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The Application of Adaptive Fuzzy Control to a Warm Water Process

Stephen E. McCormac Dip. E.E. B.Sc. (Eng)

This thesis presents research performed to investigate the current state-of-the-art in the field of
adaptive fuzzy control. This research consists of two main parts, a detailed literature survey
and the application of a chosen adaptive fuzzy control strategy to a non-linear coupled multi-
variable plant.

As a direct result of the literature survey, the field of adaptive fuzzy control is categorised into
three main classes, stand-alone adaptive fuzzy control, neural-fuzzy adaptive fuzzy control and
hybrid adaptive fuzzy control. This research focuses on stand-alone adaptive fuzzy controller,
with emphasis placed on those strategies that adapt on-line during plant control. Both direct
and indirect adaptive fuzzy control paradigms are chosen for closer investigation through
simulation.

The non-linear coupled multi-variable plant used in this research is a warm water process
which consists of a process reaction tank with hot and cold inlets and an outlet. The outlet
temperature and flow variables serve as controlled variables. After the design, development
and construction of a hardware/software interface between the plant and a computer, three
modelling strategies are applied to the plant - physical first principles, artificial neural networks
and adaptive fuzzy modelling. During the modelling of the plant, an adaptive fuzzy modelling
strategy, entitled supervised adaptive fuzzy modelling, is developed.

Based on simulation results, an indirect adaptive fuzzy controller is chosen as a basis for
control of the real plant. This control paradigm is developed into a single step predictive fuzzy
control strategy utilising the supervised adaptive fuzzy models in combination with a reference
model to control the plant. Single and multi-variable control are achieved in simulation while
single variable control is realised on the real plant.

The thesis concludes with further suggestions for research which include an algorithm for the
extension of the prediction horizon of the single step predictive fuzzy controller, thus creating
the multi-step predictive fuzzy controller.



Chapter 1 - General Introduction to the Thesis

This research is concerned with the investigation into methods for adaptive fuzzy
control. This control paradigm is investigated utilising two methods, the first of
which is a review and evaluation of the current theories regarding adaptive fuzzy
control paradigms. This theoretical discussion based on a detailed literature survey is
then augmented by the application of an adaptive fuzzy control method to a non-linear

plant. The practical application is hereby divided into four sections :

« the design and construction of interface hardware and software between the

plant and a computer,
« the development and evaluation of plant models,

« the design and simulation of two adaptive fuzzy controller strategies and one
classical adaptive control method for the plant using the plant models for

evaluation and

« the appraisal of an adaptive fuzzy control paradigm through its application to

the real plant.

1.1. Overview of Chapter Structure

Chapter 1, serving as an introduction to the thesis, presents in Section 1.2. a synopsis
of adaptive fuzzy control. This is followed by a general description of the non-linear
plant used for the practical application of an adaptive fuzzy control strategy in Section

1.3. The final Section 1.4. gives a detailed description of the structure of this thesis.

1.2. Adaptive Fuzzy Control

1.2.1. Development

Since the early nineteen eighties the number of industrial applications of fuzzy logic
has grown dramatically [1], This novel mathematical theory, first conceived by Lofti
Zadeh in 1965, has since developed into a powerful and effective engineering tool
[2,3], Fuzzy logic expands the concept of classical bivalent set membership to enable
the partial or “fuzzy” membership of an object to a set, thus enabling the
incorporation of a more human approach to set theory. As sets can represent human

concepts such as Iarge, hot or far, fuzzy logic gives the engineer a mathematical



framework for the representation of expert human knowledge which is often

intrinsically in afuzzy linguistic form [1,2,3].

The main area of application for fuzzy logic is Process control [1,2,3], Five reasons

often cited for the advocacy of the use of fuzzy logic for process control are [4]:

. shorter "time to market" for products utilising fuzzy logic,

. more robust control characteristics,

. control of processes that could not previously be controlled using conventional

control strategies,

. no necessity for a control theory expert and

. a mathematical model of the system to be controlled is not required.

Through the use of fuzzy logic, the expert knowledge of a plant operator can be
transformed into a control algorithm. This algorithmic representation of human
expert knowledge can then be utilised for automated control of the plant in question.

M any successful implementations of this type of controller have been reported [5].

As the awareness of fuzzy control developed within the engineering community so too
did the need for adaptive fuzzy control strategies [6]. This adaptive capability was to
enable better closed loop control of the non-linear time varying plant over a wider
range of operating points as compared to its non-adaptive fuzzy controller
counterpart. Moreover, it was hoped that, as a fuzzy control algorithm can be
linguistically interpreted, an adaptive fuzzy controller could teach a human operator

an improved control policy for the plant [6].

1.2.2. Categorisation
The first step undertaken in this research was the categorisation of adaptive fuzzy
control strategies by means of a literature survey. Resulting from this study, three

classes of adaptive fuzzy controllers will be used:

« Neural-Fuzzy Methods - combinations of artificial neural networks and fuzzy

algorithms,



* Hybrid Adaptive Fuzzy Controllers - combinations of fuzzy algorithms and

classical control strategies based on dynamic systems theory, and

* Stand Alone Adaptive Fuzzy Controllers - only utilising fuzzy algorithms.

The Neural-Fuzzy Methods can, for example, convert a fuzzy algorithm to a neural
network structure and then train the so formed neural network with measured data.
This corresponds to the initialisation of a neural network with linguistic expert
knowledge [7], Another standard approach among the neural-fuzzy methods is to
utilise the learning methods from the neural network field to adapt some aspect of a
fuzzy logic algorithm [8]. Such algorithms can be applied to either emulate the
control behaviour of an operator or to develop an inverse model of a plant for use as

controller [9].

The Hybrid Adaptive Fuzzy Controller paradigms combine the linguistic capabilities
of fuzzy logic and the deterministically proven classical controller designs. One
common example of the hybrid adaptive fuzzy controller is a self-tuning PID
controller which wutilises a fuzzy algorithm to tune the gain parameters of a PID
controller [10], This example thus exploits the algorithmic representation of how a
human operator would tune a PID controller by storing the expert knowledge in a

fuzzy algorithm.

This thesis, however, concentrates on the Stand Alone Adaptive Fuzzy Controller.
This type of adaptive fuzzy controller utilises some form of adaptation algorithm to
adjust the parameters of a fuzzy controller. The form of the fuzzy controller is of
secondary importance, the main characteristic is that no classical controller or artificial
neural networks are incorporated in the design. One example of this method is the

use of orthogonal least squares to adapt an inverse model of the plant to be controlled

[11].

1.2.3. Adaptation
The adaptation of a fuzzy controller can be performed by either on-line or off-line

methods:

« The off-line methods utilise a simulation model of the plant to be controlled to
optimise their simulated closed loop control performance through adaptation.
Thus in order to achieve good control performance an accurate simulation model

of the plant is required. The mathematical models of many plants are, however,



simplifications which are often inaccurate. This inaccuracy can lead to poor

control performance of an off-line optimised adaptive fuzzy controller.

. In contrast to the off-line adaptive fuzzy controllers, the ON-line methods are
capable of adapting to the real plant while controlling it. This ensures that the
adaptation of the fuzzy controller will serve to only improve its closed loop

control performance.

This research places more emphasis on the on-line adaptation of a fuzzy controller as
this strategy clearly has more potential for good closed loop control performance than

the off-line adaptive fuzzy control methods.

1.3. Brief Description of the Chosen Plant

As it has been claimed that fuzzy logic control is especially suited to the control of
non-linear ill-defined systems, just such a plant was deemed to be best suited for a
practical examination of the capabilities of adaptive fuzzy controllers [12]. Because
the adaptive fuzzy controller can require considerable processing time, the plant
dynamics needed to be slow to allow low sampling frequencies and thus more
processing time for the controller algorithms. Hence, a wWarm water process plant
with slow dynamics was chosen as the plant for this research. This process plant can

be characterised by the following :

. Construction - a cylindrical tank with one hot inlet, one cold inlet and one
outlet. The inlet flows are controllable, both inlet temperatures are non-
controllable with only the hot inlet temperature being measurable. The outlet

flow and temperature are both measurable and controllable.

. Multivariable system - with outlet flow and temperature serving as the
controlled variables and the hot and cold inlets as inputs resulting in a two input

-two output system.

. Non-linear - the plant has a well known non-linear outlet flow characteristic and

unknown non-linear outlet temperature behaviour.

. Slow dynamics - allowing slower sampling rates and thus more processing time.

. Industrial sensors and actuators - all sensors and actuators are currently used in

industry with all transducer signals transmitted over 4-20m A current loops.



Having decided on this warm water process for the practical investigation to be
performed in this research, the next step was to design and construct both hardware
and software to allow the interfacing of the warm water process to an IBM
compatible PC computer. The necessary interface hardware is an instrumentation
amplifier to condition the warm water process sensor signals for analogue to digital
conversion. The constructed amplifier is a six channel two stage amplifier with
integrated anti-aliasing filters. The interface software is an interrupt driven software
structure written in the ANSI C programming language that provides the framework

for both data acquisition from and closed loop control of the warm water process.

The interfacing of the plant to a computer provided the basis for the development of
plant models and the design and testing of an adaptive fuzzy control strategy for the
warm water process. An overview of the modelling and control of the warm water
process is given in the next Section 1.3 of this chapter which describes the structure

of thesis and the contents of each chapter.

1.4. Overview of the Thesis Structure
This thesis consists of seven Chapters all of which - excluding this general

introductory Chapter 1- are detailed in the following description :

e Chapter 2 - "Fuzzy Logic and Fuzzy Control”, introduces the fuzzy logic
controller and defines some basic terminology from the field of fuzzy control
which is used throughout the thesis. A detailed description of the current
stand alone adaptive fuzzy control strategies is included with some attention
given to the issues of fuzzy modelling, fuzzy hardware and CASE tools for
the development of fuzzy logic algorithms. The chapter concludes with a
general summary and the choice of two stand alone adaptive fuzzy

algorithms for investigation.

e Chapter 3 - "Warm Water Process Hardware and Software", gives a
detailed physical description of the warm water process. This description
includes the geometry of the process and all associated sensors and
actuators. This is followed by the specification of the analogue to digital and
digital to analogue converter cards . A detailed description of the design,
construction and testing of the instrumentation amplifiers for conditioning of

the plants sensor signals is given. The chapter is concluded by a description



of the interrupt driven software structure used for closed loop control of and

data acquisition from the warm water process.

Chapter 4 - "Warm Water Process Modelling”, covers all aspects of three
mathematical models of the warm water process that were developed for this

research :

« the Physical Model based on physical first principles,

« the Artificial Neural Network Model and

«  the Fuzzy Model.

This chapter commences with the description of the calibration of the inlet
and outlet flow meters of the warm water process. This is followed by a
description of the design, parameterisation and performance of the PI
controllers that were utilised for the linearisation of the hot and cold inlet

valves.

The physical model of the warm water process, consisting of equations of
the mass flow and thermal behaviour of the warm water process is described.
The determination of their parameters, the simulation of the model in the
MATLAB/SIMULINK environment and the evaluation of the model are

detailed.

The next plant model to be described is the artificial neural network model
of the warm water process. The architecture and learning mechanism as well
as the training data acquisition are all detailed. The modelling performance
of this model is investigated using a separate set of test data taken from the

warm water process.

The last modelling strategy is that of Supervised Adaptive Fuzzy Modelling
which is based on a standard fuzzy model type. This research contributes a
straightforward but effective supervisory function to the fuzzy model,
improving the overall modelling accuracy. A detailed description of the
development of this on-line adaptive fuzzy modelling strategy using a linear
first order system as an example is given. This is followed by a description

of the development, the structure, learning mechanism and performance of



separate adaptive fuzzy models for the mass flow and thermal behaviour of

the real plant.

Chapter 5 - "Controller Design", deals with the design and evaluation of two
adaptive fuzzy control strategies and a deterministic adaptive control

strategy:

. Self-Organising Control - a direct adaptive fuzzy control method
which adapts the rules of a fuzzy controller based on the current

controller performance.

. Single Step Predictive Control - an indirect adaptive control
strategy which is based on the classical predictive controller. The
supervised adaptive fuzzy models of the plant, developed in Chapter
4, are used to predict plant behaviour over a single step prediction
horizon. Utilising a user defined reference model, a simple search
algorithm chooses the controller output that best minimises a given

cost function.

. Self-tuning P I control - is developed from a self-tuning PID control
strategy. This controller uses on-line RLS identification of a first
order ARX model of the plant to be controlled to calculate the
parameters of a Pl controller so that a user defined dynamic

response is fulfilled.

All three adaptive control paradigms are compared and contrasted. Based on
these evaluations the Single Step Predictive Controller (SPFC) is chosen for

control of the warm water process.

The key contribution of this research to the area of fuzzy control, is the
extension of the prediction horizon of the single step predictive fuzzy
controller, thus creating the Multistep Predictive Fuzzy Controller (mpPFcC).

The suggested M PFC controller is summarised by the following points :

1. the wutilisation of the supervised adaptive fuzzy model structure,
developed in Chapter 4 of this thesis, to allow on-line adaptation of

the fuzzy model,



the modification of the supervised adaptive fuzzy model structure and
parameters to allow differentiation of the model outputs with respect

to its inputs and

the application of a gradient descent algorithm to enable efficient
calculation of the predicted plant outputs and corresponding
manipulated variable values whilst minimising a user defined cost

function over a multistep prediction horizon.

A full description of the proposed MPFC with the necessary mathematical

derivations for this controller paradigm is given. A practical implementation

of this multistep predictive fuzzy controller is not carried out as it is deemed

to be beyond the scope of this thesis.

Chapter 6 - "Real Time Control of the Warm Water Process”, presents the

results of aseries of tests performed on the real warm water process to

evaluate the control performance of the Single Step Adaptive Predictive

Controller.

Chapter 7 - "Further Research and Conclusions”, is the final chapter of this

thesis

and assesses the research undertaken in this thesis, and offers

suggestions for further research.



Chapter 2 - Fuzzy Logic and Fuzzy Control

2.1. Introduction

2.1.1. General Introduction

Since the introduction of fuzzy logic by Lofti A. Zadeh in 1965 [13], fuzzy control
has developed into the most important and widespread application of this novel
mathematical theory [1,2,3]. The main advantage offered by fuzzy control is the
possibility of representing human linguistic expert knowledge in a machine
processable format. Precisely this capability has enabled enhanced automated control
of systems, where classical control strategies have failed to improve upon the
performance of the human operator. Such systems are often poorly understood and
thus no detailed and accurate mathematical model of the system exists. As in the case
of classical control theory, the variety of fuzzy control strategies is quite broad, from
the straightforward and direct rulebase approach to the more complicated methods
such as adaptive combinations of neural networks and fuzzy logic. The field of

adaptivefuzzy control can thus be classified into three groups :

Neural-Fuzzy Methods - combinations of artificial neural networks and fuzzy

algorithms,

Hybrid Adaptive Fuzzy Controllers - combinations of fuzzy algorithms and

classical control strategies and

Stand Alone Adaptive Fuzzy Controllers - based only on fuzzy algorithms.

This chapter presents an outline of adaptive fuzzy control paradigms with emphasis

placed on Stand-Alone Adaptive Fuzzy Controllers.

As in the case of the classical adaptive controller, the adaptive fuzzy controller is able
to maintain and even improve its control performance through either adaptation of its
structure or of its parameters. W hether this adaptation is performed on-line or off-

line is a key issue.

The majority of the Off-line methods require a mathematical model of the plant in
order to support the adaptation [14,15,16]. Consequently, if the fuzzy controller
developed by an off-line method is to provide reliable control of the plant, then the

mathematical model of the plant, upon which the off-line adaptation depends, must be



accurate. This drawback is offset by the fact that the com plexity of the adaptation can

be more or less unlimited.

The on-line adaptive fuzzy controller strategies offer the advantage that the
adaptation is carried out directly on the real plant, thus helping to ensure accurate
controller performance. The main disadvantage of these on-line methods is that the
adaptation algorithm must be computationally efficient. As the one of the criteria for
this research is practicle, reliable and accurate controller performance, the on-line

adaptive fuzzy control strategies are highlighted in this chapter.

As in classical adaptive control, both direct and indirect forms of adaptive fuzzy

control have been developed.

In the directform, the parameters of the controller are directly adapted in order to
reduce the closed loop control error. This adaptation is based on the evaluation of the
current controller performance using some form of performance index [17, 18]. The
indirectforms of adaptive control strategies first estimate a model of the plant and
then adjust the controller parameters based on the assumption that the estimated
model is accurate [19, 20]. Eighty percent of all literature found during this research
relates to the direct adaptive fuzzy control methods, which thus dominate the area of
stand-alone adaptive fuzzy control. Figure 2.1, shown below, gives an overview of
the adaptive fuzzy control strategies which are investigated in most detail in this

thesis.
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2.1.2. Overview of Chapter Structure

Initially, Section 2.2. of this chapter provides the reader with a simple explanation of
the principle of fuzzy logic using an everyday example. Having introduced fuzzy
logic, summaries of four common computer aided software engineering (CASE) tools
for fuzzy logic systems are detailed in Section 2.3. Due to the considerable
processing requirements of larger scale fuzzy logic systems and to make real time
fuzzy control feasible for highly complex and dynamic plants, specialised fuzzy
hardware is available. An overview of some of the more common fuzzy hardware
components is presented in Section 2.4. The terminology and structure of fuzzy
controllers are explained and summarised by Section 2.5. using the example of a
Proportional-Derivative Fuzzy Logic Controller. The next Sections stem from a

comprehensive literature survey and are thematically divided as follows :

. Section 2.6. -Fuzzy Modelling,

. Section 2.7. -Direct Adaptive Fuzzy Control,

. Section 2.8. -Indirect Adaptive Fuzzy Control,

. Section 2.9. -Hybrid Fuzzy Control.

Each of these sections gives a synopsis of its corresponding area and relates any
relevance to the warm water process. In conclusion, a summary of the chapter and
concrete suggestions for possible control strategies for the warm water plant are

detailed in Section 2.10.

2.2.  Principles of Fuzzy Logic

Fuzzy logic was first developed by Lofti Zadeh in 1965 [13]. The intention of Zadeh
was to provide a mathematical concept for the processing of imprecise data. Based
on classical set theory, fuzzy logic extends the concept of bivalent set membership to
allow the partial membership or elementhood of an object to a set. This can be
illustrated by the example of classifying water temperature intohot and cold sets.
Classical set theory sets a threshold value of temperature in order to differentiate
between the sets of hot and cold water. If a threshold or CFiSP value of 50 °Celsius is
applied then water with a temperature of 49.5 “Celsius is cold whereas water with a
temperature of 50.5 °Celsius is hot - obviously not a realistic classification of these
two temperatures. By applying fuzzy logic and thus utilising fuzzy sets, a more

realistic and human classification is made possible. The water with a temperature of



50 °Celsius belongs in equal measure to the fuzzy set of cold water and to the fuzzy
set of hot water. Figure 2.2 contains a graphical representation of this example. This
soft or fuzzy interpolation between two sets is achieved through the introduction of
the degree of membership which can be any value on the continuous interval [0,1],
(the upperbound of the degree of membership can be any finite value but is assumed
unity for normalised fuzzy sets) where total membership corresponds to a value of
unity and total non-membership to a value of zero. The degree of membership of an
object to a fuzzy set is calculated by a fuzzy membership function. A fuzzy set A is

defined by the equation (2.1) which is the general form taken from Tilli [1].

A={x, (x\i Ax))\xe XJ (2.1)

where X is collection of objects denoted generically by X,
A is afuzzy setin X and
(I A(X) is the fuzzy membership function of X in A which maps X to the

membership space M.

The domain of the com plete set of fuzzy membership functions is referred to as the
universe ofdiscourse - in the example in Figure 2.2 this is temperature from 0 to 100
degrees Celsius. Thus thefuzzy membershipfunction converts a scalar (crisp) value
into a fuzzy variable with its corresponding degree of membership. More detailed
mathem atical descriptions of fuzzy logic and its mathematics can be found in Tilli [1],

Zimmerman [2] and Pedrycz [3].

12



2.3.  Fuzzy Logic Software Tools

There is a large number of CASE tools available, for the design and simulation of
fuzzy logic systems. The majority of these products are summarised in Angstenberger
[21]. During the course of this research four software tools for fuzzy logic systems

were used, all of which are listed below :

« Cubicalc - a relatively cheap and easy to use program for Microsoft Windows
3.1 that allows the design and simulation of fuzzy algorithms through a
graphical user interface. The developed fuzzy system can then be compiled into
BASIC, PASCAL or ANSI C source code. This program is most suitable for

educational purposes [22],

« TILShell from Togai Infralogic - a professional fuzzy system software design
tool for Microsoft Windows 3.1 that allows the development of fuzzy systems
through a graphical user interface. A large range of compilers is available e.g.
ANSI C, PASCAL. The package can be combined with Togai Infralogic's in-
house fuzzy chip, the FC110-DCP to develop complete software/hardware

solutions [23].

. FuzzyTech from Inform GmbH - also a professional CASE tool for the
development for the fuzzy systems runs under Microsoft Windows 3.1. This
software allows the ompilation of the developed fuzzy algorithm into ANSI C
source code. The compiled ANSI C source code is, however, not easily

adaptable as the fuzzy functions are contained within C library functions [24].

« RT Fuzzy from MATRIXX - is part of the M ATRIXx simulation environment
and thus benefits from the functionality of this leading simulation tool [25], In
contrast to the other three fuzzy CASE tools MATRIXx runs on a UNIX

platform.

W hile all of these CASE tools have their merits, it was found that they all lack the
necessary flexibility for research into adaptive fuzzy systems. Thus these fuzzy logic

tools were used for general experimentation and training.

2.4. Fuzzy Hardware
The term "fuzzy hardware" refers to all hardware components that utilise specialised
circuitry to accelerate the calculation of fuzzy algorithms [26,27]. There are three

main types of fuzzy hardware, which can be described as follows :
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e FASIC - Fuzzy Application Specific Integrated Circuit is, as in the case of all
ASICs, a relatively expensive solution and is only viable for large production

volumes.

° Stand alone Fuzzy Processors - have the advantage of very high processing
speeds for fuzzy algorithms. The disadvantage with such systems is that a
completely new hardware structure is required and thus time to market is
lengthened. In addition, software supportis often lacking. The FP family of fuzzy
processors from the Japanese company OMRON constitutes one example of stand

alone fuzzy processors.

e Fuzzy Coprocessors - can be added to a host hardware system and thus used to
relieve the host system of the fuzzy processing burden. Compared to the stand
alone systems, the coprocessor approach requires little hardware reconfiguration
of the complete system. The main disadvantage is the increase in required space.
The FC110-DCP from Togai Infralogic can be used either as a stand alone

solution or as a fuzzy coprocessor [28].

« Fuzzy Microcontrollers - are traditional microcontrollers with an additional on-
chip fuzzy processor. This solution offers a fast and simple update of an existing
microcontroller to a hardware fuzzy system. One example is the Fuzzy 80C 166
from Siemens AG which utilises an optimised fuzzy inference machine from
Inform GmbH. This chip is pin compatible with the 80C166 microcontroller and

can replace the older non-fuzzy versions without hardware modification.

The use of fuzzy hardware is, however, only necessary when the existing non-fuzzy
hardware cannot process the required fuzzy algorithms quickly enough. As the
sampling time for the warm water process was thirty seconds (see Chapter 4), no

fuzzy hardware was necessary for this research.

2.5. Fuzzy Logic Control

2.5.1. Areas of Application

There are three main areas of application for fuzzy logic :
» control and automation,

* pattern recognition and

e expert systems.
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Of these, the area of control and automation is the most expansive [1,2]. This section
gives an introduction to the main issues of fuzzy control and defines the terminology
used within this research. In order to achieve this, later on in this Chapter the
example of the Proportional-Derivative Fuzzy Logic Controller is utilised.

2.5.2. Introduction to Fuzzy Logic Control

The Fuzzy Logic Controller (FLC) allows the control engineer to develop a controller
for a particular process based on linguistic expert knowledge. The capability of fuzzy
logic controllers to represent a heuristic control strategy contrasts with that of a
classical deterministic controller where algorithms based on exact and deterministic
mathematical models of the plant to be controlled are utilised. Many successful
implementations of FLCs have been reported recently for non-linear processes such as
wastewater treatment [29], heat exchangers [30], underground train systems [31],
home heating systems [32] and applications in the automobile industry [33].
Moreover, the area of consumer electronics has benefited dramatically through the
application of fuzzy logic to control tasks in such products as washing machines, rice
cookers, video cameras and television tuners [1].

The following highlights the main advantages and main problems of fuzzy logic
control, which are categorised below [34,35] :

Advantages
No mathematical plant model required - the rulebase approach of
the fuzzy logic controller allows the control of a plant based on
expert knowledge. Thus a plant operator can be interviewed and
the acquired knowledge stored in a rulebase which forms an integral
part of the fuzzy controller.

Possible linguistic description - the expert knowledge can be
described linguistically through the use of fuzzy sets with labels such
as small, tall, positive large etc. for each controller input and
output variable.  This allows a human interpretation of the
controllers actions.

Non-linear control - the fuzzy logic controller is a non-linear
controller which performs interpolation between the rules contained
within the rulebase. The form of this interpolation is determined by
the membership functions, the inference functions used in the rules
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and the defuzzification method. The fuzzy logic controller thus has
the capability of controlling non-linear plants around various
operating points.

Robustness - some investigations [3,36] have claimed that the fuzzy
logic controller is more robust to process noise and parameter
variance than a classical controller designed for a single operating
point.

Little in-depth knowledge of control theory needed - due to the
rulebase structure of the FLC, a controller can be designed by an
engineer without in depth knowledge of classical closed loop
control theory.

Problems

Lack offormality - there is no formal method for the design of the
FLC for a particular control problem and thus the engineer must
resort to a combination of experience and trial and error, which can
lead to lengthy commissioning and non-optimal solutions.

Lack of stability proof - there is no general method for proving the
stability of the FLC. This disadvantage has led to a mixed reception
for the FLC within the closed loop control theory community [37].

Large number of degrees offreedom - where as the pip controller,
for example, has three degrees of freedom, the fuzzy controller has
many more, all of which effect the response of the controlled
system. This can lead to a lengthy and complicated subjective
optimisation of the fuzzy controller.

Acceptance problems- the heuristic nature of the fuzzy controller,
the marketing strategy of "fuzzy products" combined with the
exaggerated claims by some of its proponents have lead to
acceptance problems within the control theory community [37],
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2.5.3. Structure and Terminology of the FLC

In order to gain familiarity with the structures and terminology of the FLC the
example of a Proportional-Derivative FLC (PD-FLC) is explained in this section
Although the classical linear Pl controller is mostly used in industry, the PD-FLC is
most often implemented fuzzy controller. The structure of the PD-FLC is shown in

Figure 2.3 and is described in more detail by the following points :

« Input Variables - the error and first derivative of the error are utilised for the
PD-FLC. This approach is similar to the phase plane form of representation
of a control system. The engineer converts the phase plane to a partitioned
fuzzy space and enters the corresponding actions in the corresponding

rulebase cells.

« Input Variable Gains - (Ke, Kde) these gains are used to map the input
variables to their respective wuniverses of discourse within the fuzzy
controller. The dynamics of the controller are dependent on the values of

these gains [3].

Setpoint Error
Ke Fuzzy
Logic Ku 5150
?:ilf - Kde Algorithm Plant

Figure 2.3 - Block diagram of a Proportional Derivative Fuzzy Logic Controller (PD-

FLC)

. Fuzzification - converts the crisp input values to fuzzy variables. This is

achieved by calculating the degree of membership of each fuzzy membership
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set for a given value of the input variable. This process is shown in Figure
2.2 (see page 12) for the water temperature example. In Figure 2.3 (see
page 17) the degrees of membership for the input variable error are depicted
by fl],a2>83x4 and ab5.

Inference functions - the functions used to evaluate the linguistic logical
functions such as AND and OR. These functions belong to the so-called. T-
Norms and Co-T-Norms (or S-Norms). Details of some of these functions
and their properties can be found in Zimmerman [2]. The functions used in
this research are :

1. Minimum - = min(|Ifi,J.©9 corresponding to the linguistic AND

function,

2. Product - [iah= (lux  corresponding to AND,
3. Maximum - |i & - max()ia,jii) corresponding to OR,

4. Algebraic Sum - =fia+|lh- (&x  corresponding to OR,

5. Fuzzy-OR - \iab=Ymax(|ifi*)+"(1-y)Qia+m) an adaptable

form of the linguistic OR function where 7 is a weighting parameter
that allows the user to adjust the function between the extremes of
the maximum (7=1) and mean functions (7=0),

6. Fuzzy-AND - \idb=7min("a|aJ+ " (I-7XMu+\Lb) an adaptable

form of the linguistic AND function, where 7 is a weighting
parameter that allows the user to adjust the function between the
extremes of the minimum (7=1) and mean functions (7=0), and

7. Mean-a =" EAh'

h

where (iaand |ihare degrees of membership and
(.abis the inferred degree of membership.

Rulebase - There are two main types of rulebases - the lookup table and the

fuzzy relational matrix.



In Figure 2.3 (see page 17) a lookup table rulebase has been utilised within
the PD-FLC. Each element in a lookup table contains the consequent
(defined below) part of the rule. Additionally, each elementis indexed by the
antecedent (defined below) variable sets that are active i.e. where the degree
of membership is greater than zero. The fuzzy relational matrix is a memory
intensive matrix that contains possibility values for all possible rules for a
given fuzzy algorithm [2]. W here the lookup table rulebase gives a single
fuzzy membership set for a particular antecedent configuration, the fuzzy
relational matrix delivers a complete possibility distribution over the
consequent universe of discourse. Due to the large memory requirements,

the fuzzy relational matrix is not often used.

The mathematical representation of a lookup table rulebase is shown below:

AT iSA] ® X2is\ ® ... ® Xnis
Then Yxis B{Yand Y2is B[* and... and Ymis Bxy
R2-» If x,isa~ & X2is O ® Xnis\ X
Then Y{isB2Y and Y2isB2~ and.... and Ymis B2j.

Rk If X,isAkXqe x2isAkXi ® .. o XnisAkX
Then Y{is Bkj, and Y2is Bk~ and..... and Ymis Bky

where nis the number of input variables,
M is the number of output variables,
K is the number ofrules R,
A and B are the input and output variable fuzzy membership sets

respectively and

0 is an inference function.

Each rule consists of a premise or antecedentpart:
If XXiISAIX*"8) X2iSA A 0 ... ® Xnis ALY
followed by an action or consequentpart:

Then Yiiss 1}, and Y2iss5, ~ and and Ymis BI#



The consequent variables (Y1 ... YM) of the PD-FLC can be either fuzzy

membership sets or fuzzy singletons. A fuzzy singleton is a scalar (crisp)

value.

The mathematical representation for the relational matrix form of a rulebase

is described below for two antecedent single consequent fuzzy system :

Rx >Jf Xlis 8 X2isAMR

Then YlisBx =»> An
72 ~1f Xxisa, e X2isAix2

Then YxisB2Y* => g\\2

R, -> If X, is\ X & X2is\ X
Then YxisBiy * g\yj

Then

Then

Then

where P and ( are the number of antecedent fuzzy membership sets for

Xj and X2respectively,
lis the number of consequent fuzzy membership sets for Yj and
gijk (j=1 to p,j=1to g, k=1to I)is the possibility value for each

of the complete set of possible rules.

« Rule activation value - the inference functions contained within the

antecedent part of a rule act on the degrees of membership of the antecedent
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fuzzy membership sets. The calculated value is the rule activation value and

thus reflects the strength of the rule.

. Aggregation - if two or more active rules infer the same consequent fuzzy
membership set, then an aggregation function is used to combine the
activation levels of these rules in order to calculate the final degree of
membership for the inferred consequent fuzzy membership set. The most

common are Mean and maximum [38].

. Defuzzification - is the method by which the fuzzy output from the complete
rulebase inference is converted to a crisp value. There are over thirty
methods of defuzzification to be chosen from. The most common are Mean
of Area, Maximum Height and the Centre of Gravity [38]. An adaptive
defuzzification method that allows an adjustment between the centre of

gravity method and the maximum of height is developed in Kiendl| [39],

« Output Variable Gain Ku - this is applied to the crisp output value from the
fuzzy controller. As in the case of the input gains, the system dynamics are

effected by its value [3].

This section has illustrated some of the key structural aspects of an FLC and defined
the terminology used in this research. Other forms of the FLC for SISO systems are
possible. One example is the Proportional-Integral form Fuzzy Logic Controller (PI-
FLQ . which is formed by placing an integrator between the output of the PD-FLC
and the plant. The reader is referred to references [38] for more detailed and

illustrative descriptions of fuzzy control.

It should be noted that the issue of standardising the terminology within the field of
fuzzy control has not been addressed. Currently, the "Verein Deutscher Ingenieure
VDI " is working together with the IEEE to standardise the terminology within both

the English and German languages [40],

2.6. Fuzzy Modelling

Just as a control strategy for a particular plant can be linguistically described and
programmed as a set of rules within a fuzzy algorithm, so to can the dynamic
behaviour of the plant. This process of linguistic modelling is termed fuzzy modelling.

This section gives a briefoverview ofthe field of fuzzy modelling.
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The most important characteristic of fuzzy models is that they are universal
approximators, thus allowing them to model any function to an arbitrary degree of
accuracy [11]. There are two main types of fuzzy models which differ in the type of

consequents used in the rulebase [41]. These are as follows :

. Function Consequents - this type of fuzzy model utilises a function of the input
variables for each consequent. Thus an interpolation between the functional
consequents of active rules is performed by the fuzzy algorithm. One example
could be the modelling of a non-linear system with first order dynamic behaviour.
The fuzzy algorithm could utilise first order ARX models of the system

interpolated across different operating points as consequents.

« Fuzzy Variables or Singleton Consequents - this is the simpler of the two options,
where the consequent variables of the fuzzy model algorithm are either fuzzy
membership sets or fuzzy singletons. These models can thus utilise either the

look-up table or relational matrix formats for the rulebase.

Pioneering work in the field of fuzzy modelling has been performed by Pedrycz [3]
and Tong [42] whose models utilise fuzzy variable consequents in relational matrix
form. Takagi and Sugeno [43] developed functional consequent fuzzy models and
applied them to the modelling and control of a multilayer incinerator [44]. More
recently Kiipper [45] has used stochastic approximation to determine the possibility

values ofrules in a fuzzy model with a relational matrix rulebase format.

2.7. Direct Adaptive Fuzzy Control

2.7.1. Introduction

A direct adaptive fuzzy controller utilises state data from the plant in conjunction with
some form of performance index to adapt the controller parameters directly. For the
on-line methods, no model of the plant to be controlled is included in the controller

structure.

As previously described the fuzzy controller is a non-linear controller and thus suited
for the control of non-linear systems. The introduction of an adaptive mechanism
helps the controller to maintain and even improve control performance for non-linear

orespecially time varying systems.
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2.7.2. Types of Adaptation

The first type of adaptive mechanism considered in this section s Gain
Tuning/Adaptation (G TA) [46]. This form of adaptation is similar in type to that of
the self-tuning PID controller. GTA methods assume that the controller possesses a
sufficient and correct rulebase for control of the plant around at least one operating
point. This assumption is disadvantageous, as one destructive rule can hinder good
controller performance no matter what gain values are chosen. The adaptation
performed is of a linear type, as the non-linear characteristic of the rulebase which
generates non-linear controller actions is not altered. Because no complete rulebase
could easily be developed, application of this strategy for the control of the warm-

water process with its multi-variable non-linear coupled nature would be limited.

The second type of adaptation is that of rule modification, initially termed Self
Organising Control (soc) by Procyk and Mamdani [17]. Both the consequent and
antecedent terms within a rule can be manipulated. This form of adaptation is more
flexible than that of GTA and can be considered to be non-linear. One important
aspect of this adaptation strategy is that destructive rules can be corrected and
replaced. Moreover, it is possible for the rulebase to be partially or even completely
empty in the initial stages of controller operation. This form of controller is certainly
more suitable for the control of the warm water process than the GTA methods, due
to the flexible adaptation and the lack of the requirement for a complete initial

rulebase.

The third type of adaptation is that of Membership Set Modification. Both the
membership sets of the input and output variables can be manipulated. Due to the
large number of parameters that are involved the adaptation process is typically time
consuming and some form of optimisation strategy suited to large dimensional
problems such as simulated annealing or evolutionary algorithms is required [47].
Moreover, this controller type is usually adapted off-line. This method also has the

disadvantage that a good rulebase is assumed to be available.

M ost of the literature encountered during this research describes control strategies for
Single Input Single Output (SISO) systems. Moreover, few of the publications
validated their strategies with real world control problems. Most demonstrations
were limited to the control of well known plants within a simulation environment.
Often no comparison with a classical controller was made and results were not fully
explained with issues such as stability, processing and memory requirements being
conveniently ignored. It thus remains to be seen if any of the direct adaptive fuzzy

controller archetypes that have been described for SISO systems can be modified and

23



extended for successful control of the Multi Input Multi Output (MIMO) warm water
process.

2.7.3. Gain Tuning/Adaptation

Gain Tuning/Adaptation (G TA) adapts or tunes some or all of the gains for the input
and output variables of a fuzzy controller. In Figure 2.3, (see page 17) containing the
PD-FLC these gains are Ke, Kde and KU. The aim of this adjustment is to match the
dynamic and steady state response of the FLC based system to that of a desired

response.

One of the simplest mechanisms for gain tuning is that of Bare et al [46]. They
develop a FLC with gain adaptation to control a gasoline catalytic reformer. The
gains ICE and KDE were adapted using a so-called simple crisp heuristic. The
assumption was made that the larger Ke, the faster but more oscillatory the response.
The gain KU is not adjusted as this could cause instability. The crisp heuristic used in

this publication is given by (2.2, 2.3, 2.4).

p=_e(k) f2.2)
e(k-1)
1. If Ipl > a then the gain Ke is incremented (undershoot) or
decremented (overshoot), where a is auser defined constant. (2.3)

2. If p2 > [3 then the gain Kde is incremented or decremented,

where pis a user defined constant. (2.4)

The controller thus created was deemed to be capable of maintaining good control
over a wide range of operating points. No comparisons with a standard controllers

were detailed.

Daugherity et al [36] develop a simple auto tuner for the Ke and Kde gains of a PD -
FLC for the control of an industrial gas fired water heater. Comparisons were made
with a PID controller. The auto tuning PD-FLC was shown to be able to control the
plant as well as a PID controller for the tuned operating point and to exhibit superior

robustness in the presence of system noise and for various operating points.

In a more complex method, Zhao et al [48] have designed a fuzzy tuner to modify the

gains Ke, Kde and Ku of a PD-FLC. The tuning mechanism utilised is a simple fuzzy
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algorithm . Thefuzzy tuner has performance indices such as overshoot, settling time
and rise time as input variables and incremental changes to the gains as output

variables. Each of the rules can described as follows :

If OSis and RSis5 ¢ and STis Cc¢
then AKeis Dt and AKde is Et and AKuU is Fi (2.5)

where OSis overshoot %,
RS is the rise time in seconds divided by the dominant plant time
constant,
ST is the settling time divided by the rise time and
Ai,Bh c,, Dt,Et, Fjare fuzzy membership sets.
An adaptation rate parameter a is also introduced for all gains in the following form
Gain(n+1l) = Gain(n) - aAGain(n) (2.6)

where N is an iteration variable.

Claims are madethat the fuzzy tuner brings some performance rewardsfor off-line
tuningand on-line adaptation to systems with time variance. The issue ofstability is

not considered.

To successfully apply the concept of GTA to the warm water process the following

problems would have to overcome :

. availabilty of complete and correct rule bases for each of the controlled

variables,

. decoupling ofthe variables would have to be at least partially realised,

« using the two dimensional FLC approach, there would befour to six gains to be

adjusted and

- introduction of stability criteria necessary to monitor the adaptation of the

input and output variable gains.
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Although simulation may yield reasonable results for SISO systems and fully
decoupled multi-variable systems, due to the above listed requirements, the GTA
adaptive fuzzy controller is deemed not to be suited for the control of the warm water

process.

2.7.4. Adaptation of Rule Consequents

Details of the first rule adaptive fuzzy controller were published in 1979 by Procyk
and Mamdani [17]. This controller was termed a Self-Organising Controller (soc).
It is claimed that the SO C analyses its control performance and through adaptation of
the rule consequents is able to achieve some improvement in its control performance.
This form of adaptation is non-linear and is thus more flexible than the previously

described GTA methods.

The SOC presented by Procyk and Mamdani is based around a PD-FLC. see Figure

2.4, and contains three extra elements :

* a performance index, whereby although used in all the SO C literature found,
the term "performance index" is not strictly correct but rather the term
"reference model” is more suitable,

« an incremental plant model and
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The performance index (or more correctly reference model) is used to analyse the
controller performance and serves as a reference for the desired response in order to
adapt the rulebase. Its inputs are scaled error Ke.e(n) and rate of change of error
Kde.de(n) which serve as a measure of the deviation of the controlled variable from
the desired trajectory. The performance index output p(n), gives an indication of
controller performance and is used together with an incremental process model to
implement rule adaptation. The performance index can be expressed in the form of a
simple look-up table or as a set of rules in a fuzzy rulebase. According to Procyk and
Mamdani, the performance index is not process specific as it represents the "minimum

tolerable closed loop response of the system".

The incremental plant model used by Procyk and Mamdani is the plant Jacobi matrix.
In practice, this incremental plant model maps the output of the performance index to
the rulebase adaption block, thus acting as a learning gain. Chapter 5 contains some
simulations of the SOC algorithm within which the value of the incremental plant

model is seen to effect the learning rate of the rulebase.

From this point on in this research the term "reference model" will be utilised instead
of the original "performance index". The reason being that the SOC "performance
index" does in fact function as a reference model for the desired controller behaviour,

thus resembling the M RAC controller.

The adaptation of the rule modification algorithm is a credit assignment problem,
which involves reinforcement or correction of the controller rules that contributed to
the present controller performance. This present controller performance is, however,
the result of some controller action that occurred in the past. The exact point in time
in which this action was carried out is related to the dynamics of the system and is
said to have occurred M samples in the past. Thus adaptation is carried out on the
consequents of the active rules m samples in the past. The output of the reference
model is fed to the normalised incremental process model of the plant, whose output
is then used to modify the rule consequents. Based on experimentation, claims are
made that the SOC s insensitive to simple or even incorrect incremental process
models. The algorithm used for rule modification is given by equation (2.7) which is

guoted directly from the publication :

R(n+1)=[R(n) and not R'(n)} or R"(n) (2.7)

where and not and Or are linguistic operators,
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R(n) is the current rulebase,

R(n)' is the old rulebase responsible for current control
performance,

R(n)" is the desired rulebase and

R(n+1) is the new adapted rulebase.

This method of rulebase adaptation creates three new rules for every rule change and

thus some form ofrule deletion mechanism is needed if this method is to be used.

Experiments in simulation were carried out using €mpty initial rule bases for SISO and
M IM O systems with and without process dead time and in the presence of noise. The
incremental models and input and output variable gains values were all selected to
give a good response - no further details are given as to how these values were
chosen. Although convergence was, in some cases never achieved, all responses were
of a reasonable nature, with a steady state error of less than 10% of the setpoint
value. The controller response typically had a steady state offset for which no reason
is given. It is more than likely due to the interpolative nature of fuzzy controllers,

which interpolate between the rules in the rulebase.

Sugiyama [49] further analysed some aspects of the SOC whereby the following

improvements and additions to that of Procyk and Mamdani [17] were achieved :

- PID type of FLC is used to increase control performance. The inputs are

error, first and second derivatives of the error,

< non-linear mapping of all input variable fuzzy membership sets to improve

rise time and sensitivity around the setpoint,

« some guidelines for the development of the reference model are presented
and an analogy is made between the reference model and the model of the
desired response in the classical model reference adaptive controller

(MRAC),

e a design method for a SO C is briefly described with a suggested relationship

between the FLC gains Ke and Kde and a first order system and

« the accuracy ofthe delay parameter m, i.e. which rulebase contributed to the

current control performance, is deemed to be unimportant.
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Linkens and Abbod [18] clearly describe the development of a SOC based on the
relational matrix structure of Procyk and Mamdani [17]. A gain switch is used to
increase the controller sensitivity around the set point and details are given for the
calculation of the gains Ke, Kde and Ku. The SOC algorithm is applied to a coupled

tanks apparatus and to coupled motors.

Procyk and Mamdani [17], Sugiyama [49], Shao [50] and Linkens and Abbod [18] all
utilise a fuzzy relational matrix approach to rule modification which, for MIMO
systems, is computationally impractical. This large computational burden is quantified
in W akileh and Gill [51], where the application of the SOC to robot motion control is
reported. In order to reduce the necessary processing time fuzzy singletons were

adopted.

Ho and Lin [52] suggest the use of a simple lookup table to replace the relational
matrix. The rule adaptation algorithm for a SISO system can be mathematically

described as follows :

Rk(n+1) = Rk{ii-m) +a p(ri) (2.8)

where  p(n) is the reference model output value,
a is the learning gain,
M is the delay in learning and

Rkrefers to a single rule.

This adaptation is thus a weighted update, whereby the parameter a directly effects
the learning rate. In addition, Ho and Lin suggest the utilisation of conditioned
learning mechanism, which prevents the SOC from adaptation if its trajectory is
already satisfactory. A good description of the reference model table is given as well

as a possible modification which increases the rate of learning of the SOC.

Farbrother, Stacey and Sutton [53] apply a SOC to the control of a remotely operated
submersible. Their application is the standard Procyk and Mamdani SOC with the
exception that a lookup table rulebase instead of the relational matrix form is used and

two meta rules are added to assist advantageous learning :

1. Rulefe(n)=0, de(n) = 0} =0- ensures equilibrium at the setpoint. (2.9)
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2. Rulef e(n)=x, de(n) =y } = -Rulef e(n)=-x, de(n) = -y } - ensures a

symmetrical rulebase thus helping to anticipate overshoot. (2.10)

Spinrad [54] suggests that the use of a reference model table gives unpredictable
control as no specific method for the development of the reference model for a given
response has been developed. Instead he utilises the difference between the actual
error and a desired error as the basis for rule consequent manipulation. The desired
error can, for example, be some function of the present error. In addition, the use of a
rule importance factor is introduced. This replaces the time delay factor M by
weighting the past rules over several samples in the past. Although Spinrad's
approach to the SOC is simpler than that of Procyk and Mamdani, Sugiyama and
Stacey and Sutton, it is claimed that it achieves performance equivalent to and in
some instances superior to that of a well tuned Pl controller for a SISO coupled tanks

process.

Spinrad [55] applies the SOC to the control of a warm water process where the tank
head and temperature are to be controlled under the assumption of perfect mixing.
For comparison purposes a linear quadratic Gaussian controller was designed for the
process. The SOC is claimed to be easier to develop than the LQ G controller and

offers performance equal to the LQ G controller.

Burkhardt and Bonissone [14] compare a state space pole placement controller with a
FLC where the rulebase consequents have been determined off-line by a SOC. The
SO C used is similar to that from Procyk and Mamdani [17] but only one rule per
sampling instant is adapted. To further increase the performance of the SOC
generated rulebase, a gradient descent method with a variable step size is used to off-
line optimise both a non-linear mapping of the membership sets and the three input
and output variable gains Ke, Kde and Ku. The optimisation cost function used is a
weighted sum of rise time, overshoot, settling time and steady state error. The plant
used was an inverted pendulum for which a detailed simulation model existed. Both
the optimised SOC rulebase and the non-optimised SOC rulebase are claimed to out
perform the pole placement controller. It should be noted that the SOC was
developed within the simulation environment. The optimisation process using the
gradient descent method is not suitable for on-line control at a high sampling rate due

to time constraints.

In all hitherto described implementations of the SOC, if the set point is changed, the

position of the controlled variable error within the phase plane is shifted away from
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the equilibrium point and rule adaptation occurs. This adaptation is irrespective of
whether the error state has been moving towards the equilibrium point or not. In an
attempt to improve the adaptive performance of the SOC, Zhang and Edmunds [56]
developed a new adaptation method. The approach bases rule adaptation on the
trajectory of the controlled variable error within the phase plane and not on its
position. Thus rule adaptation occurs only when the current rulebase is unable to
drive the controlled variable to the setpoint along a desired trajectory. Zhang and
Edmunds claim smoother responses from this form of SOC as compared to that from

Procyk and Mamdani [17].

Song and Park [57] claim to have developed an improved SOC through a slight
modification of the adaptation equation that was used by Procyk and Mamdani [17].
The new algorithm is shown to offer good control for a second order system with

dead time, an open loop unstable plant and a non-linear plant.

2.7.5. Adaptation of Fuzzy Membership Set Parameters

Nomura, Hayashi and Wakami [16,58] have used the gradient descent method to tune
the centre values and widths of triangular antecedent sets and the values of
consequent fuzzy singletons in order to optimise the off-line control performance of a

FLC.

Batur and Kasparian [59] have designed a strategy through which three consequent
membership functions are adapted. The adaptation strategy is based mainly on a
future predicted error obtained from a process model. However, should the process
model be inaccurate, the largest past error within a time window is used instead. A
correlation function is used on-line to determine the process model accuracy. The
three consequent membership sets are of the linear type. The slope of each is
increased with small predicted or past errors and decreased with large predicted or
past errors. This method requires the use of a well tuned rulebase for the process to

be controlled and has only been realised in simulation.

Isaka, Sebald and Karimi [47] have applied simulated annealing to the off-line
numerical optimisation ofa FLC to be used for blood pressure control during surgery.
This method of optimisation requires a good plant model so that the optimised

controllers can exhibit good on-line control of the intended plant.
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To achieve good control, Chen, Lin and Hsu [60] modify the centre points of the
consequent membership functions. The learning method used is based on temporal
difference which uses artificial neural network elements. The method was applied in
simulation to SISO time invariant systems with some success.

Wang [61,11] utilises orthogonal gradient descent methods and the backpropagation
algorithm to optimise the antecedent and consequent fuzzy membership set
parameters for fuzzy models. These methods are also applicable to the off-line
optimisation of a FLC.

All of the above adaptive methods have the following disadvantages :

only applied in simulation to SISO systems,

» the complexity of the optimisation problems encountered were too large for
on-line processing and thus off-line optimisation is necessary,

» in order to achieve reasonable on-line controller performance, an accurate
plant model for the off-line optimisation is necessary and

o for MIMO systems the complexity of the optimisation problem increases
significantly.

2.7.6. Combined GTA and Rule Adaptation

Gain and rule adaptation is a combination of the GTA methods and those of the Self-
Organising Controller as previously described in Sections 2.7.2 and 2.7.3. The main
concern with this method of adaptation is that rules and gains are strongly
interactive. Thus erratic outputs from the resulting controller are possible. Not much
research has been conducted in this area and thus the literature available is limited.

The dual adaptation mechanism developed by Mallampati and Shenoi [62] uses a
simulated annealing algorithm for gain tuning. The rule adaptation is accomplished by
changing look-up table rulebase consequent entries. By analysing how often a rule
fires it can be determined whether a rule is effective or not. It is claimed that if a rule
often fires then it must be adapted. All rules that fire above a certain "frequency™ are
thus adapted. Claims are made that even with positive feedback the rulebase and
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gains were adapted within five setpoint change learning trials to give good position
control of an electric motor. All tests were within a simulation environment.

Stipanicev, De Meyer and Gorez [63] have developed four simple heuristic rules for
adaptation of the gains Ke, Kde and Kie of a PID-FLC. They have combined this
heuristic rulebase with a SOC for the control of a two joint robot in a simulation
environment. Some success was achieved with this simple method, however some
difficulty was experienced when the initial SOC rulebase was empty.

A further publication by Maeda, Sato and Murakami [64] also offers other simple
suggestions for the combination of gain tuning and rulebase adaptation. Both of these
methods assume an initial rulebase. A simple rulebase is used to adapt the gains with
previous values of overshoot, rise time and settling time serving as performance
criteria. Based on simulation results for a linear second order system, some
improvements of SOC performance are claimed.

The approaches to direct adaptive fuzzy control described in this section are all off-
line methods and deal only with SISO systems. For the MIMO warm water process
some interaction of gain adaptations for each controlled variable would be
experienced. The practical value of these methods is questionable.

2.8. Indirect Adaptive Fuzzy Control

This section describes indirect daptive fuzzy controllers. These controllers utilise a
model of the plant to be controlled in order to determine the values for the
manipulated variable [61,11]. Very little literature was found dealing with this
controller paradigm.

Graham and Newell [65] describe the development of a single step predictive
controller for a SISO system. The models used in this controller predict the future
change in error of the controlled plant based on the current change in error and a
possible change in controller output one step into the future. A comparison of the
method using two fuzzy models is given :

» ageneralfuzzy model ofa linearfirst order system and

e an adaptive fuzzy model ofthe plant to be controlled.
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The introduction given to adaptive fuzzy modelling by Graham and Newell describes
and compares the fuzzy relational matrix rulebase approach and the simpler lookup
table rulebase method. An important aspect of this comparison is that the lookup
table rulebase method is shown to be nearly as accurate as the relational matrix while
saving considerable computer resources. The applied lookup table rulebase approach
is made adaptive using the learning algorithm used given by equation (2.11) to adapt
the consequents of the rulebase.

fifc+1)= (1-a)/2(*) + a jiX (k) (2.11)

where R is the rule consequent,
X is the value of the variable to be modelled,
a is the weighting parameter and
[X is the rule activation level.

The rate of adaptation a is chosen so as to give a good compromise between speed of
learning and model robustness to process noise. The predictive controller uses the
model to calculate the next error from a series of possible controller outputs and in
combination with a set of meta rules chooses the controller output that gives the best
error performance. One example of such a meta rule is that only controller outputs
that generate error of the same sign as the current error are permissible, thus reducing
overshoot. To apply this type of predictive controller to the warm water process the
problem of mulitiple control goals due to interacting control variables would have to
be resolved.

Moore and Harris [19] and Moore, Harris and Brown [20] apply indirect adaptive
fuzzy control to the problem of ship heading regulation under actuator signal
constraints. This control problem is described in the IFAC "Benchmark Problems for
Control System Design”, 1990. The controller concept adopted uses a fuzzy model
with a fuzzy relational matrix rulebase of the plant in question combined with a model
for closed loop performance specification. Moore and Harris [19] claim to have
succeeded in separating the adaptation and controller specification so that each can be
separately examined and optimised. This contrasts with the previously described Self
Organising Controller, described in Section 2.7.3.1, where adaptation and controller
performance are intrinsically linked. The fuzzy models used by Moore and Harris are
for SISO systems and thus the memory requirements of the fuzzy relational matrix are
not demanding. When associative inference functions are used for the fuzzy relational
matrix, the fuzzy model can be inverted. Through this inversion an ideal controller
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can be theoretically created for the plant. They also examine a single step predictive
fuzzy controller, similar to that of Graham and Newell [65],

If fuzzy models of the warm water process could be constructed then single step
predictive fuzzy control could possibly be used to control both the outlet flow and
temperature of the warm water process. As the predictive control described in this
section is single step, some problems with multi-variable control of the warm water
process due to the non-linear mixing characteristics could be experienced. The
dynamic behaviour of the warm water process is described in more detail in Chapter 4
of this thesis.

2.9. Hybrid Fuzzy Control

The term hybrid fuzzy controller refers to all controller algorithms which augment
some classical control strategy with a fuzzy logic algorithm. Three common examples
of this archetype of fuzzy controller are :

* Fuzzy Self-Tuning PID Controller - where expert knowledge in the form of a
fuzzy algorithm is used to tune the values of a PID controller for the control of an
unknown plant [10].

* Fuzzy Gain Scheduling Controller - similar in principle to the classical gain
scheduler only a fuzzy interpolation is implemented between the different linear
controllers [66].

 Fuzzy State Space Pole Placement Controller - as in the case of Fuzzy Self-
Tuning PID Controller, the state feedback gains are adjusted by a fuzzy algorithm
[67]. This has been applied to hydraulic drives [68].

The literature found dealing with this area of adaptive fuzzy control was scant. No
industrial applications of this methods were found although a commercial fuzzy self-
tuning PID controller is available from the company OMRON.

2.10. Conclusion
This chapter has presented an overview of stand-alone adaptive fuzzy control
strategies with emphasis placed on on-line adaptive methods. As in classical adaptive
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control two main classes were found to be prevalent; the direct and indirect adaptive
fuzzy control methods.

Among the direct adaptive fuzzy control methods, the self-organising controller is the
most common. This method allows the direct on-line adaptation of the consequent
values of a fuzzy rulebase. Based on this prevalence, this control strategy was chosen
for further evaluation. The investigation into the capabilities of the SOC is detailed in
Chapter 5 of this thesis.

The indirect adaptive fuzzy control literature was of a high quality. The reported
results for the single step fuzzy controllers were promising and as this is a model
based approach, it is extendable to multi-variable control. Based on this extendability,
the single step predictive fuzzy controller was chosen for further evaluation. The
investigation into this method is also contained in Chapter 5. As this control strategy
utilises an adaptive fuzzy model of the plant to be controlled, adaptive fuzzy models
of the warm water process were developed. The structure, learning method and
modelling accuracy of these fuzzy models are reported on in Section 4.9.
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Chapter 3 - Warm Water Process Hardware and Software

3.1. Introduction

3.1.1. General Introduction
This chapter describes the warm water process plant, its associated hardware and the

data acquisition hardware and software used for interfacing the plant to a computer.
The hardware and software used for this research can be divided into three categories:

» the warm water process plant with its associated actuators and sensors,

» the signal conditioning amplifiers and computer with its analogue to digital

(ADC) and digital to analogue (DAC) converters and

« the ADC/DAC interface control software.

3.1.2. Overview of Chapter Structure
Section 3.2. presents a comprehensive description of the warm water process
including its sensors and actuators. The computer and the interface cards utilised for
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the control of the plant are detailed in Section 3.3. In order to interface the plants
sensors and actuators to the ADC and DAC cards, a signal conditioning circuit was
designed and constructed. The design and specification of this signal conditioning
circuit is discussed in Section 3.4. The interrupt driven software structure utilised for
data acquisition and control is described in Section 3.5. Figures 3.11, 3.12, 3.13,
3.14, 3.15, 3.16 and 3.17 on pages 55 to 58 show colour photographs of some of the
warm water process components.

3.2. The Warm Water Process Plant

3.2.1. Physical Description

The warm water process plant consists of twofibreglass tanks - the hot reservoir tank
and the process reaction tank - three actuators and six sensors. All pipes used within
the plant are copper, with a diameter of 0.5 inchs. Figure 3.1 (see page 37) contains a
block diagram of the plant and Figure 3.2 shows a schematic diagram of the plant.

The hot reservoir tank is rectangular in shape measuring 80 cm by 80 cm by 60 cm
and serves as a reservoir for hot water. In order to achieve a constant pressure head
of hot water for the process reaction tank, the hot reservoir tank was found to be
necessary. The level of hot water in the hot reservoir tank is kept constant by a
ballcock valve on the inlet, thus ensuring a constant pressure head at the hot reservoir



tank outlet.

In addition, the hot reservoir tank also contains a thermocouple to

measure the temperature of the hot water. Figure 3.4 contains a schematic diagram of

the hot reservoir tank.

Hotinlet Cold inlet

Side Elevation

Figure 3.3 - Schematic diagram of the process reaction tank.

Plan View

Side Elevation

—(t) Thermocouple

............ Outlet

* 4 - Ballcock valve

Scale 1:40

Figure 3.4 - Schematic diagram of the hot reservoir tank.
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The process reaction tank is of a cylindrical construction with a height of 180 cm and
an inner radius of 17.4 cm. This tank has an inlet for both hot and cold water, each of
which is situated freely over the top of the tank. The outlet is situated approximately
10cm above the bottom of the tank. Figure 3.3 (see page 39) contains an exact
graphical description of the process reaction tank. The process reaction tank contains
a level sensor and a Resistance Thermometer Device (RTD) as a temperature sensor.
Although normally standard for any mixing tank, the process reaction tank possesses
no device to ensure proper mixing of the two inlet flows. Due to this lack of a mixing
device and the long cylindrical geometry, temperature gradients along the length of
the tank are to be expected.

3.2.2. Actuators

The actuators utilised in the warm water process are the cold inlet valve, the hot inlet
valve and outlet valve. All three of these valves are pneumatically powered with the
actuating signal originating from a 4-20 mA current loop.

The valve used for control of the cold inletflow is the Masoneilan Varipak 28000
series. As this valve is pneumatically powered, a Foxboro current to pneumatic
converter - model E69F-BI2 is is also used [69], One of the more interesting features
of this pneumatically controlled valve is the facility to adjust the value of the valve
discharge co-efficient Cv [70].

For control of the hot inletflow, a pneumatically controllable valve from Sensycon
23/16 series has been combined with a Sensycon electropneumatic valve positioner -
type 23/55-21 [71,72]. The valve has exchangeable plug and seal, the option of an
electric motor actuator, the choice between linear and equal percentage characteristics
and air to open or air to close operation.

The outletflow is controlled by a Masoneilan Camflex Il Series 35002 valve together
with a Masoneilan series 4600 pneumatic positioner. The valve is characterised by its
eccentrically rotating plug. The series 4600 pneumatic positioner allows the choice
between air to open and air to close, as well as linear, split linear or equal percentage
characteristics [73,74],

3.2.3. Sensors
The warm water plant possesses a total of eight sensors.
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Two of these are for temperature measurement :

1. the temperature sensor in the hot reservoir tank and

2.  the temperature sensor in the process reaction tank.

There are five sensors for flow measurement:

3. the flowmeter in the hot inlet line,

4, the flowmeter on the cold inlet line,

5. the flowmeter in the outlet line and

6., 7. the variable area flowmeters in both hot and cold inlet lines.

One sensor for level measurement is also utilised :

8. the level sensor in the process reaction tank.

Apart from the two variable area flowmeters, all sensors transmit their corresponding
signals by means of 4-20 mA current loops. These loops offer the advantage of a very
high signal to noise ratio as the signal is proportional to a current, but necessitate
signal conditioning to convert the signal from a current to a voltage to enable further
processing by an analogue to digital converter. The six plant sensors are described in
Sub-Sections 3.2.3.1 - 6.

3.2.3.1. Temperature Sensors

Both temperature sensors, one installed in the hot reservoir tank and the other
situated in the process reaction tank, are manufactured by Bush Beach Engineering.
The hot reservoir utilises a PtlOO RTD whereas the process reaction tank contains a
type K thertnocouple, both sensors have ranges of 0° to 100° Celcius. The two
sensors consist of a connection head, a head mounted 4-20 mA transmitter and
stainless steel jacketed probes in fabricated stainless steel pockets. The immersion
length of both probes is 15 cm [75], An external voltage source in the current loop in
order to power the 4-20 mA amplifers is required for both devices.
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3.2.3.2. Variable Area Flowmeters

In order to give some visual indication of the hot and cold inlet flows, both the hot
and cold inlet lines contain variable area flowmeters. These flowmeters are
manufactured by Perflow Instruments Ltd and are both from the MAJOR range, type
FR6S with a measurement range of 0.03-0.36 L/sec. [76],

3.2.3.3. Hot Inlet Flowmeter

The hot inlet flowmeter is a turbine flowmeter - model 1/2-82T4E4 from Foxboro
combined with an analogue amplifier of type PA420. A measurement range of
4.5 - 45 L/minute is typical for this device. Some further constructional specifications
are: ball-sleeve bearing, a 17-4 PH stainless steel rotor and a tungsten carbide rotor
shaft [77]. A 4-20 mA current signal proportional to the signal from the turbine
flowmeter is transmitted by the amplifier [78], As in the case of the temperature
sensors, an external voltage source must be placed in the current loop in order to
power the 4-20 mA transmitter.

3.2.3.4. Cold Inlet Flowmeter

The concept of the Venturi meter [79] is used to measure flow on the cold inlet. The
orifice in the cold inlet supply is constructed from 3 mm thick 316 stainless steel and
the orifice characteristic is in accordance with BS1042/ISO 5167 [80]. Fluid from
both sides of this orifice is fed to a differential pressure measuring device - 843 DP-
B211SS Cell TRANSMITTER from Foxboro. This transmitter has low/high span
ranges of 0-25 and 0-100 psi, an upper range limit of 100 psi [81] and requires an
external voltage source within the 4-20 mA current loop for operation.

3.2.3.5. Process Reaction Tank Level Sensor

The level sensor contained in the process reaction tank functions through the use of a
magnet-operated float switch. This sensor consists of a long tube which spans the
length of tank and contains a set of resistors in series, each of which can be connected
to ground through a magnetic switch. A float containing a magnet and which can
move freely along the tube swims atop the fluid in the tank and closes the magnetic
switch in its vicinity. Thus, using the potentiometer method, the voltage dropped
across the resistance between the top of the sensor tube and the float is proportional
to the level of fluid in the tank. The signal from this level sensor is not continuous but
discrete in nature with a resolution of two centimetres.
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KSR Kuebler Control Engineering Limited manufactures the level sensor utilised in
the process reaction tank [82], The main constituents of the sensor are a two metre
length of AEV2-VK12-L2000-SV tubing and a 4-20 mA transmitter of type MUA. In
order to power the transmitter an external single rail voltage of between 15 and 30
volts must be connected to the amplifier supply terminals [83]

3.2.3.6. Outlet Flowmeter

For measurement of the outlet flow a magnetic flowmeter is utilised. Magnetic
flowmeters are suitable for the measurement of volumetric flow rate of electrically
conductive liquids. The complete flowmeter consists of a Foxboro Magnetic Flow
Tube Model - 801H-WCR-AG and a Foxboro magnetic flow transmitter Model -
8000P-B13-G. The transmitter uses a pulsed DC technique in order to excite the
8000 series flow tubes. The output signal of the transmitter can be either a 4-20 mA
current or a pulsed output. The transmitter contains its own power supply and thus
no external voltage source is necessary within the 4-20 mA current loop [84,85].

3.3. Computer Interface Circuitry

3.3.1. Description of Computer

The computer used for the control of the plant is an IBM compatible PC from
Siemens-Nixdorf. This PC possesses an Intel 80486DX2 50MHz microprocessor
which includes an 80387 mathematical co-processor on chip. The system bus is
constructed according to the VESA Local Bus specification. In addition to two
VESA local bus slots there are 4 standard ISA bus expansion slots which permit the
addition of additional peripheral devices to the computer bus. In order to allow the
interfacing of the plant transducers and actuators to the computer both analogue to
digital and digital to analogue converters to fit the ISA expansion slots were
purchased (see Sections 3.3.2. - 3)

3.3.2. Analogue to Digital Converter

An analogue to digital converter (ADC) was necessary in order to allow the
interfacing of the plant transducer signals to the computer. Specifications deemed
suitable for the ADC card are listed below :

. Number ofchannels - at least six channels were required for full interfacing of all
transducers.
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Converter resolution - 12 bits were deemed to be suitable. This corresponds to
a voltage of 4.883 mV/bit for a bipolar input with a range of £10 volts.

Interrupt facility - data acquisition should be performed via a hardware
interrupt. Through a system hardware interrupt, data acquisition can take place
in the background, without any form of polling.

Self-timer - the required hardware interrupt should be triggered by an on board
programmable timer. This allows a simple specification, and if need be, the
modification of the required sampling time for the controller algorithms.

software drivers - in order to increase the ease of programming, software drivers

for the ADC card in the ¢ programming language were required.

The PCL-812PG ADC from the company Advantech with sixteen single-ended

bipolar input channels, 12 bit resolution, interrupt facility, on board timers and

software drivers fulfilled all of the above criteria [86].

3.3.3. Digital to Analogue Converter

In order to drive the plant actuators with the computer, a digital to analogue

conversion card is required. The required criteria for the digital to analogue

conversion card are detailed below:

Number of channels - at least three analogue output channels were required for
the plant.

Resolution - 12 bits resolution.

4-20mA output capability - all outputs should be in 4-20mA current loop form to
minimise the need for further signal processing.

Software drivers - to permit ease of programming software drivers in the C
programming language.

The digital to analogue converter purchased was the PCL-726 DAC card, also from

the company Advantech. This card has 6 output channels each with 4-20 mA current
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loop capability and 12 bit resolution. Due to the simple register structure of the
board, no software drivers were required [87].

3.4. Signal Processing Board

3.4.1. Introduction

This section describes the signal conditioning circuit that was developed in order to
create the interface between the plants transducers and the analogue to digital
conversion (ADC) board. As previously described, all transducer signals are
transmitted by 4-20 mA current loops. The ADC possesses 16 single ended bipolar
inputs which require a voltage as an input signal. The four main functions of the

signal conditioning board can be summarised as follows :

. current to voltage conversion,

. voltage amplification,

. anti-aliasingfiltering and

. offset voltage compensation.

The realisation of these four functions is described in detail in the following Sections
3.4.2. - 5. A complete schematic diagram of a single channel of the signal processing
circuit is shown in Figure 3.5 (see page 47).

3.4.2. Current to Voltage Conversion

Current to voltage conversion of the 4-20 mA signal is achieved by placing a resistor
in series within the 4-20 mA current loop. The voltage dropped across this resistor is
given by equation (3.1).

v = IsignalR where R = R1 + RV1 (3.1)

The values of R1 and RV1 should bechosen inconjunction withthe values for the
load impedances specified by the different sensor amplifiers.A valueof 470 £2 for R1
was chosen for all current loops [75,78,81,83,84], The overall gain of signal
conditioning board was then specified so that the input range of the ADC is matched
by that of the output voltage of the signal processing board. The value of unity
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chosen for the overall gain of the complete circuit in conjunction with a 500 Q series
resistor in the 4-20 mA current loops gave rise to a voltage range of 2.5-12.5 volts for
a 4-20 mA current input signal. This range is converted to 0-10 volts by the second
amplifier stage. The variable resistor RV1 was placed in series with R1 so that errors
due to tolerances in R1 could be adjusted to a minimum.

3.4.3. Voltage Amplification

The circuit consists of two amplification stages.

The first stage is a single instrumentation amplifier based around the operational
amplifier A1 [88,89]. The gain of this stage, GainAl, neglecting CIl is given by
equation (3.2).

V2~ M where VU=V 2-V,
K3+RS | R2
. R4
Gain,. =— where R2 = R3 and R4 = R5 (3.2)
A R5

The gain chosen for this instrumentation amplifier was 0.45. This value helps to
maintain the linearity of the stage as the output voltage does not approach the supply
voltage. The capacitor Cl contained in the negative feedback loop reduces the high
frequency gain of the stage and thus improves noise rejection [89,90].

R1
+15v*  WMAr
A%
R12
-15v «— c3
Transducer cl
[ I'signal R4 R8 -\é{v\r)2 \Q%-
— Wvv-H “wme i
RL R6 R7 Vout
R3 Al
RVI rWr
yrd dz C2 r9
Optional power supply
for transducers without
an internal power supply Opamps Al and A2 are Tl 071 types from Texas Instruments

Figure 3.5 - Schematic diagram of a single channel from the signal conditioning board.

The second stage in the signal conditioning circuit is an inverting summing amplifier
built around operational amplifier A2 [89]. This amplifier stage possesses two
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summing inputs with seperately definable gains. The overal gain of this stage is given

by equation (3.3) and has a value of 2.75.

mo + RV2
GamA2 = - (3.3)

This results in an output voltage range of 2.5-12.5 volts. The variable resistor RV 2
sited in the negative feedback loop of A2 allows the reduction of any gain errors
resulting from resistor tolerances in both amplification stages. As in the
instrumentation amplifier, the capacitor C3 in the feedback loop reduces the high
frequency gain of the stage helping to ensure stability. The resistor R9 is inserted in
the non-inverting input to ground and serves to reduce the effects of bias current drift

[89,90]. Its value is given by equation (3.4).

R9- R*-M<RV2+R10)
R8 +R7 +(RV 2+ RIO)

3.4.4. Anti-Aliasing Filtering

A simple first order passive anti-aliasing filter based around the RC pair R6 and C2
has been inserted between the two amplifier stages. This configuration offers a good
compromise between circuit complexity and performance. The cut-off frequency f.is

given by (3.5).

Hz (3.5)
2-n R6 mC2

BODE PLOTTER
IMAGNITUDE | PHASE

VERTICAL HORIZONTAL
wranxiTi H»M | TfFn

O» Ft 10 .kH-n
It 11 10 .nmiHz |

EB c -45.0»
ODO[ 1.66 HZ —1

INPUT OUTPUT

B S 5 B

Figure 3.6 - Simulated Bode plotofone channel of the signal conditioning circuit.

The value of R6 should be kept low with respect to R7 as it otherwise contributes to
the gain of second stage. Figure 3.6 shows the simulated phase response of one

channel of the signal conditioning circuit. This Bode plot was calculated by the circuit
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simulator "Electronic Work Bench". The response is first order with a crossover
frequency of 1.66 Hz - the cross hairs are positioned on this point. W ith the resistor
R6 equal to 47 k£2 and C2 equal to 2.2 |iF, the theoretical crossover frequency
calculated using equation (3.5) is 1.539 Hz. The simulated crossover frequency, as
described above, is 1.66 Hz. Thus the anti-aliasing filter functions as expected when
positioned between the two amplifier stages. The crossover frequencies for each of

the six channels are detailed in Appendix A.

3.4.5. Offset Voltage Compensation

Because the transducers transmit their signals over 4-20 m A current loops the output
voltage range of the signal processing circuit is 2.5-12.5 volts. By introducing 2.5
volts at the other summing inverting input of A2 this range is shifted to 0-10 volts.
This offset voltage is provided by the potential divider consisting of resistors R II,
R 12 and RV3. RV3 allows the fine adjustment of the offset voltage within the limits
set by RIl and R12. These limits, VOp etHigh and VOffsetlow , are expressed in

equation (3.6) and (3.7).

v* m*12
omm ru + R12 + RV3

Vv = — (3.7)
ftUuw  RIl + R12 + RV 3

3.4.6. Circuit Simulation, Construction and Calibration

ANALOG CIRCUIT: Jiccanp ~IJ

lgD || * W H

-<3>

W

<

Figure 3.7 - Electronic Workbench simulation of the signal processing circuit.

All initial designs of the circuit were simulated using the software package Electronic

Workbench, see Figure 3.7 above. Following successful simulation the prototype of
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the signal conditioning board was constructed on Vero-Board. Using a high precision
multimeter - Hewlett Packard 3478A - the current conversion resistors for all six
channels were adjusted to a value of 500 Q. Using a constant voltage source the
gains and offset voltages of all six channels were altered to give the required output
voltage range of 0-10 volts. All component values and specifications are contained in

Appendix A.

3.4.7. Power Supply Circuits

Power supply circuits were designed and built for the signal conditioning am plifier, for
the level meter amplifier, see Section 3.2.3.5, and for the four transducer current
loops that required an external series supply voltage. To power the level meter and
the four current loops, a single rail DC voltage of 24 volts was required. For the
signal conditioning circuit a dual rail supply of +15 volts was necessary. Figure 3.8

(see page 50) shows the schematic diagrams for both power supply circuits.

The component types and specifications for both power supply circuits are listed in

Appendix A.

3.5. Interrupt Driven Interface Software

Having designed and built the signal conditioning board, software was required to
enable data acquisition, ADC and DAC card control and the investigation of closed
loop control strategies for the warm water process. The basic requirement for this
software was that the hot, cold and outlet valves could be controlled independently.
The time constants of these valves are of the order of 0.5 seconds, where as those of

the flow and temperature variables for the process reaction tank are of the order of

49



500 seconds. Due to this large difference in the plant time constants, a Mmulti

sampling rate controller structure was deemed to be necessary.

There are two common approaches to data acquisition and control software structure
- data polling and an interrupt service routine.

The data polling approach is the simpler option. The main program is run and when
finished a timing loop waits for the completion of sampling, at which point the data is
logged and the main program restarts. The main disadvantages associated with this
method are the fact that the micro-processor must actively wait and that the execution
time of the main program must be shorter than the sampling period.

The interrupt service routine approach, whilst requiring more complicated software,
is a more elegant technique. An external source triggers an interrupt service routine
(ISR) function which can be user defined. This ISR can, for example, be designed to
perform data acquisition and control. The ISR technique eradicates the waiting
intrinsic to data polling and allows the main program to have effectively any temporal
length, providing the ISR execution time is sampling period. The difference between

the polling approach and the interupt service routine is depicted in Figure 3.9.

Data Ready
Main Programme Wait
Tsample
Time
Data Polline Approach to Data Aquisition
Interrupt
Service
Routine
aTsample
o J, , J , J,J
Main Program(n) Main Prograni(n+l) Main Program(n+2)
Time
Interrupt Service Routine Approach to Data Acquistion
Figure 3.9 - Interrupt driven software and the data polling approachs to data

acquisition.

Based on these considerations, an interrupt driven system was adopted for the data

acquisition and control requirements of the warm water process. This choice allows

background control of the two inlet valves and the outlet valve whilst control of the

50



process reaction tank and other functions such as graphics and user input can be run

in the foreground.

The Advantech PCL 812PG ADC card possesses integrated timer/counter functions,
provided by the on board Intel 8253-5 timer-counter chip. The 8253-5 has three user
programmable 16-bit timer/counters each with six different modes. More detailed
information about the Intel 8253-5 is contained in [91]. Counters 1 and 2 in the PCL-
812PG ADC have been cascaded together and aquartz crystal clock, with an
oscillation frequency of 2 M Hz, serves as an input to counter 2.Thus, theuser can
program the cascaded 16 bit counters 1 and 2 to provide a rate generator with a
period of between 35.79 minutes and 500 nano-seconds. This rate generator can be
then used to trigger one of the PC interrupt request lines, i.e. IRQ2 to IRQ7. The
counters can be programmed either by direct register addressing or through the

software drivers provided with the ADC card.

To enable an external interrupt on the IBM PC and to install a user defined interrupt
service routine, several steps are necessary. Detailed instructions and explanations for

this procedure can be found in [91,92].

For data acquisition and control of the three valves, a sampling time of 0.05 seconds
was implemented. The procedure used for the installation of the interrupt service
routine to be triggered on IRQ7 by the Advantech ADC card is described by the

following :

. Setjumper on ADC card for IRQ7.

. Program the 16 bit counters 1 and 2 with 100I0and 1000ICespectively in rate
generator mode (Counter mode 2) using direct register addressing, this sets the

desired sampling time of 50 milli-seconds.

. W rite the Interrupt Service Routine function and declare the function to be an

interrupt using the AN SI C keyword interrupt:

void interrupt FunctionName(void)
.
}

. Disable all PC interrupts with the ANSI C function disable().
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. Save the current IM R register value (Address Hex 21) and unmask (set to zero)

the IRQ 7 interrupt flag in the IM R, thus enabling the IRQ 7 interrupt request line.

. Save the old interrupt vector for IRQ7 and replace it with the user defined

interrupt service routine using the AN SI C function setvect() .

« Reenable all PC interrupts with the ANSI C function enable().

The user defined interrupt service routine will now be called when an interrupt request
is detected on the IRQ 7 line. After the program has terminated, the old values of the
IM R and the IRQ7 interrupt vector should be restored in order to ensure correct
functioning of the PC when using other programmes. Two functions were written to
install and remove the user defined ISR. The source code for these functions is

contained in Appendix B.

During program execution some general system housekeeping is necessary in order to
maintain correct functioning of the (ADC card driven) interrupt service routine.
Figure 3.10 (see page 54) shows a flow chart representation of one ISR cycle. The

house keeping commands are explained as follows :

- Reset ADC Card interrupt request register - after requesting an interrupt this
register must be reset otherwise the IRQx line remains high allowing further

ISR instances to be created.

- Re-enable ADC card interrupt mode - this is the triggering mode of the ADC

card and must be set to interrupt mode after each ISR.

« Acknowledge interrupt to PC - this acknowledges the interrupt and allows

further interrupt processing to proceed.

In order to test the Interrupt Service Routine structure, the sampling time was set to
one milli-second and the program was run for six hours. Thus after over two million

ISR calls the software was deemed to be reliable.

Finally, it should be mentioned that all the ANSI C software should be programmed
with the compiler option for register optimisation set to NONE. Otherwise erroneous
operation of the ISR structure with eventual seizing of the PC system was observed to
occur. Further explanation of this option and all of the mentioned ANSI C functions

is contained in [92,93,94],
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Figure 3.10 - Flow chart illustration of one interrupt service routine cycle.
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3.6. Conclusion

This chapter has presented a detailed description of the constituent components of the
warm water process. The design and construction of the necessary hardware and
software for the interfacing to and control by a computer have also been detailed.
Having now completed the necessary steps to allow data acquisition and control, the

next chapter in this thesis is concerned with the modelling of the warm water process.
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Figure 3.12 - Hot reservoir tank with hot inlet valve (left) and flowmeter (extreme

left).

Figure 3.13 - Control computer with the ADC (lower) and DAC (upper) cards from

Advantech.
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Figure 3.14 - Cold inlet valve.

Figure 3.15 - visual flowmeters from Perflow.
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Figure 3.16 - Outlet flow control valve from Masoneilan.

Figure 3.17 - Outlet flowmeter from Foxboro.
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Chapter 4 - Warm Water Process Modelling
4.1. Introduction

4.1.1. General Introduction

In order to facilitate the design and simulation of a controller for a given plant, some
form of mathematical model of the plant is required. The warm water process being a
multivariable real world system represents a challenging modelling task. The mass
flow of the system is characterised by a predictable non-linear response. The thermal
energy behaviour of the process is strongly non-linear. This is due to the combination
of the lack of a mixing device and the long and narrow geometry of the process
reaction tank. In addition, the thermal energy response is strongly coupled with the
mass flow of the system - being dependent on the hot and cold inlet flows. Four
modelling options were applied to the warm water process - this chapter presents
these strategies and their corresponding results. These different approaches allow
diverse characteristics of the process to be examined, resulting in a better overall

model of the plant.

The first option for modelling a given plant is the derivation of a system modelfrom
physical first principles. Through this derivation the structures of the model
equations are obtained and the associated parameters are then acquired either through

derivation or determination from suitable experiments on the plant.

Vector Mapping Methods (vM M) or connectionist methods represent a second
option. The VM M associates output data with input data and thus learns a function
from its input and output data without a priori knowledge of the function. One
example is the Artificial Neural Network (ANN) of which one commonly used
architecture is the feedforward Multilayer Perceptron (M LP). It has been shown that
a three layer M LP can model a non-linear function to an arbitrary degree of accuracy
[95]. During training the M LP is presented with both input and output data, and
through the utilisation of a learning algorithm - often a modified gradient descent
method such as the backpropagation algorithm - the connecting weights of the
network are adapted to reduce the mapping error for the complete set of input and
output data vectors. The user must choose the input and output vectors, the network
structure and the learning method. When using an ANN for plant modelling, the data
set used for training the neural network should contain state information from as
much of the plant state space as possible, thus helping to guarantee the generality of
the ANN model. As the science of neural networks is relatively new, no general

theory exists to assist the user with the choice of the these network structures and
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parameters, thus intuition and experience play key roles in successful application of

this modelling technology.

A third option and a more recently developed modelling choice is thefuzzy model. As
in the case of the ANN model, the fuzzy model maps an output data vector to an
input data vector and has been termed afuzzy associative memory [96]. The inputs to
the model, the number and shape of membership sets for each variable, the logical
operators, the storage method for the rulebase, the learning algorithm and the

defuzzification method all need to be specified by the user.

The fourth option for modelling of the warm water process is that of linear system
identification. This involves the determination of both the structure and parameters
for a model through tests on the plant. One wide spread example of a model structure
is that of a second order model with dead time. The open loop gain, natural
frequency, damping coefficient and dead time coefficient can be determined by
exciting the system with, for example, a combination of white noise and a square
wave. This method is applied indirectly to the warm water process - through
identification of the ARX models of the ANN model of the warm water process in
simulation. This method, although applied indirectly, helps to gain insight into the

dynamics of the process.

4.1.2. Overview of Chapter Structure

The following Section 4.2. of this chapter concerns itself with the calibration of the
flowmeters of the warm water process. The design of Pl controllers for the control of
the flow through the hot and cold inlets is contained in Section 4.3. Following this,
the method used for data acquisition from the warm water process is presented in
Section 4.4. The derivation of a warm water process model from physical first
principles is detailed in Section 4.5. Development and evaluation of an artificial
neural network (ANN) model of the warm water process is outlined in Section 4.6.
The M ATLAB simulation of this ANN model ofthe warm water process is detailed in
Section 4.7. The description of the development of linear first order ARX models of
the warm water process around an operating point is found in Section 4.8. The
development of a strategy for on-line adaptive fuzzy modelling, termed supervised
adaptive fuzzy modelling, is elaborated upon and analysed in Section 4.9. This
development is performed by analysing different types of fuzzy models for a simple
first order system. The use of the developed adaptive fuzzy modelling approach in
developing separate fuzzy models of the mass flow and thermal behaviour of the

warm water process and the corresponding modelling results are detailed in Section
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4.10. The last Section 4.11. summarises the results from the four modelling methods

and concludes the chapter.

4.2. Flowmeter Calibration

This section describes the tests undertaken to calibrate the inlet and outlet flowm eters.
As initial characteristics, a first order polynomial function was used for both the
outlet and hot inlet flowmeters. This is due to the fact that both turbine and magnetic
flowmeters have a linear relationship between the actual flow and flowmeter output
signal. A second order polynomial function was utilised for the cold inlet flowm eter,
as the pressure drop across an orifice with respect to the flow follows a squared law

function [97].

The determination of the exact characteristics of the hot and cold inlet flowmeters

was carried outusing the following method applied to each flowmeter separately:

1. The process reaction tank was emptied.

2. The outlet valve was then closed and the tank was filled with a constant inlet
flow measured by the PerFlow visual flow meter. During this time the flow
signal from the flow meter to be calibrated, the main process tank level signal
and the time were logged.

3. W hen the level in the tank reached 150cm the measurement was terminated.

4. This procedure was carried out separately for each flow inlet at selected flow

values over the full range of inlet flows.

Using the data gathered in the above test the volume of water that flowed into the

tank during each trial can be calculated in two wavs :

* calculation of the change in volume using the start and finish levels

* integration of the flow signals over the time period of the measurement

These two methods are represented by (4.1) and (4.2).

Vuvel = nr2 (LevelFinish ~ LevelStart) 4-1

61



(finish

VHidV= 1 Flow(t) dt (4.2)

0
where VLevel *s the tank volume calculated by the level method,

VHow is the tank volume calculated by the flow method,

r is the tank radius,

LevelFinish is the final tank level value,

LevelSlart is the initial tank level value,

F|OW('[) is the flow of flowmeter to be calibrated and

tstart,tfinish  are the times required for the experiment.

For a correctly calibrated flow sensor, the two volumes and V Row, should be
equal, assuming a constant flow rate between data samples. Application of (4.3) to

the data from the flow sensors allows a correct recalibration:

/\<<:./\_('J*’,(O (4.3)
VFlow
where Fcal(t) is the calibrated flow value and

FdatdO is the uncalibrated flow data.

The data collected in this experiment is listed in Table 1 in Appendix C.

To interpolate between the values delivered by the ADC and the physical flow values
using the units m3s’l, polynomials were fitted to the data derived from the re
calibration. The polynomials were obtained from the M ATLAB 4.0 [98] function
polyfit() - equations (4.4) and (4.5). The order of polynomial (4.4) was set to first
order - this was based on the Order of the Measurement Principle. The polynomial
used for the determination of the cold inlet flow is third order. This contrasts with the
order of the physical measurement principle - but gives superior accuracy. These
polynomials replaced the initial characteristics and were wused for all further
experiments in this research. Figure 4.1 (see page 63) depicts the characteristics for

each flowmeter obtained from the empirical method described above.

Fhot(X) = 0.35866 X (4.4)

where X is the value from the ADC and

Fhot(X) is the calculated flow for the hot inlet.

Feold(X) =1.3307x10"10 X 3-3.5008x10-7 X 2+3.9994x10"* X (4.5)

where Fcold X ) is the calculated flow for the cold inlet.
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In order to calibrate the outlet flow meter, the data for the valve position of 100%
taken from the experiment described in Section 4.5.1.1 was used. Both (4.1) and
(4.2) were applied to this data set. Based on the physical measurement a linear
characteristic for the outlet flow meter was assumed. The calibrated outlet flowmeter
characteristic is given by (4.6) and was derived from the results given by (4.1) and

(4.2).

AOMF(X) = 0.972 X (4.6)

where Fout(X) is the outlet flow value.

4.3. Valve Linearisation

As described in Chapter 3, three valves are used to regulate the inlet and outlet flows
of the plant. In order to be able to maintain inlet flow at constant values a closed loop
control strategy was decided upon. Proportional-Integral-Derivative (PID)
controllers were thus designed for the hot and cold inlets. As the time constants of
the inlet valves are of the order of 0.5 seconds, it was necessary to execute these
controllers within the interrupt service routine, as described in Chapter 3, at a

sampling time of 0.05s.

The idealised continuous time form of the PID controller is given by (4.7).

I f. de(t
u(t) =K e(t)+—\e(x)d% +Td ® (4.7
Vo dt
where u(t) is the controller output value,

e(t) is the error value (controller input),
K is the proportional gain,
Tj is the integral time constant and

Td is the derivative time constant.

Based on the equations for digital PID algorithms given by Astrom and Wittenmark
[99] digital PID controllers were implemented within the interrupt service routine.
The proportional, integral and derivative terms are all calculated separately and the
controller output is the sum of all three. Equation (4.8) shows the calculation used

for the proportional term Up(n).

uP(n) = K[bUc(n)~ y(n)\ (4.8)



where Uc(n) is the setpoint,
y(n) is the output from the plant and

é is a gain less than or equal to unity.

The integral term Urfn) is given by the equation (4.9).

@9

where TS is the sampling time and

e(n-I) is the previous error value.

The derivative term of the PID controller is given by equation (4.10). The gain of the
derivative term is limited at high frequencies and the plant output is differentiated

instead of the plant error - thus avoiding disturbances from setpoint changes.

where N is a gain of between 3 and 20.

u(n) =up(n) +u,{n) + ub(n) (4.11)

The output of the controller, u(n), is given by (4.11). A problem often encountered
with the PID controller is integral Windup. One simple solution for integral windup is
to stop updating the integral term of the PID controller if the value of controller
output exceeds predefined boundaries. These limiting boundaries can be set to
correspond to actuator saturation. This solution to integrator windup was
implemented along with the PID algorithm as given by (4.8,9,10,11) for the control of

the hot and cold inlet flows.

Output Limiting

High
Error

Controller ouput

Limit Intégral Term

Figure 4.2 - PID controller structure for inlet valve flow control.
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To facilitate the design of these PID controllers it was necessary to investigate the
steady state response of each of the two inlet valves to current signals of various
amplitudes. Thus the following experiment was carried out for each of the inlet

valves:

1. The main tank was emptied.

2. The signal to the valve of the inlet under test was set to a value of zero.

3. Every 30 seconds the valve control signal was incremented by the integer of
value of 50 (over the DAC output range of 0 to 4095) and the inlet flow was

measured.

4. For each increment the value of flow through the inlet was logged.
Incrementation ceased after the DAC output value of 4095 was reached

(maximum value).

3,00E-04 =
2,50E-04
45 2,00E-04

1.50E-04

emm

E 1.00E-04

5,00E-05
0,00E+00 -
0 o o 0 o] ] (o] o]
o 0o 0o 8 W gn m
e H foN BN cn co

Valve Input Signal from DAC - Integer

Figure 4.3 - Steady state flow characteristics for the hot and cold inlet flows.

Figure 4.3 shows the steady state characteristics of the hot and cold inlets. Based on
the results of these experiments the limit values of the PID controller outputs for the
anti-integral windup mechanism for the inlet valves were determined. These values
are listed in Table 4.1. Figure 4.2 (see page 65) shows the structure of the PID

controller used for control of the hot and cold inlet flows.
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The controller constants were adjusted empirically on the actual warm water process
by first setting the integral and derivative gains to zero, slowly increasing the
proportional gain and observing the corresponding inlet step response. The integral
gains were adjusted in turn. As the responses of these Pl controllers were adequate,
the derivative gains were not used. Figures 4.4, 4.5 and 4.6 show the responses of
both the hot and cold inlet Pl controllers to setpoints of 20 ml/s, 100 ml/s and 140
ml/s. The values of the controller parameters thus achieved are listed in Table 4.2
(see page 65). The values of the controller parameters of b and N as given in (4.8)

and (4.10) were 1 and 4 respectively.

0 >n 0 *n
< 1 cs cs

Time (s)

Figure 4.4 - Hot and cold inlet Pl controller responses for a flow setpoint of 20 ml/s

from the warm water process.

1.20E-04
1.00E-04
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2.00E-05
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C2 0 0 o o
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I-H r-H
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Figure 4.5 - Hot and cold inlet Pl controller responses for a flow setpoint of 100 ml/s

from the warm water process.
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Figure 4.6 - Hot and cold inlet Pl controller responses for a flow setpoint of 140

ml/s from the warm water process.

Table 4.1 - Limit values for integral windup - D AC integer values.

Lower Limit Ujnw Upper Limit Uhioh
Hot Inlet 150 3000
Cold Inlet 50 3500

Table 4.2 - PIP controller parameters for the hot and cold inlets

Proportional Gain Integral Gain Derivative Gain
Hot inlet 4x 106 3.0769 x 105 0
Cold inlet 5x 106 1.25 x 105 0

The response of each of the inlet Pl controllers differs around various operating

points. This is due to the non-linearity of the inlets arising from

. Deadtime - each inlet has an inherent deadtime due to the physical distance
between the valve and the flowmeter. This deadtime is inversely proportional to
the flowrate as can be seen by close examination of the controller responses in
Figures 4.4 - 6. The deadtime for a flowrate of 20 ml/s, assuming a distance of

20cm between the valve and flowmeter, is approximately 1.5 seconds.

Non-Linear Valve and Flowmeter Characteristics - both inlet valves and
flowmeters have non-linear steady state characteristics as can be seen clearly in

Figure 4.3 (see page 66).
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Hysteresis - this non-linearity is typically found in mechanical systems and thus
contributes to the non-linearity of the inlet valves. Hysteresis of the hot inlet

valve and turbine flow meter can easily be seen in Figure 4.3 (see page 66).

4.4. Choice of the Sampling Time for the Warm Water Process

In order to collect data from the warm water process, a data acquisition program was
written. For this data acquisition programme, the interrupt driven software structure
as described in Section 3.5 combined with the PI controllers from Section 4.3 were
utilised. An important parameter for the data acquisition and for warm water process
control, is the sampling rate. In order to determine the suitable sampling rate and to
gain more insight into the dynamic behaviour of the warm water process, an initial set
of step tests on the warm water process were carried out. Initially a sampling rate of
two seconds was used for these tests. This value was chosen as its maintains a good
signal to noise ratio and, based on the physical model of the warm water process, is

small enough to allow the observation of the plantdynamics.

th

o
0w

(N N
Time(s)

Figure 4.7 - Response of the outlet flow of the process reaction tank to a step input of

40 ml/s at the hot inlet flow.

Figures 4.7 and 4.8 show the outlet flow and temperature responses for a step test of
40 ml/s at the hot inlet. Assuming first order with dead time system responses, the
time constants for outlet flow and temperature from these responses are 540 and 594
seconds respectively. Thus a sampling time of 30 seconds was decided upon for data

acquisition from and closed loop control of the warm water process. This value is
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smaller than one tenth of the dominant time constants of both the outlet flow and

temperature variables.

4.5. Warm Water Process Model from Physical First Principles

The warm water process can be described by a set of mass flow and thermal energy
equations which can be derived from physical first principles. These physical first
principles model equations have a given structure whereby the equation parameters
must be either mathematically derived or determined through suitable tests on the
warm water process. The warm water process can be described as multivariable with
coupling between the outlet variables i.e. outlet flow and outlet temperature. The

general form of the physical first principles model is given by (4.12)

Fay(t) =fAF ood(t), Fhot(t)} (4.12)

Toul(t) = f 2{Foold(t),F hol(t)}

where Fout(t), Tout(t) are the first derivatives of the outlet variables,

/y,l2 are the functions of the inlet flows

This section describes firstly the derivation of the physical first principle modelling

equations for both the mass flow and the thermal energy behaviour of the warm
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process. Following this, the experiments used to determine some of the modelling
parameters are iterated. Finally, a description of the programmed simulation of the
warm water process in the MATLAB/SIMULINK environment and comparisons with

real plant behaviour are presented.

4.5.1. Mass Flow Equations
The mass (low behaviour of the process reaction tank and its outlet section including
pipe line, flow transducer and outlet valve under the assumption of lumped outlet

losses and turbulent flow can be described by (4.13) and (4.14), see reference [100],

F.Jt) = C,A"2gh(t) (4.13)

= Fc,um + AFoW - F,,.,(() (4.14)

where g is the acceleration due to gravity,
Cvis the coefficient of discharge of the process reaction tank,
AZ2is the cross sectional area of outlet of the process reaction tank,
Atank is the cross sectional area of the process reaction tank and

h(t) is the head of water in the process reaction tank.

The constant CV is the coefficient of discharge of the process reaction tank and is
dependent on the losses in the outlet line including the outlet valve, outlet flowmeter
and the outlet pipe when these are lumped at the process reaction tank outlet. The
parameter A2 represents the effective area of the tank outlet. Due to the lumped
losses assumption, thisvalue is not only a function of the tank outlet diameter but also
of the outletvalveposition. The parameter Atank is the area of the tank in square

metres and was calculated from the measured diameter of the tank.

4.5.1.1. Determination of Mass Flow Parameters Cvand A2

To investigate the validity of the mass flow equations as detailed in Section 4.5.1 and
to calculate the value of the product of the mass flow parameters Cv and A2 the
following experiment was carried out on the warm water process for four different

outlet valve positions:

1. The outlet valve of the process reaction tank was closed.

2. The process reaction tank was filled to a level of approximately 150cm .

3. The position of the process reaction tank outlet valve was set to 100% .
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4. The process reaction tank was allowed to empty while the level h(t) and

outlet flow Fout(t) data were logged.

5. Steps 1 through 4 were repeated for the other three process reaction tank

outlet valve positions of 75%, 50% and 25% .

From the results obtained it was possible to calculate the C)AZ value using equation

(4.15) which is derived from (4.13).

CA=A8>

Figures 4.9, 4.10, 4 .11 and 4.12 show the experimental values of CyA2 f°r the four
process reaction outlet valve positions obtained through the application of (4.15) to
the data gathered in this experiment. The large fluctuations at low flow and head
values are due to the decrease in the signal to noise ratio of the measurements at
lower levels. The saw tooth appearance of the characteristics is attributable to the
2cm resolution of the level meter as described in Section 3.2.3.5. To calculate the
average value of the CVA2 parameter for each valve position, only values
corresponding to tank levels above 50cm were utilised - thus omitting data with poor
signal to noise ratio. The average values of CM 2 and their standard deviations for all

measurements above tank levels of 50cm are listed in Table 4.3.

Level h(t) cm

Figure 4.9 - Plot of experimental C,4 2values at an outlet valve position of 100% .
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Figure 4.10 - Plot of experimental C Ji2values at an outlet valve position of 75%.

Level h(t) cm
Figure 4.11 - Plot of experimental C\A2values at an outlet valve position of 50%.
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Figure 4.12 - Plot of experimental C Jij values at an outlet valve position of 25%.
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Table 4.3 - Table of average CyA2values and their variances.

Process Reaction Tank Outlet Valve Position

100% 75% 50% 25%
Mean 3.62E-05 3.53E-05 2.88E-05 1.61E-05
Variance 3.58E-07 3.15E-07 2.19E-07 1.41E-07

Using the average values obtained for CMA2 from the four experiments described
above, a second order polynomial function was fitted to the four values using the
MATLAB polyfit() function. A second order polynomial was chosen as it
corresponds to the order of (4.15), which represents the physical relationship between
the outlet flow Fout(t) and the value of CV2, assuming a linear outlet valve
characteristic. This polynomial is given by equation (4.16) where the argument Vpos

is the process reaction tank outlet valve position in percent.

CVvA2(Vpos) = -4.1739xI1(T9\ pos2 7.7567x10“7 \ p0S -2.0275x1(T7 (4.16)

The polynomial (4.16) thus allows the calculation of CVA2 given the position of the
process reaction tank outlet valve in percent. Figure 4.13 shows the characteristic

obtained from (4.16) together with the four experimental values of CVA 2.

Outlet Valve Position %

Figure 4.13 - Plot of the characteristic of the calculated polynomial (4.16) for CMAg.
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4.5.2. Thermal Energy Equations

The thermal equations for the plant are non-linear and dominated by product terms of
the inlet flow and temperature variables. Assuming perfect mixing and no heat losses
within the process reaction tank, the following details the derivation of the physical

first principle thermal equations.

= pto t(o + Focold(t) _ Fom (i) (4 12)

Equation (4.17) represents the mass flow of the process reaction tank. The change in

heat within the process reaction tank due to an input flow Fin(t) is given by (4.18).

dQ“® 4 = pc Fin(t)
dt K

,n
~ Phot ¢ Fho(t) Qhot(t) + podd ¢ Faid(t) o aid(0 (4.18)

where p is the density of inflowing water,
photis the density of hot water,
pCOidis the density of cold water,
c is the specific heat capacity of water,
Qot(t) is the temperature of hot water,
OcolJ *) *s the temperature of cold water and

Qtankit) is the heat within the process reaction tank.

Assuming constant density p for the hot and cold inlet flows and constant head h(t),

with V5 = h(t) Atank where VSis the process reaction tank volume, gives :
V. = f-(") 8,,(0 + K.uit) (4.19)

Equation (4.19) can be augmented by considering both heat loss and non-perfect
mixing within the process reaction tank. Heat loss through the walls of the process
reaction tank is described by a non-linear function of the temperature difference
between the temperature of the water in the tank and the ambient temperature and the
level of liquid in the tank. Mixing dynamics are also described by a non-linear
function of all flow and temperature variables as well the level of fluid in the tank.
Thus the complete equation for heat flow in the system from first principles is given

by (4.20).
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kK °df ~ ~ Fho[()Qho[(t) + Feold(t)Qcold(t) - Qioss(ty + Qmix(t)  (4.20)

where 9 out(t) is the process reaction tank outlet temperature,
Qlossio = f (Sankit), Qambient(O, w )) and 4.2
Qmix(0= g{Qhot(t), Qcold(t), Qlank(t), h(t), Fhot(t), Fcold(t), Fout(tj}(4.22)

The physical model used in this research assumes perfect mixing. The accuracy of this
set of equations based on physical first principles is to be investigated through suitable

experiments on the plant. This investigation is described in Section 4.5.4.

453. MATLAB/SIMULINK Simulation of the Physical Warm Water Process
Model

The physical equations of the warm water plant as detailed earlier in this chapter were
simulated within the M ATLAB/SIMULINK environment. Due to the process specific
non-linear nature of the equations, user defined s-functions were written in the
MATLAB/SIMULINK macro programming language and then incorporated into a
MATLAB/SIMULINK icon. The models use the empirically derived parameters
detailed in this chapter. The macro code used for this simulation icon is contained in

Appendix D.

4.5.4. Validation of the Physical Model

To determine the nature of the accuracy of the simulated warm water process physical
model, a series of twelve step testsfor each of the outlet valve positions o f25, 50, 75
and 100% were performed on the warm water process. Before running these tests
the hot inlet and the process reaction tank outlet valves were fully opened until the
temperature in the hot reservoir tank reached an initial temperature of 40°Celsius.
This ensured that hot water was available for the step tests within the process reaction
tank, whereby the temperature of the water in the hot reservoir tank is fully dependent
on the temperature of the hot water supply. The choice of the temperature of 40°C
was based on experience with the warm water process, where the hot water supply
temperature rarely rises above 45°C. The tests performed for each process reaction
outlet valve position are listed in Table 4.4 (see page 81). The data from each of

these tests was used for two purposes :

+ to Serve as test data for evaluation of the artificial neural network model

developed in Section 4.6,
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« to evaluate the accuracy of the first principles model of the process.

The data from the step tests for a process reaction tank outlet valve position of 100%
were used to evaluate the accuracy of the simulated physical model of the warm water

process in the following manner :

1. The Step testdata was loaded into the M ATLAB workspace.

2. The inlet flow and temperature data, i.e. FcolJt), Fhot(t) and Thot(t), were used
to drive the M ATLAB/SIMULINK model of the warm water process and the
output data, i.e. Fout(t), h(t) and Tout(t), of the simulation model was logged to

the M ATLAB workspace.

3. The output data from the simulation was then compared with the experimental

output data from the step tests.

Outlet Valve .
Position © - M Time
Clock To Workspace4

Figure 4.14 - M ATLAB validation of the warm water process physical model.

Untis) Hmr(s)

Figure 4.15 - Step Test 37 : FmMlJt) = 240 mI/s and FhJt) = 140 mi/s.
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Figure 4.24 - Step Test 46 : FmlJt) = 160 mi/s and Fhn,(t) = 40 m1ss.

Tire® HE®

Figure 4.25 - Step Test 47 : FmIJt) = 80 mi/s and Fhol(t) = 40 m1ss.

TS s

Figure 4.26 - Step Test 48 : FmtJt) = 0 m1/s and Fiu,,(t) - 40 miss.

The MATLAB/SIMULINK simulation used for the evaluation of the physical model
of the warm water process is shown in Figure 4.14 (see page 77) . The Figures 4.15 -
4.26 contain the characteristics of the warm water process output variables FOU[('[) and
Tout(t) for the validation of the physical model. ToutSim and FoutSim refer to the
simulated variables. Subjectively, the mass flow physical model is seen to be relatively
accurate for all flows whereas the thermal energy physical model does not offer
accurate modelling of the real plant thermal behaviour. An objective criteria for
evaluation of the modelling capabilities of the physical models is the root mean square

(RMS) modelling errors.



Table 4.4 - Summary of step tests for outlet valve position of 100%.

Inlet Flow RMS Modelling Error
NAME Frnlit) ml/s Fhlt) ml/s F,,,Jt) ml/s Tnu,(t) Celsius
Test 37 240 140 6.43 1.91
Test 38 160 140 2.12 1.95
Test 39 80 140 3.12 0.68
Test 40 0 140 6.66 2.01
Test 41 240 90 3.40 1.30
Test 42 160 90 2.11 1.90
Test 43 80 90 4.88 1.50
Test 44 0 90 8.30 3.65
Test 45 240 40 4.49 1.57
Test 46 160 40 2.01 2.18
Test 47 80 40 4.26 1.68
Test 48 0 40 7.77 0.86

The values of the root mean squares of the modelling errors for the physical models

are listed in Table 4.4 for all the step tests.

The following conclusions were drawn from this series of tests :

. The dynamics of the warm water process are fastest when the output valve is
fully open. Thus, in order to keep future experiments within a reasonable time

scale, all future experiments were carried out with the outlet valve position at

100%.

. The dynamic and steady state accuracy of the mass flow model from first
principles was of reasonable quality. The RMS of the modelling error was
always less than 8 ml/s which corresponds to 3.33% of the range of the process

reaction tank outlet flow.

. The first principles temperature model was of poor quality. The RMS of the
modelling error had a maximum value of 3.65° Celsius. Moreover, the dynamics
of the plant were not even subjectively matched. This was attributed to the
assumption of perfect mixing made within the physical model and, to a lesser

extent, the non-measurable disturbance variable - the cold inlet temperature.
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Although the physical mass flow model gave satisfactory results, the thermal
modelling performance of the physical model was unsatisfactory. This inadequate
modelling is due to the inability of the thermal physical model to represent the mixing
dynamics of the process reaction tank. Due to this inaccuracy of the physical model,
two modelling methods from the soft computing field were applied to the warm water
process. As both of these methods are capable of modelling non-linear systems
through learning the system dynamic behaviour from a set of data, it was hoped that
more accuracy would be achieved when modelling the thermal behaviour of the warm

water process.

4.6. Artificial Neural Network Model of the Warm Water Process

This section describes the first of the two soft computing modelling methods - the
Artificial Neural Network (ANN) model. The type of ANN chosen for modelling the
warm water process is the Multi-Layer Perceptron (M LP). There were two reasons

for the choice of this ANN architecture :

« the fact that the MLP is used in more than 85% of all ANN applications [101],

. It has been shown that a three layer M LP has the capability (by adjusting the
values of the weights) of modelling any non-linear function to an arbitrary degree

of accuracy [102],

The M LP structure is characterised by its feedforward architecture which consists of
layers of neurons where a single neuron is connected to each neuron in the following
layer by a weight. Unfortunately, few guidelines exist as to the number and type of
neurons necessary in each layer to achieve accurate modelling of a function.
M oreover, convergence of learning and generalisation properties of the M LP model

of the function cannot be guaranteed.

The MLP uses supervised learning to learn the function to be modelled from the
training data set. Thus in order to train the MLP some form of learning algorithm is
necessary. The most commonly used algorithm is the back-propagation algorithm - a
modified gradient descent method [103]. As prerequisites for successful modelling

using an AN N, the following points should be adhered to :

« Temporally continuous training data - the MLP should be trained using

temporally continuous data from the system in question.
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- Datafrom the complete state space - if the MLP is to model the system over its
complete state space, then the training data should be representative of the system
state space. Data from around one operating point will only deliver an ANN

model suitable for modelling the plant around this one operating point.

Details of various other learning algorithms and network architectures that can used

for ANN modelling can be found in [104],

The main hurdle to be overcome before the application of this modelling method to
the warm water process was the time required to collect the training data. This is
normally not a problem for a plant with short time constants as enough data can be
collected over a reasonably short period of time to allow the implementation of a
global model. Due to safety restrictions, only fourteen hours of continuous data could
be collected from the plant on any one day. This corresponds to 12 setpoint changes
and only 1680 data points at a sampling rate of 30 seconds. Using the data
acquisition system as described in Section 4.4, data was thus collected over a period
of seven days. The desired hot and cold inlet flows were changed randomly every
4000 seconds. This random change was implemented so as to drive the warm water
process through as much of its .state space as possible in the hope that a global model
of the plant could thus be achieved. The process reaction tank outlet valve position
was set to 100% for the complete data acquisition process. A total of 9239 training

data set vectors were acquired throughout this experiment.

Having acquired the training data, the architecture of the MLP was decided upon.
The chosen network architecture was a recursive four layer structure (in order to

increase the resolution of the network) of neurons described by the following :

. Input Iayer - as the warm water process is predominantly first order, all variables
were represented by their present and previous values. However, due to the non-
linear behaviour of the outlet temperature variable, the hot temperature was
represented by its present, previous and previous previous values. In addition one
past output from each of the variables to be modelled, i.e. outlet temperature and
flow, served as inputs thus forming a recursive model. This gave a total of 9 input

layer neurons all with unity transfer functions.

. Two hidden Iayers - all neurons in the hidden layers have logarithmic sigmoid
function transfer functions. The logarithmic sigmoid function was chosen as all
the variables used in the plant are positive. The first hidden layer consisted of 5

neurons whereas the second hidden layer was made up of 10 neurons. The choice



of the number of neurons within the hidden layers was based upon a rule of thumb
- first hidden layer approximately one halfof the number of input neurons, second
hidden layer 2-3 times the number of neurons within the first hidden layer. This
rule of thumb has been found to give a good compromise between model accuracy

and noise rejection.

. Output Iayer - the final output layer possessed two neurons each with linear
transfer functions which correspond to summations of the neuron inputs with the

addition of a bias value.

The MLP model of warm water process is shown in Figure 4.27, with all
interconnections between the neurons shown. The chosen learning algorithm for
training was backpropagation with a momentum term and an adaptive learning rate
[105] which helped to speed learning. W ith this method the value of the gain used for
the update of the weights is adjusted dependent on the rate of decrease of the overall
modelling error. For high rates of decrease the learning rate is increased and for is
decreased for lower rate of decrease of the modelling error of the ANN. The
momentum term is applied to assistthe ANN in overcoming local minima which occur
due to the non-linear nature of the ANN. After the input and target data were scaled
to lie within the [0,1] interval, the network was batch trained for 25,000 epochs.
Batch training means that the neuron weights were updated after one complete epoch
whereby the sum of the squared error is used for the calculation of the gradients of

the weights. The required training time using the M ATLAB Neural Net Toolbox



v.l.1. [105] on a 486 DX2 66 MHz PC with 16Mbytes of RAM was three days.
Although this training time is long, the comfort and versatility of the MATLAB

environmentwould be lost if faster software tools were used.
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Figures 4.28 and 4.29 (see page 85) show the response of the ANN model of the

warm water process to the training data. In order to investigate the generality of the
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ANN model of the warm water process, the data contained in the set of step tests
listed in Table 4.4 (see page 81) was utilised. This test data set was not included in
the training set and thus the ANN model had no previous experience of the data.
Figures 4.30 and 4.31 (see page 86) illustrate the response of the ANN model of the
warm water process to this test data set. Subjectively it can be concluded that the
ANN model is a good one step ahead model of the warm water process. On
comparison with the physical model as described in Section 4.5, the warm water
process dynamics are represented very well with small offset errors evident in the
temperature test data sett The RMS modelling errors for the test data set are 1.73
ml/s and 0.54°Celsius for the outlet flow and temperature variables respectively.
These results are better than the best modelling error obtained from the physical
model of the warm water process. The results obtained from this architecture and set
of data for the ANN model of the warm water process were deemed to be quite

sufficient and thus no further AN N architectures were investigated.

4.7. MATLAB/SIMULINK Implementation of the Warm Water Process ANN
Model

The MATLAB Artificial Neural

Network (ANN) Toolbox v.l. has no

Thot > >Level
direct link to the SIMULINK Tcold > F out
. h h Fhot >
environment [106]. Thus, the ANN Ecold > > Tout
model of the warm water process was Outlet% > >CvA2
"Warm Water
implemented as a SIMULINK icon Process Physical
. . Model
manually. This was achieved by
creating an S-function for SIMULINK
Fcold > Fout
within which the ANN output is
Fhot >
calculated. The inputs for this icon are T
Thot > > Tout
the hot and cold inlet flows and the
Warm Water
temperature of the hot inlet flow. This Process ANN
Model

ANN Model icon functions only within
MATLAB/SIMULINK when the

. Figure 4.32 - Warm W ater Process models
M ATLAB Neural Network Toolbox is

installed. The trained weights of the inthe MATLAB/SIMULINK environment.
network must also be loaded into the workspace and declared as global variables.
The macro code used for this icon is contained in Appendix D. Two models were
thus available to the user for simulation of the warm water process within the

M ATLAB/SIMULINK environment. The integration of both of these models into the

SIMULINK environment is illustrated in Figure 4.32 (see page 87). As the ANN
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model was the most accurate model of the warm water process, it was used in all

further simulations.

4.8. Linear System Identification using the ANN Model of the Warm Water
Process
In order to gain more insight into the nature of the warm water process and to
calculate initial values for the RLS parameter estimator contained in the self-tuning
PID controller in Chapter 5, linear system identification was performed on the ANN
model of the warm water process. The simulation shown in Figure 4.33 (see page 89)
was programmed in order to acquire data from the ANN model of the warm water
process for linear identification purposes. Using the M ATLAB System Identification
Toolbox [107], ARX models for the relationship between the hot and cold inlet flows
and the outlet flow and temperature variables of the warm water process were
identified. The general modelling equation for these relationships is given by the
equation (4.24). The general ARX equation is given for an input X(Q) and an output
y(q) in (4.23). B(Q) and A(Q) are polynomials in  of order N where Nb and Na are
their respective orders. The value Nk is the number of steps of pure delay between the

input and the output of the system.

y() - B(q) Kk n
x(q)  A{aq)

KM ) M\t Mn ‘KoM i
Toul(g) _MJ M2_AM).

Bu 1, ®2 ~in

KM) A A2 K, M) )
J,M)_ T2 2 KM,
_~2 D
where Mx\,M X2,M2\ and M 22 are AR X models.

W ithin the MATLAB SYSTEM IDENTIFICATION TOOLBOX, a least squares
algorithm is used to fit parameters to ARX models of various orders and delays.
Having calculated these parameters for a set of models, loss functions can then be
calculated for each model. The user then decides which model structure is most
suitable by analysing the loss function values and the standard deviations of the

identified parameters.
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Figure 4.33 - SIMULINK simulation for data for linear system identification.

Table 4.5 - Identi ied ARX models of the warm water process.

Name Output Variable Fixed A (q) with B(q) with Standard Delay

Input Input Standard Deviation
Deviation

M, i Fnlq) Fhot() Fcoidg [1 -9.827le-I] [0 0 8.3177¢e-3] 2

M 12 100m1/s  100ml/s SD - 1.736le-4 SD -7.1174e-5
+20ml/s

m2l  Tout(q) FcniAgq) Fhot(q) [l -0.98949] [0 0 -203.55] 3
100mi/s  100ml/s SD -9.8443e-5 SD - 1.6218
+20ml/s

M2 T,Jq) Fhot(g Fr,M [1 -0.9841] [0 0 252.14] 3
100mi/s 100Oml/s SD -5.9647e-5 SD - 8.567e-I
+20ml/s

The operating points, structures and parameters of the identified ARX models are
detailed in Table 4.5. All of the models have been identified around an inlet flow rate
of 200 ml/s. As the ANN model and the physical model of the warm water process
are first order, only first order linear ARX models were identified. The models for the
relationship between both inlet flows and the outlet flow are identical as the outlet
flow is assumed to be independent of temperature. The parameters from these linear
models are used in Chapter 5 as initial values for the ARX models contained within
the self-tuning PI1 controllers. This helps to ensure fast convergence of the PI
controller parameters and thus ensure reasonable initial control of the plant. Further
linear models of the ANN model of the warm water process could be identified for
other operating points. These could then be used in the simulation environment to
assist the design of other controllers where mathematical models of the plant to be

controlled are necessary.



4.9. Fuzzy Modelling

4.9.1. Introduction

The second soft computing method utilised to model the warm water process was
fuzzy modelling. A's in the case of the ANN, the fuzzy model (FM) is another form of
vector mapping modelling. W hereas the ANN embodies a non-structured highly non-
linear knowledge base, the fuzzy model is characterised by its structured storage of
acquired knowledge. The advantage of this structured representation is offset by the
increased storage and processing requirements of the fuzzy model. All terminology

related to fuzzy modelling used in this section has been defined in Chapter 2.

Generally, the fuzzy model can be characterised by the following points [108] :

. Non-linear modelling capability - the fuzzy model is capable of modelling non-

linear systems either on-line or off-line.

. Black box model - i1ittle a priori knowledge of the system is required in order to

construct a fuzzy model.

« Linguistic interpretation - the input and output variables of a fuzzy model can be
interpreted linguistically. This allows the initialisation of a fuzzy model with
knowledge obtained from a human expert and allows the interpretation of the
fuzzy model by a human expert after adaptation, thus performing a teaching

function.

. Embedding in a Controller - there are several paradigms available for the design

of a controller incorporating a fuzzy model [109].

. On-line adaptation - due to the structured form of the fuzzy model, a complete
training set is not required for each on-line adaptation. In contrast, because the
ANN is non-structured a sampled data vector is added to the old training set and
the ANN is retrained with this updated training set. The fuzzy model can be
trained using only the current sampled data vector and will forget only the stored
data contained in the part of its structure that corresponds to the new sampled
data vector. This allows fast and convergent learning, making the fuzzy model

suitable for on-line learning problems.

There are two main forms of fuzzy models:
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. Scalar consequents - the consequents of the rulebase are either fuzzy

membership sets or fuzzy singletons (crisp values).

. Function consequents - the consequents of the fuzzy model are functions -

usually of the antecedent variables of the fuzzy model.

A's this research is concerned with on-line adaptive fuzzy control, only fuzzy models
with scalar consequents are considered. The reason for this is that the adaptation of a
scalar consequent is computationally simpler and thus faster than that of a function
consequent, which may contain numerous parameters. From the two main types of
fuzzy model rulebases for scalar consequent rulebases (the lookup table and relational
m atrix forms- see Chapter 2), the lookup table approach has been chosen for all fuzzy

models in this research, as it requires less memory and is more transparent.

Section 4.9.2 of this chapter details the concept of supervised adaptive fuzzy
modelling which is developed within this thesis. In addition, issues pertaining to the
architecture and learning mechanism of Supervised Adaptive Fuzzy Models (SAFM)
are discussed. The development and results of the SAFMs for both the outlet
temperature and flow variables of the warm water process are depicted in Sections

4.9.3 and 4.9.4.

4.9.2. Supervised Adaptive Fuzzy Modelling

This section describes the development of a variation of fuzzy modelling that has been
termed supervised adaptive fuzzy modelling. This method allows the on-line
adaptation of a fuzzy model while guaranteeing convergence for a rule base cell. This
guarantee is achieved through the fact that the fuzzy model is only adapted if the
modelling error of the fuzzy model will be reduced by the adaptation. Firstly, general
issues of fuzzy modelling are discussed by considering each structural element of the

fuzzy model in turn as follows :

. Fuzzification - the type and distribution of membership sets for each of the

antecedent variables

. Inference - the choice of the inference operator for linguistic operations such as

OR or AND.

. Rulebase Structure - the choice of the rulebase structure greatly influences the

accuracy and memory requirements of the fuzzy model.
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o Defuzzification - influences the accuracy and processing time of the fuzzy model.

Thereafter, the learning algorithm used for the supervised adaptive fuzzy model
(SAFM) is described. Following this, simulation results of a fuzzy model for a simple
first order system are presented and some conclusions are drawn.

4.9.2.1. Fuzzification

Within this section, the number, type and distribution of membership sets for each
antecedent variable are considered. The more membership sets allocated to each
antecedent variable, the finer the resolution and the better the accuracy of the fuzzy
model. There are, however, two main disadvantages when the number of sets for
each antecedent variable is increased:

* Large Memory Requirements - the larger the number of membership sets per
antecedent variable, the more memory is required. For a four input fuzzy model
with five membership sets per antecedent variable (the rulebase is lookup table
form) 54 i.e. 625 storage elements are necessary. If we double the number of
membership sets for each antecedent variable we then require 104 i.e. 10000
storage elements for the rulebase.

* Large number of Training Data - by increasing the number of fuzzy membership
sets for a particular antecedent variable, the effect of each rule is reduced and thus
more training data is required to fill the rulebase.

The type of fuzzy membership set implies whether, for example, triangular,
trapezoidal or any other function that fulfils the mathematical requirements for fuzzy
membership sets is utilised - see Zimmerman [2], One popular function used for fuzzy
membership sets is the Gaussian function. This function, although requiring more
processing time compared with, for example, the triangular set, is differentiable. It is
precisely this differentiability which makes this function interesting for adaptive fuzzy
models. The advantage lies in the fact that many optimisation algorithms require a
differentiable function if they are to perform correctly. The use of the Gaussian
function in combination with differentiable functions for linguistic functions e.g.
product for AND, allows the use of an optimisation algorithm to optimise some
aspect of the fuzzy model e.g. the antecedent variable membership set parameters
[15].
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The distribution of the fuzzy membership sets for a particular antecedent variable
refers to the position of each fuzzy membership set on the universe of discourse. Off-
line fuzzy models are often optimised for a particular set of training data by adjusting
the position of the antecedent fuzzy membership sets [61]. This research is, however,
concerned with on-line fuzzy modelling, where future data can contradict a previously
off-line optimised fuzzy membership set distribution. Thus, an equally spaced
distribution of fuzzy membership sets for every antecedent variable has been adopted
and is maintained, with only adaptation of the centre positions of the consequent
fuzzy membership sets being undertaken.

49.2.2. Inference

The inference operators used in a fuzzy model implement linguistic logical concepts
such as AND or OR. There are many possible functions available for this
implementation - see Chapter 2. There are three main criteria for the choice of the
function : modelling accuracy, processing speed and differentiability. As the
processing requirements of fuzzy algorithms are high, the processing speed of each
element of the algorithm is critical. If some form of optimisation algorithm is to be
applied to the fuzzy algorithm then the inference function must be differentiable - as
described in the Section 4.9.2.1. The functions considered within this research for use
in fuzzy modelling and some of there characteristics are listed in Table 4.6. The
fastest functions are clearly product and sum, both of which are differentiable.

Table 4.6 - Table of inference functions considered for fuzzy modelling.

Inference Operators

M IN MAX Product Sum Fuzzy Fuzzy Mean
AND OR
Linguistic AND OR AND OR AND OR AND
Function /OR
Differ. No No Yes Yes No No  Yes
Speed Med. Med. Fast Fast Slow Slow Slow
4.9.2.3. Rulebase Structure

There are two types of rulebase structures that can be utilised for fuzzy models with

scalar consequents :

. Lookup Table Format - only the antecedent variables are used to index to scalar
consequent values stored in a lookup table format.
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. Relational Matrix Format - both antecedent and consequent variables are used
to index a possibility value for a rule.

More detailed descriptions of these terms can be found in Chapter 2. The use of the
relational matrix format requires considerably more storage space than the lookup
table format. The accuracy of the lookup table approach is however, only marginally
worse than that of the relational matrix approach [65]. Thus, this research utilises the
lookup table format for all rulebases within the fuzzy models subsequently developed.

4.9.2A. Defuzzification

Defuzzification methods are, to a large extent, dependent on the type of consequents
used within a fuzzy rulebase. For the fuzzy models in this research, only centre of
gravity methods for either fuzzy singletons oxfuzzy variable consequents are utilised.
The fuzzy singleton consequent approach offers superior processing speed. The
modelling accuracy of the two approaches is compared in Section 4.9.4.

4.9.2.5. Learning Algorithm
The algorithm used for adaptation of the scalar consequents S is given by (4.25)
which has the form of a first order difference equation.

if\iy”" 5
(4.25)
Snew= (I-a)Sold+a\LYY

The variable Y is the sampled value of the variable to be modelled, e.g. the outlet flow
or outlet temperature of the warm water process. Due to the consequent variable
vector X, several rules will be activated. Sold and Sreware the old and new values of
the scalar consequents of one of the activated rules from the rulebase and |iF is the
corresponding degree of activation. The learning gain parameter a effects the
robustness and adaptability of the fuzzy model. The parameter 8 effects thefuzziness
of the fuzzy model and the inequality [Xr > 8 corresponds to an alpha-cut as described
in Chapter 2. In order to avoid "crosstalk"” between cells in the rulebase during
adaptation, 8 should be not be less than the membership value of the intersection of
neighbouring fuzzy membership sets. The higher the value of 8, the less fuzzy the
model - if 8 is set to unity, then only rules with an activation value of unity can be
adapted. The effect of the value of 8 is shown is Figure 4.34.
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Effect of Learning Threshhold - Delta

Supervised Learning Algorithm

Figure 4.34 - Supervised learning algorithm used for the fuzzy model.

In order to guarantee convergence of the fuzzy model for a particular set of data, the
adapted rulebase is only adopted as the new rulebase when it reduces the modelling
error of the fuzzy model. This supervisory function leads to the term Supervised
Adaptive Fuzzy Model (SAFM) and is illustrated in Figure 4.34. The improved
modelling accuracy generated by this supervisory mechanism is revealed in the
simulations in Section 4.9.3 which develop supervised adaptive fuzzy models for a
first order system and investigate the effect of different fuzzy membership sets,
inference operators etc. on the modelling accuracy.
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4.9.3. Fuzzy Modelling of a First Order System

In order to evaluate the effect of different fuzzy membership set functions, inference
operators and the whether singleton or fuzzy variable consequents were to be
implemented, a set of fuzzy models of a first order system were trained in the
MATLAB/SIMULINK environment. The first order system was chosen as it
represents a simple and easily understood dynamic system. All models utilise the
fuzzy model architecture and learning method discussed in Section 4.9.2. Figure 4.35
shows the SIMULINK simulation used to create these models. The antecedent
variables were u(n-1) and y(n-I), with the variable y(n) estimated by the model.

In order to train models of the first order system, the plant is driven by a random
signal generator which changes its output every 5t seconds, where T is the time
constant of the first order system to be modelled. The training is performed for 500x
so that the state space of the first order system is well covered and the rulebase of the
fuzzy model is more or less full, thus forming a global model of the plant. The
number of antecedent fuzzy membership sets used is thirteen unless otherwise
specified. This value of thirteen is a good compromise between model resolution and
memory requirements. This results in a two dimensional matrix rulebase with 169
elements. As initial values for the rulebase, all 169 cells were set to zero. The value
of a in the learning algorithm (4.25) was set to 0.9 and 8 was set to a value of 0.5 for
all fuzzy models described in this section. Due to the asymptotic nature of the
Gaussian function, all the antecedent fuzzy membership sets have a degree of
membership greater than zero for a given input value, which slows the fuzzy
algorithm considerably. Thus an alpha cut was applied at the fuzzification stage of all
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antecedent variables. An alpha cut set to zero and degrees of membership that are
less than a user defined threshold. The value of the alpha cut was set to 0.1 thus
resetting any degrees of membership less than 0.1 to zero. This alpha cut was applied

to all types of antecedent fuzzy membership sets in this investigation.

Six fuzzy models were first trained in order to gain some insight into whether
triangular or Gaussian fuzzy membership sets offer better modelling accuracy. Three
inference functions - minimum, maximum and mean were used. The results of these
simulations are listed in Table 4.7. Clearly the fuzzy models with Gaussian
membership sets offer the best accuracy for all three inference operators. Considering
these results and the fact that the Gaussian function is differentiable, the Gaussian

function was adopted for all future fuzzy models.

Table 4.7 - Prediction performance of recursive fuzzy models (sin,?le-step).

ModelNumber Inference Antecedent Fuzzy error2
Method Membership SetShape
Model 1 Minimum Triangular 0.1075
Model 2 Mean Triangular 0.1167
Model 3 Maximum Triangular 0.0726
Model 4 Minimum Gaussian 0.0972
Model 5 Mean Gaussian 0.1075
Model 6 Maximum Gaussian 0.0421

Table 4.8 - Prediction performance of recursive fuzzy models (multi-step).

ModelNumber Inference Method Antecedent Set error?
Shape
Model 7 Minimum Triangular 0.1195
Model 8 Mean Triangular 0.0995
Model 9 Maximum Triangular 0.0845
Model 10 Minimum Gaussian 0.0851
Model 11 Mean Gaussian 0.0908
Model 12 Maximum Gaussian 0.0666

For comparison purposes, the models detailed in Table 4.7 were again trained but the
antecedent variable, y(n-I), was fedback from the fuzzy model output, thus giving a
multi-step predictor form. The results of this modification fulfilled the expectations
that the modelling performance would not, in general, be as good as the single step
predictor form. Table 4.8 (see page 97) contains the results of this investigation.
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The following conclusions can be drawn from the results contained in Tables 4.7 and
4.8:

» the past datay(n-1) acquired from the plant generally results in better modelling
- single step predictor form.

» Gaussian shaped fuzzy membership sets for the antecedent variable result in
lower modelling errors.

* The maximum inferencefunction gives the best modelling performance,

Some cells of the trained rulebase may contain a zero value if no training data
influenced these cells of the rulebase. Due to the fuzzy inference mechanism these
values will effect the output of the fuzzy model when the input variables approach the
neighbouring rulebase cells. Some form of rulebase initialisation can be performed
prior to training in order to prevent null value cells from disturbing the output of the
fuzzy model.

Fuzzy models 1to 12, as described in Tables 4.7 and 4.8, utilise fuzzy singletons as
output variable consequents. In order to evaluate the modelling accuracy achieved by
the use of fuzzy singletons as consequent variables, compared to that achieved with
fuzzy membership sets as consequent variables, several models utilising a linear
distribution of fuzzy membership sets as consequent variables were constructed. Each
model used the centre of gravity defuzzification with maximum-product consequent
inferencing, resulting in smooth interpolation between the consequent sets. As
triangular fuzzy membership sets result in a linear interpolation when combined with
the defuzzification method used, these were used for all but one of the fuzzy models
in Table 4.9. The number of consequent fuzzy membership sets directly effects the
speed of the defuzzification algorithm. Thus the number of consequent sets
investigated started at a number slightly less than that of number of antecedent fuzzy
membership sets and for comparison purposes finished at a number equal to slightly
more than three times this number. The models were tested with the trained rulebase
from Model 6 as this gave the best prediction performance from all the previous
models. Table 4.9 contains the results obtained.
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Table 4.9 - Prediction performance with fuzzy membership sets as consequent
variables (single-step).

ModelNumber ConsequentSets Consequent Set error?
Shape
Model 13 9 Triangular 0.0565
Model 14 13 Triangular 0.0551
Model 15 15 Triangular 0.0534
Model 16 19 Triangular 0.0517
Model 17 41 Triangular 0.0456
Model 18 41 Gaussian 0.0445

In conclusion, none of the models using fuzzy membership sets as consequent
variables exhibited modelling performance which surpassed that of the fuzzy model
Model 6, with fuzzy singleton consequents. Moreover, the time required to calculate
the crisp output value using the centre of gravity defuzzification method for fuzzy
membership set consequent variables is considerably greater than the fuzzy singleton
centre of gravity defuzzification method.

The adaptation applied to the training of the previous eighteen fuzzy models of the
first order system was unsupervised. To determine whether the supervisory function,
as detailed in Section 4.9.2.5, improves modelling accuracy, several fuzzy models of
the first order system were trained using the supervisory learning method. These
models were single step predictors, with Gaussian fuzzy membership sets for the
antecedent variables and a rulebase consisting of fuzzy singletons as consequents.
The results obtained from these simulations are summarised in Table 4.10. When
compared with corresponding results from Table 4.7 (see page 97), in the histogram
in Figure 4.36 (see page 100), it can be observed that the supervised learning
mechanism considerably improves modelling accuracy for all inference functions.

Table 4.10 - Prediction errors using the supervisory learning method (single step).

ModelNumber Inference Antecedent Set error2
Function Shape

Model 19 maximum Gaussian 0.0286

Model 20 mean Gaussian 0.0482

Model 21 minimum Gaussian 0.0522
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Figure 4.36 - Prediction performance for supervised and unsupervised learning.

Based on the simulation results in this section, future fuzzy models using the
architecture described in Sections 4.9.2.1 to 4.9.2.5 should have the following
characteristics for optimal modelling accuracy:

. Gaussian antecedent membership sets

. Fuzzy singletons as consequent variables.

*  Supervised learning algorithm.

The question remains as to whether the conclusions drawn from the results of fuzzy
models for linear systems can be extended to the modelling of non-linear systems.
The following sections describe the fuzzy modelling of the mass flow and thermal
behaviour of the warm water process. The results obtained suggest that the
conclusions drawn in this section are applicable to the fuzzy modelling of the warm
water process.

4.9.4. Fuzzy Model of the Mass Flow of the Warm Water Process

This section is concerned with the development of a fuzzy model for the relationship
between the hot and cold inlet flows and the outlet flow of the warm water process.
The fuzzy model structure, as detailed in Section 4.9.3, is utilised. Initial tests were
performed within the MATLAB/SIMULINK environment, but due to the processing
load the training times for the SAFMs were greater than 30 minutes. It was thus
decided to develop the necessary software for the training and testing of the SAFMs
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in the "C" programming language to enable the training of the rulebases on an IBM
compatible PC or a UNIX based workstation, using a C source code implementation
of the neural network as a reference plant. Details of this software are given in
Chapter 7, which gives an account of the software engineering issues of this research.
The result of this recoding was a one hundred fold speed increase when running on an
IBM PC 486DX2 50Mhz. The C code was also ported to a SUN SPARC 10
workstation where the speed of the software was again increased.

Structure A
Fin(n-1)
Fuzzy Fnut(n)
Fout(n-I) Model
Structure B
Fin(n-1)
Fuzzy Fnut(n)
Model

Fout(n-I) - Fout(n-2)

Figure 4.37 - Possible fuzzy model structures for mass flow behaviour.

As the massflow behaviour of the warm water process is first order, the fuzzy model
used to model this mass flow behaviour has two inputs which contain the following

information:
*  the sum of the two inletflow into the warm water process and
e theprevious outletflow value.

Two possible structures for the SAFM of the mass flow behaviour of the warm water
process with these two inputs are shown in Figure 4.37. Fin(n) is the sum of the inlet
flow values and Faut(n) is the outlet flow of the warm water process. These two
structures- Structure A and Structure B - differ through the choice of the outlet flow

antecedent variables.

Structure A utilises the old value of the outlet flow Fou(n-l). This method has the
disadvantage that a large number of antecedent fuzzy membership sets are required in
order to model the dynamics of the process i.e. the difference between Fod(n) and
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FoJdn-D. This is because when the change in Fout over successive samples is less
than the width of one rulebase cell, the same rulebase cell consequent value is adapted
and thus old information is lost. As the change between two samples for a system
sampled at O.It where X is the dominant time constant, is small in comparison to the
width of the universe of discourse of the outlet flow variable i.e. 240 ml/s, this form of
fuzzy model has inferior resolution in comparison to Structure B. For the example
shown in Figure 4.38, when the difference between Fou[(n-1) and Fout(n-2) is smaller
than one rulebase cell (for five cells this corresponds to 20% of the width of the
universe of discourse of the outlet flow i.e. 48 ml/s), then information will be lost.

Structure B utilises the difference Fout(n-1)-Fou(n-2) as an antecedent variable. This
approach has better resolution than Structure A and thus offers better modelling
accuracy of the plant dynamics with fewer antecedent membership sets. The
necessary span of the universe of discourse for this difference variable can be
approximately calculated by considering the maximum change possible for the value
of Fou[(n-1)-FOW(n-2). Assuming a linear first order response and a sampling rate of
0. It, the maximum value corresponds to approximately 20% of the maximum value of
the input flow i.e. £80 ml/s. This offers better resolution per rulebase cell than
Structure A. Based on these considerations and the results of initial simulations,
Structure B was chosen for the fuzzy model of the mass flow behaviour of the warm

water process.

Having decided on Structure B for the fuzzy model of the mass flow behaviour of the
warm water process, the rest of the fuzzy model parameters were chosen.
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The experience gained in the modelling of the first order system was drawn upon.
Thus all antecedent fuzzy membership sets were Gaussian functions, the model is in
the form of a single step predictor and supervised learning is used to train the
rulebase. For each of the antecedent variables the number of fuzzy membership sets
used was twenty one. This was based on previous experience with the fuzzy models
of the first order system, where thirteen antecedent sets were used, but as this system
is non-linear, slightly more resolution was deemed necessary. This choice of21 fuzzy
membership sets per antecedent variable resulted in a rulebase with 441 (21x21)
storage elements, each of which contained a fuzzy singleton. The linguistic function
AND was approximated by the product function based on its speed of execution and
the ease its of software implementation.

To train the fuzzy model of the mass flow behaviour of the warm water process, the C
source code implementation on a SUN SPARC 10 workstation was utilised. In order
to generate a global model i.e. fill the rulebase, the response of the ANN model to
random input flow values were used to train the fuzzy model. Each fuzzy model was
trained for the equivalent of 10 months i.e. 20 million seconds corresponding to 5000
random inlet flow values.
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The effect of the parameter 5 from the learning algorithm (4.25) on modelling
accuracy of the SAFM was investigated. This involved evaluating SAFMs trained
with various values of 8 of between 0.5 (the intersection value of the antecedent fuzzy
membership sets) and 1.0. In addition, the effect of an alpha cut for the membership
values of the antecedent (described in Section 4.9.3) variables on the performance of
the SAFM was investigated. A value of 0.7 for 8 and an alpha cut threshold of 0.1
gave the best RMS modelling error.

Time(s)
Figure 4.40 - Evaluation of SAFM for mass flow.

Figure 4.39 (see page 103) shows the characteristic of the trained rulebase. A total of
281 from 441 cells are used, corresponding to a usage of 64%. This usage is
dependent on the plant dynamics as a full training set is assumed. As untrained cells
effect the accuracy of the model when neighbouring cells are indexed, the output of
the fuzzy model was filtered, which is equivalent to smoothing the surface of the
trained rulebase. A first order low pass Butterworth filter with a time constant 200

seconds was used.
One possible method that would reduce the memory requirements of fuzzy rulebases

is the storage of only the used portions of the rulebase - similar to the storage
mechanisms used for sparse matrices.
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Figure 4.40 shows a comparison between the responses of the SAFM for the outlet
flow of the warm water process and the ANN model used to train the SAFM to a
signal consisting of ten setpoint changes. The results of this modelling strategy are
subjectively good, with the dynamics of the mass flow being modelled quite well.

4.9.5. Fuzzy Model of the Thermal Behaviour of the Warm W ater Process

The main problem encountered during the development of the fuzzy model for the
thermal behaviour of the warm water process was the specification of the input
variables and the number of their respective fuzzy membership sets. Due to memory
considerations, the number of input variables for the fuzzy model was to be kept as
low as possible. Experience gained from the physical and ANN models of the warm
water process was used to decide exactly which variables were utilised as inputs.
Figure 4.41 (see page 105) shows the structure of the fuzzy model for thermal
behaviour and the input variables chosen. These input variables are described by the
following :

e Cold inletflow Foddn -1).

* Hot inlet enthalpy Ehat(n-1) - is the product of the hot inlet flow and the hot inlet
temperature - Fho[(n-D*Tho(n-1). This combines two input values and helps to
reduce the dimensions of the fuzzy rulebase.

e Outlet Flow Fau(n-I) - this variable is directly related to the level of water in the
process reaction tank and thus reflects the mixing dynamics of the process.

* Previous Change in the Outlet Temperature Tau(n-1)-Taj(n-2) - choice is based
on the same considerations as the choice of Structure B (Figure 4.38, page 104)
for the fuzzy model of the mass flow behaviour of the warm water process as
described in Section 4.9.3.

Fdd(n-1) -
This  choice of input Eha(n-1)
variables results in a four Fuzzy Tou(n)
dimensional rulebase. EoJn-D Model

Because one of the control
Tout(n-1)-TAJ(n-2)
strategies for the warm

water process is one step

Figure 4.41 - Fuzzy model structure for the warm
prediction based on a fuzzy g y

water process thermal behaviour.
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model of the warm water process (see the conclusion to Chapter 2), the memory
limitations of the computer used for process control had to be considered during the
design of the fuzzy models. The Turbo C compiler used for programming creates
DOS programmes which have a maximum memory address space of 640kBytes.
Thus, all fuzzy models must be considerably less than 640kBytes in size. The number
of cells in the rulebase is calculated by calculating the product of the number of
antecedent fuzzy membership sets of the input variables. Each cell contains a short
floating point number which requires four bytes for storage. With 7 fuzzy
membership sets per antecedent variable, the rulebase required 9604 bytes of memory
(74*4). With 21 fuzzy membership sets per antecedent variable, the required memory
is 777,924 bytes (214*4), clearly too large. After detailed simulation, a configuration
of 15 Gaussian fuzzy membership sets for each antecedent variable was decided
upon. This has a memory requirement of 202,500 bytes (154*4), offering a good
compromise between modelling accuracy and storage requirements.

As in the case of the fuzzy model of the mass flow of the warm water process, the
rulebase cells contains fuzzy singletons as consequent fuzzy membership sets, all of
which are trained using supervised learning. The same values for the learning gain a,
the learning threshold 5 and the applied alpha cut as the fuzzy model for mass flow
behaviour were used i.e. a=0.9, 5=0.7 with an alpha cut at 0.1. The rulebase was
trained in the same manner as the mass flow rulebase (described in Section 4.9.3) for
50 million seconds.

Time(s)

Figure 4.42 - SAFM for thermal behaviour of the warm water process.
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A comparison of the output of this SAFM and the ANN model used to train it to a
series of random setpoint changes, is illustrated in Figure 4.42. The output of the
fuzzy model is filtered with a second order lowpass discrete Butterworth filter. The
cut-off frequency of the filter is 8.335xI(H Hz, which was chosen subjectively after
analysing the results of several other cut-off frequencies. A second order Butterworth
filter was chosen as this has no passband ripple. The modelling capability of the fuzzy
model for the thermal behaviour of the warm water process is not as good as that of
the mass flow fuzzy model. The sparseness of the rulebase was examined using the
spy function in MATLAB [110]. From the 50625 available cells in the rulebase, only
18390 were used by the rulebase after training for over 24000 random inlet setpoint
values applied to the ANN model of the warm water process. This sparseness is
attributable to the ANN model dynamics, which is not a completely global model of
the warm water process. Thus considerable gains in memory efficiency can be
attained if the rulebase is stored as a sparse matrix.

4.10. Conclusions

The first principles model developed in this chapter, although proving to be a good
model for the mass flow of the warm water process, was incapable of modelling the
thermal behaviour of the warm water process satisfactorily. This failure is attributable
to the highly non-linear characteristic of the outlet temperature which could not be
modelled by the physical model which assumes perfect mixing.

Because newer modelling strategies from the artificial intelligence field have been
shown to be capable of modelling a system based on a good set of training data, an
artificial neural network model of the warm water process was developed. The
modelling capability of the ANN model was quite good, with RMS modelling errors,
for a set of test data that was not used for training, of less than 2% for both outlet
variables.  Based on this result the ANN model was implemented in the
MATLAB/SIMULINK environment and was used as a simulation model of the warm
water process.

Linear system identification was performed on the ANN model of the warm water
process to develop first order ARX models around one operating point. Thus more
insight was gained into the plant dynamics. Moreover, the identified ARX models
serve as initial values for the ARX models of the self-tuning PI controllers which are
used for comparison with adaptive fuzzy control strategies in Chapter 5.
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Using a first order system as a reference plant, a strategy for adaptive fuzzy modelling
was developed which utilises on-line supervised learning. This adaptive fuzzy
modelling strategy is termed Supervised Adaptive Fuzzy Modelling and allows
convergent on-line adaptation of scalar consequent variables of a fuzzy model with a
lookup table rulebase. Moreover, it forms an integral part of an adaptive fuzzy
control strategy for the warm water process - Single Step Predictive Fuzzy Control -
which uses fuzzy models of the warm water process. Separate fuzzy models of the
mass flow and thermal behaviour of the warm water process were developed. The
fuzzy model of warm water process mass flow gave quite good modelling results.
The fuzzy model of the thermal behaviour results were not as good as those of the
mass flow especially when the storage requirements for the rulebase are considered.
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Chapter 5 - Controller Design

5.1. Introduction

5.1.1. General Introduction

This chapter describes the design and evaluation of adaptive fuzzy controller methods

studied in this thesis. As stated in Chapter 1 and the concluding remarks of Chapter

2, two strategies for adaptive fuzzy control of the warm water process have been

chosen for further investigation and development:

Self-Organising Control - a direct adaptive fuzzy control algorithm which
allows the on-line adaptation of rulebase consequents based on a user defined
reference model, which is often of a heuristic nature. Most of the literature
found within the field of adaptive fuzzy control is concerned with this controller
paradigm.

Single-Step Predictive Fuzzy Control - an indirect adaptive fuzzy control
strategy which utilises a fuzzy model to predict the plant behaviour over a single
sample. An optimisation strategy then calculates the controller output so that a
user defined cost function is satisfied. This controller paradigm is based on that
from Moore and Harris [19] with the following contributions made by this
research.

1 the step function reference model used by Moore and Harris is
extended to a discrete first order system, thus improving the overall
controller response and enabling the user to more fully specify the
desired dynamic response of the system,

2. the use of the supervised adaptive fuzzy modelling strategy developed
in Section 4.9, thus enabling on-line adaptation, whilst helping to

improve fuzzy model convergence and

3. the application of the controller to a multivariable control problem.

Where possible, both of these adaptive fuzzy control methods are simulated in detail

for the control of the outlet flow, the outlet temperature and the multivariable control

of both the outlet and temperature variables of the warm water process.

For evaluation purposes, a comparison is made between the two adaptive fuzzy

control methods and a self-tuning PI controller which is based on an algorithm from
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Banyasz and Keviczky [111]. This research contributes the following to the original
algorithm:

» the modification of the original self-tuning PID controller algorithm to that of a
self-tuning P1 controller algorithm and

e the addition of PI controller parameter limits, high pass filtering for
identification of systems with DC offsets and an anti-integral-windup
mechanism.

The ST-PI algorithm developed is firstly applied to the simulated control of the outlet
flow and outlet temperature of the warm water process. Through the implementation
of static decoupling of the controlled variables, the multivariable control capability of
the ST-PI controller algorithm is investigated.

5.1.2. Overview of Chapter Structure

Section 5.2 of this chapter describes the simulation of the Self-Organising Controller
(SOC) for control of the outlet flow of the warm water process. This research
combines individual elements of the SOC designs from original SOC literature
reviewed in Section 2.7.3.1, in order to attempt to simplify and improve the SOC.
Section 5.3 contains a detailed account of the development and simulation of single
step predictive fuzzy controllers for the control of the outlet flow, the outlet
temperature and multivariable control of the outlet flow and temperature of the warm
water process. Section 5.4 describes the development of the self-tuning Pl (ST-PI)
controller algorithm for the control of the outlet flow, the outlet temperature and the
multivariable control of the outlet flow and temperature of the warm water process.
Finally Section 5.5 compares and contrasts the three adaptive control strategies that
have been simulated and, based on these results, chooses an adaptive fuzzy control
strategy for evaluation on the real warm water plant.

5.2. Self-Organising Control

5.2.1. Introduction

This section presents a subset of the results obtained from simulation carried out to
investigate the ability of the Self-Organising Controller (SOC) to control the warm
water process. The structure and development of the SOC since its inception by
Procyk and Mamdani in 1979 [17] is described in Section 2.7.3 of this thesis.
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The SOC utilises a reference model to directly adapt the rulebase consequents based
on the current controller performance and is commonly based around the PD-FLC
described in Section 2.5.2 of this thesis. Figure 2.4, see page 26, shows the general
structure of the SOC for the control of a SISO plant.

5.2.2. Chosen SOC Structure

The SOC used for the simulations in this section is a combination of various aspects
of different SOC architectures that were covered by the literature survey. The
following points describe in detail, the SOC architecture used and justify the chosen
structure and parameters.

* Input and output variables - for the control of a SISO system, the majority of
SOC designs use the PD-FLC format where the error and change in error serve
as input variables and an incremental value serves as a controller output. As
this is the most common configuration found in the SOC literature, it is used for
the SOC here.

* Ke Kde Ku- the input and output variable gains. For the input variable error
the value of Ke = 16666 was chosen. This value of Ke which maps the
maximum error values of £0.00060m3s, to the universe of discourse of the
fuzzy sets of [-1,1]. For values of error with a magnitude greater than
0.00060m3s, the controller output saturates at a maximum value. This error
mapping configuration allows finer dynamic control of the plant for smaller
values of error magnitude. The value of Kde = 20833 was chosen, as this maps
a change of error value of £0.000048 (20% of the maximum outlet flow) to the
fuzzy sets universe of discourse of [-1,1]. The value of the output variable gain,
Ku is varied during simulation in order to evaluate its effect on controller
performance.

* Rulebase format - the original SOC from Procyk and Mamdani [17], used a
relational matrix rulebase. As shown by Wakileh and Gill [50], the relational
matrix rulebase form requires considerable processing time and memory
resources. In order to avoid this difficulty, a number of SOC implementations,
e.g. Ho and Lin [52], Spinrad [54], Burkhardt and Bonnisone [14], utilise the
simpler lookup table rulebase format. Based on these considerations, the SOC
structure described in this section utilises the lookup table rulebase format, thus
increasing the transparency of the SOC.



Fuzzy membership sets - the two antecedent variables, error and change in
error, utilise a regularly spaced distribution of 13 triangular fuzzy membership
sets with universes of discourse of [-1,+1], whereas the consequent variables are
in fuzzy singleton form. The justification for this antecedent variable format is
the fact that it is used in most of the SOC literature, giving a reasonably fine
rulebase resolution whilst maintaining good interpolation characteristics. The
choice of consequent variable format is based on the increased flexibility of the
fuzzy singleton compared to the fuzzy membership set representation, shown in
the fuzzy modelling section of this thesis, Section 4.9.3. It should be noted that
the choice of the number of fuzzy sets in the SOC is subjective by nature. The
choice of the form and number of fuzzy membership sets to be used in a fuzzy
controller highlights one of the disadvantages of fuzzy control - the large of
number of parameters to be chosen by the designer. This disadvantage has
been discussed in Section 2.5.1. of this thesis.

Reference model - the reference model (usually known as the "performance
index" in the SOC literature) is used by the SOC architecture to evaluate the
current controller performance and to adapt the rule consequent values. The
reference model uses the error and change in error variables as inputs (see
Figure 5.1). In the original SOC design from Procyk and Mamdani [17], the
output of this reference model is used, together with the incremental plant
model, to adapt the rulebase consequents. Many of the publications reviewed in
Section 2.7.3 utilise a heuristic lookup table for the reference model, whereby
little detail is given to its origin. In order to test the characteristics of a heuristic
reference model, the reference model detailed by Sugiyama [49], is initially used
in these simulations. This reference model is enhanced in this research by
converting it from a lookup table to a fuzzy algorithm. This fuzzy algorithm
format allows interpolation between its rulebase elements instead of the hard
switching between elements, which is characteristic of lookup tables. Regularly
spaced distributions of triangular fuzzy membership sets for the antecedent
variables, fuzzy singletons as consequent variables, the product inference
operator and the centre of gravity defuzzification method are utilised by this
fuzzy algorithm, where the lookup table from Sugiyama serves as rulebase
consequents.  This choice of fuzzy algorithm structure and parameters
guarantees linear interpolation between the elements of the rulebase.

Rule consequent adaptation - The lookup table rulebase format enables the
replacement of the so-called "incremental process model” [17], with a simple
learning law, as detailed by Ho and Lin and given by equation (2.8), see page
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29. Through the utilisation of this simple learning algorithm, rulebase learning
is dependent on the learning gain a. The effect of the value of the learning gain

a from this equation is to be investigated in this section. As detailed in Section
5.7.3, the SOC adapts the consequent values of the past rulebases that have
contributed to the current performance of the controller and places the adapted
consequent values in the current rulebase. Precisely which past rulebases are to
be updated is not specifically described in any of the literature. Some authors
claim that the SOC performance is insensitive to which past rulebases are
updated [17,49]. This seems unlikely as the effect of the rules responsible for
the current controller performance can be assumed to be delayed by a time, tm,
equivalent to the dominant time constant of the plant. Spinrad [54] adapts
multiple past rulebases and weights these updates with an "importance weight".
In this simulation, the rulebases between 13 and 8 previous samples are adapted
with unity weighting. This choice is based on the assumption that the sampling
rate of 30 seconds approximately corresponds to one tenth of the dominant time
constant of the plant. In addition, no rulebase adaptation is performed after a
setpoint change for a period of time equal to the maximum rulebase update
delay, i.e. 13 samples. This ensures that past rulebases that were not active for
the current setpoint. are not adapted. The MATLAB/SIMULINK block
"General RB Modifier", see Figure 5.2 on page 114, is used to update the
rulebases. This block allows a weighted update of more than one previous
rulebase as suggested by Sugiyama [49] and Spinrad [54] and allows the
application of a zero central value and symmetrical update as suggested by
Farbrother, Stacey and Sutton [53]. The value of the magnitude of the rulebase
consequents is limited in order to prevent system instability due to large
rulebase consequent values, which can be caused by continuous adaptation of a
single rulebase cell.

5.2.3. SOC Simulation Software

The MATLAB/SIMULINK software used for the SOC simulations in this section is
shown in Figures 5.1. and 5.2, on page 114. As an initial study, the outlet flow of the
warm water process was controlled in simulation. Because it is a good model of the
mass flow behaviour of the warm water process, as shown in Section 4.6, the artificial
neural network model of the warm water process is utilised as the plant for these
initial simulations. If these simulations proved to be promising, then temperature and
multivariable control were to be attempted.
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Figure 5.1 - Simulated SOC for warm water process outlet flow control.

Figure 5.3 - Internal structure of the "Ouiput Gain Ku" block from Figure 5.2.

The SOC used in this simulation has a large number of parameters that need to be
selected by the user and subjectively optimised during simulation. This large number
of parameters proved to be confusing in practice, with many different combinations of
parameter values being investigated before the configuration used as a basis in this
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section was arrived at. During this process, the values of the learning gain a for rule
update and the controller output Kuwere seen to be critical for the performance of the
SOC. Thus, different values of these two parameters including an integral term in the
output gain block Kui, as shown in Figure 5.3, see page 114, are investigated in this
section. The purpose of the integral term in the output gain was to attempt to reduce
the steady state error of the SOC that was observed during simulation.

5.2.4. Simulation Results

The results ofthefirst set of simulations are shown in Figures 5.5 to 5.11, pages 116
and 117. It should be noted that the label Finused in these graphs, is equivalent to the
sum of the hot and cold inlet flow. The values of the learning gain a , see equation
(2.8) page 29, and the output variable gain are contained in Table 5.1, together with
the corresponding test names. All simulations have a setpoint of 100 ml/s, with a
square wave disturbance signal with a period of 6283 seconds and an amplitude of 25
ml/s, added to the plant output. This disturbance signal, as shown in Figure 5.4,
corresponds to a disturbance on the outlet flow valve actuating signal, which by
affecting the outlet valve position, directly influences outlet flow. The SOCs task is
to keep the outlet flow at 100 ml/s and to reduce the effects of the disturbance signal

to a minimum.

Table 5.1 - Table of parameters for the SOC simulations.

Test Name Value of a Training Ku K i
Cycle
SOC Test 1 5 1 0.000039 0
SOC Test 2 0.5 1 0.000039 0
SOC Test 3 1 1 0.000039 0
SOC Test4 1 2 0.000039 0
SOC Test 5 1 3 0.000039 0
SOC Test 6 1 2 0.000039 0.00000015
SOC Test 7 1 2 0 0.00000015
3.00E-05
° 2.00E-05
u 5T 1.00E-05
@ < 0.00E+00
1 -1.00E-05
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Figure 5.4 - Disturbance on the outlet valve actuating signal.
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Figure 5.7 - Response of SOC for outlet flow control - SOC Test 3.
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Figure 5.8 - Response of SOC for outlet flow control - SOC Test 4.

116



140E04

12Q804
1.00&04
? 800E05

QQED
-200E-05
4,00E-Q5

T-ITé-B) Hmc(s)

Figure 5.9 - Response of SOC for outlet flow control - SOC Test 5.

350E-04
3.00E-04
. 250BW
2.00604
& 150&04
£ 100E04
5.00605
Q0E

Time (s) Tint(s)

Figure 5.10 - Response of SOC for outlet flow control - SOC Test 6.
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Figure 5.11 - Response of SOC for outlet flow control - SOC Test 7.

Except where otherwise stated, an empty initial rulebase was used for all of the SOC
simulations. SOC Test 1 and SOC Test 2 demonstrate the effect of the value of the
learning gain parameter, a, on the quality of control. In SOC Test 1, illustrated in
Figure 5.5, where a value of a=5 is used, the speed of learning is fast but the variance
in the manipulated variable is high. In SOC Test 2, see Figure 5.6, the value of a has
been reduced, a=0.5, with the effect that the speed of learning is decreased and the
variance of the manipulated variable is reduced. In SOC Test 3 the value of a is
increased slightly, a=1, the result is improved speed of learning without degradation
of the manipulated variable variance, shown in Figure 5.7.
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SOC Test 7.

In order to investigate the effects of initialising the rulebases, SOC Test 4 utilises the
same controller parameters as SOC Test 3, using its adapted rulebase as an initial
rulebase. The initial controller performance is better as the initial rulebase is not
empty, see Figure 5.8. SOC Test 5 uses the adapted rulebase of SOC Test 4 as an
initial rulebase, whereby no noticeable difference between the results of SOC Test 5
and SOC Test 4 results, as shown in Figure 5.9.

It is deduced from these results that the learning gain, a, influences the speed of
learning of the SOC but causes large variance in the controller output if its value is
too large. Thus, the value of a must be chosen to give a good compromise between
the speed of learning and the controller output variance.

All the previous tests have a steady state offset error in their controller responses.
This steady state error was initially attributed to the proportional-derivative nature of
the PF-FLC controller used as a basis for the SOC, similar to the classical
proportional-derivative controller, which exhibits a steady state error for finite



proportional gains, for type zero systems. In order to attempt to reduce this steady
state error, an integral term was introduced into the output gain of the fuzzy
controller. SOC Test 6 shows the results of the best of a set of simulations performed
with varying values of the integral and proportional output gains, Ku and Kui, see
Figure 5.10. There is some improvement in the steady state error but it still remains
at an unacceptable level. SOC Test 7, illustrated in Figure 5.11, uses a pure integral
output gain, resulting in an overall deterioration of the controller performance.

Based on these results, it was concluded that there is another cause of steady state
error in the SOC. After analysis of the rulebase, the steady state error exhibited by all
of these simulations was found to be caused by the values of rulebase elements, e.g.
the rulebase element which corresponds to zero error has a negative value. This is
shown in Figure 5.12, see page 118, where a cross sectional view of the rulebase for a
change in error value of null is given. Moreover, the value of the rulebase adaptation
is seen to oscillate erratically. These characteristics can be attributed to the reference
model, which directly specifies the rulebase adaptation.

As the results using this controller all exhibited steady state error, and the influence of
the heuristic reference model from Sugiyama [49] on the controller performance is not
easily understood, the simple reference model suggested by Spinrad [54] was applied.
This reference model is in the form of the product of the controller error and a gain,
Kpi, thus resulting in a simple and easily understood reference model. After five
simulations a value of Kpi,=2 was found to offer a good compromise between speed
of learning and manipulated variable variance. The learning gain and the error input
variable gain, Ke, are identical to those of SOC Test 6.

After analysis of the adapted rulebases from the previous set of SOC simulations, it
was seen that the rulebase information was not sufficiently distributed along the
change in error rulebase axis, see Figure 5.12. To improve this distribution, the value
of the change in error gain was increased to £24=200000, thus mapping a maximum
change of error value of £0.000005m3s to the universe of discourse of [-1,1]. The
results from the second iteration of this simulation are shown in Figure 5.13. These
results exhibit steady state errors of less than 2% of the setpoint value and are thus far
better than any of the previous simulations. This improvement is due to :

» the change in reference model, which is one dimensional and directly
proportional to the error of the controller and
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fixation of the centre cell rulebase value at zero, as suggested by Farbrother,

Stacey and Sutton [53].
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Figure 5.13 - SOC outlet flow control using a scaled error referei el.
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Figure 5.14 - Adapted rulebase, rulebase cross section and rule adaptation values for

scaled error reference model.
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Figure 5.14, see page 119, shows the rulebase from the SOC using the scaled error
reference model as suggested by Spinrad [54]. In addition, a cross section of the
rulebase at a change in error value of null and a plot of the rule adaptation values are
given. The large peak in the rulebase is caused by the adaptation of the cell due to the
large errors during the first 3000 seconds. The cross section of the rulebase shows a
smooth rulebase characteristic with a zero centre value, thus allowing equilibrium at
the setpoint and reducing the steady state error. Rule adaptation is directly
proportional to the error and is thus devoid of the oscillation seen in the previous
simulations. The effect of the increase of the input variable change in error gain Kde
is evident in the distribution of rulebase information the change in error axis as well
as the error axis.

5.2.5. Preliminary Summary of the SOC

The results presented in this section summarise a series of over 150 simulations that
were carried out to investigate the capabilities of the SOC controller. The best results
obtained exhibited a steady state error of magnitude 2% with a settling time of
approximately 1500 seconds. These results alone are reasonable, but when the
complexity of the SOC algorithm is considered, and a comparison is made with a
standard Pl controller, then they are poor. The PI controller gives similar or
improved performance without the complexity, large number of parameters and
stability problems of the SOC algorithm.

The main disadvantages of the SOC which were encountered during these simulations

are :

e Complexity and memory requirements of the SOC algorithm. The stored
rulebases, for example, require approximately 18kBytes memory.

» Large number of parameters, which include the learning gain a, the two input
and two output gains, the 78 parameters of the fuzzy membership sets uses for
the input variables.

e The heuristic nature of all of the SOC parameters can lead to ad-hoc
adjustment and long implementation times.

* No deterministic method for the specification of the desired response of the

control algorithm.
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e As far as the author is aware, there is no methodfor analysing the stability of
the SOC algorithm although some stability analysis of fuzzy systems has been
performed [61].

e The adaptation of the rulebase is dependent on the position of the controlled
variable and not on its trajectory. Thus if a setpoint change occurs, adaptation
is performed although the controlled variable may be moving towards the
setpoint in a satisfactory manner. The large spikes in the manipulated variable,
see Figure 5.13, for positive error values, are due to the large values in the
rulebase for positive error. These large rulebase values, see Figure 5.14, are
caused by excessive adaptation of the rulebase during the first 3000 seconds,
due to initial outlet flow of zero.

» The reference models found in the literature are of an ad-hoc nature, with no
thorough analysis having been performed. The scaled error reference model
cited by Spinrad and which gave the best results in this chapter exhibits DC
rulebase adaptation, even though the controller rulebase uses the change in error
as an input.

» The specification of the causal relationship between controller response and
rule adaptation is heuristic.

At the conclusion of this chapter, Section 5.5, the SOC is compared to the single step
predictive fuzzy controller developed in Section 5.3 and an adaptive fuzzy control
strategy for the control of the warm water process is chosen.

5.3. Single Step Predictive Fuzzy Control

5.3.1. Introduction

This section describes both the design and simulation of the Single Step Predictive
Fuzzy Controller (SPFC). This adaptive fuzzy control strategy is a model based
controller and is derived mainly from the description of such a method by Moore and
Harris [19], see Section 2.8.

The SPFC controller paradigm is developed for multi input single output (MISO)
control and multivariable control of the outlet flow and outlet temperature variables of
the warm water process respectively. The original design of the controller is
enhanced bv the following contributions from this research :
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» The reference model used by Moore and Harris [19] is extended to a linear first
order system. This enables the user to more fully define the desired dynamic
response of the controlled system.

e The use of the supervised adaptive fuzzy modelling paradigm from Section 4.9,
thus allowing on-line adaptation of fuzzy model with lookup table rulebases
during control.

* The algorithm is applied to a multivariable control problem.

In order to investigate the characteristics of the SPFC controller and to evaluate the
first two of the three enhancements listed above, the control of the outlet flow of the
warm water process is utilised as a testbed. The experience gained through the
control of the outlet flow is then applied to the controller for the outlet temperature of
the warm water process and finally to the multivariable controller.

5.3.2. SPFC Outlet Flow Control
The SPFC can be viewed a predictive controller which utilises an adaptive fuzzy
model of the plant instead of a deterministic model. The main constituents of the
SPFC uses as an initial design in this section, shown in Figure 5.15, see page 125, are
listed below with explanatory notes :

e Fuzzy model of the plant andfuzzy model supervisory adaptation algorithm -
comprise an adaptive fuzzy model of the plant to be controlled. In the case of
the warm water process, the supervised adaptive fuzzy modelling strategy as
described in Section 4.9, has been used to model both the mass flow and the
thermal behaviour of the warm water process.

» Reference model - In the general case of predictive control, a user defined
reference model uses the system setpoint, Yrefntl, and the current value of the
controlled variable, yp, to calculate the desired plant response over the
prediction horizon. When a multi-step prediction horizon is used, then the
desired response, dntl,...,dph, is a vector with the number of elements equal to
the number of steps in the prediction horizon, ph. For a first order reference
model, these elements of the desired response vector are calculated by the
general first order reference model equation (5.1).
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forn=0toph-1

(5.1)
dn#l = e 'dn+ 1 -~x Yrefn

where n is the iteration variable,
ph is the length of the prediction horizon,
dn+1 is the desired response,
dn is the past value of the desired response, whereby the initial
value, dn, is set to the current value of the controlled variable, yp,
Yrefn+i is the system setpoint,
X is the desired time constant specified by the user and
Tsis the sampling time of the controller.

For the specific case of the SPFC, with a first order system reference model, a
single value of the desired plant output, dn+l, is calculated, as the prediction
horizon is a single step, i.e. ph=I. The transfer function of this SPFC specific,
first order reference model is given by equation (5.2).

dn=eTyp+ |-eT YrefnX (5.2)

where yp is the current value of the controlled variable.

Figure 5.15, see page 125, illustrates the function of the first order reference
model.

Optimisation Algorithm - is used to calculate the next controller output in such
a way that the desired dynamic response is achieved by the system. In the case
of the SPFC, this controller block uses the fuzzy model of the plant to calculate
the best controller output, u,,+i, that minimises the value of the cost function,
Cost(n+l). The cost function used is the magnitude of error between the
predicted and desired response, equation (5.3).

Cost(n +1) = |dntl- Y mntl (5.3)

In order to calculate the next controller output, a search is performed over the
fuzzy model rulebase by varying the values of the input variable vector, uin+l,
and, using the corresponding fuzzy model output, Ymn+l, evaluating the cost
function for the corresponding values of the fuzzy model input vector, uin+l.
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The chosen controller output vector, untl, is the fuzzy model input vector,
uintl, that best minimises the value of the cost function. In the SPFC used in
this research, the values of the fuzzy model input vector, uintl, are varied by a
simple search algorithm. This algorithm first chooses ten equally spaced values
for each element of the uintl vector across their respective universes of
discourse, evaluates the cost function for each set of fuzzy model input vectors,
then performs a fine search around the best three of these vectors. The
controller output, dn+l, is the value of uint+l, that best minimises the cost
function value.

All simulation work carried out throughout the SPFC design phase utilised the ANN
model of the warm water process as a plant, see Section 4.6. The fuzzy models used
in the SPFC were initialised using the ANN model of the warm water plant. This
initialisation is performed by training the fuzzy models from the ANN model while
driving the ANN model with random input values. By means of this training, the
fuzzy model learns the behaviour of the ANN model. The reader is referred to
Section 4.9.4 of this thesis where this training (fuzzy model initialisation) is described
in more detail.
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The first controller investigated in this section utilised the original step reference
model from Moore and Harris [19] and thus attempted to reach the setpoint value of
the system within a single controller iteration. The response of this controller with the
step reference model is shown is Figure 5.16 for the control of the outlet flow at a
setpoint of 100 ml/s.
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50.00
8 8 8 g 8 8 8 8 8 8§ 8 8 ¢
0 ‘o al %2 il % gNH N [ ?o % 8
Time (s)

Figure 5.16 - Step reference SPFC outlet flow control with a setpoint of 100 ml/s.
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Figure 5.17 - Step reference SPFC outlet flow control with a setpoint of 200 ml/s.
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The response of the system shown in Figure 5.16, see page 126, is oscillatory but
does settle to the final setpoint value after approximately 2700 seconds. Figure 5.17,
see page 126, shows the response of the SPFC controller with a step reference model
for a setpoint of 200 ml/s. At this plant operating point, the outlet flow continues to
oscillate around the setpoint, even after 10000 seconds.

The oscillation observed in both of these responses is due to the large variations in the
manipulated variable, i.e. the inlet flow, which are caused by the controller's utilisation
of the step reference model. This can be explained by the fact that the controller with
a step reference model has a large forward loop gain.

In order to attempt to reduce the oscillatory nature of these responses, the step
reference model from Moore and Harris [19] is replaced with a first order reference
model. Through specification of the first order reference model dynamics, more
control over the response of the SPFC can be achieved. The first order reference
model is defined by equation (5.2), see page 124, where the value of the time
constant, T, is defined by the user. The SPFC with a first order system reference
model has a reduced forward loop gain compared to the step reference SPFC, which
should thus reduce the oscillation observed with the step reference SPFC.
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In order to appraise the influence of the first order reference model on the SPFC
response, the simulation for outlet flow control with a setpoint of 200 ml/s is
repeated. The chosen time constant of the first order reference model for this
simulation is x =600. This time constant value is chosen because it represents the
actual plant time constant at an average flow throughput value of 125 ml/s. Figure
5.18, on the previous page, shows the response achieved.

With the first order reference model incorporated into the SPFC design, the response
of the controller, for the setpoint of 200 ml/s, no longer exhibits oscillation around the
setpoint and settles to a steady state value within 1500 seconds, with a time constant
of approximately 480 seconds. Based on this improvement, the first order reference
model was incorporated into the controller design.

In an attempt to increase the accuracy of thefuzzy model used in the SFPC, and thus
improve the SPFC response, the structure of the fuzzy models from Chapter 4 is now
modified, and the effect on the response of the SPFC investigated. The new fuzzy
model structure predicts the change in the plant output over one sample and uses
absolute values as input variables. This modified fuzzy model structure is represented
by the equation (5.4), which uses general variables. The modified fuzzy model
structure differs from that of the fuzzy models in Chapter 4, where the absolute value
of the modelled variable was predicted and the change in the modelled variable served
as a model input, see equation (5.5) and Section 4.9.4.

Modified Fuzzy Model
dYmmi = FuzzyModel[ un, yn] (5.4)

where dymn#is the predicted change of the modelled system variable, yp,

over one sample,

unrepresents the plant input variables,

yn represents the plant output variables and
n is an iteration variable.

Old Fuzzy Model
Ymmi =FuzzyModel[ un, dypn] (5.5)

whereYmn+! is the predicted value of the modelled system variable yp and
dypn represents the change in plant output variables over one
sample.
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Figure 5.19 - Modified fuzzy models of mass flow and thermal behaviour.

Figure 5.19 shows the new model structures for the fuzzy models of the mass flow
and thermal behaviour of the warm water process based on equation (5.4). The new
mass flow fuzzy model utilises the sum of the hot and cold inlet flows, Fin(n), and the
value of the outlet flow, Fout(n), as in inputs to predict the change in the outlet flow
over one sample, dFout(n+l). The new fuzzy model of the thermal behaviour of the
warm water process uses the absolute values of the hot enthalpy, Ehot(n), the cold
flow, Fcold(n), the outlet flow, Fout(n), and the outlet temperature, Tout(n), to
predict the change in the outlet temperature over a single sample, dTout(n+l).
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Figure 5.20 - SPFC Structure using the new fuzzy model structure.

In order to use these new fuzzy model architectures, the SPFC structure must be
modified. This modification is shown in Figure 5.20, where the real variable is fed to
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the optimisation algorithm and used in the cost function. The cost function for this
modified SPFC structure is given by equation (5.6).

Cost= |(dYmntl + yp) - dnt] (5.6)

In order to investigate the effect of the new fuzzy model structure on the SPFC
response, the simulated control of the outlet flow using the new SPFC structure for a
setpoint of 200 ml/s was carried out. The chosen time constant of the system was
again 600 seconds. An improvement in the modelling accuracy is clearly seen when
the responses of the old SPFC, Figure 5.18, and the modified SPFC, Figure 5.25, are
compared. This modelling improvement is verified by the mean error magnitude of
the predicted flow - 4.24 ml/s for the old SPFC and 0.06 ml/s for the modified SPFC.
Moreover, the response of the modified SPFC is smoother and, with a time constant
of 570 seconds, corresponds more to the desired dynamic response of reference
model.
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Figure 5.24 - Outlet flow SFPC response for a setpoint of 150 ml/s.
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Figure 5.25 - Outlet flow SFPC response for a setpoint 200 ml/s.
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Based on the improved fuzzy model accuracy and SPFC response, the fuzzy model
formats shown in Figure 5.19, see page 129, and represented by equation (5.4) are to
be adopted into the SPFC design. Using this modified SPFC design, the controller
responses for the following outlet flow setpoints are simulated : 50 ml/s, 75 ml/s, 100
ml/s and 150 ml/s with an initial outlet flow value of 10 ml/s. The SPFC responses for
these four outlet flow setpoints are shown in Figures 5.21 to 5.24. The desired time
constant for all of these responses was 600 seconds.

The controller responses shown in Figures 5.21 to 5.25 all exhibit a small steady state
error. This is due to the modelling errors of the fuzzy model used for the prediction
of the mass flow within the SPFC. Such modelling errors are caused by the
following:

» Thefuzziness of the model - each rulebase cell contains consequent values that
represent the modelled variable within the region of the state space
corresponding to the rulebase cell. The rulebase of the SPFC for outlet flow
control has 21x21 cells. Thus each cell can have a consequent value that
represents the outlet flow over a range of 4.76% of the universes of discourse
of the input variables of the model i.e. 240/21=11.42 ml/s for Fin(n) and
Fout(n), assuming maximum values of 240 ml/s. Thisfuzziness can be reduced
by increasing either the number of rulebase cells or the value of the adaptation
threshold, 8, in the learning algorithm of the fuzzy model, equation (4.25),
which is described in Section 4.9.2.5.

* Rulebase cell interpolation - the fuzzy model interpolates between rulebase
cells, whereby the type of interpolation depends on the fuzzy algorithm
structure i.e. type of fuzzy membership sets, inference function used,
defuzzification function. These errors can be reduced by increasing the number
of rulebase cells.

In all of the previous SPFC simulations, because the fuzzy model was initially trained
using the ANN model of the plant, the fuzzy model corresponded exactly to the
simulated plant to be controlled (neglecting the modelling errors described in the
previous paragraph). This represents the ideal situation for a model based controller
such as the SPFC. In order to investigate the adaptation properties of the SPFC, the
physical plant model (see Chapter 4) is used to initialise the fuzzy model instead of the
ANN model. This corresponds to initialising the fuzzy model with an erroneous
model of the plant to be controlled. The fuzzy models of the plant now differ from
the plant to be controlled, as the ANN plant model is used as the simulated warm
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water process. If this controller configuration is to provide good control, then the

fuzzy models must adapt to correspond to the ANN model of the plant.
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Figure 5.26 - Adaptive and non-adaptive SPFC responses with erroneous fuzzy
models.

After initial simulations, the need for a excitation signal to stimulate adaptation of the
fuzzy model in the adaptive SPFC became evident. The applied excitation signal is
the addition of a white noise to the manipulated variable when a steady state
controller error of more than 10% of the setpoint value exists on the plant output.

The effect of this excitation signal on an adaptive SPFC is seen clearly in Figure 5.26,
where non-adaptive and adaptive SPFCs with erroneous initial fuzzy models are
compared. The non-adaptive fuzzy controller exhibits a large steady state error, due
to the modelling error of the fuzzy model used. Through application of an excitation
signal to the manipulated variable, the response of the adaptive SPFC converges to
the desired setpoint value.

For the adaptive SPFC, the added excitation signal must have a large amplitude to
allow the adaptation of the fuzzy model around the operating point. The large
excitation signal necessary for adaptation of the fuzzy model, causes large fluctuations
in the manipulated variable. The large amplitude excitation signal is clearly
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disadvantageous when compared to the self-tuning PI controller described in Section
5.4, which due to the utilisation of a deterministic linear plant model, only requires a
small amplitude excitation signal.

This section has detailed the development and design of the SPFC using the simulated
control of the outlet flow of the warm water process for development and
investigation. The design and experience gained through this process are now applied
to the simulated control of the outlet temperature of the warm water process in the
following Section 5.3.3.

5.3.3. SPFC Outlet Temperature Control

This section presents the results obtained from the simulated MISO control of the
outlet temperature of the warm water process using the SPFC strategy developed in
the previous section. The manipulated variables of the controller are the hot and cold
inlet flows of the warm water process. The structure of the fuzzy model used for
control of the outlet temperature of the warm water plant is shown in Figure 5.19, on
page 129, and is generally represented by equation (5.4), see page 128. This fuzzy
model was initialised by training it on the ANN model of the warm water process,
which also served as a plant in the simulations described in this section.
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A set of five simulations for control of the outlet temperature of the warm water
process at the following setpoints were carried out: 20, 22.5, 25, 27.5 and 30 degrees
Celsius, where the time constant of the first order reference model is 1200 seconds.
The results of these five simulations are shown in Figure 5.27.

The controller responses shown in Figure 5.27 are without any disturbance signals on
the hot inlet temperature - a constant value of 45 degrees Celsius has been used.
Another set of simulations with the same setpoint values were performed but a
disturbance signal, shown in Figure 5.28, which was used as the hot inlet temperature
variable, which is a measurable plant variable. This hot inlet temperature disturbance
signal is the sum of three sinusoids and a constant value of 45 degrees Celsius, as
shown in equation (5.7). As the cold inlet temperature is not measurable it cannot be

used as a disturbance variable.

T =45 +5sin(27t——i+ 7t)+ Isin(27t;——0 + 0.5sin(27C——1t) (5.7)
7000 1000 300

where  Thatis the hot inlet temperature and
t is the time variable in seconds.
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mr |o 0 o
Time (5)

Figure 5.28 - Hot inlet temperature disturbance signal.

(6]

This hot inlet temperature disturbance signal is based on the empirical observations of
the hot inlet temperature variable performed during the course of this research.
However, as the temperature of the hot inlet flow is dependent on the hot water use in
the rest of the building, this disturbance signal is not a model but only an

approximation of possible temperature variations. The new set of controller
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responses with this disturbance signal added to the hot inlet temperature is shown in
Figure 5.29.
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Figure 5.29 - Outlet temperature SPFC responses with disturbance.

The controller characteristics illustrated in Figure 5.29 show that the SPFC for outlet
temperature is not robust when a disturbance signal is present on the hot inlet
temperature.

The disturbance rejection of the controller could be improved if separate
measurements of the hot inlet flow and temperature variables were used as fuzzy
model input variables. However this would lead to a memory requirement of
3,037,500 bytes of memory (assuming 15 fuzzy membership sets per input variable
with 4 bytes per rulebase cell). Unfortunately, this fuzzy model structure is too large
for the DOS operating system and cannot be implemented.

Clearly the poor disturbance rejection of the SPFC for outlet temperature control of
the warm water process is a serious disadvantage. It remains to be seen how
disturbances on the hot inlet temperature on the real warm water process will affect
the SPFC response when controlling the outlet temperature of the real plant.
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5.3.4. SFPC Multivariable Outlet Flow and Temperature Control

In this section of the chapter, the multivariable control capability of the SPFC for the
outlet flow and temperature variables of the warm water process is investigated
through simulation. The same fuzzy models, as shown in Figure 5.19, and used in the
SPFCs for the control of the outlet flow and temperature respectively, are utilised for
this multivariable controller.

For both controlled variables, a separate first order reference model is used, each
with an individual time constant, see equation (5.2), see page 124. The multivariable
cost function used for this controller is given by equation (5.8), whereby the quotient
terms are used to normalise the flow and temperature terms, which would otherwise
have different units and sizes, i.e. m3s and degrees Celsius.

FAin +D -idFZin +D+ FAn))

Cost(n+\)- K .
ost(n+1) EL(n +Y)

(5.8)

where n is the iteration variable,
Cost(n+l) is the value to be minimised,
K provides a relative weighting factor for the outlet flow and
temperature variables,
Foue(n +1) is the desired response for outlet flow,
dF™(n +1) is the predicted change in the outlet flow from the
fuzzy model for the mass flow of the warm water process,
Fout(n) is the real outlet flow,
r,t(n +1) is the desired response for outlet temperature,
drmu{n + 1) is the predicted change in the outlet temperature
from the fuzzy model for the thermal behaviour of the warm

water process and
Tad(n) is the real outlet temperature.

For all simulations described in this section, the costfunction weightingfactor K has a
value of 0.5, providing equal weighting for both flow and temperature variables in the
cost function.

A set of five simulations for undisturbed multi-variable control of the warm water

process using the SPFC were carried out and are described in Table 5.2, see page 145
with corresponding references to the graphs of results. Except where otherwise
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stated, a desired time constant of 200 seconds was chosen in order to attempt to
speed up the overall plant dynamic response.
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Figure 5.30 - SPFC multivariable control, setpoints = 30 degrees and 75 ml/s.
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Figure 5.31 - SPFC multivariable control, setpoints = 20 degrees and 75 ml/s.
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Figure 5.32 - SPFC multivariable control, setpoints = 25 degrees and 50 ml/s.
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Figure 5.33 - SPFC multivariable control, setpoints = 27.5 degrees and 200 ml/s.
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Figure 5.34 - SFPC multivariable control - reference model time constant of 600
seconds.
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Figure 5.35 - SFPC multivariable control with hot inlet temperature disturbance
signal.
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Table 5.2 - Multivariable SPFC simulations.

Name OutletFlow Outlet Desired Time Graph of
Setpoint (ml/s) Temperature Constant Results
Setpoint (° (seconds)
Celsius)
SPFC Test 1 75 30 200 Figure 5.30.
SPFC Test 2 75 20 200 Figure 5.31.
SPFC Test 3 50 25 200 Figure 5.32.
SPFC Test4 200 27.5 200 Figure 5.33
SPFC Test 5 200 27.5 600 Figure 5.34

There are three types of error evident in the multivariable responses :

» Steady state error - caused by the modelling errors of the fuzzy models, the
causes of which have been detailed in Section 5.3.1.

» High levels of variance on the manipulated variables - caused by the low time
constant of the reference model.

» Disturbances due to coupled nature of the controlled variables - causing
mutual disturbances, which are not compensated by the controller. There are
two main causes for this lack of compensation :

1 The prediction horizon is only a single step, the SPFC cannot predict
both the outlet flow and temperature dynamics sufficiently in order to
achieve full multivariable control.

2. The fuzzy model for the thermal response does not contain a full state
space representation of thermal behaviour of the plant, only 37% of the
rulebase cells have values, see Section 4.9.5.

The effects of the large manipulated variable variance and the coupling of the
controlled variables is evident in the response of the SPFC shown in Figure 5.31, see
page 140. At approximately 7400 seconds a large cold inlet flow is outputted by the
controller in response to the slowly rising temperature. Due to coupling, this large
cold input flow then causes a corresponding error in the outlet flow value and a rise in
the hot inlet flow value in order to compensate for the (relatively) large downward
trend in the outlet temperature caused by the large cold inlet value.
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In an attempt to reduce the controller error, SPFC Test 4 was repeated but with a
desired time constant of 600 seconds for both controlled variables, (SPFC Test 5) see
Figure 5.34. The slower dynamics of the reference model lead to less variance in the
manipulated variables, due to the reduced controller gain.

All of the multivariable simulations performed up until now have had no hot inlet
temperature variable disturbance, thus representing the ideal plant configuration. To
investigate the effect of hot inlet temperature disturbance signals on the multivariable
SPFC, the simulated multivariable control of the warm water process with the
setpoints of 27.5 degrees Celsius and 200 ml/s was repeated with the hot inlet
temperature disturbance shown in Figure 5.28 and with a reference model time
constant of 600 seconds for each controlled variable. The results of this simulation
are contained in Figure 5.35. As in the case of the single step predictive fuzzy control
of the outlet temperature, the multivariable SPFC is not able to control the outlet
variables in the presence of the hot inlet temperature disturbance signal. This is due
to poor disturbance rejection of the fuzzy model of the thermal behaviour of the warm
water process. The coupling evident in the warm water process is seen clearly in the
outlet flow response of the SPFC, where large errors are caused by the variance in the
manipulated variables due to the controller's attempts to control outlet temperature.

One interesting result of the multivariable simulations, is the fact that the temperature
control achieved using the multivariable variable SPFC is of a higher quality that of
the MISO control of the outlet temperature. This is due to the fact that the almost
constant tank level resulting from the outlet flow control in the multivariable SPFC
reduces the non-linear mixing dynamics of the process.

5.3.5. Preliminary Summary of the SPFC

One major disadvantage of the developed SPFC strategy is the search mechanism
which requires considerable processing time. If the fuzzy model were differentiable, a
gradient descent method could be used. This would allow faster convergence to the
optimal controller outputs, thus improving the processing time requirements of the
SPFC.

The SPFC strategy would be enhanced if a Multi-step Predictive Fuzzy Controller
(MPFC) could be developed. As in classical predictive control, the extended
prediction horizon of the MPFC would allow improved control of the non-linear
warm water process thermal dynamics and offer better multivariable controller
performance. Using the current SPFC structure, where a search algorithm is used in
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combination with a cost function, more than one step is not feasible due to the
exponential increase in time necessary for the search.

Associated with the MPFC, some form of disturbance signal prediction over the
prediction horizon would enhance controller performance. For the example of the hot
inlet temperature disturbance signal, a prediction of the future hot inlet temperature
values could be performed, based on the previous values of the variable.

Further discussion and concluding remarks concerning the SPFC are found in Section
5.6 of this chapter.

5.4.  Multi-Step Predictive Fuzzy Control

This section details the development of a strategy for the extension of the single step
predictive fuzzy controller (SPFC), developed in Section 5.3, to a multi-step
predictive fuzzy controller (MPFC). The motivation for the extension of the
prediction horizon is based on the experience gained during simulation in this chapter
and in Chapter 6, where the SPFC was unable to adequately control the outlet
temperature of the warm water process and did not exhibit the necessary level of
compensation for multivariable control of the warm water process. As far as the
author is aware, the MPFC introduced in this section is original work.

The extension of the SPFC to form the MPFC offers the advantages of fuzzy model
based predictive control with a multi-step prediction horizon. These advantages
include:

. control of systems with non-linear dynamics, which applies to the thermal

behaviour of the warm water process described in this thesis,

. the facility for multivariable control, applicable to the multivariable control of
the warm water process where the different time scales of the outlet flow and
temperature dynamics proved to be the hurdle for multivariable control using the
SPFC and

. look-ahead feature is useful for systems such as robotics where the future
setpoints are known.

In order to realise the MPFC, the following two modifications of the SPFC design are
necessary :
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» Choice of fuzzy model structure, linguistic functions and parameters to facilitate

differentiation of thefuzzy model.

» Replacement of the controlled search algorithm, as described in Section 5.3.2,
with a gradient descent algorithm in order to optimise the controller outputs
over the prediction horizon for a given cost function.

5.4.1. MPFC Structure

Figure 5.36 contains a diagram of the suggested MPFC structure with two input
variables and a single output variable with a prediction horizon of three samples. The
fuzzy model used corresponds to the type introduced in Section 5.3 and represented
by equation (5.4) on page 128. This fuzzy model predicts the change in the modelled
variable over one sample. All variables used in this diagram correspond to those in
Figure 5.20 on page 129.

Multi-Step Predictive Fuzzy Controller (MPFC)

steps.

For the example shown in Figure 5.36, where the fuzzy models are constructed so
that their outputs, dYnij 3, are differentiable with respect to their inputs, Uj 3 and
y0.2, where y0 is the current value of the controlled variable, then by applying a
gradient descent algorithm to the MPFC structure, it is possible to minimise a given
cost function through calculation of the optimal manipulated variable values, yj 3,
over the prediction horizon of ph, (ph=3 in this example). A simple cost function is
given by equation (5.9).
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1pmn

(5.9)
N (Cl

where n is an iteration counter, n=1 ... ph, where ph is the prediction
horizon,
en is the nth error equal to the difference between the
corresponding reference signal, dn, and the predicted output of

the fuzzy model, yn, and
Pnis the rath weighting factor.

5.4.2. Fuzzy Model Structure

The structure of a fuzzy model suitable for differentiation is described in this section.
The chosen model has two independent input variables, u and x, and a single output
variable, y. The fuzzy model utilises Gaussian antecedent fuzzy membership sets,
whereby each input variable only activates twofuzzy membership sets, with all other
fuzzy membership sets on the corresponding universe of discourse inactive. Gaussian
functions are used as they differentiable. The activation of only two fuzzy sets on the
universe of discourse is achieved by using a regularly spaced distribution of fuzzy
membership sets and is illustrated in Figure 5.37. It should be noted, that a fuzzy
model with any number of inputs and fuzzy membership sets can be used, the example
fuzzy model given here has been kept simple, in order to limit the derivation

complexity.

Degree of
Membership

[Set-A  V-SetB Ys ;t.C VsetD.VsetE A

X1 X2

The two crisp input variables, xI and x2, both activate only two of

the five fuzzy membership sets, x| activates Set A and Set B while

X2 activates Set B and Set C. This is achieved through a regularly spaced,
distribution of fuzzy membership sets, with all inter set intersections at

a degree of membership value of 0.5.

Figure 5.37 - Regularly space fuzzy membership set distribution.

A lookup table rulebase format with fuzzy singleton consequent values is utilised.
The corresponding degrees of membership for each input variable are given by (5.10),
(5.11), (5.12) and (5.13).
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W -exp © (5.10)
v J
f 2>
(x - el
= exp S (5.11)
\ <G2)
/
w fu- c*'
1 =exp o (5.12)
fu-c'l
M exp ! (5.13)
v {2 J /
where |l p is the gih degree of membership of the variable p and

c and ct are the centre and standard deviation values of the
Gaussian fuzzy membership set functions.

These four degrees of membership activate four rules of all possible rules in the fuzzy
model. Each of these four rules has an activation level which is calculated by use of
an inference function. To give a differentiable function, the product operator is used
as the inference function for the linguistic function AND. The activation levels of the
four rules are given by the equation set (5.14).

Mn
HI2 =u*uzg
(5.14)
P-21—- m m
NP2 = M-2"2

Each of the four rules has a corresponding consequent value S, which is contained
within individual cells of the rulebase. The output of the fuzzy model, y, is given by
equation (5.15) when the centre of gravity defuzzification method for fuzzy singletons
is applied.

y_ MMl MZR MY M2 (5.15)
MiIl M2 ™21 M2
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The first derivative of the fuzzy model output, y, with respect to the input variable, u,
is required. Through substitution of the equations (5.14) into the equation (5.15),
equation (5.16) is arrived at.

_ I, fX iSn+ p, PSR+ [12[1, S2+ fi2 2w I
MM+ M2 + MR2VIX + M2

Rearranging for functions of u and substituting the constants K*, K*and given by

equations (5.17),(5.18) and (5.19) into equation (5.16) results in the equation (5.20).

K* « ii”,, +\ig2S2 (5.17)
K2 = 2 (5.18)
A3=M-i +M2 (5-19)

5.4.3. Fuzzy Model Gradient
The first derivative of equation (5.20) with respect to the input variable u is found by
utilising the quotient rule for differentiation. For notational purposes, let

jit = et , Which is the first derivative of the membership value of a Gaussian

fuzzy membership set with respect to the input variable u. Applying the quotient rule
to equation (5.20) gives :



The equation for first derivative? of the /Gaussian fuzzy membership functions with
respect to the input variables, @“ and |Ix, now need to be found. These are derived

through the application of the product rule for differentiation of an exponential
function.
From (5.12)

- 1 f ( - ur2

=— r(2<-2M)exp (5.22)

h; (23)

Similarly ji* may be found as:
H" =— k - * b : G249

For the derivative of the fuzzy model with respect to x we define K *, and K“ as in
(5.25), (5.26) and (5.27). Rearranging (5.16) for functions of x and after substitution
of (5.25), (5.26) and (5.27), equation (5.28) results, which is the first derivative of the
fuzzy model with respect to the input variable x.

K*“=*1" +]i“S12 (5.25)
K2="21 + 1"2"22 (5.26)
N3=]i?+72 (5.27)
dy (n,x+ +7"2>2 ) - (W +~ DIV + L
(5.28)
y K ~ + ~y

Through the substitution of equation (5.23) into equation (5.21), and the substitution
of equation (5.24) into equation (5.28), the complete equations for the first
derivatives of the fuzzy model with respect to the input variables u and x result.
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The derivatives of the fuzzy model with respect to each of its input variables, U and ;c,
have been derived. It is now possible to apply a gradient descent algorithm to the
M PFC structure to optimise the values of the controller output variables, u, .3- for a

prediction horizon of 3 steps.

The analysis given is applicable to any number of active fuzzy sets, with the constraint
that the fuzzy membership set function and the inference function allow

differentiation.

5.4.4. Application ofa Gradient Descent Algorithm

This section details the application of a gradient descent method to optimise the
controller outputs of the M PFC with respect to a cost function. Initially the example
for the MPFC with a prediction horizon of three steps is used. Following this a
general equation for a prediction horizon of length ph is developed. The reader is
referred to Figure 5.36, in Section 5.4.1 of this chapter, where the block diagram of

the M PFC for a prediction horizon of 3 steps is illustrated.

The cost function used for the optimisation of the input values Uj, U2 and U3 is the
weighted sum of the squared errors and is given by equation (5.1). A weighted sum is
used in order to weight the later predictions, as this is where the controlled variable
approaches the setpoint. When using the gradient descent method, the variables to be

adapted are updated using equation (5.29), [58].

(5.29)

where U-=[«, w2 «3]r is the vector of manipulated variables to
be optimised,
a is the learning gain,
Ep is the cost function value and

K is the adaptation iteration variable.
In order to utilise equation (5.29), the partial derivatives of the cost function, Ep, with

respect to each of the fuzzy model inputs UN, (see Figure 5.36), are required. For a

prediction horizon, ph, of 3 steps these partial derivatives are :
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The following details the derivation of the three required partial derivatives.

dEeEp_dEpo9 y3
3 u, dy33 u3

(5.31)
du3 2
dep_aepay?
(5.32)
au2 ayz2au?
= a—M p2d2- y2)2+ p,(d, - y,f)] (5.33)
~ny2 NMy2
y3=FM(ui,y2)+y2 (5.34)
Substituting (5.34) into (5.33) gives equation (5.35).
3 E r)
n = 50— M 1522+ p {d,-{FM(u,,y,)+ y2])2 (5.35)
&y2 ~y2
5ypP= A21+ Pitxi d™l +FM (kj.jo (5.36)

Substituting (5.36) into (5.32) gives :

9 E

0 Ez[M y2 d2)+ $3[y3 d3I\N+FM'(u3y2)lIJFM*(u2,y,)u (5.37)
u

Finally,

3 17 :
r ; ’\2 =-FM\u2,yl)yAp 22+ VEI{l+ FM'(u3,y2)J\ (5.38)
u
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depMadepady,

(5.39)
au, ay, 3 u,
y2=FM(u2,yD+y, (5.40)
a e
P- [0.5(p.(dl-y 2+p2(d2- y2)2+ P3(d3- y3)2)] (5.41)
dy, dy.
Substitution of equations (5.40) and (5.34) into equation (5.41), gives :
3 Ep_ a (w + P2(d2-[yi+FM (u2,yJ)])2+
0.5 (5.42)
d ) dy, P3(d3- [>1 + FM(u2 y,)+ FM(u3y, + FM(u2 y, )2
or

lé L = pii ~d\) + p2ry2- d2){I+ FM\u2,yx)U)

Y,
+P3("3- IY(+ FM\u2,y, )2+ FM (M3, y2),3(1 + FM'(Uu2,yhui)) (5.43)
Finally,
Plgl+ P2e2(1 +FM\u2,yh) +
,.-"L =1l FM \ul,yO)ur (5.44)
a u, 1 P¥g(it+m xu,.y,),Jl + FM'(u, y2)]

All of the partial derivatives required for the application of the gradient descent

algorithm have been derived and are given by equations (5.31), (5.38) and (5.44).

By means of induction a general equation for the derivative of the error of the MPFC,
EP, with respect to the manipulated variables UNover the prediction horizon of length

ph can be deduced. This equation is given by (5.45).

dE ph i+l
"'=_FM"' (5.45)

duj j=H i
where  FM'is the partial derivative of the fuzzy model for the prediction
step i with respect to the manipulated variable, «,m, and

ph is the number of steps in the prediction horizon
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54.5. Summary ofthe MPFC Paradigm
Equation (5.45) extends the SPFC to a multi-step predictive controller. Through use
of the supervised adaptive fuzzy model strategy developed in Section 4.9, the MPFC

could be made adaptive, with the fuzzy model of the plant adapting on-line.

It is beyond the scope of this research to investigate the algorithm suggested for the
multi-step predictive fuzzy controller. Two main points would, however, be

important in keeping the processing time of the algorithm at a realistic level :

 Initial values for the manipulated variables «m can be chosen based on user

knowledge of the system.

« the optimisation algorithm should have some mechanism to overcome the local
minima in the error surface that are a result of the non-linearity of a fuzzy
model. A gradient descent method with a momentum term and perhaps some
adaptation of the learning gain, a, could help to ensure fast convergence of the

algorithm to a set of predicted controller outputs over the prediction horizon.

For application to the warm water process, the fuzzy models of the mass flow and
thermal behaviour used in the SPFC in this chapter and in Chapters 6, could be used,
whereby the derivatives of the two dimensional fuzzy model derived in this chapter
would need to be extended to that of a four dimensional rulebase, thus corresponding

to the size of the thermal behaviour fuzzy model of the warm water process.

5.5. Self-Tuning PI Control

5.5.1. Introduction
This section describes the design and simulation of self-tuning PI controllers for the
SISO control of the outlet flow, outlet temperature and the multivariable control of

the warm water process.
The self-tuning PI controller is based on an algorithm for a self-tuning PID controller
of a SISO system by Banyasz and Keviczky [111]. This research contributes the

following to the original algorithm

+ the modification of the self-tuning PID controller to that of a self-tuning P

controller and
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« the addition of an anti-integral windup mechanism and limits for the PI-

controller parameters.

5.5.2. The Mathematical Background ofthe Self-Tuning Pl Controller

The self-tuning PI controllers used to control both the outlet flow and temperature
variables of the warm water process are based on an algorithm by Banyasz and
Keviczky [111]. This original algorithm uses a recursive least squares (RLS)
technique to estimate a second order ARX model of the plant to be controlled. The
delay between the model input and output must be known a priori. The estimated
second order ARX model coefficients are then used to calculate the parameters of a
PI1P controller where the controller zeros cancel the process poles. In contrast to the
original algorithm, this research uses a first order ARX model of the plant, the
coefficients of which, are estimated by a RLS algorithm. The Pl controller parameters
are calculated so that the PI controller zero cancels the first order process pole. The

mathem atical derivation of this self-tuning Pl controller algorithm, now follows.

The incremental form of an algorithm for a discrete time Pl controller is shown by

(5.46) - where N serves as the iteration variable.

u{n)- u(n-1n=qkM+ ge{n- (5.46)

If a backward difference discretisation method isused, then the coefficients (0, and q}

have the following values (5.47,48).

lo=Kr(l+ h (5-47)

4—KP (5.48)

where  Ts is the sampling period,
KPis the Proportional Gain of the PI controller and

Tjis the Integral Time Constantof the PID controller.

This algorithm gives an accurate representation of an ideal Pl controller for small
sampling times and thus, if desired, the values of the (0 and (j can be calculated

directly from analogue Pl controller settings [99].

A process model of the form given by equation (5.49) is assumed, i.e. a first order

AR X model (in the z domain).
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Y(z) rk_bz__

(5.49)
X(z) \+az-'
Letting the controller zero cancel the process pole gives (5.50).
1+az~' = 1+ — z~ (5.50)
%
The forward path transfer function then becomes (5.51)
Q(z> R (5.51)

This is a system consisting of controller and plant with the open loop transfer function

given by equation (5.51). The following analyses the magnitude of the frequency

response |<2(co)] and the phase response ZQ(O)) of this system.

qob
[1- cos(cOT)+j'sin(0)71

g

NAsin2( ™)

At the gain crossover frequency, |<2(co)|= 1, resulting in equation (5.52).
gl =2sin (-~ ~2"§-:(08T (5.52)

W ith a phase margin of (pa, the phase response is calculated as follows.

ZQ(G>)=-a,,nnk +1) - tan-'(,
o I-cos(o)QT)

=-(00T(nk +1)-tan =*(cot(—°~))
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(5.53)

B,=72(2(00)+7t

o) = -d)0T(2nk + 1)+ 71 (5.54)

Combining equations (5.52) and (5.54) results in equation (5.55).

(5 -55)

T—1
If a phase margin of g = = 60° is applied, then equation (5.56) results.

TJ (5 -56)

From equation (5.50), equation (5.57) is obtained.

gX= ¢0o (5.57)

Equations (5.56) and (5.57) combined with equation (5.47), allow the calculation of
the coefficients of the PI controller, KP and TI, from the on-line estimated first order

ARX model.

A problem often encountered with the PI controller is integral Windup. One simple
solution for integral windup is to stop updating the integral term of the PI controller if
the value of actuator signal exceeds predefined boundaries, these limits can be chosen
to correspond to actuator saturation. To enable the realisation of this solution, the P1I
algorithm can be rewritten in the form of equation (5.58) where the proportional Up(n)

and the integral ut(n) terms are calculated separately.

up{n) = Kpe(n) Proportional Term
T

u,(m=u,(n—1+ Kp—e(n- 1 Integral Term

u(n) =up(n) +u,(n) (5.58)
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The Pl controller algorithm described by equations (5.46), (5.47), (5.50), (5.56),

(5.57) and (5.58) is used as a basis for a self-tuning Pl controller.

5.5.3. Simulation Software for the Self-Tuning Pl Controller
This section describes the simulation software developed for the self-tuning PI
controller. The simulation icons for the M ATLAB/SIMULINK environment are

shown in Figure 5.38, see page 161, and are explained below

« "RLSID"-isthe ARX Model RLS identification algorithm. This algorithm has
the capability to accept initial values for the estimated coefficients in its user
menu. Thus previous system identification results can be used to initialise the

ARX model RLS coefficients.

« "PlParameters”, "PID Parameters”- calculate the controller parameters for P1
and PID controllers respectively, based on the Banyasz and Keviczky method.
The user can specify the desired phase margin of the controller response and the
maximum and minimum values for the PI/PID controller coefficients. Both of
these icons require the ARX model coefficients from the RLS algorithm as

inputs.

. "Adaptive PI", "Adaptive PID" - are the simulation icons for Pl and PID
controllers which require the corresponding PI(D) controller parameters and the

error signal as inputs.

. "Adapt, with Anti-Windup" - is the simulation icon for a Pl controller with ant-
integral windup, where the integral term update depends on a user defined value

of the magnitude of the error signal.

- "Adapt. Pl with u-fback™- is the simulation icon for a PI controller with anti-
integral windup where the integral update is only performed when the actuator
signal lies within user defined boundaries. The fourth input is for the actuator

signal.
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i RLS ID > Adaptive PID Controller >

> > Adaptive Pl Controller >
Pl Parameters

> >

>PID Parameters ® . o
Adapt. Pl with Anti-Windup

Adapt. Pl with u-fback >

Figure 5.38 - Self-Tuning PID controller simulation icons.

As the warm water process variables to be controlled, have non-zero steady state
values, high pass filters where applied to all of the inputs of the RLS identification
algorithm. These high pass filters serve to remove DC signals from the inputs and are
discrete HR. fourth order Butterworth filters with a cut-off frequency of0.000333 Hz.
This frequency is equivalent to one hundredth of the sampling frequency, where the

sampling period is 30 seconds.

5.5.4. Results

5.5.4.1. Introduction
This section of the chapter presents the results of the simulated self-tuning Pl control
of the MISO and multi-variable control of the outlet flow and temperature variables of

the warm water process.

The ANN model of the warm water process was used as the plant model in all of the

t—1
self-tuning P1 control simulations. The phase margin dJa was set to a value of
radians, corresponding to approximately 60 degrees. For the chosen phase margin,
the controller zero should cancel the process pole resulting in a first order forward

loop transfer function, thus no overshoot should occur in the controller response.

For all simulations in this section, the value of the forgetting factor used in the RLS
identification algorithm was set to 0.99. This value was found to give a good

compromise between the robustness and adaptability of the RLS algorithm.
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For the MISO and multivariable control of the warm water process, static decoupling
of the plant was utilised. Static decoupling attempts to decouple the controlled
variables at DC frequency. The values of the elements of this decoupling matrix were
calculated from the first order ARX models of the mass flow and thermal behaviour of
plant as described Section 4.8 of this thesis. The decoupling matrix is calculated from

the general modelling equation of the plant, equation (5.59), as follows :

~FouM) ‘Mo '"Fco'M)
Joute). m 2 M 22 F ote)_
where Mu ,MI2,M2\ and M 22 are AR X models.

Calculating the steady state gains of the individual models and inverting (5.59) gives :

- Fhal(q) _ M Fote)

JcolIM ). Joute).
Kn Kn
where M = is the decoupling matrix at steady state plant and
N1 K2

Kn,Kn,KZand K2 are the steady state gains of the ARX models

A~ 2~ 2iandM 22-

The operating point chosen for this matrix corresponded to an outlet flow of 200m|/s
and thus the ARX model coefficients were taken directly from Table 4.5 on page 89.

This decoupling matrix is shown below :

0.73685 2.83872 x10 5
Steady state decoupling matrix, M =
0.60327 -2.83872xI0"'5

5.5.4.2. ST-PIl Outlet Flow Control

Figure 5.39 shows the block diagram of the software used to simulate the ST-PI
control of the outlet flow of the warm water process. The first outlet flow ST-PI
control simulation was performed Without initialisation of thefirst order ARX model
coefficients in the RLS identification block. The setpoint for the outlet flow was 100
ml/s with a square wave offset of £12.5 ml/s. The results of this first simulation are
shown in Figures 5.40 - the outlet and inlet flows, 5.41 - the identified ARX model

coefficients and 5.42 - the Pl controller constants.
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Figure 5.39 -Block diagram of the self-tuning Pl control of the outlet flow.
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Figure 5.40 - The inlet and outlet flows for uninitialised sT-pP1 outlet flow control.
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Figure 5.41 - ARX model coefficients for uninitialised sT-P1 outlet flow control.
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Figure 5.42 - The P1 controller parameters for uninitialised sT-P1 outlet flow control.

The self-tuning PI controller is able to control the outlet flow of the warm water
without any steady state error and with a rise time of approximately 1000 seconds
around the operating point of 100 ml/s. The overshoot present on the negative going
steps is due to the fact that the Pl controller zero does not cancel the first order
process pole and thus a second order forward loop transfer function results. This
implies that the first order ARX model of the process is not correct at this operating
point. The incorrectly identified ARX model is due to the non-linearity of the process

around the chosen operating point.

W ithout initialisation, the AR X model coefficients converge only after the equivalent
of 7200 samples. By means of limiting the Pl controller parameters to user defined
maximum values, the controller performance is not adversely effected before ARX
model conversion but strong variance is evident on the manipulated variable. If the P
controller parameter limits were not present, then small or zero values of the ARX
model coefficients would result in unrealistically large Pl controller parameter values,
thus leading to adverse controller performance. The spikes evident in the estimated

AR X model coefficients are caused by the step signal on the setpoint.

400E-04
350604
3.00604
< 250504
E, 200E-04
E 150E-04
UUBAM
5,(X)EA)5
QUOEHK)

Time(s) Time (9

Figure 5.43 - The inlet and outlet flows for initialised ST-PI outlet flow control.
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Figure 5.44 - ARX model coefficients for initialised sT-P1 outlet flow control.
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Figure 5.45 - Pl controller constants for initialised sT-P1 outlet flow control.

The variance of the input flow signal evident after convergence is attributable to the
excitation signal of amplitude £+10 ml/s, which is added to the Pl controller output to
assist the RLS identification algorithm to learn the system transfer function in closed

loop.

The second simulation performed is a repeat of the previous simulation with initialised
first order ARX model coefficients. The initial values used are taken from converged
values of the previous simulation and are - @ = -0.97 and b= 0.0085 Due to the
ARX model coefficient initialisation, the initial controller performance is better than
the previous simulation. This improved performance is clearly seen in the reduced
inlet flow variance during the first 20000 seconds of operation. The controller
dynamics are very similar to those of the uninitialised controller. The results of this
simulation are found in Figures 5.43 - the outlet and inlet flows, 5.44 - the identified

ARX model coefficients and 5.45 - the Pl controller constants.

Figure 5.46 shows the responses of the ST-P1 controller around three other operating
points - 200 ml/s +25 ml/s, 150 ml/s £18.75 ml/s and 50 ml/s £+6.25 ml/s. These
results show that the ST-PIl can adapt to different operating points and still provide

good control. The differing dynamic responses of the controller reflect the plant
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dynamics at the different operating points. Due to plant non-linearities, the ARX
model identification is not correct as second order responses are clearly seen at 150

ml1/s and 200 m1/s.
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Figure 5.46 - ST-PI outlet flow control around three operating points.

5.5A.3. ST-Pl Outlet Temperature Control

Figure 5.47 - Self-tuning Pl control of the warm water process outlet temperature.

This section details two simulations of ST-PI control of the outlet temperature of the

warm water process, where Figure 5.47 shows the simulation software used. The first
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simulation assumes that no disturbances are present on the hot and cold inlet
temperatures. In order to investigate the disturbance rejection properties of the ST-
Pl, the second simulation adds sinusoidal disturbance signals to the hot and cold inlet
temperature variables as defined by equation (5.7) and used in the SPFC temperature

control in Section 5.3.

The results of the simulation without disturbance variables are shown in Figures 5.48 -
the outlet temperature and hot and cold inlet flows, 5.49 - the identified ARX model
coefficients and 5.50 - the Pl controller constants. The oscillatory response of the

controller is due to the following causes :

*+ the inherent non-linearity of the plant thermal behaviour and

« osillatory nature of the manipulated variables.
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Figure 5.48 - Outlet temperature and inlet flows for ST-PIl control of outlet
temperature.
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Figure 5.49 - Identified AR X coefficients for ST-PI outlet temperature control.
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Figure 5.50 - Pl Controller coefficients for ST-PI outlet temperature.

Even though the response is oscillatory, the ST-PI controller is able to follow the
setpoint with an accuracy of +0.5 degrees Celsius after settling time, corresponding to
2% of full scale. Considering the non-linearity of the thermal response of the warm
water process, this error is quite satisfactory. The variance on the manipulated
variables is, however, more similar to an on-off controller and when run on a real

system could lead to acutator wear and eventual failure.

Figure 5.51 shows the response of the ST-PI controller with a disturbance signal
added to the hot inlet temperature. The disturbance signal used is that applied to the
SPFC for outlet temperature control and defined by equation (5.7) on page 136.
There is practically no difference between the non-disturbed and disturbed controller
responses. This good disturbance rejection is attributable to the direct feed back in

the ST-PI1 controller design.
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Figure 5.51 - Temperature control with disturbance variables.

Figure 4.52 contains the ST-PIl controller response for the outlet temperature
setpoints of 20 +2.5, 25 2.5 and 30 2.5 degrees Celsius. The ST-PI controller
achieves the same level of outlet temperature control for these three operating points

with oscillation of the controller variable being due to the non-linearity of the plant.
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Figure 5.52 - ST-PI outlet temperature control around three operating points.
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5.5.4.4. ST-PI Multivariable Control
Two examples of the mulitvariable ST-PI control of the outlet flow and temperature
of the warm water process are briefly presented in this section. A block diagram of

the simulation software used for these simulations is shown in Figure 5.53.

Figure 5.53 - Multivariable self-tuning Pl control of the warm water process.
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Figure 5.54 - Multivariable ST-PI control - setpoints 22.5 £1.5 degrees and 100 +20

m1/s Without hot inlet temperature disturbance signal.
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Figure 5.55 - Multivariable ST-PI control - setpoints 22.5 +1.5 degrees and 100 +£20

ml1/s With hot inlet tem perature disturbance signal.

As the ST-PI controller is a SISO controller, the decoupling matrix described in

Section 5.4.4.1 and given by equation (5.60) is used to decouple the controlled
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variables. By means of decoupling, separate SISO ST-PIl controllers for both outlet
flow and temperature can be utilised. The decoupling matrix used, is for DC

frequency decoupling at an operating point of 200 m1/s.

The first simulation, without an added disturbance signal on the hot inlet flow
temperature, is shown in Figure 5.54 and the controller response with a disturbance
hot inlet flow temperature is shown in Figure 5.55. Both controller responses show
that the ST-P1I controller with the static decoupling is unable to control both outlet
flow and outlet temperture concurrently. This is due to the fact that the decoupling
used is a simple matrix which does not even attempt to compensate for the non-linear
dynamics of the plant. |If accurate non-linear dynamic decoupling functions were

utilised the ST-PI1 would exhibit improved multivariable control of the plant.

5.5.5. Summary

This section of the chapter has described the development of a SISO self-tuning PI
control strategy and its application to the warm water process for the MISO and
multivariable control of the outlet flow and temperature variables. The following
section compares this control strategy with the SOC and SPFC paradigms and
chooses an adaptive fuzzy control strategy for application to the control of the real

plant.

5.6. Controller Appraisal
A comparison and contrast of the three adaptive control strategies described in this
chapter follows, with one of the adaptive fuzzy control paradigms being chosen for

application to the control of the real warm water process.

. Controller error - based on controller error, the best controller from the three
controllers is clearly the ST-PI controller, which exhibits zero steady state error
for control of the outlet flow. The steady state error performance of the two
adaptive fuzzy controllers for outlet flow control was approximately equal, with
both exhibiting steady state errors of approximately 2% . In the case of the
SPFC, this steady state error of the controller is attributable to the intrinsic
modelling error of the fuzzy models used to predict the plant behaviour. This
modelling error can be improved by increasing the resolution of the fuzzy
models through an increase in rulebase size. For temperature control, the ST-PI
delivered superior error performance when compared to the SPFC. The error

of the SPFC is again due largely to the intrinsic modelling errors of the fuzzy
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model used to predict the thermal behaviour of the plant. W hilst offering the
best outlet temperature controller error, the ST-Pl controller has the
disadvantage of large manipulated variable variance due to the large forward
loop gain and, thus, because of actuator wear, would not be suitable for real
time plant control. The SPFC does not exhibitlarge variance in the manipulated
variable due to the fact that the user can indirectly define the controller gain
through specification of the desired controller response by means of definition

of the first order reference model parameters.

Disturbance rejection - due to the direct feedback nature of the ST-PI
controller, it offers superior disturbance rejection compared to the SPFC. The
poor disturbance rejection of the SPFC is due to the utilisation of the enthalpy
term in the fuzzy model. This poor disturbance rejection could be improved by
modifying the structure of the fuzzy model so that the hot inlet flow and
temperature variables are separate fuzzy model inputs. However, this extension
has the disadvantage of substantially increasing the memory requirements of the

fuzzy model.

Response specification - Both of the adaptive fuzzy controllers allow some
degree of specification of their dynamic response. In the case of the SOC, this
specification is by means of a heuristic reference model (often in lookup table
format), which does not allow deterministic response specification and resulted
in unpredictable controller behaviour with poor overall controller responses.
The SPFC uses a first order system as a reference model to specify the response
of the controller, which enables clear definition of the controller behaviour and
resulted in SPFC responses which generally corresponded to the specified
dynamics, when no saturation of the manipulated variables occured. Due to the
deterministic nature of the SPFC reference model, it offers the best method of

controller response specification of the two adaptive fuzzy controllers.

Algorithmic complexity and clarity of design - of the three adaptive fuzzy
controllers, the ST-PI controller is the least com plex and most easily understood
of the three controller paradigms. Due to the fact that the SPFC is a predictive
controller and utilises a clear structure consisting of plant model and reference
model, it is more easily understood than the SOC. The SOC is the most
complex and confusing of the three adaptive controller designs. This is due
largely to the ad-hoc nature of many of its parameters, e.g. the lookup table
reference model, and the use of false terminology, e.g. performance index

instead of reference model.
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. Convergence and adaptability - the ST-PI continuously adapts to identify the
ARX model coefficients whereby some experimentation with the value of
forgetting factor was necessary in order to achieve a good compromise between
the robustness and adaptability of the controller. For larger forgetting factor
values, the controller requires more time to converge but is more robust to
noise whereas smaller values lead to fast convergence with poor noise rejection.
The SPFC adapts a global fuzzy model of the plant only when the modelling
error is reduced by the suggested rulebase. Due to the global nature of the
fuzzy model, large amplitude learning signals are required for the model to learn
the plant behaviour around the operating performance. This is clearly a
disadvantage when compared to the small amplitude of the learning signal used
in the RLS AR X identification. This disadvantage is, however, compensated by
the fact that the fuzzy model is a global model of the plant. The adaptation of
the SO C rulebase is poorly explained in the literature and can lead to controller
instability if the consequent values in the rulebases are not limited. Moreover,
the use of the heuristic reference model in lookup table format led to poor

overall controller responses.

. Processing and memory requirements - the processing and memory
requirements of the ST-PI controller are superior to those of both adaptive
fuzzy control strategies. The SOC is more efficient than the SPFC in terms of
memory and processing requirements. The SPFC is extremely intensive in terms
of memory and computational requirements. The time requirements of the
SPFC are due to the controlled search algorithm, which can lead to hundreds of
evaluations of the fuzzy model. This could be improved through the use of
some form of gradient descent algorithm to find the optimal controller output
for a given cost function. The prerequisite for such a method is that the fuzzy
model be differentiable, where all functions and parameters in the fuzzy model
must allow differentiation. Functions such as triangular fuzzy membership
functions and the minimum inference function do not fulfill this criteria as they
cause discontinuities. The large memory requirements of the fuzzy models used
in the SPFC prevent the porting of this algorithm to current microcontrollers.
For applications using IBM compatible PCs and workstations these memory

requirements are, however, not prohibitive.

Based on the above considerations, the single step fuzzy predictive controller has been

selected for evaluation on the real warm water process. The following chapter

175



presents the results of the control of the outlet flow and temperature variables using

the SPFC paradigm.
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Chapter 6 - Real Time Control ofthe Warm Water Process

6.1. Introduction

6.1.1. General Introduction

This chapter presents the results and appraisal of the application of the Single Step
Predictive Fuzzy Controller (SPFC) developed in Chapter 5 to the real warm water
process. This controller is used for the Single Input Single Output (SISO) control of
the outlet flow and the Multi Input Single Output (MISO) control of outlet
temperature of the warm water process. Due to access restrictions and a series of
compressor breakdowns, only a limited amount of time could be spent evaluating the
SPFC on the real plant. As a result of these practical restrictions, multivariable

control of the real warm water process could not be evaluated.

The SPFC used in all experiments in this chapter is the design developed in Chapter 5

which is illustrated in Figure 5.20 and characterised by the following points :

« a first order reference model is used to define the dynamic response of the

controller, where the user defines the time constant of the reference model.

« the use ofsupervised adaptivefuzzy models to predict plant behaviour.

« as the ANN plant model best represents the mass flow and thermal behaviour of
the plant, the fuzzy models used to model the mass flow and thermal behaviour
of the warm water process in the SPFCs, were initially trained on the ANN
model of the warm water process. Figure 5.20 shows the structure of these

fuzzy models.

« except where otherwise specified, the initial outletflow for all experiments was
zero, corresponding to an empty tank, and the initial outlet temperature was

approximately 17 degrees Celsius.

+ The cOmputer used was an IBM compatible PC with an Intel 386D X 33MHz

processor and 4MBytes of RAM.

6.1.2. Overview of Chapter Structure
Sections 6.2. and 6.3. of this chapter present and evaluate the results from a set of

experiments for SFPC control of the outlet flow and temperature of the warm water
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process respectively. Section 6.4. suggest methods to improve the results from the

experiments and concludes the chapter.

6.2. W arm W ater Process Outlet Flow Control

Using the SPFC, a Set of six experiments for control of warm water process outlet
flow were carried out, all with a sampling time of 30 seconds. The outlet flow rate
setpoints of these experiments are : 0.00005 m3s, 0.000075 m3/s, 0.0001 m3s,
0.00015 m3¥s, 0.000175 m3/s and 0.0002 m3s. Figures 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6
contain graphs of the inlet and outlet flows for these experiments respectively, where

inletflow refers to the sum of the cold and hot inlet flows.

The SPFC for the outletflow control of the warm water process utilised the first
order reference model for the desired response with a desired time constant of 130
seconds. As the time constant of the mass flow is approximately 500 seconds at an
outlet flow of 100 ml/s, this chosen time constant attempts to deliver control with

dynamics which are considerably faster than the real plant.

The following steps are carried out in the outlet flow SPFC for each sample :

« The supervised adaptive fuzzy model firstly uses the current data sample from
the plant to adapt its rulebase. The adapted rulebase is adopted into the fuzzy
model only if the modelling error for the current data sample is reduced,

otherwise the old rulebase is kept.

« Following this fuzzy model adaptation, the first order reference model
calculates the next desired outlet flow based on the current plant outlet flow and

setpoint values.

« A controlled search is performed of the rulebase in order to determine the
controller output which minimises the cost function, i.e. the magnitude of the
error between the desired response and that calculated by the fuzzy model for a
given value of the manipulated variable. This search is performed by firstly
evaluating possible controller outputs at ten equally spaced reference inlet flow
values (where inlet flow is the manipulated variable) across the full scale of O to
250 ml/s, and then performing a fine search around the best three of these ten

reference points.

« The value of inletflow which results in the lowest value of the cost function, is

then used as the controller output, whereby the inlet flow value is divided
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equally into setpoints for the hot and cold inlet flows. In order to reduce the
possibility of an overflow, the inlet flow value of the warm water process is
limited to a value of 250 ml/s, which results in a steady state tank level of

approximately 180 cm.
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Figure 6.1 - SPFC outlet flow control - setpoint = 0.00005 m3/s.
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Figure 6.6 - SPFC outlet flow control - setpoint = 0.0002 m3s.
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The results of these tests show that, in principle, the SPFC is capable of controlling
the outlet flow of the real warm water process. Table 6.1 lists the time constants and

steady state errors as a percentage of full scale for the six tests.

Table 6.1 - Time constants and steady state error of outlet flow control tests.

Setpoint ( ml/s) Approximate Time Steady State Error
Constant (s) (% offull scale)
50 110 2.91
75 110 2.08
100 140 2.91
150 270 1.56
175 400 0.8
200 570 1.33

There are three types of controller errors evident in the experimental results :

« Oscillation at low setpoint values - caused by the fast plant dynamics at lower
outlet flow operating points. The observed oscillation at a flow operating point of
50 ml/s has a period of 180 seconds, whereby the sampling period of 30 seconds is
only one sixth of the oscillation period. An increase in the sampling rate to 15

seconds would reduce this oscillation.

. Inaccurate dynamic responses - refers to the differences observed between the
time constants of the outlet flow responses and the desired time constant of the
reference model. These differences are caused by the physical hard limit for both
cold and hot inlet flows, the sum of which was 150 ml/s. The desired dynamic
response of the first order reference model with a time constant of 120 seconds is
not attainable for operating points corresponding to outlet flows larger than

approximately 50 ml/s.

. Steady state errors - small steady state errors are evident in all outlet flow
responses and are due to the fuzziness of the fuzzy model. The fuzzy model used
in this controller to model the mass flow of the warm water process, uses 21 fuzzy
sets for cach of the two antecedent variables and a value of 8 = 0.7, see the
learning equation (4.25). Thus the length of the adaptable areas of each rulebase
cell correspond to 3.41% of the full scale value of the input variables. The steady
state errors observed during these tests all correspond to values of less than 3% of
the full scale value of the outlet flow. Thus, it can be concluded that the

controller steady state error is caused by the intrinsic error of the fuzzy model.
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To show the adaptation of the rulebase used in the fuzzy model of the SPFC for outlet
flow control, the percentage change in the rulebase cells with respect to their initial
values is shown in Figure 6.7. By using the M ATLAB command spy(), the number of

adapted rulebase cells was seen to be 229 which corresponds to 62% of the rulebase.

The changes in the rulebase are all less than 0.1 percent of the initial values, thus the
initial rulebase can be assumed to be an accurate representation of the mass flow of

the warm water process.

6.3. W arm W ater Process Outlet Tem perature Control

A setoffive experiments were earned out on the plant for M1SO control of the outlet
temperature with setpoints of 20, 22.5 ,25, 27.5 and 30 degrees Celsius. The results
of these five tests are shown in Figures 6.8, 6.9, 6.10, 6.11 and 6.12 together with the
hot inlet flow temperature disturbance variable. 1In order to increase the speed of
response of the plant, the first order reference model used in the SPFC for these tests,

was given a time constant of 300 seconds.

The hot inlet temperature is a measurable disturbance variable, whereby its value is
dependent on the use of hot water in the building and the mode of operation of the
central boiler used for heating the water. No influence on either the consumption of
hot water or the mode of operation of the boiler was possible during the course of the

experiments.
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The SPFC used for outlet temperature control searches for the optimum value of both
the cold and hot inlet flow values. Moreover, the rulebase to be searched has four
dimensions and requires more processing time per search iteration compared to the
two dimensional rulebase of the outlet flow SPFC. Due to the increased processing
time requirements, combined with the relatively slow Intel 386 processor and the
20H z interrupt load (from the ISR for inlet valve control), the sampling time of 30
seconds was not sufficient to allow a full search of the rulebase. The sampling time
was thus increased to 60 seconds, whereby this represents one tenth of the thermal
time constant derived in Section 4.4 and is still sufficient to capture the thermal

dynamics of the plant.
As seen from Figures 6.8 to 6.12, the responses obtained in these experiments are of
an oscillatory nature. In order to evaluate these responses, the mean and standard

deviation of the outlet temperature after rise time was calculated, see Table 6.2.

Table 6.2 - Mean and standard deviations of the outlet temperature tests.

Setpoint (° Celsius) Mean (° Celsius) Standard Deviation (° Celsius)
20 21.2 1.43
22.5 22.7 1.20
25 25.1 1.71
27.5 26.8 1.51
30 27.5 2.75

The oscillation and steady state errors (based on the mean outlet temperature values
after rise time ) evident in all of the outlet temperature control experimentsdescribed

in this Section are due to the following (in order of effect) :

- Poor disturbance rejection of the SPFC outlet temperature controller - which
is discussed in Section 5.3.3. of this thesis. One example of the effect of the hot
inlet temperature on the SPFC response can be observed for the setpoint of 20
degrees Celsius (see Figure 6.8). The peaks in the hot inlet temperature at
3000, 5400, 6600 and 8000 seconds cause corresponding oscillations at the

same times in the controlled variable.

« Limited prediction horizon of the SPFC - does not allow sufficient

compensation of the mixing dynamics of the plant.

. Fast reference dynamic - which causes large variance in the manipulated

variables.
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« Fuzzy model errors - in the fuzzy model of the thermal behaviour of the warm
water process that was used in the SPFC. As described in Section 4.9.3 each of
the antecedent variables used in this model has 15 fuzzy membership sets. Thus
the maximum resolution of this fuzzy model is 1.1 degrees Celsius (assuming an

outlet temperature span of 40 degrees Celsius).

The adaptation of the rulebase was investigated using the spy() command in
M ATLAB. Approximately 25.6% of the rulebase cells were adapted whereby the
average percentage change of the adapted rulebase cells with respect to their original
values was approximately 15% . This implies that the initial fuzzy model of the warm

water process was reasonably accurate.

6.4. Conclusions
The control of the outlet flow of the warm water process corresponded well with the
simulation results described in Chapter 5. The results obtained for outlet temperature

control of the warm water process using the SPFC were of poor quality.

To improve the quality of control of the SPFC for the control of the outlet flow and

temperature of the warm water process, thef0||0Wing enhancements are necessary :

« Increasedfuzzy model accuracy - for the fuzzy models used for the prediction
of the outlet flow and temperature in the SPFC through an increase in the
number of cells in the respective rulebases. For the fuzzy model of the thermal
behaviour of the warm water process, the replacement of the hot enthalpy input
variable with separate hot inlet flow and temperature variables would improve
the disturbance rejection of the SPFC for temperature control. As described in
Section 5.3.3 this would require the use of another operating system as the

memory capacity of DOS would notbe sufficient.

. Extension of the prediction horizon of the SPFC, thus forming the Multi-Step
Predictive Fuzzy Controller (MPFC). The extension of the prediction horizon
would allow improved compensation of the non-linearities of the warm water
process, especially in the case of the thermal mixing dynamics. Chapter 7 of this

thesis presents a concept for the development of the MPFC.

. Slower reference model dynamics - would reduce the forward loop gain of the

SPFC, better controller performance would be achieved for the control of the
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outlet temperature, if the time constant of the first order reference model were
considerably larger than the 210 seconds used in these experiments e.g. 600

seconds.
Unfortunately, due to the access restrictions and compressor breakdowns mentioned

at the beginning of this chapter, the suggested improvements for the SPFCs for the

outlet flow and temperature control could not be performed.
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Chapter 7 - Conclusions and Suggestionsfor Further Research

7.1.  Introduction

This chapter draws conclusions concerning adaptive fuzzy control from the research
undertaken in this thesis and suggests areas where further research could be
performed. Section 7.2 of this chapter contains suggestions for further research and

Section 7.3 draws overall conclusions from the research presented in this thesis.

7.2.  Suggestions for Further Research

7.2.1. Modelling of the Warm Water Process

The physical model of the warm water process developed in this research proved to
be a sufficient model of the mass flow but was unable to model the non-linear
thermal behaviour of the plant adequately. The addition of extra sensors along the
length of the process reaction tank of the warm water process would, by means of
data acquisition, enable more exact physical models of the thermal behaviour of the

warm water process to be developed.

Although notdirectly concerned with the topic of this research, the ANN model of the
warm water process played a key role in initialising the fuzzy models for the on-line
control of the warm water process. Moreover, the ANN model was used as a
simulation model of the warm water process for some of the simulation work
performed in Chapter 5. Based on the behaviour of the ANN warm water process
model observed during the course of these simulations, it became clear that the
training data used to train the ANN model did not globally represent the state space of

the warm water process adequately.

As described in Chapter 1, one aspect of the area of neural-fuzzy research utilises
fuzzy algorithm representations of human expert knowledge to initialise neural
networks, which are then further trained with measured system data. In order to
improve on the global modelling capability of ANN model of the warm water
process and to improve its training time, initialisation of the ANN with data taken
from either the physical model or a human expert could be performed. This would
initialise the network with a state more representative of the process dynamics than
the set of small random weight values normally used and thus could help to shorten
the training times. Moreover, this initialisation could help to fill any gaps in the state
space not provided by measured system data and thus improve the global nature of

the model. Further modelling using such ANN architectures as radial basis networks
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would also be of interest, as these offer faster training times without the paralysis and
local minima problems of the backpropagation trained ANN but at the expense of on-

line computation time [101].

Thefuzzy models utilised in this research possess a rulebase in lookup table format.
In order to increase the accuracy of these fuzzy models, relational matrix rulebases
could be used. Research by Kiipper [108] has suggested a method of training a fuzzy
model with a relational matrix rulebase using a fast and convergent stochastic learning
algorithm. In order to improve model convergence, this paradigm could be

augmented by the supervisory function suggested in Chapter 4 of this research.

7.2.2. Self-Organising Controller (SOC)

As detailed in Chapter 2 of this thesis, the most prominent class of stand-alone
adaptive fuzzy controller is the direct strategy of the Self-Organising Controller
(SOC) where the rule consequents of a rulebase are adapted. This thesis shows that
the soc is a complex and computationally intensive algorithm which has relatively
poor control performance. One of the main problems with this controller strategy is
the large number of parameters for which no direct relationship to controller response
can be perceived. Of these parameters, the reference model has the most direct
influence on the SOCs control performance. However, in all of the literature found,
the reference model is of a heuristic nature, often in the form of a lookup table with
up to 200 values, and has not been concisely investigated. One possible method 10
reduce the number of SOC parameters while increasing the clarity of the SOC design
would be to replace the heuristic reference model with a deterministic algorithm. This
modification would allow the user to directly specify the desired response of the
controller, thus making a simpler specification and evaluation of its performance
possible. If a first order system, for example, were used as a reference model, then
only the steady state gain and time constant would need to be specified, both of which
have clear physical interpretations and allow definitive evaluations of the SOC

performance.

Associated with the utilisation of a direct and transparent deterministic reference
model, more attention should be given to the determination of the causal relationship
between the consequent values of past rulebases and the current controller
performance, which decides precisely which elements of the current rulebase are to be
adapted. In practice a delay (most often a single parameter m) in rule consequent
adaptation is specified, based on the fact that past controller rulebases have

contributed to current controller performance. Different publications have claimed
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that the exact determination of this relationship (and thus the value of this delay
parameter) is unimportant, as the SOC is able to compensate for its false specification.

This would, however, seem unlikely and needs to be rigorously investigated.

The issue of adaptation of the rulebase is a crucial factor in the SO C design. In most
of the SOC implementations, the adaptation is largely dependent on the position of
the controlled variable in the state space, even though the controlled variable may be
moving towards the setpoint in a satisfactory manner. |[If adaptation were made
dependent on the error signal trajectory, then rulebase adaptation would only be
performed if the trajectory of the controlled variable is unsatisfactory, and would
provide improved SOC performance. Such trajectory based adaptation could be
achieved by comparing the trajectories of a deterministic reference model and the
controlled variable, basing the adaptation on the difference between the two. Due to
the interpolative and inexact nature of the fuzzy controller, adaptation based on small
controller errors is not meaningful and can lead to instability of the SO C algorithm.
Thus, some research should be directed at attempting to define refined criteria for

adaptation.

7.2.3. Fuzzy Modelling

Fuzzy modelling plays a key role in this research as it is an integral part of the single
step predictive fuzzy controller strategy which is applied to the control of the outlet
flow and temperature variables of the warm water process. The key advantage of the
supervised adaptivefuzzy modelling strategy developed in Section 4.9 of this thesis is
its ability to learn non-linear mappings on-line using a simple adaptation algorithm.
The main disadvantage of this modelling strategy is its memory intensive nature,

which increases exponentially with the number of model inputs.

Because the performance of this indirect adaptive fuzzy controller strategy is directly
dependent on the accuracy of the fuzzy model used, more research is required into
improving the modelling accuracy and memory requirements of ON-line adaptive fuzzy

models. Such research should include :

. the determination of realistic trade-offs between memory requirements and

modelling accuracy,

«  the investigation into the utilisation of different learning algorithms,
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« the development of Structurally adaptive models which would start with
small rulebases and, as the rulebase fills, would automatically increase

rulebase size and resolution and

. the combination of fuzzy models and physical models to form hybrid fuzzy
models.

Figure 7.1 shows one example of the Synthesis of afuzzy model and a deterministic
model using the mass flow of the warm water process as an example. Here, the on-
line adaptive fuzzy model is used to learn the modelling error of the physical plant

model and, through compensation, improve overall modelling performance.

Hybrid Fuzzy Model

Fout(n)
Fout_m(n)
Non-adaptive
physical plant model
Fout(n)

Modelling error of the

physical model is used *

to train the fuzzy model N [

Fin(n-1)
On-line adaptive

Fout(n-I) Fuzzy model Error(n) predictec

by the fuzzy model

Fin(n-I) is the previous inlet flow of the real warm water process.

Fout(n-1) is the previous outlet flow of the real warm water process.

Fout(n) is the current outlet flow of the real warm water process.

Fout_m(n) is the predicted outlet flow from the physical model.

Fout(n) is the predicted total outlet flow of the warm water process.

Error(n) is the modelling error of the physical model predicted by the fuzzy model.

Figure 7.1 - Synthesis of adaptive fuzzy model and physical plant model.

Such hybridfuzzy models would offer improved modelling performance as the fuzzy
model would no longer be required to learn the complete system behaviour. The
know-how contained in physical models can be utilised whereby the fuzzy model
would serve to increase its accuracy. Furthermore, in contrast to the fuzzy models
used in this research, the initialisation of the fuzzy model would not be necessary, as

the physical model would provide the initial output of the overall hybrid model.
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7.2.4. Predictive Fuzzy Control

This research used a simple Ssingle step predictive fuzzy controller (sPFC) as a basis
and enhanced it through the extension of the step reference model to a first order
system, thus allowing better definition of its dynamic response. Through application
to a non-linear multivariable plant, the advantages and shortcomings of the SPFC
were highlighted. The main limitation of the SPFC was the single step prediction
horizon which was not sufficient for the prediction of non-linear plant dynamics over
enough of a time period, to enable the control of systems with strongly non-linear

dynamics to a reasonable degree of accuracy.

As a solution to the limited prediction horizon, Chapter 7 develops a method for the
extension of the SPFC to the multi-step predictive fuzzy controller (M PFC). This is
achieved through the utilisation of differentiable fuzzy models and the application of a
gradient descent algorithm to the proposed M PFC structure to optimise the values of
the manipulated variables. This MPFC could serve as the focus for further research,

where the main issues are deemed to be:

« investigation of the achievable speed and quality of optimisation through the

utilisation of a variety of gradient descent methods,

. the determination of the effect of the accuracy offuzzy models on the

controller performance,

. comparison and contrast with classical predictive control strategies and

. the use of hybridfuzzy models, as proposed in Section 7.2.3 of this chapter,

in a multi-step predictive controller.

7.3. Conclusions

Fuzzy control offers the engineer a method with which it is possible to control a plant
using human expert knowledge stored in a mathematical form. This capability has
achieved SOMe SUCCeSS in the control of ill-defined systems where classical control
theory had failed to provide reliable automated closed loop control. However, fuzzy
control does not offer a general solution for all difficult control problems as implied
by some of its more aggressive proponents. Precisely these exaggerations coupled
with the intrinsic ad-hoc nature and poor quality of much of the literature concerning
fuzzy control have lead to acceptance problems among the closed loop control

community.

199



A fuzzy controller performs nothing other than an interpolation between the rules in
its rulebase and can be viewed as an interpolating lookup table, where the elements
in the lookup table can be referenced by linguistic terms. The form of interpolation
used is dependent on such parameters as the type and number of fuzzy membership
set functions, the inference and aggregation functions and the defuzzification method.
The major disadvantage with the fuzzy controller is the selection and optimisation of
the large number of parameters. The designer can reduce the number of these
parameters by reducing the size of the rulebase, but while this solution offers higher

clarity of design, the overall accuracy of the fuzzy controller will suffer.

Fuzzy controllers are Not suitable for high accuracy control tasks in such applications
as robotics. This unsuitability is due to the interpolative nature of the fuzzy logic
controller and the difficulty in relating controller parameters to controller performance
when a fuzzy controller is utilised. Such control tasks are better left to classical
control methods which, by means of their deterministic nature, provide higher
accuracy and often allow optimisation of the controller for a given cost function
around a given plant operating point. Only in the case where classical control
algorithm s fail to deliver the desired controller response, should the implementation of

a fuzzy controller be attempted.

The field of adaptive fuzzy control was categorised into three areas in this research
with most attention being given to stand-alone adaptive fuzzy control strategies. The
majority of adaptive fuzzy control techniques found are of limited practical value. As
far as the author is aware, the only type of adaptive fuzzy controller that has proven
to be commercially viable, is the self-tuning FED controller with a fuzzy tuner which is

available from the company OMRON [1],

The single step predictive fuzzy controller chosen for practical evaluation in this

research is of limited practical value due to the following disadvantages :

. single step prediction is not sufficient for good control of non-linear

multivariable plants.

. extravagant memory requirements - the fuzzy model used for thermal

behaviour modelling requires over 200 kBytes of memory.

« excessive computational requirements with of the controlled search

algorithm used - one calculation of the output of the four dimensional fuzzy
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model of thermal behaviour required approximately 0.05 seconds when run

on a386DX 33Mhz PC.

. the quality of control is overly-dependent on the modelling accuracy of the

fuzzy model used.

The development of the multistep predictive fuzzy controller, suggested in Chapter 7,
coupled with the continual decrease in the price of computing equipment and their
steadily improving performance may make the predictive fuzzy controller interesting
for practical implementations in the future, but for the moment it will remain largely

within the realms of academ ic research.

In most of the literature found, the authors attempt to develop adaptive fuzzy control
strategies without the incorporation of know-how from classical control theory. This
results in ad-hoc control paradigms such as the self-organising controller and many of
the gain tuning/adaptation methods found. It is beyond doubt that adaptive fuzzy
control can only serve to gain by exploiting the knowledge and experience available in
the field of classical control. The synthesis of adaptive fuzzy control and classical
control theory would benefit control theory as a whole, through the exploitation of

the advantages of both methods, to overcome their individual weaknesses.
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Appendix A

Table A .l - Listofcomponents used in signal conditioning board.
Resistors Value Tolerance
R1 470 n 5%
R2 22MQ 5%
R3 2.2 MQ 5%
R4 1MQ 5%
RS 1 MQ 5%
R6 See Table A.2 5%
R7 1 MQ 5%
R 8 1 MQ 5%
RO 1.8 MQ 5%
RI1O 2.2 MQ 5%
R 11 470 kQ 5%
R 12 680 kQ 5%

Variable Resistors - carbon types

RV1 100 Q 10%

RV 2 1 MQ 10%

RV3 47 kQ 10%
Capacitors

cl 2.2 nF Ceramic 10%

c2 See Table A.2 10%

c3 2.2 nF Ceramic 10%

Semiconductor Devices
Al and A2 are 2 operational amplifiers in a quad-opamp integrated circuit - TL074

from Texas Instruments.

Table A2 - Anti-aliasing cut off frequencies and corresponding component values.

Plant Variable Cut-off Value 0fC2 in Value 0f C2 in
Frequency (Hz) signal conditioning signal conditioning

board channel board channel.
Cold Inlet Flow 5 22 (IF 47 kQ
Hot Inlet Flow 5 22 |iF 47 kQ
Process Reaction 0.0833 22 nF 47 kQ

Tank Level

Outlet Flow 0.0833 22 nF 47 kQ
Hot Inlet 0.0833 22 nF 47 kQ

Temperature
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Outlet

Temperature

0.0833 22 nF 47 kQ

Table A.3 -List of components used in the two power supplies.

Capacitors
cl,C2,C3

Transformers
T1

T2

Semiconductor Devices
IC1

IC2

IC3

B1, B2

1000 |iF

24V A 0-220/240V primary voltage, 1x24V
secondary voltage at 1ampere, chassis mount
30V A 0-220/240V primary voltage, 2x15V

secondary voltage at 1 ampere, chassis mount

M C7824CT Voltage regulator - +24 volts
M C7815CT Voltage regulator - +15 volts
M C7915CT Voltage regulator - -15 volts

General Instrument GBPC1 Bridge rectifier
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Appendix B

This appendix contains the source listings for the functions necessary for the
installation and de-installation of a user defined interrupt service routine. The name of

this ISR is adcjsr.

The following ANSI C function installs a interrupt service routine for the IRQ x.

.***** * % *****.***““ **‘*‘ ****‘******.*****.***‘***.*****.*‘*****.*.*
** Program :INTINIT.C

** Revision :1

** Date :10.05.93 STEPHEN MCCORMAC

This file initialises the interupt structure required in this programme.
The ADC card sends an interupt on IRQ-x when ADC iscomplete. The module
ADCIJSR.C is the Interupt Service Routine for this IRQ.

Kkkkkkkkkhhkkrkx jnc|Ucied files

#include <dos.h>
#include <stdio.h>
#include <conio.h>

**k kkhkkkik kkk * k% ** * kk*k
. . . LR TR [EI RN

*kkkkkkkkkkkkkk** function prototypes

extern unsigned char PICOId;
extern void interrupt Adclsr(void);
extern void interrupt (*OldVect)();

ek ek kR K K Kk kK kK K Hok ok kR K K Kk K ok Rk kR Kok kK Kk kKK

void Intinit(unsigned int IntNum, unsigned int IntEn)

{

T declarations 7
unsigned char TempByteO;

A — start of main instructions 7

disable(); /* disables all interupts 7

TempByteO=inportb(0x21); /* read in Interupt Flag Register 7

PICOId=TempByteO; /* save old IMR value 7

TempByteO~TempByteO & IntEn; /*unmask IRQx 7

outportb(0x21 . TempByteO); /* enable IRQ7 interupt 7

OldVect=getvect(IntNum); /* get BIO S installed IRQx interupt
vector 7

setvect(IntNum ,Adclsr); /*set IRQxvector toadcjsr 7

enableO; /* enable interupts 7
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The following ANSI C function deinstalls the previously installed ISR and restores the
PC to its previous state.

/

** Program :terminat.c *

** Revision :1 *

** Date 1 25.05.93 STEPHEN MCCORMAC

This module allows the proper termination of the control system for the warm
water process.

*hkkKkKkKkKkhhhhhhkkk inc|ucied files Hokkokkkkkkkokkkkkkkkokkkkkkkkkokkkkkkkkokk [

#include "par_sys.h"

#include <dos.h>
L. - -,_-*_ e <<

extern unsigned char PICOId;
extern void interrupt Adclsr(void);
extern void interrupt (*OldVect)();

*kkkkkkkkxkkkkx*x*%  function prototypes Fhkkkkk kKRR Kk hkkk kKK hhk o kkkkkkkhkk [

extern void Daclnit(void);

R Kk ok ko kK KKk kK * ok Kok Kk * * *k kK K K Kk kK

void Terminate(unsigned int IntNum)

/{* ---------------------- declarations */

[* e start of main iNStructions ... */

Daclnit(); /*sets all DAC outputs to zero 7
outportb(AdcIntEn.O xff); /* reset interrupt request on ADC 7
outportb(AdcModeCont,O0x0); /* reset ADC card trigger modes 7
outportb(0x20,0x20); /* verify interrupt 7

disable(); /* disables all interupts 7
outportb(0x21,PICO Id); /* restore old PIC value 7
setvect(IntNum ,0ldVect); /* restores old interruptvector 7
enable(); /* enable interrupts 7

}

The following ANSI C function multiplies two matrices together.

#include <stdio.h>
#include <structsl.h>

extern MATRIX matinitl (unsigned int ROW, unsigned int COL, MATRIX huge
*M at);

MATRIX MULM(MATRIX huge *A_MATRIX huge * B)
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{

MATRIX ANS;
int i=0,j=0,k=0,err=0;
float sum=0.0;

/* check matrix dimensions */

if(A->colurnns!=B->rows)
{
printf("\n\a Mismatching matrix dimensions in MULM");
err=1;

}

/* initialise answer matrix */
ANS=matinitl(A->rows,B->columns,& ANS);

if(err==0)
{
for(i=0;i<ANS.rows;i++)
for(j=0;j<ANS.columns;j++)
{
sum=0.0;
for(k=0;k<A->columns;k++)
sum += A->mat[i][k] * B->mat[k][j];
ANS.mat[i][j]l=sum;

}

return(ANS);

}

The following AN SI C function represents the artificial neural network model of the

warm water process.

This function calculates the output of the ann model of
the icc tank.

**/
#include <structsl.h>
extern MATRIX DIVV(MATRIX huge “.MATRIX huge *);
extern MATRIX MULV{MATRIX huge ‘.MATRIX huge *);
extern MATRIX MULM(MATRIX huge *MATRIX huge *);
extern MATRIX LOGSIGV(MATRIX huge *MATRIX huge *);
extern MATRIX ADDM(MATRIX huge * MATRIX huge *);

extern void m atfreel (MATRIX huge *);

MATRIX nnrun(MATRIX huge *u,MATRIX huge *wim MATRIX huge *
w2m ,MATRIX huge *w3m,
MATRIX huge *blm ,MATRIX huge *b2m MATRIX huge * b3m,
MATRIX huge * pscalem .MATRIX huge * tscalem)

{

MATRIX ul,u2,u3,ud4,u5,u6,u7,y;
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ul=DIVV (u,pscalem);
u2=MULM (wlm , &ul);
u3=LOGSIGV (&u2,bl m);
ud=MULM (w2m ,&u3);
u5=LOGSIGV (&u4,b2m);
u6=MULM (w3m ,&ub5);
u7=ADDM (&u6,b3m);

y=M ULV (&u7,tscalem);

atfreel(&ul);
atfreel (&u2);
atfreel (&u3);
atfreel (&u4);
atfreel (&ub5);
atfreel (&u6);
atfreel (&u7);

3 33 33 3 3

return(y);

The following ANSI C source code listing allocates memory for a four dimensional

rulebase.

/* function to initialise a matrix of doubles*/
#include <stdio.h>

#include <structsl.h>

#include <stdlib.h>

#include <alloc.h>

#include <conio.h>

extern MATRIX matinitl (unsigned int, unsigned int, MATRIX huge *);

RB4D rb4dinit(unsigned int ROW _2,unsigned int COL_2,
unsigned int ROW, unsigned int COL, RB4D huge *Mat)

{

unsigned int i=0,j=0;
MATRIX huge ** array;

Mat->rows_2=ROW _2;
M at->columns_2=COL_2;

array=(M ATRIX huge **)calloc(ROW _2,sizeof(MATRIX));

if(array==NULL)
printf("\n !ljAllocation of RB4D failed.");

for(j=C);J<ROW _2;j++)
array[j]J=(M ATRIX huge *)calloc(COL_2,sizeof(MATRIX));

if(array[j]==NULL)
printf("\n IllAllocation for rows failed.");

}
for(i=0;i<ROW_2;i++)
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for(j=0;j<COL_2;j++)
{

array[i]é]=m atinitl(ROW ,COL,&arrayl[il[i]);

}

M at->matp=array;

return(*M at);

}

The following ANSI C source code listing is of the function used to for rule
antecedent inference for four antecedent variables followed by the centre of gravity
defuzzification for the corresponding lookup table rulebase with singleton

consequents.

#include <infrb4d.h>
#include <stdio.h>
#include <structsl.h>
#include <alloc.h>
#include <stdlib.h>

extern float lookup4d(unsigned int ROW _2,unsigned int COL_2,unsigned int
RO W ,unsigned int COL,RB4D huge * MAT);

extern void printmat(MATRIX huge *);

extern MATRIX matinitl (unsigned int,unsigned int MATRIX huge *);
extern void m atfreel (MATRIX huge *);

extern float INFPROD(MATRIX huge *);
extern float ALGSUM (M ATRIX huge *);
extern float MEAN(MATRIX huge *);

extern float MINIMUM (MATRIX huge *);
extern float FUZOR(MATRIX huge * float);
extern float MAXIMUM(MATRIX huge *);
extern float FUZUND(MATRIX huge * float);

intinfro4dd(MATRIX huge *crisp, MATRIX Dofs[],MATRIX DofsNZ[], RB4D huge *
RuleBase.int IF,float gamma)

{

register int i,j,k,I,m;

register float SD ,SD C;

if((RuleBase->rows_2==0)IlI(RuleBase->columns_2==0)II(RuleBase-
>matp[0][0].rows==0)II(RuleBase->matp[0][0].columns==0))

printf("\n!!!Error in infrb4d - Rulebase not defined properly");

return(l);

}
for(i=1;i<=NumCon;i++)

{

SD=0;

SDC=0;

for(j=0;j<DofsNZ[3].colum ns;j++)
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for(k=0;k<DofsNZ[2].columns;k++)

for(1=0;l1<DofsNZ[l].columns;l++)

{

for(m=0;m<DofsNZ[0].columns;m ++)
{
register unsigned intr1=0,r2=0,c1=0,c2=0,crb=0;
register float DOF=0,CC)N=0;
MATRIX DofVec;

r2=(unsigned int)DofsNZ[3].mat[O]0];
c2=(unsigned int)DofsNZ[2].mat[0][k];
rl=(unsigned int)DofsNZ[l].mat[0][l];
cl=(unsigned int)DofsNZ[0].mat[0][m];

if(r2>FV4NS-1)

r2=FV4NSs-1;
if(r2<0)

r2=0;
if(ri>FV2N S-1)

rl=FV2NS-1;
if(ri<0)

rt=0;
if(c2>FV3NS-1)

c2=FV3NS-1;
if(c2<0)

e2=0;
if(c1>FVIN S-1)

el=FVINS-1;
if(cl <0)

cl1=0;

crb=el*NumCon+i-1;
DofVec=matinitl (1,4,&DofVec);

DofVec.mat[0][3]=Dofs[3].mat[0][r2];
DofVec.mat[0][2]=Dofs[2].m at[0][c2];
DofVec.mat[0][1]=Dofs[1].m at[0][r!];
DofVec.mat[0][0]=Dofs[0].mat[0][cl];

if(IF==1)
DOF=MINIMUM (&DofVec);
else if(IF==2)
DOF=MAXIMUM (&DofVec);
else if(IF==3)
DOF=MEAN (&DofVec);
else if(lIF==4)
DOF=ALGSUM (&DofVec);
else if(IF==5)
DOF=FUZOR(&DofVec,gamma);
else if(IF==6)
DOF=FUZUND (&DofVec,gamma);
else if(lIF==7)
DOF=INFPROD (&DofVec);
else
printf("\nError in infrb4d - IF %d notcorrect",IF);

/' limit DO F7
if(DC>F<0.0)
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DC)F=0.0;
if(D O F>1.0)
DOF=1.0

CON=lookup4d(r2,c2,rl,crb,RuleBase);

SD=SD+DOF;
SDC=SDC+DOF*CON,;

m atfreel (& DofVec);

}
}
}
}
if(SD==0)
{

printf("\nSum of DOFS is zero - setting crisp to 0");
crisp->mat[0][i-1]=0.0;
return(l);

}

else
crisp->m at[0][i-1]=SDC/SD;

return(O);

}
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Appendix C

Table of calibration data for the hot and cold inlet flowmeters.
Feold(ty V Flow V Head Feold(t) Fhot(jt) V Elow V Head Fhoi(t)

ml/s m3 m3 ml/s ml/s m3 m3 ml/s
10.35 0.0203 0.0905 46.15 19.92 0.0675 0.0958 28.26
19.69 0.0424 0.1359 63.14 39.15 0.0838 0.1028 48.04
43.07 0.0650 0.1135 75.17 84.22 0.1007 0.1185 99.12
52.72 0.093 0.1416 79.99 100.67 0.1343 0.1521 114.02
83.30 0.1141 0.1470 107.34 117 .18 0.1443 0.1633 132.54
98.47 0.1327 0.1561 115.82 138.26 0.1499 0.1634 150.71
118.55 0.1487 0.1637 130.54
134.12 0.1534 0.1557 146.89
155.91 0.1534 0.1632 165.85
175.75 0.1290 0.1466 199.77
190.43 0.1482 0.1633 209.87
203.85 0.1403 0.1520 220.30
222.44 0.1428 0.1481 231.34
231.80 0.1521 0.1613 245.88
where Fcou(t) and Fhoi(t) are the uncalibrated data for the cold and hot inlet

flowm eters respectively,
Fcoid(t) and Fiwt(t) are the uncalibrated data for the cold and hot inlet

flowm eters respectively and
VHow and VHead are the volumes calculated by the flow and level methods

as detailed in Section 4.2.
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Appendix D

The following is the M ATLAB macro code for the SIMULINK s-function for the

physical model of the warm water process.

function [sys,xO]=tanksim4(t,x,u,flag,HeadlInit,Toutlnit,Atank, TauTC,Tamb)

% File : TANKSIM3.M

% Created : 15.3.94

% By : Stephen McCormac

%

% States — > Tout, Head, Ttc

% x (1), x(2), x(3)

%

% Inputs ---> Thot, Tcold, Qhot, Qcold, Voutpos
% u(l), u(2), u(), u(4), u(d),

%

% Outputs --> Ttc, Qout, Head, CvVvA2
% sys(l), sys(2), sys(3), sys(4)

%

% calculations for 1 and 3.
if ((flag==1)I(flag==3))
Thot=u(1)-0.5;
if ((x(1)-Tamb)>10)
Kloss=3.5006¢e-4;
elseif ((x(1)-Tamb)<3)
Kloss=0;
else
Kloss=3.5006¢e-5;

end;

sqrt2g=4.4294;

CvA2eqn=[-4.1739e-009 7.7567e-007 -2.0275e-007];
CvA2=polyval(CvA2eqn,u(5));
Qout=CVvA2*sqrt2g*sqrt(x(2));

% Qloss=Kloss/(Atank*x(3));

ifu(5)<=0
Qout=0;
end;
ResHead=9.5e-2; % head in tank below outlet valve-thus does
% not effect flow.
ConeVol=3.019e-3; %volume of cone at bottom of tank - m3
end

% Initialisation of system
if flag==0

sys-[3,0,4,5,0,017;
% [no. of cont. states, no. of discr. states
% outputs, inputs, no of discontinuous
% roots, no. of feedthrough ips to ops],

xO =[Toutlnit,HeadlInit,Toutlnit]; % initial conditions.

% evaluation of state derivatives
elseif abs(flag)==
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%evaluation of first state - Tout
if x(2)<0.05
Level=0.05;
else
Level=x(2);
end

sys(1)=((Thot-x(1 ))*u(3)+(u(2)-x(1 ))*u(4)-
Kloss)/(ConeVol+(Atank*(Level+ResHead)));

%evaluation of second state - Head
Temp2=(u(3) + u(4) - Qout)/Atank;
if x(2)>=1.75
x(2)=1.75;
if Temp2<0
sys(2)=Temp2;
else
sys(2)=0;
end
else
sys(2)=Temp2;
end

%evaluation of third state - Ttc
Tte=(x(1)-x(3))/TauTC;
sys(3)=Ttc;

%evaluation of outputs
elseif abs(flag)==3

%evaluation of output sys(1) - Tout
sys(1)=x(3);

%evaluation of output sys(2) - Qout
sys(2)=Qout;

%evaluation of output sys(3) - Head
sys(3)=x(2);

‘devaluation of output sys(4) - CvA2
sys(4)=CvAz2;

end;

The following listing isthe MATLAB macro code for the simulink icon of the artaficial
neural network model of warm water process as described in Sections 4.6 and 4.7.

function [sys,x0]=iccannl (t,x,u,flag,ts,pscale,tscale)

% File : iccannl.m

% Created :22.7.94

% By : Stephen McCormac
%

% States —>

%

%

% Inputs --->

%
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%

% Outputs -->

%

% Param. —>ts, controller
%

% calculations for 1 and 3,

%initlalisation of system
if flag=0

sys=[0,4,2,9,0,0];
% [no. of cont. states, no. of discr. states
% outputs, inputs, no of discontinuous
% roots, no. of feedthrough ips to ops],

x0=[0 00 0]; % initial conditions of state

%evaluation of continuous state derivatives
elseif abs(flag)=1

%evaluation of discrete state derivatives
elseif abs(flag)==2

sys((2+1):2*2) = x(1:2);

if abs(round(t/ts)-t/ts)<le-6
global wl w2 w3 bl b2 b3;
u=u./pscale;
sys(1:2)=tscale.*purelin(w3*logsig(w2*logsig(w1 *u,bl),b2),b3);

e sys(1:2)=x(1:2);
end;

%evaluation of outputs
elseif abs(flag)==3
sys=x((2+1):2*2);

%evaluation of next update time
elseif abs(flag)==4

ns=t/ts;
sys =(1 + floor(ns + 1le-13*(1+ns)))*ts;
end;
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Appendix E - Software Engineering Issues

E.l Introduction

E.1.1. General Introduction

This appendix discusses the iIssues conceming the development of the necessary
software for simulation and control of the warm water process used in this ressarch.
This software can be categorised into five groups as follons :

1 Fuzzy Logic Toolbox for MATLAB - for the sinulation of standard fuzzy
antrollers, sH-orgenising cotrollers and  supervised and  unsupervised
adaptive fuzzy models.

2. Warm Water Process Utility Programs - this software automates some of the
necessary adjustments of the warm water process for ease of us2. One such
example sfillig the tank to a certain leel.

3. ANSI C Matrix Software - an ANS1 C software representation of matrices
with associated functions such as add, scalar nulktiplication and matrix
nuitaiplication. This provides a surtzble data structure for the fuzzy control
software needed for real time control of the warm water process.

4_ Artificial Neural Network Software -ANS1 C software implementation for the
simulation of multi layer peroeptron ANNS .

5. ANSI C Fuzzy Functions - this sst of fuctions can be used for fast sinullation
of fuzzy lagic algoritms within a compiled program. The other main
goplication istat of real time cotrol of thewarm water proosss.

E.l.2. Overview of Chapter Structure

Section E.2 of this appendix describes the structure and use of the fuzzy toolbox for
MATLAB. The set of utdlity programs for the warm water process s described n
Section E.3. The ANSI C source code matrix represertation and related functions are
described in Section E.4. The next Section E.5 merates the implementation of the
multi-layer perceptron neural network using ANS1 C source code. An overview of
the fuzzy functions INANS1 C format iscontained inSection E.6. Finally speed and
memory considerations for the fuzzy control software used iIn this research are
summarised in Section E. 7. The reader is referred to Chapter 2 for explanations of

the fuzzy logic related terminology used throughout this appendix.
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E.2. MATLAB Fuzzy Logic Toolbox

E.2.1. Introduction

MATLAB 4.0 contains no dedicated software for the sinulation of fuzzy Iogic
algoritms.  Thus if the advantages of the MATLAB/SIMULINK simulation
environment were to be utilised for the necessary sinullatiion of adaptive fuzzy conrol
within this research, itwas clear ttat a Fuzzy Control Toolbox was required. After
consideration of the requirements and the complexity of the necessary software, the
folloving features were decided upon :

e GUI -Simple Graphical User /nterface to Increase the user friadliness of the
softnere.

e Fuzzy Membership Set Functions - triagular, trapezoidal and Gaussian
functions.

= Inference Functions - minimum, maximum, product, algebraic sum, fuzzy-
ad, fuzzy-or and mean fuctions.

= Aggregation Functions -minimum, maximum and mean fuctions.
= Rulebase - ina look-up tzble format.

= Defuzzification Methods - certre of gravity algorittms for both fuzzy
membership function consequents and fuzzy singleton consegquents.

e SIMULINK Graphical Icons - direct fuzzy aoroller, seH-organising
cotroller with a selection of performance Indexes, supervised and non-

supervised adgptive fuzzy models.

= Fuzzy Controller Characteristic calaulation and a graphical representation
thereof.

= Link to ANSI C -a lirk to the ANS1 C fuzzy logic fuctions described in
Section E.O.

The folloving Sections E.2.2 t© E.2.8 describe the constituent parts of the fuzzy
toolbox which was designed to meet al of the above listed aiteria.
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E.2.2. Graphical User Interface

During the design of the fuzzy toollbox
most effoot was iInvested In the
fuctioality and not in user confort.
Although MATLAB 4.0 offers a broad
spectrum of abject orientated graphical
functios, only a few are exploited by
the fuzzy toolbox to improve the user
friedliness. The most commonly used
graphical function is menu() 121
One example of the udlisatian of this
command s the main menu of the
toolbox, as shown in Figure E.1. The
user uses the mouse t slect an
gption. The arguments of menu(..) then
direct further program flov. The
graphics fuxctions coontained In
MATLAB 4.0 could be essily used to
improve the visial qality and the user

Figure E. 1 -Main menu for the MATLAB
Tuzzy toolbox

friedliness of the Tuzzy tool box IfFfurther resources existed.

E.2.3. Fuzzy Membership Set Functions

As described in Chapter 2 dl crisp input variables of a standard fuzzy cottroller are
converted to fuzzy varigbles through the process of fuzzification. For the fuzzy tol
box, a simple and extendible storage medium for the fuzzy sets of a partiaular fuzzy
variable was required. This medium was to contain the following information :

e number ofsets for the variable,

e minimum and maximum values of the universe of discourse of the fuzzy

variable and

< individualfuzzy membership parameters such as fuzzy membership st types

and parareters.

The three most common functions for fuzzy membership sets were created for the
fuzzy toolbox : the triangular, the trapezoidal and the Gaussian functions. In
addrtion, a shouldering option for a set of fuzzy membership sstswas offered. Figure
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E.2 comtains a plot of five shouldered triagular fuzzy membership sets over the
universe of discourse [—1 , 1]taken directly Trom the fuzzy lagic toolbox.

A two matrix data structure was
chosen to represent the fuzzy
membership st data for a given
fuzzy varicble. The first natrix,
MATRIX 1, ocottains gereral st
parareters. The second natrix,
MATRIX 2, cottains the parareters
for the farst order polynaomials that
describe the lires in the triagular
and trgpezoichl fuzzy sts.  This

pre-calaulation increases the an-lire

Membership sets for FivcTriannles

processing speed of the fuzzification Figure E.2 -Plot of Fuzzy Membership Sets.

fuction.

These two matrices are shown below, together with the defintdos of teir

parareters:
MATRIX 1
n min max - - - - -
type 1 . . . . - . label 1
tiang x1 x2 x3 - vyj y2 ys - label
tap xI x2 8 x i y2 y3 y4 label
gauss C v - h - — — label
type n ! label n
MATRIX 2
setj, set]2 set2d set2 seti, setg2

set", set"2 set2l set2 set",
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where

n isthe number of sts,

type is an integer o idicate fuzzy membership st tye, =triagular,
2=trapezoidal, 3=Gaussian distributian,

min istheminimum value of the universe of disocourse,

max isthemaximum value of the universe of disocourse,

label n isthe nurerical index for the nth st

x| -x4 are the x axis parareters of the triagular and trapezoidal fuzzy
membership sts,

yl -y4 are the y axis parameters of the triagular and trapezoidal fuzzy
membership sstfuctias,

c,v,h are the oatre, variance and height parameters of the Gaussian fuzzy

membership sstfuctions and
set"j....set"2 are fwst order polynomial parareters to soecify the lirss in the

triagular and trgpezoidal fuzzy membership sstfuctios.

The options Design Sets and Draw Sets in the

main menu of the fuzzy tool box allow the user

o firstly design the fuzzy membership ssts and

t plot them. Figure E.3 shows the menu

obtained when the Design Sets gption ischosen.

The option Default Values creates a regularly

spaced distribution of fuzzy membership sets

along the specified universe of disoourse.

Clone allons the copying of another fuzzy

varigble which saves time during definition of Figure E.3 ~Design Sets menu.
equivalent fuzzy variebles. The choice of Input

Values alloas the exact goecification of dll set parareters. Should an existing fuzzy
variable reguire alteration, Modify Existing Sets isto be activated. The option Non-
Linear Mapping evaluates new triagular and trapezoical fuzzy membership set
parameters using the mapping equation (E.-I) wherey isuser defined and parameter B

a fuzzy membership paraveter.

Parameterré\= (Parameter”® )y E-D

The user retums tomain menu by choosing the Quit gotion.
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E.2.4. Logical Operators

Logical operators are mathematical representations of lirguistic operators such as
AND, OR and ELSE. They are used as inference and aggregation functions within
Tfuzzy algorittms. With reference to Chapter 2, where some of the many possible
operators have been iterated, the fuzzy toolbox comtains the minimum, maximum,
product, fuzzy-or, fuzzy-and, algebraic sum and mean cperators. All of these
functions have been realisaed as user defined MATLAB functions and can thus be
called fromn MATLAB and SIMULINK. All six of these functions can be used as
Fuzzy Inference fuctias. The functions minimum, maximum and mean are available

for the aggregation.

E.2.5. Rulebase Definition

r 2 Rulebase

Al cl2 cs
c2l C2 c23 Ciij- ifistfuzzy variable,j second fuzzy varicble
C3l c32 c33_

R-’ Rulebase

C; jk - k thirdfuzzy varicble

RF

R4 Rulebase

2
Rl,l R1,1

0H,j.k,1 - Ifourth fuzzy varicble

k| i
Figure E.4 -Multi-dimensional rulebase encoding.

Once the fuzzy variebles with thelr corresponding fuzzy membership s=ts have been
defined, the rullebase can be created. A 1ookup tzble format for the rulebase ischosen
as this allows easy processing by MATLAB and sinple gragphical representation.
Each element of the rulebase can cotain one or more consegquent values of a rule.
This value s erther afuzzy membership set index or afuzzy singleton value. The
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index of a consequent s controlled by which antecedent fuzzy membership sets are
ative. As MATLAB cannot directly process matrices with more than two
dimensions (R2), fuzzy rulebases with more than two dimensions, i.e with more then
two input variables, require an encoding mechanism to traslate to and from R2
matrices. This encoding s graghically depicted inFigure E.4. For the example of a
four dimensional rulebase R4A[x1,x2.x3 43 the compllete rulebase hes X 2 x4 rows
and Xj -cholumns where Xn s the number of membership s=ts and n the fuzzy
variable index.

The main menu option Design Rulebase creates a matrix of zeros of the correct
dimension when the user inputs the artecedent and consequent fuzzy variable names.
The consequent values contained In each rulebase @l are then entered by the user
erther through direct matrix manipulation InMATLAB orwith a texteditor-.

E.2.6. Defuzzification Methods

As described in Chapter 2 there are over thirty differat defuzrfication methods
available to the user. The MATLAB fuzzy logic toolbox utilisss only two of these -
centre of gravityfor fuzzy membership andfor fuzzy singleton consequents. Both of
these methods have been realisedassMATLAB fuctios.

E.2.7. Fuzzy Controller and Fuzzy Models SIMULINK Icons

In order to allow the creation of user defined SIMUL INK iocons (sfunctions ) for the
Tuzzy aontrollers and fuzzy models to be sinulated, the concept of a SIMUL INK sub-
routine was utilissl. Two MATLAB commands are exploited for this purpose -
str2mat() for the creation of the sub-routine and eval() for the evaluation of the sub-
routine within the SIMUL INK ion. The function str2mat() alloas the user to create
a matrix of strirgs. The function eval() evaluates a strirg given as an argument as a
MATLAB command. Thus, by simply creating a string matrix and executing each
row in sequence, a MATLAB subroutine can be executed. Such sub-routines can
then be given as a SIMUL INK iocon argument and, using eval() wirthin the s-function
of the SIMULINK iaon, executed. The main advantage of this method is the ease
with which SIMULINK icons can be created for diverse purposes such as fuzzy
control or fuzzy modelling.

Through gpplication of the MATLAB sbroutire, the task of defining fuzzy
antrollers and fuzzy models was sinplified to the creation of string matrices. These
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string matrices are then entered as SIMUL INK icon argurents and these locons can
then be further manipulated within the S IMUL I NK environment.

Us-

Sources Sinks Discrete Linear Nonlinear Connections FExtras

Fuzzy Tools ""Warm Water Statistical PID-ST
Process Models

SIMUL INK Block Library (Version 1.2c)

Figure E.5 -Main SIMUL INK library showing the Fuzzy Tools ian.

There are two options in the main menu of the fuzzy logic toolbox for creating the
sub-routire strings for the SIMULINK #oos:  Compile Fuzzy Controller/Model
which alloas the user to compi le either a standard fuzzy controlller or a non-adaptive
Tfuzzy model and Compile Adaptive Fuzzy Model, which alloas the user to create sub-
routines for adaptive fuzzy models of the format described in Section 4.9. These
adaptive fuzzy models which utilise the leamning algoritim given by equation (4.25)
and which isdescribed in Section 4.9.2.5. All fuzzy and rulebase variables for these
sub-routines must be previously defined inorder for the SIMUL INK icon to function

aorrectly.

% > >
ELC Standard General Rule Rule Modifier
Rule Modifier over an interval
Modifier
" a
Fuzzy PD Rule Fuzzy History Rule Modifier
Controller Modifier with symetry
Group with symetry over an interval
%
Supervised XJnsupervised
Adaptive Adaptive
Fuzzy Model Fuzzy Model

Figure E.6 - Fuzzy logic simulation tools for the SIMULINK environment.
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A fuzzy toolbox icon Fuzzy Tools fi Fuzzy Logic Controller (Mask) 1
was thus created for irclusion  Blockname: FLC oK
o _ Blocktype: Fuzzy Logic Controller (Mi
within the SIMUL INK main menu
as shown in Figure E.5 . Figure
E.6 shows the cottents of this _
Sampling Ume
Fuzzy Tools iconwhen itisopened. |
The ﬁJZZy tOOlbOX iC(]] thairS Controller String
icons for a standard fuzzy 1 FLC_FLOW
cottroller self-organiising LLNumber of inputs

antroller with varioss _ 2
1j Numer of Outputs

Cancel |

[y

Fuzzy Logic Controller

telp 3

performance indexes and rule

modification  algoritms and L

supervisad and unsupervised fuzzy Figure E.7 -FLC Simulation Icon menu.
models. One example of these simulation icons s te basic building block for a
standard fuzzy controller inSIMUL INK -the icon etatled FLC. The four arguments
for thisblock are :

thesampling time in seconds,

« thefuzzy controller sub-routine string which has been compiled by the fuzzy
logic toolbox,

e thenumber of inputs of the fuzzy controller and

e thenumber ofoutputs of the fuzzy cattroller.

These four arguments are entered by the user by double clidking with the mouse on
the icon and entering the values in the menu. This user defined menu s shown In
FigureE.7.

E.2.8. Data Archiving

The two commands Save Variables and Load Variables listd in the fuzzy toolbox
main menu allow the user to save and load fuzzy variables, rule base nmatrices, fuzzy
cotroller and fuzzy model sub-routine strings t and from the hard disk. These
variables can be defined as defeult variables by placing them in the file vardef].-m-
After starting the fuzzy tool box, the user isprompted to decide whether or not the
default variables cortained in the file vardefl.m should be loaded into the MATLAB

workspace.
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E.2.9. Fuzzy Algorithm Testing Functions
There are two options In the fuzzy lagic toolbox for testing a compiled fuzzy
algoritim.

The first option calaulates a daracteristic surface for any two input varisbles of a
Tuzzy algorittmwhile holding any other arguments at constant values defined by the
user. The user specrfies the lower and upper limits and the number of steps for each
varieble. This function can be used to create a lookup teble daracteristic of a fuzzy
artroller. Such a lookup teble daracteristic could be constructed for a micro-
cotroller inplementation of a two input fuzzy controller with 8b|t ADCs by
calaullating a lookup table with 32 steps per input variable, giving a lookup table with
the 1024 elements. Linear interpolation can be used between the 32 data points of the
lookup tEble daracteristic.  Such an approach is suitable for fuzzy Iagic gplications
for use on hardware platforms with limited processing and memory resources.

The second option enables the user to enter values for the crisp input variables of the

Tuzzy algorithm, and the corresponding output value of the fuzzy algorithm is then
calaullated and outputted to the screen.

E.3. Warm Water Process Utility Programs

A st of six ANS1 C utality programs were written in order assist the user in the
control of the warm water process. The operation of dl of these programs B
terminated by hitting any key on the keyboard or when the lewel in the process
reaction tank exceeds 170cm. The six functions together with a brief explanation of
each are listed below:

< Amplifier Calibration - thisprogram isused to calibrate the signal processing
board described inChapter 3. The sixADC integer values from each chamrel
are displayed on the screen.

< Physical Variable Observation - this program displays the current values of
the six ADC integer values and the calaulated values of the physical variables
on the screen.  This can be used for checking the current values of the physical
variables e.g. the temperature of the hot resenoir tark,

e Heat Hot Reservoir Tank - this program fully opens the hot inlet and autlet

valves of the process reaction tank untal the temperature of the hot resenvoir
tank reaches a user defined vale.
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< Heat/Cool Process Reaction Tank - the user enters a desired temperature and
the hot or cold inlet floas are fully opened util the temperature of the process
reaction tank has reached the desired vale.

< Fill Tank With Hot/Cold. Water - This program allors the user to fill the
process reaction tank with specified values of the hot and cold inlet flons,
with a defined autlet valve (s - 1006) position assuming a linear autlet
valve daracteristic. The inlet flow and outlet flow valves are closed when the
level of the tank reaches 170cm.

< Empty Tank - this program sinply closes the inlet valves and fully opens the
autlet valve uttil the autlet Flow is zero for more than 30 seconds.

All of these utalliity programmes log the vallues of the six warm water process sensor
values to a fike entitled c:\utildata_asc.

E.4. ANSI C Matrix Representation and Related Functions

In order to ease the software engineering burden it s imperative that suitsble data
structures be utalissd within a software program. As the fuzzy logic toolbox utalissd
the matrix structure found within MATLAB for the representation and simullation of
Tuzzy Iagic algorithms, the ANS1 C source code for fuzzy lagic functions was based
on a data represatation of a matrix. The ANSI C command struct was used to
combine a two dimensional array of single precision floating point numbers together
with unsigned integers 1o describe the size of the matrix. This data structure was then
definedasMATR I X using the typedefANSI C command. The ANSI C source code
for the datatype MATR I X isshown below :

type def struct {
float huge **mat;
unsigned int rows;
unsigned int columns;
} MATRIX;

The keyword huge alloas this data structure to be used with any type of DOS
memory model [¥].

Dynamic memory allocation i used to both allocate memory t a matrix and free
memory when a matrix s no longer required during program execution. Thus, In
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order to define a matrix the function matinit(number_of rows, number_of columns,
&MATRIX_NAME ) s called and the ANSI C function calloc then allocates the
necessary memory for the size of the matrix given and inrtialisss dl vallues to null.
The memory taken up by a matrix i freed by alling the fuction
matfree(&MATRIX__NAME) which deletes the matrix and allocates the freed memory
to the general memory hegp.  In thisway, matrices can be created and destroyed as
they are needed during program execution. This helps to keep the size of compiled
prograns small as the number of pre-compilation defined variables i kept to
minimum.

Based on this data type, a sst of ANSI C functions were developed that al loved the
manipulation of matrices. These fuctions Include matrix addition and subtraction
mattrix multiplication and scalar nultiplication of a natrix. This set of functions could
essily be extended to include other functions such as matrix division and matrix
inersicn. The ANS1 C source code for some of these MATR I X related functions B
contained Appendix B.

E.5. ANSI C Representation of MLPs

The multi-layer perocgptron ANN model of the warm water proocess, as described in
Chapter 4, cosists of neurons with non-linear transfer functions with weighted sums
of inuts. The weights for the inputs to each layer of neurons are stored in matrix
form within the MATLAB enviromett. Thus, the ANSI C matrix structure
described in Section E.4 was utilised to create an ANS 1 C software implementation of
the ANN model of the warm water proocess. In order to achieve this, some additional
matrix functions were required for the non-linear neuron transfer fuctions. These
extra functions calaulate a neuron output with logaritimic sigmoid and lirear transfer
fuctions. The ANSI C source code for the ANN model of the warm water process B
contained inAppendix B.

E.6. ANSI C Fuzzy Logic Functions

A st of ANSI C fuzzy functions used for real time comtrol and fest sinulation of
fuzzy logic systems was cregted. The most important darecteristic of this software B
that itutilisss the same matrix stncture i MATRIX | and MATRIX 2, for storage
of the fuzzy variable parameters as the fuzzy lagic toolbox for MATLAB which was
described inSection E.2. This reuse of this matrix orientated parameter structure thus
alloas an easy trasfer of a sucoessfully sinulated fuzzy controller or fuzzy model
from the MATLAB/SIMUL INK environrent irmto an ANSI C program. Moreover,
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should a rulebase be modified within a compilled ANS1 C program, itcan then be re-
analysed intreMATLAB/ S IMUL INK simulation enviromment.

ANS1 C software was written for fuzzy controllers and fuzzy models using rulebeses
of up to four dimensions. In order to allow the use of rulebases with dimensions
higher than two (R2), ie. a standard natrix, the data type MATRIX as described in
Section E.4 was augmented. Two new data types were created - RB3D for three
dimensional rulebases and RB4D for four dimensional rulebeses. As inthe case of tre
MATR 1 X data type, functions were written to dynamically allocate and free memory
for these rulebase matrioes, see Section E.4. The ANS1 C code source code for these
rulebase variables can be found in Appendix B.

The fuzzy Iagic functions implemented are listedbelow :

e Linguistic Operators - Minimum, Maximum, Product, Fuzzy-And, Fuzzy-Or,
Mean and the Algebraic Sum fuctios.

= Fuzzification - based on the MATLAB fuzzy lagic toolbox fuzzification
function utlising the same two fuzzy variable parameter matrices. Triagular,
trapezoical and Gaussian sets are handled.

e Alpha-Cut - ssts to zero any degrees of membership less than the given
argument.

= Fuzzy Inference Functions - these functions take the rulebase and the st of
fuzzified input variables and deliver a crigp output value using centre of gravity
defuzzification for fuzzy singleton consequents. These were written for two,
three and four dimensional ruleeses.

= Adaptive Fuzzy Inference Functions (for adaptive fuzzy models) - these
functions take In the ruldese, the set of fuzzified Input varicbles, the scalar
value of the variable t be modelled and the parameters of the leaming
algoritm (4.25). The consequent variebles of the activated rules are adapted
and the adapted rulebese and the crigp output value are retumed. There are
two, three and four dimensional rulebese implementations of this function.

e Complete Fuzzy Controller and Fuzzy Models - these functions utilie

combinations of the previausly described functions to create complete fuzzy
aontrollers and supervised adaptive fuzzy models.
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The ANS1 C code source code for some of these fuzzy fuctions can be found In
Appendix B.

E.7. Speed and Memory Considerations

The software implemented during this research was based on experience gained
during the course of fourteen months. The first step achieved for simulation was the
fuzz.y logic toolboxfor MATLAB. This toolbox proved to quite effective in sinulating
fuzzy logic algorithms.  The main disadvantage was the length of time required by the
sinulations. For a two dimensional rulebase with seven fuzzy membership sets per
antecedent variable and fuzzy membership set consequents, the average processing
time for one teration iInthe MATLAB environment on ai486 33Mhz IBM compatible
PC with 8 MBytes RAM was 0.32 seconds. This long processing time is attributsble
o the complexity of the softvare. For the sinulation of standard fuzzy controllers
such long simullation times were not a hindrance. But for the trainirg of fuzzy model
rulebeses, the processing times were prahibrtive.  This becomes clearer when the
example given for the fuzzy model of the mass flow behaviour of the warm water
process In Section 4.9.4 soonsidered. The rullebase was trained for the equivalent of
20 million seconds at a sampling rate of 30 seconds. Had this been performed within
the MATLAB/SIMULINK enviromment, the training time would have been 200000
seconds -two and a halfdays. At this point in the research itwas decided to design
the ANSI Cfuzzy logic software to allow faster simulation using a compiled ANSIT C
program runon an 1 BM PC.

Iteration times for the same fuzzy model of the mass flow behaviour of the warm
water process, as described inthe previous paragraph, were reduced to a value inthe
region of 1ms for a single rteration running on an 1486-DX2 50Mhz 1BM campatible
PC. Thiswas aconsiderable improvement, reducing the processing time for the fuzzy
functions during the training of mass flow fuzzy model to 667 seconds - just over
eleven minutes. The main hindrance encountered whille using the PC was the memory
limitatdon presented by the DOS ANSI C compiler Turbo C wersion 2.0. This
memory limitwas approximately 610kBytes cfFRAM. Thus itwas decided to port the
software to a UN I X based workstation where a lirear memory of 48MBytes was
aailable.

The main hurdles to be overcome during the porting from the DOS to the UNIX
operating system were the conversion of the DOS ASCI1 format to the UNT X ASCI
format and the removal of llDOS related header fikes and data types. Once thiswas
achieved, the fuzzy logic software benefited from the greater processing and memory
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resources of the workstation platform, with fest fuzzy model training times and
practically unlimited memory.

E.8. Conclusion

This appendix has served to give a brief overview of the software designed and
implemented for this tresis. The source code of some of the more Important ANS1 C
functions for matrices, nulti-layer perceptron ANNs and fuzzy logic algoritns B
contained Appendix B.

The three sets of ANS1 C source code types 1e matrices, ANNs and fuzzy lagic
algorittms could be extended and used for further rescarch projects. A sinple
example would be the utilisatian of the matrix software for the Implementation of a
state space pole placement antroller. The ANN software could be augmented by an
ANS1 C mmplementation of the back—propagation leaming algoritim in order to train
an ANN with a compiled program, thus reducing the training time offered by the
MATLAB Neural Network Toollbox, as described in Chapter 4. The ANSI1 C fuzzy
software could be thoroughly optimised for speed of processing and extended by
creating a library of leariing allgorithms for adaptive fuzzy models and perhaps by the
implementation of relatical matrix type rulebeses.
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