the 

four bit string which contained the motors' direction and speed as per figure 3.2. This 

configuration was a simple summing amplifier configuration as shown in figure 3.3. 

Output from the summing amplifier was then passed to a power amplifier (Power-Amp) 

circuit in order to boost the output to a level powerful enough to drive the motors on the 

actual robot.

3 .4 .3  O peration  and D escrip tion

48



The reduction in Op-amps was implemented by setting up the summing amplifier across 

the Power-Amp and removing the dedicated summing amplifier circuit across the 

ordinary Op-Amp completely. The set up for the board was thus reduced in complexity 

as well as reducing the number of connections (and thus the possibility of hardware 

failure). The calculations involved in designing the summing amplifier configuration as 

well as the final design of the interface itself are shown in Appendix D.

The original interface was also populated largely with potentiometers. These were 

replaced with fixed resistors in order to increase the stability of the interface board. This 

was because the potentiometers used in the original design were not of a very high 

quality and they appeared, on examination, to have been damaged. This may have been 

due to the fact that the board was not stored in any form of protective box. The 

potentiometers used seemed to demonstrate a tendency to short-circuit themselves quite 

regularly. This obviously affected the operation of the interface quite adversely by 

changing the apparent motor responses to the input stimulus applied to the robot. This 

situation made what were apparently identical neural networks behave in totally 

different ways to the same stimulus and this uncertainty would have made it impossible 

to effectively evaluate the behaviour of the robot later in the project.

It was also mentioned in the introduction to this section that the interface board was of a 

wire-wrap configuration which was tidied up at the start of the project implementation. 

As time progressed however it became obvious that this was unacceptable. Prompted by 

the continual loosening of the connections, especially when coupled with the problems 

associated with the potentiometers of the original design, it was decided to transfer the

49



circuit to a different and more stable medium. It was decided to used a vero-board 

construction. This allowed a speedy construction and with the constituent parts being 

soldered into place the entire construction is much more stable and physically secure.

Also the interface was improved by added a smoothing capacitor circuit to the power 

input (see Appendix D).

3.4.4 Sum m ary

After discovering the failings of the original interface and its subsequent redesign and 

reconstruction based on those findings the interface was a very stable and reliable 

member of the hardware setup. The difficulties that were previously encountered did not 

resurface again during the final stages of the project.

An advancement that could perhaps be made would be to finalise the design by 

committing the interface circuit to a PCB format. However that would only really 

become a consideration were the robot itself to become autonomous in the manner 

suggested at the end of the section on the robot SBC. Obviously, the integration of the 

SBC with the robot could not happen if the interface were not also integrated. Similarly, 

integration of the interface alone would not be a very sensible step as it would not be 

any advantage to the operation of the robot itself.

50



3 .5 .1  G ro u n d in g s

As already mentioned already, the robot plays a vital role in testing and verification of 

the neural networks grown using the phenotype development software (see section 4.4). 

Also the testing of every change and every improvement on the physical robot before 

advancement is at the crux of Brooks subsumption architecture approach, which the 

project is attempting to implement. At the same time however, due the experimental 

nature of the project, it would have been foolish to have designed a very sophisticated 

robotic structure. It was rather more necessary to design a robot that would be 

physically flexible. It was impossible to predict exactly what problems could have been 

encountered, problems which could potentially have forced a redesign.

It was hoped that any minor imbalances, such as a slight difference in motor 

characteristics, could be compensated for by the neural network operation. In a sense, 

hoping that a certain level of self-awareness would become apparent. The structure, in 

particular the sensory bumper frame, did not appear to affect the mobility and operation 

of the robot in its environment excessively, although a number of small problems were 

encountered. These difficulties and their potential solution are detailed in section 3.5.

3 .5 .2  D e sc r ip tio n

The robot consists of a number of parts which can be seen in figure 3.4. The individual 

parts are the motors for the wheels, the micro-switches that act as sensors for the robot, 

the sensor bumper frame to increase the activation area of the micro-switches and the

3.5 The Robot

51



physical robot structure itself to hold it all together. The final part of the robot is the 

cable connection between it and the interface board connecting it to the SBC.

The original robot parts were inherited from another project[21] run in the School of 

Electronic Engineering in Dublin City University, and its basic design, which can be 

seen in figure 3.4, remained largely unchanged over the course of the project. The robot 

was constructed using constituent parts of a ‘LEGO Technics’ building blocks package. 

This offered the ability to change system design quickly as well as allowing a prototype 

robot to be built in minutes rather than weeks.

A number of enhancements were made to the inherited robot because, as the project 

progressed, a number of problems became apparent. The first problem detected was that 

the micro switch sensors used on the inherited robot were not sensitive enough to be 

useful. The operating force required to close an individual switch was equal in 

magnitude to the force required to move the robot physically from one position to 

another. The sensors were thus replaced with micro-switches of a much lower operating 

force. Also, they were glued to the robot framework to prevent them from slipping out 

of position. Previously the sensors were attached using a small quantity of industrial 

tape and under continued use they would slip from position. The replacement was 

successful and the new sensors did not suffer the same problems as those that were 

replaced.

52



15 cm (app)

Front
of

Robot

15cm (app)

Robot

0

/ \
Side

Back
of

Robot

Plan view of Robot

L eg en d

Sensor

Wheel

Frame

0 0 0 0 0 
0 0 0 0

Connector

Figure 3.4 The Robot

53



The cable connecting the robot to the SBC via the digital to analog interface had to be 

replaced. The existing cable was unsatisfactory as it consisted of a number of individual 

wires and was connected permanently to the robot. This connection’s soldering was 

exposed and was prone to breaking. This cable was thus replaced by a 16 way ribbon 

cable. Sixteen channels was more than what was required for the level of information 

transfer between the robot and the SBC. However, the use of different sensor types, or 

even expansion to the use of more than the existing six micro switch sensors already in 

place, was being considered. The new cable was terminated by a 16 way D-connector. 

This was advantageous as it meant that it could be disconnected from the robot when in 

storage. The D-connector also reduced the risk of any damage which may have occurred 

due to any twisting of the cable.

Next, a sensory bumper frame was constructed for the robot to increase the area that 

each sensor covered. A frame of the shape shown in figure 3.4 was designed. This shape 

was chosen because it is easy to construct and allowed continued operation with the 

existent sensory layout on the robot. The frame was constructed using hard cardboard 

allowing it to be replaced easily if it should become damaged. The frame worked well in 

increasing the area that could activate the sensors.

3.5.3 Sum m ary

The robot satisfied its requirements physically. Its simple design was ideal for the early 

stages of a project such as this. The use of LEGO building blocks in particular was very 

successful in building the prototype. In the longer term however, a more robust robot 

would necessarily be built. LEGO building blocks have a tendency to separate over

54



time. This affect caused the sensory framework to distort and become misshapen over 

time thus preventing it from operating correctly until repaired. The largest problem with 

this was that, as the LEGO separated and the frame became distorted, the edges of the 

sensory frame flaps would occasionally become trapped against some corners of the 

evaluation environment. This occurred particularly when the robot was performing 

some form of circular motion (e.g. on reflex reversal from a wall while edge following). 

The robot would then have to be freed manually and the frame adjusted. To improve the 

framework and preventing a similar situation occurring a more comprehensive, flexible 

and circular framework should be constructed in a form similar to that indicated in 

figure 3.5.

Figure 3.5 Improved Sensory Framework

55



This new framework would prevent many of the physical difficulties described and also 

provide a more comprehensive and operational sensory area.

• • # 3 *A further beneficial enhancement would be the inclusion of a motion detector in the 

sensor array. This would become useful when the robot becomes stuck in its 

environment. The design of the controlling neural network could reward the generation 

of random behavioural response when the robot becomes stuck. The motion detector 

could operate in a number of ways, but the easiest would be to include some form of 

current detector on the wheels’ motors. When the motors are prevented from turning, 

(e.g. when the robot becomes stuck), the internal motor resistance is increased which 

forces the current input to be increased. This detector could be incorporated onto the 

robot/SBC interface board design.

1 Some form o f motor torque detector perhaps.

56



3.6 Behavioural Evaluation Environment

3 .6 .1  In tro d u ctio n

In this section a simple description of the environment in which the robot’s behaviour 

was evaluated will be given. The environment was a very simplistic one which was 

designed to test the ability of the networks generated to control the robot to prevent the 

robot becoming stuck.

3 .6 .2  D escr ip tio n

The environment, as mentioned in the introduction to this section, was designed to test 

the ability of the networks generated to satisfy the first level of Brooks’ subsumption 

architecture specification^] . Namely, the desired behaviour of the robot was to move 

around the environment and not become stuck. The environment is shown in figure 3.6.

The environment walls were constructed from LEGO building blocks. The environment 

was 1.2m by 0.9m in size. A number of simple challenges were designed into the 

environment to test the behavioural success of the robot in the environment. These were 

as follows. Firstly a large open space to see if the robot would simply spin in circles if 

there was nothing impeding its path (A). Secondly, a narrow channel was constructed to 

see if  the robot could reverse itself out such a gap, if it got itself into it(B). A couple of 

‘rooms’ were constructed with only a single exit. The first of these was a large room 

with a narrow exit. (C) The second was a smaller room with a single exit (D) and finally 

a small room with an angled wall and a narrower exit(E).

57



1.2m

0.9m

Figure 3.6 Behaviour Evaluation Environment

58



The hardware used in the course of the project caused some significant problems which 

were beyond the scope of this project to analyse fully. Rather it was more essential to 

simply identify the causes of any such difficulties and come up with the most rapid and 

effective solution to allow the project to continue. The failure of the original SBC used 

is a prime example of such a situation. In general however, the hardware caused few 

problems due to the simplicity of the overall design. The hardware, although essential 

from the point of view of the project’s objectives, was essentially secondary with 

respect to the theoretical aspects of the project. Certainly, any further exploration of the 

area would require a significant increase in robustness and functionality (from the robot 

in particular), but for a prototype framework, the hardware components were essentially 

satisfactory. Any difficulties that did arise were dealt with quickly and efficiently 

allowing the project work to continue without overly significant hindrances.

3.7 Summary

59



4. Software Implementation Details

4.1 Introduction

In this chapter all the relevant details, and where appropriate an analysis, of the software 

components of the project will be presented. This includes descriptions of the overall 

software environment (see section 4.1), source code and executable code considerations 

(section 4.2). It also documents the implementation of the simple genetic algorithm 

(section 4.3), the neural network growth software(section 4.4) and the neural network 

simulator (section 4.5). Finally an overall summary of the software written (section 4.6) 

is given. Also, recommendations for future improvements will be given at appropriate 

points in the chapter.

The types of software used in the development of the experimental framework were 

very varied. It consisted of high level code controlling the implementation of algorithms 

based on existing natural systems. Assembly level functional code was used to control 

the i/o ports for robotic control. Software was also used to implement remote machine 

operation controllers using existing applications and a dedicated batch process. This 

variability in software type was due purely to the diversity of functionality that was 

required by each section of the hardware and the overall framework.

The main language that was used in the software development was C. This was for a 

number of reasons. The first and most primary reason for this choice was that the C 

language supports the implementation of both high and low-level code. This allowed the

60



relatively simple implementation of all the higher level algorithms. It also supports the 

programming requisites for bit and byte level manipulation of strings. This bit-level 

manipulation is visible in the i/o port configuration settings and readings on the robot 

SBC as well as in the string manipulation of the genotypes used by the simple genetic 

algorithm. The secondary reason for the use of the C language was my own familiarity 

with the language. This familiarity applied both to the development platforms used as 

well as with the level of software control that can be afforded by the C language 

structure.

The development platforms used in the development of the C source code were the 

‘Turbo C++’ compiler/development platform and the Borland C++ 

compiler/development platform packages. All the programs written were in standard C 

format and did not exploit the capabilities of object oriented programming techniques. 

The C language was used in development of the SGA, computational embryology, 

computational neuroethology (neural network simulator) and artificial neural network 

simulation software.

The secondary programming language that was used in the design framework was 

MC68000 assembly language. This was the native language of the robot SBC. 

Therefore, the neural network simulator software, which was written in C for the 

reasons outlined above, needed to be converted to the 68000 assembly code for 

implementation. This was achieved using the PARAGON C cross compiler package 

whose operation is described in section 4.2.

61



A number of difficulties presented themselves over the course o f the project which had 

significant effects on the programs as the development continued. These difficulties will 

be documented in more detail later in this chapter. The problems were all overcome 

however and, by the end of the project research period, the software being used was 

both robust and reliable. Changes could of course be made to the final software to 

improve both the performance and the functionality and some recommendations for 

those changes are made in the summary of this chapter. However, I think that the results 

obtained through the use of this software vindicates the choices and decisions made as it 

was developed. These decisions and the final state of the software used will now be 

described.

62



4.2 Paragon Cross compiler

4 .2 .1  In tr o d u ctio n

The PARAGON C Cross Compiler [28] was used to convert the source code, written in 

C, to the MC68000 assembly language. This conversion was necessary for execution of 

the network simulator code on the robot SBC. The PARAGON cross compiler 

supported the fundamentals of the C language. However the compiler caused some 

difficulties as the differences between itself and the C compilation platforms used (see 

section 4.2.2) for the source code generation became apparent. One of the areas in which 

the differences can become apparent is in the manner in which the compilers handle 

cross data type operations. This is because different compilers have different conversion 

routines to deal with these situations. To illustrate one of these situations, consider what 

happens when a real number is multiplied by an integer. Does the integer become 

converted to a real number before calculation or it the real number converted to an 

integer first? Over time however, these discrepancies were ironed out and the 

PARAGON product proved itself able to satisfy the requirements made of it very 

successfully.

4 .2 .2  O p era tio n

The operation of the PARAGON C cross compiler was very simple. The software 

written in C was simply used as an input. This software was developed and decoded 

using a network simulation software package. The differences between the simulator 

and simulation are described in section 4.5. For now, it is sufficient to know that the 

simulation used the same core software as the simulator but also included a section that

63



mimicked the motor outputs and sensory inputs of the robot. Only when the simulator 

code was at a point where it could be tested on the physical framework of robot and 

SBC was the PARAGON C cross compiler was used.

The PARAGON Compiler software consisted of two separate programs. The first cross 

compiled the C software and the second program assembled and linked it. The resultant 

software was then downloaded to the FORCE SBC via the serial port of the PC using 

the KERMIT software[29].

The cross compiler was a command line compiler which used a configuration file (see 

Appendix A) to generate the assembly level code for the robot’s MC68000 FORCE 

SBC. This configuration file was used to specify the areas of memory that could be used 

for the executable code on the FORCE SBC. This configuration file also allowed the 

specification of the format of output that could be produced by the compiler. This 

included the production of memory mapping reports as well as full assembly listings 

and S19 format file output[29].

4 .2 .3  S u m m a r y

The PARAGON C Cross Compiler software fulfilled all its functional requirements 

admirably. Although not very pretty or easy to use, in comparison to the Turbo C++ 

development platform for example, it performed admirably. One advantage it had was 

that the cross compilation procedure, once it was settled, could be operated using a 

single command on the PC by using batch files. This meant that it simply did its job

64



with very little fuss, thus leaving the developer to concentrate on the code being written 

rather than where it had to work.

65



4.3 Simple Genetic Algorithm Software

In this section o f the thesis the application o f Simple Genetic Algorithms (SGAs) to 

neural network design will be detailed. More information regarding the operation of an 

SGA and the genetic operators used in its operation can be obtained from section 2.4.

At the crux of genetic algorithm operation lie what are called genetic operators. There 

are three genetic operators used in the SGA. These operators are explained and 

described in section 4.3.5. Some o f the C code which implements the genetic operators 

is listed in this section.

There is also a section on the random number generator being used in the SGA (section

4.3.4).

Section 4.3.1 gives a brief re-introduction to SGAs and also deals with the reasoning 

behind the choice of simple genetic algorithms for the development o f neural networks. 

How the basic SGA, outlined in Goldberg [14] (and in section 2.4), has been modified 

for this project using the work of Richard Dawkins[9,10,l 1] will also be detailed. 

Dawkins' work is treated in more detail in section 4.4.

66



For convenience, the table outlining the terminology used in this section is reproduced 

for the reader.

4.3.1 Introduction and Reasoning

SGA

Search Space

Genotype

Phenotype

Individual

Fitness

Population

Generation

Simple Genetic Algorithm

The problem space of the simple genetic algorithm.

Bit string which encapsulates the parameter set of an individual. 

Entity created from the decoding of a Genotype. For this 

application the phenotype is a neural network.

Refers to the Genotype and Phenotype as a single unit.

Value assigned to individuals based on their performance. Used 

in reproduction of individuals.

A collection of individuals.

A particular instance of a Population.

Figure 4 .I Terms used in reference to Simple Genetic Algorithms

As discussed in section 2.4, the simple genetic algorithm is an optimising search 

technique. It has been shown to be a useful tool in the traversal o f non-linear or complex 

search spaces, particularly in applications that do not necessarily require a precise 

solution, but do require a solution approaching the optimum. A neural network of the 

form being used in this project is one such application. Therefore, its implementation 

within the design framework to guide the development of a neural network to control 

the robot is ideal.

Also, the simple genetic algorithm is based on a natural system. It draws its inspiration 

from the apparent ability o f real genetic material, in the form of DNA, to adapt to its

67



environment. As stated in the thesis introduction, one o f the aims o f this project was to 

model natural systems as much as possible, within the confines of the project, to achieve 

its objective. The use of the SGA satisfied this criterion.

The application o f the SGA is based on the PASCAL code which is documented in 

Goldberg[14]. This allowed the algorithm to be applied very quickly and there was no 

room for error in the translation from PASCAL code to C code simply because the 

PASCAL code was very straightforward. There was only one major difference between 

the SGA as laid out in Goldberg[14] and how it was applied to the development of 

neural networks in this project. The difference lies in the fact that no explicit objective 

function4 is used within the course o f this project. Instead, fitness values are assigned to 

the individuals by the network designer based on the rules documented later in this 

document (see chapter 5).

Allowing the designer to assign the fitness values rather than using an explicit 

evaluation/objective function resembles the work of Richard Dawkins[9,10,ll], 

Dawkins used just such a system to guide the development o f his ‘biomorphs’[9]. 

However, for this application it is not the shape of the pictures produced which is 

rewarded but the ability of the neural networks produced to control a robot. Dawkins’ 

work and its application is described more in section 2.5 and in section 4.4.

4 See section 5.1.

68



The technical application of SGAs within the framework of neural network 

development will now be outlined.

4 .3 .2  A p p lica tio n

The simple genetic algorithm works using a generation of genotypes. The greater the 

number o f genotypes, then the greater the chance that one will ‘fall’ close to a local 

optimum in the search space. This hopefully will reduce the amount of time necessary to 

find a suitable optimum or solution in the search space. However, due to the time taken 

to evaluate each genotype, it is necessary to reduce the number of genotypes to a 

manageable amount. This figure must also reflect the size of the search space. For this 

project the number chosen was initially ten in order to test the operation of the SGA 

programs. However, when the program was used within the design framework this 

number was increased to twenty in order to increase the possibility o f discovering a 

genotype approaching the optimum in the search space.

The twenty genotypes were generated by simulating the toss of an unbiased coin. This 

produced the first random generation of genotypes. The random nature o f the first 

generation distributes the SGA search’s starting randomly across the genetic search 

space.

The genotypes themselves are binary strings of 54 bits. Different sections of the 

genotype contain the coded parameters that are used to grow the neural networks. The 

details o f this growth are given in section 4.4.3. As described in section 2.4 of this

69



project, SGAs operate on a coding5 of a systems parameter set and not the parameters 

themselves. The specific coding of each genotype used in this project is shown in 

section 4.4.6.

One by one each of these randomly generated genotypes is decoded by the 

d e v e lo p m e n t  program (see section 4.4) and a network is generated or 'grown' using 

these decoded parameters. The neural network produced by the network development 

program is then downloaded onto the MC68000 FORCE board where the network 

simulator has already been loaded into the MC68000 FORCE board's memory. The 

simulator is run and evaluated by the network designer. Each network is examined on 

how the robot responds to its environment and a fitness value (which is an integer in the 

range 10 to 100) is awarded to the network based on its level of success. The better the 

robot responds then the closer to 100 the assigned fitness value should be.

When all the networks within the generation have been evaluated, the SGA program is 

run on the PC to create the next generation of 20 genotypes. To do this the designer is 

prompted for the fitness value that was assigned to each of the networks. The old 

population and the fitness values of each of the genotypes are then used to generate the 

new population using the crossover, mutation and reproduction genetic operators. A 

detailed description of the operation and the coding of these genetic operators is given in 

section 4.3.5. In brief however, these operators are at the heart o f the operation of the

5 The description and relevance o f each o f these parameters is explained in section 4.3.5 which deals with the 
d e v e l o p m e n t  program. Fo r now it is only important to know that the coding used generates a string o f 54 bits. 
Each bit represents part o f a parameter used by the d e v e lo p m e n t  program to grow a neural network . Each bit 
can assume the value ' I 1 or 'O' only.

70



SGA allowing the production of the next generation based on the performance of the 

last. This process of testing and evaluation is continued until the algorithm finds a 

network suitable to control the robot.

4 .3 .3  G en e tic  C o d in g  B rea k d o w n

r n

h

_L
21 25 31 39 44

I I
50 54

i n i n i  i i n  n m n  11 n n
i i

I/O Configuration 
Inhibition Code — 
Link Growth Rate 
Division Rate 
Number of Cycles 
Generator Ratio _  
Division Distance 
Number of Outputs

1

Figure 4.2 Coding o f  Genotypes Produced by Simple Genetic Algorithm

As mentioned above, the genotypes are 54 bit binary strings. The genotype can be 

thought of as being a concatenation of a number of smaller binary strings. Each smaller 

string representing one of the variable parameters used in the development and 

operation o f the neural networks used for controlling the robot. The relevance of each of 

the parameters is detailed in section 4.4.6. A diagram of the genotype is shown in figure 

4.2.

71



Random number generation is used throughout the operation of the SGA. It is used in 

the initial distribution o f the genotypes across the search space. It is also used in the 

selection o f individuals from each generation, based on their performance scores, in 

order to create the next generation of genotypes. Earlier in the project, the C random 

number generation routines were used. However, based on advice received regarding the 

performance of these functions, a different random number generation routine suite was 

adopted.

The full suite of routines can be seen in Appendix C o f this document.

Four of the routines were called from the software used in this project. The routines 

were called GetO neJU niform , Get One Bernoulli, Get Msr88 and Set_SeedMsr88. 

The code segments for these routines are now shown for completeness.

4.3.4 Random  Num ber G eneration

p u b l i c  f l a g  g e t _ o n e _ b e r n o u l l i ( d o u b l e  p )

{
i n t 3 2  c u t  = M S R 8 8_ R AN GE ;

i f  ( v a l i d _ f r a c t i o n ( p ) ) c u t  = f r o u n d ( p  * ( d o u b l e ) ( M S R 8 8 _ R A N G E ) ) ;  
e l s e  p a n i c ( " g e t _ o n e _ b e r n o u l l i : I n v a l i d  p a r a m e t e r  < p > ! " ) ;

r e t u r n ( g e t _ m s r 8 8 () < c u t ) ;

J ________________________________________________________________________________________________

Figure 4.2 Get One Bernoullif)

72



p u b l i c  i n t 3 2  g e t _ o n e _ u n i f o r m ( i n t 3 2  n )

{
i n t 3 2  c u t o f f  = M S R8 8_ RAN GE; 
s t a t i c  i n t 3 2  v ;

i f  ( ( n  >= 1 )  && ( n  <= MSR8 8 _ R A N G E ) )
c u t o f f  = (M S R 8 8_ R A N G E / n )  * n ;  / *  S e e  n o t e  i n  g e t _ u n i f o r m ( ) .  * /  

e l s e  p a n i c ( " g e t _ o n e _ u n i f o r m :  I n v a l i d  p a r a m e t e r  < n > ! " ) ;

d o  v  = g e t _ m s r 8 8 ( )  ;
w h i l e  ( v  >= c u t o f f ) ;  / *  S e e  n o t e  i n  g e t _ u n i f o r m ( ) .  * /  

r e t u r n ( v  % n ) ;

J __________________________________________________________________________________________________

Figure 4.3 G etO neJJniform O

p u b l i c  i n t 3 2  g e t _ m s r 8 8 ( v o i d )

{
s t a t i c  i n t 3 2  t e s t ;  / *  s t a t i c  f o r  s p e e d . . .  * /  
s t a t i c  l d i v _ t  l o h i ;

c o u n t + + ;
i f  ( c o u n t  >= MSR8 8_ RAN GE)

{
warn("get_msr88: count >= MSR88_RANGE!"); 
count = 0;

}
l o h i  = l d i v ( s e e d ,  Q ) ;
t e s t  = A  * l o h i . r e m  -  R * l o h i . q u o t ;
i f  ( t e s t  > 0)  s e e d  = t e s t ;
e l s e  s e e d  = t e s t  + M;
r e t u r n ( s e e d - 1 ) ;

2__________________________________________________________________

Figure 4.4 Get_Msr88()

p u b l i c  v o i d  s e t _ s e e d _ m s r 8 8 ( i n t 3 2  n e w s e e d )

{
i f  ( ( n e w s e e d  >= 1 )  && ( n e w s e e d  <= MSR88_RANGE) )  

s e e d  = n e w s e e d ;  
e l s e  w a r n ( " m s r 8  8 _ s e t _ s e e d :  i n v a l i d  < n e w s e e d >  p a r a m e t e r ! " ) ;

_}______________________________________________________________________________________

Figure 4.5 Set_Msr88()

73



It has already been stated that the genetic operators lie at the heart of the operation of the 

SGA. In this section each of the three operators implemented in this project will be 

described and its role in the operation o f the SGA documented. The three operators used 

are the reproduction operator, the crossover operator and the mutation operator. Each of 

these operators uses the random number generation routines described above in section 

4.3.4. The implementation of the random number generation will be described, with 

reference to each o f the operators, in this section. The C code implementing these 

operators will also be shown for completeness.

4.3.5.1 The Genotype Selection Function

Shown below in figure 4.7 is the select () function that selects candidates from a 

population for mating based on the fitness values assigned to individuals. It is based on 

the PASCAL procedure select in Goldberg's book[14][p. 63].

4.3.5 SGA O perators

74



i n t  * s e l e c t ( d o u b l e  p a i r _ n u m b e r )

{
i n t  j  = 0 ; 
i n t  i = 0 ;  
i n t  r o u l e t t e = 0 ;  
d o u b l e  p a r t s u m = 0 ;  
i n t  * m a t e s = N U L L ;

i f  ( ( m a t e s  = m a l l o c ( 3 * s i z e o f ( i n t ) ) )  == NULL)

{
p r i n t f ( " N o t  e n o u g h  m e m o r y  t o  a l l o c a t e  b u f f e r  { f n  s e l e c t ( ) }  \ n " ) ; 
e x i t ( 1 ) ;

/ *  TERMINATE PROGRAM I F  OUT OF MEMORY * /

}
f o r ( i = 0 ; i < 2 ; i + + )

{
r o u l e t t e = ( i n t ) ( r a n d o m _ f l o a t s [ i + ( p a i r _ n u m b e r * 2 ) ] *  

t o t a l _ g e n e t i c _ f i t n e s s ) ;
/ *  VALUE CHOSEN WHICH DETERMINES WHICH CHROMOSOME OF * /
/ *  THE OLD POPULATION TO CROSS (OR NOT) WITH ANOTHER * /
/ *  OLD CHROMOSOME. * /
/ *  SEE  GOLDBERG FOR D E T A I L S  * /

f o r ( j  = 0  ; j  < M A X P O P _ S I Z E ; j  + + )

{ '
i f ( ( p a r t s u m  += o l d _ p o p u l a t i o n [ j ] . f i t n e s s ) > r o u l e t t e )  

b r e a k ;  
i f ( j  ==  M A X P O P _ S I Z E - 1)  

b r e a k ;

}

* ( m a t e s + i ) = j ; 
p a r t s u m = 0 ;

}

r e t u r n ( m a t e s ) ;

}

Figure 4.6The SGA SelectQ Function

The s e l e c t  () function uses a pre-constructed array (random_floats) to select a value 

(X) which lies between 0 and the sum of the assigned fitness values of all the 

individuals in the population. The function then iterates through the population index, 

adding each individual's assigned fitness value to a temporary sum figure(Y) which is 

initially zero. When the temporary sum figure(Y) exceeds the randomly generated 

number(X) then the individual responsible for the last addition to (Y) is selected for

75



reproduction. What this means is that the higher an individual's fitness figure is, then the 

higher the chance that the addition of that particular individual's fitness figure will result 

in the randomly generated number(X) being exceeded by the temporary sum(Y), and 

hence be an individual picked for reproduction. This operation is described by Goldberg 

using a roulette wheel analogy[14] which intuitively may be easier to understand than 

this purely textual description.

The reproduction operator is an artificial version of natural selection, a Darwinian 

survival of the fittest among string creatures. In natural populations, an individual's 

fitness figure is determined by its ability to avoid disease, predators and other obstacles 

to adulthood and subsequently mate. In this artificial setting the fitness figure is the sole 

arbiter for the survival o f the string creatures.

This function is called twice within the user defined function c r o s s o v e r  () (see 

4.3.5.3) to select a pair of individuals for breeding. When two distinct individuals have 

been selected then the crossover between the genotypes is carried out within the 

c r o s s o v e r  () function.

4.3.5.2 The Mutation Function

Shown in figure 4.8 below is the code which implements the mutation function. This 

function is also based on the equivalent Pascal procedure in Goldberg[14][p. 65], 

Within a simple genetic algorithm implementation the mutation and crossover operators 

can be used either mutually or exclusively. For example, Dawkins’ implementation in

76



the creation o f his biomorphs[9] does not use the crossover operator at all. Instead he 

depends purely on a mutation operator and a reproduction operator. In this 

implementation, both are used.

i n t  m u t a t i o n ( i n t  s i n g l e _ g e n e )

{
i n t  n e w _ g e n e ; i n t  m u t a t e ;

m u t a t e  = f l i p ( P R O B _ M U T A T A T I O N ) ;
/ *  F L I P  SIMULATES A  WEIGHTED C OI N  TOSS AND I S  USED * /
/ *  HERE TO DETERMINE WHETHER A S IN G L E  B I T  SHOULD BE * /
/ *  MUTATED OR NOT.  F L I P  US ES  THE G E T _ O N E _ B E R N O U L L I () * /
/ *  FUNCTION * /

i f  ( m u t a t e )

{
t e x t c o l o r ( R E D ) ; 
i f  ( s i n g l e _ g e n e  == 1)  

n e w _ _ g e n e  = 0 ;
e l s e

n e w _ g e n e  = 1 ;

}
/ *  I F  THE F L I P  FUNCTION RETURNS A  ' 1 '  THEN THE B I T  I N  * /
/ *  Q UE ST ION  I N  THE CHROMOSOME I S  INVERTED * /

e l s e
n e w _ g e n e  = s i n g l e _ g e n e ;

# i f  DEBUG
m u t a t e _ n u m b e r + +  ;

# e n d i f

r e t u r n ( n e w _ g e n e ) ;
/ *  RETURN THE VALUE OF THE NEW B I T

}

Figure 4.7 Implementation o f the SGA Mutation operator

The mutation operator in this implementation is present purely to prevent important 

information being lost. This can happen as the SGA population begins to approach an 

optimum solution in the search space. As the optimum is approached, all the genotypes 

begin to resemble each other. This is fine, as that is what the SGA is supposed to do. 

However, if  one is dealing with a search space which has more than a single optimum,

77



the SGA could be converging on a local optimum rather than the search space optimum. 

This concept o f  multiple optimums is explored in more detail in GoIdberg[14], What the 

mutation operator does is to change, at random, small parts of individual genotypes. If 

used correctly6, the operator can act as an insurance policy for the SGA, potentially 

preventing it from converging on a local optimum, rather than the search space 

optimum.

The coding implementation of the operator is simple once the mutation rate for the 

population has been chosen (see section 4.3.5.4). In the crossover function, each bit of 

each genotype is passed into the function m u t a t i o n  ( ) .  The random number function 

f  l i p  () is then used to decide whether or not the bit is to be mutated. The probability 

o f mutation is passed as a parameter t o  f  l i p  ( ) ,  as it is also used to select a crossing 

site for parents in the crossover function.

4.3.5.3 T h e  Crossover Function

The c r o s s o v e r  () function (see figure 4.9) implements the crossover operator. It uses 

the results of the s e l e c t  () function as two of the input parameters. It also uses the 

m u t a t i o n  () function internally to implement this form of crossover. It is based on 

the equivalent PASCAL procedure in Goldberg[14][p. 64]. A thing to note is that the 

function does not allow generations to overlap. This means that genotypes from the old 

population (from whose parts the new generation is constructed) may not cross with the

6 T h e  c h o ic e  o f  g e n e tic  o p e ra to rs  can  be  b ia sed  w ith in  an y  p a r tic u la r  a p p lic a tio n  to  w h ic h e v e r  th e  d e s ig n e r  chooses. 
F o r  e x a m p le  in  D a w k in s ’ w o rk , th e  m u ta tio n  o p e ra to r  is  u se d  to  th e  e x c lu s io n  o f  th e  re p ro d u c tio n  g e n e tic  o p e ra to r

[9].

78



new generation's genotypes during the creation of the new population o f individuals. 

The reasoning behind this choice was to make the implementation o f the SGA as simple 

as possible. As was mentioned before, with reference to the biasing o f genetic operator 

influence, the crossover function can also be made much more complex. It can, for 

example, involve cross generation coupling as well as self reproducing genotypes if 

required.

79



v o i d  c r o s s o v e r ( i n t  m a t e l , i n t  m a t e 2 , i n t  c r o s s p o i n t )
{ int cross; int xsite; int iter;

int parentl[GENE_LENGTH] ; int parent2[GENE_LENGTH] ;

for(iter=0;iter<GENE_LENGTH;iter++)
{
parentl [iter] = old_population[matel] .chromosome[iter] ; 
parent2 [iter] = old_population[mate2].chromosome[iter];
}

/* GET THE TWO CHROMOSOMES CHOSEN FOR REPRODUCTION OR*/
/* CROSSINGFROM THE OLD POPULATION RECORD */

cross = flip(PROB_CROSSOVER);
/* FLIP SIMULATES A WEIGHTED 'COIN TOSS' AND IS USED */
/* HERE TO DETERMINE WHETHER THE TWO CHOSEN */
/* CHROMOSOMES SHOULD BE CROSSED TOGETHER OR NOT */

if (cross) {xsite = crosspoint;} 
else

xsite = GENE__LENGTH ;
/* IF THE CHROMOSOMES ARE NOT TO BE CROSSED THEN THE */
/* CROSSING SITE CHOSEN IS SIMPLY THE END OF THE TWO */
/* CHROMOSOMES. */

gotoxy(xsite+7, (popsize*2) + 4);
printf("x"); /* PRINT POSITION OF CROSSING SITE ON SCREEN */

for (iter=0;iter<xsite;iter++)
{
textcolor(GREEN);
new_j?opulation[popsize].chromosome[iter] = mutation(parentl[iter]); 
gotoxy(iter+7,(popsize)+3);
cprintf("%d",new_jpopulation[popsize].chromosome[iter]); 
textcolor(WHITE);
new_population[popsize+1].chromosome[iter] = mutation(parent2[iter]); 
gotoxy(iter+7,(popsize)+4);
cprintf("%d",new_population[popsize+1] .chromosome[iter] ) ;
}

/* THIS LOOP GENERATES TWO NEW MEMBERS OF THE */
/* POPULATION AND AS EACH BIT OF THE NEW CHROMOSOMES */
/ ♦ I S  GENERATED BY THE CROSSING IT IS DETERMINED */
/* WHETHER OR NOT IT SHOULD BE MUTATED */

i f (xs i te != GENE JLENGTH)
{for(iter=xsite;iter<GENE_LENGTH;iter++)

{
textcolor(WHITE); 

new population [popsize] .chromosome[iter]=mutation(parent2[iter]); 
gotoxy (iter+7, (popsize)+3)
cprintf("%d",new_population[popsize].chromosome[iter]); 
textcolor(GREEN);

new population[popsize+1].chromosome[iter]=mutation(parentl[iter]); 
gotoxy(iter+7, (popsize)+4);
cprintf("%d",new_population[popsize+1].chromosome[iter]); 
gotoxy(5,popsize+3);
}

}
/+ IF THE CHROMOSOMES HAVE BEEN CHOSEN FOR CROSSING */
/* THEN THIS WILL IMPLEMENT THE ACTUAL EXCHANGE OF */
/* BITS. IF NOT, THEN THE PROGRAM WILL NOT ENTER THIS LOOP. */

)___________________________________________________________________
Figure 4.8Function in C to implement the crossover operator

80



So what values were chosen for the probabilities of crossover and mutation occurring? 

To choose these numbers, the work o f Goldberg was again addressed. Goldberg 

references a study by De Jong [12] in the application of genetic algorithms to function 

optimisation. He states that De Jong recommends the choice of a high crossover 

probability coupled with a small mutation probability (inversely proportional to the size 

o f the population) and a moderate population size [14]. Following these suggestions, the 

following figures were chosen:

4.3.5.4 Genetic Parameter Choices

Probability of Mutation: 0.01

Probability of Crossover: 0.9

Population size: 20

Figure 4.10 Genetic Parameters Used

These figures were chosen to allow the SGA to converge quickly (even to a local 

optimum) to demonstrate the viability o f the overall design approach.

4.3.6 Summary

The Simple Genetic Algorithm was an adequate choice for the project. It is entirely 

possible o f course, that there is a different form of the genetic algorithm that would be 

even more suited to artificial neural network design. However, as has already been 

explained, only the briefest examinations could be made of each of the theoretical areas 

employed due to the time scale of the project. The implementation of the SGA was 

aided by the conscious decision to avoid over-complication of the core code. The

81



operation o f the code itself was validated early in the project[25J. The working o f the 

final code in optimising the operation o f the neural networks is discussed in detail in 

section 4.5 and thus will not be addressed here. However, it would be appropriate to say 

at this stage that the operation of the SGA code was a success with respect to the results 

obtained.

82



4.4 The Network Development Program.

4.4 .1  In tro d u ctio n

After the manipulations o f the simple genetic algorithm, the network development 

program decodes the genotypes created by the SGA. It uses the decoded genotype 

parameters to create or 'grow' artificial neural networks. This growth process is 

deterministic. It is based on some very simple rules that use the growth parameters 

encapsulated in the genotypes.

This section details how these network growth parameters are decoded from the 

genotypes. It also describes the Riles governing the creation o f a neural network based 

on these parameters.

The inspiration for this approach is the work of Richard Dawkins [9,10,11], whose work 

is in this general area, is also outlined in section 2.5.

83



As stated in the introduction o f section 4.4, the idea of growing a neural network is 

based on the work of Richard Dawkins [9,10,11]. Dawkins' work in this project has

* q
been emulated but instead o f re-creating Dawkins' biomorphs , neural networks were to 

be grown. To accomplish this a set o f rules had to be constructed governing how the 

neural networks were to be grown from the genotypes. These rules were constructed in 

such a way as to attempt to make the growth o f the neural networks somewhat 

biologically inspired. This o f course, is not the only way in which the development of 

the neural networks could be done. In Sussex University a research team have 

implemented a low level behaviourally based robot. However, instead of using a growth 

mechanism, such as in this project, they coded every connection in the neural network 

into the genotype. Further details of their work can be found in [6,7,8,15,16,17,18,20].

As well as defining the rules for growth, it was also necessary to decide what parameters 

were to be encoded in the genotypes in order to facilitate this biological approach.. 

These parameters would be used by the rules to grow the networks. The rules used are 

listed in section 4.4.3. These rules have been used successfully to generate a neural 

network for robotic control. However, as with all areas of this project, simplifications 

were made in order to precipitate the implementation success. These simplifications 

generated some problems and these problems will be discussed in this section where it 

is relevant to do so.

4.4.2 O rigin o f the Idea.

7 Biomorphs are what Dawkins calls his biologically inspired pictures.

84



As stated above, a number o f rules were devised in order to make the growth of a neural 

network from a genotype possible. These rules resulted in the growth of the neural 

network being deterministic and hence repeatable. It was a conscious decision to make 

the growth a deterministic process as repetition of the results obtained was very 

important at this early stage. It was important to qualify any results obtained to validate 

the procedure being implemented in the project. The rules will now be presented. The 

rules have been broken down into three groups to make them more readable. The first 

group describes the general rules governing the overall operation of the growth process. 

The second and third groups deal with the growth of links between nodes and the 

generation of the nodes themselves respectively.

4.4.3.1 G eneral Rules

1. The neural networks are made up o f two parts: nodes and links.

2. The nodes are o f the types described in section 4.5.5.

3. Links grow to form connections between nodes.

4. The networks are grown on a growth 'grid' of size 255 x 255 units.

5. Each node occupies 1 unit on the grid and remains set in that position.

6. Each node can only attempt to create a connection with one other node at a time (i.e. 

only has one link growing at a time).

7. The position o f each node and link is stored as a set of (x,y) co-ordinates on the grid.

8. Six nodes exist initially on the grid in fixed locations, though not in fixed order.

4.4.3 H ow  Does It W ork? (The Rules).

Four of these are input nodes that represent the physical connections to the robot's

85



sensors and two are output nodes that represent the connections to the robot's 

motors. Which node corresponds to which sensor or motor is determined by a 

decoding of the genotype.

4.4.3.2 Link Growth Dynamics

1. The current link (only one link grows at a time) of a node grows towards the nearest 

node relative to the tip of the current link that is not the node from which the link is 

growing - referred to as the parent node.

2. On each growth cycle the location of the nearest node is re-evaluated. This re- 

evaluation is to allow for the placement of new nodes due to node division.

3. The link growth rate is constant for all links and is defined by the genotype.

4. Nodes can only connect (via the links) with a range of 1 to 10 other nodes as defined 

by the ‘number o f outputs’ growth parameter. (See figure 4.10).

5. When links do make a connection between nodes, the distance between the base 

node and the newly connected node is the magnitude of the weight of the connection 

between the nodes as used in the simulator (maximum value 255).

6. The sign of the connection weights is determined by decoding the genotype to 

determine if the connection is an inhibitory link or not. This is defined by the 

inhibition code parameter which is described in section 4.4.6.

4.4.3.3 Node Division Dynamics

1. Node division takes place at a constant rate to produce new nodes. This rate is 

defined by the Division Rate parameter. See section 4.4.6.

86



2. Each node can divide once to produce only a single offspring, and the parent node 

may continue to grow links after divisions up to the allowed maximum.

The positioning o f newly created nodes, on division from the parent node, is determined

by the following rules:

1. The division distance is constant for all node divisions and is decoded from the 

genotype. This is defined by the Division distance parameter.

2. The division direction is determined by finding the nearest two nodes relative to the 

parent node and finding the point that lies half way between them. See figure 4.11 

for an illustration.

3. The position at which the new node is placed is at the division distance away from 

the parent node in the direction of the point derived above.

4. If  the position o f the new node lies outside the growth grid then the new node is 

placed within the growth grid. This is accomplished by determining which of the 

new node's co-ordinates has violated the boundaries of the growth grid. The 

offending co-ordinate is then adjusted so that it is brought back within the 

boundaries of the growth grid.

5. If  the position calculated for the new node is within a radius of 30 units of another 

node then the division is deemed to be invalid and the new node is not created. This 

is to prevent 'clustering' of nodes in small areas of the growth grid. It was decided 

that clustering could have prevented connections being made between the input and 

output nodes. It was decided that this was best avoided at this early stage o f overall 

framework development.

87



Parent Node O
Line indicating Node Division 
distance.
This Line bisects the line (A) between 
the two nearest nodes

{ «------  Position of New Node

Two Nearest Nodes 
to the Parent Node 
on the Growth Grid.

Line (A) connecting the two 
nearest nodes by their centers.

Figure 4.9 Illustration o f  node division dynamics.

4 .4 .4  Im p le m e n ta tio n  o f  th e  R u les

Implementation of these rules within the development program produces 3 different sets 

of data (arrays) as a final result. The arrays are:

1. An array to record the position of every node on the grid.

2. An array to record all connections between nodes.

3. An array to record the connection weight between every pair of connected nodes.

These three arrays are then combined and the format of the combined array is adjusted.

The new format is adjusted such that the single final array contains all the information

8 *in the format required by the neural network simulator and simulation software. This is 

the array which is downloaded onto the MC68000 SBC and then tested on its ability to 

control the robot. See chapter 5 for the behavioural evaluation rules. It takes a slightly

8 An explanation o f the differences between the neural network simulator and simulation software, and the uses o f 
the simulation software in the overall framework is given in section 4.5.

88



different form when being used in the simulation software. An number of examples of 

how the grown networks ‘looked’ are given in Appendix E. The download of the single 

formatted array will now be described.

4 .4 .5  N e tw o r k  D o w n lo a d

The download of the network to the MC68000 SBC is a simple operation. The 

PARAGON C cross compiler[2 8] used to generate the simulator code also generates a 

memory map listing the location of all functions and global variables/data structures. 

When the simulator code and the SBC are working correctly then re-loading of the 

simulator software is unnecessary within each generation evaluation run. This is because 

the memory locations of the variables, data structures and functions remain fixed. Hence 

every network grown by the development program can be downloaded and slotted into 

the same memory location to be used by the simulator already loaded in the MC68000 

SBC's memory.

To allow the network download to the MC68000 SBC to be performed it was necessary 

to write a C program which generated a file containing the network information in S I9 

format [28]. This is the format required by the MC68000 SBC’s operating system to 

allow recognition o f the incoming data. Use of the S I9 specification requires the 

development program to perform conversion of the integer figures produced by the 

development program to hexadecimal character format and the calculation o f checksums 

and address offsets. The checksum calculated allows the MC68000 SBC to check if 

download data integrity has been maintained. The offset generated is used to inform the

89



MC68000 system of where to store the information in memory so that the simulator can 

access it correctly.

Reference was made earlier in this section to the neural network simulation software. To 

use the information from the development o f the network in the simulation program a 

slightly different approach is taken. The PC on which the simulation is run does not 

require S19 format downloads. The development program grows the network in the 

same way and reduces the three arrays to the format required by the simulation and 

simulator software. Then it outputs this array as a text file before the conversion to S19 

format is carried out. This text file then contains the array information in the format that 

the simulation software requires. The array is read directly from this file by the 

simulation program.

To allow this difference in information transferal between the simulation and simulator 

software, the development program has two separate versions. They are each contained 

on the disk accompanying this report. The programs are called PCDEV.EXE which 

produces the networks for the simulation software and DEVEL.EXE which produces the 

S19 format file (through use of the FORMS 19.C program) for download to the 

simulator on the SBC.

In the next section the mechanism for the decoding of the genotypes produced by the 

SGA to grow the networks will be described.

90



The SGA works on a coding of a parameter set, not the parameters themselves. This 

section deals with how these genotype parameters are decoded and what they represent 

to the development program.

The decoding o f some of these parameters is simple and the decoding of some is not so 

straightforward. The creation of the final format in which the parameters have been 

coded in the genotype was a gradual process. A number of decisions had to be made 

with regard to what exactly should be coded into the genotype. The most difficult area 

to decide this in was with regard to the parameterisation of the individual nodes within 

the neural network. The neural nodes have a number of internal parameters which 

directly affect their performance. It was decided to minimise the parameterisation of the 

nodes in order to reduce, as much as possible, the size of the genetic search space. It was 

hoped that this reduction in variability would facilitate a more speedy convergence to 

some optimum on the search space. This convergence would then, hopefully, validate 

the operation o f the design framework. The full details and reasoning behind this 

reduction in variability will be given in section 4.5.4.

Shown below is figure 4.12 which has been reproduced for convenience to show the 

location and name of the different parameters that are coded within each genotype 

produced by the genetic algorithm.

4.4.6 The G enotype Param eter Decoding.

91



11 21 25 31 39

JL

I/O Configuration 
Inhibition Code 
Link Growth Rate 
Division Rate 
Number of Cycles 
Generator Ratio 
Division Distance 
Number of Outputs

J

44 50 53

J___I

Figure 4.12 Coding o f  Genotypes Produced by Simple Genetic Algorithm

How the individual sections are decoded from the genotype is now listed parameter by

parameter

1. I/O configuration: Bits [1-11]. This parameter determines which sensor is placed in 

which position on the growth grid. The algorithm can be observed in the function 

i n t  * g e t _ i o _ p o s i t  ( i n t )  in the GET DATA.C program. The algorithm is 

quite simple in nature. It uses the bits 7-11 to select the first node to be placed on the 

grid(l-6). The remaining bits determine the order in which the remaining nodes will 

be placed on the grid.

2. Inhibit Code: Ten bits [12-21] which determine which links are to be positive and 

which are to be negative. A maximum of ten connections is allowed so one bit 

corresponds to each link. If  the bit is a 1 then the weight is positive. If  the bit is a 0 

then the weight is negative.

92



3. Link growth rate: The bits [22-25] are translated into an integer between 1 and 16. 

This is the distance which links grow in a single iteration of the development growth 

routine. It is possible that with a growth distance of 1 that the link head position will 

be the same after calculation as the current position of the link head. This is caused 

by rounding errors. To overcome this, the result is analysed and if  the error is 

detected the growth distance is increased to 2 units and recalculation takes place.

4. Node division rate: The five bits [26-31] are converted into a decimal integer 

between 1 and 16. This number is multiplied by 10 to give a range o f 15 numbers 

between 10 & 150. This is the number of iterations of link growth that occur 

between node divisions.

5. Number o f  Growth Cycles: The eight bits [32-39] are translated into a decimal 

integer between 1 and 256.

6. Generator Ratio: The 5 bits [40-44] are used to determine which nodes act as 

generator nodes9 . The ratio can be between one in every 2 to 33 nodes.

7. Node division distance: The four bits [45-49] are first translated into a decimal 

integer between 0 and 15. This number is then multiplied by 4.37510 and 30 is added 

to the result. This means that the division distances can take one o f sixteen numbers 

between 30 and 100 units.

8. Number o f  Outputs: The four bits [50-53] are used to indicate how many outputs 

which each node can have. Ranges from 1 to 16.

9 See section 4 .5 .5 .2  for description o f the operation o f generator type nodes.

10 Th is factor converts the binary number distribution from the range 0-15 to 0-70.

93



The main function that controls the growth of the neural network using the decoded 

parameters is shown here as it is the most concise way of describing its operation.

4.4.7 N etw ork Growth.

v o i d  s i m _ g r o w t h ( i n t  a x _ g r t , i n t  d i v _ r t , i n t  d i v _ d s , i n t  * i n b t , i n t  
n u m _ c y c l e s )

{
i n t  c o u n t = 0 ;  
i n t  i t e r = 0 ;  
c h a r  t y p e ;  
c h a r  m s g [2 0 ] ;

w h i l e  ( i t e r  < n u m _ c y c l e s )

{
/ *  p a s s  i n  l i n k  g r o w t h  r a t e  a n d  i n h i b i t  i n f o r m a t i o n  * /  

g r o w _ l i n k s  ( a x _ _ g r t ,  i n b t )  ; 
i f  ( c o u n t > = d i v _ r t )

/ *  i f  t i m e  f o r  n o d e  d i v i s i o n  t h e n  b e g i n  * /

{
/ *  l i m i t  o n  n u m b e r  o f  n o d e s  a l l o w e d  * /  

i  f  (n u m _ n o d e  s  > ( MAX_NODES- 6 ) )  
s t a l l  ()  ;
/ *  f u n c t i o n  t o  e x i t  p r o g r a m  g r a c e f u l l y  * /

e l s e
g r o w _ n o d e s ( d i v d s ) ; 
c o u n t  = 0 ;

}
c o u n t + + ;  
i t e r + + ;

}

Figure 4.10 Controlling Junction fo r Network Growth.

Some of the basic graphics functions that are included in the C libraries available to the 

Borland and Turbo C++ compilers were used in the development program to allow 

visualisation of the program's operation during debugging. This graphics element is 

maintained within the program as it shows the person using the program that something 

is happening while the network is being grown. This, I feel, is preferable to leaving the 

screen blank and giving the user no indication that a network is or is not being grown 

successfully.

94



4.4.8 Sum m ary

So why were these particular rules used, and how has the development program 

performed? A number of decisions needed to be made regarding this particular question 

as the project progressed. Some of the potential decisions were raised in 4.4.2 and in 

this section these proposals will be reviewed and others that presented themselves at a 

later stage addressed also.

One of the first decisions was in reference to the node division mechanism. It had 

previously been thought that the use o f the two nearest nodes relative to the node about 

to divide to decide the direction in which the new node should be placed may not have 

been good. It was thought that this method could lead to a situation where if  the node 

division distance was small then when the time comes for the new node to divide, it will 

attempt to place its child node in the exact position of its own parent. This, it was 

thought, would minimise the number of nodes which could occupy the growth grid even 

when a lot o f grid space remained unfilled. The maximum number of nodes that can 

occupy the growth grid (assuming a minimum radius of 30 units between all nodes) is 

64. In the testing done to maximise the number o f nodes in a grid the maximum that 

could be reached using the SGA was 25. On first glance this would seem to confirm the 

worries highlighted earlier. It was thought that a change to select perhaps the 2n^ and 

3rd nearest rather than the 1st and 2n^ nearest to derive the node division direction may 

have unleashed more o f the growth potential. However, it was decided to trust in the

95



operation o f the SGA. Indeed, as the results appear to confirm (see chapter 6) this was a 

vindicated choice.

It was also thought that it may not have been good to have the location o f the initial 

nodes static on the grid. It was decided to allow this variability in the genotype coding 

and to use the SGA to 'find' the best location for the opening configuration. The results 

on this point were a little more difficult to evaluate. This point is discussed in more 

detail in the conclusion.

Another parameter which made its appearance late into the project was the introduction 

o f the generator nodes ratio. It was decided to use generator nodes to enable the system 

to generate neural networks which would not require an external stimulus in order to 

begin to operate. It was decided instead that some form of spontaneous operation would 

be preferable to kick-starting every network. This was because the entire operation and 

biasing o f the network could have been determined by which external sensor was 

stimulated first.

96



4.5 Simulator and Simulation

4 .5 .1  In tro d u ctio n

In this section the operation of the neural network simulator and simulation software 

will be documented. The simulator software was used to implement the artificial neural 

networks that were created. It was designed to operate on the SBC controlling the robot. 

The simulat/o« software was used to debug the simulator software by emulating the 

operation o f the SBC on the PC. This allowed the neural network software to be 

evaluated without the framework hardware considerations that have already been 

documented in this thesis (see chapter 3) influencing or impeding its development. A 

number of difficult situations arose over the period of development of the simulator 

software. Some of these problems have already been referred to in previous sections - 

the genotype coding and operation of the SGA affecting the level of parameterisation 

possible for the neural nodes for example. Difficulties caused by the differences in 

compilers (Borland C and Paragon C Cross Compilers) occurred. Other difficulties 

arose prompting decisions about the operation o f the network based on initial results. 

All these difficulties affected the overall development o f the software from its original 

aspirations up to its final state. In this section of chapter 4 the more difficult problems 

encountered and their eventual resolutions will be documented.

Also in this section, the operation of the neural networks will be described in some 

detail. Reference will be made to the work of Randall Beer[2] where appropriate. This is 

because it was intended to use the type o f networks modeled by Beer to control the 

robot. Beer’s network model was the ideal originally, but as the problems mentioned

97



above revealed themselves, it became necessary to make some quite significant changes 

to the network morphology and operation. As much as possible however, Beer’s model 

was adhered to. The eventual mechanics of the connections allowed between nodes and 

the various types o f nodes possible at the end o f the research period will be described. 

As the operation of the networks is integral to the success of the project, the operation of 

the networks will be described first. Comparisons to Beer’s model will then be made.

4 .5 .2  O p era tio n  o f  th e  N eu ra l N etw o rk .

So how does the neural network operate? As stated above, the neural network operation 

was modeled on the network types designed by Randall Beer. The network, as with 

most artificial neural networks, uses a simple input/output interface mechanism. 

Between the inputs and the outputs lie a number of neural nodes of various types. The 

various types of nodes implemented will be described later in section 4.5.5. The nodes 

are connected to the input and output sections of the neural network and also to each 

other by weighted links. These links model the axons that form the connections between 

neural cells in real neural circuits. There is no defined structure to the neural network in 

the sense that may be understood for a typical feedforward neural network for 

example[29,31]. Figure 4.14 below shows the general structure of such a network.

As can be seen from figure 4.14, the more traditional feed forward artificial neural 

networks have a strongly defined morphology. There are no feedback loops or any 

deviation from the connectivity structure. Certainly, one or many of the connections 

could potentially have a connection weight of 0, which would mean that the connection 

was in essence not present. However, that does not detract from the true design structure

98



of the overall network. The nodes themselves are also quite simple in this type of 

network. One o f the more common internal nodal dynamics that is implemented in such 

networks is a simple scaling function. This scaling can be a simple as a normalisation of 

the input received by a node to an output range o f 0 to 1 .

The networks designed by Beer and modeled in this project are of a radically different 

structure. The morphology o f these networks is not as regular as the morphology o f the 

type of networks exemplified by the traditional feedforward networks described above. 

The input nodes and output nodes are obviously similar in that they define the inputs 

and outputs delivered to and produced by the network operation. However, the 

morphology o f the internal network ‘layers’ within these networks is much more varied. 

The architectures employed in artificial neural networks tend be fairly homogenous.

99



That is, they consist of a number of formal neurons connected in some uniform way. In 

contrast, in real neural networks, connections between nodes tend to be very specific 

and highly non-uniform. To illustrate, it is possible to have feedback loops within the 

internal ‘layers’ o f the networks. It is also possible to have connections between any two 

nodes in the network, making it conceivable to have connections from the inputs to the 

outputs of the network directly.

Furthermore, in real neural networks, individual nerve cells have often unique response 

and internal properties. Their response is influenced by the morphology of their 

connections, by the types of channels between them and other nodes and the electrical 

and physical properties of their cellular construction. Beer states that there is 

considerable evidence that that both the individual cellular properties and their specific 

interconnectivity are crucial to the ways in which individual neural circuit's function. He 

references Selverston[12] and Llinas[22] to support this claim.

As mentioned in the introduction to this section, it was envisaged that the design of the 

neural networks used would be closely based on the networks implemented by Beer. 

Beer’s networks demonstrated successfully some of the simple behaviours displayed by 

real insects. He produced networks that controlled his simulated insects in ways that 

were similar to the edge-following behaviour displayed by real insects. Other networks 

allowed the simulated insect to track down ‘food’ in its artificial environment. Indeed, 

Beer mentions the work o f Brooks as a possible avenue for the expansion of his research 

into this area of artificial behaviour. However, the successes displayed by Beer’s work 

had some considerable limitations in their application to real time robotic control. The

100



networks designed by Beer operated in an artificial environment and the time scale in 

which its simulated insects behaved was, according to Beer himself, almost ten times 

slower than would be expected in real time[2]. This brought into question the feasibility 

o f their use at all in such an application as real time robotic control.

It was decided that it would be interesting to pursue their use in such an application 

however. The only obvious way to do this, given the limitations on available 

computational power, was to simplify the network dynamics so that the networks could 

be updated in real time. Also, Beer’s simulation was concerned with illustrating 

graphically the movement and behaviours of the artificial insects. It was hoped that the 

absence of the graphics that were involved in Beers simulation would mean that it 

would be possible, potentially, to implement the network model with very little change. 

Obviously, with no quantitative figures for the time costs of the graphics used by Beer, 

this decision would have to be reviewed in the light o f experience. The end results 

however, appear to vindicate the decision. So what simplifications were introduced?

One of the most complex, and computationally expensive, areas of network operation is 

in the implementation of the individual nodal dynamics. The operation and update of the 

interconnections seemed computationally cheap in comparison. Beer himself describes 

their complexity as lying about half way between the types o f model neurons used in 

computational neuroscience and the more traditional model neurons used in the likes of 

feedforward networks. This seemed the ideal place in which time could be saved. 

Therefore, it was decided to sacrifice some of the internal properties o f the model 

neurons implemented by Beer in order to facilitate a real time implementation.

101



However, before this simplification and the others that followed it are detailed, the 

development o f the simulator and simulation software will be described.

4 .5 .3  S im u la to r  a n d  S im u la tio n  D e v e lo p m e n t

At the early stages of the simulator development, networks were designed by hand using 

the networks designed by Beer for examples. These networks allowed the simulation 

and simulator software to be tested. Implementation of any of these networks, designed 

either by hand or by the use of simple genetic algorithms, was through the use of the 

simulator or the simulation software. These two programs share almost completely the 

same internal functions.

As stated previously, the differentiation between the two programs is that the simulator 

software was written to run on the Motorola MC68000 Force SBC used to control the 

robot and the simulation runs on the PC. Phrased most simply; the simulation software 

models, on the PC, the input/output behaviour of the simulator on the SBC. The 

simulation software was written to allow the operation of the neural networks to be 

visualised quickly during the debugging o f the routines common to both. This would 

exclude the time consuming task o f cross-compilation and information downloads to the 

SBC every time a change was made. Also the simulation allowed the neural networks 

designed by hand to be tested during their design stage without having to generate S19 

format files. This allowed them to be used later in the project to test the overall 

operation of the hardware framework.

102



One of the major difficulties that arose in the past was due to the different compilers 

used for the two programs. The compilers used are the 'Turbo C++' compiler for the 

simulation and the 'PARAGON C-cross compiler' for the simulator running on the SBC. 

The simulator and simulation software appeared to be operating differently despite the 

same code being used in both pieces o f software. Eventually, the problem was tracked 

down to the data type conversion routines used by each compiler. It was realised that 

great care must be taken in cross data type operations, as different compilers have 

different conversion routines to deal with these situations. For example, when 

multiplying a real number by an integer, is the integer converted to a real number type 

first, or is the real number truncated to form an integer? This problem was avoided by 

defining the types in the conversion explicitly using casts11.

Prompted by the discrepancies due to type differences, and the reduction in network 

parameter variability required to allow use of the SGA search technique, the simulator 

and simulation software underwent a number of structural changes over the course of 

the project. The final versions of the simulator and simulation software are on the disk 

accompanying this thesis. The simulator code is in the file NETLESS.C and the 

simulation code is in the file PCSIM.C. The simplifications that were carried out on the 

neural network model will now be described.

11 A  cast is an operator used to convert the data type o f a variable explicitly. E .g . ( i n t ) ( x )  converts the variable x  
to a type ‘ integer’ in the C  language.

103



To recap before continuing, it was stated in section 2.3.2 that the neuronal model used 

in this project was based on the neuronal model used by Beer. It was also mentioned 

that certain simplifications to the nodal model and the network morphology became 

necessary. They was necessary in order to allow any chance of a real time 

implementation of robotic control. They were also required in order to reduce the size of 

genetic search space in which the genetic algorithm had to operate. For these reasons a 

number o f simplifications took place over the course of the project. These 

simplifications will now be detailed. A pictorial comparison between Beer’s model and 

the model implemented in this project is shown in figures 4.19 and 4.20.

4.5.4.1 Simplification 1 (Internal Conductances)

The first simplification made was the removal from the neural node structure o f the 

internal conductance parameters. It was felt that their potential effect on the network 

operation could be disregarded. These internal conductances apparently affect the time 

dependent input response characteristics o f real neuronal cells as well as spontaneous 

activity. Beer cites the work of Selverston[32] to illustrate this. Seleverston states that 

these properties appear to be crucial to the function of those neural circuits that have 

been analysed at a cellular level. However, it was felt that the computational cost of 

their inclusion in the network model for this application would have outweighed their 

usefulness at this early stage of development. It was decided to rely solely on the other 

properties of the nodal model. Later in the development of the software, generator nodes

4.5.4 Sim plifications

104



were introduced to allow spontaneous behaviour to occur in the network. This type of 

node is described in section 4.5.5.2.

4.5.4.2 Sim plification 2 (Integers).

The very first revision that was carried out on the network operation was in the 

conversion o f all possible variable types from floating point types to integers. This 

revision to the simulator and simulation software was for two reasons. The first reason 

was the problems caused by the type conversion differences that exist between the 

different compilers used for the simulator and the simulation. By making all the 

variables the same type, these problems could be avoided. The second reason for the 

conversion was that integer operations are carried out much faster on the SBC due 

mainly to the low number of bits used by the SBC microprocessor to represent them 

combined with the built in microprocessor hardware used to process them. This is 

advantageous in a time conscious project such as robot control.

Due to this conversion to integer type, some of the original neural network parameter 

specifications had to be adjusted. The specification for network weights remained at 

±255 (integers only), but obviously the neural nodes could not continue to output a 

value between 0 and 1 if  integers were the only type to be used in the software. The 

nodal output range was thus adjusted to assume a value between 0 and 255 (integers 

only). The increased magnitude o f the output value range meant that the threshold 

parameter (which previously took a value between 0 and 255) would now take values 

between 0 and 65,035. The minimum output level parameter (see section 4.4.7) was

105



affccted in a similar way and thus had its range changed from 0 to 1 to the range 0 to 

255.

A neural network was designed using these new parameters. To do this, a previously 

designed and operational neural network was converted. The design of this new neural 

network was necessary to ensure that the simulator (and simulation) software was still 

capable of implementing a neural network to control the robot. The design took time 

(since it was done by hand) but was completed successfully verifying the changes made 

to the programs.

Regarding the attempt to decrease the time required to update the network, no 

discernible difference could be detected in the operational speed of either program. It 

must be noted however that the networks being designed at that point were small and 

took very little time to update anyway. Therefore it is not surprising that speed 

differences were undetectable to the human eye after the change. No benchmarking was 

done at this point to quantify the speed increases. It was deemed more necessary to press 

on with the overall goal o f the project than to continually stop and analyse in detail what 

had been done previously. This almost certainly led, in cases such as this for example, 

to spending valuable time on perhaps trivial enhancements to the network update 

performance. It was felt however, that this was an acceptable sacrifice in light of the 

overall goal o f the project.

106



The decision to use simple genetic algorithms and a development program, instead of 

hand designing networks, meant that a second revision was required. This time the 

revision was focused on the node used to model neurons within the simulator and 

simulation programs.

It has already been stated that it was decided to model as closely as possible the model 

used by Beer. The neural node used in the simulator and simulation has the same non­

linear input/output gain characteristic as Beer’s model (see figure 4.15). The routine

12used to update the input figure for the neural nodes was simplified. The input figure in 

Beer's work was updated using a differential equation[2][pg. 51]. This requires 

numerical analysis techniques to be solved. The simplification of the node modeled in 

this project resulted in this update routine being represented by a difference equation. 

This meant that the update was made numerically simpler and, more importantly, faster. 

This modification was required to allow the network to be updated in real time on the 

robot, although it also detracted from the biological plausibility of the nodal model.

4.5.4.3 Simplification 3 (Neural Node Structure).

12 The input figure for a node models the charge which the membrane o f a real neuron stores. The membrane o f a 
neuron behaves like an R C  circuit; the charge builds up i f  a node is constantly receiving inputs, and when the 
inputs stop the charge decays. Beer uses a R C  circuit to model this behaviour [2][pg 50]-



Input Vs. O utput

Mx

Mn

Vt

Maximum Output Value

Minimum Output value 
(if above )

Min Input before any output

Figure 4.12 Non-Linear Nodal Input/Output Gain Characteristic

One of the most influential factors on the operation and simplification o f the neural 

node's parameterisation and structure was not due to the real time aspect of robotic 

control at all. At the early stages of the project the neural node model was very similar 

to the nodal model used by Beer[2]. The network information, including the internal 

nodal parameters, was stored as an array o f C structures made up of 38 variables (some 

combined within arrays). This high level o f parameter variability offered a large degree 

o f freedom to the network designer and hence made the design of the controlling neural 

networks by hand easier than it might otherwise have been.

Unfortunately, this high level of variability dictates a genetic search space whose size 

becomes unmanageable within the confines of the simple genetic algorithm operation. 

The population size, as already mentioned, was restricted to only twenty individuals. 

This was because the behaviour of each network was evaluated by hand. To stand any 

chance, within a reasonable time frame for the project, of allowing the SGA to converge 

on an optimum it was deemed vital to drastically reduce the size of this space. However, 

it was equally important not to over-minimise this variability. An over-enthusiastic

108



reduction o f variability could have actually impeded the operation of the SGA. Over 

simplification would trivialise the search. It could also have prevented the genetic 

operators from ever finding any kind o f operational, much less optimum, neural network 

due to the smoothness of the genetic space being disrupted. Remember that a smooth 

search space is recommended as being essential to good SGA operation. A decision was 

taken to set the parameters o f each type o f similar node to the same value. This affected 

for example the threshold parameter, the minimum activation level and the maximum 

output levels to name a few. This decision was a difficult one as it altered the balance of 

power in the networks. It shifted it from dependency on the individual nodal 

characteristics for controlling the output, to dependency on the network morphology 

itself. In defense of this decision, it was hoped that the reduction in variability was not 

so severe as to prevent the SGA from still finding an optimum. It was hoped that it 

would overcome this reduction by compensating for the loss in parameterisation by 

experimenting more with the interconnections between nodes to achieve the same 

results. As it turned out, this decision seems not to have been badly guided, as the final 

results indicate.

Shown in figure 4.16 is a diagram of the C structure used to represent the neural node 

model prior to the simplification. It also shows the C structure representing the neural 

node model finally implemented in both the simulator and simulation software.

109



s t r u c t  n e u r o n
{ i n t b u f f e r [ 5 ] ;

i n t i n p u t [ 5 ] ;
i n t o u t Q t i m e ;
i n t i n Q t i m e ;
i n t m i n a c t l e v ;
i n t l a s t  ;
i n t t h r e s h o l d ;
i n t g a i n ;
i n t NUM_ I N P U T  S ;
i n t N U M O U T P U T S ;
i n t w e i g h t [5 ]  ;
i n t c o n n e c t i o n [ 5 ] ;
i n t n e x t n o d e [ 5 ] ;
i n t n e x t s p a c e  [5 ]  ;

} n o d e [M A X _ N O D E S ]  ;

a) Old node structure

s t r u c t  n e u r o n
{ i n t  b u f f e r ;

i n t i n p u t  ;
i n t l a s t  ;
i n t w e i g h t [ M A X _ N O _ O P ] ;
i n t n e x t n o d e [ M A X  NO O P ] ;
i n t o u t p u t  ;

} n o d e [ M A X _ N O D E S ]  = { 0 } ;

b) new node structure

Figure 4.13 Old and New Structures Comparison

4.5.4.4 Simplification 4 (Neural Node Update Routine).

The third simplification to the simulator and simulation software was caused by 

difficulties encountered with the input figure update routine. At the end o f the first stage 

of the simulator software development, the software was operational. However, the code 

used to update the input figure was very contrived and very difficult to follow. After the 

two revisions already mentioned, this situation had become even more aggravated. It 

was decided that it would be better for if  this very important routine were rewritten

no



more clearly. It was decided to return to basics and use a difference equation 

approximation of the RC circuit of the new neural node displayed in figure 4.17.

The derivation of the input figure update difference equation is shown in appendix B. 

Beers differential equation is also shown in appendix B for comparison. The resultant 

equation used in the final simulator and simulation programs is:

™  [C x Vc(t -  1)] + [At x I.(t)~\
At

[C + — ]
R

C: Models the capacitance properties o f a real neurons cell membrane. 
R\ Models the conductive properties o f a real neuron's cell membrane 

Vc (t): Models the charge stired by a neuron at time t 

Ij (t): Models the input to a neuron at time t

Figure 4.14 Equation used to update node input value. (Vc in figure 4.19)

This change o f routine simplified the program a great deal and made it a lot easier to 

understand. However it became much more difficult to design a network by hand due to 

the decrease in the number of nodal parameters that could be 'tuned' to achieve the 

desired network operation.

A further change made to the update routine was the incorporation o f a buffer into the 

network node structure. The buffer was introduced to ensure that, during the update of 

the network's nodes, the input value used by the node being updated at time (t) was the 

output produced by operating on the input connections from connecting nodes at time (t- 

1). This buffer created a more structured and reliable neural network update routine.

Ill



The final revision made was perhaps the simplest and least complicated. It was decided 

that it would be beneficial if  the update time for any network designed was the same for 

all networks. The new specification was that it was to require the same amount of time 

to update any network regardless o f the network's size or complexity. This was to make 

the simulator's operation more tractable, and make it easier to evaluate networks 

generated in the latter part of the project by the genetic algorithm. Also, and more 

importantly, this decision was based on the real time requirement of the robot’s 

operation. Beer’s model, as it was only used to control a simulated insect, could afford 

to allow the update time of the network to vary. Any variance would not influence the 

perceived behaviour o f the simulated insect as the behaviour was automatically 

synchronised with the environment in which it operated. However, in dealing with a real 

robot controller, it would be unacceptable to allow the robot to ‘pause’ while its 

controlling artificial neural network was updated. It would not be beneficial to have the 

robot behaviour varying as a function of the number o f nodes, the processor type or 

clock speed. The easiest way to achieve this is to force the artificial neural network to 

update at a fixed, real time rate, independent o f the mentioned parameters.

This timing specification was realised and tested with the use o f the MC68230 PI/T chip 

on board the MC68000 SBC. It required the programming[30,33] o f a set of clocked 

registers on the PI/T to an initial value (derived from the clock speed o f the SBC and the 

network update time specification). Then all that was involved was the polling of a 

single bit on the PI/T's status register, which changes from 0 to 1 when the PI/T's

4.5.4.5 Final Revision (Timing).

112



clocked registers hit zero. The clocked registers then cycled back to their initially 

programmed value and the process was re-initiated.

Within each cycle the simulator updates the network once and then simply polls the 

PI/T bit position mentioned above until it changes. Then the cycle begins again.

4 .5 .5  N o d e  T y p es

So what was the resulting node structure like after all these changes? In this section the 

different node types used will be detailed. There were three types eventually used: 

Normal nodes, Generator nodes and Output nodes. The dynamics and structure of each 

o f these are very similar but the differences affect the operation of the network 

considerably.

4.5.5.1 N eural Node Description.

The final state o f the neural node as implemented in the latter stages of the project 

remained quite consistent with the node model used by Beer. The internal dynamics 

remained the same in essence. The output gain profile (see figure 4.15) remained the 

same and the capacitance modeling was also retained, albeit a difference rather than a 

differential equation implementation. The internal conductance parameters as per Beer’s 

model (see figure 4.18) were not included. For comparison the two nodes are shown 

side by side in figures 4.18 and 4.19.

113



The neural node can receive any number o f inputs. These inputs take the form of being 

weighted between the values of 0 and 255. This sum is then delayed by the neural 

network update time (t). This sum is then used within the difference equation 

representing the RC circuit. The result o f this (Vc in figure 4.18) is used by the output 

gain section to calculate the output as per the gain characteristics illustrated in figure 

4.15. This results in an integer figure in the range 0 to 255. This figure is then used by 

the output section. The node can have up to a maximum of ten outputs. Based on the 

genetic parameters for inhibition, the number is made negative for those connections 

which should be inhibitory. Finally, the weighting of the value is based on the distance|J 

to the next node.

13 The distance referred to is the distance on the growth grid established when the networks were grown.

114



Firing
F requency

M em brane Properties

Figure 4.15 Neural Node structure implemented by Beer

Figure 4.16 Neural Node Model Used in Project

Inpu ts from  o th er 
n o d es .± 2 5 5 N o  
M ax im u m  N u m b er 
(S u m m ed )

In p u t B u ffe r 
S um  from  tim e 

(t-1 )

R C  C ircu it 
S im ula to r

O u tpu t G ain  
C haracteris tics

O utpu ts to  o ther 
N odes. W eighted  
to  ±255 based  on 
d is tance  and  
SG A  param eters

4.5.5.2 G enerato r Nodes

Generator nodes were introduced to compensate for the lack of spontaneous activity 

which could be displayed by the network. This was due to the omission of the internal

115



currents implemented in Beer’s neural node model for the reasons described in section 

4.5.4.1. Essentially, the generator nodes continually produce an output of 255 regardless 

of input.

4.5.5.3 O utpu t Nodes

Output nodes behave exactly like normal nodes except for two crucial differences. 

Obviously they have only one output. More importantly however, their gain 

characteristic is shifted by 50% so that they can produce a bipolar output. Also the 

output figure is normalised to within ±7 to work correctly with the SBC to robot 

interface. The gain characteristic is shown in figure 4.20.

In p u t V s. O u tpu t

Mx  M ax  O u tp u t V alu e  (7)

Mn  M in  O u tp u t va lue  (-7)
( I f  above V()

X  M in  In p u t before  a n y  ou tpu t

Figure 4.17 Gain characteristic for Output Nodes

4 .5 .6  S u m m a r y

In this section the neural networks and the manner in which they were used to 

implement robotic control were described. The individual components of the neural 

networks were detailed. This included the individual node types implemented as well as

116



the connection mechanism used between them. The manner in which the networks 

interfaced to the real world was also described. So what are the final conclusions?

The networks were, in the end, quite dissimilar to the type of networks originally 

envisaged. Due to implementation difficulties raised by both the real time 

considerations for robotic control and the time frame available for the traversal of 

genetic spaces by the SGA, the components o f the network were significantly reduced in 

complexity. The individual nodes were the single area most influenced by these 

considerations. The internal dynamics o f the neural nodes were altered in many ways. 

The internal current modeling was removed. Also, the manner in which the capacitance 

properties o f real neurons operate, over the scope of the full network, was simplified. 

This was achieved by the removing some o f the individual characteristics of each node 

in the network. Instead each node adopted the exact same capacitance properties by 

setting the internal variables equal to some network spanning constant.

However, the neural networks, as will be revealed in chapter 6 did succeed in 

performing. They satisfied the criteria imposed on them for real time robotic control 

despite the simplifications made. For that reason, and that reason alone, I feel that the 

decisions made over the course of the project were fully justified. As well as the 

operational requirements imposed on the networks being satisfied, the considerations for 

operation under Brooks’ subsumption architecture model were also satisfied.

Although this remains untested, the manner in which a superior behavioural network 

could subsume control is straightforward enough to deserve a textual description rather

117



than necessitating a test run. A superior behavioural network could subsume control by 

forming connections with, and only with, the input and output nodes of the underlying 

network. In this manner a network such as that which, for example, supported a simple 

visual processing operation could use its own input to stimulate, and inhibit, the 

underlying network’s input and output nodes. This could cause the underlying network 

to behave as the upper network desired. This would still allow the underlying network to 

exhibit the same characteristics as before if the upper visual network to be damaged or 

the robot blinded for example. The robot would thus adapt to its new situation by using 

what it already ‘knows’.

There has been much mention in this section and others o f the robot’s successes in the 

course o f the project. However, how were these successes quantified and qualified? 

After all we are dealing with behavioural issues. What constitutes good behaviour and 

how can it be measured? This will be discussed in the next chapter.

118



5. Behavioural Evaluation

5.1 Introduction

As has already been mentioned, one of the cornerstones of the project documented in 

this thesis is the subsumption architecture model for the development of machine 

intelligence. Subsumption architecture relies on a behaviourally decomposed design 

structure. Each level of the architecture uses the previous levels’ behavioural patterns in 

conjunction with its own behaviour in order to increase the behavioural complexity of 

the overall robot. Therefore, the evaluation of good behaviour at any stage is vital to the 

later development and enhancement o f the robot. In this section the manner in which the 

behaviour of the robot was evaluated will be explained. The rules governing the 

evaluation will be detailed. There will also be a discussion of what was perceived as 

'good' behaviour at the start o f the project.

In the context o f using simple genetic algorithms and neural networks the evaluation of 

good behaviour becomes even more critical. In a functionally decomposed robot, any 

anomalous behavioural patterns can be easily identified. Their solution can be the 

replacement or refinement of a single, and more importantly easily definable, circuit or 

software section. Neural networks, as applied to this project, are grown as a complete 

entity and the many ‘sections’ o f each network are intertwined. Therefore it would 

involve a more complex and time consuming process to identify and tweak by hand the 

network’s internal parameters. Also, using a simple genetic algorithm to derive a 

controlling network further exacerbates the situation. As applied to this project, the

119



SGA implementation is devoid of any internally coded objective function (see section

2.4). The objective function used to guide the SGAs traversal o f the genetic search space 

is the behaviour exhibited by the robot. It is essential that any particular behavioural 

pattern exhibited by the robot under the influence of the neural network is always 

awarded the same score. In the next section the types of behaviour rewarded will be 

described and justified in the context o f the early behavioural goals o f the project.

120



5.2 What is good behaviour?

The introduction to this section emphasised the importance of a reliable mechanism for 

behavioural evaluation for this project. The behavioural goal of the project was to 

implement a robot that could wander around its environment and not become stuck. The 

robot was to achieve this using six touch sensors and two bi-directional motors to drive 

its wheels. But, what defines good behaviour? A number of assumptions were made 

about what the implications of good behaviour would be, in the context of this project. It 

was desired that the robot would move spontaneously when its evaluation began. Any 

cyclical behaviour14 would be discounted. The operation of each o f the sensors would be 

evaluated independently. Also, any movement on the part of the robot that could be 

considered exploratory would be rewarded. The environment used to evaluate the robot 

is described in section 3.6 and was designed to test the robot's ability to remain unstuck 

in a number o f specific ways.

Area A (see figure 3.6) was a large area used to ensure that the robot did not simply 

move backwards and forwards in a straight line, or go around and around in a tight 

circle. It was constructed to ensure that the robot did not demonstrate some form of 

cyclical behaviour that would prevent it ever reaching out to the borders of its 

environment. Area B was used to see if  the robot could maneuver its way out of a tight 

cul-de-sac without being able to turn around. Area C was used to see if  the robot could 

maneuver its way out o f a confined space by finding, and using, the narrow entrance

14 M oving in a tight and unbroken circular pattern for example.

121



through which it entered the area. Area D was used to see if  the robot could combine the 

behaviours highlighted by areas B and C. It was hoped that the robot could find the exit 

while reversing out of the area. Area E was used to evaluate the robot’s ability to handle 

an acute angle within an area.

Overriding these simple goals, in accordance with the first stages of Brooks’ 

subsumption architecture, it was hoped that the robot would move all around the 

environment and seek out these different areas as well as conquering them. In particular 

perhaps, exhibiting some form of edge following behaviour.

These perceived goals are simple ones that could be achieved (rather simply one 

imagines) with the use o f a standard functionally decomposed design framework. It was 

felt however, that these goals were sufficient to test the overall design framework and 

the validity o f the thesis. If  these goals were achieved, then the potential would exist to 

continue to work in this application of machine intelligence. In the next section, the 

specific rules used to calculate the robot’s behavioural ‘score’ for the SGA will be 

described.

122



It was essential during the evaluation of the robot’s behaviour that the assignation of 

scores to particular behavioural patterns remained constant throughout the evaluation 

period. Any deviation could have had disturbing effects on the operation of the SGA. 

Therefore, a number of maintainable rules were devised in order to evaluate the 

particular behavioural score of each robot.

A program was written to ensure that each area of operation was evaluated correctly. 

This program is called GENETIC.C and is contained on the disk accompanying this 

thesis. The original intentions for evaluation are listed below for clarity.

1. The robot's behaviour shall be evaluated over a four minute period.

2. The robots initial position and direction will be in the centre of the environment and 

the initial orientation shall be held constant (as much as possible) for all the robots. 

(Exact positioning is not necessary, or indeed possible.)

3. The first behaviour that shall be looked for is characterized by two parts. Firstly, the 

robot moving around the environment while not getting stuck and secondly, the 

robot will not overly twist its 'umbilical cord', (i.e. equal distribution of left and 

right directional movement shall be rewarded.)

4. Each robot is evaluated on a 100 point scale.

5. Subtractions are made from the 100 points as follows to calculate the robots 

behavioural score.

5.3 The Rules

123



Failure to move initially. - 10
Failure to change movement when stimulated. 
Seven marks each for operation and direction.

-1 4  per sensor

Becoming trapped in the environment. -1 0  per occasion
Twisting the wire thus preventing the robot turning. - 10 per occasion

Figure 5.1 Basic Behavioural Scoring

6. All individuals shall have a minimum score of 10.

7. The sensors are depressed in order of precedence. It is perceived as more important

that the front sensors operate rather than the rear.

A) Front sensors together. (7 marks)
B) Left front sensor/Right front sensor. (7 marks each)
C) Rear sensors together. (7 marks)
D) Left rear sensor/Right front sensor. (7 marks each)
E) Left side sensor/Right side sensor. (7 marks each)

Figure 5.2 Sensor Activation Scoring

8. Should the robot be stuck at any time, it shall be replaced in the centre o f the 

environment facing 45° clockwise of its initial position. From that position its 

evaluation shall continue.

These rules were generated over the course o f the development and debugging of the 

overall environment. A number of runs were made at the early stages of the project to 

validate the behavioural rewarding scheme used. Eventually, the situation detailed 

above seemed to cover the majority of behavioural situations that it was desired to 

reward and penalise.

124



In this section the rules used to evaluate the behaviour o f the robot during the operation 

o f the SGA were detailed. The rules chosen were simple and left little room for 

‘personal’ preference or error on the part of the robot’s behavioural evaluator. It was 

explained that the rules were designed in such a way as to attempt to implement the first 

stages o f Brooks’ subsumption architecture design methodology. The rules were used as 

they are documented above in two independent ‘runs’ o f the SGA. Considering the 

results achieved and the best behaving network discovered, the choice of rules was 

vindicated to a large degree. In the next chapter of this thesis the results obtained will be 

detailed.

5.4 Summary

125



6. Results

6.1 Introduction

There has been continual reference in this thesis to the results obtained. The results have 

been used a justification for many of the decisions taken at every stage o f the framework 

development. The rationale behind some o f the decisions could be considered as tending 

towards arbitrary. Where applicable however, all decisions were guided by the notion of 

trying to replicate accepted natural system processes. The justifications for these 

decisions was based on the desire to follow an ideal, and by making as few 

compromises as necessary to allow a real time and maintainable implementation. The 

decision to ‘grow’ the neural networks rather than use a network ‘blueprint’, for 

example, was not used because it was believed that it necessarily offered a greater 

chance o f success. A growth algorithm was used because it identifies more closely with 

the processes evident in real life.

The ‘life’ approach was used because it was interesting, and also because it seemed to 

offer an intuitively satisfactory approach to the development of a low level machine 

intelligence. It was desired that Brooks’ behavioural approach (the original inspiration 

for the project) be brought closer in application to the real life processes evident all 

around us in the real world. Brooks’ implementations involved programmed solutions. 

Real life however is not programmed. Indeed, it could be argued that by using a 

programmed solution, Brooks’ solution falls victim to some of his own arguments. One 

o f the tenets of his argument [4] is the rejection of representational approaches to the

126



development o f artificial intelligence. The potential intelligence of a final programmed 

or representational solution is limited by the intelligence o f its creator. It would be much 

more satisfactory, from a theoretical point o f view, to develop a framework capable of 

producing an intelligence that would be, if  not greater than our own, at least different. 

This different intelligence could offer a perspective on our own form of intelligence 

which could make it easier to understand ourselves.

In hindsight, the attempt to implement and combine the different natural systems used in 

this project seems rife with potential disasters and laced with unforeseen problems. 

However, at the end of it all, results were obtained - results which appear to justify and 

vindicate the risks taken in using this approach to the development of machine 

intelligence. In this section, these results and the manner in which they were obtained 

will be documented. Their importance, in the context o f justifying the decisions made in 

this project, cannot be over emphasised. However, the results do not vindicate every 

decision made in this project. Indeed, they throw open some quite serious implications 

for the future of this development framework.

127



6.2 Two Runs

The testing and tuning of the design framework mechanism took place over a period of 

approximately four months. The first months of this process were used to test the 

integration of the framework as a whole design process. Certain issues became apparent 

over the period of this testing involving the integration of some of the changes already 

documented in this thesis. The changes made to compensate for the errors detected in 

the desired operation needed to be tested in order to validate the framework at each 

stage. Eventually, a point was reached where the framework was considered 

satisfactorily stable to allow a proper evaluation run to take place. Two runs of this 

‘final’ configuration were made over a period of about 6 weeks. The results o f both 

these runs will now be detailed.

6 .2 .1  R u n  1

A graph of the results obtained in the first run are shown in figure 6.1. This graph 

represents the convergence demonstrated by the SGA’s operation over a period of forty 

generations involving a population of 20 genotypes. As can be seen the SGA does 

appear to converge to an optimum in the search space. However, it is also apparent that 

the best behaviour found for a single robot occurred in generation 25. The SGA 

continued to converge however to a different point in its search space. The highest point 

of convergence occurred with a correlation factor of 84% between the genotypes. At this 

point the maximum scored by any of the robots contained within that particular 

generation was only 63. It appears that the SGA did indeed find a point at which the 

robot ‘behaved well’ (see chapter 5), scoring a value o f 78 points on the evaluation

128



scale. However it also appears that the increase in convergence levels fluctuated and the 

point was lost. Perhaps if  the run had continued for a greater period o f time the optimum 

would have been relocated. So what could have caused this detection and loss? A 

number o f factors may have contributed to this effect. The first, and most obvious one is 

that the level o f mutation employed by the mutation function may have been excessively 

high. An excessively high mutation level can significantly disrupt the operation of the 

SGA. Alternatively, the mutation function could have simply hit the genotype in a ‘soft 

spot’ causing a level of disruption that was detrimental to the progression of the SGA 

run. This could indicate that the schema populating the SGA’s genotype may be 

excessively long. A short schema is recommended by Goldberg in his discussion of the 

SGA [14].

i
129



S
co

re

Generation Number

Figure 6.1 Operation o f  SGA fo r Run 1

130



However, despite the loss, I feel that it more worthwhile to examine what was achieved 

by the framework rather than emphasising its difficulties. At generation 25, a robot 

controller was produced which scored a value of 78 on the evaluation scoring 

mechanism. The behaviour of the robot was as follows. The robot being controlled by 

the grown neural network moved spontaneously in the environment. It traveled in a 

straight line until it reached the boundary wall at position Z in the environment (see 

figure 3.6). The robot then proceeded to ‘explore’ the environment and found its way 

into and out o f almost all the areas in the network. The robot, while exploring, exhibited 

a form of edge-following behaviour moving in an anti-clockwise direction around the 

environment.

The robot demonstrated some quite interesting behaviour when it appeared to be 

trapped. When the robot was placed in the area designated by the letter ‘B ’ in figure 3.6, 

facing the end wall, the robot moved towards the end wall, using the right hand edge of 

the cul-de-sac as an indicator. When it got to the end, both front sensors would be 

activated and the robot would attempt to back away from the wall moving in an 

clockwise arc. See figure 6.2.

131



The robot would detect its back left sensor being activated and would move forward 

again. The front left sensor would come into contact with the wall and the robot would 

circle around until both front sensors were activated once more. Again, the robot would 

move backwards in a clockwise arc until its back left sensor came into contact with the 

wall once more. This time however, the sensor activation would not cause the robot to 

move forward again. The robot’s behaviour suggested that it “remembered” that it had 

recently had hit the wall. The robot would continue to press against the wall and the 

motors would continue to drive the robot back. The robot would thus swing around until 

both rear sensors were activated. The robot would then move forward again until both 

front sensors touched the side wall. The cycle would begin again and the robot would 

maneuver itself right around until it was facing 180° from its initial direction. The robot 

then exited the cul-de-sac.

132



The second run of the SGA did not produce results that were quite as good. The graph 

of the genetic scores is shown in figure 6.3. The SGA converged on some optimum but 

unfortunately the behavioural scores did not reflect the same promise exhibited by the 

first run. The maximum score o f  any robot was just 26 points and the average never 

exceeded a value o f 13 points. The maximum level o f convergence was at the point 

where testing discontinued with this run. It assumed a value o f 86% correlation between 

genotypes. Perhaps if  the run were continued the SGA would have removed itself from 

the local optimum it had found. The effect o f mutation an reproduction can be seen quite 

visibly on the graph at generation 20 where the convergence figure fell by 10% over a 

single generation. However, this change in average genotype characteristics was not 

sufficient to drag the SGA away from the genetic hill that it was climbing.

6.2.2 Run 2

133



Figure 6.3 Operation o f  SGA fo r Run 2

134



So what conclusions can be drawn from the two runs of the SGA. I think that it is 

necessary to consider the results in two separate categories. The first o f these categories 

is the operation o f the SGA and the second is the operation of the overall network.

6 .3 .1  S im p le  G en e tic  A lg o r ith m

With regard to the SGA, it can be seen from the first and second run that the algorithm 

does converge on an optimum in the genetic space. However, it is also obvious from the 

results of run 2 that the parameters of the SGA need to be re-analysed. It may be even 

beneficial to analyse the use of a simple genetic algorithm at all. It may be entirely 

possible that this type o f genetic algorithm implementation is flawed in application to 

neural network control. It works certainly for simple and well defined problems but 

perhaps the complexity involved in neural network design is beyond the scope of this 

simple algorithm. The scope of genetic algorithms and their applications extends far 

beyond the SGA implementation. This is portrayed in Goldberg[14] where many 

different GA implementations are mentioned and described. It is therefore conceivable 

that a different implementation of the GA may have been more suited to the task in hand 

although this was never investigated.

6 .3 .2  O v e ra ll F r a m e w o rk

On the positive side however, a neural network was found in the genetic space that did 

satisfy the requirements o f the project. The robot using the network described in section

6.3 Results Conclusions



6.2.1 successfully traversed its environment in a manner approaching the optimum 

desired manner.

136



This thesis has charted the design o f an evolutionary framework for the development of 

low level machine intelligence. The framework was successful in many respects. 

Principally in that it was almost fully successful in achieving its primary functional 

objective. This objective was the development of a neural network that allows a real 

robot to move around in a real environment. The goal of the robot/network interaction 

was to prevent the robot from becoming stuck. By doing so, I feel justified in saying that 

the use of a natural systems framework is a viable method for the achievement of low- 

level machine intelligence. However, a number o f issues still remain unresolved. In this 

conclusion I will go through each o f the main areas in turn, both theoretical and 

functional, and consider the problems encountered with each while attempting to 

provide possible solutions.

The reader should be aware that this project has only taken a small, but important first 

step in the development of machine intelligence using natural systems models. It would 

be fair to say that the final state of the project has generated as many possibilities and 

questions as it first set out to answer. More questions however, is a much more 

satisfactory end point than a dead end.

7. Conclusion

137



7.1 Subsumption Architecture

The concept o f a behaviourally based control decomposition for the eventual 

development o f a high level machine intelligence is at the heart o f this thesis. However, 

it was never within the scope of this project to verify the approach itself. The only true 

validation o f the subsumption architecture approach would be the creation of a high 

level machine intelligence. By this I mean the creation o f an artificial mind that can 

learn, adapt and reason by utilising fully and adaptively a pre-existent physical 

framework, and that behaves autonomously and successfully within a hostile, dynamic 

environment. Attempting to achieve a lower level of behaviour, such as the type within 

this project, demands a level of faith that the higher level goal is achievable. Therefore, 

in all further discussions it is assumed that the incrementally designed behavioural 

decomposition structure is a viable method for attaining the long term goal of machine 

intelligence.

The essence o f a subsumptive architecture, within the context o f the achievement of a 

learning, adaptive machine intelligence, is such that in order to support such an adaptive 

intelligence on a physical structure then the lower level controllers must be fully 

functional and secondly, must be of such a type that they facilitate the subsumption of 

their lower level network capabilities by higher level networks.

Certainly, the lower level networks formed to date do not learn or adapt in the sense of 

displaying on-line structural or parameter variance within the controlling neural 

network. However, the networks produced for the goal of enabling a real robot to

138



wander around a real environment have demonstrated themselves as being able to deal 

successfully and adaptively with that environment. Also, the physical structure of the 

networks allows the idea of behavioural capability absorption to be applied easily.

To illustrate this idea, consider attempting to design a visual processing control network, 

allowing long distance visual goals such as finding the corners of rooms. The visual 

processing network would sit on top o f an existent tactile stimulation reaction network 

such as the small neural networks designed and demonstrated in this thesis. The 

structure within which the tactile networks are grown is such that it is very achievable to 

'sit' another network on top o f it. This can achieved by allowing, for instance, the higher 

level visual network to connect only to the input sensor nodes and output motor nodes 

of the lower level network. The visual network can then subsume control by having 

eight outputs connecting to the six input nodes and the two output nodes of the tactile 

network and it could generate behaviour in the robot by simulating the input patterns to 

the tactile network that result in the robot responding in the manner desired by the visual 

network.

Consider, for example, a situation where the robot sees a corner of a room and wants to 

get there. Using the subsumption approach the visual stimulation could result in the rear 

input sensor nodes o f the tactile network being stimulated, not by physical contact with 

a physical obstacle, but by the higher level network, and moving forward toward the 

goal. In a sense, the higher network is ‘fooling’ the lower network into believing that its 

rear sensors were being activated and thus using the established reaction of the tactile 

network to move forward.

139



7.2 Computational Neuroethology

The concept o f modeling the neural structures o f existing animals such as insects is, 

intuitively, a very sensible one when tied in with the idea of a subsumption architecture. 

However there are drawbacks. The main drawback is that even for very simple insects 

the structure o f a single neuron is quite complex and a large network of accurate neural 

models would soon be beyond the simulational capabilities (in real time) of many of 

today’s largest and most powerful computers. This is o f course due to the essentially 

serial nature o f modern computers. The ideal for simulation of a neural network would 

be a massively parallel computer with an individual processor for each neuron. However 

this is not viable either technologically or financially within the scope of almost every 

research project. This means that serial computers have to be used.

As a result of the imposed limitations, the neural models lose the finer points15 of their 

operation which of course affects the neural operation. The models used during this 

research were even simpler models of a simplification used by Beer of a real neural 

node. This simplification allowed real-time operation of the robot. Also, the decision to 

omit random noise from the neural calculations makes the neural network operation 

deterministic. This enables all results to be repeatable, a facet of design which is 

essential at any stage of a project but I feel particularly so at the early stages o f a large 

project such as the development of machine intelligence.

15 The in trinsic currents implemented by Beer [2] for example.

140



Any simplification brings into question, o f course, the validity of the claim to be using a 

biologically plausible neural model. We do not truly understand the complexities 

involved with operation o f simple biological neural structures, and much less so the 

neural structure of the human brain, whose sentient characteristics we are attempting to 

model, so how can we simplify something we do not truly understand? The complexities 

and internal noise present in biological neural networks are an inescapable fact so 

perhaps we are discarding on a neural node level the most essential characteristics for 

the achievement of machine intelligence.

Unfortunately, due to the limitations imposed by the available technology for this 

research, there is no option but to simplify. However I believe, that within the scope of 

this project, this has been verified to be an acceptable path to take for the design of 

networks exhibiting lower level behaviours. It has been implemented and demonstrated 

to produce an operational robot controller that allows the subsumption architecture to be 

applied. Despite the relative success however I feel that more could, and will, be 

achieved by using a more biologically plausible neural model operating on the best that 

technology can offer.

141



7.3 Computational Embryology & Genetic Algorithms

In their application within the context o f this project the concepts o f computational 

embryology[9,10,l 1] and genetic algorithms[14,19,34] are entwined within each other 

to such an extent that a discussion of one without reference to the other is not possible. 

What is being modeled in order to grow the neural network is not just a series o f natural 

systems models but an entire process of development, growth, and long term genetic 

adaptation o f a neural network to its environment. Therefore they shall be discussed 

together.

The computational embryology and genetic coding approach again seems to be, 

intuitively, a correct choice. I justify this decision by drawing on the essence of the 

project which is to apply, as much as possible, natural models to develop the controlling 

neural networks. Nature has already shown us that the use and variance of DNA coding, 

which it uses to allow reproduction and species adaptation, works.

Computational embryology is a simplified and digitised equivalent of the DNA 

decoding which nature uses. However, the DNA decoding process in nature is even 

more complex and mysterious than the networking structure and inter-operation of 

individual neurons in the biological brain and nervous system. Therefore, in exactly the 

same manner as the use of simplified neuronal models and network structure implies, 

the validity of using any simplification is called into question. But again, due to

142



technological and knowledge limitations, simplification based on existing knowledge 

and experience is the only way forward.

It was a conscious decision to use a development and evaluation routine and it has 

demonstrated some success in application. Also, by using a parameterised growth 

process the networks produced may do something not previously considered, but useful 

when discovered, while still operating within the framework of an accepted goal. It also 

allows the smaller schemata o f growth parameters to be used rather than large schema 

which would be involved in the use of a blueprint network coding. There are problems 

of course in the use o f a development routine rather than the use of a network blueprint.

Firstly, analysis is more difficult to do than it would be using a blueprint coding, but at a 

lower behavioural level this is not a large problem because the networks produced are 

quite small (max. 50 nodes in this application), allowing a visual analysis o f the network 

structure. As network complexity increases however, with the development of higher 

level behaviours, visual analysis will become impossible to do. This inability to analyse 

leads to the deeper question o f whether or not it makes sense to design something which 

we cannot easily understand. Are we attempting to implement or to understand 

intelligence? For this project, implementation was the objective.

Secondly, as a result o f the coding, the interaction of individual schema within the 

genetic coding becomes less defined, thereby increasing the complexity and non­

uniformity of the genetic search space. This causes the use of a genetic algorithm as the 

chosen optimisation routine to be called into question as genetic algorithms require a

143



smooth search space to enable them to behave in an optimal fashion. Indeed this is 

demonstrated by comparison o f the two runs of network production listed in the results 

section. The first run produced the best behaviour in a single individual but the next did 

not produce any individuals (within the scope of the number o f generations iterated) that 

produced a comparably successful individual. Within the operation of the SGA the 

genetic algorithm should converge to the same genotype. This may be due to a 

premature termination o f the generation run but may be more symptomatic of a fault 

with the chosen coding and development routines.

I would be inclined to choose the latter explanation and for that reason would 

recommend a number o f changes to be made to the overall design framework should 

work be continued based on the existing results. Firstly, a change from purely binary 

coding to a gray-scale coding or some other coding which results in equivalent numeric 

weight being attached to each binary position in the genetic coding thus preventing 

mutation of a single bit causing as much genetic diversion as is possible with standard 

binary weighting. Secondly, the use of scaling factors[14] and multiplication factors[14] 

to allow greater control of the genetic algorithm operation preventing as much as 

possible premature convergence of the genetic algorithm. Thirdly, an increase in the 

precision o f the genetically coded parameters to further smooth out the genetic search 

space allowing the genetic algorithm to behave more optimally.

144



7.4 Other Issues

The most contentious issue encountered over the period o f the research is involved with 

the question of: how exactly does one quantify good or bad behaviour? This is a critical 

issue because if good behaviour cannot be quantified then automation of the entire 

behavioural evaluation, genetic algorithm operation and further network growth 

becomes impossible. As the research outlined in this thesis progressed, it got to the stage 

where a decision had to be made regarding whether or not to automate. I believe that it 

is possible to quantify behaviour to some degree and that automation is possible at both 

higher and lower operational levels. This belief is prompted by the fact that even with 

manual evaluation it is essential to create some form of rule base by which to evaluate 

so that the genetic scoring is consistent with robotic behaviour rather than testers' 

moods. However, automating the evaluation procedure would require the development 

of simulation software as well as adjustments to the hardware and interfaces set-ups and 

constructions. This was impossible within the available time scale of a single masters 

project so it was decided to forge on with manual evaluation and attempt to gain some 

results which could justify the effort involved in automating the evaluation procedure 

should the project be continued at some stage. This evaluation was based on a visual 

interpretation o f the robot's behaviour by a person, with the genetic scores award process 

being automated to a degree by some rather simple software but ultimately decided by 

the person testing the networks' operation.

145



This, as compared to what could be achieved with a good automated procedure is 

unsatisfactory in the long term. It is too time consuming and too unproductive from the 

human tester's viewpoint to be a viable practice.

Although I am certain that automation needs to be achieved to progress, automation is 

not all good. The chief problem with automation is that it generally implies use of 

simulation - simulated robots in simulated worlds. This, I am certain, is not the correct 

path for the achievement of machine intelligence either. A compromise between the two 

extremes may be the best way forward. Since the goal is to develop a robotic system that 

can survive in the real world, it is essential that the networks which appear to be 

working in the simulated world be tested frequently on a robot in the real world. This 

serves two main purposes. Firstly it verifies that the simulation software being used is 

operational and secondly it allows continual calibration of the simulation results with 

the real world results as well as fine-tuning o f the evaluation procedure itself.

146



The project came close to its primary goal of developing a reactive tactile real-time

neural network robot controller operating in the real world. Its major success lies

however in its highlighting of the areas that need to be addressed and solved in order to

make the overall system more productive and stable:

1. Further consideration be given to the network growth routine, preceded by a more 

detailed study o f existing biological neural network growth characteristics.

2. A more in depth analysis and potentially the implementation of a different form of 

the Genetic Algorithm to improve its operation and smooth out the genetic landscape 

allowing it to operate more optimally.

3. Combination o f the GA it with an automated evaluation routine allowing larger 

numbers o f generations to be iterated with perhaps greater success in network design.

4. Review o f the controlling hardware to increase the speed of operation allowing more 

complex artificial neural networks to operate.

5. Generation of an environment and robot interaction simulation. This would allow a 

more speedy evaluation of networks. These networks would necessarily be calibrated 

frequently against the real-world operation of the real robot.

6. Using the above changes (and assuming success in designing a fully operational 

reactive tactile network), attempt to design a visual perception neural network layer 

that will utilise the capabilities o f the lower level tactile network.

7.5 Final Conclusions

147



In conclusion I feel that the application o f natural systems models to the production of a 

viable design framework that generates behaviour controlling neural networks for real­

time, real-world robotic control has been demonstrated. I also feel that the design 

framework has the potential, using the best o f available technology and biological 

systems knowledge, to generate more biologically plausible neural networks that in 

application may eventually place the goal o f machine intelligence in sight, however far 

away that holy grail o f computer science truly is.

148



8. Bibliography

[1] Barkakati, N. "The Waite Group's Turbo C Bible", Waite Group Inc. Macmillan 

Computer Book Publishing Division. (1989).

[2] Beer, R. "Intelligence as Adaptive Behaviour: An Experiment in Computational 

Neuroethology", Academic Press. (1990)

[3] Brooks, R. "Achieving Artificial Intelligence Through Building Robots", AI Memo 

899, MIT. (1986).

[4] Brooks, R. "Intelligence without Representation", Artificial Intelligence 47, 

Elsevier Science Publishers (1991) 139-159.

[5] Brooks, R. "Elephants Don’t Play Chess", Robotics and Autonomous Sytems 

Systems 6, Elsevier Science Publishers B.V. (North Holland) 3-15 (1990).

[6] Cliff, D., Harvey, I., Husbands, P. “Incremental Evolution o f Neural Network

Architectures for Adaptive behaviour”, Cognitive Science Research Reports CSRP 

256, University of Sussex, School o f Cognitive and Computing Sciences. (1992 - 

Jan)

[7] Cliff, D., Harvey, I., Husbands, P. “Explorations in Evolutionary Robotics”, 

Adaptive Behaviour, 2(1), 73-110. (1993).

[8] Cliff, Dave T. "Computational Neuroethology - A Provisional Manifesto", Cognitive

Science Research Reports CSRP 162, University of Sussex, School of Cognitive 

and Computing Sciences. (1990 - May)

[9] Dawkins, R. "The Blind Watchmaker", Penguin Books. (1988).

[10] Dawkins, R. "The Evolution of Evolvability", Artificial Life, SFI Studies in the

Sciences of Complexity, C. Langton Editor, Addison-Wesley. (1988).

[11] Dawkins, R., “Universal Darwinism”, D.S. Bendalli (Ed), “Evolution from 

Molecules to Men”, Cambridge University Press, (1983).

149



[12] De Jong, K. A., “An Analysis o f the behaviour o f a class of genetic adaptive 

systems”, Doctoral Dissertation, University of Michigan, Disertation Abstracts 

International, 36(10), 5140B. (University Microfilms No. 76-9381), (1975).

[13] Kenemey Anita, “An Autonomous Robot”, Undergraduate Thesis, School of 

Electronic Engineering, Dublin City University. (1988).

[14]Langton, Christopher G., “Artificial Life”. Artificial Life Volume VI: Proceedings 

o f an interdisciplinary workshop on the synthesis and simulation of living systems 

held in September, 1987, in Los Alamos, New Mexico, Addison-Wesley Publishing 

Company, Inc., Redwood City, California, (1989).

[15] Goldberg, D.E. "Genetic Algorithms in Search, Optimization and Machine 

Learning", Addison-Wesley. (1989).

[16]Harvey, I. "Species Adaptation Genetic Algorithms: A Basis for a Continuing 

SAGA", Cognitive Science Research Paper 221, University o f Sussex. (1992).

[17] Harvey, Inman. "Evolutionary Robotics and SAGA: The case for hill crawling and 

Tournament Selection", Cognitive Science Research Paper, Serial No. CSRP 222, 

University o f Sussex. (1992a).

[18] Harvey, I. "The SAGA cross: The mechanics for Recombination for Species with 

Variable Length Genotypes", Cognitive Science Research Paper, Serial No. CSRP 

223, University of Sussex. (1992b).

[19] Harvey, I., Husbands, P., & Cliff, D., "Genetic Convergence in a Species of 

Evolved Robot Control Architectures", Cognitive Science Research Paper, Serial 

No. CSRP 267, University o f Sussex. (1993 - Jan).

[20] Holland, J. H. “Hierarchical descriptions of universal spaces and adaptive 

systems”, Technical Report ORA Projects 01252 and 08226) Ann Arbor: 

University of Michigan, Department o f Computer and Communication Sciences. 

(1968)

150



[21] Husbands, P., Harvey, I., & Cliff, D. "Analysing Recurrent Dynamical Networks 

Evolved for Robot Control". CSRP 265, University of Sussex. (1993 - Jan).

[22] Llinas, R. R., “The intrinsic electophysiological properties of mammalian neurons: 

Insights into central nervous system function”, Science 242, 1654-1664, (1988).

[23] McCartney, R. "Masters Specifications Report", School of Electronic Engineering, 

Dublin City University. (1992).

[24] McCartney, R. "DCU INTRA Report", School o f Electronic Engineering, Dublin 

City University. (1992).

[25] McCartney, R. "Development of a Framework using Simple Genetic Algorithms for 

the Automated Design of Heterogenous Neural Networks for Robot Control", 

Thesis submitted for the award of the degree o f B.Eng, School of Electronic 

Engineering, Dublin City University. (1993-1994).

[26]McCartney, R. "An Experimental Framework for Evolutionary Robotics", School 

of Electronic Engineering, Dublin City University. (1992).

[27] MacGregor, R. J., “Neural and Brain Modelling”, Academic Press, (1987).

[28]Microtech Research Inc. "Paragon™ Software Products Manual". (1985).

[29] Minsky, M. & Papert, S. "Perceptrons", Cambridge, MA: MIT Press. (1969)

[30]Motorola. "MC68000 Educational Computer Board User's Manual", Motorola, 

2ndedition. (1982).

[31]Rumelhart, D. E., & McClelland, J. L., Editors, “Parallel Distributed Processing, 

Volume 1: Foundations”, M.I.T. Press-Bradford Books, (1986).

[32] Selverston, A. I., “A consideration of invertebrate central pattern generators as 

computational data bases”, Neural Networks, 1(2): 109-117, (1988).

[33] Wilcox, A."68000 Microcomputer Experiments Using the Motorola Educational 

Computer Board", Prentice-Hall Inc. (1991).

151



[34] Wilson, Stewart W., “The Genetic Algorithm and Simulated Evolution”, C. 

Langton (Ed.), Artificial Life, SFI Studies in the science o f Complexity, Addison- 

Wesley, (1988).

152



Appendix A Paragon C cross Compiler 
Configuration file.
chip 680 00
*

Starting address for code and stack 
Stack grows down. Heap grows up from top 
of code

base $2300

public ????STACKTOP=$2000

Initializes stack pointer (sp)

Loader options

Main entry point (must be loaded first)

list t,x 
*

+
load dstart 
*
fr**************************************************************************

* User supplied routines start here (there can be lots and lots) *
* * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

load NETLESS

* *
* The rest should not vary from program to program *
★ * 
♦♦♦★★♦★★★★★★★★★a***********************************************************

*★*•*****★***★★★*
load outchr
****************
load inchrw

load sbrk
****************
load exit
****************
load csys68k
* * * * * * * * * * * * * * * *

load \mcc68k\mcc68k.lib

Character output routine 

Character input routine 

Heap management

Return to Monitor via TRAP #14 

Startup and Level 2 I/O 

C run-time library

end
a**************************************************************************

Ì



Appendix B1 Derivation of Formula used for 
Update of Neural Network Input Parameters.

Figure B l : Neural Node used in Simulator and Simulation

Using Notation From Figure B;

I i (t) = I r (t) + I c (t) (1)

also

v . t
I (t) = - £ —  
rV ’ R

dV .W
I (t) = C— 5—  
cV 7 dt

Which can be approximated by:

re-arranging we get

CxAVc(t)
At

■AVc(t) =
A t x l c(t)

(2)

...by definition 

...by definition

or alternately...



since

from (1) =>

from (2) =>

Rearranging we get:

and again to get

and finally:

V0( t ) - V 0(t -1 )  =
At x I 0(t)

AV0 (t) = Vo(t ) - V c( t - l ) .

=>V0(t) = Ye( t - l )  +
A t x l 0(t)

V0(t) = V0( t - l )  +
A t x [ I , ( t ) - I r (t)]

At x
VB(t) = VB( t - l )  + -

Vc(t)
R

C x Vc (t) = C x Y0 (t -1 )  + Atlj (t) -
At x Vc(t) 

R

Ve(t) c + —
R

= [C x Yc(t -1 )]  + [At x I(t)]

ii



Appendix B2 Beers Formula for Update of Neural 
Network Input Parameters.

Firing
Frequency

Membrane Properties

Figure B2 Neural Node structure implemented by Beer 

Cn  VN̂ ' =  INTl (t, V N (t))+  EXTn  -  Vn ( t )  G n

Mepre(N~) LelntrinsicQi')

N etln p u t S yn aptic  C urrents In trinsic C urren ts E xternal L eak  

C u rren t C urren t C urren t

w h ere

C n  is the membrane capacitance o f  neuron N  

VN  ( i )  is the membrane potential o f  neuron N  

p r e ( N )  is the set o f  neurons which form synapses on neuron N  

Sm, n is the strength o f  the connection from neuron n to neuron M  

Fm (V M (t^  is the firing frequency o f  neuron M  

In tr in s ic (N )  is the set o f  intrinsic currents o f  neuron N  

IN T l (t, Viv(tJ) is the magnitude o f  intrinsic current L,

which may be voltage and time dependant 

EXTn  is the magnitude o f  external current injected into neuron N  

G n  is the membrane conductance o f  neuron N

Reproduced from Beer[2] [p 51]



Appendix C Random Number Generation Suite 
used in Simple Genetic Algorithm Program.

C.1 FILE: randutl.h
FILE: randutl.h

ABSTRACT: Provides for sampling a random variable based on a 
variety of probability functions.

This module is layered on msr88.

Copyright (C) 1992 Barry McMullin.

This is free software; you can redistribute it and/or modify 
it under the terms of the GNU General Public License as published by 
the Free Software Foundation; either version 1, or any later version.

This software is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
GNU General Public License for more details.

You should have received a copy of the GNU General Public License 
along with this software, in the file LICENSE.DOC; if not, 
write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 0213 9, USA.

Barry McMullin,
School of Electronic Engineering,
Dublin City University,
Dublin 9,
IRELAND.

Telephone: +353 1 704 5432 
FAX: +353 1 704 5508
E-mail: McMullinB@DCU.IE

typedef int32 bernoulli_t;

extern bernoulli_t *setup_bernoulli(double p);
/* Returns the appropriate structure to feed into get_bernoulli(), to 

make a sample of bernoulli random variable with parameter p.
To free the memory allocated to the structure, use 
free_bernoulli();
<p> must be in the range 0 to 1.

*/

extern void free_bernoulli(bernoulli_t **b);
/* Frees the memory allocated for the structure <**b>. It

leaves the pointer variable at the calling site <*b> as NULL. +/

extern flag get_bernoulli(bernoulli_t *b);
/* Returns TRUE according to a bernoulli probability function.

<*b> should have been previously setup by setup_bernoulli();
*/

mailto:McMullinB@DCU.IE


extern flag get_one_bernoulli(double p) ;
/* This combines the functions of setup_bernoulli() ,

get_bernoulli(), and free_bernoulli(). It should be used 
whenever a *once off* bernoulli evaluation is required. It 
returns TRUE with probability <p>.
<p> must be in the range 0 to 1.

*/

typedef struct
{

int32 n; 
int32 cutoff;

} uniform_t;

extern uniform_t *setup_uniform(int32 n);
/* Returns the appropriate structure to feed into

get_uniform(), to make a sample of a random number in the 
range 0 .. (<n>-l), with a uniform probability function. The
slightly peculiar way of specifying the range (0 up to 
(<n>-l) instead of, say, 1 up to <n>) is deliberate: it 
means you can specify an array *size* and get back out a 
random *index*.

To free the memory allocated to the structure, use 
free_uniform();

<n> must be in the range 1 .. MSR8 8_RANGE. */

extern void free_uniform(uniform_t **u);
/* Frees the memory allocated for the structure <**u>. It

leaves the pointer variable at the calling site <*u> as NULL.

extern int32 get_uniform(uniform_t *u);
/* Returns a random number sampled according to a uniform

probability function. <*u> should have been previously setup 
by setup_uniform();

*/

extern int32 get_one_uniform(int32 n);
/* This combines the functions of setup_uniform(),

get_uniform(), and free_uniform(). It should be used 
whenever a *once off* uniform evaluation is required. It 
returns a random number in the range 0 .. (<n>-l), with a
uniform probability function.

<n> must be in the range 1 .. MSR8 8_RANGE. */

typedef struct 
{

int32 offset, range; 
int32 *table;

} cpf_t; /* Cumulative probability function type. */

extern flag valid_cpf(cpf_t *cpf);
/* This returns TRUE iff <cpf> is a validly formatted 

cumulative probability function, as follows:

<cpf->offset> is the minimum value of the random variable. 
There are no restrictions (other than those of the native 
type) on its value.



<cpf->range> >0, <= MSR88_RANGE. This is the total number of 
distinct values for the random variable. The maximum value 
of the random variable will thus be 
<cpf->range + cpf->offset - 1>.

<cpf->table> is a pointer to an array of values of the 
cumulative probability function, scaled to a maximum value 
of MSR88_RANGE. This pointer must not be NULL. There must 
be exactly <cpf->range> entries in this array (the 
"existance1' of these is checked only in the sense that 
there will be an attempted access to all of them).
<cpf->table [0]> corresponds to a random variable value of 
<cpf->v_lo> etc. No entries in the array may be less than 
zero or greater than MSR_RANGE. The function must be 
monotonically increasing, and the final point should have 
the value MSR8 8_RANGE.

*/

extern void free_cpf(cpf_t **cpf);
/* Frees the memory allocated for the structure <cpf>. It

leaves the pointer variable at the calling site as NULL. */

extern int3 2 get_cpf(cpf_t *cpf);
/* This returns a sample of a (pseudo) random variable with the 

probability function described by <cpf>. <cpf> must be a 
validly formatted probability function; in the interests of 
execution speed, *THIS IS NOT CHECKED* by get_cpf(). If in 
doubt, use valid_cpf() to check at the calling site. */

#define BINOMIAL_MAX ((int32) (100000L))
/* This is the maximum n parameter for the binomial

probability function supported here. The value is somewhat 
arbitrary. It must be significantly less than MSR88_RANGE if 
the binomial probability function is to be "reasonably" well 
approximated. At the very best, we can attribute probability 
in units of about l/MSR8 8_RANGE; if the required values are 
of this same order (or less) we will have a very poor 
approximation. This is probably (;-) OK for those parts of 
the binomial range which contribute very little to the 
overall total, but would not be nice if it affected points 
in or around the mean. Now, the probabilities here must be *at 
least* of the order l/n (since n of them add up to 1) so if 
we keep n a good deal less than MSR8 8_RANGE we should be OK.
But the details are still going to be application specific. */

extern cpf_t *setup_binomial_cpf(int32 n, double p);
/* This sets up a cumulative probability function (cpf) 

for a binomial random variable with parameters <n> and 
<p>, and returns a pointer to a cpf_t data structure
describing it. The cpf_t format is compatible with
the function get_cpf(); the caller should not otherwise 
manipulate it. The structure is dynamically allocated; it 
can be deallocated by a call to free_cpf().

<p> must be in the range 0 to 1.
<n> must be in the range 1 to BINOMIAL_MAX. */

iii



C.2 FILE: etc.h
FILE: etc.h 

ABSTRACT:

This is general purpose miscellaneous module, defining 
standard constants, and types, and a few handy functions etc.

Copyright (C) 1992 Barry McMullin.

This is free software; you can redistribute it and/or modify 
it under the terms of the GNU General Public License as published by 
the Free Software Foundation; either version 1, or any later version

This software is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
GNU General Public License for more details.

You should have received a copy of the GNU General Public License 
along with this software, in the file LICENSE.DOC; if not, 
write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 0213 9, USA.

Barry McMullin,
School of Electronic Engineering,
Dublin City University,
Dublin 9,
IRELAND.

Telephone: +353 1 704 5432 
FAX: +353 1 704 5508
E-mail: McMullinB@DCU.IE

/* Standard Constants: */

#define TRUE 1
#define FALSE 0

#define SUCCEED 0
#define FAIL (-1)

#define EOL ' \n '
#define EOS 1 \0 '
#define BEL '\007'

/* Standard Types: */

typedef char

typedef unsigned long 
typedef long

flag;

unsigned3 2; 
int3 2;

#define UNSIGNED3 2_MAX (OxFFFFFFFFL) 
#define INT3 2_MAX (0X7FFFFFFFL)
#define INT32_MIN (- INT32_MAX)

/■> 1 bit, used as boolean

/* >= 32 bits, unsigned */ 
/* >= 32 bits, signed */

/* Omit "negative zero"... */

mailto:McMullinB@DCU.IE


/* Standard (default) string length: *./
«define DEFAULT STR LEN (128)

/* Scope control Pseudo-keywords - explicitly specify *all*
external objects as "public", "private" or "extern". */

^define public /* public is C default scope */
ttdefine private static /* static *really* means private */

ttdefine strequ(sl, s2) (strcmp(sl, s2) == 0)
/* String equality macro: */

extern flag valid_fraction(double p);
/* Returns TRUE if 0 <= p <= 1. Useful for checking that 

probabilities *are*. */

extern flag fequ(double x, double y, double toi) ;
/+ Returns TRUE if the *fractional* difference between x and y 

(referred to x) is less than toi. */

extern int32 fround(double x) ;
/* Converts x from double to int32, with rounding rather than 

truncation. */

ttifdef _TURBOC__

#define getkeyO (bioskey(O) & Oxff) 

ffendif

Jfifdef  GNUC_

extern char *strlwr(char *s);
/* Convert s to lower case only... */

extern char *strupr(char *s) ;
/* Convert s to upper case only... * /

public double fabs(double x);

void* malloc(unsigned); 
void freetvoid *);
public ldiv_t ldivdong num, long denom) 
/* These should already be in <stdlib.h>. 

I think their absence is a gcc bug. * /

ffendif

v



C.3 FILE: msr88.h

FILE: msr88.h 

ABSTRACT:

This module provides an implementation of the "minimal standard" 
pseudo random number generator defined in:

Park, S.K 
Miller, K.W.
"Random Number Generators: Good ones are hard to find."
CACM, Oct 88, Vol. 31, No. 10, pp. 1192-1201.

The name "msr88", however, is my own invention.

Copyright (C) 1992 Barry McMullin.

This is free software; you can redistribute it and/or modify 
it under the terms of the GNU General Public License as published by 
the Free Software Foundation; either version 1, or any later version

This software is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
GNU General Public License for more details.

You should have received a copy of the GNU General Public License 
along with this software, in the file LICENSE.DOC; if not, 
write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 0213 9, USA.

Barry McMullin,
School of Electronic Engineering,
Dublin City University,
Dublin 9,
IRELAND.

Telephone: +353 1 704 5432 
FAX: +353 1 704 5508
E-mail: McMullinB@DCU.IE

#define MSR88_RANGE ((int3 2) (214 74 83 646L)) /* 2^31 - 2 */
/* This is the total number of distinct values which the 

generator spans. */

extern void set_count_msr8 8(int3 2 newcount);
/* Initialise random number generator with given count.

This is used to check if the generator rolls over.
This *must* be between 0 and (MSR8 8_RANGE - 1),
inclusive. */

extern void set_seed_msr8 8(int3 2 newseed);
/* Initialise random number generator with given seed.

This *must* be between 1 and MSR88_RANGE, inclusive.

Note the following "standard" values:

1 "Start" of get_msrB8() cycle (default seed).
1 043 618 065 Element # 10 000 (0.0005%) of get_msr88() cycl

mailto:McMullinB@DCU.IE


1 768 507 984 Element # 10 000 000 (0.5%) of get_msr88() cycle.
1 209 575 029 Element #100 000 000 (5%) of get_msr88() cycle.

*/

extern int32 get_count_msr88(void);
/* Return current count value. */

extern int32 get_seed_msr88(void);
/* Return current seed value. */

extern int32 get_msr8 8(void);
/* Return pseudo random value.

The (pseudo) probability function is uniform over the range 
0 .. (MSR8 8_RANGE-1), inclusive. This is slightly different 
from the definition given by Park & Millar: their generator 
returned a value between 1 and MSR88_RANGE. My version 
(derived simply by decrementing their's by one) is more 
convenient for certain applications. */

vii



C.4 FILE: panic.h

FILE: panic.h 

ABSTRACT r

This file provides external declarations for 
a number of general purpose error reporting 
functions {via stderr).

Copyright (C) 1992 Barry McMullin.

This is free software; you can redistribute it and/or modify 
it under the terms of the GNU General Public License as published by 
the Free Software Foundation; either version 1, or any later version.

This software is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
GNU General Public License for more details.

You should have received a copy of the GNU General Public License 
along with this software, in the file LICENSE.DOC; if not, 
write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.

Barry McMullin,
School of Electronic Engineering,
Dublin City University,
Dublin 9,
IRELAND.

Telephone: +353 1 704 54 32 
FAX: +353 1 704 5508
E-mail: McMullinB@DCU.I E

extern char *process_name;

extern void warn(char *s);
/* General purpose WARNING. */

extern void panic{char *s);
/* General purpose PANIC. */

extern void syswarnichar *s);
/* WARNING on system call failure... */

extern void syspanic(char *s);
/* PANIC on system call failure... */

mailto:McMullinB@DCU.IE


C.5 File: RANDOMS.C

File: RANDOMS.C
/*

Program calls to the probability functions as used by the SGA 
crossover program.

*/

flag flip(double prob)
{
/* Function which simulates a coin toss with weighting

determined by the probability figure passed in as a parameter.
*/

return get_one_bernoulli(prob);
}

double gen_float(void)
{
/* Function which returns a value between 0 and 1.
*/

return((double)(get_msr88())/(double)(MSR88_RANGE-1)};
}

int get_cross_point(int range)
{
/* Function uses the random number generator function

get_one_uniform() to choose a random crossing point for the 
CROSSOVER function.

*/
return(get_one_uniform(range));

}

void getseed(void)
{
/+ Function which gets the seed value for the random number

generator from a file which is created by the program to save 
the seed value from the previous run of the genetic algorithm.

*/

FILE *seedfile;
public int32 newseed;

if ((seedfile = fopen("c:\\auto\\data\\seeddata.fil" , "r+")) == NULL) 
{
clrscr();
fprintf(stderr, "Cannot open SEEDDATA.FIL for writing.\n"); 
exit(1);
}
/* SEEDDATA.FIL CONTAINS THE RANDOM NUMBER GENERATOR SEED */

fseek(seedfile,SEEK_SET, 0); 
fscanf(seedfile,"%Nli",fcnewseed); 
set_seed_msr88(newseed); 
fclose (seedfile);

}

Function which stores the current value of the random number 
generators Seed.

void saveseed(void)
{

ix



/* Function which stores the current value of the random number 
generators Seed.

*/

FILE *seedfile;
public int32 oldseed;

if ((seedfile = fopen ( "c:\\auto\\data\\SEEDDATA.FIL" , "w+")) == NULL) 
{
clrscr();
fprintf(stderr, "Cannot open SEEDDATA.FIL for writing.\n"); 
exit(1);
}
/* SEEDDATA.FIL CONTAINS THE RANDOM NUMBER GENERATOR SEED */

fseek(seedfile,SEEK_SET, 0);

oldseed = (int32)get_seed_msr88(); 
fprintf(seedfile,"%Nli",oldseed);

fclose(seedfile);
}

x



Appendix D Interface from MC68000 ECB Pl/T to 
Robot



Appendix E Example of Networks Grown Using 
PCDEVEL

NETMORK GROWING.

F in ished

Press any key...

i



NETWORK GROWING.



NETWORK GROWING.

Finished

Press any k e y ...

iii



Appendix F1 Network Development Code

/* DEVEL.C
THIS IS THE C PROGRAM WHICH CONTROLS THE DEVELOPMENT OF THE 
NEURAL NETWORK PHENOTYPE FROM THE BIT STRING GENOTYPE. TO 
OPERATE IT USES FUNCTIONS WITHIN THE C PROGRAMS:

GETDATA.C GRO_LINK.C GRO_NODE.C FORMS19.C

DESCRIPTIONS OF THE FUNCTIONALITY OF THESE PROGRAMS IS 
GIVEN IN THEIR OWN CODES.

THIS PROGRAM DEVEL.C IS USED TO CONTROL THE DEVELOPMENT OF THE 
NEURAL NETWORK TO OPERATE ON THE DEDICATED CONTROL BOARD.

IT SEARCHES FOR THE TURBO C GRAPHICS FILES IN THE DIRECTORYS:

D :\AUTO\
C :\AUTO\

THIS MUST BE SET UP BEFORE THE PROGRAM WILL BE COMPILED.*/
/* NOTES : ___

@ THE INPUT AND OUTPUT NODES ARE NOT DIRECTLY CONNECTED.

@ THE OUTPUT NODES DO NOT GROW LINKS TO OTHER NODES :
THEY ARE PURELY RECEPTORS.*/

#define MEMORY_CHECK 0

#include "devel.h"
/* STANDARD INCLUDE FILE FOR ALL DEVEL PROJECT FILES */

#include <conio.h>
#include <ctype.h>
#include <graphics.h>
#include <stdio.h>
#include <stdlib.h>
#include <alloc.h> 
extern unsigned _stklen;

 .

STALL: FUNCTION TO CHECK GRAPHICS

void graphics_check(int errorcode)
{
if (errorcode 1= grOk)

{
closegraph();
printf("GRAPHICS ERROR : %s \n",grapherrormsg(errorcode)); 
printf("\n\n\Any Key to Exit !!"); 
exit(1);
}

}

STALL: FUNCTION TO INITIALISE GLOBALS

void initialize_globals(void)
{
int i = 0 ; 
int j = 0 ;

i



forfi = 0 ; i < MAX_N0DES+5 j i++)
(
for(j = 0 ; j  < 3 + 1 ; j++ )

{
nodes[i][j]=0;
)

}
/* CONTAINS POSITION ON GROWTH GRID OF EACH NODE */

for(i = 0 ; i < MAXNODES+5 ; i++)
{
for(j = 0 ; j  < 2+1 ; j+ + )

I
links [i] [j] =0;
}

}
/* STORES INFORMATION ON THE CURRENT LOCATION OF THE 'HEAD' OF */
/* EACH LINK GROWING BETWEEN NODES */ 

for(i = 0 ; i < 5 +(MAX_NODES*MAX_NO_OP) ; i++)
{
for(j = 0 ; j  < 2+1 ; j++ )

{
conns [i] ( j] =0;
)

}
/* STORES INFORMATION OF WHICH NODE IS CONNECTED TO WHICH AFTER */ 
/* CONNECTIONS BETWEEN NODES HAVE BEEN COMPLETED*/ 

for(i = 0 ; i < MAX_NODES+5 j i++)
{
for(j = 0 ; j  < MAX_NO_OP+l ; j++ )

{
wghts [i] [j] =0;
}

}
/* STORES INFORMATION ON THE WEIGHT OF CONNECTIONS BETWEEN */
/* CONNECTED NODES */ 

num_nodes= NUM_MOTORS + NUM_SENSORS;
/* NUMBER OF NODES IN NETWORK. */
/* (INITIALISED TO THE NUMBER OF SENSORY MOTOR NODES */

num_conns=0;
/* NUMBER OF CONNECTIONS MADE */

gen_ratio=0;
/* RATIO OF GENERATOR NODES TO REACTIVE NODES */

}

STALL: FUNCTION TO TERMINATE PROGRAM 
OCCURING.

GRACEFULLY IN THE EVENT OF ERRORS

void stall(void) rI
closegraph();

/* CLOSEDOWN GRAPHICS */

exit(0);
/* EXIT PROGRAM */

>

SET_GRAPHICS: FUNCTION TO INITIALISE GRAPHICS.

void set_graphics(void)

ÌÌ



{
int gdriver = DETECT, gmode, errorcode;

/* REQUEST AUTO DETECTION */

#if DDRIVE

initgraph(&gdriver, kgmode, "D:\\AUTO");
/* INITIALISE GRAPHICS MODE */

#else
initgraph(&gdriver, kgmode, "C:\\AUTO");

/* INITIALISE GRAPHICS MODE */

#endif

errorcode = graphresult () ;
/* READ RESULT OF INITIALISATION */

if (errorcode != grOk)
/* AN ERROR OCCURED */

{
printf("Graphics error: %s\n", grapherrormsg(errorcode)); 
printf ("Press any key to halt:"); 
exit(1);

/* RETURN WITH ERROR CODE*/
}

setfillstyle(0,0);
/* SET THE FILL PATTERN AND COLOUR */ 

graphics_check(graphresult 0);

cleardevice () ;
/* CLEAR SCREEN AND RETURN 'CURSOR' POSITION TO (0,0)*/ 

graphics_check(graphresult() ) ;

setcolor(WHITE);
/* SET FOREGROUND COLOUR */

f - k - k - k i r - k - k - k - k i r - k - k i e - i r ' k - k - i e ' k i e - k - k i c i e i T - i c i c - k ' k i f - i e - k i e ' k ' k ' i e i e i e i r - k i r ' k i f k i c ' k i r - k - k '^ i c ' k ' k - k i T ' k ' k ' k - k ' k i r ' k ' k i f i e ^ ^ 'k i c ' i r r k ' k - k - i r i T i e i e - i r

SETUP_IO: FUNCTION TO INITIALISE I/O POSITIONS ON THE GROWTH GRID.

★ •ifir'k-kicir-k-k-k-k-kir-k-k'kif'kie-k j

void setup_io(int *io_posit)
{

int x = 0;
int y = 1 ,-
int iter=0;
int x_co_ord=0 ;
int y_co_ord=0;
char msg[5] ;

nodes [iojosit [0]-1] [x] = 50; 
nodes [io_jposit [1]-1] [x] = 178 
nodes [io_posit [2]-1] [x] = 306 
nodes [io_posit [3]-1] [x] = 306 
nodes [io_jposit [4]-1] [x] = 306 
nodes [io_posit [5]-1] [x] * 178 
nodes [io_posit [6]-1] [x] = 50;
nodes [io_posit [7]-1] [x] = 50;

/* STORE POSITIONS OF THE SIX SENSOR AND 2 MOTOR NODES*

links [io_posit [0] - 1 ] [x] = 50; links [io_posit [0] - 1 ] [ y ] = 50;
links [io_posit [ 1 ]  - 1 ] [x] 1 7 8 ; links [io_posit [ 1 ]  - 1 ] [ y l = 50;
links [io_posit [2] - 1 ] [x] 306; links [io_posit [2] - 1 ] [ y l = 50;
links [io_posit [3] - 1 ] [ X ] 3 06; links [io_posit [3] - 1 ] [ y l =  1 7 8

links [io_posit [4] - 1 ] [ X ] - 3 06; links [iojosit [4] -1] [ y ] = 306
links [io_posit [5] -1] [ X ] - 1 7  8; links [io_posit [5] -1] [ y ] = 306
links [io_posit [6] -1] [ X ] - 50; links [io_posit [6] -1] [ y ] = 306

nodes [io_posit [0]-1] [y] = 50;
nodes [io posit [ 1 ] - 1 ] ty] =  5 0 ;

nodes[io_posit[2] - 1 ] [yl =  5 0 ;

nodes [io_posit [ 3 ] - 1 ] [y] =  1 7 8

nodes[io_posit[4] - 1 ] [y] =  3 0 6

nodes[io_posit[ 5 ] - 1 ] [y] =  3 0 6

nodes[io_posit[ 6 ] - 1 ] [yl =  3 0 6

nodes [io_posit [ 7 ] - 1 ] E y ] =  1 7 8

iii



links [io_posit [7]-1] [x] = 50; links [io_posit [7]-1] [y] = 178;
/* STORE POSITIONS OF THE HEAD OF THE FIRST LINK BEING GROWN BY*/ 
/* EACH OF THE EIGHT EXISTING NODES WHICH IS THE SAME AS THE */
/* LOCATION OF THE NODE THEMSELVES SINCE NO GROWTH HAS OCCURRED */

#if SHOW_GROWTH

for (iter=0;iter<num_nodes;iter++)
{
x^co_ord = nodes [iter] [x] ;
y_co_ord = nodes [iter] [y] ;

/* GET LOCATION OF NODE FROM STORAGE ARRAY*/

putpixel(x_co_ord,y_co_ord,WHITE) ;
/* PLACE SINGLE POINT AT CENTRE OF NODE'S POSITION*/ 

graphics_check(graphresult() ) ;
rectangle(x_co_ord-l,y_co_ord-l,x_co_ord+l,y_co_ord+l);

/* SURROUND THE POINT WITH A WHITE CIRCLE*/ 
graphics_check(graphresult()); 
sprintf (msg, 11 %d" , iter) ; 
outtextxy (x_co_ord+5, y_co_ord-5, msg)

/* PRINT NUMBER OF NODE BESIDE NODES LOCATION ON SCREEN*/ 
graphics_check(graphresult());

#endif /* SHOW_GROWTH */

}

SIM_GROWTH: MAIN CONTROLLING FUNCTION FOR THE DEVELOPMENT OF THE 
NEURAL NETWORKS BASED ON THE DECODED GENETIC PARAMETERS.

void sim_growth(int lnk_grt,int div_rt,int div_ds,int *inbt,int num_cycles, 
int gene_num)

{
int count=0;
int iter=0;
char type='a';
char msg [50] ;

#if SHOW_GROWTH

sprintf(msg,"NETWORK %d GROWING",gene_num);
outtextxy(1,1,msg);

/* ON SCREEN USER INFORMATION*/ 
graphics_check(graphresult());

#endif /* SHOW_GROWTH */

grow_nodes(div_ds);

while (iter < num_cycles)
/* LOOP ITERATES THE NUMBER OF TIMES DECODED FROM THE GENOTYPE*/

{
setfillstyle(EMPTY_FILL,GREEN);

graphics_check(graphresult());

bar(496,65,536,80);
graphics_check(graphresult());

setcolor(WHITE);
graphics_check(graphresult());

sprintf(msg,"Number of Cycles : %d",iter);
outtextxy(356,70,msg);

graphics_check(graphresult());

bar (496,85,536,100) ;

iv



setcolor(WHITE); 
graphics_check (graphresult () )

if( (sprintf(msg,"Number of Conns. : %d",num_conns))==EOF)
{
printf("ERROR !!!!!!!!!"); 
exit(1);
}

outtextxy(356,90,msg);
graphics_check(graphresult 0 ) ; 

if (num_nodes > (NUM_SENSORS + NUM_MOTORS))
{
grow_links(lnk_grt, inbt);

/* CALL TO FUNCTION WHICH CONTROLS THE GROWTH OF THE LINKS */ 
/* WHICH JOIN THE INDIVIDUAL NODES */

}
if ((count>=div_rt)&&(div_rt!=0))

/* IF TIME FOR NODAL GROWTH ASSUMING PARAMETER DOES NOT EQUAL 0*/

{
if (num_nodes> (MAX_NODES- (NUM_SENSORS+NUM_MOTORS) ) ) 

break;
/* BREAK IF NUMBER OF NODES WILL EXCEED THE MAXIMUM */ 
/* NUMBER OF ALLOWED NODES AFTER DIVISION. THE */
/* CONDITION ASSUMES WORST CASE IN THAT ALL EIGHT OF */ 
/* THE NODES IN THE PREVIOUS GENERATION WILL DIVIDE.*/

else
grow_nodes(div_ds);

/* FUNCTION TO CONTROL NODAL GROWTH*/

if i f SHOW_GROWTH

setfillstyle(EMPTY_FILL,GREEN);
graphics_check(graphresult());

bar(496,45,526,60);
graphics_check(graphresult());

setcolor(WHITE);
graphics check(graphresult 0);

sprintf(msg,"Number of Nodes : %d",numjnodes) ; 
outtextxy( 3 5 6 , 5 0 ,msg);

/* UPDATE ONSCREEN FIGURE FOR NUMBER OF NODES IN NETWORK*/ 
graphics_check(graphresult 0);

ffendif /* SHOW_GROWTH */

count = 0;
/* RESET COUNT VARIABLE WHICH CHECKS FOR NODAL DIVISION */

}
count++; 
iter++; 
if (kbhitO )

{
type = tolower(getch()); 
if(type =='q') 

stall 0;
/* ALLOWS USER TO QUIT AT ANY TIME BY PRESSING 'q'*/

)
}

free(inbt);
/* MEMORY MANAGEMENT */

}

graphics_check(graphresult() ) ;

V



/
GET_INPUT_NUMBER:

int get_input_nuraber(void)
{

int gene_num = 0; 
int input = 0;

clrscr () ; 
textcolor(WHITE);
cprintf("\r\n\n\n\n\n\t\t\t\t Not Enough Input Arguments\r\n"); 
cprintf("\r\n\t\t\t\t Call From Command Line With 
textcolor(LIGHTBLUE);
cprintf("\r\n\r\n\t\t\t\t\t\t DEVEL X\r\n"); 
textcolor(WHITE);
cprintf ("\r\n\t\t\t Where X is an Integer Between 1 & 20 Inc.\r\n"),- 
cprintf("\r\n\t Enter Chromosome Number or 'O' to quit : ”);
scanf("%d",&input);

if (input == 0 ) 
stall();

/* QUIT OPTION CHECK*/
else

{
gene_num=input;

}
return(gene_num);

)

GRO_GENE: CONTROLLING FUNCTION TO DECODE THE GENES.
********************************** ******************************************/

int gro_gene(int gene[GEN_LNGTH],int gene_num)
{

int *inhibit=NULL;
int num_cycles=0;
int lnk_gi:ate=0;
int div_rate=0;
int div_di st=0;
int *io_posit=NULL;
char msg [60] ;

io_posit = get_io_posit(gene); 
lnk_grate = get_lnk_grate(gene); 
div_rate = get_div_rate(gene); 
div_dist = get_div_dist(gene) ; 
inhibit = get_inhibit(gene); 
gen_ratio = get_ratio(gene); 
num_cycles = get_num_cycles(gene); 
num_outputs= get_num_outputs(gene);

/* ALL FUNCTIONS DESCRIBED IN DETAIL IN GETDATA.C*/

setup_io(io_posit) j
/* SETUP THE INITIAL POSITIONS OF THE SIX SENSOR AND TWO MOTOR*/ 
/* NODES BASED ON THE DECODED i0_p0Sit GENETIC VARIABLE*/ 

free(io_posit); 
free(gene);

/* MEMORY MANAGEMENT*/
#if SHOW_GROWTH

sprintf(msg,"Division Rate : %d",div_rate);

vi



outtextxy(50,350,msg); 
sprintf(msg,"Division Distance 

outtextxy(50,3 65,msg); 
sprintf(msg,"Link Growth Rate 

outtextxy(50,380,msg); 
sprintf(msg,"Generator Ratio 

outtextxy(50,3 95,msg); 
sprintf(msg,"Number of Cycles 

outtextxy(50,410,msg); 
sprintf(msg,"Number of Outputs 

outtextxy(50,425,msg); 
sprintf(msg,"Inhibitory Outputs

inhibit [0] , inhibit [1] , inhibit [2] 
inhibit [4] , inhibit [5] , inhibit [6] 
inhibit [8] , inhibit [9] ) ; 
outtextxy(50,440,msg); 

sprintf(msg,"Negative Connection 
outtextxy(356,110,msg); 

sprintf(msg,"Positive Connection 
outtextxy(356,130,msg); 

setcolor(BLUE); 
line(526,113,556,113); 
setcolor(GREEN); 
line(526,133,556,133);

/* OUTPUT OF THE VALUES OF THE DECODES GENETIC VARIABLES 'ON 
/* SCREEN1 FOR THE USER */

%d", div_dist) ,-

%d",lnk_grate);

%d",gen_ratio);

%d",num_cycles);

%d",num_outputs);

%d %d %d %d %d %d %d %d %d %d", 
, inhibit [3] ,
, inhibit [7] ,

') ;

') ;

#endif /* SHOW_GROWTH */

sim_growth(lnk_grate,div_rate,div_dist,inhibit,num_cycles,gene_num);
/* CALL TO MAIL NETWORK GROWTH FUNCTION WITH ALL THE DECODED */ 
/* GROWTH VARIABLES PASSED AS PARAMETERS. IT WAS OPTED TO CALL 
/* THE GROWTH FUNCTION FROM HERE RATHER THAN RETURN ALL THE */ 
/* VARIABLES TO THE MAIN FUNCTION JUST TO PASS THEM INTO THE */ 
/* GROWTH FUNCTION FROM THERE.*/

*/

return(0) ;

VALIDATE_INPUT: FUNCTION WHICH CHECKS IF THE NUMBER INPUTTED ON THE 
COMMAND LINE IS VALID.

int validate_input(int input_number)
{

int gene_num=0;

gene_num = input_number;
while((gene_num<l)||(gene_num>20))

{
clrscr 0;
printf("\r\n\n\n\n\n\t\tNumber must be between 1 and 20."); 
printf("\r\n\n\t\tEnter Chromosome Number or 'O' to quit: ");

/* IF INCORRECT RANGE THEN CONTINUE TO PROMPT USER FOR THE */ 
/* NUMBER OF THE CHROMOSOME TO DEVELOP */

scanf("%d",&gene_num); 
if (gene_num == 0) 

exit(1)

fflush(stdin);
/* FLUSH INPUT STREAM IN CASE OF BAD INPUT*/

}
return(gene_num);
}

vii



MAIN FUNCTION.

void maintint argc, char *argv[] )

int fig =>0;
int *gene=NULL;
int i-1;
int gene_num=0;
char msg [30]; 
long int j=0;

_stklen = 50000U;
#if MEMORY_CHECK

printf("%lu bytes available\n",(unsigned long) coreleftO ) ; 
getch(); 
fflush(stdin);

#endif /* MEMORY_CHECK */

if (argc!=2)
gene_num = get_input_number();

/* IF INCORRECT INPUT, THEN PROMPT USER TO INPUT THE DESIRED*/
/* CHROMOSOME NUMBER TO BE DEVELOPED.*/

else
gene_num = validate_input (atoi(argv[1]));

/* IF NUMBER IS INPUT THEN VALIDATE THE FIGURE.*/

initialize_globals();

set graphics () ;
/* INITIALISE GRAPHICS */

gene = get_gene(gene_num);
/* GET INPUT DATA (CHROMOSOME) FROM FILE */

flg=gro_gene(gene,gene_num);

if(fig 1= 0 )
(
closegraphO ; 
exit(0);
)

/* CALL TO ROUTINE TO 'GROW' THE NETWORK USING THE INFORMATION */

#if SHOWGROWTH

bar(0, 0,170, 20) ;

while(!kbhit())
{
setcolor (i) -,
sprintf(msg,"Finished Growth of Network %d :",gene_num); 
outtextxy(360,190,msg);
outtextxy(360,210,"Press any key to continue"); 
if(i==15)

i-1;
else

i++;
for(j=0;j<110000L;j++);

/* ALLOWS CORRECT TIMING FOR FLASHING PROMPT (ASSUMING 486SX PC)
}

/* PROMPT USER AT END OF GROWTH */

#endif /* SHOW_GROWTH */



/* CALL TO FUNCTION TO GENERATE A MOTOROLA S19 DATA FILE FOR */ 
/* TRANSMISION TO THE DEDICATED CONTROL BOARD.*/

c r e a t e _ s l 9 ( ) ;

s t a l l ( ) ;
/* SHUTDOWN GRAPHICS AND END PROGRAM */

ix



#define SHOW_GROWTH 0
#define SHOW_NODE_0 0
#define DDRIVE 0

#define GEN_LNGTH 54
#define MAX_NODES 50
#define MAX_NO_OP 10
#define NUM_S ENS ORS S
#define NUM_MOTORS 2

#define MOTOR_A 6
ttdefine MOTOR_B 7

int nodes[MAX_N0DES+5]
/* CONTAINS POSITION ON GROWTH GRID OF EACH NODE */

int links [MAX_NODES+S] [2+1] ;
/* STORES INFORMATION ON THE CURRENT LOCATION OF THE 'HEAD' OF +/
/* EACH LINK GROWING BETWEEN NODES */

int conns [5+(MAX_NODES*MAX_NO_OP) ] [2+1];
/* STORES INFORMATION OF WHICH NODE IS CONNECTED TO WHICH AFTER */ 
/+ CONNECTIONS BETWEEN NODES HAVE BEEN COMPLETED*/

int wghts[MAX_NODES + 5] [MAX_NO_OP+l] ;
/* STORES INFORMATION ON THE WEIGHT OF CONNECTIONS BETWEEN */
/* CONNECTED NODES */

int num_jnodes;
/* NUMBER OF NODES IN NETWORK. */
/* (INITIALISED TO THE NUMBER OF SENSORY MOTOR NODES */

int num_conns;
/* NUMBER OF CONNECTIONS MADE */

int gen^ratio;
/* RATIO OF GENERATOR NODES TO REACTIVE NODES */ 

int num_outputs,-

int check_4_previous(int check_node,int base_node);
int get_lnk_grate(int buf[GEN_LNGTH]);
int get_div_rate(int buf [GEN_LNGTH] ) ;
int get_div_dist(int buf [GEN_LNGTH]) ;
int get_num_cycles(int buf[GEN_LNGTH]);
int get_distance(int,int,int,int);
int get_ratio(int buf[GEN_LNGTH]);
int gro_gene(int *gene,int gene_num);
int get_num_outputs(int buf[GEN_LNGTH]);

void graphics_check(int errorcode); 
void grow_nodes(int div_ds); 
int *get_io_posit(int buf[GEN_LNGTH]); 
int *get_inhibit(int buf[GEN_LNGTH]);
int *scene3(int xl,int x2,int yl,int y2,int axon_grth);
int *scene2(int xl,int x2,int yl,int axon_grth);
int *scenel(int xl,int yl,int y2,int axon_grth);
int *find_near(int base_node,int option); 
int *get_gene (int gene_num) ,-
int *get_point(int grth_dis,int xl,int yl,int x2,int y2); 
void grow_links(int ax_grt,int *inbt); 
void set_graphics(void);
void sim_growth(int ax_grt,int div_rt,int div_ds,int *inbt,int num_cycles, 

int gene_num); 
void create_sl9(void); 
void stall(void);

X



/ *  F0RMS19.C

This function generates S19 code for download os network information 
to the MCS8000 ECB. It operates in conjunction with the simulator 
software: DEVEL.C calls the program.*/

#include "devel.h"
/* STANDARD HEADER FILE*/

#include <stdio.h>
#include <alloc.h>

#define info_vol MAX_N0DES*MAX_N0_0P*2
/* TOTAL VOLUME OCCUPIED BY MAXIMUM SIZED NETWORK*/

static int address=(0x0000);
/* ADDRESS WHERE NETWORK INFORMATION IS STORED IN THE DEDICATED */ 
/* CONTROL BOARD'S MEMORY*/

static char GEN_ADD[5]="0000\0";
/* ADDRESS OF THE GENERATOR_RATIO VARIABLE*/

static char NUM_NOD[5]="0000\0";
/* ADDRESS OF THE NUM_NODES VARIABLE*/

static char sl9[4 6]="00000000000000000000000000000000000000000000\n";
/* GLOBAL VARIABLE USED TO PRODUCE LINES OF S19 FORMAT DOWNLOAD */ 
/* INFORMATION FOR THE CONTROL BOARD.*/

ADJUST_F0RM: FUNCTION TO CONVERT A SINGLE DECIMAL NUMBER (0->15) TO 
HEXADECIMAL FORMAT (0->F)

char adjust_form(int value)
{

char hex_num=1g '; 

switch (value)
{
case 15 hex_num =  ' F 1 break
case 14 hex_num =  ' E 1 break
case 13 hex num =  ' D ' break
case 12 hex num =  1C ' break
case 11 hex num =  1B 1 break
case 10 hex num =  ' A 1 break
case 9 hex num =  19 1 break
case 8 hex_num =  18 ' break
case 7 hex_num =  17 1 break
case 6 hex_num = ' 6 1 break
case 5 hex_num =  ' 5 1 break
case 4 hex_num =  14 break
case 3 hex_num =  13 break
case 2 hex_num =  12 ' break
case 1 hex^num =  11' break
case 0 hex_num = 'O' break

default hex num = 'O' break.
}

return(hex_num);
}

CALCULATE_CHECKSUM: FUNCTION TO CALCULATE THE ERROR CHECKING CHECKSUM 
FIGURE WHICH IS APPENDED TO EACH LINE OF S19 FORMAT CODE

*****+*******++++*++***+**********++***************************************/

void calculatechecksum(void)
{

xi



char hex_array[9] = "00000000";
int checksum =0; int iter=0; int num=0;
int reraain=0; int positn=7;

char charac='g'; 
for (iter=0;iter<8;iter++)

{
hex_array[iter] = 'O';
}

/* INITIALISE ARRAY*/

for (iter=2;iter<42;iter++)
{
charac = sl9 [iter] ; 
switch(charac)

{
case *F’ num = 15 break
case ' E' num 14 break.
case •D' num = 13 break
case • c f num s 12 break
case •B' num = 11 break
case 'A' num a 10 break
case '9' num a 9; break;
case •8' num = 8; break;
case num 9 7; break;
case •6' num = 6; break;
case ' 5 ’ num = 5; break;
case •4 ' num 4; break;
case •3' num - 3; break;
case •2* num = 2; break;
case • 1' num = If break
case •O' num = 0; b r e a k ;
}

if(iter%2)
checksum += num;

else
checksum += num * 16;

/»TO CALCULATE THE CHECKSUM THE HEXADECIMAL NUMBERS BEING 
/* SENT ARE TREATED AS PAIRS SO THE NUMBERS HAVE TO BE */
/* ADJUSTED ACCORDINGLY*/

)
checksum = (OxFFF) - checksum;

/* THE CHECKSUM FIGURE IS THE TWOS COMPLEMENT OF THE CALCULATED */ 
/* FIGURE*/

while (checksum > 0)
i
remain = checksum % 16; 
checksum = checksum / 16; 
charac = adjust_form(remain); 

hex_array[positn] = charac; 
positn--;

/* ONLY THE TWO LSB'S OF THE HEXADECIMAL CHECKSUM FIGURE 
/* ARE USED.*/

)
for(iter=6;iter<8;iter++)

{sl9[iter+36]=hex_array[iter];
/* APPEND THE CHECKSUM TO THE S19 LINE*/

}
}

Keeps S19 line format correct as each data bit is converted



from decimal to hexadecimal.

void update_sl9(char data [33])
(

char array(9] = "00000000";

int iter=0; int remain=0; int positn=7;
int number=0;

char hex_char='g'; 
for (iter=0;iter<8;iter++)

{
array [iter] = 'O';
>

S l 9 [ 0 ]  =  ' S '  ;

S l 9 [ 1 ] =  ' 2 '  ;

Sl9 [2] = • 1 • ;
S l 9  [ 3 ]  =  14 ' ;

/* FIRST FOUR CHARACTERS ARE COMMON TO ALL LINES OF S19*/

number = address; 
while (number>0)

<
remain 
number 
hex_char 

array[positn] 
positn--;

)
for(iter=4;iter<8;iter++)

{sl9 [iter+2] =array [iter] ;
}

for (iter=0;iter<32;iter++)
s!9 [iter+10] = data [iter] ;

/* CONSTRUCT S19 LINE*/

calculate_checksum();
/* CALCULATE THE CHECKSUM*/

address += 16;
/* UPDATE THE ADDRESS*/

}

= number % 16;
= number / 16;
= adjust_form(remain); 

= hex_char;

SCENEA: FUNCTION WHICH CREATES HEXADECIMAL FOR NEGATIVE NUMBERS

char *scenea(int number)
{

int numberl; int iter=0; int reraain=0;
int positn=7;
char *array = NULL;

char hex_char='g'; 
if ((array = (char *)malloc(sizeof(char)*50)) == NULL)

printfC'Not enough memory to allocate division_pt\n") ; 
stalli) ;

/* TERMINATE PROGRAM GRACEFULLY*/
}

for(iter=0;iter<8;iter++)
*(array+iter) = 'F';

/* INITIALISE ARRAY*/



number *= -1;
if(number<4095)

numberl = (0x1000);

if(number<240)
numberl = (0x100);

if(number<16)
numberl = (0x10);

number= numberl - number;
while (number>0)

{
remain 
number 
hex_char 
*(array+positn) 

positn--;
}

return(array);
)/*************.*******,

SCENEB: FUNCTION WHICH CREATES HEXADECIMAL FOR POSITIVE NUMBERS
♦ I » * * * . * . * * * * * * . * * * . . * * * . * * . . . . * * * * * * * . * . . . . . * * . . * . * * . * * * . * * . * * * , * * * * * * * * * * * /

char *sceneb(int number)
{

int remain=0; int positn=7; int iter=0;
char charac='g!;

char *array = NULL; 
if ((array = (char *)malloc(sizeof(char)*50)) == NULL)

{
printfCNot enough memory to allocate division_pt\n"); 
stall();

/* TERMINATE PROGRAM GRACEFULLY*/
}

for (iter=0;iter<8;iter++)
{
*(array+iter) = 'O';

/* INITIALISE ARRAY*/

}
while (number >0)

{
remain = number % 16; 
number = number / 16; 
charac = adjust_form(remain);
*(array+positn) = charac; 

positn--;
}

return(array);
}

CHANGE_DATA_FORM: FUNCTION READS IN 4 PIECES OF DECIMAL DATA IN AN 
ARRAY AND CONVERTS THEM TO HEXADECIMAL FORMAT USING OTHER 
FUNCTIONS IN THE PROGRAM.

char *change_data_form(int data[4])

= number % 16;
= number / 16;
= adjust_form(remain) ; 
= hexchar;

xiv



{
int iter=0; int itrb=0 ,• int dat=0;
char *charac=NULL;
char *hex_array=NULL;

if ((hex_array=(char *)malloc(sizeof(char)*33))==NULL)
{
printf("\n out of memory"); 
stall 0 ;

/* TERMINATE PROGRAM GRACEFULLY*/

}
for(iter=0;iter<4;iter++)

{
dat = data [iter] ;

if (dat<0)
charac=scenea(dat);

/* IF NEGATIVE NUMEER*/
else

charac=sceneb(dat);
/* IF POSITIVE NUMBER*/

for (itrb=0;itrb<8;itrb++)
{
hex_array[iter*8+itrb] = charac[itrb];
}

free(charac);
/* MEMORY MANAGEMENT*/

}
hex_array [32] = ' \0' ;

/* END OF STRING MARKER*/

return(hex_array);
/* RETURN HEXADECIMAL ARRAY*/

}

FORM_INFO: FUNCTION WHICH TAKES THE ARRAYS CONTAINING THE INFORMATION
ABOUT NODES AND LINKS AND WEIGHTS AND REFORMATS IT INTO A SINGLE 
ARRAY RECOGNISABLE BY THE SIMULATOR PROGRAM.

int *form info(void)
{

FILE *Stream=NULL;

int *buffer=NULL;
int c_record[MAX_NODES]={0);

int iter=0; int node=0; int conn=0;
int posi=0; int weit=0;

buffer = (int *)calloc( (info_vol+MAX_NO_OP),sizeof(int) ); 
if (buffer==NULL)

{printf("Allocation failed in FORMS19.C (int* form_info)"); 
stall();

/* ALLLOW GRACEFUL TERMINATION OF THE PROGRAM*/

>
for(iter=0;iter<(MAX_NO_OP*(MAX_NODES+l)*2);iter++)

{
buffer [iter] =0 ;

XV



}
/* INITIALISE ARRAY*/

#if DDRIVE
stream = fopen("d:\\auto\\data\\netlist.fil","w");

/* OPEN FILE FOR NETWORK LISTING*/

itelse
stream = fopen("c:\\auto\\data\\netlist.fil","w");

/* OPEN FILE FOR NETWORK LISTING*/

ifendif /* DDRIVE */
fprintf(stream,”\t%s\n","NODE TO WGT");

/* HEADER FOR FILE*/

for(iter=0;iter<(MAX_NO_OP*MAX_NODES);iter++)
/* LOOP TILL ALL INFORMATION IS OUTPUT*/

{node = conns [iter] [0] ;
/* NODE */

posi = c_record[node];
/* STORE FOR NUMBER OF RECORDED OUTPUTS*/
/* INITIALLY ALL NODES HAVE 0 OUTPUTS*/

if ( posi < MAX_NO_OP)
/* IF STILL BELOW MAXIMUM ALLOWED OUTPUT NUMBER*/

{
conn = conns [iter] [1] ;

/* BASE NODE IS CONNECTED TO NODE 'conn'*/

weit = wghts [node] [posi] ;
/* WEIGHT OF CONNECTION*/

fprintf(stream,"\n\t %d %d %d",node,conn,weit);
/* OUTPUT TO NETWORK LISTING FILE*/

buffer[posi+(MAX_NO_OP*2*node)]=conn;
buffer[posit(MAX_NO_OP*2*node)+MAX_NO_OP] =weit;

/* ORGANISE MAIN INFORMATION ARRAY*/

c_record[node]++;
/* INCREMENT CONNECTION RECORD FOR EACH NODE*/

)
}return(buffer);

>

CREATE_S19: CONTROLLING FUNCTION TO CREATE S19 FORMAT CODE FROM 
NETWORK INFORMATION.

 ............

void create_sl9(void)

{ FILE *f_pointl=NULL; FILE *f_point2=NULL;

int *data_buf=NULL;
static int s_num=0; static int iter=0; static int offset=0;

int data[4]={0};
char *hex_data=NULL,- 

jtif DDRIVE

xvi



f_pointl = fopen("d:\\auto\\data\\NETW.ABS", "w");
/* OPEN S19 FILE FOR WRITING ONLY*/

ttelse

f_pointl = fopen("c:\\auto\\data\\NETW.ABS", "w");
/* OPEN S19 FILE FOR WRITING ONLY*/

(tendi f /* DDRIVE */
fseek(f_pointl, SEEK_SET, 0);

/* RESET FILE POINTER*/

#if DDRIVE
f_point2 = fopen("D:\\auto\\data\\net_var.fil","r");

ttelse

f_point2 = fopen("C:\\auto\\data\\net_var.fil","r");

#endif /* DDRIVE */
fseek(f_point2, SEEK_SET, 0);

fscanf(f_point2, "%x%4s%4s",fcaddress,&GEN_ADD,&NUM_NOD); 

foiose(f_point2);
fprintf(f_pointl,"%s\n","S00600004844521B" );

/* INITIAL SEGMENT COMMON TO ALL S19 FILES*/

Sl9 [0] ='S' ;
S19 [1] = • 2 •
Sl9 [2] = '1' ;
Sl9 [3] = '4 1 ;
Sl9 [4] = ' 0 1 ;
S19 [5] = ' 0 1 ;

for(iter=6;iter<10;iter++)
{
S19 [iter] = GEN_ADD [iter-6] ;
}

hex_data = sceneb(gen_ratio); 
for(iter=10;iter<18,-iter++)

{
sl9 [iter] = hex_data [iter-10] ;
)

calculate_checksum(); 
fprintf(f_pointl,"%s",sl9);

/* OUTPUT THE GENERATOR RATIO FIGURE TO THE S19 FILE*/

S19 [0] = 1S ' i 
S19 [1] = 12 1 ;
Sl9 [2] = ' 1 ' ;
S19 [3] = ' 4 ' ;
Sl9 [4] = ' 0 ' ;
319 [5] = 'O' ;

for(iter=6;iter<10;iter++)
{S19 [iter] = NUM_NOD[iter-6] ;
}

hex_data = sceneb(num_nodes); 
for (iter=l0iter<18 ; iter++)

{
sl9[iter] = hex_data [iter-10] ,•
}calculate_checksum(); 

fprintf(f_pointl,"%s",sl9);
/* OUTPUT THE NUMBER OF NODES FIGURE TO THE S19 FILE*/

d a t a _ b u f  = f o r m i n f o ( ) ;
/* CALL TO FUNCTION TO ORGANISE THE STRUCTURE OF THE NETWORK 
/* INFORMATION FOR SENSIBLE TRANSMISSION*/



for (iter=0;iter<MAX_NODES*20;iter++)
{
data[offset]= *(data_buf+iter);

/* GET NETWORK INFORMATION*/

if(offset>=3)
/* WHEN 3 BITS OF INFORMATION HAVE BEEN OBTAINED*/

{
hex_data = change_data_form(data);

/* CONVERT TO HEXADECIMAL*/
hex_data[32] = 1 \0‘;

/* TERMINATING STRING CHARACTER*/
update_sl9(hex_data);

/* FORM THE FÜLL S19 LINE OF INFORMATION*/

fprintf(fpointl,"%s",sl9);
/* OUTPUT TO THE S19 FILE */

offset=0;
S_num++; 
free(hex_data);

/* MEMORY MANAGEMENT AND VARIABLE RESET*/

else
)

(
offset++;
}

}
fprintf(f_pointl,"\n"); 
fprintf(f_pointl,"%s\n","S804002300D8");

/* OUPUT THE TERMINATING S19 RECORD */

free(data_buf);
/* MEMORY MANAGEMENT*/

fclose(f_pointl);
/* CLOSE S19 DATA FILE*/

x v i i i



/*
GETDATA.C:

PROGRAM WHICH READS IN THE GENOTYPES PRODUCED BY THE SGA OPERATION AND 
STORES IT IN USABLE FORM. IT IS USED BY THE DEVEL.C PROGRAM.

IT ALSO CONTAINS THE CODE FOR DECODING THE GENOTYPES*/

ft include " devel. h " 
ftinclude <stdio.h>
»include <alloc.h>

/* STANDARD INCLUDE FILES */
/*******.........* + *******************************************.****************,

GET_IO_POSIT: FUNCTION TO DECODE THE RELEVANT SECTION OF BINARY CODED
GENE AND CONVERT TO NUMERICAL FORMAT FOR THE RELATIVE POSITIONS OF 
THE INPUT SENSORS AND OUTPUT MOTORS ON THE GROWTH GRID.

int *get_io_posittint buf[GEN_LNGTH])
{

int iter=0,- 
int *io_coded;

/* INPUT/OUTPUT SENSORS/MOTORS POSITION RELATIVITY IN GENOTYPE */
/* CODED FORM.*/

int *io_decoded;
/* DECODED INPUT/OUTPUT SENSORS/MOTORS POSITION RELATIVITY */

int outer[NUM_MOTORS+NUM_SENSORS] = {l, 2 , 3 , 4 , 5, 6 , 7, 8 } ; 
int right=NUM_MOTORS+NUM_SENSORS-1 ;

/* NO. 1 SUBTRACTED FOR EASE OF ARRAY INDEX SELECTION*/

int left=0; 
int pos_starter=0; 
int position=0; 

if (( io_coded= malloc(460)) == NULL)
{printfCNot enough memory to allocate buffer\n"); 
stallo ;

/* TERMINATE PROGRAM IF OUT OF MEMORY */

i
if ((io_decoded = malloc(460)) == NULL)

{
printfCNot enough memory to allocate buffer\n"); 
stallo ;

/* TERMINATE PROGRAM IF OUT OF MEMORY */

}
for (iter = 0;iter<12;iter++)

{
io_coded [iter] = buf titer] ;

)
pos_starter += io_coded[8J * 8;

/* MOST SIGNIFICANT BIT*/

pos_starter += io_coded[9] * 4; 
pos_starter += io_coded[10] * 2; 
pos_starter += io_coded[11];

/* BINARY TO DECIMAL CONVERSION*/
position = p0S_Starter % (NUM_SENSORS + NUM_MOTORS);

/* BASED ON DECODED STARTING POSITION BEGIN TO ACCESS THE ARRAY */ 
/* 'outer' TO DETERMINE ORDER OF SENSORS STARTING WITH */
/* 'outer[position]1.*/

xix



iter =0;
while (iter < (NUM_SENSORS + NUM_MOTORS) )

if (io_coded [position) == 1)
{
io_decoded[position] = outer[right]; 
right--;
}

/* TAKE NUMBER FROM THE RIGHT IF '1' IS READ*/
else t

io_decoded[position] = outer[left]; 
left++;
)

/* TAKE NUMBER FROM THE LEFT IF 'O’ IS READ*/

position++;
/* INCREMENT POSITION COUNTER*/

if (position>= 8)
position = 0;

/* WHEN END OF RELEVANT GENOTYPE SECTION RETURN TO THE */
/* START OF SECTION*/

iter++;
}

return(io_decoded) ;
)

GET_INHIBIT: FUNCTION TO DECODE THE RELEVANT SECTION OF BINARY CODED 
GENE AND STORE INFORMATION ON WHICH CONNECTIONS SHOULD BE 
POSITIVE OR NEGATIVE.

int *get_inhibit(int buf[GEN_LNGTH])
(

int iter=0;
int count=0;
int ‘inhibit = NULL;

if ((inhibit = roalloc(1000)) == NULL)
{
printfC'Not enough memory to allocate buffer\n") ; 
stall();

/* TERMINATE PROGRAM IF OUT OF MEMORY */

}
for(iter=12;iter<=21;iter++)

{
*(inhibit+count) = 1; 
if (buf [iter] ==0)t

*(inhibit+count) = 0;
}

count++;
}

return(inhibit);
}

 ...**„*********************.***************.**********

GET_LNK_GRATE: FUNCTION TO CONVERT FROM 'BINARY' TO NUMERIC FORMAT 
FOR LINK GROWTH RATE.

   .....................

XX



int get_lnk_grate(int buf[GEN_LNGTH] )
{

int lnk_grate = 0;

lnk_grate += buf [22] * 8;
/* MOST SIGNIFICANT BIT*/

lnk_grate += buf [23] * 4; 
lnk_grate += buf [24] * 2;
lnk_grate += buf [25] ;
lnk_grate += 1;

/* CONVERSION USING SIMPLE BINARY WEIGHTING */
/* RANGE 0 -> 15 AND SCALING FROM 1 -> 16*/

return(lnk_grate);
}

GET_DIV_RATE: FUNCTION TO DECODE THE RELEVANT SECTION OF BINARY CODED 
GENE AND CONVERT TO NUMERICAL FORMAT FOR NODE DIVISION RATE.

int get_div_rate(int buf[GEN_LNGTH] ! 
{

int div rate=0;

div_rate += buf [26] * 32?
/* MOST SIG

div rate += buf [27] * 16;
div rate += buf [28] * 8;
div rate += buf [29] * 4;
div rate += buf [3 0] 2;
div rate += buf [31]

div rate += 2;
/* RANGE 2 -> 65 cycles/division */

return(div_rate);
}
j - k i r i c - k - i t ' k ' k - k - i r ' k - k ' k - k ' k ' k ' k - i f i f k ' i c k - k ' k - k ' k ' l f k - k - k ' k ' k ' k ' k i c k ' k ' k ' k - k ' k ' k ' k - k ' k - k ' k ' k ' i f k - k ' k ' i f k ' k - l r ' l c i c - k l c i f k ' k - k ' k - k ' k - k ' k - k - k i c ' k i c - k l f k

GET_NUM__CYCLES: FUNCTION TO DECODE THE RELEVANT SECTION OF BINARY CODED 
GENE AND CONVERT TO NUMERICAL FORMAT FOR THE NUMBER OF GROWTH 
CYCLES.

int get_num_cycles(int buf[GEN_LNGTH])
{

int num_cycles = 0;
num_cycles += buf [32] * 12

/* MOST SIGN

num cycles += buf [33] * 64
num__cycles += buf [34] * 32
num _cycles += buf [35] * 16
num_cycles += buf [36] ★ 9;
num cycles += buf [37] * 4;
num cycles += buf [38] * 2;
num__cycles += buf [39] ;
num_cycles += 2 0 ;

if (num_cycles > 255)
num_cycles = 255;

/* RANGE 20 -> 255*/

return(num_cycles);



)
/

GET_RATIO: FUNCTION TO DECODE THE RELEVANT SECTION OF BINARY CODED 
GENE AND CONVERT TO NUMERICAL FORMAT FOR THE GENERATOR NODE 
RATIO.

int get_ratio(int buf[GEN_LNGTH])
{

int ratio=0;

ratio += buf [40] * 16;
/* MOST SIGNIFICANT BIT*/

ratio += buf (41) * 8; 
ratio += buf [42] * 4; 
ratio += buf [43] * 2; 
ratio += buf [44];

/* RANGE 0 -> 31*/
return(ratio);

}

GET_DIV_DIST: FUNCTION TO DECODE THE RELEVANT SECTION OF BINARY CODED 
GENE AND CONVERT TO NUMERICAL FORMAT FOR THE NODE DIVISION 
DISTANCE.

int get_div_dist(int buf[GEN_LNGTH])
{

int div_dist=0;
div_dist += buf[45] * 32;

/* MOST SIGNIFICANT BIT*/
div_dist += buf [46] * 16
div_dist += buf [47] * 8;
div_dist += buf [48] * 4;
div_dist += buf [49] ★ 2;
div_dist += buf [50] '
div dist += 35;

/* RANGE 35 -> 98 PIXELS */
return(div_dist);

)  .

GET_NUM_OUT : FUNCTION TO DECODE THE RELEVANT SECTION OF BINARY CODED 
GENE AND CONVERT TO NUMERICAL FORMAT FOR THE NUMBER OF ALLOWED 
NODAL OUTPUTS.

int get_num_outputs(int buf[GEN_LNGTH])

int outputs=0;
outputs += buf[51] * 4;

/* MOST SIGNIFICANT BIT*/

outputs += buf[52] * 2; 
outputs += buf[53] * 1;

x x i i



outputs += 2 ;

return(outputs);
}y***********-*-************************************************************** 

GET_GENE: FUNCTION TO GET THE GENETIC DATA FROM THE FILE POPDATA.FIL 
******............. I..*.*.****'*******.**..**...**..********.*.*.*****..*..***.**./

int *get_gene(int gene_num)
{

FILE *f_point =NULL; 
int iter=0; 
int i=0; 
long offset=0; 
int *gene = NULL;

if ((gene = (int *)malloc(sizeof(int)*60)) == NULL)
{
printfC'Not enough memory to allocate buffer\n"); 
stall ( ) ;

/* TERMINATE PROGRAM IF OUT OF MEMORY */

)
#if DDRIVE

if ((f_point = fopen("D:\\auto\\data\\POPDATA.FIL", "r+")) == NULL)
{
fprintf(stderr, "Cannot open data file. C:\AUTO\data\POPDATA.FIL \n"); 
stall();

/* OPEN DATA FILE FOR READING ONLY AND EXIT PROGRAM GRACEFULLY 
/* IF DATA IS NOT PRESENT*/

J
#else

if ((f_point = fopen("C:\\auto\\data\\POPDATA.FIL", "r+")) == NULL)
{
fprintf(stderr, "Cannot open data file. C:\AUTO\data\POPDATA.FIL \n"); 
stall();

/* OPEN DATA FILE FOR READING ONLY AND EXIT PROGRAM GRACEFULLY 
/* IF DATA IS NOT PRESENT*/

}
#endif /* DDRIVE */
switch (gene_num)

{
case 1: 
case 2 : 
case 3 : 
case 4 : 
case 5 : 
case 6 : 
case 7 : 
case B: 
case 9 : 
case 10 : 
case 11: 
case 12 : 
case 13 : 
case 14: 
case 15 : 
case 16 : 
case 17 : 
case IB: 
case 19 : 
case 20:

/* RANGE 2 -> 10 PIXELS */

offset = 0L; break
offset = 5 5L; break
offset = 110L ; break
offset s 166L; break
offset - 222L; break
offset = 2 7 8L ; break
offset = 334L ; break
offset = 390L; break
offset 446L; break
offset = 502L; break
offset _ 558L; break
offset = 614L; break ;
offset S70L; break
offset = 726L; break
offset = 782L; break
offset . 83 8L; break
offset = 8 9 4 L ; break
offset s 950L; break
offset = 1006L break;
offset = 10 62L; break;

xxiii



}
/* POPDATA.FIL CONTAINS THE INFORMATION ON ALL THE MEMBERS OF */ 
/* OF THE GENETIC POPULATION SO TO ACCESS A PARTICULAR ONE IT IS */ 
/* NECCESSARY TO USE AN OFFSET.*/

fseek(f_point,offset,SEEK_SET);
/* GO TO OFFSET POINT*/

for (iter = 0; iter<GEN_LNGTH,- iter++)
{
if (fscanf (f_point, "%li", iki) )

{
gene [iter] = i;
)

/* GET DATA AND STORE IN ARRAY*/
else

{
fprintf(stderr, "Error reading from DATA.FIL !!\n"); 
stallO ;

/* OR PRINT ERROR MESSAGE*/
}

}
foiose(f_point); 
return(gene);

}

x x i v



/*
GROW_LINK.C

THIS PROGRAM CONTROLS THE GROWTH OF LINKS BETWEEN NODES.*/ 
»include "devel.h"
»include «graphics.h>
»include <stdio.h>
»include <alloc.h>
»include <math.h>
»include <conio.h>

#if SHOW_NODE_0
»include <stdlib.h>

»endif
/* STANDARD INCLUDE FILES*/

CHECK_4_PREVIOUS: FUNCTION TO CHECK IF NODES ARE CONNECTED ALREADY.

int check_4_previous(int check_node, int base_node)
{ int iter = 0; 

int flag = 1;

for (iter=0; iter<num_conns,- iter++)
<
if ( (conns[iter][0]==base_node) & (conns[iter][1]==check_node) ) 

flag=0;
)

return(flag);
}  .

GET_DISTANCE : FUNCTION TO FIND THE DISTANCE BETWEEN TWO POINTS
(xl.yl) and (x2,y2)

. « . I * . * . . * . . . * * * . * * * . . . . . . . . . * . * * . . * . . * ...............

int get_distance(int xl.int yl.int x2,int y2)
{

int distance=0;

double delta_x=0.0; double delta_y=0.0;
double dx_squared=0.0; double dy_squared=0.0;
double to_be_rooted=0.0;

delta_x = x2-xl; 
delta_y = y2-yl;
dxsquared = pow(delta_x,2); 
dy_squared = pow(delta_y,2);
to_be_rooted = dx_squared + dy_squared;

/* DISTANCE CALCULATED BY THE APPLICATION OF PYTHAGOROUS */
distance = (int) sqrt( to_be_rooted );

return(distance);
>

FINDNEAR: FUNCTION TO FIND THE NEAREST TWO NODES RELATIVE TO A 
POSITION ON THE GROWTH GRID.

THE OPTION IS USED TO DECIDE IF THE BASE POSITION SHOULD BE A

XXV



NODE OR A LINK HEAD.

int *find_near(int base_node,int option)
{

int *near_2=NULL;

int xl=0? int yl=0; int x2=0;
int y2=0; int distance=0; int iter=0;
int flag=l; int min_dist_l = 1000; int rain_dist_2 = 1000;

int start_figure=0;
near_2 = (int *)calloc(20,sizeof(int));
if(near_2 == NOLL)

(
printfC'Not enough memory to allocate near_2\n") ; 
stall () ;

/* TERMINATE PROGRAM GRACEFULLY*/
)

if (option == 0)
/*
/*
/*
/*

{
xl = links[base_node][0]; 
yl = links[base_node][1];
)

else
{
xl = nodes tbase_node] [0] ; 
yl = nodes [base_node] [1] ;
}

if ( (base_node < NUM_SENSORS+NUM_MOTORS) (tSc (option == 0)) 
start_figure = NUM_SENSORS+NUM_MOTORS;

else
{
if (option == 0)

start_figure = NUM_SENSORS;
else

start_figure = 0;
}

/* prevent an i/o node connecting directly with another i/o node */ 
/* and prevent internal input connections to an input node */

if (start_figure == num_nodes)
{
free(near_2); 
return(NULL);
}

for (iter=start_figure; iter<num_nodes,- iter++)
{
if (option == 0)

{flag = check_4_previous(iter,base_node);
/* CHECK FOR EXISTING CONNECTION */

)
/* prevent link turning back towards base node */ 

if ((iter !=base_node) && (flag 1= 0))
{
x2=nodes [iter] [0] ; 
y2=nodes [iter] [1] ;

/* SELECT NODE*/

distance = get_distance(xl,yl,x2,y2);

OPTION ALLOWS THE FUNCTION TO BE USED TO CALCULATE THE */ 
NEAREST NODE FOR EITHER THE NODE DIVISION ROUTINE OR THE LINK */ 
HEAD SEARCH ROUTINE.*/
0 = LINK GROWTH. 1 = NODE DIVISION*/

x x v i



/* CALCULATE DISTANCE BETWEEN POINTS*/

if (distance<min_dist_2)
{
min_dist_2 = distance;
*(near_2+2) = iter;

if (rain_dist_2 < min_dist_l)
{
*tnear_2+2) = *(near_2+l);
*(near_2+l) = iter; 
*(near_2+0) =■ distance;
min_dist_2 = min_dist_l; 
min_dist_l = distance;
}

}
)

)
return(near_2);

}

SCENE 1: FUNCTION WHICH DEALS WITH LINK GROWTH IN THE SITUATION
WHERE THE TARGET NODE AND THE LINK HEAD ARE ALIGNED PARALLEL 
TO THE Y AXIS.

int *scenel(int xl,int yl.int y2,int link_grth)
i

int *to_point = NULL;

to_point = (int *)calloc(10,sizeof(int));

if(to_point == NULL)
{printfC'Not enough memory to alloc. scenel\n\n ANY KEY TO TERMINATE !") 
getchO ; 
stalli) ;

/* TERMINATE THE PROGRAM GRACEFULLY*/
)

to_point[0] = xl; 
if (yl<y2)

{
to_point[l] = yl + link_grth;
}

else
{
to_point[1] = yl - link_grth;
}

return(to_point);

SCENE2: FUNCTION WHICH DEALS WITH LINK GROWTH IN THE SITUATION
WHERE THE TARGET NODE AND THE LINK HEAD ARE ALIGNED PARALLEL 
TO THE X AXIS.

int *scene2(int xl.int x2,int yl,int link_grth)
{

int *to_point=NULL; 
to_point = (int *)calloc(10,sizeof(int));
if(tojpoint == NULL)

{
printfC'Not enough memory to alloc. scenel\n\n ANY KEY TO TERMINATE !")

x x v i i



getch(); 
stall();

/* TERMINATE THE PROGRAM GRACEFULLY*/
}

to_point[1] = yl; 
if (xl<x2)

{
to_point[0] = xl + link_grth;
}

else
{
to_point[0] = xl - link_grth,- 
}

return(to_point);
}j

SCENE 3 : FUNCTION WHICH DEALS WITH LINK GROWTH IN THE SITUATION
WHERE THE TARGET NODE AND THE LINK HEAD ARE NOT ALIGNED PARALLEL
TO EITHER THE X OR Y AXIS.

 *******************************..................

int *scene3(int xl,int x2,int yl,int y2,int link_grth)
{

double x3=0 ; double y3 = 0;
int *to_point = NULL;

double templ=0.0; double temp2=0.0;
double dist_2_go=0.0 ; double cos_theta=0.0 ;
double slope=0.0 ; 

to_point = (int *)calloc(10,sizeof(int));
if (tojioint == NULL)

{
printf("Not enough memory to alloc. scenel\n\n ANY KEY TO TERMINATE !"); 
getch(); 
stall () ;

/* TERMINATE THE PROGRAM GRACEFULLY*/
}

tempi = pow((x2-xl),2); 
temp2 = pow((y2-yl),2); 
tempi += temp2; 
dist_2_go = sqrt(tempi);

/* THE FUNCTION get_distance IS NOT USED BECAUSE IT RETURNS AN */ 
/* INTEGER VALUE.*/

cos_theta = (x2-xl)/dist_2_go;
x3 = (double)((link_grth * cos_theta) + xl);

/* CALCULATION OF x3 USING PYTHAGOROUS AND BASIC TRIGONOMETERY*/

slope = (double) ((double) (y2-yl) / (double) (x2-xl) )
y3 =(double)( (slope*(x3-xl))+yl );

if(y3-ceil(y3) <= 0.5)
to_point [1] = (int)y3;

else
to_point[1] = (int)(y3+l);

/* CALCULATION OF y3 USING THE EQUATION OF THE LINE*/
/* (Y-Yl) = (SLOPE)*(X-Xl) AND CONVERSION TO TYPE int*/

if(x3-ceil(x3) <= 0.5)
to_point[0] = (int)x3;

else
to_point [0] = (int) (x3+l) ;

/* ADJUSTMENT TO INTEGER VALUE FOR X3*/

xxviii



return(to_point);
}
/**********************************************************************«*****

GET POINT: THIS FUNCTION EVALUATES THE DISTANCE AND DIRECTION IN WHICH 
A LINK WILL GROW. THE PARAMETERS OF THE GROWTH ARE DECODED FROM 
GENES USING THE FUNCTIONS IN GET_DATA.C , THIS FUNCTION USES THE 
FUNCTIONS scenen(); TO ACCOUNT FOR THE DIFFERENT RELATIVE 
POSITIONS OF NODES IN THE XY PLANE. THE DIRECTIONAL ANGLE OF THE 
LINK GROWTH MUST BE TAKEN INTO ACCOUNT.

Int *get_point(int grth_dis,int xl,int yl,int x2,int y2)
{ int *to_point=NULL;

if ((xl==x2) && (yl!=y2))
/* TWO POSITIONS ARE ALIGNED PARALLEL TO THE Y AXIS*/

{
to_point = scenel(xl,yl,y2,grth_dis) ;
)

if ((yl==y2) &c& (xl != x2) )
/* CASE: TWO POSITIONS ARE ALIGNED PARALLEL TO THE X AXIS*/

{
to_point = scene2(xl,x2,yl,grth_dis);
}

if ((xl!=x2) && (yl != y2))
/* THE POSITIONS ARE NOT ALIGNED WITH EITHER AXIS*/

{
to_point = scene3(xl,x2,yl,y2,grth_dis);
}

return(to_point);

}

MAKE_CONNECTION: FUNCTION TO COMPLETE THE 'PAPERWORK' WHEN A CONNECTION 
IS MADE BETWEEN TWO NODES

void make_connection(int base_node,int nr_nd_num,int *inbt)
{

int xl=0; int yl=0; int X2=0;
int y2=0; int distance=0; int wgt_nm=0;

#if SHOW_NODE_0
if(base_node==0)

{
getcb 0 ; 
fflush(stdin);
}

#endif
connstnum_conns][0] = base_node;
conns [num_conns] [1] = nr_nd_num;

/* UPDATE CONNECTION ARRAY*/

links[base_node][0] = nodes(base_node) CO];
links [base_node] [1] = nodes [base_node] [1] ;

/* RESET LINK ARRAY*/

x x i x



nodes [base_node] [2]++;
/* INCREMENT CONNECTION COUNT FOR BASE NODE*/

num_conns++;
/* INCREMENT THE NUMBER OF CONNECTIONS.*/

xl=nodes [base__node] [0] ; 
yl=nodes [base_node] [1] ;

x2=nodes [nr_nd_num] [0] ; 
y2=nodes [nr_nd_num] [1] ;

distance = get_distance(xl,yl,x2,y2);
/* CALCULATE THE DISTANCE BETWEEN THE NODES AS THIS FIGURE WILL */
/* WILL USED TO CALCULATE THE NEURAL NETWORK WEIGHT BETWEEN THE */
/* TWO NODES*/

if(distance >=255)
distance = 255;

/* NORMALISE THE DISTANCE BETWEEN THE CONNECTED NODES*/
wgt_nm = nodes [base_node] [2] ;

/* CHECK WHICH CONNECTION NUMBER IT IS AND CHECK AGAINST THE */
/* DECODED CONNECTIONS GENETIC PARAMETER TO SEE IF IT SHOULD BE */
/* A POSITIVE OR AN INHIBITORY LINK.*/

if (inbt [wgt_nm-l] ==0) 
distance *= -1; 

wghts[base_node] [wgt_nm-l] = distance;
/* UPDATE THE NETWORK CONNECTION WEIGHTS ARRAY*/

GROW_LINKS: CONTROLLING FUNCTION TO SIMULATE LINK GROWTH CALLED FROM 
THE DEVEL.C PROGRAM.

★ ★■A-******-*-****************-***********************************'*'*-**'***********/

void grow_links(int lnk_grt,int *inbt)
{

int *nr_nodes=NULL; int *to_point=NULL;

int iter=0; int x=0; int y=l;
int nr_nd_num=0; int xl=0; int yl=0;
int x2=0; int y2=0; int x3 = 0;
int y3=0; int nr_nd_dis=0; int connect=0;

for (iter=0;iter<num_nodes;iter++)
/* EACH NODE IS POTENTIALLY GROWING AT THE SAME TIME*/

{
if ((iter == MOTOR_A) || (iter == MOTOR_B) );

/* THE MOTOR NODES DO NOT GROW ANY LINKS -> THEY ARE PURELY */
/* RECEPTIVE NODE.*/

else
{
if (nodes [iter] [2] <num_outputs)

/* CHECK THAT MAXIMUM ALLOWED NUMBER OF CONNECTIONS HAS NOT */ 
/* BEEN EXCEEDED BY NODE*/

{
xl = links [iter] [x] ; 
yl = links [iter] [y] ;

/* HEAD OF THE NODES GROWING LINK*/

if ( (nr_nodes = find_near(iter,0) ) != NULL )
/* FIND THE NEAREST NODE*/

XXX



f

nr_nd_dis = nr_nodes[0]; 
nr_nd_num = nr_nodes[1]; 
free(nr_nodes);

/* MEMORY MANAGEMENT*/
if (nr_nd_dis > lnkgrt)

/* IF THE DISTANCE FROM THE HEAD OF THE LINK TO THE */ 
/* NODE IS GREATER THAN THE ALLOWED LINK GROWTH */
/* DISTANCE THEN ENTER THIS SECTION*/

{
x2 = nodes[nr_nd_num][x]; 
y2 = nodes[nr_nd_num][y];
to_point = get_point(lnk_grt,xl,yl,x2,y2);

/* CALL TO FUNCTION TO FIND OUT THE POSITION OF / 
/* THE HEAD OF THE LINK AFTER GROWTH.*/

X3 = to_point [x] ; 
y 3  = to_point ty];

/* POINT OF HEAD AFTER GROWTH */

free(to_point);
/* MEMORY MANAGEMENT*/

links titer] [x] = x3; 
links (iter] [y] = y3;

/* UPDATE THE LINKS ARRAY*/
}

else
/* IF WITHIN A SINGLE GROWTH CYCLE DISTANCE OF TARGET */ 
/* NODE*/

{
x3 = nodes[nr_nd_num][x]; 
y3 = nodes[nr_nd_num][y]; 
make_eonnection(iter,nr_nd_num,inbt); 
connect = 1;

/* CALL TO FUNCTION TO CONNECT THE NODES */

}
#if SHOWGROWTH

if ( * (inbt+(nodes [iter] [2] )-connect) == 1)
/* IF POSITIVE CONNECTION*/

{if(iter<NUM_SENSORS)
{
setcolor(LIGHTGREEN); 
graphics_check(graphresult());
}

else
setcolor(GREEN);

graphics_check(graphresult());

if(connect == 1)
{setcolor (YELLOW) ,- 
)

connect=0;
/* RESET CONNECTION VARIABLE*/

}
else

{
if(iter<NUM_SENSORS)

{
setcolor(LIGHTBLUE); 
graphics_check(graphresult()) ;

xxxi



else
setcolor(BLUE);

graphics^check(graphresult() '
if(connect == 1)

{
setcolor(YELLOW);
}

connect = 0;
/* RESET CONNECTION VARIABLE*/

#if SHOW_NODE_0
if(iter==0)

{
setcolor(random(15)+1);

graphics_check(graphresult());
line(xl,yl,x3,y3);

graphics_check(graphresult());

#else
line(xl,yl,x3,y3);

graphics_check(graphresult()); 
#endif /* {{SHOW_NODE_0}} */
#endif /* {{SHOW_GROWTH}} */

xxxii



/*
GRO_NODE.C

THIS PROGRAM CONTROLS THE MANNER IN WHICH NODES ARE GROWN.
IT IS CALLED BY THE PROGRAM DEVEL.C*/

«include "devel.h"
/* STANDARD INCLUDE FILE */

«include «graphics.h>
«include <stdio.h>
«include <stdlib.h>

«define NODE_EXCLUSION_RANGE 20 
«define LEFT 50 
«define RIGHT 306 
«define TOP 50 
«define BOTTOM 306

/ * DEFINITIONS LOCAL TO THE GRO_NODE PROGRAM*/

**/
* FIX_POSITION : FUNCTION TO ADJUST THE INTERSECTION POINT OF THE LINE*/
* JOINING THE TWO NEAREST NODES IF THE NODE AND ITS CLOSEST */
* NEIGHBOURS ALL LIE IN THE SAME STRAIGHT LINE*/

*/

int *fix_positiontint closel,int close2,int midx,int midy)
{

int *mid_fixed=NULL;

int xl,yl=0; int x2,y2=0; int x3,y3=0;
int x4,y4=0; int x=0; int y=l;
int distancel=0; int distance2=0;

double slope=0.0; double new_slope=0.0;

if <(mid_fixed = tint *)malloc(sizeof(int)*100)) == NULL)
{
printfC'Not enough memory to allocate mid_fixed\n") ; 
stall () ;

/* TERMINATE PROGRAM GRACEFULLY*/
)

xl=midx; 
yl=midy;

if (nodes [closel] [y] ==nodes [close2] [y])
/* IF LINED UP PARALLEL TO THE X-AXIS */

{
if(midy <=178)

midy += 10;
else

midy -= 10;
/* ADJUST SO THAT THE MID-POINT MOVES TOWARD THE CENTRE*/

*(mid_fixed+0)=midx;
*(mid_fixed+1)=midy; 
return(mid_fixed);

/* EXIT FUNCTION WITH ADJUSTED NUMBERS*/

}
if (nodes [closel] [x] ==nodes [close2] [x])

/* IF LINED UP PARALLEL TO THE Y-AXIS*/

{
if(midx<=178)

midx += 10;
else midx -= 10;

x x x i i i



/* ADJUST SO THAT THE MID-POINT MOVES TOWARD THE CENTRE*/

else

*(mid_fixed+0)=midx;
*(mid_fixed+l)=midy; 
return(mid_fixed);

/* EXIT FUNCTION WITH ADJUSTED VALUES*/

{
xl=nodes [closel] [x] 
x2=nodes [close2] [x] 
yl=nodes [closel] [y] 
y2=nodes [close2] [y]

slope=(double)( (double)(y2-yl)/(double)(x2-xl));
/* STANDARD EQUATION FOR THE SLOPE OF A LINE*/

new_slope = (-1)/slope;
/* SLOPE OF THE LINE PERPENDICULAR TO THE LINE JOINING THE TWO */
/* CLOSEST NODES.*/

x3 = midx + 100;
y3 = (new_slope*(x3-midx))/(-midy);

/* FROM THE EQUATION OF THE LINE*/
/* ADJUST X AND CALCULATE THE CORRESPONDING VALUE BASED ON THE */ 
/* EQUATION OF THE LINE*/

distancel=get_distance(x3,y3, 178 ,17 8) ;
/* CALCULATE THE DISTANCE FROM THE CENTRE OF THE GRID.*/

x4 = xl -100;
y4 = (new_slope*(x4-xl))/(-yl);

/* AS ABOVE BUT THE ADJUSTMENT TO X IS IN THE OPPOSITE DIRECTION */

distance2=get_distance(x4,y4, 17 8 ,178) ;
/* CALCULATE THE DISTANCE FROM THE CENTRE OF THE GRID. */

if (distancel<=distance2)
{
*(mid_fixed+0)=x3;
* (mid_f ixed+1) =y3

else
{
*(mid_fixed+0)=x4; 
*(mid_fixed+1)=y4;

/* CHOOSE WHICHEVER SET OF POINTS ARE CLOSEST TO THE CENTRE

return(mid_fixed);
/* RETURN THE ADJUSTED VALUES*/

}

NEW_NODE_VALIDATE : FUNCTION TO CHECK IF NODE EXISTS IN A POSITION 
(xl,yl) ALREADY.

int new_node_validate(int total_node_number,int xl,int yl)
{

int x2=0; int y2=0; int iter = 0;
int distance=0;

for (iter=0;iter<total_node_number;iter++)
/* CHECK ALL NODES*/

{if ( (nodes [iter] [0] ==xl) & (nodes [iter] [l]==yl) )
/* IF IN EXACTLY THE SAME POSITION RETURN 0*/

xxxiv



{
return(0);
}

x2 = nodes [iter] [0] ; 
y2 = nodes [iter] [1] ;
distance = get_distance(xl,yl,x2,y2); 
if (distance«=NODE_EXCLUSION_RANGE)

f
return(0) ;
t

/* IF WITHIN EXCLUSIVE AREA THEN RETURN 0*/

}
return(1) ;

/* ELSE RETURN 1*/
}

CHECK_LOCATION_VALID: FUNCTION WHICH ENSURES THAT ANY NEW NODES CREATED 
ARE PLACED ON THE GROWTH GRID.* ***♦* + *** + * + + * + *-* + ***★ + * + * + *★****+*** + ***********★**** + ***** + ******* + *** + **/

int *check_location_valid(int x2,int y2)
{

int *division_pt=NULL; 
if ((division_pt = (int *)malloc(sizeof(int)*50)) == NULL)

{
printf("Not enough memory to allocate division_pt\n"); 
stall () ;

/* TERMINATE PROGRAM GRACEFULLY*/
)

if ( (x2>=LEFT) && (x2«=RIGHT) )
*(division_pt)= x2;

else
{
if (X2«LEFT)

*(division_pt) = RIGHT - (LEFT-X2);

while (x2>RIGHT)
f
* (division_pt) = LEFT + (X2-RIGHT) ;
X2 -= RIGHT;
}

}
if ( (y2>=TOP) ScSc (y2«=BOTTOM) )

*(division_pt+l) = y2;
else

i
if (y2«TOP)

*(division_pt+l) = BOTTOM-(TOP-y2);
while (y2>306)

{
*(division_pt+l) = TOP + (y2-BOTTOM); 
y2 -= BOTTOM;
}

}
return(division_pt);

}

GROWNODES: FUNCTION TO SIMULATE THE GROWTH OF NODES.
CALLED BY DEVEL.C

***************************************************************************/ 

void grow_nodes(int div_ds)

X XXV



int *nr_nodes=NULL; int *div_pt=NULL; int *mid_fixed=NULL;

int iter=0; int closel=0;
int midx=0; int midy=0;
int xl=0,x2=0; int yl=0,y2=0;
int space_free = 0;

char msg[10] ,-
static int fresh_nodes=7;

start_node = num_nodes-fresh_nodes-l;
/* FIRST NODE FOR DIVISION IN CYCLE.*/

fresh_nodes=0;
/* NEWLY CREATED NODES COUNTER*/ 

for (iter=start_node ;iter<num_nodes;iter++)
/* LOOP NUMBER OF TIMES EQUAL TO NUMBER OF NEW NODES CREATED IN * 
/* THE LAST NODE DIVISION CYCLE*/

{xl = nodes [iter] [0] ; 
yl = nodes [iter] [1] ;
nr_nodes = find^near(iter,1); 
closel = *(nr_nodes+l); 
close2 = *(nr_nodes+2); 
free(nr_nodes);

/* FIND TWO NEAREST NODES TO THE DIVIDING NODE*/
/* THIS IS BECAUSE THE LOCATION OF A NEW NODE LIES ON A PATH*/
/* WHICH BISECTS THE CENTRE OF THE STRAIGHT LINE JOINING THE TWO 
/* NODES NEAREST TO THE DIVIDING NODE.*/

midx = (nodes [closel] [0]+nodes [close2] [0])/2; 
midy = (nodes [closel] [1]+nodes [close2] [l])/2;
if((midx==xl)&&(midy==yl) )

{mid_fixed=fix_position(closel,close2,midx,midy); 
midx=*(mid_fixed+0); 
midy=*(mid_fixed+1); 
free (mid̂ fixed) ;
}

/* CALL TO THIS SECTION NECCESSARY WHEN THE LINE JOINING 
/* THE TWO NEAREST NODES TO THE DIVIDING NODE PASSES */
/* THROUGH THE NODE WHICH I'S DIVIDING (IE ALL 3 INVOLVED 
/* NODES LIE ALONG THE SAME STRAIGHT LINE.*/

div_pt = get_point(div_ds,xl,yl,midx,midy); 
x2 = div_pt [0] ;
y2 = div_pt [1] ;
free(div pt);

/* GET POSITION OF NEWLY CREATED NODE ON THE GRID*/
/* AND CLEAR UP MEMORY ALLOCATION*/

div_j?t = check_location_valid (x2, y2) ,• 
x2 = div_pt [0] ;
y2 = diy_pt [1] ;
free(div_pt);

/* CHECK THAT THE RETURNED POSITION IS A VALID ONE AND IF NOT */
/* THEN ADJUST IT TILL IT IS.*/
/* ALSO CLEAR UP MEMORY AGAIN.*/

space_free = new_node_validate(num_nodes+new_nodes,x2,y2);
/* CALL TO FUNCTION TO CHECK IF THE CHOSEN SPOT ON THE GROWTH
/* GRID IS ALREAD OCCUPIED OR WITHIN A RANGE OF 20 RADIAL UNITS
/* OF THE NEAREST EXISTANT NODE*/

if ( space_free )
{nodes [num nodes+new nodes] [0] = x2 ;

int close2=0; 
int new_nodes=0; 

int start_node=0;

xxxvi



nodes[num_nodes+new_nodesJ [1] = y2; 
links [num_nodes+new_nodes] to) = x2; 
links[num_nodes+new_nodes][1) = y2;

/ * IF SPACE IS FREE THEN STORE POSITION OF NEW NODE ON THE */ 
/* GRID AND ALSO INITIALISE THE LINK HEAD POSITION OF THE */ 
/* NODE.*/

#if SHOW_GROWTH
setcolor(WHITE);

graphics_check(graphresult() ) ; 
sprintf(msg,"%d",(num_nodes+new_nodes)); 

graphics_check(graphresult()) ;
outtextxy(x2+5,y2,msg);

graphics_check(graphresult());
putpixel(x2,y2,LIGHTBLUE);

graphics_check(graphresult());
rectangle(x2-l,y2-l,x2+l,y2+l);

graphics_check(graphresult()) ;
rectangle(X2-2,y2-2,x2+2,y2+2);

/* PRINT NEW NODES ON-SCREEN*/ 
graphics_check(graphresult 0) ;

setcolor(RED);
graphics_check(graphresult 0);

#endif /* {SHOWGROWTH} */

new_nodes++;
/* UPDATE NEW NODE COUNT FIGURE*/

}
}

num_nodes += new_nodes;
/* UPDATE TOTAL NODE COUNT FIGURE*/

fresh_nodes=new_nodes;
/* STORE NUMBER OF NEW NODES CREATED FOR NEXT TIME.*/

x x x v i i



«include <stdio.h> 
if include <stdlib.h>
Sinclude «string.h>
«include "devel.h"

extern int nodes[MAX_NODES] [3]; /* Global Variables Declaration */
extern int links(MAX_NODES][2]; /* and Initialisation */
extern int conns[MAX_NODES*MAX_NO_OP][2] ; 
extern int wghts[MAX_NODES][10];
void outter(void)
{

FILE *stream; 
int i;
int base_node; 
int targ_node;

stream = fopen("dum.fil" , "w" ) ;

fprintf(stream,"\t%s\n","NODE TO WGT");
for(i=0;i<MAX_NODES;i++)

{
base_node = links [i] [0] ; 
targ_node = links [i] [1] ;
fprintf(stream,"\n\t %d %d",base_node,targ_node);

}
foiose(stream);
}

x x x v i i i



Appendix F2 Simple Genetic Algorithm Code
/************★*******************************•********+***+*************+**#

PROGRAM SGA.C
THIS PROGRAM OPERATES ON A GENETIC ALGORITHM BASE.
IT USES A NUMBER OF PROGRAMS TO ENABLE IT TO DO THIS:

CROSSER.C RANDOMS.C OUTPOP.C
EACH OF THESE PROGRAMS IS EXPLAINED IN THEIR OWN FILES.
THE PROGRAM PROMPTS THE USER FOR TEN FITNESS VALUES AND THEN 
USES THESE VALUES TO CREATE A NEXT GENERATION OF INDIVIDUALS 
BASED ON PROBABILISTIC TRANSITION RULES.

★*★****++++★***+★**★*****★*********++*****+*+++++*+*++***+*++********+****I 

#define CROSS 1
/* USED BY THE PREPROCESSOR (SEE SGA.H FOR EXPLANATION) */

«include "sga.h"
/* STANDARD HEADER FILE */

«include <stdio.h>
«include <stdlib.h>
«include <conio.h>
«include <time.h>
«include «graphics.h>

«if DEBUG
extern int mutate_record[42 0];

/* USED FOR ANALYSIS PURPOSES */
«endif
struct individual 

{
int chromosome[GENE_LENGTH] ; 
int fitness;

} ;
/* EACH INDIVIDUAL IS CONSTRUCTED OF TWO PARTS: */
/* A: THE CHROMOSOME */
/* B: THE FITNESS FIGURE ASSIGNED TO IT BY THE USER */

struct individual new_population[MAXPOP_SIZE] ; 
struct individual old_population[MAXPOP_SIZE];

/* ARRAYS CONTAINING THE ENCODED GENOTYPES OF THE OLD AND NEW */
/* GENERATIONS 
*/

double total_genetic_fitness; 
int popsize=0;

STALL: FUNCTION TO TERMINATE PROGRAM GRACEFULLY IN THE EVENT OF ERRORS 
OCCURING.

void graphics_check(int errorcode)
{
if (errorcode != grOk)

{
closegraph( );
printf("GRAPHICS ERROR : %s \n",grapherrormsg(errorcode) ) ; 
printf("\n\n\Any Key to Exit ! ! " ) ; 
exit (1) ;
}

xxxix



}

/

SET_GRAPHICS: FUNCTION TO INITIALISE GRAPHICS, 

void set_graphics(void)f
int gdriver = DETECT, gmode, errorcode;

/* REQUEST AUTO DETECTION */
#if DDRIVE

initgraph(&gdriver, Scgmode, "D:\\AUTO") ;
/* INITIALISE GRAPHICS MODE */

#else
initgraph(&gdriver, fcgmode, "C:\\AUTO");

/* INITIALISE GRAPHICS MODE */
#endif

errorcode = graphresult();
/* READ RESULT OF INITIALISATION */

if (errorcode != grOk)
/♦AN ERROR OCCURED */

[
printf("Graphics error: %s\n", grapherrormsg(errorcode)); 
printf("Press any key to halt:”); 
exit (1) ;

/* RETURN WITH ERROR CODE •/
I

setfillstyle(0,0);
/* SET THE FILL PATTERN AND COLOUR */ 

graphics_check(graphresult());

cleardevice();
/* CLEAR SCREEN AND RETURN 'CURSOR' POSITION TO (0,0)*/ 

graphics_check(graphresult());
setcolor(WHITE);

/* SET FOREGROUND COLOUR */

FUNCTION WHICH PROMPTS USER FOR 10 FITNESS FIGURES

int getfit(void)
{

int iter; 
int fit;

FILE *ofp;
if ((ofp = fopen("C:\\AUTO\\data\\GENETIC.RES", "r+ '•) ) == NULL)

{
fprintf(stderr, "Cannot open input file genetic.res.\n"); 
exit(1);
i

fseek(Ofp,SEEK_SET,0);
for(iter=0;iter<MAXPOP_SIZE;iter++)t

fscanf(ofp,"%d",&fit); 
if ( (fit<0) || (fit>100))

xl



fit=S;
old_population[iter].fitness = (int)fit; 
total_genetic_fitness += fit;
}

fclose(ofp); 
return(1);
}

FUNCTION TO DISPLAY THE OLD POPULATION AND CONTROL THE 
OBTAINING OF FITNESS VALUES.

*************,******,*************************************************,***/

void getpop(void)
{

FILE *f_point; 
int iter; 
int itrb; 
int i=0; 
int number=0; 
char msg [10] ;

if ((f_point = fopen("c:\\auto\\data\\POPDATA.FIL", "rt+")) == NULL)
{
fprintf(stderr, "Cannot open data file popdata.fil.\n"); 
exit(1);
}

fseek(f_point,SEEK_SET, 0);
for (number = 1 ; number<=MAXPOP_SIZE; number++)

{
for (iter = 0; iter<GENE_LENGTH; iter++)

{
if (fscanf(f_point, &i))

old_population[number-1].chromosome[iter] = i;
else

{
fprintf (stderr, "Error reading from POPDATA. FIL I 1 \n'') ; 
exit(1);

}
}

}
while ( !getfit() );

printf(" \t\t\t PARENT CHROMOSOMES \t\t\t FITNESS\n"); 
for (itrb=0;itrb<MAXPOP_SIZE;itrb++)

{
for (iter=0;iter<GENE_LENGTH;iter++)

{sprintf(msg,"%d",oldjpopulation[itrb].chromosome[iter]); 
outtextxy((iter*9)+20,(itrb*20)+60,msg);

}
sprintf(msg,"%d",old_population[itrb].fitness); 
outtextxy((GENE_LENGTH*9)+40,(itrb*20)+60,msg);

}
outtextxy(30,500," \t\t\tPRESS SPACE KEY TO CONTINUE");

/* Section to display the old poulation */

getchO ;

x l i



MAIN FUNCTION

int main(void)
{
#if DEBUG

clrscr(); 
printf("debug"); 
getch();

#endif

clrscr(); 
set_graphics (); 
getseed(); 
getpop(); 
closegraph(); 
crspop () ; 
outpop() ;
out_generation_info(); 
saveseed();

return(1);
}

xlii



«define MAXPOP_SIZE 20
«define GENE_LENGTH 54

/* CHROMOSOME IS 51 BITS LONG */

«define PROBCROSSOVER 0.9
/* PROBABILITY OF TWO CHOSEN MATES AFFECTED BY THE CROSSOVER 

OPERATOR */

«define PROB_MUTATATION 0.01
/* PROBABILITY OF ON AVERAGE 8 BITS MUTATING PER POPULATION 

PER GENERATION */
«define DEBUG 0 

«ifdef CROSS
typedef char flag; /* >= 1 bit, used as boolean */

«endif
/* THE TYPEDEF FLAG IS USED IN THE FUNCTION FLIPO AND IT 

IS NECCESSARY TO INCLUDE THIS PREPROCCESSOR DIRECTIVE 
TO PREVENT MULTIPLE DECLARATIONS OF THE FLAG TYPEDEF WHICH 
RESULTS IN ERROR USING TURBO C++ COMPILER */

flag flip(double);
double gen_float(void);
void crspop(void);
void outpop(void);
int get_cross_point(int);
void saveseed (void) ,-
void getseed(void);
void out_generation_info(void);

x l i i i



/
CROSS.C

PROGRAM WHICH IMPLEMENTS THE CROSSOVER OPERATOR UPON TWO 
DISTINCT INDIVIDUALS IN A POPULATION AND WHICH IS ITERATED 
UNTIL THE NEXT POPULATION GENERATION HAS BEEN PRODUCED. iT MAKES USE 
OF THE RANDOM PROCES FUNCTIONS DEFINED IN RANDOMS.C
IT IS CALLED FROM THE PROGRAM SGA.C

■ tc -k ir * * 1 r ‘* i r - k - k - k i r - k - k - k - k - k - k - k ,k - & ir - k - k ,k * - A - j t i e i e * 1 t i c i c i r ,i c ' i c 1 r ic k ,k 'k 1 r 4 e i r i t ' i c k - k i r i ç J r i r i r 'k i r - k ‘k J t i e i c 'k - k - k - k - k ,k ,k i r i r i c i e i c k  j

«define CROSS 1
/* USED BY THE PREPROCCESSOR */

«include "sga.h"
/* STANDARD HEADER FILE */

«include <stdio.h>
«include <time.h>
«include <stdlib.h>
«include <conio.h>
«include «graphics.h>

extern struct individual 
{

int chromosome[GENE_LENGTH]; 
int fitness;

} ;
extern struct individual new_population[MAXPOP_SIZE] ; 
extern struct individual old_population[MAXPOP_SIZE]; 
extern double total_genetic_fitness; 
extern int popsize;

/* THESE DATA VARIABLES ARE DEFINED ORIGINALLY IN SGA.C */

double random_f loats [MAXPOP_J3IZE] ;

«if DEBUG
int mutate_record[420]={0};

/* used for analysis purposes */
«endif

Function to implement the mutation operator

int mutation(int single_gene) 
{

int new_gene; 
int mutate;

«if DEBUG
static int mutatewnumber=0;

/* used for analysis purposes */
«endif

mutate = flip(PROB_MUTATATION);
/* FLIP SIMULATES A WEIGHTED COIN TOSS AND IS USED */ 
/* HERE TO DETERMINE WHETHER A SINGLE BIT SHOULD BE */ 
/* MUTATED OR NOT. */

«if DEBUG
mutate^record[mutate_number]=mutate;

«endif
if (mutate)

{
textcolor(RED); 
if (single_gene == 1)

xliv



new_gene = 0 ;
else

new_gene = 1 ;
}

/* IF THE FLIP FUNCTION RETURNS A '1' THEN THE BIT IN */
/* QUESTION IN THE CHROMOSOME IS INVERTED */

else
new_gene = single_gene;

#if DEBUG
mutate_nuraber++;

#endif

return(new_gene);
/* RETURN THE VALUE OF THE NEW BIT */

}
^ - k - k 1 e i r - i c i c - k - k i r - k - k i r - k -k i t - k - k ,k ' k i r i t ,i r - k ‘k - k 4 t ,k ,f c ,k ,k - k - i t ,k ,k ,k 4 t i c wi r ,k i e ,k - k 4 r * * 4 r i e J c ,k i r ,t r ' k i r i r i r - i e ,i r ,k - k ' k ,k i r 1 r ' k i r i c 1 r i c - k - k - k - k - k ,k

Function that implements the crossover operator upon two 
distinct individuals.

void crossover(int matel,int mate2,int crosspoint)
{ int cross; int xsite; int iter;

int parentl[GENE_LENGTH]; int parent2[GENE_LENGTH];
for(iter=0;iter<GENE LENGTH;iter++)

{
parentl[iter] = old_population[matel].chromosome[iter]; 
parent2[iter] = old_population[mate2].chromosome[iter];
}

/* GET THE TWO CHROMOSOMES CHOSEN FOR REPRODUCTION OR CROSSING */
/* FROM THE OLD POPULATION RECORD */

cross = flip(PROB_CROSSOVER);
/* FLIP SIMULATES A WEIGHTED 'COIN TOSS' AND IS USED HERE TO */
/* DETERMINE WHETHER THE TWO CHOSEN CHROMOSOMES SHOULD BE */
/* CROSSDE TOGETHER OR NOT */

if (cross)
{
xsite = crosspoint;
}

else
xsite = GENE^LENGTH;

/* IF THE CHROMOSOMES ARE NOT TO BE CROSSED THEN THE CROSSING */
/* SITE CHOSEN IS SIMPLY THE END OF THE TWO CHROMOSOMES */

/*
gotoxy(xsite+7,(popsize*2) + 4); 
printf("x"); */

/* PRINT POSITION OF CROSSING SITE ON SCREEN
for (iter=0;iter<xsite;iter++)

{
textcolor(GREEN);
new_population [popsize] . chromosome [iter] = mutation (parentl [iter] ) ; 
gotoxy(iter+7,(popsize)+3);
cprintf ("%d" , new_j?opulation [popsize] . chromosome [iter] ) ; 
textcolor(WHITE);
new_population[popsize+1].chromosome[iter] = mutation(parent2[iter]); 
gotoxy(iter+7,(popsize)+4);
cprintf("%d",new_population[popsize+1].chromosome[iter]);

/* THIS LOOP GENERATES TWO NEW MEMBERS OF THE POPULATION AND */
/* AS EACH BIT OF THE NEW CHROMOSOMES IS GENERATED BY THE */
/* CROSSING IT IS DETERMINED WHETHER OR NOT IT SHOULD BE */

)

xlv



/* MUTATED */
if(xsite!= GENE_LENGTH)

{
for(iter=xsite;iter<GENE_LENGTH;iter++)

{
textcolor(WHITE);
new_population[popsize].chromosome[iter]=mutation(parent2[iter]); 
gotoxy(iter+7,(popsize)+3);
cprintf("%d",new_population[popsize].chromosome[iter]); 
textcolor(GREEN);
new_population [popsize+1] . chromosome [iter] =mutation (parentl [iter] ) 
gotoxy(iter+7,(popsize)+4);
cprintf("%d",new_population[popsize+1].chromosome[iter]); 
gotoxy(5,popsize+3);

}
}

/* IF THE CHROMOSOMES HAVE BEEN CHOSEN FOR CROSSING THEN THIS */ 
/* WILL IMPLEMENT THE ACTUAL EXCHANGE OF BITS. IF NOT THEN */
/* THE PROGRAM WILL NOT ENTER THIS LOOP

FUNCTION WHICH IMPLEMENTS THE REPRODUCTION OPERATOR.

int *select(double pair_number)
{

int j = 0 ;
int i=0;
int roulette=0;
double partsum=0; 
int *mates=NULL;

if ((mates = malloc( 3*sizeof(int))) == NULL)
{
printf("Not enough memory to allocate buffer {fuction select()} \n"); 
exit(1);

/* TERMINATE PROGRAM IF OUT OF MEMORY */

for(i=0;i<2;i++)
{
roulette=(int) (random_floats[i+(pair_number*2) ] * total_genetic_fitness) ;

/* VALUE CHOSEN WHICH DETERMINES WHICH CHROMOSOME OF THE OLD */
/* POPULATION TO CROSS (OR NOT) WITH ANOTHER OLD CHROMOSOME. */
/* SEE GOLDBERG FRO DETAILS */

for(j=0;j <MAXPOP_SIZE;j++)
{
if((partsum += old_population[j].fitness)> roulette) 

break; 
if( j == MAXPOP_SIZE-1) 

break ;
}

*(mates+i)=j; 
partsum=0;
}

return(mates) 
}

CONTROLLING FUNCTION TO CREATE AND DISPLAY A NEW GENERATION OF 
INDIVIDUALS.

xlvi



I

void crspopO 
{

int matel; int mate2; int iter;
int fitl,fit2;
int crosspoints[MAXP0P_SIZE/2]; 
int *mates;
FILE *ofp=NULL;

if ((ofp = fopen("C:\\auto\\data\\GN_HIST.FIL", "w+")) == NULL)
{
fprintf(stderr, "Cannot open GN_HIST.FIL for writing. \n" ) ; 
exit(1);
}

/* GEN_HIST.FIL CONTAINS THE INFORMATION ON THE POPULATION */
/* HISTORY

*/
fseek(ofp,OL,SEEK_END); 
clrscr();
printf ( "\t\t\tNEW GENERATION \t\t\t\t PARENTS(Fitness)\n");
for(iter=0;iter<MAXPOP_SIZE;iter++)

{
random_floats[iter]=gen_float();
}

/* GENERATION OF NUMBERS BETWEEN 1 & 0 TO BE USED IN THE */
/* select() FUNCTION FOR THE EVALUATION OF THE ROULETTE */
/* VARIABLE. IT IS A GLOBAL ARRAY. */

for(iter=0; iter<(MAXPOP_SIZE/2); iter++)
crosspoints[iter]= get_cross_point(GENE_LENGTH);

/* ALL CROSSING POINTS ARE CHOSEN AT THE SAME TIME AND THEN */
/* PASSED TO THE RELEVANT FUNCTION RATHER THAN EACH POINT */
/* BEING CHOSEN AS EACH PAIR OF CHROMOSOMES IS CROSSED */

for (iter=0;iter<MAXPOP_SIZE;iter++)
{
if (popsize == MAXPOP_SIZE) 

break;
else

{
mates = select(iter); 
matel = mates[0]; 
mate2 m mates [1] ;
fitl si old_j?opulation [matel] . fitness ; 
fit2 = old_population[mate2].fitness;

/* SELECT TWO CHROMOSOMES FROM THE OLD POPULATION FOR */
/* CROSSING BASED ON THE FITNESS FIGURES */

crossover(matel,mate2,crosspoints[iter] ) ;
/* CROSS THEM.

*/

fprintf (ofp, "\n%5d, %3d %9d (%2d) , %10d (%2d) %10d",
(iter*2)+1,(iter*2)+2,matel+l,fitl, 
mate2+l,fit2,crosspoints[iter]);

/*
sprintf(msg,"%d",old_population[itrb].chromosome[iter]), 
outtextxy((iter*9)+20,(itrb*20)+S0,msg); */

gotoxy(2, (iter*2)+3) ,-
printf("%d",(iter*2)+1);
gotoxy(GENE_LENGTH+9,(iter*2)+4);
printf("%d (%d), %d (%d)",matel+1,fitl,mate2+l,fit2); 
gotoxy(2,(iter*2)+4); 
printf("%d",(iter*2)+2);

xlvii



/* PRINT THE TWO NEW POPULATION MEMBERS ON THE VDU
popsize += 2;

/* INCREASE THE RECORD OF NEW POPULATION MEMBERS

}
/* LOOP WHICH CONTROLS TEH GENERATION AND DISPLAY OF THE TWO 
/* NEW POPUALTION MEMBERS

}
printf ("\n\n\n\t:\t\tPRESS ANY KEY TO CONTINUE ") ; 
while (!kbhit() ) ; 
free(mates); 
fclose(ofp);

/* MEMORY MANAGEMENT



«include <stdio.h>
«include <ctype.h>
«include <conio.h>
«include <time.h>
«include <dos.h>
«include <stdlib.h>
«include <string.h>
«define TEST_TIME 240

/* IN SECONDS*/
«define MAX_POP_SIZE 20
int fitness_scores[MAX_POP_SIZE] ;
int fitness=5;
int individual_number;
FILE *ofp=NULL;

OUTPUT_FITNESS_VALUE
.********************************. *,********/

void output_fitness_value(void)

(
int iter;

fseek(ofp,SEEK_SET,0); 
if (fitness < 5)

fitness = 5;

fitness_scores[individual_number-l]=fitness;
for (iter=0;iter<MAX_POP_SIZE;iter++)

i
fprintf(ofp,“VdXn",fitness_scores titer]);
1

fclose(ofp); 
exi t(1);

/****+*+*+**+**#***★***★*********+*++*♦*******+***+*******+*******+**+**++*+-* 

Set_Up_Screen();

int Set_Up_Screen(int number)
{

int individual_number=MAX_POP_SIZE+l; 
char string [10];

clrscr () ;

textcolor(LIGHTBLUE); 
gotoxy(34,5);
cprintf("%S"," FITNESS : ");
textcolor(WHITE);
cprintf("%d \n\n",fitness);
textcolor(LIGHTBLUE);

individual number=number,-

xlix



gotoxy{25,3);
cprintf("%s%d","CHROMOSOME NUMBER : ", 

individual_number);

while! (individual_number<;l) || (individual_number>MAX_POP_SIZE) )
{
gotoxy(19,3);
Cprintf("%3","ENTER CHROMOSOME NUMBER : «);
gotoxy(45, 3) ;
individual_number = atoi(gets(string));
}

return(individual_number);

 .

Openfile();
.♦....♦♦.A*,***.*****,******,.*...*..**.***.******,---

void openfile(void)
{
int iter; 
int fit;
if ((ofp * fopen("C:\\AUTO\\data\\GENETIC.RES", "r+"}) =»NULL)

{
fprintf(stderr, "Cannot open input file genetic.res .\n"); 
exit(1);
}

fseek(ofp,SEEK_SET,0);
for(iter=0;iter<MAX_POP_S!ZE;iter++)

{
fscanf(ofp,"%d",tfit); 
fitness_scores titer]-fit;
}

END_TESTING() ;

* * * * * * * -----

void end^testing(char *input_string)
{
char *test_string = "time"; 
char *test_string2 = "terminate"; 

clrscr () ;

gotoxy(23, 9) ;
if (strcmp(test^string,input_string)==0)

{
cprintf ("%S" , 11 Time is Up");
if (fitness > 100)

fitness = 100;
}

else
{
if (strcmp(test_string2,inputstring)==0)

{
cprintf ("is11, " Testing Terminated"); 
if (fitness > 100)

fitness = 100;
}

else
cprintf("%s","Fitness Has Reached Base Level (5)"),-

}
gotoxy(25,11);

1



cprintf("%s","Further Testing is Unneccessary"); 
gotoxy(27,13) ;
cprintf("%s","Press Any Key to Exit 
getch();

output_£itness_value();

}
/*******.****************************♦****---

PRINTSTRING 
   ............

void printstring(char *strl,char *str2,char *str3,char *str4) 
{
textcolor(WHITE); 
cprintf("%s",strl); 
textcolor(LIGHTBLUE); 
cprintf(”%s",str2); 
textcolor(WHITE); 
cprintf("%s",str3); 
textcolor(LIGHTBLUE); 
cprintf("%s",str4); 
textcolor(WHITE); 
fflush(stdout);

PRINT_FITNESS

void print_fitness(void)
{
char *fit="fitness";

textcolor(LIGHTBLUE); 
gotoxy(34,5);
cprintf( " % S " , "  FITNESS : " ) ;

if (fitness < S)
{
end_testing(fit);
)

textcolor(WHITE); 
gotoxy(45,5); 
cprintf("%d",fitness);
textcolor(LIGHTBLUE); 
fflush(stdin); 
fflush(stdout);

Set_Up_Screen_2();

void Set_Up_Screen_2(void) 
{
clrscr(); 
print_fitness(); 
gotoxy(25,3);

li



cprintf("%S","CHROMOSOME NUMBER : "); 
textcolor(LIGHTGREEN); 
cprintf("%d",individual_number); 
textcolor(LIGHTBLUE);

}

RECORD_FITNESS
■kicirifif'k'k'jrit'ielcir-k'k-kic-k'kit'kle'k'k'kiciclrlir-k-k-k'kic-k'k'k'k'kir'kitlc'kic'kicic-k-k + lck-kie'k-k-kic-k-ir'k-k-k-k-kic'k-k'k'kic-k'k-k-kirf

void record_fitness(int score,int x,int y)
{
char input ;
input = tolower(getch());

while ( (input != 'y') && (input != 'n')) 
input = tolower (getch ()) ;

textcolor (WHITE) ,- 
cprintf("%c",input) ;

if (input == 'n'); 
else

fitness += score; 

print_fitness 0 ; 

gotoxy(x,y);
}
îtl'icif-k-k-klrir-kirir-k-k-k'k-kick'k'k'k'ick'k'kickifick-k'k'k'kicir'k'k'ick-ifk'k'k'kifickifk-k-kit'kic'kitick'kit'k'k'k-kifk-k-ir-k-kir-k'k-k

EVALUATE_SENSORS ( ) ;
-k-k-k-k-k-k-k-k-k-kir'k'k-it'lc'k'k'k'lt'k'k'k'k'k'kirir-it-kicle-ifie-k-ir-k'kitit'iririe'k-kitlcick-k-kifk-kifk-k-k-kirir-k'k-k-klfkit-lr-ick-kir-kickic j

void evaluate_sensors(void)
{
cprintf("%s","\r\n\n\n MOVEMENT WITHOUT STIMULATION Y/N ? : ");
record_fitness(10,wherex0 ,wherey());
printstring ( "\r\nFRONT " "BHwnnPB " " TnnreTtron " "nDKSSTTnmT, v/kt •? ■ ■
record_fitness(7,wherex(
printstring("\r\nFRONT " 
record_fitness(7,wherex(
printstring("\r\nFRONT " 
record_fitness(7,wherex(
printstring("\r\nFR0NT " 
record_fitness(7,wherex(
printstring("\r\nFR0NT " 
record_fitness(7,wherex(
printstring ("\r\nFR0NT 11 
record_fitness(7,wherex(
printstring("\r\n REAR " 
record_fitness(7,wherex(

printstring("\r\n REAR " 
record_fitness(7,wherex(
printstring("\r\n REAR " 
record_fitness(3,wherex(

,wherey());

"SENSORS ","DIRECTION ","CORRECT Y/N ? : "
,wherey());
"SENSOR NUMBER ","1 ", "OPERATIONAL Y/N ? : " 
,wherey() ) ;
"SENSOR ","1 DIRECTION "."CORRECT Y/N ? : " 
,wherey());
"SENSOR NUMBER ","2 ", "OPERATIONAL Y/N ? : " 
,wherey());
"SENSOR ","2 DIRECTION ","CORRECT Y/N ? : " 
,wherey());
"SENSORS " , "TOGETHER " , "OPERATIONAL Y/N ? : " 
, wherey () ) ;

"SENSORS ","DIRECTION ","CORRECT Y/N ? : "
,wherey());
"SENSOR NUMBER ","3 " , "OPERATIONAL Y/N ? : "
, wherey () ) ,-

lii



printstring("\r\n REAR ","SENSOR ","3 DIRECTION ","CORRECT Y/N ? :
record_fitness(3,wherex(

printstring("\r\n REAR " 
record_fitness(3,wherex(

printstring("\r\n REAR " 
record_fitness(3,wherex(
printstring("\r\n LEFT " 
record_fitness(5,wherex(
printstring("\r\nRIGHT " 
record fitness(S,wherex(

,wherey());

"SENSOR NUMBER “,"4 "."OPERATIONAL Y/N ? : "); 
,wherey()) ;

"SENSOR ","4 DIRECTION "."CORRECT Y/N ? : "); 
,wherey()) ;

"SENSOR NUMBER ","5 "."OPERATIONAL Y/N ? : "); 
,wherey()) ;

"SENSOR NUMBER ”, " 6 "."OPERATIONAL Y/N ? : "); 
,wherey());

ON LINE TESTING

void on_line_test(clock_t start_clk_time)
{
char answer; 
char *out_of_time="time"; 
char *terminate="terminate"; 
while! (clock()-start_clk_time)/CLKTCK < TESTTIME )

{
gotoxy(27.1); 
cprintf("SECONDS ELAPSED : %f\n", (clock 0 -start_clk time)/CLK TCK);

if (kbhitO)
(
answer = tolower(getch0 );

if( (answer == 1t•) || (answer == 's')) 
{
fitness -= 10; 
print_fitness ( );
}

else
t

if( answer == 'q' )
end_testing(terminate);

else

while(fflush(stdin) != 0) 

}

Ì
end_testing(out_of_time) ;

)

MAIN FUNCTION

void mainlint argc, char *argv[)) 
{
clock_t start_clk_time,- 

open_file();

liii



individual_number=Set_Up_Screen(atoi(argv[l])); 

start_clk_time= clock (); 

evaluate_sensors();

Set_Up_Screen_2(); 

on_line_test(start_clk_time);

liv



«include <stdio.h>
«include <conio.h>
« inc1ude <stdlib.h>
«include <string.h>
«include "minimum,h"
struct individual 

{
char chromosome[GENE_LENGTH]; 
int fitness;
} J

/* EACH INDIVIDUAL IS CONSTRUCTED OF TWO PARTS: */
/* A: THE CHROMOSOME */
/* B: THE FITNESS FIGURE ASSIGNED TO IT BY THE USER */

Struct individual pop[MAXPOP_SIZE];

void compare(void)
{
FILE *f_point; 
int iter; 
int itrb;
int already [20] ={00000000000000000000} 
int index=0;
int to do [20] ;
char *bufl=NULL; 
char *buf2=NULL; 
int res=0;

if ((f_point = fopen ("C: \\AUTO\\data\\minimum. fil11, "w+"))
== NULL)
{
fprintf(stderr, "Cannot open input file.\n"); 
exit(1);
}

fprintf (f_point, "\n\n TO DO: 11);
for(iter=l;iter<MAXPOP SIZE+1;iter++)

{
for(itrb=l;itrb<MAXPOP_SIZE+l;itrb++)

{
if (iter == already[itrb-1])

{
res +=1;
}

}
if(res==0)

{
fprintf(f_point,"\n %3d,",iter); 
bufl=pop[iter-1].chromosome;
for (itrb=l;itrb<MAXPOP_SIZE+l;itrb++)

{
if (itrb 1= iter)

{
buf2=pop [itrb-1] .chromosome; 
if((strcmp(buf1,buf2))== 0)

{
fprintf (f_point, 11 %3d, " , itrb) ; 
already [index] =itrb; 
index++;
}

}
}

}
else

res=0;
}

lv



}
/ * * * * * * * * * * * * * * * * * * * * * , * * * * * * * , * * * , * * * * * * * * * * * * * * * * * * * , * * * , * * * , , * * * * * * * * * * *

FUNCTION TO DISPLAY THE OLD POPULATION AND CONTROL THE 
OBTAINING OF FITNESS VALUES.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ----------

void getpop(void)
{

FILE *f_point; 
int iter; 
int itrb; 
char c; 
int number=0; 
char msg(10];

if ((f_point = fopen("c:\\auto\\data\\POPDATA.FIL", "rt+'')) == NULL)
{
fprintf(stderr, "Cannot open data file popdata.fil.\n"); 
exit(1);
}

fseek(f_point,SEEK_SET, 0);
for (number = 1 ; number<=MAXPOP_SIZE; number++)

{
if ( fscanf(f_point, "%s", pop[number-1].chromosome) == 0 ) 

printf("\nUnable to read in popdata.fil data");

)
}
void main(void)
{
getpop() ; 
compare()j
}

Ivi



/

OUTPOP.C
PROGRAM TO OUTPUT THE NEW GENERATION OF INDIVIDUALS.

CALLED BY SGA.C
     ............

»define CROSS 1
/* USED BY PREPROCESSOR */

#include "sga.h"
/* STANDARD HEADER FILE */

»include <stdio.h>
»include <stdlib.h>

extern struct individual 
{

int chromosome[GENE_LENGTH]; 
int fitness;

} ;
extern struct individual new_population[MAXPOP_SIZE]; 
extern struct individual old_population[MAXPOP_SIZE];

/* INITIAL DEFINITIONS CONTAINED IN SGA.C */

CONTROLLING FUNCTION CALLED FROM SGA.C.

void outpop()
{

FILE *fjoint; 
int iter; 
int nuinber=0;
int gene[GENE_LENGTH] = {0};

if ((f_point = fopen("c:\\auto\\data\\POPDATA.FIL", "r+")) == NULL)
{
fprintf(stderr, "Cannot open POPDATA.FIL for writing.\n"); 
exit(1);
> •

/* POPDATA.FIL CONTAINS THE INFORMATION ON THE TEN CHROMOSOMES */ 

fseek(f_point,SEEK_SET, 0);
for (number = 1 ; number<=MAXPOP_SIZE ; number++)

{for (iter=0;iter<GENE_LENGTH;iter++)
{
gene[iter]= new_population [number-1] . chromosome [iter] ; 
fprintf(f_point,"%d",gene[iter]);
>if (number !=MAXPOP_SIZE)
fprintf(f_point,"\n");

>
fclose(f_point);
}
void out_genei'ation_info (void)
{FILE *gen_data=NULL;

int iter; 
int itrb; 
int total=0; 
int topfit=0;

Ivi i



int subconverg_a=0.0 ; 
int subconverg_b=0.0 ;
double average;
double dummy;
double convergences. 0;

gen_data=fopen("C:\\auto\\data\\GEN_DATA.FIL","rt+") ,-
fseek(gen_data,0,SEEK_END);

fprintf(gendata,"\n");

for(iter=0;iter<MAXPOP_SIZE;iter++)
{
if(old_population[iter].fitness > topfit)

topfit = old_j?opulation [iter] . fitness ;
fprintf(gen_data,"%2d’",old_population(iter).fitness); 
total += oldjpopulation [itejr] .fitness;

}
for (itrb=0,-itrb<GENE_LENGTH;itrb++)

{
subconverg_a = 0.0; 
subconverg_b = 0.0;

for(iter=0;iter<MAXPOP_SIZE;iter++)

{
if (old_population[iter].chromosome[itrb] == 1) 

subconverg_a += 1;
eise

subconverg_b += 1;
}

dummy = (double)(subconverg_a - subconverg_b)/MAXPOP_SIZE; 
if (dummy <0)

dummy *= -1;

convergence += dummy;

)
convergence /= GENE_LENGTH;
average = (double)((double)total/(double)MAXPOP_SIZE); 
fprintf(gen_data," %3.2fJ", average); 
fprintf(gen_data," V2d>",topfit); 
fprintf(gen_data," %.4f1 ", convergence);

fclose(gen_data);

I v i i i



»include <stdio.h> 
»include «string.h>

»define I 555 
»define R 5.5

int main(void)
{

int i, j , k, 1; 
char buf [7] ; 
char ‘prefix = buf; 
char tp [20] ;
printf("prefix Sd 6o 8x 10.2e

"10.2f\n"); 
strcpy(prefix,"%"); 
for (i = 0; i < 2; i++)
{

for (j = 0; j < 2; j++) 
for (k = 0; k < 2; k++) 

for (1 = 0; 1 < 2; 1++)
{

if (i==0) strcat(prefix,"-");
if (j==o) strcat(prefix,"+");
if (k==0) strcat(prefix,"»");
if (1==0) strcat(prefix,"0");
printf("%5s |",prefix);
strcpy(tp,prefix);
strcat(tp,"6d |");
printf(tp,X);
strcpy(tp,"");
strcpy(tp,prefix);
strcat(tp,"6o |");
printf(tp,X);
strcpy(tp,"");
strcpy(tp,prefix);
strcat(tp,"8x |");
printf(tp,I);
strcpy (tp,'"') ;
strcpy(tp,prefix);
strcat(tp,"10.2e |");
printf(tp,R);
strcpy(tp,prefix);
strcat(tp,"10.2f |");
printf(tp,R);
printf (11 \n") ;
strcpy(prefix,"%");

}
)

return 0;
>

lix



Appendix F3 Neural Network Simulator Code

PROGRAM WHICH ACTS AS SIMULATOR FOR A NEURAL NETWORK DESIGNED

USING THE REDUCED COMPLEXITY NEURAL NODE MODEL AND GENETIC 
ALGORITHM DESIGN. OPERATES ON THE MOTOROLA EDUCATIONAL BOARD.

25/2/93

*/
#define SHOW_NET 0 
#define SHOW_SENSOR 0
»include <stdio.h>
»include "netless.h"

/* STANDARD HEADER FILE*/

TRANSFER OF OUTPUT FROM ONE NODE TO THE INPUT OF THE NEXT IS HANDLED 
AS FOLLOWS:

THE NODE WHICH IS OUTPUTTING KNOWS WHICH NODE IT IS OUTUTTING TO
AND IT MULTIPLIES IT'S OUTPUT BY A KNOWN WEIGHT FACTOR. THIS 
NUMBER IS THEN ADDED TO THE INPUT NODES EXISTING INPUT.

THE NODE RECEIVING THE INPUT HAS A SINGLE INPUT POSITION. THIS NUMBER
IS CHANGED BY THE INPUT FROM ANOTHER NODE HOWEVER THE INPUT NODE 
DOES NOT KNOW WHICH NODE IS INPUTTING.

/**************************************************************************** 
operation of network:

Numbers inputted are added to the exstant value in the receiving 
nodes input buffer.
The numbers from node[number].input

& from node[number].last are used to evaluate the 
inputsum of the node.

This inputsum number is then stored in the nodes node[number].last 
location.

node[num].last figure is then used to calculate the nodes output 
based on the gain characteristic of the nodes.

After all nodes have calculated and distributed their output the 
value of node[number].input is set equal to node[num].buffer and 
node[number].buffer is set to zero.

The level one nodes produce an output based on the input without 
buffering, i.e. if a senosry node detects any input then maximum 
frequency output is generated instantly without use of the 
calc_op() and sum_inputs() functions.

int GEN_RATIO=C) ; 
int NUM_NODES=0;

/* GLOBAL VARIABLES DEFINITION */

struct neuron 
{
int buffer; 
int input; 
int last; 
int offset;

lx



int weight[MAX_NO_OP]; 
int nextnode[MAX_NO—OP];
} node[MAX_NODES];

/* THE NEURON STRUCTURE IS KNOWN THROUGHOUT THE TEXT AS A NODE */
/* EACH STRUCTURE CONTAINS ALL THE INFORMATION PRETAINING TO A */
/* SINGLE NODE*/

int intarray[MAX_NODES*MAX_NO_OP*2]={l,2,3,4,5};
/* ARRAY WHICH STORES ALL THE NETWORK INFORMATION */

PEEK: FUNCTION TO READ FROM A SPECIFIC ADDRESS IN THE DEDICATED BOARDS 
MEMORY

 ..........

byte_t peek(address)
addr^t address

/* THE VARIABLE TYPES byte_t and adr_t ARE DEFINED IN NETLESS.H */

(
return(*address);

}

POKE: FUNCTION TO WRITE 'VALUE' TO A SPECIFIC ADDRESS IN THE 
DEDICATED BOARDS MEMORY.

w

void poke(value, address) 
byte_t value; 
addr_t address;

{
^address = value;

}

INIT_PIT: THIS FUNCTION SETS UP THE Pl/T FOR 8 BIT I/O.
PORT A IS THE INPUT PORT AND PORT B IS THE OUTPUT PORT. 
THE FUNCTION ALSO INITIALISES THE TIMER ON THE Pl/T.

void init_PIT()
{
poke(0x0 0,CNTRH) 
poke(0x0 0,CNTRM) 
poke(0x00,CNTRL) 
poke(0x01,TSR); 
poke(ZERO,PGCR); 
poke(ZERO,PSRR); 
poke(HI,PBDDR); 
poke(ZERO,PADDR) 
poke(0X01,TCR); 
poke(qBftc,CPRH) 
poke (oHmj, CPRM) 
poke(OxFA,CPRL) 
poke(OxAO,PACR) 
poke(OxAO,PBCR)
}

/* INITIALISE COUNTER VALUES
j  * tt
/  -k >i

/* INITIALISE TIMER STATUS REGISTER 
/* SETS MODE 0: UNIDIRECTIONAL 8 BIT OP.*/
/* DISABLES DMA & EXTERNAL INTERRUPTS */
/* SETS PORT B AS OUTPUT */
/* SETS PORT A AS INPUT */
/* INITIALISE TIMER CONTROL REGISTER */
/* INITIALISE COUNTER RESET VALUE
f * II
/* ?1 

/* SETS SUBMODE IX 
/* SETS SUBMODE IX

=> BIT I/O 
=> BIT I/O

(HIGH BIT)*/ 
(MIDD BIT)*/ 
(LOW BIT) */ 

*/
*/

CREATE_NODES: THIS FUNCTION USES THE ARRAY VALUES WHICH ARE DOWNLOADED
FROM THE PC TO THE DEICATED CONTROL BOARD TO CONSRUCT THE NETWORK

lxi



int count; 
int node_num;

for(node_num=0;node_num<MAX_NODES;node_num++)
{

#if SHOW_NET
printf("\t%d\n",node_num);

#endif
node[node_nura].offset = 0; 
node[node_num].input = 0; 
nodetnode_num].buffer = 0; 
node [node_num] .last = 0;

if (node_num >= NUM_SENSORS + NUM_MOTORS)
/* IF NOT AMONG THE EIGHT PERMENANT NODES*/

{
if (GEN RATIO != 0)

/* IF THE GENERATOR NODE RATIO (WHICH IS DETERMINED

void create_nodes0
{

*/
/* EMBRYONICALLY) IS NONZERO THEN ENTER LOOP*/

{
if ((node_num % GEN_RATIO) == 0)

{
node[node_num].offset = 25500;
node[node_num].last = node[node_num].offset;
}
/* IF THE NODE NUMBER IS A MULTIPLE OF THE GENERATOR */
/* NODE RATIO THEN ADJUST NODAL OFFSET ACCORDINGLY */
/* I.E FOR CONSTANT MAXIMUM OUTPUT*/

for(count=0;count<MAX_NO_OP;count++)
{
node[node_num].nextnode[count] =

intarray[node_num*MAX_NO_OP*2+count] ; 
node[node_num].weight[count] =

intarray[node_num*MAX_NO_OP*2+(count+MAX_NO_OP)]
#if SHOW NET

ttendif

printf("\t\t%d\t%d\n",node[node_num].nextnode[count] 
node[node_num].weight[count]);

SUM_INPUTS: THIS FUNCTION OPERATES ON THE NODE'S INPUTS AND
STORED INPUT VALUES TO EVALUATE THE OVERALL INPUT FOR THE CURRENT 
TIME STEP.

INPUTS ARE TREATED AS CURRENTS (I.E. OUTPUT WEIGHTS ARE TREATED 
AS CONDUCTANCES AND OUTPUT VALUES AS VOLTAGES. )

INPUT = ( CAPACITANCE * LAST INPUT ) + ( UPDATE TIME * NEW INPUT)
iWÜiÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄAÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

( CAPACITANCE + ( UPDATE_T IME / RE SIS TANCE ) )

***************************************************************************/

void sum_inputs(num) 
int num;

long Ql;{

lxii



/* INPUT CHARGE AT TIME (t)*/

int QO;
/* INPUT CHARGE AT TIME (t-1)*/

int input; 
int last; 

input = node [num] . input 
QO t node [num] .last;

Q1 = (((CAP*Q0)+(UDT_TME*input))/(CAP+(UDT_TME/RES)>);
if ( Ql > 25500)

node[num].last = 25500 ;
/* UPPER LIMIT ON INPUT VALUE*/

else
if ( Ql < nodetnumj .offset )

nodetnum].last = node[num].offset;
/* NODE MUST HAVE A PREVIOUS OUTPUT WHICH EXCEEDS THE OFFSET */

else
node[num].last = (int)Ql;

/* IF BOTH CONDITIONS SATISFIED THEN VALUE IS THE No. Ql */

CALC_0P: THIS FUNCTION EVALUATES THE OUTPUT ACTIVATION LEVEL FOR A
NODE BASED ON IT'S BUFFERED INPUT VALUE AND GAIN CHARACTERISTIC.

int calc_op(num) 
int num;

{
int presentinput; 
int input; 
long outval = 0;

presentinput = node[num].last; 
input = node [¡rum] .input;

if ( (num==MOTOR_A> I I (num==MOTOR_B) )
{

outval += 50;
outval += {input/255) * GAIN ; 
if (outval > 100)

outval = 100; 
if (outval <0 )

outval = 0; 
return((int)outval);

)
/* SPECIAL CASE FOR OUTPUT MOTOR CONTROLLING NODES SINCE THEY*/
/* ARE BIPOLAR MOTORS*/

else if (present_input > THRESHOLD)
{
outval = {((present_input/255) * GAIN) f LOW_ACT_LIMIT); 
if (outval > 100)

outval = 100;
} /* IF NORMALISED (0-100) BUFFERED INPUT VALUE IS GREATER THAN */

/* THE THRESHOLD VALUE THEN THE OUTPUT IS GREATER THAN ZERO AND */ 
/* IS LIMITED TO 100 */

else outval = 0;
return ((int) outval)

lxiii



/

OUTPUT: THIS FUNCTION PLACES THE CALCULATED OUTPUT OF THE GIVEN NODE 
IN THE INPUT BUFFER OF THE CONNECTED NODES.

void output(num,outval) 
int num; 
int outval;

{
int count ; 
int outtput; 
int nextnode; 
int weight;

•k -k -k j

for(count = 0; count < MAX_NO_OP ; count++)
{
nextnode = node[num].nextnode[count]; 
weight = node[num].weight[count];
outtput = outval * weight; 
node[nextnode].buffer += outtput;

/* THE CALCULATED OUTPUT VALUE IS WRITTEN TO THE NODES INPUT */
/* BUFFER TO ALLOW SYNCHRONISATION OF I/O WITH TIME STEPS */

}
}

UPDATE_1: FUNCTION WHICH OBTAINS INPUTS FROM THE Pl/T AND WRITES 
THEM TO THE SENSOR 'NODES’.

'kit'k'k'k'k'k'k-k-k'k'k'k-k'kir'k'k-k'k-kic'k'k'k'k-k'kicir'k'k-k'k'kirit'k'k-kie-k-k'k'k'k'k-k'k'k'k'k'k'k'k'k'kik'k-k-k'k'kir'k-k'k'k'k'k'k'k'k'kit'k j

void update_lev_l ()
{

int num=0;
int input;
int sensor;
int output_value;
static int andmask[8]={1,2,4,8,16,32,64,128};

sensor=peek(PADR);

#if SHOW_SENSOR
if ( printf (“\n%s%d\t11, "sensor : ".sensor) == -1 )

{
printf("\n\n\t%s","error in printf in update_lev_l");
)

ttendif

for (num=0;num<NUM_SENSORS;num++) 
{
if(sensor t andmask[num]) 

output_value=100;
else

output_value=0;

output(num,output_value); 
}

/* ■ k - k - k - k ' t c i r ' k - k i c ' k - k i c i T ' k - k - k ' k - k - k i t i f k i r i f k - k i r ' k 'k 'k 'k - k - k i c k 'k i i - k 'k - k - k - k - k 'k - k - k - k - k - k 'k ^ - k - k - k 'k 'k 'k - k - k 'k i c i t ' k ' k i f k - k - k i f k i c k i r i e - k

UPDATE_LEV_2: FUNCTION EXAMINES ARRAY VALUES AND CONTROLS THE 
EVALUATION OF THE OVERALL INTERNAL NETWORK'S OUTPUT. 
(HIDDEN LAYERS)

lxiv



int num,- 
int outval;

for (num=NUM_SENSORS+NUM_MOTORS ; num < NUM_NODES ; num++)
/* UPDATE EACH NODE */

{
sum_inputs(num);

/* CALCULATE THE INPUT*/
outval = calc_op(num);

/* EVALUATE THE OUTPUT*/

output(num,outval);
/* OUTPUT THE VALUE TO THE CONNECTED NODES INPUT BUFFERS*/

)

UPDATE_LEV_3: UPDATE THE NODES CONCERNED WITH THE ACTIVATION OF MOTORS

void update_lev_30 
{

int inputsum; 
int output_A,output_B; 
int mot_val; 
int outval;

Sum_inputS(MOTOR_A); 
outval = calc_op(MOTORA); 
output_A = (outval*16 / 100) ;

/* NORMALISATION*/

if(output_A > 15)
output_A = 15;

/* OUTPUT LIMIT ON MOTOR*/
#if SHOW_SENSOR

printf("%s%d\t","Motor A : ",(output_A-8));
#endif

sum_inputs(MOTOR_B); 
outval = calc_op(MOTOR_B);
output_B = (OUtval*16 / 100);

/* NORMALISATION*/
if(output_B > 15)

output_B = 15;
/* OUTPUT LIMIT ON MOTOR*/

«if SHOW_SENSOR
printf("%s%d","Motor B : ",(output_B-8));

#endif

output_B = output_B * 16 ;
mot_val = ((output_A) | (output_B));

/* COMBINE THE TWO 4 BIT MOTOR VALUES INTO ONE 8 BIT NUMBER */
poke(mot_val,PBDR);

/* OUTPUT THE VALUE TO THE PI/T*/

void update_lev_2()
{

Ixv



UPDATE NET: NETWORK UPDATE CONTROLLER.

void update_net()
{

int num; 
int input ; 
int buffer; 
int ipsum;

/* INPUT SUM*/
int output;

while(1)
{update_lev_l () ;

/* INPUT SENSORS*/
update_lev_2 () ;

/* HIDDEN LAYERS*/
update_lev_3 () ;

/* OUTPUT MOTORS LAYER*/

/* UPDATE ALL 3 LEVELS (INPUT / HIDDEN / OUTPUT )*/
for (num=0;num<MAX_NODES;num++)

{
node[num].input = node[num].buffer; 
node[num].buffer = 0;
>

/

POLL_TSR. ALLOWS TIMING OF UPDATE ON DEDICATED CONTROL BOARD.
THE UPDATE TIME STEP IS CHANGED BY ALTERING THE INITIALISATION 
ROUTINE OF THE PIT.

void poll_TSR()
{
while ( (peek(TSR)&(0x01)) !=(0X01)>;
)

MAIN FUNCTION

void main()
{
init_PIT(); 
create_nodes(); 
while(1)

/* CONTINUE LOOPING UNTIL SOFTWARE OR HARDWARE RESET IS APPLIED*/

{
update_net(); 
pollJTSRO ;
}

}

Ixvi



* STANDARD HEADER FILE FOR USE WITH SBC 680 00 BOARD *
* *

typedef unsigned char byte t
typedef char *addr_t;

»define PGCR (OxOEOOOl) /* PORT GENERAL CONTROL REGISTER */
»define PSRR (0X0E0003) /* PORT SERVICE REQUEST REGISTER */
»define PADDR (0X0E0005) /* PORT A DATA DIRECTION REGISTER */
»define PBDDR (0X0E0007) /* PORT B DATA DIRECTION REGISTER */
»define PIVR (OxOEOOOB) /* PORT INTERRUPT VECTOR REGISTER */
»define PACR (OxOEOOOD) /* PORT A CONTROL REGISTER */
»define PBCR (OxOEOOOF) /* PORT B CONTROL REGISTER */
»define PADR (OxOEOOll) /* PORT A DATA REGISTER */
»define PBDR (0X0E0013) /* PORT B DATA REGISTER */
»define TCR (0X0E0021) /* TIMER CONTROL REGISTER */
»define TIVR (0X0E0023) /* TIMER INTERRUPT VECTOR REGISTER */
»define CPRH (0X0E0027) /* COUNTER PRELOAD REGISTER (HIGH) */
»define CPRM (0X0E0029) /* COUNTER PRELOAD REGISTER (MIDDLE) */
»define CPRL (0X0E002B) /* COUNTER PRELOAD REGISTER (LOW) */
»define CNTRH (0X0E002F) /* COUNTER REGISTER HIGH */
»define CNTRM (0x0E0031) /* COUNTER REGISTER MIDDLE */
»define CNTRL (0X0E0033) /* COUNTER REGISTER LOW */
»define TSR (0X0E0035) /* TIMER STATUS REGISTER */
»define ZERO (0X00)
»define HI (OxFF)

»define MAX_NODES 5 0
»define NUM_SENSORS 6
»define NUM_MOT OR S 2
»define MOTOR A NUM_SENSORS
»define MOTOR B NUM SENSORS+1
»define LOW_ACT_LIMIT 100
»define THRESHOLD 10000
»define GAIN 1 /* Unity Gain Characteristic */
»define MAX_N°_OP 10
»define UDT_TME 0.0 01 /* Network update time */
»define RES 5000
»define CAP 0.01/RES

lxvii


