Object Oriented
Implementation 8z Design

A Thesis by: Gerard Me Closkey BSc.
Supervisors: Dr. Tony Moynihan PhD.
Mr. Renaat Verbruggen M.M.I.

Submitted to
D ublin City University
Computer Applications
for the degree of
Master of Science
August 1989

Declaration No portion of this work has been submitted in support of an
application for another degree or qualification in the Dublin City University or
any other University or Institute of Learning.

Acknowledgement

I would like to express my appreciation to Tony Moynihan, Renaat
Verbruggen and Martin Doherty for all their help and encouragement
while working at Dublin City University. To the Fitzsimons family for
their patience and encouragement while writing this thesis,

and most of all to my Mum and Dad for their support while completing
these studies.

Object Oriented

Implementation & Design

Abstract

Author: Gerard Me Closkey

As the power and speed of computers increase so too are the number of applica-
tions to which they can be applied. Unfortunately software development is not
performed using the approach taken by hardware engineers where development
proceeds from previous innovations. This has caused software applications to be
developed at a much slower rate than their hardware counterparts.

Traditional software development usually starts from scratch, despite the com-
monality that exists between various applications. The Object Oriented Ap-
proach is different from the conventional approach in that it encourages the
reusing and extending of existing software modules in a manner similar to hard-
ware development. The characteristics of the approach (i.e. inheritance, encap-
sulation and dynamic binding) signals the need for new methodologies and new
implementation techniques.

Using the Object Oriented language Objective-C for the creation of an “Inte-
grated Management Process Workbench” various issues associated with this ap-
proach are discussed in this text. The “Integrated Management Process Work-
bench” was an Esprit project in which Dublin City University was involved along
with a number of partners from sites throughout Europe. The Calendar and Risk
Analysis tools developed in Dublin for the workbench provided the development
application on which the discussion is centered.

Contents

1 Object Oriented Terminology
% R 0 4 o Yo NV o2 £ 10 4 F TR
1.2 TNESIS O VEIVIEW ..ot e e e e e e e eeeeennnnnnnnes

1.2.1 Integrated Management ProcessWorkbench (IMPW) ...

1.3 Birth of Object Oriented 1anQUAGeS.....cccoiverieiiiir e
14 What makes a language ObjectOriented ?ccccooeviiininiiniiniiciienn,
141 ENCAPSUIALION .o
142 INNEITTANCE oo
1.4.3 Other Object OrientedcharacteristiCs cccocvvveiiiiieernnnnnn
L5 SUMMANY e

2 Objective-C
21 INtroducCtion.....cccooeiiiiiiece e
2.2 Objective-C data types...cceceveiveeiiieiieeveenn,
2.2.1 Class and Instance ODJeCtS....cccciiiiiiiiiiiic v e
2.3 MIBSSAGES ..ttt

12

13

13

14

24 MethodS ..

2.5 Class Definition Files..................
2.6 Self and SUPer...iniiirenn.
2.7 Objective-C Inheritance Library.

2.7.1 Foundation Classes..........

2.7.2 Collection Classes.............

2.8 Tying it all together
2.9 Objective-C Compiler.......ccceeeee.

210 SUM M ATY oo

Risk Analysis Tool

3.1 IntroducCtion.....ccceeeevieei

3.2 Risk Tool Overview.....ccccceeen ...

321 Tool Input..ccoviviiiiene

3.2.2 Tool Output....ccccervernneen.

3.3 Important Classes........ccceevverunnnns

3.3.1 The Risk ClasS...ccccoeuunnnn.

3.3.2 The Rule ClasS....ccccuu...

3.3.3 The Text ClasS...cccccuunnnn.

3.3.4 The Measure Class...........

3.4 Types of RiskTool Users.............

3.4.1 SuperUser Functionality

22

23

25

26

28

30

31

31

32

32

32

33

33

34

38

39

40

3.4.2 The Project M anager . 47

3.5 SUM M ATY it 52
Calendar Tool 54
A1 INTFOAUCTION i 54
4.2 Calendar OVEIVIBW ... 55
4.3 Calendar Presentation ... 56
A4 Date ClaSS. .o 58

4.4.1 Storing the D ate e 59

442 The Date ColleCtioNcccooiiiiiiie e 61

4.4.3 Presentation Of D atesS ..o 62
4.5 CALLOAD ClaSS it 63
4.6 TASK ClaSS it 64
4.7 CalAutomata and State ClasseScccviriiiiieiiieie e 65
4.8 OPeration M 00 €S . it 65

48.1 Open and Interval MOdESccoooviiiiiieiciee e 67

4.8.2 Task MOOE ..o 68
49 EVENt D etailS .. 68
A.10 SUMIMAIY ettt st be et e et e e e e e eae e be et e e enn e e sreeeneas 70
The Workbench Interfaces 71
5.1 INTrOAUCTION i 71
5.2 A UTOM LA ..o 72

5.3 Graphie CompatiDility ... 76

5.4 Display CONSIIaiNTS...coiiiieiiiieiiee e e 78
541 WINdOW Display S ..ot 79
5.4.2 Composition of riskdriver Windowc.ccocvvrivinienencnennn 83
543 TOPp roW AetailS..ccciiiiiiiii e 84

55 T00l INtEraCtioN . .ccccieiiiiccie s 86
5.5.1 UsINg the MOUSE .cooiiiiiicecec e 87
552 TexXtual INP UL S8

5.6 Calendar VIBW ..o 89

5.7 SUM M ATY ittt e e e be e e sba e e e bee e e sreeeenane e 91

Objective-C Traps and Pitfalls 92

6.1 INTrOAUCTION .ot 92

6.2 ODbjective-C ECONOMICS. ..ottt 93
6.2.1 MeMONY C 0SS it 93
6.2.2 COUE SHZ B i 96
6.2.3 BINAIY S 1Z € oo 98
6.2.4 Messaging Overhead. ... 98

6.3 EITOT ClINTC .ottt 100
6.3.1 Class Definition Troubles........cccoiiiiiiii, 101
6.3.2 Erroneous M ethods. ... 102
6.3.3 Main Module STtrUCTUIe......ccoieiiiee e 103

6.3.4 Printing Errors and Error MeSSages ccccovveierenenenieniennnns 104

6.3.5 COllECtION E rTO TS oo 105
6.4 Garbage ColleCtioN 106
6.5 Inheritance ... 107
6.6 SUM M ATY ittt et e b e be e saneeaes 107
Object Oriented Design 109
7.1 INTFOAUCTION ottt 109
7.2 B0OCh M Ol 110
7.3 Hierarchical Object Oriented design(I11OOD).....ccceovvviiceiiiiiieiee 112
7.4 Block Design ...cccooieiieiiiecie e 115
7.5 Object Oriented Structured D eSigN .cccoiiiiiiiiiee e 116
7.6 Learn by EXample e us
7.7 Methodology for workbench t0 0 1S ... 118
7.8 Designing Resusable ClaSSesS. ... 121
7.9 SUM M ATY oot 123
Future Directions 124
81 INntroduction.....cccoceviiiiiiiiiiine 124
8.2 Future Enhancements to Objective-C......cccoveiieiiiiiie e 125
8.3 Future advancements to the Workbench ... 127
8.4 USEr INTEITACES ..o 128
8.5 Conventional SYSIEMS.....cccioiiiiiieiie e 129

8.6 ObjectOriented laNQUAGES .o 130

8.6.1 Naming ConventionsS.......menen. 131
8.6.2 Class Library StrUCTUIES e 131
8.6.3 DeSigN e 131
8.7 SUMMATY oot C 134

Vi

List of Figures

11

12

13

14

15

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.1

Integrated Management Process W o
Encapsulated Object.....cccccveiiennns

Bank ObjectS e,

An object has two parts.......c.....

Inheritance Mechanism.....................

Object Declaration.......cccccceevvivennens

MESSAGE SY NTAX .iieiiiiiiiiieiiie ettt

MESSAJE G IOSSANY .ot

Objective-C Message Conventions...

Objective-C Statementsc........

FKDENCH e

Room Class Definition File ..

IMEBTNOA StTU CTUT E ettt ettt e e e eeeeeeeees

Objective-C Hierarchical InheritanceStructure......c.ccocvovvviivenenen.

Objective-C in Memory........ccccccueenen.

Instance Variables for the Risk Class

vii

10

14

15

16

16

17

20

21

24

27

3.2 Instance Variables for the RUIE C 1aSS uuuuuuuuueieee e 35

3.3 Storing RuUle O D JECTS i e 36
34 SAMPIE R UTES oo 37
3.5 RuUle and TXt ODJECTS....ciiiiiiiieeee e 39
3.6 Initialisation of Riskdriver Instance Variables..........ccccoovniiinnne. 42
3.7 RISKANVEr INSTANCE ..iiiiiiicie s 42
3.8 Deleting RISKANIVEIS oo 44
3.9 Getting risk values from the database.......ccccoeviniiiieiciiciciee, 48
3.10 Rule operands for Rule Number five. ... 49
3.11 Operand and OPerator QUEUES ...ccoceieiererieeteeteeieeieeeee e 50
312 RUIE T T8 B o 52
4.1 Calendar TOOl ClaSSeS ..o 56
4.2 Date Classes Instance Variables......cciiiiininieee 59
4.3 Date Conversion FOrMUIA......ccooiiiiiiiiiiee e 60
4.4 Task Class Instance Variables ... 65
4.5 Calendar AUTOMATA. ... 66
4.6 Calendar VIBW ..o 67
4.7 Calendar INterrogatioNcccocieiiie i 69
51 Generic execute M ethod ... 73
5.2 RISK A UTOM QLA ...cciiiiiiieiesie e 74
5.3 Automata within an automata........ccocviiiiiiiiieiiiee s 75

viii

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

6.1

6.2

6.3

6.4

6.5

6.6

6.7

7.1

7.2

7.3

Instance Variables for Risk Automata......cocooeeioec, 76

followingState M eth o d ..o 77
Ideal environment for graphic packages......c.coovvviienenienienccinen, 78
Realistic graphic package environmentcccceeiiiiivieiiiesie s, 79
WINAOW 1Y O U T oo O
Tree PresSentatioN e 81
Final window 1ayoutccoiiiiiicc e 82
Presentation of Tool and Projectnames......c.cccoccevevieevecieiieseesneenn, S5
Initial RiSK WINAOW ..o 87
Amend RisKAriver WiNGOW ..o 88
Calendar INterfaCe ... 90
ODjJeCt OVEIrNEAU ..o 94
Objective-C required in MEMOrY e 95
Objective-C produCtiVItY ...ccccce i 97
Message OVErNEAdccccccviieiiiiece e 99
Objective-C performance......ccccooevvvvviniienieennnnn 100
Saving mMessaging timM € .o 101
MEthOd SY NTAX it 103
RISK BOOCH-gram ..ccoiiiiiii et 112
[(@ 1@ 1B I [T To 1110 SRS 113
Message passing with HOOD ... 114

174

7.5

7.6

8.1

8.2

8.3

HO O D 1N N B AN C B et eenan 115

Object Oriented Structured Design of theCalendar......ccccccooevvennnne. 117
Object Oriented Structured Design forinheritance........c.cocoviiiinenn. 120
Ideal Objective-C environmMent.......cccooeiiiiiiciie e 126
Possible Window Hierarchy 129
Object Database HierarChy ... 133

Chapter 1

Object Oriented Terminology

1.1 Introduction

During the past couple of decades computer professionals have seen a number of
advances in their industry. Most of these changes have been directed towards the
area of computer hardware. Gradual refinements with hardware technology have
meant quantum jumps in the power and facilities offered by processors, whose
range of uses may vary from controlling water temperature in a washing machine
to controlling an aircraft’s flight. The advancements in software over the same
time period measure poorly in comparison with these hardware advances.

One of the most contrasting differences between software and hardware has
been the way in which project development is performed. When designing elec-
tronic circuitry for computer hardware, large portions of the design are made up
from circuits previously designed and tested. Innovations in computer hardware
use a certain amount of inherited work and design from previous accomplishments
in this area.

W ith computer software a different approach is used, computer scientists
usually start writing code from scratch. The professional computer person will
have a number of design methodologies in his tool kit plus a number of library
routines to help develop a computer system. However no attempt will be made
to inherit tried and tested software from another programmer for application
development. Software people instead will spend time and care developing al-
gorithms and tools similar to what many other people in their profession have
done and continually repeat. Computer systems developed today share a large

CHAPTER 1. OBJECT ORIENTED TERMINOLOGY 2

amount of commonality with thousands of other packages developed during the
past decade. Algorithms using sorts, linked lists and binary trees continually
recur in computer systems. For the software professional rewriting and testing
these algorithms, their work may seem analogous to reinventing the wheel.

Object Oriented languages introduce an approach which unlike conventional
languages, encourages reuse of code so that factors associated with hardware such
as high quality, correct, robust, extendible, reusable and compatible units can
be applied to software[Mey 87]. This thesis looks at the characteristics which
make a language Object Oriented and then investigates how it is applied to the
areas of implementation and design. In practice the construction of code should
not be considered before analysis and design has taken place. However as if to
underline the difference between Object Oriented and conventional approaches
the thesis starts with a discussion on implementation before design. This is done
to introduce the concepts of Object Oriented languages to the naive reader as
early as possible.

1.2 Thesis Overview

The first chapter describes the characteristics which make a language Object
Oriented and the ”Integrated Management Process Workbench” which was con-
structed using Object Oriented methodologies. The Object Oriented language
used for the development of this workbench is Objective-C, which is a hybrid lan-
guage consisting of C and Smalltalk. The second chapter in the thesis, explains
some of the basic statements and syntax required for beginning development
in this environment. The following two chapters describe workbench tools (i.e.
Risk and Calendar) which have been constructed using these principles giving
additional examples of Objective-C statements whenever appropriate.

Chapter five talks about the graphic interface used for the creation of these
tools and how it interacted with the Objective-C environment. Chapter six moves
away from the creation of the IMPW using Objective-C, towards studying the
economics of the approach. This chapter investigates what additional price has
to be paid for an Object Oriented environment such as Objective-C, in terms of
machine space, code size, development time, operation efficiency etc.

The last two chapters concentrate on design, discussing the various ap-
proaches to be adopted when using Object Oriented environments, and the one
that was selected for the development of the IMPW. The thesis ends by taking a
brief look into the future, role of Object Oriented languages.

CHAPTER 1. OBJECT ORIENTED TERMINOLOGY 3

Throughout this text explanations relating to Object Oriented program-
ming, the Objective-C environment, and the IMPW were kept as simple and non
technical as possible. Hopefully this will encourage as many readers as possible
who are interested in Object Oriented technology and workbench environments,
to read this text. While aiming mainly at the newcomer to the approach, it is
hoped that some of the text will be of use to people already familiar with Ob-
ject Oriented programming and design, pointing them towards new ideas for this
relatively new technology.

1.2.1 Integrated Management Process Workbench (IMPW)

My interest in Object Oriented programming and design was triggered by in-
volvement in the development of the Integrated Management Process Workbench
(IMPW) a project sponsored by the European Esprit(European Strategic Re-
search Program Information Technology) committee. Throughout this text there
will be a number of references to the IMPW, so its explanation is given now so
that the reader may understand its architecture and where the tools created us-
ing Objective-C, fit in this environment. The overall function of the IMPW was
to develop a workbench which would help project managers in planning software
projects. The IMPW permitted integrated planning of tasks, staff allocation,
guality management and risk assessment. It also provides extensive monitoring
facilities to enable the project manager to control a project. The size of this
project and the geographical distribution of software partners contributed to the
decision for adopting an Object Oriented approach.

The architecture of the workbench consists of three main components which
can be thought of as three objects as listed below.

Information System (IS) consists of a relational database system holding the
details of the project and the software engineering characteristics. It is linked to
a Prolog system containing knowledge about the methods and tools of software
management and a document storage system based on UNIX filestore. By using
a database containing records of previous projects, as well as the current project
coupled to an inference engine, the workbench can provide decision support and
expert system facilities to managers.

M anager Workbench Interface (MWI) comprised of the I/O manager
responsible for all interactions with the manager and the workbench controller
responsible for tool control.

CHAPTER 1. OBJECT ORIENTED TERMINOLOGY
IMP WORKBENCH

CS TRYA

ESPfVT PROJECT PtW

Figure 1.1: Integrated Management Process Workbench

Computational System (CS) includes a range of tools and utilities, such as
the Risk Analysis, Estimation and Resource monitoring tools.

A translator exists with the IS so that when components are communicating
with the IS their messages are first translated into the formal language of the IS
so that they can be acted on by the IS controller.

1.3 Birth of Object Oriented languages

The concept of Object Oriented languages was first developed more than twenty
years ago. Simula67 developed in Oslo 1967[Dah 66] was the first Object Oriented
language. However despite grouping software modules into objects the language
failed to receive widespread recognition. It was Smalltalk[Gol 83] which built on
the concepts of Simula67, adding the inheritance property that proved, the inno-
vation, which for many people separates conventional third generation languages

CHAPTER 1. OBJECT ORIENTED TERMINOLOGY 5

from Object Oriented languages, which made the real breakthrough.

But why has it taken the computer industry almost twenty years to bring
the concept of Object Oriented languages to prominence? The reasons for Object
Oriented languages becoming popular can be attributed to a number of factors.

e The storage space provided by computer chips has
increased while the price has decreased.

» Increased popularity of iconic interfaces introduced
by the Macintosh, where everything is displayed as
iconic objects.

» Continual backlog of software projects which still
haunts many DP departments, a new approach is
needed where the code is more reusable and reli-
able.

Object Oriented languages introduce a new view for software development,
one where more emphasis is placed on reusable and hence more reliable software.
Unlike more traditional programming methods that are based on concepts such
as data flow or mathematical logic Object Oriented programming directly models
real world entities. During the past decade OBJECT ORIENTED programming
has become a popular buzzword in the computer industry. As this popularity has
increased, so too has the number of object oriented languages in the commercial
marketplace. The list of Object Oriented languages goes from Simula and LISP
to Smalltalk-SO, C++, Object Pascal, Objective-C, Eiffel etc, each vary in syntax
and in what mechanisms they offer, but they all claim that they are object
oriented.

1.4 What makes a language Object Oriented ?

Because commercial object oriented languages are still in their infancy no inter-
national standards have been set to determine what an object oriented language
should be composed off. Conversations as to what features a language must have,
to be categorised as Object Oriented will continue for some years to come. Simi-
lar problems existed when database technology became available. Some database

CHAPTER 1. OBJECT ORIENTED TERMINOLOGY 6

people still argue whether a database has the correct characteristics which make
it relational or non relational.

Differentiation between what does and what does not make languages Ob-
ject Oriented will not be discussed here. Instead this chapter concentrates on the
main characteristics that are desirable for an Object Oriented language to have.
We will start by defining the object.

Object Oriented programming is as the name suggests programming in
objects, but what exactly is an object?. With Object Oriented programming
an object may be anything the programmer wishes, surrounded by a number of
related procedures.

Object: Defn some data, a group of operations on that data,
and a mechanism for selecting an operation given
a command.

Conceptually an object can be thought of as a machine capable of performing
some predefined actions in response to messages.

1.4.1 Encapsulation

The main characteristic of an Object Oriented language and one which is at the
heart of the whole approach is data encapsulation which is unlike conventional
programming languages where the data and procedures are taken as two seperate
components. Object Oriented systems combine the data and the procedures. This
encapsulated module is known as the object. With the Object Oriented approach
the data which is surrounded by a number of procedures is private to the object.
The data encapsulated may only be manipulated by one of these surrounding
procedures. The model below in figure 1.2 shows an object -myBankAccount.
The center contains the various data associated with - myBankAccount i.e. name,
address, tele No, sex, account number etc. The procedures surrounding the data
are the operations which may be performed by that object.

The procedures form a wall of code around the objects data, whereby all
access is handled by one of the object’s procedures built exactly for that func-
tion. For example when bank interest is added to myBankAccount, the interest
procedure will handle this operation. Unlike conventional languages a significant
change has been made in the role played by data. Using conventional languages
the user would have been responsible for applying the correct data and data types

CHAPTER 1. OBJECT ORIENTED TERMINOLOGY 7

Figure 1.2: Encapsulated Object

eg. the correct amount and the correct format must be specified before the bank
interest is calculated. With the Object Oriented approach the user only has to
specify the procedure interest leaving the rest to the Object Oriented mechanism.

This simple example underlines one of the main advantages of Object Ori-
ented Programming, the emphasis on the user to supply the correct data in the
correct format has been removed. The responsibility has shifted to the supplier
of the procedure to supply a correct, efficient, and reliable procedure. Not only
does this reduce user input but more importantly it reduces the number of things
the user needs to know about the system. In the example above the user is only
concerned that the correct interest is added to his savings. How this is performed
is not important, so long as it performs its function correctly when asked to. The
object knows its own private data, it only has to call the interest procedure which
is an operation that can only be performed on the data inside the object. Another
benefit of this technique, is that changes can be made inside the encapsulated
object without affecting applications using it. The user of an object only sees the
services provided by an object, not how the actual service is implemented. The
operation for calculating interest can be changed without affecting the user of
this procedure, as long as the external view of the procedure remains the same.

Classes and Instances When the bank system above needs other accounts,
duplicating the procedures and surrounding them with data for each new bank
account as in figure 1.3 would be very wasteful. Copying the code for each new
account and changing all the account objects when a change is made to one of

CHAPTER 1. OBJECT ORIENTED TERMINOLOGY 8

the procedures, say the interest routine again, would be regarded as tedious to
say the least. There would also be the problem of space due to copying similar
procedures. Having a system full of duplicate objects is not only wasteful causing
storage problems in large systems, where many objects are active simultaneously
but it also increases maintenance when a change has to be made to a procedure.
If the interest rate has to be changed in the example above it would have to be
changed for all objects which may exist.

myAccount
hisAcount

Figure 1.3: Bank Objects

Most Object Oriented languages, Objective-C included make a distinction
between the description of the object and the object itself[Rob 81]. Many similar
objects are described by some general description. This description of an object
is called a class (or shared part), since a class can describe a whole set of related
objects. Each object described by a class is called an instance (or private part) of
that class. The diagram in figure 1.4 shows this more economical representation
adopted by most Object Oriented languages.

In programming language research, information hiding (encapsulation) has
been the guiding principle in the development of abstract data systems found in
languages such as Alphard, CLU and Ada. While many of these systems lack
the concepts of inheritance, they constitute an important class of system called
”Object Based Systems”[Weg 88].

CHAPTER 1, OBJECT ORIENTED TERMINOLOGY

myACCOlJn, hisAccount herAccount
A/C 2876 A/C 7434 A/C 6521
Name: Gerard Name: Leo Name: Rose
Balance: 3452.43 Balance: S4.9S Balance: 321.90

Figure 1.4: An object has two parts

1.4.2 Inheritance

Inheritance is the major feature distinguishing Object Oriented programming
systems from conventional programming systems and Object Oriented languages
from object based systems. Inheritance increases code reuse by allowing the
programmer to inherit code from generic classes[Hal 88]. This feature means
that the programmer dose not have to redesign each new class of object explicity.
Inheritance permits generic operations to be inherited in the way we inherit
knowledge.

The tree in figure 1.5 shows a subset of the animal heirarchical structure.
From this diagram we know that Peter and Leo are both men and will therefore
inherit all the characteristics which are common to men. Details of how many
legs, arms, bones in the body is determined automatically from the parent nodes
in the tree. The inheritance of objects using Object Oriented languages follow a
similar pattern, the knowledge inherited is the data and procedures from parent
objects. By inheriting the procedures and data types common to objects not only
is space saved, but also maintenance is reduced. Procedures common to many
objects can be maintained in isolation leaving the calling object unaffected.

This makes inheritance a powerful tool for building systems, by organising
objects into related groups and using previously defined procedures. Without in-
heritance objects would be freestanding units, which would have to be developed
from scratch. Any consistency between objects inside computer systems would

CHAPTER 1. OBJECT ORIENTED TERMINOLOGY 10

Figure 1.5: Inheritance Mechanism

only be achieved through discipline by the programmer.

Object Oriented languages which permit inheritance may simulate similar <
hierarchical trees into computer systems. When an object inherits similar knowl-
edge i.e. procedures and data, the work required for amending and extending
a computer system is greatly reduced. The fact that code already exists in in-
herited objects substantially reduces the amount of code to be developed by the
programmer. The power of encapsulation and inheritance is optimised by cre-
ating carefully designed objects, where changes may be made to objects causing
little or no effect on other object modules.

CHAPTER 1. OBJECT ORIENTED TERMINOLOGY 11

1.4.3 Other Object Oriented characteristics

Encapsulation and inheritance are the two most desirable properties required by
Object Oriented languages. Authors from various books, journals, and papers
on this topic may state other requirements. Their reasons are often related to
certain features offered by the Object Oriented environment in which they are
working. Some of these features are mentioned briefly below.

Dynamic Binding With conventional languages the operations related to a
routine are assigned at compile time. However for systems to have knowledge
about all possible operations during its life-cycle is an almost impossible task.
Dynamic binding helps by postponing the decision of what operation to invoke
until run time.

Conventional languages such as C, Pascal etc, offer some dynamic binding
using case statements. Unfortunately the addition of further operations cause
modification of existing code. Dynamic or late binding as it is sometimes called,
does not suffer from this problem in Object Oriented languages, thanks to en-
capsulation and inheritance.

Critics of dynamic binding argue that the approach affects the speed at
which applications run, while proponents of dynamic binding argue that its good
for rapid prototyping and end user programming. Certainly there is a price to be
paid for not specifying the operations until run time. However this degradation
in performance, is outweighed by the benefits gained in flexibility where the user
may postpone decisions on types and structure which are not relevant until run
time.

The operations performed by objects are implemented using procedures
(known as messages in Object Oriented technology) similar to conventional pro-
cedural calls. However instead of the procedure name identifying the code for
computation, in Object Oriented languages this action is performed by the ob-
ject. The operation performed by a print message for example, would depend on
the object that receives the print message. If it was a rectangular object then
it would print a rectangle, a circular object would print a circle and so on. The
ability of different objects to perform different operations on identical message
calls, is called polymorphism.

Multiple Inheritance The inheritance mechanism discussed throughout this
text is related to single inheritance. Some languages such as C++, Eiffel, CLOS
allow an object to have more than one parent. Such systems are said to provide
multiple inheritance. Systems which allow multiple inheritance increase code

CHAPTER 1. OBJECT ORIENTED TERMINOLOGY 12

sharing by making it possible to combine descriptions from several classes. For it
is possible to have an object such as “lorry”, which has both vehicle and toy as
parent classes. Most languages which support multiple inheritance use some type
of precedence relationship to indicate which class should be dominant[Ste 86].
Other languages such as Smalltalk-80 take the stand that no simple precedence
relationship for multiple inheritance will work, leaving the responsiblity as to
which class should have precedence to the user, this approach can have difficulties
solving ambiguities between objects.

1.5 Summary

This chapter has given the reader an introduction to Object Oriented program-
ming languages. No mention of specific language syntax was made, only Object
Oriented concepts have been described. Understanding the principles of encapsu-
lation (i.e. a seamless module whose data can only be manipulated by one of its
surrounding procedures), inheritance (i.e. the ability to build onto already known
and valid information) dynamic binding (i.e. assigning variables at run time) and
polymorphism (objects reacting differently to identical messages) should put the
reader in good stead for reading this text.

The effectiveness of using object modules for system development, will be
focused around the IMPW throughout this text. The size of this project is
substantial (approximately 100k lines of code) for allowing us to view the benefits
and faults of the Object Oriented approach in medium to large software projects.

Chapter 2

Objective-C

2.1 Introduction

The commercial marketplace for Object Oriented Languages has increased steadily
over the last five years. Magazine adverts now offer a number of Object Oriented
environments for software development. The benefits of reusable, more reliable
and easily extendable code is offered by a number of Object Oriented suppliers.
Smalltalk, Eiffel, XLISP, C++, Objective-C and Objective-Pascal are examples
of some of the many programming environments which can be used for Object
Oriented development.

Before any tools were designed for the IMPW/, a decision was taken to estab-
lish a software environment for tool development. The final decision made by the
management team was to develop using the Objective-C language. The reasons
for this choice are numerous, i.e. reputation of the software environment, facilities
offered by the language such as libraries containing object modules for graphics
and input/output capabilities, portability of software on graphic workstations,
plus all the various political and financial reasons which are associated with a
project. No justifications for the choice of language is given here, instead the
objective (excuse the pun) is to explain the features of the Objective-C language
and the syntax required to use these features.

13

CHAPTER 2. OBJECTIVE-C 14

2.2 ODbjective-C data types

The Objective-C language is a superset of the C language. Using Objective-C
does not necessarily mean learning a new language. C users only have to adopt
a new approach in the use of a familar language[Cox 86]. The language adds
precisely one new data type the object identifer referred to as type id, to those
provided by standard C. This declaration is made in a manner similar to other
C types.

int i; /1 declared an integer
char *c; /] declared a pointer to a character
id myObject; /1 declared an object identifer

Figure 2.1: Object Declaration

The variable myObject may be used to identify any type of object. The
amount of space required to identify object labels, similar to myObject is a con-
stant, but the space occupied by the object will depend upon each objects private
data (instances variables). Their are two types of object which the Objective-C
user may use, class or instance.

2.2.1 Class and Instance Objects

In chapter one it was stated that the shared part of the object is called the class
and the private portion containing the unique data is called the instance. The
class which provides the mechanism for sharing methods is regarded as an object
by many languages[Tho 89], including Objective-C.

The class may be thought of and is sometimes referred to as a factory
object producing new objects similar to itself. Each new object created by the
factory class is an instance of that class, the data store in each object is private

CHAPTER 2. OBJECTIVE-C 15

to that instance. Further reference in this text to an instance can be regarded
as an individual object, which has been created by some class. The term class is
also a reference to an object, but this object is used to define the shared parts of
similar objects or factory objects.

2.3 Messages

When an object wishes to perform one of its operations, it sends a message
to itself. People accustomed to conventional programming techniques find this
terminology difficult to grasp at first, what exactly do we mean when we talk
about sending messages?

message : Defn message sending is used by object oriented
languages to make an object perform one
of its operations.

Messages may be thought of as something similar to function calls. They
can contain a variable number of arguments and execution of program code is
halted until the called procedure finishes. It is possible to return any data type
similar to that returned by functions in C. The examples below illustrate the
Objective-C syntax for sending messages.

message selector argument
Point new new none
anObject new:5 new: 5
anObject give:me:5 give: me, 5

Figure 2.2: Message Syntax

Unlike conventional function names, message selector names do not guar-
antee unique names throughout the system. This is because the selector name is

CHAPTER 2. OBJECTIVE-C 16

also dependent on the object that received the message.

In order to determine which procedure(method) belongs to which object,
each object is allocated space to store a table which contains pointers to all the
procedures which are private to its domain. This table is known as the dispatch
table and the pointers in each slot are known as the message selectors.

The Objective-C syntax for sending messages is summarised below.

result = [anObject doSomething: argument];
(receiver) (selector)
(object) (message)

Figure 2.3: Message Glossary

The text string after the left brace in any message expression will always
represent the object which is receiving the message. Objective-C uses the con-
vention of presenting the first letter of a class/factory object in capitals. Instance
objects begin with lowercase letters therefore anObject referenced above would
reference an instance object. Selecting message names is similar to selecting C
function names. Names chosen should relate to the task at hand; a convention
which should be performed by all programming languages. However instead of
using underscore to concatenate words in a function name, Objective-C program-
mers use the convention of representing the first letter of each word, after the
first word, in capitals as below.

ac
ac

add_interest_to_account(); //IC
anObject [addInterestToAccount]; //Objective-C

Figure 2.4: Objective-C Message Conventions

CHAPTER 2. OBJECTIVE-C 17

Colons are used to seperate arguments and also form part of the selector’s
name (see figure 2.2). The message statement is always terminated by a right
brace. The Objective-C syntax also allows programmers to embed message calls
inside other messages and ordinary C function calls. Statements as in figure 2.5
appear frequently in many Objective-C programmers code. In the first example
the factory method Book, creates a new book and then adds the object to book-
Cltn. Note the order in which the methods are performed follows C precedence
rules. Messages are executed from left to right, with inner nested messages taking
precedence. In the second example the fifth book is taken from the book collec-
tion (all collections begin at zero), the book then finds out what size it is before
printing it’s result. The third example uses the C sprintf function, the string and
integer values are provided by title and pagesize methods respectively.

[bookCItn add:[Book new]];
[[[bookCItn at:4] size] print];
sprintf (fred, "7,s y,d",[aBook title] , [aBook pagesize]);

Figure 2.5: Objective-C Statements

2.4 Methods

The message or selector names for all the procedures which anObject(see figure
2.3) can perform are kept in a dispatch table in anObject’s shared part(class).
The dispatch table uses a selection mechanism which indicates the appropriate
operations anObject should respond to. In Object Oriented languages the op-
erations carried out by objects are called methods. These methods are similar
to ordinary functions, i.e. they can have any number of various argument types,
they can return various types of results and the operations in both is determined
by the code inside the method or function. However there are a few differences
between functions and methods:

CHAPTER 2. OBJECTIVE-C 18

* Method names are not unique, i.e. different classes
may have the same method name.

* A method needs to address additional data space
i.e. the private data inside the object sending the
message.

* Methods are called indirectly by messaging.

The Objective-C language permits two basic method types which can be
activated by sending messages to the appropriate factory or instance methods.
Factory methods are the operations performed by the class object such as initial-
isation of instances. Instance methods relate more to specific operations which
an instance of a class should perform, such as printing its contents. The space,
data types and operations performed by these objects are determined in the class
definition file.

2.5 Class Definition Files

Objective-C classes which provide the basic unit of modularity in an Object
Oriented system are created in the class definition file. This file determines the
class name, its hierarchical position relative to other classes in the hierarchical
network, the objects instance variables and the methods which may be performed
by the class or instance objects.

The class definition listing in figure 2.6 represents the class Room. As well
as the six instance variables declared for Room, the variables from the inherited
classes back to the root class are also added. The root object in the Objective-
C inheritance tree is the class Object, which is the only Objective-C class that
has no parent or super class. The inheritance path for all objects always ends
with this abstract object. The immediate class from which Room inherits is the
Object class, therefore only instance variables and methods may be inherited
from this class. The class Object adds one instance variable to the Room class,
this variable is known as the isa pointer. The isa pointer is important, as it is
used by objects to form an inheritance chain to the root object.

The methods which surround the Room object’s private data complete the

CHAPTER 2. OBJECTIVE-C 19

rest of the listing. Methods with plus signs(”+”) before the selector name rep-
resent factory(class) methods. These methods are only accessible to an object’s
factory methods, a common fault when beginning Objective-C programming is
asking an instance of some class to perform one of it’s factory methods. Unless
there is a instance method with the same name in the object class or one of
the inherited classes an error will occur. The minus sign(”-") before the selector
name represents instance methods. Instance methods may only be accessed by
sending messages to instances of that class or sub-classes.

The values returned from floorspace and colour are of type int and char
respectively. When the method fails to give a return type, the default value
id (object identifier) will be given, unlike C whose default type is an integer.
The ”create”, ”length:” and ”breadth:” methods are examples of methods which
return type id. Note that colons used to seperate method arguments, must
appear in the selector name. If the Room class calls a method which cannot be
found in its class definition file the search is repeated in the parent class. This
procedure is repeated until the called method is found or until the inheritance
chain is exhausted in the root Object.

/* Objective-C scource fils for the class Room */
= Room : Object (Demo, Primitive)
{ // instance variables of class Room
int length;
int breadth;
int height;
int windows;
int doors;
char *colour;
>
// Create a new Room by using the superclass
+ create {
id newRoom; // declaration of local variable
newRoom = [self new];// creates new instance of room
[newRoom length:40];
[newRoom breadth:60];
[newRoom height:5];
[newRoom windows:1];
[newRoom doors:1];
[newRoom colour:"blue™];
return newRoom;

new®" method

>
// Sets the room length variable for a Room object
- length : (int) roomlen {
length = roomlen;
return self;
>
// Sets the room breadth variable for a Room object

CHAPTER 2. OBJECTIVE-C 20

- breadth : (int) roombreadth {
breadth = roombreadth;
return sell;
>
// Sets the room height variable for a Room object
- height : (int) roomheight {
height = roomheight;
return self;
>
// Sets the room windows variable for a Room object
- windows : (int) roomwindows {
windows = roomwindows;
return self;
>
// Sets the room windows variable for a Room object
- windows : (int) roomwindows o
windows = roomwindows;
return self;
>
// Sets the room doors variable for a Room object
- doors : (int) roomdoors {
doors = roomdoors;
return self;
>
//Sets the room colour variable for a Roomobject
- colour : (char *) roomcolour {
colour = roomcolour;
return self;
>
// Determines the integer size for floor space
- (int) floorspace {
int floorsize;
floorsize = length * breadth; // lengthand breadth refer
return floorsize; // to objects private data

=: // symbol which terminates the class

Figure 2.6: Room Class Definition File

Classes such as Room (or any other Objective-C class) are executed directly
by a main program or indirectly by another class. The main program for initiating
Objective-C class is similar to it’s C counterpart,with some additional features.
The Objective-C main program must always declare the message groups used by
the file.

Classes and messages are declared at the bottom of the main module so
that the compiler can combine all the classes and messages used by the program.

CHAPTER 2. OBJECTIVE-C 21

The syntax for classes is simply ©classes(class list) where the list contains all the
classes referenced in the file. The syntax for message is similar @ message(message
list), however so long as the messages are in the same file as the classes statement,
the message groups do not have to be listed.

2.6 Self and Super

To prevent losing track of objects while sending messages through the inheritance
chain, the keyword selfis used in Objective-C, to identify the object receiving the
message. The word self in the Room factory method “create”, is the receiver of
the factory message "new”. Methods which return the value self, simply return
the object which received the message. W hether the objects private data values
have changed since the message was sent will be dependent solely on the called
method’s code. The methods in the Room class listing which return self, initialise
the instance object newRoom with values newRoom length 40, newRoom breadth
60, newRoom Height 5, newRoom window 1, newRoom doors 1, colour blue.

Besides inheriting instance variables, Objective-C classes also inherit factory
and instance methods. When the inheritance tree has to be followed back through
a number of parent classes to find a method, the pseudo-variable self identifies
the object which received the message. The Objective-C variable super is similar
to the self variable. However unlike self where the search for a selector name
begins in the object’s dispatch table which received the message, the search of
selector names begins in the object’s parent class when the receiver is super.

+ new {
id myRoom;
myRoom = [super new];

return self;

¥

Figure 2.7: Method Structure

CHAPTER 2. OBJECTIVE-C 22

If the factory method ”create” in room was replaced with the factory
method “new” as in figure 2.7. The receiver of the "new” message is super,
so instead of searching for the “new” method in the class dispatch table where
the message is sent, the search commences in the parent class(which in this exam-
ple would be Object). Using self instead of super in this method would put the
program into an infinite loop, an error often encountered by naive Objective-C
programmers.

2.7 Objective-C Inheritance Library

The inheritance mechanism provided by some Object Oriented languages (Ada
and Modula-2 are examples of Object Oriented languages which do not provide
inheritance) encourages reusing existing code. The inheritance mechanism may
not be a required feature of object oriented languages, but it is certainly a very
desirable one. Inheritance helps in two important system development principles.

Reusability — the ability to produce software that may
be used in many different applications.

the ability to add code to existing source,

Extendibility =\ ithout modifying the old source.

The hierarchical inheritance mechanism used by the Objective-C language
contains a number of generic classes linked to a root object. Each subclass be-
comes more specific as we follow its path from its parent class. All the instance
variables and methods from the parent class are inherited’. This means that a
subclass does not have to redefine methods and instance variables from its parent
class. A subclass can be viewed as a more specialised version of its parent class
i.e. it is similar, but with a few extra bits added on (extra methods and instance
variables). When similar method names exist in various classes, the method in
the lowest(more specific) subclass will override the parent method. Access to
methods further up the inheritance tree are referenced using the variable super
mentioned above.

CHAPTER 2. OBJECTIVE-C 23

2.7.1 Foundation Classes

One of the strong selling points of the Objective-C language, is the number of
software classes that are supplied with the compiler. These classes provide the
foundation from which software development can begin. The classes provided,
help form the class inheritance foundation library as shown in figure 2.8. The
order of class inheritance is indicated by indentation below the respective super-
class.

The foundation classes provided are divided into three message groups,
which must be declared with the class, so that the compiler can store all the
method types returned. The classes provided in the Objective-C foundation
library belong to one of the following three groups mentioned below. Classes
created by the user are added to their own message group, in the Room example,
the class is attached to the message group Demo.

« Primitive classes with provide a basic foundation for building software-IC’s.
The term software-ICs[Coxb85] is a term used by the Objective-C suppliers to
reference reusable classes, this is analogous to the way hardware builds from
existing integrated circuits(1C).

e« Collection classes which provide functionality for maintaining different types
of collections.

* Geometry classes which provide the basic components for building graphical
user interfaces.

To explain the operations, data and foundation grouping of each of the
above classes in detail, would require time and space outside the bounds of this
thesis. Readers interested in finding out more about Objective-C and the classes
provided with this environment should refer to the Objective-C manual[OC -
87]. The section below briefly describes the role of some of these predefined
classes to give the reader a taste of the power provided by this environment.
However it must be stressed, that in order to build system applications using
this environment, it is important that the user has a good understanding of all
available classes.

OBJECT == positioned at the root of the inheritance hierarchy has its capa-
bilities inherited by all other classes. The root Object can be thought of as an
abstract class, which means that its contribution is not really directed towards
creating instances of this class, but more towards providing services which can
be used by objects further down the inheritance path.

CHAPTER 2. OBJECTIVE-C

Nil
Object

» Array

IdArray
minlArray
*BytArray

» Cltn
Vd

rdCltn
Stack
Set Lo
— » Dictionary
1— » Bag
-*m Balnode
S » SortCltn
-> String

-*m Point

'
*
.

Rectangle
-» Assoc
AsciiFller
-» Assoc
ObjGraph
-» Unknown
-+» IPSequence

* Sequence

Figure 2.8: Objective-C Hierarchical Inheritance Structure

CHAPTER 2. OBJECTIVE-C 25

The class Object defines one instance variable, the isa variable which is a
pointer to an objects shared part and is automatically inherited by all sub classes.
This allows all instances of classes to point at the factory object, from which they
will begin to inherit.

The methods provided by the Object class facilitate features such as stor-
age/retrieval of objects in memory, error handling, comparisons, object interro-
gation plus other features whose inclusion, would be general enough to be used
by any class.

ARRAY => This class is the abstract superclass of all array classes. It is
designed to support random access to indexed instances variables. The more
specific sub-classes are used to hold different array types.

IdArray =4> stores object identifiers
ByteArray =>m storeschars
IntArray =$m stores integers

Methods are provided for resizing, accessing, comparing, sorting etc. How-
ever these classes do not provide complete flexibility, because array size must be
defined before they are created. Changing the size of an array object is possible,
but by no means straight forward(i.e. the array and its contents must be tracked
down and relocated in memory).

ASCIIFILER => This class provides a general technique for having persistent
objects. Allowing objects created by the system to outlive the execution time of
the system. The crux of these operations is to convert binary values into textual
representations and vice versa. This class saved a large amount of time and code
during IMPW development, removing the need to write code to store and retrieve
objects in memory.

2.7.2 Collection Classes

Development of the IMPW discussed extensively throughout this text relied heav-
ily on the facilities provided by the collection classes. Unlike the Array classes,
collections provided the flexibility of variable length collections. The collections
are used for holding objects, some of which may be types of collection themselves.

CHAPTER 2. OBJECTIVE-C 26

CLTN is the most abstract of the collection classes, whose role is mainly
to provide the functionality required for more specific collection classes. This
class includes methods for adding, removing, testing and memory allocation.
This abstract class is rarely used for the creation of collections, instead that
responsibility performed by one of the sub classes.

ORDCLTN => subclass of Cltn, keeps the objects entered to the collection
in order, no nil entries are permitted in the collection. Statements required for
setting up an order collection are given below.

anObject = [OrdClItn new];

Note that the size of the collection does not have to be specified, as it will
be adjusted automatically as objects are added.

SET => are collections which disallow duplicate entries, a common use of such
objects is in the creation of symbol tables. Sets place all objects added to them
into a hash table. The assumption is made that after objects are added to a set
they will not change anything about themselves.

2.8 Tying it all together

The diagram in figure 2.9 shows how the objects(classes and instances) are ar-
ranged in the Objective-C environment. Due to the number of methods inherited
by the class objects, it is not possible to represent all methods. The slots below
each of the boxes represent the dispatch table associated with an object. The ob-
jects in the left hand column represent the shared portion used by the instances.
The right hand column represents the shared portion used by the class objects.

W hat surprises many people is the fact that the private part of one object is
the shared part of another. By simulating sending messages in this architecture,
any mystique surrounding it may be removed. For example if the message [self
foo] is sent by an instance of Set, the dispatch table for Set instances is searched.
If the selector is not found, the search is repeated in its parent class Collection
and then in the Object dispatch table where it is found.

The meta class data st,ructures(the classes shared part) on the right contains
the dispatch tables that are searched if a factory message is sent. Notice how

CHAPTER 2. OBJECTIVE-C

Class
f private part shared pari
Instance
Dynamic Sialic
Objects Obiecl!

aSet = [Set new];
[aSet foo];

Figure 2.9: Objective-C

in Memory

27

CHAPTER 2. OBJECTIVE-C 28

the name and function of the block changes when the point of view is changed
by selecting a different object. If a message is sent from a factory object, the
previous shared part now becomes the private portion.

2.9 Objective-C Compiler

While not an important issue for Object Oriented implementation and design,
details of the Objective-C compiler mechanisms have been added for complete-
ness. The compiler can be thought of as a program which translates Objective-C
source code, into a binary executable form, for execution on your machine. The
steps required to achieve the executable code involves steps similar to ordinary C
compilations. However unlike conventional compilers dealing with files in isola-
tion, compilers with inheritance capabilities cannot accomplish this. Changes to
classes during system development, causes information to flow in both directions
between the compiler and the library. This leads to some subtle differences in
the way compilations and linking is managed.

The Objective-C compiler contains a control program, which coordinates
the various tools and the files manipulated by these tools. The Objective-C
control program, executes tools in a tool chain when compiling the Objective-C
language. The tool chain must include

C Preprocessor
e Objective-C Translator
» Target C compiler

e Target Linker

to perform Objective-C compilations.

The first phase of the Objective-C compilation process involves the pre-
processor. The source files, containing class definitions, are the input for the
preprocessor. The preprocessor performs a translation pass, replacing “include
and "define statements with original source and definitions for respective macros.
The output from the preprocessor, the original source with include files merged

CHAPTER 2. OBJECTIVE-C 29

and definitions expanded, is used as input for the second phase.

At the second phase, the Objective-C translator converts the expanded
Objective-C source code into C source code. The Objective-C compiler translates
class definitions, class references and message references into C source. Ordinary
C statements travel through this phase untouched.

During the next phase the target C compiler translates the source code into
relocatable machine code. The relocatable object file is produced by the target
C compiler. The standard librarian may place this file in memory or the linker
may be used if an executable image is required.

The final phase in the tool chain uses the linker to combine the object
modules as specified by the source. Objective-C class libraries, C library code
plus the user’s own class library and library functions may be linked into an
executable program. The output from this phase will be the executable program.

The suppliers of Objective-C supply the C-preprocessor and the Objective-
C translator. The host environment must supply the target C compiler and the

target linker.

The command syntax required to compile Objective-C files is

objcc [options] filename(s)

The options are similar to those provided by the C compiler

-C produces relocatable object modules

-0 produces final output file, a.out is used if
no option specified

-g debugging information

To ensure consistency, a common set of routines manage all diagnostics is-
sued by the compiler. All the Objective-C errors have (OC)printed before them.
If the diagnostic does not contain an (OC) then the problem relates to conven-
tional C code.

CHAPTER 2. OBJECTIVE-C 30

2.10 Summary

This chapter has given the user an express trip around the Objective-C environ-
ment. Explaining all areas of the language was not possible within the context
of this thesis. The examples and discussions given are used mainly to give the
reader a broad understanding of the Objective-C language and help ease the read-
ers passage through this text. As with most languages, the best way of learning
Objective-C issues discussed in this chapter and more, is through practical expe-
rience.

Chapter 3

Risk Analysis Tool

3.1 Introduction

The IMPW discussed in the first chapter, divided the workbench into three main
areas or objects of functionality. The Information System(lS) is the workbench
nucleus, verifying and storing data, which affects the wide range of variables as-
sociated with project management. Interactions with the IMPW are controlled
by the Manager Workbench Interface(MW 1). This object is responsible for pre-
senting data and information, generated by the tool, to the end user in a format
that is easily understood and manipulated. Between these two high level IMPW
objects the Computational System(CS) resides. This object contains the tools
which allow the IMPW to be used by the end user. These tools add and manipu-
late data in the IS database, determining the values presented by the MWI. The
goal of the overall IMPW project was to produce a prototype workbench, con-
taining a comprehensive and integrated set of tools, to help with the management
of medium to large-scale software development projects.

Discussion during this and the next chapter, will be centered around the
functionality provided by two of these tools, mentioning briefly how the Objective-
C environment was used in their development when appropriate. Due to the
complexity and size of these tools, it is impossible to describe them in any depth
inside this thesis. The code illustrations given throughout this text show only
a small proportion of the statements, and data variables common to these tool
environments. However code listings associated for the creation of both Risk and
Calendar tools may be viewed in Appendix D and E respectively. This chap-
ter concentrates on the Risk Analysis tool, while the next is dedicated to the

31

CHAPTER 3. RISK ANALYSIS TOOL 32

Calendar tool.

3.2 Risk Tool Overview

The Risk Analysis tool was designed to help the project manager “walk around”
the project at an early stage, and anticipate potential major sources of risk to
the project. The tool attempts to quantify risk under a number of headings and
to propose practical steps that the project manager could take to reduce or offset
identified risks.

3.2.1 Tool Input

As a result of a literature review and consultation with a number of experi-

enced software project managers, four “risk management areas” which the risk tool

should address were identified [Boe 81],[Zal 77], [Dav 82],[Alt 78],[Cha 85],[AFSC87]
An initial set of twenty three project risk areas (riskdrivers) where identified,

which could be expected to contribute to the level of risk in the project in one

or more of the risk management areas. The project managers judgement of the

values of the riskdrivers for the project constitute the primary input to the Risk

Tool. Great care was taken in the design of the rating scales to be used to ’quan-

tify’ the levels of the riskdrivers. The four risk management areas are defined in

Appendix A. The riskdrivers and their values are defined in Appendix B.

3.2.2 Tool Output

The major output from the tool is the “risk report”. This report is in two
sections. The first section provides the “risk measures”, one for each of the four
Risk Management Areas. The risk measures are computed from the riskdriver
values provided by the project manager. The algorithm used to compute the Risk
Measures is described in the “Measure Class” section. The second section of the
risk report consists of a set of text “advice paragraphs” suggesting risk reduction
strategies to the project manager. The computation of the “advice paragraphs”
is based upon the application of production rules (i.e.the “risk analysis rules”) to
the values of the riskdrivers. The prototype tool contains only thirty Rules, thus
the level of “wisdom” it displays is limited. Some of the Rules were formulated
through discussion with project managers. Other Rules were gleaned from the

CHAPTER 3. RISK ANALYSIS TOOL 33

general project management literature. The manager is able to interrogate the
risk report to establish the basis on which the risk measures, and the particular
advice paragraphs shown were reached. The procedure the tool uses for this
“explanation” function is outlined in the “Rule interrogation” section.

3.3 Important Classes

Before explaining the functionality provided by the Risk class, it is important first
to introduce the main classes and the private data(instance variables) associated
with these structures. The Risk tool initiated the development of a number of
new classes. Four of the most relevant classes for understanding terminology
relating to functionality to be described later in this chapter, are described in the
following sections. The classes to be discussed are given below.

* Risk
e Rule
e Text

e Measure

3.3.1 The Risk Class

The various risk areas used by the tool are referred to as Riskdrivers by the Risk
Analysis tool. Reference throughout this text to Riskdrivers refer to areas of
software risk. The Objective-C mechanism for representing a Riskdriver object
is shown in figure 3.1. This declaration is taken from the Risk class definition file
Appendix D. Because no standard information on the construction of riskdriver
objects exist, the object structure for risk objects was made from the accumula-
tion of information, referenced in the “Tool Input” section and other personnel
involved in the development of the IMPW.

The data values which are common to all riskdrivers are mirrored by the
instance variables in the Objective-C factory class Risk. The instance variable
riskdriver indicates the name of the risk area eg. “Scale of Project”. The risktxt

CHAPTER 3. RISK ANALYSIS TOOL 34

// Risk Factory Class
= Risk : Object (RiskGroup, Collection, Primitive)
{ // instance variables of risk

char * riskdriver;

char * risktxt;

char * riskcondition[6];

int riskweight[6];

char ™ riskhelp;

char ™ attrName;

char ™ entityName;

*

Figure 3.1: Instance Variables for the Risk Class

instance supplies supplementary information, which is used to make the reading
of riskconditions more comprehensible, when displayed on screen. The Risk class
allows each Riskdriver to have a maximum of six riskconditions to represent the
different characteristics it might have.

The data types used here were stored in an array, a more flexible structure
would have been obtained, if riskconditions and riskweights were stored in an
object of type collection. The collection class would have eliminated the need
to restrict riskcondition and riskweight to a specific size, as the collection ob-
ject could have expanded automatically for variable riskcondition numbers. All
riskconditions associated with a Riskdriver are given a risk weight, which is stored
in the corresponding riskweight array. The weight values are used for estimating
the percentage project risk for all riskdrivers used by the Risk Analysis tool. In
order to clarify the risk areas referenced by some Riskdrivers, additional infor-
mation is supplied in riskhelp. The instance variables attrName and entityName
are present in the Risk class to identify the IS table and the column name where
the Riskdriver values are recorded in the IS database.

3.3.2 The Rule Class

The output from the Risk Analysis tool has been specified as a report detailing
numeric measures of risk, plus textual information explaining what is causing the

CHAPTER 3. RISK ANALYSIS TOOL 35

risk and advisory text paragraphs indicating corrective action. The presentation
of this textual information relates to “risk analysis rules”,.entered by an expert on
risk analysis for software projects. The rules represent riskdrivers having riskcon-
dition values, which may affect overall project success. The syntax of these rule
messages may indicate risk associated with one or more risk objects(riskdrivers).

Creating a factory class to represent rules indicating project risk based on
the values of the riskdrivers, introduces problems similar to those encountered
when setting up the Risk class. When setting up the Rule class, we need to know
what data values should be used to represent the Rule, what methods to associate
with Rule objects and what class should the Rule class inherit from. There is
also the additional problems of linking rule objects to risk and text objects.

Various object designs were considered for the internal representation of the
Rule class such as linked lists, B-trees, binary trees, arrays etc. The approach
chosen to model the Rules is shown in figure 3.2.

Rule : Object (Riskgroup, Collection, Primitive)

char * rules|6];
char * condition;

Figure 3.2: Instance Variables for the Rule Class

In the prototype version, six is taken to represent the maximum number
of riskdrivers and condition numbers allowed to relate to any condition num-
ber result. The condition number which represents the link between Rules and
associated text is represented by the character pointer condition.

The table in figure 3.3 shows how instances of Rule are stored in the Risk
Analysis tool. Each row in the table represents an instance of the Rule class. The
entire table represents a collection of rule instances which is called the ruleCltn
in the Risk tool. The asterisks denote the number of riskdrivers referenced by a
Rule when less than the maximum six in the prototype. Again, as in the Risk
class, ”collections” rather than ”arrays” would have provided a more flexible
way of holding Rule operands as no upper bounds were required. However to

CHAPTER 3. RISK ANALYSIS TOOL 36

Condition
Rules Number
R1.1 R2.1 * C1l
R3.2 R9.1 c2
*
R5.4 c3
R4.2 c1 C4
R7.2 - cs
R7.1 R8.1 : cs5
C2 C3 N c6

Figure 3.3: Storing Rule Objects

keep the Rule syntax relatively simple, arrays with a maximum limit of six were
used to store Rule operands in this prototype version. The values in each cell
reference riskdrivers, the value RI.l in the top left cell references riskcondition
one for riskdriver number one, the value R3.2 represents riskdriver number three
riskcondition two etc. Some Rule instances also contain values with a C preceeded
by an integer value. This is used to represent rules from previously defined
riskdrivers, as well as providing a link between rule and text objects.

eg. Cl =1IF RI.I AND R2.1

The value C<integer value> at the end of each row is called the condition
number. This number will link risky riskdrivers to their associated diagnostic
text. The condition numbers, which are used to relate associated text are gen-
erated automatically by the tool in an ordered sequence, designed to simplify
searching, when performing operations on these objects. It also helps to avoid
the situation of the SuperUser relating a rule to an undefined condition number,
thus reducing the level of validation required on rule objects. The interaction be-
tween riskdriver values and Rule sentences is accomplished using a rule specific
grammar syntax as shown in figure 3.4.

Rule Validation Using this rule syntax as an intermediary between riskcon-
ditions and high level rule sentences introduces other problems. Some type of
validation must be made to ensure that rules entered conform to a syntax which

CHAPTER 3. RISK ANALYSIS TOOL 37

IF RI.I AND R2.1 THEN CI

IF R3.2 AND R9.1 THEN C2

IF R5.4 THEN C3

IF R4.2 AND ClI THEN C4

IF R7.2 OR R7.1 AND R8.1 THEN C5
IF C2 AND C3 THEN C6

Figure 3.4: Sample Rules

relates rules toriskdriver objects used by the Risk Analysis tool.Checks must

also be made toensure that riskdrivers referenced exist, riskconditions referenced
to specific riskdrivers exist and that condition numbers entered in rules already
exist (i.e. the results of previously defined rules). These problems highlighted
the need for a number of validation procedures to be attached to the Rule class.

The validation of the rule syntax can also have an effect on the efficient
running of the tool. If objects are to be created each time the ”risk expert”
is about to enter Rules, what happens when the Rule entered is invalid? It is
possible using the Objective-C mechanism to create objectswhichknow how
to destroythemselves. However the creation and then deletion of anobject
would seem wasteful of machine and user time. After analysing these factors, the
approach for creating Rule instances was finalised.

Instead of creating rule objects before the rule sentence was entered by the
“risk expert”, the rule sentence is validated first, before the creation of Rule
instances. Functions were required to parse the sentences into operand and op-
erator stacks and check the validity of the grammatical sequence. Checking of
operands ensures that riskdriver and riskcondition numbers referenced exist and
that condition numbers forming part of a Rule already exist as a result of previ-
ously defined Rules.

Statements containing the OR operator signifies that more than one in-
stance is related to a Rule sentence. The Rule class only creates Rule instances,
if the entire rule syntax entered is correct. This decision relates to the automatic
sequencing of numbers. Entering the invalid part of a rule at some later stage
would require the manual entry of the condition number, plus extra functions to
ensure that it is valid. These checks however could not correct the possibility of
the SuperUser entering the wrong condition number for the rule.

CHAPTER 3. RISK ANALYSIS TOOL 38

By using ordinary C functions instead of Objective-C methods, verification
of Rule syntax may be performed before Rule objects are created. This high-
lights one of the advantages of the hybrid languages such as Objective-C over
a pure Object Oriented language such as Smalltalk, where all operations must
be performed by the object(i.e. the object must be created before it can be
validated).

3.3.3 The Text Class

The second part of the risk report produced by the Risk Analysis tool, prints
textual information related to the current project characteristics. This textual
information is divided into two sections. The first part containing an explanation
why the project is deemed risky with its current values. The second contains
advice text indicating corrective action.

The class Text is used to store and print this textual information. The
text associated with an object is related to Rules set up by the SuperUser and
triggered when project characteristics relating to riskdrivers match these rules.
The association between the Rules and the text is formed by the following code.

condition_num = atoi(JaRule condition])
someText = [txtCltn at:condition_num]

The condition number for the object aRule is converted from character to
integer, before assigning it’s value to the integer condition_num. This variable
is then used to access the text object relating to this rule. All text objects are
stored sequentially in an ordered collection(txtCltn). Using the "at:” method the
related text for a set of Rules may be stored/retrieved easily. The diagram in
figure 3.5 shows pictorially how these objects are related.

Despite its strong links with the Rule class there is no inheritance between
these two classes. Making Rule the parent class of Text was considered while
developing the Text class. The textual information could have been related to
Rules, keeping the bond between these classes very tight. However | was afraid of
creating large cumbersome objects, containing redundant variables and methods
which where not really required. | also envisaged problems with operations such
as print. If the print command was sent by a Rule object the textual information
could not be obtained because it was at a lower inheritance level. The Objective-
C inheritance mechanism works upwards from the object, sending the message
towards the root, not downwards.

CHAPTER 3. RISK ANALYSIS TOOL 39

Rules TxICltn

Because ol the rick of understanding real requirement*.

C1

Consider going lor on early prototype lo confirm
product requirements

Because of tNception targe team uze.

Considering breaking-up team* into sub-groupe,

9K t\ with Gs own loam leader corresponding to
major product component*

Figure 3.5: Rule and Txt objects.

3.3.4 The Measure Class

Printing risk metrics for software projects, indicated the need for a class which
would perform some type of computation on riskdriver characteristics. The fac-
tory class Measure is used in the tool for calculating software risk and displaying
the output as a percentage value. The class calculates project risk for the four risk
management areas as a percentage. High percentages indicate a high probability
of project failure in that area.

[1] Cost/Schedule Failure

[2] Premature Project Termination
[3] Product Functional Failure

[4] Product Technical Failure

Each riskdriver when created must be associated with one or more of these
risk areas. The Risk class method “create” will elicit the required management
areas for each riskdriver before adding it to the risk collection. The management
areas associated with each riskdriver are shown in Appendix C.

CHAPTER 3. RISK ANALYSIS TOOL 40

The calculation for estimating risk in each of the risk management areas is
given below.

Risk measure =

where
Si = Riskdriver weighted value associated with riskcon-
dition selected
M ax[Pi] = Highest possible weighted value for this riskdriver

The current algorithm for calculating risk gives a crude estimation of risk.
More sophisticated algorithms may be integrated into future tool versions. The
only code that needs to change will be the method containing the risk calcula-
tion algorithm, thanks to the encapsulation features associated with Objective-C
classes.

Before printing risk percentage for the four risk management areas, the
calculation method is always performed. This process is necessary so that changes
to riskcondition values, are reflected in the percentage output of risk management
areas displayed to the tool user.

3.4 Types of RiskTool Users

The functionality provided by the Risk Analysis tool is designed to meet the
needs of two types of user. The software project manager(sometimes referred to
as the user), for whom the tool is specifically built and an expert on software
projects responsible for entering risk related attributes. The input required from
the project manager will be the relevant project characteristics which closely
match specific riskdrivers. The output expected will be as described by the tool
output above.

If this prototype version is to evolve, it is important to have a system which
will facilitate these changes. The addition of new riskdrivers and Rules must be
considered a feasible possibility if the tool is to mature. The addition of such

CHAPTER 3. RISK ANALYSIS TOOL 41

details for use by the project manager must be performed by an expert in risk
analysis in software projects. Throughout the rest of this text, this person will
be referenced as the “SuperUser”.

With conventional languages the addition of new data aifect the original
code, eg. array sizes are reset or case statements adjusted to accept a new
type. Because of the facilities offered by Object Oriented languages such as
encapsulation, dynamic binding and inheritance, it is possible for the SuperUser
to add additional riskdrivers and Rules without causing any recompilation of
existing tool classes.

3.4.1 SuperUser Functionality

Before providing the operations required by the project manager for analysing
risk, the functionality for entering riskdrivers and Rules had to be developed.
We have seen the structure the Risk instances which can be developed in the
Risk factory class. Now it is time to explain the operations which are required to
enter and maintain these objects in the Risk tool. The main areas of functionality
required by the SuperUser are listed below.

« Add

* Delete
* Amend
* View

e List

* Add When adding riskdrivers to the Risk Analysis tool an instance of risk is
created by the Risk factory class. The new instance of Risk will inherit all the
necessary variable data types. The initialisation of these data variables must be
entered from a keyboard or via a file. The more direct approach of entering data
variables at the keyboard was adopted for the Risk Analysis tool, to allow the
SuperUser to spot erroneous input. The SuperUser enters the relevant data in
response to screen prompts, sent by the Risk create method. An example of the
Objective-C code for adding riskdrivers and the type of riskdrivers created are
given in figure 3.6 and figure 3.7 respectively.

CHAPTER 3. RISK ANALYSIS TOOL 42

+ create { // Create a new riskdriver for
// Risk Analysis Tool
id risknum;
int weight;
int i =0;

self = [self new]; // an instance of Class Risk is returned
system(“'clear™); // Unix call to clear screen
printf(C'Enter Riskdriver Title ');

getriskO ;
riskdriver = malloc(strlen(iobuf));
strcpy(riskdriver,iobuf);

return self;

Figure 3.6: Initialisation of Riskdriver Instance Variables

SCALE OF PROJECT (NO. OF PEOPLE) — *riskdriver

In relation to what we are accustomed, — wmrisktext
the size of the project is -

at least three times as big 4

about twice as big 3 — >riskconditions
about the same size 2 — >»riskweights
smaller 1

Nil Help — »riskhelp

Figure 3.7: Riskdriver Instance

CHAPTER 3. RISK ANALYSIS TOOL 43

If for some unforeseen reason, changes are made to the instance variables
in the Risk class, these changes would also have to be made in related methods
causing maintenance and recompilation. The importance of this discussion high-
lights the need for careful analysis when developing instance variables for class
objects. Despite all the advertising hype about ”Object Oriented language only
extending not amending code”, nothing can be done if the programmer defines
invalid instance variables for a class object. Classes can be written for converting
objects when the classes instance variables have been changed, however methods
affected by the addition or deletion of instance variables must also be updated.
The instance variables shown in earlier figures are those used by the prototype
workbench and accepted as correct by the IMPW steering committee. W ith this
assurance, it was possible to concentrate on creating classes and methods for the
Risk tool, which would be as robust and reusable as possible.

The Objective-C factory method “create”, performs the necessary initialisa-
tion for each Riskdriver by extracting risk characteristics at the keyboard. When
the initialisation process commences, a new Riskdriver is created by the [self
new] message. This method is inserted at the beginning of the “create” method
to setup the risk template object required. The receiver of the new message
”self’, identifies the factory object Risk. Typically this factory method creates
a new instance of its class. For efficiency reasons programmers may change the
identity of self to an instance eg. self = [self new]. When this happens, all the
messages subsequently sent to self are sent to the newly created instance not the
factory.

On entering all the risk characteristics, the create method prompts the
SuperUser to enter the risk management areas. Each riskdriver created should
be associated with at least one of these areas see Appendix C. After eliciting
all the necessary data to represent a riskdriver, the new instance is stored in a
collection of riskdriver instances (called the riskCltn in the Risk Analysis tool).

* Delete This functionality is provided to allow the SuperUser to remove
riskdrivers from the Risk Analysis tool. Unlike adding riskdrivers into the Risk
Analysis tool, where adding new instances is simple once riskdriver character-
istics are known, deletion of riskdrivers is however a more complex operation.
The removal of riskdriver instances from the Risk Analysis tool may involve the
removal of instances from the Rule and Text classes, if instances of these classes
are associated with the riskdriver marked for deletion.

The deletion of riskdriver also leaves gaps in the collection object holding
the instances. Storing riskdrivers in a collection with gaps is not only wasteful of
space, but could also affect the way searching and printing of objects is performed.

CHAPTER 3. RISK ANALYSIS TOOL 44

Compressing the collection after deletion would seem a more sensible option, but
this means updating riskdriver numbers. Therefore the Rule values which apply
to these riskdrivers and the resulting condition text object must also be updated.
This solution is however more acceptable than having a collection containing
gaps. Problems which spring immediately to mind would be, what would happen
trying to access or print at an empty slot in a collection: additional code would
be required to facilitate such occurrences.

get Rd number
if (Rd number = 0)
go to start of rule list
while (Rules to be read)
aRule = next Rule collection position
while((Rd number != aRule operand) && !EOL)
get next aRule operand
endwhile
iT (aRule operand == Rd number)
mark aRule for deletion
identify aRule condition number
if (only path to Condition No)
while (Rules to be read)
bRule = Rule collection at position aRule
while((condition number != bRule operand) && I!EOL)
get next bRule operand
iT (bRule operand = condition number)
mark bRule for deletion
if (only path to Condition No)
condition number = bRule condition number
endwhile
endWhile
endwhile
end

Figure 3.8: Deleting Riskdrivers

The collection compressing idea gives the collection a lot more flexibility

CHAPTER 3. RISK ANALYSIS TOOL 45

i.e. the code for accessing and displaying collections of objects can remain con-
sistent with the approach adapted for other Objective-C systems. Because of the
classes and methods provided by the Objective-C environment, the compression
and updating of collections is greatly simplified. The collection methods which
handled deletion, adding and sequencing could be used to reduce the complexity
of this problem to an acceptable level as shown in figure 3.8.

After entering a numeric value inside the riskdriver collection range, the
Rule collection is searched for Rules, which will be affected by the deletion of
that riskdriver. If a Rule operand is associated with a deleted riskdriver, then
this Rule is also marked for deletion. The Rule’s condition number may also be
marked for deletion, if this Rule is the only link to that condition number (i.e.
if the Rule object is being deleted, then the text object and the Rule with the
corresponding condition number may also have to be deleted). An additional
search for Rules containing this condition number must also be made(i.e. Rules
containing this condition number must also be deleted). This process is iterated
until the condition number, associated with a Rule cannot be triggered by another
combination of Rules or the list is exhausted. This operation must be performed
for each Rule in the collection. The Objective-C source code for this operation
is shown in the ”delete” method in the Risk class Appendix D.

This section of code relied heavily on the power of the Object Oriented ap-
proach and the Objective-C environment. Without inheriting the facilities of the
foundation classes, the work involved in removing and resizing these collections
would have been substantial.

* Amend Facility for the SuperUser to change any of the riskdriver val-
ues presented to the user. While amend can be considered a factory operation
common to all riskdrivers, the changes are made to individual instances of the
Class Risk. Using methods in the ordered collection (OrdCltn) and its inherited
collection class(Cltn), individual instances can be retrieved'for interrogation. By
storing all the riskdrivers in an OrdCltn instance called riskCltn, access to any
riskdriver may be achieved with statements such as.

aRisk = [riskCltn at:4]

Here the fifth object in the riskCltn is returned to the object label aRisk.
All collection counts start at zero, hence the fifth object being retrieved when four
was specified in the statement. Ensuring that the riskCltn contains only riskdriver
instances is verified by the add: method in the Risk class. This method will verify
that only instances of the Risk classes are added to the risk collection. Checks

CHAPTER 3. RISK ANALYSIS TOOL 46

also have to be included, to ensure that only valid collection slots(i.e. slots which
contain risk objects) are called, otherwise a run time error will occur.

To prevent data inside an object being wrongly amended or lost during any
amend session, a copy of the instance is made for amending. Changes during the
amend session are made to this dummy object instead of the original selected in-
stance. Some of the Objective-C statements required to perform such operations
are listed below. The dummy object reference here is created by the Risk class
with the method “new” instead of “create” so that the template will contain nil
values. The object marked for amending then copies across its instance variables
to the dummy object.

aRisk [riskCItn at:— num]; // retrieve instance
dummy [Risk new] 7/ create dummy instance
[dummy copy:aRisk] ; // copy instance variables todummyobject

[dummy maintenance:num]; // perform necessary amendments
// to dummy object

// 1T changes are OK
[[riskCItn insert:dummy before:aRisk] remove:aRisk];

This approach was the safest wayto change the object’s privatedata,per-
forming copy operations on the objects as below.

strcpy(riskdriver,[aRisk riskdriver]) ;
strepy(risktxt, [aRisk risktxt]) ;

The riskdriver variable on the left belongs to the dummy object which called
the "copy” method (i.e. dummy->riskdriver represents riskdriver). The method
[aRisk riskdriver] returns the riskdriver title string to be copied. Only when
the amendments to the dummy object are correct, will this object be allowed to
replace the original. The dummy object replaces aRisk in the riskCltn using the
insert:before: method.

The Objective-C language does provide an alternative mechanism, besides
objects, for accessing an objects instance variables. This is one of the strengths
of the language, but its also one of its greatest weakness because it violates the
principles of encapsulation. Direct addressing of an objects instance variables is
permitted, but such operations can be dangerous and are not recommended by
the suppliers.

CHAPTER 3. RISK ANALYSIS TOOL a7

* View and List The SuperUser of the tool also needed the capabilities to be
able to view and list without affecting their contents. With dynamic collections,
it is important to be able to print any or all of the objects in collections of
various sizes. It is possible to write Objective-C code which will overcome these
constraints. The following three lines of code, highlight the ease and simplicity
of printing a collection of unknown size and contents using this approach. This
code will remain unchanged no matter what objects are added to the collection.
The only constraint on the object added to objectCltn is that it knows how to
print itself.

objectSeq = [objectCltn eachElement];
while (anObject = [objectSeq next])
[anObject print];

Printing the riskdriver collection is simply a matter of replacing objectCltn
with riskCltn.

3.4.2 The Project Manager

Most of the chapter until now has been focused on the functionality required by
the SuperUser. The SuperUser uses these operations for setting up an environ-
ment, which would allow the tool to analyse project risk. However the real user
(the person whom the tool is designed for) of the Risk Analysis tool is the project
manager. Project managers need a tool which will permit comparisons of their
project characteristics against "Rules and Risk Areas” which they presume have
been entered previously by some expert(s) in software management. The opera-
tions which the project manager needs to perform are described by the following
areas of functionality.

[1] View Riskdriver

[2] View Rule

[3] Amend Riskdriver value

[4] Amend All Riskdriver values
[5] Print Risk Report

CHAPTER 3. RISK ANALYSIS TOOL 48

View riskdriver Each riskdriver in the tool represents an area of risk which is
related to software development. Allowing the project manager to view various
risk areas, means that the risk instance must be retrieved from the risk collection
object 7riskCltn” and the IS database must be interrogated to find the value of
the riskcondition chosen to represent the project characteristics for this riskdriver.
The diagram in figure 3.9 illustrates the flow of data and the software entities
involved in viewing riskdrivers.

Figure 3.9: Getting risk values from the database

The IS database contains all the relevant information associated with the
workbench. Project characteristics elicited from the risk analysis tool are included
in these tables. When the project manager asks the Risk Analysis tool to view
a riskdriver, all the characteristics related to the riskdriver may be retrieved
from the riskCltn. However the riskcondition value, representing the project
is stored in the IS database. The Risk Analysis tool sends a message in the
form off an Informix statement to the IS. If Informix validates this statement
as correct, the row and column in the appropriate database table is found and
the value is transferred to a method for displaying the riskdriver value. Most
of the problems associated with this functionality were related to calls to the IS
database. Because the database was developed at a different geographical site,
compatibility problems existed when integrating the tool into the workbench. The
code for retrieving riskdrivers from the riskCltn is inherited from the collection
classes and is easy to implement. However retrieving the Risk object values from
the database is completely different, requiring the new methods for interrogating

CHAPTER 3. RISK ANALYSIS TOOL 49

the database.

View Rule Gives the project manager the ability to view the Rules which
are applied to riskdrivers for a project. The representation of Rule operands eg.
R1.1, R2.1 etc, will not be comprehensible to the project manager starting to use
this tool. Therefore is important that when the project manager views Rules as
they are displayed in standard english format.

When the project manager wishes to view the contents of a Rule the first
thing to be determined is which Rule? The project manager must provide some
input which will determine Rule instances. Going back to the example Rule
collection in figure 3.3, assume the project manager wishes to view the Rule(s)
which trigger the diagnostic text associated with Rule (condition number) five.

R7.2 | * 1 I | | | > cs5
R7.1 |R8.1 | * | I I | > c5

Figure 3.10: Rule operands for Rule Number five

From the table it can be seen that two instances of the Rule class can be
related to this condition number five. The values of Rule operands on the same
Rule represent an accumulation of riskdriver values which must be true to trigger
this risk condition. The operator AND was invented for the insertion of Rule
objects so that instance could have more than one operand. The number of Rule
instances relating to any condition number will depend solely on the Rule syntax
entered previously by the SuperUser. The OR signifies a different Rule instance
pointing the same Rule condition as some other instance.

By reversing the procedures used for validating Rule operators and operands,
it was possible to replay the values enter by the SuperUser back to the project
manager. By setting up two queues, one for operators and one for operands
the Rule information is transfered from it’s storage representation above, to the
appropriate queues. Reading along the Rule operands, we enter AND between
operands, and use OR to represent a new instance of Rule which has the same
condition number. The end of references to a particular condition number(rule)
is indicated by THEN in the operator. The resulting queues are shown in figure
3.11.

CHAPTER 3. RISK ANALYSIS TOOL 50

1 R8.1 | 1 THEN 1
1R7.1 1 1AND 1
1R7.2 | 10R 1
operand operator

IF R7.2 OR R7.1 AND R8.1 THEN

Figure 3.11: Operand and Operator queues

By further expanding the risktext and riskconditions for each riskdriver the
presentation of the Rule should be in english format as below. All lower case
text refers to operands, upper case refers to the operators. By reading from both
queues alternatively it is possible to reconstruct a Rule sentence.

IF in relation to what we are accustomed the product is -

very small or is easily broken down into normal size work
packages OR in relation to what we are accustomed the product
is -

fairly small or fairly easily broken down into normal size work
packages AND in relation to what we are accustomed - require-
ments

are very simply and easily allocated to software
components/modules THEN

Amending riskdrivers This is the project managers only input into the tool
which will affect riskdriver values stored in the IS. This is to reflect any changes
in project characteristics, or invalid input entered by the project manager. The
section on listing riskdrivers discussed retrieving project values from the database.
A similar operation must be performed for amending riskdrivers only this time
it must be possible to update the IS table. The operation required to perform
amendments is listed below.

CHAPTER 3. RISK ANALYSIS TOOL 51

Determine which riskdriver to amend;

Retrieve its associated value from the IS database;
Display all the information to the project man-
ager,;

Allow changes to be made and confirmed;
Update the IS database with the new

riskdriver value;

Amending all riskdrivers use the same operations, the only difference being
that the amend operations are performed sequentially on all riskdrivers in the
riskCltn.

Printing Results As mentioned earlier, the project report from the Risk
Analysis tool is divided into two sections.

[1] Percentage risk values for the four risk
management areas

[2] Generating the appropriate text related to
a risk area

The functionality required to provide this output was described in Measure
and Text classes. The presentation of the output generated from these classes to
the project manager is vital for the future success of the tool (i.e. if the output
is complicated and unstructured, the project manager can be put off using the
tool).

The percentage risk in the four risk management areas needs to be printed
to a project report and to the VDU. The textual information is also sent to the
project report and to the VDU, however the details printed at both mediums will
be different. The diagnostic text relating to all Rules in a "true state” are sent
to a printed report. Only the top level predicate conditions display explanatory
text to the VDU, describing what is making the project risky. Figure 3.12 shows
a tree of related Rules set-up by the SuperUser.

If all the Rules shown are true, all diagnostic messages associated with
condition clauses are sent to the printer report. However only the explanation
text associated with C4 needs to be displayed on the screen i.e. the fact that
diagnostic message C4 is being displayed means that Cl and C3 must be true.
The tool also provides a mechanism for tracing back along this Rule tree.

CHAPTER 3. RISK ANALYSIS TOOL 52

IF R1.1 OR R2.1 AND R3.1 THEN ClI
IF R4.1 AND R5.1 THEN C2
IF R6.1 AND C2 THEN C3

IF C1 AND C3 THEN C4

Figure 3.12: Rule Tree

Rule Interrogation If this option is selected, the second section of the Risk
Report is displayed. The manager may select any Advice Paragraph (with the
mouse) with a view to discovering why it appears in the report. The correspond-
ing “Why?” paragraph is then displayed to provide explanation. If the manager
wants to “dig deeper” , he/she can select the “Why?” paragraph. The tool will
then , by backward chaining, use the pointers stored away by the “Compute Risk
Report ”function , display the “Why?” paragraphs associated with successful
rules upon which the selected “Why?” paragraph is directly predicated ...and so
on right back to the values of the individual Risk Drivers if desired.

3.5 Summary

The Risk Tool works at a fairly high level of abstraction.It deals with broad issues
relating to the project as a whole. It would be valuable to supplement Risk tool
with a series of more detailed risk models relevant to specific phases of the project
lifecycle. These models could be called on, as the project progresses.

CHAPTER 3. RISK ANALYSIS TOOL 53

The scope of the current “risk management areas” is rather limited. In
particular,the current riskdrivers focus largely on “internal” sources of risk to the
project. There is no coverage of risks arising from, for example, any contrac-
tual/legal aspects of the project.

Chapter 4

Calendar Tool

4.1 Introduction

Associated with the success and failure of all projects is the time duration required
for the completion of the task. Time plays an important role in the successful
completion of tasks and subtasks. Whether the project we are working on is
building a house or building a computer system to control a country’s finance for
the next ten years, the project must be carefully planned and completed inside a
fixed time scale. In large projects tasks are broken down into lower level subtasks
each of which must be completed by a certain date, before work can commence on
other sub tasks required to achieve the overall completion date. Throughout these
projects meetings occur to review progress, checking on the resources applied and
the products produced from these tasks. The Calendar tool described in this
chapter provides this information for the user (project manager) of the IMPW,
by retrieving the required project task information from the IS database.

It was decided at the outset that the Calendar tool would only be used for
the retrieval of information. This would eliminate the possibility of amending
values created by one of the other tools. A decision was also made early in devel-
opment as to what type of information should be retrieved and displayed by this
tool. Section 4.3 will give a detailed description of the information presented by
this tool. This information will contain dates of events, activities and milestones
which are important throughout the lifecycle of software development. W hether
or not current development is in tune with these dates will be of no concern to
the Calendar tool. Slippage in the date of task completion, due to late delivery
of some product or lack of resources etc, is adjusted by other tools in the IMPW.

54

CHAPTER 4 CALENDAR TOOL 55

This chapter also looks at the main classes which were created for the develop-
ment of the Calendar tool, showing how these classes fit in to the Objective-C
inheritance mechanism.

4.2 Calendar Overview

The Calendar tool acts as a project clock which allows the project manager to
view aspects of progress information collected, by other IMPW tools. The man-
ager may view this progress information at varying levels of detail, corresponding
to different levels of resource monitoring. The tool offers three operation modes
for viewing project details.

[1] Open
[2] Interval
[3] Task

The information which is displayed by the Calendar tool is acquired from
the database tables in the IS. As the database contains a large amount of project
information, deciding what information to display and in what quantity was one
of the earliest problems encountered while developing this tool. Unlike Smalltalk-
80 which has a library class dedicated to the “Date”, no similar operations are
provided in the Objective-C foundation library.

The development of the Calendar tool therefore involved the creation of sev-
eral class objects, which were attached to the Objective-C inheritance mechanism
as shown in figure 4.1.

The state objects(CallnitialState, CalSecondState, CalThirdState) and CalAu-
tomata are used for setting up a finite state machine for the Calendar tool. The
CALLoad class was created for retrieving project details from the IS database.
The various sub tasks associated with the completion of a task being viewed by
the Calendar tool are stored in the Task class.

CHAPTER 4 CALENDAR TOOL 56

Object

—» Date

CalAutomata
» CallnitialState

» CalSecondState

» CalThirdState

—» Task

—» CALLoad

Figure 4.1: Calendar Tool Classes

4.3 Calendar Presentation

The role of the calendar is defined as a tool which supplies information but
does not permit updating of this data. Sending calls to the IS database from the
CALLoad class will enable information relating to projects to be displayed by the
Calendar tool. But what information should the project manager see? Should
we just blitz the project manager with all data related with the project under
scrutiny? Complex software projects will contain vast amounts of detail, this
will have repercussions on memory space, speed of operations, the tool interface
presented, as well as the complexity and reliability of source code.

The success/failure of this tool like many others which are used solely for
the presentation of information will be dependant not only on the details that are
presented to the user but also how they are displayed. Deciding what information
to display and how, was guided by other tool displays in the workbench and the

CHAPTER 4 CALENDAR TOOL 57

literature referenced [Bar 86],[SPE 86],[Cox 86],[Kee 81].

The main goal of the Calendar tool was to present the project events and
activities, created by the other workbench tools, which would mark important
milestones in project development. It was also envisaged that the Calendar tool
would present this information in a summary format and provide some simple
method for obtaining more details on highlighted information. Other tools such
as the Pert and Gantt perform progress monitoring and resource scheduling of
project events and activities. It was important therefore to create a Calendar tool
which not only conformed to the goals given above, but did not display output
similar to the previously mentioned tools giving the notion of identical tools in
the workbench.

The information represented by the Calendar tool selected five areas from
the IS database to display important project characteristics which would be help-
ful to the project manager. The areas selected were imports, products, meetings,
work in progress and personnel. Other areas, such as allocation of resources and
cost were adequately described in other tools or as part of one of the five sections
mentioned, hence their exclusion.

Imports Most projects depend on materials and resources from some exter-
nal source. The foreman on the building site will import bricks for building, if
the project has been planned correctly, they should arrive at some date before
the bricklayers. Software projects also depend on materials and resources from
outside their project boundary. The implementation of some software tasks may
depend on a module of code developed by some external software house, or on
the output from one of the other sub tasks in their project. It is important there-
fore that some indication of imports, required by the task under view should be
indicated.

Products The output from the completion of most projects and project sub
tasks will be some type of product. In software development these subtasks could
be a feasibility study, a coding module, an Input/Output interface etc. Knowing
when these sub tasks are completed provides important information to the project
manager and hence their inclusion in the calendar display.

M eetings During the life span of any project there will usually be a number of
scheduled meetings. The project manager will have numerous meetings associated
with the project discussing topics such as costs, design, resources, quality etc.
Highlighting to the project manager, the dates of these meetings was considered
a desirable feature.

CHAPTER 4 CALENDAR TOOL 58

Work in Progress During the various phases of project development different
tasks will be performed concurrently, in an effort to speed up the completion of
the project. Knowing when work on tasks is been carried out over any particular
time period, plays a significant role in the allocation of resources. This facility
also indicates the nature of the work being carried out during a certain time
period when required.

Personnel During the life of the project there may be numerous people involved
in the completion of the various tasks. Project managers need to be aware of what
people will be involved with certain tasks on certain dates. The personnel facility
was included to indicate when personnel are involved with the task and also what
personnel are involved.

To show all the related data for each task event required for the completion
of a medium to large project would cause a great deal of congestion on the
calendar output display (i.e. the number of personnel involved could be in the
hundreds). This problem is eliminated by only displaying some type of indication
if a particular event has occurred on the respective date instance being viewed.
The calendar view displayed in figure 4.8 uses asterisks to represent an event
occurring on a particular date. Further information on any of the five events
highlighted by asterisks can be obtained using a selection mechanism, which
gives a more detailed description of the selected activities for that date range.

4.4 Date Class

The main object in the Calendar tool is the Date factory class. The instance
variables in this class represent the date and the events if any, occuring on that
date. Boolean values were used to signal the activation of-the respective events
for date instances and the collection of events stored the sub-tasks which actually
occurred in the duration represented by the date object. The data structure for
defining instances is shown figure 4.2.

All instance variables are important to an object, otherwise why should
they be defined in the first place? However the instance variable day-number can
be regarded as the principle variable in the Date class. It is the value stored in
this variable which determines the data values related to the other variables.

There were a number of ways of allowing a date instance to represent the
calendar date i.e. string, integer or C struct combinations. The data type
chosen however for the Calendar tool was the C type long, the reasons for choos-

CHAPTER 4 CALENDAR TOOL 59

= Date : Object (CalGroup, Primitive)
{ Instance variables

long day.number; // days since Jan 1st 1970

BOOL day_imports;

BOOL day.products;

BOOL day_meetings;

BOOL day.personnel;

BOOL day work_in_progress;

id anlmportCItn;

id aProductCltn;

id aProgressCItn;

id aVeetingsCItn.;

id aPersonnelCltn;

Figure 4.2: Date Classes Instance Variables

ing this type were influenced by two main factors. If the project managers view
of the tool required changing so that individual dates could be viewed on hours,
minutes and seconds, it would be beneficial to have a data structure for the class
that could facilitate this request and would not require substantial changing.
The second reason was, because the Unix operating system which provided the
run-time support between the IMPW tools developed in Objective-C and the
computer hardware, also stored date and time values as type long. Using this
representation it is possible to reference date by calendar day, hour, minute and
second. Each increment of one to the long value storing the date represents the
addition of one second to the date.

4.4.1 Storing the Date

Representing the date as a long type can be justified for storing date values in
the Calendar tool. However asking the project manager to enter the date in the
long format introduces a number of problems as shown below.

Enter date :- 347563202413

CHAPTER 4 CALENDAR TOOL 60

Project managers entering the date in this format would have the difficult
and error prone job of converting the date to a long value. This approach also
gives a poor representation of the date types to which a project manager would be
accustomed. To ensure continued use of the tool, a more understandable and easy
to enter format had to be provided for the project manager. This prompted the
writing of a method for the Calendar tool, which allowed the date to be entered
in a more conventional manner which could be understood by the user(i.e. May
21 1989).

Once a valid date is entered, the date is converted to a variable of type
long, so that it may be understood by the Calendar tool. Validation of the
project managers input is performed to ensure the creation of correct instances.
As with the creation of rules in the previous chapter, the creation of the new
object is postponed until the object is validated. Once validated the date could
be applied to the formula below for the creation of a new date instance.

long date = (year * 3153600) + (daysBefore month * 86400) +
(day * 86400) + (leapyear * 86400)

year = 1989 - 1970
daysBefore_month = may = 121
day = 20

Figure 4.3: Date Conversion Formula

The date range permitted by the tool is any date from January 1st 1970,
hence the reason for subtracting 1970 from year. The daysBefore_month value is
the number of days from the start of the year to the start of the current month.
In the example above one hundred and twenty one days have occured since the
start of the date month.

The variable day represent the number of days into the month and leapyear
contains the number of extra days to be added, due to leap years since January
1970.

The numeric value 3153600 represents the number of seconds in a normal
year (eg. one which is not a leap year). The value 86400 represents the number

CHAPTER 4 CALENDAR TOOL 61

of seconds in a day. After the long_date has been calculated it is passed as an
argument to create a date instance as below.

aDate = [Date create:long date]

The effort required for entering input to the tool can be further reduced
by accepting the current system date as the default date, in response to pressing
the enter key, when prompted for the date. Using the Unix operating system
call gettimeofday()[Sun 86], it is possible to obtain the current date from the
computer. Although the gettimeofdayQ function is not part of the Objective-C
machinery the Object Oriented principles for reusable code can be applied. If the
computer validates and uses this function, then there is no need for the operation
to be repeated in the Calendar tool source.

When an instance of date is created, all the necessary task components
described earlier must be associated with the import, product, progress, meeting
and personnel collections for that date instance. The retrieval of this information
is explained in the CALLoad class.

4.4.2 The Date Collection

Once the date instance has been verified and the time interval each instance has
to represent is established, the Calendar tool must generate a number of date
instances which are added in an ordered sequence to a collection of date objects.
Before creating this sequence of date instances, a decision had to be taken on the
number of instances to be created and stored in computer main memory during
tool implementation. Should instances representing dates form the start to the
end of the project get created to represent an entire project? In large projects
(i.e. those lasting three or more years), trying to store all events on a daily
basis would cause memory problems. Another alternative (the one adapted for
this tool) was to create a certain number of instances after the initial date, to
represent the task events.

The number of instances created after the initial date has been set to thirty
one for this version of the Calendar tool. The reason for selecting this number
was simply to allow project managers to view the tasks on a daily basis for an
entire month. If the project is large and complex then the interval mode should
be used to represent the thirty one instances with a more correct scale. Setting up
a routine to handle thirty one date objects is simplified by inheritance which uses
classes and methods provided by the Objective-C foundation library as below.

CHAPTER 4 CALENDAR TOOL 62

i=0

while (i+ < 31) {
[dateCltn add:[Date create :long_date]];
long_date += datescale;

Each instance is created by the Date method “create:” before being added
to the OrdCltn instance dateCltn. Different date objects values are created by
long_date, which is incremented by a scale value each time round the loop. If the
project manager decides to represent two weeks for each calculation, the datescale
would be 86400 * 14 = 1209600.

Although the Calendar tool permits the creation of thirty one date in-
stances, only five of the instances are viewed at any particular moment by the
calendar display. The reasons for only displaying events associated with five dates
was to keep the display compact and easily readable. Displaying five dates, how-
ever still gives the project manager the ability to view events for each working
day of the week.

4.4.3 Presentation of Dates

No constraints on the tool builders on how dates should be presented for input
and output were made. Creating the code for entering and displaying dates
in the Calendar tool, was left to the discretion and personal taste of the tool
builders. While obtaining a date presentation | considered pleasing, there was
still a matter of compatability with the date representation with the other tools
in the IS database. The IS stores dates in mm/dd/yyyy format, the Calendar tool
stores the date as a long value and displays it in the yyyy-mfn-dd format. Clearly
methods were required for converting Calendar tool dates into IS representation
and vice versa. The Date class has many methods encapsulated around this
factory object, which will allow various combinations of date to be assembled.
The examples below show how different dates can be assembled using the methods
in the Date class and the C sprintf statement.

sprintf (dateStr,''Xd-7d-/d" , [aDate year] ,[aDate month]
[aDate day]);

dateStr = 1989-10-22

sprintf (dateStr,'*"’s 7d 7s 7,d",[bDate dayName] , [bdate day],
[bDate monthName], [bDate year]);

CHAPTER 4. CALENDAR TOOL 63

dateStr = Thursday 22 October 1989

This section has mentioned only some of the methods developed for the
Date class. Additional methods for comparisons, interrogation and presenting
the date can be viewed in the Date class definition file Appendix E.

4.5 CALLoad class

Once the date instances required to show the project have been established, it is
important to have a tool interface which responds quickly to interactions made
by the project manager. Reading and writing from the data base will be time
consuming no matter how efficient the searching technique. Some date instances
may contain large amounts of information extracted from the IS, while other
instances may contain no information at all.

Searching for information relating only to the five date instances being dis-
played, may improve the time to set-up the initial display. However if we wish to
alter the dates presented by the tool, the tool mechanism must grind to a halt
until the new date instances have the required information, which is stored in
the IS, linked to their respective collections. For the project manager who wishes
to scan backwards and forwards through the date collection, this technique is
undesirable, because of the abundance of memory provided by computer work-
stations and the fact that only one tool at the time can be implemented in the
prototype version of IMPW. It was possible to read from the database all the
events associated with a specific task. The retrieval of information from the IS
might be longer than in the previously mentioned method, however once all the
details have been loaded into memory the project manager will be able to scan
across dates, without having lengthy waits for additional data to be load from
the IS.

The loading of events related to the project task being viewed by the Cal-
endar tool is initiated by the following Objective-C statements.

aCALLoad = [CALLoad new];
[aCALLoad loadDM];

The CALLoad class defines one instance variable the object taskCItn which
is aggregated to the isa pointer inherited from the objects super class Object.

CHAPTER 4 CALENDAR TOOL 64

This instance variable will contain a collection of all sub tasks associated with
the completion of the top level task. After creating the instance to hold the sub-
tasks, the method loadDM triggers the retrieval of sub-tasks related to this top
level task from the database using the command.

aCommand = [[[String new]
concat:[String str:"'SELECT Name,EarliestStartDate,
EarliestEndDate'"]
concat:[String str:" FROM Task'T]];

This retrieval of tasks from the IS is made by sending Informix commands
to the data base. The concatenation of the Objective-C objects above, help
create an Informix command for retrieving all the sub-tasks related to task. After
determining all the sub-tasks, the imports, products and resources associated with
these sub-tasks must also be retrieved from the IS. The method retrieve:and:from:
in the CALLoad class restores for each sub-task the appropriate import, products
and work information.

4.6 Task Class

The entity Task in the IS represents all the work involved in completing a project.
Each task or sub task involved in project development can be viewed as an
individual project. The task object contains a collection of sub tasks, the sum of
which result in the completion of the top level task. All imports, products and
work operations which occur during the duration of the task must be related to
the respective tasks.

The class Task was created to store all the necessary.data associated with
sub tasks from the database. Figure 4.4 shows the instance variables defined in
the class definition file.

The id name is required to identify the name of the sub task, the (id) objects
startdate and enddate use the String class to help represent the duration of a task.
The product object will contain when required, a collection of products for this
sub class. The consumedCltn will contain a collection of all the components that
will be consumed by the task. The workCltn will contain a collection of work
resources associated with a task.

After obtaining all the task details, the object is added to the taskCltn. The
Date class then relates events to date instances by searching through taskCltn.

CHAPTER 4 CALENDAR TOOL 65

= Task : Object (CalGroup, Collection, Primitive)
{ Instance Variables

id name; // task name

id startdate;

id enddate;

id product;

id consumedCItn;

id workCItn;

Figure 4.4: Task Class Instance Variables

Five different searches are made for the different collections defined in the Date
definition file. Start and end dates of task in the taskCltn are compared against
the date stored by the date object. When a valid date is obtained, the respective
event collection is added to the instance variable collection which is related to
the search.

4.7 CalAutomata and State classes

The CalAutomata and State classes although not linked through inheritance, are
used together to create a finite state machine used for controlling the operation
paths while using the Calendar tool. The tool could have been developed with-
out such an environment, but because the integration was been implemented
at a different geographical location, the approach helps to minimise and con-
trol changes. The diagram in figure 4.5 shows the various states created by the
automata machinery for the Calendar tool.

4.8 Operation modes

Because the tool is used only for displaying information, the amount of func-
tionality regarding tool use, is greatly reduced. Indeed the only functionality
required, refers to the way in which date objects should be displayed. Having a

CHAPTER 4 CALENDAR TOOL 66

tool which only permitted viewing on a daily scale may cause many date instance
to appear with duplicate information in large projects. Functionality was added
to the tool, to allow the project manager to determine, the time period each date
instance should represent and to permit a calendar view of ordered tasks. The
different views of calendar dates is made on entry to the tool, where the project
manager is confronted with the following options.

1. Open <defaults to one day intervals be-
tween dates>

2. Interval <the project manager specifies in-
tervals for date instances>

3. Task <the interval between calendar dates
is determined by project tasks>

CHAPTER 4 CALENDAR TOOL 67

4.8.1 Open and Interval Modes

The only difference between open and interval modes is, that interval modes
permit the project manager to adjust the time period between date instances.
The Objective-C code required to create date instances is used for both modes
of operation. The only difference is the value of the argument datescale which
determines the date interval span. The sequence of date instances are created by
incrementing the long_date value as below.

long_date += datescale;

In the open mode the datescale is set to 86400 so that each new instance
created for the date collection is a day greater than the previous instance. When
in interval mode, the project manager enters an integer value to represent the
time span for each date instance. This integer is multiplied to datescale before it
is used in the formula given above eg. datescate = 86400 * 7 causes an interval
of one week between instances as shown in the main window view in figure 4.6.

Date 1989-06-14 1989-06-21 1989-06-28 1989-07-05
*k*x *k*k *k*
IMPORTS
*k%x *k*k
PRODUCTS
*k%x *kxk *k*k
MEETINGS
*k*k *kx
PERSONNEL
*kx
WORK PROG

Figure 4.6: Calendar View

CHAPTER 4. CALENDAR TOOL 68

4.8.2 Task Mode

When in task mode, the date instances in the calendar display are sequenced in
event order. The taskCltn which contains all the sub tasks associated with the
completion of a particular task, is sequentially searched to find the respective
starting dates for each sub task. The starting date instance variable in each task
object is of type object(id). This decision was made to utilise the code provided in
the foundation collection classes. Objective-C provides tried and tested methods
for sorting and storing objects inside collections. Date objects for the tasks
which are stored in an ordered collection(taskCltn) are being transferred to a
sort collection(SortClItn). The dates representing the events are sequenced in
their correct order and stored in a sorted collection object of type SortCltn.

Objective-C as mentioned provides a foundation class for storing sorted
collections “SortCltn”. This collection allows collections to remain sorted at
all times and for insertions to be added at their proper place. However when
objects are being added to a SortCltn, some type of comparison must take place
between objects. This in turn implies that the sorting class SortCltn knows in
advance(before run time) the objects types being sorted. This would contradict
the dynamic binding principle advertised by Objective-C.

4.9 Event Details

For SortCltn to qualify as a true Objective-C class, the sorting of various object
types should be permitted without amending existing code. The code below
describes the creation of an instance of SortCltn. Note the method required to
do the object comparisons is passed as an argument.

anEventDateCltn = [SortCltn orderedBy:"taskcorapare:" onDups:1]

The ”orderedBy:onDups:” method refers to a specific method “taskcom-
pare:” which knows how to do the comparisons, for the objects being stored in
the sorted collection in date order. It is the responsibility of the person who
stores the objects in the sorted collection, to write the method which does the
comparsions on these objects. In the Calendar tool instance comparsions are
performed by the method “taskcompare:” which compares the start date of the
objects stored in the task collection(taskClItn). The onDup:l is used to stop du-
plicate values begin added to the sorted collection(i.e. the Calendar tool should
not see the same date object displayed twice).

CHAPTER 4 CALENDAR TOOL

mmmBrama
Tool : CALENDAR Project : IMPW
From : Thursday March 2 1989
To : Thursday March 2 1989
Work 1n Progress :
dev-syst: /W
Software Development
Software Realisation
Code Software
svy' =hhifsfayiv v 2.0 i
Tool : CALENDAR Project
1989-2-28 1989-3-1 1969-3-2 1989-3-3
Imports »H*
ProductB o K oo .
Meetings
Personnel

Figure 4.7: Calendar Interrogation

IMPW

1969-3-4

69

CHAPTER 4 CALENDAR TOOL 70

The information displayed by the three operation modes only provides an
indication of the occurrence of particular events. The. Calendar tool however
allows the project manager to obtain more detail on events occurring on date
instances. The diagrams in figure 4.7 show the displays developed to achieve
these goals. Selection of events was made using the computer mouse(a detailed
description of the construction of these graphic displays will be given in the next
chapter).

Cells containing asterisks were used to represent events occurring on date
instances. In the example shown in figure 4.7 the work in progress event for the
date instance representing the 2nd March 1989 was selected. The second window
displays the work in progress events occurring for that date instance. The tasks
associated with the event also provided selection in their output. This was to
allow detailed descriptions of sub-tasks associated with an event.

4.10 Summary

Most of the goals set initially for the development of this tool were achieved. The
information relating to events is retrieved from the database and displayed in a
comprehensible and correct manner. However the real test for the success/failure
of this tool will be dependent on other users. Decisions such as creating thirty
one date instances after the initial valid date is entered and displaying only five
date instances in the snapshoot of the project shown, were influenced by personal
taste as well as associated literature.

Changes can be made to the classes which will cause minimal effect on
other classes created for the Calendar tool. However work associated with a
second version of this tool, may be better directed towards improving the time
taken and approach for the retrieval of events. This task would involve not only
rewriting of retrieval methods but also the restructuring of the IS architecture.

Chapter 5

The Workbench Interfaces

5.1 Introduction

The workbench consists of a number of discrete tools, which although linked by
the IS data base generally work independently of each other. Each tool corre-
sponds to a particular part of the project management process, where the tool
consists of a set of closely related functions. Development of the tools used by
the IMPW were carried out in three phases.

Phase one Tools where developed in isolation, input
and output from the tools was in textual form.

Phase two Tools where integrated into the IS database,
the input and output was still in textual form.

Phase three Tools were integrated into the IS in
graphic mode.

Phases one and two concentrate mainly on the functionality and integration
of tools in the workbench using Objective-C. After determining the functionality
and completing integration, effort was pointed towards development of the user
interface. This chapter concentrates on the third phase of tool development,
discussing the two main areas related to developing the tool interfaces.

71

CHAPTER 5. THE WORKBENCH INTERFACES 72

[1] Automata finite state machine which controls
the operations performed by a tool when in a par-
ticular state.

[2] Windowing System :- extended graphic package
that creates and manages the interaction with the
tool applications.

The graphic package used for interfacing with the management workbench
was supplied by Verilog, one of the project partners working on the IMPW
project. The operations and objects which could be created from this package
were influential in the way tools displayed and extracted project information.

5.2 Automata

Knowing the number of interactions between the user and any application, makes
it possible to setup a finite state machine(Automata) which could simulate these
interactions[Ger 82], [Hen 68],[Hop 79],[Min 67]. The finite state machine ensured
a smooth transistion between integration phases, as well as providing a navigation
system for moving between operation displays.

Interactive sessions for the tools mentioned in the previous chapters go
through a series of states, each with a well defined general pattern: A panel is
displayed with questions for the user; the user supplies the required answer; the
answer is checked for consistency (questions are asked until an acceptable answer
is supplied); and the answer is processed.

This generic method ’execute’ in figure 5.1 could be used to represent any
user interaction state[Mey 87]. Using the power of inheritance and encapsulation
provided by Objective-C, it was possible to develop a generic class with abstract
methods which could be used by the various subclasses that perform similar
operations but use different data.

The diagram in figure 5.2 shows a state graph for the Risk automata sim-
ulating all possible user interactions within the tool. Each circle in the diagram
represents a risk state waiting for user interaction. The arrows represent the
transition of going between states which occur when an event (user interaction)
is triggered.

CHAPTER 5. THE WORKBENCH INTERFACES 73

- execute {
do {
[self display];
[self read];
[self correct];
iIf ([error number] != NO_ERROR)
[self errorMessage];
while ([error number] !=.NO_ERROR);
[self treat];
return self;

Figure 5.1: Generic execute method

The circle RO represents the risk automata in its initial state. After an
event has occured the machine proceeds in a deterministic fashion, that is, its
actions in response to a given sequence of inputs are completely predictable.
Because of the finite nature, the structure of such machines can be easily used
to describe different environments. The work required for describing risk and
calendar automata differs only in following state options available(see figure 4.8).

At any given moment, the risk or calendar automata can exist in only one
possible state. The next state to be entered is a function of both this present
state and the present input. For example, if in the risk automata outlined in
figure 5.2, the current state is RI, then entering a value of say one would transfer
activities to the R4 state. The next state therefore, always depend upon the
previous states as well as the input at that state and so forth, back to the initial
operation at RO. Thus the automata may also be viewed as a navigation system,
always keeping the interactions within a bounded path. The current state of the
machine at any moment serves as a form of memory of past inputs by following
the path from the initial to the current state.

The class Automata was used by both tools to describe the possible corre-
sponding states which can be obtained by the tool. The declaration for the risk
automata is given below.

Each of the first five instance variables is an instance of a particular state
designed to represent that class eg.

CHAPTER 5. THE WORKBENCH INTERFACES 74

Figure 5.2: Risk Automata

firstState = [FirstRiskState new];
secondState = [SecondRiskState new] ;

1 1 It

The currentState instance variable is used to indicate the state in which the
automata is currently executing. The riskAutomata class also has an instance
variable automata, this was included to facilitate multi level finite state machines
(i.e. autdématas within the automata). This relationship between the autématas
is shown in figure 5.3. If an extension from one of the states was required, the
new automata can be set-up without affecting the top level automata.

Each state presented by the Risk tool represents a menu display, the RiskState
classes (RisklnitialState, RiskSecondState, RiskThirdState etc) inherit charac-

CHAPTER 5. THE WORKBENCH INTERFACES 75

Figure 5.3: Automata within an automata

teristics from the class State which contain the instance variables and methods
required for implementing the finite state machinery. Each of the RiskStates
inherits a stateCollection instance variable from the State' class. This variable
contains the collection of possible states, which can be reached from the current
state as defined by the riskAutomata.

The method followingState in the State class works as a central cog in the
automata mechanism, ensuring that a correct transition is made from state to
state when required.

After establishing the next event from the user, the stateCollection offset for

that event returns the following state as defined by the automata. The statement

[[aFollowingState automata] currentState: aFollowingState];

CHAPTER 5. THE WORKBENCH INTERFACES 76

= RiskAutomata : Object (RiskGroup, Primitive, Collection)
{ // INSTANCE VARIABLES
id firstState; // the initial state of the automata
id secondState;
id thirdState;
id fourthState;
id fifthState;
id currentState; // state of the automata being executed
id automata; // automata In which the automata is contained

Figure 5.4: Instance Variables for RiskAutomata

returns the current state of the automata. The currentState variable for the Risk
automata is updated to whatever the following state is.

5.3 Graphic Compatibility

Having created a tool interface in which the user is aware of the current context,
presenting only options which are available in that context gives us a correct
interface, but it dose not solve all user interface problems. As software becomes
more powerful and sophisticated, so too are the interfaces used for their represen-
tation. The success or failure of many tools in the commercial marketplace today
often depend (albeit incorrectly) on the user interface. While the marketing of
the IMPW is centered around the functionality, extendibility and malleability of
the tools, the importance of a pleasant and easy to use interface could not be
overlooked.

The Verilog graphic toolbox which provided a wide range of operations for
constructing user interfaces was added to the second phase Objective-C code.
The abstract objects supplied by the graphic package included window, box,
list, table, network, chart, graph and tree object types. From these objects
the interfaces and operations associated with the Risk and Calendar tools were
created. While the diversity of such services make the toolbox very flexible for
constructing different interfaces, programmers new to the package may find it
difficult to use. Discovering the right glue for assembling pieces from the toolbox

CHAPTER 5. THE WORKBENCH INTERFACES 77

- followingState {
int offset;
id aFollowingState;

if((stateCollection != nil) && ([event number] = NO_EVENT)) {
offset = [eventCollection offsetof: event];
aFollowingState = [stateCollection at: offset];
[[aFollowingState automata] currentState:aFollowingState];
[aFollowingState execute: currentObject];

>

return self;

Figure 5.5: followingState method

poses certain technical problems for the first time developer. There was also the
problem of using this code inside the Objective-C environment.

The diagram in figure 5.6 shows where the graphic package should ideally
be situated, between the application and the interface [Cou 86]. By having three
clearly defined areas, changes can be made in one area without affecting the code
in the other. This would also support the Object Oriented paradigm of extendible
and robust code.

The graphic package however does not permit such a clear cut distinction
between these main objects. In order to present tools using windows, boxes etc,
from the graphic package, the Objective-C source is interwoven with graphic
statements. The diagram in figure 5.7 gives a more realistic representation of the
relationship between these objects.

The extent to which the graphic code is intertwined with the Objective-C
source will affect the reusability of certain class methods. Further enhancements
to this early version of the graphic package may cause changes to methods which
reference graphic operations i.e. changing the names of graphic functions, chang-
ing the number of arguments accepted by a graphic function, changing the data
types required for arguments.

Creating an Objective-C class to contain all the graphic statements and

CHAPTER 5. THE WORKBENCH INTERFACES 78

Figure 5.6: Ideal environment for graphic packages

minimise the effect of changes to the graphic package is possible. However such
an Objective-C class would have caused extensive changes to the phase two code,
which in turn would have caused major problems for the third phase integration.
Another problem created by such an approach would be the distribution of opera-
tions associated with an object. For example the risk class would have to transfer
control to a class outside its hierarchy for printing instance variable information.
While possible, this approach is moving away from the encapuslation principled
discussed in the first chapter, where only the object that owns the data, should
be allowed to perform operations on that data. Because only the display meth-
ods for objects required the graphic statements, it was possible to localise these
statements within the class definition file. By creating a graphic interface in this
way, minimal effort in rewriting tool source may be achieved, while affecting the
reusability of as few methods as possible.

5.4 Display Constraints

While designing the user interfaces for individual tools such as the Risk and
Calendar, some type of consistency with the interface display of the other tools
in the workbench had to be considered. Standards were developed by the different
tool builders to enforce some uniformity between the tools. The various tools used
different graphic objects from the tool box for presenting the current tool state
i.e. network objects are used by the "Work break down” tool to describe the

CHAPTER 5. THE WORKBENCH INTERFACES 79

Application Graphic Interlace

Figure 5.7: Realistic graphic package environment

hierarchical break down of tasks in a project. Other tools such as ”"Risk” may
require different objects such as icocar for displaying textual information. Despite
the wide difference in objects used, the physical layout of the windows created,
remained as consistent as possible by observing certain constraints. Each window
created to represent an interface consists of three parts as shown in figure 5.8.

The top part is used to describe the tool and project name which is currently
in use. The middle part contains a working area where the user may interact with
the tool while in a particular state. The third part is designated to describing
warning messages and confirming user actions. Selected entries for the current
tool state are highlighted when required. Highlighting however, was not used to
emphasise data, because this may lead to confusion. The physical layout of both
Risk and Calendar windows were designed to conform closely with these outlines.

5.4.1 Window Displays

Some of the objects, supplied by the graphic package were more important for
describing the Risk and Calendar tool interfaces i.e. windows, boxes and tables,
than other graphic objects such as network and charts. These graphic objects
such as charts, graphs and trees were considered for presenting Risk and Calen-
dar tool interfaces. Using such objects to create an elaborate interface for the
presentation of these tools, was viewed however, as adding confusion rather than
comprehension.

CHAPTER 5. THE WORKBENCH INTERFACES 80

Figure 5.8: Window layout

The Risk tool presents a number of interfaces for interaction with the project
manager, all of which contain information to be displayed in a textual format.
The presentation of such information using trees objects shown in figure 5.9 was
considered an unnatural way of representing riskdriver information.

Using the menu objects and the associated operations was another alter-
native for viewing riskdriver values. This would have meant displaying all the
riskdrivers simultaneously and using push right menus to display the riskcondi-
tions. The main problem with this approach is that the character strings for
riskdriver and riskcondition values would be too long for displaying on screen
(i.e. some are greater than eighty characters).

Keywords could have been used to represent the riskdriver and riskcondition
values, with the complete english format of the riskdriver being printed after
pressing one of the mouse buttons. However there was also the problem of how
to display the risktext and riskhelp information associated with a riskdriver. The
idea of using keywords in the menu with a help option for giving a riskdriver
description was considered, but like the first method seemed an unnatural way of
presenting simple textual information. The layout of the windows finally choosen

CHAPTER 5. THE WORKBENCH INTERFACES 81

Figure 5.9: Tree presentation

to represent riskdriver displays, used icocar boxes and tables objects is shown in
figure 5.10.

The top area in the display is dedicated to the tool name and the identity of
the current project. The bottom part is used for quitting from the current state
and error messages in accordance with the display constraints discussed earlier.
The middle section of the riskdriver window is used to display individual window
interactions used by the IMPW tool.

Each box to be displayed in the window view was combined with other
boxes to help form the complete picture. The combination of boxes provided by
the package is strictly hierarchial. Each box could only have one parent(except
the root box which had no parent) and each box could have several children(sub
boxes). The boxes defined were one of the following six types.

CHAPTER 5. THE WORKBENCH INTERFACES

No.

PROJECT NAME

RISKDRIVER

RISKTXT

RtSKCONDITION

RISKCONDITCN

RISKCONDfTION

[

[2

[B

MESSAGES

TOOL NAME

Select
Values

Figure 5.10: Final window layout

Box
Type

Description

Empty box with no contents

Input box contains a prompt and a zone for text input

String box that contains a string of characters

Icon box that contains an icon either as a string of
characters or as a picture

Graphic box containing graphic drawings

Oneof box may have any of the representation given
above however at any one time only one of these
representations is visible

CHAPTER 5. THE WORKBENCH INTERFACES 83

Only by glueing together different box objects offered by the package was
it possible to display all the data associate with a riskdriver instance.

5.4.2 Composition of riskdriver window

The composition of all windows used by the Risk Analysis tool included mainly
boxes and table objects. Windows displayed by the tools, while being distinct at
each state, used similar techniques for displaying and entering information. This
helped to reduce the code and provided consistency while using the tool. The
operations required for displaying the riskdriver view in the following example
were similar to the creation of other windows in the risk and calendar tools. When
creating windows to display riskdrivers, the first box to be created was a vertical
row box which would be the root box to which other boxes will be attached.
Creating the root box from which all other boxes will be related is accomplished
with the command.

Gevrow_create(arguments)

risk_rows = Gevrow_create(GEV_VERTICAL,GEV_OUTLINE_ON,
GEV_SPACE_ON)

This created the outer box for the riskdriver window on which all other boxes
are added. The GEV.VERTICAL argument implies, that attaching any boxes to
this box will be added in a vertical sequence. The GEV_OUTLINE_ON argument
implies that the outer boundaries will be displayed. The GEV_SPACE_ON is used
for the spacing of character and graphic objects.

Having defined the box which forms the outer shell of the risk window dis-
play, three more row boxes are added in a vertical sequence. Each of these boxes
helps towards presentation of the risk window in a form which provides consis-
tency with the physical layout with the other tool interfaces in the workbench.
The first box added represents the tool and project name. The second will display
riskdriver details and the bottom box is used for messages and confirming opera-
tions. The addition of these three boxes sets up the window skeleton conforming
to the constraints set with other IMPW tool builders. The statements required
for creating these boxes is similar to that used for their parent box only the new
boxes are given unique names and different argument values depending on what
objects have to be attached (eg. additional boxes are attached horizontally to the

CHAPTER 5. THE WORKBENCH INTERFACES 84

top box). Once these boxes contain all the necessary details they are attached to
their parent box(i.e. risk_rows) with the following commands.

Gevrow_add_obj(risk.rows,top); // top section
Gevrow_add_obj(risk _rows»middle); // middle section
Gevrow_add_obj(risk_rows,bottom); // bottom section

5.4.3 Top row details

When using the risk tool for different projects only the name of the project will
change. Therefore the code related with this part of the display only has to be
called once, when performing operations on different projects. The information
displayed in the top section (i.e. tool and project name) requires the creation of
two more boxes which are attached to the top box as shown in figure 5.11.

The box on the left hand side represents the tool name. The right hand
side box, identifies the project name. The creation of the top box above specified
the addition of any further boxes to top box should be added in an horizontal
fashion.

Inserting a box with the tool name in a string format is achieved us-
ing the icocar option supplied by the graphic package. The icocar box object
is a textual icon containing a character string. Issuing the command Gevico-
car_create(arguments) the tool name was inserted into the left hand side of the
top box. The project name was inserted in the right hand side of the top box by
attaching two more boxes of type icocar.

Once the information for the top section has been accumulated in the var-
ious boxes, it only remains to add the boxes containing the information to their
parent, which in this example is the box ’top’.

// attach topleft to top
Gevrow_add _obj(top, topleft);

// attach topright to top
Gevrow_add obj(top, topright);

Objective-C being a hybrid language permits the graphic functions to be

CHAPTER 5. THE WORKBENCH INTERFACES

I

/7’
//
//

//
//
//

//

//

//

Top

Create the box which the top section of the display

will be associated with

box created is a framed horizontal row box "“top™

top = Gevrow_create(GEV_HORIZONTAL,GEV_OUTLINE_ON,
GEV_OUTLINE_ON);

Top Left

Create a framed textual icon

font size seven, text string is centered

topleft = Gevicocar_create("'TOOL : RISK ™,
GEV.FONT7, GEV. C,
GEV_OUTLINE_OFF, GEV_SPACE ON);

Top Right
topright = Gevrow_create(GEV_HORIZONTAL,GEV_OUTLINE_OFF,
GEV_OUTLINE_ON);
projectTitle = Gevicocar_create(''Project : ",
GEV.FONT7, GEV_C,
GEV_OUTLINE_OFF, GEV_SPACE_ON);
proj_name is a string variable containing project name
projectName = Gevicocar_create(proj_name,
GEV_.FONT7, GEV_C,
GEV_OUTLINE_OFF, GEV_SPACE_ON);
the icocars are attached to the topright box
Gevrow_add obj(topright projectTitle);
Gevrow_add_obj (topright projectName) ;

Figure 5.11: Presentation of Tool and Project names

CHAPTER 5. THE WORKBENCH INTERFACES 86

embedded with the Objective-C source. However in trying to make the methods
in the various tool classes as reusable and extendible as possible, calls to the
graphic toolbox were written inside methods created specifically to relate to the
user interface.

5.5 Tool Interaction

The middle area of the window view displays the information specific to the
current state of the tool being used. For example if the user is using the risk
tool and the tool is at the first state, the display in the middle area will be as
displayed in figure 5.12. The current state of the Risk Analysis tool will determine
the level of user interaction with the middle window area(eg. interaction with the
riskcondition values for any riskdriver is only permitted when the user is using
the amend riskdriver mode operation).

Presenting textual information in a form which could be easily highlighted
in accordance with mouse operations seemed the most natural way of allowing the
user to interact with the tool. Unfortunately when displaying and highlighting
selected riskconditions associated with riskdrivers, serious shortcomings with this
package became prominent.

The strings used to represent riskdriver title and conditions had variable
lengths, going from two characters to well over one hundred. The graphic package
provided no text justification, so the appropriate code had to be developed in
Objective-C. The fact that Objective-C supplied no code for text justification
suggests that perhaps additional functionality should be added to the foundation
library in the form of a class or method.

The text justification function written for the tool was added to the Risk
class, because this was the only workbench class which required these operations.
To follow the principles of the Object Oriented approach the text justification
functionality should have been written as a reusable class for use of all classes.

The text justification function s\ib-divided large strings into separate icocar
box types. The accumulation of these boxes was used to represent the text on sep-
arate lines. Unfortunately this approach ruled out any possibility of highlighting
individual riskconditions. Using combinations of sub boxes to describe textual
information, caused undesireable side effects for highlighting the riskconditions
relating to the current project characteristics. Presentation of selectable choices
is made from a table object, by attaching all the selectable boxes onto the table.

CHAPTER 5. THE WORKBENCH INTERFACES 87

However selectable riskconditions are made up from the accumulation of boxes,
therefore making it impossible to select items on individual riskcondition boxes.

Tool : RISK Project : dev syst A

User Operation Mods
[View. Riskdrlver"®
Vleu Rule
Amend Ri1skdrlvers
Amend All Riskdrivers

Results

Confirm Abort

Figure 5.12: Initial Risk Window

The solution for this problem was to add a table object alongside the
riskconditions, highlighting the cell opposite the riskcondition value which repre-
sented current project characteristics. This solution involved the creation of row,
space and table boxes plus numerous graphic function calls to get the desired
window display shown in figure 5.13.

5.5.1 Using the mouse

Each area of functionality described for the project manager in chapter four
required a graphical window interface for user interaction. The window view pre-
sented to the project manager in the first state is shown in figure 5.12. Selection
of table choices is made by pressing the middle mouse button when the cursor
is positioned in the desired table cell. Mouse operations were standard for the
different window views provided by the tools. Events only occurred in the win-
dow in which the mouse was positioned. The events were then selected when the
middle mouse button was pressed. The process of highlighting various cells in
a table can be continually repeated by clicking the middle mouse button when
directly above a table cell. Only after confirming the operation in the bottom

CHAPTER 5. THE WORKBENCH INTERFACES 88

section of the window is the last mouse click event taken to be the desired event.
These operations were implemented by glueing graphic objects and statements
outside the Objective-C language into class definition files.

RIskdrlver 3
AVAILABILITY OF EXISTING PRODUCTS (OR PROTOTYPES)
WHICH CANACT AS EXAMPLES FOR DESIGNERS
The designers can refer to other products (or
prototypes) having functionality uhlch 1s -

Identical to the required functionality

very similar to the required functionality
somewhat similar to the required functionality
no sIMllar example 1s available

don"t know

Qull

Figure 5.13: Amend Riskdriver Window

Default modes are associated with all windows, where user interaction can
occur, therefore confirming an operation before selecting a menu option causes
the default mode to be entered. Clicking on the abort table cell while the tool is
in the first state will terminate current tool operations. Using the abort option
in any of the other states causes the tool to go back one state.

5.5.2 Textual input

When viewing riskdrivers or Rules the project manager must specify the instance
they wish to examine. By entering a numeric value in response to the operation
mode prompt, the details of the associated instance are displayed. This is the
only time while the project manager is using the tool, will input be accepted
from the keyboard. Insertion of invalid numeric values or text will cause the
appropriate error messages to be displayed.

Inserting information from the keyboard during phase one and two using
the Objective-C code was performed with minimal fuss, using C scanf statements.

CHAPTER 5. THE WORKBENCH INTERFACES 89

However the insertion of text using the graphic toolbox involved numerous state-
ments to simulate a similar operation. Because the textual input was occurring
inside windows created by the graphic tool box, special statements were required
for entering text. Characters entered at the keyboard were recorded by the tool
box as events of type ’Gevchr_t\ These events had to be repeated inside a loop
until an escape character was entered These events of type Gevchr.t then had to
be converted into standard C character or integer types before being validated.

Writing code for something as simple as entering text, is clearly a con-
tradiction of the Object Oriented principles discussed in chapter one. Entering
textual details using the graphic toolbox proved complex and long winded. If
complete Object Oriented systems are to be obtained, many improvements must
be made to the interface package object. MacApp [Schb86], Appex[Cou 86] and
EZWIN[Lib 85] are just some examples of Object Oriented graphic interface tools
which could have contributed to a cleaner transition between the second and third
phases.

5.6 Calendar View

Presentation of calendar information in graphic windows required the use of many
objects used for displaying risk details. The rules relating to the physical layout
of window used in the Risk tool, were used in the calendar tool. This meant that
code for describing the bottom and top sections, as well as operations defining
mouse operations, did not have to be written from scratch. Apart from changes
to the string variables held by icocar the code from these sections is similar.

Displaying calendar details in the middle area required the introduction of
a number of new techniques from the toolbox. The calendar, unlike the risk
tool, cannot display all its selectable options at once. The calendar tool required
a mechanism which allowed the scrolling backwards and forwards of selectable
events. Allowing the user to click on specific events for a particular date, also
meant that the selection mechanism should reference an event in two dimensions.

Using the lift objects which can be attached to a table, it was possible to
have scrolling in both horizontal and vertical directions. The second problem
was solved by setting up a two dimensional matrix (five by thirty one). The five
rows representing the five events associated with a date instance, the thirty one
is used to represent all date instances created by the Calendar tool. By attaching
the matrix to a table object it was possible to have a table with items selectable
in two dimensions. Attaching the table object to a box row object the desired

CHAPTER 5. THE WORKBENCH INTERFACES 90

interface display was achieved. All five events could be displayed vertically in
the window view, removing the need to have a vertical scrollbar. Restricting the
table to only displaying five date instances however, justified the need for adding
a horizontal lift (scrollbar) to the table.

Tool : CALENDAR Project : IMPW
1989-2-28 1989-3-1 1989-3-2 1989-3-3 1989-3-4
laports el
;0
Products Hxx "n @k*
W :« ;W :8172
Meetings
Personnel
Work 1n progress eee ek -«* %k
B 0O
Quit

Figure 5.14: Calendar Interface

Shaded boxes were originally chosen to represent events occuring on dates,
however this facility could not be obtained using the current version of the graphic
package hence the inclusion of asterisks. Clicking the middle mouse button in-
side cells with asterisks, cause the creation of another window displaying more
detailed information(see figure 4.7). The creation of such boxes and the infor-
mation obtained, are created using the techniques mentioned in this, and the
previous two chapters.

CHAPTER 5. THE WORKBENCH INTERFACES 91

5.7 Summary

This chapter related to the workbench interface required for the Risk and Calen-
dar tools. Two major areas affecting the way interface operations were discussed.
The automata described how a finite state structure could be used to show the
various interfacing states of the tool. The automata machine provides a fail safe
way for describing the various states associated with any mechanism. The proof
of this reusability was the ability to use the automata for Risk and Calendar
tools.

The graphic operations for displaying and interacting with tool windows
were long and tedious. The code involved in the Risk class almost doubled due
to the grahpic package. Although the code describing the various interfaces was
written and compiled with the other Objective-C classes, the graphic code written
cannot be used for other applications, bar tools they were developed for. This
type of development goes against the standard Object Oriented approach.

Chapter 6

Objective-C Traps and Pitfalls

6.1 Introduction

Developing computer systems in any programming language is never a trivial
exercise. No computer language has been developed yet, which is “all things
to all men”, solving problems quickly, using a simple and flexible syntax, whilst
satisfying all performance issues. Objective-C despite all the benefits (inheritance,
encapsulation and dynamic binding) is like other computer languages, in that it
has shortcomings. The Object Oriented approach should be thought of as another
tool to be added to the software designers toolkit. Like any tool in a craftsman
tool box, its there for a specific purpose. Knowing when to use this tool and
how to apply it to the task at hand, is a problem confronted by many computer
professionals.

The performance factors of the Objective-C language in relation to conven-
tional langtiages measures both negatively and positively, for various measure-
ment areas. Factors such as space, speed, development time, software quality
and code bulk are some of the issues which must be investigated before making
a decision on the implementation language. This chapter will discuss how the
Objective-C language used for developing IMPW tools measures against ordinary
C for the above factors.

As with all computer languages it is important for code to be written in ac-
cordance with a certain syntax. The Objective-C language provides no exception,
a number of compile and run-time faults were encountered during the develop-
ment of the Risk and Calendar tools. The second half of this chapter will be

92

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 93

dedicated to faults which occurred while developing these tools, plus a mention
of other factors which are important for correct Object Oriented development,
such as inheritance. Knowledge of the foundation library’s inherited classes is
important for software quality, speeding up development time and reducing the
amount of code written.

6.2 Objective-C Economics

Until now the Objective-C language has been talked about only in a positive
sense. However Object Oriented Languages such as Objective-C like most things
in life have a cost. The cost talked about in this chapter does not relate to
monetary matters, but to computer resource costs (i.e. the cost on machine
resources and machine efficiency). The amount of memory required by programs
using conventional languages can in some circumstances be significantly smaller
than Objective-C counterparts. Their are numerous reasons for this differential
in program size which we shall discuss.

6.2.1 Memory Costs

The first increase to program size that we will investigate is that caused by
the actual object. Previous chapters have mentioned how objects inherit data
and operations using the isa variable(which points to an objects shared part),
to form the inheritance chain between the objects. All objects created into a
computer system automatically inherit a isa pointer so that inherited details may
be accessed. For small objects shown in figure 6.1.a this overhead is a substantial
percentage increase on the memory requirements to that required for conventional
languages.

Looking at this overhead for the object in figure 6.1.b the memory required
for the isa pointer seems less significant. In large systems where thousands of
objects exist, the extra space for objects in memory will also take up those extra
thousand bytes of memory. This overhead of one byte per object seems trivial
when we consider the amount of memory offered by commerical computers today,
where four to eight mega bytes of main memory is common occurence on many
computers.

More serious concern about the space requirements are related to what the
isa variable is pointing too, because all the details each object inherits will also

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 94

iBa polnlsr Isa pointer

flag risktxt

riskconditlon

A Boolean Object
riskwelght

riskhelp

attrNams

entllyName

A Risk Objed

Figure 6.1: Object Overhead

be stored in computer memory when the application is running. The diagram
in figure 6.2 highlights this problem by showing how the Objective-C objects
must be linked together when a program is loaded into memory. Even if the
only method required for an application is the testMe method in figure 6.2, all
the other objects, plus the methods indicated on their dispatch tables must be
loaded into memory.

For small applications this can lead to a substantial increase in program
size, the root Object(inherited by all classes) alone takes up almost 40K bytes of
memory. The greatest percentage of the functionality provided in such applica-
tions will usually be unused, because small applications would not require all the
functionality provided by the inherited classes. Filer and float operation from the
Object class alone account for 12K of memory, which in a lot of small applications
may never be used. It is possible to delete code inside unused methods to reduce
code size, however Objective-C users should make sure that the original library
source has been backed up. Careful documentation of the different versions of
Objective-C library classes must also be created to prevent other users from using
foundation objects which do not contain the correct functionality.

When we look at larger Objective-C applications, the memory requirements
of the Objective-C objects decrease greatly. This is because in larger applications
where a great deal more functionality is required, greater amounts of code may
be extracted from the inherited classes.

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS

MySot lactory J

Figure 6.2: Objective-C required in memory

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 96

W ith conventional programming languages the size of programs grow lin-
early with functionality. This is because in most cases the code is being developed
for specific applications and old code cannot be reused. The growth in size of
Objective-C programs is relatively low in comparison, after paying the initial
price of 40K, the extra functionality can be reused many times in larger applica-
tions. In large software projects Objective-C is often smaller than conventional
code, this is through inheritance and the reusability of existing classes.

6.2.2 Code Size

To make comparisons between writing the Risk and Calendar tools in a conven-
tional language such as C against Objective-C, would call for a substantial piece
of additional programming. The development of such tools using standard C
would require weeks of work, a luxury which is not feasible here, as would be the
case with many medium sized computer projects.

In order to establish some type of measures | decided to convert a program
which I had previously written in C into Objective-C. The program chosen was an
AVL tree, which | developed while learning the C language. As with beginners
using any new language, better ways of writing the code exist. It should be
pointed out therefore that the results from these comparisons, are only used to
give a rough approximation.

The time required to develop an AVL tree, which permitted only the addi-
tion of nodes to the tree was considerably shorter for Objective-C programs. This
was due to the fact that all the AVL algorithms required were inherited from the
SortCltn class provided in the Objective-C foundation library. The Objective-C
program was developed in hours rather than weeks, as required for the C version.
As an additional exercise | decided to develop an AVL tree which would allow
the deletion of nodes. Writing the C code to perform this operation took the best
part of a week, where the greatest percentage of time was spent debugging.

The Objective-C delete version took fifteen minutes, more time could have
been spent on improving the layout and documentation. However this cannot
overshadow the ease in which | was able to develop functionality for deleting
nodes from an AVL tree (i.e. less than twenty five lines of code and less than
fifteen minutes of work). Critics of Object Oriented technology may say that
this example was tailor made for this type of problem. Other examples for small
development applications made by StepStone the suppliers of Objective-C show
similar trends. The results of these experiments are shown figure 6.3.

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 97

AVL EXPENSE CALCULATOR
ACCOUNT

Oblectlve-C

Figure 6.3: Objective-C productivity

The functionality provided not only reduces code size and development but
also helps create applications where the standard of code quality is much higher
than that of conventional languages. In the current example the AVL operations
have already been written, tested and used in various computer systems. There-
fore when we are using library classes there is no need to validate or document
AVL operations. The Objective-C code is also more flexible, the changes made
caused no change to the existing objects and code was reused from the inheritance
network whenever possible.

The software quality provided helps to obtain a very high standard, while
requiring only limited work(i.e. only code which is an extension of the foundation
classes needs to be tested). Software quality using conventional languages such
as C, are on the other hand dependent on the ability of the programmer and
have to be re-assessed for each new application. No tangible means are possible
to measure the development and testing time saved. However it is safe to assume
that the Object Oriented approach provides enormous savings.

The standard C AVL program required 300 lines of code, a figure several
times greater than that required by the Objective-C program. The code required
for the delete extension for both programs showed similar results i.e. code for the
Object Oriented approach was several times smaller than that of standard C.

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 98

6.2.3 Binary Size

The executable binary for both programs showed that the memory requirements
of the Objective-C program were greater than that of its standard C counterpart.
The main reason for this is because of the large amount of functionality added
by the foundation library. As mentioned earlier, it is possible to reduce this
execution bulk by replacing unused methods with dummy methods which perform
no operations.

In larger applications such as graphic development, studies show that the
differential between the two binary sizes are greatly reduced. The size of the Risk
and Calendar tools ruled out the possibility of making the above comparisons.
However the increase due to adding the graphic toolbox, had a more significant
effect on the size of execution bulk in the IMPW, than the Objective-C code. For
both tools the resultant binary size was increased by a factor greater than the
order of two.

6.2.4 Messaging Overhead

An important factor surrounding the creditably of any language is the speed at
which it performs its operations. The Objective-C language uses a messaging
technique to access the required object functionality. Each class object contains
this selection mechanism, where the class and selector name are hashed to give
the implementation address. When an object sends a message, the object and
selector are used in a hash algorithm to index the referred functionality. Message
sending is slower than sending direct message calls, but faster than conventional
condition statements. Figure 6.4 shows the differences in calling operations.

Obviously the messaging mechanism is going to be slower than direct calls to
the functions as with the case statement above. Before the Objective-C code calls
a function the method and selector values have to be hashed and accessed first.
However this method still works faster than conditional statements, which may
have to do tests on all possible choices before performing the required function.

Tests on the speed of direct function calls to C and Unix functions are rated
between 2 to 2.5 times faster than doing the same processing using messaging. In
order to verify these performance claims made about the Objective-C language,
I created two small test programs to judge how exact these figures were. The
first test was a simple print operation, the standard C program used printf. The
Objective-C version used the print method in the Object class for printing the

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 99

Non Object Oriented case statement
CASE shape.tag OF

circle : circleDraw(geomFigure);

square : squareDraw(geomFigure) ;

triangle : triangleDraw(geomfigure);
ENDCASE; // Fastest

Object Oriented
[geomFigure draw];

Non Object Oriented conditional statement
IF geomFigure.tag = circle // Slowest
THEN circleDraw(geomFigure)
ELSEIF geomFigure.tag = sguare
THEN squareDraw(geomFigure)
ELSEIF geomFigure.tag = triangle
THEN triangleDraw(geomFigure)

Figure 6.4: Message Overhead

same data which was created by the String class. The second test was converting
an ASCII string into an integer. Ordinary C used the atoi function, while the
Objective-C language used the aslnt method which was attached to the string
class. Because of the size of both tests a large number of iterations had to be
performed to establish timings. The results of these tests are given in figure 6.5,
all results given were returned using the Unix time facility.

The real figure represents the total elapsed time for running each test. The
user time represents the time spent executing the test program and sys time is
the time spent executing in the operating system during system calls. Testing
the printing of a string showed that the Objective-C performed better than the
approximation given. However the conversion of ASCII to integer values provided
values closer to the approximations given above. The fact that Objective-C is a
hybrid language has the advantage however of allowing direct C function calls to
be made in certain circumstances. As a result, the overhead for implementation
is often much less than the figures mentioned above. Reductions in the messaging

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 100

ordinary C Ob, ective-C
function iterations real wuser sys real user sys

print 1000 56 02 10 73 02 12
10000 437 21 90 476 31 101
atoi 1000 03 01 00 08 05 00
10000 36 35 00 67 65 00

Figure 6.5: Objective-C performance

overhead can also be realised by reducing unnecessary message calls. The example
in figure 6.6 shows two different way of writing the same method.

The method ”list” in figure 6.6.a, performs a message call for each execution
of the while statement despite the fact that aRiskCltn value will be constant
throughout the looping operations. The correct solution shown in figure 6.6.b,
performs only the necessary message operations. If aRiskCltn contains hundreds
of risk objects, then hundreds of message calls would be saved by only asking for
aRiskCltn size once.

6.3 Error Clinic

The Objective-C language like C is terse, expressive and is.designed to be easily
used by experts. There are few restrictions to keep the user from blundering.
The remainder of this chapter will talk about errors | have made while using the
Objective-C language, plus some which I have avoided, but which all Objective-C
programmers should be aware of.

Objective-C being a hybrid of the C language may contain any of the errors
associated with standard C programs, plus those associated with the new type
id and the new operation the message. Errors associated with ordinary C are
very much a part of the problems encountered while developing Objective-C
programs. However this text describes errors in relation to Objective-C. Readers
interested in more information on errors related to the C language, may find [Koe
86] interesting reading.

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 101

@ - list {
int 1 = 0;
while (< [aRiskCItn size])
[[@RiskCltn at:i++] print];
return self;

(9] - list {
int 1 =0;
int risksize = [aRiskCItn size];
while (i < risksize)
[[aRiskCItn at:i++] print];
return self;

Figure 6.6: Saving messaging time

6.3.1 Class Definition Troubles

One of the early problems for Objective-C beginners is getting their programs
to compile. The Objective-C syntax for each class definition file requires writing
code in accordance with a number of predefined conditions. Before each class
name definition the “=” symbol must appear, while after the class name a colon
must be entered before the parent class is written. Failure-to enter any of these
symbols will cause compilation errors.

In each class definition file, the message groups associated with the class
plus other classes referenced in this file must be declared. The message groups
are required to keep track of the methods return types. StepStone supplied three
message groups Primitive, Collection and Geometry to watch over the return
types in the methods supplied by their foundation library. Classes created by the
user must set up their own message groups to keep track of the types returned
by the methods in these classes.

Mistakes such as leaving out a message group or using the wrong message
groups are problems common to many Objective-C programmers. For example it

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 102

is wrong to include only the Collection message group when creating a new class
which has OrdCltn as its parent. Not including the Primitive group will cause
errors to occur at runtime. Because the Primitive group keeps track of all return
types used by the root class Object which is inherited by all the other classes,
therefore this group should appear in every message group declaration.

Another frustrating error which can occur when compiling class definition
files is forgetting to print the at the end of the file. This symbol will have
no association with the logic of the class file but its absences at the end of the file
will cause error message which can add to confusion for the naive Objective-C
user.

6.3.2 Erroneous Methods

Defining methods inside a class definition file can cause errors which are either
syntactic or semantic. The errors due to syntax are usually the simplest to correct.
The compiler will list the line number and give a diagnostic message indicating
the type of error that has occurred. This could be for a misspelt variable, a
missing semi colon at the end of a line, no matching braces or brackets inside
statements.

The methods defined inside class definition files should always commence
with a plus(”-t-”) or minus(”-") sign to represent the factory and instance objects
respectfully. If no type is declared after the method sign the default is assumed
to be of type id. People more accustomed to developing in the standard C
environment expecting an integer value to be returned from an undefined method
definition, may encounter runtime errors if they are hoping to perform some
operation on the returned value. The Objective-C language also requires that
the left curly bracket which signals the start of a procedure should appear on the
same line as the method definition name. It is an error to create methods using
syntax similar to figure 6.4.a, the correct definition is shown in figure 6.4.b. The
type returned by this method is the default id (object identifier).

The self and super pseudo variables are important for identifying objects
and overriding methods in classes. Trouble due to incorrect use of these variables
has already been mentioned. Using self instead of super as an object receiver for
a selector with a similar method name will cause the method concerned to enter
an infinite loop as shown in figure 6.4.a.

The errors associated with methods which really stifled me up were those

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 103

@ ®
- test - test {
{ // int i; //
int i;
[self test]; [super test];
I I n "
return self return self;

>

Figure 6.7: Method Syntax

that occurred at run time. Returning and passing incorrect types was one of my
most common errors while learning Objective-C. Any methods or variables which
had no type declared were given the default type id and not integer as in C.

6.3.3 Main Module Structure

Objective-C uses a main program for the initiation of code like conventional C.
Indeed the overall structure of both is similar. The only differences would be the
inclusion of Objective-C statements if any, used inside the main module, plus the
class and message group declarations. The main Objective-C module declares
the message group used by the file, as is required in any Objective-C file that
sends messages.

After the closing bracket in the main program two additional lines with
Objective-C syntax are added. The command @classes(class list) is used to de-
clare the classes used by the file. The command @message(message list) declares
all the messages used by the classes. If the @classes statement is in the same file
as the message statement, the list of messages(which can be quite large) can be
excluded.

The compilation of class files must occur in a generic order. You cannot
compile a class if the parent class which you have also created has not yet been
compiled. The main program module which initiates the various classes must be

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 104

compiled last, before the linking of binary objects. The addition or deletion of
methods from a class should be followed by the re-compilation of the class file
and the main module so that the message table containing all the returned types
is always up to date. Concentrating on other system problems can often lead to
this simple procedure being overlooked. The Unix “make” command provides a
foolproof way around this problem. It is possible to set up a make file which will
always re-compile the main module when changes have been made to the value
returned by a method.

The Objective-C language uses a number of include files for various imple-
mentations. The “objc.h”file is the standard header file used by the language,
containing the most common definition types and macros used by the language.
Failure to reference the objc.h file at the beginning of a class definition file using
the Objective-C type such as BOOL(Boolean) will result in a compilation error.
The naive user will find the diagnostic message associated with this error diffi-
cult to comprehend. The syntax for the error will vary in accordance with the
first line of code which required the header file. The line number associated with
the error will usually be one greater than the number of code lines in the class
definition file.

6.3.4 Printing Errors and Error Messages

If you wish to print all the instance variables associated with an object a method
specific to printing this type of object is required. Trying to print an objects data
using statements as below will result in compiler errors.

printf ¢*/s\1’ ,self) ;

When wishing to print an individual instance variable associated with an
object, statements of the form

printf ("4.d\1" , [self testSize])

should be used. However this may not be sufficient to prevent the program from
crashing, if a method has not been written to return the correct type. When
creating new classes it is good practice to enter immediately a method with its
correct return type for each instance variable created in the class.

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 105

During the development of both IMPW tools, runtime crashes often oc-
curred because objects were sending messages to methods which did not exist.
The compiler does not perform any checks to decide which methods belong to
which object. It is the programmers responsibility to ensure that these dynamic
objects only send messages to methods that will understand them. The diag-
nostics associated with sending invalid messages, will give information similar to
below when this error occurs.

2a2a4=Fruit[FruitfflOx2a2a4 error:]Does not recognise selector colour

=== stack backtrace (in reverse chronological” order) ===

=== [receiver selector args] fflsentFrom[ClassName methodName] ===
<function(2a2a4,209f8)> ®2d96[0bject -error:]

[2a2a4=Fruit -error:209f8] ®2d70[Object -doesNotRecognise:]
[2a2ad4=Fruit -doesNotRecognise:2008i] <0342e(non-method)
[2a2ad4=Fruit -colour] 82486 [Fruit -printOn]

[2a2ad4=Fruit -printOn:217c8] 82786[Object print]
[2a2a4=Fruit -print] ®20d6(nhon-method)

The error diagnostics gives a trace back of all the methods called in relation
to the invalid message. In this example, the “colour” message sent by the Fruit
class was not found.

Applying messages to arguments caused additional problems while learning
the language. The colon used by selectors for indicating arguments can become
confusing for methods containing a large number of arguments. Passing incorrect
arguments types and setting up the wrong method definitions were also problems
encountered while using the language.

6.3.5 Collection Errors

Both the Risk and Calendar tools used the OrdCltn class extensively. One of,
the most common errors to occur when using this class was the out of bounds
error(i.e. trying to access an invalid offset in the OrdClItn in question). Another
problem was accessing objects which the OrdCltn did not recognise. By adopt-
ing a good programming style it is possible to avoid these problems. Sequencing
over a collection in the following manner always guarantees printing valid ob-
jects(provided the objects know how to print themselves).

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 106

id riskCltn = [OrdCItn new];

riskSeq = [riskCltn eachElement];
while(aRisk = [riskSeq next])
[aRisk print];

Looping through a collection using this technique makes it impossible to go
out of bounds. Relative accessing of objects using the OrdCltn statement:

[riskCItn before:bRisk];

generates an error if bRisk cannot be found. Accessing an object using the at:
method is an alternative technique for retrieving or placing objects, but when
using this approach the user needs to ensure that the integer value given is inside
the collection range. This type of error can only be eliminated by validating the
OrdCltn argument before it is applied.

6.4 Garbage Collection

One of the main problems related to the Objective-C language was garbage col-
lection. The 3.3 version of the language used for developing the IMPW did
not provide garbage collection. Unlike languages such as Smalltalk-80, the soft-
ware developer is responsible for the deletion of objects when they are no longer
required by the system being implemented. This responsibility puts an extra
burden on the person developing a system. The absence of such a facility means
that complete knowledge of the application environment is required so that ob-
jects maybe safely deleted. In large applications where a great amount of work
is inherited or performed by another person the work involve is substantially in-
creased. Deletion of objects, containing other objects, such as OrdCltns must
have their contents deleted before the collection object is deleted, otherwise the
system will contain a number of objects dangling in memory, which may cause
space problems or side effects caused by addressing the memory occupied by one
of these objects.

CHAPTER 6. OBJECTIVE-C TRAPS AND PITFALLS 107

6.5 Inheritance

The inheritance mechanism introduced many benefits with Object Oriented lan-
guages, throughout this thesis many references are made underlining these ben-
efits. However the inheritance mechanism which is used to provide reusable and
high quality software also introduces some additional problems for the naive user.
The Objective-C foundation library contains twenty-eight classes and approxi-
mately two thousand methods. Before commencing any development work, a
general understanding of the class hierarchy and the operations available is re-
quired.

For someone using the Objective-C language for a specific application,
knowing about all the available classes and their operations may seem a fruit-
less operation, when probably they only need to know about two or three of
the classes. But if the user is serious about using reusable code, some type of
understanding of the available class inheritance is required, to avoid rewriting
unnecessary code.

For Objective-C beginners probably the best way to start programming
is to learn about the root class Object, the overall inheritance structure, and
a quick overview of the functionality provided by the other classes. Only by
reading about the classes and using them in software development will the user
get a real feel for the class library. The compiler suppliers, also supply additional
classes in packages called ”software-1Cs”. Users looking to optimise reusability
in their system may purchase any of these packages if relevant to their system
development.

6.6 Summary

The syntax and semantic errors discussed here are only the tip of the iceberg. As
with any computer language the only way of understanding the syntax is through
practical experience. With this experience the compile time error should become
nothing more than a temporary annoyance. The real problems will be those
that execute correctly nine times out of ten or crash ever time you are showing
someone a demostration. Problems related to inheritance (i.e. what is available
and which class to inherit from) will also be improved with reading and practical
experience.

The problem of garbage collection is one of the main black spots of this

108

CHAPTER 6. ODJECTIVE-C TRAPS AND PITFALLS

language compared to others such as Smalltalk-80 and Eiffel. Future versions of
the Objective-C compiler have been promised to handle this problem, however
for users with versions up to 3.3 of the compiler, the problem of handling an

objects life span remains their responsibility.

Chapter 7

Object Oriented Design

7.1 Introduction

Before commencing programming with any computer system, a methodology for
the design of the new system is needed. There are numerous ways of approaching
the analysis of systems. Many of these methodologies were developed during
the late 70’s and early 80’s, reflecting an upsurge of activity in IS development.
However most of these methodologies were designed for system implementation
using a third generation computer language, characterised by a linear approach
to systems analysis.

Because the conventional methodologies provide no mechanism to support
Object Oriented characteristics such as encapsulation and inheritance, new mod-
elling techniques for Object Oriented languages were developed. As with conven-
tional system modelling, there have been a number of approaches put forward to
help system building using Object Oriented languages.

Because the Object Oriented technology is still in its infancy(at least in
commercial terms) no standard approach to Object Oriented Design has yet been
agreed upon. Some of the new approaches towards Object Oriented Design seem
geared to the creation of software systems using particular languages, which do
not illustrate the full power of most Object Oriented systems. Other approaches
try to merge the conventional techniques along with new Object Oriented tech-
niques. This helps designers create systems in a manner which is similar to the
already proven techniques while using the Object Oriented mechanisms, however
such approaches represent language inheritance poorly. This chapter will inves-

109

CHAPTER 7. OBJECT ORIENTED DESIGN 110

tigate some of these techniques, showing how they could be used in modelling
software systems similar to the IMPW tools.

The variety of applications in which Object Oriented techniques can be ap-
plied to cover all problem domains from developing a process control system in
a nuclear factory to creating a system used for counting apples in a basket. The
Objective-C suppliers provide reusable and extendible components for implemen-
tation. But they do not provide any assistance towards the development of other
reusable classes.

The techniques for designing reusable and extendible components have not
advanced at the same rate as the Object Oriented technology. This topic has
become a popular research area for many Object Oriented enthusiasts, but as yet
no global accepted model has been accepted for Object Oriented Design. This
chapter looks at some of the design models which have been developed to solve
this problem, and the approach taken for the development of the IMPW tools.

7.2 Booch Model

One of the earliest approaches to tackle Object Oriented design was the Booch
model[Boo 86], named after its inventor Grady Booch. This approach decomposes
the textual description of the system requirements to develop the class objects
for the problem domain. Nouns in the textual description of the system, relate to
object classes which have to be created. Verbs identify the operations performed
by the objects. This process can be continually repeated to decompose objects to
lower levels of abstraction. The approach recognises operations associated with
objects and the operations they require from other objects.

The foundation of the approach is based upon information hiding(encapsulation)
and data abstraction. The complexity associated with large systems is removed
by representing problem domains as abstract objects, which may communicate
with other objects in a manner which cannot be viewed as sequential.

The diagrams used to represent these objects and their inter connections
are known as Booch-grams, which are sometimes compared with conventional
date flow diagrams[Woo 82]. The sources or stores of the data flow diagrams can
be directly mirrored to objects in the Booch-gram. Further investigations of the
data flow processes leads to the identification of more detailed processes which
occur at lower levels of abstraction. A similar approach is used to determine
objects in Booch-grams, where the investigation of object detail may identify the

CHAPTER 7. OBJECT ORIENTED DESIGN 111

need for lower level objects. After understanding the requirement associated with
a system the Booch method is applied using the following steps.

[1] Identify objects and their attributes (All nouns in the
textual description of the requirements are used to rep-
resent objects, the verbs represent the actions on these
objects.)

[2] Identify Operations (Allows objects to be decoupled)

[3] Establish Visibility of each object in relation to other
objects (This helps to provide a generic structure to the
objects in the system,capturing the topology of objects
in the model)

[4] Establish interface of each object (Establish the speci-
fications to be performed by the module and the views
that will be displayed to external objects)

[5] Implementing each object (Choose a suitable represen-
tation for an object, in most cases this will involve de-
composition of the object until the operational level is
reached)

This approach is more responsive to change than traditional methods be-
cause the changes to objects are more localised. Different levels of abstractions
can also be obtained for each object by repeating the process which obtained the
top level view. Using the Booch-gram approach in the Risk- Analysis tool gives a
top level model as shown in figure 7.1.

The model also provides a better indication of the flow of control than tradi-
tional approaches, where there is one single thread of control which is operated in
a sequential manner. The Booch-gram model gives a better representation of the
nature of concurrency attached to a system. Perhaps one of the most important

benefits from this approach is the mechanism it gives to formalise our model of
reality.

Unfortunately most of the Booch-gram displayed in computer journals are
usually directed to the development of systems written in Ada, an Object Ori-
ented languages, which does not support inheritance. For languages such as

CHAPTER 7. OBJECT ORIENTED DESIGN 112

Figure 7.1: Risk Booch-gram

Objective-C, C++, Smalltalk-80 etc, this approach makes no attempt to make
use of the power of inheritance. The approach ignores the numerous high quality
abstract classes and operations supplied by these languages and hence fails to
give a fair representation in the model view.

7.3 Hierarchical Object Oriented design(HOOD)

Another prominent approach is the Hierarchical Object Oriented design method
called HOODJ[Rob 89]. This approach like Booch’s, is aimed for software devel-
opment in the Ada community. The structural design techniques used in con-
ventional methodologies is highly utilised by this approach, allowing the designer
to use techniques that are already proven and tested. Like Booch this approach
is centered around identifying the objects which will map the real world objects
into software entities. The HOOD design can be broken down into four phases.

[1] Definition and Analysis of the problem
[2] Revise into the design solution i.e. natural English (This

is written in a semi-formal style so that the objects can
be selected for the next phase)

CHAPTER 7. OBJECT ORIENTED DESIGN 113

[3] Selecting the objects and operations (Similar to Booch
i.e. nouns are taken to represent objects and verbs relate
to operations on the object)

[4] Refine the design to produce a more formal description
of the object interface. (At this point all the variables
are related to an object)

This approach recognises two different types of objects, passive and active,
which are required for modelling the software system. Passive objects are those
executed immediately when control is passed to the object, while Active objects
execution is dependent on the object control structure. Diagrams used for rep-
resenting these objects are shown in figure 7.2.a and figure 7.2.b, Active objects
are denoted with an A in the top left hand corner.

print

Passive Object Aclive Objecl

Figure 7.2: HOOD diagrams

The object names are displayed along the top of the boxes and the oper-
ations which may be performed by the object are inserted in the box which is
placed on the perimeter of the object box. For an object such as Rule in the Risk
Analysis tool, where a large number of operations are performed, this box proves
an insufficient way of representing this information. Another problem with this
notation is that it makes no attempt to identify the parameter types passed or
returned from these operations.

CHAPTER 7. OBJECT ORIENTED DESIGN 114

W ith many Object Oriented languages it is feasible for objects to call op-
erations defined in other objects and to inherit data plus operations from parent
objects. The HOOD model recognises these features and has built techniques
into the approach to handle such cases. Objects using operations inside other
objects can be represented by the USE arrow as shown in figure 7.3. However
the approach does not permit cyclic calls between passive objects. Therefore if
the Rule object uses one Risk object operation, the reverse operation would not
be permitted if both were passive objects. Another problem with this facility is
that although it indicates that an object requires an operation from an object, it
will not determine which operations are required, when more than one operation
is available.

Figure 7.3: Message passing with HOOD

Inheritance is represented by showing the child object(s) inside the parent
objects see figure 7.4. This provides a useful technique for representing objects at
the same level of abstraction. Each level can be repeatedly decomposed until the
abstraction process is exhausted. Once the diagrams representing the software
system have been completed, many HOOD tools produce code translating these
diagrams into Ada code. This approach like the first, sets up a foundation for a
design which can be easily extended. However like the Booch approach it also
ignores the class hierarchy supplied by many Object Oriented languages and does

CHAPTER 7. OBJECT ORIENTED DESIGN 115

not suggest any way in which the design can be reused.

Figure 7.4: HOOD inheritance

7.4 Block Design

The Block design approach was developed for the creation of large projects[Jac
83] using Object Oriented technology. The block design method merges Object
Oriented techniques and conceptual modelling used for requirement modelling of
information systems. The approach unlike those previously mentioned, focuses
on the interconnection of reusable software components. This concept can be
considered similar to Objective-C software-1Cs, where instead of designing from
scratch, the design components can be looked up in a catalogue and entered into
the design.

The blocks provide the framework on which this approach is based, each
block representing a package service of the system. Blocks decomposed to their

CHAPTER 7. OBJECT ORIENTED DESIGN 116

lowest level, represent classes in the Object Oriented languages. The components
described by the approach are used to represent standard modules that can have
many different applications. These components are available to all the blocks
used in describing a software system. This facility can be considered analogous
to the foundation library offered by some Object Oriented Languages.

The concept of inserting a specific design block to meet certain conditions
agrees with the reusability notion put forward by Object Oriented technology.
The approach involves a number of steps from the original requirements, to the
finished system. Progression is made from system analysis to design, using a
number of facilities similar to those mentioned in the HOOD approach. How-
ever the transitions involve moving through the various steps which can lead to
a model which is not error free. The approach is geared more towards develop-
ing large systems, where the duration of the project is ten man years or more.
The design is broken down into numerous parts to allow the participation of
numerous designers. While cohering to many of the Object Oriented principles
this methodology can seem cumbersome when designing small to medium size
applications.

7.5 Object Oriented Structured Design

This approach is a combination of traditional approaches to which Object Ori-
ented concepts have been added[Was 88]. Developers using this method for
system design find themselves using the “top-down” approach when perform-
ing functional decomposition of modules. The “bottom-up” strategy is more
likely to be applied to objects, where developers will be more concerned about
the functionality of the object than its overall role in the system design.

The structured approach puts a strong emphasis on modularity, so that the
system being developed will be comprehensible and flexible, highlighted by the
fact that modules can be created and tested independently of each other. Object
oriented design is merged into the approach to represent the hierarchy of objects.
By keeping modularity the principal component of design, development is made
on already proven concepts. This approach is also useful in allowing the method
to be used in a number of various applications.

For designers using either Booch or HOOD methods this approach provides
a great deal of familiarity, hence avoiding the need to develop the necessary
design skills from scratch. The basic notation used in structured design are used
to illustrate modules. Applying these structured design concepts to the Calendar

CHAPTER 7. OBJECT ORIENTED DESIGN 117

tool, provides the layout shown in figure 7.5.

Figure 7.5: Object Oriented Structured Design of the Calendar

The sequencing of operations in this diagram are taken from left to right,
with the operation at each level giving more specific detail than the module at
the higher level.

The concept of object and the operations they perform is described in a
manner similar to HOOD. The object is characterised by a box, with the asso-
ciated operations appearing in smaller boxes around the perimeter of the object
box. The encapsulation of data and operations by the approach is termed ”in-
formation clustering”. Unlike the previous approaches, a distinction is made
between the definition and uses of objects. The definition of an object is repre-
sented by a rounded rectangle which is displayed inside the object box as shown
for the Risk object in figure 7.6. The operations used by the object are repre-
sented by individual boxes which are positioned on the objects perimeter, making
it possible to show the parameters associated with each operation.

Inheritance and Encapsulation, the two facilities desirable in most Object
Oriented languages are represented by this approach. The inherited object in
figure 7.6 is denoted by a dashed box, the inheritance of operations are also
denoted by the dashed line between the boxes. The Risk object in this diagram
overrides the add and delete operation inherited from the object class.

CHAPTER 7. OBJECT ORIENTED DESIGN 118

Another nice feature about this approach is the way it allows a program-
mer to gradually shift from functional decomposition design, towards an ap-
proach which encompasses Object Oriented concepts. Analysis of the problem
domain may be made by a number of various methods, before been translated
into the design model. Unfortunately describing Object Oriented systems with
functional designs can cause problems when making extensions. Updating con-
ventional functional systems often lead to changes which are not restricted to
localised modules. While facilities for describing inheritance have been provided,
the approach offers no advice on how this structure is set up. It presumes that
all designers should know intuitively about the languages foundation hierarchy
structure.

7.6 Learn by Example

Besides learning to design Object Oriented systems using one of the aforemen-
tioned methodologies it is also possible to learn design techniques by copying
previous examples i.e. Learn by example. By studying the structure of previous
Object Oriented systems and following the inheritance path for data variables
and operations a person can develop a better feel for design. This approach can
prove useful for learning about the foundation classes provided with a language
and helps to optimise use of the inheritance mechanism. This technique pro-
vides no standard way of describing the model other than coded listings, unless
the language provides a tree or browser mechanism as in Smalltalk-80. It would
probably be better if used in accompaniment with another design approach rather
than by itself. Another problem is that studying old systems can also be very
dangerous, if the software being examined has not been designed properly.

7.7 Methodology for workbench tools

With no proven standard for Object Oriented design, the technique used for the
development of the IMPW tools was not related to any one individual method-
ology. The initial design used IDEF-SADT approach, to describe the IMPW
layout, however this technique could not be used for creating reusable Object
Oriented tools. The approach taken was however influenced to a certain degree
by a combination of the various approaches available.

The creation of both Object Oriented tools for the workbench followed the

CHAPTER 7. OBJECT ORIENTED DESIGN 119

following phases.

INHERITANCE
[1] {nltlal Requirements and Analysis

[2] Develop Objects to model real
world requirements

[3] Find the operations related to each
object

[4] Convert operations to objects if fea-
sible

[5] Repeat steps three and four until
all operations are associated with a
class

The first step in the creation of the tools, involved the analysis of the
system requirements. This section concentrated on how the requirements for the
Risk tool were fulfilled using this approach(similar operations were used for the
creation of the Calendar tool).

After completing the analysis of system requirements, the objects which
matched the real world entities were created. The techniques used for developing
these top level Risk tool objects were analogous to that mentioned by Booch i.e.
the requirements are read in natural English, with the nouns representing class
objects and verbs the operations. The diagram in figure 7.1 shows the top level
objects which were created for the Risk tool.

To define all the necessary top level objects after studying the initial re-
quirements puts too great an emphasis on this phase of modelling (i.e. the need
for certain objects may only be highlighted by viewing the operations of other ob-
jects, or they may be simply overlooked at the start). Only by iterating through
the various phases, is it possible to ensure that all the necessary objects are de-
fined. This approach may be viewed as an Object Oriented prototyping exercise,
where each iteration brings the user closer to the desired model.

The third step in the process identifies the operations required for the ob-
ject. Abstract or reusable operations found at this stage suggest the creation of
other classes. Detailed study of these operations by the user, may lead to the

CHAPTER 7. OBJECT ORIENTED DESIGN 120

identification of new classes undetected by previous studies of operations and ob-
jects. The technique used for finding the functionality associated with the Risk
tool objects, used the Jackson structured method, where each operation was iden-
tified as a module. Each abstract object of the Risk tool was modularised in a
manner similar to the Risk class in figure 7.8.

InitialState

tollowingState execute display

State

Figure 7.6: Object Oriented Structured Design for inheritance

The technique used for describing the functionality should be dependent on
the system developer(i.e. choose the methodology you feel the most comfortable
using for this task). The reasons for choosing the Jackson Structured methods[Jac
83] here, were twofold. First it seemed the simplest and most natural way of
describing the functionality of the abstract object. Secondly.the method helped to
differentiate between Objective-C factory and instance methods. All the top level
modules in the Jackson diagram describing an object can be identified as factory
methods i.e. class operations. Operations described by lower level decomposition
of the modules represent instance methods. Therefore the operations add, delete,
list etc, are considered factory methods for the Risk class.

By iterating through these operations for each object, the system designer
is able to develop an intuitive understanding for the relationship between objects
and operations. This is important not only for comprehending how objects will
communicate, but also for identifying areas where code can be reused.

The power of inheritance has been poorly mentioned in this approach, as

CHAPTER 7. OBJECT ORIENTED DESIGN 121

is the case with many of the methodologies mentioned so far. However this is
a prominent factor when developing systems using Object Oriented Languages.
The inheritance tree must be known during design, in a way mechanics know
every tool in their toolbox. The mechanic is aware of the tools available in the
toolbox, knowing exactly when and where they should be applied to the task at
hand. Similar knowledge of the classes and operations available, plus intuitive
knowledge to where they should be applied during system design are deemed
important for successful designing.

However this method is a contradiction to the principal that design should
be independent of the language, because the technology has no established stan-
dards as to what objects should be contained in an Object Oriented library and
how it should be structured. At present all the software suppliers want to insert
classes into libraries, instead of reusing classes already there.

This approach while being adequate for the isolated design of the work-
bench tools, falls well short in answering all the Object Oriented requirements.
The Object Oriented design methodology applied to the system, should remain
language independent, while also being reusable and extendible. By iterating
over the objects involved in system creation, the validity of the classes being
reused in other systems can be questioned(if the iteration process occurs on ob-
jects used in different applications, the word re-worked becomes more appropriate
than reused). The classes developed for the Risk and Calendar tools did not ren-
der any reusable classes. Perhaps using another approach or better design of the
classes themselves, this reusability factor could have been obtained. The next
section will concentrate on the reusability of classes issue.

7.8 Designing Resusable Classes

In addition to the problems of knowing what classes to inherit from, where to
attach new classes in the inheritance hierarchy, it is important to design classes
which conform to the Object Oriented principles of reusability and extendibil-
ity. The techniques used for the development of the Risk and Calendar tools
were designed purely to satisfy specific implementation on the IMPW, using the
class facilities offered by the Objective-C foundation library. As Drake[Dra 88]
observed, the Object Oriented technology will separate programmers into two
groups, those developing abstract classes, and those developing system applica-
tions from these class libraries.

The objects created for the Risk and Calendar tools cannot claim to be

CHAPTER 7. OBJECT ORIENTED DESIGN

reusable in the sense that they can be added to the foundation library and used
in various applications. These classes referred to as modular units by Meyer[Mey
87] have to satisfy a number of criteria if we wish them to be reusable and

extendible.

e Decomposibility It must be possible to de-
compose a complex module into smaller sub mod-
ules.

eComposability Modules should have the abil-
ity to be applied as independent elements in the
construction of other systems.

e Understandability If a module cannot be
understood independent of other modules, other
modules will be involved in the maintenance of
this module.

e Continuity Changes made in a module should
have little to no effect on other modules in the
system.

* Protection Isolation of errors within a mod-
ule thus stopping the propagation of these errors
throughout the system.

It is the composability factor which prevents the factory objects in the
workbench from been reusable. The variables and operations described relate to

a precise application.

However when creating application specific software, designers should still
be trying to develop classes that can be reused in other applications. By adopting
a number of rules of thumb it is possible to create classes which may be used in

different application environments.

[1]

[2]

Avoid declaring unnecessary instance variables into ab-
stract objects. The declaration of these variable can
make the class object too specific, at too high a level.

Use the same message protocol for describing operations
as described by other classes in the foundation library.

CHAPTER 7. OBJECT ORIENTED DESIGN 123

[31 When deciding which superclass a class should inherit
from, method inheritance should be given preference over
data inheritance.

[4] For classes which have half their variables accessed by
one half of its methods and the other instance variables
by the other half of its methods, split the class into two,
each with the required instance variables and methods.
Attach both classes to a higher level abstract class.

[5] Code defensively! If you want your code to be reusable
be prepared to have your methods called under various
circumstances.

[6] Verify that your testing and documentation can be used
in various applications.

Some of these rules are simply common sense, others may only be found
and appreciated by getting one’s fingers burned creating factory objects. The
main reason for the IMPW tools not producing reusable classes was mainly due
to a lack of development experience and geographic distribution of tool builders
rather than the specific applications for which the tools were being developed.
As developers create new classes using Object Oriented technology, the initial
code size will grow linearly with the classes being created. However as program-
mers gain experience, the size of the code in relation to classes should gradually
decrease as the programmers bring reusability into play.

7.9 Summary

This chapter has viewed a number of Object Oriented Design methodologies, none
of which satisfy all the criteria required to describe system building using Object
Oriented languages. Many software suppliers are steamrolling ahead advertising
their Object Oriented language and the class facilities provided, ignoring the
problems of design and standards. Techniques such as HOOD and OOSD are a
positive step towards a correct Object Oriented Design approach. However work
is still required to make these design components reusable in different applications
and languages.

Chapter 8

Future Directions

8.1 Introduction

During the past two decades computer professionals have seen the invention of
many tools used to combat problems that plagued the computer industry. Soft-
ware libraries tailored for specific applications, more powerful and easier to use
computer languages, plus various design methodologies have all helped in the
battle for higher quality software. However a huge backlog of computer applica-
tions still exist within the industry. Some reports suggest that the backlog is so
great that it deters managers from even suggesting other development projects.
It is only now with the prominence of Object Oriented technology, that a serious
attempt to solve this software backlog problem can be made.

Problems related to maintenance, complexity, software quality etc, can be
tackled in a more efficient and reliable manner using the encapsulation, inheri-
tance and data abstraction techniques promoted by most Object Oriented lan-
guages. It would be difficult for the software industry to progress in a manner
similar to the hardware industry where engineers develop from existing circuitry.
But by using Object Oriented language for reusing and extending existing soft-
ware, the speed currently associated with development can be greatly increased.
Before achieving these goals however, a number of improvements to Object Ori-
ented technology will have to occur. This chapter takes a brief look into the
future at some of the important features that must be obtained if the approach is
to be an important tool for system development. As well as discussing the needed
improvements to Object Oriented mechanisms, enhancements to the workbench
and the Objective-C language are also discussed.

124

CHAPTER 8. FUTURE DIRECTIONS 125

8.2 Future Enhancements to Objective-C

The StepStone Corporation, the suppliers of Objective-C, which was used for
the development of tools in the workbench, expect their language to evolve in
a manner similar to any factory object created by the language (i.e. additional
features are added in an incremental fashion without effecting existing objects).
While providing a comprehensive foundation library and "VICI”, an interpeter for
allowing code to be examined line by line, there are still areas where the language
must improve. One of the major drawbacks which the supplier must investigate
is automatic garbage collection i.e. the freeing of object space from memory
once an object has been deleted. Developing systems using the current language
version(3.3) puts the emphasis on the developer to follow an object’s lifecycle
from its creation to its deletion. Learning about an object’ lifecycle puts an
onus on the system developer to aquire a much greater in-depth knowledge of the
overall system than should really be required. Having to re-learn about existing
classes already validated and entered into the class hierarchy, goes against the
reusability and extendibility issues associated with Object Oriented languages,
this re-learning could be considered to be maintenance or additional work.

The suppliers of Objective-C recognise this problem plus others which must
be solved if the language is to gain widespread commercial acceptance(i.e. the
need for tools to help with design, debugging, documentation and testing of
Object Oriented applications). The diagram in figure 8.1 shows the type of ideal
development environment required for using the Objective-C language, followed
by a description of the functionality expected from each tool.

VICI is an interpeter supplied along with the Objective-C compiler, which
provides extensive trace and help facilities for both Objective-C and C. Using
VICI allows development to be made without the compile link process between
tests.

An environment similar to this should be the goal for all Object Oriented
languages, not just Objective-C. The features in figure 8.1 represent the most de-
sirable tools Object Oriented developers would wish for when developing systems
using an Object Oriented environment.

The more immediate future of the language will improve, as Objective-C
becomes available on a wider range of machines, such as Sun, Apollo, Hewlett
Packard workstations and top range IBM personal computers. The recent deci-
sion by NEXT to include Objective-C with their new workstations, strengthens
the view, that Objective-C will remain as one of the main Object Oriented lan-

CHAPTER 8 FUTURE DIRECTIONS

5 5 5 N g £ g
= @ 9] 23 g _]
2 S 2 I 3 3T £
3 @ 2 o 8 € E g
aQ - D g I3
[a} &] [a} 8 o o
user Interface software-ICs
(windows, menus,scroolbars ets|
ObJectlve-C Vici

C Language

« Designer Tool to help the design process. It uses graphic windows to
show the objects required for development and how they should be linked
into the class hierarchy.

*Debugger Something similar to the dbx tool supplied by the Unix
operating system. The interface however should be more graphic
making code debugging easier.

e Tester Tool to generate tests on the object classes.

e Documenter Tool which generates standard documentation for
each factory object.

» Specifier Tool which allows the user to describe a system graph-
ically with verbal representations.

* Browser similar to the Smalltalk tool used to guide the user
through the inheritance hierarchy.

» Configuration Control Used for synchronising the thread of
control through an application.

Figure 8.1: ldeal Objective-C environment

CHAPTER 8 FUTURE DIRECTIONS 127

guages for quite some time to come.

8.3 Future advancements to the Workbench

The architecture used for the creation of the workbench was developed using
the IDEF-SADT approach. The various modules used the underlying principles
of Object Oriented technology for development whenever possible. The three
main components which form the workbench can be considered as objects in
the Object Oriented sense. It would be incorrect however to say that these
were completely reusable objects. The information system(IS) for example would
require numerous changes to reference different object types and new rules for
verifying these object types.

The computational system(CS) which contains the software tools for the
IMPW provides better Object Oriented characteristics allowing the addition and
extension of the software tools. The fact that each tool can be regarded as
an object with well-defined boundaries, permits the changing and addition of
tools with minimal effect to the surrounding workbench tools. As the workbench
matures, work required on any tool whether to make it more reliable, faster, more
comprehensible etc, can be performed in isolation of the other tools.

Because the current version of the workbench has a prototype label attached
to it, a number of shortcomings were overlooked during development. From
personal experience of using the workbench, one of the most immediate problems
which would need to be solved is the speeding up operations on the data base.
Retrieving and storing data from the IS database, has time delays which would
be unacceptable to project managers in the every day industrial environment.
Perhaps using a more efficient database, compiling the Prolog layer from the
workbench 1S, are two areas which could be investigated further, if the product
is to be speeded up to an acceptable level.

Another flaw with the current workbench version is that it only permits
one tool to be active during execution. In the real world environment software
managers may wish to implement a number of tools simultaneously. For example,
the project manager may wish to view the Risk and Calendar tools while using the
Resource Allocation tool. In order to make the workbench more acceptable in the
commercial marketplace, this transaction from sequential to parallel processing
must be made.

The prototype workbench developed currently runs on Apollo and Sun

CHAPTER 8 FUTURE DIRECTIONS 128

workstations. Extending this portability into other workstations and top range
PCs must be considered for future versions, before the product can become com-
mercially viable. The encapsulation principle allows objects used throughout the
IMPW to reduce the work in such a transition. The porting of the greatest
precentage of classes shoidd just be a matter of recompilation.

8.4 User Interfaces

The area of computing where many people believe the real benefits of Object
Oriented will be realised is in the area of computer interfaces. Presenting infor-
mation in a graphical format which permits interaction in a way which is simple
to learn and comprehend. Operations such as manipulation of objects represent-
ing real world entities by pressing a mouse button, can become the norm rather
than the exception for computer users. The hardware and software capabilities
have been around for some time, to build interactive systems like the one just
mentioned. However the reasons why they are so sparse, is due to the complexity
associated with developing such applications.

The introduction of Object Oriented languages with inheritance, can break
dowm these technical barriers by allowing complex graphic code to be inherited.
Creating graphic windows should be simply a matter of inheriting the correct
graphic classes, leaving only minimal coding for the users who can tailor the
displays to their own personal taste. The diagram in figure 8.2 shows how the
inheritance mechanism could be used for the construction of such a system.

As mentioned earlier, no standard approach for the construction of classes
exists, therefore the organisation of classes in this diagram should not be taken
as standard. Some languages may take the viewpoint that the windows are rect-
angular boxes and therefore make the Window class the parent of the Rectangle
class. This however should be regarded as incorrect classification of object classes.
By making window the parent class, it would obstruct the Rectangle class being
used in other applications such as mathematics.

This example shows a single example of how non-standardisation of class
inheritance can effect the windowing system. However the side affects caused by
such inheritance will not always be as easy to follow. If we wish to build flexible
and correct window systems, consistency between the various languages must be
obtained.

CHAPTER 8 FUTURE DIRECTIONS 129

Class Object Messages

display
your_messages

display
origin
corner
center
border
file

display

title
scrollbars
drawinterior
expand

open
close

display
drawinlerior
panes
relation

specialise new messages

Figure 8.2: Possible Window Hierarchy

8.5 Conventional Systems

With all these great promises offered by Object Oriented technology, what will
happen systems developed using conventional languages and methodologies? Should
schools start teaching students development using only the Object Oriented ap-
proach? Should all new development take place in an Object Oriented envi-
ronment? With the Object Oriented techniques still in their infancy, and the
amount of investment currently made in traditional systems, work using conven-
tional methods will persist for some considerable time. People are not going to
throw away their tried and trusted systems just to keep up with computer tech-
nology. The time and money spent maintaining these conventional applications
will in many cases be justified continually by someone in a senior position, con-
vincing themselves that the changes are small and once off. There will also be
systems where the amount of investment is so great, that changes will be made

CHAPTER 8 FUTURE DIRECTIONS 130

rather than scrapping the existing system.

Other factors beside the economic reasons for keeping conventional systems
include psychological and familiarity problems. Code which has not been de-
veloped in house is often regarded by people within the organisation as being
erroneous. The familiarity problem relates to the fact most of the computer pro-
fessionals have been brought up with a different concept towards system building
using conventional approaches such as Jackson Structured approach. Hardened
computer personnel used to certain techniques for a number of years, may try and
resist the change, in the way office workers resisted the introduction of the com-
puter into their work environment. However with the introduction of language
environments as shown in figure 8.1 this problem can be overcome.

8.6 Object Oriented languages

The emergence of Object Oriented languages offer a number of new types and
mechanism for the computer professional to learn. For the newcomer terminology
about classes, instances, types, instance variables etc, can lead to more confusion
rather than simplification. With no standards set, it is common to have different
naming conventions to represent the same thing. For example type and factory
may both refer to an object class, depending on the language used.

Indeed a more controversial and fundamental argument still exists between
various professionals as to what exactly is an object. Database, Interface and Al
developers using Object Oriented languages all have their own fuzzy notion as to
what exactly an object is.

Standardisation of these Object Oriented principles .must be regarded as
an important characteristic if the goals mentioned at the start of this text are
to be obtained. Throughout this chapter, numerous references have been made
regarding consistency and standards; the three areas listed below indicate where
setting of standards are required most.

* naming conventions
* class library structures
* design

CHAPTER 8 FUTURE DIRECTIONS 131

8.6.1 Naming Conventions

The standardisation of naming conventions is not dedicated to having standard
names to describe the characteristics introduced by Object Oriented principles,
mentioned previously. Instead it is directed more towards message calling pro-
tocol. Analogous objects which exist in various languages use different message
protocols for calling similar operations. In a more ideal Object Oriented environ-
ment, similar objects in different languages should have the same class name and
associated operations so that one message protocol could exist for all Object Ori-
ented languages. Going back to our window example, if different languages use
different commands to perform similar operations (i.e. draw and display methods
both ask an object to display itself) system development can only proceed within
the boundaries of one language. If Object Oriented suppliers seriously want to
encourage reuse of software, they should keep the messages and operations re-
lated to a class consistent between languages. By doing this developers will not
have to learn any extra syntax for messages when using different Object Oriented
language.

8.6.2 Class Library Structures

The different Object Oriented language suppliers not only supply different classes,
but also different inheritance mechanism structures. The position of certain ob-
ject classes is dependent on the language i.e. Smalltalk and Objective-C use dif-
ferent classes and hierarchical structures for storing and retrieving these library
objects. As the interest in Object Oriented programming grows, and suppliers
jostle for a premier position in this new market place, the trend of most suppli-
ers is to keep putting more reusable classes into their language library, instead
of looking at what has been developed by other similar suppliers. Getting the
various suppliers to talk about a standard hierarchy for object classes and their
operations, is an important step towards standardisation of Object Oriented lan-
guages.

8.6.3 Design

Object Oriented Design is a research area which requires a great amount of im-
provement. The introduction of inheritance, encapsulation and polymorphism
characteristics from Object Oriented languages is poorly supported by current
design methodologies. Most of the current approaches for this technology are

CHAPTER 8 FUTURE DIRECTIONS 132

directed towards the development of systems implemented in Ada. The fact that
Ada does not have class inheritance makes it a poor language for modelling Ob-
ject Oriented systems[Rob 81],[Weg 87][Ver 88]. In fact for this reason many
Object Oriented personnel do not consider Ada to be a proper Object Oriented
language.

Having reusable and extendible design components which could be fitted
into various applications in a manner similar to object classes, is the design
goal which the Object Oriented approach is striving for. Changing software
design from its art/craftmanship status to an industrial process, where design
components are obtained in the same way as we purchase integrated circuits is
however a long way from reality. Framework models which support this type
of reusability have already been developed[Jac 87]. However this approach for
model creation was developed for large software projects (i.e. those greater than
ten man years, involving numerous personnel). While promoting reusability in
large software project, the model was developed for implementation within the
companies organisation boundaries. The various design components and steps
involved in this approach make its use in smaller applications and in different
environments questionable.

Different inheritance structures talked about previously, cause interference
which makes it impossible for the design not to be influenced by the language.
If the designer wishes to include inheritance in the design, then object classes
must be attached to a known language inheritance structure. Therefore Object
Oriented design i.e. include encapsulation and inheritance, implies that the design
rule stating that “design should be independent of language” should be ignored.

Because of the differences in language libraries, design is affected by the
Object Oriented language used for implementation. Object Oriented languages
such as Objective-C, C++, Eiffel etc, all contain different classes, class inheri-
tance mechanisms, and operations on their classes. Clearly there is a need for
developing standards so that objects created by different suppliers can be glued
together for system development.

This design problem only reinforces the call to set standards for inheritance,
classes and the operations performed by the classes. However this problem can-
not be considered trival, maintaining standards for Object Oriented design and
implementation introduces problems of its own. To allow the addition of further
objects and the evolution of current classes, stringent management plus global
communication channels are required.

Deciding what classes to enter should be dependent mainly on whether

CHAPTER 8 FUTURE DIRECTIONS 133

the classes are reuseable for other applications. As mentioned in chapter seven
designing these abstract classes for multiple use is difficult. The main method
used for creating such reusable classes was experience. This highlights the need
for a tool which could help with the creation of reusable classes, giving details of
the operations, data and inheritance required .

EIFFEL OBJECTIVE-C Cit
1f r
EIFFEL /OBJECTIVE-CN C++ 'X
‘ Processor / V~Processor 7 ~Processor J
Intermediata
description
' f
~Natabasa Manager f* . Object

Software !
Base

("User Interlace

Figure 8.3: Object Database Hierarchy

A DBMS can be used to perform an important role in helping to achieve
this objective. Research into storing object classes inside data base environments
has already commenced. The entity relationship modelling represent a more
natural way to represent the relationships between objects. The diagram in
figure 8.3 shows the architecture of an object database currently being developed
at Geneva University[Ara 88]. Such an environment is one possible solution to
the problem of managing object classes supplied by different Object Oriented
language suppliers.

CHAPTER 8 FUTURE DIRECTIONS 134

8.7 Summary

The benefits that can be achieved from reusable and extendible code can cat-
apult the Object Oriented approach to the forefront of computer technology.
Fifth generation computers, Artificial Intelligence, and CAD/CAM systems can
all benefit by adopting the Object Oriented approach. Reusable code will mean
higher quality software and better documentation than before. System exten-
sions can be performed in an incremental fashion without affecting existing code,
thanks to encapsulation. However before reaching this stage a standard design
methodology which can be applied to all Object Oriented languages is required.
This in turn implies that standards are established for the various languages.

As the approach becomes more popular, better information on design and
implementation issues should become available. Books and journals on the sub-
ject have increased significantly over the past few years to help newcomers get
to grips with this new approach. There are also a number of Object Oriented
conferences which present the most recent innovations in this area; OOPSLA and
ECOOP are two of the most popular ones. Newcomers can also learn by going to
intensive training course which provide an excellent introduction for understand-
ing and implementing systems which use this approach. Computer professionals
however should not feel threatened, creativity and clear headed thinking will still
be the most important ingredients for system design and implementation.

Appendix A

Risk Management
Areas

Appendix A

A definition of the four 'Risk Management Areas'.
The term "Risk Management Area" is drawn from current literature on
software project risk management. The four Risk
Management Areas chosen for the prototype tool sere:
Development Risk 1: Cost/Schedule Failure
"The risk that project cost and/or duration may significantly exceed best
point (ie. preferred) estimate."”
Development Risk 2: Premature Project Termination
"The ris k that the project may have to be promaturely terminated or
radically rescoped/revised because of major technical or resource
problems which might arise."

Operational Risk 1: Product Functional Failure

"The risk that the functionality in the delivered product may fa il to

meet the client's expectations/needs.”

In essence,this is the risk of making the "wrong" product.

Operational Risk 2: Product Technical Failure

"The risk that the product may fa il to work in the target environment
for technical reasons (eg. because of failure to interface with other
components)."

Appendix B
Risk Drivers

Appendix B

A Definition of the "Risk Drivers".

The rating scales presented to the manager are shown below. The
manager selects his responses with the mouse.For this appendix,the
format of presentation of the scales has been squeezed up
someshat. Towards the right-hand margin of each question is shown
a scale of integer values. These are the "risk points” assigned
to each possible response. These are not displayed to the manager.
The use of the risk points by the tool is explained in Appendix C.
A text paragraph appears under most scales.This is to help the
manager select his response.

1. THE CLIEET’S UIDERSTAIDIIG OF HIS REQUIREHEITS

The client has almost no understanding [1 4
of his requirements

The client has some understanding of his [1] 3

requirements

The client has quite a good understanding [1 2

of his requirements

The client has an excellent understanding C] 1

of his requirements
(By "understanding" is meant the ability of the client to
accurately percieve and articulate the product

requirements)

2. THE DESIGHERS’® HOWLEDGE OF THE APPLICATION DOHAIB

The designers have an excellent knowledge [1 1
of the application domain
The designers have a good knowledge [1] 2
of the application domain
The designers have just a little knowledge [1] 3
of the application domain
The designers have no knowledge of [] 4

the application domain

(By "good knowledge" is meant an exposure to ,for example.
the practical constraints in the wuser’s environment that the
product must work within or the possession of insight into the
"real L requirements from a functionality point of view. This
knowledge might have been gained by working as a user or
analyst in the area.)

3. AVAILABILITY OF EXISTIIG PRODUCTS (OR PROTOTYPES) WHICH
CAS ACT AS EXAMPLES FOR THE DESIGHERS

The designers can refer to other products (or

prototypes) having functionality which is-

identical to the required functionality [1 1

very similar to the required functionality [1] 2

somewhat similar to the required C] 3

functionality

no similar example is available [1] 4

4. EXPERIEICE OF TEAM MEMBERS Il THE TECHIICAL TASKS OF
DEVELOPIIG SOFTWARE FOR THIS APPLICATIOB DOMAII

mobody on the team has good experience [1 4

A small proportion have good C] 3

experience

A large proportion have good experience [1 2

Host or all have good experience [1] 1

(By "experience" is meant previous exposure that will help the
team to anticipate and solve application-specific technical
problems.)

dix B

5. THE IEED TO SOLVE VERY DIFFICULT TECHNICAL OR
IITELLECTUAL PROBLEMS AS PART OF THE PROJECT
The success of this project depends on our solving-

very difficult technical/intellectual [1 4

problems

moderately difficult technical/intellectual [1] 3
problems

fairly easy technicall/intellectual problems [1 2

only very easy technical/intellectual [1] 1

problems

< By "very difficult technical/intellectual problems" are meant
original problems which may turn out to be unsolvable ,or the
solving of which cannot be guaranteed within a given timescale,
irrespective of the resources devoted to their solution.)

6.POSSIBILITY OF TESTIG THE PRODUCT Il A "SAFE" EIVIROHHEHT
Wiill it be possible to test the product C or prototypes of the
product) in a "safe" environment which is representative of
the final use environment?

yes [1] 1

no [1 4

7. "SIZE"™ OF THE PRODUCT
In relation to what we are accustomed,
the product is-

very small or is easily [1 1
broken down into normal-size work packages

fairly small or fairly easily broken down [1 2
into normal-size work packages

fairly large or not easily broken down [1T 3
into normal-size work packages

very large or cannot be broken down into [1 4

normal-size work packages

8. COMPLEXITY OF PRODUCT REQUIREHEHTS
In relation to what we are accustomed-

Requirements are very simple and easily [1 1
allocated to software components/modules
Requirements are fairly simple and easily [1 2
allocated to software components/modules
Requirements are fairly complex and not easily [1 3
allocated to software components/modules
Requirements are very complex and can be [1 4

allocated to software components/modules
only with great difficulty

9. LEVEL OF VOLATILITY OF PRODUCT REQUIREMENTS DURING THE

PROJECT

During the course of development , product requirements
axe likely to be subject to-

very extensive revision [1 4
extensive revision [1] 3
some revision [3 2
little or no revision [1] 1

10. STABILITY OF OPERATIOIAL IITERFACES
Interfaces between the product and other software and hardware
components it must work with in the final use environment

are-

very well defined and subject only [1 1
to tightly controlled change

quite well defined and subject only [1 2
to tightly controlled change

badly-defined or subject to [1] 4

uncontrolled change

11. «FLEXIBILITY OF FUICTIOHAL AID OTHER SPECIFICATIONS

If we meet problems in development, it

Bill be-

Impossible to agree changes to [1] 4
functional and other specifications

Very difficult to agree changes to [1] 3
functional and other specifications

D ifficult to agree changes to s 2
functional and other specifications

lot too difficult to agree [1 1

changes to functional and other
specifications

12. SCALE OF PROJECT (10. OF PEOPLE)
In relation to shat we are accustomed,
the size of the project team is-

at least three times as big [] 4
about twice as big C] 3
about the same size [] 2
smaller [1 1

13. SCALE OF PROJECT (DURATIOI)
In relation to what se are accustomed , the duration of the
project is likely to be-

at least three times the length [
about twice the length [
about the same length [
shorter [

1
]
|
]

RN WS

14. MATURITY OF THE DEVELOPMENT ENVIRONMENT
The development environment to be used is-
very novel/untested

fairly novel/untested

fairly mature/tested

very mature/tested

—_———
— e e e
PN WS

(By "development environment” is meant the software
tools,languages,methods,hardware etc. to be used in
development.)

IS. EXPERIENCE OF THE DEVELOPERS WITH THE DEVELOPMENT
ENVIRONMENT

With regard to experience of the development environment to be
used, the team contains-

no experience [1 4
a little experience [1] 3
quite a lot of experience [1] 2
extensive experience [1] 1

16. MATURITY OF THE TECHNICAL TARGET ENVIRONMENT
The target environment is -

very novel/untested C] 4
fairly novel/untested [1 3
fairly mature/tested [1 2
very mature/tested [1 1

(By "technical target environment" is meant the
hardware/software environment that the product is to run in.)

17. EXPERIENCE OF TEAM MEMBERS OF THE TECHNICAL
TARGET ENVIRONMENT

Nobody on the team has good experience [1 4
Only a small proportion have good [] 3
experience

A significant proportion have good experience [] 2
Most or all have good experience [1 1

(By "good experience" is meant a sufficient exposure to the
target,environment (eg. operating system, tp monitor) to be

Appendix B

able to anticipate / solve technical problems.)

18. THE COMPLEXITY OF COHHUHICATIOB LINKAGES WITH
AlY COLLABORATORS OR SUBCOITRACTORS

Communication linkages with any collaborators or
subcontractors are-
highly complex
quite complex

4
2
not complex 1

—_ —_—r—
— e

("complexity" of communication linkages refers to the number
of collaborators or subcontractors involved, the number of
contact points with each , to problems due to geography or
language , to a need to cope with conflict or politics etc.)

19.THE COMPLEXITY OF COHHUIICATIOI LINKAGES WITH THE CLIEHT
Communication linkages with the client are-
highly complex
quite complex

4
2
not complex 1

———
—

("complexity" of communication linkages refers to the number
of contact points between the project and the client, to
problems due to geography or language , to a need to cope with
conflict or politics in the client organisation etc.)

20. VOLATILITY OF MEMBERSHIP OF THE PROJECT-TEAM
During the course of the project , turnover of team-membership
will probably be-

thxee-quarters or more [1] 4
between a half and threequarters [1] 3
between a quarter and ahalf [1 2
less than a quarter [1 1

("team-membership" refers to people who have a significant
role in developing the product. Support staff or others who
might have a less central role should be excluded.)

21. RISK OF LOSS OF HOST IMPORTAIT TEAM MEMBERS
The loss of one or more critical team-members during the

project is-

very likely [] 4
likely [1 3
unlikely [1 2
very unlikely [1] 1
(A"critical team-member " is someone whose departure could
badly disrupt progress or even lead to termination of the

project .)

22. PROJECT HAIAGER’S LEVEL OF KIOWLEDGE OF THE SKILLS
AID PRODUCTIVITY OF TEAM-MEMBERS

The project manager has a good knowledge of the skills and
productivity of-

less than a quarter of team-members [
between a quarter and a half of team members [
between half and three-quarters of team-members C
more than three-quarters of team-members [

AL T
IS

("team-members" refers to people who have a significant role
in developing the product. Support staff or others who might
have a less central role should be excluded.)

23. LEVEL OF DEPEHDEHCE OF THE PROJECT CH "RISKY" IMPORTS
The project will be-

critically dependent on risky imports [1] 4
highly dependent on risky imports [1] 3
somewhat dependent on risky imports [1] 2

Appendix B

not dependent on risky imports [1] 1

< Examples of imports would include re-usable software,
equipment and tools, buildings, important people etc. Risk
refers to the possibility that the import might not be
available when required or might not be suitable for its
purpose eg. be of poor quality, be incompatible etc.)

Appendix C
Risk Measures

Appendix C

Algorithm for computing the four Risk Measures.

The four Risk Measures (one for each Risk Management Area) are
computed as weighted linear functions of the values of the Risk Drivers.
Each Risk Driver may contribute to one or more of the four Risk Measures.
The "mapping" of Risk Drivers onto the Risk Measures is shorn below. In
other words, the diagram shows which Risk Drivers are deemed to
contribute to each Risk Measure (* indicates a contribution).

RISK DEVELOPMENT DEVELOPHEIT OPERATIONAL OPERATIONAL
DRIVER RISK 1 RISK 2 RISK 1 RISK 2
1 ¢ *
2 *
3 ¢ * *
4 * *
5 *
6 * +
T +
8 +
9 * *
10 * *
11 * *
12 *
13 *
14 * *
15 * *
16 * * *
17 * +
18 *
19 * +
20 *
21 * *
22 *
23 * *

Apositive integer (ie. number of "Risk Points") is assigned to each o-
possible responses to each of the Risk Driver scales. The initial assignment
of points has been made by the tool developers. This initial assignment of
points may be amended by the system manager using the "Amend Risk Driver"
function.Unavoidably,the allocation of points to each possible response is a
subjective process,but the points assigned have been constrained to form a
monotonic scale within the Risk Driver which rises as the implied "riskiness"
of the manager’s response rises. The Risk Measure for a Risk Management Area
is computed as the sum of the points associated with the manager’s responses
on the Risk Drivers contributing to that Risk Management Area, expressed as a
percentage of the maximum sum of points achievable for that Risk Hanagement
Area.

It is recognised that this is a somewhat subjective scoring method. If an
alternative with better properties is found, it will be adopted.

A provisional assignment of "risk points” has been made to each possible
response on each Risk Driver. The risk points are shown in Appendix B.

Appendix D
Risk Tool Classes

Appendix D

Il Objective_C main program module

// The purpose of this program is to alios two different types of users
// to add information to the Risk Analysis Tool. The two types of users

Il are 1. The administration user (a large precentage of the
Il functional modules in this system axe for this user).
11 2. The end user Centers project characteristics prompted
11 by a menu driven system).

I
I RISK AIALYSIS TOOL

einclude "sa.c_global.h"
einclude "main.h"
einclude <stdio.h>
einclude <objc.h>
einclude "risk.h”

erequires RiskAutom&ta;
erequires OrdCltn ;
erequires 1IS;

erequires AsciiFiler, String, Sequence, RkClItn, Interface ;
erequires Risk, Rule, Txt, User, Measure, ProdDef, Graphic ;

id anAutornata;
extern BOOL msgFlag ;

extern int ermo;
extern FILE *yyin;
char *malloc() ;

id tempprod ;

/* graphical screen */
Gevscrgph.t screen;

I* window */
Gevwdw_t window, windowl;
Gevwdw_t currentsdw ;

Gevlift_t voidlift;
Rpos_t pi, p2, p3 ;
Gevicocar_t voidico ;

/* row */

Gevrow.t risktitle,risktextual;

Gevrow_t risk.rows, top, topright;

Gevrow_t riskdetails, conditions, condition;

/* icon table */
Gevtab_t someobject;

/* content */

Katrix.t confirm_hd_mat ;

Hatrix_t confirm_mat ;

Gevspa.t Space, boxedspace;

Gevspa_t boxedspacel, boxedspace2, boxedspace3, boxedspace4;
Gevspa_t boxedspace5 ;

Gevspa.t boxedl, boxed2, boxed3, boxed4;

Gevspa_t boxed5 ;

/* icon character */
Gevicocar_t topleft, projnam, projtitle;

Appendix D

Gevicocar.t titleico;

Gevicocar.t rdico, rulico, ameico, amaico, repico
Gevicocar_t admico, userico ;

Gevicocar.t confirmicoheader,aborticoheader;
Gevicocar.t confirmico,abortico;

Gevicocar_t partofline;

Gevicocar_t riskhelpico ;

Gevroo_t error_msg_row;
Gevmsg.t errorjnsg;
Gevlift_t lifthor, liftver ;

/* global variable */

Pos_t position;
Siz_t taille;
Rpos_t rposition;
Rsiz_t rtaille;
Gevevt_t evt;
Hatrix.t voidmatrix ;
int endofjob;

=(RiskGroup, Primitive.Collection)

main(argc , argv, arge)
int argc;
char * argv[];
char * arge[] ;

{

id base;

/* HHI initialization call */
str.internit.outil/'impw");
env_init();

if (strcmp(argv[2].,"") !'= 0) {
base = [String str: "database "3;
[base concatSTR:argv[2]];

>

else {
printf("You must enter the database name\n");
[IS interpret:"quit"] ;

}

create_fifo();

[IS interpret:[base str]];

/11 - debug trace for message call3
if (argc > 1 tt *argv[l] == ’t’)
msgFlag = YES ;
[RKCItn startup] ; Il Enters Riskfactors and Rules from disk if

Il saved and required.
[Graphic create];
[ProdDef initialise] ;
tempprod 3 [ProdDef add] ;
Il [tempprod print] ;

Il 3 - if none saved automata state exist creates
/1 a ne» one and lunch it
if (anAutomata == nilH

anAutomata = [RiskAutomata nes];
[anAutomata initialise];
[anAutomata execute: nil];

Appendix D

else

/1 lunch the saved automata state
[anAutomata execute: nil];

create.fifoO

char *self_fifo * "/tmp/self_fifoXIXXXX" ,*mktempO ;
int d;

niknod((self_fifo = mktemp(self_fifo)), 0010600, 0);
d = open(self_fifo,0_RDWRI|0_IDELAY,0);

close(d);
yyin = fopen(self_fifo,,r+");

CclassesO
emessagesO

einclude
einclude
einclude
einclude
einclude

erequires

(irequires

erequires
erequires
erequires
erequires
erequires
erequires

extern

extern
extern
extern
extern

extern
extern

extern
extern
extern
extern
extern
extern
extern
extern

extern

extern
extern

extern

extern

extern

id

<stdio.h>
<objc.h>
<math.h>
"Riskmess.h"
"sac.global.h"

OrdCltn;
Interface;
Rule ;
Measure;
RkCltn;
Graphic;
String;
IS;

tempprod;

riskCltn, txtCltn, ruleCltn;
char *operand[10], *operator[10]
char *iobuf;

BOOL VALID ;

M

atrix_t confirm_mat;

Hatrix_t voidmatrix;

G

evlift.t lifthor, liftver;

Gevtab_t confirm_tab;

Gevicocar.t quitRiskDriverViewlcon;
Gevicocar_t notitle;

Gevicocar.t riskhelpico;

Gevicocar_t partofline;

Gevicocar_t voidico;

Gevicocar_t confimicoheader,aborticoheader;
Gevicocax.t confinaico,abortico;

Gevros.t risk.roBs , top;
Gevros_t riskdetails, conditions, condition:

Gevwdn_t windon, sindoHI, currentwdw;

Gevscrgph_t screen;

Siz_t taille;

Appendix D

extern Pos_t position;

extern Rpos_t pi, p2, p3;

extern Gevspa_t Space, boxedspace ;

extern Gevspa_t boxedl, boxed2, boxedS, boxed4, boxed5;
extern Gevspa_t boxedspacel, boxedspace2, boxedspace3;
extern Gevspa_t boxedspace4, boxedspace5;

extern Gevrow.t risktitle, risktextual, someobject;
extern Gevrow.t error_msg_row;

extern. Gevlift_t voidlift;

extern Gevmsg.t error_msg;

extern char * proj.nam;

Gevicocar.t bottom;

Gevicocar.t riskdriverico, riskmunico;

Gevroa_t risknum.row;

Gevchr_t risknum;

Gevtab.t risktoptab;

Gevevt_t evt;

Matrix_t risk_mat;

int endofjob;

int IHDEX = 0;
char »tmpStr[20];

static int Risknum;
»define max(A,B) ((A) > (B) ? (A) : (B))

/1 Objective-C source file for the class risk
= Risk : Object (RiskGroup, Collection, Primitive)
{

char »riskdriver ;

char »risktxt ;

char *riskcondition[6] ;

int riskweight[6] ;

char *riskhlp j

char »attrlame;

char »entitylame;
>

char *copycat(), *malloc() ;

I FACTORY METHODS

+ create { /! Create a new Riskdriver for insertion,
id risknum ; // onto Risk Analysis Tool,
int i =0 ;
int weight ;

self = [super new] ;

systemC'clear") ;

printf("\n\n\n\n\tEnter Riskdriver title ") ; //Riskdriver name
copycat() ;

riskdriver = malloc(strlen(iobnf)) ;

strcpy(riskdriver,iobuf) ;

printf("\n\n\n\n\tEnter RiskDriver text :- ") ;

copycat() ;

risktxt = malloc(strlen(iobuf)) ;

strcpy (risktxt,iobuf) ;

do { /1 enter Riskdriver conditions until empty line
printf("\n\tEnter risk condition Xd ",i+1) ;
copycat() ;

riskcondition[i] = malloc(3trlen(iobuf)) ;

strcpy(riskcondition[i],iobuf) ;

if (strlen(iobuf) < 1)

{ riskcondjtionCi] = malloc(12) ;
strcpy(riskcondition[i]."don't know") ;
riskweight[i] =0 ; >

Appendix D

else

o printf("\n\t% d\tEnter risk weight ",i+1) ;
scanf("Xd",iweight) ;
riakweight[i] = weight ; }

} while (strcmp(riskcondition[i++]."don’t know") != 0) ;
printf("\n\n\tEnter riskdriver screen help ")
copycat() ;

riskhlp = malloc(strlen(iobuf)) ;
strcpy(riskhlp.iobuf) ;

risknum = [Measure create] ; /1 defines the riskareas which
[risknum riskarea:[riskCltn size]] ;ll the Riskdriver will be
[Measure addriskAreas:risknum] ; /1 associated with.

return self ;

/1 This method deletes a Riskdriver checking
Il if it corresponds to a Rule in the RnleBase
+ delete {

id aAisk,aRule ;

char »tmpChar, »tmpCond, cont, confirm ;

int nun, tmp, len ;

int i, k,il, kI ;

int delaxray[10] ;

BOOL FOUHD, FOUBD1 ;

id delCltn, delSeq ;

tmpCond » malloc(8) ;
delCltn * [OrdCltn new:10] ;

do {
num = [Risk getnum] ;
if (num != 0) /1 num is inside the range of the Risk database di
{ /1 the Riskdriver the user is wishing to delete

aRisk = [[riskCItn at:—num] print] ; // Display the Rule which
/1 will be effected if this Riskdriver is removed,

i =0 ; num++ ;

len = [ruleCltn size] ;

while (i <len) { // more rows to read
FOUID = 10 ;
k =0 ;

aRule * [ruleCltn at:i++] ;
tmpChar = [aRule rules:k] ;
while (»tmpChar != ’e* It IFOUID) {
tmpChar = [aRule rules:k++] ;
if («tmpChar == 'R”) {
tmpChar++ ;
tmp * atoi(tmpChar) ;
if (tmp =» num) {1 this rule is affected by the
Il deletion of the Riskdriver
[delClItn addIfAbsent:[ruleCltn at:i-1]] ;
strcpy (tmpCond, [aRule condition]) ;

while (il < len) { /1l more rows to read
FOUID1 = 10 ;
kl =0 ;

aRule = [ruleCltn at:il++] ;
tmpChar = [aRule rules:kl] ;
while (»tmpChar != kl IFOUHD1) {
tmpChar = [aRule rules:kl++] ;
if (»tmpChar = 'C") ({
tmpChar++ ;
if(strcmp(tmpCond,tmpChar) ==0) {
[delCltn addIfAbsent: [ruleCltn
FOUBD1 = YES ;

>
>
FOUHD = YES ;

splay

at:il-11]1;

Appendix D

>

}

/1 display the rules for deletion on screen
delSeq = [delCltn eachElement] ;
while (aRule = [delSeq next])
[aRule print] ;
[DELETE.COSFIRK print] ;
scanf("Xc",fcconfinn) ;
if (confirm == "y’ Il confirm “ JY’) &
delSeq = [delCltn eachElement] ;
while (aRule = [delSeq next])
[aRule removeRule: [ruleCltn offsetOf:aRule]] ;
[Rule update:num] ;
[riskCItn remove:aRisk] ;
>
> /] end else
[DELETE_COHT print] ;
scanf("Xc",tcont) ;
} while (cont = 3}y> Il cont == >Y>) ;
return self ;
} // end delete method

/1 Creates a new copy of the instance you wish to amend, changes are
/1 make on the copy which overwrites the riskdriver reciever in the

/1 ruleCltn if required.
+ amend {
id aRisk, bRisk ;
char ans, ansi, cont ;
int num ;

do { systemC-'clear") ;

printf("\n\n\n\t") ;
num = [Risk getnum] ;
if (num 1= 0) {

bRisk » [riskCltn at:—num];
aRisk = [Risk new] ;
[aRisk copy:bRisk] ;
printf("\n\nXs\n", [aRisk print]) ;
[AHESD_THIS_RISmIiVER print] ;
scanf("Xc",tans) ;
if (ans = Il ans — >Y’) {

[aRisk maintenance:num] ; // amendments made, ask user if
/1 they wish overwrite riskdriver

if ([aRisk notSame: bRisk]) {
printf("\n\n\t Riskl =") ;
[bRisk print] ; // to update Riskdriver
printf("\n\n\t Risk2 =") ;
[aRisk print] ;
[AMEBD.CQPY print] ;
scanf("Xc",tansl) ;
if (ansi =* ’j' || ansi = ’Y’)
[[riskCItn insert:aRisk before:bRisk] remove:

>
>
[AHEJD.COITIHUE print] ;
scanf("Xc",tcont) ;
} while (cont = >j’ || cont == 'Y’) ;
return self ;

bRisk]

Appendix D

/*mmmmmﬂmmmmm*/

I* VIEV METHODS */
o ARk kR kA kR kK kK kK kK kK KKk K Rk K K Kk R R Kk Kk R R K Kk R Rk Kk Kk Rk Rk K KAk R R Rk K
Il Shows the private data of a Riskdriver
+ view {
id aRiak ;
[self get_num_risk_wdw];
do {
Risknnm = [Risk getnnm] ;
if (Risknnm !=0) {
aRisk = [riskClItn at:—Risknum];
[aRisk print] ;
[aRisk quit_risk_view]; }
>
while (Risknum != 0) ;
return self ;

+ get_num_risk_wdw {
risknum_row = Gevrow_create(GEV.VERTICAL, GEV_QUTLIHE_OFF, GEV_SPACE_OH);

risknumico = Gevicocar_create("Enter Riskdriver Humber",GEV_FOHT4,
GEV_C, GEV_QUTLIHE_QFF, GEV.SPACE.OH);

risknum = Gevchx.create(" ,GEV_FOHT4, GEV_FDHTS3,20,
GEV_OUTLIIE_OFF, GEV.SPACE.OH);

error_mBg_row = Gevrow_create(GEV_VERTICAL, GEV.OUTLIHE.OFF,
GEV.SPACE.OH);

error.msg = Gevmsg_create("","",GEV_FOHT4,GEV_F0HT4,18,
GEV_OUTLIIE_OFF,GEV_SPACE_OH);

Gevrow_add_obj(error_msg_row,error_msg);

Gevrow_add_obj(risknum_row,top);
Gevrow.add.obj(risknum_row, Space);
Gevrow_add_obj(risknum _row,risknumico);
Gevrow_add_obj(risknum_row,risknum);
Gevrow_add_obj(risknum_row,Space);

Gevchx_deselect(confirmico);
Gevchi_deselect(abortico);

Gevrow.add.obj(risknum_row,confirm.tab);
GevTow_add_obj(risknum_row,error_msg_row);

[self windowopen:risknum_row];

+ (char *) enter.riakaum {
int VALUE,
char *numchr;

while (!(Gevobj_eq(Gevevt_get_botobj(evt),risknum)) ||
1(Gevobj_eq(Gevevt_get_typ(evt),GEV_VALIDATIOH)))
evt = Gevscrgph_wait_event(screen);
numchr = Gevchr_get_cont(risknum);

while((!(Gevobj_aq(Gevevt_get_botobj(evt),confirm ico)lkl |
!Gevobj_eq(Gevevt_get_botobj(evt).abortico)))
('Gevobj_eq(Gevevt_get_typ(evt), GEV_SELECTED)))
evt = Gevscrgph.wait.event(screen);

if (Gevobj_eq(Gevevt_get_botobj(evt) .abortico)) {

Appendix D

Gev3crgph_rem_window (screen,cuxrentwdw);
numchr = ZEROCHAR;
>

if (numchr == 0)
numchr = ZERQCHAR;
return numchr;
>

Il verfies the riskdriver number entered
+ (int) getnum {
int num;
int i;
char *numsStr, tmpStr[10];
BOOL ERROR.FOUHD;

do {
ERROR.FOUHD = 10;
numStr = [self enter_risknum];
strcpy(tmpStr,num Str);
i =0;
while ((tmpStr[i] != >\00 tt !ERROR.FOUHD) {
if (tmpStr[i] < 'O’ || tmpStr[i] > "9J) {
ERROR.FOUHD = YES;
Gevmsg_set_cont(error_msg,"ERROR : non numeric value entered");
>
i++;
>
if (!ERROR.FOUHD) {
num * atoi(tmpStr);
if (num <0 || num > [riskCltn size])
Gevmsg_set_cont(error_msg,"ERROR : invalid risk number");
>
} while (num <0 Il num > [riskCltn size]) ;

Gevmsg_set_cont(error_msg,"");
return num;

/1l print private data for riskdriver
- printOn: (IOD) anlOD {

risk.rowfl = Gevrow_create(GEV_VERTICAL, GEV.OUTLIHE.OH, GEV_SPACE_OFF);
[self riskview];
Gevrow_add_obj(risk_rows.quitRiskDriverViewlcon) ;

window = Gevwdw _create(risk_rows);

/* window belong graphic screen */
Gevscrgph_add_window (screen, window);

/* positioning and dimensioning in logical reference */
Siz.set(taille, 500, 330);

Pos_set(position, 600, 300);

Gevwdw.set(window, position, taille);

/* display of the window */
Gevscrgph_display_window (screen, window);

return self ;

}

quit_risk_view {

Appendix D

int i =0;

while (! (Gevobj_eq(Gevevt_get_botobj(evt) ,quitRiskDriverViewlcon)) ||
1(Gevobj_eq(Gevevt_get_typ(eyt),GEV_BUTTOI)))
evt = Gevscrgph_wait_event(screen);
Geyscrgph_rem_window(screen,window);
while(i < IHDEX)
free(tmpStrli++]);
IHDEX = 0;

Gevchx.deselect(confirmico);
Geychx.deselect(abortico);

return self;

- riskview {
[self riskdriver,number];
[self risk_title];
[self risk_textuall;
[self risk_conditions] ;
[self risk.help];
return self;

- riskdriver.nuinber {
tmpStr[IIDEX] = malloc(14);

sprintf(tmpStr[IIDEX]," Riskdriyer %d",++Risknum);

riskdriyerico “ Geyicocar_create(tmpStr[IIDEX++],GEV_FO0IT6,GEV_0,
GEV_OUTLIIE_OFF,GEV_SPACE_OFF);

Gevrow_add_obj(riak_rowa,riskdriverico);

return self;

- risk.title {
int i =0;
char sentence [6] [65] ;
sentence[0][0] * "\O’ ;
sentence[1]1[0] = ’\0O> ;

sentence[2][0] = "\0" J
sentence[3][0] = "\0 " ;
sentence[4] [0] = "\0"' ;
sentence[5][0] = >\0" ;

textform ([self riskdriyer], sentence);

while(sentence[i][OD {
tmpStr[IIDEX] = malloc(strlen(sentenca[i]) + 1);
strcpy(tmpStr[IIDEX],sentenceli++]);
partofline = Gevicocar_create(tmpStr[IIDEX++],GEV_FO0IT6,GEV_0,

GEV_OUTLIIE_OFF,GEV_SPACE_OFF);

Gevrow_add_obj(risk_rows,partofline);

>

return self;

- risk.textual {
int i =0;
char sen[6] [65] ;
sen[0] [O] = "\O" ;
sen[I] [0] = >\0' ;

sen[2] [0] = >\0" ;
sen[3] [0] = >\0" ;
sen[4][0] = 101 ;

sen[5] [0] = "\0" ;

Appendix D

textfonn([self risktxt] ,sen);
while (sen [i] [0]) {

>

tmpStr[IIDEX] = malloc(strlen(sen[i]) +1);

strepy (tmpStr[IIDEX],sen[i++]);

partofline = Gevicocax_create(tmpStr[IHDEX++] ,GEV_FOHT6,GEV_0,
GEV_OUTLIIE_OFF,GEV_SPACE_OFF);

Gevrow_add_obj(risk.rows.partofline);

return self;

- risk.conditions {
int i =0;
int j “0;
int mark;

int k—l,

int condnum;

int ptline.size = 0;
int tmpline.size;
char sent [6] [653 ;

bozedspacel = boxedl;
boxedspace2 = boxed2;
boxedspace3 = boxed3;
boxedspace4 = boxed4;
boxedspace5 = boxed5;

mark = [self riskxesult];
riskdetails = Gevrow_create(GEV_HORIZOITAL,GEV_OUTLIHE_OH,
GEV.SPACE.OFF) ;
conditions = Gevrow_create(GEV_VERTICAL ,GEV_OUTLILIE_OFF,
GEV.SPACE.OI) ;
while (strcmpC[self riskcondition:i] ."don’t know") !'= 0) {
tmpline.size = 3trlen([self riskcondition:i++])/55;
if (tmpline.size > ptline_size)
ptline.size = tmpline_size;
}
ptline_size++;
condntnn = ++i;
risk.mat * Hatrix_create(l,condnum,l,1);
do {
condition = Gevrow.create(GEV.VERTICAL,GEV.OUTLIHE.OH,
GEV.SPACE.Q1) =
sent [0] [0] = >\0>
sent[1][0] = "\ 0’
sent [2] [0] = "\O’

sent[3] [0] = "\O’
sent [4] [0] = >\0>
sent [5] [0] = >\0>

i =0;

textfom ([self riskcondition :j] ,sent);
while (i < ptline.size) {
if (sent[i][0] == 0) {
partofline = Gevicocar_create(" 1,GEV_FOHT6,GEV_a,
GEV.OUTLIHE.OFF,GEV.SPACE.OFF);

i++;
>
else {
tmpStr[1IDEX] = malloc(strlen(sent[i]) + 1);
strcpy (tm pStr[IHDEI],sent[i++]);
partofline = Gevicocar.create(tmpStr[IHDEX++],GEV_FOKTS6,
GEV.0,GEV.OUTLIHE.OFF,GEV.SPACE.OFF);
>

Gevrow.add.obj(condition,partofline);

Appendix D

>
Gevrow_add_obj(conditions.condition);

if(k = 1) {
if (k= mark)
boxedspacel = Gevevt_get_botobj(evt);
M atrix_enter(risk_mat,k. 1.boxedspacel) ;

>
else if (k = 2) {
if (k== mark)
boxedspace2 = Gevevt_get_botobj(evt);
M atrix_enter(riskjnat,k, 1,boxedspace2) ;
>
else if (k = 3) {
if Ck== mark)
boxedspace3 = Gevevt_get_botobj(evt);
Katrix_enter(riakjnat,k, l,boxedspace3) ;
>
else if (k == 4) {
if (k== mark)
boxedspace4 = Gevevt_get_botobj(evt);
Hatrix_enter(risk_mat,k, 1,boxedspaced) ;
>
else if (k == 5) {
if (k== mark)
boxedspace5 = Gevevt_get_botobj(evt);
Hatrix.enter(risk.mat,k, 1,boxedspace5) ;
>
k++;
} while(strcmp([self riskcondition:j++]."don't know") != 0) ;

risktoptab = Gevtab_create(voidico, voidmatrix, voidmatrix,
risk.mat, condnum,|,GEV_OUTLIHE_OFF, GEV_SPACE_DFF,
GEV.FALSE, voidlift, voidlift);

Gevrow_add_obj(riskdetails,Space);
Gevrow_add_obj(riskdetails,conditions);
Gevrow_add_obj(riskdetails,risktoptab);
Gevrow_add_obj(risk_rows.riskdetails);

>
’* AHEID METHODS */
/, *

+ amend_risk_driver {
id aRisk ;
int aRiskResult ;

[self get_num_risk_wdw] ;
do {
Risknum = [Risk getnum] ;
if (Risknum != 0) {
aRisk = [riskCltn at:—Risknum];
[aRisk userID] ;
aRiskResult = [aRisk confirm .risk];
[aRisk riskresult: aRiskResult];
>
} while (Risknum != 0);
return self;
>

- userlD {
int res ;
int i =0 ;

11

Appendix D

int j =0
int mark ;
char marker ;

risk.rows = Gevrow_create(GEV_VERTICAL, GEV_OUTLIHE_OH,
[self riskamend];
Gevrow_add_obj(risk_rows,quitRiskDriverViewlcon) ;

window = Gevwdw_create(risk_rows);
/* window belong graphic screen */
Gevscrgph_add_window (screen, window);

/* positioning and dimensioning in logical reference */
Siz.set(taille, 500, 330);

Pos.set(position, 600, 300);

Gevwdw_set(window, position, taille);

/* display of the window */
Gevscrgph_display_window(screen, window);

return self ;

- riskamend {
[self riskdriver_number];
[self risk_title];
[self risk.textual];
[self risk_conditions_amend];
[self risk_help];

- risk_conditions_amend {

int i =0;
int j =0;
int mark;
int k =1;

int condnum;

int ptline.size = 0;
int tmp.size;

char sent[6] [65];

bozedspacel = boxedl;
boxedspace2 = boxed2;
boxedspace3 = boxed3;
boxedspace4 = boxed4;
boxedspace5 = boxed5;

mark = [self riskresnlt];

GEV_SPACE_OFF);

riskdetails = Gevrow_create(GEV_HORIZOSTAL,GEV_QUTLIIE_OH,

GEV_SPACE_QFF) ;

conditions = Gevrow_create(GEV_VERTICAL,GEV_OUTLIHE_OFF,

GEV.SPACE.OI) ;

while (strcmp([self riskcondition:i]."don’t know") != 0) {

tmp_size = strlen([self riskcondition:i++])/55;
if (tmp_size > ptline_size)
ptline.size = tmp.size;
}

ptline_size++;
condnnm = ++i;

risk.mat = Matrix_create(l,condmim,l,1);
do {

condition = Gevrow.create (GEV_VERTICAL, GEV_OUTLIHE_Q5,

GEV_SPACE OI) ;
sent[0] [0] = A0 ;
sent[1]1[0] = "\O0" ;
sent[2][0] = °"\O"’ ;

12

Appendix D

sent[3][0] = "\0" ;
sent[4][0] = "\0" ;
sent[S]1[0] = "\O" ;
i =0;

teztform ([self riskcondition:j],sent);
while (i < ptline.size) {
if (sent[i][0] == 0) {
paxtoflina = Gevicocar_create(" ",GEV_FDHT6,GEV_0,
GEV_OUTLIIE_OFF,GEV_SPACE_OFF);

i++;
}
else {
tmpStrCIMDEX] = malloc(strlen(sent[i]) + 1);
strepy (tmpStr[IIDEX].sent[i++]);
partofline = Gevicocar_create(tmpStr[IBDEX-t-+] ,GEV_FOHT6,GEV_0,
GEV_OUTLIIE_OFF,GEV_SPACE_OFF);
>
Gevrow_add_obj(condition,partofline);
>

Gevrow_add_obj(conditions,condition);

if(k == 1) {
if (k= mark)
bozedspacel = Gevevt_get_botobj(evt);
Hatrix_enter(risk_mat,k, 1l.bozedspacel) ;

>
else if (k ==2) |
if (k= mark)
bozedspace2 = Gevevt_get_botobj(evt);
Hatriz_enter(risk_mat,k, 1,bozedspace2) ;
>
else if (k == 3) {
if (k== mark)
bozedspace3 = Gevevt_get_botobj(evt);
M atriz_enter(risk_mat,k, 1,bozedspace3) ;
>
else if (k == 4) {
if (k== mark)
bozedspace4 = Gevevt_get_botobj(evt);
Hatriz_enter(risk_mat,k, 1,boxedspaced) ;
>
else if (k == 5) {
if (k== mark)
bozedspace5 = Gevevt_get_botobj(evt);
Hatrix_enter(risk_mat,k, 1.bozedspaceS) ;
}
k++;
} while(strcmp([self riskcondition:j++]."don’t know") != 0) ;

risktoptab = Gevtab_create(voidico, voidmatrix, voidmatriz,
risk.mat, condnum.|,GEV_QUTLIHE_OFF, GEV.SPACE.OFF,
GEV.THUE, voidlift, voidlift);

Gevrow_add_obj(riskdetails,Space);

Gevrow_add_obj(riskdetails.conditions);

Gevrow _add_obj(riskdetails,risktoptab);
Gevrow_add_obj(risk.rows.riskdetails);

- (int) confirm.risk {
int i =1 ;
int j;
int matsize;
int VALUE = 0;
BOOL FOUHD = 10;

matsize = b5;

13

Appendix D

endofjob = GEV.FALSE ;
while (endofjob != GEV.TRUE) {
evt = Gevacrgph_wait_event(screen);
if ((Gevevt.get.wdw(evt) = Gevwdw.getwdw(window)) Kk
(Gevevt.get.typ(evt) == GEV.BUTTOI)) {

if (GeTobj_eq(Gevevt_get_botobj(evt).quitRiskDriverViewlcon)) {
if (VALUE == 0)
VALUE - [self riskresult];
GevHcrgph_rem_window (screen,window);
endofjob = GEV.TRUE;

else {
i =1
FOUID * 10;
while ((i <= matsize) U (jFOUID)) {
if (Gevobj_eq(Gevevt_get_botobj(evt), Matrix_entry(risk_mat,i++,1))) {
/1l deselect values in matrix above and below selected value
VALUE = —i;
j = VALUE - 1;
while (j >0)
Gevchx.deselect(M atrix.entry(risk_mat,j—,1));
j = VALUE + 1;
while (j <= matsize)
Gevchx.deselect(M atrix.entry(risk.mat,j+ +,1));
FOUID = YES;

>
Gevchx.deselect(Matrix.entry(risk_mat.VALUE,1));
i =0;
while (i < IIDEX)

free(tmpStr[i++]) ;
IIDEX =0;
return VALUE;

/* **‘**‘ ‘***‘ ’+*“ ‘****“) ’****))***‘*** */

/1 Displays the private data for »11 Riskdriver objects
/1l in the Risk dataBase

+ list {
id riskSeq, aRisk ;
char ¢ ;
inti =0 ;

system C'clear") ;
riskSeq * [riskCltn aachEHomant] ;
while(aRisk = [riskSeq next]) {
[aRisk print] ;
if(++i ! 2=>0) {
[LIST.COITIIUE print] ;
scanf(")[c",*c) ;
system C'clear") ;
>
} // end list.riskdriver
>

/1 This method is to ensure that the Rule number entered has a
/1 corresponding Riskdriver or condition number.
+ validate {

id aRisk ;

char »testStr ;

int risk, condition, cond ;

int i =0 ;

Appendix D

testStr = malloc(8) ;
do { strcpy (testStr,operandl[i]) ;

if (»testStr == "R’) { // operand is a riskdriver condition
risk = atoi(++testStr) - i ;
while (*++testStr !'=".7) ;

condition = atoi(++testStr) - 1 ;
if ([riskCltn size] < risk) {
VALID = 10 ;
[RISK.SIZE.ERRGR print] ;

else {
if (condition > 5) {
VALID = ID ;
[ERR_RISK_COHD print] ;
>
else {
aRisk = [riskCltn atjrisk] ;
if ([aRisk riskcondition:condition] == BULL) {
VALID = 10 ;
[ERR_RISK_COBD print] ;

>
else {
cond = atoi(++testStr) ;
if ([txtcitn size] < cond) {
VALID = SO ;
[ERR_COID_IUH print] ;

}

w// end if
} while ((strcmp(operator[i++],"THEI") 1= 0) kk VALID) ;
retnrn self;

+ windowopen : someobject (
/] positioning and dimensioning logical references
currentwdw = Gevwdw_create(someobject);
Gevscrgph_add_window (screen, currentwdw);
Siz_set(taille,400,300);
Pos_set(position, 80,50);
Gevwdw_set(cnrrentwdw ,position,taille);
Gevscrgph_display_window (screen,cnrrentwdw);
return self;

}

/1 ISSTASCE METHODS

/1 Changes an instances private data and the risk management area
Il asociated with the riskdriver instance.
- maintenance: (int) riskno {

id risknum ;

int nnm, vai ;

int wt, i, j ;

riskno++ ;
while (mnn !'= 0)
[Interface rkmaintenance] ;
scanf("Xd",tnum) ;
switch(nnm) {
case 1: // amend Riskdriver title

printf("\n\n\told title :- f.a\n*“,[self riskdriver]) ;
[AHESD.RISKTITLE print] ;
copycat() ;
strcpy ([self riskdriver],iobuf) ;
break ;

case 2: // amend Riskdriver text
printf(“\n\n\told text :- %s\n", [self risktxt]) ;

Appendix D

[AMEID.RISKTEXT print] ;

copycat() ;
strcpy ([self risktxt],iobuf) ;
break ;
case 3: // amend Riskdriver conditions
i -0 ;
i =0;
1= 0)

while (stranpC'don’t know", [self riskcondition:i])
printf ("\n\n\ty,d %s",++j, [self riskcondition:i++]) ;
[AMEID_COSDITIOI_SO print] ;
scanf("%d" kval) ;
if (val <1 1l val > j)
[ERR.COID.IUM print] ;
else {
[AMEID.COIDITIOI print] ;
copycat() ;
strcpy ([self riskcondition:—val],iobuf) ;
>

break ;
case 4: // amend Riskdriver help
printf ("\n\n\told help y.s\n" ,[self riskhlp]) ;

[AMEID.RISKHELP print] ;

copycatO ;
strcpy ([self riskhlp],iobuf) ;
break ;
case 6: // amend Riskdriver weights
i =0;
i =0
wt =0 ;

while ([self riskweight:i] !'= 0)
printf ("\n\n\t% d y,s\ty,d",++j,[self riskcondition:i] ,
[self riskweight:i++]) ;
[AHEID_COIDITIDI_HO print] ;
scanf("Xd",ival) j
if (val <1 11 val >j)
[ERR_COID_BUM print] ;
else {
[AMEID.WEIGHT print] ;
scanf("Xd",twt) ;
riskweight[—val] = wt ; }
break ;

case 6:
risknum = [Measure create] ;

[risknum riskarea:riskno] ;
[Measure addriskAreas: risknum] ;
break ;
case 7:
risknum = [Measure create] ;
[risknum riskarea:riskno] ;
[Measure deleterisk Areas: risknum] ;
[risknum free] ;
break ;
default:
[IVALID_OPTIOl print] ;
> [/ end case
} // end while
return self ;

/1l copy the contents of one Riskdriver onto another
- copy : aRisk {

inti =0 ;
riskdriver = malloc(strlen([aRisk riskdriver])) ;
strcpy(riskdriver,[aRisk riskdriver]) ;

risktxt = malloc(strlen([aRisk risktxt])) ;
strecpy (risktit, [aRisk risktit]) ;

do {

Appendix D

riskconditionLi] = malloc(strlen([aRisk riskcondition:i])) ;
strcpy(riskcondition[i], [aRisk riskcondition:i]) ;
riskweight[i] = [aRisk riskweight:i] ;

} while ([aRisk riskweight:i++] 1= 0) ;

riskhlp = malloc(strlen([aRisk riskhlp]))

strcpy(riskhlp,[aRisk riskhlp]) ;

[seif riskresult:[aRisk riskresult]] ;

return self ;

/1 determine the largest weight for a Risk
- (int) largestweight {

iut g =0 ;
int maxsize - 0 ;
int j

while(([self riskweight:g]) !'= 0)
{ j « [self riskweight:g++] ;

maxsize * max(j,maxsize); }
return maxsize ;

/1 find the weight of a Risk which is corresponds to the weight result
- (int) selectedweight {
int i ;

i = [self riskresult] ;
return [self riskweight:—i] ;

/1 Transfer the result captured on screen into the object riskresult value.
- scr_value: (int) res {

if (strcmp(entitylame."Project”) == 0)

[self update_risk:res for:attrHame entity:entityHame key:"Hame"
instance:[tempprod projectHamel]];

if (strcmp(entityHame,"Team") = 0)

[self update_risk:res for:attrHame entityjentityHame key:"Hame"
instance:[tempprod teamlame]];

if (strcmp(entitylame,"Product”) == 0)

[self update_ri3k:res for:attrlame entity:entityHame key:"Hame"
instance:[tempprod prodTypell;

if (stranp(entitylame ."Client") = 0)

[self update_risk:res for:attrlame entity:entityHame key:"Hame"
instance:[tempprod custlame]];

return self ;

- update.risk:(int)newValue for:(STR)anAttrHame entity:(STR)anEntityHame
key:(STR)entityKey instance:instanceHame {
char conmand[256] ;

sprintf (conmand, "UPDATE %s SETHIIUS Vs =*d WHERE /s = V'XsV'"™,
anEntityHame, anAttrHame,
newValue, entityKey, [instanceHame str]);

return [IS interpret:command]; }
- (char *) riskdriver { return riskdriver; }

- (int) riskresult {
if (strcmp(entityHame,"Project") == 0)
return [self retrieve_risk:attrHame entity:entityHame key:"Same"
instance:[tempprod projectiame]];
if (strcmp(entitylame,"Team") = 0)
return [self retrieve.risk:attrHame entity:entityHame key:"Hame"

A

>

ppendix D

instance:[tempprod teamlamel]];

if CstrcmpCentitylame,"Product") == 0)

return [self retrieve_risk:attrlame entity:entityHame key:"llame"
instance:[tempprod prodTypel];

if CstrcmpCentitylame,"Client") = 0)

return [self retrieve_risk:attrSame entity:entityHame key:"lame"
instance:[tempprod custlame]];

-Cint) retrieve_risk:(STR)anAttrSame entity:(STR)anEntityFame key:(STR)entityKey

instance:instancelame {

id mylS;
char conmand[256];

sprintf (coimand, "SELECT Xa FROM %s WHERE V.s'= V7.s\"",
anlttrlame, anEntitylame, entityKey, [instanceHame str]);

mylS * [IS interpret:command];

if ([mylS isCorrect])

return [[[[mylS answer] at:0] at:0] aslInt];

else {

printf("theFlag : V.sXn",[mylS theFlag]);

[IS interpret:"quit"]; }

>

riskresult : Cint) aRiskResult {

[self scr.value:aRiskResult] ;

11

>

}

riskresult m aRiskResult;
return self;

(char *) risktxt {return risktxt ; >

(char *) riskcondition: Cint) index {
return riskcondition[index];

Cint) riskveight: Cint) index {
return riskseight[index] ;

(char *) riskhlp { return riskhlp ; }

ri3k_help o

entitylame: (char) str{
entitylame = str;

return self ;

>

(char *) entitylame{
return entitylame ;
>

attrlame:(char *) str {
attrlame = str;

return self ;

>

(char *) attrlame{
return attrlame ;

}

Appendix D 19
/IOBJECTIVE-C SOURCE FILE FOR THE CLASS "State";
/1 THIS CLASS CORRESPOIDS TO A STATE 11 AS AUTOMATA
einclude "objc.h"
einclude "whbs.h"
erequires String;
erequires Sequence;
erequires OrdCltn;
erequires Event;
erequires Error;
=State : Object(RiskGroup , Primitive, Collection)
{
/1 IBSTAKCE VARIABLES;
id event; the user event;
id eventCollection; all the state’s events (instances of Event class);
id eventHessageCollection; the messages to be displayed to the the user;
To each event in eventCollection corresponds
a message in eventHessageCollection
id error; the error to display
id errorCollection; the errors to be displayed (instances of Error class);
id errorKessageCollection; the error messages to be displayed ;
To each error in errorCollection corresponds
a message in errorKessageCollection
id miscHessageCollection; all other messages to display are grouped in this cltn;
id stateCollection; all the states to which the state can transit
to each event in eventCollection corresponds a state
in stateCollection
id currentObject; the object on which the user works
id automata ; the automata in which the state is
id relatedClass; the class on which the state operates
int typeOfResponse; type of response is integer or string
int choicelnHenuResponse; the user responsein case of a menu
float floatResponse; the user responsein case of aquestion-answer
char stringResponse[HAX_SIZE_OF_BODE_BAHE] ; the user responsein case of aauestion-answer
int menuops ;
>

/1 FACTORY METHODS;

Il creates a new state and initialise it by default;
Il returns the created state
+ new {

id aState;

aState = [super new];

[aState initialise];

return aState;

/NISTASCE METHODS;

/1 initialises the state by default.
Il by default initialises the receiver errorCollection
/1l and errorKessageCollection with two errors
- initialise {
[self errorCollection:
[OrdCItn with:2, [Error new:SO_ERRQR],
[Error new:0UT_OF_HEHU_BOUHDS]]I;
[self errorKessageCollection:
[OrdCltn with:2, SO.ERROR.MESSAGE,
0UT_OF_MEBU_BOUHDS.MESSAGE]];
return self;

Appendix D

- eventCollection: anEventCollection {
eventCollection = anEventCollection;
return self;

- eventCollection {
return eventCollection;
>

- eventHessageCollection: aHessageCollection {
eventHessageCollection = aHessageCollection;
return self;

}

- eventHessageCollection {
return eventHeseageCollection;

- errorCollection: anErrorCollection {
errorCollection. = anErrorCollection;
return self;

>

- errorCollection {
return errorCollection;
>

- errorKessageCollection: anErrorHessageCollection {
errorKessageCollection * anErrorHessageCollection;
return self;

>

- errorHessagoCollection {
return errorKessageCollection;
>

- miscHessageCollection: aHiscRessageCollection {
miscHessageCollection = aKiscHessageCollection;
return self;

}

- miscHessageCollection {
return niscHessagoCollection;
>

- stateCollection: aStateCollection {
stateCollection = aStateCollection;
return self;

- stateCollection {
return stateCollection;
>

-currentObject : aCurrentObject {

Appendix D

currantObject = aCurrentObject;
rotarli self;

- currentObject {
return currontObjoct;
>

-automata : anAutornata {
automata —auAutornata;
return self;

>

- automata {
return automata;

>

- relatedClass : aClass {
relatedClasa = aClass;
return self;

>

- relatedClass {
return relatedClass;

}

- typaOfResponse ; (int) aTypeOfResponse {
typeOfResponse = aTypeOfResponse;
return self;

}

- (int) choicelnHenuResponse {
return choicelnHenuResponse;

}

“ (int) menuops {
return menuops ;

}

- (float) floatResponse {
return floatResponse;

- (STR) stringResponse {
return stringResponse;

/1 Displays the user messages.
Il Test whether the type of response salted from, the user
/1 is a choice in a menu or a question response
- display {
id aSequence;
id aHessage;
int iMax;
int i;

iMax = [eventHeBsageCollection size];

21

Appendix D

/11 - if it is a choice in a menu display the
| menu items found in eventMessageCollection

if (iMax >=1) tt (typeOfResponse == CHOICE.IH.HEFU)) {

for (i = 0; i < iMax ; i++)

printf("%d - Xs \n",i+1,[[eventMessageCollection at:i]

printf("Youx choice ?");

Il 2 - if it a question response displays the
11 only item found in eventMessageCollection
else if ((iMax == 1) kk
((typeOfResponse == STRIHG_RESPOHSE) 11
(typeOfResponse = FLOAT_RESPOHSE))) {

printf("%s ?\n",[[eventM essageCollection at:0] str]);

printf ("?em);

>
else

/1 3 - if there is no eventMessageCollection
U generates an error

[self error:[HOT_IHITIALISED_STATE_MESSAGE str]];

Il returns the error which number is anErrorHumber
- findError: (int) anErrorNumbnr {

>

id anError;
id aSequence;
aSequence = [errorCollection eachElement];
while (anError = [aSequence next])
if ([anError number] == anErrorHumber)
return anError;

Il returns the event which number is axEventHumber
- findEvent: (int) anEventlumber A

11

id anEvent;
id aSequence;
aSequence = [eventCollection eachElement];
while (anEvent = [aSequence next])
if ([anEvent number] == anEventHumber)
return anEvent;

returns the error offset in errorCollection which

/1 number is anErrorHumber

>

I

(int) findErrorOffset: (int) anErrorHumber {

id theError;
theError 3 [self findError:anErrorHumber];
return [errorCollection offsetOf: theError];

returns the event offset in eventCollection which

/1 number is anEventHumber

I

(int) findEventOffset: (int) anEventlumber ¢

id theEvent;
theEvent = [self findEvent:anEventHumber] ;
return [eventCollection offsetOf: theEvent];

reads the user response and assign the variables

/1 choiceInMenuResponse or floatResponse or stringResponse
- read {

switch (typeOfResponse) {
case CHOICE_IH_MEHU

str]);

Appendix D

scanf("Xd", tchoicelnHenuResponse);
break;

case FLOAT.RESPOHSE
scanf("Xf", kfloatResponse);
break;

case STRIIG.RESPOHSE
scanf("Xs", stringResponse);
break;

}

return self;

/1l test whether the user response in case of a menu
/1 is inside the menu bounds
- correct {
return self;
>

/1 displays the error message which corresponds to the
/1 instance variable error
- errorHessage {
int offset;
offset = [errorCollection offsetDf: error];
printf("Xs \n",[[errorHessageCollection at: offset] str]);
return self;

/1 treats the user answer.
/1 in case of a menu, assigns the event variable with the
/1 one in eventCollection which corresponds to the user menu.
/1 in case of a question response assigns the event variable
/1l with the only event in eventCollection
- treat {
if (typeOfResponse = CHOICE_H_KEHU)
event = [eventCollection at: (choicelnMenuResponse -1)];
else if ((typeOfResponse = STRIHG_RESPOHSE) ||
(typeOfResponse = FLOAT_RESPOHSE))
event = [eventCollection firstElement];
else;
return self;

/1 makes the transition to another state if required.
/1l the following state is the one in stateCollection
Il which corresponds to the event
- followingState {
int offset;
id aFollowingState;
if ((stateCollection != nil) kk
([event number] !'= I0_EVEST)) {
offset = [eventCollection offsetOf: event];
aFollowingState = [stateCollection at: offset];
[[aFollowingState automata] currentState: aFollowingState];
[aFollowingState execute: currentObject];
>
return self;

23

Appendix D

- treats : (int) eventnumber {

event = [eventCollection at: eventnumber];
return self ;
>

/!l Executes the receiver with a current object.
/1 While the user response is incorrect
/1 dispalays the user messages, reads the user
/! answer, and tests whether the answer is correct,
/1 then it treats the user answer and insures the
/1 transition to another state if required.
- execute : aCurreutObject {
if ([aCurrentObject notEqual: nil])
[self currentObject: aCurrentObject];
do
error = [self findError: IQ_ERROR];
[self display];

[self read] ;
[self correct];
if ([error number] != IO_ERROR)
[self errorHessage];
>
while ([error number] != 10.ERROR);

[self treat];
[self followingState];

/1l Objective-C source file for the class Rule
einclude <stdio.h>

einclude <objc.h>

sinclude <math.h>

einclude "RiskmeB3.h"

einclude "sac.global.h"

(requires String, OrdCltn, Interface, Txt, Risk, Graphic

extern Gevscrgph_t screen;

extern Gevwdw.t window , windowl, currentwdw
extern Gevicocar.t confirmico,abortico;
extern Gevicocar_t quitRuleViewlcon;
extern Gevlift_t voidlift;

extern Gevspa_t Space ;

extern Gevtab.t confinn_tab;

extern Matrix_t voidmatrix;

extern Katrix_t confirm.mat;

extern Siz.t taille;

extern Pos_t position;

extern ruleCltn,riskC Itn,txtCltn ;
extern BOOL flag[] ;

extern Gevrow_t error_msg_row;

extern Gevmsg.t error_msg;

Gevrow..t rulenum.row, rule_rows;
Gevicocar_t rulenumico;

Gevicocar_t ruleline;

Gevchr..t rulenum;

BOOL validate_risk(),validate_cond(), VALID

Appendix D

char »operator[10], *operand.[10] ;
char *operatora(), »operandsO ;

int opl =0 ; // operand, index

int op2 30 ; // operator index
char englishStr[450], ruleStr[80];
int p, pt ;

static int IIDEI = 0;

char »tmpStr[20];

Gevevt_t evt;

int endofjob;

char »mallocO ;

= Rule : Object (RiskGroup, Collection, Primitive)

char »rules[6] ;
char condition[3] ;
>

/1 Initialise operator and operand buffers and enter Rule
+ create {

VALID * YES ;

opl » 0, op2 * 0 ;

enter_rules() ;
>

/1 Display Rule format in english and enter associated text
//if saving Rule in ruleCltn
+ add o

int cnum ;

char ans ;

id aRule ;

cnum » [txtCltn size] ;
cnum++ ;
english.txt() ;
printf("\n\n\n\n Save Rules Y/I ") ;
scanfC Sc",tans) ;
if (anB == >Y’ Il ans == Jy’) {
p=0;
yhile (p <= pt) {
aRule 3 [Rule add:p:cnum] ;
[ruleCltn add:aRule] ;
>
[txtC Itn add:[Txt add]] ;

/1 Rules are added to the rule collection
/1l counter provides link between Rule and Txt.
+ add:(int)r:(int) counter {
int k =0,j =0 ;
self = [self new] ;
do { rules[k] = malloc(6) ;
strcpy(rules[k++],operand[r]) ;
> while (»operator[r++] = ’'A’) ;
rules[k] = malloc(6) ;
strcpy(rules[k],"»"
riskitoa(counter.condition) ;
p=r;
return self

+ amend {
int num ;

while (niua !'= 0)
{ [Interface ruleamend] ;

Appendix D

scanf("Xd",tnum) ;
switch(num) {
case 1: [Rule amendRule] ;
break ;
case 2: [Tzt amendText] ;
break ;
case 0: break ;
default: [UVALID.OPTIOH print] ;
>
> [/ end while
return self;
>

+ amendRule {
id tmpRule, aRule ;
int num ;
char ans, cont ;

do { VALID * YES ;
nun = [Rule getnum] ;
if (num 1= 0) {
aRule = [ruleCltn at:—num] ;
tmpRule * [Rule new] ;
[tmpRule copy: aRule] ;
[tmpRule change] ;
if (VALID) {
[AKEID.YES print] ;
scanf("Sc",tana) ;
if (ans = ’J° || ans = ’Y’)
[[ruleCltn insert:tmpRule before:aRule] remove:aRule]
>
>
[AHEID_COITIUE print] ;
scanf("Kc".tcont) ;
mwhile (cont == ’y* || cont == 'Y’) ;
return self ;

}

/1l This method is used to delete Rules from the Rulebase
// The deletion of Rules will sometimes cause the deletion
//o f the associated Rule txt if no other rule in the RuleBase
I/ can be associated with a Rule condition.
+ delete {

id aRule ;

char ans, cont ;

int num ;

do {
num 3 [Rule getnum] ;
if (um !'= 0) { // num is inside the range of the Rule dataBase
aRule * [[ruleCltn at:—num] print] ;
[DELETE.COIFIRH print] ;
scanf("Xc",tans) ;
if (ans == 'y> |l ans = ’'Y>)
[aRule removeRule:num] ;
>
[DELETE.COIT print] ;
scanf("%c",tcont) ;
} while (cont == ’j’ Il cont == ’'Y’) ;
return self ;

}

+ view {
id aRule ;
char cont ;

Appendix D

int num, conditila ;

do {
num - [Rule gotnum] ;
if (num !'= 0) {
aRule = [[ruleCltn at:—num] print] ;
condBum = atoi([aRule condition]) ;
[[txtCItn at:—condlum] print] ;
>
[VIEtf.COBTIUE print] ;
scanf("%c" ,kcont) ;
} while (cont == ’j’ || cont == 'Y’) ;
return self ;
>

+ viewl {
id aRule, ruleSeq ;
chax numStr[8] ;
int i «0,j>0]
int num ;

[seif get_num_rule_wdw];
do {
num - [Rule gethum] ;
if (num !'=0) {
riskitoa(num ,num Str) ;
ruleSeq = [ruleCltn eachElement] ;
while (aRule = [ruleSeq next]) {
if (j '=0)
operator[j-1] = "OR" ;
if (strcmp([aRule condition],numStr) == 0) {
while (strcmp([aRule rules:i],"*") 1= 0) {
operandij] = [aRule rules:i++] ;
operator[j++] = "ABD" ;
>
>
} /1 end while
operatori—j] = "THEI" ;
pt =j
i =0 ;
printfC'lF ") ;
rulestr[0] = 0;
strcat(mleStr ,"IF ");
do {
strcat(ruleStr,operand[i]);
strcat(ruleStr,” ");
strcat(ruleStr,operator[i]);
strcat(ruleStr,” ");
printf("%s ".operand[i]) ;
printfCXs ",operator[i]) ;
} while (strcmp(operatox[i++] ,"THEB") != 0) ;
rule.rows = Gevrow_create(GEV_VERTICAL, GEV_OUTLIBE_OFF, GEV_SPACE_OFF);
[self rule_format];
[self rule_to_english];
printf("\n") ;

Gevchx.deselect(M atrix_entry(confirmjnat, 1, 1));
Gevchx_deselect(Hatrix_entry(confinn_mat, 1, 2));

Gevrow_add_obj(rule.rows.quitRuleViewlcon);

window = Gevwdw_create(rule_rows);
Gevscrgph_add_window (screen, window);
Siz_set(taille,440,290) ;
Pos_set(position,250,150);

Gevwdw _set(window,position,taille);
Gevscrgph_display_window(screen,window);
[self quit_rule_view];

27

Appendix D

} while (num != 0);
return self ;

}

+ quit_rule_view {
int i =0;

while (!(Gevobj_eq(Gevevt_get_botobj(evt),quitRuleViewlcon)) Il
1(Gevobj_eq(Gevevt_get_typ(evt), GEV_BUTTOB)))
evt = Gevscrgph_wait_event(screen);
Gevscrgph_rem_window(screen,window);
while(i < IIDEX)
free(tmpStr[i++]);
IIDEX = 0;
Gevchx_deselect(confixmico);
Gevchx_deselect(abortico);

return self;

+list {
id ruleSeq, aRule ;
ruleSeq = [ruleCltn eachElement] ;
while(aRule = [ruleSeq next])
printfO'Rule = %s\n",[aRule print]) ;
return self;

+ update: (int) num {
id aRule ;
char »tmpChar, tmpholder[10] ;
int len, temp ;
int i, k ;
double d ;

Il Ignore »tmpChar equal to ’'C’
/1 only 'R” (Riskdrivers) need updating after deletion,
i =0;
len = [ruleCltn size] ;
while (i < len) { // keep reading the rows
aRule = [ruleCltn at:i++] ;
k =0 ;
tmpChax = [aRule rules:k] ;
while (»tmpChar 1= *’) {
tmpChar = [aRule rules:k++] ;
if (»tmpChar = °'R’) {
tmpChax++ ;
temp = atoi(tmpChar) ;
if (num < temp) { /1l decrement rule by one
d = atof(tmpChar) ;
ftoa(d - 1.0,tmpChar) ;
>
>
} // end of row
} Il no more rows to read
return self ;

+ decrementRuleCondition: (int) veil {
id condSeq, aRule ;
char »tmpCond ;

Appendix D

int cond, k

condSeq = [ruleCltn eachElement]
while (aRule = [condSeq next]) {

k =0 ;
tmpCond = [aRule rules:k] ;
while (»tmpCond != ’*7) {
tmpCond = [aRule rules:k++] ;
if (»tmpCond = 'C’) {
tmpCond++ ;
if (atoi(tmpCond) >= val) {
cond = atoi(tmpCond) - 1 ;
riskitoa(cond,tmpCond) ;
>
}
>
>
return self ;
>

+ get_num_rule_sds {

rulenum_roB = GevroB_create(GEV.VERTICAL, GEV_OUTLIHE_OFF, GEV.SPACE.QN);
mlenumico = Gevicocar_create(,,Enter Rule lumber',GEV_FOHT4,
GEV_C, GEV_OUTLIHE_OFF, GEV_SPACE_QI);

rulenum = Gevchr_create(" ,GEV_F0BT4, GEV_FO0BT3,20,
GEV_OUTLISE_OFF, GEV.SPACE.OI);

erxor_msg_roB * GevroB.create(GEV_VERTICAL, GEV_OUTLIIE_OFF, GEV.SPACE.OH);

error_msg = Gevmsg_create(,,","",GEV.FOHT4)GEV_FO0)iT4,18,GEV_OUTLIHE_OFF>GEV_SPACE_OH) ;
Gevrow_add_obj(error_msg_row,error_rasg);

/IGevrQ¥_add_Obj(risknum.roa,top);
GevxoB_add_obj(rulenum_roB,Space);
GevrOB_add_Obj(rulenum _rOB,mlenumico) ;
GevroB_add_obj(rulenujii_roB, rulenum) ;
GevroB_add_obj(rulenum_row,Space);

Gevchx_deselect(confinnico);
Gevchx_deselact(abortico);

GevxoB_add_obj(rulenum_rob,confirm .tab);
GevroB_add_obj (rulenum_rob,errorjnsg.ros) ;

[self BindoBopen:rulenum_row] ;
return self;

+ (char ») enter_rulenum {
int VALUE
char *nomchr;

while (!(Gevobj_eq(Gevevt_get_botobj(evt).rulenum)) 1]

1(Gevobj_eq(Gevevt_get_typ(evt), GEV_VALIDATION)))
evt = Gevscrgph_wait_event(screen);
numchr = Gevchr_get_cont(rulenum);

Bhile((!(Gevobj_eq(Gevevt_get_botobj(evt),confirmico)) 11
(!Gevobj_eq(Gevevt_get_botobj(evt),abortico))) kk
(!Gevobj_eq(Gevevt_get_typ(evt), GEV_SELECTED)))

evt = Gevscrgph_Bait_event(screen);

if (Gevobj_eq(Gevevt_get_botobj(evt) .abortico)) {

Appendix D

Ga»acrgph_rem_HindoB(screen.currentsdw);
niunchr = ZEROCHAR,;

>

return numchr;

}

Il verfies the rule number entered
+ (int) getnum {
int nun;
int i;
char »nnmStr, tmpStr[10];
BOOL ERROR.FOUID;

do o
ERROR.FOUBD = SO;
numStr » [self enter_rulenum];
strcpy(tmpStr.nuraStr);
i =0;
Bhile ((tmpStr[i] !'= >\0>) U !ERRORFOUBD) {
if (tmpStr[i] < ’O” Il tmpStr[i] > '9") {
ERROR.FOUSD = YES;
Gevmsg_set_cont(error_msg,"ERROR : non numeric value entered");
3
i++;
>
if (!ERRORFOUHD) {
num ” atoi(tmpStr);

if (num < 0 || num > [ruleCltn size])
Gevmsg_set_cont(error_msg,"ERROR : invalid rule number");
>
} ehile (num <0 |I num > [ruleCltn size]) ;

Gevmsg_set_cont(error_msg,"");
return num;

+(int) confiim_rulenum {
int VALUE;
char »numchr;
endofjob = GEV.FALSE ;
while (endofjob != GEV.TRUE) {
evt = Gevscrgph.wait.event(screen);

/lvhile(Gevevt_get_typ(evt) != GEV.VALIDATIOB)

11{ evt - Gevscrgph_wait_event(screen);

/1 printfC'evt = Xd\n",evt);

/1 printf{"GEV_VALIDATIOH = 7.d\n" .GEV.VALIDATIOB) ; >
/I(Gevevt_get_typ(evt) = GEV.VALIDATIOB));

if (Gevevt_get_wdw(evt) == Gevwdw_get_wdw(currentwdw)) {
if (Gevevt_get_typ(evt) == GEV_SELECTED) {
if (Gevobj_eq(Gevevt_get_botobj(evt), confirmico)) {
numchr = Gevchr_get_cont(rulenum);
VALUE = 3 ;//atoi(munchr) ;
endofjob = GEV_TRUE ;

else if (Gevobj_eq(Gevevt_get_botobj(evt), abortico)) {
Gevscrgph_rem_windoB(screen,currentwdw);
VALUE = 0;
endofjob = GEV TRUE ;

Appendix D

return VALUE;

+ rnle.format {
int i =0;
char rulasen[6][65];
rulesan[0] [0] = °"NOL ;

miesen [1] [0] = "\0J ;
rulesan[2] [0] * *\0~* ;
rulesen[3] [0] = "\0" ;
rulesen[4] [0] = 1o0o* ;
rulesen[5] [0] = *XO* ;

tertform (ruleStr,rolasen);

ahila(rulasen[i] [0]) {
tmpStr[IIDEX] * malloc(strlen(m lesen[i]) + 1);
strcpy(tmpStr[IIDEX] ,miasen [i++]) ;
ruleline = Gevicocar_create(tmpStr[IHDEX++],GEV_FOHT6,GEV_0,

GEV_OUTLISE_OFF,GEV_SPACE_OFF);

Gevrow_add_obj(rule.rows,ruleline) ;

>

return self;

+ role_to_engliah {
int i= 0;
char eng_sen[6] [65];
ang_Ban[0] [0] 3 >\0" ;
ang_san[l][0] * "\O" ;

eng_sen[2] [0] = \O" ;
eng_sen[3] [0] = NOJ ;
eng_san[4] [0] = "\0’ ;

eng_sen[5] [0] = "\0’ ;

english_txt() ;

tertform (englishStr,eng_sen);

whila(eng_sen[i] [0]) {
tmpStr[IIDEX] = malloc(strlen(eng_sen[i]) + 1);
strcpy(tmpStr[IIDEX],eng_sen[i++]);
rulaline = Ge»icocar_craate(tmpStr[IIDEX++],GEV_FOIT6,GEV.O,

GEV_QUTLIIE_OFF.GEV_SPACE.OFF);

Gavrow.add.obj(rule.rows.ruleline);

>

return self;

+ (int) confim.abort {
int i =0;
int VALUE = 0;
endofjob = GEV.FALSE ;
while (endofjob != GEV.TRUE) {
evt = Gavscrgph_wait_event(screen);

if (Gevevt_gat_wdw(evt) == Gevwdw_get_wdw(currentwdw)) {
if (Gevavt_get_typ(evt) = GEV_SELECTED) {
if (Gevobj_eq(Gavevt_get_botobj(avt). confinnico)) {
Gevscrgph_rem_window(screen,currentwdw);
VALUE++;
while(i < IHDEX)
free(tmpStr[i++]);
IIDEX =0;
endofjob = GEV.TRUE ;

else if (Gevobj_eq(Gevevt_get_botobj(evt), abortico)) {
Gevscrgph_rem_window(screen,currentwdw);
while(i < IHDEX)

Appendix D

free(tmpStr[i++]) ;

IISEX = 0 ;
VALUE = 0;
endofjob = GEV.TRUE ;
>
>
>
>

return VALUE;

+ windowopen : aomeobject {
currentwdw = Gevwdw_create(someobject);
Gevscrgph_add_window(screen, currentwdw);
Siz_set(taille,400,260);
Poa_aet(position, 50,50);
Gevwdw_set(currentwdw,position,taille);
Gevscrgph_display_window (screen,currentwdw);
return self;

- (int) removeRule : (int) num {
id rule, aRule, ruleSeq ;
char »tmpCond, »tmpBack, »tmpForward, tmp[3]
int val, forward, back;
BOOL HATCH = 10

trapCond = [self condition]
if (hum > 0) {
back = num - 1 ;
tmpBack = [[ruleCItn at:back] condition]
if (strcmp(tmpCond,tmpBack) == 0)
MATCH = YES ;

>
if (MATCH == 10) tt (num < ([ruleCltn size] - 1))) {
forward = num + 1 ;
tmpForward = [[ruleClItn atiforward] condition]
if (strcmp(tmpCond,tmpForward) = 0)
MATCH = YES ;

}
if (MATCH =10){ Il This is the only Rule associated
Il with a certain condition, therfore
Il the condition must be deleted and all
/1l the other conditions decremented by one.
[txtC Itn removeAtjatoi(tapCond) - 1]
ruleSeq = [ruleCltn eachElement]
while (rule = [ruleSeq next]) {
if ((val = atoi([rule condition])) > atoi(tmpCond)) {
riskitoa(—Yal,tmp) ;
8trcpy([rule condition],tmp) ;

>
>
[Rule decrementRuleCondition.-atoi(tmpCond)]

>
[ruleClItn removeAtinum] ;
return num;

(BOOL) ruleState { /1 Checks if the instance of the Rulesending
id tmpRisk ; /1 the message in the 01 state, i.e.

Appendix D

>

- copy

int j, ci, rd, rc ; // all the rules axe true.
BOOL CO1THUE = YES ;
char «tmpRule;
j =0
tmpRule = [self rules:j] ;
while <(«tmpRule != ’*>) tt COITIHUE) {
tmpRule = [self rules.-j++] ;
if («tmpRule == '*>)
; /l«rapty statement
else if (»tmpRule == *RJ) {

>
else

>

tmpRule++ ;

rd - atoi(tmpRule) ;

rc = (int) (10 * (atof(tmpRule) - atoi(tmpRule)) + .6) ;
tmpRisk m [riskCltn at:—rd] ;

if ([tmpRisk riskresult] !=rc) /IRiskdriver condition
COITIHUE - 10 J Il not true
{
tmpRule++
ci = atoi(tmpRule) ;
if (flag[ci] = 10) //condition, text not (snitched OH) true

COITIHUE * 10 ;

} // end ahile along the roo
return COHTIHUE ;

: aRule { /1 copies the private data of aRule to the instance
int j =0; /1 sending ths message, used when a copy of an
/1 instanceis needed.

do {

rules[j] = malloc(6) ;

strcpy ([self rules:j],[aRule rules:j]) ;
} while (strcmp([aRule rules:j++],"*") 1= 0) ;
strcpy ([self condition], [aRule condition]) ;

return self ;

change {
char tmp[8], tmpint[8] ;
int cnum ;
inti =0,j*0;

Bhile(strcmj>([self rules:i],"«") 1= 0)

printf ("\tXd\ty,s\n",++j, [self rules:i++]) ;

printf("\tSelect Option 1 to Xd\n",j) ;
scanfCXd" ,tcnum) ;
if (cnum <1 1] cnum > j)

else {

[self

[COID_IUH_HIGH print] ;

[IEW.COHPOIEHT print] ;
scanf("%s",tmp) ;
if (strlen(tmp) < 1) { /1 empty string to replace

compress:cnum] ; // Rule componemt

if (strcmp([self rules:0],"+") == 0) {
VALID = 10 ;
[ERROR_COKPOHEHT DELS print] ;

>

>
else { // some text has been assigned to tmp

operator[0] = "THEH" ;

opera

nd[0] = tmp ;

ssitch (tmp[0]) {

ca

ca

se ’'R’: validate.risk(tmp) ;
break ;
se ’C’: validate_cond(tmp) ;

Appendix D

if (VALID)
[self condition.range:tmp]
break ;
default: VALID = 10 ;
[ERROR.COHPOIEIT.TXT print]
} /1 end case
if (VALID) {
shile (tmp[++i] != "\0>)
tmpint[j++] = tmpl[i]
if (atoi(tmpint) > [ruleCltn size]) {
VALID = 10 ;
[RULE_SIZE_ERROR print]
>
>
if (VALID)
[Risk validate]
>
>
if (VALID) { Il put amended rule into operand buffer
printf ("Self name y,s\n" ,[self name])
strcpy ([aelf rules:—cnum],tap)
[self durap.to.opbuf]
repeated.rules()

return self

- compress : (int) k -
int j
j -
do {
strcpy ([self rules:k++],[self rules:++j])
} shile(strcmp([self rules:j],"*") '=0) ;
strcpy ([self rules:—k],"") ;
return self

- dump_to_opbuf {
int i =03

Bhile(strcmp([self rules:!] ,"*") 1* 0)
operator[i] = "AID"
operand[i++] m [self rules:i]

pt = —i

strcpy(operator[i] ,"THEI")
return self ;

- condition.range: (char[]) tmp {

char val[8]
inti =0 ;
int j=0;

¥hile(tmp[i++] !'= >\0°)
val[j++] = tmpl[i]

if (atoi(val) >xatoi([self condition])) {
VALID = 10 ;
[COID_IUX_HIQH print]

>

return self

- printOn: (I0D) anlOD {
inti =0 ;

Appendix D

[super printOn: anlOD] ;
fprintf(anlOD,"%s Xs 9% %s %s

[self rules :i++],
[self rules:i++],
[self rules:i++],
[self rules:i++],
[self rules:i++],

[self
[self condition]) ;
return self ;

rules:i++],

>

- (char *) condition {
return condition ;

>
- (char *) rules: (int) index {
return roles[index] ;
>
char »operands(strpt)
char »strpt ;
return (operand[opl++] = strpt) ;

}

char *operators(strpt)
char »strpt ;

return (operatorfop2++] =
>

strpt)

int validate_rules(ruleStr,rulesize)

char »ruleStr ;

int rulesize ;

{ Il to ex.l
//

Il ex.l

if RII

y.s\n",

/!l This module is designed to allot? the admin user to

/1 add new RULESto the Risk Analysis Tool,
/1 The adding of new roles must be in a format

similar

and R2.1 or R3.2 then CI

Il Ridentifies the Risk driver condition
Il Crepresents a condition which maybe the part

11 of another rule.

Il Conditions and rules maybe integrated to form rules.
Il ex.2 if R3.2 and Cl then C2

char testStr[6] ;
char »strpt ;

inti m0, j=0; /1
int ptr =0 ;
while (i < rulesize) {
3=0;
while (ruleStr[i] = " 7)
i++ Il skip spaces

while(ruleStr[i]
testStrj++] =
teatStr[j++] = ’\0J ;

1= 1 >tt ruleStr[i]
roleStrli++] ;

index pointer for rule string

1= J\0)

strpt = malloc(sizeof(testStr)) ;

8trecpy (strpt,testStr) ;
if (ptr++ %2 = 0)
operands(strpt) ;
else
operators(strpt) ;
>
if (opl '= op2)
VALID = *0 ;

35

Appendix D 36

pt = opl - 1 ;
if (VALID)
validata_operands() ;
if (VALID)

validate_operators()

validate.operatorsO
int i *0 |

if (strcmp(operator[pt]."THEB") !=0) {
VALID =10 ;
printf("Error : THEB not present at and of RulelineXn")

>
while (i <= pt U VALID) {
3sitch(oporator[i][(0) {

case >A»: /1 AHD
if (strcrap(operator[i],"ABD") != 0) {
VALID = *0 ;
printf ("Error incorrect AHD format 7.sW ,oporator[i]) ;}
break ;
case 'O" /1 OR
if (stranp (operator[i] ,"OR”) !* 0) {
VALID = BO ;
printf("Error incorrect OR format Xs\n",operator£i]);}
break ;
case *T*: /1 THES TO be worked on
if(strcmp(operator[i],"THEB") !'= 0 XA i != pt) {
VALID ~ gQ i
printf("Error incorrect THEB format Xs\n",operator[i]);}
break ;
default:
VALID = BO ;
printf ("Error : invalid operator Xs\n" .operator[i]) ;
>
i++

validate_operands()

{
int i =0 ;
while (i <=pt) {
ssitch(operand[i] [0]) {
case 'R’: /1 Risk Driver condition
validate_risk(operand[i]) ;
break ;
case 'C’: /1 condition
validate_cond(oparand[i]) ;
break ;
default:
VALID * 10 ;
printf("Error : invalid operand /s \n".operand[i]) ;
3
i++
>
if (VALID)
repeated_rules() ;
>

int repeated.roles()

{

int ind >0, i, EI, R2 ;

Appendix D

while (iad < pt kk VALID) {

i *ind ;
while (i < pt) {
if (strcmp2(operand[ind] ,operand[++i]) == 0) {
Il Risk driver appears twice in the rule statement
Rl = find_range(ind) ;
R2 = find_range(i) ;
if (Rl = R2) {
printf("Error : risk driver appears twice in rule\n")
VALID * 10
>
>
ind++ ;
>
int find_range(i)
int i ;
while (»operator[i++] == 'A’) ;
return i ;
>

enter,rules()

{
char ruleStrClOO];
int rulesiza ;

printt("Enter new rules in a format similar to below\n\n\n") ;
printf("YtExample 1 IF RI.I AID R2.1 OR R4.2 THEH\n\n") ;
printf("\tExample 2 IF R4.1 AID R6.2 AID ClI OR RS.2 THEH\n\n") ;
getsiruleStr) ;

printf("YtIF ") ;

gets(ruleStr) ;

rulesize = strlen(ruleStr) ;

Talidate_rules(ruleStr,rulesize) ;

BOOL validate_risk(testStr)
char testStrQ ;

int rolesize ;
int count * 0 ;
int i m0 ;
char temp[6] ;
id aRisk

rulesize = strlen(testStr) - 1;
while (i < rulesize kk VALID) {
i mi+1;
switch (testStr[i]) {
case
case >l»
case >2)
case ’'3*
case
case >53
case 6»
case
case J8>
case break
case Jt)
if Ci 1) {

VALID = 10

Appendix D

printf("Error: incorrect decimal pt position %s",

testStr) ;
>
count++ ;
if(count > 1) {
ViLID = *0 ;
printf("Error: Incorrect decimal points %s",
testStr) ;
break ;
default: /1 invalid risk driver condition format
VALID =10 ;

printf("Error: lot a numeric expression 2s",testStr)
> // end case
> /] end while
>

BOOL validate_cond(testStr)
char testStrG i
{
int rulesize ;
inti m0 ;

rulesize = strlen(testStr) - 1 ;
while (i < rulesize tt VALID)
switch (testStr[++i]) {
case 'O’
case ’1’:
case >27:
case 3"
case ’'47:
case ’'S’:
case '67:
case ’'7’:
case ’8’:
case ‘9°: break ;
default: /1 invalid risk driver condition format
VALID = 10 ;
printf("Error: invalid condition syntax 7.s", tastStr)

anglish.txt()

Il This function is used to convert valid rules entered by the admin
/1 user into English.

char *tmp ;
inti *0;
int j »0;

englishStr[0] = 0;
strcat(englishStr,"IF ");
while (i <mpt) «£
tmp = operand[i] ;
if (*tmp ** >R>)
riskview (top) ;
else
condview(tmp) ;
strcat(englishStr,” ");
strcat(englishStr,operator[i]) ;
printf(" y,s “,operator[i++]) ;

riskviow (tmp)

Appendix D

char etup ;
{ /1 English representation of the riskdriver located in the riskCXtn
id dummy j
char s[2] ;
int roa * 0 ;
int col =0 ;

for (tmp++ j *tmp >= *0° U *tmp <= >0> ; tmp++)
roB = 10 * xob + *tmp - ’0* ;
dummy m [riskCItn at: —roB] j

if <*tmp “= °* { /! digit present display risk condition

mQ0] “ *(++tmp) |

a[l] = "\0> ;

col m atoi(s) ;

printf("Xs", [dummy risktxt]) ;

printf0'Xs", [dummy riskcondition: col-1]) ;

strcat(englishStr,[dummy risktxt]);

strcat(englishStr, [dummy riskcondition: —col]);
else

printf("Xs",[dummy risktxt]) ;

condTieo(trap)
char *tmp ;

{

Il English representation of condition clause located
id dummy ;

int ros =0 ;

int col * 0 ;

for (tmp++ ; *tmp >= >0’ U *tmp <= ’9> ; tmp++)
ros * 10 * ro» + *tnp - *0» ;

dummy = [txtCltn at: —roa] j

strcat(englishStr, [dummy explanation]);

printf("Xs", [dunmy explanation]) ;

in the txtCltn

Appendix D

/1 Objective-C source file for the class Tit
tinclude <stdio.h>

einclude <objc.h>

einclude "libextra.h"

einclude "Riskiness.h"

erequires String, Interface, OrdCltn ;
extern txtCltn ;

char * mallocO;

= Txt : Object (RiskGroup, Collection, Primitive)

char «diagnostic ;
chaz «explanation ;

+ add { /!l The admin user enters Barning text
self m [super new] ;
printf("Enter Advice text\n") ;
copycat() ;
diagnostic = malloc(strlen(iobuf)) ;
strcpy(diagnostic,iobuf) ;
printf("Enter why text ")
copycat() ;
explanation - malloc(strlen(iobuf)) ;
strcpy(explanation,iobuf) ;
return self ;

>

+ amendText {
id atxt, btxt ;
int num ;
char ans, ansi, cont ;

do {

[AMEID_TIT_IUK print] ;

scanf("Xd",tnum) ;

if (nun <111 num > [txtCltn size])

[ERROR.TIT.IUH print] ;

else { // valid number to amend text entered
btxt » [txtCltn at:—nun];
atxt * [Txt nes] ;
[atxt copy:btxt] ;
[atxt print] ;
[atxt maintenance] ;
[AHEID.YES print] ;
scanf("Xc",tans) ;
if (ans == >} Il ans == ’Y’)

[[txtCItn insert:atxt before:btxt]

}

[AHEID.COITIIUE print] ;
scanf("Xc",tcont) ;

} while (cont == *y’ 1| cont = »TO ;
return self ;

- maintenance {
int num ;

while (num != 0) {
[Interface txtmaintenance] ;
scanf("id" ,tnum) ;
switch(num) {

remove:btxt]

case 1: /1 amend text Advice (diagnostic)
printf ("\n\n\ty,s“, [self diagnostic])

[AMESD.ADVICE print] ;

copycat() ;
diagnostic = malloc(strlen(iobuf))

40

Appendix D

atrcpy([self diagnostic],iobuf) ;
break ;
case 2: /1 amend text why
printf("\n\n\t% s",[self explanation]) j
[AHEHD.VHY print] ;
copycat() ;
explanation = malloc(strlen(iobuf)) ;
strcpy([self explanation],iobuf) ;
break ;
case 0 :
break ;
default
[IVALID.OPTIOI print] ;
} // end case
> // end shile

- copy: atxt {
if ([atxt diagnostic] == BULL)
diagnostic = malloc(l) ;
else {
diagnostic = malloc(strlen([atxt diagnostic])) ;
Btrcpy(diagnostic,[atxt diagnostic]) ;
>
if ([atxt explanation] == BULL)
explanation = malloc(l) j
else {
explanation * malloc(strlen([atxt explanation])) ;
strcpy(explanation,[atxt explanation]) ; }
return self ;
>

- printOn: (JQD) anlQD {
[super printOn: aniQD] ;
fprintf(anlOD,"Diagnostic % s\n\n\n Explanation y,a \n\n\n",
[self diagnostic],
[self explanation]) ;
return self ;

>

- (char *) diagnostic <«
return diagnostic ;

y

- (char *) explanation {
return explanation ;

>

(char) rptExp {
printf C'\n\nExplanation - Xs\n”,[3elf explanation]) ;

Appendix D

/1 Objective-C source file for the class RiskAutomata
einclude "objc.h"
einclude “risk.h*
einclude "whs.h"

erequires State;

erequires RisklInitialStata;
erequires RiskSecondState;
erequires RiskThirdState ;
erequires RiskFourthState ;
erequires RiskFiithState ;
erequires OrdCltn;

=RiskAutomata : Object(RiskGroup , Primitive, Collection)

{
/INMSTAICE VARIABLES;
id fixstState; // the initial state of the automata;
id secondState; /1 the node operations state of the automata;
id thirdState ;
id fourthState ;
id fifthState ;
id cuirentState; /] the state of the automata being executed;
id automata; // the automata in which the automata is contained

/NBSTASCE METHODS;

Il To initialise the automata

Il - initialises the states

/1 - define each state

- initialise {
[self initialiseStates] ;
[self defineFirstState];
[self defineSecondState];
[self defineThirdState] ;
[self defineFourthState] ;
[self defineFifthState] ;

/1 initialises each state

- initialiseStates {
firstState “ [RisklInitialState new];
[firstState autornata:self] ;
secondState = [RiskSecondState new];
[secondState automata:self] ;
thirdState * [RiskThirdState new] ;
[thirdState automata:self] ;
fourthState = [RiskFourthState new] ;
[fourthState autornata:self] ;
fifthState » [RiskFiithState new] ;
[fifthState automata.-self] ;

I/ defines the states reacheable from the first state

- defineFirstState {
id anOrdCltn;
anOrdCltn = [OrdCltn with: 3, secondState,fifthState, UNDEFINED.STATE];
[firstState stateCollection: anOrdCltn];

/1l defines the states reacheable from the second state
- defineSecondState {

id anOrdCltn;

anOrdCltn = [OrdCltn with: 3, thirdState,

Appendix D

fonrthState,
firstState] ;
[socondState stateCollection: anOrdCltn];

- defineThirdStata {
id anOrdCltn ;
anOrdCltn *» [OrdCltn with: 6, thirdState,
thirdState, 112
thirdState, //3
thirdState, //4
thirdState, //S
secondState] ;
[thirdState stateColloction: anOrdCltn];
>

defineFourthState {
id anOrdCltn ;
anOrdCltn = [OrdCltn with: 6, fonrthState,

fonrthState,

fonrthState,

fourthState,

fonrthState,

secondstate] ;
[fonrthState stateCollection: anOrdCltn]

- defineFifthState {

id anOrdCltn ;
anOrdCltn = [OrdCltn srith: 6, fifthstate,
fifthState,
fifthstate,
fifthstate,
fifthstate,

firstState] ;
[fifthstate stateCollection: anOrdCltn] ;

/1 lunchs the automata current state if exist
/1 else lnucha the automata first state
- execute : anObject {

if (currentState != nil)

[currentState execute:
[currentState currentObject]]
else
[firstState execute: anObject];

Il puts aState as the current state of the receiver
/1 and all the receiver super automata
- currentState: aState {
currentState = aState;
if (automata !» nil)
[automata currentState: aState];
return self;

- currentState {
return currentState;

}

Appendix D

- currentObject {
return CcurrentState currontObjact];
>

- automata: anAutomata {
automata * anAutomata;
return aelf;

}

- automata
return automata;
>

- firatState {
return firststata;
>

- secondstata {
return secondState;
>

- thirdstata {
return thirdState ;
>

- fourthState {
return fourthState ;
>

- fifthState i
return fifthState ;
>

44

Appendix D

einclude <ctype.h>
einclude <math.h>
einclude "objc.h”
einclude "risk.h"
einclude "whs.h"
einclude "sac_global.h"

erequires String;

erequires OrdCltn;

erequires Event;

erequires RKCIltn ;

erequires Graphic;

extern Gevscrgph.t screen;
extern Gevwdw.t currentwdw;
extern Gevwdw.t fifth_wdw;
extern Gevtab_t confirm .tab ;
extern M atrix.t confirm_mat;
extern M atrix.t opermat;
extern BOOL DELETE.FIFTH.V
Gevicocar.t operationico.admico.usrico;
Gevtab.t operationtab;

Gevrow.t operationwdw;

Gevevt_t evt;

int eventnnm ;

int endofjob;

= RisklIn.itialState : State (RiskGroup , Primitive,Collection)

INISTAHCE METHODS;

- init

- disp

ialise {
id aMessCltn;
id anEventCltn;

/1 inherits its superclass initialisation
[super initialise];

Il initialise the menu messages

aMessCltn = [OrdCltn with:3, ADHIBISTRATIQB.MESSAGE,
USER.MESSAGE,
qUIT.HESSAGE] ;

[self eventMessageCollection: aMessCltn] ;

Il initialise the corresponding events

anEventCltn = [OrdCltn with:3, [Event new:ADMISISTRATIOI.EVEHT],
[Event new:USER_EVEST],
[Event new:QUIT_EVE«TI]];

[3elf eventCollection: anEventCltn];

Il this is a menu
[3eIf typeOfResponse:CHOICE_II_MEHUJ;

lay {

[Graphic operation.wdw];

it

(DELETE.FIFTH.VIIDOM)

Gevscrgph_rem_window (screen,fifth_wdw);

45

Appendix D
/1l stay with Hindoo until confirmed yes
Il if no selection is made open.calO default is used
- read {
eventnum = 1 ;
endofjob = GEV.FALSE;

while (endofjob != GEV.TRUE) {
evt = Gevscrgph_wait_event(screen);

if (Gevevt_get_wdw(ert) == GevwdB.get.BdB(currentBdB)) {
if (Geyevt _get_typ(eyt) = GEV.SELECTED) {
if (Geyobj_eq(Gevevt_get_botobj(eyt),Hatrix_entry(opermat,1,1))) {
eventnum * 0;
Gevchx.deselect(M atrix.entry(opermat,2,1));
>
else if (Gevobj_eq(Gevevt_get_botobj(evt) ,M atrix_entry(opermat,2,1))) o
eventnum = 1;
Gevchx.deselect(M atrix.entry(opermat,1,1));
>
else if (Gevobj_eq(Gevevt_get_botobj(evt),Matrix_entry(confirm_mat,1,1))) {
if (eventnum == 0) {
Gevscrgph_rera_vindow(screen,currentsds);
endofjob = GEV.TRUE;

>
else if (eventnum = 1) {
Gevscrgph.rem_window (screen,currentBds);
endofjob = GEV.TRUE;
>

>
else if (Gevobj_eq(Gevevt_get_botobj(evt),Matrix_entry(confirm_mat,1,2))) {
Il user is closing down remember to update files
eventnum = 2;
Gevscrgph_rem_window (screen,currentwds);
endofjob = GEV.TRUE;

treat of
[super treatG :eventnum];
switch ([event number]) {

case ADMIIISTRATIOLEVEIT
break ;

case USER.EVEIT :
break;

case QUXT.EVEIT :
[RkCItn closeDown] ; I/ write data objects onto risk
exit(0) ; /land rule collections
break;

}

return self;

46

Appendix D

/1 Objective-C source file lor the class RiskSecondState

einclude
einclude
einclude

erequires
erequires
erequires
erequires
erequires
erequires

"objc.h"
“risk.h"
"whs.h"

Error;
Event;
String;
OrdCltn;
Sequence ;
Interface ;

extern BOOL VALID ;

extern id

=RiskSecondState : State(RiskGroup , Primitive, Collection)

riskCltn ;

/INNISTAICE VAKIABLES;

>

/INISTAICE METHODS;

- initialise {
id anEventCltn;

id

/1

aMessCltn;

inherits its superclass initialisation

[super initialise];

/1 initialise the menu messages
aMessCltn > [OrdCltn with:3, EXIT_HESSAGE,

RULE.HESSAGE,
RISK_HESSAfIE] ;

[self eventMessageCollection: aMessCltn] ;

11

initialise the events

anEventCltn = [OrdCltn new];

[an

EventCltn add: [Event new:RULE_EVEIT]];

[anEventCltn add: [Event new:RISKDRIVER_EVEST]];
[anEventCltn add: [Event new:EXIT_EVEIT]];

[se
11
[se

- display
menuops

If eventCollection: anEventCltn];

it is a menu

If typeOfResponse:CHOICE_II_MEHU];

{

= [Interface adminscr] ;

return self ;

>

// Calls the treatment corresponding to the event

- treat {

[super treat];

snitch ([event number]) {

case RISKDRIVER.EVEIT :

11 [self riskdriver.op];
break;

case RULE.EVEIT

11l [self rule_op];
break;

11
/72
//0

47

Appendix D

case EINT.EVEBT:
Il exit(0);

break;
>
return self;

48

Appendix D

/1 Objective-C source file for the class RiskThirdState
einclude "objc.h"
einclude "risk.h"
einclude “wbs.h"

erequires Error;
erequires Event;
erequires String;
erequires OrdCltn;
erequires Sequence;
erequires Risk ;
erequires Interface ;

extern riskCltn;
= RiskThirdState : State(RiskGroup , Primitive, Collection)

/T11ISTAHCE VARIABLES;
>

I11ISTAICE METHODS;

- initialise {
id aMessCltn;
id anEventCltn;

/1 inherits its superclass initialisation

[super initialise];

aMessCltn = [OrdCltn Bith:6, EIIT.MESSAGE,
ADD_RD_MESSAGE,
DELETE_RD_MESSAGE,
VIEtf.RD.HESSAGE,
AMEID_RD_MESSAGE,
LIST_RD_HESSAGE] ;

[self eventHessageCollection: aMessCltn] ;

anEventCltn * [OrdCltn new];

[anEventCltn add: [Event new:ADD.EVEHT]];
[anEventCltn add: [Event new:DELETE_EVEHT]];
[anEventCltn add: [Event new:VIEV_EVEBT]];
[anEventCltn add: [Event new:AMEID.EVEHT]];
[anEventCltn add: [Event new:LIST_EVEHT]] ;
[anEventCltn add: [Event new:EXIT_EVEHT]];
[self eventCollection: anEventCltn];

[self typeOfResponse:CHOICE_II_MEIU];

- add {
id aRisk ;
aRisk = [Risk create] ;
[riskCItn add:aRisk] ;
return self ;

>

- delete {
[Risk delete] ;
return self ;
>

- amend {
[Risk amend] ;
return self ;
>

Appendix D

- VikW {
[Risk view] ;
return self ;
>
- liat {
[Risk 1i3t] ;
return self ;
>
- display {
menuops ” [Interface riakacr] ;
return self ;
>

/1 Calls the treatment corresponding to the
- treat {
[super treat];

switch ([event number]) {
case ADD _EVEIT :
[self add];
break;
case DELETE.EVEIT :
[self delete] ;
break;
case VIEW.EVEIT
[self view] ;
break;
case AHEID.EVEIT :
[self amend];
break;
case LIST.EVEIT
[self list];
break;
case EXIT.EVEIT:
11 exit(0);
break;
>
return self;

event

50

Appendix D

/1 Objective-C source file for the class RiskFourthState

¢include "objc.h“
einclude "risk.h"
einclude "wbs.h"

erequires Error;
erequires Event;
erequires String;
erequires OrdCltn;
erequires Sequence;
Qrequires Rule ;
erequires Txt ;
erequires Risk ;
erequires Interface

extern ruleCltn, txtCltn

extern VALID ;

= RiskFourthState

{
INHSTAICE VARIABLES;

/IHSTAICE METHODS;

- initialise {
id aMessCltn;

id anEventCltn;

. State(RiskGroup , Primitive, Collection)

Il inherits its superclass initialisation
[super initialise] ;

aHessCltn = [OrdCltn with:6 .EIIT.MESSAGE,
ADD.MESSAGE,
DELETE.HESSAGE,
VIEtf. MESSAGE,
AMEIDJIESSAGE,
LIST.MESSAGE] ;
[self eventHessageCollection: aHessCltn] ;

/1 initialise the events

anEventCltn = [OrdCltn new];

[anEventCltn
[anEventCltn
[anEventCltn
[anEventCltn
[anEventCltn
[anEventCltn

add:
add:
add:
add:
add:
add:

[Event neo:ADD.EVEHT]];
[Event ne9:DELETE_EVEHTI]];
[Event ne»:VIEV,EVEST]];
[Event nes :AHEIfD.EVEIT]] ;
[Event nev:LIST.EVEHT]] ;
[Event ne»:EXIT_EVEBT]];

[self evantCollection: anEventCltn];

[self typeOfResponse:CHOICE_II_MEHU] ;

- add {
[Rule create] ;
if (VALID)

/1 Check that Rules entered correspond

[Risk validate] ; // to a riskdriver condition

if (VALID)

[Rule add]

return self ;

}

- delete {

Il If Rules are valid enter to RuleBase

Appendix D

[Rule delate] ;
return self ;

- amend {
[Rule amend] ;
return self ;

- view {
[Rule vies] ;
return self ;

>
- list {
[Rule list] ;
return self ;
>
- display {

menuops = [Interface rulescr] ;
return self ;

}

/1 Calls the treatment corresponding to the event
- treat {
[super treat];

switch ([event number]) {

case ADD.EVEIT :
[self add];
break;

case DELETE_EVEIT :
[Self delete] j
break;

case VIEW-EVEIX :
[self view];
break;

case AHEID.EVEIT :
[self amend];

break;

case LIST.EVEIT
[self list] ;
break;

case EXIT.EVEIT:
break;

return self;

52

Appendix D

/1 Objective-C source file for the class RiskFifthState
einclude <math.h>

einclude "objc.h"

einclude "risk.h"

einclude "whs.h"

einclude ‘'sac.global.h

(requires Error;
erequires Event;
(requires String;
(requires OrdCltn;
(requires Sequence;
(requires Graphic ;
(requires Risk ;
(requires Rule ;
(requires User ;

extern BOOL DELETE_FIFTH_WIHDOH ;
extern BOOL VALID ;

extern id riskCltn ;

extern Gevscrgph_t screen;
extern Gevwdw_t currentwdw;
extern M atrix.t userops_mat;
extern Gevicocar_t confirmico, abortico;
Gevwdw_t result_wdws [10] ;

Gevwdw.t aResultWdw;

Gevwdw_t fifth.wdw;

Gevevt.t evt;

int endofjob ;
int eventnum ;
int res_wdw_idx = 0;

=RiskFifthState : State(RiskGroup , Primitive, Collection)

/Ino 1ISTAICE VARIABLES
>

- initialise {
id anEventCltn;
id aHessCltn;

/1 inherits its superclass initialisation
[super initialise] ;

aHessCltn = [OrdCltn with:6, EXIT.HESSAGE,
USER_RISXDRIVER_HESSAGE,
USER_RULE_MESSAGE,
USER_AMEID_RISKDRIVER_MESSAGE,
USER_AHEID_ALL_RISKDRIVER_HESSAGE,
USER_RESULTS_MESSAGE] ;
[self eventHessageCollection: aHessCltn] ;

/l initialise the events
anEventCltn = [OrdCltn new];

[anEventClItn add: [Event new:USER_RISKDRIVER_EVEBT]];

[anEventCltn add: [Event new:USER_RULE_EVEHT]];

[anEventCltn add: [Event new:USER.AMEHD_RISKDRIVER_EVEHT]];
[anEventCltn add: [Event new:USER.AHEHD_ALL_RISKDRIVER_EVEHT]];

[anEventCltn add: [Event new:USER_RESULTS]];
[anEventCltn add: [Event new:EXIT_EVEHT]];
[self eventCollection: anEventCltn] ;

[self typeOfResponse:CHOICE_Il HEBUJ;

Appendix D

- riskdriver.view {
[Risk vies] ;
return self ;

>

- rule_view {
[Rule viawl] ;
return self ;

- amend.riskdriver {
[Risk amend_risk_driver] ;
return self ;
>

- amend.all_riskdriyer {
[User allUserlO] ;
return self ;

>

- results {
[User results] ;
return self ;

}

- display {
int k;
[Graphic userops.wdw];
k = 0;

while (k < res_wdw_idx)

Gevscrgph_rem_window (screen,result_wdws[k++]);
res_wdw_idx = 0;
return self ;

>

- read {
int i =11
int j;
int VALUE = 0;

BOOL FOUID = 10;

endofjob = GEV.FALSE ;
while (endofjob != GEV_TRUE) {
eyt = Gevscrgph.wait.event(screen);
if (Gevevt_get_wdw(evt) = Gevwdw_get_wdw(currentwdw)) {
if (GeveTt_get_typ(evt) = GEV.SELECTED) {
if (Gevobj_eq(Gevert_get_botobj(e»t), confirmico)) {
if (VALUE == 0) Il confirm without selection
eventnum = 0; // ico one is used as default
Gevscrgph_rem_window(screen,currentwdw);
endofjob = GEV.TRUE ;
>
else if (Gevobj_eq(Gevevt_get_botobj(evt), abortico)) {
eventmim = 5 ;
fifth.wdw = cnrrentwdw;
DELETE_FIFTH_VI8DOV = YES;
endofjob = GEV_TRUE ;
>
>
else {
i =1;
FOUSD = 10;
while ((i <= S) kt ('FOUHD)) {
if (Gevobj_eq(Gevevt_get_botobj(eyt), Hatrix_entry(userops_mat,i++,1))) {
VALUE = —i;
j = VALUE - 1;

Appendix D

>

}

- treat {

while (j >0)

Qevchx.deselect(M atrix.entry(useropsjnat,j—,1));
j = VALUE + 1;
while (j <=5)

Gevchx_deselect(Hatrix_entry (userops_mat,j++,1)) ;
FOUID » YES;
eventtmm * —VALUE;

[super treats:eventmun] ;

switch ([event number]) {

case

case

case

case

case

case

>

USER.RISKDRIVER.EVEST ;
[self riskdriver.view];
break;

USER_RULE_EVEIT :
[self rule_view];
break;

USER_AHEHD_RISKDRIVER_EVEIT :
[self amend_riskdriver] ;
break ;

USER_AMEMD_ALL_RISKDRIVER EVEIT :
[self amend_all_riskdriver] ;
break ;

USER.RESULTS ;
[self results] ;
break ;

EIT.EVEST:
break;

return self;

55

Appendix E

Calendar Tool
Classes

Appendix E

sincludo <stdio.h>
sinclude <objc.h>
sincluda <math.h>
sinclude "sac_global.h"
einclude "main.h1
sinclude "sbs.h"
cinclude "cal.h"

extern int ermo;
extern FILE *yyin;

id anEventDateCltn;
id aCALLoad;

erequires CalAutornata;

erequires CALLoad;

erequires 1S;

srequires String;

erequires OrdCltn ;

erequires Graphic;

id anAutornata;

static STR aaTingFilelame ®m "cal.io";

Pos_t position;

Siz.t taille;

Rpos.t rposition;
Rsiz_t rtaille;
Hatrix.t riBktab ;
Gevlift_t lifthor, liftver ;
Gevtab_t caltoptab;
GevHdn_t currentodw;
Gevscrgph.t screen;
Gevicocar.t calhelpico ;
Geyicocar_t notitle ;
Geyicocar.t titleico;
Gevicocar_t bottom, notitle ;
GeTicocar.t toidico;

// tables to hold matrix

Gevtab_t confirmtab,conftoptab;
Gertab_t risktoptab;

Govron_t someobject ;

Ge»roo_t conditions, condition;
G«yro«_t top, topright ;
Gevddu.t testsds ;

Gevscrgph_t screen;

Gevspa_t Space, boxedspace;
Geyros_t error_msg_ron;
Germsg_t errorjnsg;

Gevevt_t evt;

Gevlift_t voidlift;

Rpos.t pi, p2, p3;

Lis_t couples;

Siz_t taille;

Poa_t position;

M atrix.t voidmatrix;

int endofjob;

Appendix E

=(Cal3roup, Primitive.Collection)

mainC axgc , argv)
int argc;
char » argv[];

extern BOOL msgFlag;
id base;
id myls;

if (*argv[l] » Jt>)
nmgFlag * YES;

if (strcmp(argv([2]E=0) {
base = [String str'."database "];
[base concatSTR:argv[2]];

>

else {
printf("You must enter the database name\n“);
[IS interpret:"quit"];

>

create.fifoO ;
[IS interpret:[base str]];

aCAlLLoad a [CALLoad new];
[aCALLoad loadDH];

[Graphic create];
anAutomata m [CalAutomata readFrom: savingFileHame];

if (anAutomata =* nil){
anAutomata = [CalAutomata new];
[anAutomata initialise] ;
[anAutomata execute: nil];
>
else
/1 lunch the saved automata state
[anAutomata execute: nil];

create_fifoO

chax eself.fifo = "/tmp/self_fif oXXXXXX",+aktempO ;
int d;

mXnod((aelf_fifo = mktemp(self_fifo)), 0010600, 0);
d = open(self_fifo,0_RDVR|0_IDELAY,0);

close(d);

yyin ® fopen(self_fifo,"r+");
>
saveO

/] save the automata state on file savingFilelame
[anAutomata storeOn: savingFilelame];
>

Sclasses(AsciiFiler)
emessages()

Appendix E

einclude <objc.h>
einclude <ctype.h>
einclude "date.h"

extern long datescale
extern id dateCltn ;
extern long longdate;
extern id dateStrCltn
extern id aCALLoad ;
erequires String
erequires OrdCltn
erequires 1S ;

= Date : Object (CalGroup, Primitive)

long day_number; // days since Jan 1st 1970
BOOL day.imports
BOOL day_products
BOOL day.meetings
BOOL day.personnel ;
BOOL day_work_in_progress
id anlmportCltn;

id aProductCltn;

id aProgressCltn;

id aHeetingsCltn;

id aPersonnelCltn;

>

+ dumuy {
id tmp;
tmp = [seli new];
return tmp;

>

//ICreate a new date by using the superclass ’'new’ method

+ create { // Default to create instance of date which equals system date
id newdate;
gettimeofday (itimesignal.Jttimediff)
newdate = [self new];
[newdate day.number:timesignal.tv_sec]
[newdate day.imports:10]
[newdate day.products:10]
[newdate day.meetings:I10]
[newdate day_personnel:10] ;
[newdate day_work_in_progress:10]
return newdate;

>

/1 allows the U3e to specify the date instance
+ create:(long)mart2 {
id newdate ;
newdate = [self new] ;
[newdate day.number:mart2]
[newdate day.imports:IQ] ;
[newdate day.products:10] ;
[newdate day_meetings:1Q] ;
[newdate day.personnel:10] ;
[newdate day_work_in_progress:S0]
return newdate
>

+ (STR)plusDate: (long) aScale {
id alewDate;
char aStrDate[14] ;

alewDate = [self new];
[alewDate day.number:aScale];

Appendix E

strcpy(aStrDate, [aSewData convert_to_digit]);

return aStrDate;

- (STR)convert_to_digit {
char aStrDate [14] ;

strcpy(aStrDate, [[String sprinti I'Y,d’} [self year]] str]);
strcat(aStrD ate, ;
if ([self month] <10)
strcat(aStrD ate,"0");
strcat(aStrD ate,[[String sprinti:"Xd",[self month]] str]);
strcat(aStrD ate,"-");
if ([self dayinHonth] <10)
strcat(aStrD ate,"0");
strcat(aStrD ate,[[String sprintij"W , [self dayinMonth]] str]);

return aStrDate;

+ forward {
id date ;
long lastdate ;

date = [dateCltn lastElement] ;
lastdate “ [date day.number] ;
lastdate += datescale ;
[dateCltn removeFirst] ;
[dateClItn add:[Date createjlastdate]] ;
return self ;

>

+ back {
id date ;
long firstdate ;

date = [dateCltn fixstElement] ;

firstdate * [date day_number] ;

firstdate -= datescale ;

[dateClItn removelLast] ;

[dateCltn addFirst:[Date create :firstdate]] ;
return self ;

+ (int) establish_month : (char *) dateStr {
char * subDate ;
char tmpStr[14] ;
int datelen, i =0, j =0 ;
BOOL FOUID = 10 ;

subDate = dateStr ;
datelen = strlen(dateStr) ;
while(('isalpha(*subDate)) U i++ < datelen)
snbDate++ ;
if (i >datelen)
printf("Error month str not found\n") ;
else {
while(isalpha(»subD ate))
tmpStr[j++] = *subDate++ ;
tmpStr[j] = >\0" ; >
i =0 ;
while (IFOUID tt 1< 12) {
ii (strcmp2(tmpStr,month_naiiie[i++]) ==0)
FOUID = YES ;

Appendix E

>

+

+

if(FOUID)
return —i ;
else
return 13 ;

(int) establish.day :(char ») dateStr {
char * subDate ;

char tmpStr[14] ;

int datelen, i =0 , j =0 ;

BOOL FOUID » 10 ;

subDate = dateStr ;
datelen » strlen(dateStr) ;
while((liadigit(»subDate)) kk i++ < datelen)
subDate++ ;
if (i > datelen)
printf("Error day nimber not found\n") ;
else {
while(isdigit(»subD ate) kk i-H- < datelen)
tmpStr[j++] = *subDate++ ;
tsipStr[j] = >\0"
>
return atoi(tmpStr) ;

(int) establish.year :(char *) dateStr {
char « subDate ;

char tmpStr[14] ;

int datelen, i =0, j =0 ;

BOOL FOUID » 10 ;

subDate = dateStr ;
datelen = strlen(dateStr) ;
while((lisdigit(»subD ate)) Ut i++ < datelen)
subDate++ ;
if (i > datelen)
printf("Error day nimber not found\n") ;
else {
shile(isdigit(»subDate) kk i++ < datelen)
subDate++ ;
if (i > datelen)
printf("Error day nimber not found\n") ;
else {
while(('isdigit(»subDate)) kk i++ < datelen)
subDate++
if (i > datelen)
printf("Error day nimber not found\n") ;
else {
Bhile(isdigit(*subDate) kk i++ < datelen)
tmpStr[j++] = *subDate++ ;
tmpStr[j] = "\0" ;
>

¥
>

return atoi(tmpStr) ;

getdates {

int i =0;

id dateSeq ;
id aDate;

id date;

id dateStr;

dateStrCltn = [OrdCltn new];
while (i++ < 31) {

Appendix E

>

>

aDate - [Date create :longdate] ;
[dateClItn add: [Date create'.longdate]] ;
longdate += datescale ;

dateSeq = [dateCltn eachElement];

while (date = [dateSeq next]) {
dateStr = [String new:13];
sprinti(dateStr, " Sd/.cXd*cld ".[date year],’-’,
[date month], , [date dayinHonth]);
[dateStrCltn add:dateStr];

>

return aelf;

(char *) convert.date_to.str {
int day, mon, year ;
char dateStr[12], monStr[3], dayStr[3], yearStr[5] J

dateStr[0] = "\0" ;
mon = [self month] ;
day = [self dayinHonth] ;
year = [self year] ;

if (mon < 10)
atrcat(dateStr,"0") ;
itoa(mon,monStr) ;
atrcat(dateStr.monStr) ;
atrcat(dateStr,"/") ;
if (day < 10)
sticat(dateStr,"0") ;
itoa(day,dayStr) ;
strcat(dateStr,dayStr) ;
strcatCdateStr,"/") ;
itoa(year,yearStr) ;
atrcat(dateStr,yearStr) ;
return dateStr ;

day.number: (long)dayl <
day.number * dayl;
return self;

(BOOL) day.imports : (BOOL) bool.val {
char aStrDate[12], alewStrDate [12] ;

id aCltn;

int i,j;

anlmportcitn = [OrdCltn new];

strcpy(aStrDate, [self convert_to_digit]);
strcpyCalewStrDate, [Date pluaDate:[self day.number]+ datescale]);

aCltn = [aCALLoad tasXCltn];

for (i=0; i<[aCltn size]; i-H-) {

if ((strcmp(aStrDate,[[[aCltn at:i] 3tartDate] str]) <= 0) tt
(strcmp(alewStrDate, [[[aCltn at:i] startDate] str]) > 0)) {
for (j=0; j <[[[aCIltn at:i] consumedCltn] size]; j++)

[anImportcitn add:[[[aCltn at:i] consumedCltn] at:j]];

>}

if ([anlmportcitn size] > 0)

day.imports = YES ;

else

day.imports = 10 ;

return day.imports ;

Appendix E

- (BOOL) day.products : (BOOL) bool.val {
char aStrDate[12], alewStrDate[12];
id aCltn;
int i;

aProductCltn - [OrdCltn new];

strcpy(alewStrDate, [Date plusDate:[self day.number]+ datescale]);
strcpy(aStrDate, [self convert.to.digit]);

aCltn = [aCALLoad taskCltn];

for (i=0; i<[aCltn size]; i++) {
if ((strcmp(aStrDate,[[[aCItn at:i] ondDate] str]) <= 0) tt
(strcmp(alewStrDate,[[[aCltn at:i] eudDate] str]) > 0)) <
[aProductCltn add:[[aCltn at:i] product]];
>

if ([aProductCltn size] > 0)
day.products = YES ;
else
day.products = 10 ;
return day.products ;
>

- (BOOL) day.meetings : (BOOL) bool.val {
day_meetings = bool.val ;
return day.meetings ;

>

- (BOOL) day.personnel : (BOOL) bool.val {
char aStrDate[12], alewStrDate[12] ;
id aCltnl;
id aCltn;
id aWork;
int i,j;

aCltnl = [OrdCltn new] ;

strcpy(alewStrDate, [Date plusDate: [self day.number]+ datescale]);
strcpy(aStrDate, [self convert.to.digit]);

aCltn = [aCALLoad taskCltn];
for (i=0; i<[aCltn size]; i++)
for (j=0; j<[[[aCltn at:i] workCltn] size]; j++) {
aWork = [[[aCItn at:i] workCltn] at:j];
if ((strcmp(aStrDate,[[aliork toDate] str]) < 0) At
(strcmp(alewStrDate,[[aHork toDate] str]) >= 0))
[aCItnl addIfAbsentHatching: [aliork resouxceHame]] ;

for (i=0; i<[aCltn size]; i++)
for (j=0;j<[[[aCItn at:i] workCltn] size]; j++) {
aliork = [[[aCltn at:i] workCltn] at:j];
if ((strcmp(aStrDate, [[aliork fromDate] str]) <= 0) tt
(strcmpialewStrD ate, [[aliork fromDate] str]) > 0))
[aCltnl addIfAbsentHatching: [aliork resourceHame]] ;

for (i=0; i<[aCltn size]; i++)
for (j=0;j<[[[aCltn at:i] workCltn] size]; j++) {
aHork = [[[aCItn at:i] workCltn] at:j];
if ((strcmp(aStrDate,[[aVork fromDate] str]) > 0) tt
(strcmp(aJewStrDate, [[aliork toDate] str]) < 0))
[aCltn] addIfAbsentHatching:[aW ork resourceHame]];

Appendix E

if ([aCltnl size] > 0) {
aPersonnelCltn = aCltnl;
day.personnel = YES ;
> else

day.personnel = 10 ;

return day.personnel ;

- (BOOL) day.work.in.progress : (BOOL) bool.val «
char aStrDate [12], alewStrDate [12] ;
id aCltnl;
id aCltn;
id aTask;
int i;

aCltnl = [OrdCltn new] ;

strcpy(alewStrDate, [Date plusDate:[self day.number]+ datescale]);
strcpy(aStrDate, [self convert.to.digit]);

aCltn m [aCALLoad taskCltn];
for (i=0; i<[aCltn size]; i++) {
aTask = [aCltn at:i];
if ((strcmp(aStrDate,[[aTask endDate] str]) < 0) tt
(strcmp(alewStrDate,[[aTask endDate] str]) >= 0))
[aCltn] addIfAbsentHatching:[aTask taskllame]];
>

for (i=0; i<[aCltn size]; i++) o
aTask = [aCltn at:i];
if ((strcmp(aStrDate,[[aTask startDate] str]) <= 0) tt
(strcmp(alewStrDate, [[aTask startD ate] str]) > 0))
[aCltn] addIfAbsentHatching:[aTask taskHame]];

}

for (i=0; i<[aCltn size]; i++) {

aTask = [aCltn at:i];

if ((strcmp(aStrDate,[[aTask startDate] str]) > 0) tt
(strasp(aVewStrDate, [[aTask endDate] str]) < 0))
[aCItn] addIfAbsentHatching:[aTask tasklame]];

if ([aCltnl size] > 0) {
day.work.in.progress = YES ;
aProgressCltn = aCltnl;

> else

day.work.in.progress = 50 ;

return day.work.in.progress ;
>

- (BOOL)exist:alame in:aCltn {

int i;

BOOL aBool;

aBool = 10;

for (i=0; i< [aCltn size]; i++)

if (strcmp([alame str],[[aCItn at:i] str]) == 0)

aBool s YES;
return aBool;

- (long)day.number { return day.number; }

Appendix E

- (BOOL) day.imports { return day_importa ; >

- (BOOL) day.products { return day.products ; >

- (BOOL) day.meetings { return dayjneetinga ; >

- (BOOL) day.personnel { return day.personnel ; >

- (BOOL) day.work.in_progresb { return day_work_in_progress

- correspondingCltnTo:aLine {
switch (aLine) {
case 1
return anlmportCltn;
break;
case 2
return aProductCltn;
break;
case 3
return aPeraonnelCltn;
break;
case 4
return aHeetingsCltn;
break;
case 6
return aProgressGltn;
break;
>
>

- (long) subday {
return self->day.number - 86400;
>

/1 compare instance of Date
- (int) comparejbDate {
if(self->day_number > bDate->day.number)
retum (1) j
else if (self->day_number = bDate->day.number)
retum (0O) ;
else
return(-1)
>

- (int)LT: bDate { // Less Than bDate
if ([self compareibDate] = -1)
return(l) ;
else
return(O)
>

- (int)LE: bDate { // Less than or Equal to bDate
if([self compare:bDate] != 1)
return(l) ;
else
return(0) ;

- (int)EQ: bDate { // EQuals bDate
if ([self compare;bDate] = 0)
rettum (i) ;
else
return(0) ;

¥

- (int)QE: bDate { /1 Greater than or Equals bDate
if([self comparejbDate] != -1)

Appendix E

return(l) ;
also
retum(O) ;

- (int)GT: bDate { // Greater Than bData
if([self compare:bDate] =*1)
return(l) ;
else
retum(0O) ;

/1 convert the calendar date (i.e. 1989-02-16) into a long
+ (long) convert_date_to_long : (STR) aDateStr {

char tmp[S];

int j =0;

int i =0;

int day, month, year;

int leapyears;

long dateasLong ;

while (aDateStr[i] != ’-7)
tmp[j++] = aDateStr[i++];
tmp[j] = "\0J;

year = atoi(tmp) ;

i++;

i =0

while (aDateStr[i] != ’-7)
tmp[j++] = aDateStr[i++];
tmp[j] = "0

month * atoi(tmp);

i++;
j =0;

while (aDateStr[i])

tmp[j++] = aDateStr[i++] ;
tmp[j] = VO

day = atoi(tmp);

leapyears = (year - 1968) / 4;
year -» 1970;

dateasLong = ((year * 31536000) + (month * 86400) + (—day * 86400) + (leapyears * 86400))

return dateasLong;
>

/1 converts a long into a date which has yyyy-mm-dd format
+ (STR) long_as_Date : (long) longdateformat {

char dateStr[12] ;

id newdate;

newdata = [self new];
[newdate day,numberjlongdateformat];
strcpy(dateStr, [newdate convert_to_digit]);

return dateStr;

Il Answer a date that is an Integer number of days alter the reciever
- (char OaddDays:(int) anlinteger {

long temp ;

char * dayson ;

temp = 86400 * anlinteger + self->day.number ;

dayson = ctime(ttemp) ;

Appendix E

return dayson ;

/1 subtractDays : Returns the date that is an integer number of
11 days before the receiver date.
- (char *) subtractDays: (int) aninteger {

long temp ;

char ¢ daysback ;

temp = self->day_number - (86400 * anlnteger) ;
daysback = ctime(ttemp) ;
return daysback ;

>

/1 day : the number of days from the receiver to January 1 1970
- (int)day {

int days_from_1970 ;

days_from_1970 * self->day.number / 86400 ;

return days_from_1970 ;

Il daylndex : Answer a number from 1 to 7 indicating the weekday
11 number of the reciever
- (int)daylIndex {
int day.index ;
day_index = (([self day] %7) + 1) ;
return day_index ;
>

/1 daylame : Answer the name of week day of the reciever
- (char *)daylama o

/lreturn day_name[[self daylndex]] ;

dateSt = localtime(fcself->day.number) ;

return day.name[dateSt->tm_wday + 1] ;

}

- (long)min: (long)magnitude {
printf("mini:\n") ;
if (self->day.number < magnitude)
return self->day_number ;
else
return magnitude ;

/Il Year : Returns the year as an integer to reciever Date
- (int) year {

dateSt = localtime(fcself->day.number) ;

return dateSt->tnwyear + 1900
>

/1 Month : Returns the month as an integer to reciever Date
- (int) month {

dateSt = localtime(»self->day.number) ;

return dateSt->tm_mon + 1 ;
>

/1 daysinHonth : Returns the number of days in the receiver month
- (int) daysinMonth {

int leap =0 ;

int temp ;

temp = [self month] ;

if (temp == 2)

leap = leapyears(dateSt->tm _year + 1900) ;

return month.index[temp+1] - month index[temp] + leap ;

}

/1 dayinMonth : Returns the dayinMonth as an integer to reciever Date

Appendix E

- (int) dayinMonth {
dateSt = localtime(fcself->day.number) ;
return dateSt->tm_mday ;

>

/1 dayOfYear : Returns the number of days in the recievers year
- (int) dayOfYear {
return month_index[[self month]] + [self dayinMonth] - 1 ;

}

/1 daysLeftihMonth : Returns the days remaining in the receivers month
- (int) daysLeftinMonth {

int leap 3 0;

dateSt = localtime(tself->day_number) ;

if (dateSt->tm_mon > 0)

leap = leapyeara(dateSt->tm_year) ; }
return month_index[(dateSt->tm_mon+I)] - month_index[dateSt->tm_mon]
- [self dayinMonth] + leap ;

>

/1 monthindex : Return a number from 1 to 12 indicating the month
| of the receiver.
- (int) monthindex {

dateSt = localtime (tself->day_number) ;
return dateSt->tm_mon + 1 ;
>
/1 monthlame : Return a string representing the month name of

| the receiver.
- (char *) monthfame {

return month_name[[self monthindex]] ;
>

11 subtractOate : Returns the number of days between the receiver
| an aDate.
- (int) subtractDate: aDate {
return [self day] - [aDate day] ;
>

/1 elapsedDaysSinee : The number of elasped days between the receiver and aDate
- (int) elapsedDaysSinee: aDate {
return [self day] - [aDate day] ;

>

Il elapsedMonthsSince : The number of elasped months between the receiver
/1 and aDate
- (int) elapsedMonthsSince: aDate {
retum (([self year] - [aDate year] * 12)
+ ([self month] - [aData month])) ;
>

Il elapsedSecondsSince : The number of elapsed seconds between the receiver
I and aDate.
- (int) elapsedSecondsSince: aDate {
return self->day.number - aDate->day_number ;
> /| check above

Il firstDaylnMonth : The number of the first day in the receiver month
11 relative to the beginning of the receivers year.
- (int) firstDaylnMonth {

int leap ;

dateSt = localtime(4self->day.number) ;
if (dateSt->tm_mon > 1)

Appendix E

leap = leapyears(dateSt->tm _year) ;
ratuxn(month_index[dateSt->tm_man] + leap)
>

else

return month_index[dateSt->tm_mon] ;

13

Appendix E

11 THIS CLASS CORRESPOIDS TO A STATE |1

14

OBJECTIVE-C SOURCE FILE FOR THE CLASS “State";

»include "objc.h"
¢include "wbs.h"
einclude "cal.h"

erequires String;
erequires Sequence;
erequires OrdCltn;
erequires Event;
erequires Error;

=State : Object(CalGroup

IISTAICE VARIABLES;

f

Al AUTOMATA

Collection)

id event; the user event;
id eventCollection; all the state’s events (instances of Event class);
id eventHessageCollection; the messages to be displayed to the the user;
To each event in eventCollection corresponds
a message in eventHessageCollection
id error; the error to display
id errorCollection; the errors to be displayed (instances of Error class);
id errorHessageCollection; the error messages to be displayed ;
To each error in errorCollection corresponds
a message in errorHessageCollection
id miscHessageCollection; all other messages to display are grouped in this cltn;
id stateCollection; all the states to which the state can transit
to each event in eventCollection corresponds a state
in stateCollection
id currentObject; the object on which the user works
id automata ; the automata in which the state is
id relatedClass; the class on which the state operates
int typeOfResponse; type of response is integer or string
int choicelnHenuResponse; /1 the user response in case of a menu
float fio atResponse; /1 the user response in case of a question-answer

char stringResponseCKAX.SIZEA"OF.SQDE.HAME]; // the nser response

/1 FACTORY HETHODS;

Il creates a new state and initialise it by default;
Il returns the created state
+ new {

id aState;

astate = [super new];

[aState initialise] ;

return aState;

/INISTAICE HETHODS;

/l initialises the state by default.
//by default initialises the receiver errorCollection
/1 and errorHessageCollection with two errors
- initialise {
[self errorCollection:
[OrdCltn with:2, [Error new:SO_ERROR],

[Error new:QUT_OF_HEIU_BOUIDS]]I;

[self errorHessageCollection:
[OrdCltn with:2, 10_ERROR_HESSAGE,

OUT.OF_HEIU_BOUIDS.HESSAGE]];

return self;

- eventCollection: anEventCollection {

in case of a question-answer

Appendix E

eventCollection = anEventCollection;
return self;

- eventCollection {
return eventCollection;

>

- eventHessageCollection: aHessageCollection {
eventHessageColiection = aHessageCollection;
return self;

>

- eventHessageCollection {
return eventHessageCollection;

- errorCollection: anErrorCollection {
errorCollection = anErrorCollection;
return self;

}

- errorCollection {
return errorCollection;
>

- errorHeseageCollection: anErrorHessageCollection {
errorHessageCollection - anErrorHessageCollection;
return self;

>

- errorHessageCollection {
return errorHessageCollection;
>

- miscHessageCollection: aHiscHessageCollection {
miscHessageCollection = aHiscHessageCollection;
return self;

>

- miscHessageCollection {
return miscHessageCollection;

- stateCollection: aStateCollection {
stateCollection = aStateCollection;
return self;

- stateCollection {
return stateCollection;
>

-currentObject : aCurrantObject {
currentQbject = aCurrentObject;
return self;

15

Appendix E

- currentObject {
return currantObject;
>

-automata : anAutornata {
automata = anAutornata;
return self;

- automata {
return automata;

- relatedClasa : aClass {
relatedClass = aClass;
return sail;

¥

- rolatodClass {
return relatedClass;

>

- typeOfResponse ; (int) aTypeOfResponse {
typeOfResponse = aTypeOfResponse;
return self;

>

- (int) choicelInMenuResponse {
return choicelnMenuResponse ;

>

- (float) floatResponso {
return floatResponse;

>

- (STR) stringResponae {
return stringResponae;

>

/1 Displays the user messages.
/1l Test whether the type of response waited from the usar
/1 is a choice in a menu or a question response
- display <«
id aSequence;
id aMessage;
int iMax;
int i;

iMax = [eventHessageCollection size];
Il 1 - if it is a choice in a menu display the
Il menu items found in eventHessageCollection
if ((iMax >= 1) ti (typeOfResponse == CHQICE.ILHEHU)) {
for (i * 0; i < iHax ; i++)
printf ("V.d - ya W .i+ 1. [[eventHessageCollection at:i] str])
printfC'Your choice ?");

Appendix E
>
/1 2 - if it a question response displays the
/1 only item found in eventHessageCollection

else if ((iHax == 1) it

((typeOfResponse == STRIJG.RESPOHSE) 11

(typeOfResponse = FLOAT_RESPONSE))) {

printf("%s ?\n", [[eventHessageCollection at:0]

printf("?");
>
else
/1 3 - if there is no eventHessageCollection
I generates am error

[self error:[IOT_INTTALISED_STATE_HESSAGE str]];

Il returns the error which number is anErrorlumber
- findError: (int) anErrorlumber {
id anError;
id aSequence;
aSeqaence = [errorCollection eachElement];
while (anError = [aSequence next])
if ([anError number] anErrorlumber)
return anError;

/1 returns the event which number is anEventlumber
- findEvent: (int) anEventlumber {
id anEvent;
id aSeqgaence;
aSequence = [eventCollection eachElement];
Bhile (anEvent = [aSequence next])
if ([anEvent number] == anEventlumber)
return anEvent;

Il returns the error offset in errorCollection which
/1 number is anErrorlumber
- (int) findErrorO ffset: (int) anErrorlumber {
id theError;
theError = [self findError:anErrorlumber];
return [errorCollection offsetOf: theError];

/1 returns the event offset in eventCollection shich
/1 number is anEventlumber
- (int) findEventOffset: (int) anEventlumber {
id theEvent;
theEvent = [self findEvent:anEventlumber] ;
return [eventCollection offsetOf: theEvent];

Il reads the user response and assign the variables

/1 choicelnHenuResponse or floatResponse or stringResponse

- read {

switch (typeOfResponse) {

case CHOICE_II_HEHU
scanfCy.d", tchoicelnHenuResponse) ;
break;

case FLOAT.RESPOISE
scanf("X f", »floatResponse);
break;

str]);

17

Appendix E

case STRIIG.RESPOISE
scanf("%s", stringResponse);
break;

>

return self;

I/ test whether the nser response in case of a menu
/1 is inside the menu bounds
- correct {
return self;
>

/1l displays the error message which corresponds to the
/1 instance variable error
- errorHessage {
int offset;
offset = [errorCollection offsetOf: error];
printf("%s \n",[[errorHessageCollection at: offset] str]);
return self;

- treat {
if (typeOfResponse = CHOICE_II_HEIU)
event = [eventCollection at: (choicelInMenuResponse -1)];

else if ((typeOfResponse — STRIIG.RESPOHSE) 11
(typeOfResponse = FLOAT.RESPOISE))
event = [eventCollection firstElement];

else;
return self;

- followingState {

Int offset;

id aFollowingState;

if ((stateCollection != nil) kk

([event number] != 10.EVEIT)) {

offset = [eventCollection offsetOf: event];
aFollowingState = [stateCollection at: offset];
[[aFollowingState automata] currentState: aFollowingState];
[aFollowingState execute: currentObject];

>

return self;

- treatG : (int) eventnumber {
event = [eventCollection at: eventnumber];
return self ;
>

- execute : aCurrentObject {

if ([aCurrentObject notEqual: nil])
[self currentObject: aCurrentObject] ;

do {
error = [self findError: 10.ERROR];
[self display];
[self read];
[self correct];
if ([error number] != 10_ERROR)

[self errorHessage];

Appendix E

>

while ([error number] != IQ_ERROR);
[self treat];

[self follosingStato];

Appendix E

/1 Objective-C source file for the class CalAutomata
einclude "objc.h"
s¢include "wbs.h"
s¢include "cal.h"

erequires State;

erequires CallnitialState;
erequires CalSecondState;
erequires CalThirdState ;
erequires OrdCltn;

=CalAutomata : Object(CalGroup , Primitive, Collection)

IINISTAICE VARIABLES;

id firstState; Il the initial state of the automata;

id secondState; /1 the node operations state of the automata;

id thirdState ;

id currentState; /1 the state of the automata being executed;

id automata; Il the automata in shich the automata is contained

¥

/INISTAICE METHODS;

/1 To initialise the automata:

/1l - initialises the states

I1- define each state

- initialise {
[self initialiseStates];
[self defineFirstState];
[self defineSecondState];
[self defineThirdState] ;

/1 initialises each state

- initialiseStates {
firstState * [CallnitialState nen];
[firstState automata:self] ;
secondState = [CalSecondState new];
[secondState autom ata:self];
thirdState = [CalThirdState new] ;
[thirdState automata:self] ;
return self

// defines the states reacheable from the first state
- defineFirstState {
id anOrdCltn;
anOrdCltn m [OrdCltn with: 4, firstState,firstState,
firstState,UIDEFIIED _STATE];
[firstState stateCollection: anOrdCltn];

// defines the states reacheable from the second state
defineSecondState {
id anOrdCltn;
anOrdCltn = [OrdCltn with: 4, secondState,
secondState,
thirdState,
UIDEFIIED.STATE] ;

111
111
113

Appendix E

[secondState stateCollection: anOrdCltn];

- defineThirdState {

id anOrdCltn ;

anOrdCltn » [OrdCltn sith: 6, thirdstate,
thirdState, //2
thirdstate, //3
thirdState, //4
thirdState, //6
secondState] ;

[thirdState atateCollection: anOrdCltn];

/1 lunchs the automata current state if exist
/1l else Itmcha the automata first state
- execute : anObject {
If (currentState != nil)
[currentState execute:[currentState currentObject]];
else
[firstState execute: anObject];
return self
>

/1 puts aState as the current state of the receiver
/1 and all the receiver super automata
- currentState: aState {
currentState = aState;
if (automata !'= nil)
[automata currentState: aState];
return self;

- currentState {
return currentState;
>

- currentObject {
return [currentState currentObject];
>

- automata: anlutomata {
automata = anAutomata;
return self;

- automata {
return automata;
>

- firstState {
return' firstState;

/1

21

Appendix E

- secondState {
return secondState
>

- thirdState {
return thirdState

Appendix E

Il Objective-C source file for the class CallnitialState
einclude "objc.h"

einclude "cal.h"

einclude "wbs.h'l

einclude "date.h"

einclude "sac.global.h"

Crequires 1S;
Crequires SortCltn;
Crequiires TaskEvent;
Crequiires String;
Crequiires OrdCltn;
Crequirres Event;
Creqgnires Date ;
Crequires Graphic;

extern id anEventDateCltn;
extern id aCALLoad;

edefine daysec (long) 86400

extern Gevicocar.t confirmico.abortico;
extern Gevicocar.t voidico;

extern Gevicocar_t notitle;

extern Gevscrgph.t screen;

extern Gevlift_t voidlift;

extern Gevtab.t confirmtab,conitoptab
extern Gevtab.t caltoptab;

extern Gevwdw_t currentwdw;

extern Gevroo.t someobject;

extern Hatrix.t voidmatrix;

extern M atrix.t confina_mat;

extern M atrix_t cal_mat;

extern int endofjob;

M atrix_t caltab;

Gevicocar..t calleft ,calright,calendarico ;
Gevicocar..t opcico;

Gevicocar..t intico;

Gevicocar..t tasico;

Gevrow_t caltop,calwdw;

Gevtab_t caltabmid;

Gevevt_t evt;

int eventnnm ;

long datescale ;

id dateCltn, dateStrCltn , taskCltn;

* CallnitialState : State (CalGroup , Primitive,Collection)

/NISTAICE METHODS,;

- initialise {
id aMessCltn;
id anEventCltn;
id aMiscHessCltn;
dateCltn = [OrdCltn new:35] ;
dateStrCltn = [OrdCltn new:35];

Il inherits its superclass initialisation
[super initialise];

taskCltn = [OrdCltn with: 5, "Imports
"Products :",
"Meetings
"Personnel

Appendix E

"Work in Progress :'1];

/1 initialise the menu messages
aHessCltn = [OrdCltn with: 4, OPEI_CALEHDAR_HESSAGE,
SET_IITERVAL_HESSAGE,
SET_TASK_HESSAGE,
qUIT.HESSAGE];
[self eventHessageCollection: aHessCltn];

/1 initialise the corresponding events

anEventCltn a [OrdCltn with:4, [Event new:OPEB _CALEHDAR_EVEBT],
[Event new:SET_IBTERVAL_EVEHT],

[Event new:SET.TASK.EVEIT],

[Event new:QUIT.EVEIT]];

[self eventCollection: anEventCltn];

/1 this is a menu
[self typeOfResponse:CHOICE_II_HEBUJ;

}

- open.cal {
long startCal ;
BOOL VALID = 10;

datescale 3186400 ;
VALID s [Graphic estDate];
if (VALID) {
[Date getdates];
[Graphic calDisplay];
>
return self ;

- set.interval {
int days ;
BOOL VALID = 10;

days = [Graphic datescale];
if (days !'=0) {
datescale - days * 86400;
VALID 3 [Graphic estDate];
if (VALID) {
[Date getdates];
[Graphic calDisplay] ;
>
>
return self ;

- set.task {
id aCltn;
id anEventDateStrCltn;
id aTaskEvent;
id anOrdCltn;
id taskSeq;
id bTask;
int i;
BOOL VALID = 10;

aCltn = [aCALLoad taskCItn];
anEventDateStrCltn = [OrdCltn new];
for(i=0; i< [aCltn size]; i++)

[anEventDateStrCltn addIfAbsentHatching:[[aCltn at:i] startD ate]];
[anEventDateStrCltn print];

anEventDateCltn = [SortCltn orderedBy:"taskcompare:" onDups:1] ;
for (i=0; i < [anEventDateStrCltn size]; i++) {

aTaskEvent = [TaskEvent create:[anEventDateStrCltn at:i]];

Appendix E

[anEventDateCltn add:aTaskEvent];
>
anOrdCltn = [anEvontDataCltn asOrdCltn];
dateStrCltn “ [OrdCltn new];
taskSeq ¢ [anOrdCltn eachElement];
while (bTask = [taskSeq next])
[dateStrCltn add:[[bTask eventDate] str]];

[Graphic calTaskDisplay] ;
>

-display {
[Graphic datescrsel];

- read { // stay with window until confirmed yes
Il if no selection is made open_cal() default is used
Bventnum * 0;
endofjob = GEV_FH.SE;
while (endofjob != GEV.TRUE) {
evt = Gevscrgph.wait.event(screen);

if (Gavevt_get_wdw(evt) == Gevwdw_get_wdw(currentwdw)) {
if (Gevevt.get.typ(evt) == GEV_SELECTED) {
if (Gevobj_eq(Gevevt_get_botobj(evt).M atrix.entry(cal_mat,1,1))) {
eventhum = 0;
Gevchx.deselect(M atrix.entry(cal.mat,2,1));
Gevchx.deselect(M atrix.entry(cal_mat,3,1));

else if (Gevobj_eq(Gevevt_get_botobj(evt),Matrix_entry(cal_mat,2,1))) {
eventnum = 1;
Gevchx.deselect(M atrix.entry(cal_mat,1,1));
Gavchx.deselect(M atrix.entry(cal_mat,3,1));

else if (Gevobj_eq(Gevevt_get_botobj(evt),M atrix.entry(cal_mat,3,1))) {
eventhnum = 2;
Gevchx.deselect(Matrix.entry(cal_mat,1,1));
Gevchx.deselect(M atrix.entry(cal.mat,2,1));
>
else if (Gevobj_eq(Gevevt_get_botobj(evt).Matrix.entry(confirm.mat,1,1))) {
if (eventnum = 0) {
G«vscrgph_rem_window (screen,cnrrentBdu);
endofjob = GEV.TRUE;

>

else if (eventnum == 1) {
Gevscrgph.rem.window (screen,currentwdw);
endofjob = GEV.TRUE;

else if (eventnum = 2) {

Gevscrgph.rem.window (screen,currentwdw);
endofjob = GEV.TRUE;

>

else if (Gevobj_eq(Gevevt_get_botobj(evt),Matrix.entry(conzirm_mat,l,2))) {
eventnum = 3;
endofjob = GEV.TRUE;

- treat {
dateCltn = [OrdCltn new] ;
[super treatG :eventnum];

Appendix E

snitch ([event number]) {
case OPEI_CALEIDAR_EVEHT :
[self open.cal] ;
break ;
case SET_IITERVAL_EVEIT
[self set.interyal] ;
break;
case SET_TASK EVEIT :
[self set.task];
break;
case QUIT.EVEIT
[IS interpret:"qUIT"];
exit(0) ;
break;
J

return self;

26

Appendix E

/1 Objective-C source file for the class CalSeceondState

einclude "objc.h"
einclude "wbs.h"
einclude "cal.h"

erequires Error;
erequires Event;
erequires String;
Crequires OrdCltn;
erequires Sequence;
erequires Date ;

aCalSecondState ; State(CalGroup , Primitive,

/INISTAICE VARIABLES;

/INNISTAICE METHODS;

- initialise {
id aMessCltn;
id anEventCltn;

Collection)

I/l inherits its superclass initialisation

[super initialise];
/l initialise the events

anEventCltn = [OrdCltn new];

[anEventCltn add: [Event nes:FORHARD_EVEIT]];
[anEventCltn add: [Event new:BACKVARD.EVEIT]];
[anEventCltn add: [Event new:VIEV_EVEIT]];
[anEventCltn add: [Event nes:QUIT_EVEIT]];

[self eventCollection: anEventCltn];

/1 initialise the messages

aMessCltn = [OrdCltn nes];
[aMessCltn add: FORVARD_MESSAGE];
[aMessCltn add: BACKVARD.MESSAGE];
[aMessCltn add: VIEH_MESSAGE];
[aMessCltn add: qUIT_HESSAGE];

[self eventMessageCollection: aMessCltn];

/1l it is a menu

[self typeOfResponse:CHOICE_II_HEIU]J;

- goForward {
[Date fornard] ;
[Date dateDisplay] ;
return self;

- goBacksard {
[Date back] ;
[Date dateDisplay] ;
return self;

>

- vies {
return self;
>

/1 Calls the treatment corresponding to the event

- treat {

Appendix E

[super treat];
snitch ([event number]) {

case FORVARD.EVEBT :
[self goFomard] ;
break;

case BACKWARD.EVEHT :
[self goBackwaxd];
break;

case VIEW.EVEIT :
[self vies] ;
break;

case qUIT.EVEIT:
exit(0);
break;

>

return self;

28

Appendix E

/1 Objective-C source file for the class CalThirdState
einclude "objc.h"
#include “wbs.h"
einclude "cal.h"

erequires Error;
erequires Event;
erequires String;
erequires OrdCltn;
erequires Sequence;

= CalThirdState : State(CalGroup , Primitive, Collection)

/

<

IISTAICE VARIABLES;

\Y

/INISTAICE METHODS;

- initialise {
id aHessCltn;
id anEventCltn;

/1 inherits its superclass initialisation
[super initialise];

/1 initialise the events

anEventCltn = [OrdCltn new];

[anEventCltn add: [Event new:IHPORTS_EVEHT]];
[anEventCltn add: [Event new:PRODUCTS_EVEBT]];
[anEventCltn add: [Event new:HEETIIG_EVEHTI]];
[anEventCltn add: [Event new:PERSOHHEL_EVEHT]];

[anEventCltn add: [Event new:VORK_II_PROGRESS_EVEHT]]

[anEventCltn add: [Event new:EXIT_EVEIT]];
[self eventCollection: anEventCltn];

/1l initialise the messages

aHessCltn = [OrdCltn new] ;

[aHessCltn add: IHPORTS.HESSAGE];
[aHessCltn add: PRODUCTS.MESSAGE];
[aHessClItn add: HEETIIG.HESSAGE];
[aHessClItn add: PERSDIBEL.HESSAGE];
[aHessCltn add: WORK_II_PROGRESS_HESSAGE] ;
[aHessCltn add: ENT.HESSAGE];

[self eventHessageCollection: aHessCltn];

/1 it is a menu
[self typeOfResponse:CHOICE_II_HEBUJ;

- import_events {
return self ;

}

- product.«vents {
return self ;

- meeting.events {
return self ;

- personnel.events o

Appendix E

return self ;
>

- oork_in_progress_events {
return self j

// Calls the treatment corresponding to the evont
- treat {

[super treat];

switch ([event number]) {

case IMPORTS.EVEIT :
[self import.events];
break;

case PRODUCTS.EVEHT :
[self product.events];
break;

case HEETIIG.EVEST
[self meeting.events];
break;

case PERSOIKEL.EVEHT
[self personnel.events];
break;

case WORK.II.PROGRESS.EVEHT :
[self Bork_in_progress_events];
break;

case QUIT.EVEHT:
break;

>

return self;

30

Appendix E

/1 Objectiva"C source file for the class Task
= Task : Object (CalGroup.Collection, Primitive)

id name;
id staxtD ate;
id endDate;
id product;
id consumedCltn;
id sorkCltn;

>

- tasklamo {

retam name;
>

- tasklame: aString {
name = aString;

- startDate {
return startD ate;
>

- startDate: aDate {
startD ate = aDate;
>

- endDate {
return endDate;
>

- endDate: aDate {
endDate * aDate;
>

- product {

return product;

- product: aString {
product = aString;

- consumedCltn {
return consumedCltn;

- consumedCltn: aCltn {
consumedCltn m aCltn;

>

- sorkCltn {
return sorkCltn;
>

- sorkCltn: aCltn o
sorkCltn » aCltn;
>

Appendix E

/'l Objective-C source file for the class Work
= Vork : Object (CalGroup,Collection, Prim itive)

id fromD ate;
id toDate;
id resourcelame;

¥

- resourcelame {
return resourcelame;

¥

- resourcelame: aString {

resourcelame = aString;

¥

- fromDate {
return fromDate;
>

- fromDate: aDate {
fromDate = aDate;
>

- toDate {
return toDate;
>

- toDate: aDate {
toDate * aDate;
>

Bibliography

BIBLIOGRAPHY

AFSC87

SPE 88

Alt 78

Ara 88

Bar 86

Ben 86

Boe 81

Boo 86

Bud 87

Car 84

Car 85

Cha 85

Cou 86

Cox 85

Cox 85

Coxb86

Dah 66

AFSC Pamphlet 800-XX, Software Risk Management, Dept, of

the Air Force(France).

Computer Associated International,Inc., Super Project Expert, .

Alter,S and Ginzberg,M., Managing Uncertainty in MIS Implemen-
tationi, Sloan Management Review,Fall,1978,pp.23-31.

Arapis,G and Kappel,G., Organizing Objects in an Object Software
Base, University of Geneva.

Barth,P S., An object-oriented approach to graphic interfaces, ACM
Transactions on Graphics, Vol.5,No0.2,ppl142-172,April 86.

Benyon,D. and Skidmore,S., Towards a Tool Kit for the Systems An-
alyst, The COMPUTER JOURNAL Vvol.30, No.l pp2-7.

Boehm,B., Software Engineering Economics, Prentice-H all.

Booch,Grady., Object-Oriented Development, Software Engi-
neering, Vol. SE-12, N0.2 Feburary 1986.

Bud, Timothy A., A Little Smalltalk, Addision-W esley 1987.

Cardelli,Luca., Semantics of Multiple Inheritance, Semantics of
Data Types. Springer-Verlag 1984.

Cardelli,Luca. and Wegner,Peter., On Understanding Types, Data
Abstraction, and Polymorphism, Computing Surveys, Vol. 17,
No. 4, Dec. 1985.

Chapman,C., Select an Approach to Project Time and Cost Planning,
Project Management,Vol.3(1),Feb 1985.

Coutaz,Joelle, The Construction of User Interfaces & the Object
Paradigm, ECOOP87.

Cox, Brad, Object-Oriented Programming: An Evolutionary Ap-
proach, Addision-W esley 1986.

Cox,Brad. & Ledbetter,Lamar., Software-1St, BYTE Mazagine
June 1985.

Cox,B. and Hunt,B., Objects,Icons, and Software-ICs, BYTE
Mazagine pp.161-176 August 1986.

Dahi,Ole-Johan. & Nygaarg,Kristen., SIMULA - An Algol-
based Simulation, Communications of the ACM, Vol.9,
No0.9,pp.671-678, Sept 1966.

BIBLIOGRAPHY

Dan 89

Dav 82

DeM 80

Dod 89

Dra 89

Ger 82

Gol 83

Gol 84

Hal 88

Hen 68

Hop 79

Hor 87

Jac 83

Jac 87

Joh 88

Kae 86

Kee 81

Daniels,John., The Emergence of Object-Oriented Methods, REX
Systems.

Davis,G.B., Strategies for Determining Requirements, IBM System
Journal, Vol.21(1),1982,pp.4-30.

DeMarco,T., Structured Analysis: System Specification, Yourdan
1980.

Dodani,Mahesh H. Hughes,Charles E. & Moshell,Micheal J., Seper-
ation of Powers, BYTE Mazagine March 1989,

Drake,Richard., Object-Oriented Programming in C++, Personal
Computer World Mazagine February 1989.

Gersting,Judith L., Mathematical Structures for Computer Science,
Freeman 1982.

Goldberg,Adele, and Robson,David, Smalltalk-80: The language and
Its Implementation, Addision-Wesley 1983.

Goldberg,Adele, Smalltalk-80: The Interactive Programming Envi-
ronment, Addision-Wesley 1984.

Halbert, Daniel C. and 0 Brien, Patrick, Using Types and Inheri-
tance in Object Orient Programming, Digital Equipment Corp..

Hennie,Fredrick C., Finite-State Models for Logical Machines, WI-
LEY 1968.

Hopcroft,John E. & Ullman, Jeffrey D., Introduction to Automata
Theory, Languages, and Computation, Addison-W esley 1979.

Horn,Chris., Conformance, Genericity, Inheritance and Enhance-
ment, ECOOP87.

Jackson,M., System Development, Prentice-H all.

Jacobson, Ivar, Object Oriented Development in an Industrial Envi-
ronment, OOPSLAS87.

Johnson,Ralph E. & Foote,Brian., Designing Reusable Classes,
Journal of Object Oriented Programming June/July
1988.

Kaehler,Ted. and Patterson,Dave., A Taste of Smalltalk, Norton
1986.

Keen,J., Managing System Development, WILEY 1981.

BIBLIOGRAPHY

Kra 83

Lie 85

Lis 87

Mac 82

Mel 87

Mey 87

Mey 87

Mey 88

Min 67

Moy 89

Nie 87

OC 87

Pas 86

Ren 82

Rob 81

Rob 89

Sch 86

Krasner,Glenn., Smalltalk-80: Bits of History, Words of Advice,
Addison-Wesley 1983.

Lieberman,H., There’s More to Menu Systems than Meets the Screen,
SIGGRAPHSS85, 19(3), 181-189.

Liskov,Barbara., Date Abstracyion and Hierarchy, OOPSLAS87.

MacLennan,B., Values and objects in programming languages, SIG-
PLAN Notices. Vol. 17, No. 12,p. 75, Dec. 1982.

Mellor,Stephen J., Object-Oriented Programming and Other Ad-
vanced Techniques, CRAI spring internation seminar.

Meyer,B., Reusability: The Case for Object Oriented Design, IEEE
Software March 1987, pp. 50-64.

Meyer,B., Reusability: The Case for Object-Oriented Design, IEEE
Sotfware, March 1987, PP50-64.

Meyer,Bertrand., Object-Oriented Software Construction, Prentice
Hall 1988.

Minsky,Marvin., Computation: Finite and Infinite Machines,Pren -
tice Hall 1967.

Moynihan,T. McCloskey,G. Verbruggen,R, RISKMAN1:A Prototype
Tool for Risk Analysis, CASE89 wWorking paper CA-0389.

Nierstrasz,0.M., A Survey of Object-Oriented Concepts, Active
Object Environment University of Geneva ppl-17.

The StepStone Corporation, Objective-C Ver. 3.3 Reference Manual,

Pascoe, Geffory A., Elements of Object Oriented Programming,
BYTE Mazagine August 1986.

Rentsch,T., Object-Oriented Programming, SIGPLAN Notices
Vol. 17, No. 9, p. 51, Sept. 1982.

Robson,David., Object-Oriented Software Systems, BYTE Maga-
zine Vol. 6, No. 8, Aug. 1981.

Robinson,Peter., Hierarchic Object Oriented Design - HOOD, Eu-
ropean Space Agency.

Schmucker,Kurt J., Object-Oriented Languages for the Mackintosh,
BYTE Magazine August 1986.

BIBLIOGRAPHY

Schb86

Ste 86

Str 86

Sun 85

Syn 86

Tho 89

Tsi 87

Ver 88

Was 88

Weg 87

Weg 88

Wie 88

Woo 82

Zal 77

Schmucker,K 3., MACAPP: An Application Framework, BYTE
Mazagine pp189-193 August 1986.

Stefilk,Mark. h Bobrow, Daniel g., Object-Oriented Programming:
Themes and Variations, Al Magazine Vol. 6, No. 4, Winter
1986.

Stroustrup,Bjarne., The C++Programming Language, ADDISON-
W esley 1986.

Sun Microsystems, Command Reference Manual, Sun MICROSYS-
TEMS Inc.

Synder,A., Encapsulation and Inheritance in Object-Oriented Pro-
gramming, OOPSLA86 v ol.21, N0.11,pp.38-45Nov.1986.

Thomas,Dave., Whats in an Object, BYTE Mazagine March
1989.

Tsichritzis,D. & Nierstrasz,0., Application Development Using Ob-
jeCtS, Active Object Environments, University of Geneva
pp.18-30.

Verbruggen,Renaat., Object Oriented Design - Does it Exist?,
CASESS.

Wasserman,Anthony 1. Pircher,Peter A. & Muller,Robert J., An In-
troduction to Object-Oriented Structured Design, Interactive De-
velopment Environments, Inc..

Wegner,Peter., The Object Oriented Classification Paradigm, Pren -
tice Hall 1987.

Wegner,Peter., Dimension of Object Based language Design, Brown
University.

Wiener,Richard S. and Lewisj Pinson, An Introduction to Object-
Oriented Programming and C++, Addison-W esley.

Wood-Harper,A T., A Taxonomy of Current Approaches to Systems
Analysis, The Computer Journal 1982.

Zaltman,f. and Duncan,G., Strategies for Planned Change, WI-
LEY,1977.

