
Object Oriented
Im plementation 8z Design

A Thesis by: G e r a r d M e C l o s k e y BSc .
Supervisors: D r . T o n y M o y n i h a n P h D .

Mr . R e n a a t V e r b r u g g e n M .M .I.

Subm itted to
D u b l in C it y U n i v e r s i t y
C o m p u t e r A p p l i c a t i o n s

for the degree of
M a ster o f Science

August 1989

Declaration No portion of this work has been subm itted in support of an
application for another degree or qualification in the Dublin City University or
any other University or In s titu te of Learning.

A ck n o w led g e m en t

I would like to express my appreciation to Tony Moynihan, Renaat
Verbruggen and Martin Doherty for all their help and encouragement
while working at Dublin City University. To the Fitzsimons family for
their patience and encouragement while writing this thesis,

and most of all to my Mum and Dad for their support while completing
these studies.

O b j e c t O r i e n t e d

I m p l e m e n t a t i o n & D e s i g n

Abstract

Author: G erard Me Closkey

As the power and speed of com puters increase so too are the num ber of applica­
tions to which they can be applied. U nfortunately software development is not
perform ed using the approach taken by hardw are engineers where development
proceeds from previous innovations. This has caused software applications to be
developed a t a much slower ra te th an their hardw are counterparts.

T raditional software development usually s tarts from scratch, despite the com­
m onality th a t exists between various applications. The O bject Oriented Ap­
proach is different from the conventional approach in th a t it encourages the
reusing and extending of existing software modules in a m anner similar to ha rd ­
ware development. The characteristics of the approach (i.e. inheritance, encap­
sulation and dynam ic binding) signals the need for new methodologies and new
im plem entation techniques.

Using the O bject Oriented language Objective-C for the creation of an “Inte­
grated M anagem ent Process W orkbench” various issues associated with this ap­
proach are discussed in this text. The “Integrated M anagem ent Process W ork­
bench” was an Esprit project in which Dublin City University was involved along
w ith a num ber of partners from sites throughout Europe. The Calendar and Risk
Analysis tools developed in Dublin for the workbench provided the development
application on which the discussion is centered.

Contents

1 Object Oriented Terminology 1

1.1 In troduction ... 1

1.2 Thesis Overview... 2

1.2.1 Integrated Management Process Workbench (IMPW) . . . 3

1.3 Birth of Object Oriented languages.. 4

1.4 W hat makes a language Object Oriented ? .. 5

1.4.1 E ncapsulation... 6

1.4.2 In h e r i ta n c e ... 9

1.4.3 Other Object Oriented characteristics 11

1.5 Summary ... 12

2 Objective-C 13

2.1 In troduction ... 13

2.2 Objective-C data ty p e s 14

2.2.1 Class and Instance O bjects.......................... 14

2.3 Messages.. 15

i

2.4 M ethods.. 17

2.5 Class Definition F i le s .. 18

2.6 Self and S uper.. 21

2.7 Objective-C Inheritance L ib ra ry 22

2.7.1 Foundation C lasses ... 23

2.7.2 Collection C lasses... 25

2.8 Tying it all together . .. 26

2.9 Objective-C Compiler... 28

2.10 S u m m a ry ... 30

3 Risk Analysis Tool 31

3.1 In troduction ... 31

3.2 Risk Tool Overview.............. 32

3.2.1 Tool In p u t ... 32

3.2.2 Tool O u tp u t .. 32

3.3 Important C lasses....................... 33

3.3.1 The Risk C l a s s .. 33

3.3.2 The Rule C l a s s .. 34

3.3.3 The Text C l a s s .. 38

3.3.4 The Measure C la s s .. 39

3.4 Types of RiskTool U s e r s 40

3.4.1 SuperUser F unc tiona lity .. 41

ii

3.5 S u m m a ry .. 52

4 C a len d ar Tool 54

4.1 Introduction... 54

4.2 Calendar O verv iew .. 55

4.3 Calendar P re se n ta tio n .. 56

4.4 Date C lass.. 58

4.4.1 Storing the D a t e .. 59

4.4.2 The Date Collection ... 61

4.4.3 Presentation of D a tes ... 62

4.5 CALLoad c l a s s ... 63

4.6 Task C lass .. 64

4.7 CalAutomata and State classes .. 65

4.8 Operation m o d e s ... 65

4.8.1 Open and Interval Modes .. 67

4.8.2 Task Mode ... 68

4.9 Event D e ta i ls .. 68

4.10 Summary .. 70

5 T h e W orkbench Interfaces 71

5.1 Introduction... 71

5.2 A u to m a ta .. 72

3.4.2 The P ro ject M a n a g e r ... 47

iii

5.3 Graphie C om patib ility .. 76

5.4 Display C onstraints.. 78

5.4.1 Window D isp lays... 79

5.4.2 Composition of riskdriver w indow ... 83

5.4.3 Top row d e ta i l s .. 84

5.5 Tool In teraction ... 86

5.5.1 Using the mouse ... 87

5.5.2 Textual i n p u t ... S8

5.6 Calendar View ... 89

5.7 S u m m a ry .. 91

6 O b jec t iv e -C Traps and P itfa l ls 92

6.1 In troduction ... 92

6.2 Objective-C Economics.. 93

6.2.1 Memory C osts .. 93

6.2.2 Code S i z e .. 96

6.2.3 Binary S i z e ... 98

6.2.4 Messaging O v e rh e a d ... 98

6.3 Error C lin ic ...100

6.3.1 Class Definition Troubles.. 101

6.3.2 Erroneous M ethods..102

6.3.3 Main Module S tructure..103

iv

6.3.4 Printing Errors and Error Messages104

6.3.5 Collection E r r o r s ..105

6.4 Garbage C ollection ...106

6.5 Inheritance ... 107

6.6 S u m m a ry ...107

7 O b jec t O riented D esig n 109

7.1 In troduction ... 109

7.2 Booch M o d e l .. 110

7.3 Hierarchical Object Oriented design(IIO O D)...................................... 112

7.4 Block Design ... 115

7.5 Object Oriented Structured D e s ig n ..116

7.6 Learn by Example ...US

7.7 Methodology for workbench t o o l s ... 118

7.8 Designing Resusable C lasse s ...121

7.9 S u m m a ry ...123

8 F u tu re D irec tio n s 124

8.1 In troduction 124

8.2 Future Enhancements to O bjective-C ...125

8.3 Future advancements to the Workbench ...127

8.4 User Interfaces ... 128

8.5 Conventional System s..129

v

8.6 O bject Oriented la n g u a g e s .. 130

8.6.1 Naming C o n v e n tio n s 131

8.6.2 Class Library S t r u c tu r e s ... 131

8.6.3 D e s ig n .. 131

8.7 S u m m a ry 134

vi

List of Figures

1.1 Integrated Management Process W orkbench 4

1.2 Encapsulated O b je c t ... 7

1.3 Bank O b je c ts .. 8

1.4 An object has two p a r t s ... 9

1.5 Inheritance M echanism .. 10

2.1 Object D ecla ra tio n .. 14

2.2 Message S y n ta x ... 15

2.3 Message G lossary .. 16

2.4 Objective-C Message Conventions... 16

2.5 Objective-C Statements .. ' 17

2.6 Room Class Definition F i le ... 20

2.7 Method S tru c tu re .. 21

2.8 Objective-C Hierarchical Inheritance S truc tu re 24

2.9 Objective-C in Memory.. 27

3.1 Instance Variables for the Risk Class 34

vii

3.2 Instance Variables for the Rule C la s s .. 35

3.3 Storing Rule O b je c ts ... 36

3.4 Sample R u le s .. 37

3.5 Rule and Txt objects... 39

3.6 Initialisation of Riskdriver Instance Variables.................................... 42

3.7 Riskdriver In s ta n ce .. 42

3.8 Deleting Riskdrivers ... 44

3.9 Getting risk values from the d a tab ase ... 48

3.10 Rule operands for Rule Number five.. 49

3.11 Operand and Operator queues... 50

3.12 Rule T r e e .. 52

4.1 Calendar Tool Classes .. 56

4.2 Date Classes Instance V ariab les.. 59

4.3 Date Conversion Formula... 60

4.4 Task Class Instance V ariab les ... 65

4.5 Calendar A utom ata ... 66

4.6 Calendar View ... 67

4.7 Calendar In terrogation .. 69

5.1 Generic execute m e th o d ... 73

5.2 Risk A u to m a ta ... 74

5.3 Automata within an au to m ata .. 75

viii

5.4 Instance Variables for R iskA utom ata ... 76

5.5 followingState m e th o d .. 77

5.6 Ideal environment for graphic packages.. 78

5.7 Realistic graphic package environment ... 79

5.8 Window l a y o u t ... SO

5.9 Tree p resen ta tio n ... 81

5.10 Final window layout ... 82

5.11 Presentation of Tool and Project nam es... S5

5.12 Initial Risk Window ... 87

5.13 Amend Riskdriver W indow.. 88

5.14 Calendar Interface .. 90

6.1 Object O v e rh e a d .. 94

6.2 Objective-C required in memory .. 95

6.3 Objective-C productiv ity ... 97

6.4 Message Overhead ... 99

6.5 Objective-C perform ance..................................... 100

6.6 Saving messaging t i m e ..101

6.7 Method S y n ta x .. 103

7.1 Risk B ooch-gram ... 112

7.2 HOOD diagrams ... 113

7.3 Message passing with HOOD ... 114

ix

7.4 HOOD in h e rita n c e ..115

7.5 Object Oriented Structured Design of the C a le n d a r117

7.6 Object Oriented Structured Design for inheritance............................... 120

8.1 Ideal Objective-C environment..126

8.2 Possible Window Hierarchy .. . 129

8.3 Object Database Hierarchy...133

x

Chapter 1

Object Oriented Terminology

1.1 In tr o d u c t io n

During the past couple of decades com puter professionals have seen a num ber of
advances in their industry. Most of these changes have been directed towards the
area of com puter hardw are. Gradual refinements with hardw are technology have
m eant quantum jum ps in the power and facilities offered by processors, whose
range of uses may vary from controlling w ater tem peratu re in a washing machine
to controlling an aircraft’s flight. The advancem ents in software over the same
tim e period m easure poorly in comparison w ith these hardw are advances.

One of the most contrasting differences between software and hardw are has
been the way in which project development is performed. W hen designing elec­
tronic circuitry for com puter hardware, large portions of the design are m ade up
from circuits previously designed and tested. Innovations in com puter hardware
use a certain am ount of inherited work and design from previous accomplishments
in this area.

W ith com puter software a different approach is used, com puter scientists
usually start writing code from scratch. The professional com puter person will
have a num ber of design methodologies in his tool kit plus a num ber of library
routines to help develop a com puter system. However no a ttem p t will be made
to inherit tried and tested software from another program m er for application
development. Software people instead will spend time and care developing al­
gorithm s and tools similar to what m any other people in their profession have
done and continually repeat. Com puter systems developed today share a large

1

C H A P T E R 1. O B J E C T O RIE NTE D T E R M I N O L O G Y 2

am ount of com m onality w ith thousands of other packages developed during the
past decade. Algorithms using sorts, linked lists and binary trees continually
recur in com puter systems. For the software professional rew riting and testing
these algorithm s, their work may seem analogous to reinventing the wheel.

Object Oriented languages introduce an approach which unlike conventional
languages, encourages reuse of code so th a t factors associated w ith hardw are such
as high quality, correct, robust, extendible, reusable and com patible units can
be applied to software[Mey 87]. This thesis looks a t the characteristics which
make a language O bject Oriented and then investigates how it is applied to the
areas of im plem entation and design. In practice the construction of code should
not be considered before analysis and design has taken place. However as if to
underline the difference between Object O riented and conventional approaches
the thesis starts w ith a discussion on im plem entation before design. This is done
to introduce the concepts of O bject Oriented languages to the naive reader as
early as possible.

1.2 T h es is O v erv iew

T he first chapter describes the characteristics which make a language Object
Oriented and the ’’Integrated M anagement Process W orkbench” which was con­
structed using O bject O riented methodologies. The O bject Oriented language
used for the development of this workbench is Objective-C, which is a hybrid lan­
guage consisting of C and Smalltalk. The second chapter in the thesis, explains
some of the basic statem ents and syntax required for beginning development
in this environm ent. The following two chapters describe workbench tools (i.e.
Risk and Calendar) which have been constructed using these principles giving
additional examples of Objective-C statem ents whenever appropriate.

C hapter five talks about the graphic interface used for the creation of these
tools and how it interacted w ith the Objective-C environm ent. C hapter six moves
away from the creation of the IM PW using Objective-C, towards studying the
economics of the approach. This chapter investigates w hat additional price has
to be paid for an O bject Oriented environment such as Objective-C, in term s of
machine space, code size, development tim e, operation efficiency etc.

The last two chapters concentrate on design, discussing the various ap­
proaches to be adopted when using Object O riented environments, and the one
th a t was selected for the development of the IM PW . T he thesis ends by taking a
brief look into the future, role of Object Oriented languages.

C H A P T E R 1. O B J E C T O RIE NTE D T E R M I N O L O G Y 3

Throughout this tex t explanations relating to O bject Oriented program ­
ming, the Objective-C environm ent, and the IM PW were kept as simple and non
technical as possible. Hopefully this will encourage as m any readers as possible
who are interested in O bject Oriented technology and workbench environments,
to read this tex t. W hile aiming mainly at the newcomer to the approach, it is
hoped th a t some of the tex t will be of use to people already fam iliar w ith Ob­
ject Oriented program m ing and design, pointing them towards new ideas for this
relatively new technology.

1.2.1 Integrated Management Process Workbench (IM PW)

My interest in O bject O riented program m ing and design was triggered by in­
volvement in the development of the In tegrated M anagem ent Process W orkbench
(IM PW) a project sponsored by the European Esprit (European Strategic Re­
search Program Inform ation Technology) com m ittee. Throughout this tex t there
will be a num ber of references to the IM PW , so its explanation is given now so
th a t the reader m ay understand its architecture and where the tools created us­
ing Objective-C, fit in th is environment. The overall function of the IM PW was
to develop a workbench which would help project m anagers in planning software
projects. The IM PW perm itted integrated planning of tasks, staff allocation,
quality m anagem ent and risk assessment. It also provides extensive m onitoring
facilities to enable the project manager to control a project. The size of this
project and the geographical distribution of software partners contributed to the
decision for adopting an O bject Oriented approach.

The architecture of the workbench consists of three m ain components which
can be thought of as th ree objects as listed below.

In fo rm a tio n S y s te m (IS) consists of a relational database system holding the
details of the project and the software engineering characteristics. It is linked to
a Prolog system containing knowledge about the m ethods and tools of software
m anagem ent and a docum ent storage system based on UNIX filestore. By using
a database containing records of previous projects, as well as the current project
coupled to an inference engine, the workbench can provide decision support and
expert system facilities to managers.

M a n a g e r W o rk b e n c h In te r f a c e (M W I) comprised of the I /O m anager
responsible for all interactions with the m anager and the workbench controller
responsible for tool control.

C H A P T E R 1. O B J E C T O RIE N TE D T E R M I N O L O G Y
IMP WORKBENCH

cs II W I

ESPfVT PROJECT PtW

Figure 1.1: Integrated M anagement Process W orkbench

C o m p u ta t io n a l S y s te m (C S) includes a range of tools and utilities, such as
the Risk Analysis, Estim ation and Resource m onitoring tools.

A translato r exists w ith the IS so th a t when com ponents are communicating
w ith the IS their messages are first translated into the formal language of the IS
so th a t they can be acted on by the IS controller.

1.3 B ir th o f O b jec t O rien ted la n gu ag es

The concept of O bject Oriented languages was first developed more than twenty
years ago. Simula67 developed in Oslo 1967[Dah 66] was the first O bject Oriented
language. However despite grouping software modules into objects the language
failed to receive widespread recognition. It was Smalltalk[Gol 83] which built on
the concepts of Simula67, adding the inheritance property th a t proved, the inno­
vation, which for many people separates conventional th ird generation languages

C H A P T E R 1. O B J E C T O R IE N T E D T E R M I N O L O G Y 5

from O bject Oriented languages, which m ade the real breakthrough.

B ut why has it taken the com puter industry almost twenty years to bring
the concept of Object O riented languages to prominence? The reasons for Object
Oriented languages becoming popular can be a ttrib u ted to a num ber of factors.

• The storage space provided by com puter chips has
increased while the price has decreased.

• Increased popularity of iconic interfaces introduced
by the M acintosh, where everything is displayed as
iconic objects.

• Continual backlog of software projects which still
haunts m any DP departm ents, a new approach is
needed where the code is more reusable and reli­
able.

O bject Oriented languages introduce a new view for software development,
one where more emphasis is placed on reusable and hence more reliable software.
Unlike m ore trad itional program m ing m ethods th a t are based on concepts such
as d a ta flow or m athem atical logic O bject Oriented program m ing directly models
real world entities. During the past decade O B JE C T O RIEN TED program m ing
has become a popular buzzword in the com puter industry. As this popularity has
increased, so too has the num ber of object oriented languages in the commercial
m arketplace. The list of O bject Oriented languages goes from Simula and LISP
to Smalltalk-SO, C + + , O bject Pascal, Objective-C, Eiffel etc, each vary in syntax
and in w hat mechanisms they offer, bu t they all claim th a t they are object
oriented.

1.4 W h a t m ak es a lan gu age O b jec t O rien ted ?

Because commercial object oriented languages are still in their infancy no in ter­
national standards have been set to determ ine w hat an object oriented language
should be composed off. Conversations as to w hat features a language must have,
to be categorised as O bject Oriented will continue for some years to come. Simi­
lar problems existed when database technology became available. Some database

C H A P T E R 1. O B J E C T O RIE N TE D T E R M I N O L O G Y 6

people still argue w hether a database has the correct characteristics which make
it relational or non relational.

D ifferentiation between w hat does and w hat does not m ake languages Ob­
ject O riented will not be discussed here. Instead this chapter concentrates on the
m ain characteristics th a t are desirable for an O bject Oriented language to have.
We will s ta r t by defining the object.

O bject Oriented program m ing is as the nam e suggests program m ing in
objects, bu t w hat exactly is an object?. W ith O bject Oriented program m ing
an object may be anything the program m er wishes, surrounded by a num ber of
related procedures.

O b je c t : D e f n some data , a group of operations on th a t data,
and a mechanism for selecting an operation given
a command.

Conceptually an object can be thought of as a machine capable of performing
some predefined actions in response to messages.

1.4.1 Encapsulation

The main characteristic of an O bject Oriented language and one which is at the
heart of the whole approach is d a ta encapsulation which is unlike conventional
program m ing languages where the da ta and procedures are taken as two seperate
com ponents. O bject Oriented systems combine the d a ta and the procedures. This
encapsulated m odule is known as the object. W ith the O bject Oriented approach
the da ta which is surrounded by a num ber of procedures is private to the object.
The d a ta encapsulated may only be m anipulated by one of these surrounding
procedures. The model below in figure 1.2 shows an object -m y B a n k A c c o u n t.
The center contains the various da ta associated w ith - m yBankAccount i.e. name,
address, tele No, sex, account num ber etc. The procedures surrounding the da ta
are the operations which may be performed by th a t object.

The procedures form a wall of code around the objects da ta , whereby all
access is handled by one of the ob ject’s procedures built exactly for th a t func­
tion. For example when bank interest is added to m yBankAccount, the interest
procedure will handle this operation. Unlike conventional languages a significant
change has been m ade in the role played by data. Using conventional languages
the user would have been responsible for applying the correct d a ta and data types

C H A P T E R 1. O B J E C T O RIE N TE D T E R M I N O L O G Y 7

Figure 1.2: Encapsulated O bject

eg. the correct am ount and the correct form at m ust be specified before the bank
interest is calculated. W ith the O bject Oriented approach the user only has to
specify the procedure interest leaving the rest to the O bject O riented mechanism.

This simple example underlines one of the m ain advantages of Object Ori­
ented Program m ing, the emphasis on the user to supply the correct d a ta in the
correct form at has been removed. The responsibility has shifted to the supplier
of the procedure to supply a correct, efficient, and reliable procedure. Not only
does this reduce user inpu t bu t more im portantly it reduces the num ber of things
the user needs to know about the system. In the example above the user is only
concerned th a t the correct interest is added to his savings. How this is performed
is not im portan t, so long as it performs its function correctly when asked to. The
object knows its own private da ta , it only has to call the interest procedure which
is an operation th a t can only be performed on the d a ta inside the object. Another
benefit of this technique, is th a t changes can be m ade inside the encapsulated
object w ithout affecting applications using it. The user of an object only sees the
services provided by an object, not how the actual service is implemented. The
operation for calculating interest can be changed w ithout affecting the user of
this procedure, as long as the external view of the procedure remains the same.

C la sses a n d In s ta n c e s W hen the bank system above needs other accounts,
duplicating the procedures and surrounding them with d a ta for each new bank
account as in figure 1.3 would be very wasteful. Copying the code for each new
account and changing all the account objects when a change is m ade to one of

C H A P T E R 1. O B J E C T O RIE N TE D T E R M I N O L O G Y 8

the procedures, say the interest routine again, would be regarded as tedious to
say the least. There would also be the problem of space due to copying similar
procedures. Having a system full of duplicate objects is not only wasteful causing
storage problems in large systems, where many objects are active simultaneously
bu t it also increases m aintenance when a change has to be m ade to a procedure.
If the interest ra te has to be changed in the example above it would have to be
changed for all objects which m ay exist.

myAccount
hisAcount

Figure 1.3: Bank Objects

Most O bject Oriented languages, Objective-C included make a distinction
between the description of the object and the object itself[Rob 81]. Many similar
objects are described by some general description. This description of an object
is called a class (or shared p art), since a class can describe a whole set of related
objects. Each object described by a class is called an instance (or private part) of
th a t class. The diagram in figure 1.4 shows this more economical representation
adopted by most O bject O riented languages.

In program m ing language research, information hiding (encapsulation) has
been the guiding principle in the development of abstract d a ta systems found in
languages such as Alphard, CLU and Ada. W hile many of these systems lack
the concepts of inheritance, they constitu te an im portan t class of system called
’’O bject Based Systems” [Weg 88].

CH APTER 1, OBJECT ORIENTED TERM INO LO GY
myACCOlJn, hisAccount herAccount

(-------------------
A/C 7434
Name: Leo

Balance: S4.9S

A/C 2876
Name: Gerard

Balance: 3452.43

A/C 6521
Name: Rose

Balance: 321.90

Figure 1.4: An object has two parts

1.4.2 Inheritance

Inheritance is the m ajor feature distinguishing Object Oriented program m ing
systems from conventional program m ing systems and O bject Oriented languages
from object based systems. Inheritance increases code reuse by allowing the
program m er to inherit code from generic classes[Hal 88]. This feature means
th a t the program m er dose not have to redesign each new class of object explicity.
Inheritance perm its generic operations to be inherited in the way we inherit
knowledge.

The tree in figure 1.5 shows a subset of the anim al heirarchical structure.
From this diagram we know th a t Peter and Leo are both men and will therefore
inherit all the characteristics which are common to men. Details of how many
legs, arm s, bones in the body is determ ined autom atically from the parent nodes
in the tree. T he inheritance of objects using O bject Oriented languages follow a
similar p a tte rn , the knowledge inherited is the d a ta and procedures from parent
objects. By inheriting the procedures and da ta types common to objects not only
is space saved, but also m aintenance is reduced. Procedures common to many
objects can be m aintained in isolation leaving the calling object unaffected.

This makes inheritance a powerful tool for building systems, by organising
objects into related groups and using previously defined procedures. W ithout in­
heritance objects would be freestanding units, which would have to be developed
from scratch. Any consistency between objects inside com puter systems would

C H A P T E R 1. O B J E C T O RIE N TE D T E R M I N O L O G Y 10

Figure 1.5: Inheritance Mechanism

only be achieved through discipline by the programmer.

O bject Oriented languages which perm it inheritance m ay sim ulate similar <-
hierarchical trees into com puter systems. W hen an object inherits similar knowl­
edge i.e. procedures and data, the work required for am ending and extending
a com puter system is greatly reduced. The fact th a t code already exists in in­
herited objects substantially reduces the am ount of code to be developed by the
program m er. The power of encapsulation and inheritance is optim ised by cre­
ating carefully designed objects, where changes may be m ade to objects causing
little or no effect on other object modules.

C H A P T E R 1. O B J E C T O RIE NTE D T E R M I N O L O G Y 11

1.4.3 Other Object Oriented characteristics

Encapsulation and inheritance are the two most desirable properties required by
O bject O riented languages. Authors from various books, journals, and papers
on this topic m ay s ta te o ther requirem ents. Their reasons are often related to
certain features offered by the O bject Oriented environm ent in which they are
working. Some of these features are m entioned briefly below.

D y n a m ic B in d in g W ith conventional languages the operations related to a
routine are assigned at compile tim e. However for systems to have knowledge
about all possible operations during its life-cycle is an almost impossible task.
Dynam ic binding helps by postponing the decision of w hat operation to invoke
until run time.

Conventional languages such as C, Pascal etc, offer some dynam ic binding
using case statem ents. U nfortunately the addition of fu rther operations cause
modification of existing code. Dynamic or late binding as it is sometimes called,
does not suffer from this problem in O bject Oriented languages, thanks to en­
capsulation and inheritance.

Critics of dynam ic binding argue th a t the approach affects the speed at
which applications run, while proponents of dynamic binding argue th a t its good
for rapid prototyping and end user programming. Certainly there is a price to be
paid for not specifying the operations until run time. However this degradation
in perform ance, is outweighed by the benefits gained in flexibility where the user
m ay postpone decisions on types and structu re which are not relevant until run
time.

The operations perform ed by objects are im plem ented using procedures
(known as messages in O bject Oriented technology) sim ilar to conventional pro­
cedural calls. However instead of the procedure nam e identifying the code for
com putation, in O bject Oriented languages this action is perform ed by the ob­
ject. The operation perform ed by a prin t message for example, would depend on
the object th a t receives the prin t message. If it was a rectangular object then
it would prin t a rectangle, a circular object would prin t a circle and so on. The
ability of different objects to perform different operations on identical message
calls, is called p o ly m o rp h ism .

M u ltip le I n h e r i ta n c e The inheritance mechanism discussed throughout this
tex t is related to single inheritance. Some languages such as C + + , Eiffel, CLOS
allow an object to have more th an one parent. Such systems are said to provide
m ultiple inheritance. Systems which allow multiple inheritance increase code

C H A P T E R 1. O B J E C T O RIE NTE D T E R M I N O L O G Y 12

sharing by m aking it possible to combine descriptions from several classes. For it
is possible to have an object such as “lorry” , which has bo th vehicle and toy as
parent classes. Most languages which support m ultiple inheritance use some type
of precedence relationship to indicate which class should be dom inant [Ste 86].
O ther languages such as Smalltalk-80 take the stand th a t no simple precedence
relationship for m ultiple inheritance will work, leaving the responsiblity as to
which class should have precedence to the user, this approach can have difficulties
solving am biguities between objects.

1.5 S u m m a ry

This chapter has given the reader an in troduction to O bject O riented program ­
ming languages. No m ention of specific language syntax was m ade, only Object
Oriented concepts have been described. U nderstanding the principles of encapsu­
lation (i.e. a seamless m odule whose d a ta can only be m anipulated by one of its
surrounding procedures), inheritance (i.e. the ability to build onto already known
and valid inform ation) dynam ic binding (i.e. assigning variables at run time) and
polym orphism (objects reacting differently to identical messages) should put the
reader in good stead for reading this text.

The effectiveness of using object modules for system developm ent, will be
focused around the IM PW throughout this text. The size of this project is
substan tia l (approxim ately 100k lines of code) for allowing us to view the benefits
and faults of the O bject Oriented approach in m edium to large software projects.

Chapter 2

Objective-C

2.1 In tr o d u c t io n

The commercial m arketplace for O bject O riented Languages has increased steadily
over the last five years. Magazine adverts now offer a num ber of O bject Oriented
environm ents for software development. T he benefits of reusable, m ore reliable
and easily extendable code is offered by a num ber of O bject O riented suppliers.
Sm alltalk, Eiffel, XLISP, C + + , Objective-C and O bjective-Pascal are examples
of some of the m any program m ing environm ents which can be used for Object
Oriented development.

Before any tools were designed for the IM PW , a decision was taken to estab­
lish a software environm ent for tool development. The final decision m ade by the
m anagem ent team was to develop using the Objective-C language. The reasons
for th is choice are numerous, i.e. reputation of the software environm ent, facilities
offered by the language such as libraries containing object modules for graphics
and in p u t/o u tp u t capabilities, portability of software on graphic workstations,
plus all the various political and financial reasons which are associated w ith a
project. No justifications for the choice of language is given here, instead the
objective (excuse the pun) is to explain the features of the Objective-C language
and the syntax required to use these features.

13

C H A P T E R 2. O B JE C T IV E -C 14

2.2 O b je c t iv e -C d a ta ty p e s

The Objective-C language is a superset of the C language. Using Objective-C
does not necessarily m ean learning a new language. C users only have to adopt
a new approach in the use of a fam ilar language[Cox 86]. The language adds
precisely one new d a ta type the object identifer referred to as type id , to those
provided by standard C. This declaration is m ade in a m anner sim ilar to other
C types.

int i; / / declared an integer
char *c; / / declared a pointer to a character
id m yO bject; / / declared an object identifer

Figure 2.1: O bject Declaration

The variable m yO bject may be used to identify any type of object. The
am ount of space required to identify object labels, similar to m yO bject is a con­
stan t, bu t the space occupied by the object will depend upon each objects private
d a ta (instances variables). Their are two types of object which the Objective-C
user may use, class or instance.

2.2.1 Class and Instance Objects

In chapter one it was s ta ted th a t the shared part of the object is called the class
and the private portion containing the unique d a ta is called the instance. The
class which provides the mechanism for sharing m ethods is regarded as an object
by m any languages[Tho 89], including Objective-C.

The class may be thought of and is sometimes referred to as a f a c to ry
o b je c t producing new objects similar to itself. Each new object created by the
factory class is an instance of th a t class, the d a ta store in each object is private

C H A P T E R 2. O B JE C T IV E -C 15

to th a t instance. Further reference in this tex t to an instance can be regarded
as an individual object, which has been created by some class. The term class is
also a reference to an object, bu t this object is used to define the shared parts of
similar objects or factory objects.

2.3 M e ssa g e s

W hen an object wishes to perform one of its operations, it sends a message
to itself. People accustom ed to conventional program m ing techniques find this
term inology difficult to grasp a t first, w hat exactly do we m ean when we talk
about sending messages?

m e ssa g e : D e f n message sending is used by object oriented
languages to make an object perform one
of its operations.

Messages m ay be thought of as som ething sim ilar to function calls. They
can contain a variable num ber of argum ents and execution of program code is
halted until the called procedure finishes. It is possible to re tu rn any d a ta type
similar to th a t re tu rned by functions in C. The examples below illustrate the
Objective-C syntax for sending messages.

m e ssa g e se le c to r a rg u m e n t

Point new new none
anO bject new:5 new: 5
anO bject give:me:5 give:: me, 5

Figure 2.2: Message Syntax

Unlike conventional function names, message selector names do not guar­
antee unique names throughout the system. This is because the selector nam e is

CHAPTER 2. OBJECTIVE-C 16

also dependent on the object th a t received the message.

In order to determ ine which procedure(m ethod) belongs to which object,
each object is allocated space to store a table which contains pointers to all the
procedures which are private to its domain. This table is known as the dispatch
tab le and the pointers in each slot are known as the message selectors.

The Objective-C syntax for sending messages is sum m arised below.

resu lt = [anObject doSomething: argument];
(receiver) (selector)
(object) (message)

Figure 2.3: Message Glossary

The tex t string after the left brace in any message expression will always
represent the object which is receiving the message. Objective-C uses the con­
vention of presenting the first le tter of a class/factory object in capitals. Instance
objects begin with lowercase letters therefore anO bject referenced above would
reference an instance object. Selecting message names is similar to selecting C
function names. Names chosen should relate to the task a t hand; a convention
which should be perform ed by all program m ing languages. However instead of
using underscore to concatenate words in a function nam e, Objective-C program ­
mers use the convention of representing the first le tte r of each word, after the
first word, in capitals as below.

ac = a d d _ in te re s t_ to _ a c c o u n t() ; / /C
ac = anO bject [a d d ln te re s tT o A c c o u n t] ; / /O b je c t iv e -C

Figure 2.4: Objective-C Message Conventions

CHAPTER 2. OBJECTIVE-C 17

Colons are used to seperate argum ents and also form part of the selector’s
nam e (see figure 2.2). The message statem ent is always term inated by a right
brace. The Objective-C syntax also allows program m ers to embed message calls
inside other messages and ordinary C function calls. S tatem ents as in figure 2.5
appear frequently in m any Objective-C program m ers code. In the first example
the factory m ethod Book, creates a new book and then adds the object to book-
C ltn. Note the order in which the m ethods are perform ed follows C precedence
rules. Messages are executed from left to right, w ith inner nested messages taking
precedence. In the second example the fifth book is taken from the book collec­
tion (all collections begin a t zero), the book then finds out w hat size it is before
printing i t ’s result. The th ird example uses the C sprintf function, the string and
integer values are provided by title and pagesize m ethods respectively.

[bookC ltn add :[B ook n e w]] ;
[[[b o o k C ltn a t : 4] s iz e] p r i n t] ;
s p r i n t f (f r e d , " ’/,s y,d",[aBook t i t l e] , [aBook p a g e s iz e]) ;

Figure 2.5: Objective-C Statem ents

2.4 M e th o d s

The message or selector names for all the procedures which a n O b je c t(se e figure
2.3) can perform are kept in a dispatch table in anO b jec t’s shared part(class).
The dispatch table uses a selection mechanism which indicates the appropriate
operations anO bject should respond to. In O bject Oriented languages the op­
erations carried out by objects are called m ethods. These m ethods are similar
to ordinary functions, i.e. they can have any num ber of various argum ent types,
they can re tu rn various types of results and the operations in both is determ ined
by the code inside the m ethod or function. However there are a few differences
between functions and m ethods:

CHAPTER 2. OBJECTIVE-C 18

• M ethod names are not unique, i.e. different classes
may have the same m ethod name.

• A m ethod needs to address additional d a ta space
i.e. the private d a ta inside the object sending the
message.

• M ethods are called indirectly by messaging.

The Objective-C language perm its two basic m ethod types which can be
activated by sending messages to the appropriate factory or instance methods.
Factory m ethods are the operations perform ed by the class object such as in itia l­
isation of instances. Instance m ethods relate more to specific operations which
an instance of a class should perform , such as printing its contents. The space,
d a ta types and operations perform ed by these objects are determ ined in the class
definition file.

2.5 C lass D e f in it io n F iles

Objective-C classes which provide the basic unit of m odularity in an Object
O riented system are created in the class definition file. This file determines the
class name, its hierarchical position relative to other classes in the hierarchical
network, the objects instance variables and the m ethods which may be perform ed
by the class or instance objects.

The class definition listing in figure 2.6 represents the class Room. As well
as the six instance variables declared for Room, the variables from the inherited
classes back to the root class are also added. The root object in the Objective-
C inheritance tree is the class O bject, which is the only Objective-C class tha t
has no parent or super class. The inheritance path for all objects always ends
w ith this abstract object. The im m ediate class from which Room inherits is the
Object class, therefore only instance variables and m ethods may be inherited
from this class. The class O bject adds one instance variable to the Room class,
this variable is known as the isa pointer. The isa pointer is im portant, as it is
used by objects to form an inheritance chain to the root object.

The m ethods which surround the Room ob ject’s private da ta complete the

CHAPTER 2. OBJECTIVE-C 19

rest of the listing. M ethods w ith plus signs(” + ”) before the selector nam e rep­
resent factory (class) m ethods. These m ethods are only accessible to an ob ject’s
factory m ethods, a common fault when beginning Objective-C program m ing is
asking an instance of some class to perform one of i t ’s factory m ethods. Unless
there is a instance m ethod with the same nam e in the object class or one of
the inherited classes an error will occur. The minus sign(”-”) before the selector
nam e represents instance m ethods. Instance m ethods m ay only be accessed by
sending messages to instances of th a t class or sub-classes.

The values returned from floorspace and colour are of type in t and c h a r
respectively. W hen the m ethod fails to give a re tu rn type, the default value
id (object identifier) will be given, unlike C whose default type is an integer.
The ’’create” , ’’length:” and ’’b read th :” m ethods are examples of m ethods which
re tu rn type id . Note th a t colons used to seperate m ethod argum ents, m ust
appear in the selector name. If the Room class calls a m ethod which cannot be
found in its class definition file the search is repeated in the parent class. This
procedure is repeated until the called m ethod is found or until the inheritance
chain is exhausted in the root Object.

/* Objective-C scource fils for the class Room */
= Room : Object (Demo, Primitive)

{ // instance variables of class Room
int length;
int breadth;
int height;
int windows;
int doors;
char *colour;

>
// Create a new Room by using the superclass 'new' method
+ create {

id newRoom; // declaration of local variable
newRoom = [self new];// creates new instance of room
[newRoom length:40];
[newRoom breadth:60];
[newRoom height:5];
[newRoom windows:1];
[newRoom doors:1];
[newRoom colour:"blue"];
return newRoom;

>
// Sets the room length variable for a Room object
- length : (int) roomlen {

length = roomlen;
return self;

>
// Sets the room breadth variable for a Room object

CHAPTER 2. OBJECTIVE- C 2 0

- breadth : (int) roombreadth {
breadth = roombreadth;
return sell;

>
// Sets the room height variable for a Room object
- height : (int) roomheight {

height = roomheight;
return self;

>
// Sets the room windows variable for a Room object
- windows : (int) roomwindows {.

windows = roomwindows;
return self;

>
// Sets the room windows variable for a Room object
- windows : (int) roomwindows ■[

windows = roomwindows;
return self;

>
// Sets the room doors variable for a Room object
- doors : (int) roomdoors {

doors = roomdoors;
return self;

>
// Sets the room colour variable for a Room object
- colour : (char *) roomcolour {

colour = roomcolour;
return self;

>
// Determines the integer size for floor space
- (int) floorspace {

int floorsize;
floorsize = length * breadth; // length and breadth refer
return floorsize; // to objects private data

>
=: // symbol which terminates the class

Figure 2.6: Room Class Definition File

Classes such as Room (or any other Objective-C class) are executed directly
by a m ain program or indirectly by another class. The m ain program for initiating
Objective-C class is similar to i t ’s C counterpart,w ith some additional features.
The Objective-C m ain program must always declare the message groups used by
the file.

Classes and messages are declared at the bo ttom of the m ain m odule so
th a t the compiler can combine all the classes and messages used by the program.

CHAPTER 2. OBJECTIVE-C 21

The syntax for classes is simply ©classes(class list) where the list contains all the
classes referenced in the file. The syntax for message is similar @message(message
list), however so long as the messages are in the same file as the classes statem ent,
the message groups do not have to be listed.

2.6 S e lf an d S u p er

To prevent losing track of objects while sending messages through the inheritance
chain, the keyword se lf is used in Objective-C, to identify the object receiving the
message. The word se lf in the Room factory m ethod ”create” , is the receiver of
the factory message ’’new” . M ethods which re tu rn the value self, simply re tu rn
the object which received the message. W hether the objects private da ta values
have changed since the message was sent will be dependent solely on the called
m ethod’s code. The m ethods in the Room class listing which re tu rn self, initialise
the instance object newRoom with values newRoom length 40, newRoom breadth
60, newRoom Height 5, newRoom window 1, newRoom doors 1, colour blue.

Besides inheriting instance variables, Objective-C classes also inherit factory
and instance m ethods. W hen the inheritance tree has to be followed back through
a num ber of parent classes to find a m ethod, the pseudo-variable se lf identifies
the object which received the message. The Objective-C variable su p er is similar
to the s e lf variable. However unlike s e lf where the search for a selector name
begins in the o b jec t’s dispatch table which received the message, the search of
selector nam es begins in the o b jec t’s parent class when the receiver is super.

+ n ew {
id myRoom;
my Room = [super new];

return self;
}

Figure 2.7: M ethod S tructure

CHAPTER 2. OBJECTIVE-C 2 2

If the factory m ethod ” create” in room was replaced with the factory
m ethod ’’new” as in figure 2.7. The receiver of the ’’new” message is super,
so instead of searching for the ’’new” m ethod in the class dispatch table where
the message is sent, the search commences in the parent class(which in this exam ­
ple would be O bject). Using s e lf instead of su per in this m ethod would put the
program into an infinite loop, an error often encountered by naive Objective-C
program m ers.

2 .7 O b jec tiv e -C In h e r ita n ce L ibrary

The inheritance mechanism provided by some Object O riented languages (Ada
and M odula-2 are examples of O bject Oriented languages which do not provide
inheritance) encourages reusing existing code. The inheritance mechanism may
not be a required feature of object oriented languages, bu t it is certainly a very
desirable one. Inheritance helps in two im portan t system development principles.

R eu sa b ility — the ability to produce software th a t may
be used in many different applications.

, ... the ability to add code to existing source,
E x t e n d ib i l i t y — ̂ • , ,w ithout modifying the old source.

The hierarchical inheritance mechanism used by the Objective-C language
contains a num ber of generic classes linked to a root object. Each subclass be­
comes m ore specific as we follow its pa th from its parent class. All the instance
variables and m ethods from the parent class are inherited'. This means th a t a
subclass does not have to redefine m ethods and instance variables from its parent
class. A subclass can be viewed as a more specialised version of its parent class
i.e. it is similar, but w ith a few extra bits added on (ex tra m ethods and instance
variables). W hen similar m ethod names exist in various classes, the m ethod in
the lowest(more specific) subclass will override the parent m ethod. Access to
m ethods fu rther up the inheritance tree are referenced using the variable super
m entioned above.

CHAPTER 2. OBJECTIVE-C 23

2.7.1 Foundation Classes

One of the strong selling points of the Objective-C language, is the num ber of
software classes th a t are supplied w ith the compiler. These classes provide the
foundation from which software development can begin. The classes provided,
help form the class inheritance foundation library as shown in figure 2.8. The
order of class inheritance is indicated by indentation below the respective super­
class.

The foundation classes provided are divided into th ree message groups,
which m ust be declared with the class, so th a t the compiler can store all the
m ethod types returned. The classes provided in the Objective-C foundation
library belong to one of the following three groups m entioned below. Classes
created by the user are added to their own message group, in the Room example,
the class is attached to the message group Demo.

• P r im it iv e classes w ith provide a basic foundation for building software-IC’s.
The term software-ICs[Coxb85] is a term used by the Objective-C suppliers to
reference reusable classes, this is analogous to the way hardw are builds from
existing in tegrated circuits(IC).

• C o lle c tio n classes which provide functionality for m aintaining different types
of collections.

• G e o m e try classes which provide the basic components for building graphical
user interfaces.

To explain the operations, d a ta and foundation grouping of each of the
above classes in detail, would require tim e and space outside the bounds of this
thesis. Readers interested in finding out more about Objective-C and the classes
provided w ith this environm ent should refer to the Objective-C manual[OC -
87]. The section below briefly describes the role of some of these predefined
classes to give the reader a ta ste of the power provided by this environment.
However it m ust be stressed, th a t in order to build system applications using
this environm ent, it is im portan t th a t the user has a good understanding of all
available classes.

O B J E C T => positioned at the root of the inheritance hierarchy has its capa­
bilities inherited by all other classes. The root Object can be thought of as an
abstract class, which means th a t its contribution is not really directed towards
creating instances of this class, but more towards providing services which can
be used by objects further down the inheritance path.

CHAPTER 2. OBJECTIVE-C

Nil
Object

►Array

IdArray

■ In lA rray

• BytArray

►Cltn

ÉOrdCItn

Stack

Set
— ► D ictionary

1— ► Bag

-*■ Balnode
I-------------- ► SortC ltn

- > S tring

-*■ Point

-* • Rectangle

-► Assoc

A s c iiF lle r

-► Assoc

ObjGraph

-► Unknown

-+ ■ IPSequence

I____ * Sequence

Figure 2.8: Objective-C Hierarchical Inheritance S tructure

CHAPTER 2. OBJECTIVE-C 25

The class O bject defines one instance variable, the isa variable which is a
pointer to an objects shared part and is autom atically inherited by all sub classes.
This allows all instances of classes to point a t the factory object, from which they
will begin to inherit.

The m ethods provided by the O bject class facilitate features such as stor­
age/retrieval of objects in memory, error handling, comparisons, object interro­
gation plus o ther features whose inclusion, would be general enough to be used
by any class.

A R R A Y =>- This class is the abstract superclass of all array classes. It is
designed to support random access to indexed instances variables. The more
specific sub-classes are used to hold different array types.

Id A rray =4> stores object identifiers
B y teA rra y =>■ stores chars
In tA rray =$■ stores integers

M ethods are provided for resizing, accessing, comparing, sorting etc. How­
ever these classes do not provide complete flexibility, because array size m ust be
defined before they are created. Changing the size of an array object is possible,
but by no means straight forward(i.e. the array and its contents m ust be tracked
down and relocated in memory).

A S C IIF IL E R =>- This class provides a general technique for having persistent
objects. Allowing objects created by the system to outlive the execution tim e of
the system. The crux of these operations is to convert binary values into textual
representations and vice versa. This class saved a large am ount of tim e and code
during IM PW development, removing the need to write code to store and retrieve
objects in memory.

2.7.2 Collection Classes

Development of the IM PW discussed extensively throughout this text relied heav­
ily on the facilities provided by the collection classes. Unlike the Array classes,
collections provided the flexibility of variable length collections. The collections
are used for holding objects, some of which may be types of collection themselves.

CHAPTER 2. OBJECTIVE-C 26

C L T N is the most abstract of the collection classes, whose role is mainly
to provide the functionality required for more specific collection classes. This
class includes m ethods for adding, removing, testing and memory allocation.
This abstrac t class is rarely used for the creation of collections, instead th a t
responsibility perform ed by one of the sub classes.

ORDCLTN =̂> subclass of Cltn, keeps the objects entered to the collection
in order, no nil entries are perm itted in the collection. S tatem ents required for
setting up an order collection are given below.

anO bject = [OrdCltn new];

Note th a t the size of the collection does not have to be specified, as it will
be adjusted autom atically as objects are added.

S E T => are collections which disallow duplicate entries, a common use of such
objects is in the creation of symbol tables. Sets place all objects added to them
into a hash table. T he assum ption is m ade th a t after objects are added to a set
they will not change anything about themselves.

2.8 T y in g it a ll to g e th e r

The diagram in figure 2.9 shows how the objects(classes and instances) are ar­
ranged in the Objective-C environment. Due to the num ber of m ethods inherited
by the class objects, it is not possible to represent all m ethods. The slots below
each of the boxes represent the dispatch table associated with an object. The ob­
jects in the left hand column represent the shared portion used by the instances.
The right hand column represents the shared portion used by the class objects.

W hat surprises many people is the fact th a t the private part of one object is
the shared part of another. By sim ulating sending messages in this architecture,
any m ystique surrounding it may be removed. For example if the message [self
foo] is sent by an instance of Set, the dispatch table for Set instances is searched.
If the selector is not found, the search is repeated in its parent class Collection
and then in the O bject dispatch table where it is found.

The m eta class d a ta st,ructures(the classes shared part) on the right contains
the dispatch tables th a t are searched if a factory message is sent. Notice how

CHAPTER 2. OBJECTIVE-C 27
Class

f private part shared pari

Dynamic
Objects

Instance
S ia lic
Obiecl!

aSet = [Set new];
[aSet foo];

Figure 2.9: Objective-C in Memory

CHAPTER 2. OBJECTIVE-C 28

the nam e and function of the block changes when the point of view is changed
by selecting a different object. If a message is sent from a factory object, the
previous shared p art now becomes the private portion.

2.9 O b jec t iv e -C C om p iler

W hile not an im portan t issue for O bject O riented im plem entation and design,
details of the Objective-C compiler mechanisms have been added for complete­
ness. T he compiler can be thought of as a program which translates Objective-C
source code, into a binary executable form, for execution on your machine. The
steps required to achieve the executable code involves steps similar to ordinary C
compilations. However unlike conventional compilers dealing w ith files in isola­
tion, compilers w ith inheritance capabilities cannot accomplish this. Changes to
classes during system development, causes inform ation to flow in bo th directions
between the compiler and the library. This leads to some subtle differences in
the way compilations and linking is managed.

The Objective-C compiler contains a control program , which coordinates
the various tools and the files m anipulated by these tools. The Objective-C
control program , executes tools in a tool chain when compiling the Objective-C
language. The tool chain m ust include

• C Preprocessor

• Objective-C Translator

• Target C compiler

• Target Linker

to perform Objective-C compilations.

The first phase of the Objective-C com pilation process involves the pre­
processor. The source files, containing class definitions, are the input for the
preprocessor. The preprocessor performs a translation pass, replacing ^ include
and ^define statem ents w ith original source and definitions for respective macros.
The ou tpu t from the preprocessor, the original source w ith include files merged

CHAPTER 2. OBJECTIVE-C 29

At the second phase, the Objective-C transla to r converts the expanded
Objective-C source code into C source code. The Objective-C compiler translates
class definitions, class references and message references into C source. O rdinary
C statem ents travel through this phase untouched.

During the next phase the target C compiler translates the source code into
relocatable machine code. The relocatable object file is produced by the target
C compiler. T he standard librarian may place this file in memory or the linker
m ay be used if an executable image is required.

The final phase in the tool chain uses the linker to combine the object
modules as specified by the source. Objective-C class libraries, C library code
plus the user’s own class library and library functions may be linked into an
executable program . The ou tpu t from this phase will be the executable program.

The suppliers of Objective-C supply the C-preprocessor and the Objective-
C translato r. T he host environm ent must supply the target C compiler and the
target linker.

The com m and syntax required to compile Objective-C files is

objcc [options] filename(s)

The options are similar to those provided by the C compiler

-c produces relocatable object modules

-o produces final ou tpu t file, a.out is used if
no option specified

- g debugging information

and definitions expanded, is used as input for the second phase.

To ensure consistency, a common set of routines m anage all diagnostics is­
sued by the compiler. All the Objective-C errors have (O C)printed before them.
If the diagnostic does not contain an (OC) then the problem relates to conven­
tional C code.

CHAPTER 2. OBJECTIVE-C 30

2 .10 S u m m a ry

This chapter has given the user an express trip around the Objective-C environ­
ment. Explaining all areas of the language was not possible within the context
of this thesis. The examples and discussions given are used mainly to give the
reader a broad understanding of the Objective-C language and help ease the read­
ers passage through this tex t. As with most languages, the best way of learning
Objective-C issues discussed in this chapter and more, is through practical expe­
rience.

Chapter 3

Risk Analysis Tool

3.1 In tr o d u c t io n

The IM PW discussed in the first chapter, divided the workbench into three main
areas or objects of functionality. The Inform ation System(IS) is the workbench
nucleus, verifying and storing data, which affects the wide range of variables as­
sociated with project m anagem ent. Interactions w ith the IM PW are controlled
by the M anager W orkbench Interface(M W I). This object is responsible for pre­
senting d a ta and inform ation, generated by the tool, to the end user in a form at
th a t is easily understood and m anipulated. Between these two high level IM PW
objects the C om putational System(CS) resides. This object contains the tools
which allow the IM PW to be used by the end user. These tools add and m anipu­
late d a ta in the IS database, determ ining the values presented by the MWI. The
goal of the overall IM PW project was to produce a prototype workbench, con­
tain ing a comprehensive and integrated set of tools, to help w ith the m anagem ent
of m edium to large-scale software development projects.

Discussion during this and the next chapter, will be centered around the
functionality provided by two of these tools, mentioning briefly how the Objective-
C environm ent was used in their development when appropriate. Due to the
complexity and size of these tools, it is impossible to describe them in any depth
inside this thesis. The code illustrations given throughout this tex t show only
a small proportion of the statem ents, and d a ta variables common to these tool
environments. However code listings associated for the creation of both Risk and
C alendar tools may be viewed in Appendix D and E respectively. This chap­
te r concentrates on the Risk Analysis tool, while the next is dedicated to the

31

CHAPTER 3. RISK ANALYSIS TOOL 32

C alendar tool.

3.2 R isk T oo l O v erv iew

T he Risk Analysis tool was designed to help the project m anager “walk around”
the project at an early stage, and anticipate potential m ajor sources of risk to
the project. The tool a ttem p ts to quantify risk under a num ber of headings and
to propose practical steps th a t the project m anager could take to reduce or offset
identified risks.

3.2.1 Tool Input

As a result of a lite ra tu re review and consultation w ith a num ber of experi­
enced software project m anagers, four “risk m anagem ent areas” which the risk tool
should address were identified [Boe 81],[Zal 77], [Dav 82],[Alt 78],[Cha 85],[AFSC87]
An initial set of twenty three project risk areas (riskdrivers) where identified,
which could be expected to contribute to the level of risk in the project in one
or more of the risk m anagem ent areas. The project m anagers judgem ent of the
values of the riskdrivers for the project constitu te the prim ary input to the Risk
Tool. G reat care was taken in the design of the rating scales to be used to ’quan­
tify ’ the levels of the riskdrivers. The four risk m anagem ent areas are defined in
A ppendix A. The riskdrivers and their values are defined in Appendix B.

3.2.2 Tool Output

The m ajor ou tpu t from the tool is the “risk report” . This report is in two
sections. The first section provides the “risk m easures” , one for each of the four
Risk M anagem ent Areas. The risk measures are com puted from the riskdriver
values provided by the project m anager. The algorithm used to com pute the Risk
M easures is described in the “Measure Class” section. The second section of the
risk report consists of a set of tex t “advice paragraphs” suggesting risk reduction
strategies to the project m anager. The com putation of the “advice paragraphs”
is based upon the application of production rules (i.e.the “risk analysis rules”) to
the values of the riskdrivers. The prototype tool contains only th irty Rules, thus
the level of “wisdom” it displays is limited. Some of the Rules were form ulated
through discussion w ith project managers. O ther Rules were gleaned from the

CHAPTER 3. RISK ANALYSIS TOOL 33

general project m anagem ent literature. The m anager is able to interrogate the
risk report to establish the basis on which the risk measures, and the particular
advice paragraphs shown were reached. The procedure the tool uses for this
“explanation” function is outlined in the “Rule in terrogation” section.

3.3 Im p o r ta n t C lasses

Before explaining the functionality provided by the Risk class, it is im portan t first
to introduce the m ain classes and the private data(instance variables) associated
w ith these structures. The Risk tool initiated the development of a num ber of
new classes. Four of the most relevant classes for understanding terminology
relating to functionality to be described later in this chapter, are described in the
following sections. The classes to be discussed are given below.

• Risk

• Rule

• Text

• M easure

3.3.1 The Risk Class

The various risk areas used by the tool are referred to as Riskdrivers by the Risk
Analysis tool. Reference throughout this tex t to Riskdrivers refer to areas of
software risk. The Objective-C mechanism for representing a Riskdriver object
is shown in figure 3.1. This declaration is taken from the Risk class definition file
A ppendix D. Because no standard inform ation on the construction of riskdriver
objects exist, the object struc tu re for risk objects was m ade from the accumula­
tion of inform ation, referenced in the “Tool In p u t” section and other personnel
involved in the development of the IM PW .

The d a ta values which are common to all riskdrivers are mirrored by the
instance variables in the Objective-C factory class Risk. The instance variable
riskdriver indicates the nam e of the risk area eg. “Scale of P ro jec t” . The risktxt

CHAPTER 3. RISK ANALYSIS TOOL 34

// Risk Factory Class
= Risk : Object (RiskGroup, Collection, Primitive)
{ // instance variables of risk

char * riskdriver;
char * risktxt;
char * riskcondition[6];
int riskweight[6];
char * riskhelp;
char * attrName;
char * entityName;

>

Figure 3.1: Instance Variables for the Risk Class

instance supplies supplem entary inform ation, which is used to make the reading
of riskconditions more comprehensible, when displayed on screen. T he Risk class
allows each Riskdriver to have a m axim um of six riskconditions to represent the
different characteristics it m ight have.

The d a ta types used here were stored in an array, a more flexible structure
would have been obtained, if riskconditions and riskweights were stored in an
object of type collection. T he collection class would have elim inated the need
to restrict riskcondition and riskweight to a specific size, as the collection ob­
ject could have expanded autom atically for variable riskcondition numbers. All
riskconditions associated w ith a Riskdriver are given a risk weight, which is stored
in the corresponding riskweight array. The weight values are used for estim ating
the percentage project risk for all riskdrivers used by the Risk Analysis tool. In
order to clarify the risk areas referenced by some Riskdrivers, additional infor­
m ation is supplied in riskhelp. The instance variables a ttrN am e and entityN am e
are present in the Risk class to identify the IS table and the column name where
the Riskdriver values are recorded in the IS database.

3.3.2 The Rule Class

The o u tpu t from the Risk Analysis tool has been specified as a report detailing
num eric measures of risk, plus tex tual information explaining what is causing the

CHAPTER 3. RISK ANALYSIS TOOL 35

risk and advisory tex t paragraphs indicating corrective action. The presentation
of th is tex tua l inform ation relates to “risk analysis rules” ,.entered by an expert on
risk analysis for software projects. The rules represent riskdrivers having riskcon-
dition values, which may affect overall project success. The syntax of these rule
messages may indicate risk associated w ith one or more risk objects(riskdrivers).

C reating a factory class to represent rules indicating project risk based on
the values of the riskdrivers, introduces problems sim ilar to those encountered
when setting up the Risk class. W hen setting up the Rule class, we need to know
w hat d a ta values should be used to represent the Rule, w hat m ethods to associate
w ith Rule objects and what class should the Rule class inherit from. There is
also the additional problems of linking rule objects to risk and tex t objects.

Various object designs were considered for the internal representation of the
Rule class such as linked lists, B-trees, binary trees, arrays etc. The approach
chosen to model the Rules is shown in figure 3.2.

= Rule : Object (Riskgroup, Collection, Primitive)
{

char * rules[6];
char * condition;

>

Figure 3.2: Instance Variables for the Rule Class

In the prototype version, six is taken to represent the m axim um number
of riskdrivers and condition num bers allowed to relate to any condition num ­
ber result. The condition num ber which represents the link between Rules and
associated tex t is represented by the character pointer condition.

The table in figure 3.3 shows how instances of Rule are stored in the Risk
Analysis tool. Each row in the table represents an instance of the Rule class. The
entire table represents a collection of rule instances which is called the ruleCltn
in the Risk tool. The asterisks denote the number of riskdrivers referenced by a
Rule when less than the m axim um six in the prototype. Again, as in the Risk
class, ’’collections” ra ther than ’’arrays” would have provided a more flexible
way of holding Rule operands as no upper bounds were required. However to

Rules

CHAPTER 3. RISK ANALYSIS TOOL

Condition

Number

36

R1.1 R2.1 • C1

R3.2 R9.1 • C2

R5.4 *
C3

R4.2 C1 • C4

R7.2 ■ C5

R7.1 R8.1 • C5

C2 C3 • C6

Figure 3.3: Storing Rule Objects

keep the Rule syntax relatively simple, arrays w ith a m axim um limit of six were
used to store Rule operands in this prototype version. The values in each cell
reference riskdrivers, the value R l . l in the top left cell references riskcondition
one for riskdriver num ber one, the value R3.2 represents riskdriver num ber three
riskcondition two etc. Some Rule instances also contain values w ith a C preceeded
by an integer value. This is used to represent rules from previously defined
riskdrivers, as well as providing a link between rule and tex t objects.

e.g. C l = IF R l . l AND R2.1

The value C <integer value> at the end of each row is called the condition
number. This number will link risky riskdrivers to their associated diagnostic
text. The condition num bers, which are used to relate associated tex t are gen­
erated autom atically by the tool in an ordered sequence, designed to simplify
searching, when perform ing operations on these objects. It also helps to avoid
the situation of the SuperUser relating a rule to an undefined condition number,
thus reducing the level of validation required on rule objects. The interaction be­
tween riskdriver values and Rule sentences is accomplished using a rule specific
gram m ar syntax as shown in figure 3.4.

R u le V a lid a t io n Using this rule syntax as an interm ediary between riskcon-
ditions and high level rule sentences introduces other problems. Some type of
validation must be m ade to ensure th a t rules entered conform to a syntax which

CHAPTER 3. RISK ANALYSIS TOOL 37

IF R l . l AND R2.1 TH EN C l
IF R3.2 AND R9.1 TH EN C2
IF R5.4 THEN C3
IF R4.2 AND C l THEN C4
IF R7.2 OR R7.1 AND R8.1 THEN C5
IF C2 AND C3 TH EN C6

Figure 3.4: Sample Rules

relates rules to riskdriver objects used by the Risk Analysis tool. Checks must
also be m ade to ensure th a t riskdrivers referenced exist, riskconditions referenced
to specific riskdrivers exist and th a t condition numbers entered in rules already
exist (i.e. the results of previously defined rules). These problems highlighted
the need for a num ber of validation procedures to be a ttached to the Rule class.

The validation of the rule syntax can also have an effect on the efficient
running of the tool. If objects are to be created each tim e the ’’risk expert”
is about to enter Rules, w hat happens when the Rule entered is invalid? It is
possible using the Objective-C mechanism to create objects which know how
to destroy themselves. However the creation and then deletion of an object
would seem wasteful of machine and user time. After analysing these factors, the
approach for creating Rule instances was finalised.

Instead of creating rule objects before the rule sentence was entered by the
’’risk expert” , the rule sentence is validated first, before the creation of Rule
instances. Functions were required to parse the sentences into operand and op­
erator stacks and check the validity of the gram m atical sequence. Checking of
operands ensures th a t riskdriver and riskcondition numbers referenced exist and
th a t condition num bers forming p art of a Rule already exist as a result of previ­
ously defined Rules.

S tatem ents containing the OR operator signifies th a t more than one in­
stance is related to a Rule sentence. The Rule class only creates Rule instances,
if the entire rule syntax entered is correct. This decision relates to the autom atic
sequencing of numbers. Entering the invalid part of a rule at some later stage
would require the m anual entry of the condition num ber, plus ex tra functions to
ensure th a t it is valid. These checks however could not correct the possibility of
the SuperUser entering the wrong condition num ber for the rule.

CHAPTER 3. RISK ANALYSIS TOOL 38

By using ordinary C functions instead of Objective-C m ethods, verification
of Rule syntax may be perform ed before Rule objects are created. This high­
lights one of the advantages of the hybrid languages such as Objective-C over
a pure O bject Oriented language such as Sm alltalk, where all operations must
be perform ed by the object(i.e. the object m ust be created before it can be
validated).

3.3.3 The Text Class

The second part of the risk report produced by the Risk Analysis tool, prints
tex tual inform ation related to the current project characteristics. This textual
inform ation is divided into two sections. The first p art containing an explanation
why the project is deemed risky with its current values. The second contains
advice tex t indicating corrective action.

The class Text is used to store and prin t this tex tual inform ation. The
text associated w ith an object is related to Rules set up by the SuperUser and
triggered when project characteristics relating to riskdrivers m atch these rules.
The association between the Rules and the tex t is formed by the following code.

condition_num = atoi([aRule condition])
someText = [txtCltn at:condition_num]

The condition num ber for the object aRule is converted from character to
integer, before assigning i t ’s value to the integer condition_num. This variable
is then used to access the text object relating to this rule. All text objects are
stored sequentially in an ordered collection(txtC ltn). Using the ”a t:” m ethod the
related tex t for a set of Rules may be stored/retrieved easily. The diagram in
figure 3.5 shows pictorially how these objects are related.

Despite its strong links with the Rule class there is no inheritance between
these two classes. Making Rule the parent class of Text was considered while
developing the Text class. The textual information could have been related to
Rules, keeping the bond between these classes very tight. However I was afraid of
creating large cumbersome objects, containing redundant variables and m ethods
which where not really required. I also envisaged problems with operations such
as print. If the prin t com m and was sent by a Rule object the tex tual information
could not be obtained because it was at a lower inheritance level. The Objective-
C inheritance mechanism works upwards from the object, sending the message
towards the root, not downwards.

CHAPTER 3. RISK ANALYSIS TOOL 39

Rules Tx lC ltn

C1
Because ol the rick of understanding real requirement*.

Consider going lor on early prototype lo confirm
product requirements

Because of tNception targe team uze.

Considering breaking-up team* into sub-groupe,

9 K t \ with Os own loam leader corresponding to
major product component*

Figure 3.5: Rule and T x t objects.

3.3.4 The Measure Class

Printing risk m etrics for software projects, indicated the need for a class which
would perform some type of com putation on riskdriver characteristics. The fac­
tory class M easure is used in the tool for calculating software risk and displaying
the ou tpu t as a percentage value. The class calculates project risk for the four risk
m anagem ent areas as a percentage. High percentages indicate a high probability
of project failure in th a t area.

[1] Cost/Schedule Failure
[2] P rem ature Project Term ination
[3] P roduct Functional Failure
[4] P roduct Technical Failure

Each riskdriver when created m ust be associated with one or more of these
risk areas. The Risk class m ethod ’’create” will elicit the required m anagem ent
areas for each riskdriver before adding it to the risk collection. T he m anagem ent
areas associated w ith each riskdriver are shown in Appendix C.

CHAPTER 3. RISK ANALYSIS TOOL 40

The calculation for estim ating risk in each of the risk m anagem ent areas is
given below.

Risk m easure =

where

Si = Riskdriver weighted value associated w ith riskcon-
dition selected

M ax [P i] = Highest possible weighted value for this riskdriver

The current algorithm for calculating risk gives a crude estim ation of risk.
More sophisticated algorithm s may be integrated into future tool versions. The
only code th a t needs to change will be the m ethod containing the risk calcula­
tion algorithm , thanks to the encapsulation features associated w ith Objective-C
classes.

Before printing risk percentage for the four risk m anagem ent areas, the
calculation m ethod is always performed. This process is necessary so th a t changes
to riskcondition values, are reflected in the percentage ou tpu t of risk m anagem ent
areas displayed to the tool user.

3 .4 T y p e s o f R isk T o o l U sers

The functionality provided by the Risk Analysis tool is designed to meet the
needs of two types of user. The software project m anager (sometimes referred to
as the user), for whom the tool is specifically built and an expert on software
projects responsible for entering risk related a ttribu tes. The input required from
the project m anager will be the relevant project characteristics which closely
m atch specific riskdrivers. The ou tpu t expected will be as described by the tool
o u tpu t above.

If this prototype version is to evolve, it is im portan t to have a system which
will facilitate these changes. The addition of new riskdrivers and Rules m ust be
considered a feasible possibility if the tool is to m ature. The addition of such

CHAPTER 3. RISK ANALYSIS TOOL 41

details for use by the project m anager m ust be perform ed by an expert in risk
analysis in software projects. Throughout the rest of this tex t, this person will
be referenced as the “SuperU ser” .

W ith conventional languages the addition of new d a ta aifect the original
code, eg. array sizes are reset or case statem ents adjusted to accept a new
type. Because of the facilities offered by O bject Oriented languages such as
encapsulation, dynam ic binding and inheritance, it is possible for the SuperUser
to add additional riskdrivers and Rules w ithout causing any recom pilation of
existing tool classes.

3.4.1 SuperUser Functionality

Before providing the operations required by the project m anager for analysing
risk, the functionality for entering riskdrivers and Rules had to be developed.
We have seen the s tructu re the Risk instances which can be developed in the
Risk factory class. Now it is tim e to explain the operations which are required to
enter and m aintain these objects in the Risk tool. The m ain areas of functionality
required by the SuperUser are listed below.

• Add

• Delete

• Amend

• View

• List

• A d d W hen adding riskdrivers to the Risk Analysis tool an instance of risk is
created by the Risk factory class. The new instance of Risk will inherit all the
necessary variable d a ta types. The initialisation of these da ta variables m ust be
entered from a keyboard or via a file. The more direct approach of entering data
variables a t the keyboard was adopted for the Risk Analysis tool, to allow the
SuperUser to spot erroneous input. The SuperUser enters the relevant d a ta in
response to screen prom pts, sent by the Risk create m ethod. An example of the
Objective-C code for adding riskdrivers and the type of riskdrivers created are
given in figure 3.6 and figure 3.7 respectively.

CHAPTER 3. RISK ANALYSIS TOOL 42

+ create { // Create a new riskdriver for
// Risk Analysis Tool

id risknum;
int weight;
int i = 0;
self = [self new]; // an instance of Class Risk is returned
system("clear"); // Unix call to clear screen
printf("Enter Riskdriver Title ");
g e t r i s k O ;
riskdriver = malloc(strlen(iobuf));
strcpy(riskdriver,iobuf);

return self;
>

Figure 3.6: Initialisation of Riskdriver Instance Variables

SCALE OF P R O JE C T (NO. OF PE O PLE) — * riskdriver

In relation to w hat we are accustomed, — >■ risktext
the size of the project is -

at least three tim es as big 4
about twice as big 3 — > riskconditions
about the sam e size 2 — >• riskweights
smaller 1

Nil Help — ► riskhelp

Figure 3.7: Riskdriver Instance

CHAPTER 3. RISK ANALYSIS TOOL 43

If for some unforeseen reason, changes are m ade to the instance variables
in the Risk class, these changes would also have to be m ade in related m ethods
causing m aintenance and recom pilation. The im portance of this discussion high­
lights the need for careful analysis when developing instance variables for class
objects. Despite all th e advertising hype about ’’O bject Oriented language only
extending not am ending code” , nothing can be done if the program m er defines
invalid instance variables for a class object. Classes can be w ritten for converting
objects when the classes instance variables have been changed, however m ethods
affected by the addition or deletion of instance variables m ust also be updated.
The instance variables shown in earlier figures are those used by the prototype
workbench and accepted as correct by the IM PW steering committee. W ith this
assurance, it was possible to concentrate on creating classes and m ethods for the
Risk tool, which would be as robust and reusable as possible.

The Objective-C factory m ethod ’’create” , perform s the necessary initialisa­
tion for each Riskdriver by extracting risk characteristics a t the keyboard. W hen
the initialisation process commences, a new Riskdriver is created by the [self
new] message. This m ethod is inserted at the beginning of the ’’create” m ethod
to setup the risk tem plate object required. The receiver of the new message
’’se lf’, identifies the factory object Risk. Typically this factory m ethod creates
a new instance of its class. For efficiency reasons program m ers may change the
identity of self to an instance eg. self = [self new]. W hen this happens, all the
messages subsequently sent to self are sent to the newly created instance not the
factory.

On entering all the risk characteristics, the create m ethod prom pts the
SuperUser to enter the risk m anagem ent areas. Each riskdriver created should
be associated w ith a t least one of these areas see Appendix C. After eliciting
all the necessary d a ta to represent a riskdriver, the new instance is stored in a
collection of riskdriver instances (called the riskC ltn in the Risk Analysis tool).

• D e le te This functionality is provided to allow the SuperUser to remove
riskdrivers from the Risk Analysis tool. Unlike adding riskdrivers into the Risk
Analysis tool, where adding new instances is simple once riskdriver character­
istics are known, deletion of riskdrivers is however a m ore complex operation.
The removal of riskdriver instances from the Risk Analysis tool may involve the
removal of instances from the Rule and Text classes, if instances of these classes
are associated with the riskdriver marked for deletion.

The deletion of riskdriver also leaves gaps in the collection object holding
the instances. Storing riskdrivers in a collection w ith gaps is not only wasteful of
space, but could also affect the way searching and printing of objects is performed.

CHAPTER 3. RISK ANALYSIS TOOL 44

Compressing the collection after deletion would seem a m ore sensible option, but
th is means updating riskdriver numbers. Therefore the Rule values which apply
to these riskdrivers and the resulting condition tex t object m ust also be updated.
This solution is however m ore acceptable th an having a collection containing
gaps. Problem s which spring im m ediately to m ind would be, w hat would happen
trying to access or print a t an em pty slot in a collection: additional code would
be required to facilitate such occurrences.

get Rd number
if (Rd number != 0)
go to start of rule list
while (Rules to be read)
aRule = next Rule collection position
while((Rd number != aRule operand) && !E0L)

get next aRule operand
endWhile
if (aRule operand == Rd number)

mark aRule for deletion
identify aRule condition number
if (only path to Condition No)
while (Rules to be read)

bRule = Rule collection at position aRule
while((condition number != bRule operand) && !E0L)

get next bRule operand
if (bRule operand == condition number)

mark bRule for deletion
if (only path to Condition No)

condition number = bRule condition number
endWhile

endWhile
endWhile

end

Figure 3.8: Deleting Riskdrivers

The collection compressing idea gives the collection a lot more flexibility

CHAPTER 3. RISK ANALYSIS TOOL 45

i.e. the code for accessing and displaying collections of objects can rem ain con­
sistent w ith the approach adapted for o ther Objective-C systems. Because of the
classes and m ethods provided by the Objective-C environm ent, the compression
and updating of collections is greatly simplified. The collection m ethods which
handled deletion, adding and sequencing could be used to reduce the complexity
of this problem to an acceptable level as shown in figure 3.8.

After entering a numeric value inside the riskdriver collection range, the
Rule collection is searched for Rules, which will be affected by the deletion of
th a t riskdriver. If a Rule operand is associated w ith a deleted riskdriver, then
th is Rule is also m arked for deletion. T he R ule’s condition num ber may also be
m arked for deletion, if this Rule is the only link to th a t condition num ber (i.e.
if the Rule object is being deleted, then the text object and the Rule w ith the
corresponding condition num ber may also have to be deleted). An additional
search for Rules containing this condition num ber m ust also be made(i.e. Rules
containing this condition num ber must also be deleted). This process is itera ted
until the condition num ber, associated w ith a Rule cannot be triggered by another
com bination of Rules or the list is exhausted. This operation m ust be perform ed
for each Rule in the collection. The Objective-C source code for this operation
is shown in the ” delete” m ethod in the Risk class A ppendix D.

This section of code relied heavily on the power of the O bject Oriented ap­
proach and the Objective-C environm ent. W ithout inheriting the facilities of the
foundation classes, the work involved in removing and resizing these collections
would have been substantial.

• A m e n d Facility for the SuperUser to change any of the riskdriver val­
ues presented to the user. W hile am end can be considered a factory operation
common to all riskdrivers, the changes are m ade to individual instances of the
Class Risk. Using m ethods in the ordered collection (O rdC ltn) and its inherited
collection class(C ltn), individual instances can be retrieved 'for interrogation. By
storing all the riskdrivers in an O rdC ltn instance called riskC ltn, access to any
riskdriver may be achieved w ith statem ents such as.

aRisk = [riskCltn at:4]

Here the fifth object in the riskCltn is returned to the object label aRisk.
All collection counts s ta rt a t zero, hence the fifth object being retrieved when four
was specified in the statem ent. Ensuring th a t the riskC ltn contains only riskdriver
instances is verified by the add: m ethod in the Risk class. This m ethod will verify
th a t only instances of the Risk classes are added to the risk collection. Checks

CHAPTER 3. RISK ANALYSIS TOOL 46

also have to be included, to ensure th a t only valid collection slots(i.e. slots which
contain risk objects) are called, otherwise a run tim e error will occur.

To prevent da ta inside an object being wrongly am ended or lost during any
am end session, a copy of the instance is m ade for amending. Changes during the
am end session are m ade to this dummy object instead of the original selected in­
stance. Some of the Objective-C statem ents required to perform such operations
are listed below. The dum m y object reference here is created by the Risk class
w ith the m ethod “new” instead of “create” so th a t the tem plate will contain nil
values. The object marked for amending then copies across its instance variables
to the dummy object.

aRisk = [riskCltn at:— num]; // retrieve instance
dummy = [Risk new]; // create dummy instance
[dummy copy:aRisk] ; // copy instance variables to dummy object

[dummy maintenance:num]; // perform necessary amendments
// to dummy object

// if changes are OK
[[riskCltn insert:dummy before:aRisk] remove:aRisk];

This approach was the safest way to change the ob ject’s private data, per­
forming copy operations on the objects as below.

strcpy(riskdriver,[aRisk riskdriver]) ;
strcpy(risktxt, [aRisk risktxt]) ;

The riskdriver variable on the left belongs to the dum m y object which called
the ’’copy” m ethod (i.e. dum m y-> riskdriver represents riskdriver). The m ethod
[aRisk riskdriver] returns the riskdriver title string to be copied. Only when
the am endm ents to the dummy object are correct, will this object be allowed to
replace the original. The dum m y object replaces aRisk in the riskC ltn using the
insert:before: m ethod.

The Objective-C language does provide an alternative mechanism, besides
objects, for accessing an objects instance variables. This is one of the strengths
of the language, but its also one of its greatest weakness because it violates the
principles of encapsulation. Direct addressing of an objects instance variables is
perm itted , bu t such operations can be dangerous and are not recommended by
the suppliers.

CHAPTER 3. RISK ANALYSIS TOOL 47

• V iew a n d L is t The SuperUser of the tool also needed the capabilities to be
able to view and list w ithout affecting their contents. W ith dynam ic collections,
it is im portan t to be able to print any or all of the objects in collections of
various sizes. It is possible to w rite Objective-C code which will overcome these
constraints. T he following three lines of code, highlight the ease and simplicity
of printing a collection of unknown size and contents using th is approach. This
code will rem ain unchanged no m atte r w hat objects are added to the collection.
The only constraint on the object added to objectC ltn is th a t it knows how to
prin t itself.

objectSeq = [objectCltn eachElement];
while (anObject = [objectSeq next])

[anObject print];

Printing the riskdriver collection is simply a m a tte r of replacing objectC ltn
w ith riskCltn.

3.4.2 The Project Manager

Most of the chapter until now has been focused on the functionality required by
the SuperUser. The SuperUser uses these operations for setting up an environ­
m ent, which would allow the tool to analyse project risk. However the real user
(the person whom the tool is designed for) of the Risk Analysis tool is the project
m anager. P ro ject managers need a tool which will perm it comparisons of their
project characteristics against ’’Rules and Risk Areas” which they presume have
been entered previously by some expert(s) in software m anagem ent. The opera­
tions which the project m anager needs to perform are described by the following
areas of functionality.

[1] View Riskdriver
[2] View Rule
[3] Amend Riskdriver value
[4] Amend All Riskdriver values
[5] P rin t Risk Report

CHAPTER 3. RISK ANALYSIS TOOL 48

V iew r is k d r iv e r Each riskdriver in the tool represents an area of risk which is
related to software development. Allowing the project m anager to view various
risk areas, means th a t the risk instance m ust be retrieved from the risk collection
object ’’riskC ltn” and the IS database m ust be interrogated to find the value of
the riskcondition chosen to represent the project characteristics for this riskdriver.
The diagram in figure 3.9 illustrates the flow of d a ta and the software entities
involved in viewing riskdrivers.

Figure 3.9: G etting risk values from the database

The IS database contains all the relevant inform ation associated with the
workbench. Project characteristics elicited from the risk analysis tool are included
in these tables. W hen the project m anager asks the Risk Analysis tool to view
a riskdriver, all the characteristics related to the riskdriver may be retrieved
from the riskC ltn. However the riskcondition value, representing the project
is stored in the IS database. The Risk Analysis tool sends a message in the
form off an Informix statem ent to the IS. If Informix validates this statem ent
as correct, the row and column in the appropriate database table is found and
the value is transferred to a m ethod for displaying the riskdriver value. Most
of the problems associated w ith this functionality were related to calls to the IS
database. Because the database was developed at a different geographical site,
com patibility problems existed when integrating the tool into the workbench. The
code for retrieving riskdrivers from the riskCltn is inherited from the collection
classes and is easy to implement. However retrieving the Risk object values from
the database is completely different, requiring the new m ethods for interrogating

CHAPTER 3. RISK ANALYSIS TOOL 49

the database.

View Rule Gives the project m anager the ability to view the Rules which
are applied to riskdrivers for a project. The representation of Rule operands eg.
R l . l , R2.1 etc, will not be comprehensible to the project m anager starting to use
this tool. Therefore is im portan t th a t when the project m anager views Rules as
they are displayed in standard english form at.

W hen the project m anager wishes to view the contents of a Rule the first
thing to be determ ined is which Rule? The project m anager m ust provide some
input which will determ ine Rule instances. Going back to the example Rule
collection in figure 3.3, assume the project m anager wishes to view the Rule(s)
which trigger the diagnostic tex t associated w ith Rule (condition num ber) five.

R7.2 | * 1 | I I | -> C5
R7.1 | R8.1 | * | | | | -> C5

Figure 3.10: Rule operands for Rule Num ber five

From the table it can be seen th a t two instances of the Rule class can be
related to this condition num ber five. The values of Rule operands on the same
Rule represent an accum ulation of riskdriver values which m ust be true to trigger
this risk condition. The operator AND was invented for the insertion of Rule
objects so th a t instance could have more than one operand. The num ber of Rule
instances relating to any condition num ber will depend solely on the Rule syntax
entered previously by the SuperUser. The OR signifies a different Rule instance
pointing the same Rule condition as some other instance.

By reversing the procedures used for validating Rule operators and operands,
it was possible to replay the values enter by the SuperUser back to the project
m anager. By setting up two queues, one for operators and one for operands
the Rule inform ation is transfered from i t ’s storage representation above, to the
appropriate queues. Reading along the Rule operands, we enter AND between
operands, and use OR to represent a new instance of Rule which has the same
condition number. The end of references to a particu lar condition num ber(rule)
is indicated by TH EN in the operator. The resulting queues are shown in figure
3.11.

CHAPTER 3. RISK ANALYSIS TOOL 50

I R8.1 | 1 THEN I

1 R7.1 I 1 AND I

1 R7.2 | 1 OR 1

operand operator

IF R7.2 O R R7.1 AND R8.1 THEN

Figure 3.11: O perand and O perator queues

By further expanding the risktext and riskconditions for each riskdriver the
presentation of the Rule should be in english form at as below. All lower case
tex t refers to operands, upper case refers to the operators. By reading from both
queues alternatively it is possible to reconstruct a Rule sentence.

IF in relation to w hat we are accustom ed the p roduct is -
very small or is easily broken down into norm al size work
packages OR in relation to w hat we are accustom ed the product
is -
fairly small or fairly easily broken down into norm al size work
packages AND in relation to w hat vve are accustom ed - require­
ments
are very simply and easily allocated to software
com ponents/m odules THEN

A m e n d in g r is k d r iv e rs This is the project managers only input into the tool
which will affect riskdriver values stored in the IS. This is to reflect any changes
in project characteristics, or invalid input entered by the project m anager. The
section on listing riskdrivers discussed retrieving project values from the database.
A sim ilar operation m ust be perform ed for amending riskdrivers only this time
it m ust be possible to upda te the IS table. The operation required to perform
am endm ents is listed below.

CHAPTER 3. RISK ANALYSIS TOOL 51

D eterm ine which riskdriver to amend;
Retrieve its associated value from the IS database;
Display all the inform ation to the project m an­
ager;
Allow changes to be m ade and confirmed;
U pdate the IS database w ith the new
riskdriver value;

Amending all riskdrivers use the same operations, the only difference being
th a t the am end operations are perform ed sequentially on all riskdrivers in the
riskCltn.

P r in t in g R e s u l ts As mentioned earlier, the project report from the Risk
Analysis tool is divided into two sections.

[1] Percentage risk values for the four risk
m anagem ent areas

[2] Generating the appropriate tex t related to
a risk area

The functionality required to provide this ou tpu t was described in Measure
and Text classes. T he presentation of the ou tpu t generated from these classes to
the project m anager is v ital for the fu ture success of the tool (i.e. if the output
is complicated and unstructured , the project m anager can be pu t off using the
tool).

T he percentage risk in the four risk m anagem ent areas needs to be printed
to a project report and to the VDU. The tex tual inform ation is also sent to the
project report and to the VDU, however the details printed a t bo th mediums will
be different. The diagnostic text relating to all Rules in a ’’true s ta te” are sent
to a prin ted report. Only the top level predicate conditions display explanatory
text to the VDU, describing what is making the project risky. Figure 3.12 shows
a tree of related Rules set-up by the SuperUser.

If all the Rules shown are true, all diagnostic messages associated w ith
condition clauses are sent to the prin ter report. However only the explanation
tex t associated with C4 needs to be displayed on the screen i.e. the fact tha t
diagnostic message C4 is being displayed means th a t C l and C3 m ust be true.
The tool also provides a mechanism for tracing back along this Rule tree.

CHAPTER 3. RISK ANALYSIS TOOL 52

IF R1.1 OR R2.1 AND R3.1 THEN Cl

IF R4.1 AND R5.1 THEN C2

IF R6.1 AND C2 THEN C3

IF C1 AND C3 THEN C4

Figure 3.12: Rule Tree

R u le I n te r r o g a t io n If this option is selected, the second section of the Risk
R eport is displayed. The m anager may select any Advice Paragraph (w ith the
mouse) w ith a view to discovering why it appears in the report. The correspond­
ing “W hy?” paragraph is then displayed to provide explanation. If the manager
wants to “dig deeper” , he/she can select the “W hy?” paragraph. The tool will
then , by backward chaining, use the pointers stored away by the “Com pute Risk
R eport ’’function , display the “W hy?” paragraphs associated w ith successful
rules upon which the selected “W hy?” paragraph is directly predicated ...and so
on right back to the values of the individual Risk Drivers if desired.

3.5 S u m m a ry

The Risk Tool works a t a fairly high level of abstrac tion .lt deals w ith broad issues
relating to the project as a whole. It would be valuable to supplem ent Risk tool
w ith a series of more detailed risk models relevant to specific phases of the project
lifecycle. These models could be called on, as the project progresses.

CHAPTER 3. RISK ANALYSIS TOOL 53

T he scope of the current “risk m anagem ent areas” is ra ther limited. In
particu lar,the current riskdrivers focus largely on “internal” sources of risk to the
project. There is no coverage of risks arising from, for example, any contrac­
tual/legal aspects of the project.

Chapter 4

Calendar Tool

4.1 In tr o d u c t io n

Associated w ith the success and failure of all projects is the tim e duration required
for the completion of the task. Time plays an im portan t role in the successful
completion of tasks and subtasks. W hether the project we are working on is
building a house or building a com puter system to control a country’s finance for
the next ten years, the project m ust be carefully planned and completed inside a
fixed tim e scale. In large projects tasks are broken down into lower level subtasks
each of which m ust be completed by a certain date, before work can commence on
other sub tasks required to achieve the overall completion date. Throughout these
projects meetings occur to review progress, checking on the resources applied and
the products produced from these tasks. T he Calendar tool described in this
chapter provides this inform ation for the user (project m anager) of the IM PW ,
by retrieving the required project task inform ation from the IS database.

It was decided at the outset th a t the Calendar tool would only be used for
the retrieval of inform ation. This would elim inate the possibility of amending
values created by one of the other tools. A decision was also m ade early in devel­
opm ent as to what type of inform ation should be retrieved and displayed by this
tool. Section 4.3 will give a detailed description of the inform ation presented by
this tool. This inform ation will contain dates of events, activities and milestones
which are im portant throughout the lifecycle of software development. W hether
or not current development is in tune w ith these dates will be of no concern to
the Calendar tool. Slippage in the date of task completion, due to late delivery
of some product or lack of resources etc, is adjusted by other tools in the IM PW .

54

CHAPTER 4. CALENDAR TOOL 55

This chapter also looks at the main classes which were created for the develop­
m ent of the Calendar tool, showing how these classes fit in to the Objective-C
inheritance mechanism.

4 .2 C alen d ar O v erv iew

The Calendar tool acts as a project clock which allows the project m anager to
view aspects of progress inform ation collected, by other IM PW tools. T he m an­
ager may view this progress inform ation at varying levels of detail, corresponding
to different levels of resource monitoring. The tool offers three operation modes
for viewing project details.

[1] Open
[2] Interval
[3] Task

The inform ation which is displayed by the Calendar tool is acquired from
the database tables in the IS. As the database contains a large am ount of project
inform ation, deciding w hat inform ation to display and in w hat quantity was one
of the earliest problems encountered while developing this tool. Unlike Smalltalk-
80 which has a library class dedicated to the “D ate” , no similar operations are
provided in the Objective-C foundation library.

The development of the Calendar tool therefore involved the creation of sev­
eral class objects, which were attached to the Objective-C inheritance mechanism
as shown in figure 4.1.

The s ta te objects(C alInitialS tate, CalSecondState, C alThirdS tate) and CalAu-
tom ata are used for setting up a finite s ta te machine for the Calendar tool. The
CALLoad class was created for retrieving project details from the IS database.
The various sub tasks associated w ith the completion of a task being viewed by
the Calendar tool are stored in the Task class.

CHAPTER 4. CALENDAR TOOL 56

O bject

—► Date

CalAutomata

 ► C a J I n i t i a lS t a t e

 ► C a lS e c o n d S ta te

 ► C a lT h i r d S t a t e

—► Task

— ► CALLoad

Figure 4.1: Calendar Tool Classes

4 .3 C alen d ar P r e se n ta t io n

T he role of the calendar is defined as a tool which supplies inform ation but
does not perm it updating of this data. Sending calls to the IS database from the
CALLoad class will enable inform ation relating to projects to be displayed by the
C alendar tool. B ut w hat inform ation should the project m anager see? Should
we ju s t blitz the project m anager w ith all d a ta related w ith the project under
scrutiny? Complex software projects will contain vast am ounts of detail, this
will have repercussions on memory space, speed of operations, the tool interface
presented, as well as the complexity and reliability of source code.

The success/failure of this tool like m any others which are used solely for
the presentation of inform ation will be dependant not only on the details th a t are
presented to the user b u t also how they are displayed. Deciding what inform ation
to display and how, was guided by other tool displays in the workbench and the

CHAPTER 4. CALENDAR TOOL 57

lite ra tu re referenced [Bar 86],[SPE 86],[Cox 86],[Kee 81].

The main goal of the Calendar tool was to present the project events and
activities, created by th e o ther workbench tools, which would m ark im portan t
milestones in project development. It was also envisaged th a t the C alendar tool
would present this inform ation in a sum m ary form at and provide some simple
m ethod for obtaining m ore details on highlighted inform ation. O ther tools such
as the P ert and G an tt perform progress m onitoring and resource scheduling of
project events and activities. It was im portan t therefore to create a Calendar tool
which not only conformed to the goals given above, but did not display ou tpu t
similar to the previously m entioned tools giving the notion of identical tools in
the workbench.

The inform ation represented by the C alendar tool selected five areas from
the IS database to display im portan t project characteristics which would be help­
ful to the project m anager. The areas selected were im ports, products, meetings,
work in progress and personnel. O ther areas, such as allocation of resources and
cost were adequately described in other tools or as p art of one of the five sections
m entioned, hence their exclusion.

I m p o r ts Most projects depend on m aterials and resources from some exter­
nal source. The forem an on the building site will im port bricks for building, if
the project has been planned correctly, they should arrive a t some date before
the bricklayers. Software projects also depend on m aterials and resources from
outside their project boundary. The im plem entation of some software tasks may
depend on a m odule of code developed by some external software house, or on
the ou tpu t from one of the o ther sub tasks in their project. It is im portan t there­
fore th a t some indication of im ports, required by the task under view should be
indicated.

P r o d u c ts The o u tpu t from the completion of most projects and project sub
tasks will be some type of product. In software development these subtasks could
be a feasibility study, a coding module, an In p u t/O u tp u t interface etc. Knowing
when these sub tasks are completed provides im portan t inform ation to the project
m anager and hence their inclusion in the calendar display.

M e e tin g s During the life span of any project there will usually be a num ber of
scheduled meetings. The project m anager will have numerous meetings associated
w ith the project discussing topics such as costs, design, resources, quality etc.
Highlighting to the project m anager, the dates of these meetings was considered
a desirable feature.

CHAPTER 4. CALENDAR TOOL 58

W o rk in P ro g re s s During the various phases of project development different
tasks will be perform ed concurrently, in an effort to speed up the completion of
the project. Knowing when work on tasks is been carried out over any particular
tim e period, plays a significant role in the allocation of resources. This facility
also indicates the natu re of the work being carried out during a certain tim e
period when required.

P e rs o n n e l During the life of the project there may be num erous people involved
in the completion of the various tasks. Project m anagers need to be aware of what
people will be involved w ith certain tasks on certain dates. The personnel facility
was included to indicate when personnel are involved w ith the task and also w hat
personnel are involved.

To show all the related d a ta for each task event required for the completion
of a m edium to large project would cause a great deal of congestion on the
calendar ou tpu t display (i.e. the num ber of personnel involved could be in the
hundreds). This problem is elim inated by only displaying some type of indication
if a particu lar event has occurred on the respective date instance being viewed.
T he calendar view displayed in figure 4.8 uses asterisks to represent an event
occurring on a particu lar date. Further inform ation on any of the five events
highlighted by asterisks can be obtained using a selection mechanism, which
gives a more detailed description of the selected activities for th a t date range.

4 .4 D a te C lass

The m ain object in the C alendar tool is the D ate factory class. The instance
variables in this class represent the date and the events if any, occuring on th a t
date. Boolean values were used to signal the activation of-the respective events
for date instances and the collection of events stored the sub-tasks which actually
occurred in the duration represented by the date object. The da ta structure for
defining instances is shown figure 4.2.

All instance variables are im portant to an object, otherwise why should
they be defined in the first place? However the instance variable day-num ber can
be regarded as the principle variable in the D ate class. It is the value stored in
th is variable which determ ines the d a ta values related to the other variables.

There were a num ber of ways of allowing a date instance to represent the
calendar date i.e. s t r in g , in te g e r or C s t r u c t combinations. The d a ta type
chosen however for the Calendar tool was the C type long , the reasons for choos-

CHAPTER 4. CALENDAR TOOL 59

= Date : Object (CalGroup, Primitive)
{ Instance variables

long day.number; // days since Jan 1st 1970
BOOL day_imports;
BOOL day.products;
BOOL day_meetings;
BOOL day.personnel;
BOOL day_work_in_progress;
id anlmportCltn;
id aProductCltn;
id aProgressCltn;
id aMeetingsCltn.;
id aPersonnelCltn;

}

Figure 4.2: D ate Classes Instance Variables

ing this type were influenced by two m ain factors. If the project managers view
of the tool required changing so th a t individual dates could be viewed on hours,
m inutes and seconds, it would be beneficial to have a d a ta s truc tu re for the class
th a t could facilitate this request and would not require substantial changing.
The second reason was, because the Unix operating system which provided the
run-tim e support between the IM PW tools developed in Objective-C and the
com puter hardw are, also stored date and tim e values as type long. Using this
representation it is possible to reference date by calendar day, hour, m inute and
second. Each increment of one to the long value storing the date represents the
addition of one second to the date.

4.4.1 Storing the Date

Representing the date as a long type can be justified for storing date values in
the Calendar tool. However asking the project m anager to enter the date in the
long form at introduces a num ber of problems as shown below.

E nter date :- 347563202413

CHAPTER 4. CALENDAR TOOL 60

Pro ject m anagers entering the date in this form at would have the difficult
and error prone job of converting the date to a long value. This approach also
gives a poor representation of the date types to which a project m anager would be
accustom ed. To ensure continued use of the tool, a m ore understandable and easy
to enter form at had to be provided for the project m anager. This prom pted the
writing of a m ethod for the Calendar tool, which allowed the date to be entered
in a more conventional m anner which could be understood by the user(i.e. May
21 1989).

Once a valid da te is entered, the date is converted to a variable of type
long, so th a t it may be understood by the Calendar tool. Validation of the
project m anagers input is perform ed to ensure the creation of correct instances.
As w ith the creation of rules in the previous chapter, the creation of the new
object is postponed until the object is validated. Once validated the date could
be applied to the formula below for the creation of a new date instance.

long_date = (year * 3153600) + (daysBefore_month * 86400) +
(day * 86400) + (leapyear * 86400)

year = 1989 - 1970
daysBefore_month = may = 121
day = 20

Figure 4.3: D ate Conversion Formula

The date range perm itted by the tool is any date from January 1st 1970,
hence the reason for subtracting 1970 from year. The daysBefore_month value is
the num ber of days from the s ta rt of the year to the s ta rt of the current month.
In the example above one hundred and twenty one days have occured since the
s ta r t of the date m onth.

The variable day represent the num ber of days into the m onth and leapyear
contains the num ber of ex tra days to be added, due to leap years since January
1970.

The numeric value 3153600 represents the num ber of seconds in a normal
year (eg. one which is not a leap year). The value 86400 represents the number

CHAPTER 4. CALENDAR TOOL 61

of seconds in a day. After the long_date has been calculated it is passed as an
argum ent to create a date instance as below.

aD ate = [Date create:long_date]

The effort required for entering input to the tool can be further reduced
by accepting the current system date as the default date, in response to pressing
the enter key, when prom pted for the date. Using the Unix operating system
call gettim eofday()[Sun 86], it is possible to obtain the current date from the
com puter. Although the gettim eofdayQ function is not p a rt of the Objective-C
m achinery the Object Oriented principles for reusable code can be applied. If the
com puter validates and uses this function, then there is no need for the operation
to be repeated in the C alendar tool source.

W hen an instance of date is created, all the necessary task components
described earlier m ust be associated with the im port, product, progress, meeting
and personnel collections for th a t date instance. The retrieval of this information
is explained in the CALLoad class.

4.4.2 The Date Collection

Once the date instance has been verified and the tim e interval each instance has
to represent is established, the Calendar tool must generate a num ber of date
instances which are added in an ordered sequence to a collection of date objects.
Before creating this sequence of date instances, a decision had to be taken on the
num ber of instances to be created and stored in com puter m ain memory during
tool im plem entation. Should instances representing dates form the s ta rt to the
end of the project get created to represent an entire project? In large projects
(i.e. those lasting three or more years), trying to store all events on a daily
basis would cause memory problems. Another alternative (the one adapted for
this tool) was to create a certain num ber of instances after the initial date, to
represent the task events.

The num ber of instances created after the initial date has been set to th irty
one for this version of the Calendar tool. The reason for selecting this number
was simply to allow project managers to view the tasks on a daily basis for an
entire m onth. If the project is large and complex then the interval mode should
be used to represent the th irty one instances with a more correct scale. Setting up
a routine to handle th irty one date objects is simplified by inheritance which uses
classes and m ethods provided by the Objective-C foundation library as below.

CHAPTER 4. CALENDAR TOOL 62

i = 0
while (i++ < 31) {

[dateCltn add:[Date create :long_date]];
long_date += datescale;

>

Each instance is created by the D ate m ethod “create:” before being added
to the O rdC ltn instance dateC ltn . Different date objects values are created by
long_date, which is increm ented by a scale value each tim e round the loop. If the
project m anager decides to represent two weeks for each calculation, the datescale
would be 86400 * 14 = 1209600.

A lthough the Calendar tool perm its the creation of th irty one date in­
stances, only five of the instances are viewed at any particu lar m oment by the
calendar display. The reasons for only displaying events associated w ith five dates
was to keep the display com pact and easily readable. Displaying five dates, how­
ever still gives the project m anager the ability to view events for each working
day of the week.

4.4.3 Presentation of Dates

No constraints on the tool builders on how dates should be presented for input
and ou tp u t were made. C reating the code for entering and displaying dates
in the Calendar tool, was left to the discretion and personal taste of the tool
builders. W hile obtaining a date presentation I considered pleasing, there was
still a m atte r of com patability with the date representation w ith the o ther tools
in the IS database. The IS stores dates in m m /dd /yyyy form at, the Calendar tool
stores the date as a long value and displays it in the yyyy-mfn-dd form at. Clearly
m ethods were required for converting Calendar tool dates into IS representation
and vice versa. The D ate class has many m ethods encapsulated around this
factory object, which will allow various combinations of date to be assembled.
The examples below show how different dates can be assembled using the m ethods
in the D ate class and the C sprintf statem ent.

sprintf (dateStr, "Xd-’/.d-'/.d" , [aDate year] , [aDate month]
[aDate day]);

dateStr = 1989-10-22
sprintf (dateStr, "*/,s ’/,d ’/.s 7,d",[bDate dayName] , [bdate day],

[bDate monthName], [bDate year]);

CHAPTER 4. CALENDAR TOOL 63

dateStr = Thursday 22 October 1989

This section has mentioned only some of the m ethods developed for the
D ate class. A dditional m ethods for comparisons, interrogation and presenting
the date can be viewed in the D ate class definition file Appendix E.

4.5 C A L L oad class

Once the date instances required to show the project have been established, it is
im portan t to have a tool interface which responds quickly to interactions m ade
by the project m anager. Reading and writing from the d a ta base will be tim e
consuming no m atte r how efficient the searching technique. Some date instances
may contain large am ounts of inform ation extracted from the IS, while other
instances m ay contain no inform ation a t all.

Searching for inform ation relating only to the five date instances being dis­
played, may improve the tim e to set-up the initial display. However if we wish to
alter the dates presented by the tool, the tool mechanism m ust grind to a halt
until the new date instances have the required inform ation, which is stored in
the IS, linked to their respective collections. For the project m anager who wishes
to scan backwards and forwards through the date collection, this technique is
undesirable, because of the abundance of memory provided by com puter work­
stations and the fact th a t only one tool at the tim e can be im plem ented in the
prototype version of IM PW . It was possible to read from the database all the
events associated w ith a specific task. The retrieval of inform ation from the IS
might be longer th an in the previously mentioned m ethod, however once all the
details have been loaded into memory the project m anager will be able to scan
across dates, w ithout having lengthy waits for additional d a ta to be load from
the IS.

The loading of events related to the project task being viewed by the Cal­
endar tool is in itiated by the following Objective-C statem ents.

aCALLoad = [CALLoad new];
[aCALLoad loadDM];

The CALLoad class defines one instance variable the object taskC ltn which
is aggregated to the isa pointer inherited from the objects super class Object.

CHAPTER 4. CALENDAR TOOL 64

This instance variable will contain a collection of all sub tasks associated with
the completion of the top level task. A fter creating the instance to hold the sub­
tasks, the m ethod loadDM triggers the retrieval of sub-tasks related to this top
level task from the database using the command.

aCommand = [[[String new]
concat:[String str:"SELECT Name,EarliestStartDate,

EarliestEndDate"]
concat:[String str:" FROM Task"]];

This retrieval of tasks from the IS is m ade by sending Informix commands
to the d a ta base. The concatenation of the Objective-C objects above, help
create an Informix com m and for retrieving all the sub-tasks re la ted to task. After
determ ining all the sub-tasks, the im ports, products and resources associated with
these sub-tasks m ust also be retrieved from the IS. The m ethod retrieve:and:from:
in the CALLoad class restores for each sub-task the appropriate im port, products
and work inform ation.

4 .6 Task C lass

The entity Task in the IS represents all the work involved in completing a project.
Each task or sub task involved in project development can be viewed as an
individual project. The task object contains a collection of sub tasks, the sum of
which result in the completion of the top level task. All im ports, products and
work operations which occur during the duration of the task m ust be related to
the respective tasks.

The class Task was created to store all the necessary.data associated with
sub tasks from the database. Figure 4.4 shows the instance variables defined in
the class definition file.

The id nam e is required to identify the name of the sub task , the (id) objects
s ta r td a te and enddate use the String class to help represent the duration of a task.
The product object will contain when required, a collection of products for this
sub class. The consum edCltn will contain a collection of all the components tha t
will be consumed by the task. The workCltn will contain a collection of work
resources associated w ith a task.

After obtaining all the task details, the object is added to the taskC ltn. The
D ate class then relates events to date instances by searching through taskC ltn.

CHAPTER 4. CALENDAR TOOL 65

= Task : Object (CalGroup, Collection, Primitive)
{ Instance Variables

id name; // task name
id startdate;
id enddate;
id product;
id consumedCltn;
id workCltn;

>

Figure 4.4: Task Class Instance Variables

Five different searches are m ade for the different collections defined in the D ate
definition file. S ta rt and end dates of task in the taskC ltn are com pared against
the date stored by the da te object. W hen a valid date is obtained, the respective
event collection is added to the instance variable collection which is related to
the search.

4 .7 C a lA u to m a ta and S ta te c lasses

The C alA utom ata and S tate classes although not linked through inheritance, are
used together to create a finite sta te machine used for controlling the operation
paths while using the C alendar tool. T he tool could have been developed w ith­
out such an environm ent, but because the integration was been implem ented
at a different geographical location, the approach helps to minimise and con­
trol changes. The diagram in figure 4.5 shows the various states created by the
au tom ata m achinery for the Calendar tool.

4 .8 O p era tio n m o d es

Because the tool is used only for displaying inform ation, the am ount of func­
tionality regarding tool use, is greatly reduced. Indeed the only functionality
required, refers to the way in which date objects should be displayed. Having a

CHAPTER 4. CALENDAR TOOL 66

tool which only perm itted viewing on a daily scale may cause m any date instance
to appear w ith duplicate inform ation in large projects. Functionality was added
to the tool, to allow the project m anager to determ ine, the tim e period each date
instance should represent and to perm it a calendar view of ordered tasks. The
different views of calendar dates is m ade on entry to the tool, where the project
m anager is confronted w ith the following options.

1. Open <defaults to one day intervals be­
tween dates >

2. Interval < th e project m anager specifies in­
tervals for date instances>

3. Task < th e interval between calendar dates
is determ ined by project tasks>

CHAPTER 4. CALENDAR TOOL 67

4.8.1 Open and Interval Modes

The only difference between open and interval modes is, th a t interval modes
perm it the project m anager to adjust the tim e period between date instances.
The Objective-C code required to create date instances is used for bo th modes
of operation. The only difference is the value of the argum ent datescale which
determ ines the date interval span. The sequence of date instances are created by
increm enting the long_date value as below.

long_date += datescale;

In the open m ode the datescale is set to 86400 so th a t each new instance
created for the date collection is a day greater th an the previous instance. W hen
in interval mode, the project m anager enters an integer value to represent the
tim e span for each date instance. This integer is m ultiplied to datescale before it
is used in the formula given above eg. datescate = 86400 * 7 causes an interval
of one week between instances as shown in the m ain window view in figure 4.6.

D ate 1989-06-14 1989-06-21 1989-06-28 1989-07-05
IM PORTS *** *** ***

PRODUCTS *** ***

M EETINGS *** *** ***

PERSONNEL *** ***

W ORK PROG ***

Figure 4.6: Calendar View

C H A P T E R 4. C A L E N D A R TOOL 68

4.8.2 Task Mode

W hen in task mode, the date instances in the calendar display are sequenced in
event order. The taskC ltn which contains all the sub tasks associated w ith the
completion of a particu lar task, is sequentially searched to find the respective
starting dates for each sub task. The starting date instance variable in each task
object is of type object(id). This decision was m ade to utilise the code provided in
the foundation collection classes. Objective-C provides tried and tested m ethods
for sorting and storing objects inside collections. D ate objects for the tasks
which are stored in an ordered collection(taskCltn) are being transferred to a
sort collection(SortC ltn). The dates representing the events are sequenced in
their correct order and stored in a sorted collection object of type SortC ltn.

Objective-C as m entioned provides a foundation class for storing sorted
collections “S ortC ltn” . This collection allows collections to rem ain sorted at
all times and for insertions to be added a t their proper place. However when
objects are being added to a SortC ltn, some type of comparison m ust take place
between objects. This in tu rn implies th a t the sorting class SortC ltn knows in
advance(before run tim e) the objects types being sorted. This would contradict
the dynam ic binding principle advertised by Objective-C.

4.9 E v en t D e ta i ls

For SortC ltn to qualify as a true Objective-C class, the sorting of various object
types should be perm itted w ithout amending existing code. The code below
describes the creation of an instance of SortC ltn. Note the m ethod required to
do the object comparisons is passed as an argum ent.

anEventDateCltn = [SortCltn orderedBy:"taskcorapare:" onDups:1]

The ”orderedBy:onD ups:” m ethod refers to a specific m ethod ’’taskcom-
pare:” which knows how to do the comparisons, for the objects being stored in
the sorted collection in da te order. It is the responsibility of the person who
stores the objects in the sorted collection, to w rite the m ethod which does the
comparsions on these objects. In the Calendar tool instance comparsions are
performed by the m ethod ’’taskcom pare:” which compares the s ta rt date of the
objects stored in the task collection(taskCltn). The onD up:l is used to stop du­
plicate values begin added to the sorted collection(i.e. the Calendar tool should
not see the same date object displayed twice).

C H A P T E R 4. C A L E N D A R TO O L 69

mmmBrama

Tool : CALENDAR Project : IMPW

From : Thursday March 2 1989

To : Thursday March 2 1989

Work 1n Progress :
d e v -sy s t : /W
Software Development
Software Realisation
Code Software

1 ■ *»' Vv ' * • ï\h ifëfàÿi W v* ?...» , j.

T ool : CALENDAR P r o j e c t : IMPW j j
1 9 8 9 -2 -2 8 1 9 8 9 -3 -1 1 9 6 9 -3 -2 1 9 8 9 -3 -3 1 9 6 9 -3 -4

Im p o r ts »**

P ro d u c tB • ** • • • ***

M e e tin g s

P e rs o n n e l

Work In p r o g r e s s j . . . •« * WÈÈÊm • ** •«*

Ü □

Q u it

Figure 4.7: Calendar Interrogation

C H A P T E R 4. C A L E N D A R TOOL 70

The inform ation displayed by the three operation modes only provides an
indication of the occurrence of particu lar events. The. C alendar tool however
allows the project m anager to obtain m ore detail on events occurring on date
instances. The diagrams in figure 4.7 show the displays developed to achieve
these goals. Selection of events was m ade using the com puter m ouse(a detailed
description of the construction of these graphic displays will be given in the next
chapter).

Cells containing asterisks were used to represent events occurring on date
instances. In the example shown in figure 4.7 the work in progress event for the
date instance representing the 2nd M arch 1989 was selected. The second window
displays the work in progress events occurring for th a t da te instance. The tasks
associated w ith the event also provided selection in their ou tpu t. This was to
allow detailed descriptions of sub-tasks associated w ith an event.

4 .1 0 S u m m a ry

Most of the goals set initially for the development of this tool were achieved. The
inform ation relating to events is retrieved from the database and displayed in a
comprehensible and correct m anner. However the real test for the success/failure
of th is tool will be dependent on other users. Decisions such as creating th irty
one da te instances after the initial valid date is entered and displaying only five
date instances in the snapshoot of the project shown, were influenced by personal
taste as well as associated literature.

Changes can be m ade to the classes which will cause minimal effect on
other classes created for the Calendar tool. However work associated w ith a
second version of this tool, may be be tte r directed towards improving the tim e
taken and approach for the retrieval of events. This task would involve not only
rew riting of retrieval m ethods bu t also the restructuring of the IS architecture.

Chapter 5

The Workbench Interfaces

5.1 In tr o d u c t io n

The workbench consists of a num ber of discrete tools, which although linked by
the IS d a ta base generally work independently of each other. Each tool corre­
sponds to a particu lar p a rt of the project m anagem ent process, where the tool
consists of a set of closely related functions. Development of the tools used by
the IM PW were carried out in three phases.

P h a s e o n e Tools where developed in isolation, input
and ou tpu t from the tools was in tex tua l form.

P h a s e tw o Tools where integrated into the IS database,
the input and ou tpu t was still in tex tual form.

P h a s e th r e e Tools were integrated into the IS in
graphic mode.

Phases one and two concentrate mainly on the functionality and integration
of tools in the workbench using Objective-C. After determ ining the functionality
and completing in tegration, effort was pointed towards development of the user
interface. This chapter concentrates on the th ird phase of tool development,
discussing the two m ain areas related to developing the tool interfaces.

71

C H A P T E R 5. TH E W O R K B E N C H IN T E R F A C E S 72

[1] A utom ata finite sta te machine which controls
the operations perform ed by a tool when in a par­
ticular state.

[2] W indowing System :- extended graphic package
th a t creates and manages the interaction w ith the
tool applications.

T he graphic package used for interfacing w ith the m anagem ent workbench
was supplied by Verilog, one of the project partners working on the IM PW
project. T he operations and objects which could be created from this package
were influential in the way tools displayed and extracted project information.

5.2 A u to m a ta

Knowing the num ber of interactions between the user and any application, makes
it possible to setup a finite s ta te m achine(A utom ata) which could simulate these
interactions[Ger 82], [Hen 68],[Hop 79],[Min 67]. The finite s ta te machine ensured
a sm ooth transistion between integration phases, as well as providing a navigation
system for moving between operation displays.

Interactive sessions for the tools mentioned in the previous chapters go
through a series of states, each w ith a well defined general pattern : A panel is
displayed w ith questions for the user; the user supplies the required answer; the
answer is checked for consistency (questions are asked until an acceptable answer
is supplied); and the answer is processed.

This generic m ethod ’execute’ in figure 5.1 could be used to represent any
user interaction state[M ey 87]. Using the power of inheritance and encapsulation
provided by Objective-C, it was possible to develop a generic class w ith abstract
m ethods which could be used by the various subclasses th a t perform similar
operations b u t use different data.

The diagram in figure 5.2 shows a sta te graph for the Risk au tom ata sim­
ulating all possible user interactions w ithin the tool. Each circle in the diagram
represents a risk s ta te waiting for user interaction. The arrows represent the
transition of going between states which occur when an event (user interaction)
is triggered.

C H A P T E R 5. THE W O R K B E N C H I N T E RF A C ES 73

- execute {
do {

[self display];
[self read];
[self correct];
if ([error number] != N0_ERR0R)

[self errorMessage];
while ([error number] !=.N0_ERR0R);
[self treat];
return self;

>

Figure 5.1: Generic execute m ethod

The circle RO represents the risk au tom ata in its initial state. After an
event has occured the m achine proceeds in a determ inistic fashion, th a t is, its
actions in response to a given sequence of inputs are completely predictable.
Because of the finite nature , the structu re of such machines can be easily used
to describe different environm ents. The work required for describing risk and
calendar au tom ata differs only in following sta te options available(see figure 4.8).

At any given m om ent, the risk or calendar au tom ata can exist in only one
possible state. The next s ta te to be entered is a function of bo th this present
s ta te and the present input. For example, if in the risk au tom ata outlined in
figure 5.2, the current s ta te is R l, then entering a value of say one would transfer
activities to the R4 state. T he next s ta te therefore, always depend upon the
previous states as well as the input at th a t s ta te and so forth, back to the initial
operation a t RO. Thus the au tom ata may also be viewed as a navigation system,
always keeping the interactions w ithin a bounded path . The current s ta te of the
machine a t any moment serves as a form of memory of past inputs by following
the pa th from the initial to the current state.

The class A utom ata was used by both tools to describe the possible corre­
sponding states which can be obtained by the tool. The declaration for the risk
au tom ata is given below.

Each of the first five instance variables is an instance of a particular state
designed to represent th a t class eg.

C H A P T E R 5. TH E W O R K B E N C H IN T E R F A C E S 74

Figure 5.2: Risk A utom ata

firstState = [FirstRiskState new];
secondState = [SecondRiskState new] ;

II II II

II II It

The currentS tate instance variable is used to indicate the sta te in which the
au tom ata is currently executing. The riskA utom ata class also has an instance
variable au tom ata, this was included to facilitate multi level finite s ta te machines
(i.e. au tóm atas within the au tom ata). This relationship between the autóm atas
is shown in figure 5.3. If an extension from one of the states was required, the
new au tom ata can be set-up w ithout affecting the top level autom ata.

Each s ta te presented by the Risk tool represents a menu display, the R iskState
classes (R isklnitialS tate, R iskSecondState, R iskT hirdS tate etc) inherit charac-

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 75

Figure 5.3: A utom ata w ithin an au tom ata

teristics from the class S ta te which contain the instance variables and methods
required for implementing the finite s ta te machinery. Each of the R iskStates
inherits a stateCollection instance variable from the State' class. This variable
contains the collection of possible states, which can be reached from the current
s ta te as defined by the riskA utom ata.

The m ethod followingState in the S tate class works as a central cog in the
au tom ata mechanism, ensuring th a t a correct transition is m ade from sta te to
s ta te when required.

After establishing the next event from the user, the stateC ollection offset for
th a t event returns the following s ta te as defined by the au tom ata. The statem ent

[[aFollowingState automata] currentState: aFollowingState];

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 76

= RiskAutomata : Object (RiskGroup, Primitive, Collection)
{ // INSTANCE VARIABLES

id firstState; // the initial state of the automata
id secondState;
id thirdState;
id fourthState;
id fifthState;
id currentState; // state of the automata being executed
id automata; // automata in which the automata is contained

>

Figure 5.4: Instance Variables for R iskA utom ata

returns the current s ta te of the au tom ata. The currentS tate variable for the Risk
au tom ata is updated to whatever the following sta te is.

5.3 G rap h ic C o m p a tib il ity

Having created a tool interface in which the user is aware of the current context,
presenting only options which are available in th a t context gives us a correct
interface, bu t it dose not solve all user interface problems. As software becomes
more powerful and sophisticated, so too are the interfaces used for their represen­
tation. The success or failure of m any tools in the commercial m arketplace today
often depend (albeit incorrectly) on the user interface. W hile the m arketing of
the IM PW is centered around the functionality, extendibility and m alleability of
the tools, the im portance of a pleasant and easy to use interface could not be
overlooked.

The Verilog graphic toolbox which provided a wide range of operations for
constructing user interfaces was added to the second phase Objective-C code.
The abstract objects supplied by the graphic package included window, box,
list, table, network, chart, graph and tree object types. From these objects
the interfaces and operations associated with the Risk and C alendar tools were
created. W hile the diversity of such services make the toolbox very flexible for
constructing different interfaces, program m ers new to the package may find it
difficult to use. Discovering the right glue for assembling pieces from the toolbox

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 77

- followingState {
int offset;
id aFollowingState;

if((stateCollection != nil) && ([event number] != N0_EVENT)) {
offset = [eventCollection offsetof: event];
aFollowingState = [stateCollection at: offset];
[[aFollowingState automata] currentState:aFollowingState];
[aFollowingState execute: currentObject];

>
return self;

>

Figure 5.5: followingState m ethod

poses certain technical problems for the first tim e developer. There was also the
problem of using this code inside the Objective-C environment.

The diagram in figure 5.6 shows where the graphic package should ideally
be situated , between the application and the interface [Cou 86]. By having three
clearly defined areas, changes can be m ade in one area w ithout affecting the code
in the other. This would also support the O bject Oriented paradigm of extendible
and robust code.

The graphic package however does not perm it such a clear cut distinction
between these m ain objects. In order to present tools using windows, boxes etc,
from the graphic package, the Objective-C source is interwoven with graphic
statem ents. The diagram in figure 5.7 gives a more realistic representation of the
relationship between these objects.

The extent to which the graphic code is intertw ined w ith the Objective-C
source will affect the reusability of certain class m ethods. Further enhancem ents
to this early version of the graphic package may cause changes to m ethods which
reference graphic operations i.e. changing the names of graphic functions, chang­
ing the num ber of argum ents accepted by a graphic function, changing the da ta
types required for argum ents.

C reatin g an O b je ctiv e -C class to contain all the g rap h ic statem ents and

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 78

Figure 5.6: Ideal environm ent for graphic packages

minimise the effect of changes to the graphic package is possible. However such
an Objective-C class would have caused extensive changes to the phase two code,
which in tu rn would have caused m ajor problems for the th ird phase integration.
A nother problem created by such an approach would be the d istribution of opera­
tions associated w ith an object. For example the risk class would have to transfer
control to a class outside its hierarchy for printing instance variable information.
W hile possible, this approach is moving away from the encapuslation principled
discussed in the first chapter, where only the object th a t owns the data, should
be allowed to perform operations on th a t data. Because only the display m eth­
ods for objects required the graphic statem ents, it was possible to localise these
statem ents w ithin the class definition file. By creating a graphic interface in this
way, m inim al effort in rewriting tool source may be achieved, while affecting the
reusability of as few m ethods as possible.

5.4 D isp la y C o n stra in ts

While designing the user interfaces for individual tools such as the Risk and
Calendar, some type of consistency w ith the interface display of the o ther tools
in the workbench had to be considered. S tandards were developed by the different
tool builders to enforce some uniformity between the tools. The various tools used
different graphic objects from the tool box for presenting the current tool state
i.e. network objects are used by the ’’Work break down” tool to describe the

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 79

Application

1J............. CT

Graphic Interlace

ZJ 1__

Figure 5.7: Realistic graphic package environm ent

hierarchical break down of tasks in a project. O ther tools such as ’’R isk” may
require different objects such as icocar for displaying tex tual inform ation. Despite
the wide difference in objects used, the physical layout of the windows created,
rem ained as consistent as possible by observing certain constraints. Each window
created to represent an interface consists of th ree parts as shown in figure 5.8.

The top p art is used to describe the tool and project nam e which is currently
in use. T he m iddle p a rt contains a working area where the user m ay in teract w ith
the tool while in a particu lar state . The th ird p art is designated to describing
warning messages and confirming user actions. Selected entries for the current
tool s ta te are highlighted when required. Highlighting however, was not used to
emphasise data, because this may lead to confusion. T he physical layout of both
Risk and C alendar windows were designed to conform closely w ith these outlines.

5.4.1 Window Displays

Some of the objects, supplied by the graphic package were more im portant for
describing the Risk and Calendar tool interfaces i.e. windows, boxes and tables,
than other graphic objects such as network and charts. These graphic objects
such as charts, graphs and trees were considered for presenting Risk and Calen­
dar tool interfaces. Using such objects to create an elaborate interface for the
presentation of these tools, was viewed however, as adding confusion ra ther than
comprehension.

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 80

Figure 5.8: W indow layout

The Risk tool presents a num ber of interfaces for interaction w ith the project
m anager, all of which contain information to be displayed in a tex tual form at.
The presentation of such inform ation using trees objects shown in figure 5.9 was
considered an unnatu ra l way of representing riskdriver information.

Using the m enu objects and the associated operations was another a lter­
native for viewing riskdriver values. This would have m eant displaying all the
riskdrivers sim ultaneously and using push right menus to display the riskcondi-
tions. The m ain problem w ith this approach is th a t the character strings for
riskdriver and riskcondition values would be too long for displaying on screen
(i.e. some are greater than eighty characters).

Keywords could have been used to represent the riskdriver and riskcondition
values, with the complete english form at of the riskdriver being prin ted after
pressing one of the mouse buttons. However there was also the problem of how
to display the risktext and riskhelp inform ation associated with a riskdriver. The
idea of using keywords in the menu with a help option for giving a riskdriver
description was considered, bu t like the first m ethod seemed an unnatu ra l way of
presenting simple tex tual inform ation. The layout of the windows finally choosen

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 81

Figure 5.9: Tree presentation

to represent riskdriver displays, used icocar boxes and tables objects is shown in
figure 5.10.

The top area in the display is dedicated to the tool nam e and the identity of
the current project. T he bo ttom part is used for qu itting from the current state
and error messages in accordance w ith the display constraints discussed earlier.
The m iddle section of the riskdriver window is used to display individual window
interactions used by the IM PW tool.

Each box to be displayed in the window view was combined with other
boxes to help form the complete picture. The com bination of boxes provided by
the package is strictly hierarchial. Each box could only have one parent (except
the root box which had no parent) and each box could have several children(sub
boxes). T he boxes defined were one of the following six types.

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S

PROJECT NAME TOOL NAME

RISKDRIVER

RISKTXT Select
Values

RtSKCONDITION [1]

RISKCONDrTCN [2]

RISKCONDfTlON [3]

MESSAGES

Figure 5.10: Final window layout

No.
Box

Type
Description

1 Em pty box w ith no contents

2 Input box contains a prom pt and a zone for text input

3 String box th a t contains a string of characters

4 Icon box th a t contains an icon either as a string of
characters or as a picture

5 Graphic box containing graphic drawings

6 Oneof box may have any of the representation given
above however at any one tim e only one of these
representations is visible

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 83

Only by glueing together different box objects offered by the package was
it possible to display all the d a ta associate w ith a riskdriver instance.

5.4.2 Composition of riskdriver window

The composition of all windows used by the Risk Analysis tool included mainly
boxes and table objects. Windows displayed by the tools, while being distinct at
each state, used sim ilar techniques for displaying and entering information. This
helped to reduce the code and provided consistency while using the tool. The
operations required for displaying the riskdriver view in the following example
were similar to the creation of other windows in the risk and calendar tools. W hen
creating windows to display riskdrivers, the first box to be created was a vertical
row box which would be the root box to which other boxes will be attached.
C reating the root box from which all other boxes will be related is accomplished
w ith the command.

Gevrow_creat e(argument s)

risk_rows = Gevrow_create(GEV_VERTICAL,GEV_OUTLINE_ON,
GEV_SPACE_ON)

This created the outer box for the riskdriver window on which all other boxes
are added. The G EV .V ERTICAL argum ent implies, th a t attaching any boxes to
this box will be added in a vertical sequence. T he GEV_OUTLINE_ON argum ent
implies th a t the outer boundaries will be displayed. The GEV_SPACE_ON is used
for the spacing of character and graphic objects.

Having defined the box which forms the outer shell of the risk window dis­
play, three more row boxes are added in a vertical sequence. Each of these boxes
helps towards presentation of the risk window in a form which provides consis­
tency with the physical layout w ith the other tool interfaces in the workbench.
The first box added represents the tool and project name. The second will display
riskdriver details and the bottom box is used for messages and confirming opera­
tions. The addition of these three boxes sets up the window skeleton conforming
to the constraints set w ith other IM PW tool builders. T he statem ents required
for creating these boxes is similar to th a t used for their parent box only the new
boxes are given unique nam es and different argum ent values depending on w hat
objects have to be attached (eg. additional boxes are attached horizontally to the

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 84

top box). Once these boxes contain all the necessary details they are attached to
their parent box(i.e. risk_rows) w ith the following commands.

Gevrow_add_obj(risk.rows,top);
Gevrow_add_obj(risk_rows»middle);
Gevrow_add_obj(risk_rows,bottom);

// top section
// middle section
// bottom section

5.4.3 Top row details

W hen using the risk tool for different projects only the nam e of the project will
change. Therefore the code related w ith this part of the display only has to be
called once, when perform ing operations on different projects. The inform ation
displayed in the top section (i.e. tool and project nam e) requires the creation of
two more boxes which are attached to the top box as shown in figure 5.11.

The box on the left hand side represents the tool name. The right hand
side box, identifies the project name. The creation of the top box above specified
the addition of any fu rther boxes to top box should be added in an horizontal
fashion.

Inserting a box w ith the tool name in a string form at is achieved us­
ing the icocar option supplied by the graphic package. The icocar box object
is a tex tual icon containing a character string. Issuing the command Gevico-
car_create(argum ents) the tool name was inserted into the left hand side of the
top box. The project nam e was inserted in the right hand side of the top box by
attaching two more boxes of type icocar.

Once the inform ation for the top section has been accum ulated in the var­
ious boxes, it only rem ains to add the boxes containing the inform ation to their
parent, which in this exam ple is the box ’to p ’.

// attach topleft to top
Gevrow_add_obj(top, topleft);

// attach topright to top
Gevrow_add_obj(top, topright);

O b je ctiv e -C being a hyb rid language p erm its the g rap h ic functions to be

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S

II Top
// Create the box which the top section of the display
// will be associated with
// box created is a framed horizontal row box "top"

top = Gevrow_create(GEV_H0RIZ0NTAL,GEV_0UTLINE_0N,
GEV_0UTLINE_0N);

// Top Left
// Create a framed textual icon
// font size seven, text string is centered

topleft = Gevicocar_create("TOOL : RISK ",
GEV.F0NT7, GEV_C,
GEV_0UTLINE_0FF, GEV_SPACE_ON);

// Top Right
topright = Gevrow_create(GEV_H0RIZ0NTAL,GEV_0UTLINE_0FF,

GEV_0UTLINE_0N);
projectTitle = Gevicocar_create("Project : ",

GEV.F0NT7, GEV_C,
GEV_0UTLINE_0FF, GEV_SPACE_ON);

// proj_name is a string variable containing project name
projectName = Gevicocar_create(proj_name,

GEV.F0NT7, GEV_C, .
GEV_0UTLINE_0FF, GEV_SPACE_ON);

// the icocars are attached to the topright box
Gevrow_add_obj(topright,projectTitle);
Gevrow_add_obj(topright,projectName) ;

F ig u re 5.11: P resen tatio n of Tool and P ro je ct nam es

C H A P T E R 5. TH E W O R K B E N C H IN T E R F A C E S 86

embedded w ith the Objective-C source. However in trying to make the methods
in the various tool classes as reusable and extendible as possible, calls to the
graphic toolbox were w ritten inside m ethods created specifically to relate to the
user interface.

5.5 T oo l In tera c tio n

The middle area of the window view displays the inform ation specific to the
current s ta te of the tool being used. For example if the user is using the risk
tool and the tool is at the first state, the display in the m iddle area will be as
displayed in figure 5.12. The current s ta te of the Risk Analysis tool will determ ine
the level of user interaction w ith the m iddle window area(eg. interaction w ith the
riskcondition values for any riskdriver is only perm itted when the user is using
the am end riskdriver mode operation).

Presenting tex tual inform ation in a form which could be easily highlighted
in accordance w ith mouse operations seemed the most na tu ra l way of allowing the
user to in teract w ith the tool. U nfortunately when displaying and highlighting
selected riskconditions associated w ith riskdrivers, serious shortcomings w ith this
package became prom inent.

The strings used to represent riskdriver title and conditions had variable
lengths, going from two characters to well over one hundred. The graphic package
provided no tex t justification, so the appropriate code had to be developed in
Objective-C. The fact th a t Objective-C supplied no code for tex t justification
suggests th a t perhaps additional functionality should be added to the foundation
library in the form of a class or method.

The tex t justification function w ritten for the tool was added to the Risk
class, because this was the only workbench class which required these operations.
To follow the principles of the Object Oriented approach the tex t justification
functionality should have been w ritten as a reusable class for use of all classes.

The tex t justification function s\ib-divided large strings into separate icocar
box types. The accum ulation of these boxes was used to represent the tex t on sep­
ara te lines. U nfortunately this approach ruled out any possibility of highlighting
individual riskconditions. Using combinations of sub boxes to describe textual
inform ation, caused undesireable side effects for highlighting the riskconditions
relating to the current project characteristics. P resentation of selectable choices
is m ade from a table object, by attaching all the selectable boxes onto the table.

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 87

However selectable riskconditions are m ade up from the accum ulation of boxes,
therefore making it impossible to select items on individual riskcondition boxes.

L •

Tool : RISK Project : dev syst A

User Operation Mods

■ View. R i s k d r l v e r '

VI eu Rule

Amend R1skdr1vers

Amend All Riskdrivers

Results

Confirm Abort

Figure 5.12: Initial Risk Window

The solution for this problem was to add a table object alongside the
riskconditions, highlighting the cell opposite the riskcondition value which repre­
sented current project characteristics. This solution involved the creation of row,
space and table boxes plus numerous graphic function calls to get the desired
window display shown in figure 5.13.

5.5.1 Using the mouse

Each area of functionality described for the project m anager in chapter four
required a graphical window interface for user interaction. The window view pre­
sented to the project m anager in the first state is shown in figure 5.12. Selection
of table choices is m ade by pressing the middle mouse b u tton when the cursor
is positioned in the desired table cell. Mouse operations were standard for the
different window views provided by the tools. Events only occurred in the win­
dow in which the mouse was positioned. The events were then selected when the
m iddle mouse bu tton was pressed. The process of highlighting various cells in
a table can be continually repeated by clicking the middle mouse bu tton when
directly above a table cell. Only after confirming the operation in the bottom

C H A P T E R 5. TH E W O R K B E N C H IN T E R F A C E S 88

section of the window is the last mouse click event taken to be the desired event.
These operations were im plem ented by glueing graphic objects and statem ents
outside the Objective-C language into class definition files.

Rlskdrlver 3

AVAILABILITY OF EXISTING PRODUCTS (OR PROTOTYPES)

WHICH CANACT AS EXAMPLES FOR DESIGNERS

The designers can refer to other products (or

prototypes) having functionality uhlch 1s -

Identical to the required functionality
very similar to the required functionality
somewhat similar to the required functionality
no slMllar example 1s available
don't know

Qu11

Figure 5.13: Amend Riskdriver W indow

Default modes are associated w ith all windows, where user interaction can
occur, therefore confirming an operation before selecting a menu option causes
the default m ode to be entered. Clicking on the abort tab le cell while the tool is
in the first s ta te will term inate current tool operations. Using the abort option
in any of the o ther states causes the tool to go back one state.

5.5.2 Textual input

W hen viewing riskdrivers or Rules the project m anager m ust specify the instance
they wish to examine. By entering a numeric value in response to the operation
mode prom pt, the details of the associated instance are displayed. This is the
only tim e while the project m anager is using the tool, will input be accepted
from the keyboard. Insertion of invalid numeric values or tex t will cause the
appropriate error messages to be displayed.

Inserting inform ation from the keyboard during phase one and two using
the Objective-C code was perform ed with minimal fuss, using C scanf statem ents.

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 89

However the insertion of text using the graphic toolbox involved num erous sta te­
m ents to sim ulate a similar operation. Because the tex tual input was occurring
inside windows created by the graphic tool box, special statem ents were required
for entering tex t. C haracters entered a t the keyboard were recorded by the tool
box as events of type ’Gevchr_t\ These events had to be repeated inside a loop
until an escape character was entered These events of type G evchr.t then had to
be converted into standard C character or integer types before being validated.

W riting code for som ething as simple as entering tex t, is clearly a con­
trad iction of the O bject Oriented principles discussed in chapter one. Entering
tex tual details using the graphic toolbox proved complex and long winded. If
complete O bject Oriented systems are to be obtained, m any improvements must
be m ade to the interface package object. MacApp [Schb86], Appex[Cou 86] and
EZW IN[Lib 85] are ju s t some examples of O bject Oriented graphic interface tools
which could have contributed to a cleaner transition between the second and th ird
phases.

5 .6 C alen d ar V iew

Presentation of calendar inform ation in graphic windows required the use of many
objects used for displaying risk details. The rules relating to the physical layout
of window used in the Risk tool, were used in the calendar tool. This meant th a t
code for describing the bo ttom and top sections, as well as operations defining
mouse operations, did not have to be w ritten from scratch. A part from changes
to the string variables held by icocar the code from these sections is similar.

Displaying calendar details in the m iddle area required the introduction of
a num ber of new techniques from the toolbox. T he calendar, unlike the risk
tool, cannot display all its selectable options a t once. T he calendar tool required
a m echanism which allowed the scrolling backwards and forwards of selectable
events. Allowing the user to click on specific events for a particular date, also
m eant th a t the selection mechanism should reference an event in two dimensions.

Using the lift objects which can be attached to a table, it was possible to
have scrolling in both horizontal and vertical directions. The second problem
was solved by setting up a two dimensional m atrix (five by th irty one). The five
rows representing the five events associated w ith a date instance, the th irty one
is used to represent all date instances created by the Calendar tool. By attaching
the m atrix to a table object it was possible to have a table w ith items selectable
in two dimensions. A ttaching the table object to a box row object the desired

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 90

interface display was achieved. All five events could be displayed vertically in
the window view, removing the need to have a vertical scrollbar. Restricting the
table to only displaying five date instances however, justified the need for adding
a horizontal lift (scrollbar) to the table.

Tool : CALENDAR Project : IMPW

1989-2-28 1989-3-1 1989-3-2 1989-3-3 1989-3-4

Iaports

Products

Meetings

Personnel

Work 1n progress

*** ft#;:’®
' ■

W : « ; W : 8 ?!

«**

• •• *** • «* • **

B □ ffl

Quit

Figure 5.14: C alendar Interface

Shaded boxes were originally chosen to represent events occuring on dates,
however this facility could not be obtained using the current version of the graphic
package hence the inclusion of asterisks. Clicking the middle mouse bu tton in­
side cells w ith asterisks, cause the creation of another window displaying more
detailed inform ation(see figure 4.7). The creation of such boxes and the infor­
m ation obtained, are created using the techniques m entioned in this, and the
previous two chapters.

C H A P T E R 5. T H E W O R K B E N C H IN T E R F A C E S 91

5 .7 S u m m ary

This chapter related to the workbench interface required for the Risk and Calen­
dar tools. Two m ajor areas affecting the way interface operations were discussed.
The au tom ata described how a finite s ta te struc tu re could be used to show the
various interfacing states of the tool. The au tom ata machine provides a fail safe
way for describing the various states associated w ith any mechanism. The proof
of this reusability was the ability to use the au tom ata for Risk and Calendar
tools.

The graphic operations for displaying and interacting w ith tool windows
were long and tedious. T he code involved in the Risk class alm ost doubled due
to the grahpic package. A lthough the code describing the various interfaces was
w ritten and compiled w ith the other Objective-C classes, the graphic code w ritten
cannot be used for o ther applications, bar tools they were developed for. This
type of development goes against the s tandard O bject Oriented approach.

C hapter 6

O bjective-C Traps and P itfa lls

6.1 In tr o d u c tio n

Developing com puter systems in any program m ing language is never a trivial
exercise. No com puter language has been developed yet, which is “all things
to all m en” , solving problems quickly, using a simple and flexible syntax, whilst
satisfying all perform ance issues. Objective-C despite all the benefits (inheritance,
encapsulation and dynam ic binding) is like o ther com puter languages, in th a t it
has shortcomings. The O bject Oriented approach should be thought of as another
tool to be added to the software designers toolkit. Like any tool in a craftsm an
tool box, its there for a specific purpose. Knowing when to use this tool and
how to apply it to the task at hand, is a problem confronted by m any com puter
professionals.

The perform ance factors of the Objective-C language in relation to conven­
tional langtiages measures both negatively and positively, for various m easure­
m ent areas. Factors such as space, speed, development time, software quality
and code bulk are some of the issues which m ust be investigated before making
a decision on the im plem entation language. This chapter will discuss how the
Objective-C language used for developing IM PW tools measures against ordinary
C for the above factors.

As w ith all com puter languages it is im portan t for code to be w ritten in ac­
cordance w ith a certain syntax. The Objective-C language provides no exception,
a num ber of compile and run-tim e faults were encountered during the develop­
m ent of the Risk and Calendar tools. The second half of this chapter will be

92

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P IT F A L L S 93

dedicated to faults which occurred while developing these tools, plus a m ention
of o ther factors which are im portant for correct O bject Oriented development,
such as inheritance. Knowledge of the foundation lib rary’s inherited classes is
im portan t for software quality, speeding up development tim e and reducing the
am ount of code w ritten.

6.2 O b jec tiv e -C E co n o m ics

U ntil now the Objective-C language has been talked about only in a positive
sense. However O bject Oriented Languages such as Objective-C like most things
in life have a cost. The cost talked about in this chapter does not relate to
m onetary m atters, bu t to com puter resource costs (i.e. the cost on machine
resources and machine efficiency). The am ount of memory required by programs
using conventional languages can in some circumstances be significantly smaller
than Objective-C counterparts. Their are num erous reasons for this differential
in program size which we shall discuss.

6.2.1 Memory Costs

The first increase to program size th a t we will investigate is th a t caused by
the actual object. Previous chapters have m entioned how objects inherit da ta
and operations using the isa variable(which points to an objects shared part),
to form the inheritance chain between the objects. All objects created into a
com puter system autom atically inherit a isa pointer so th a t inherited details may
be accessed. For small objects shown in figure 6.1.a this overhead is a substantial
percentage increase on the memory requirem ents to th a t required for conventional
languages.

Looking a t this overhead for the object in figure 6.1.b the memory required
for the isa pointer seems less significant. In large systems where thousands of
objects exist, the ex tra space for objects in memory will also take up those ex tra
thousand bytes of memory. This overhead of one byte per object seems trivial
when we consider the am ount of memory offered by commerical com puters today,
where four to eight mega bytes of m ain memory is common occurence on many
com puters.

More serious concern about the space requirem ents are related to w hat the
isa variable is pointing too, because all the details each object inherits will also

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P IT F A L L S 94

iBa polnlsr

flag

A Boolean Object

Isa pointer

rlsktxt

rlskcondltlon

rlskwelght

rlskhelp

attrNams

entllyName

A Risk Objed

Figure 6.1: O bject Overhead

be stored in com puter memory when the application is running. T he diagram
in figure 6.2 highlights this problem by showing how the Objective-C objects
m ust be linked together when a program is loaded into memory. Even if the
only m ethod required for an application is the testM e m ethod in figure 6.2, all
the o ther objects, plus the m ethods indicated on their dispatch tables m ust be
loaded into memory.

For small applications this can lead to a substantial increase in program
size, the root O bject(inherited by all classes) alone takes up almost 40K bytes of
memory. The greatest percentage of the functionality provided in such applica­
tions will usually be unused, because small applications would not require all the
functionality provided by the inherited classes. Filer and float operation from the
O bject class alone account for 12K of memory, which in a lot of small applications
may never be used. It is possible to delete code inside unused m ethods to reduce
code size, however Objective-C users should make sure th a t the original library
source has been backed up. Careful docum entation of the different versions of
Objective-C library classes m ust also be created to prevent other users from using
foundation objects which do not contain the correct functionality.

W hen we look at larger Objective-C applications, the memory requirem ents
of the Objective-C objects decrease greatly. This is because in larger applications
where a great deal more functionality is required, greater am ounts of code may
be extracted from the inherited classes.

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P IT F A L L S

M ySot lac to ry J

Figure 6.2: Objective-C required in memory

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P IT F A L L S 96

W ith conventional program m ing languages the size of program s grow lin­
early w ith functionality. This is because in most cases the code is being developed
for specific applications and old code cannot be reused. T he growth in size of
Objective-C program s is relatively low in com parison, after paying the initial
price of 40K, the ex tra functionality can be reused m any times in larger applica­
tions. In large software projects Objective-C is often smaller than conventional
code, th is is through inheritance and the reusability of existing classes.

6.2.2 Code Size

To make comparisons between writing the Risk and C alendar tools in a conven­
tional language such as C against Objective-C, would call for a substantial piece
of additional program m ing. The development of such tools using standard C
would require weeks of work, a luxury which is not feasible here, as would be the
case w ith m any m edium sized com puter projects.

In order to establish some type of measures I decided to convert a program
which I had previously w ritten in C into Objective-C. T he program chosen was an
AVL tree, which I developed while learning the C language. As with beginners
using any new language, b e tte r ways of writing the code exist. It should be
pointed out therefore th a t the results from these comparisons, are only used to
give a rough approxim ation.

The tim e required to develop an AVL tree, which perm itted only the addi­
tion of nodes to the tree was considerably shorter for Objective-C programs. This
was due to the fact th a t all the AVL algorithms required were inherited from the
SortC ltn class provided in the Objective-C foundation library. The Objective-C
program was developed in hours ra ther than weeks, as required for the C version.
As an additional exercise I decided to develop an AVL tree which would allow
the deletion of nodes. W riting the C code to perform this operation took the best
part of a week, where the greatest percentage of tim e was spent debugging.

The Objective-C delete version took fifteen m inutes, more tim e could have
been spent on improving the layout and docum entation. However this cannot
overshadow the ease in which I was able to develop functionality for deleting
nodes from an AVL tree (i.e. less than twenty five lines of code and less than
fifteen minutes of work). Critics of Object Oriented technology may say th a t
this example was tailor m ade for this type of problem. O ther examples for small
development applications m ade by StepStone the suppliers of Objective-C show
similar trends. T he results of these experiments are shown figure 6.3.

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P IT F A L L S 97

co

AVL EXPENSE
ACCOUNT

CALCULATOR

Ob|ectlve-C

Figure 6.3: Objective-C productiv ity

The functionality provided not only reduces code size and development but
also helps create applications where the standard of code quality is much higher
than th a t of conventional languages. In the current example the AVL operations
have already been w ritten , tested and used in various com puter systems. There­
fore when we are using library classes there is no need to validate or docum ent
AVL operations. The Objective-C code is also more flexible, the changes m ade
caused no change to the existing objects and code was reused from the inheritance
network whenever possible.

The software quality provided helps to obtain a very high standard , while
requiring only lim ited work(i.e. only code which is an extension of the foundation
classes needs to be tested). Software quality using conventional languages such
as C, are on the other hand dependent on the ability of the program m er and
have to be re-assessed for each new application. No tangible means are possible
to m easure the development and testing time saved. However it is safe to assume
th a t the O bject Oriented approach provides enormous savings.

The standard C AVL program required 300 lines of code, a figure several
times greater than th a t required by the Objective-C program . The code required
for the delete extension for bo th programs showed similar results i.e. code for the
O bject Oriented approach was several times smaller than th a t of standard C.

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P IT F A L L S 98

6.2.3 Binary Size

The executable binary for both program s showed th a t the m em ory requirem ents
of th e Objective-C program were greater than th a t of its s tandard C counterpart.
The m ain reason for this is because of the large am ount of functionality added
by the foundation library. As m entioned earlier, it is possible to reduce this
execution bulk by replacing unused m ethods w ith dum m y m ethods which perform
no operations.

In larger applications such as graphic developm ent, studies show th a t the
differential between the two binary sizes are greatly reduced. The size of the Risk
and Calendar tools ruled out the possibility of m aking the above comparisons.
However the increase due to adding the graphic toolbox, had a more significant
effect on the size of execution bulk in the IM PW , th an the Objective-C code. For
bo th tools the resu ltan t binary size was increased by a factor greater than the
order of two.

6.2.4 Messaging Overhead

An im portan t factor surrounding the creditably of any language is the speed at
which it performs its operations. The Objective-C language uses a messaging
technique to access the required object functionality. Each class object contains
this selection mechanism, where the class and selector nam e are hashed to give
the im plem entation address. W hen an object sends a message, the object and
selector are used in a hash algorithm to index the referred functionality. Message
sending is slower th an sending direct message calls, bu t faster than conventional
condition statem ents. Figure 6.4 shows the differences in calling operations.

Obviously the messaging mechanism is going to be slower than direct calls to
the functions as with the case statem ent above. Before the Objective-C code calls
a function the m ethod and selector values have to be hashed and accessed first.
However this m ethod still works faster than conditional statem ents, which may
have to do tests on all possible choices before perform ing the required function.

Tests on the speed of direct function calls to C and Unix functions are rated
between 2 to 2.5 times faster th an doing the same processing using messaging. In
order to verify these perform ance claims m ade about the Objective-C language,
I created two small test program s to judge how exact these figures were. The
first test was a simple prin t operation, the standard C program used printf. The
Objective-C version used the print m ethod in the O bject class for printing the

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P ITF A LLS 99

Non Object Oriented case statement
CASE shape.tag OF

circle : circleDraw(geomFigure);
square : squareDraw(geomFigure) ;
triangle : triangleDraw(geomfigure);

ENDCASE; // Fastest

Object Oriented
[geomFigure draw];

Non Object Oriented conditional statement
IF geomFigure.tag = circle // Slowest

THEN circleDraw(geomFigure)
ELSEIF geomFigure.tag = square

THEN squareDraw(geomFigure)
ELSEIF geomFigure.tag = triangle

THEN triangleDraw(geomFigure)

Figure 6.4: Message Overhead

same d a ta which was created by the String class. The second test was converting
an ASCII string into an integer. Ordinary C used the atoi function, while the
Objective-C language used the asln t m ethod which was attached to the string
class. Because of the size of bo th tests a large num ber of iterations had to be
perform ed to establish tim ings. The results of these tests are given in figure 6.5,
all results given were returned using the Unix t im e facility.

T he real figure represents the to ta l elapsed tim e for running each test. The
user tim e represents the tim e spent executing the test program and sys tim e is
the tim e spent executing in the operating system during system calls. Testing
the printing of a string showed th a t the Objective-C perform ed be tte r than the
approxim ation given. However the conversion of ASCII to integer values provided
values closer to the approxim ations given above. T he fact th a t Objective-C is a
hybrid language has the advantage however of allowing direct C function calls to
be m ade in certain circum stances. As a result, the overhead for im plem entation
is often much less than the figures mentioned above. Reductions in the messaging

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P IT F A L L S 100

function iterations
o rd in ary C Ob, ective-C

real user sys real user sys

prin t 1000
10000

atoi 1000
10000

5.6
43.7

0.3
3.6

0.2
2.1

0.1
3.5

1.0
9.0

0.0
0.0

7.3
47.6

0.8
6.7

0.2
3.1

0.5
6.5

1.2
10.1

0.0
0.0

Figure 6.5: Objective-C perform ance

overhead can also be realised by reducing unnecessary message calls. The example
in figure 6.6 shows two different way of writing the same m ethod.

The m ethod ’’lis t” in figure 6.6.a, performs a message call for each execution
of the while statem ent despite the fact th a t aR iskCltn value will be constant
throughout the looping operations. The correct solution shown in figure 6.6.b,
perform s only the necessary message operations. If aR iskC ltn contains hundreds
of risk objects, then hundreds of message calls would be saved by only asking for
aR iskC ltn size once.

6 .3 E rror C lin ic

The Objective-C language like C is terse, expressive and is.designed to be easily
used by experts. There are few restrictions to keep the user from blundering.
The rem ainder of this chapter will talk about errors I have m ade while using the
Objective-C language, plus some which I have avoided, but which all Objective-C
program m ers should be aware of.

Objective-C being a hybrid of the C language may contain any of the errors
associated w ith standard C program s, plus those associated with the new type
id and the new operation the message. Errors associated w ith ordinary C are
very much a part of the problems encountered while developing Objective-C
program s. However this tex t describes errors in relation to Objective-C. Readers
interested in more inform ation on errors related to the C language, may find [Koe
86] interesting reading.

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P IT F A L L S 101

(a) - list {
int i = 0;
while (i < [aRiskCltn size])

[[aRiskCltn at:i++] print];
return self;

>

(b) - list {
int i = 0;
int risksize = [aRiskCltn size];
while (i < risksize)

[[aRiskCltn at:i++] print];
return self;

>

Figure 6.6: Saving messaging tim e

6.3.1 Class Definition Troubles

One of the early problems for Objective-C beginners is getting their programs
to compile. The Objective-C syntax for each class definition file requires writing
code in accordance with a num ber of predefined conditions. Before each class
nam e definition the “= ” symbol m ust appear, while after the class nam e a colon
m ust be entered before the parent class is w ritten. Failure-to enter any of these
symbols will cause compilation errors.

In each class definition file, the message groups associated w ith the class
plus o ther classes referenced in this file m ust be declared. The message groups
are required to keep track of the m ethods re tu rn types. StepStone supplied three
message groups Prim itive, Collection and Geometry to watch over the re tu rn
types in the m ethods supplied by their foundation library. Classes created by the
user m ust set up their own message groups to keep track of the types returned
by the m ethods in these classes.

M istakes such as leaving out a message group or using the wrong message
groups are problems common to m any Objective-C program m ers. For example it

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P IT F A L L S 102

is wrong to include only the Collection message group when creating a new class
which has O rdC ltn as its parent. Not including the Prim itive group will cause
errors to occur a t runtim e. Because the Prim itive group keeps track of all re tu rn
types used by the root class O bject which is inherited by all the other classes,
therefore this group should appear in every message group declaration.

A nother frustrating error which can occur when compiling class definition
files is forgetting to print the a t the end of the file. This symbol will have
no association w ith the logic of the class file b u t its absences a t the end of the file
will cause error message which can add to confusion for the naive Objective-C
user.

6.3.2 Erroneous Methods

Defining m ethods inside a class definition file can cause errors which are either
syntactic or sem antic. The errors due to syntax are usually the simplest to correct.
The compiler will list the line num ber and give a diagnostic message indicating
the type of error th a t has occurred. This could be for a m isspelt variable, a
missing semi colon a t the end of a line, no m atching braces or brackets inside
statem ents.

The m ethods defined inside class definition files should always commence
w ith a p lus(” -t-”) or m inus(”-”) sign to represent the factory and instance objects
respectfully. If no type is declared after the m ethod sign the default is assumed
to be of type id. People more accustom ed to developing in the standard C
environm ent expecting an integer value to be returned from an undefined m ethod
definition, may encounter runtim e errors if they are hoping to perform some
operation on the returned value. T he Objective-C language also requires th a t
the left curly bracket which signals the s ta rt of a procedure should appear on the
same line as the m ethod definition name. It is an error to create m ethods using
syntax similar to figure 6.4.a, the correct definition is shown in figure 6.4.b. The
type re tu rned by this m ethod is the default id (object identifier).

The self and super pseudo variables are im portan t for identifying objects
and overriding m ethods in classes. Trouble due to incorrect use of these variables
has already been mentioned. Using self instead of super as an object receiver for
a selector w ith a similar m ethod name will cause the m ethod concerned to enter
an infinite loop as shown in figure 6.4.a.

The errors associated with m ethods which really stifled me up were those

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P IT F A L L S 103

(a)

- test
{ //
int i;
[self test];

II II
II II

return self
>

(b)

- test {
int i; //

[super test];
II II

ii ir

return self;

Figure 6.7: M ethod Syntax

th a t occurred a t run time. R eturning and passing incorrect types was one of my
m ost common errors while learning Objective-C. Any m ethods or variables which
had no type declared were given the default type id and not integer as in C.

6.3.3 Main Module Structure

Objective-C uses a m ain program for the initiation of code like conventional C.
Indeed the overall s truc tu re of bo th is similar. The only differences would be the
inclusion of Objective-C statem ents if any, used inside the main module, plus the
class and message group declarations. The main Objective-C module declares
the message group used by the file, as is required in any Objective-C file th a t
sends messages.

After the closing bracket in the m ain program two additional lines with
Objective-C syntax are added. T he com m and @classes(class list) is used to de­
clare the classes used by the file. The command @message(message list) declares
all the messages used by the classes. If the @classes statem ent is in the same file
as the message statem ent, the list of messages(which can be quite large) can be
excluded.

The com pilation of class files must occur in a generic order. You cannot
compile a class if the parent class which you have also created has not yet been
compiled. The m ain program m odule which initiates the various classes m ust be

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P IT F A L L S 104

compiled last, before the linking of binary objects. The addition or deletion of
m ethods from a class should be followed by the re-com pilation of the class file
and the m ain m odule so th a t the message table containing all the re tu rned types
is always up to date. C oncentrating on other system problems can often lead to
this simple procedure being overlooked. The Unix “make” com m and provides a
foolproof way around this problem. It is possible to set up a m ake file which will
always re-compile the m ain m odule when changes have been m ade to the value
returned by a m ethod.

The Objective-C language uses a num ber of include files for various imple­
m entations. The “objc.h”file is the s tandard header file used by the language,
containing the most common definition types and macros used by the language.
Failure to reference the objc.h file at the beginning of a class definition file using
the Objective-C type such as BOOL(Boolean) will result in a com pilation error.
The naive user will find the diagnostic message associated w ith this error diffi­
cult to comprehend. The syntax for the error will vary in accordance w ith the
first line of code which required the header file. The line num ber associated with
the error will usually be one greater than the num ber of code lines in the class
definition file.

6.3.4 Printing Errors and Error Messages

If you wish to prin t all the instance variables associated w ith an object a m ethod
specific to printing this type of object is required. Trying to prin t an objects da ta
using statem ents as below will result in compiler errors.

printf ("'/.s\n" , self) ;

W hen wishing to print an individual instance variable associated with an
object, statem ents of the form

printf ("4/.d\n" , [self testSize])

should be used. However this may not be sufficient to prevent the program from
crashing, if a m ethod has not been w ritten to return the correct type. W hen
creating new classes it is good practice to enter im m ediately a m ethod with its
correct re tu rn type for each instance variable created in the class.

C H A P T E R 6. O B JE C TIV E -C T R A P S A N D P ITF A LLS 105

During the development of bo th IM PW tools, runtim e crashes often oc­
curred because objects were sending messages to m ethods which did not exist.
The compiler does not perform any checks to decide which m ethods belong to
which object. It is the program m ers responsibility to ensure th a t these dynamic
objects only send messages to m ethods th a t will understand them . The diag­
nostics associated w ith sending invalid messages, will give inform ation similar to
below when this error occurs.

2a2a4=Fruit[Fruitffl0x2a2a4 error:]Does not recognise selector colour
=== stack backtrace (in reverse chronological' order) ===
=== [receiver selector args] fflsentFrom[ClassName methodName] ===

<function(2a2a4,209f8)> ®2d96[0bject -error:]
[2a2a4=Fruit -error:209f8] ®2d70[Object -doesNotRecognise:]

[2a2a4=Fruit -doesNotRecognise:2008i] <0342e(non-method)
[2a2a4=Fruit -colour] 82486 [Fruit -printOn]

[2a2a4=Fruit -printOn:217c8] 82786[Object print]
[2a2a4=Fruit -print] ®20d6(non-method)

The error diagnostics gives a trace back of all the m ethods called in relation
to the invalid message. In this example, the “colour” message sent by the Fruit
class was not found.

Applying messages to argum ents caused additional problems while learning
the language. The colon used by selectors for indicating argum ents can become
confusing for m ethods containing a large num ber of argum ents. Passing incorrect
argum ents types and setting up the wrong m ethod definitions were also problems
encountered while using the language.

6.3.5 Collection Errors

Both the Risk and C alendar tools used the O rdC ltn class extensively. One of,
the most common errors to occur when using this class was the out of bounds
error(i.e. try ing to access an invalid offset in the O rdC ltn in question). Another
problem was accessing objects which the O rdC ltn did not recognise. By adopt­
ing a good program m ing style it is possible to avoid these problems. Sequencing
over a collection in the following m anner always guarantees printing valid ob-
jects(provided the objects know how to print themselves).

C H A P T E R 6. O B JE C TIV E - C T R A P S A N D P IT F A L L S 106

id riskCltn = [OrdCltn new];

riskSeq = [riskCltn eachElement];
while(aRisk = [riskSeq next])

[aRisk print];

Looping through a collection using th is technique makes it impossible to go
out of bounds. Relative accessing of objects using the O rdC ltn statem ent:

[riskCltn before:bRisk];

generates an error if bRisk cannot be found. Accessing an object using the at:
m ethod is an alternative technique for retrieving or placing objects, bu t when
using this approach the user needs to ensure th a t the integer value given is inside
the collection range. This type of error can only be elim inated by validating the
O rdC ltn argum ent before it is applied.

6 .4 G arb age C o llec tio n

One of the m ain problems related to the Objective-C language was garbage col­
lection. T he 3.3 version of the language used for developing the IM PW did
not provide garbage collection. Unlike languages such as Smalltalk-80, the soft­
ware developer is responsible for the deletion of objects when they are no longer
required by the system being implemented. This responsibility puts an ex tra
burden on the person developing a system. The absence of such a facility means
th a t complete knowledge of the application environm ent is required so th a t ob­
jects m aybe safely deleted. In large applications where a great am ount of work
is inherited or perform ed by another person the work involve is substantially in­
creased. Deletion of objects, containing other objects, such as O rdCltns must
have their contents deleted before the collection object is deleted, otherwise the
system will contain a num ber of objects dangling in memory, which may cause
space problems or side effects caused by addressing the memory occupied by one
of these objects.

C H A P T E R 6. O B JE C T IV E -C T R A P S A N D P IT F A L L S 107

6.5 In h e r ita n ce

The inheritance m echanism introduced m any benefits w ith O bject Oriented lan­
guages, th roughout this thesis many references are m ade underlining these ben­
efits. However the inheritance mechanism which is used to provide reusable and
high quality software also introduces some additional problems for the naive user.
The Objective-C foundation library contains twenty-eight classes and approxi­
m ately two thousand m ethods. Before commencing any development work, a
general understanding of the class hierarchy and the operations available is re­
quired.

For someone using the Objective-C language for a specific application,
knowing about all the available classes and their operations may seem a fru it­
less operation, when probably they only need to know about two or three of
the classes. B ut if the user is serious about using reusable code, some type of
understanding of the available class inheritance is required, to avoid rewriting
unnecessary code.

For Objective-C beginners probably the best way to s ta rt program m ing
is to learn about the root class O bject, the overall inheritance structure, and
a quick overview of the functionality provided by the other classes. Only by
reading about the classes and using them in software development will the user
get a real feel for the class library. The compiler suppliers, also supply additional
classes in packages called ”software-ICs” . Users looking to optim ise reusability
in their system may purchase any of these packages if relevant to their system
development.

6 .6 S u m m ary

The syntax and sem antic errors discussed here are only the tip of the iceberg. As
with any com puter language the only way of understanding the syntax is through
practical experience. W ith this experience the compile tim e error should become
nothing more than a tem porary annoyance. The real problems will be those
th a t execute correctly nine times out of ten or crash ever tim e you are showing
someone a dem ostration. Problems related to inheritance (i.e. w hat is available
and which class to inherit from) will also be improved with reading and practical
experience.

The problem of garbage collection is one of the m ain black spots of this

C H A P T E R 6. O D JE C TIV E -C T R A P S A N D P ITF A LLS 108

language com pared to others such as Smalltalk-80 and Eiffel. Future versions of
the Objective-C compiler have been promised to handle this problem, however
for users with versions up to 3.3 of the compiler, the problem of handling an
objects life span rem ains their responsibility.

C hapter 7

O bject O riented D esign

7.1 In tr o d u c tio n

Before commencing program m ing with any com puter system, a m ethodology for
the design of the new system is needed. There are num erous ways of approaching
the analysis of systems. Many of these methodologies were developed during
the late 70’s and early 80’s, reflecting an upsurge of activity in IS development.
However m ost of these methodologies were designed for system im plem entation
using a th ird generation com puter language, characterised by a linear approach
to systems analysis.

Because the conventional methodologies provide no mechanism to support
O bject Oriented characteristics such as encapsulation and inheritance, new m od­
elling techniques for O bject Oriented languages were developed. As w ith conven­
tional system modelling, there have been a num ber of approaches put forward to
help system building using O bject Oriented languages.

Because the O bject Oriented technology is still in its infancy(at least in
commercial term s) no standard approach to O bject Oriented Design has yet been
agreed upon. Some of the new approaches towards Object Oriented Design seem
geared to the creation of software systems using particu lar languages, which do
not illustrate the full power of most Object Oriented systems. O ther approaches
try to merge the conventional techniques along w ith new O bject Oriented tech­
niques. This helps designers create systems in a m anner which is similar to the
already proven techniques while using the O bject Oriented mechanisms, however
such approaches represent language inheritance poorly. This chapter will inves-

109

C H A P T E R 7. O B JE C T O R IE N TE D D E SIG N 110

tigate some of these techniques, showing how they could be used in modelling
software systems sim ilar to the IM PW tools.

The variety of applications in which O bject O riented techniques can be ap­
plied to cover all problem domains from developing a process control system in
a nuclear factory to creating a system used for counting apples in a basket. The
Objective-C suppliers provide reusable and extendible components for im plem en­
tation . B ut they do not provide any assistance towards the development of o ther
reusable classes.

The techniques for designing reusable and extendible components have not
advanced at the same ra te as the O bject Oriented technology. This topic has
become a popular research area for m any O bject O riented enthusiasts, b u t as yet
no global accepted model has been accepted for O bject Oriented Design. This
chapter looks at some of the design models which have been developed to solve
this problem, and the approach taken for the development of the IM PW tools.

7.2 B o o c h M o d e l

One of the earliest approaches to tackle O bject O riented design was the Booch
model[Boo 86], nam ed after its inventor G rady Booch. This approach decomposes
the tex tual description of the system requirem ents to develop the class objects
for the problem domain. Nouns in the tex tual description of the system, relate to
object classes which have to be created. Verbs identify the operations perform ed
by the objects. This process can be continually repeated to decompose objects to
lower levels of abstraction. The approach recognises operations associated w ith
objects and the operations they require from other objects.

The foundation of the approach is based upon inform ation hiding(encapsulation)
and d a ta abstraction. T he complexity associated w ith large systems is removed
by representing problem domains as abstract objects, which may communicate
w ith other objects in a m anner which cannot be viewed as sequential.

The diagrams used to represent these objects and their inter connections
are known as Booch-grams, which are sometimes com pared w ith conventional
date flow diagrams[W oo 82]. T he sources or stores of the da ta flow diagrams can
be directly m irrored to objects in the Booch-gram. Further investigations of the
d a ta flow processes leads to the identification of more detailed processes which
occur at lower levels of abstraction. A similar approach is used to determ ine
objects in Booch-grams, where the investigation of object detail may identify the

C H A P T E R 7. O B JE C T O R IE N T E D D ESIG N 111

need for lower level objects. After understanding the requirem ent associated with
a system the Booch m ethod is applied using the following steps.

[1] Identify objects and their a ttribu tes (All nouns in the
tex tual description of the requirem ents are used to rep­
resent objects, the verbs represent the actions on these
objects.)

[2] Identify O perations (Allows objects to be decoupled)

[3] Establish Visibility of each object in relation to other
objects (This helps to provide a generic struc tu re to the
objects in the system ,capturing the topology of objects
in the model)

[4] Establish interface of each object (Establish the speci­
fications to be perform ed by the module and the views
th a t will be displayed to external objects)

[5] Im plem enting each object (Choose a suitable represen­
ta tion for an object, in most cases this will involve de­
composition of the object until the operational level is
reached)

This approach is m ore responsive to change th an trad itional m ethods be­
cause the changes to objects are more localised. Different levels of abstractions
can also be obtained for each object by repeating the process which obtained the
top level view. Using the Booch-gram approach in the Risk- Analysis tool gives a
top level model as shown in figure 7.1.

The model also provides a be tter indication of the flow of control than trad i­
tional approaches, where there is one single thread of control which is operated in
a sequential manner. The Booch-gram model gives a be tte r representation of the
nature of concurrency attached to a system. Perhaps one of the most im portant
benefits from this approach is the mechanism it gives to formalise our model of
reality.

U nfortunately m ost of the Booch-gram displayed in com puter journals are
usually directed to the development of systems w ritten in Ada, an O bject Ori­
ented languages, which does not support inheritance. For languages such as

C H A P T E R 7. O B JE C T O R IE N T E D D ESIG N 112

Figure 7.1: Risk Booch-gram

O bjective-C, C + + , Smalltalk-80 etc, th is approach makes no a ttem p t to make
use of the power of inheritance. The approach ignores the num erous high quality
abstrac t classes and operations supplied by these languages and hence fails to
give a fair representation in the model view.

7.3 H ierarch ica l O b jec t O rien ted d es ig n (H O O D)

A nother prom inent approach is the Hierarchical O bject Oriented design m ethod
called HOOD[Rob 89]. This approach like Booch’s, is aimed for software devel­
opm ent in the Ada community. The structu ral design techniques used in con­
ventional methodologies is highly utilised by this approach, allowing the designer
to use techniques th a t are already proven and tested. Like Booch this approach
is centered around identifying the objects which will m ap the real world objects
into software entities. The HOOD design can be broken down into four phases.

[1] Definition and Analysis of the problem

[2] Revise into the design solution i.e. natu ral English (This
is w ritten in a semi-formal style so th a t the objects can
be selected for the next phase)

C H A P T E R 7. O B JE C T O R IE N T E D D E SIG N 113

[3] Selecting the objects and operations (Similar to Booch
i.e. nouns are taken to represent objects and verbs relate
to operations on the object)

[4] Refine the design to produce a more formal description
of the object interface. (At this point all the variables
are related to an object)

This approach recognises two different types of objects, passive and active,
which are required for modelling the software system. Passive objects are those
executed im m ediately when control is passed to the object, while Active objects
execution is dependent on the object control structure. Diagrams used for rep­
resenting these objects are shown in figure 7.2.a and figure 7.2.b, Active objects
are denoted w ith an A in the top left hand corner.

print

new

Passive Object Aclive Objecl

Figure 7.2: HOOD diagrams

The object names are displayed along the top of the boxes and the oper­
ations which may be perform ed by the object are inserted in the box which is
placed on the perim eter of the object box. For an object such as Rule in the Risk
Analysis tool, where a large num ber of operations are perform ed, this box proves
an insufficient way of representing this information. A nother problem with this
no ta tion is th a t it makes no a ttem pt to identify the param eter types passed or
re tu rned from these operations.

C H A P T E R 7. O B JE C T O R IE N T E D D ESIG N 114

W ith m any O bject Oriented languages it is feasible for objects to call op­
erations defined in other objects and to inherit d a ta p lus operations from parent
objects. The HOOD model recognises these features and has built techniques
into the approach to handle such cases. Objects using operations inside other
objects can be represented by the USE arrow as shown in figure 7.3. However
the approach does not perm it cyclic calls between passive objects. Therefore if
the Rule object uses one Risk object operation, the reverse operation would not
be perm itted if bo th were passive objects. Another problem with this facility is
th a t although it indicates th a t an object requires an operation from an object, it
will not determ ine which operations are required, when m ore th an one operation
is available.

Figure 7.3: Message passing with HOOD

Inheritance is represented by showing the child object(s) inside the parent
objects see figure 7.4. This provides a useful technique for representing objects at
the same level of abstraction. Each level can be repeatedly decomposed until the
abstraction process is exhausted. Once the diagrams representing the software
system have been completed, many HOOD tools produce code translating these
diagram s into Ada code. This approach like the first, sets up a foundation for a
design which can be easily extended. However like the Booch approach it also
ignores the class hierarchy supplied by many Object O riented languages and does

C H A P T E R 7. O B JE C T O R IE N T E D D ESIG N

not suggest any way in which the design can be reused.

115

Figure 7.4: HOOD inheritance

7.4 B lo ck D e s ig n

The Block design approach was developed for the creation of large projects[Jac
83] using O bject Oriented technology. The block design m ethod merges Object
O riented techniques and conceptual modelling used for requirem ent modelling of
inform ation systems. The approach unlike those previously m entioned, focuses
on the interconnection of reusable software components. This concept can be
considered similar to Objective-C software-ICs, where instead of designing from
scratch, the design components can be looked up in a catalogue and entered into
the design.

The blocks provide the framework on which this approach is based, each
block representing a package service of the system. Blocks decomposed to their

C H A P T E R 7. O B JE C T O R IE N T E D D ESIG N 116

lowest level, represent classes in the O bject Oriented languages. The components
described by the approach are used to represent s tandard modules th a t can have
m any different applications. These components are available to all the blocks
used in describing a software system. This facility can be considered analogous
to the foundation library offered by some O bject Oriented Languages.

The concept of inserting a specific design block to meet certain conditions
agrees w ith the reusability notion pu t forward by O bject O riented technology.
The approach involves a num ber of steps from the original requirem ents, to the
finished system. Progression is m ade from system analysis to design, using a
num ber of facilities similar to those m entioned in the HOOD approach. How­
ever the transitions involve moving through the various steps which can lead to
a model which is not error free. The approach is geared more towards develop­
ing large system s, where the duration of the project is ten m an years or more.
The design is broken down into numerous parts to allow the participation of
num erous designers. W hile cohering to m any of the O bject Oriented principles
this methodology can seem cumbersome when designing small to m edium size
applications.

7.5 O b jec t O rien ted S tru c tu red D e s ig n

This approach is a com bination of trad itional approaches to which O bject Ori­
ented concepts have been added[W as 88]. Developers using this m ethod for
system design find themselves using the ” top-down” approach when perform ­
ing functional decomposition of modules. The ”bottom -up” strategy is more
likely to be applied to objects, where developers will be m ore concerned about
the functionality of the object than its overall role in the system design.

The structured approach puts a strong emphasis on m odularity, so th a t the
system being developed will be comprehensible and flexible, highlighted by the
fact th a t modules can be created and tested independently of each other. Object
oriented design is merged into the approach to represent the hierarchy of objects.
By keeping m odularity the principal component of design, development is made
on already proven concepts. This approach is also useful in allowing the m ethod
to be used in a number of various applications.

For designers using either Booch or HOOD m ethods this approach provides
a great deal of familiarity, hence avoiding the need to develop the necessary
design skills from scratch. The basic notation used in structured design are used
to illu stra te modules. Applying these structured design concepts to the Calendar

C H A P T E R 7. O B JE C T O R IEN TED D ESIG N

tool, provides the layout shown in figure 7.5.

117

Figure 7.5: Object Oriented Structured Design of the C alendar

The sequencing of operations in this diagram are taken from left to right,
w ith the operation a t each level giving more specific detail than the m odule at
the higher level.

The concept of object and the operations they perform is described in a
m anner sim ilar to HOOD. The object is characterised by a box, w ith the asso­
ciated operations appearing in smaller boxes around the perim eter of the object
box. The encapsulation of d a ta and operations by the approach is term ed ” in­
form ation clustering” . Unlike the previous approaches, a distinction is m ade
between the definition and uses of objects. The definition of an object is repre­
sented by a rounded rectangle which is displayed inside the object box as shown
for the Risk object in figure 7.6. The operations used by the object are repre­
sented by individual boxes which are positioned on the objects perim eter, making
it possible to show the param eters associated w ith each operation.

Inheritance and Encapsulation, the two facilities desirable in most Object
Oriented languages are represented by this approach. The inherited object in
figure 7.6 is denoted by a dashed box, the inheritance of operations are also
denoted by the dashed line between the boxes. The Risk object in this diagram
overrides the add and delete operation inherited from the object class.

C H A P T E R 7. O B JE C T O R IE N T E D D E SIG N 118

A nother nice feature about this approach is the way it allows a program ­
m er to gradually shift from functional decomposition design, towards an ap­
proach which encompasses Object Oriented concepts. Analysis of the problem
dom ain may be m ade by a num ber of various m ethods, before been translated
into the design model. U nfortunately describing O bject O riented systems w ith
functional designs can cause problems when making extensions. U pdating con­
ventional functional systems often lead to changes which are not restricted to
localised modules. W hile facilities for describing inheritance have been provided,
the approach offers no advice on how this structure is set up. It presumes th a t
all designers should know intuitively about the languages foundation hierarchy
structure.

7.6 L earn by E x a m p le

Besides learning to design O bject O riented systems using one of the aforemen­
tioned methodologies it is also possible to learn design techniques by copying
previous examples i.e. Learn by example. By studying the structu re of previous
O bject Oriented systems and following the inheritance path for d a ta variables
and operations a person can develop a be tte r feel for design. This approach can
prove useful for learning about the foundation classes provided w ith a language
and helps to optimise use of the inheritance mechanism. This technique pro­
vides no standard way of describing the model o ther than coded listings, unless
the language provides a tree or browser mechanism as in Smalltalk-80. It would
probably be b e tte r if used in accom panim ent with another design approach rather
than by itself. A nother problem is th a t studying old systems can also be very
dangerous, if the software being examined has not been designed properly.

7 .7 M e th o d o lo g y for w o rk b en ch to o ls

W ith no proven standard for O bject Oriented design, the technique used for the
development of the IM PW tools was not related to any one individual m ethod­
ology. The initial design used IDEF-SADT approach, to describe the IM PW
layout, however this technique could not be used for creating reusable Object
Oriented tools. The approach taken was however influenced to a certain degree
by a com bination of the various approaches available.

The creation of both O bject Oriented tools for the workbench followed the

C H A P T E R 7. O B JE C T O R IE N TE D D E SIG N 119

following phases.

INHERITANCE
/—~ A '

[1] Initial Requirem ents and Analysis

[2] Develop O bjects to model real
world requirem ents

[3] Find the operations related to each
object

[4] Convert operations to objects if fea­
sible

[5] R epeat steps three and four until
all operations are associated w ith a
class

The first step in the creation of the tools, involved the analysis of the
system requirem ents. This section concentrated on how the requirem ents for the
Risk tool were fulfilled using this approach(sim ilar operations were used for the
creation of the Calendar tool).

After completing the analysis of system requirem ents, the objects which
m atched the real world entities were created. The techniques used for developing
these top level Risk tool objects were analogous to th a t m entioned by Booch i.e.
the requirem ents are read in natu ra l English, w ith the nouns representing class
objects and verbs the operations. The diagram in figure 7.1 shows the top level
objects which were created for the Risk tool.

To define all the necessary top level objects after studying the initial re­
quirem ents puts too great an emphasis on this phase of modelling (i.e. the need
for certain objects may only be highlighted by viewing the operations of other ob­
jects, or they may be simply overlooked at the s ta rt). Only by iterating through
the various phases, is it possible to ensure th a t all the necessary objects are de­
fined. This approach may be viewed as an O bject Oriented prototyping exercise,
where each iteration brings the user closer to the desired model.

The th ird step in the process identifies the operations required for the ob­
ject. A bstract or reusable operations found at this stage suggest the creation of
other classes. Detailed study of these operations by the user, may lead to the

C H A P T E R 7. O B JE C T O R IE N T E D D E SIG N 120

identification of new classes undetected by previous studies of operations and ob­
jects. The technique used for finding the functionality associated w ith the Risk
tool objects, used the Jackson structured m ethod, where each operation was iden­
tified as a module. Each abstract object of the Risk tool was m odularised in a
m anner sim ilar to the Risk class in figure 7.8.

In i t ia lS ta te

y
tollowingState execute d is p la y

State

Figure 7.6: O bject Oriented S tructured Design for inheritance

The technique used for describing the functionality should be dependent on
the system developer (i.e. choose the methodology you feel the m ost comfortable
using for this task). The reasons for choosing the Jackson S tructured m ethods[Jac
83] here, were twofold. F irst it seemed the simplest and most na tu ra l way of
describing the functionality of the abstract object. Secondly .the m ethod helped to
differentiate between Objective-C factory and instance m ethods. All the top level
modules in the Jackson diagram describing an object can be identified as factory
m ethods i.e. class operations. O perations described by lower level decomposition
of the modules represent instance m ethods. Therefore the operations add, delete,
list etc, are considered factory m ethods for the Risk class.

By iterating through these operations for each object, the system designer
is able to develop an intuitive understanding for the relationship between objects
and operations. This is im portan t not only for comprehending how objects will
communicate, but also for identifying areas where code can be reused.

The power of inheritance has been poorly mentioned in this approach, as

C H A P T E R 7. O B JE C T O R IE N TE D D E SIG N 121

is the case w ith m any of the methodologies m entioned so far. However this is
a prom inent factor when developing system s using O bject Oriented Languages.
The inheritance tree m ust be known during design, in a way mechanics know
every tool in the ir toolbox. The m echanic is aware of the tools available in the
toolbox, knowing exactly when and where they should be applied to the task at
hand. Similar knowledge of the classes and operations available, plus intuitive
knowledge to where they should be applied during system design are deemed
im portan t for successful designing.

However this m ethod is a contradiction to the principal th a t design should
be independent of the language, because the technology has no established s tan ­
dards as to w hat objects should be contained in an O bject Oriented library and
how it should be structured . At present all the software suppliers want to insert
classes in to libraries, instead of reusing classes already there.

This approach while being adequate for the isolated design of the work­
bench tools, falls well short in answering all the O bject Oriented requirem ents.
The O bject O riented design methodology applied to the system, should remain
language independent, while also being reusable and extendible. By iterating
over the objects involved in system creation, the validity of the classes being
reused in o ther systems can be questioned(if the iteration process occurs on ob­
jects used in different applications, the word re-worked becomes more appropriate
than reused). The classes developed for the Risk and C alendar tools did not ren­
der any reusable classes. Perhaps using another approach or b e tte r design of the
classes themselves, this reusability factor could have been obtained. The next
section will concentrate on the reusability of classes issue.

7.8 D e s ig n in g R esu sa b le C lasses

In addition to the problems of knowing w hat classes to inherit from, where to
a ttach new classes in the inheritance hierarchy, it is im portant to design classes
which conform to the O bject Oriented principles of reusability and extendibil-
ity. The techniques used for the development of the Risk and C alendar tools
were designed purely to satisfy specific im plem entation on the IM PW , using the
class facilities offered by the Objective-C foundation library. As Drake[Dra 88]
observed, the O bject Oriented technology will separate program m ers into two
groups, those developing abstract classes, and those developing system applica­
tions from these class libraries.

The objects created for the Risk and Calendar tools cannot claim to be

C H A P T E R 7. O B JE C T O R IE N TE D D E SIG N 122

reusable in the sense th a t they can be added to the foundation library and used
in various applications. These classes referred to as m odular units by Meyer[Mey
87] have to satisfy a num ber of criteria if we wish them to be reusable and
extendible.

• D e c o m p o s ib il i ty It m ust be possible to de­
compose a complex module into smaller sub m od­
ules.

• C o m p o s a b il i ty Modules should have the abil­
ity to be applied as independent elements in the
construction of other systems.

• U n d e r s ta n d a b i l i ty If a m odule cannot be
understood independent of other modules, other
modules will be involved in the m aintenance of
this module.

• C o n t in u i ty Changes m ade in a m odule should
have little to no effect on other modules in the
system.

• P r o te c t io n Isolation of errors w ithin a m od­
ule thus stopping the propagation of these errors
throughout the system.

It is the com posability factor which prevents the factory objects in the
workbench from been reusable. The variables and operations described relate to
a precise application.

However when creating application specific software, designers should still
be trying to develop classes th a t can be reused in other applications. By adopting
a num ber of rules of thum b it is possible to create classes which may be used in
different application environments.

[1] Avoid declaring unnecessary instance variables into ab­
stract objects. The declaration of these variable can
make the class object too specific, at too high a level.

[2] Use the same message protocol for describing operations
as described by other classes in the foundation library.

C H A P T E R 7. O B JE C T O R IE N TE D D E SIG N 123

[3] W hen deciding which superclass a class should inherit
from, m ethod inheritance should be given preference over
d a ta inheritance.

[4] For classes which have half their variables accessed by
one half of its m ethods and the other instance variables
by the o ther half of its m ethods, split the class into two,
each w ith the required instance variables and methods.
A ttach bo th classes to a higher level abstrac t class.

[5] Code defensively! If you want your code to be reusable
be prepared to have your m ethods called under various
circum stances.

[6] Verify th a t your testing and docum entation can be used
in various applications.

Some of these rules are simply common sense, others may only be found
and appreciated by getting one’s fingers burned creating factory objects. The
m ain reason for the IM PW tools not producing reusable classes was m ainly due
to a lack of development experience and geographic d istribution of tool builders
ra ther than the specific applications for which the tools were being developed.
As developers create new classes using O bject Oriented technology, the initial
code size will grow linearly with the classes being created. However as program ­
mers gain experience, the size of the code in relation to classes should gradually
decrease as the program m ers bring reusability into play.

7.9 S u m m a ry

This chapter has viewed a num ber of Object Oriented Design methodologies, none
of which satisfy all the criteria required to describe system building using Object
Oriented languages. M any software suppliers are steam rolling ahead advertising
their O bject Oriented language and the class facilities provided, ignoring the
problems of design and standards. Techniques such as HOOD and OOSD are a
positive step towards a correct O bject Oriented Design approach. However work
is still required to make these design components reusable in different applications
and languages.

C hapter 8

Future D irection s

8.1 In tr o d u c tio n

During the past two decades com puter professionals have seen the invention of
m any tools used to com bat problems th a t plagued the com puter industry. Soft­
ware libraries tailored for specific applications, more powerful and easier to use
com puter languages, plus various design methodologies have all helped in the
b a ttle for higher quality software. However a huge backlog of com puter applica­
tions still exist w ithin the industry. Some reports suggest th a t the backlog is so
great th a t it deters m anagers from even suggesting other development projects.
It is only now w ith the prominence of O bject Oriented technology, th a t a serious
a ttem p t to solve this software backlog problem can be made.

Problem s related to m aintenance, complexity, software quality etc, can be
tackled in a more efficient and reliable m anner using the encapsulation, inheri­
tance and d a ta abstraction techniques prom oted by most O bject Oriented lan­
guages. It would be difficult for the software industry to progress in a m anner
sim ilar to the hardw are industry where engineers develop from existing circuitry.
B ut by using O bject Oriented language for reusing and extending existing soft­
ware, the speed currently associated with development can be greatly increased.
Before achieving these goals however, a num ber of improvements to O bject Ori­
ented technology will have to occur. This chapter takes a brief look into the
fu ture a t some of the im portan t features th a t m ust be obtained if the approach is
to be an im portan t tool for system development. As well as discussing the needed
improvements to Object Oriented mechanisms, enhancem ents to the workbench
and the Objective-C language are also discussed.

124

C H A P T E R 8. F U T U R E D IR E C T IO N S 125

8 .2 F u tu re E n h a n cem en ts to O b jec tiv e -C

The StepStone C orporation, the suppliers of O bjective-C, which was used for
the development of tools in the workbench, expect their language to evolve in
a m anner sim ilar to any factory object created by the language (i.e. additional
features are added in an increm ental fashion w ithout effecting existing objects).
W hile providing a comprehensive foundation library and ” V ICI” , an in terpeter for
allowing code to be exam ined line by line, there are still areas where the language
m ust improve. One of the m ajor drawbacks which the supplier m ust investigate
is au tom atic garbage collection i.e. the freeing of object space from memory
once an object has been deleted. Developing systems using the current language
version(3.3) puts the emphasis on the developer to follow an o b jec t’s lifecycle
from its creation to its deletion. Learning about an o b jec t’s lifecycle puts an
onus on the system developer to aquire a much greater in-depth knowledge of the
overall system than should really be required. Having to re-learn about existing
classes already validated and entered into the class hierarchy, goes against the
reusability and extendibility issues associated w ith O bject Oriented languages,
this re-learning could be considered to be m aintenance or additional work.

The suppliers of Objective-C recognise this problem plus others which m ust
be solved if the language is to gain widespread commercial acceptance(i.e. the
need for tools to help w ith design, debugging, docum entation and testing of
O bject Oriented applications). The diagram in figure 8.1 shows the type of ideal
development environm ent required for using the Objective-C language, followed
by a description of the functionality expected from each tool.

VICI is an in terpeter supplied along with the Objective-C compiler, which
provides extensive trace and help facilities for both Objective-C and C. Using
VICI allows development to be m ade w ithout the compile link process between
tests.

An environm ent sim ilar to this should be the goal for all O bject Oriented
languages, not ju s t Objective-C. The features in figure 8.1 represent the most de­
sirable tools O bject Oriented developers would wish for when developing systems
using an O bject Oriented environment.

The more im m ediate future of the language will improve, as Objective-C
becomes available on a wider range of machines, such as Sun, Apollo, Hewlett
Packard workstations and top range IBM personal com puters. The recent deci­
sion by NExT to include Objective-C with their new workstations, strengthens
the view, th a t Objective-C will rem ain as one of the m ain O bject Oriented lan-

C H A P T E R 8. F U T U R E D IR E C TIO N S

D
es

ig
ne

r

Sp
ec

ifi
er

Br
ow

se
r

Te
st

er

De
bu

gg
er

Co
nf

ig
ur

at
io

n

C
on

tro
l

D
oc

um
en

te
r

user Interface software-ICs

(windows, menus,scroolbars ets|

ObJectlve-C Vici

C Language

• D esigner Tool to help the design process. It uses graphic windows to
show the objects required for development and how they should be linked
into the class hierarchy.

• D eb u g g er Something similar to the dbx tool supplied by the Unix
operating system. The interface however should be more graphic
making code debugging easier.

• T es te r Tool to generate tests on the object classes.

• D o cu m en te r Tool which generates standard documentation for
each factory object.

• Specifier Tool which allows the user to describe a system graph­
ically with verbal representations.

• B row ser similar to the Smalltalk tool used to guide the user
through the inheritance hierarchy.

• C onfigu ra tion C o n tro l Used for synchronising the thread of
control through an application.

Figure 8.1: Ideal Objective-C environment

C H A P T E R 8. F U T U R E D IR E C T IO N S 127

guages for quite some tim e to come.

8 .3 F u tu re a d v a n cem en ts to th e W o rk b en ch

T he architecture used for the creation of the workbench was developed using
the ID EF-SA D T approach. T he various modules used the underlying principles
of O bject Oriented technology for development whenever possible. The three
m ain components which form the workbench can be considered as objects in
the O bject Oriented sense. It would be incorrect however to say th a t these
were completely reusable objects. The inform ation system (IS) for example would
require numerous changes to reference different object types and new rules for
verifying these object types.

The com putational system (CS) which contains the software tools for the
IM PW provides be tte r O bject Oriented characteristics allowing the addition and
extension of the software tools. The fact th a t each tool can be regarded as
an object with well-defined boundaries, perm its the changing and addition of
tools w ith minimal effect to the surrounding workbench tools. As the workbench
m atures, work required on any tool whether to make it more reliable, faster, more
comprehensible etc, can be perform ed in isolation of the o ther tools.

Because the current version of the workbench has a prototype label attached
to it, a num ber of shortcom ings were overlooked during development. From
personal experience of using the workbench, one of the m ost im m ediate problems
which would need to be solved is the speeding up operations on the da ta base.
Retrieving and storing d a ta from the IS database, has tim e delays which would
be unacceptable to project m anagers in the every day industrial environment.
Perhaps using a more efficient database, compiling the Prolog layer from the
workbench IS, are two areas which could be investigated further, if the product
is to be speeded up to an acceptable level.

Another flaw with the current workbench version is th a t it only perm its
one tool to be active during execution. In the real world environment software
managers may wish to im plem ent a number of tools simultaneously. For example,
the project m anager may wish to view the Risk and Calendar tools while using the
Resource Allocation tool. In order to make the workbench more acceptable in the
commercial m arketplace, this transaction from sequential to parallel processing
m ust be made.

The prototype workbench developed currently runs on Apollo and Sun

C H A P T E R 8. F U T U R E D IR E C T IO N S 128

w orkstations. Extending this portab ility into other workstations and top range
PCs m ust be considered for fu ture versions, before the product can become com­
m ercially viable. The encapsulation principle allows objects used throughout the
IM PW to reduce the work in such a transition. The porting of the greatest
precentage of classes shoidd ju s t be a m atter of recom pilation.

8 .4 U ser In ter fa ces

The area of com puting where m any people believe the real benefits of Object
O riented will be realised is in the area of com puter interfaces. Presenting infor­
m ation in a graphical form at which perm its interaction in a way which is simple
to learn and comprehend. O perations such as m anipulation of objects represent­
ing real world entities by pressing a mouse bu tton , can become the norm rather
than the exception for com puter users. The hardware and software capabilities
have been around for some tim e, to build interactive systems like the one just
m entioned. However the reasons why they are so sparse, is due to the complexity
associated w ith developing such applications.

The introduction of O bject Oriented languages with inheritance, can break
dowrn these technical barriers by allowing complex graphic code to be inherited.
C reating graphic windows should be simply a m atter of inheriting the correct
graphic classes, leaving only minimal coding for the users who can tailor the
displays to their own personal taste . The diagram in figure 8.2 shows how the
inheritance mechanism could be used for the construction of such a system.

As m entioned earlier, no standard approach for the construction of classes
exists, therefore the organisation of classes in this diagram should not be taken
as standard . Some languages may take the viewpoint th a t the windows are rect­
angular boxes and therefore make the Window class the parent of the Rectangle
class. This however should be regarded as incorrect classification of object classes.
By m aking window the parent class, it would obstruct the Rectangle class being
used in other applications such as m athem atics.

This example shows a single example of how non-standardisation of class
inheritance can effect the windowing system. However the side affects caused by
such inheritance will not always be as easy to follow. If we wish to build flexible
and correct window systems, consistency between the various languages m ust be
obtained.

C H A P T E R 8. F U T U R E D IR E C T IO N S 129

Class Object Messages

display
your_messages

display
origin
corner
center
border
file

display
title
scrollbars
drawinterior
expand
open
close

display
drawinlerior
panes
relation

specialise new messages

Figure 8.2: Possible Window Hierarchy

8 .5 C o n v en tio n a l S y stem s

W ith all these great promises offered by Object Oriented technology, w hat will
happen systems developed using conventional languages and methodologies? Should
schools s ta rt teaching students development using only the O bject Oriented ap­
proach? Should all new development take place in an O bject Oriented envi­
ronm ent? W ith the O bject Oriented techniques still in their infancy, and the
am ount of investment currently m ade in traditional system s, work using conven­
tional m ethods will persist for some considerable tim e. People are not going to
throw away their tried and trusted systems just to keep up w ith com puter tech­
nology. The tim e and money spent m aintaining these conventional applications
will in m any cases be justified continually by someone in a senior position, con­
vincing themselves th a t the changes are small and once off. There will also be
systems where the am ount of investm ent is so great, th a t changes will be m ade

C H A P T E R 8. F U T U R E D IR E C T IO N S 130

ra ther th an scrapping the existing system.

O ther factors beside the economic reasons for keeping conventional systems
include psychological and fam iliarity problems. Code which has not been de­
veloped in house is often regarded by people w ithin the organisation as being
erroneous. The fam iliarity problem relates to the fact m ost of the com puter pro­
fessionals have been brought up w ith a different concept towards system building
using conventional approaches such as Jackson S tructured approach. Hardened
com puter personnel used to certain techniques for a num ber of years, may try and
resist th e change, in the way office workers resisted the in troduction of the com­
pu ter into the ir work environm ent. However w ith the introduction of language
environm ents as shown in figure 8.1 this problem can be overcome.

8 .6 O b ject O rien ted lan gu ages

The emergence of Object Oriented languages offer a num ber of new types and
m echanism for the com puter professional to learn. For the newcomer terminology
about classes, instances, types, instance variables etc, can lead to more confusion
ra ther than simplification. W ith no standards set, it is common to have different
nam ing conventions to represent the same thing. For exam ple type and factory
m ay both refer to an object class, depending on the language used.

Indeed a more controversial and fundam ental argum ent still exists between
various professionals as to w hat exactly is an object. D atabase, Interface and AI
developers using Object Oriented languages all have their own fuzzy notion as to
w hat exactly an object is.

S tandardisation of these O bject Oriented principles .must be regarded as
an im portan t characteristic if the goals mentioned at the s ta rt of this text are
to be obtained. T hroughout this chapter, numerous references have been made
regarding consistency and standards; the three areas listed below indicate where
setting of standards are required most.

• nam ing conventions
• class library structures
• design

C H A P T E R 8. F U T U R E D IR E C T IO N S 131

8.6.1 Naming Conventions

The standard isation of nam ing conventions is not dedicated to having standard
nam es to describe the characteristics introduced by O bject O riented principles,
m entioned previously. Instead it is directed more towards message calling pro­
tocol. Analogous objects which exist in various languages use different message
protocols for calling similar operations. In a more ideal O bject Oriented environ­
m ent, sim ilar objects in different languages should have the sam e class nam e and
associated operations so th a t one message protocol could exist for all O bject Ori­
ented languages. Going back to our window example, if different languages use
different commands to perform similar operations (i.e. draw and display methods
bo th ask an object to display itself) system development can only proceed within
the boundaries of one language. If O bject Oriented suppliers seriously want to
encourage reuse of software, they should keep the messages and operations re­
lated to a class consistent between languages. By doing this developers will not
have to learn any ex tra syntax for messages when using different O bject Oriented
language.

8.6.2 Class Library Structures

The different O bject Oriented language suppliers not only supply different classes,
bu t also different inheritance mechanism structures. T he position of certain ob­
ject classes is dependent on the language i.e. Sm alltalk and Objective-C use dif­
ferent classes and hierarchical structures for storing and retrieving these library
objects. As the interest in O bject Oriented program m ing grows, and suppliers
jostle for a prem ier position in this new m arket place, the trend of most suppli­
ers is to keep putting more reusable classes into their language library, instead
of looking a t w hat has been developed by other similar suppliers. Getting the
various suppliers to talk about a standard hierarchy for object classes and their
operations, is an im portan t step towards standardisation of O bject Oriented lan­
guages.

8.6.3 Design

O bject Oriented Design is a research area which requires a great am ount of im­
provement. The introduction of inheritance, encapsulation and polymorphism
characteristics from O bject Oriented languages is poorly supported by current
design methodologies. M ost of the current approaches for this technology are

C H A P T E R 8. F U T U R E D IR E C T IO N S 132

directed towards the development of system s im plem ented in Ada. T he fact tha t
A da does not have class inheritance makes it a poor language for modelling Ob­
ject O riented systems[Rob 81],[Weg 87][Ver 88]. In fact for this reason many
Object O riented personnel do not consider Ada to be a proper O bject Oriented
language.

Having reusable and extendible design components which could be fitted
into various applications in a m anner similar to object classes, is the design
goal which the O bject Oriented approach is striving for. Changing software
design from its a rt/c ra ftm ansh ip sta tu s to an industrial process, where design
components are obtained in the same way as we purchase integrated circuits is
however a long way from reality. Framework models which support this type
of reusability have already been developed[Jac 87]. However this approach for
model creation was developed for large software projects (i.e. those greater than
ten m an years, involving numerous personnel). W hile prom oting reusability in
large software project, the model was developed for im plem entation within the
companies organisation boundaries. The various design com ponents and steps
involved in this approach m ake its use in smaller applications and in different
environm ents questionable.

Different inheritance structures talked about previously, cause interference
which makes it impossible for the design not to be influenced by the language.
If the designer wishes to include inheritance in the design, then object classes
m ust be attached to a known language inheritance structure. Therefore Object
O riented design i.e. include encapsulation and inheritance, implies th a t the design
rule sta ting th a t ” design should be independent of language” should be ignored.

Because of the differences in language libraries, design is affected by the
O bject Oriented language used for im plem entation. O bject Oriented languages
such as Objective-C, C + + , Eiffel etc, all contain different classes, class inheri­
tance mechanisms, and operations on their classes. Clearly there is a need for
developing standards so th a t objects created by different suppliers can be glued
together for system development.

This design problem only reinforces the call to set standards for inheritance,
classes and the operations perform ed by the classes. However this problem can­
not be considered trival, m aintaining standards for O bject Oriented design and
im plem entation introduces problems of its own. To allow the addition of further
objects and the evolution of current classes, stringent m anagem ent plus global
com m unication channels are required.

Deciding w hat classes to enter should be dependent m ainly on whether

C H A P T E R 8. F U T U R E D IR E C T IO N S 133

the classes are reuseable for o ther applications. As m entioned in chapter seven
designing these abstract classes for m ultiple use is difficult. The m ain m ethod
used for creating such reusable classes was experience. This highlights the need
for a tool which could help w ith the creation of reusable classes, giving details of
the operations, d a ta and inheritance required .

EIFFEL

1f

OBJECT IV E-C

r

C++

C EIFFEL /O B JE C T IV E -C N C++ 'X
Processor / V^Processor ^ ^ P ro ce sso r J

Intermediata
description

’ f

^^atabasa Manager Object
Software !

Base

f * *

(^^User Interlace

Figure 8.3: O bject D atabase Hierarchy

A DBMS can be used to perform an im portan t role in helping to achieve
this objective. Research into storing object classes inside d a ta base environments
has already commenced. The entity relationship modelling represent a more
natu ra l way to represent the relationships between objects. The diagram in
figure 8.3 shows the architecture of an object database currently being developed
at Geneva University[Ara 88]. Such an environment is one possible solution to
the problem of managing object classes supplied by different O bject Oriented
language suppliers.

C H A P T E R 8. F U T U R E D IR E C T IO N S 134

8 .7 S u m m a ry

The benefits th a t can be achieved from reusable and extendible code can cat­
apult the O bject Oriented approach to the forefront of com puter technology.
F ifth generation com puters, Artificial Intelligence, and CA D /CA M systems can
all benefit by adopting the Object O riented approach. Reusable code will mean
higher quality software and be tte r docum entation than before. System exten­
sions can be perform ed in an increm ental fashion w ithout affecting existing code,
thanks to encapsulation. However before reaching this stage a s tandard design
m ethodology which can be applied to all O bject Oriented languages is required.
This in tu rn implies th a t standards are established for the various languages.

As the approach becomes more popular, be tte r inform ation on design and
im plem entation issues should become available. Books and journals on the sub­
ject have increased significantly over the past few years to help newcomers get
to grips w ith this new approach. There are also a num ber of O bject Oriented
conferences which present the most recent innovations in this area; OOPSLA and
EC O O P are two of the most popular ones. Newcomers can also learn by going to
intensive train ing course which provide an excellent introduction for understand­
ing and im plem enting systems which use this approach. Com puter professionals
however should not feel threatened, creativity and clear headed thinking will still
be the m ost im portan t ingredients for system design and im plem entation.

A p p en d ix A
Risk Management

Areas

A ppendix A

A d e f i n i t i o n o f t h e f o u r ’ R is k M anagem en t A r e a s ' .

The te r m " R is k M anagem en t A re a " i s d ra w n f r o m c u r r e n t l i t e r a t u r e on
s o f tw a r e p r o j e c t r i s k m a n a g e m e n t. T h e f o u r R is k
M anagem en t A re a s c h o s e n f o r t h e p r o t o t y p e t o o l s e r e :

D e v e lo p m e n t R is k 1 : C o s t /S c h e d u le F a i l u r e

"T h e r i s k t h a t p r o j e c t c o s t a n d / o r d u r a t i o n m ay s i g n i f i c a n t l y e x c e e d b e s t
p o i n t (i e . p r e f e r r e d) e s t im a t e . "

D e v e lo p m e n t R is k 2 : P re m a tu re P r o je c t T e r m in a t io n

"T h e r i s k t h a t t h e p r o j e c t may h a v e t o b e p r o m a tu r e ly t e r m in a t e d o r
r a d i c a l l y r e s c o p e d / r e v is e d b e c a u s e o f m a jo r t e c h n i c a l o r r e s o u r c e
p ro b le m s w h ic h m ig h t a r i s e . "

O p e r a t io n a l R is k 1 : P r o d u c t F u n c t io n a l F a i l u r e

"T h e r i s k t h a t t h e f u n c t i o n a l i t y i n t h e d e l i v e r e d p r o d u c t may f a i l t o
m e e t t h e c l i e n t ' s e x p e c t a t io n s / n e e d s . "

I n e s s e n c e , t h i s i s t h e r i s k o f m a k in g t h e " w r o n g " p r o d u c t .

O p e r a t io n a l R is k 2 : P r o d u c t T e c h n ic a l F a i l u r e

"T h e r i s k t h a t t h e p r o d u c t may f a i l t o w o rk i n t h e t a r g e t e n v ir o n m e n t
for t e c h n i c a l r e a s o n s (e g . b e c a u s e o f f a i l u r e t o i n t e r f a c e w i t h o t h e r
c o m p o n e n ts) . "

A p p en d ix B
Risk Drivers

A ppen d ix B

A D e f in i t i o n o f th e "R isk D r iv e r s " .

The r a t i n g s c a le s p r e s e n te d to th e m anager a re shown b e low . The
m anager s e l e c t s h i s re s p o n s e s w ith th e m ouse .F or t h i s a p p e n d ix ,th e
fo rm a t o f p r e s e n t a t i o n o f th e s c a le s h a s b een sq u eezed up
so m esh a t. Towards th e r ig h t- h a n d m arg in o f each q u e s t io n i s shown
a s c a le o f i n te g e r v a lu e s . These a re th e " r i s k p o in t s " a s s ig n e d
t o each p o s s ib l e re s p o n s e . These a re n o t d is p la y e d to th e m anager.
The u se o f th e r i s k p o i n t s by th e t o o l i s e x p la in e d in A ppendix C.
A t e x t p a ra g ra p h a p p e a rs u n d e r m ost s c a le s .T h i s i s t o h e lp th e
m anager s e l e c t h i s r e s p o n s e .

1 . THE CLIEET’S UIDERSTAIDIIG OF HIS REQUIREHE9TS
The c l i e n t h a s a lm o st no u n d e rs ta n d in g [] 4

o f h i s re q u ire m e n ts
The c l i e n t h a s some u n d e rs ta n d in g o f h i s [] 3
re q u ire m e n ts
The c l i e n t h a s q u i te a good u n d e rs ta n d in g [] 2
o f h i s re q u ire m e n ts
The c l i e n t h a s an e x c e l le n t u n d e rs ta n d in g C] 1
o f h i s re q u ire m e n ts

(By "u n d e rs ta n d in g " i s m eant th e a b i l i t y of th e c l i e n t to
a c c u r a te ly p e rc ie v e and a r t i c u l a t e th e p ro d u c t
re q u ire m e n ts)

2 . THE DESIGHERS ’ HOWLEDGE OF THE APPLICATION DOHAIB
The d e s ig n e r s have an e x c e l l e n t know ledge [] 1
o f th e a p p l i c a t i o n domain
The d e s ig n e r s have a good know ledge [] 2
o f th e a p p l i c a t io n domain
The d e s ig n e r s have j u s t a l i t t l e knowledge [] 3
o f th e a p p l i c a t io n domain
The d e s ig n e r s have no know ledge o f [] 4
th e a p p l i c a t io n domain

(By "good know ledge" i s m eant an ex p o su re to , f o r exam ple.
th e p r a c t i c a l c o n s t r a in t s i n th e u s e r ’ s env ironm en t t h a t th e
p ro d u c t m ust work w ith in o r t h e p o s s e s s io n o f i n s ig h t i n to th e
" r e a l 11 re q u ire m e n ts from a f u n c t i o n a l i t y p o in t o f v iew . T h is
know ledge m igh t have been g a in e d by w ork ing a s a u s e r o r
a n a ly s t i n th e a r e a .)

3 . AVAILABILITY OF EXISTIIG PRODUCTS (OR PROTOTYPES) WHICH
CAS ACT AS EXAMPLES FOR THE DESIGHERS
The d e s ig n e r s can r e f e r to o th e r p ro d u c ts (o r
p r o to ty p e s) h a v in g f u n c t i o n a l i t y w hich i s -
i d e n t i c a l t o th e r e q u ir e d f u n c t i o n a l i t y [] 1
v e ry s i m i l a r t o th e r e q u ir e d f u n c t i o n a l i t y [] 2
somewhat s i m i l a r to th e r e q u ir e d C] 3
f u n c t i o n a l i t y
no s i m i l a r exam ple i s a v a i l a b le [] 4

4 . EXPERIEICE OF TEAM MEMBERS I I THE TECHIICAL TASKS OF
DEVELOPIIG SOFTWARE FOR THIS APPLICATIOB DOMAII

■obody on th e team h as good e x p e rie n c e [] 4
A sm a ll p r o p o r t io n have good C] 3
e x p e r ie n c e
A la r g e p r o p o r t io n have good e x p e r ie n c e [] 2
H ost o r a l l have good e x p e rie n c e [] 1

(By " e x p e r ie n c e " i s m eant p re v io u s ex p o su re t h a t w i l l h e lp th e
team to a n t i c i p a t e and so lv e a p p l i c a t i o n - s p e c i f i c t e c h n ic a l
p ro b le m s .)

dix B

5 . THE IEED TO SOLVE VERY DIFFICULT TECHNICAL OR
IITELLECTUAL PROBLEMS AS PART OF THE PROJECT
The s u c c e s s o f t h i s p r o j e c t depends on o u r s o lv in g -
v e ry d i f f i c u l t t e c h n i c a l / i n t e l l e c t u a l [] 4
p rob lem s
m o d e ra te ly d i f f i c u l t t e c h n i c a l / i n t e l l e c t u a l [] 3

p rob lem s
f a i r l y e a sy t e c h n i c a l / i n t e l l e c t u a l p ro b lem s [] 2
o n ly v e ry e asy t e c h n i c a l / i n t e l l e c t u a l [] 1
p ro b lem s

< By " v e ry d i f f i c u l t t e c h n i c a l / i n t e l l e c t u a l p ro b lem s" a re m eant
o r i g i n a l p ro b lem s which may tu r n o u t t o be u n s o lv a b le , o r th e
s o lv in g o f w hich can n o t be g u a ra n te e d w i th in a g iv e n t im e s c a le ,
i r r e s p e c t i v e o f th e r e s o u rc e s d e v o te d t o t h e i r s o l u t io n .)

6 .POSSIBILITY OF TESTIIG THE PRODUCT I I A "SAFE" EIVIROHHEHT
W ill i t be p o s s ib le to t e s t th e p ro d u c t C or p r o to ty p e s o f th e
p ro d u c t) i n a " s a f e " en v iro n m en t w hich i s r e p r e s e n t a t i v e o f
th e f i n a l u se env ironm en t?
y es [] 1
no [] 4

7 . "SIZE" OF THE PRODUCT
In r e l a t i o n to what we a re accustom ed ,
th e p ro d u c t i s -
v e ry sm a ll o r i s e a s i l y [] 1
b ro k en down i n to n o rm a l-s iz e work p ack ag es
f a i r l y sm a ll o r f a i r l y e a s i l y b ro k en down [] 2
i n to n o rm a l- s iz e work p ackages
f a i r l y l a r g e o r n o t e a s i l y b ro k en down [] 3
in to n o rm a l- s iz e work p ackages
v e ry l a r g e o r can n o t be b ro k en down i n to [] 4
n o rm a l- s iz e work pack ag es

8 . COMPLEXITY OF PRODUCT REQUIREHEHTS
In r e l a t i o n to what we a re accustom ed-
R eq u irem en ts a re v e ry s im p le and e a s i l y
a l l o c a t e d t o so f tw a re com ponents/m odules
R eq u irem en ts a re f a i r l y s im p le and e a s i l y
a l l o c a t e d to so f tw a re com ponents/m odules
R eq u irem en ts a re f a i r l y complex and n o t e a s i l y
a l l o c a t e d to so f tw a re com ponents/m odules
R eq u irem en ts a r e v e ry complex and can be
a l l o c a t e d t o so f tw a re com ponents/m odules
o n ly w ith g r e a t d i f f i c u l t y

[] 1

[] 2

[] 3

[] 4

9 . LEVEL OF VOLATILITY OF PRODUCT REQUIREMENTS DURING THE
PROJECT
D uring th e c o u rse o f developm ent , p ro d u c t re q u ire m e n ts
axe l i k e l y to be s u b je c t t o -
v e ry e x te n s iv e r e v i s io n [] 4
e x te n s iv e r e v i s io n [] 3
some r e v i s io n [3 2
l i t t l e o r no r e v i s io n [] 1

10. STABILITY OF OPERATIOIAL IITERFACES
I n t e r f a c e s betw een th e p ro d u c t and o th e r s o f tw a re and hardw are
com ponents i t m ust work w ith i n th e f i n a l u se env ironm en t
a r e -
v e ry w e ll d e f in e d and s u b je c t o n ly [] 1
to t i g h t l y c o n t r o l l e d change
q u i te w e ll d e f in e d and s u b je c t on ly [] 2
to t i g h t l y c o n t r o l l e d change
b a d ly - d e f in e d o r s u b je c t to [] 4
u n c o n tr o l l e d change

11 . «FLEXIBILITY OF FUICTIOHAL AID OTHER SPECIFICATIONS

B

I f we m eet p ro b lem s in d ev e lo p m en t, i t
B i l l b e -

Im p o ss ib le t o a g re e changes to
f u n c t i o n a l and o th e r s p e c i f i c a t i o n s
Very d i f f i c u l t t o a g ree changes t o
f u n c t i o n a l and o th e r s p e c i f i c a t i o n s
D i f f i c u l t t o a g re e changes to
f u n c t i o n a l and o th e r s p e c i f i c a t i o n s
l o t to o d i f f i c u l t t o ag ree
ch an g es t o f u n c t io n a l and o th e r
s p e c i f i c a t i o n s

12 . SCALE OF PROJECT (1 0 . OF PEOPLE)
In r e l a t i o n to s h a t we a r e accu sto m ed ,
th e s i z e o f th e p r o j e c t team i s -
a t l e a s t t h r e e tim e s a s b ig [] . 4
ab o u t tw ic e a s b ig C] 3
abou t th e same s iz e [] 2
s m a lle r [] 1

13 . SCALE OF PROJECT (DURATIOI)
In r e l a t i o n to what se a re accustom ed , th e d u r a t io n
p r o j e c t i s l i k e l y t o be ­
a t l e a s t t h r e e t im e s th e le n g th []
abou t tw ic e th e le n g th []
about th e same le n g th []
s h o r t e r []

14 . MATURITY OF THE DEVELOPMENT ENVIRONMENT
The developm en t env ironm en t to be u se d i s -
v e ry n o v e l /u n te s te d [] 4
f a i r l y n o v e l /u n te s te d [] 3
f a i r l y m a tu r e / t e s te d [] 2
v e ry m a tu r e / t e s te d [] 1

(By "developm ent en v iro n m en t" i s m eant th e so f tw a re
to o ls ,la n g u a g e s ,m e th o d s ,h a rd w a re e t c . to be u se d in
d ev e lo p m en t.)

IS . EXPERIENCE OF THE DEVELOPERS WITH THE DEVELOPMENT
ENVIRONMENT
W ith r e g a r d t o e x p e r ie n c e o f th e developm ent en v iro n m en t to be
u se d , th e team c o n ta in s -
no e x p e r ie n c e [] 4
a l i t t l e e x p e r ie n c e [] 3
q u i te a l o t o f e x p e r ie n c e [] 2
e x te n s iv e e x p e r ie n c e [] 1

16 . MATURITY OF THE TECHNICAL TARGET ENVIRONMENT
The t a r g e t env ironm en t i s -
v e ry n o v e l /u n te s te d
f a i r l y n o v e l /u n te s te d
f a i r l y m a tu r e / t e s te d
v e ry m a tu r e / t e s te d

(By " t e c h n i c a l t a r g e t en v iro n m en t" i s m eant th e
h a rd w a re /so f tw a re env ironm en t t h a t th e p ro d u c t i s t o ru n i n .)

17 . EXPERIENCE OF TEAM MEMBERS OF THE TECHNICAL
TARGET ENVIRONMENT

Nobody on th e team h as good e x p e r ie n c e [] 4
Only a sm a ll p r o p o r t io n have good [] 3
e x p e r ie n c e
A s i g n i f i c a n t p r o p o r t io n have good e x p e r ie n c e [] 2
Most o r a l l have good e x p e r ie n c e [] 1

C] 4
[] 3
[] 2
[] 1

o f th e

4
3
2
1

[] 4

[] 3

r-il—i 2

[] 1

(By "good e x p e r ie n c e " i s m eant a s u f f i c i e n t ex p o su re to th e
t a r g e t ,en v iro n m en t (e g . o p e r a t in g sy s te m , t p m o n ito r) t o be

A ppen d ix B 4

a b le to a n t i c i p a t e / s o lv e t e c h n i c a l p ro b le m s .)

18. THE COMPLEXITY OF COHHUHICATIOB LINKAGES WITH
AIY COLLABORATORS OR SUBCOITRACTORS
C om m unication l in k a g e s w ith any c o l l a b o r a t o r s o r
s u b c o n t r a c to r s a r e -
h ig h ly com plex [] 4
q u i te complex [] 2
n o t com plex [] 1

("c o m p le x ity " o f com m unication l in k a g e s r e f e r s t o th e number
o f c o l l a b o r a to r s o r s u b c o n t r a c to r s in v o lv e d , th e number o f
c o n ta c t p o in t s w ith each , to p ro b lem s due to geography o r
lan g u ag e , to a n eed to cope w ith c o n f l i c t o r p o l i t i c s e t c .)

1 9 .THE COMPLEXITY OF COHHUIICATIOI LINKAGES WITH THE CLIEHT
C om m unication l in k a g e s w ith th e c l i e n t a r e -
h ig h ly com plex [] 4
q u i te com plex [] 2
n o t com plex [] 1

(" c o m p le x ity " o f com m unication l in k a g e s r e f e r s t o th e number
o f c o n ta c t p o i n t s betw een th e p r o j e c t and th e c l i e n t , t o
prob lem s due t o geography o r lan g u a g e , t o a n eed to cope w ith
c o n f l i c t o r p o l i t i c s i n th e c l i e n t o r g a n is a t io n e t c .)

20. VOLATILITY OF MEMBERSHIP OF THE PROJECT-TEAM
D uring th e c o u rse o f th e p r o j e c t , tu r n o v e r o f team -m em bership
w i l l p ro b a b ly b e -
th x e e - q u a r te r s o r more [] 4
be tw een a h a l f and th r e e q u a r te r s [] 3
be tw een a q u a r te r and a h a l f [] 2
l e s s th a n a q u a r te r [] 1

("team -m em bership" r e f e r s t o p e o p le who have a s i g n i f i c a n t
r o l e i n d e v e lo p in g th e p r o d u c t . S u p p o rt s t a f f o r o th e r s who
m igh t have a l e s s c e n t r a l r o l e sh o u ld be e x c lu d e d .)

21 . RISK OF LOSS OF HOST IMPORTAIT TEAM MEMBERS
The l o s s o f one o r more c r i t i c a l team -m em bers d u r in g th e
p r o j e c t i s -
v e ry l i k e l y [] 4
l i k e l y [] 3
u n l ik e ly [] 2
v e ry u n l ik e ly [] 1

(A " c r i t i c a l team-member " i s someone whose d e p a r tu r e co u ld
b a d ly d i s r u p t p r o g r e s s o r even l e a d to t e r m in a t io n o f th e
p r o j e c t .)

22 . PROJECT HAIAGER’S LEVEL OF KIOWLEDGE OF THE SKILLS
AID PRODUCTIVITY OF TEAM-MEMBERS

The p r o j e c t m anager h a s a good know ledge of th e s k i l l s and
p r o d u c t iv i ty o f -
l e s s th a n a q u a r te r o f team-members
be tw een a q u a r te r and a h a l f o f team members
be tw een h a l f and th r e e - q u a r t e r s o f team -m embers
m ore th a n t h r e e - q u a r t e r s o f team-members

("team -m em bers" r e f e r s to p eo p le who have a s i g n i f i c a n t r o l e
i n d e v e lo p in g th e p ro d u c t. S upport s t a f f o r o th e r s who m ight
have a l e s s c e n t r a l r o l e sh o u ld be e x c lu d ed .)

23 . LEVEL OF DEPEHDEHCE OF THE PROJECT OH "RISKY" IMPORTS
The p r o j e c t w i l l b e -
c r i t i c a l l y d ep en d en t on r i s k y im p o rts [] 4
h ig h ly dep en d en t on r i s k y im p o rts [] 3
somewhat d ep en d en t on r i s k y im p o rts [] 2

[] 4
[] 3
C] 2
[] 1

A ppen d ix B

n o t d ep en d en t on r i s k y im p o r ts [] 1

< Exam ples o f im p o rts would in c lu d e r e - u s a b le s o f tw a r e ,
equipm ent and t o o l s , b u i ld in g s , im p o rta n t p e o p le e t c . R isk
r e f e r s to th e p o s s i b i l i t y t h a t th e im p o rt m igh t n o t be
a v a i l a b l e when r e q u ir e d o r m igh t n o t be s u i t a b l e f o r i t s
p u rp o se e g . be o f p o o r q u a l i t y , be in c o m p a tib le e t c .)

Appendix C
Risk Measures

A p p en d ix C

A lg o rith m f o r com puting th e f o u r R isk M easures.

The f o u r R isk M easures (one f o r eac h R isk Management A rea) a re
com puted as w e ig h ted l i n e a r f u n c t io n s o f th e v a lu e s o f th e R isk D r iv e rs .
Each R isk D riv e r may c o n t r ib u te t o one o r more o f th e f o u r R isk M easures.
The "m apping" o f R isk D r iv e rs o n to th e R isk M easures i s sh o rn b e low . In
o th e r w o rd s , th e d iag ram shows w hich R isk D r iv e rs a re deemed to
c o n t r ib u t e to each R isk M easure (* i n d ic a te s a c o n t r ib u t io n) .

RISK DEVELOPMENT DEVELOPHEIT OPERATIONAL OPERATIONAL
DRIVER RISK 1 RISK 2 RISK 1 RISK 2

1 ♦ *
2 * *
3 ♦ * *
4 * * *
5 * *

6 * +
T +
8 +
9 * *

10 * *

11 * *
12 *
13 *
14 * *
15 * *

16 * * *
17 * * +
18 *
19 * +
20 *

21 * *
22 *
23 * *

A p o s i t i v e i n te g e r (i e . number o f "R isk P o in ts ") i s a s s ig n e d to each o-
p o s s ib le re sp o n se s t o e ach o f th e R isk D r iv e r s c a le s . The i n i t i a l a ssig n m en t
o f p o in ts h a s been made by th e t o o l d e v e lo p e r s . T h is i n i t i a l a ssig n m en t o f
p o in t s may b e amended by th e sy s tem m anager u s in g th e "Amend R isk D riv e r"
fu n c tio n .U n a v o id a b ly , th e a l l o c a t io n o f p o in t s to each p o s s ib le re sp o n se i s a
s u b je c t iv e p r o c e s s ,b u t th e p o i n t s a s s ig n e d have b een c o n s t r a in e d to fo rm a
m onoton ic s c a le w i th in th e R isk D r iv e r w hich r i s e s as th e im p lie d " r i s k i n e s s "
o f th e m anager’ s re sp o n se r i s e s . The R isk M easure f o r a R isk Management Area
i s com puted a s th e sum o f th e p o in ts a s s o c ia te d w ith th e m an ag er’s re sp o n se s
on th e R isk D r iv e rs c o n t r ib u t in g to t h a t R isk Management A rea , e x p re s s e d a s a
p e rc e n ta g e o f th e maximum sum o f p o in t s a c h ie v a b le f o r t h a t R isk Hanagement
A rea.

I t i s re c o g n is e d t h a t t h i s i s a somewhat s u b je c t iv e s c o r in g m ethod. I f an
a l t e r n a t i v e w ith b e t t e r p r o p e r t i e s i s fo u n d , i t w i l l be a d o p te d .

A p r o v i s io n a l a ssig n m en t o f " r i s k p o in ts " h a s b een made to each p o s s ib le
re sp o n se on each R isk D r iv e r . The r i s k p o in ts a re shown in Appendix B.

Appendix D
Risk Tool Classes

A ppen d ix D 1

I I O b jec tiv e_ C m ain p rogram module
/ / The p u rp o se o f t h i s p rogram i s t o a l i o s two d i f f e r e n t ty p e s o f u s e r s
/ / t o add in fo rm a t io n t o th e R isk A n a ly s is T o o l. The two ty p e s o f u s e r s
I I a re 1 . The a d m in i s t r a t io n u s e r (a l a r g e p re c e n ta g e o f th e
I I f u n c t i o n a l m odules in t h i s sy s te m axe f o r t h i s u s e r) .
/ / 2 . The end u s e r C e n te rs p r o j e c t c h a r a c t e r i s t i c s p rom pted
/ / by a menu d r iv e n s y s te m) .
II
I I RISK AIALYSIS TOOL

• in c lu d e " s a .c _ g lo b a l.h "
• in c lu d e "m ain .h "
• in c lu d e < s td io .h >
• in c lu d e < o b jc .h >
• in c lu d e " r i s k . h ”

• r e q u i r e s RiskAutom&ta;
• r e q u i r e s O rdC ltn ;
• r e q u i r e s IS ;

• r e q u i r e s A s c i i F i l e r , S t r i n g , S equence, R k C ltn , I n t e r f a c e ;
• r e q u i r e s R isk , R u le , T x t, U se r , M easu re , P rodD ef, G raph ic ;

i d anA utornata;
e x te r n BOOL m sgFlag ;

e x te r n i n t e r m o ;
e x te r n FILE * y y in ;
c h a r * m a llo c () ;

i d tem pprod ;

/* g r a p h ic a l s c re e n */
G e v sc rg p h .t s c re e n ;

I* window * /
Gevwdw_t window, w indow l;
Gevwdw_t c u r re n ts d w ;

G e v l i f t _ t v o i d l i f t ;
R pos_t p i , p 2 , p3 ;
G e v ico c a r_ t v o id ic o ;

/ * row * /
G evrow .t r i s k t i t l e , r i s k t e x t u a l ;
Gevrow_t r i s k . r o w s , to p , t o p r ig h t ;
Gevrow_t r i s k d e t a i l s , c o n d i t io n s , c o n d it io n ;

/* ic o n t a b l e * /
G evtab_ t so m e o b je c t;

/* c o n te n t * /
K a t r i x . t confirm _hd_m at ;
H a t r ix _ t confirm _m at ;

G e v sp a .t S p ace , b o x ed sp ace ;
G evspa_t b o x e d sp a c e l, b o x ed sp ace2 , b o x ed sp ace3 , boxed sp ace4 ;
G evspa_t boxedspace5 ;

G ev sp a .t b o x e d l, box ed 2 , boxed3 , boxed4;
G evspa_t boxed5 ;

/ * ic o n c h a r a c t e r * /
G e v ico c a r_ t t o p l e f t , p ro jn am , p r o j t i t l e ;

A p p en d ix D

G e v ic o c a r . t t i t l e i c o ;
G e v ic o c a r . t r d i c o , r u l i c o , am eico , am aico , r e p ic o
G e v ico c a r_ t adm ico , u s e r i c o ;
G e v ic o c a r . t c o n f irm ic o h e a d e r , a b o r t i c o h e a d e r ;
G e v ic o c a r . t c o n f irm ic o , a b o r t i c o ;
G e v ic o c a r_ t p a r t o f l i n e ;
G e v ic o c a r_ t r i s k h e lp i c o ;

G evroo_t erro r_ m sg _ ro w ;
G evm sg.t e r r o r jn s g ;

G e v l i f t _ t l i f t h o r , l i f t v e r ;

/* g lo b a l v a r ia b le * /
P o s_ t p o s i t io n ;
S iz _ t t a i l l e ;
R pos_t r p o s i t i o n ;
R s iz _ t r t a i l l e ;
G evev t_ t e v t ;
H a t r ix . t v o id m a tr ix ;
i n t e n d o fjo b ;

= (R iskG roup , P r im i t i v e .C o l le c t i o n)

m ain (a rg c , a rg v , a rg e)
i n t a rg c ;
c h a r * a rg v [] ;
c h a r * a r g e [] ;

{
i d b a s e ;

/ * HHI i n i t i a l i z a t i o n c a l l */
s t r . i n t e r n i t . o u t i l / ' i m p w ") ;
e n v _ i n i t () ;

i f (s tr c m p (a rg v [2] , " ") != 0) {
b a se = [S t r i n g s t r : " d a ta b a s e "3 ;
[b ase concatSTR : a rg v [2]] ;

>
e l s e {

p r in tf (" Y o u m ust e n te r th e d a ta b a s e n a m e \n ");
[IS i n t e r p r e t : " q u i t ' '] ;

}
c r e a t e _ f i f o () ;

[IS i n t e r p r e t : [b a se s t r]] ;

/ / I - debug t r a c e f o r m essage c a l l 3
i f (a rg c > 1 t t * a r g v [l] == ’t ’)

m sgFlag = YES ;
[R kC ltn s t a r tu p] ; I I E n te rs R is k f a c to r s and R u les from d i s k i f

I I sav ed and r e q u i r e d .
[G rap h ic c r e a t e] ;
[P rodD ef i n i t i a l i s e] ;
tem pprod 3 [ProdD ef add] ;
I I [tem pprod p r i n t] ;
I I 3 - i f none sav ed a u to m a ta s t a t e e x i s t c r e a te s
/ / a ne» one and lu n c h i t

i f (anA utom ata == n i l H
anA utom ata = [R iskA utom ata n e s] ;
[anA utom ata i n i t i a l i s e] ;
[anA utom ata e x e c u te : n i l] ;

>

A p p en d ix D 3

e ls e
/ / lu n c h th e sav ed au to m a ta s t a t e
[anA utom ata e x e c u te : n i l] ;

c r e a t e . f i f o O
i

c h a r * s e l f _ f i f o * " / tm p / s e l f _ f ifoXIXXXX" ,*mktem pO ;
i n t d ;

n ik n o d ((s e lf _ f i f o = m k te m p (s e lf _ f i f o)) , 0010600, 0) ;
d = open(self_fifo ,0_R D W R |0_ID E L A Y ,0);

c l o s e (d) ;
y y in = f o p e n (s e l f _ f i f o , ,,r+ ") ;

}

C c la s s e s O
•m e ssag e sO

• in c lu d e < s td io .h >
• in c lu d e < ob jc .h>
• in c lu d e <math.h>
• in c lu d e "R isk m ess.h "
• in c lu d e " s a c .g lo b a l .h "

• r e q u i r e s O rd C ltn ;
(¡ r e q u ir e s I n t e r f a c e ;
• r e q u i r e s R ule ;
• r e q u i r e s M easure;
• r e q u i r e s R kC ltn ;
• r e q u i r e s G rap h ic ;
• r e q u i r e s S t r in g ;
• r e q u i r e s IS ;

e x te r n i d tem pprod;

e x te r n r i s k C l tn , t x t C l t n , r u le C l tn ;
e x te r n c h a r * o p e ran d [10] , * o p e r a to r [10]
e x te r n c h a r * io b u f ;
e x te r n BOOL VALID ;

e x te r n M a tr ix _ t
e x te r n H a t r ix _ t

e x te r n G e v l i f t . t

e x te r n G ev tab_ t

co n firm _ m at;
v o id m a tr ix ;

l i f t h o r , l i f t v e r ;

co n firm _ ta b ;

e x te r n G e v ic o c a r . t q u itR isk D riv e rV ie w Ico n ;
e x te r n G e v ico c a r_ t n o t i t l e ;
e x te rn G e v ic o c a r . t r i s k h e lp i c o ;
e x te r n G e v ico c a r_ t p a r t o f l i n e ;
e x te rn G e v ico c a r_ t v o id ic o ;
e x te r n G e v ico c a r_ t co n f im ic o h e a d e r , a b o r t ic o h e a d e r ;
e x te r n G e v ic o c a x .t c o n f in a ic o ,a b o r t i c o ;

e x te r n G e v ro s .t r i s k . r o B s , to p ;
e x te r n G evros_ t r i s k d e t a i l s , c o n d i t io n s , c o n d it io n :

e x te r n Gevwdn_t w indon, s in d o H l, cu rren tw d w ;

e x te r n G evscrgph_t s c re e n ;

e x te r n S iz _ t t a i l l e ;

A p p en d ix D

e x te r n P o s_ t
e x te r n R pos_t

e x te r n G evspa_t
e x te r n G evspa_t
e x te r n G evspa_t
e x te r n G evspa_t
e x te r n G evrow .t
e x te r n G evrow .t
ex te rn . G e v l i f t _ t
e x te r n Gevm sg.t
e x te r n c h a r *

G e v ic o c a r . t
G e v ic o c a r . t
G evroa_ t
G evchr_ t
G e v ta b .t
G ev ev t_ t
M a tr ix _ t

i n t e n d o f j ob ;
i n t IHDEX = 0 ;
c h a r » tm p S tr [2 0] ;

s t a t i c i n t Risknum;
» d e f in e max(A,B) ((A) > (B) ? (A) : (B))

/ / O b je c tiv e -C so u rc e f i l e f o r th e c l a s s r i s k
= R isk : O b jec t (R iskG roup , C o l le c t io n , P r im it iv e)
{

c h a r » r i s k d r i v e r ;
c h a r » r i s k t x t ;
c h a r * r i s k c o n d i t i o n [6] ;
i n t r i s k w e ig h t [6] ;
c h a r * r i s k h lp ¡
c h a r » a t t r la m e ;
c h a r » e n ti ty la m e ;

>
c h a r * c o p y c a t() , * m a llo c () ;

I I FACTORY METHODS

+ c r e a te { / / C re a te a new R is k d r iv e r f o r in s e r t io n ,
i d r isk n u m ; / / o n to R isk A n a ly s is T o o l,
i n t i = 0 ;
i n t w e ig h t ;

s e l f = [su p e r new] ;
s y s te m C 'c le a r ") ;
p r i n t f (" \ n \ n \ n \ n \ t E n t e r R is k d r iv e r t i t l e ") ; / /R i s k d r i v e r name
c o p y c a t() ;
r i s k d r i v e r = m a l lo c (s t r l e n (io b n f)) ;
s t r c p y (r i s k d r i v e r , i o b u f) ;
p r i n t f (" \ n \ n \ n \ n \ t E n t e r R isk D riv e r t e x t : - ") ;
c o p y c a t() ;
r i s k t x t = m a l lo c (s t r l e n (i o b u f)) ;
s t r c p y (r i s k t x t , i o b u f) ;
do { / / e n te r R is k d r iv e r c o n d it io n s u n t i l empty l i n e

p r i n t f (" \ n \ tE n t e r r i s k c o n d i t io n Xd " , i + l) ;
c o p y c a t() ;
r i s k c o n d i t i o n [i] = m a l lo c (3 t r le n (io b u f)) ;
s t r c p y (r i s k c o n d i t i o n [i] , i o b u f) ;
i f (s t r l e n (i o b u f) < 1)
{ r i s k c o n d j t io n C i] = m a l lo c (12) ;

s t r c p y (r i s k c o n d i t i o n [i] . " d o n 't know") ;
r i s k w e ig h t [i] = 0 ; >

p o s i t io n ;
p i , p 2 , p3 ;

S p ace , boxed sp ace ;
b o x e d l, boxed2, boxedS , boxed4 , boxed5;
b o x e d sp a c e l, b o x ed sp ace 2 , b o x ed space3 ;
b o x ed sp ace4 , b o x ed sp ace5 ;
r i s k t i t l e , r i s k t e x t u a l , so m eo b jec t;
e rro r_m sg_row ;
v o i d l i f t ;
e rro r_ m sg ;
p ro j.n a m ;

b o ttom ;
r i s k d r i v e r i c o , r isk m u n ic o ;
r isk n u m .ro w ;
risk n u m ;
r i s k t o p ta b ;
e v t ;
r i s k _ m a t ;

Appendix D 5

e l s e
•(p r i n t f (" \ n \ t% d \ t E n t e r r i s k w e ig h t " , i + l) ;

s c a n f(" X d " ,iw e ig h t) ;
r i a k w e ig h t [i] = w eigh t ; }

} w h ile (s t r c m p (r i s k c o n d i t io n [i+ +] ." d o n ’t know") != 0) ;
p r i n t f (" \ n \ n \ t E n t e r r i s k d r i v e r s c re e n h e lp ") ;
c o p y c a t() ;
r i s k h l p = m a l l o c (s t r l e n (i o b u f)) ;
s t r c p y (r i s k h lp . i o b u f) ;
r isk n u m = [M easure c r e a te] ;
[r isk n u m r i s k a r e a : [r i s k C l t n s i z e]]
[M easure a d d r is k A re a s : risknum] ;
r e t u r n s e l f ;

/ / T h is m ethod d e le t e s a R is k d r iv e r ch ec k in g
I I i f i t c o r re sp o n d s t o a Rule i n th e R nleB ase
+ d e l e t e {

i d a A isk , aR ule ;
c h a r »tm pC har, »tmpCond, c o n t , c o n firm ;
i n t n u n , tm p, l e n ;
i n t i , k , i l , k l ;
i n t d e la x r a y [10] ;
BOOL FOUHD, F0UBD1 ;
i d d e lC l tn , d e lS e q ;

tmpCond » m a l lo c (8) ;
d e lC l tn * [O rd C ltn new :10] ;
do {

num = [R isk getnum] ;
i f (num != 0) / / num i s in s id e th e ra n g e o f th e R isk d a ta b a s e d i s p la y
{ / / th e R is k d r iv e r th e u s e r i s w ish in g to d e le te

aR isk = [[r i s k C l tn a t : —num] p r i n t] ; / / D isp la y th e Rule w hich
/ / w i l l be e f f e c te d i f t h i s R is k d r iv e r i s rem oved,

i = 0 ; num++ ;
l e n = [r u le C l tn s i z e] ;
w h ile (i < l e n) { / / more rows to re a d

FOUID = 10 ;
k = 0 ;
aR ule * [r u l e C l tn a t : i++] ;
tmpChar = [aR u le r u l e s :k] ;
w h ile (»tm pC har != ’♦* I t !FOUID) {

tmpChar = [aR ule ru le s :k + +] ;
i f («tm pC har == ’R’) {

tmpChar++ ;
tmp * a to i(tm p C h a r) ;
i f (tmp =» num) { I I t h i s r u l e i s a f f e c t e d by th e

I I d e l e t i o n o f th e R is k d r iv e r
[d e lC l tn a d d lfA b s e n t: [r u le C l tn a t : i - l]] ;
s t r c p y (tmpCond, [aR u le c o n d i t io n]) ;
w h ile (i l < l e n) { / / more rows to re a d

F0UID1 = 10 ;
k l = 0 ;
aRule = [r u le C l tn a t : i l+ +] ;
tmpChar = [aR u le r u l e s : k l] ;
w h ile (»tmpChar != k l IF0UHD1) {

tmpChar = [aR u le r u le s :k l+ +] ;
i f (»tmpChar = ’C’) {

tmpChar++ ;
if(s trcm p (tm p C o n d ,tm p C h ar) ==0) {

[d e lC l tn a d d lfA b se n t: [r u le C l tn a t : i l - l]] ;
F0UBD1 = YES ;

}
>

>
>
FOUHD = YES ;

/ / d e f in e s th e r i s k a r e a s w hich
; l l th e R is k d r iv e r w i l l be
/ / a s s o c i a t e d w ith .

Appendix D 6

}
>

}
}
/ / d i s p la y th e r u l e s f o r d e le t io n on s c re e n
d e lS e q = [d e lC l tn eachE lem ent] ;
w h ile (aR ule = [d e lS e q n e x t])

[aR u le p r i n t] ;
[DELETE.COSFIRK p r i n t] ;
s c a n f(" X c " ,fc c o n fin n) ;
i f (c o n firm == ’y ’ I I c o n firm “ JY’) ■(

d e lS e q = [d e lC l tn eachE lem ent] ;
w h ile (aR u le = [d e lS eq n e x t])

[aR ule rem oveR ule : [r u le C l tn o f f s e tO f :a R u le]] ;
[R ule update :num] ;
[r i s k C l tn rem o v e : aR isk] ;

>
> / / end e l s e
[DELETE_COHT p r i n t] ;
s c a n f (" X c " ,tc o n t) ;

} w h ile (c o n t = }y> I I c o n t == >Y>) ;
r e tu r n s e l f ;

} / / end d e le t e m ethod

/ / C re a te s a new copy o f th e in s ta n c e you w ish to amend, changes a re
/ / make on th e copy w hich o v e rw r ite s th e r i s k d r i v e r r e c i e v e r i n th e
/ / r u l e C l tn i f r e q u i r e d .
+ amend {

id a R is k , b R isk ;
c h a r a n s , a n s i , c o n t ;
i n t num ;

do { s y s te m C 'c le a r ") ;
p r i n t f (" \ n \ n \ n \ t ") ;
num = [R isk getnum] ;
i f (num != 0) {

b R isk » [r i s k C l tn a t : —num];
a R isk = [R isk new] ;
[a R isk c o p y :b R isk] ;
p r i n t f (" \ n \ n X s \ n " , [aR isk p r i n t]) ;
[AHESD_THIS_RISmiVER p r i n t] ;
s c a n f (" X c " ,ta n s) ;
i f (a n s = I I an s — - >Y’) {

[aR isk m a in te n a n c e :num] ; / / amendments made, a sk u s e r i f
/ / th e y w ish o v e rw r ite r i s k d r i v e r

i f ([a R is k notSam e: b R isk]) {
p r i n t f (" \ n \ n \ t R isk l = ") ;
[b R isk p r i n t] ; / / t o u p d a te R is k d r iv e r
p r i n t f (" \ n \ n \ t R isk2 = ") ;
[a R isk p r i n t] ;
[AMEBD.CQPY p r i n t] ;
s c a n f (" X c " , t a n s l) ;
i f (a n s i =“ ’j ' | | a n s i = ’Y’)

[[r i s k C l tn i n s e r t : a R is k b e f o r e :bR isk] remove: bR isk] ;
>

>
>
[AHEJD.COITIHUE p r i n t] ;
s c a n f (" X c " , t c o n t) ;

} w h ile (c o n t = >j’ | | co n t == ’Y’) ;
r e tu r n s e l f ;

A ppen d ix D 7

/* *** */
I* VIEV METHODS */
/ * * * /

I I Shows th e p r i v a t e d a ta o f a R is k d r iv e r
+ view {

i d aR iak ;

[s e l f ge t_num _risk_w dw];
do {

Risknnm = [R isk getnnm] ;
i f (Risknnm != 0) {

aR isk = [r i s k C l tn a t : — R isknum];
[a R isk p r i n t] ;
[a R isk q u i t_ r i s k _ v ie w] ; }
>

w h ile (Risknum != 0) ;
r e t u r n s e l f ;

>

+ get_num _risk_wdw {

risknum _row = G ev ro w _ crea te(GEV.VERTICAL, GEV_QUTLIHE_OFF, GEV_SPACE_OH);

risk n u m ic o = G e v ic o c a r_ c re a te (" E n te r R is k d r iv e r Humber",GEV_F0HT4,
GEV_C, GEV_QUTLIHE_QFF, GEV.SPACE.OH);

risk n u m = G e v c h x .c re a te (" ,GEV_F0HT4, GEV_FDHT3,20,
GEV_0UTLIIE_0FF, GEV.SPACE.OH);

error_m Bg_row = Gevrow_create(GEV_VERTICAL, GEV.OUTLIHE.OFF,
GEV.SPACE.OH);

e r ro r .m s g = Gevm sg_create("","",GEV_F0HT4,GEV_F0HT4,18,
GEV_OUTLIIE_OFF,GEV_SPACE_OH);

G ev ro w _ ad d _ o b j(e rro r_ m sg _ ro w ,erro r_ m sg);

G ev ro w _ ad d _ o b j(risk n u m _ ro w ,to p);
G e v ro w .ad d .o b j(risk n u m _ ro w , S p a c e) ;
G ev ro w _ ad d _ o b j(risk n u m _ ro w ,risk n u m ico);
G ev ro w _ ad d _ob j(risknum _row ,risknum);
G ev ro w _ ad d _ob j(risknum _row ,S pace);

G e v c h x _ d e s e le c t(c o n f irm ic o) ;
G e v c h i_ d e s e le c t(a b o r t i c o) ;

G e v ro w .a d d .o b j(r isk n u m _ ro w ,c o n f irm .ta b) ;
G evT ow _add_obj(risknum _row ,error_m sg_row);

[s e l f w indow open:risknum _row];

+ (c h a r *) e n te r .r ia k a u m {
i n t VALUE;
c h a r *numchr;

w h ile (! (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) , r isk n u m)) | |
! (G evobj_eq(Gevevt_get_typ(evt),GEV_VA LID ATIOH)))

e v t = G e v sc rg p h _ w a it_ e v e n t(s c re e n) ;
numchr = G e v c h r_ g e t_ c o n t(r isk n u m);

w h i le ((! (G e v o b j_ a q (G e v e v t_ g e t_ b o to b j(e v t) ,c o n f irm ic o)) I I (! G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) .a b o r t ic o))) kk
(! G evobj_eq(G evevt_get_typ(evt),G EV _SELEC TED)))
e v t = G e v s c r g p h .w a i t .e v e n t (s c r e e n) ;

i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) . a b o r t i c o)) {

A p p en d ix D 8

Gev3crgph _ rem _ w in d o w (sc reen ,cu x ren tw d w);
num chr = ZERO CHAR;

>
i f (numchr == 0)

numchr = ZERQCHAR;
r e tu r n num chr;

>

I I v e r f i e s th e r i s k d r i v e r number e n te re d
+ (i n t) getnum {

i n t num;
i n t i ;
c h a r *num Str, tm p S tr [1 0] ;
BOOL ERROR.FOUHD;

do {
ERROR.FOUHD = 10;
num Str = [s e l f e n te r_ r is k n u m] ;
s t r c p y (tm p S tr ,n u m S tr) ;
i = 0 ;
w h ile ((tm p S tr [i] != > \0O t t !ERROR.FOUHD) {

i f (tm p S tr [i] < 'O ’ | | tm p S tr [i] > ’9 J) {
ERROR.FOUHD = YES;
G evm sg_set_cont(error_m sg,"ER R O R : non num eric v a lu e e n te r e d ") ;

>
i+ + ;

>
i f (! ERROR.FOUHD) {

num * a to i (t m p S t r) ;
i f (num < 0 | | num > [r i s k C l tn s i z e])

G evm sg_set_cont(error_m sg,"ER R O R : i n v a l i d r i s k n u m b er");
>

} w h ile (num < 0 I I num > [r i s k C l tn s i z e]) ;
G e v m sg _ se t_ c o n t(e r ro r_ m sg ," ") ;
r e tu r n num;

>

/ / p r i n t p r i v a t e d a ta f o r r i s k d r i v e r
- p r in tO n : (IOD) anIOD {

r isk .ro w f l = Gevrow_create(GEV_VERTICAL, GEV.OUTLIHE.OH, GEV_SPACE_OFF);
[s e l f r i s k v i e w] ;
G ev ro w _ a d d _ o b j(r isk _ ro w s.q u itR isk D riv e rV ie w Ic o n) ;

window = G ev w d w _ crea te (risk _ ro w s);

/ * window b e lo n g g ra p h ic s c re e n * /
G evscrgph_add_w indow (screen , window);

/* p o s i t io n i n g and d im e n s io n in g in l o g i c a l r e f e r e n c e * /
S i z . s e t (t a i l l e , 500, 3 3 0);
P o s _ s e t (p o s i t i o n , 6 0 0 , 3 0 0);
G evwdw .set(w indow, p o s i t i o n , t a i l l e) ;

/* d i s p la y o f th e window * /
G e v sc rg p h _ d isp lay _ w in d o w (sc reen , window);

r e tu r n s e l f ;
}

q u i t_ r is k _ v ie w {

A ppen d ix D 9

i n t i = 0 ;

w h ile (! (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) ,q u itR isk D riv e rV ie w Ic o n)) | |
! (G evobj_eq(G evevt_get_ typ(ey t),G E V _B U T T O I)))

e v t = G e v sc rg p h _ w a it_ e v e n t(s c re e n) ;
G eyscrgph_rem _w indow (screen ,w indow);
w h i le (i < IHDEX)

f r e e (tm p S tr [i+ +]) ;
IHDEX = 0 ;

G e v c h x .d e s e le c t(c o n f i rm ic o) ;
G e y c h x .d e s e le c t (a b o r t i c o) ;

r e tu r n s e l f ;

- r is k v ie w {
[s e l f r i s k d r iv e r „ n u m b e r] ;
[s e l f r i s k _ t i t l e] ;
[s e l f r i s k _ t e x t u a l] ;
[s e l f r i s k _ c o n d i t io n s] ;
[s e l f r i s k . h e l p] ;
r e tu r n s e l f ;

- r i s k d r iv e r .n u in b e r {
tm pStr[IID EX] = m a llo c (1 4) ;

s p r in t f (tm p S tr [I ID E X] ," R is k d r iy e r % d",++Risknum);
r i s k d r i y e r i c o “ G eyicocar_create(tm pS tr[IID EX ++],G EV _F0IT 6,G E V _0,

GEV_OUTLIIE_OFF,GEV_SPACE_OFF);
G e v ro w _ a d d _ o b j(r ia k _ ro w a ,r is k d r iv e r ic o) ;
r e tu r n s e l f ;

- r i s k . t i t l e {
i n t i = 0 ;
c h a r s e n te n c e [6] [65] ;
s e n te n c e [0] [0] * ’ \ 0 ’ ;
s e n te n c e [1] [0] = ’\0> ;
s e n te n c e [2] [0] = ’ \ 0 ’ J
s e n te n c e [3] [0] = ' \ 0 ’ ;
s e n te n c e [4] [0] = ’\ 0 ' ;
s e n te n c e [5] [0] = >\0’ ;

t e x t f o r m ([s e l f r i s k d r i y e r] , s e n te n c e) ;
w h i l e (s e n t e n c e [i][0]) {

tm pS tr[IID EX] = m a l l o c (s t r l e n (s e n t e n c a [i]) + 1) ;
s t r c p y (tm p S tr [I ID E X] ,s e n te n c e [i+ +]) ;
p a r t o f l i n e = G e v ico c a r_ c rea te (tm p S tr[IID E X + +] ,GEV_F0IT6,GEV_0,

GEV_OUTLIIE_OFF,GEV_SPACE_OFF);
G e v ro w _ a d d _ o b j(r is k _ ro w s ,p a r to f lin e) ;

>
r e tu r n s e l f ;

- r i s k . t e x t u a l {
i n t i = 0 ;
c h a r s e n [6] [65] ;
s e n [0] [0] = ’ \0 ’ ;
s e n [l] [0] = >\0 ' ;
s e n [2] [0] = >\0 ’ ;
s e n [3] [0] = > \0 ’ ;
se n [4] [0] = 1 \ 0 1 ;
se n [5] [0] = ’ \ 0 ’ ;

A ppen d ix D

t e x t f o n n ([s e l f r i s k t x t] ,s e n) ;
w h ile (s e n [i] [0]) {

tm pS tr[IID EX] = m a l l o c (s t r l e n (s e n [i]) + 1) ;
s t r c p y (tm p S tr [I ID E X] ,s e n [i+ +]) ;
p a r t o f l i n e = G evicocax_create(tm pStr[IH D E X + +] ,GEV_F0HT6,GEV_0,

GEV_0UTLIIE_0FF,GEV_SPACE_0FF);
G e v ro w _ a d d _ o b j(r is k .ro w s .p a r to f l in e) ;

>
r e tu r n s e l f ;

- r i s k . c o n d i t i o n s {
i n t i = 0 ;
i n t j “ 0 ;
i n t m ark;
i n t k = 1;
i n t condnum;
i n t p t l i n e . s i z e = 0 ;
i n t t m p l in e . s i z e ;
c h a r s e n t [6] [653 ;

b o z e d sp a c e l = b o x e d l;
box ed sp ace2 = boxed2 ;
boxedspace3 = boxed3;
boxedspace4 = boxed4;
boxedspace5 = boxed5;

m ark = [s e l f r i s k x e s u l t] ;
r i s k d e t a i l s = Gevrow_create(GEV_HORIZOITAL,GEV_OUTLIHE_OH,

GEV.SPACE.OFF) ;
c o n d it io n s = Gevrow_create(GEV_VERTICAL ,GEV_OUTLI1IE_OFF,

GEV.SPACE.OI) ;
w h ile (s t r c m p C [s e lf r i s k c o n d i t i o n : i] ." d o n ’t know") != 0) {

t m p l in e . s i z e = 3t r l e n ([s e l f r i s k c o n d i t i o n : i+ +]) /5 5 ;
i f (tm p l in e . s i z e > p t l i n e _ s i z e)

p t l i n e . s i z e = tm p l in e _ s iz e ;
}
p t l in e _ s iz e + + ;
condntnn = + + i ;
r i s k .m a t * H a t r ix _ c r e a te (l ,c o n d n u m ,l , 1) ;
do {

c o n d i t io n = Gevrow.create(GEV.VERTICAL,GEV.OUTLIHE.OH,
GEV.SPACE. 01) *
s e n t [0] [0] = > \0 >
s e n t [1] [0] = ’ \ 0 ’
s e n t [2] [0] = ’ \ 0 ’
s e n t [3] [0] = ’ \ 0 ’
s e n t [4] [0] = > \0 >
s e n t [5] [0] = > \0 >
i = 0 ;

t e x t f o m ([s e l f r i s k c o n d i t i o n : j] , s e n t) ;
w h ile (i < p t l i n e . s i z e) {

i f (s e n t [i] [0] == 0) {
p a r t o f l i n e = G e v ic o c a r_ c re a te (" 11 ,GEV_F0HT6,GEV_a,

GEV.OUTLIHE.OFF,GEV.SPACE.OFF);
i++ ;

>
e l s e {

tm p S tr[IIDEX] = m a l l o c (s t r l e n (s e n t [i]) + 1) ;
s t r c p y (tm p S t r[IHDEI], s e n t [i + +]) ;
p a r t o f l i n e = G evicocar.create(tm pStr[IH D EX ++],G EV _F0K T6,

GEV.O,GEV.OUTLIHE.OFF,GEV.SPACE.OFF);
>

G e v r o w .a d d .o b j (c o n d i t io n ,p a r to f l in e) ;

A ppen d ix D 11

>
G e v ro w _ a d d _ o b j(c o n d itio n s .c o n d it io n) ;

i f (k = 1) {
i f (k = m ark)

b o x e d sp a ce l = G e v e v t_ g e t_ b o to b j(e v t) ;
M a tr ix _ e n te r (r i s k _ m a t ,k . 1 .b o x e d sp a c e l) ;

>
e l s e i f (k = 2) {

i f (k== m ark)
b o x ed sp ace 2 = G e v e v t_ g e t_ b o to b j(e v t) ;

M a t r ix _ e n t e r (r i s k j n a t ,k , 1 ,bo x ed sp ace2) ;
>
e ls e i f (k = 3) {

i f Ck== m ark)
b o x edspace3 = G e v e v t_ g e t_ b o to b j(e v t) ;

K a t r ix _ e n te r (r i a k j n a t , k , l ,b o x e d sp a c e 3) ;
>

e l s e i f (k == 4) {
i f (k== m ark)

bo x edspace4 = G e v e v t_ g e t_ b o to b j(e v t) ;
H a t r ix _ e n te r (r i s k _ m a t ,k , 1 ,bo x ed sp ace4) ;

>
e ls e i f (k == 5) {

i f (k== m ark)
boxedspace5 = G e v e v t_ g e t_ b o to b j(e v t) ;

H a t r i x . e n t e r (r i s k .m a t ,k , 1 ,bo x ed sp ace5) ;
>
k++;

} w h i le (s t r c m p ([s e l f r i s k c o n d i t i o n : j + +] . " d o n 't know") != 0) ;

r i s k t o p ta b = G e v ta b _ c re a te (v o id ic o , v o id m a tr ix , v o id m a tr ix ,
r i s k .m a t , condnum,l,GEV_OUTLIHE_OFF, GEV_SPACE_DFF,
GEV.FALSE, v o i d l i f t , v o i d l i f t) ;

G e v r o w _ a d d _ o b j(r is k d e ta i ls ,S p a c e) ;
G e v ro w _ a d d _ o b j(r is k d e ta i ls , c o n d i t i o n s) ;
G e v ro w _ a d d _ o b j(r is k d e ta i ls , r i s k t o p t a b) ;
G e v r o w _ a d d _ o b j(r is k _ ro w s .r is k d e ta i ls) ;

>

/* AHEID METHODS *//, */

+ a m e n d _ risk _ d riv e r {
i d aR isk ;
i n t a R isk R esu lt ;

[s e l f get_num _risk_wdw] ;
do {

Risknum = [R isk getnum] ;
i f (Risknum != 0) {

aR isk = [r i s k C l tn a t : —R isknum];
[aR isk u se r lD] ;
a R isk R e su lt = [aR isk c o n f i r m .r i s k] ;
[aR isk r i s k r e s u l t : a R is k R e s u lt] ;

>
} w h ile (Risknum != 0) ;
r e tu r n s e l f ;

>

- u se r lD {
i n t r e s ;
i n t i = 0 ;

A ppen d ix D 12

i n t j = 0 ;
i n t m ark ;
c h a r m ark e r ;

r i s k . r o w s = Gevrow_create(GEV_VERTICAL, GEV_0UTLIHE_0H, GEV_SPACE_OFF);
[s e l f r isk a m e n d] ;
G ev ro w _ a d d _ o b j(risk _ ro w s,q u itR isk D riv e rV ie w Ic o n) ;

window = G ev w d w _ crea te (risk _ ro w s);
/* window b e lo n g g ra p h ic s c r e e n * /
G evscrgph_add_w indow (screen , window);

/* p o s i t io n i n g and d im e n s io n in g in l o g i c a l r e f e r e n c e * /
S i z . s e t (t a i l l e , 500, 3 3 0);
P o s . s e t (p o s i t i o n , 600 , 3 0 0);
Gevwdw_set(window, p o s i t i o n , t a i l l e) ;

/ * d is p la y o f th e window */
G e v sc rg p h _ d isp lay _ w in d o w (sc reen , w indow);

r e tu r n s e l f ;

- r isk am en d {
[s e l f r is k d r iv e r _ n u m b e r] ;
[s e l f r i s k _ t i t l e] ;
[s e l f r i s k . t e x t u a l] ;
[s e l f r is k _ c o n d it io n s _ a m e n d] ;
[s e l f r i s k _ h e l p] ;

- r isk _ c o n d itio n s_ a m e n d {
i n t i = 0 ;
i n t j = 0 ;
i n t m ark;
i n t k = 1 ;
i n t condnum;
i n t p t l i n e . s i z e = 0 ;
i n t tm p .s iz e ;
c h a r s e n t [6] [6 5] ;

b o z e d sp a c e l = b o x e d l;
b o x ed sp ace2 = boxed2 ;
boxedspace3 = boxed3;
boxedspace4 = boxed4;
boxedspace5 = boxed5;

m ark = [s e l f r i s k r e s n l t] ;
r i s k d e t a i l s = Gevrow_create(GEV_H0RIZ0STAL, GEV_QUTLIÏE_OH,

GEV_SPACE_QFF) ;
c o n d it io n s = Gevrow_create(GEV_VERTICAL,GEV_0UTLIHE_0FF,

GEV.SPACE.OI) ;
w h ile (s t r c m p ([s e l f r i s k c o n d i t i o n : i] . " d o n ’t know") != 0) {

tm p _ s ize = s t r l e n ([s e l f r i s k c o n d i t i o n : i+ +]) /5 5 ;
i f (tm p _ s ize > p t l i n e _ s i z e)

p t l i n e . s i z e = tm p .s iz e ;
}
p t l in e _ s iz e + + ;
condnnm = ++i ;
r i s k .m a t = M a tr ix _ c r e a te (l ,c o n d m im ,l , 1) ;
do {

c o n d it io n = G ev ro w .c re a te (GEV_ VERTICAL, GEV_0UTLIHE_Q5,
GEV_SPACE_OI) ;

s e n t [0] [0] = > \0 ’ ;
s e n t [1] [0] = ’ \ 0 ’ ;
s e n t [2] [0] = ’ \0 ’ ;

Appendix D 13

s e n t [3] [0] = ’ \ 0 ’ ;
s e n t [4] [0] = ’ \ 0 ’ ;
s e n t [S] [0] = ’ \ 0 ’ ;
i =0 ;
t e z t f o r m ([s e l f r i s k c o n d i t i o n : j] , s e n t) ;
w h ile (i < p t l i n e . s i z e) {

i f (s e n t [i] [0] == 0) {
p a x to f l i n a = G e v ic o c a r_ c re a te (" ",GEV_FDHT6,GEV_0,

GEV_OUTLIIE_OFF,GEV_SPACE_OFF);
i++ ;

}
else {

tmpStrClMDEX] = m a l l o c (s t r l e n (s e n t [i]) + 1) ;
s t r c p y (tm p S tr [I I D E X] .s e n t [i+ +]) ;
p a r t o f l i n e = G evicocar_create(tm pStr[IB D EX -t-+] ,GEV_F0HT6,GEV_0,

GEV_OUTLIIE_OFF,GEV_SPACE_OFF);
>

G e v r o w _ a d d _ o b j(c o n d i t io n ,p a r to f l in e) ;
>
G ev ro w _ a d d _ o b j(c o n d itio n s , c o n d i t i o n) ;

i f (k == 1) {
i f (k = m ark)

b o z e d sp a c e l = G e v e v t_ g e t_ b o to b j(e v t) ;
H a t r ix _ e n te r (r i s k _ m a t ,k , 1 .b o z e d sp a c e l) ;

>
e l s e i f (k == 2) -(

i f (k = m ark)
b o zed sp ace2 = G e v e v t_ g e t_ b o to b j(e v t) ;

H a t r iz _ e n te r (r i s k _ m a t ,k , 1 ,b o ze d sp a ce 2) ;
>
e l s e i f (k == 3) {

i f (k== m ark)
b o zed sp ace3 = G e v e v t_ g e t_ b o to b j(e v t) ;

M a tr iz _ e n te r (r is k _ m a t ,k , 1 ,b o zed sp ace3) ;
>
e l s e i f (k == 4) {

i f (k== m ark)
bo zed sp ace4 = G e v e v t_ g e t_ b o to b j(e v t) ;

H a t r iz _ e n te r (r i s k _ m a t ,k , 1 ,b o x ed sp ace4) ;
>
e l s e i f (k == 5) {

i f (k== m ark)
bo zed sp ace5 = G e v e v t_ g e t_ b o to b j(e v t) ;

H a t r ix _ e n te r (r i s k _ m a t ,k , 1 .bo zed sp aceS) ;
}
k++;

} w h i le (s t r c m p ([s e l f r i s k c o n d i t i o n : j+ +] . " d o n ’t know") != 0) ;

r i s k t o p ta b = G e v ta b _ c re a te (v o id ic o , v o id m a tr ix , v o id m a tr iz ,
r i s k . m a t , condnum.l,GEV_QUTLIHE_OFF, GEV.SPACE.OFF,
GEV.THUE, v o i d l i f t , v o i d l i f t) ;

G e v r o w _ a d d _ o b j(r is k d e ta i ls ,S p a c e) ;
G e v ro w _ a d d _ o b j(r i s k d e ta i l s .c o n d i t io n s) ;
G e v r o w _ a d d _ o b j(r i s k d e ta i l s , r i s k to p ta b) ;

G e v r o w _ a d d _ o b j(r i s k . r o w s .r i s k d e ta i ls) ;
>

- (int) confirm.risk {
int i = 1 ;
int j;
int matsize;
int VALUE = 0 ;
BOOL FOUHD = 10;

matsize = 5;

Appendix D

e n d o fjo b = GEV.FALSE ;
w h ile (e n d o fjo b != GEV.TRUE) {

e v t = G e v a c rg p h _ w a it_ e v e n t(s c re e n) ;
i f ((G e v e v t.g e t.w d w (e v t) = Gevwdw.get.wdw(window)) kk

(G e v e v t .g e t . ty p (e v t) == GEV.BUTTOI)) {

i f (G e T o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) .q u itR isk D riv e rV ie w Ic o n)) {
i f (VALUE == 0)

VALUE - [s e l f r i s k r e s u l t] ;
G evH crgph_rem _w indow (screen,w indow);
e n d o fjo b = GEV.TRUE;

}
e l s e {

i = 1 ;
FOUID * 10;
w h ile ((i <= m a ts iz e) U (¡FOUID)) {

i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) , M a t r ix _ e n t ry (r i s k _ m a t , i+ + ,1))) {
/ / d e s e le c t v a lu e s i n m a t r ix above and below s e l e c te d v a lu e

VALUE = — i ;
j =* VALUE - 1;
w h ile (j > 0)
G e v c h x .d e s e le c t (M a tr ix .e n t r y (r is k _ m a t , j — ,1)) ;
j = VALUE + 1;
w h ile (j <= m a ts iz e)

G e v c h x .d e s e le c t (M a t r ix .e n t r y (r is k .m a t , j + + , l)) ;
FOUID = YES;

>
>
>

>
G e v c h x .d e se le c t(M a tr ix .e n try (r isk _ m a t.V A L U E ,1)) ;
i = 0 ;
w h ile (i < IIDEX)

f r e e (tm p S tr [i+ +]) ;
IIDEX => 0 ;
r e tu r n VALUE;

/* **♦**♦*****♦***♦*****♦+*♦♦*****♦****♦♦**************,*****,****»***♦*** */

/ / D isp la y s th e p r i v a t e d a ta f o r »11 R is k d r iv e r o b je c ts
/ / i n th e R isk da taB ase
+ l i s t {

i d r i s k S e q , aR isk ;
c h a r c ;
i n t i = 0 ;

s y s te m C 'c le a r ") ;
r i s k S e q * [r i s k C l tn aachEHomant] ;
w h ile (a R isk = [r is k S e q n e x t]) {

[a R isk p r i n t] ;
i f (+ + i ! 2 => 0) {

[LIST.COITIIUE p r i n t] ;
s c a n f(") [c " ,* c) ;
s y s te m C 'c le a r ") ;

>
} / / end l i s t . r i s k d r i v e r

>
/ / T h is m ethod i s to e n su re t h a t th e Rule number e n te re d h as a
/ / c o r re sp o n d in g R is k d r iv e r o r c o n d i t io n num ber.
+ v a l i d a t e {

i d a R isk ;
c h a r » t e s t S t r ;
i n t r i s k , c o n d i t io n , cond ;
i n t i = 0 ;

A ppen d ix D

t e s t S t r = m a llo c (8) ;
do { s t r c p y (t e s t S t r , o p e r a n d [i]) ;

i f (» t e s t S t r == ’R’) { / / o p e ran d i s a r i s k d r i v e r c o n d i t io n
r i s k = a to i (+ + t e s tS t r) - i ;
w h ile (* + + te s tS t r ! = ’ . ’) ;

c o n d i t io n = a to i (+ + t e s tS t r) - 1 ;
i f ([r i s k C l tn s i z e] < r i s k) {

VALID = 10 ;
[RISK.SIZE.ERRGR p r i n t] ;

}
e l s e {

i f (c o n d i t io n > 5) {
VALID = ID ;
[ERR_RISK_COHD p r i n t] ;

>
e ls e {

a R isk = [r i s k C l tn a t ¡ r i s k] ;
i f ([a R is k r i s k c o n d i t i o n :c o n d i t i o n] == BULL) {

VALID = 10 ;
[ERR_RISK_COBD p r i n t] ;

>
>

}
>

e l s e {
cond = a to i (+ + t e s tS t r) ;
i f ([t x t c i t n s i z e] < cond) {

VALID = SO ;
[ERR_COID_IUH p r i n t] ;

}
)■ / / end i f

} w h ile ((s trc m p (o p e ra to r [i+ +] ," T H E I") != 0) kk VALID) ;
r e tn r n s e l f ;

>
+ windowopen : so m eo b jec t (

/ / p o s i t io n in g and d im e n s io n in g l o g i c a l r e fe r e n c e s
currentw dw = G ev w d w _ crea te(so m eo b jec t);
G evscrgph_add_w indow (screen , c u rren tw d w);
S i z _ s e t (t a i l l e , 4 0 0 ,3 0 0) ;
P o s _ s e t (p o s i t io n , 8 0 ,5 0) ;
G e v w d w _ se t(c n rren tw d w ,p o sitio n ,t a i l l e) ;
G e v sc rg p h _ d isp lay _ w in d o w (sc reen , c n rre n tw d w);
r e tu r n s e l f ;

}
/ / ISSTASCE METHODS

/ / Changes an in s ta n c e s p r i v a t e d a ta and th e r i s k management a re a
I I a s o c ia te d w ith th e r i s k d r i v e r i n s ta n c e .
- m a in ten a n ce : (i n t) r i s k n o {

i d r isk n u m ;
i n t nnm, v a i ;
i n t w t, i , j ;

r isk n o + + ;
w h ile (mnn != 0) •[

[I n t e r f a c e rk m a in ten a n ce] ;
sc a n f("X d " ,tn u m) ;
sw itch(nnm) {

c a se 1 : / / amend R is k d r iv e r t i t l e
p r i n t f (" \ n \ n \ t o l d t i t l e : - ‘/ .a \n ‘‘, [s e l f r i s k d r i v e r]) ;
[AHESD.RISKTITLE p r i n t] ;
c o p y c a t() ;
s t r c p y ([s e l f r i s k d r i v e r] , i o b u f) ;

b re a k ;
c a se 2: / / amend R is k d r iv e r t e x t

p r i n t f (“ \ n \ n \ t o l d t e x t : - % s\n " , [s e l f r i s k t x t]) ;

A p p en d ix D

[AMEID.RISKTEXT p r i n t] ;
co p y ca t () ;
s t r c p y ([s e l f r i s k t x t] , i o b u f) ;
b re a k ;

c a s e 3 : / / amend R is k d r iv e r c o n d i t io n s
i - 0 ;
j = 0 ;
w h ile (s t r a n p C 'd o n ’t know", [s e l f r i s k c o n d i t i o n : i]) != 0)

p r i n t f (" \n \n \ ty ,d % s" ,+ + j, [s e l f r i s k c o n d i t i o n : i+ +]) ;
[AMEID_C0SDITI0I_S0 p r i n t] ;
s c a n f(" % d " ,k v a l) ;
i f (v a l < 1 I I v a l > j)

[ERR.COID.IUM p r i n t] ;
e l s e {

[AMEID.COIDITIOI p r i n t] ;
c o p y c a t() ;
s t r c p y ([s e l f r i s k c o n d i t i o n : —v a l] , i o b u f) ;

>
b re a k ;

ca se 4 : / / amend R is k d r iv e r h e lp
p r i n t f (" \ n \ n \ t o l d h e lp y .s\n" , [s e l f r i s k h l p]) ;
[AMEID.RISKHELP p r i n t] ;
c o p y c a tO ;
s t r c p y ([s e l f r i s k h l p] , io b u f) ;

b re a k ;
ca se 6 : / / amend R is k d r iv e r w e ig h ts

i = 0 ;
j = 0 ;
wt = 0 ;
w h ile ([s e l f r i s k w e ig h t : i] != 0)

p r i n t f (" \n \n \ t% d y ,s \ty ,d ",+ + j , [s e l f r i s k c o n d i t i o n : i] ,
[s e l f r i s k w e ig h t : i+ +]) ;

[AHEID_COIDITIDI_HO p r i n t] ;
s c a n f (" X d " , iv a l) j
i f (v a l < 1 11 v a l > j)

[ERR_COID_BUM p r i n t] ;
e l s e {

[AMEID.WEIGHT p r i n t] ;
s c a n f(" X d " ,tw t) ;
r i s k w e ig h t [— v a l] = wt ; }

b re a k ;
c a se 6 :

risk n u m = [M easure c r e a te] ;
[risknum r i s k a r e a : r i s k n o] ;
[M easure a d d r is k A re a s : risknum] ;

b re a k ;
c a se 7 :

risk n u m = [M easure c r e a te] ;
[risk n u m r i s k a r e a : r i s k n o] ;
[M easure d e le t e r i s k A r e a s : risknum] ;
[risk n u m f r e e] ;

b r e a k ;
d e f a u l t :

[IIVALID_0PTI0I p r i n t] ;
> / / end case

} / / end w h ile
r e tu r n s e l f ;

}

/ / copy th e c o n te n ts o f one R is k d r iv e r o n to a n o th e r
- copy : aR isk {

i n t i = 0 ;
r i s k d r i v e r = m a l lo c (s t r l e n ([a R i s k r i s k d r i v e r])) ;
s t r c p y (r i s k d r i v e r , [a R i s k r i s k d r i v e r]) ;
r i s k t x t = m a l lo c (s t r l e n ([a R i s k r i s k t x t])) ;
s t r c p y (r i s k t i t , [aR isk r i s k t i t]) ;
do {

A p p en d ix D

r i s k c o n d i t i o n Li] = m a l lo c (s t r l e n ([a R i s k r i s k c o n d i t i o n : i])) ;
s t r c p y (r i s k c o n d i t i o n [i] , [aR isk r i s k c o n d i t i o n : i]) ;
r i s k w e ig h t [i] = [a R isk r i s k w e ig h t : i] ;

} w h ile ([a R is k r i s k w e ig h t : i++] != 0) ;
r i s k h l p = m a l l o c (s t r l e n ([aR isk r i s k h l p])) ;
s t r c p y (r i s k h lp , [a R i s k r i s k h l p]) ;
[s e i f r i s k r e s u l t : [a R isk r i s k r e s u l t]] ;
r e tu r n s e l f ;

/ / d e te rm in e th e l a r g e s t w eigh t f o r a R isk
- (i n t) la r g e s tw e ig h t {

i u t g = 0 ;
i n t m axsize - 0 ;
i n t j ;

w h i l e (([s e l f r i s k w e ig h t : g]) != 0)
{ j « [s e l f r isk w e ig h t:g + +] ;

m ax size * m a x (j , m a x s iz e) ; }
r e tu r n m axsize ;

>
/ / f i n d th e w e igh t o f a R isk w hich i s c o rre sp o n d s t o th e w eigh t r e s u l t
- (i n t) s e le c te d w e ig h t {

i n t i ;

i = [s e l f r i s k r e s u l t] ;
r e tu r n [s e l f r i s k w e ig h t :— i] ;

>

/ / T r a n s fe r th e r e s u l t c a p tu re d on s c re e n i n to th e o b je c t r i s k r e s u l t v a lu e .
- s c r_ v a lu e : (i n t) r e s {

i f (s t r c m p (e n t i ty la m e ." P r o je c t ") == 0)
[s e l f u p d a te _ r i s k : r e s f o r : a ttrH am e e n t i t y : en tityH am e key:"Ham e"

i n s t a n c e : [tem pprod p ro je c tH a m e]] ;
i f (s trcm p (en tity H am e ,"T eam ") = 0)

[s e l f u p d a te _ r is k : r e s fo r :a t trH a m e e n ti ty ¡e n t ity H a m e key:"Ham e"
in s ta n c e :[te m p p ro d te a m la m e]] ;

i f (s t r c m p (e n t i ty la m e , "P ro d u c t") == 0)
[s e l f u p d a te _ r i3k : r e s f o r : a t t r ! a m e e n t i t y : en tityH am e key:"Ham e"

i n s t a n c e : [tem pprod p ro d T y p e]] ;
i f (s t r a n p (e n t i ty la m e . " C l i e n t") = 0)

[s e l f u p d a te _ r i s k : r e s f o r : a t t r ! a m e e n t i t y : en tityH am e key:"Ham e"
i n s t a n c e : [tem pprod c u s t la m e]] ;

r e tu r n s e l f ;
>
- u p d a te .r i s k : (in t) n e w V a lu e f o r : (STR)anAttrHame e n t i t y : (STR) anEntityH am e

k e y : (S T R)en tityK ey i n s t a n c e : instanceH am e {
c h a r conmand[256] ;

s p r i n t f (conmand, "UPDATE %s SETHIIUS V.s = */.d WHERE '/.s = V 'X sV '" ,
anE ntityH am e, anA ttrH am e,
new V alue, e n ti ty K e y , [instanceH am e s t r]) ;

r e t u r n [IS i n t e r p r e t : command]; }

- (c h a r *) r i s k d r i v e r { r e t u r n r i s k d r i v e r ; }

- (i n t) r i s k r e s u l t {
i f (s t rc m p (e n ti ty H a m e ," P ro je c t") == 0)

r e tu r n [s e l f r e t r i e v e _ r i s k :a t t r H a m e e n t i t y : entityH am e k e y : "Same"
i n s t a n c e : [tem pprod p r o j e c t i a m e]] ;

i f (s trc m p (e n tity Ia m e ," T e a m ") = 0)
r e tu r n [s e l f r e t r i e v e . r i s k : a t t r H a m e e n t i t y : entityH am e key:"Hame"

A ppen d ix D

i n s t a n c e : [tem pprod te a m la m e]] ;
i f C s trc m p C e n tity la m e ,"P ro d u c t") == 0)

r e t u r n [s e l f r e t r i e v e _ r i s k : a t t r l a m e e n ti ty :e n t i ty H a m e k e y : "llame"
i n s t a n c e : [tem pprod p ro d T y p e]] ;

i f C s trc m p C e n tity la m e ," C lie n t") = 0)
r e t u r n [s e l f r e t r i e v e _ r i s k :a ttrS a m e e n ti ty :e n t i ty H a m e k ey :"Iam e"

i n s t a n c e : [tem pprod c u s t la m e]] ;
>
- C in t) re tr ie v e _ r isk :(S T R)a n A ttrS a m e e n t i t y : (STR)anEntityFam e k e y : (S T R)en tityK ey

in s t a n c e : in s ta n c e la m e {

i d m ylS;
c h a r conm and[256];

s p r i n t f (co im and , "SELECT Xa FROM %s WHERE V.s'= V 7 .s \ " " ,
a n l t t r l a m e , a n E n ti ty la m e , e n ti ty K e y , [instanceH am e s t r]) ;

mylS * [IS i n t e r p r e t : command];
i f ([m yIS i s C o r r e c t])

r e t u r n [[[[m y lS answ er] a t : 0] a t : 0] a s l n t] ;
e l s e {

p r i n t f (" t h e F l a g : V.sXn" , [myIS th e F la g]) ;
[IS i n t e r p r e t : " q u i t "] ; }

>
- r i s k r e s u l t : C in t) a R isk R e su lt {
[s e l f s c r . v a l u e : a R isk R e su lt] ;
/ / r i s k r e s u l t ■ a R is k R e s u lt;

r e t u r n s e l f ;
>
- (c h a r *) r i s k t x t { r e tu r n r i s k t x t ; >

- (c h a r *) r i s k c o n d i t i o n : C in t) in d ex {
r e tu r n r i s k c o n d i t i o n [in d e x] ;

}
- C in t) r i s k v e ig h t : C in t) in d ex {

r e tu r n r i s k s e ig h t [in d e x] ;
>
- (c h a r *) r i s k h l p { r e t u r n r i s k h l p ; }

- r i3 k _ h e lp •(
>
- e n t i ty la m e : (c h a r •) s t r {

e n ti ty la m e = s t r ;
r e tu r n s e l f ;
>

- (c h a r *) e n ti ty la m e {
r e tu r n e n ti ty la m e ;
>

- a t t r l a m e : (c h a r *) s t r {
a t t r la m e = s t r ;
r e tu r n s e l f ;
>

- (c h a r *) a t t r la m e {
r e tu r n a t t r la m e ;
}

A p p en d ix D 19

//OBJECTIVE-C SOURCE FILE FOR THE CLASS " S ta t e " ;
/ / THIS CLASS CORRESPOIDS TO A STATE II AS AUTOMATA
• in c lu d e " o b jc .h "
• in c lu d e "w bs.h"

• r e q u i r e s S t r in g ;
• r e q u i r e s S equence;
• r e q u i r e s O rdC ltn ;
• r e q u i r e s E v e n t;
• r e q u i r e s E r r o r ;

= S ta te : O b jec t(R isk G ro u p , P r im i t i v e , C o l le c t io n)

{
/ / IBSTAKCE VARIABLES;
i d e v e n t ;
i d e v e n tC o l le c t io n ;
i d e v e n tH e ssa g e C o lle c t io n ;

id e r r o r ;
id e r r o r C o l l e c t io n ;
i d e r ro rK e s s a g e C o lle c t io n ;

id m isc H e s sa g e C o lle c tio n ;
i d s t a t e C o l l e c t i o n ;

i d c u r re n tO b je c t ;
i d a u to m a ta ;
i d r e l a t e d C l a s s ;
i n t ty p eO fR esp o n se ;
i n t ch o ice ln H en u R esp o n se ;
f l o a t f lo a tR e s p o n s e ;
c h a r stringResponse[HAX_SIZE_OF_BODE_BAHE] ;
i n t menuops ;
>
/ / FACTORY METHODS;

I I c r e a t e s a new s t a t e and i n i t i a l i s e i t by d e f a u l t ;
I I r e tu r n s th e c r e a te d s t a t e
+ new {

i d a S ta te ;
a S ta te = [su p e r n ew];
[a S ta te i n i t i a l i s e] ;
r e t u r n a S ta te ;

>

//IISTA SCE METHODS;

/ / i n i t i a l i s e s th e s t a t e by d e f a u l t .
I I by d e f a u l t i n i t i a l i s e s th e r e c e iv e r e r r o r C o l l e c t io n
/ / and e r ro rK e s s a g e C o lle c t io n w ith two e r r o r s
- i n i t i a l i s e {

[s e l f e r r o r C o l l e c t io n :
[O rd C ltn w i th :2 , [E r ro r new:S0_ERRQR],

[E rro r new:0UT_0F_HEHU_B0UHDS]]];
[s e l f e r ro rK e s s a g e C o lle c tio n :

[O rd C ltn w i th :2 , SO.ERROR.MESSAGE,
0UT_0F_MEBU_B0UHDS.MESSAGE]];

r e tu r n s e l f ;
>

th e u s e r e v e n t;
a l l th e s t a t e ’ s e v e n ts (i n s t a n c e s o f Event c l a s s) ;
th e m essag es t o be d is p la y e d to th e th e u s e r ;
To each e v e n t in e v e n tC o l le c t io n c o rre sp o n d s
a m essage in e v e n tH e ssa g e C o lle c tio n
th e e r r o r t o d i s p la y
th e e r r o r s t o be d is p la y e d (in s ta n c e s o f E r ro r c l a s s) ;
th e e r r o r m essages to be d is p la y e d ;
To each e r r o r in e r r o r C o l l e c t io n c o rre sp o n d s
a m essage in e r ro rK e s s a g e C o lle c t io n
a l l o th e r m essag es t o d i s p l a y a re g rouped in t h i s c l t n ;
a l l th e s t a t e s to w hich th e s t a t e can t r a n s i t
t o each e v e n t in e v e n tC o l le c t io n c o rre sp o n d s a s t a t e
in s t a te C o l le c t i o n
th e o b je c t on which th e u s e r works
th e a u to m a ta i n w hich th e s t a t e i s
th e c la s s on w hich th e s t a t e o p e ra te s
ty p e o f re sp o n se i s in te g e r o r s t r i n g
th e u s e r re sp o n se i n c a se o f a menu
th e u s e r re sp o n se i n c a se o f a q u e s tio n -a n sw e r
th e u s e r re sp o n se i n c a se o f a a u e s tio n -a n s w e r

A ppen d ix D

- e v e n tC o l le c t io n : a n E v e n tC o lle c t io n {
e v e n tC o l le c t io n = a n E v e n tC o lle c t io n ;
r e t u r n s e l f ;

>

- e v e n tC o l le c t io n {
r e tu r n e v e n tC o l le c t io n ;

>

- e v e n tH e ssa g e C o lle c t io n : a H e s sa g e C o lle c tio n {
e v e n tH e ssa g e C o lle c t io n = a H e s sa g e C o lle c tio n ;
r e tu r n s e l f ;

}
- e v e n tH e s sa g e C o lle c t io n {

r e tu r n e v e n tH e se a g e C o lle c tio n ;
}

- e r r o r C o l l e c t io n : a n E r ro rC o l le c t io n {
e r ro r C o l le c t io n . = a n E r r o rC o l le c t io n ;
r e tu r n s e l f ;

>
- e r r o r C o l l e c t io n {

r e tu r n e r r o r C o l l e c t io n ;
>

- e r ro rK e s s a g e C o lle c t io n : a n E rro rH e ss a g e C o lle c tio n {
e r ro rK e s s a g e C o lle c t io n * a n E rro rH e ss a g e C o lle c tio n ;
r e tu r n s e l f ;

>
- e r ro rH e s s a g o C o lle c t io n {

r e tu r n e r ro rK e s s a g e C o lle c tio n ;
>

- m isc H e s sa g e C o lle c tio n : a H isc R e s sa g e C o lle c tio n {
m is c H e s sa g e C o lle c tio n = a K isc H e ssa g e C o lle c tio n ;
r e tu r n s e l f ;

}
- m isc H e ssa g e C o lle c tio n {

r e tu r n n is c H e s s a g o C o lle c t io n ;
>

- s t a t e C o l l e c t i o n : a S ta te C o l le c t io n {
s t a t e C o l l e c t i o n = a S ta te C o l le c t io n ;
r e t u r n s e l f ;

>

- s t a t e C o l l e c t i o n {
r e t u r n s t a t e C o l l e c t i o n ;

>

- c u r r e n tO b je c t : a C u rre n tO b je c t {

A ppendix D 21

c u r r a n t O b je c t = a C u rre n tO b je c t;
r o t a r l i s e l f ;

}

- c u r re n tO b je c t {
r e tu r n c u r ro n tO b jo c t ;

>
-a u to m a ta : anAutornata {

au to m a ta — auA utornata;
r e tu r n s e l f ;

>

- au to m a ta {
r e tu r n au to m a ta ;

>

- r e la te d C la s s : a C la s s {
r e la te d C la s a = a C la s s ;
r e tu r n s e l f ;

>
- r e la te d C la s s {

r e tu r n r e la te d C la s s ;
}

- typaO fR esponse ; (i n t) aTypeOfResponse {
typeO fR esponse = aTypeO fR esponse;
r e t u r n s e l f ;

}
- (i n t) cho icelnH enuR esponse {

r e tu r n ch o ice lnH enuR esponse ;
}

“ (i n t) menuops {
r e tu r n menuops ;
}

- (f l o a t) f lo a tR e s p o n s e {
r e tu r n f lo a tR e s p o n s e ;

>

- (STR) s tr in g R e s p o n se {
r e t u r n s tr in g R e s p o n s e ;

>

/ / D isp la y s t h e u s e r m essa g es .
I I T e s t w h e th er th e ty p e o f re sp o n se s a l t e d from, th e u s e r
/ / i s a c h o ic e i n a menu o r a q u e s t io n re sp o n se
- d i s p la y {

i d aSequence;
i d aH essage;
i n t iMax;
i n t i ;

iMax = [e v en tH e B sa g eC o llec tio n s i z e] ;

A ppen d ix D

/ / 1 - i f i t i s a c h o ic e in a menu d i s p la y th e
I I menu i te m s fo u n d in e v e n tM e ssa g e C o lle c tio n
i f ((iM ax > = 1) t t (typeO fR esponse == CHOICE.IH.HEFU)) {

f o r (i = 0 ; i < iMax ; i++)
p r in tf (" % d - Xs \ n " , i+ 1 , [[e v e n tM e ssa g e C o lle c t io n a t : i] s t r]) ;

p r in tf (" Y o u x c h o ic e ? ") ;

}
I I 2 - i f i t a q u e s t io n re sp o n se d i s p la y s th e
/ / o n ly ite m fo u n d i n e v e n tM e ssa g e C o lle c tio n
e l s e i f ((iM ax == 1) kk

((ty p eO fR esp o n se == STRIHG_RESPOHSE) I I
(typeO fR esponse = FLOAT_RESP0HSE))) {
p r in t f (" % s ? \n " , [[e v e n tM e s s a g e C o lle c t io n a t : 0] s t r]) ;
p r i n t f ("?•■);

>
e ls e
/ / 3 - i f t h e r e i s no e v en tM e ssag e C o lle c tio n
U g e n e r a te s an e r r o r

[s e l f error:[HOT_IHITIALISED_STATE_MESSAGE s t r]] ;
>

/ / r e tu r n s th e e r r o r w hich number i s anErrorHum ber
- f i n d E r r o r : (i n t) anErrorN um bnr {

id a n E rro r ;
id aSequence;
aSequence = [e r r o r C o l l e c t io n e a c h E le m e n t] ;
w h ile (a n E rro r = [aSequence n e x t])

i f ([a n E r r o r number] == anErrorH um ber)
r e tu r n a n E rro r ;

>
/ / r e tu r n s th e e v en t w hich num ber i s axvE v en t Humber
- f in d E v e n t: (i n t) anE ventlum ber -(

i d an E v e n t;
id aSequence;
aSequence = [e v e n tC o l le c t io n e ac h E le m e n t] ;
w h ile (anE ven t = [aSequence n e x t])

i f ([an E v e n t number] == anEventHumber)
r e tu r n anE ven t;

>

/ / r e tu r n s th e e r r o r o f f s e t i n e r r o r C o l le c t io n w hich
/ / number i s anErrorH um ber
- (i n t) f i n d E r r o r O f f s e t : (i n t) anErrorH um ber {

i d th e E r r o r ;
th e E r r o r 3 [s e l f f i n d E r r o r : an E rro rH um ber];
r e tu r n [e r r o r C o l l e c t io n o f f s e tO f : th e E r r o r] ;

>
/ / r e tu r n s th e e v en t o f f s e t i n e v e n tC o l le c t io n w hich
/ / number i s anEventHumber
- (i n t) f in d E v e n tO f f s e t : (i n t) anE ventlum ber •[

id th e E v e n t ;
th eE v en t = [s e l f f in d E v e n t : anEventHumber] ;
r e tu r n [e v e n tC o l le c t io n o f f s e tO f : th e E v e n t] ;

>

/ / r e a d s th e u s e r re sp o n se and a s s ig n th e v a r ia b le s
/ / choicelnM enuR esponse o r f lo a tR e sp o n se o r s tr in g R e s p o n se
- re a d {

s w itc h (ty p eO fR esp o n se) {
c a se CHOICE_IH_MEHU :

A ppen d ix D 23

s c a n f(" X d " , tch o ic e ln H e n u R esp o n se) ;
b re a k ;

c a se FLOAT.RESPOHSE :
s c a n f (" X f " , k f lo a tR e s p o n s e) ;
b re a k ;

c ase STRIIG.RESPOHSE :
s c a n f (" X s " , s t r in g R e s p o n s e) ;
b re a k ;

}
r e tu r n s e l f ;

>

/ / t e s t w hether th e u s e r re sp o n se i n c a se o f a menu
/ / i s i n s id e th e menu bounds
- c o r r e c t {

r e t u r n s e l f ;
>

/ / d i s p la y s th e e r r o r m essage w hich c o rre sp o n d s to th e
/ / in s ta n c e v a r ia b le e r r o r
- e rro rH e ssa g e {

i n t o f f s e t ;
o f f s e t = [e r r o r C o l l e c t io n o f f s e tD f : e r r o r] ;
p r in t f (" X s \n " ,[[e r r o r H e s s a g e C o l le c t io n a t : o f f s e t] s t r]) ;
r e tu r n s e l f ;

>

/ / t r e a t s th e u s e r an sw er.
/ / i n c a se o f a menu, a s s ig n s th e e v en t v a r ia b le w ith th e
/ / one i n e v e n tC o l le c t io n w hich c o rre sp o n d s t o th e u s e r menu.
/ / i n c a se o f a q u e s t io n re sp o n se a s s ig n s th e e v e n t v a r ia b le
/ / w ith th e o n ly e v e n t i n e v e n tC o l le c t io n
- t r e a t {

i f (typeO fR esponse = CHOICE_H_KEHU)
e v en t = [e v e n tC o l le c t io n a t : (choicelnM enuR esponse - 1)] ;

e l s e i f ((ty p eO fR esp o n se = STRIHG_RESPOHSE) | |
(typeO fR esponse = FL0AT_RESP0HSE))

e v en t = [e v e n tC o l le c t io n f i r s t E l e m e n t] ;
e l s e ;

r e t u r n s e l f ;
>

/ / makes th e t r a n s i t i o n to a n o th e r s t a t e i f r e q u ir e d .
/ / th e fo l lo w in g s t a t e i s th e one in s t a te C o l le c t i o n
I I w hich c o rre sp o n d s t o th e ev en t
- fo l lo w in g S ta te {

i n t o f f s e t ;
i d a F o l lo w in g S ta te ;
i f ((s t a t e C o l l e c t i o n != n i l) kk

([e v e n t num ber] != I0_EVEST)) {
o f f s e t = [e v e n tC o l le c t io n o f f s e tO f : e v e n t] ;
a F o llo w in g S ta te = [s t a te C o l le c t i o n a t : o f f s e t] ;
[[a F o llo w in g S ta te au to m ata] c u r r e n t S t a t e : a F o l lo w in g S ta te] ;
[a F o llo w in g S ta te e x e c u te : c u r r e n tO b je c t] ;

>
r e t u r n s e l f ;

A ppen d ix D

- t r e a t s : (i n t) eventnum ber {
e v en t = [e v e n tC o l le c t io n a t : e v e n tn u m b er];

r e tu r n s e l f ;
>

/ / E x ecu tes th e r e c e iv e r w ith a c u r re n t o b j e c t .
/ / W hile th e u s e r re sp o n se i s i n c o r r e c t :
/ / d i s p a la y s th e u s e r m essa g es , r e a d s t h e u s e r
/ / an sw er, and t e s t s w h e th er th e answ er i s c o r r e c t ,
/ / th e n i t t r e a t s th e u s e r answ er and in s u r e s th e
/ / t r a n s i t i o n to a n o th e r s t a t e i f r e q u i r e d .
- e x e c u te : a C u rre u tO b je c t {

i f ([a C u rre n tO b je c t n o tE q u a l: n i l])
[s e l f c u r r e n tO b je c t : a C u r re n tO b je c t] ;

do -[
e r r o r = [s e l f f i n d E r r o r : IQ_ERR0R] ;
[s e l f d i s p l a y] ;
[s e l f re a d] ;
[s e l f c o r r e c t] ;
i f ([e r r o r num ber] != IO_ERROR)

[s e l f e r ro r H e s s a g e] ;
>
w h ile ([e r r o r num ber] != IO.ERROR);
[s e l f t r e a t] ;
[s e l f f o l lo w in g S ta t e] ;

}

/ / O b je c tiv e -C so u rc e f i l e f o r th e c la s s Rule
• in c lu d e < s td io .h >
• in c lu d e < ob jc .h>
• in c lu d e <math.h>
• in c lu d e "RiskmeB3 .h "
• in c lu d e " s a c .g lo b a l .h "

(r e q u i r e s S t r i n g , O rd C ltn , I n t e r f a c e , T x t, R isk , G raph ic

e x te rn G evscrgph_t s c re e n ;
e x te rn Gevwdw.t window , w indow l, currentw dw
e x te rn G e v ic o c a r . t c o n f irm ic o , a b o r t i c o ;
e x te rn G e v ic o c a r_ t q u itR u leV iew Ico n ;
e x te rn G e v l i f t _ t v o i d l i f t ;
e x te rn G evspa_t Space ;
e x te rn G e v ta b .t co n f inn_ ta b ;

e x te rn M a tr ix _ t v o id m a tr ix ;
e x te rn K a tr ix _ t c o n f irm .m a t;
e x te r n S i z . t t a i l l e ;
e x te rn Po s_ t p o s i t i o n ;

e x te rn
e x te rn

r u l e C l t n , r i s k C l t n , t x t C l t n ;
BOOL f l a g [] ;

e x te r n Gevrow_t erro r_ m sg _ ro w ;
e x te r n G evm sg.t e rro r_ m sg ;

Gevrow.. t ru len u m .ro w , ru le _ ro w s ;
G ev ico c ar_ t ru le n u m ic o ;
G e v ico c a r_ t r u l e l i n e ;
G evchr..t ru le n u m ;

BOOL v a l i d a t e _ r i s k () , v a l id a te _ c o n d () , VALID

A ppen d ix D

c h a r » o p e r a to r [10] , *operand .[10] ;
c h a r * o p e r a to r a () , » o p e ra n d sO ;
i n t o p l = 0 ; / / operand, in d ex
i n t op2 3 0 ; / / o p e r a to r in d ex
c h a r e n g l i s h S t r [4 5 0] , r u l e S t r [8 0] ;
i n t p , p t ;
s t a t i c i n t IID E I = 0 ;
c h a r » tm p S tr [2 0];
G ev ev t_ t e v t ;
i n t e n d o fjo b ;
c h a r » m allo cO ;

= R ule : O b jec t (R iskG roup , C o l le c t io n , P r im it iv e)

c h a r » r u l e s [6] ;
c h a r c o n d it io n [3] ;

>
/ / I n i t i a l i s e o p e r a to r and o p e ran d b u f f e r s and e n te r Rule
+ c r e a te {

VALID * YES ;
o p l » 0 , op2 * 0 ;
e n te r _ r u le s () ;

>
/ / D isp la y Rule fo rm a t i n e n g l i s h and e n te r a s s o c ia te d t e x t
/ / i f s a v in g Rule in r u l e C l tn
+ add ■(

i n t cnum ;
c h a r an s ;
i d aR ule ;

cnum » [t x tC l tn s i z e] ;
cnum++ ;
e n g l i s h . t x t () ;
p r i n t f (" \ n \ n \n \ n Save R u les Y /I ") ;
s c a n f C S c " , ta n s) ;
i f (anB == >Y’ II ans == Jy ’) {

p = 0 ;
y h i le (p <= p t) {

aRule 3 [R ule add :p :cnum] ;
[r u le C l tn a d d :aR u le] ;

>
[t x tC l tn a d d :[T x t ad d]] ;

>

/ / R u les a re added to th e r u l e c o l l e c t i o n
/ / c o u n te r p ro v id e s l i n k be tw een R ule and T x t.
+ a d d : (i n t) r : (i n t) c o u n te r {

i n t k = 0 , j = 0 ;
s e l f = [s e l f new] ;
do { r u l e s [k] = m a l lo c (6) ;

s t r c p y (r u l e s [k + +] , o p e r a n d [r]) ;
> w h ile (» o p e ra to r [r+ +] = ’A’) ;
r u l e s [k] = m a l lo c (6) ;
s t r c p y (r u l e s [k] ," » ") ;
r i s k i to a (c o u n t e r .c o n d i t i o n) ;
p = r ;
r e tu r n s e l f ;

>
+ amend {

i n t num ;

w h ile (niua != 0)
{ [I n t e r f a c e ru leam end] ;

A ppen d ix D

sca n f("X d " ,tn u m) ;
sw itch(num) {

c ase 1 : [R ule amendRule] ;
b re a k ;

c a se 2: [T zt amendText] ;
b re a k ;

c a se 0 : b re a k ;
d e f a u l t : [UVALID.OPTIOH p r i n t] ;

>
> / / end w h ile
r e t u r n s e l f ;

>

+ amendRule {
i d tm pR ule , aR ule ;
i n t num ;
c h a r a n s , co n t ;

do { VALID * YES ;
nun = [R ule getnum] ;
i f (num != 0) {

aR ule = [r u l e C l tn a t : —num] ;
tmpRule * [R u le new] ;
[tm pRule copy: aR ule] ;
[tm pRule change] ;
i f (VALID) {

[AKEID.YES p r i n t] ;
s c a n f (" S c " , t a n a) ;
i f (a n s = ’j ‘ | | an s = ’ Y ’)

[[r u l e C l t n i n s e r t : tm pRule b e fo re :a R u le] rem ove: aR ule]
>

>
[AHEID_COITI«UE p r i n t] ;
s c a n f (" K c " .tc o n t) ;

)■ w h ile (c o n t == ’y* | | co n t == ’Y’) ;
r e tu r n s e l f ;

}

/ / T h is m ethod i s u se d to d e le t e R u les from th e R u lebase
/ / The d e le t io n o f R u les w i l l som etim es cau se th e d e l e t i o n
/ / o f th e a s s o c ia te d R ule t x t i f no o th e r r u l e in th e R uleB ase
/ / can be a s s o c ia te d w ith a R ule c o n d i t io n .
+ d e le t e {

i d aR ule ;
c h a r a n s , co n t ;
i n t num ;

do {
num 3 [R ule getnum] ;
i f (num != 0) { / / num i s i n s id e th e ran g e o f th e R ule d a ta B ase

aR ule * [[r u le C l tn a t : —num] p r i n t] ;
[DELETE.COIFIRH p r i n t] ;
s c a n f(" X c " , t a n s) ;
i f (an s == ’y> |I ans = ’Y>)

[aR ule rem oveRule:num] ;
>
[DELETE.COIT p r i n t] ;
s c a n f(" % c " , t c o n t) ;

} w h ile (c o n t == ’j ’ I I co n t == ’Y’) ;
r e tu r n s e l f ;

}

+ view {
i d aR ule ;
c h a r co n t ;

A p p en d ix D 27

i n t num, conditila ;

do {
num - [R ule go tnum] ;
i f (num != 0) {

aR ule = [[r u l e C l tn a t : —num] p r i n t] ;
condBum =* a to i ([a R u le c o n d i t io n]) ;
[[t x t C l t n a t : — condlum] p r i n t] ;

>
[VIEtf.COBTIIUE p r i n t] ;
s c a n f(" % c " ,k c o n t) ;

} w h ile (c o n t == ’j ’ | | co n t == ’Y’) ;
r e tu r n s e l f ;

>
+ v iew l {

i d a R u le , ru le S e q ;
chax n u m S tr[8] ;
i n t i • 0 , j > 0 j
i n t num ;

[s e i f get_num _rule_w dw];
do {

num - [R ule getnum] ;
i f (num != 0) {

r isk i to a (n u m ,n u m S tr) ;
r u le S e q = [r u le C l tn eachE lem en t] ;
w h ile (aR u le = [ru le S e q n e x t]) {

i f (j != 0)
o p e r a to r [j - 1] = "OR" ;

i f (s trc m p ([a R u le c o n d it io n] ,n u m S tr) == 0) {
w h ile (s trc m p ([a R u le r u l e s : i] ," * ") != 0) {

o p e ra n d ij] = [aR ule r u le s : i+ +] ;
o p e ra to r [j+ +] = "ABD" ;

>
>

} / / end w h ile
o p e r a t o r i — j] = "THEI" ;
p t =* j ;
i =* 0 ;
p r i n t f C 'I F ") ;
r u l e S t r [0] = 0 ;
s t r c a t (m l e S t r , " I F ") ;
do {

s t r c a t (r u l e S t r , o p e r a n d [i]) ;
s t r c a t (r u l e S t r ," ") ;
s t r c a t (r u l e S t r , o p e r a t o r [i]) ;
s t r c a t (r u l e S t r ," ") ;
p r in t f (" % s " .o p e r a n d [i]) ;
p r i n t f C X s " ,o p e r a t o r [i]) ;

} w h ile (s trc m p (o p e ra to x [i+ +] ,"THEB") != 0) ;
r u le . r o w s = G ev ro w _ crea te(GEV_VERTICAL, GEV_0UTLIBE_0FF, GEV_SPACE_OFF);
[s e l f r u l e _ f o r m a t] ;
[s e l f r u l e _ t o _ e n g l i s h] ;
p r i n t f (" \ n ") ;

G e v c h x .d e s e le c t(M a tr ix _ e n try (c o n f i rm jn a t , 1 , 1)) ;
G e v c h x _ d e se le c t(H a tr ix _ e n try (c o n f in n _ m a t, 1 , 2)) ;

G e v ro w _ a d d _ o b j(ru le .ro w s .q u itR u le V iew Ico n);

window = G ev w d w _ crea te(ru le_ ro w s);
G evscrgph_add_w indow (screen , w indow);
S iz _ s e t (t a i l l e ,4 4 0 ,2 9 0) ;
P o s _ s e t (p o s i t io n ,2 5 0 ,1 5 0) ;
G e v w d w _ s e t(w in d o w ,p o s it io n ,ta i l le) ;
G ev sc rg p h _ d isp lay _ w in d o w (screen ,w in d o w);
[s e l f q u i t_ r u le _ v ie w] ;

A ppen d ix D

}
} w h ile (num != 0) ;
r e t u r n s e l f ;

}

+ q u i t_ ru le _ v ie w {
i n t i = 0 ;

w h ile (! (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) , qu itR u leV ie w lc o n)) II
! (G evobj_eq(G evevt_get_typ(evt),G EV _B U TTO B)))

e v t = G e v sc rg p h _ w a it_ e v e n t(s c re e n) ;
G evscrgph_rem _w indow (screen ,w indow);
w h i le (i < IIDEX)

f r e e (t m p S t r [i + +]) ;
IIDEX = 0 ;
G e v c h x _ d e se le c t(c o n f ix m ic o) ;
G e v c h x _ d e s e le c t(a b o r t ic o) ;

r e tu r n s e l f ;
>

+ l i s t {
i d r u le S e q , aR ule ;
ru le S e q = [r u le C l tn eachE lem en t] ;
w h ile (a R u le = [ru le S e q n e x t])

p r in t f O 'R u le = % s \n " ,[a R u le p r i n t]) ;
r e tu r n s e l f ;

+ u p d a te : (i n t) num {
id aR ule ;
c h a r »tm pChar, tm p h o ld e r[10] ;
i n t l e n , tem p ;
i n t i , k ;
d o u b le d ;

I I Ig n o re »tmpChar e q u a l t o ’C’
/ / o n ly ’R’ (R is k d r iv e r s) n eed u p d a tin g a f t e r d e le t io n ,
i = 0 ;
l e n = [r u le C l tn s i z e] ;
w h ile (i < l e n) { / / keep r e a d in g th e rows

aRule = [r u l e C l tn a t : i++] ;
k = 0 ;
tmpChax = [aR u le r u l e s :k] ;
w h ile (»tm pChar != ’*’) {

tm pChar =* [aR u le ru le s :k + +] ;
i f (»tm pChar = ’R’) {

tmpChax++ ;
tem p = a to i(tm p C h a r) ;
i f (num < tem p) { / / decrem ent r u l e by one

d = a to f(tm p C h ar) ;
f t o a (d - 1 . 0 , tmpChar) ;

>
>

} / / end o f row
} I I no more rows to re a d
r e tu r n s e l f ;

+ decrem en t Rule C o n d itio n : (i n t) veil {
i d condSeq, aR ule ;
c h a r »tmpCond ;

A ppen d ix D

i n t cond , k ;

condSeq = [r u le C l tn eachE lem ent] ;
w h ile (aR u le = [condSeq n e x t]) {

k = 0 ;
tmpCond = [aR u le r u l e s :k] ;
w h ile (»tmpCond != ’* ’) {

tmpCond = [aR u le ru le s :k + +] ;
i f (»tmpCond = ’C’) {

tmpCond++ ;
i f (a to i(tm p C o n d) >= v a l) {

cond = a to i(tm p C o n d) - 1 ;
r isk ito a (c o n d ,tm p C o n d) ;

>
}

>
>
r e tu r n s e l f ;

>

+ g e t_ n u m _ ru le_ sd s {

rulenum _roB = G ev ro B _ crea te (GEV.VERTICAL, GEV_0UTLIHE_0FF, GEV.SPACE.QN);
m le n u m ic o = G e v ic o c a r_ c re a te (,,E n te r R ule lumber",GEV_F0HT4,

GEV_C, GEV_0UTLIHE_0FF, GEV_SPACE_QI);

ru lenum = G e v c h r_ c re a te (" ,GEV_F0BT4, GEV_F0BT3,2O,
GEV_0UTLISE_0FF, GEV.SPACE.OI);

erxor_m sg_roB * GevroB.create(GEV_VERTICAL, GEV_0UTLIIE_0FF, GEV.SPACE.OH);
e rro r_ m sg = G ev m sg_crea te(,,","",GEV.FOHT4)GEV_FO)iT4,18,GEV_OUTLIHE_OFF>GEV_SPACE_OH) ;
G ev ro w _ ad d _ o b j(e rro r_ m sg _ ro w ,erro r_ ra sg);

/ /G e v r 0¥_add_0b j (r i s k n u m . r o a , t o p) ;
G evxoB _add_ob j(ru lenum _roB ,S pace);
G evr0B_add_0b j(ru le n u m _ r0B ,m len u m ico) ;
G evroB _add_obj(ru lenujii_roB , ru lenum) ;
G evroB _add_ob j(ru lenum _row ,S pace);

G e v c h x _ d e se le c t(c o n f i n n i c o) ;
G e v c h x _ d e s e la c t(a b o r t ic o) ;

G evxoB _add_obj(ru lenum _rob , c o n f i r m . t a b) ;
GevroB_add_obj (ru len u m _ rob , e r r o r j n s g . r o s) ;

[s e l f B indoB open:rulenum _row] ;
r e tu r n s e l f ;

>

+ (c h a r ») e n te r_ ru le n u m {
i n t VALUE;
c h a r *nom chr;

w h ile (! (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) .ru le n u m)) I |
! (G evobj_eq(Gevevt_get_typ(evt),GEV_VA LID ATION)))

e v t = G e v sc rg p h _ w a it_ e v e n t(s c re e n) ;
numchr = G e v c h r_ g e t_ c o n t(ru le n u m);

B h ile ((! (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) ,c o n f irm ic o)) I I
(! G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) , a b o r t i c o))) kk
(! G evobj_eq(G evevt_get_typ(evt),G EV _SELEC TED)))

e v t = G e v sc rg p h _ B a it_ e v e n t(s c re e n) ;

i f (G e v o b j_ eq (G e v e v t_ g e t_ b o to b j(ev t) . a b o r t i c o)) {

A ppen d ix D 30

G a » ac rg p h _ rem _ H in d o B (sc reen .cu rren tsd w);
niunchr = ZERO CHAR;

>
r e t u r n num chr;

}

/ / v e r f i e s th e r u l e number e n te r e d
+ (i n t) getnum {

i n t nun ;
i n t i ;
c h a r »nnm Str, tm p S tr [1 0] ;
BOOL ERROR.FOUID;

do ■(
ERROR.FOUBD = SO;
num Str » [s e l f e n te r_ ru le n u m];
s t r c p y (tm p S tr .n u ra S tr) ;
i = 0 ;
B h ile ((tm p S tr [i] != >\0>) U !ERROR.FOUBD) {

i f (tm p S tr [i] < ’O’ II tm p S tr [i] > ’9 ’) {
ERR0R.F0USD = YES;
G evm sg_set_cont(error_m sg,"ER R O R : non num eric v a lu e e n te r e d ") ;

}
i+ + ;

>
i f (! ERROR.FOUHD) {

num ” a to i (t m p S t r) ;
i f (num < 0 | | num > [r u l e C l tn s i z e])

G evm sg_set_cont(error_m sg,"ER R O R : i n v a l id r u l e n u m b er");
>

} e h i l e (num < 0 | I num > [r u le C l tn s i z e]) ;
G e v m sg _ se t_ c o n t(e rro r_ m sg ," ") ;

r e tu r n num;

+ (i n t) co n fiim _ ru len u m {
i n t VALUE;
c h a r »numchr;
e n d o fjo b = GEV.FALSE ;
w h ile (e n d o fjo b != GEV.TRUE) {

e v t = G e v s c r g p h .w a i t .e v e n t (s c r e e n) ;

/ /v h i l e (G e v e v t_ g e t_ ty p (e v t) != GEV.VALIDATIOB)
/ / { e v t - G e v sc rg p h _ w a it_ e v e n t(s c re e n) ;
/ / p r i n t f C 'e v t = X d \n " ,e v t) ;
/ / printf{"GEV_VALIDATIOH =• 7.d\n" .GEV.VALIDATIOB) ; >
/ / (G e v e v t_ g e t_ ty p (e v t) !=» GEV.VALIDATIOB));

i f (G evevt_get_w dw (evt) == Gevwdw_get_wdw(currentwdw)) {
i f (G e v e v t_ g e t_ ty p (e v t) == GEV_SELECTED) {

i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) , c o n f irm ic o)) {
numchr = G e v c h r_ g e t_ c o n t(ru le n u m);
VALUE = 3 ; / /a to i (m u n c h r) ;
e n d o fjo b = GEV_TRUE ;

e ls e i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) , a b o r t i c o)) {
Gevscrgph_rem _windoB(s c r e e n , c u rren tw d w);
VALUE = 0 ;
en d o fjo b = GEV TRUE ;

>
>

>
}

A p p en d ix D

r e t u r n VALUE;

+ r n l e . f o r m a t {
i n t i = 0 ;
c h a r r u l a s e n [6] [6 5] ;
r u l e s a n [0] [0] = ’NO1 ;
m ie s e n [1] [0] ■ ’ \ 0 J ;
r u l e s a n [2] [0] * * \0 * ;
r u le s e n [3] [0] = ’ \ 0 ’ ;
r u l e s e n [4] [0] = 1 \0 * ;
r u le s e n [5] [0] = ’XO* ;

t e r t f o r m (r u l e S t r , r o l a s e n) ;
a h í l a (r u l a s e n [i] [0]) {

tm p S tr [IIDEX] * m a l l o c (s t r l e n (m l e s e n [i]) + 1) ;
s trc p y (tm p S tr[IID E X] , m ia s e n [i+ +]) ;
r u l e l i n e = Gevicocar_create(tm pStr[IH DEX++],GEV_F0H T6,GEV_0,

GEV_0UTLISE_0FF,GEV_SPACE_OFF);
G e v ro w _ a d d _ o b j(ru le .ro w s ,ru le l in e) ;

>
r e t u r n s e l f ;

+ r o le _ to _ e n g l ia h {
i n t i = 0 ;
c h a r e n g _ se n [6] [6 5];
ang_B an[0] [0] 3 >\0’ ;
a n g _ s a n [l] [0] * ’\ 0 ’ ;
e n g _ se n [2] [0] = ’\ 0 ’ ;
e n g _ sen [3] [0] = J\ 0 J ;
e n g _ san [4] [0] = ’\ 0 ’ ;
en g _ se n [5] [0] = ’\ 0 ’ ;

e n g l i s h _ t x t () ;
t e r t f o r m (e n g l i s h S t r ,e n g _ s e n) ;
w h i la (e n g _ s e n [i] [0]) {

tm p S tr [IIDEX] = m a l lo c (s t r l e n (e n g _ s e n [i]) + 1) ;
s t r c p y (tm p S tr [I ID E X] ,e n g _ s e n [i+ +]) ;
r u l a l i n e = G e»icocar_craate(tm pS tr[IID E X ++],G E V _FO IT 6 ,GEV.O,

GEV_QUTLIIE_OFF.GEV_SPACE.OFF);
G a v r o w .a d d .o b j (r u le .r o w s .r u le l in e) ;

>
r e tu r n s e l f ;

+ (i n t) c o n f im .a b o r t {
i n t i = 0 ;
i n t VALUE = 0 ;
e n d o fjo b = GEV.FALSE ;
w h ile (en d o fjo b != GEV.TRUE) {

e v t = G a v sc rg p h _ w a it_ e v e n t(s c re e n) ;

i f (G evevt_gat_w dw (ev t) == Gevwdw_get_wdw(currentwdw)) {
i f (G e v a v t_ g e t_ ty p (e v t) = GEV_SELECTED) {

i f (G e v o b j_ e q (G a v e v t_ g e t_ b o to b j(a v t) . c o n f in n ic o)) {
G ev scrg p h _ rem _ w in d o w (screen ,cu rren tw d w);
VALUE++;
w h ile (i < IHDEX)

f r e e (tm p S t r [i+ +]) ;
IIDEX = 0 ;
e n d o fjo b = GEV.TRUE ;

>
e l s e i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) , a b o r t i c o)) {

G ev scrg p h _rem _w indow (screen ,cu rren tw dw);
w h i le (i < IHDEX)

A ppen d ix D

f r e e (tm p S tr [i+ +]) ;
I I S EX = 0 ;
VALUE = 0 ;
e n d o fjo b = GEV.TRUE ;

>
>

>
>
r e t u r n VALUE;

>

+ windowopen : aom eob jec t {
currentw dw = G ev w d w _ crea te(so m eo b jec t);
G evscrgph_add_w indow (screen , cu rre n tw d w);
S i z _ s e t (t a i l l e ,4 0 0 ,2 6 0) ;
P o a _ a e t (p o s i t i o n , 5 0 ,5 0) ;
G evw dw _set(currentw dw ,p o s i t i o n , t a i l l e) ;
G e v sc rg p h _ d isp lay _ w in d o w (sc re en ,c u rre n tw d w);
r e tu r n s e l f ;

- (i n t) rem oveRule : (i n t) num {
i d r u l e , a R u le , ru le S e q ;
c h a r »tmpCond, »tmpBack, » tm pForw ard, tm p[3] ;
i n t v a l , fo rw a rd , back ;
BOOL HATCH = 10 ;

trapCond = [s e l f c o n d it io n] ;
i f (num > 0) {

b ack = num - 1 ;
tmpBack = [[r u l e C l tn a t :b a c k] c o n d it io n] ;
i f (strcm p(tm pC ond,tm pB ack) == 0)

MATCH = YES ;
>
i f ((MATCH == 10) t t (num < ([r u l e C l t n s i z e] - 1))) {

fo rw a rd = num + 1 ;
tm pForw ard = [[r u l e C l t n a t¡ fo rw a rd] c o n d it io n] ;
i f (strcm p(tm pC ond,tm pF orw ard) = 0)

MATCH = YES ;
}
i f (MATCH = 1 0) { I I T h is i s th e o n ly R ule a s s o c ia te d

I I w ith a c e r t a i n c o n d i t io n , t h e r f o r e
I I th e c o n d i t io n m ust be d e le t e d and a l l
/ / th e o th e r c o n d it io n s d ec rem en ted by o n e .

[t x tC l t n rem o v e A t¡a to i(ta p C o n d) - 1] ;
r u le S e q = [r u le C l tn eachE lem ent] ;
w h ile (r u l e = [ru le S e q n e x t]) {

i f ((v a l = a t o i ([r u l e c o n d i t i o n])) > a to i(tm p C o n d)) {
r i s k i t o a (—Y al,tm p) ;
8t r c p y ([r u l e c o n d it io n] , tm p) ;

>
>

[R ule d ec rem en tR u leC o n d itio n .-a to i(tm p C o n d)] ;
>
[r u l e C l tn removeAt¡num] ;
r e tu r n num;

(BOOL) r u l e S ta t e { / / Checks i f th e in s ta n c e o f th e R ule se n d in g
id tm pR isk ; / / th e m essage i n th e 01 s t a t e , i . e .

A ppen d ix D

i n t j , c i , r d , r c ; / / a l l th e r u l e s axe t r u e .
BOOL C01TIIUE = YES ;
c h a r « tm pR ule;

j = 0 ;
tm pRule = [s e l f r u l e s : j] ;
w h ile <(«tm pR ule != ’ *>) t t COITIHUE) {

tm pRule = [s e l f r u le s . -j++] ;
i f («tm pRule == '*>)

; / /« ra p ty s ta te m e n t
e l s e i f (»tm pR ule == *RJ) {

tmpRule++ ;
r d - a to i(tm p R u le) ;
r c = (i n t) (10 * (a to f (tm p R u le) - a to i(tm p R u le)) + . 6) ;
tm pR isk ■ [r i s k C l tn a t : — rd] ;
i f ([tm p R isk r i s k r e s u l t] != r c) / /R i s k d r i v e r c o n d i t io n

COITIHUE - 10 J / / n o t t r u e
>
e l s e {

tmpRule++ ;
c i = a to i(tm p R u le) ;
i f (f l a g [c i] = 10) / /c o n d i t io n , t e x t n o t (s n i tc h e d OH) t r u e

COITIHUE * 10 ;
>

} / / end a h i l e a lo n g th e roo
r e tu r n COHTIIUE ;

>
- copy : aR ule { / / c o p ie s th e p r i v a t e d a ta o f aRule t o th e in s ta n c e

i n t j = 0 ; / / s e n d in g t h s m essag e , u se d when a copy o f an
/ / i n s t a n c e i s n eed ed .

do {
r u l e s [j] = m a l lo c (6) ;
s t r c p y ([s e l f r u l e s : j] , [aR ule r u l e s : j]) ;

} w h ile (s trc m p ([a R u le r u l e s : j+ +] ," * ") != 0) ;
s t r c p y ([s e l f c o n d i t i o n] , [aR ule c o n d i t io n]) ;
r e t u r n s e l f ;

change {
c h a r tm p [8] , tm p in t [8] ;
i n t cnum ;
i n t i = 0 , j * 0 ;

B h i le (s t r c m j> ([s e l f r u l e s : i] ," « ") != 0)
p r i n t f (" \ tX d \ ty ,s \n " ,+ + j , [s e l f r u l e s : i + +]) ;

p r i n t f (" \ t S e l e c t O p tio n 1 to X d \n " ,j) ;
s c a n f C X d" ,tcnum) ;
i f (cnum < 1 I | cnum > j)

[C0ID_IUH_HIGH p r i n t] ;
e l s e {

[IEW.C0HP0IEHT p r i n t] ;
s c a n f("% s" ,tm p) ;
i f (s t r l e n (tm p) < 1) { / / empty s t r i n g t o r e p la c e

[s e l f c o m p re ss : cnum] ; / / R ule componemt
i f (s t r c m p ([s e l f r u l e s : 0] , " • ") == 0) {

VALID = 10 ;
[ERR0R_C0KP0HEHT_DELS p r i n t] ;

>
>
e ls e { / / some t e x t has b een a s s ig n e d to tmp

o p e r a t o r [0] = "THEH" ;
o p e ra n d [0] = tmp ;
s s i t c h (tm p [0]) {

case ’R’ : v a l id a te . r i s k (tm p) ;
b re a k ;

c a se ’C’ : v a lid a te _ c o n d (tm p) ;

A ppen d ix D

i f (VALID)
[s e l f c o n d it io n .r a n g e : tm p] ;

b re a k ;
d e f a u l t : VALID = 10 ;
[ERROR.COHPOIEIT.TXT p r i n t] ;

} / / end c a s e
i f (VALID) {
s h i l e (tm p [+ + i] != ’ \ 0 >)

tmp i n t [j+ +] ■ tm p [i] ;
i f (a to i (tm p in t) > [r u le C l tn s i z e]) {

VALID = 10 ;
[RULE_SIZE_ERR0R p r i n t] ;

>
>

i f (VALID)
[R isk v a l i d a t e] ;

>
>
i f (VALID) { I I p u t amended r u l e i n to o p e ran d b u f f e r

p r i n t f (" S e l f name y ,s\n" , [s e l f nam e]) ;
s t r c p y ([a e l f r u l e s : — cnum], ta p) ;
[s e l f d u ra p .to .o p b u f] ;
r e p e a t e d . r u l e s () ;

}
r e tu r n s e l f ;

- com press : (i n t) k -[
i n t j ;
j - * I
do {

s t r c p y ([s e l f r u l e s : k + +] , [s e l f r u l e s :+ + j]) ;
} s h i l e (s t r c m p ([s e l f r u l e s : j] ," * ") != 0) ;
s t r c p y ([s e l f r u l e s : —k] , " ") ;
r e tu r n s e l f ;

- dum p_to_opbuf {
i n t i = 0 3

B h ile (s t rc m p ([s e l f r u l e s : !] , " * ") !* 0) ■£
o p e r a t o r [i] = "AID" ;
o p e ran d [i+ +] ■ [s e l f r u l e s : i] ;

}
p t = — i ;
s t r c p y (o p e r a to r [i] ,"TH EI") ;
r e tu r n s e l f ;

- c o n d i t i o n .r a n g e : (c h a r []) tmp {
c h a r v a l [8] ;
i n t i = 0 ;
i n t j = 0 ;

¥ h ile (tm p [i+ +] != >\0‘)
v a l[j+ +] = tm p [i] ;

i f (a t o i (v a l) >=« a t o i ([s e l f c o n d i t i o n])) {
VALID = 10 ;
[C0ID_IUX_HIQH p r i n t] ;

>
r e tu r n s e l f ;

- p r in tO n : (I0D) anIOD {
i n t i = 0 ;

A p p en d ix D 35

[su p e r p r in tO n : anIOD] ;
fp r in tf (a n IO D ," % s Xs %s %s %s Xs y .s \n " ,

[s e l f r u l e s : i++] ,
[s e l f r u l e s : i+ +] ,
[s e l f r u l e s : i+ +] ,
[s e l f r u l e s : i+ +] ,
[s e l f r u l e s : i + +] ,
[s e l f r u l e s : i+ +] ,

[s e l f c o n d i t io n]) ;
r e tu r n s e l f ;

>
- (c h a r *) c o n d i t io n {

r e t u r n c o n d i t io n ;
>
- (c h a r *) r u l e s : (i n t) in d ex {

r e tu r n r o le s [in d e x] ;
>
c h a r » o p e r a n d s (s t r p t)
c h a r » s t r p t ;
{

r e tu r n (o p e ra n d [o p l+ +] = s t r p t) ;
}
c h a r * o p e r a t o r s (s t r p t)
c h a r » s t r p t ;

r e tu r n (o p e ra to r [o p 2++] = s t r p t) ;
>

i n t v a l i d a t e _ r u l e s (r u l e S t r , r u l e s i z e) / / T h is m odule i s d e s ig n e d to a llo t? th e admin u s e r to
c h a r » r u l e S t r ; / / add new RULES to th e R isk A n a ly s is T o o l,
i n t r u l e s i z e ; / / The a d d in g o f new r o l e s m ust be i n a fo rm a t s i m i l a r

{ / / t o e x . l
//
I I e x . l i f R l . l and R2.1 o r R 3.2 th e n Cl
II
I I R i d e n t i f i e s th e R isk d r i v e r c o n d i t io n
I I C r e p r e s e n t s a c o n d i t io n w hich maybe th e p a r t
I I o f a n o th e r r u l e .
I I C o n d itio n s and r u l e s maybe i n t e g r a t e d to fo rm r u l e s .
II e x . 2 i f R3.2 and Cl th e n C2

c h a r t e s t S t r [6] ;
c h a r » s t r p t ;
i n t i ■ 0 , j = 0 ; / / in d ex p o in te r f o r r u l e s t r i n g
i n t p t r = 0 ;

w h ile (i < r u l e s i z e) {
3 = 0 ;
w h ile (r u l e S t r [i] = ’ ’)

i++ ; I I s k ip sp aces
w h i l e (r u l e S t r [i] != 1 > t t r u l e S t r [i] != J\0 ’)

t e s tS t r [j + +] = r o le S t r [i+ +] ;
t e a t S t r [j+ +] = ’ \ 0 J ;
s t r p t = m a l l o c (s i z e o f (t e s t S t r)) ;
8t r c p y (s t r p t , t e s t S t r) ;
i f (p tr+ + % 2 = 0)

o p e r a n d s (s t r p t) ;
e l s e

o p e r a t o r s (s t r p t) ;
>

i f (o p l != op2)
VALID = *0 ;

Appendix D 36

p t = op l - 1 ;
i f (VALID)

v a l id a ta _ o p e r a n d s () ;
i f (VALID)

v a l id a te _ o p e r a to r s () ;
>

v a l i d a t e .o p e r a t o r s 0
{

i n t i * 0 |

i f (s trc m p (o p e ra to r [p t] ." T H E B ") != 0) {
VALID => 10 ;
p r i n t f (" E r r o r : THEB n o t p r e s e n t a t and o f R u le lin eX n ") ;

>
w h ile (i <= p t U VALID) {

3 s i t c h (o p o r a t o r [i] [(0) {
c a se >A»: / / AHD

i f (s trc ra p (o p e ra to r [i] ," A B D ") != 0) {
VALID = *0 ;
p r i n t f (" E r r o r i n c o r r e c t AHD fo rm a t ’/ . s W , op o r a to r [i]) ; }
b re a k ;

c a s e 'O ': / / OR
i f (s t r a n p (o p e r a to r [i] , "OR”) !* 0) {

VALID = BO ;
p r i n t f (" E r r o r in c o r r e c t OR fo rm a t X s \n " ,o p e r a t o r £ i]) ;}
b re a k ;

c ase *T*: / / THES TO b e worked on
if (s t r c m p (o p e ra to r [i] ," T H E B ") != 0 JtA i != p t) {

VALID ~ gQ i
p r i n t f (" E r r o r in c o r r e c t THEB fo rm a t X s \ n " ,o p e r a t o r [i]) ;}
b re a k ;

d e f a u l t :
VALID => BO ;
p r i n t f (" E r r o r : i n v a l id o p e r a to r X s\n" .o p e r a to r [i]) ;

>
i++ ;

>

v a lid a te _ o p e r a n d s ()
{

i n t i = 0 ;

w h ile (i <= p t) {
s s i t c h (o p e r a n d [i] [0]) {

c a s e ’R ’ : / / R isk D r iv e r c o n d i t io n
v a l i d a te _ r i s k (o p e r a n d [i]) ;
b r e a k ;

c a s e ’C ’ : / / c o n d it io n
v a l id a te _ c o n d (o p a r a n d [i]) ;
b re a k ;

d e f a u l t :
VALID * 10 ;
p r i n t f (" E r r o r : i n v a l id op eran d ‘/,s \ n " .o p e r a n d [i]) ;

}
i++ ;

>
i f (VALID)

r e p e a te d _ r u l e s () ;
>

i n t r e p e a t e d . r o l e s ()
{

i n t in d =» 0 , i , E l , R2 ;

A ppen d ix D

w h ile (i a d < p t kk VALID) {
i * in d ;
w h ile (i < p t) {

i f (s trc m p 2(o p e ra n d [in d] ,o p e ra n d [+ + i]) == 0) {
/ / R isk d r i v e r a p p e a rs tw ic e i n t h e r u l e s ta te m e n t

R1 = f in d _ r a n g e (in d) ;
R2 = f in d _ r a n g e (i) ;
i f (R1 = R2) {

p r i n t f (" E r r o r : r i s k d r i v e r a p p e a rs tw ic e i n r u l e \ n ")
VALID * 10 ;

>
>

ind++ ;
>

i n t f in d _ r a n g e (i)
i n t i ;
{

w h ile (» o p e ra to r [i+ +] == ’A’) ;
r e t u r n i ;

>

e n t e r „ r u l e s ()
{

c h a r ru le S trC lO O];
i n t r u l e s i z a ;

p r in t± (" E n te r new r u l e s i n a fo rm a t s i m i l a r to b e lo w \n \n \n ") ;
p r in tf ("Y tE x a m p le 1 IF R l . l AID R2.1 OR R4.2 THEH\n\n") ;
p r i n t f (" \tE x a m p le 2 IF R4.1 AID R6.2 AID Cl OR RS.2 THEH\n\n") ;
g e t s i r u l e S t r) ;
p r in t f (" Y t I F ") ;
g e t s (r u l e S t r) ;
r u l e s i z e = s t r l e n (r u l e S t r) ;
T a l i d a t e _ r u l e s (r u l e S t r , r u l e s i z e) ;

BOOL v a l i d a t e _ r i s k (t e s t S t r)
c h a r t e s t S t r Q ;

i n t r o l e s i z e ;
i n t co u n t * 0 ;
i n t i ■ 0 ;
c h a r tem p [6] ;
i d a R isk :

r u l e s i z e = s t r l e n (t e s t S t r) - 1 ;
w h ile (i < r u l e s i z e kk VALID) {

i ■ i + 1 ;
s w i t c h (t e s t S t r [i]) {

case
c ase >1 »
case >2)
case ’3*
case
case >53
case >6»
case
case J8 >
case
case j t)

i f Ci

b re a k

VALID = 10
1)) {

A ppen d ix D

p r i n t f (" E r r o r : i n c o r r e c t d e c im a l p t p o s i t i o n %s",
t e s t S t r) ;

>
count++ ;
i f (c o u n t > 1) {

ViLID = *0 ;
p r i n t f (" E r r o r : I n c o r r e c t d e c im a l p o in t s %s",
t e s t S t r) ;

}
b re a k ;
d e f a u l t : / / i n v a l i d r i s k d r i v e r c o n d i t io n fo rm a t

VALID =* 10 ;
p r i n t f (" E r r o r : l o t a num eric e x p re s s io n 2 s " , t e s t S t r)

> / / end c a se
> / / end w h ile

>

BOOL v a l id a te _ c o n d (t e s tS t r)
c h a r t e s t S t r G i
{

i n t r u l e s i z e ;
i n t i ■ 0 ;

r u l e s i z e = s t r l e n (t e s t S t r) - 1 ;
w h ile (i < r u l e s i z e t t VALID)

sw itc h (t e s t S t r [+ + i]) {
c a s e 'O ’ :
c a s e ’1 ’ :
c a s e >2 ’ :
c a s e ’3 ' :
c a se ’4 ’ :
c a se ’ S ’ :
c a s e ’6 ’ :
c a se ’7 ’ :
c a s e ’8 ’ :
c a s e ‘9 ‘ : b re a k ;
d e f a u l t : / / i n v a l i d r i s k d r i v e r c o n d i t io n fo rm a t

VALID = 10 ;
p r i n t f (" E r r o r : i n v a l i d c o n d i t io n s y n ta x ’/ .s " , t a s t S t r)

>
>

a n g l i s h . t x t ()
{
I I T h is f u n c t io n i s u se d to c o n v e r t v a l i d r u l e s e n te r e d by th e admin
/ / u s e r i n to E n g lis h .

c h a r *tmp ;
i n t i * 0 ;
i n t j » 0 ;
e n g l i s h S t r [0] = 0 ;
s t r c a t (e n g l i s h S t r , " I F ") ;
w h ile (i <■ p t) •£

tmp = o p e ra n d [i] ;
i f (*tmp ** >R>)

r i s k v ie w (to p) ;
e l s e

condview (tm p) ;
s t r c a t (e n g l i s h S t r , " ") ;
s t r c a t (e n g l i s h S t r , o p e r a t o r [i]) ;
p r i n t f (" y,s ‘* ,o p e r a to r [i+ +]) ;

>
>

risk v io w (tm p)

A ppen d ix D

c h a r ♦ tu p ;
{ / / E n g lis h r e p r e s e n t a t i o n o f th e r i s k d r i v e r l o c a t e d i n th e r isk C X tn

id dummy j
c h a r s [2] ;
i n t ro a * 0 ;
i n t c o l = 0 ;

f o r (tmp++ j *tmp >= *0 ’ U *tmp <= >9> ; tmp++)
roB = 10 * xob + *tmp - ’0 * ;

dummy ■ [r i s k C l tn a t : — roB] j
i f <*tmp “ = ‘ { / / d i g i t p r e s e n t d i s p la y r i s k c o n d i t io n

■ CO] “ *(++tm p) ;
a [l] = ’ \ 0 > ;
c o l ■ a t o i (s) ;
p r i n t f (" X s " , [dummy r i s k t x t]) ;
p r i n t f 0 'X s " , [dummy r i s k c o n d i t i o n : c o l - 1]) ;
s t r c a t (e n g l is h S tr , [d u m m y r i s k t x t]) ;
s t r c a t (e n g l i s h S t r , [dummy r i s k c o n d i t i o n : — c o l]) ; J

e l s e
p r in tf("X s" ,[d u m m y r i s k t x t]) ;

condT ieo(trap)
c h a r *tmp ;
{ / / E n g lish r e p r e s e n t a t i o n o f c o n d it io n c la u s e lo c a te d in th e t x tC l t n

id dummy ;
i n t r o s = 0 ;
i n t c o l * 0 ;

f o r (tmp++ ; *tmp >= >0 ’ U *tmp <= ’9> ; tmp++)
r o s * 10 * ro » + * tn p - *0 » ;

dummy = [t x tC l t n a t : —r o a] j
s t r c a t (e n g l i s h S t r , [dummy e x p la n a t io n]) ;
p r i n t f (" X s " , [dunmy e x p la n a t io n]) ;

A p p en d ix D 40

/ / O b je c tiv e -C so u rc e f i l e f o r th e c l a s s T i t
t in c lu d e < s td io .h >
• in c lu d e < o b jc .h >
• in c lu d e " l i b e x t r a .h "
• in c lu d e "R iskiness .h"
• r e q u i r e s S t r i n g , I n t e r f a c e , O rdC ltn ;
e x te r n t x tC l t n ;
c h a r * m a l lo c O ;

= T x t : O b jec t (R iskG roup , C o l le c t i o n , P r im it iv e)

c h a r « d ia g n o s t ic ;
chaz « e x p la n a t io n ;

}

+ add { / / The admin u s e r e n te r s B a rn in g t e x t
s e l f ■ [su p e r new] ;
p r i n t f (" E n t e r A dvice t e x t \ n ") ;
c o p y c a t() ;
d ia g n o s t i c = m a l l o c (s t r l e n (i o b u f)) ;
s t r c p y (d i a g n o s t i c , i o b u f) ;
p r i n t f (" E n t e r why t e x t ") ;
c o p y c a t() ;
e x p la n a t io n - m a l l o c (s t r l e n (i o b u f)) ;
s t r c p y (e x p la n a t io n , io b u f) ;
r e tu r n s e l f ;

>
+ amendText {

i d a t x t , b tx t ;
i n t num ;
c h a r a n s , a n s i , c o n t ;

do {
[AME1D_TIT_IUK p r i n t] ;
sca n f("X d " ,tn u m) ;
i f (nun < 1 1 1 num > [t x tC l t n s i z e])

[ERROR.TIT.IUH p r i n t] ;
e l s e { / / v a l i d num ber to amend t e x t e n te re d

b t x t » [t x tC l t n a t : —n u n];
a tx t * [T x t n e s] ;
[a tx t c o p y :b tx t] ;
[a tx t p r i n t] ;
[a tx t m a in ten a n ce] ;
[AHEID.YES p r i n t] ;
s c a n f (" X c " ,ta n s) ;
i f (a n s == >j‘ II ans == ’Y’)

[[t x t C l t n i n s e r t : a t x t b e f o r e : b tx t] r e m o v e :b tx t] ;
}
[AHEID.COITIIUE p r i n t] ;
s c a n f (" X c " ,tc o n t) ;

} w h ile (c o n t == ‘y ’ I | co n t = »TO ;
r e tu r n s e l f ;

- m a in ten an ce {
i n t num ;

w h ile (num != 0) {
[I n t e r f a c e tx tm a in te n a n c e] ;
s c a n f (" id " ,tnum) ;
sw itch(num) {

c ase 1 : / / amend t e x t A dvice (d ia g n o s t ic)
p r i n t f (" \ n \ n \ t y , s “ , [s e l f d ia g n o s t i c]) ;
[AMESD.ADVICE p r i n t] ;
c o p y c a t() ;
d ia g n o s t i c = m a l l o c (s t r l e n (i o b u f)) ;

A ppen d ix D 41

a t r c p y ([s e l f d i a g n o s t i c] , i o b u f) ;
b re a k ;

c a se 2 : / / amend t e x t why
p r i n t f (" \ n \ n \ t % s " , [s e l f e x p la n a t io n]) j
[AHEHD.VHY p r i n t] ;
c o p y c a t() ;
e x p la n a t io n = m a l l o c (s t r l e n (i o b u f)) ;
s t r c p y ([s e l f e x p la n a t io n] , io b u f) ;
b re a k ;

c a s e 0 :
b re a k ;

d e f a u l t :
[IIVALID.OPTIOI p r i n t] ;

} / / end c ase
> / / end s h i l e

>

- copy: a t x t {
i f ([a t x t d ia g n o s t i c] == BULL)

d ia g n o s t i c = m a llo c (1) ;
e l s e {

d i a g n o s t i c = m a l l o c (s t r l e n ([a t x t d i a g n o s t i c])) ;
B t r c p y (d i a g n o s t i c , [a tx t d i a g n o s t i c]) ;

>
i f ([a t x t e x p la n a tio n] =»= BULL)

e x p la n a t io n = m a l lo c (1) j
e l s e {

e x p la n a t io n * m a l l o c (s t r l e n ([a t x t e x p la n a t io n])) ;
s t r c p y (e x p l a n a t io n , [a t x t e x p la n a t io n]) ; }

r e t u r n s e l f ;
>

- p r in tO n : (JQD) anIQD {
[s u p e r p r in tO n : anIQD] ;
f p r in t f (a n I O D , " D ia g n o s tic % s \n \n \n E x p la n a tio n y,a \ n \ n \ n " ,
[s e l f d i a g n o s t i c] ,
[s e l f e x p la n a t io n]) ;
r e tu r n s e l f ;

>

- (c h a r *) d i a g n o s t i c •{
r e t u r n d ia g n o s t i c ;

y

- (c h a r *) e x p la n a t io n {
r e t u r n e x p la n a t io n ;

>
“ (c h a r •) rp tE x p {

p r i n t f C '\n \n E x p l an a t io n - X s\n ” , [3e l f e x p la n a t io n]) ;
>

A p p en d ix D

/ / O b je c tiv e -C so u rc e f i l e f o r th e c la s s R iskA utom ata
• in c lu d e " o b jc .h "
• in c lu d e “r i s k . h “
• in c lu d e "w bs.h"

• r e q u i r e s S t a te ;
• r e q u i r e s R i s k l n i t i a l S t a t a ;
• r e q u i r e s R isk S e c o n d S ta te ;
• r e q u i r e s R is k T h ird S ta te ;
• r e q u i r e s R isk F o u rth S ta te ;
• r e q u i r e s R i s k F i i t h S ta t e ;
• r e q u i r e s O rd C ltn ;

= R iskA utom ata : O b jec t(R isk G ro u p , P r i m i t i v e , C o l le c t io n)
{
//IIS T A IC E VARIABLES;

i d f i x s t S t a t e ; / / th e i n i t i a l s t a t e o f t h e au to m ata ;
id s e c o n d S ta te ; / / th e node o p e r a t io n s s t a t e o f th e au to m a ta ;
id t h i r d S t a t e ;
i d f o u r t h S t a t e ;
i d f i f t h S t a t e ;
i d c u i r e n t S t a t e ; / / th e s t a t e o f th e au to m ata b e in g e x e c u te d ;
id a u to m a ta ; / / th e a u to m a ta i n w hich th e au to m ata i s c o n ta in e d

//IBSTASCE METHODS;

I I To i n i t i a l i s e th e autom ata
I I - i n i t i a l i s e s th e s t a t e s
/ / - d e f in e each s t a t e
- i n i t i a l i s e {

[s e l f i n i t i a l i s e S t a t e s] ;
[s e l f d e f i n e F i r s t S t a t e] ;
[s e l f d e f in e S e c o n d S ta te] ;
[s e l f d e f in e T h ir d S ta te] ;
[s e l f d e f in e F o u r th S ta te] ;
[s e l f d e f in e F i f th S ta t e] ;

/ / i n i t i a l i s e s each s t a t e
- i n i t i a l i s e S t a t e s {

f i r s t S t a t e “ [R i s k l n i t i a l S t a t e new] ;
[f i r s t S t a t e a u to rna ta :s e l f] ;
s e c o n d S ta te = [R isk S e c o n d S ta te n ew];
[s e c o n d S ta te a u to m a ta :s e l f] ;
t h i r d S t a t e * [R isk T h ird S ta te new] ;
[t h i r d S t a t e a u to m a ta :s e l f] ;
f o u r t h S t a t e =* [R isk F o u r th S ta te new] ;
[f o u r th S ta te au t ornata: s e l f] ;
f i f t h S t a t e » [R is k F i i th S ta te new] ;
[f i f t h S t a t e au tom ata .-s e lf] ;

/ / d e f in e s th e s t a t e s re a c h e a b le fro m th e f i r s t s t a t e
- d e f in e F i r s t S t a t e {

i d anO rdC ltn ;
anO rdC ltn = [O rd C ltn w ith : 3 , secondS tate ,fifthS ta te ,U N D E F IN E D .S T A T E];
[f i r s t S t a t e s t a t e C o l le c t i o n : a n O rd C ltn] ;

>

/ / d e f in e s th e s t a t e s re a c h e a b le from th e second s t a t e
- d e f in e S e c o n d S ta te {

i d an O rd C ltn ;
anO rdC ltn = [O rdC ltn w ith : 3 , t h i r d S t a t e ,

Appendix D

f o n r t h S t a t e ,
f i r s t S t a t e] ;

[so c o n d S ta te s t a te C o l le c t i o n : a n O rd C ltn] ;
>

- d e f in e T h ir d S ta ta {
i d an O rdC ltn ;
anO rdC ltn *» [O rdC ltn w ith : 6 , t h i r d S t a t e ,

t h i r d S t a t e , 112
t h i r d S t a t e , / / 3
t h i r d S t a t e , / / 4
t h i r d S t a t e , / / S
se c o n d S ta te] ;

[t h i r d S t a t e s t a te C o l lo c t io n : a n O rd C ltn] ;
>

d e f in e F o u r th S ta te {
id an O rdC ltn ;
anO rdC ltn = [O rdC ltn w ith : 6 , f o n r t h S t a t e ,

f o n r t h S t a t e ,
f o n r t h S t a t e ,
f o u r t h S t a t e ,
f o n r t h S t a t e ,
se c o n d st a t e] ;

[f o n r th S ta t e s t a t e C o l le c t i o n : anO rdC ltn] ;

- d e f in e F i f t h S t a t e {
id anO rdC ltn ;
an O rdC ltn = [O rdC ltn s r i th : 6 , f i f t h s t a t e ,

f i f t h S t a t e ,
f i f t h s t a t e ,
f i f t h s t a t e ,
f i f t h s t a t e ,
f i r s t S t a t e] ;

[f i f t h s t a t e s t a t e C o l l e c t i o n : anO rdC ltn] ;

/ / lu n c h s th e a u to m a ta c u r r e n t s t a t e i f e x i s t
/ / e l s e 1nucha th e a u to m a ta f i r s t s t a t e
- e x e c u te : an O b jec t {

i f (c u r r e n tS t a t e != n i l)
[c u r r e n tS t a t e e x e c u te :

[c u r r e n tS t a t e c u r re n tO b je c t]]
e ls e

[f i r s t S t a t e e x e c u te : a n O b je c t] ;
>

I I p u t s a S ta te a s th e c u r r e n t s t a t e o f th e r e c e iv e r
/ / and a l l th e r e c e iv e r su p e r au to m a ta
- c u r r e n t S t a t e : a S ta te {

c u r r e n tS t a t e = a S ta t e ;
i f (a u to m ata !» n i l)

[a u to m ata c u r r e n tS t a t e : a S t a t e] ;
r e t u r n s e l f ;

>

- c u r r e n tS t a t e {
r e t u r n c u r r e n tS t a t e ;

}

A ppen d ix D 44

- currentObject {
r e tu r n C c u r re n tS ta te c u r r o n tO b ja c t] ;

>

- a u to m a ta : anAutom ata {
au to m a ta * anA utom ata;
r e tu r n a e l f ;

}
- au to m a ta ■(

r e tu r n a u to m a ta ;
>
- f i r a t S t a te {

r e t u r n f i r s t s t a t a ;
>
- s e c o n d s ta ta {

r e t u r n s e c o n d S ta te ;
>
- t h i r d s t a t a {

r e t u r n t h i r d S t a t e ;
>
- f o u r t h S t a t e {

r e t u r n f o u r th S ta t e ;
>
- f i f t h S t a t e i

r e t u r n f i f t h S t a t e ;
>

A ppen d ix D 45

• in c lu d e < cty p e .h >
• in c lu d e <m ath.h>
• in c lu d e " o b jc .h ”
• in c lu d e " r i s k .h "
• in c lu d e "w hs.h"
• in c lu d e " s a c _ g lo b a l .h "

• r e q u i r e s S t r in g ;
• r e q u i r e s O rd C ltn ;
• r e q u i r e s E vent ;
• r e q u i r e s R kC ltn ;
• r e q u i r e s G rap h ic ;

e x te r n G e v sc rg p h .t s c re e n ;
e x te r n Gevwdw.t cu rren tw d w ;
e x te r n Gevwdw.t fifth _ w d w ;
e x te r n G ev tab_ t c o n f irm .ta b ;
e x te r n M a t r ix . t co n firm _ m at;
e x te r n M a t r ix . t o p e rm a t;
e x te rn BOOL DELETE.FIFTH.V

G e v ic o c a r . t o p e ra t io n ic o .a d m ic o .u s r ic o ;
G e v ta b .t o p e ra t io n ta b ;
G evrow .t operationw dw ;

G ev ev t_ t e v t;
i n t eventnnm ;
i n t e n d o f jo b ;

= R is k ln .i t i a l S t a t e : S ta te (R iskG roup , P r im it i v e , C o l le c t io n)
t

//IISTAHCE METHODS;

- i n i t i a l i s e {
id aM essC ltn ;
id a n E v en tC ltn ;

/ / i n h e r i t s i t s s u p e r c la s s i n i t i a l i s a t i o n
[su p e r i n i t i a l i s e] ;

I I i n i t i a l i s e th e menu m essages
aM essC ltn = [O rdC ltn w i th :3 , ADHIBISTRATIQB.MESSAGE,

USER.MESSAGE,
qUIT.HESSAGE] ;

[s e l f e v en tM e ssa g e C o lle c tio n : aM essC ltn] ;

/ / i n i t i a l i s e th e c o rre sp o n d in g e v e n ts
an E v en tC ltn = [O rd C ltn w i th :3 , [E ven t new:ADMISISTRATIOI.EVEHT],

[E vent new:USER_EVEST],
[E ven t new:QUIT_EVE«T]];

[3e l f e v e n tC o l le c t io n : a n E v e n tC ltn] ;

I I t h i s i s a menu
[3e l f typeOfResponse:CHOICE_II_MEHU];

>

- d i s p la y {

[G rap h ic o p e ra tio n .w d w];
i± (DELETE.FIFTH.VIIDOM)

G evscrg p h _ rem _ w in d o w (screen ,fifth _ w d w);

>

A p p en d ix D 46

/ / s t a y w ith H indoo u n t i l co n firm ed yes
I I i f no s e l e c t i o n i s made o p e n .c a lO d e f a u l t i s u se d
- read {

eventnum = 1 ;
e n d o f jo b = GEV.FALSE;
w h ile (e n d o fjo b != GEV.TRUE) {

e v t = G e v sc rg p h _ w a it_ e v e n t(s c re e n) ;

i f (Gevevt_get_wdw(ert) == GevwdB.get.BdB(currentBdB)) {
i f (Geyevt_get_typ(eyt) = GEV.SELECTED) {

i f (G e y o b j_ e q (G e v e v t_ g e t_ b o to b j(e y t) ,H a tr ix _ e n try (o p e rm a t, 1 ,1))) {
eventnum * 0 ;

G e v c h x .d e s e le c t(M a tr ix .e n try (o p e rm a t , 2 ,1)) ;
>
e l s e i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) ,M a t r ix _ e n t r y (o p e r m a t ,2 , l))) •[

eventnum = 1 ;
G e v c h x .d e s e le c t(M a tr ix .e n try (o p e rm a t , 1 , 1)) ;

>
e l s e i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) ,M a tr ix _ e n try (c o n f irm _ m a t, 1 ,1))) {

i f (eventnum == 0) {
G evscrg p h _ rera_ v in d o w (sc reen , c u r r e n t s d s) ;
e n d o fjo b = GEV.TRUE;

>
e l s e i f (eventnum = 1) {

G e v sc rg p h .re m _ w in d o w (sc ree n ,c u rren tB d s);
e n d o fjo b = GEV.TRUE;

>
>
e l s e i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) ,M a tr ix _ e n try (c o n f irm _ m a t, 1 , 2))) {

I I u s e r i s c lo s in g down remember to u p d a te f i l e s
eventnum = 2 ;
G evscrgph_rem _w indow (screen , c u r re n tw d s) ;
en d o fjo b = GEV.TRUE;

>
>

}
>

- t r e a t ■{
[s u p e r t r e a t G : ev en tn u m];
sw itc h ([e v e n t num ber]) {

case ADMIIISTR4TI0I.EVEIT :
b re a k ;

c a se USER.EVEIT :
b re a k ;

c ase qUXT.EVEIT :
[R kC ltn closeDown] ; / / w r i te d a ta o b je c t s o n to r i s k
e x i t (0) ; / / a n d r u l e c o l l e c t io n s
b re a k ;

}
r e tu r n s e l f ;

A ppen d ix D 47

/ / O b je c tiv e -C so u rc e f i l e l o r th e c l a s s R isk S ec o n d S ta te
• in c lu d e " o b jc .h "
• in c lu d e “r i s k . h "
• in c lu d e "w bs.h"

• r e q u i r e s E r r o r ;
• r e q u i r e s E v e n t;
• r e q u i r e s S t r i n g ;
• r e q u i r e s O rd C ltn ;
• r e q u i r e s Sequence ;
• r e q u i r e s I n t e r f a c e ;

e x te r n BOOL VALID ;
e x te r n i d r i s k C l tn ;

= R isk S eco n d S ta te : S ta te (R isk G ro u p , P r im i t i v e , C o l le c t io n)
{
//IIST A IC E VAKIABLES;
>
//IIST A IC E METHODS;

- i n i t i a l i s e {
id a n E v e n tC ltn ;
i d aM essC ltn ;

/ / i n h e r i t s i t s s u p e r c la s s i n i t i a l i s a t i o n
[su p e r i n i t i a l i s e] ;

/ / i n i t i a l i s e th e menu m essages
aM essC ltn =» [O rd C ltn w i th :3 , EXIT_HESSAGE,

RULE.HESSAGE,
RISK_HESSAflE] ;

[s e l f e v en tM e ssa g e C o lle c tio n : aM essC ltn] ;

/ / I
//2
//0

- d i s p la y {
menuops = [I n t e r f a c e ad m in sc r] ;
r e tu r n s e l f ;

>

/ / C a l l s th e t r e a tm e n t c o rre sp o n d in g to th e e v en t

- t r e a t {

[su p e r t r e a t] ;

s n i t c h ([e v e n t num ber]) {

c a se RISKDRIVER.EVEIT :
/ / [s e l f r i s k d r i v e r . o p] ;

b re a k ;

c ase RULE.EVEIT :
/ / [s e l f r u l e _ o p] ;

b re a k ;

/ / i n i t i a l i s e th e e v e n ts
an E v en tC ltn = [O rd C ltn new];
[a n E v e n tC ltn add : [E ven t new:RULE_EVEIT]] ;
[a n E v e n tC ltn add : [E ven t new:RISKDRIVER_EVEST]];
[a n E v e n tC ltn add : [E ven t new:EXIT_EVEIT]];
[s e l f e v e n tC o l le c t io n : a n E v e n tC ltn] ;
/ / i t i s a menu
[s e l f typeOfResponse:CHOICE_II_MEHU];

A ppen d ix D 48

c a se EIIT.EVEBT:
I I e x i t (O) ;

b re a k ;
>
r e tu r n s e l f ;

A ppen d ix D 49

/ / O b je c tiv e -C so u rc e f i l e f o r th e c l a s s R is k T h ird S ta te
• in c lu d e " o b jc .h "
• in c lu d e " r i s k .h "
• in c lu d e ‘‘w bs.h"

• r e q u i r e s E r r o r ;
• r e q u i r e s E v e n t;
• r e q u i r e s S t r i n g ;
• r e q u i r e s O rd C ltn ;
• r e q u i r e s Sequence;
• r e q u i r e s R isk ;
• r e q u i r e s I n t e r f a c e ;

e x te r n r i s k C l tn ;

= R isk T h ird S ta te : S ta te (R isk G ro u p , P r im i t i v e , C o l le c t io n)
{
/ I IJSTAHCE VARIABLES;
>
I I IISTAICE METHODS;

- i n i t i a l i s e {
id aM essC ltn ;
i d a n E v en tC ltn ;

/ / i n h e r i t s i t s s u p e r c la s s i n i t i a l i s a t i o n
[su p e r i n i t i a l i s e] ;
aM essC ltn = [O rd C ltn B i th : 6 , EIIT.MESSAGE,

ADD_RD_MESSAGE,
DELETE_RD_MESSAGE,
VIEtf.RD.HESSAGE,
AMEID_RD_MESSAGE,
LIST_RD_HESSAGE] ;

[s e l f e v e n tH e s sa g e C o lle c t io n : aM essC ltn] ;

an E v en tC ltn * [O rd C ltn new];
[an E v e n tC ltn add : [E ven t new: ADD.EVEHT]] ;
[an E v e n tC ltn add : [E ven t new:DELETE_EVEHT]] ;
[a n E v e n tC ltn add: [E ven t new:VIEV_EVEBT]];
[an E v e n tC ltn add : [E ven t new:AMEID.EVEHT]];
[an E v e n tC ltn add : [E vent new:LIST_EVEHT]] ;
[a n E v en tC ltn add : [E ven t new:EXIT_EVEHT]];
[s e l f e v e n tC o l le c t io n : a n E v e n tC ltn] ;

[s e l f typeOfResponse:CHOICE_II_M EIU];

- add {
i d aR isk ;
aR isk = [R isk c r e a te] ;
[r i s k C l tn ad d :a R isk] ;
r e tu r n s e l f ;

>
- d e le t e {

[R isk d e le t e] ;
r e tu r n s e l f ;

>
- amend {

[R isk amend] ;
r e tu r n s e l f ;

>

A ppendix D 50

- vi«W {
[R isk view] ;
r e tu r n s e l f ;

>
- l i a t {

[Risk li3t] ;
return self ;

>
- d i s p l a y {

menuops ” [I n t e r f a c e r i a k a c r] ;
r e t u r n s e l f ;

>

/ / C a l l s th e t r e a tm e n t c o rre sp o n d in g to th e e v en t

- t r e a t {

[su p e r t r e a t] ;

sw itc h ([e v e n t num ber]) {
c a se ADD_EVEIT :

[s e l f a d d] ;
b re a k ;

c a s e DELETE.EVEIT :
[s e l f d e le t e] ;
b re a k ;

c a se VIEW.EVEIT :
[s e l f v iew] ;
b re a k ;

c a se AHEID.EVEIT :
[s e l f am end];
b re a k ;

c a se LIST.EVEIT :
[s e l f l i s t] ;
b re a k ;

c a s e EXIT.EVEIT:
/ / e x i t (0) ;

b re a k ;
>
r e tu r n s e l f ;

>

A ppen d ix D

/ / O b je c tiv e -C so u rc e f i l e f o r th e c l a s s R isk F o u rth S ta te
♦ in c lu d e " o b jc .h “
• in c lu d e " r i s k .h "
• in c lu d e "w bs.h"

• r e q u i r e s E r r o r ;
• r e q u i r e s E v en t;
• r e q u i r e s S t r in g ;
• r e q u i r e s O rd C ltn ;
• r e q u i r e s Sequence;
Q re q u ire s R ule ;
• r e q u i r e s T xt ;
• r e q u i r e s R isk ;
• r e q u i r e s I n t e r f a c e ;

e x te r n r u l e C l t n , t x tC l t n ;
e x te r n VALID ;

= R isk F o u rth S ta te : S ta te (R isk G ro u p , P r i m i t i v e , C o l le c t io n)

{
//IHSTAICE VARIABLES;

//H ST A IC E METHODS;

- i n i t i a l i s e {
id aM essC ltn ;
id a n E v en tC ltn ;

I I i n h e r i t s i t s s u p e r c la s s i n i t i a l i s a t i o n
[su p e r i n i t i a l i s e] ;

aH essC ltn = [O rd C ltn w i th : 6 .EIIT.MESSAGE,
ADD.MESSAGE,
DELETE.HESSAGE,
VIEtf.MESSAGE,
AMEIDJiESSAGE,
LIST.MESSAGE] ;

[s e l f e v e n tH e s sa g e C o lle c t io n : aH essC ltn] ;

/ / i n i t i a l i s e th e e v e n ts

an E v en tC ltn = [O rd C ltn new];
[an E v en tC ltn add : [E vent n e o :ADD.EVEHT]] ;
[a n E v en tC ltn add : [E vent n e 9 :DELETE_EVEHT]];
[a n E v en tC ltn add : [E ven t ne»:VIEV„EVEST]];
[an E v en tC ltn add : [E ven t n es : AHElfD.EVElT]] ;
[an E v e n tC ltn add : [E ven t n e v :LIST.EVEHT]] ;
[a n E v en tC ltn add : [E ven t ne»:EXIT_EVEBT]];
[s e l f e v a n tC o l le c t io n : a n E v e n tC ltn];

[s e l f typeOfResponse:CHOICE_II_MEHU] ;

- add {
[R ule c r e a te] ;

i f (VALID) / / Check t h a t R u les e n te re d c o rre sp o n d
[R isk v a l i d a t e] ; / / t o a r i s k d r i v e r c o n d it io n

i f (VALID) I I I f R u les a re v a l i d e n te r to R uleB ase
[R ule add] ;

r e tu r n s e l f ;
}
- d e le t e {

A ppend ix D 52

[R u le d e la t e] ;
r e tu r n s e l f ;

>
- amend {

[R u le amend] ;
r e t u r n s e l f ;

>
- view {

[R ule v ie s] ;
r e tu r n s e l f ;

>
- l i s t {

[R u le l i s t] ;
r e tu r n s e l f ;

>
- d i s p la y {

menuops = [I n t e r f a c e r u l e s c r] ;
r e tu r n s e l f ;

}

/ / C a l l s th e t r e a tm e n t c o r re s p o n d in g to t h e e v en t
- t r e a t {

[su p e r t r e a t] ;

s w itc h ([e v e n t num ber]) {
c a s e ADD.EVEIT :

[s e l f a d d] ;
b re a k ;

c a s e DELETE_EVEIT :
[S e l f d e l e t e] j
b re a k ;

c a s e VIEW-EVEIX :
[s e l f v iew] ;
b re a k ;

c a s e AHEID.EVEIT :
[s e l f am end];
b re a k ;

c a se LIST.EVEIT :
[s e l f l i s t] ;
b re a k ;

c a se EXIT.EVEIT:
b re a k ;

}
r e tu r n s e l f ;

}

A ppen d ix D

/ / O b je c tiv e -C so u rc e f i l e f o r th e c l a s s R is k F if th S ta te
• in c lu d e <math.h>
• in c lu d e " o b jc .h "
• in c lu d e " r i s k .h "
• in c lu d e "w bs.h"
• in c lu d e 's a c .g lo b a l .h

(r e q u i r e s E r r o r ;
• r e q u i r e s E v e n t;
(r e q u i r e s S t r in g ;
(r e q u i r e s O rd C ltn ;
(r e q u i r e s S eq u en ce ;
(r e q u i r e s G rap h ic ;
(r e q u i r e s R isk ;
(r e q u i r e s R ule ;
(r e q u i r e s U ser ;

e x te r n
e x te r n
e x te r n
e x te r n
e x te r n
e x te r n
e x te r n

BOOL DELETE_FIFTH_WIHDOH ;
BOOL VALID ;
id r i s k C l tn ;
G evscrgph_ t s c re e n ;
Gevwdw_t cu rren tw dw ;
M a t r ix . t u se ro p s_ m a t;
G e v ico c a r_ t c o n f irm ic o , a b o r t i c o ;

Gevwdw_t
Gevwdw.t
Gevwdw_t
G e v e v t . t

re su lt_ w d w s [10] ;
aResultWdw;
f if th .w d w ;
e v t ;

i n t en d o fjo b ;
i n t eventnum ;
i n t res_w dw _idx = 0 ;

= R is k F i f th S ta te : S ta te (R isk G ro u p , P r im i t i v e , C o l le c t io n)
{
/ / n o IISTAICE VARIABLES
>
- i n i t i a l i s e {

id a n E v en tC ltn ;
id aH essC ltn ;

/ / i n h e r i t s i t s s u p e r c la s s i n i t i a l i s a t i o n
[su p e r i n i t i a l i s e] ;

aH essC ltn = [O rdC ltn w i th : 6, EXIT.HESSAGE,
USER_RISXDRIVER_HESSAGE,
USER_RULE_MESSAGE,
USER_AMEID_RISKDRIVER_MESSAGE,
USER_AHEID_ALL_RISKDRIVER_HESSAGE,
USER_RESULTS_MESSAGE] ;

[s e l f e v e n tH e ssa g e C o lle c t io n : aH essC ltn] ;

/ / i n i t i a l i s e th e e v e n ts
an E v en tC ltn = [O rd C ltn n e w];
[a n E v e n tC ltn add : [E ven t new:USER_RISKDRIVER_EVEBT]];
[a n E v e n tC ltn add : [E ven t new:USER_RULE_EVEHT]];
[a n E v e n tC ltn add: [E ven t new:USER.AMEHD_RISKDRIVER_EVEHT]];
[a n E v e n tC ltn add: [E vent new:USER.AHEHD_ALL_RISKDRIVER_EV£HT]] ;
[a n E v e n tC ltn add : [E ven t new:USER_RESULTS]];
[a n E v e n tC ltn add: [E ven t new:EXIT_EVEHT]];
[s e l f e v e n tC o l le c t io n : an E v en tC ltn] ;

[s e l f typeO fR esponse:C H 0IC E_II HEBU];
>

A ppen d ix D

- r i s k d r i v e r .v ie w {
[R isk v i e s] ;
r e tu r n s e l f ;

>

- ru le _ v ie w {
[R u le v iaw l] ;
r e t u r n s e l f ;

}

- a m e n d .r is k d r iv e r {
[R isk a m e n d _ r isk _ d r iv e r] ;

r e t u r n s e l f ;
>

- a m e n d .a l l_ r i s k d r iy e r {
[U ser a llU s e r lO] ;
r e tu r n s e l f ;

>

- r e s u l t s {
[U ser r e s u l t s] ;
r e tu r n s e l f ;

}

- d i s p la y {
i n t k ;
[G rap h ic u se ro p s .w d w];
k = 0 ;

w h ile (k < res_w dw _idx)
G ev sc rg p h _ rem _ w in d o w (screen ,resu lt_ w d w s[k + +]);

res_w dw _idx = 0 ;
r e tu r n s e l f ;

>

- r e a d {
i n t i = 1 J
i n t j ;
i n t VALUE = 0;
BOOL FOUID = 10 ;

e n d o fjo b = GEV.FALSE ;
w h ile (e n d o fjo b != GEV_TRUE) {

e y t = G e v s c r g p h .w a i t .e v e n t (s c r e e n) ;
i f (G evevt_get_w dw (ev t) = Gevwdw_get_wdw(currentwdw)) {

i f (G e v e T t_ g e t_ ty p (e v t) = GEV.SELECTED) {
i f (G e v o b j_ e q (G e v e rt_ g e t_ b o to b j(e » t) , c o n f irm ic o)) {

i f (VALUE == 0) I I c o n firm w ith o u t s e l e c t i o n
eventnum = 0 ; / / ic o one i s u se d a s d e f a u l t

G ev scrg p h _ rem _w indow (screen ,cu rren tw dw);
en d o fjo b = GEV.TRUE ;

>
e l s e i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) , a b o r t i c o)) {

eventmim = 5 ;
f i f th .w d w = cnrrentw dw ;
DELETE_FIFTH_VI8D0V = YES;
en d o fjo b = GEV_TRUE ;

>
>
e l s e {

i = 1 ;
FOUSD = 10;
w h ile ((i <= S) k t (! F0UHD)) {

i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e y t) , H a tr ix _ e n try (u s e ro p s _ m a t ,i+ + ,1))) {
VALUE = — i ;
j = VALUE - 1;

A p p en d ix D 55

w h ile (j > 0)
Q e v c h x .d e s e le c t(M a tr ix .e n try (u s e ro p s j n a t , j — , 1)) ;

j = VALUE + 1;
w h ile (j <= 5)

G e v c h x _ d e se le c t(H a tr ix _ e n try (u se ro p s _m at, j + + , l)) ;
FOUID » YES;

eventtm m * — VALUE;
}

}
>

>
>

}

- t r e a t {
[s u p e r t r e a t s : eventm un] ;

sw itc h ([e v e n t num ber]) {

c a se USER.RISKDRIVER.EVEST ;
[s e l f r i s k d r i v e r . v i e w] ;
b re a k ;

c a se USER_RULE_EVEIT :
[s e l f ru le _ v ie w] ;
b re a k ;

c a s e USER_AHEHD_RISKDRIVER_EVEIT :
[s e l f a m e n d _ r isk d r iv e r] ;
b re a k ;

c a se USER_AMEMD_ALL_RISKDRIVER_EVEIT :
[s e l f a m e n d _ a l l_ r is k d r iv e r] ;
b re a k ;

c a se USER.RESULTS ;
[s e l f r e s u l t s] ;
b re a k ;

c a se EIIT.EVEST:
b re a k ;

>
r e tu r n s e l f ;

A p p en d ix E
Calendar Tool

Classes

A ppen d ix E

• i n c l u d o < s t d io . h >
• i n c l u d e < o b jc . h >
• i n c l u d a < m a th .h >
• i n c l u d e " s a c _ g lo b a l . h "

• i n c l u d e " m a in .h 11
• i n c l u d e " s b s . h "
• i n c l u d e " c a l . h "

e x te r n i n t e r m o ;
e x te r n FILE * y y in ;

id a n E v en tD ateC ltn ;
i d aCALLoad;

• r e q u i r e s C a lA u to rn a ta ;
• r e q u i r e s C A LL o a d ;
• r e q u i r e s I S ;
• r e q u i r e s S t r i n g ;
• r e q u i r e s O r d C lt n ;
• r e q u i r e s G r a p h ic ;
i d a n A u to rn a ta ;
s t a t i c STR a a T in g F i le la m e ■ " c a l . i o " ;

P o s_ t p o s i t io n ;
S i z . t t a i l l e ;
R p o s.t r p o s i t i o n ;
R s iz _ t r t a i l l e ;
H a t r i x . t r iB k ta b ;
G e v lif t _ t l i f t h o r , l i f t v e r ;
G ev tab_ t c a l to p ta b ;
GevHdn_t c u rre n to d w ;

G e v sc rg p h .t s c re e n ;
G e v ic o c a r . t c a lh e lp ic o ;
G e y ico c a r_ t n o t i t l e ;
G e y ic o c a r . t t i t l e i c o ;
G e v ico c a r_ t b o tto m , n o t i t l e ;
G e T ic o c a r .t t oidico;

/ / t a b l e s t o h o ld m a tr ix
G evtab_t c o n f irm ta b , co n f t o p t a b ;
G e rta b _ t r i s k t o p ta b ;

G ovron_t so m eo b jec t ;
G e»roo_t c o n d i t io n s , c o n d i t io n ;
G «yro«_t to p , t o p r ig h t ;

G evddu.t t e s t s d s ;
G evscrgph_t s c re e n ;
G evspa_t S p ace , b o x ed sp ace ;

G eyros_ t e r ro r_ m sg _ ro n ;
Germsg_t e r r o r jn s g ;
G evev t_ t e v t ;

G e v l i f t_ t v o i d l i f t ;
R p o s.t p i , p 2 , p3;
L ls _ t c o u p le s ;
S iz _ t t a i l l e ;
Poa_ t p o s i t io n ;

M a t r ix . t v o id m a tr ix ;

i n t e n d o fjo b ;

A ppen d ix E

= (C a l3 ro u p , P r im i t i v e .C o l le c t i o n)

mainC axgc , a rg v)
i n t a rg c ;
c h a r » a rg v [] ;

e x te r n BOOL m sgF lag ;
i d b a s e ;
i d m y ls ;

i f (* a rg v [l] » Jt>)
nm gFlag * YES;

i f (s t r c m p (a r g v [2] !=* 0) {
b a se = [S t r i n g s t r '. " d a ta b a s e "] ;

[b a se c o n c a tS T R :a rg v [2]] ;
>
e l s e {

p r in tf (" Y o u m ust e n te r th e d a ta b a s e nam e\n“) ;
[IS i n t e r p r e t : " q u i t "] ;

>

c r e a t e . f i f o O ;

[IS i n t e r p r e t : [b a se s t r]] ;

aCALLoad a [CALLoad n ew];
[aCALLoad loadD H];

[G rap h ic c r e a t e] ;
anA utom ata ■ [C alA utom ata readFrom : sa v in g F ile H a m e];

i f (anA utom ata =* n i l) {
anA utom ata = [C alA utom ata new];
[anA utom ata i n i t i a l i s e] ;
[anA utom ata e x e c u te : n i l] ;

>
e l s e

/ / lu n c h th e s a v e d a u to m a ta s t a t e
[anA utom ata e x e c u te : n i l] ;

>

c r e a t e _ f i f o O
{
chax ♦ s e l f . f i f o = " / t m p / s e l f _ f i f oXXXXXX" ,+ak tem pO ;
i n t d;

mXnod((a e l f _ f i f o = m k te m p (s e lf _ f i f o)) , 0010600, 0) ;
d = o p e n (s e l f _ f i f o , 0_RDVR|0_IDELAY,0);

c l o s e (d) ;
y y in ® f o p e n (s e l f _ f i f o , " r + ") ;

>

s a v e O
{

/ / sav e th e a u to m a ta s t a t e on f i l e sa v in g F ile la m e
[anA utom ata s to re O n : s a v in g F i le la m e] ;

>

S c la s s e s (A s c i iF i l e r)
•m e ssag e s()

A ppen d ix E 3

• in c lu d e < o b jc .h >
• in c lu d e < c ty p e .h >
• in c lu d e " d a te .h "

e x te r n lo n g d a te s c a l e ;
e x te r n i d d a te C l tn ;
e x te r n lo n g lo n g d a te ;
e x te r n i d d a te S t r C l tn ;
e x te r n i d aCALLoad ;

• r e q u i r e s S t r i n g ;
• r e q u i r e s O rdC ltn ;
• r e q u i r e s IS ;

= D ate : O b jec t (C alG roup , P r im it iv e)

lo n g day_num ber; / / days s in c e Jan 1 s t 1970
BOOL d a y .im p o r ts ;
BOOL d ay _ p ro d u c ts ;
BOOL d a y .m e e tin g s ;
BOOL d a y .p e r s o n n e l ;
BOOL d ay _ w o rk _ in _ p ro g re ss ;
i d a n lm p o r tC ltn ;
i d a P ro d u c tC ltn ;
i d a P ro g re s s C ltn ;
i d a H e e tin g s C ltn ;
i d a P e rso n n e lC ltn ;

>
+ dum uy {

i d tmp;
tmp = [s e l i n e w];
r e tu r n tmp;

>

/ /C r e a te a new d a te by u s in g th e s u p e r c la s s ’new’ m ethod
+ c r e a te { / / D e fa u lt t o c r e a te in s ta n c e o f d a te w hich e q u a ls sy s tem d a te

i d new date ;
g e ttim e o fd a y (i t im e s ig n a l .J t t im e d i f f) ;
new date = [s e l f new];
[new date d a y .n u m b e r : t im e s ig n a l .tv _ s e c] ;
[new date d a y . im p o r t s :10] ;
[new date d a y .p r o d u c ts :10] ;
[new date d a y .m e e t in g s :I0] ;
[new date d a y _ p e rso n n e l:IO] ;
[new date d a y _ w o rk _ in _ p ro g re ss :IO] ;
r e tu r n new date ;

>

/ / allows the U3e t o specify the date instance
+ create:(long)mart2 {

id newdate ;
newdate = [self new] ;
[new date d a y .n u m b er:m art2] ;
[new date d a y . im p o r t s : IQ] ;
[new date d a y .p r o d u c ts : I 0] ;
[new date d a y _ m ee tin g s:IQ] ;
[new date d a y .p e r s o n n e l :10] ;
[new date d a y _ w o rk _ in _ p ro g re ss :S 0] ;
r e tu r n new date ;

>

+ (S T R)p lu sD ate : (lo n g) a S c a le {
i d a lew D ate;
c h a r a S trD a te [1 4] ;

alew D ate = [s e l f n e w];
[alew D ate d ay .n u m b er: a S c a l e] ;

A ppen d ix E

s t r c p y (a S t r D a te , [aSewData c o n v e r t_ to _ d ig i t]) ;

r e tu r n a S trD a te ;
>

- (S T R)c o n v e r t_ to _ d ig i t {
c h a r a S trD a te [14] ;

s t r c p y (a S t r D a te , [[S t r i n g s p r i n t i :"y,d", [s e l f y e a r]] s t r]) ;
s t r c a t (a S t r D a t e , ;
i f ([s e l f m onth] <10)

s t r c a t (a S t r D a t e , " 0 ") ;
s t r c a t (a S t r D a t e , [[S t r i n g s p r i n t i : " X d " , [s e l f m onth]] s t r]) ;
s t r c a t (a S t r D a t e , " - ") ;
i f ([s e l f day inH on th] <10)

s t r c a t (a S t r D a t e , " 0 ") ;
s t r c a t (a S t r D a t e , [[S t r i n g s p r i n t i ¡ " W , [s e l f day inM onth]] s t r]) ;

r e tu r n a S trD a te ;

+ fo rw a rd {
i d d a t e ;
lo n g l a s t d a t e ;

d a te = [d a te C ltn la s tE le m e n t] ;
l a s t d a t e “ [d a te d ay .num ber] ;
l a s t d a t e += d a te s c a l e ;
[d a te C ltn re m o v e F irs t] ;
[d a te C ltn a d d :[D a te c r e a t e ¡ l a s t d a t e]] ;
r e tu r n s e l f ;

>

+ b ack {
i d d a te ;
lo n g f i r s t d a t e ;

d a te = [d a te C ltn f ix s tE le m e n t] ;
f i r s t d a t e * [d a te day_num ber] ;
f i r s t d a t e -= d a te s c a l e ;
[d a te C ltn rem oveL ast] ;
[d a te C l tn a d d F i r s t : [D ate c r e a te : f i r s t d a t e]] ;
r e tu r n s e l f ;

+ (i n t) e s ta b lish _ m o n th : (c h a r *) d a te S t r {
c h a r * subD ate ;
c h a r tm p S tr[1 4] ;
i n t d a te le n , i = 0 , j = 0 ;
BOOL FOUID = 10 ;

subD ate = d a te S t r ;
d a te l e n = s t r l e n (d a t e S t r) ;
w h i le ((! is a lp h a (* s u b D a te)) U i++ < d a te le n)

snbDate++ ;
i f (i > d a te le n)

p r i n t f (" E r r o r m onth s t r n o t fo u n d \n ") ;
e l s e {

w h ile (i s a lp h a (» s u b D a te))
tm p S tr[j+ +] = *subD ate++ ;

tm p S tr [j] = > \0 ’ ; >
i = 0 ;
w h ile (IFOUID t t 1< 12) {

i i (strcm p 2 (tm p S tr,m o n th _ n a iiie [i+ +]) ==0)
FOUID = YES ;

}

A ppen d ix E

if(FOUID)
r e tu r n — i ;

e l s e
r e tu r n 13 ;

>

+ (i n t) e s t a b l i s h .d a y : (c h a r ») d a te S t r {
c h a r * subD ate ;
c h a r tm p S tr[1 4] ;
i n t d a te l e n , i = 0 , j = 0 ;
BOOL FOUID » 10 ;

subD ate = d a te S t r ;
d a te l e n » s t r l e n (d a t e S t r) ;
w h i l e ((! i a d ig i t (» s u b D a te)) kk i++ < d a te le n)

subD ate++ ;
i f (i > d a te le n)

p r i n t f (" E r r o r day n im ber n o t fo u n d \n ") ;
e l s e {

w h i le (i s d ig i t (» s u b D a te) kk i-H- < d a te le n)
tm p S tr[j+ +] = *subD ate++ ;
ts ip S tr [j] = > \0 ’ ;

>
r e tu r n a to i (tm p S tr) ;

}

+ (i n t) e s t a b l i s h .y e a r : (c h a r *) d a te S t r {
c h a r • subD ate ;
c h a r tm p S tr[1 4] ;
i n t d a te l e n , i = 0 , j = 0 ;
BOOL FOUID » 10 ;

subD ate = d a te S t r ;
d a te l e n = s t r l e n (d a t e S t r) ;
w h i l e ((! i s d ig i t (» s u b D a te)) Ut i++ < d a te le n)

subDate++ ;
i f (i > d a te le n)

p r i n t f (" E r r o r day n im b er n o t fo u n d \n ") ;
e l s e {

s h i l e (i s d i g i t (» s u b D a te) kk i++ < d a te le n)
subD ate++ ;

i f (i > d a te le n)
p r i n t f (" E r r o r day n im ber n o t fo u n d \n ") ;

e l s e {
w h ile ((! i s d ig i t (» s u b D a te)) kk i++ < d a te le n)

subD ate++ ;
i f (i > d a te le n)

p r i n t f (" E r r o r day n im ber n o t fo u n d \n ") ;
e l s e {

B h i le (i s d ig i t (* s u b D a te) kk i++ < d a te le n)
tm p S tr[j+ +] = *subD ate++ ;
tm p S tr [j] = ’ \ 0 ' ;

>
}

>
r e tu r n a to i (tm p S tr) ;

+ g e td a te s {
i n t i = 0;
i d d a te S e q ;
i d aD ate;
i d d a te ;
i d d a te S t r ;

d a te S t r C l tn = [O rd C ltn n e w];
w h ile (i+ + < 31) {

A p p en d ix E

aD ate - [D ate c r e a te : lo n g d a te] ;
[d a te C ltn add : [D ate c r e a te '. lo n g d a te]] ;
lo n g d a te += d a te s c a l e ;

}
d a te S e q = [d a te C ltn e a c h E le m e n t] ;
w h ile (d a te = [d a te S e q n e x t]) {

d a te S t r = [S t r i n g new :1 3] ;
s p r i n t i (d a t e S t r , " Sd'/.cXd^c’/.d " . [d a t e y e a r] , ’ - ’ ,
[d a te m onth] , , [d a te d a y in H o n th]) ;
[d a te S t r C l tn a d d :d a t e S t r] ;

>
r e tu r n a e l f ;

- (c h a r *) c o n v e r t .d a t e _ t o . s t r {
i n t d a y , mon, y e a r ;
c h a r d a te S t r [1 2] , m o n S tr [3] , d a y S t r [3] , y e a r S tr [5] J

d a t e S t r [0] = ’\ 0 ’ ;
mon = [s e l f m onth] ;
day = [s e l f day inH on th] ;
y e a r = [s e l f y e a r] ;

i f (mon < 10)
a t r c a t (d a t e S t r , "0 ") ;

ito a (m o n ,m o n S tr) ;
a t r c a t (d a te S t r .m o n S t r) ;
a t r c a t (d a t e S t r , " / ") ;
i f (day < 10)

s t i c a t (d a t e S t r , " 0 ") ;
i to a (d a y ,d a y S t r) ;
s t r c a t (d a t e S t r ,d a y S t r) ;
s t r c a t C d a t e S t r , " / ") ;
i t o a (y e a r ,y e a r S t r) ;
a t r c a t (d a t e S t r ,y e a r S t r) ;
r e tu r n d a te S t r ;

>

- day .num ber: (lo n g) day 1 •[
day .num ber * d a y l;
r e tu r n s e l f ;

>

- (BOOL) d a y .im p o r ts : (BOOL) b o o l .v a l {
c h a r a S trD a te [1 2] , a le w S trD a te [12] ;
i d a C ltn ;
i n t i , j ;

a n lm p o r tc i tn = [O rd C ltn n ew];

s t r c p y (a S tr D a te , [s e l f c o n v e r t_ to _ d ig i t]) ;
s trc p y C a le w S trD a te , [D ate p lu a D a te : [s e l f day .n u m b er]+ d a t e s c a l e]) ;

a C ltn = [aCALLoad t a s X C l tn] ;

f o r (i= 0 ; i< [a C l tn s i z e] ; i-H-) {
i f ((s t r c m p (a S t r D a te ,[[[a C l tn a t : i] 3 ta r tD a te] s t r]) <= 0) t t

(s trc m p (a !e w S trD a te , [[[a C l tn a t : i] s t a r tD a te] s t r]) > 0)) {
f o r (j= 0 ; j < [[[a C l tn a t : i] consum edC ltn] s i z e] ; j++)

[a n lm p o r tc i tn a d d : [[[a C l tn a t : i] consum edC ltn] a t : j]] ;
}

>
i f ([a n lm p o r tc i tn s i z e] > 0)

d a y .im p o r ts = YES ;
e l s e

d a y .im p o r ts = 10 ;
r e tu r n d a y .im p o r ts ;

A ppen d ix E

- (BOOL) d a y .p ro d u c ts : (BOOL) b o o l .v a l {
c h a r a S t r D a te [12] , a le w S trD a te [12] ;
i d a C ltn ;
i n t i ;

a P ro d u c tC ltn - [O rd C ltn n ew];

s t r c p y (a le w S tr D a te , [D ate p lu s D a te : [s e l f day .n u m b er]+ d a t e s c a l e]) ;
s t r c p y (a S t r D a te , [s e l f c o n v e r t . t o . d i g i t]) ;

a C ltn = [aCALLoad t a s k C l t n] ;

f o r (i= 0 ; i< [a C l tn s i z e] ; i+ +) {
i f ((s t r c m p (a S t r D a te ,[[[a C l tn a t : i] ondD ate] s t r]) <= 0) t t

(s t r c m p (a ! e w S tr D a te ,[[[a C ltn a t : i] eudD ate] s t r]) > 0)) •[
[a P ro d u c tC ltn a d d : [[a C l tn a t : i] p r o d u c t]] ;

>

i f ([a P ro d u c tC ltn s i z e] > 0)
d a y .p ro d u c ts = YES ;

e l s e
d a y .p ro d u c ts = 10 ;

r e t u r n d a y .p ro d u c ts ;
>

- (BOOL) d a y .m e e tin g s : (BOOL) b o o l .v a l {
d ay _ m eetings = b o o l .v a l ;
r e t u r n d a y .m e e tin g s ;

>

- (BOOL) d a y .p e rs o n n e l : (BOOL) b o o l .v a l {
c h a r a S trD a te [1 2] , a le w S trD a te [12] ;
i d a C l t n l ;
i d a C ltn ;
i d aWork;
i n t i , j ;

a C l tn l = [O rdC ltn new] ;

s t r c p y (a le w S trD a te , [D ate p lu s D a te : [s e l f day .n u m b er]+ d a t e s c a l e]) ;
s t r c p y (a S t r D a te , [s e l f c o n v e r t . t o . d i g i t]) ;

a C ltn = [aCALLoad t a s k C l t n] ;
f o r (i= 0 ; i< [a C l tn s i z e] ; i++)

f o r (j= 0 ; j< [[[a C l tn a t : i] w orkC ltn] s i z e] ; j++) {
aWork = [[[a C l tn a t : i] w orkC ltn] a t : j] ;
i f ((s t r c m p (a S t r D a te ,[[a l io r k to D a te] s t r]) < 0) At

(s trc m p (a Ie w S trD a te ,[[a H o rk to D a te] s t r]) >= 0))
[a C ltn l a d d lfA b se n tH a tc h in g : [a lio rk resouxceH am e]] ;

}
f o r (i= 0 ; i< [a C l tn s i z e] ; i++)

f o r (j= 0 ; j < [[[a C l t n a t : i] w orkC ltn] s i z e] ; j++) {
alio rk = [[[a C l tn a t : i] w orkC ltn] a t : j] ;
i f ((s t r c m p (a S trD a te , [[a l io rk from D ate] s t r]) <= 0) t t

(s trc m p ia le w S trD a te , [[a lio rk from D ate] s t r]) > 0))
[a C ltn l a d d lfA b se n tH a tc h in g : [a lio rk resourceH am e]] ;

}
f o r (i= 0 ; i< [a C l tn s i z e] ; i++)

f o r (j= 0 ; j < [[[a C l t n a t : i] w orkC ltn] s i z e] ; j++) {
aHork = [[[a C l tn a t : i] w orkC ltn] a t : j] ;
i f ((s t r c m p (a S trD a te ,[[a V o rk from D ate] s t r]) > 0) t t

(s trc m p (a Je w S trD a te , [[a lio rk to D a te] s t r]) < 0))
[a C ltn l a d d lfA b sen tH a tch in g :[aW o rk re so u rce H a m e]] ;

>

A p p en d ix E

i f ([a C l tn l s i z e] > 0) {
a P e rso n n e lC ltn = a C l t n l ;
d a y .p e r s o n n e l = YES ;

> e ls e
d a y .p e rs o n n e l = 10 ;

r e tu r n d a y .p e rs o n n e l ;

- (BOOL) d a y .w o r k . in .p r o g r e s s : (BOOL) b o o l .v a l ■(
c h a r a S trD a te [12] , a le w S trD a te [12] ;
i d a C l tn l ;
i d a C ltn ;
i d aT ask ;
i n t i ;

a C l tn l = [O rd C ltn new] ;

s t r c p y (a le w S tr D a te , [D ate p lu s D a te : [s e l f d ay .n u m b er]+ d a t e s c a l e]) ;
s t r c p y (a S t r D a te , [s e l f c o n v e r t . t o . d i g i t]) ;

a C ltn ■ [aCALLoad t a s k C l t n] ;
f o r (i= 0 ; i< [a C l tn s i z e] ; i+ +) {

aT ask = [a C ltn a t : i] ;
i f ((s t r c m p (a S t r D a te , [[aT a sk endD ate] s t r]) < 0) tt

(s trc m p (a le w S trD a te ,[[a T a s k endD ate] s t r]) >= 0))
[a C ltn l a d d lfA b se n tH a tc h in g :[a T a sk ta s k lla m e]] ;

>

f o r (i= 0 ; i< [a C l tn s i z e] ; i+ +) ■[
aTask = [a C ltn a t : i] ;
i f ((s t r c m p (a S t r D a te ,[[a T a s k s t a r tD a te] s t r]) <= 0) tt

(s trc m p (a Ie w S trD a te , [[a T a sk s t a r tD a te] s t r]) > 0))
[a C ltn l a d d lfA b se n tH a tc h in g :[a T a sk ta sk H am e]];

}

f o r (i= 0 ; i< [a C l tn s i z e] ; i++) {
aT ask = [a C ltn a t : i] ;

i f ((s t r c m p (a S tr D a te , [[aT a sk s t a r tD a te] s t r]) > 0) tt
(s tra sp (a V e w S trD a te , [[a T a sk endD ate] s t r]) < 0))
[a C ltn l a d d lfA b se n tH a tc h in g :[a T a sk ta s k la m e]] ;

>

i f ([a C l t n l s i z e] > 0) {
d a y .w o r k . in .p r o g r e s s = YES ;
a P ro g re s s C ltn = a C l t n l ;

> e ls e
d a y .w o r k . in .p r o g r e s s = 50 ;

r e t u r n d a y .w o r k . in .p r o g r e s s ;
>

- (B O O L)exist: alam e in :a C l tn {
i n t i ;
BOOL aB ool;

aB ool = 10;
f o r (i= 0 ; i< [a C ltn s i z e] ; i++)

i f (s trc m p ([a la m e s t r] , [[a C l t n a t : i] s t r]) == 0)
aBool s YES;

r e tu r n aB ool;

- (lo n g)d ay .n u m b er { r e t u r n d ay .n u m b er; }

A ppen d ix E

- (BOOL) d a y .im p o r ts { r e tu r n d ay _ im p o rta ; >

- (BOOL) d a y .p ro d u c ts { r e t u r n d a y .p ro d u c ts ; >

- (BOOL) day .m e e tin g s { r e t u r n d a y jn e e t in g a ; >

- (BOOL) d a y .p e r s o n n e l { r e tu r n d a y .p e r s o n n e l ; >

- (BOOL) d a y .w o rk .in _ p ro g re s b { r e t u r n d ay _ w o rk _ in _ p ro g re ss

- c o rre sp o n d in g C ltn T o : aL in e {
s w itc h (a L in e) {

c a se 1 :
r e t u r n a n lm p o r tC ltn ;
b re a k ;

c a s e 2 :
r e t u r n a P ro d u c tC ltn ;
b re a k ;

c a s e 3 :
r e t u r n a P e ra o n n e lC ltn ;
b re a k ;

c a se 4 :
r e t u r n a H e e tin g s C ltn ;
b re a k ;

c a s e 6 :
r e t u r n a P ro g re s sG ltn ;
b re a k ;

>
>

- (lo n g) subday {
r e t u r n se lf-> d a y .n u m b e r - 86400;

>

/ / com pare i n s ta n c e o f D ate
- (i n t) com pare ¡bD ate {

i f (s e lf -> d a y _ n u m b e r > bD ate-> day .num ber)
r e t u m (l) j

e l s e i f (se lf-> d ay _ n u m b er ==» bD ate-> day .num ber)
r e tu m (O) ;

e l s e
r e t u r n (- l) ;

>

- (in t)L T : bD ate { / / L ess Than bD ate
i f ([s e l f com pare ¡bD ate] = -1)

r e t u r n (1) ;
e l s e

re tu rn (O) ;
>

- (in t)L E : bD ate { / / L ess th a n o r E q u a l t o bDate
i f ([s e l f com pare :bD ate] != 1)

r e t u r n (l) ;
e l s e

r e t u r n (0) ;
}

- (in t)E Q : b D ate { / / EQuals bD ate
i f ([s e l f compare ;bD ate] = 0)

r e t t u m (i) ;
e l s e

r e t u r n (0) ;
}

- (in t)Q E : bD ate { / / G re a te r th a n o r E q u a ls bD ate
i f ([s e l f com pare¡bD ate] != -1)

A ppen d ix E

r e t u r n (l) ;
a l s o

re tu m (O) ;

- (in t)G T : bD ate { / / G re a te r Than bD ata
if([s e l f co m pare :bD ate] = * 1)

r e t u r n (1) ;
e l s e

r e tu m (O) ;

/ / c o n v e r t th e c a le n d a r d a te (i . e . 1 9 8 9 -0 2 -1 6) in to a lo n g
+ (lo n g) c o n v e r t_ d a te _ to _ lo n g : (STR) a D a te S tr {

c h a r tm p [S] ;
i n t j = 0 ;
i n t i = 0 ;
i n t d a y , m onth , y e a r ;
i n t le a p y e a r s ;
lo n g d a teasL o n g ;

w h ile (a D a te S t r [i] != ’ - ’)
tm p[j ++] = a D a te S t r [i+ +] ;

tm p [j] = ’ \ 0 J ;
y e a r = a to i(tm p) ;

i+ + ;
j = 0 ;
w h ile (a D a te S t r [i] != ’ - ’)

tm p[j+ +] = a D a te S t r [i+ +] ;
tm p [j] = ’ \ 0 ' ;
m onth * a to i (tm p) ;

i+ + ;
j = 0;
w h ile (a D a te S t r [i])

tm p[j+ +] = a D a te S tr [i+ +] ;
tm p [j] = ’ VO»;
day = a to i (tm p) ;
le a p y e a r s = (y e a r - 1968) / 4 ;
y e a r - » 1970;

d a te asL o n g = ((y e a r * 31536000) + (m onth * 86400) + (— day * 86400) + (le a p y e a r s * 86400))

r e tu r n d a teasL o n g ;
>

/ / c o n v e r ts a lo n g in to a d a te w hich h as yyyy-mm-dd fo rm at
+ (STR) lo n g _ as_ D a te : (lo n g) lo n g d a te fo rm a t {

c h a r d a te S t r [1 2] ;
i d new date ;

new data = [s e l f new];
[new date d a y „ n u m b e r¡ lo n g d a te fo rm a t] ;
s t r c p y (d a t e S t r , [new date c o n v e r t _ to _ d i g i t]) ;

r e tu r n d a te S t r ;
>

I I Answer a d a te t h a t i s an I n t e g e r number o f days a l t e r th e r e c i e v e r
- (c h a r O ad d D ay s: (i n t) a n ln te g e r {

lo n g tem p ;
c h a r * dayson ;
temp = 86400 * a n ln te g e r + se lf-> d a y .n u m b e r ;
d ayson = c tim e (tte m p) ;

A ppen d ix E

r e tu r n d ayson ;
}

/ / s u b tra c tD a y s : R e tu rn s th e d a te t h a t i s an in te g e r number o f
/ / days b e fo re th e r e c e iv e r d a te .
- (c h a r *) s u b t r a c tD a y s : (i n t) a n ln te g e r {

lo n g temp ;
c h a r • day sb ack ;

temp = se lf-> d ay _ n u m b er - (86400 * a n ln te g e r) ;
d ay sb ack = c tim e (tte m p) ;
r e t u r n d ay sb ack ;

>

/ / day : th e num ber o f days from th e r e c e iv e r to Ja n u a ry 1 1970
- (i n t) d a y {

i n t days_from _1970 ;
days_from _1970 * se lf -> d a y .n u m b e r / 86400 ;
r e tu r n days_from _1970 ;

}

I I d ay ln d ex : Answer a number fro m 1 to 7 i n d ic a t i n g th e weekday
/ / num ber o f th e r e c i e v e r
- (in t) d a y ln d e x {

i n t d a y .in d e x ;
d ay _ in d ex = (([s e l f day] % 7) + 1) ;
r e tu r n d ay _ in d ex ;

>

/ / daylam e : Answer th e name o f week day o f th e r e c i e v e r
- (c h a r *)daylam a ■[

/ / r e t u r n d a y _ n a m e [[se lf d a y ln d e x]] ;
d a te S t = lo c a ltim e (fc se lf -> d a y .n u m b e r) ;
r e t u r n day .nam e[dateS t-> tm _w day + 1] ;

}

- (lo n g)m in : (lo n g)m a g n itu d e {
p r i n t f (" m i n i : \ n ") ;
i f (s e lf -> d a y .n u m b e r < m agn itu d e)

r e tu r n se lf-> d ay _ n u m b er ;
e ls e

r e tu r n m ag n itu d e ;
}

/ / Y ear : R e tu rn s th e y e a r a s an i n te g e r t o r e c i e v e r D ate
- (i n t) y e a r {

d a te S t = lo c a ltim e (fc se lf -> d a y .n u m b e r) ;
r e tu r n d a te S t - > tn wy e a r + 1900 ;

>

/ / Month : R e tu rn s th e month as an i n te g e r to r e c i e v e r D ate
- (i n t) m onth {

d a te S t = lo c a l tim e (» s e lf -> d a y .n u m b e r) ;
r e tu r n dateSt->tm _m on + 1 ;

>

/ / daysInH on th : R e tu rn s th e number o f days i n th e r e c e iv e r month
- (i n t) daysInM onth {

i n t l e a p = 0 ;
i n t tem p ;

temp = [s e l f m onth] ;
i f (tem p == 2)

le a p = le a p y e a r s (d a te S t-> tm _ y e a r + 1900) ;
r e tu r n m o n th .index[tem p+ 1] - m onth in d ex [tem p] + le a p ;

}

/ / dayinM onth : R e tu rn s th e dayinM onth a s an i n te g e r t o r e c i e v e r D ate

A p p en d ix E

- (i n t) dayinM onth {
d a te S t = lo c a ltim e (fc se lf -> d a y .n u m b e r) ;
r e tu r n dateS t-> tm _m day ;

>

/ / dayO fY ear : R e tu rn s th e number o f d ay s i n th e r e c i e v e r s y e a r
- (i n t) dayO fY ear {

r e t u r n m o n th _ in d e x [[s e l f m onth]] + [s e l f dayinM onth] - 1 ;
}
/ / d ay sL eftln M o n th : R e tu rn s th e days re m a in in g in th e r e c e iv e r s m onth
- (i n t) d ay sL eftln M o n th {

i n t l e a p 3 0 ;
d a te S t = lo c a ltim e (ts e lf -> d a y _ n u m b e r) ;
i f (dateS t-> tm _m on > 0)

{
l e a p = le a p y e a ra (d a te S t-> tm _ y e a r) ; }

r e t u r n m o n th _ in d ex [(d a teS t-> tm _ m o n + l)] - m on th_ index[dateS t-> tm _m on]
- [s e l f dayinM onth] + l e a p ;

>

/ / m on th lndex : R e tu rn a number from 1 to 12 i n d ic a t in g th e m onth
I I o f th e r e c e iv e r .
- (i n t) m on th lndex {

d a te S t = lo c a l t im e (tse lf -> d a y _ n u m b e r) ;
r e t u r n dateS t-> tm _m on + 1 ;

>

/ / m onthlam e : R e tu rn a s t r i n g r e p r e s e n t in g th e m onth name of
I I t h e r e c e iv e r .
- (c h a r *) monthfame {

r e t u r n month_name[[s e l f m o n th ln d ex]] ;
>

11 s u b tr a c tO a te : R e tu rn s th e number o f d ay s be tw een th e r e c e iv e r
I I an aD ate .
- (i n t) s u b t r a c tD a te : aD ate {

r e tu r n [s e l f day] - [aD ate day] ;
>

/ / e la p se d D a y sS in e e : The number o f e la s p e d days betw een th e r e c e iv e r and aDate
- (i n t) e la p se d D a y sS in e e : aD ate {

r e tu r n [s e l f day] - [aD ate day] ;

>

I I e lap sed M o n th sS in ce : The number o f e la s p e d m onths be tw een th e r e c e iv e r
/ / and aD ate
- (i n t) e la p se d M o n th sS in c e : aD ate {

r e t u m (([s e l f y e a r] - [aD ate y e a r] * 12)
+ ([s e l f m onth] - [aD ata m o n th])) ;

>

I I e la p se d S e co n d sS in ce : The number o f e la p s e d seco n d s be tw een th e r e c e iv e r
/ / and aD ate .
- (i n t) e la p se d S e c o n d sS in c e : aD ate {

r e tu r n se lf -> d a y .n u m b e r - aD ate->day_num ber ;
> / / check above

I I f i rs tD a y ln M o n th : The number o f th e f i r s t day in th e r e c e iv e r month
/ / r e l a t i v e t o th e b e g in n in g o f th e r e c e iv e r s y e a r .
- (i n t) f i rs tD a y ln M o n th {

i n t le a p ;

d a te S t = lo c a ltim e (4 s e lf -> d a y .n u m b e r) ;
i f (dateS t-> tm _m on > 1)

A ppen d ix E 13

l e a p = le a p y e a rs (d a te S t-> tm _ y e a r) ;
ra tu x n (m o n th _ in d ex [d a teS t-> tm _ m an] + le a p) ;

>
e ls e

r e tu r n m onth_ index[dateS t-> tm _m on] ;
}

A ppen d ix E 14

I l OBJECTIVE-C SOURCE FILE FOR THE CLASS “ S ta te " ;
11 THIS CLASS CORRESPOIDS TO A STATE I I AI AUTOMATA

» in c lu d e " o b jc .h "
♦ in c lu d e "w bs. h"
• in c lu d e " c a l .h "

• r e q u i r e s S t r in g ;
• r e q u i r e s S equence;
• r e q u i r e s O rd C ltn ;
• r e q u i r e s E ven t ;
• r e q u i r e s E r r o r ;

= S ta te : O b jec t(C alG ro u p , P r im i t i v e , C o l le c t io n)

I I IISTAICE VARIABLES;
id e v en t ;
id e v e n tC o l le c t io n ;
i d e v e n tH e ssa g e C o lle c t io n ;

id e r r o r ;
i d e r r o r C o l l e c t io n ;
i d e r ro rH e s s a g e C o lle c t io n ;

i d m is c H e s sa g e C o lle c tio n ;
i d s t a t e C o l l e c t i o n ;

i d c u r r e n tO b je c t ;
i d au to m ata ;
i d r e la te d C la s s ;
i n t ty p eO fR esp o n se ;

th e u s e r e v e n t ;
a l l th e s t a t e ’ s e v e n ts (in s ta n c e s o f Event c l a s s) ;
th e m essages t o be d is p la y e d to th e th e u s e r ;
To each e v e n t in e v e n tC o l le c t io n c o rre sp o n d s
a m essage i n e v e n tH e ssa g e C o lle c tio n
th e e r r o r t o d is p la y
th e e r r o r s t o be d is p la y e d (i n s t a n c e s o f E r ro r c l a s s) ;
th e e r r o r m essages to be d is p la y e d ;
To each e r r o r in e r r o r C o l l e c t io n c o rre sp o n d s
a m essage i n e r ro rH e s s a g e C o lle c t io n
a l l o th e r m essag es t o d i s p l a y a re g rouped in t h i s c l t n ;
a l l th e s t a t e s t o w hich th e s t a t e can t r a n s i t
to each e v e n t in e v e n tC o l le c t io n c o rre sp o n d s a s t a t e
in s t a te C o l le c t i o n
th e o b je c t on w hich th e u s e r works
th e au to m a ta i n w hich th e s t a t e i s
th e c la s s on w hich th e s t a t e o p e ra te s
ty p e o f re sp o n se i s i n te g e r o r s t r i n g

i n t ch o icelnH enuR esponse ; / / th e u s e r re sp o n se in c ase of a menu
f l o a t f i o a t R esponse; / / th e u s e r re sp o n se in c ase of a q u e s tio n -a n sw e r
c h a r stringResponseCKAX.SIZE^OF.SQDE.HAME]; / / th e n s e r re sp o n se in case of a q u e s tio n -a n sw e r

/ / FACTORY HETHODS;

I I c r e a te s a new s t a t e and i n i t i a l i s e i t by d e f a u l t ;
I I r e tu r n s th e c r e a te d s t a t e
+ new {

id a S ta t e ;
a s t a t e = [su p e r new];
[a S ta te i n i t i a l i s e] ;
r e tu r n a S ta te ;

//IIST A IC E HETHODS;

/ / i n i t i a l i s e s th e s t a t e by d e f a u l t .
/ / b y d e f a u l t i n i t i a l i s e s th e r e c e iv e r e r r o r C o l l e c t io n
/ / and e r ro rH e s s a g e C o lle c t io n w ith two e r r o r s
- i n i t i a l i s e {

[s e l f e r r o r C o l l e c t io n :
[O rd C ltn w i th :2 , [E r ro r new:S0_ERR0R],

[E r ro r new:0UT_0F_HEIU_B0UIDS]]];
[s e l f e r ro rH e s s a g e C o lle c t io n :

[O rd C ltn w i th :2 , I0_ERR0R_HESSAGE,
OUT.0F_HEIU_B0UIDS.HESSAGE]];

r e t u r n s e l f ;
}

- e v e n tC o l le c t io n : a n E v e n tC o lle c t io n {

A ppen d ix E 15

e v e n tC o l le c t io n = a n E v e n tC o lle c t io n ;
r e t u r n s e l f ;

>

- e v e n tC o l le c t io n {
r e tu r n e v e n tC o l le c t io n ;

>

- e v e n tH e ssa g e C o lle c t io n : a H e s sa g e C o lle c tio n {
e v e n tH e ssa g e C o lie c tio n = a H e ssa g e C o lle c tio n ;
r e tu r n s e l f ;

>
- e v e n tH e ssa g e C o lle c t io n {

r e t u r n e v e n tH e s sa g e C o lle c t io n ;
}

- e r r o r C o l l e c t io n : a n E r ro rC o l le c t io n {
e r r o r C o l l e c t io n = a n E r ro rC o l le c t io n ;
r e tu r n s e l f ;

}

- e r r o r C o l l e c t io n {
r e tu r n e r r o r C o l l e c t io n ;

>

- e r ro rH e s e a g e C o lle c t io n : a n E rro rH e ss a g e C o lle c tio n {
e r ro rH e s s a g e C o lle c tio n - a n E rro rH e ss a g e C o lle c tio n ;
r e tu r n s e l f ;

>

- e r ro rH e s s a g e C o lle c t io n {
r e tu r n e r ro rH e s s a g e C o lle c tio n ;

>

- m is c H e s sa g e C o lle c tio n : a H isc H e ssa g e C o lle c tio n {
m isc H e ssa g e C o lle c tio n = a H isc H e ssa g e C o lle c tio n ;
r e tu r n s e l f ;

>

- m isc H e ssa g e C o lle c tio n {
r e tu r n m isc H e ssa g e C o lle c tio n ;

}

- s t a t e C o l l e c t i o n : a S ta te C o l le c t io n {
s t a t e C o l l e c t i o n = a S ta te C o l le c t io n ;
r e t u r n s e l f ;

}

- s t a t e C o l l e c t i o n {
r e tu r n s t a te C o l le c t i o n ;

>

- c u r r e n tO b je c t : a C u rra n tO b je c t {
c u r re n tQ b je c t = a C u rre n tO b je c t;
r e tu r n s e l f ;

>

A ppen d ix E

- c u r re n tO b je c t {
r e tu r n c u r ra n tO b je c t ;

>

-a u to m a ta : anA utornata {
au to m a ta = anA utornata;
r e t u r n s e l f ;

}

- a u to m a ta {
r e tu r n au to m a ta ;

}

- r e la te d C la s a : a C la ss {
r e la te d C la s s = a C la s s ;
r e tu r n s a i l ;

}

- r o l a t o d C l a s s {
r e t u r n r e la te d C la s s ;

>

- typeO fR esponse ; (i n t) aTypeOfResponse {
typeO fR esponse = aTypeO fR esponse;
r e t u r n s e l f ;

>

- (i n t) choicelnM enuR esponse {
r e tu r n choicelnM enuR esponse ;

>

- (f l o a t) f l o a t R esponso {
r e tu r n f lo a tR e s p o n s e ;

>

- (STR) s tr in g R e sp o n a e {
r e tu r n s t r in g R e s p o n a e ;

>

/ / D isp la y s t h e u s e r m essa g es .
/ / T e s t w h e th er t h e ty p e o f re sp o n se w a ite d fro m th e u s a r
/ / i s a c h o ic e i n a menu o r a q u e s t io n re sp o n se
- d i s p l a y •{

i d aSequence;
i d aM essage;
i n t iMax;
i n t i ;

iMax = [e v e n tH e ssa g e C o lle c t io n s i z e] ;
I I 1 - i f i t i s a c h o ic e i n a. menu d i s p la y th e
I I menu i te m s fo u n d i n e v e n tH e ssa g e C o lle c tio n
i f ((iM ax >= 1) t i (typeO fR esponse == CHQICE.II.HEHU)) {

f o r (i * 0 ; i < iHax ; i++)
p r i n t f ("V.d - y,a W . i + l . [[e v e n tH e s s a g e C o lle c t io n a t : i] s t r])

p r in t f C 'Y o u r c h o ic e ? ") ;

A ppen d ix E 17

>
/ / 2 - i f i t a q u e s t io n re sp o n se d i s p la y s th e
/ / o n ly ite m fo u n d in e v e n tH e s sa g e C o lle c t io n
e l s e i f ((iH a x == 1) i t

((typeO fR esponse == STRIJG.RESPOHSE) I I
(typeO fR esponse = FL0AT_RESP0NSE))) {
p r in t f (" % s ? \ n " , [[e v e n tH e s s a g e C o lle c t io n a t : 0] s t r]) ;
p r i n t f (" ? ") ;

>
e ls e
/ / 3 - i f t h e r e i s no e v e n tH e ssa g e C o lle c tio n
I I g e n e r a te s am e r r o r

[s e l f e r r o r : [IOT_IIITTALISED_STATE_HESSAGE s t r]] ;
>

I I r e tu r n s th e e r r o r w hich num ber i s a n E rro rlu m b er
- f i n d E r r o r : (i n t) a n E rro rlu m b e r {

i d a n E rro r ;
id aSequence;
aS eqaence = [e r r o r C o l l e c t io n e a c h E le m e n t] ;
w h ile (a n E rro r = [aSequence n e x t])

i f ([a n E r r o r num ber] an E rro rlu m b er)
r e t u r n a n E rro r ;

>

/ / r e tu r n s th e e v en t w hich num ber i s anEventlum ber
- f in d E v e n t: (i n t) anE ven tlum ber {

id an E ven t;
id aSeqaence ;
aSequence = [e v e n tC o l le c t io n e ac h E le m e n t] ;
B h ile (anE ven t = [aSequence n e x t])

i f ([an E v e n t num ber] == anE ventlum ber)
r e tu r n anE ven t;

>

/ / r e tu r n s th e e r r o r o f f s e t i n e r r o r C o l le c t io n w hich
/ / number i s an E rro rlu m b e r
- (i n t) f i n d E r r o r O f f s e t : (i n t) a n E rro rlu m b er {

id th e E r r o r ;
th e E r r o r = [s e l f f i n d E r r o r : a n E rro r lu m b e r] ;
r e tu r n [e r r o r C o l l e c t io n o f f s e tO f : th e E r r o r] ;

}

/ / r e tu r n s th e e v en t o f f s e t i n e v e n tC o l le c t io n s h ic h
/ / number i s anE ven tlum ber
- (i n t) f in d E v e n tO f f s e t : (i n t) anE ventlum ber {

id th e E v e n t;
th e E v e n t = [s e l f f in d E v e n t : anE ventlum ber] ;
r e tu r n [e v e n tC o l le c t io n o f f s e tO f : th e E v e n t] ;

>

I I r e a d s th e u s e r re sp o n se and a s s ig n th e v a r ia b le s
/ / cho icelnH enuR esponse o r f lo a tR e sp o n se o r s tr in g R e s p o n se
- re a d {

s w itc h (ty p eO fR esp o n se) {
case CHOICE_II_HEHU :

s c a n fC y .d " , tch o ice ln H en u R esp o n se) ;
b re a k ;

ca se FLOAT.RESPOISE :
s c a n f (" X f " , » f lo a tR e s p o n s e) ;
b re a k ;

A ppen d ix E

ca se STRIIG.RESPOISE :
s c a n f(" % s" , s t r in g R e s p o n s e) ;
b re a k ;

>
r e tu r n s e l f ;

>

/ / t e s t w he th er th e n s e r r e sp o n se in c a se o f a menu
/ / i s i n s id e th e menu bounds
- c o r r e c t {

r e tu r n s e l f ;
>

/ / d i s p la y s th e e r r o r m essage w hich c o rre sp o n d s to th e
/ / in s ta n c e v a r ia b le e r r o r
- e rro rH e s sa g e {

i n t o f f s e t ;
o f f s e t = [e r r o r C o l l e c t io n o f f s e tO f : e r r o r] ;
p r in tf (" % s \ n " , [[e r ro rH e s s a g e C o lle c t io n a t : o f f s e t] s t r]) ;
r e tu r n s e l f ;

>

- t r e a t {
i f (typeO fR esponse = CHOICE_II_HEIU)

e v en t = [e v e n tC o l le c t io n a t : (choicelnM enuR esponse - 1)] ;
e l s e i f ((ty p eO fR esp o n se — STRIIG.RESPOHSE) I I

(typeO fR esponse = FLOAT.RESPOISE))
e v en t = [e v e n tC o l le c t io n f i r s t E l e m e n t] ;

e l s e ;
r e tu r n s e l f ;

}

- fo l lo w in g S ta te {
I n t o f f s e t ;
i d a F o llo w in g S ta te ;
i f ((s t a t e C o l l e c t i o n != n i l) kk

([e v e n t num ber] != I0 .E V E IT)) {
o f f s e t = [e v e n tC o l le c t io n o f f s e tO f : e v e n t] ;
a F o llo w in g S ta te = [s t a te C o l le c t i o n a t : o f f s e t] ;
[[a F o llo w in g S ta te au to m ata] c u r r e n tS t a t e : a F o l lo w in g S ta te] ;
[a F o llo w in g S ta te e x e c u te : c u r r e n tO b je c t] ;

>
r e tu r n s e l f ;

>

- t r e a tG : (i n t) even tnum ber {
ev en t = [e v e n tC o l le c t io n a t : ev en tnum ber];

r e tu r n s e l f ;
>

- e x e c u te : a C u rre n tO b je c t {
i f ([a C u rre n tO b je c t n o tE q u a l: n i l])

[s e l f c u r r e n tO b je c t : a C u rre n tO b je c t] ;
do {

e r r o r = [s e l f f i n d E r r o r : I0.ERR0R];
[s e l f d i s p l a y] ;
[s e l f r e a d] ;
[s e l f c o r r e c t] ;
i f ([e r r o r num ber] != I0_ERR0R)

[s e l f e r ro r H e s s a g e] ;

A p p en d ix E

>
w h ile ([e r r o r num ber] != IQ_ERR0R);
[s e l f t r e a t] ;
[s e l f f o l l o s i n g S t a t o] ;

A ppen d ix E

/ / O b je c tiv e -C so u rc e f i l e f o r th e c l a s s CalA utom ata
• in c lu d e " o b jc .h "
♦ in c lu d e "w bs.h"
♦ in c lu d e " c a l .h "

• r e q u i r e s S t a te ;
• r e q u i r e s C a l l n i t i a l S t a t e ;
• r e q u i r e s C a lS ec o n d S ta te ;
• r e q u i r e s C a lT h ird S ta te ;
• r e q u i r e s O rdC ltn ;

=CalAutom ata : O b jec t(C alG ro u p , P r im i t i v e , C o l le c t io n)

//IIS T A IC E VARIABLES;
i d f i r s t S t a t e ;
i d s e c o n d S ta te ;
i d t h i r d S t a t e ;
i d c u r r e n tS t a t e ;
i d au to m a ta ;
}

I I th e i n i t i a l s t a t e o f th e au to m a ta ;
/ / th e node o p e ra t io n s s t a t e o f th e au to m a ta ;

/ / th e s t a t e o f th e au to m ata b e in g e x e c u te d ;
I I th e au to m ata i n s h ic h th e a u to m a ta i s c o n ta in e d

//IIS T A IC E METHODS;

/ / To i n i t i a l i s e th e a u to m a ta :
/ / - i n i t i a l i s e s th e s t a t e s
I I - d e f in e each s t a t e
- i n i t i a l i s e {

[s e l f i n i t i a l i s e S t a t e s] ;
[s e l f d e f i n e F i r s t S t a t e] ;
[s e l f d e f in e S e c o n d S ta te] ;
[s e l f d e f in e T h ir d S ta te] ;

>

/ / i n i t i a l i s e s each s t a t e
- i n i t i a l i s e S t a t e s {

f i r s t S t a t e * [C a l l n i t i a l S t a t e n e n] ;
[f i r s t S t a t e a u to m a ta :s e l f] ;
s e c o n d S ta te = [C a lS ec o n d S ta te n ew];
[s e c o n d S ta te a u to m a ta : s e l f] ;
t h i r d S t a t e = [C a lT h ird S ta te new] ;
[t h i r d S ta t e a u to m a ta :s e l f] ;
r e t u r n s e l f

/ / d e f in e s th e s t a t e s r e a c h e a b le from th e f i r s t s t a t e
- d e f in e F i r s t S t a t e {

id anO rdC ltn ;
anO rdC ltn ■ [O rd C ltn w ith : 4 , f i r s t S t a t e , f i r s t S t a t e ,

firstS ta te ,U ID E F IIE D _ S T A T E];
[f i r s t S t a t e s t a t e C o l l e c t i o n : a n O rd C ltn] ;

/ / d e f in e s th e s t a t e s re a c h e a b le from th e second s t a t e
d e f in e S e c o n d S ta te {

i d anO rdC ltn ;
anO rdC ltn = [O rd C ltn w ith : 4 , s e c o n d S ta te ,

s e c o n d S ta te ,
t h i r d S t a t e ,
UIDEFIIED.STATE] ;

/ / I
111
/ / 3

A ppen d ix E 21

[s e c o n d S ta te s t a t e C o l l e c t i o n : a n O rd C ltn] ;

- d e f in e T h ir d S ta te {
i d an O rdC ltn ;
an O rd C ltn » [O rd C ltn s i t h : 6 , t h i r d s t a t e , / / I

t h i r d S t a t e , / / 2
t h i r d s t a t e , / / 3
t h i r d S t a t e , / / 4
t h i r d S t a t e , / / 6
se c o n d S ta te] ;

[t h i r d S t a t e a ta t e C o l le c t i o n : a n O rd C ltn];

/ / lu n c h s t h e au to m a ta c u r r e n t s t a t e i f e x i s t
/ / e l s e ltm ch a th e a u to m a ta f i r s t s t a t e
- e x e c u te : an O b jec t {

I f (c u r r e n tS t a t e != n i l)
[c u r r e n tS t a t e e x e c u te : [c u r r e n tS t a t e c u r r e n tO b je c t]] ;

e l s e
[f i r s t S t a t e e x e c u te : a n O b je c t] ;

r e t u r n s e l f
>

/ / p u t s a S ta te a s th e c u r r e n t s t a t e o f th e r e c e iv e r
/ / and a l l th e r e c e iv e r su p e r au to m a ta
- c u r r e n t S t a t e : a S ta te {

c u r r e n tS t a t e = a S ta t e ;
i f (a u to m ata != n i l)

[au to m ata c u r r e n t S t a t e : a S ta t e] ;
r e tu r n s e l f ;

}

- c u r r e n tS t a t e {
r e tu r n c u r r e n tS t a t e ;

>

- c u r re n tO b je c t {
r e tu r n [c u r r e n tS t a t e c u r r e n tO b je c t] ;

>

- a u to m a ta : a n lu to m a ta {
au to m a ta =* anA utom ata;
r e tu r n s e l f ;

>

- a u to m a ta {
r e t u r n au to m a ta ;

>

- f i r s t S t a t e {
r e tu r n ' f i r s t S t a t e ;

}

A p p en d ix E

- s e c o n d S ta te {
r e tu r n s e c o n d S ta te

>

- t h i r d S t a t e {
r e tu r n t h i r d S ta t e

}

A p p en d ix E

I l O b je c tiv e -C so u rc e f i l e f o r th e c l a s s C a l l n i t i a l S t a t e
• in c lu d e " o b jc .h "
• in c lu d e " c a l .h "
• in c lu d e "w b s.h '1
• in c lu d e " d a te .h "
• in c lu d e " s a c .g lo b a l .h "

Crequi:
C requi:
C requi:
C requi:
C requi:
Crequi:
Creqni:
C re q u ire

r e s
r e s
r e s
r e s
r e s
r e s
r e s

s

IS ;
S o r tC l tn ;
T askEvent ;
S t r in g ;
O rd C ltn ;
E vent ;
D ate ;
G raph ic ;

e x te r n id an E v en tD ateC ltn ;
e x te r n i d aCALLoad;

• d e f in e d aysec (lo n g) 86400

e x te r n G e v ic o c a r . t c o n f i r m ic o .a b o r t ic o ;
e x te r n G e v ic o c a r . t v o id ic o ;
e x te r n G e v ico c a r_ t n o t i t l e ;
e x te r n G e v sc rg p h .t s c re e n ;
e x te r n G e v l i f t_ t v o i d l i f t ;
e x te rn G e v ta b .t c o n f i r m ta b ,c o n i t o p t ab
e x te r n G e v ta b .t c a l t o p t ab ;
e x te r n Gevwdw_t curren tw dw ;
e x te r n G e v ro o .t s o m e o b je c t;
e x te r n H a t r i x . t v o id m a tr ix ;
e x te rn M a t r ix . t c o n f in a _m at;
e x te r n M a tr ix _ t cal_ m at ;
e x te r n i n t e n d o fjo b ;

M a tr ix _ t c a l t a b ;

G ev ico car.. t c a l l e f t , c a l r i g h t , c a le n d a r ic o ;
G ev ico car.. t o p c ic o ;
G ev ico car.. t í n t i c o ;
G ev ico car.. t t a s i c o ;
Gevrow_t c a lto p ,c a lw d w ;
G ev tab_ t c a lta b m id ;
G ev ev t_ t e v t ;

i n t eventnnm ;
lo n g d a te s c a le ;
i d d a te C l tn , d a te S t r C l tn , t a s k C l t n ;
* C a l l n i t i a l S t a t e : S ta te (C alG roup ,
Í

P r im i t iv e ,C o l le c t i o n)

//IIS T A IC E METHODS;

- i n i t i a l i s e {
id aM essC ltn ;
id a n E v e n tC ltn ;
i d aM iscH essC ltn ;
d a te C l tn = [O rdC ltn new :35] ;
d a te S t r C l tn = [O rdC ltn new :3 5] ;

I I i n h e r i t s i t s s u p e r c la s s i n i t i a l i s a t i o n
[su p e r i n i t i a l i s e] ;

t a s k C ltn = [O rdC ltn w ith : 5 ,
" P ro d u c ts : " ,
"M eetings
"P e rso n n e l

" Im p o rts

A p p en d ix E

/ / i n i t i a l i s e th e menu m essages
aH essC ltn = [O rdC ltn w i th : 4 , OPEI_CALEHDAR_HESSAGE,

SET_IITERVAL_HESSAGE,
SET_TASK_HESSAGE,

qUIT.HESSAGE];
[s e l f e v e n tH e s sa g e C o lle c t io n : a H e ssC ltn] ;

/ / i n i t i a l i s e th e c o rre sp o n d in g e v e n ts
an E v e n tC ltn a [O rd C ltn w i th :4 , [E ven t new : OPEB_CALEHDAR_EVEBT],

[E ven t new : SET_IBTERVAL_EVEHT],
[E ven t new : SET.TASK.EVEIT],
[E ven t new : QUIT.EVEIT]] ;
[s e l f e v e n tC o l le c t io n : a n E v e n tC ltn] ;

/ / t h i s i s a menu
[s e l f typeOfResponse:CHOICE_II_HEBU];

}

- o p e n .c a l {
lo n g s t a r t C a l ;
BOOL VALID = 10;

d a te s c a l e 31 86400 ;
VALID s [G rap h ic e s tD a te] ;
i f (VALID) {

[D ate g e t d a t e s] ;
[G rap h ic c a lD i s p l a y] ;

>
r e t u r n s e l f ;

"Work in Progress :"];

- s e t . i n t e r v a l {
i n t days ;
BOOL VALID = 10 ;

days = [G rap h ic d a t e s c a l e] ;
i f (d ay s != 0) {

d a te s c a l e - days * 86400;
VALID 3 [G rap h ic e s tD a te] ;
i f (VALID) {

[D ate g e t d a t e s] ;
[G rap h ic c a lD isp la y] ;

>
>
r e tu r n s e l f ;

- s e t . t a s k {
i d a C ltn ;
i d a n E v e n tD a te S trC ltn ;
i d aT ask E v en t;
i d an O rd C ltn ;
i d ta s k S e q ;
i d bT ask ;
i n t i ;
BOOL VALID = 10;

a C ltn = [aCALLoad t a s k C l t n] ;
a n E v e n tD a te S trC ltn = [O rdC ltn new];
f o r (i = 0 ; i< [a C ltn s i z e] ; i++)

[a n E v e n tD a te S trC ltn a d d lfA b s e n tH a tc h in g :[[a C ltn a t : i] s t a r t D a t e]] ;
[a n E v e n tD a te S trC ltn p r i n t] ;

a n E v en tD ateC ltn = [S o r tC l tn o rd e re d B y :" ta sk c o m p a re :" o n D u p s:l] ;
f o r (i= 0 ; i < [a n E v e n tD a te S trC ltn s i z e] ; i++) {

aTaskE vent = [T askEvent c r e a t e : [a n E v e n tD a te S trC ltn a t : i]] ;

A ppen d ix E

[a n E v en tD ateC ltn a d d :a T a sk E v e n t] ;
>

an O rdC ltn = [an E v o n tD a taC ltn a s O rd C ltn] ;
d a te S t r C l tn “ [O rd C ltn n ew];
ta s k S e q • [an O rd C ltn e ac h E le m e n t];
w h ile (bT ask = [ta sk S e q n e x t])

[d a te S t r C l tn a d d :[[b T a s k ev en tD a te] s t r]] ;

[G rap h ic c a lT a sk D isp la y] ;
>

- d i s p l a y {
[G rap h ic d a t e s c r s e l] ;

- r e a d { / / s t a y w ith window u n t i l c o n firm ed yes
I I i f no s e l e c t i o n i s made o p e n _ c a l() d e f a u l t i s u se d

Bventnum * 0 ;
e n d o fjo b = GEV_FH.SE;
w h ile (e n d o fjo b != GEV.TRUE) {

e v t = G e v s c r g p h .w a i t .e v e n t (s c r e e n) ;

i f (G avevt_get_w dw (evt) == Gevwdw_get_wdw(currentwdw)) {
i f (G e v e v t .g e t . ty p (e v t) == GEV_SELECTED) {

i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) .M a tr ix .e n try (c a l_ m a t , 1 ,1))) {
eventnum = 0 ;
G e v c h x .d e s e le c t (M a tr ix .e n t r y (c a l .m a t , 2 ,1)) ;
G e v c h x .d e s e le c t(M a tr ix .e n try (c a l_ m a t , 3 ,1)) ;

>
e l s e i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) ,M a tr ix _ e n try (c a l_ m a t, 2 ,1))) {

eventnum = 1;
G e v c h x .d e s e le c t(M a tr ix .e n try (c a l_ m a t , 1 ,1)) ;
G a v c h x .d e s e le c t(M a tr ix .e n try (c a l_ m a t , 3 ,1)) ;

}
e l s e i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) , M a tr ix .e n t r y (c a l_ m a t , 3 ,1))) {

eventnum = 2;
G e v c h x .d e se le c t(M a tr ix .e n t r y (c a l_ m a t , 1 ,1)) ;
G e v c h x .d e s e le c t (M a tr ix .e n t r y (c a l .m a t , 2 ,1)) ;

>
e l s e i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) .M a tr ix .e n try (c o n f i rm .m a t , 1 ,1))) {

i f (eventnum = 0) {
G «vscrgph_rem _w indow (screen, c n r re n tB d u) ;
e n d o fjo b = GEV.TRUE;

>
e l s e i f (eventnum == 1) {

G e v sc rg p h .re m .w in d o w (sc re en ,cu rre n tw d w);
en d o fjo b = GEV.TRUE;

}
e l s e i f (eventnum = 2) {

G evscrgph.rem .w in d o w (sc re e n , cu rre n tw d w);
en d o fjo b = GEV.TRUE;

>
e ls e i f (G e v o b j_ e q (G e v e v t_ g e t_ b o to b j(e v t) , M a tr ix .e n try (c o n ± irm _ m a t , l ,2))) {

eventnum = 3;
en d o fjo b = GEV.TRUE;

}
>

>
>

- t r e a t {
d a te C l tn = [O rd C ltn new] ;
[su p e r t r e a t G : ev en tn u m];

A p p en d ix E 26

s n i t c h ([e v e n t num ber]) {
c a se OPEI_CALEIDAR_EVEHT :

[s e l f o p e n .c a l] ;
b r e a k ;
c a se SET_IITERVAL_EVEIT :

[s e l f s e t . i n t e r y a l] ;
b re a k ;

c a se SET_TASK_EVEIT :
[s e l f s e t . t a s k] ;
b re a k ;

c a se QUIT.EVEIT :
[IS i n t e r p r e t : "q U IT "];

e x it (O) ;
b re a k ;

J
r e tu r n s e l f ;

}

A p p en d ix E

/ / O b je c tiv e -C so u rc e f i l e f o r th e c l a s s C a lS ec eo n d S ta te
• in c lu d e " o b jc .h "
• in c lu d e "w bs.h"
• in c lu d e " c a l .h "

• r e q u i r e s E r r o r ;
• r e q u i r e s E v e n t;
• r e q u i r e s S t r in g ;
C re q u ire s O rd C ltn ;
• r e q u i r e s S equence;
• r e q u i r e s D ate ;

a C a lS e co n d S ta te ; S ta te (C a lG ro u p , P r i m i t i v e , C o l le c t io n)
{
//IIS T A IC E VARIABLES;
}

//IIS T A IC E METHODS;

- i n i t i a l i s e {
id aM essC ltn ;
i d a n E v e n tC ltn ;

/ / i n h e r i t s i t s s u p e r c la s s i n i t i a l i s a t i o n
[su p e r i n i t i a l i s e] ;

/ / i n i t i a l i s e th e e v e n ts

an E v en tC ltn = [O rdC ltn new];
[a n E v e n tC ltn add : [E ven t nes:FORHARD_EVEIT]];
[a n E v e n tC ltn add : [E vent new :BACKVARD.EVEIT]] ;
[a n E v e n tC ltn add : [E vent new:VIEV_EVEIT]];
[a n E v e n tC ltn add : [E vent n e s : QUIT_EVEIT]] ;
[s e l f e v e n tC o l le c t io n : a n E v e n tC ltn] ;

/ / i n i t i a l i s e th e m essages

aM essC ltn = [O rd C ltn n e s] ;
[aM essC ltn add : FORVARD_MESSAGE];
[aM essC ltn add : BACKVARD.MESSAGE];
[aM essC ltn add : VIEH_MESSAGE];
[aM essC ltn add : qUIT_HESSAGE];
[s e l f e v e n tM e ssa g e C o lle c tio n : aM essC ltn];

/ / i t i s a menu
[s e l f typeO fResponse:CH OICE_II_H EIU];

}

- goForw ard {
[D ate f o r n a r d] ;
[D ate d a te D isp la y] ;
r e tu r n s e l f ;

}

- goB acksard {
[D ate back] ;
[D ate d a te D isp la y] ;
r e tu r n s e l f ;

>

- v ie s {
r e tu r n s e l f ;

>

/ / C a l l s th e t r e a tm e n t c o rre sp o n d in g to th e e v en t
- t r e a t {

A p p en d ix E 28

[su p e r t r e a t] ;

s n i t c h ([e v e n t num ber]) {

c a se FORVARD.EVEBT :
[s e l f g o F o m ard] ;
b re a k ;

c a se BACKWARD.EVEHT :
[s e l f goB ackw axd];
b re a k ;

c a s e VIEW.EVEIT :
[s e l f v ie s] ;
b re a k ;

c a s e qUIT.EVEIT:
e x i t (0) ;
b re a k ;

>
r e tu r n s e l f ;

A ppen d ix E

/ / O b je c tiv e -C so u rc e f i l e f o r th e c la s s C a lT h ird S ta te
• in c lu d e " o b jc .h "
in c lu d e “w b s.h "
• in c lu d e " c a l .h "

• r e q u i r e s E r r o r ;
• r e q u i r e s E v en t;
• r e q u i r e s S t r i n g ;
• r e q u i r e s O rd C ltn ;
• r e q u i r e s S eq u e n ce ;

= C a lT h ird S ta te : S ta te (C a lG ro u p , P r im i t i v e , C o l le c t io n)

{
//IIST A IC E VARIABLES;
>

//IIST A IC E METHODS;

- i n i t i a l i s e {
id a H essC ltn ;
id a n E v e n tC ltn ;

/ / i n h e r i t s i t s s u p e r c la s s i n i t i a l i s a t i o n
[su p e r i n i t i a l i s e] ;

/ / i n i t i a l i s e th e e v e n ts

a n E v e n tC ltn = [O rd C ltn new];
[a n E v e n tC ltn add : [E ven t new:IHPORTS_EVEHT]];
[a n E v e n tC ltn add : [E ven t new:PRODUCTS_EVEBT]];
[a n E v e n tC ltn add : [E ven t new:HEETIIG_EVEHT]];
[a n E v e n tC ltn add: [E ven t new:PERSOHHEL_EVEHT]];
[a n E v e n tC ltn add : [E v en t new:VORK_II_PROGRESS_EVEHT]]
[a n E v e n tC ltn add: [E ven t new:EXIT_EVEIT]];
[s e l f e v e n tC o l le c t io n : a n E v e n tC ltn];

/ / i n i t i a l i s e th e m essages

aH essC ltn =* [O rd C ltn new] ;
[a H essC ltn add : IHPORTS.HESSAGE];
[aH essC ltn add : PRODUCTS.MESSAGE];
[a H essC ltn add : HEETIIG.HESSAGE];
[a H essC ltn add : PERSDIBEL.HESSAGE];
[aH essC ltn add : WORK_II_PROGRESS_HESSAGE] ;
[a H essC ltn add : EIIT.HESSAGE];
[s e l f e v e n tH e s sa g e C o lle c t io n : a H e s s C ltn] ;

/ / i t i s a menu
[s e l f typeOfResponse:CHOICE_II_HEBU];

- im p o rt_ e v e n ts {
r e tu r n s e l f ;

}

- p r o d u c t .« v e n ts {
r e tu r n s e l f ;

}

- m e e t in g .e v e n ts {
r e tu r n s e l f ;

}

- p e r s o n n e l .e v e n ts •(

A ppen d ix E 30

r e tu r n s e l f ;
>

- o o rk _ in _ p ro g re s s _ e v e n ts {
r e tu r n s e l f j

/ / C a l l s th e t r e a tm e n t c o rre sp o n d in g to th e ev o n t

- t r e a t {

[su p e r t r e a t] ;

sw itc h ([e v e n t num ber]) {

c a se IMPORTS.EVEIT :
[s e l f im p o r t .e v e n ts] ;
b re a k ;

c a se PRODUCTS.EVEHT :
[s e l f p r o d u c t . e v e n t s] ;
b re a k ;

c a se HEETIIG.EVEST :
[s e l f m e e t in g .e v e n t s] ;
b re a k ;

c a s e PERSOIKEL.EVEHT :
[s e l f p e r s o n n e l . e v e n t s] ;
b re a k ;

ca se WORK.II.PROGRESS.EVEHT :
[s e l f B o rk _ in _ p ro g re s s _ e v e n ts] ;
b re a k ;

c a se QUIT.EVEHT:
b re a k ;

>
r e tu r n s e l f ;

>

A ppend ix E 31

/ / O b je c tiv a"C so u rc e f i l e f o r t h e c l a s s Task

= T ask : O b jec t (C a lG ro u p .C o lle c tio n , P r im i t iv e)

i d name;
i d s t a x tD a te ;
i d endD ate ;
i d p ro d u c t;
i d consum edC ltn ;
i d s o rk C ltn ;

>
- ta sk la m o {
r e t a m name;
>

- ta s k la m e : a S t r in g {
name = a S t r in g ;
}

- s t a r tD a te {
r e t u r n s t a r tD a te ;
>

- s t a r tD a t e : aD ate {
s t a r tD a te =■ aD ate ;
>

- endD ate {
r e tu r n endD ate;
>

- endD ate : aD ate {
endD ate * aD ate ;
>

- p ro d u c t {
r e tu r n p ro d u c t;
}

- p r o d u c t: a S t r in g {
p ro d u c t = a S t r in g ;
}

- consum edC ltn {
r e t u r n consum edC ltn ;

- consum edC ltn : a C ltn {
consum edC ltn ■ a C ltn ;
>

- so rk C ltn {
r e t u r n s o rk C ltn ;
>

- s o rk C ltn : a C ltn •(
s o rk C ltn » a C ltn ;
>

A ppen d ix E

/ / O b je c t iv e - C s o u r c e f i l e f o r t h e c la s s W o rk

= V o r k : O b je c t (C a lG r o u p , C o l le c t io n , P r i m i t i v e)

{
i d f r o m D a te ;
i d t o D a t e ;
i d r e s o u r c e la m e ;

}
- r e s o u r c e la m e {
r e t u r n r e s o u r c e la m e ;

}

- r e s o u r c e la m e : a S t r i n g {
r e s o u r c e la m e = a S t r i n g ;

}

- from D ate {
r e tu r n from D ate;
>

- from D ate : aD ate {
from D ate = aD ate ;
>
- to D a te {
r e tu r n to D a te ;
>

- to D a te : aD ate {
to D a te * aD ate;
>

B ibliography

B IB L IO G R A P H Y

A F S C 87

S P E 88

A lt 78

A ra 88

Bar 86

B en 86

B o e 81

B o o 86

B ud 87

Car 84

Car 85

Cha 85

Cou 86

C ox 85

C ox 85

C oxb86

D ah 66

AFSC Pamphlet 800-XX, Software Risk Management, D e p t , o f
t h e A i r F o r c e (F r a n c e) .

Computer Associated International,Inc., Super Project Expert, .

Alter,S and Ginzberg,M., Managing Uncertainty in M IS Implemen­
tationi, S l o a n M a n a g e m e n t R e v i e w , F a l l , 1978,p p . 23-31.

Arapis,G and Kappel,G., Organizing Objects in an Object Software
Base, U n i v e r s i t y o f G e n e v a .

B a rth ,P S., A n object-oriented approach to graphic interfaces, ACM
T r a n s a c t i o n s o n G r a p h i c s , V o l . 5 , N o . 2 , p p 1 4 2 - 1 7 2 , A p r i l 8 6 .

Benyon,D. and Skidmore,S., Towards a Tool Kit for the Systems An­
alyst, T h e C O M P U T E R JOU RN A L V o l . 3 0 , N o .l p p 2 -7 .

B o e h m ,B . , Software Engineering Economics, P r e n t i c e - H a l l .

B ooch ,G rad y ., Object-Oriented Development, S o f t w a r e E n g i ­
n e e r i n g , V o l . SE-12, N o.2 F e b u r a r y 1986.

B u d , Timothy A ., A Little Smalltalk, A d d i s i o n - W e s l e y 1 9 8 7 .

Cardelli,Luca., Semantics o f Multiple Inheritance, S e m a n t i c s o f
D a t a T y p e s . S p r i n g e r - V e r l a g 1 9 8 4 .

Cardelli,Luca. and Wegner,Peter., On Understanding Types, Data
Abstraction, and Polymorphism, C o m p u t i n g S u r v e y s , V o l . 17,
N o . 4 , D e c . 1 9 8 5 .

Chapman,C., Select an Approach to Project Time and Cost Planning,
P r o j e c t M a n a g e m e n t , V o l . 3 (1) , F e b 1 9 8 5 .

Coutaz,Joelle, The Construction of User Interfaces & the Object
Paradigm, ECO O P87.

Cox, Brad, Object-Oriented Programming: An Evolutionary Ap­
proach, A d d i s i o n - W e s l e y 1 9 8 6 .

C o x ,Brad. & Ledbetter,Lamar., Software-IS’c, B Y TE M a z a g i n e
J u n e 1 9 8 5 .

Cox,B. and Hunt,B., Objects,Icons, and Software-ICs, BY TE
M a z a g i n e p p . 1 6 1 - 1 7 6 A u g u s t 1 9 8 6 .

Dahi,Ole-Johan. & Nygaarg,Kristen., SIMULA - An Algol-
based Simulation, C o m m u n i c a t i o n s o f t h e ACM, V o l . 9,
N o . 9 , p p .6 7 1 - 6 7 8 , S e p t 1 9 6 6 .

B IB L IO G R A P H Y

D an 89

D av 82

D e M 80

D od 89

D ra 89

Ger 82

Gol 83

Gol 84

Hal 88

H en 68

H op 79

H or 87

Jac 83

Jac 87

Joh 88

K ae 86

K ee 81

Daniels,John., The Emergence of Object-Oriented Methods, REX
S y s t e m s .

D a v is ,G.B., Strategies for Determining Requirements, IBM S y s t e m
J o u r n a l , V o l . 2 1 (1) , 1 9 8 2 , p p . 4 -3 0 .

D eM arco ,T. , Structured Analysis: System Specification, Y o u r d a n
1 9 8 0 .

D o d a n i ,M a h esh H. H ughes ,C harles E. &: M osh e ll ,M icheál J., Seper-
ation of Powers, B Y T E M a z a g i n e M a r c h 1 9 8 9 .

D rake,R ichard., Object-Oriented Programming in C++, P e r s o n a l
C o m p u t e r W o r l d M a z a g i n e F e b r u a r y 1 9 8 9 .

G erst in g ,Ju d ith L., Mathematical Structures for Computer Science,
F r e e m a n 1 9 8 2 .

Goldberg,Adele, and Robson,David, Smalltalk-80: The language and
Its Implementation, A d d i s i o n - W e s l e y 1 9 8 3 .

G oldberg ,A d e le , Smalltalk-80: The Interactive Programming Envi­
ronment, A d d i s i o n - W e s l e y 1 9 8 4 .

Halbert, Daniel C. and 0 Brien, Patrick, Using Types and Inheri­
tance in Object Orient Programming, D i g i t a l E q u i p m e n t C o r p . .

Hennie,Fredrick C., Finite-State Models for Logical Machines, Wl-
LEY 1 9 6 8 .

Hopcroft,John E. & Ullman, Jeffrey D., Introduction to Automata
Theory, Languages, and Computation, A d d i s o n - W e s l e y 1 9 7 9 .

Horn,Chris., Conformance, Genericity, Inheritance and Enhance­
ment, EC O O P87.

Jackson ,M ., System Development, P r e n t i c e - H a l l .

Jacobson, Ivar, Object Oriented Development in an Industrial Envi­
ronment, OOPSLA87.

Johnson,Ralph E. & Foote,Brian., Designing Reusable Classes,
J o u r n a l o f O b j e c t O r i e n t e d P r o g r a m m i n g J u n e / J u l y
1988.

Kaehler,Ted. and Patterson,Dave., A Taste of Smalltalk, N o r t o n
1 9 8 6 .

Keen,J., Managing System Development, WlLEY 1981.

B IB L IO G R A P H Y

Kra 83

Lie 85

Lis 87

M ac 82

M el 87

M ey 87

M ey 87

M e y 88

M in 67

M oy 89

N ie 87

OC 87

Pas 86

R en 82

R ob 81

R ob 89

Sch 86

Krasner,Glenn., Smalltalk-80: Bits of History, Words of Advice,
A d d i s o n - W e s l e y 1983.

Lieberman,H., There’s More to Menu Systems than Meets the Screen,
SIGG RA PH S85, 19(3), 181-189.

Liskov,Barbara., Date Abstracyion and Hierarchy, OOPSLA87.

MacLennan,B., Values and objects in programming languages, SIG-
PLAN N o t i c e s . V o l . 17, N o . 12,p. 75, D e c . 1982.

Mellor,Stephen J., Object-Oriented Programming and Other Ad­
vanced Techniques, CRAI s p r i n g i n t e r n a t i o n s e m i n a r .

Meyer,B., Reusability: The Case for Object Oriented Design, IEEE
S o f t w a r e M a r c h 1987, pp. 50-64.

Meyer,B., Reusability: The Case for Object-Oriented Design, IE EE
S o t f w a r e , M a r c h 19 87 , PP50-64 .

Meyer,Bertrand., Object-Oriented Software Construction, P r e n t i c e
H a l l 1988.

Minsky,Marvin., Computation: Finite and Infinite Machines, P r e n ­
t i c e H a l l 1967.

Moynihan,T. McCloskey,G. Verbruggen,R, RISKMAN1:A Prototype
Tool for Risk Analysis, CASE89 W o r k i n g p a p e r CA-0389.

N ierstrasz ,O .M ., A Survey of Object-Oriented Concepts, A c t i v e
O b j e c t E n v i r o n m e n t U n i v e r s i t y o f G e n e v a p p 1 -1 7 .

The StepStone Corporation, Objective-C Ver. 3.3 Reference Manual,

Pascoe, Geffory A., Elements of Object Oriented Programming,
B Y TE M a z a g i n e A u g u s t 1986.

Rentsch,T., Object-Oriented Programming, SIGPLAN N o t i c e s
V o l . 17 , No. 9 , p. 5 1 , S e p t . 1 9 8 2 .

Robson,David., Object-Oriented Software Systems, B Y TE M a g a ­
z i n e V o l . 6, N o . 8 , A u g . 1 9 8 1 .

Robinson,Peter., Hierarchic Object Oriented Design - HOOD, E u ­
r o p e a n S p a c e A g e n c y .

Schmucker,Kurt J., Object-Oriented Languages for the Mackintosh,
B Y TE M a g a z i n e A u g u s t 1986.

B IB L IO G R A P H Y

Schb86

S te 86

Str 86

Sun 85

Syn 86

T ho 89

T si 87

V er 88

W as 88

W eg 87

W eg 88

W ie 88

W oo 82

Zal 77

Schmucker,K J., MACAPP: An Application Framework, BY TE
M a z a g i n e p p 1 8 9 - 1 9 3 A u g u s t 1 9 8 6 .

Stefilk,Mark. h Bobrow, Daniel g., Object-Oriented Programming:
Themes and Variations, AI M a g a z i n e V o l. 6, No. 4, W i n t e r
1986.

Stroustrup,Bjarne., The C++Programming Language, ADDISON-
W e s l e y 1 9 8 6 .

Sun M icrosystem s, Command Reference Manual, S u n MICROSYS­
TEMS I n c .

Synder,A., Encapsulation and Inheritance in Object-Oriented Pro­
gramming, OOPSLA86 V o l . 21, N o .11,p p .38-45,N o v .1986.

Thomas,Dave., W hat’s in an Object, B Y TE M a z a g i n e M a r c h
1989.

Tsichritzis,D. & Nierstrasz,0., Application Development Using Ob­
jects, A c t i v e O b j e c t E n v i r o n m e n t s , U n i v e r s i t y o f G e n e v a
p p .1 8 -3 0 .

Verbruggen,Renaat., Object Oriented Design - Does it Exist?,
CASE88.

Wasserman,Anthony I. Pircher,Peter A. & Muller,Robert J., An In­
troduction to Object-Oriented Structured Design, I n t e r a c t i v e D e ­
v e l o p m e n t E n v i r o n m e n t s , I n c . .

Wegner,Peter., The Object Oriented Classification Paradigm, P r e n ­
t i c e H a l l 1 9 8 7 .

Wegner,Peter., Dimension of Object Based language Design, B r o w n
U n i v e r s i t y .

Wiener,Richard S. and Lewisj Pinson, An Introduction to Object-
Oriented Programming and C++, A d d i s o n - W e s l e y .

Wood-Harper,A T ., A Taxonomy of Current Approaches to Systems
Analysis, T h e C o m p u t e r J o u r n a l 1 9 8 2 .

Zaltman,f. and Duncan,G., Strategies for Planned Change, Wl-
LEY,1977.

