
DUBLIN CITY UNIVERSITY

School of Electronic Engineering

Thesis Submitted for the Degree of

Master of Engineering

Aspects o f Parallel Processing
and Control Engineering

by:

Brendan McKittrick, Biing.

for:

Dr. John V. Ringwood.

September 1991

I hereby declare that the research herein
was completed by the undersigned

Signed: V[D a te :f^ _ * ^ 0 $ -

To my parents, Seamus & Maureen, who made it all possible.

Acknowledgements

Sincere gratitude is expressed to my supervisor Dr. John Ringwood, whose

interest in the project equalled my own. Thanks also to my colleagues Paddy Gibbs,
Dara Murtagh, Niall By me, Greg Reilly and Liam O’Gradaigh who were always
available for comment. A special thanks must be given to two of my sisters, Meadhbh
and Fiona, who spent considerable time screening the text for my many typing errors
and for my brothers Joseph and Tom, other sisters Marie, Eilish, Grainne and Siobhan,
grandmother Maura Kennedy, and parents Seamus and Maureen, for being perpetually

helpful and patient

ABSTRACT

Aspects o f Parallel Processing
and Control Engineering

Submitted for the award of Degree of Master of Engineering

By: Brendan Me Kittrick

The concept of parallel processing is not a new one, but the application of
it to control engineering tasks is a relatively recent development, made possible by
contemporary hardware and software innovation. It has long been accepted that, if
properly orchestrated several processors/CPUs when combined can form a powerful
processing entity. What prevented this from being implemented in commercial systems
was the adequacy of the microprocessor for most tasks and hence the expense of a
multi-processor system was not justified. With the advent of high demand systems,
such as highly fault tolerant flight controllers and fast robotic controllers, parallel
processing became a viable option.

Nonetheless, the software interfacing of control laws onto parallel systems
has remained somewhat of an impasse. There are no software compilers at present
which allow a programmer to specify a control law in pure mathematical terminology
and then decompose it into a flow diagram of concurrent processes which may then
be implemented on, say, a target Transputer system, liiere are several parallel
programming languages with which a programmer can generate parallel processes but,
generally, in order to realise a control algorithm in parallel the programmer must have
intimate knowledge of the algorithm. Therefore, efficiency is based on the ability of
the programmer to recognise inherent parellelism. Some attempts are being made to
create intelligent partition and scheduling compilers but this usually means significantly
extra overheads on the multiprocessor system. In the absence of an automated
technique control algorithms must be decomposed by inspection.

The research presented in this thesis is founded upon the application of both
parallel and pipelining techniques to particular control strategies. Parallelism is tackled
objectively and by creating a tailored terminology it is defined mathematically, and
consequently related concepts, such as bounded parallelism and algorithm speedup, are
also quantified in a numerical sense. A pipelined explicit Self Tuning Regulator (STR)
controller is developed and tested on systems of different order. Under the governance
of the parallelism terminology the effectiveness of the parallel STR is evaluated and
numerically quantified in terms of relevant performance indices.

A parallel simulator is presented for the Puma 560 robotic manipulator. By
exploiting parallelism and pipelinability in the robot model a significant increase in
execution speed is achieved over the sequential model. The use of Transputers is
examined and graphical results obtained for several performance indices, including
speedup, processor efficiency and bounded parallelism. By the same analytical technique
a parallel computed torque feedforward controller incorporating proportional derivative
feedback control for the Puma 560 manipulator is developed and appraised. The
performance of a Transputer system in hosting the controller is graphically analysed
and as in the case of the parallel simulator the more important performance indices
are examined under both optimal conditions and conditions of varying hardware
constraints.

CONTENTS

CHAPTER 1

1.1
1.2

1.3

CHAPTER 2
2.1

2.2

2.3

2.4

CHAPTER 3

3.1

3.2

3.3

Introduction l
Parallel Processing and Control Engineering
Motivation for Research
Summary of Dissertation

Parallel Processing - An Overview i
The Technology of Parallel Processing
2.1.1 The Development o f Parallel Processing
2.12 Technical Issues

2.12.1 memory
2.1.2.2 buses for parallel processing
2.1.2.3 architectural concerns

Parallel Processing Structures and Networks
2.2.1 Classification of Parallel Processing Architectures
2.2.2 Some Parallel Architectures Examined

2.22.1 pipelines

2.22.2 systolic arrays
2.2.23 neural networks
2.22.4 multiple simd computer organisation
2.22.5 hypercubes

The Language of Parallel Programming and Software Issues

2.3.1 Specifying Concurrency
2.3.1.1 synchronisation based on shared variables
2.3.12 synchrnoisation based on message passing

2.3.2 Classification of Parallel Programming Languages
2.3.3 Parallel Programming Supportive Operating Systems
Application of Parallel Processing Techniques to Control Engineering

2.4.1 Parallel Processing for Robotic Control
2.4.2 Simulation and Control o f a Non-linear Process

Algorithmic Decomposition & Parallelism 28
Parallelism as a Concept
3.1.1 Unbounded Parallelism
3.1.2 Bounded Parallelism

Trade-off Between Efficiency and Speedup
The Partitioning Problem & Allocation of Processes

Contents

CHAPTER 4

4.1

4.2
4.3

4.4

CHAPTERS

5.1

5.2

5.3
5.4

5.5

5.6

CHAPTER 6

6.1

6.2

Parallel Implementation of an
Explicit Self-Tuning Regulator 44
Introduction
The Pipelineing Technique
Pipelining of the Explicit S.T.R.

4.3.1 The Explicit Self-Tuning Regulator
4.32 Mapping the Self-Tuning Regulator onto a Pipeline Structure

4.33 Timing of Algorithmic Subtasks
4.3.4 Speedup Results & Performance Analysis
Summary

Development of a Parallel Simulator
for the Puma 560 Robot Arm 56

Derivation of the Puma 560 Robot Model
5.1.1 Third Order Dynamical Equation
5.12 Matrix Representation of Robot Model
5.23 Computational Model for Computer Simulation
Parallelism Inherent in Computational model

5.2.1 Coarse Grain Parallelism
Parallel C Model of Simulator in Parallel Form
Optimised Hardware Structure for Parallel Simulator Implementation
5.4.1 The Transputer Architecture
5.42 The IMS B008 Motherboard
5.43 A Tailored Transputer Topology
Evaluation of Simulator in Parallel Form
5.5.1 Validation of Robotic Manipulator Model
5.5.2 Analysis o f Speedup & Processor Efficiency
5.53 Hardware Constraints

5.53.2 Effect on speedup and efficiency
Summary

Development of a Parallel Computed Torque
Algorithm for Robotic Control
Incorporating P-D Feedback 116

Computed Torque Algorithm (Feedforward Controller)

6.1.1 Inverse Dynamics o f Robotic Manipulator
6.1.2 Sequential Flow Diagram of software Model
6.13 Flow Diagram Exhibiting Coarse Grain Parallelism

P-D Feedback Control
6.2.1 The P-D Algorithm & Recursive Least Squares Identification

Contents

CHAPTER

6.2.2 Coarse Grain Decomposition o f Algorithm
6.2.3 Medium Grain Decomposition of Algorithm

6.3 Combining the Feedforward & Feedback Controllers

6.4 Software Model of Parallelised Feedforward/Feedback Controller

6.4.1 Parallel C Implementation o f Computed Torque Algorithm
6.42 Parallel C Implementation of P-D Feedback controller
6.43 Software Model o f Complete Controller

6.5 Optimised Hardware for Implementation of Parallel Controller
6.5.1 The Transputer & Coarse Grain Parallelism
6.5.2 PACE -Programmable Adaptive Computing Engine- Architecture

6.52.1 Implementation of PID control on the PACE chip
6.5.22 Adaptation c f PID implementation to a PD algorithm

6.5.3 Interfacing the Transputer and the PACE Chip
6.6 Analysis of Performance of the Parallel Controller

6.6.1 Evaluation of Controller Integrity
6.6.2 Speedup & Processor Efficiency of Parallel Controller

6.6.3 Introduction of hardware constraints
6.6.3.1 Effects on speedup & processor efficiency

6.7 Summary

7 Conclusions 176

REFERENCES

a p p e n d ix a Parallel Processors- An Evaluation

a p p e n d ix b Parallel Languages- An Assessment

a p p e n d ix c Graphical Data

CHAPTER 1

Introduction

1.1 PARALLEL PROCESSING & CONTROL ENGINEERING

Presently, control systems are often required to perform a range of tasks, such as
input/output handling, data logging, etc., on top of running the actual control algorithm.

In many applications these tasks must be executed in real time. Ever since it’s
development as a commercial product the microprocessor has generally sufficed as a
hardware tool in most areas of control and has been mostly used in a single processor
capacity. The advent of new and more stringent demands for most control applications
however, such as higher sampling rates, high performance industrial electro-mechanical
systems and fault tolerant systems has led to experimentation with a variety of
multiple processor systems. Nearly all of these systems involve processors operating on
or generating data concurrently, or in parallel, hence the term parallel processing.

It may seem intuitive that by distributing the workload over a number of
processors in parallel an improvement in execution time is achieved but this is not
necessarily always the case. The success of a parallel implementation can depend on
an efficient distribution of the workload, and the partitioning of an algorithm in an ad
hoc or insouciant manner may yield a computationally more intensive application than
the original sequential algorithm. It may also happen that the task is inherently

sequential and may not be decomposable into parallel form. Furthermore, in some
cases the communications overheads between the processors may outweigh any speedup
gains achieved, and in other more desirable instances the algorithm may map smoothly

onto an a tailored parallel hardware structure, for example the standard PID control
algorithm may be decomposed onto an medium-grained array structure, where each

node is a simple arithmetic operation, as described by Jones and Spray[82]. It is of
paramount importance that an attempt is made to harmonise the granularity of the

algorithmic decomposition with the granularity of the target multiprocessing system to
optimise costs and maximise speedup. It would be a travesty of good hardware design
to use a microprocessors for each of the processing elements in the last example. An
array of medium grained processing elements, such as the PACE architecture[83], is

optimal. A topology with relatively fewer processing elements that are capable of
performing more complex data manipulations is known as a coarse grain approach.

Alternatively, an array of processing elements that perform bit-wise operations on a

data set that ripples through the array, similar to schemes proposed by Gaston and
Irwin[21][23], is known as a fine grained parallel decomposition strategy.

1

Chapter 1: introduction

Although the introduction of parallel processing techniques to control engineering
is still at a relatively novel stage the union of the two fields has already manifested
itself under several different research interests, the most prominent of which are:

□ Parallel simulation of real systems.
□ Development of parallel-specific control strategies and fast algorithms.
□ Mapping of control laws onto tailored hardware topologies.

The second research topic listed above, which is concerned with the general
formulation of algorithms and control strategies that are specifically suited to parallel
implementation, has experienced somewhat of an impasse, mostly due to the lack of
CACSD packages that support automated parallel algorithm design Only parallel
algorithms for specific applications have generally been postulated and very little
successful work has be undertaken in the design of automated parallel algorithmic
compilers, which, based on a user-defined control algorithm specification, automate the

parallélisation and partitioning of the algorithm. In effect the parallélisation of most
algorithms, including those presented in the research literature, has been the result of

human inspection.

It is in the two other fields, however, that the research contained herein has been
undertaken: system simulation and the parallélisation of controllers. The former
represents the innovative study of the simulation of systems using the tools of parallel
software and parallel hardware. The main objective is to create real-time, or faster,

simulators and in some instances more fault tolerant simulators. In the research
described by the thesis a validated parallel simulator for the Puma 560 robotic
manipulator is presented. The latter field, the exploitation of parallelism in control

strategies and structures, is perhaps the more common research interest since it covers

both the innovations that originally spawned from the initial introduction of

multiprocessors to control and the mainstream of research currently being undertaken
worldwide. The technique of pipelining, a parallélisation method that has been in
existence for quite some time, may be used to impose a concurrency scheme on an
algorithm which may be inherently sequential. This is illustrated by the application of

a multi-stage pipeline to an explicit-self tuning regulator, presented in Chapter 4.
Contrasting to this pipelining of a sequential control algorithm an inherently parallel

control structure is exemplified by the parallel computed torque feedforward controller
incorporating PD feedback control for the Puma 560 robotic manipulator. This
controller is presented and evaluated on a Transputer multiprocessing system in terms

of specific performance indices, which are developed in Chapter 3.

2

1.2 MOTIVATION FOR RESEARCH

Chapter 1: introduction

Since the early 1970’s the importance of the robotic manipulator in industry has

spiraled. This is due in no small way to the increased need for higher productivity, a
need which is intensifying as world markets slow down and competition rises. Most
manufacturing tasks are performed by highly mechanised equipment, but generally these
machines lack adaptability and flexibility. The growth of assembly tasks requiring
flexibility and machine intelligence, such as spot welding, spray painting, part assembly
or materials handling, has made the robot a viable employee.

A further demand for mobile robot presence has arisen, not from solely
commercial interests, but from modem research fields, including space exploration, sea
exploration, experiments with toxic chemicals and/or radioactive substances and
generally any interaction with hazardous or new environments. These often require the
robot to perform tasks in proxy for a human and sometimes necessitate a limited

ability for decision making. All these growing interests seem to indicate that the future
holds greater demands and requirements for robotic vehicles and intelligent
manipulators, and their controllers.

To meet the stringent margins necessary to perform in these environments robots
need accurate control strategies, which are effective over the complete range of
operation. In most instances only small errors in manipulator end-effector position are
acceptable, thus requiring an error compensatory scheme to be incorporated into the
controller, through the use of feedback or otherwise. This further intensifies the
computational load of the controller and in some instances it may be necessary to

modify the controller to execute within the sampling period constraint, possibly
resulting in degraded performance. Whilst modification or redesign of an algorithm to

meet the execution time requirements for the control of a system is merely treating
the symptoms of a greater problem, parallel processing techniques may offer a more
complete solution, without necessarily altering the integrity of the controller. It is on

this premise that a parallel controller for the Puma 560 robotic manipulator is
postulated. Combining both the computed torque feedforward and the PD feedback

strategies the controller is implemented in parallel so as to meet shorter sampling
times. The parallel realisation combines both a coarse grained and medium grained
approach, and this is reflected in the choice of hardware and the parallel coding
scheme.

One of the greatest challenges of robotic development, other than their control, is

the testing and verification of their capacities and capabilities in real world situations,

before assigning them to tasks which may, like many of the above applications, have

3

little or no margin for error. Obviously, a traditional trial and error approach, whereby

the machine’s performance is tested and validated in its work environment, would be a
travesty of experimental procedure, thus an alternative method is needed. This problem,

which is so common, finds its solution in the use of models and the practice of
simulation. This is especially true of the robot manipulator, which is generally an
expensive and potentially self-damaging piece of machinery.

A software robot simulator is a piece of software written to mimic the behaviour,
as closely as is possible, of a robot under a prescribed range of external conditions
and inputs. This simulator includes a software coded model of the robot. A robot
model is an equation, or several related equations, which describe the relationship
between the inputs (e.g. joint voltages) to the internal states of the robot (e.g. forces

on the joints) and the outputs of the robot (e.g. joint positions).

The procedure of modeling and simulation is no less important for the Puma 560
robot manipulator and the possession of a validated and complete model is necessary
to evaluate its behaviour. This becomes more apparent when one considers the need to
evaluate controllers under the full range of conditions, without actually putting the
manipulator under the control of such a controller. This is probably one of the more
important roles for a validated robot simulator.

One of the major drawbacks of most robot simulators is there inability to
perform in real-time due to computationally intensive differential model equations, thus
restricting their use in real-time controller evaluation. Naturally, as the trend for faster
performances in control engineering more frequently finds expression through the use

of parallelisation techniques it is apt that an attempt is made to develop a parallel
simulator for the Puma 560 manipulator. This is in the spirit of the growing

acceptance of parallel processing among the control community as the panacea for the
problems caused by the computational intensity of many algorithms, including the

dynamical models of robotic manipulators.

Chapter 1: introduction

4

1.3 SUMMARY OF DISSERTATION

Chapter 1: introduction

The following prologue briefly explains the purpose of each of the chapters in

the thesis.

□ Chapter 2 contains an extensive investigation into field of parallel processing
technology, including hardware and software analysis. It serves as a comprehensive
introduction to the present state of parallel processing from an objective viewpoint
and also contains a subsection on the application of this technology to general

control practices.

□ The concept of parallel processing is pondered in Chapter 3, and through the use
of mathematical formulation is quantified. Other related concepts, such as speedup,
maximum parallelism and bounded parallelism, are developed for defined hardware

scenarios. These factors prove to be effective performance indicators and are
necessary indices in the optimisation of a parallelisation scheme.

□ Parallelism may be inherent in a control structure or it may be imposed. One
method to impose concurrency upon the operations of an algorithm is by
pipelining. Chapter 4 illustrates the technique and effects of pipelining an explicit
self tuning regulator (STR), a controller from the family of adaptive controllers.
The STR is inherently sequential and offers practically no scope for parallel
decomposition of its algorithmic operations. The development of a five stage
pipeline increases the speed of the algorithm and allows this control strategy to
be used under more stringent sampling period constraints.

□ One of the main motivating factors for the research was the exciting prospect of

developing a parallel model for the Puma 560 robotic manipulator, and the
development of a parallel controller for the same. In Chapter 5 the former is

accomplished and is incorporated into a complete robotic simulator. The optimum
Transputer hardware and Parallel C software configurations necessary to implement
the simulator are presented. By the use of graphical analysis the simulator is

validated. The eventuality of reduced numbers of processors is also considered and
its effect on overall performance is analysed and graphically presented.

□ In Chapter 6 a computed torque controller for the Puma 560 robotic manipulator

incorporating PD feedback is developed in parallel form, and just as for the

simulator, a Transputer system is developed to host the controller, written in

Parallel C. The performance of the controller under both optimal conditions and

conditions of reduced processing power are considered and the results are

5

Chapter 1: introduction

grahically illustrated.

□ The last chapter, Chapter 7, concludes the main observations and findings of the

research.

□ Appendix A contains an evaluation of several of the more prominent parallel

processors available.

□ Appendix B examines some parallel languages. Both popular and some seldom

used language are assessed.

□ Appendix C is a compendium of the graphical data cited in the seven chapters of

the dissertation.

6

CHAPTER 2

PARALLEL PROCESSING - AN OVERVIEW

2.1 THE TECHNOLOGY OF PARALLEL PROCESSING

2.1.1 The Development of Parallel /Processing

Before considering how parallel processing can be applied to aspects of control
engineering it is wise to first look at the technological developments which have led

to parallel architectures being considered for tasks previously implemented by single
processor systems.

Figure 1 shows how the complexity of the monolithic integrated circuit has
spiraled over the last thirty years to the point of over one million transistors on a
single silicon die. This rapid advancement can be attributed mainly to ingenuity in
circuit/layout design and decreasing feature size.

Chip
Complexity

FIGURE 1

Despite this progress it is probable that VLSI packing density will continue to

increase at a much more stunted rate [2] due to ever increasing processing costs and

lower yields due to higher chip defects. Currently chip sizes are tending towards the 1

square centimetre milestone. But considering that typical defect densities are of the

order of 2 to 5 per square centimetre in processed silicon further development is

7

severely hampered. Thus as chip size is increased functional chip yield drops quite
dramatically. These considerations bring into question the cost-effectiveness of
developing more powerful stand alone processors and give fuel to the concept of
concurrent processing.

Chapter 2: parallel processing - an overview

Un
sda)uüd

>
cd
u«

400_

300

200—

100

E3
E3

Transistor
Density
Clock
Speed

1972 Year

FIGURE 2

T * "
1987

Perhaps more important than cost is the concept of performance and it is in this
regard that parallel processing offers quite encouraging prospects. Figure 2 shows both
the development of transistor packing densities and the increases in clock speeds over

the 25 year period from 1972 to 1987. Despite a dramatic 350 fold increase in

packing density clock speeds have only had an incomparable 25 fold increase. It

would seem that by the law of diminishing returns VLSI/ULSI based single processor

systems are reaching their point of expiration with regard to performance capabilities
versus costs [4]. Parallel structured systems availing of VLSI/ULSI architectures, of
moderate costs and relatively slow speeds operating concurrently can offer a solution to
high performance applications.

’Parallel processor’ is an umbrella term for a broad range of architectural

configurations of processing elements, upon which applications containing some degree

of parallelism may be implemented. It is vital that a particular task is realised on an

appropriate parallel system so that maximum benefit is derived and that a significant

speedup is achieved over the sequential implementatioa This is an important point.

Consider a task such as a large matrix multiplicatioa This involves many

8

multiplications which can essentially be executed separately. Compare this to most
statistical problems where preceding data is necessary for current evaluations and
likewise current values are needed for future evaluations. This type of problem is
inherently sequential since only one evaluation can occur at a time whilst the matrix
problem would be ideally suited to an array of simple processing elements. In the two

preceding examples the contrast is quite explicit but what is needed is some method
of identifying parallelism inherent in a task and how well matched it may be to a
particular processor configurati(i)n.

Parallelism may be classified into 3 types [5]. The first type is ’theoretical’
parallelism and denotes the maximum theoretical speed up of a process when applied
to parallel architecture. The second type, ’natural’ parallelism, arises from the fact that

in a physical parallel system there will always be sections of the task to be executed

sequentially and the speed up enjoyed by a process will not be a linear function of
the number of processing elements N but rather CKN/log^N). A third and final type of

parallelism, ’applied’ parallelism, is due to possible mismatch between the architecture

and the ’natural’ parallelism of the process. This further reduces the speed up to
0(log2N). A graph of speed up versus number of processing elements for the average
of each type of parallelism is contained in Figure 3

Chapter 2: parallel processing - an overview

Relative PE Increase

Theoretical, Natural k Applied Parallelism.

FIGURE 3

Based on these observations several approaches may be adopted as regards the

type of parallel processor to be chosen for a given task. Looking at the theoretical

curve it is noted that by tailoring an array of parallel processors to a specific
application an almost linear speed up may be achieved in theory. By using a low

number of relatively powerful processors operation is confined to a region close to the

origin where again the relationship is almost linear. This approach is termed
mediumNcoarse-grain parallelism. Conversely the use of many cheap processors can be
very cost effective per processing element and technically this is tenned fine-grain
parallelism.

The above approaches to processor organisation provide a good means of
architecture classification but a more broad ranging classification can be derived from

’Flynn’s taxonomy’ [7]. It divides systems according to whether they have multiple(M)
or singulars) data(D) and instruction® streams as follows ;

SISD ... Von Neumann Architecture
SIMD ... Array Processors
MISD ... Pipeline Processors
MIMD ... Multiprocessors

These different forms of parallel processors are explained in more detail in
Section 2.2 and appendix A contains an evaluation of various multiprocessor systems.

In appendix B several parallel languages, including parallel forms of some conventional
languages, are outlined and their methods of inter-process communication are given.

2.1.2 Technical Issues

2.12J Memory
The most prominent dilemma in designing memory structures for a parallel system

is the dichotomy which arises between local and global memory. Should all variables
be kept at a location accessible to all processors, should each processor possess its
own private store or if both, how does one globally update a variable which appears
in more than one location?

There are many other issues which arise in relation to the handling of variables
and stored information which several processors may wish to access simultaneously, but

the most important is ensuring memory coherence. To avoid large communications

overheads and bus bottlenecks it is common in multiprocessor systems to assign each

processor its own memory cache[8] for use in localised calculations. Aside from this

localised memory there is generally a global memory, which is accessible from any of

Chapter 2: parallel processing - an overview

10

the system processors, although not necessarily all at once. Within the memory caches

a copy of a variable may exist. The problem arises when a processor updates or
modifies any such variable and this change needs to be reflected throughout the whole

parallel processing system.

The first objective is to modify the copy of the variable stored in main memory.
There are two better known methods for achieving this. Any changes made may be
transmitted directly to memory, known as the Write-Through method or at a later stage
the cache can send a batch of changes to the main memory, otherwise known as
Write-Back. The actual method used depends on costings which consider main memory
traffic, additional logic to cache, buffer space and reliability.

When a variable is updated every processor must have access to the new value

and again there are several ways to achieve this. A direct approach is to simply
broadcast the updated variable to all other processors, whereby a positive search for
the variable results in the data being updated. Another solution is to designate the
necessary variables as uncacheable and only available from main memory. This is a
software solution to the problem and will be dealt with in later sectioa A third
solution involves keeping a centralised directory of all main memory lines and ensuring

that no lines are write-shared.

2 .122 Buses for Parallel Processing
Although recent developments have seen the introduction of more powerful buses,

such as the VME bus and the IEEE Fastbus in order to overcome deficiencies in
previous buses, they are still not considered adequate for powerful parallel processing
systems which utilise global memory as well as local caches. In response to this the
IEEE, for instance have set up a new committee known as the P896 Standards

Committee to develop the Futurebus[9] - a bus intended to address this imbalance.
The Encore Computer company have also begun to tackle the problem and are

currently developing a high performance bus known as the Nanobus.

The P896 working group of the IEEE have, based on the assumption that buses
designed for parallel processing must incorporate features and facilities to support cache
consistency protocols, begun work on defining a class of compatible protocols for this

same cache consistency. The objective is therefore to allow boards from any vendor
which adhere to the standard to be incorporated into an existing system with cache
consistency guaranteed. The Futurebus will display the features of cache consistency.

One aspect of the Futurebus is that all caches not accessing the bus will in fact be

constantly monitoring it, which is termed snooping. Address cycles are broadcast to all

nodes so that all caches participate in the address-time handshake. The address-time

Chapter 2: parallel processing - an overview

11

handshake involves a single bus master issuing an address and an address strobe. The

address continues to be asserted until all nodes on the bus signal that they are no
longer in need of the address. Before allowing the address cycle to continue to
completion a cache must check the address to see whether it is in its directory or not
Figure 4 shows the outline of a data cache chip and how this interfaces to the bus.
The chip is partitioned into sub-sections, bus interface, cache memory, processor
interface, and the two controllers - snoop and cache. The cache controller controls the
read and write on the cache and the snoop controller spends most of its time
monitoring the bus and also implements most of the cache consistency protocol.

Chapter 2: parallel processing - an overview

System Bus

Snoop
Controller

Cache
Controller

\

<

41 I i

-

Processor Bus

Bus
Interface

♦
Cache
Memory

♦
Processor
Interface

Data Lines

 Control Lines

Data Cache Chip Block Diagram

FIGURE 4

As regards the write-through scheme described earlier only the Futurebus and the

Fastbus have an adequate broadcast facility to support such a scheme, and only the
Futurebus can support the write-back scheme.

Another major concern in designing buses for parallel processing systems is
known as the clock latency problem. Processors within a multiprocessing system

generally spend most of their time accessing their local cache and relatively less time

accessing the bus. Thus it is imperative that the processors be optimised to their local

12

resources rather than to the system bus. An implication of this is that the processor
clock speed is chosen to match that of the cache access time (typically 20/25 MHz),

and will be different and asynchronous to the bus clock. Therefore when accessing the

bus the processor must synchronise its clock. Two problems arise from this - namely,
the delay in waiting for a valid clock pulse and the metastable state problems arising
from the synchronizer circuits. This delay is defined as the clock latency problem and
will be a half a cycle on average. Using an asynchronous bus solves this problem but
synchronous buses are easier to design and are more reliable in the long run.

2 .123 Architectural concerns
Section 2.2 illustrates and discusses the various categories of parallel architectures.

It classifies the architectures based on the nature of the input data stream, data
handling and more importantly on the relative processing power of the individual
processing units. Conversely, this section looks, not at the classes of architectures but
at the issues which arise in the development of a parallel architecture. Both memory
and bus performance are two important architectural concerns, so much so that they
are both treated separately above.

A vital part of a parallel processing system architecture is the communications
interconnection network. Naturally enough the communications subsystem, consisting of
links between processors, memory modules and I/O controllers is one of the
fundamental blocks of an architecture, especially a parallel architecture and the
efficiency of the system as a whole depends on an adequate communications
implementation. It also has an influence on cost, capabilities and the size of the

system. The communications requirements of an architecture can be solved in two

ways: either a bus structure or a network.

If a system contains less than about 50 processors with each processor
possessing its own cache memory then a high-bandwidth communications bus should
prove adequate for inter-device communications. The presence of a local cache at each

processor is necessary to reduce the number of bus access requests. Alternatively if the
system contains a larger number of processors then a communications bus is no longer
feasible due to unacceptable delays arising from an increased number of conflicting bus

access requests. The solution to this bus bottleneck is to avoid using a bus altogether
and to employ a communications network to implement the communications
requirements. In the extreme case a cross-bar network can be used, but this method is

quite complex and costly and is generally prohibitively so for very large systems.

Figure 5 displays the cross-bar switching network technique for N sources and N

destinations.

Chapter 2: parallel processing - an overview

13

Chapter 2: parallel processing - an overview

Crossbar Network Connecting N Sources

To N Destinations.

FIGURE 5

Several issues arise in the cost-effective implementation of a communications
network. The first issue is the analysis and evaluation of the communications
sub-system topologies of buses, cross-bare and multi-stage networks. In general all
networks for parallel systems can be built from four basic types of simple networks.
Further to this, interconnection network control is another issue to be considered. This
involves communications protocols, modes of operation and techniques for routing

messages, including switching. In order to effectively satisfy these requirements and for

accurate analysis one must first understand the mathematics of formal specification of
interconnection networks. Such an analysis is beyond the intended scope of this report

2.2 PARALLEL PROCESSING STRUCTURES AND NETWORKS

2.2.1 Classification of Parallel Processing Architectures

The rapid development of parallel processing technology in recent times has
meant that a bewildering range of processor configurations has arisen with very little

attempt at standardisation. There has been emphasis on specific parallel processing

solutions for specific problems. Currently though, there is a much more conceited
effort to design general purpose parallel processing to deal with more general tasks.

14

This has prompted investigation and research into parallel hardware and parallel
software organisation [10,11,12], in an attempt to make the technology more transparent
to the user and independent of the problem to be solved. Whilst neat and appropriate
classification is not possible it is possible to give generalised groupings of parallel
processors based on the nature of their data, their data handling techniques, and

instruction set among other aspects of operation.

Parallel computation techniques may be classified into three types[13]: von
Neumann based, the dataflow, and the reduction approach. There is a fourth technique,
epitomised by the REDIFLOW machine of the university of Utah[14] but it is merely

a hybrid of the latter two types.

The von Neumann method of exploiting parallelism involves the combination of

two or more von Neumann type processors, thus allowing concurrency in their
operations. This method follows the traditional fetch-execute-store cycle and uses global
and possibly local memory. The second technique, the dataflow method is based on
the concept of executing instructions as soon as the operands become available, thus

the method is often termed data-driven. Alternatively the method of reduction executes
instructions only when the results are needed for other calculations, hence the optional
name of the demand-driven technique. Calculations are only performed when they are
needed which contrasts with the dataflow technique of performing calculations
whenever the operands are ready. Finally the last system of parallel computation, the
hybrid method is worth a quick mention. In this approach instructions are executed if
they are needed provided their operands are available. If not available the responsible
instructions are calculated in a hierarchical fashion. This puts sensible

requirement-specific constraints on the sequence of execution of instructions and avoids
the uncoordinated stream of actions, characteristic of the dataflow style.

Figure 6 illustrates the aforementioned categories of parallel computation and their

progeny types. As can be seen the von Neumann standard is the largest class, and is
by far the most widespread in use in parallel processing systems, mainly due to
historical factors. According to how this class implements the instruction stream and
processes the data stream there are four sub-divisions: single instruction single data
(SISD), single instruction multiple data (SIMD), multiple instruction multiple data
(MIMD) and multiple instruction single data (MISD). One would normally classify the
normal von Neumann architecture as SISD and non-parallel but by deft interconnection

of multiple von Neumann processors a parallel processing system can be created. The

technique is known as horizontal microprogramming and control of the processors may

be done by use of a Very Long Instruction Word (or VLIW). The MISD architecture

involves a data single stream be processed progressively through a string of processing

Chapter 2: parallel processing - an overview

15

units or a Pipeline as it is called. The delay in processing one piece of data from
entering the pipeline to exiting the pipeline is equal to the total delay of each
processing unit, if inter-processor communication is negligible. The delay between
consecutive outputs from the pipeline though, is equal only to the processing delay of
the slowest processing unit in the pipeline. The pipeline, along with other common and
not-so-common architectures are outlined in the following section

Chapter 2: parallel processing - an overview

Vector/array
processors

MSMDPipe ine
Processor

Multistage
Network

DirectCrossbar Switch
Lattice

Parallel Computers

Hybnd

Connectivity
Differentiation

Pipelined
array
processor

Orthogonal
processors

Associative Connecti
processors Machine

Single Cluster
Bus Bus Sin«le

network
Ousters Processor

Arrays

Systolic
Arrays

Hypercubes Hierarchical

Wavefront Tree
Arrays

Pyramid

Prism

Classification of Parallel Processing Architectures.

FIGURE 6

2.22 Several Parallel Processing Architectures Examined

The following sub-sections illustrate selected architectures, both common and
uncommon, both developed systems and systems at the research stage. It is intended to

give an overview and a taste of the diversity that makes parallel processing such an
exciting research field. Despite the range of parallel processing configurations they are
all unified by the one common objective of enhanced performance.

2 2 2 J Pipelines
Of the early parallel architectures the pipeline [15] was the most common. The

concept behind it is in fact derived from observations of a sequential system. In a

16

sequential computer on average only 10% of the circuitry is active at any given time.
It is practical therefore to conceive a system in which a process is split into
sub-processes which receive information from their predecessor and pass information to
their successor.

Chapter 2: parallel processing - an overview

Global Clock

4 Stage Pipeline Structure

FIGURE 7

Figure 7 illustrates this concept Based on this principle all components in the
pipeline are active at once.

If each element in the pipeline is small and simple, as is often the case, then
high clock speeds can be supported. The overall speed of the processor is dependent
on the delay of the slowest processing stage and consequently the cost of speed
improvements to the pipeline is paid for by an increase in the delay for an item to
be processed.

In Figure 7 the data is initially fed into the first pipeline stage, f(a). Subsequent

to being processed by this stage the processed data is transferred to the second stage,

f(b). At precisely the moment following this transferral the next piece of data is fed
into the first stage, f(a) and so on until every pipeline stage is actively processing
data. At this point on every clock cycle an item of processed data leaves the last

stage as output, and a new piece of information enters the pipeline as input

2 2 2 2 Systolic Arrays
A network of regularly connected processing elements constitutes what is called a

systolic array [16,...,25]. Figure 8 shows three different types of systolic array. The

pipeline, fig 4.a, is in fact a particularly simple systolic array. The reason for the

regular connectivity of the processing elements is explained by the fact that the the

problems most suited to systolic arrays are themselves quite geometric, such as

multiple matrix operations. In 1978, Kung and Leiserson [26] proposed a

multiprocessor architecture which could execute multiple computations concurrently and

17

it is upon this model that systolic processing partially originated.

The processors are connected together in a rectangular lattice. Because the data is

pumped through the lattice in a fashion not unlike that of the heart the structure is
known as a ’systolic’ array, from the Greek word for contraction. As can be seen in
Figure 8 many other connectivities have evolved since. Systolic arrays are now being
applied to quite a variety of tasks such as adaptive beamforming [27*20], Kalman
filtering [21], and matrix operations in control algorithms [21]. The particular array
structure used in an application depends wholly on the nature of the operations
performed. The processing elements receive data from their neighbours, process them

and pass them on to consecutive processing elements in a wavelike fashion. Data does
not necessarily travel in only one direction but may have several paths across the

array.

Chapter 2: parallel processing - an overview

(c). Tree

Three Types of Systolic Arrays

FIGURE 8

Due to improved VLSI technology the growth in systolic array usage has been

18

quite prolific. The next era of array implementation is the programmable systolic array

and already INTEL have developed the WARP and the I-WARP [28] machines which
can be programmed into a particular configuration. One of the main drawbacks of

systolic arrays is that generally there is a relatively long through-put delay which

restricts their usage to certain applications.

2 2 2 3 Neural Networks
Often overlooked as a means of parallel processing neural networks [29,....34],

may offer very pragmatic solutions to a range of control problems. Already they are
being used to control robots in an ’intelligent’ fashion [29] but despite this they are

still at a very pioneering stage.

Neural networks, so called because they are modelled on the neuron structure of
the human brain, differ dramatically from conventional electronic hardware. They
consist of many model neurons interconnected in 3-D by paths of varying strength and
employ graded signals for communication. In order to comprehend how a neural
network can actually support an algorithm or make decisions it is imperative that the
human nervous system must first be explained. The object of ’computational
neurobiology’ [31] is to understand how the brain receives data through the senses and

processes it into conceptual information. For example, in the human visual system
information is received through the eyes by light waves stimulating the retina which is
then brought to the brain via chemical ions. The brain then proceeds to extract
concepts of colour, depth, motion ...etc. from the observed scene which can be
expressed by the human. It is widely accepted that even this simple human faculty
poses a huge problem for conventional digital technology [35] to emulate.

In a conventional computer most of the silicon is inactive at any given time.

Usually only the CPU and perhaps a few bytes of memory are active. Contrasting to
this is the Connection machine[36] (a type of neural network developed by MIT)
where most processors or neural nodes are active together, or concurrently. On the

simplest level, the brain functions as follows : The ’firing’ of neurons is activated (or
inhibited) by other connected neurons. Thus whether a neuron is firing or not depends
on the inhibitory or excitory inputs from all other neurons connected to it. How these

operations combine to form valid thoughts and constitute huge amounts of memory
remains mostly unknown.

The aforementioned application of a neural network by Guez et al[29] to

adaptively control a robot provides a very interesting insight into the potential options

that these networks offer control engineers in the field of parallel processing. The
major benefits claimed by Guez are an Adaptation rate for finding optimal parameters

Chapter 2: parallel processing - an overview

19

that is faster than Model Reference Adaptive Control (MRAQ or Self Tuning
Regulator (STR) methods, a simpler controller structure for multiparameter adaptive
control (i.e. complexity of controller does not grow exponentially with number of
unknown parameters) and finally adaptation is possible over both the discrete and
continous domains. These are no small claims to make in the field of robotic control.

Despite this though, neural networks have yet to develop as feasible alternatives to
conventional processing architectures.

222.4 Multiple SIMD Computer Organisation
Two or more control units (CU) which share several processing units through

dynamical allocation constitute a multiple SIMD system. The processors are allocated
to perform specific SIMD tasks. This type of system is not common and is to great
extent still at the research stage. The PASM machine[37] of Purdue University is apt
example of this class, and is a reconfigurable parallel processing system that consists
of a number of SIMD and MIMD sub-systems executing separate tasks. One of the
important requirements of this class of multiple reconfigurable SIMD systems is that

each subsection created by partitioning the overall system must be capable of operating
independently, but must also possess the same capabilities as the original system.
Independent operation defines that no overlap in data handling should occur. The
issues involved is this specification are job-scheduling, resources allocation, and load
balancing for effective and efficient operation. These are items which are catered for

in the operating system.

2 2 2 5 Hypercubes
This is another of the more interesting and novel architectures for parallel

processing. A hypercube (or binary n-cube) is basically a loosely coupled
multiprocessorsystem consisting of N (= 2n) processors interconnected as an
n-dimensional binary cube. Each processor in the hypercube has its own non-global

main memory and CPU. Every processor is interconnected via the communications
network to n other neighbour processors. Additionally, the address of each processor

differs from its neighbours by one digit, using an n-bit addressing scheme. Based on
these properties it can seen that the trivial case of a O-dimensional hypercube is just a
conventional SISD computer. There are several reasons why hypercubes are very
suitable to general parallel processing implementations. The forte of these systems is
that they are topologically ideal for the mapping of multi-dimensional meshes and
trees: neighbouring nodes are mapped onto neighbouring processors, thus yielding

minimum communications overhead. Many scientific applications use mesh-type

recursive solutions, such as the FFT, Potential gradient, Fields and Bitonic sort routine.
Hence the suitability of the hypercube. Further, the hypercube has a maximum

intemodal distance of log2N hops, thus allowing for relatively fast communications.

Chapter 2: parallel processing - an overview

20

Chapter 2: parallel processing - an overview

2.3 THE LANGUAGE OF PARALLEL PROGRAMMING & SOFTWARE ISSUES

2.3.1 Specifying concurrency

When a sequential programme is written it specifies a sequence of tasks to be
executed in an ordered and serial manner. Inherent in this list of operations may be
instructions which can be executed independently of one another, or indeed
concurrently. The dilemma of parallel software is to determine this ’parallelism’ and
maximise the speedup benefit in doing so[38]. There are two ways in which
parallelism may be exploited. The first is to produce a sequential programme and to
compile it with a compiler that examines for parallelism. The second is to rewrite the
programme using a parallel programming language, and to specify the concurrency. In
both methods the maximum exploitation of concurrency is not guaranteed, and in fact
one can never tell if a particular implementation gives the maximum speedup over the
sequential case except in trivial instances of small programmes where this can be done
by inspection. There are no efficient compilers which can ensure that a sequential
programme will be converted into a very efficient parallel implementation. The second
method above of user inspection is obviously open to human error but at least there
is the flexibility of organising the software according to the hardware so that an
appropriate mapping is ensured.

In a parallel programme at one or more instances two or more processes are

specified to run concurrently. In order for this happen without integrity failure these
processes must communicate and be synchronised at various points in time. A number

of language constructs have been defined to implement this. The following sections

examine some of them.

23.1 J Synchronisation Based on Shared Variables
In using shared variables two types of synchronisation occur Mutual exclusion

and Condition synchronisation. In mutual exclusion there is the mutually exclusive
execution of critical sections, where a critical section is a sequence of statements that
must be executed as an individual operation. Condition synchronisation is where a

shared variable is placed in a state whereby it cannot be accessed for operation until
the process which is using it (and possibly changing its value) releases it

2 3 J 2 Synchronisation based on message passing

In this case processes send and receive messages rather than use readable and

writeable shared variables. There are two main techniques- channel naming and

21

synchronisation mechanism -which may be implemented in many ways. This makes this
method an attractive solution to programming language problems in this regard. A
programming notation based on this idea, Communicating Sequential Processes (CSP),
is the foundation upon which many modem parallel languages have been devised, such
as Occam. The Occam language along with several other parallel programming

languages are outlined and examined in appendix 6.

2.32 Classification of Parallel Programming Languages

In Section 2.2.1 an attempt was made to classify parallel architectures according
to certain criteria. Likewise in this section parallel programming languages will be
categorised, but unlike the architectural classes the languages are easier to classify

because of the explicit nature of language constructs. There are basically three types:
Procedure-oriented, Message-oriented and Operation-oriented languages.

Chapter 2: parallel processing - an overview

Process Interactions

Synchronisation Techniques & Languages Classes.

FIGURE 9

Figure 9 shows the genealogy of the three types. As can seen message-oriented

and operation-oriented appear on different sub-branches of the same branch
classification. They both use message passing, but implement it differently.

Message-oriented languages utilise "send and receive" primitives, whilst

operation-oriented provide remote procedure calls as the technique for interprocess

communication. The final type, procedure-oriented languages utilises a method of

writing individual programmes for each processor in the system, and treating
inter-processor communications as a shared object The advantage of message-orientation

is that the existence of a communications network is transparent to the user, and
shared memory is optional. Some operation-oriented languages have the characteristics

of both message-oriented and procedure-oriented languages. Such languages include
Ada[39], 0ccam[40], Linda[41], and Sisal[42].

22

2.33 Parallel Programming Supportive Operating Systems

The actual services required of an operating system by parallel programmes are
essentially the same as those existing in conventional sequential systems, but the
manner of provision is fundamentally different. It must be ensured that the way in
which services are provided helps to balance the workload of the individual processors.
During this coordination of facilities the operating system must avoid critical serial
sections, since these would cause a significant rise in performance cost (rises linearly
with the number of processors involved). Essentially the operating system must itself
be a parallel programme, with decentralisation and be bottleneck free.

Oneof the more difficult tasks to be performed involves allocating and
scheduling the processes to the processors so that execution time is minimised and
thus speedup over the sequential case is maximised. This is closely linked to the
concept of programme partitioning. The overall problem is phrased as follows: Given a
parallel programme it necessary to partition the programme into a set of
communicating processes that must then be allocated or scheduled on a set of
processors. Intuitively it can be seen that partitioning is a optimisation problem, due to
many possible choices of partitioning schemes.

Another important aspect of operating system performance is in the area of
resource management. In conventional centralised systems there are tables which give
up-to-date information on the status of all resources being managed. In parallel systems
with distributed control this information is not available and is currently a research
topic and a number of algorithms are being developed for dynamic storage

allocation[43].

As mentioned an operational system is required to determine correct load
balancing for a processing system. There are two ways in which load balancing may

be implemented: Static[44] and Dynamic[45]. Static load balancing involves

decomposing the code before execution, assigning tasks to processors and then leaving
the system to proceed without further interference. Certain problems have fixed
structures which are very suited to this kind of decomposition. The second method, as

its name suggests the processors are dynamically assigned workloads depending on
varying conditions. This occurs in event driven and conditional systems such as
simulations. Chapter 3 deals with the concepts of partitioning and scheduling more
extensively and objectively. Currently under research is the concept of self-scheduling

for processors for DO loops[46] which allows for load balancing when the execution

time of each iteration varies significantly due to conditional statements. Most of these

schemes are nonpreemptive, meaning that once a processor is assigned to a task it

Chapter 2: parallel processing - an overview

23

will not be preempted until it has completed that task. Avoidance of deadlock is

discussed in a paper by Tang, Yew, Fang, and Zhu[78].

2.4 APPLICATION OF PARALLEL PROCESSING TECHNIQUES
TO CONTROL ENGINEERING

The concept of parallel processing is not a new one, but the application of it to

control engineering tasks is a recent development, made possible by contemporary
hardware and software innovation. It has long been accepted that, if properly
orchestrated several processors/CPUs when combined can form a powerful processing
entity. What prevented this from being implemented in commercial systems was the
adequacy of the microprocessor for most tasks and hence the expense of a
multi-processor system was simply not justified. With the advent of high demand
systems, such as highly fault tolerant flight controllers, parallel processing became a

viable option.

With specific regard to control engineering parallel processing offers many

exciting prospects. It seems quite inevitable that future trends will tend towards a
higher degree of parallelism in both hardware and software implementations of control
laws. In order to gain maximum benefit for a particular control law its structure must

be examined for inherent parallelism, and when this has been identified suitable
hardware can then be chosen (of course, this is the ideal case and it is quite unlikely
that the maximum speed-up could ever be achieved).

How do we examine for parallelism ? It would be desirable to have a high

level compiler which could take in a control law and decompose it into concurrent

processes. Such a compiler would interface between the mathematical model of the

algorithm, in the programmer’s head, to the actual parallel processing hardware, in the

programmer’s hand. Desirable as it may be, it has yet to be developed.

At present, the programmer translates the particular algorithm to be implemented
into a high level parallel programming language, such as OCCAM, which then
compiles the code into a form executable over a parallel system. The significance of
this is that it is the programmer who decomposes the algorithm into concurrent

processes because in all parallel languages every process must be defined and similarly

the concurrency of these processes must also be specified. Therefore, the efficiency of
the parallel implementation depends on programmer skill, and further, failure to

recognise parallel operations will manifest itself as less inefficient coding.

Chapter 2: parallel processing - an overview

24

The automated software interfacing of control laws onto parallel systems has

remained somewhat of an impasse. There are no software compilers at present which
allow a programmer to specify a control law in pure mathematical terminology and
then decompose it into a flow diagram of concurrent processes which may then be
implemented on, say, a transputer system. There are several parallel programming
languages with which a programmer can generate parallel processes but in order to
realise a control algorithm in parallel the programmer must have intimate knowledge of

the algorithm. Therefore, efficiency is based on the ability of the programmer to
recognise inherent parallelism. Eventually high level compilers will be developed which
will translate completely from the purely mathematical model of the algorithm/control
law to code executable on the particular parallel processing system present, in a
manner transparent to the user.

As would be expected, because of the absence of any general purpose ’control
law parallel compiler’ most research interests have dwelled upon application of a

particular parallel processing technology to a particular control task or algorithm, like
for example ’Kalman filtering on a systolic array’[47] or ’target tracking using

transputers’. Nonetheless, it seems only a matter of time before parallel processing
becomes an integral part of real-time control engineering technology. In the following
sections several instances of the successful application of parallel processing to a
control task are examined. The fact that these examples are quite specific, and lack
generality is more a reflection of the current state of parallel processing in control
rather than an oversight

2.4.1 Parallel Processing for Robotic Control

In a brief paper by Shaheen Ahmed of Purdue University[48] a multiprocessor

scheme is proposed for robot control. He mentions that some modem microprocessors
can accomodate a floating point instuction every 100ns, thus making it possible for the
complete inverse dynamic and kinematic computation every sample period. Coupling of
these microprocessors into a multiprocessor environment can create the potential to
solve rather complex control problems. A coupling arrangement such as this would
have the advantage of being reconfigurable to accomodate a new control algorithm.

Their optimal operation depends on choosing the correct number of processors and

scheduling the workload in a balanced manner. The proposed architecture consists of
an Input/Output Processor (IOP), which generates control signals to the outside world;

a Scheduling and Processing Unit (SPU) which is responsible for initiating and

optimally sequencing the processing units (PU) through a global or private access bus;

PU’s, which perform the computations as required by the SPU.

Chapter 2: parallel processing - an overview

25

Results produced by Ahmed are based on the usage of the Motorola 68881
processor, which has a multiply time of 5.87|is. This proves to be sufficient in a
multiprocessor environment. A parallel controller is used to control a manipulator arm.
It is found that seven processors can perform the forward kinematic calculations in
80ns and the resulting speedup factor with seven processors is 6.5. In calculating the
inverse kinematic equation for the manipulator using five processors, (no increase in

speed is gained by adding to five processors), the time taken is approximately 370|is
with a corresponding speedup factor of 2.38 over the sequential case. Further to this
the inverse dynamics problem may be solved for the arm (6 joints) in 710ns using a
saturation limit of seven processors. The speedup over the sequential calculation is 6,
approximately. This application serves to illustrate that by incorporating additional
processors to implement what has traditionally been a uni-processor task significant

benefits may be achieved.

There are various other schemes proposed for the control of robot manipulators
by the use of parallel processing techniques[49,50,51] and although differing in
decomposition techniques they generally yield speed-up factors of similar order. In
chapter 6 an algorithm is developed in parallel form for the control of the PUMA 560

manipulator arm which makes use of p-d feedback to enhance system performance.
Also contained in the chapter are indicators as to the effectiveness of the algorithm

and speedup indices.

2.4.2 Simulation and Control of a Non-Linear Process using Transputers

One of the biggest obstacles in the usage of non-linear models in the control of

highly non-linear systems is the strain on a processing system to solve the non-linear

differential equations in real-time. A solution to this problem is proposed by Ponton
and McKinnel[52], whereby a transputer system is suggested as the hardware capable
of solving these non-linear calculations in the particular case of a distillation column.
In order to maximally exploit the parallelism a correct decomposition scheme must be

selected. It is claimed that one of the major fallacies of modem process control is
that non-linear systems are quite often modeled by linear approximations which

generally lead to degraded performance and inefficient process operation[53]. Obtaining
the non-linear model is rarely difficult (in fact it is usually more difficult to obtain a

linear approximation); the problem lies in the complexity of the implementation.
Nonetheless, the implementation of the non-linear model provides much more accurate

control signals and generally meets tighter environmental and safety standards.

In the chemical industry the distillation process is one of the most widespread. It

involves seperation of various chemicals which have different boiling points, thus the

Chapter 2: parallel processing - an overview

26

control problem is to ensure an effective purification process and its accuracy
determines the quality of the final product. Tight and precise control margins can be
reflected as large cost savings, since the amount of energy used in a heating process

is usually quite significant. Generally the objective of the control technique is to
maintain the ’overheads’ and ’bottoms’ products at a set-up. Much time and effort has

been spent in trying to overcome the problems of controlling distillation processes but
very few methods have attempted to make use of direct non-linear control[54]. The

strategy proposed by Ponton and McKinnel is quite novel and involves observing that
the distillation column can be broken down into smaller sub-units or blocks. Direct
assignment of a processor to each block may seem like an obvious implementation but
the serial nature of the inter-relationship between blocks means that this would pose
no benefit in speedup. Nonetheless, clever rearrangement of the equations allows for a
parallel implementation and assignment of a processor per block. In a simplified

explanation this involves substitution of the dependent variables with approximations
and performing regular updates in data, hence all processors can run simultaneously
and need only supply and receive information at the end of each calculation cycle.

This information is then collated and used to drive the feedback controller. The
transputer was chosen as the parallel processor most suited to the task with its fast
serial links. Results show that the convergence of the parallel implementation is faster
and as stable as the traditional serial controller[52].

Chapter 2: parallel processing - an overview

27

CHAPTER 3

Algorithmic Decomposition and Parallelism

3.1 PARALLELISM AS A CONCEPT.

Whilst chapter 2 delved into the issues of parallel hardware, parallel architectures
and software mechanisms for exploiting and implementing parallelism, there was no

discussion on the actual concept of ’parallelism’:- How is it defined? How may it be
quantified? How does one reconcile the difference in parallelism of an application with
that of the target hardware? This section attempts to formulate and quantify not only
parallelism per se, but related items such as the partitioning of programmes, the
scheduling of these modules onto multiprocessors and the optimisation of these

techniques.

The principle upon which parallel processing exists is that if a programme or,

more generally a software system can be decomposed into a number of smaller tasks

which may be executed independently then gains in speed and possibly in performance

may be made by executing these tasks in parallel. This relative increase in speed,
known as speedup[55], is one of the major motivating factors for research into parallel
processing, especially in relation to control engineering. As speedup increases the
efficiency of the multiprocessing system decreases, due to increased redundancy of
processors, and in section 3.1.1 this relationship is examined at length.

It is imperative that before attempting to define parallelism one must first create

a notation so that applications/algorithms may be mathematically represented as a series

of concurrent and serial tasks. Several basic preliminary definitions must also be made

to ensure clarity and generality.

We define, for systems of potentially parallel processes:

A process: A process is an independent sub-unit of a system. For the purposes of

later definitions the restriction that a process is a list of sequential instructions is
imposed. Processes may or may not be capable of running in parallel, depending on

the nature of the system

Totally seriaL A system is totally serial if every process must be perfoimed in

sequence and each process is in itself inherently serial. This means that at any point
in time no more than one process is active.

28

Shortest patti Ts: This is the shortest theoretical computational path from system input

to output, derived from the block diagram representation of the system with concurrent

processes shown in parallel computational paths.
Longest path (Critical path) Tj: Likewise, this is the longest computational path of the
system block representation and is equal to the system execution time. This is a vital
index for assessing the speedup of a parallel implementation.

Processor Boundary (P^): This equal to the maximum number of available independent

processors.

Speedup: This is a factor which indicates improvements in speed over the serial

implementation of the system.

Serial execution time
speedup = Longest path time

Maximum parallelism (Pm): The maximum number of processes that are active in

parallel during the course of an applicatioa

3.1.1 Unbounded Parallelism

It is now possible to define the parallelism of a system at a point in time as
the maximum number of processes which could possibly be active in parallel at that
point in time, assuming unlimited availability of processing units. This definition may
be extended to give an average value for parallelism and the eventuality of limited
processing power, which is of common occurrence in real world applications where a

high degree of parallelism in an application does not necessarily justify a

corresponding amount of processing units.

Average (Unbounded) Parallelism (Pave): This defines the average number of processes
that are active in parallel during the execution of an algorithm/application, with the
provision that the availability of processors is unbounded.

Pave = (I* time spent with 1 process active
+ 2x time spent with 2 processes active
+ 3x time spent with 3 processes active

+ ... + Pm* time spent with Pm processes active}

-r {total execution time}
□ Eqn la.

Consider, for example a totally serial system with n process. The average
29

Chapter 3: algorithmic decomposition & parallelism

IlsnT i
Pave = n̂ * = ^

To say, therefore that a system has an average parallelism of unity is to say that
that system is totally serial, because any instance of more than one process running

simultaneously will always guarantee an average parallelism greater than unity.

Conversely, a system with n processes of equal run tunes, which are. independent
and can run in parallel, will have an average parallelism as follows;

Dl
Pave = T = n

Chapter 3: algorithmic decomposition & parallelism

parallelism would be calculated as follows:

These two extremities in parallel/non-parallel system serve to illustrate the upper

and lower bounds on the average parallelism on any system. The average parallelism

in general for systems is a lot more complicated to calculate.

(A). Schematic representation of sample system

(B). Schedule of processes

3x(T3+T7>+2x(Tl +T4+T5+T81KT2+T6+TO

Pave = T1+T2+T3+T4+T5+T6+T7+T8+T9
FIGURE 10

30

Chapter 3: algorithmic decomposition &. parallelism

Graphing is a very suitable mechanism for representing the flow of execution of
a system of parallel processes, and helps to clarify the concepts of parallelism and
average parallelism, and to simplify their calculatioa

Figure 10 shows both the schematic and graphic representation of a sample
system of parallel processes. The thirteen processes represent independent tasks,
connected by lines which represent the flow <jf data. The summation block (denoted +)
represents a point where the output of preceding processes are collated (not unlike a
rendezvous point in ADA[39]) and passed onto proceeding processes which require the
data for activation. The graph demonstrates the relationship between the processes in

the time domain based on their points of initiation and length of execution time,
which are chosen arbitrarily for purpose of illustration. The process blocks are scaled

proportionally to their run-times. The expression for Pave is derived by observing the

number of processes active over each time interval and collating the total time for

each multiple number of parallel processes. For example three processes are active in
parallel for a total of (T3+T7) time units.

PI

P2

P3

P4

 1 ►
Execution ¡ Time

Time

(A). 4 processing units available

PI

P2 P3

P4

Execution ! Time
Time

(B). 3 processing units available

Scheduling of processes.

FIGURE 11

A natural progression on the concept of average parallelism is the introduction of

limits on the number of available processors. For example figure 11 shows the effect
of reducing the number of available processors from four to three. Instead of executing

all four processes in parallel, only a maximum of three may be executed
simultaneously. Speedup in the first case is equal to the total time for all processes

divided by the run-time for the slowest process. For maximum speedup in the second
case the three slowest processes (pl,p2,p4) are initially non simultaneously on the three
available processors and on completion of the first process (p2) the execution of the
last process and fastest (p3) begins. In order to mathematically formulate an expression
for this bounded parallelism one must first define what is meant

Average Bounded Parallelism (F*ve): The average parallelism of a system of processes,
with the imposing constraint of limited availability of processors.

In order to develop this definition in a mathematical sense several assumptions
are stated and some notational definitions are given.

* l.The maximum number of processors available to process in parallel shall be

denoted by r.

* 2.The maximum parallelism of the system of processes is equal to n.

* 3.The scheduling of processes is such that if there exists n processes in parallel,

where 2r>n>r then the r slowest processes are executed first. The remaining (n-r)
processes are then executed. If n>2r then after the first batch of the r slowest
processes have completed the next r slowest processes are executed. Finally when

this batch is complete the remaining (n-2r) processes are scheduled for execution.
Likewise for any other n greater than multiples of r there are multiple batches of r

processes to be executed.

* 4.Denote the number of batches of x (x>r) parallel processes as N*. This means
that on Nx occasions during programme run-time x processes can potentially run in

parallel (although this would be prevented due to lack of available processors).

* 5.The following derivations assume that the maximum parallelism, Pm is not less

than the processor boundary, Pb. Obviously, if it were then the average bounded

parallelism would be equal to the average unbounded parallelism.

Chapter 3: algorithmic decomposition & parallelism

3.12 Bounded Parallelism

32

* 6.Define T£q as the run-time for the sth slowest process in the qth batch of p

parallel processes.
Therefore, as an extension to equation la it can be stated;

P*ve " i^ave♦̂ (unbounded) - (r+l){ T£j , + T£} 2 + ... + Tg}>Nr+1 }

- (r+2){ + T + b + ... + ^ r+2 }
- - n{ TĴ ! + ... + T£Nn }
+ (Total run-time of all r+1 parallel process on r processors)
+ (Total run-time of all r+2 parallel process on r processors)
+ ... + (Total run-time of all n parallel process on r processors)}-rT,(bounded)

□ Eqn lb.

The next step is to formulate an expression to account for the run-time of more
than r processes in parallel, under the constraint of only r available processors. Based
on the scheduling scheme of 3. above the time to run the 1st batch of r+1 processes

would be;

Run-time = r .^ +u + 1 .1 ft,

Therefore the total run-time of all batches would be

total run-time = r.(Tf+1I + T*+1_2 + ... + Tr+1>Nr+1) + 1-01+1,! + TEtb + - + 'TCl.Nr+i)
□ Eqn 2.

Likewise, for all Nr+2 batches of r+2 processes in parallel;

total run-time = r.(Tj:+il + Tr+2,2 + — + fi+2,Nr+2)
+ 2 . 0 ^ , + v - y + ... + T ^ jNr+2)

□ Eqn 3.

This formulation is extended to all sized batches, and in the general case where n is

greater than some integer multiple times r the formulation is more complicated and is

as follows for the Nn parallel processes batches;

run-time of 1st batch = r.(T* t + T*, + ... + T ^"1̂) + (n-r.intOVr))!^

The latter term represents the remainder processes after all groupings of r processors

have been executed and a group of less than r processes remaia

Where int(a/b) is defined as being equal to the largest integer, z, such that: z*b i a.

Chapter 3: algorithmic decomposition & parallelism

33

The run-time for all Nn batches of n processes in parallel is therefore written as;

total run-time = r(+ T^, + ... + T y 1“̂) + (n-r.intOVr))!^

+ < ^.2 + T ^ 2 + ... +) + (n-r.intin/r))^!
+ ... + K T^Nn + T*Nn + ... + T ^ 1*)) + (n-r.int(n/r))T^Nn

□ Eqn 4.

Combining equations 2,3, and 4 and substituting into equation la, the total run-time, T
for the complete system of processes, with maximum parallelism n, on a
multiprocessor which has a processor boundary of r processing units is derived as;

T = {Pave*T|(unbounded) “ (r+l){ Tf+1,1 + Tf+U + — + Tj+l.Nr+l }
- (r+2){ V - l , + T il l , + ... + T ^ r+2 }
- - n{ Tj ĵ + ... + T£Nn }

+ r -(T i+ l,l + T f+ U + - + *^T+l,Nr+l) + 1 -CTi+i.l + Tr+1,2 + - + TJ+l.Nr+l)

+ r -CTf+2,l + T r+Z2 + - + T i+2,Nr+2) + 2 -(T i+ l,l + + - + T i+i,Nr+2)

+ . . .
+ r.(T ^ + T^j + ... + Ttf"«««) + (n-r.int(n/r))T^
+ r.(TJ.2 + T^2 + ... + T nf ^) + (n-r.int(n/r))T£j

+ ...

+ r.(Tj,Nn + T*Nn + ... +) + (n-r.int(n/r))TS.Nn }
□ Eqn 5.

And consequently the expression for the average bounded parallelism, given in equation

la becomes;

P$ve = {Pave*Ti(unbounded) - (r+l){ T£{ j + Ti+} 2 + ... + T f t ^ }
- (r+2){ TUI, + T&2 + ... + V ^ r+2 } - . . . - n{ + ... + 1*Nn }

+ r -CTi+l,l + T J+ U + - + Ti+l.Nr+l) + + T i+1,2 + - + T iii.N r+ l)

+ r -(T i+2,l + Ti+2,2 + - + T i+2,Nr+2) + 2 -(^+ 2 ,1 + ^ 2 , 2 + - + T r+ i.N « ^

+ ...
+ r.(T^j + T*, + ... + TV,"«"*)) + (n-r.int(n/r))T^,

+ r.(Tj.2 + T*2 + ... + T$«W>) + (n-r.intCn/r))^!

+ ...

+ r.(T^Nn + T*Nn + ... +) + (n-r.int(n/r))TS.Nn ^ ¿ b o u n d e d) .

□ Eqn 6.t

t Equation 6 and proceeding equations are not derived from any referrable source other than the authon own
research efforts in formulating a mathematical framework for expressing parallelism. An in depth derivation of these
equations can be obtained by contacting the same.

Chapter 3: algorithmic decomposition & parallelism

34

This equation quantifies the extent of parallelism present in a particular
implementation. It is dependent on the amount of parallelism present in the system of
parallel processes, but also incorporates the effects of limited availability of processing
power, and this is reflected in the complexity of the equatioa

Equation 6 can be written more eloquently as;

N;

Chapter 3: algorithmic decomposition & parallelism

ll
Pave = {Pave*T|(unbounded) - ? i . 2 T|j

2r-l N:
+ X X' (r.TTj + (i-r)TJ+j)

i=r+l j=l

Jin M «». Nn
+ ... + r.X . Zj TJr: + (n-r.mt(n/r)) L TJJ j }-T̂ bounded)

i=l j=l i=l

□ Eqn 7.

The parallelism of a software system is not vitally important when assessing the
performance of that system on a multiprocessor. The vital statistic when assessing the
speedup of a particular application is the run-time of the slowest path, or critical path.
Increasing the number of processes that run in parallel, whether by increased
availability of processing units or by further exploiting the parallelism of the system,

will increase the overall parallelism of the system but will not increase the speedup
unless this increased parallelism occurs along the critical path, thus reducing its
run-time. Therefore, it is possible to add extra processing units to a multiprocessor to

increase the parallelism of the system, at a price of greater processor inefficiency, but
not increase the performance index. This is why optimising an application to a
multiprocessor can be a difficult problem, since an optimal blend of parallelism,

speedup and processor efficiency/cost is required. The following sections examine these
concepts and their relationships more closely.

3.2 TRADE-OFF BETWEEN EFFICIENCY AND SPEEDIJP

By implementing a software system on a multiprocessor a reduction in the

execution time may be achieved. The original run-time achieved on a uni-processor
expressed as a ratio of the improved run-time is defined as the speedup for that
particular application. As this speedup is increased (to an upper limit), by added
processors or otherwise, the efficiency of the processors is reduced. Naturally as more
processors are dedicated to the same software system the total amount of processor

idle time due to issues such as contention, communications and software structure, is

increased. This trade-off between speedup and efficiency is to some extent determined

by the average parallelism, unbounded or otherwise, of the software system[57]. In this

section the relationship between efficiency and speedup is examined, and a bound is

35

determined for the maximum simultaneous degradation of both speedup and efficiency.

With regard to uni-processor architectures indices such as programme execution
time and instruction speed are easily determined. In parallel processing architectures the
calculation of these factors is somewhat more complex and not as straightforward. The

speed of a processor is still a concern but other issues include number of processors,
communications oveiheads and the structure of the software system. In evaluating the
overall performance of a parallel system two factors are examined: speedup and
efficiency. Using mathematical notation speedup is defined as;

J k -
S(n) = Tn

□ Eqn 8.

Where Tj is the time taken to run the application on one processor and likewise

Tn is the run-time on n processors.

Efficiency is defined as the average utilization of the n allocated processors.
Ignoring I/O overheads, the efficiency of a single processor system is unity. Speedup
is naturally also unity. In general though, the relationship between efficiency and

speedup is given by;

SOU
E(n) = n

□ Eqn 9.

If in fact efficiency remains at unity whilst additional processors are added then
linear speedup is being achieved (generally for speedup it is required that s(n)=otn,
0<a^l, but only the stricter case of cc=l is assumed here). This is the ideal situation,

because no loss in efficiency is incurred despite increasing speedup. In a practical

system this is impossible to achieve, due to contention between processors for shared
resources, inter-processor communication and several other performance degrading issues.

Minsky and Papert made the claim that typical speedups are of the order S(n)=log(n),
[58]. Other studies have shown that much larger ’typical’ speedups can also be
obtained[59]. Whilst researchers such as Heidelberg and Trivedi[60] and Fayolle, King
and Mitrani[61] developed expressions for speedup and efficiency for particular

software structures, this section attempts to look more abstractly at the tradeoff
between them and at the fundamental issues affecting them. The results can then be

extended to specific systems if one wishes. This is in the same spirit as the efforts of

Chen[62].

Amdahl’s well-known law [63] provides a good starting point It states that if a
fraction f of a computation is inherently sequential then the speedup is bounded by an

Chapter 3: algorithmic decomposition & parallelism

36

Chapter 3: algorithmic decomposition & parallelism

upper limit, which is stated below;

S(n) ^ l/(f+(l-f)/n)

To determine upper and lower bound on speedup and hence on efficiency the
concept of parallelism must be formally defined. Parallelism can be defined in four

equivalent non-mathematical ways as,
(1) the average number of processors that are busy during the execution time of the
software system in question, given an unbounded number of available processors,

(2) the speedup given an unbounded number of processors,
(3) the ratio of the total service required by the computation (the sum of the service
demands of the subtasks) to the length of the longest path in the subtask graph (the
length of a path is the sum of the service demands of its subtasks), or,
(4) the intersection point of the hardware bound and the software bound on speedup

(to be defined shortly).

The equivalence of these four definitions is not entirely obvious. Recall that

speedup with n processors, s(n), is defined as the ratio of the execution time when
only one processor is available to the execution when n processors are available. Since
the former is equal to the total service demand, and the ratio of the total service
demand to the execution time gives the average number of busy processors, definition

2 is equivalent to definition 1.

If an unbounded number of processors is available, the execution time of a

software system is simply the total service along some longest path. Hence, from the
definition of speedup, definition 3 is equivalent to definition 2.

There are two simple upper bounds on speedup. The hardware bound reflects the
limitation imposed by the hardware, and is given by the number n of available
processors. This bound can be achieved only if all n processors can be kept busy all
the time. The software bound reflects the limitation imposed by the software, and is
derived by noting that, no matter how many processors are available to the system,

the execution time must be at least as long as the longest path, as stated in section
3.1. Hence, the speedup is at most the ratio of the total service demand to the length

of the longest path. The hardware and software bounds, and the actual speedup
function, are depicted in figure 12.

The intersection point of the hardware and software bounds is significant; when
additional processors are allocated, it is certain that there is not enough parallelism in

the software in the system to keep all of the processors busy all of the time. This

37

intersection point is the point where n (the hardware bound) is identical to the ratio
of the total service demand to the length of the longest path (the software bound).
Thus definition 4 is equivalent to definition 3 and hence all four definitions are
equivalent We note that the software and hardware bounds on speedup are analogous
to the Asymptotic Bound Analysis (ABA) bounds on system throughput in a queueing
network model of a computer system in which a number of identical, independent
processes compete for service at a collection of system resources [64][65]. There is a
single mapping between the two problem domains, with the number of independent
processes corresponding in the ABA model to the number of processors in our model,
and the bottleneck service demand in the ABA model corresponding to the length of

the longest path in a directed graph representing the software system in our model A
similar analysis technique was used by Kumar and Gonslaves[66] for performance

models of software containing critical sections. It is natural to ask how to determine

the average parallelism of a particular software system. There are analytical approaches,

such as graphing techniques, and experimental approaches (running the software with
sufficient numbers of processors). The important issue is though, not how the measure
is determined, but that once it has been determined, it provides a succinct
characterisation of the inherent parallelism of the software system. As the remainder of
this chapter shows, there is a considerable amount of information built into this
measure.

Chapter 3: algorithmic decomposition & parallelism

Number of processor*, n.

Upper bounds & actual speedup for sample software system.

FIGURE 12

If the average parallelism is denoted as A, an expression for the lower bound on

speedup can be determined (and thus for efficiency). Consider an arbitrary software

38

structure with average parallelism A. Let T„ denote the system’s run-time given
unlimited availability of processing units. Based on the definition for average
parallelism it follows that the total processor busy time is equal to AT„. The

assumption of a work conserving scheduling scheme is assumed for the following

derivations.

Hie execution time for the software system is given by (AT„ + I(n))/n where
I(n) is the processor idle time summed over all processors. Since the sequential
execution time is nAT„ the speedup is by definition, S(n)=nA/(A+I(n)/T„).

To determine a lower limit on speedup it is necessary to determine the bound on

I(n). To this end define co(t) to be that portion of the software that has not yet
completed at time L co(t) includes those processes that have not yet been initiated, and
those that have been initiated but have not completed. The service demand of each
process in co(t) is the original service demand of that process minus any service
already supplied (if any). Further, define L(t) to be the longest path within oXt). As
the execution of the software begins L(t) begins to diminish from an initial value of
T„ to a final value of zero, on completion. If, at some time t during the execution
L(t) is not decreasing then it is valid to observe that no process in the longest path

is being serviced. Since no precedence constraints prevent the execution of such a
task, and since the scheduling scheme is work conserving, it must be the case that

that there are no idle processors at time t. Thus, processors can only be idle during
those times when L(t) is decreasing. Since L(t) decreases in linear fashion for a total
length of time T„, and since at most n-1 processors can be idle at any one point in
time, the total idle time I(n) is at most T„(n-1), which establishes the result:

I(n) ^ T„(n-1)

=> S(n) ^ nA/(n+A-l)

=> E(n) ^ A/(n+A-l)

It can be observed that if, n>A then S(n)->A

and if, n<A then S(n)->n

Figure 13 is similar to figure 12 with the added exception that the lower bound
on speedup is included. The significance of this is that no matter how poorly a work

conserving hardware system is designed or how archaic the software may be the

speedup can never fall below the given lower bound. The above derivation was

concerned with obtaining a bound which represents the worst possible case over the

complete space of work conserving scheduling disciplines, and may be a unreasonably

poor indicator to the performance of some more rational scheduling disciplines. In a

Chapter 3: algorithmic decomposition & parallelism

□ Eqn 10.

□ liqn 11.

39

processor sharing scheduling regime tighter bounds can be obtained. The equations

below demonstrate this;

Chapter 3: algorithmic decomposition <& parallelism

nA
S(n) i min(A, fn-l¥A -n)

n+A' 1_ Pm« □ Eqn 12.

---------------------- A----------------
E(n) i min(A, ~ (n-IMA-n I)

n+A-1- p

□ Eqn 13.

3.0

2.5

co 2.0

1.0
1 2 3 4 5 6 7 8

Number of processor«, n.

Upper bounds k actual speedup for sample software system.

FIGURE 13

How ’bad’ can speedup and efficiency simultaneously become? As extra

processors are added to service a software system increases in speedup are achieved at
the expense of processor efficiency. Is it possible to achieve a high speedup by merit

of a low efficiency? This is answered by the following deduction. From equations 12
and 13, it is observed;

S(n)/A i n/(n+A-l)

E(n) ^ A/(n+A-l)

=> S(n)/A + E(n) ^ (n+A)/(n+A-l) k 1

This can be phrased as follows: for any work conserving scheduling scheme, any

40

software structure, and any number of processors, the sum of the attained efficiency
and the attained fraction of the maximum speedup must always exceed unity. Thus, for
example, an average processor utilization (efficiency) of 20 per cent implies an attained

speedup of more than 80 per cent of the maximum possible. These equations serve to
quantify the relationship between the speedup and efficiency of a software system.

3.3 THE PARTITIONING PROBLEM AND ALLOCATION OF PROCESSES

Programming languages for multiprocessors may have implicit or explicit partitions
and schedules[57], i.e. the partitioning of the software into subtasks may or may not
be user-specified, and the mapping of these subtasks also may or may not be defined
by the user. Partitioning and scheduling are multiprocessor-dependent issues. Partitioning
is neccessary to ensure that the granularity of the parallel programme is coarse enough
for the target multiprocessor, although an attempt is also made to preserve parallelism.
Scheduling is necessary to achieve a good processor utilisation and to optimise
inter-process communication in the target multiprocessor.

The scheduling problem is to assign subtasks in the partitioned programme to
processors, so as to minimise the parallel execution time. The parallel execution time
depends on processor utilisation and on the overhead of inter-processor communication.
The problem of multiprocessor scheduling without communication overheads has been
studied in great depth, Graham [67] for example. The general problem with arbitrary
execution times and precedence constraints is NP-complete in the strong sense, along
with many apparently simple cases, e.g. 2-processor scheduling with execution times

equal to 1 or 2, but arbitrary precedence constraints. Despite this seemingly pessimistic
result, a simple, linear-time list-scheduling algorithm has a constant performance bound

of 2[68], i.e. the schedule generated by the list scheduling algorithm will have a

parallel execution time which is at most twice the optimal parallel execution time.
Thus, the multiprocessor scheduling problem doesn’t pose an obstruction to achieving

linear speedup.

The partitioning of a software system specifies the sequential units or subtasks of
computation in the system. There are three significant properties relating to subtasks;
(1) The subtask’s sequential execution time, or subtask size.

(2) The subtask’s total overhead, which includes scheduling oveihead and
communication for the subtask’s inputs and outputs.

(3)The subtask’s precedence constraints, which specify the parallelism in the

partitioned programme.

Naturally enough, the execution time of a software system depends on its

Chapter 3: algorithmic decomposition & parallelism

41

Chapter 3: algorithmic decomposition &. parallelism

partition and schedule. Figure 14 illustrates the general way in which the parallel
execution time depends on the partition. The abscissa gives the average subtask size of
the partitioned programme. The ordinate gives the parallel execution time, normalised

with respect to the parallel execution time necessary for ideal speedup. This normalised

parallel execution time is also equal to the ratio;
(number of processors)/(Actual speedup).

The curves in figure 14 were plotted on the assumption of 10 processors being
available, a sample sequential execution time of 10s cycles and a sample overhead of
103 cycles per subtask. The curves are indicative of a typical application. The curve
representing the ideal parallel execution time is calculated on the assumption of zero
overheads. As the subtask size rises from 10 to 105 cycles the normalised execution
time rises from 1 to 10 due to loss of parallelism. The curve representing overhead

factor is calculated by evaluating:
(Subtask size + Subtask overhead)/(Subtask size)

| ■ | Keel Pwailel Execution Time

B Overhead Factor,'- | .|
: S r

Tdotd Paw le! Execution Tim«

10 100 1000 10000

P=10 T(seq) = 100000 T(overhead) = 1000

The Parallelism-Overhead Trade-off.

100000

Task Size.

FIGURE 14

Finally, the curve denoting real parallel execution time is obtained by multiplying

both the ideal parallel execution time by the overhead factor. In the graph it appears

as the sum of the other two (dots because of the log scaling of the axes. Some
important points arise from observing the graph. Firstly, the presence of overheads, be

they communications or otherwise, is to be expected in any pratical system and their

presence makes ideal speedup impossible. Secondly, and more importantly, the real

parallel execution time is minimised at an optimal intermediate granularity. The

partitioning problem can be defined appropriately as the problem of finding the

42

corresponding optimal intermediate partition.

The graph illustrates the trade off between parallelism and overtiead. However, the

continuous variation in task size is a very simplistic view of partitioned software

systems. Real software systems are discrete structures. It may not be possible (and
generally is not possible) to partition real parallel programmes into subtasks of equal
run-times. Further, the overhead incurred by a subtask depends on the partition itself.
Thus finding the optimal partition of a real software system is a much harder problem
than finding the minimum of the appropriate curve in the graph of figure 14. In fact
the problem is similar to the scheduling problem in that it is NP-complete in the
strong sense. It is not within the scope of the thesis to investigate further the
algorithms which attempt to solve either this problem or its intrinsically related
problem of scheduling for more practical software systems.

Chapter 3: algorithmic decomposition & parallelism

43

CHAPTER 4

Parallel Implementation of an Explicit
Self Tuning Regulator

4.1 ¡NTOQDUCTIQN
I

Like many other types of controllers the Self Tuning Regulator (STR) requires
many operations to be performed within each sample period. As more complex control
theory concepts are developed controllers become more taxing on the hardware used to
implement them. Improved performance margins in microprocessors go some way in
alleviating the problem but a more feasible solution seems to be the combination of
processors in parallel/pipeline configurations to give a more powerful multiprocessing
entity. An algorithm which contains operations which can be calculated independent of
one another is suitable for transposing onto a parallel architecture. An algorithm which

is not inherently parallel is nevertheless suitable for pipelining provided it can be
fragmented into appropriate segments. The STR falls into the latter category.

At a very coarse level an explicit STR can be broken down into three separate
processes:- process identification, controller parameter evaluation, and control signal
calculation. If each of these processes were to form a pipeline stage (as described in
section 4.2) then the result would be a 3 stage pipeline. Unfortunately the three
processes are of unequal run times, thus if a processor were devoted to each stage
then two processors would spend considerable time in an idle state awaiting the longer
process to finish. Therefore, consideration must be given to ’time balancing’ each stage
and in choosing the optimum number of stages.

Furthermore, increasing the number of stages will increase the maximum speed of
operation of the algorithm. This can be achieved by breaking down each stage into
smaller ’substages’ or by simply dividing the workload of one stage among several
smaller stages. In considering these aspects it is concluded that a balance must be
sought' between maximising the number of pipeline stages, equalising run-times and
minimising throughput delay of pipeline.

4.2 THE PIPELINING TECHNIQUE

It is appropriate at this point to give a short introduction to pipelining,
outstanding from the description given in chapter 2, before proceeding to describe how

the same is applied to the explicit Self Tuning Regulator. The linear pipeline structure,

44

which was one of the earliest parallel architectures, can be represented schematically as
in Figure 7 (see chapter 2). As can be seen in the diagram, information enters the

pipeline on the extreme left and passes through several processors (or ’processing
stages’ as they are called) and eventually the processed information leaves the pipeline
on the extreme right The pipeline was developed in an attempt to overcome hardware
redundancy present in conventional sequential circuitry. In fact, on average only 10%
of circuitry is active at any given time in an non-optimised digital computer. The idea
behind the pipeline is to split up the function to be executed into a number of
sub-functions. Each of these sub-functions constitutes a pipeline ’stage’. A stage is an
independent processing unit and several of these in sequence constitute a pipeline.
Each stage receives data from its predecessor, processes it and passes the result to its
successor. Thus in this fashion all stages can be active simultaneously. Furthermore the
simpler the operations at each stage the faster the rate at which data can be clocked
through the pipeline. The time interval between two consecutive outputs from the
pipeline is equal to the time of the slowest stage regardless of how fast the other
stages may be. Thus, an attempt should be made when constructing a pipeline to
evenly distribute the workload between the stages. Failing this, some stages will spend

time in an idle state, awaiting slower stages to complete. This redundancy would

defeat the purpose of the pipeline.

4.3 PIPELINING OF A SELF TUNING REGULATOR

The report considers the effects and both advantages and disadvantages of
applying a pipelining technique to an explicit ’Self Tuning Regulator' (STR). The
pipeline is simulated on a 10 MHz intel 80286 microprocessor and any timing
measurements presented are based on this microprocessor and should accordingly be
interpreted as relative quantities. The objective of the simulation is demonstrate the
possible speedups which may be attained through pipelining. If the same scheme was
implemented on a faster pipeline, using more powerful microprocessors, the speedup
results would be approximately be the same, as the number of FLOPs would be
unchanged. The STR used throughout is a software controller coded in the C language,
based on an algorithm presented in by Astrom and Wittenmaik[68],

4.3.1 The Self Tuning Regulator

The STR consists basically of two loops. The most inner of the two loops
consists of the process to be controlled and an ordinary linear-feedback regulator. The

outer loop on the other hand contains a parameter estimator and a design calculator

which determine the parameters of the regulator. The whole system is recursive and
parameter estimates of the system are continuously updated. In this way the whole

Chapter 4: parallel implementation of a STR

45

system can adapt to changes in process parameters and tune itself to accommodate
these changes to avoid degradation of performance. There are several techniques
available to implement the identification routine including Kalman filtering, least
squares, extended or recursive least squares or stochastic approximation. With regard to
the design technique the range is even broader and virtually any design method can be

implemented. The STR, used in the following pipeline application, uses recursive least
squares and pole placement for the identification routine and design methodology
respectively.

Figure IS shows the block structure of a self tuning regulator.

Chapter 4: parallel implementation c f a STR

Block Diagram of a Self Tuning Regulator.

FIGURE 15

The structure of the software simulation of the STR can be simplified as follows.
Note that a function is represented by the syntax FUNCTION(), which is based on the
C function declaration and evocation protocol. The functions given are generalised to
represented the main processes of the software model of the explict STR;

fn-STRQ

{
RLSO;
DIOPHO;
AD-CTRL();

}

Basically there are three main functions: the recursive least squares routine (RLS),
the solution of the diophantine equation (DIOPH) for solving the controller parameters

46

and the calculation of the control signal (AD-CTRL). The STR recursive ’cycle’
begins by identifying the process by performing a RLS on input and output data. The

process parameters are then used to determine the controller parameters in order to
achieve the desired performance. Whilst determining the controller parameters several
equations arise among which is a diophantine equation[68]. This diophantine equation
is solved in the call to the DIOPH function Finally, once the process has been
identified and the regulator parameters determined a control signal is calculated and
applied to the process, and then the cycle begins once more.

To summarise, the parameters of the process to be controlled are firstly identified,
then knowing these parameters the regulator parameters are determined. Finally using
the regulator a control signal is generated and applied to the process. Intuitively it can
be noticed how sequential the Self Tuning Regulator is, which makes it very
unsuitable for strictly parallel implementations.

4.3.2 Mapping the Self Tuning Regulator onto a Pipeline Structure

The main principle of pipelining is to allow processes to execute concurrently
even if the processes cannot exist strictly in parallel. This is illustrated graphically
below in Figure 16 for the case of a 3-stage pipeline ;

As can be seen cycle one begins at time tl, cycle two at time t2 and cycle 3 at
time t3. When cycle 4 commences (RLS iodentification stage), at time t4, it requires

that the most recent input & output data be supplied so as to give the latest system
identification. Examining the graph shows that the most recent cycle to have completed
when cycle 4 commences is cycle 1. The output from cycle 1 serves as the latest

information for the RLS identification routine of cycle 4. Compare this to the
unpipelined case where there would be no overlap of the cycles and the last output
would have been from the previous cycle, cycle 3. Thus the information used in the
RLS routine comes from a cycle which began two three cycles previously. This can
be conceptualised as a delay of 2 sampled periods in the information entering the RLS
routine, even though the information being fed to the RLS routine is never actually
delayed, but it is delayed relative to the unpipelined case when you consider that in

the unpipelined instance the identification routine is fed the information directly from
the previous cycle. Conclusively for an n-stage pipeline there is a relative delay of
n-1 sample periods . The graph above is very simplistic and as will be shown later a
pipeline with many more stages can be achieved by subdividing each of the three
processes shown into smaller faster stages.

Chapter 4: parallel implementation of a STR

47

Chapter 4: parallel implementation of a STR

g3s
¡s
ss
rO

RLS DIOPH AD-CTRL

RLS DIOPH

RLS

AD-CTRL

DIOPH AD-CTRL

RLS

tl 12 ta u Activation
Time

N S . RLS : Recursive Least Squares routine. (Stage 1)

DIOPH : Solution to Diaphantine tqn routine. (Stage 2)

AD-CTRL : Calculation o f control signal routine. (Stage 3)

These three functions executed in sequence constitute one 'cycle' o f the Self Tuning Regulator. The

graph shows where in time each cycle begins. When the RLS stage o f the first cycle is completed (time = t2)

information is passed to stage 2 and at the same instant the RLS stage o f cycle 2 is initiated, and similarly

when the RLS o f cycle 2 completes (lime * t3) the RLS stage o f cycle 3 begins. In this fashion it can be seen

how stage 1 is continuously active i f all three stages m e o f equal execution time. Likewise the other two stages

are also continuously active

FIGURE 16

Simulation of an ’n’ stage pipeline can be achieved by introducing an n-1 sample
period delay into the Recursive Least Squares (RLS) routine of an unpipelined STR. A
collection of graphs at the end of the report show the resulting effect of multi-stage
pipelining on controller performance and parameter convergence. The system remains
stable for a 5-stage pipeline (6-stage and greater pipelines were not examined) and
parameter convergence remains largely unaffected.

4.3.3 Timing of Algorithmic Subtasks

Initially difficulty was experienced in attempting to time the main functions within

the programme. Repetitive measurements proved to be inconsistent even for apparently
’constant-calculation’ functions. The main reasons for this seem to be periodic delays
due to interrupts and i/o delays. These obstacles were overcome by connecting a

48

high-speed digital oscilloscope to one of the PC’s o/p ports (parallel port). Before
entering the function to be timed a data line would be set high and on completion of
this function this same data line would then be set low. Within TurboC this may be

done as follows;

outpoitb(address, data);

Where address of parallel port = 0x378 and data was either 0x00 for a low and
Oxff for a high. Also by using an address of 0x21 the internal interrupts could be

disabled as required.

As the main programme looped, the oscilloscope recorded a periodic pulse or
asymeterical square wave and measurement of this pulse was quite straightforward on
the Hewlett Packard 54501A 100 MHz oscilloscope. The measurements were based on
averages over a thousand cycles, to reduce the eventuality of periodic error. The four
main functions, as described in section 3.1, yielded times given table 1.

As can be seen from the table 1 there is quite a large diversity in run times

thus rendering the allocation of a stage per function as impractical. A more feasible
solution is to break down the larger functions into more reasonable units.

Chapter 4: parallel implementation of a STR

[mS]

Table showing the execution times for
the three mam functions in the STR

N £ . The DIOPH junction is broken into two functions, Dicphantine and Gauss-el. The Gausz-tl (gauss ion

elimination) Junction is treated separately because o f i ts relatively long run time.

TABLE 1

The Recursive Least Squares (RLS) routine was broken down in the software

simulation as follows;

fn js ()

{
LOOP1

System Order

1 2 3

ZO Ad-Ctrl : 0jj328xj:| ::xl;050
G RLS : 1.450 x -4-120 x;.7.floo

Diophantine 0.362 0 580
Gauss-El. : 1*270 . : 3.000:>:;g: :£:S;380

Total u;.7fl

Total Prog. m w sm m : 1740

49

Chapter 4: parallel implementation of a STR

L00P2
fnjsl f) ;
fnjs2();

END LOOP2
END LOOP1

}

Where fn_ls20 is given as; I

fn_ls2()

{
fn_ls3();
fn_ls4();
fn_ls5();
fnjs6();

}

The six processes, fn_lsl to fh_ls6, which represent segments of coding n the
algorithm, are each designated at least one stage of the pipeline. Those that appear in
loops are given the loop number of stages. If a function appears in a loop of order n
then n identical stages which perform that function will appear in consecutive order

in the pipeline. The 6 constituent processes have time performances shown in the table

below;

[mS]

Table of execution times for constituent
functions of the Recursive Least Squares
Routine

TABLE 2

The STR controller is configured to control and recursively identify a real system

50

System Order 1 2 3

fn-lsl 0.500 0.688 ::0*878

fn-ls2 iJiio : 3.667 7.612

fn-ls3 0-120 ' . 0.291 0.473

fn-ls4 0.399 0.393 j&g ix.0.403

fn-ls5 ; 0.222: 0.609 x - V ::0.?3i

fn-ls6 ;0^97

represented by either a first, second or third order model. The longest execution time
for a function , in the RLS routine, when controlling a third order system is fn_ls6 at
0.997 mS (excluding fii_ls2 which is a dummy function containing 4 other functions).
This is a dramatic improvement on the pipelining of the three main functions with

previous stage times of up to 7.8 [mS].

Chapter 4: parallel implementation of a STR

The Ad Ctrl function which takes 1.05 [mS] is also a candidate for

decomposition so as to bring it into line with the longest stage of the RLS routine.
The generalised C encoding of the Ad_Ctri is as follows;

Ad_Ctrl()
{

switch(choice)
case 1: fh-adl()

fn-updatel();
case 2: switch(aonec)

{
case 0: fn-ad2();

fii-update2();
case 1: fn-ad3();

fn-update3();
}

case 3: switch(aonec3)
{

case 1: fn-ad4();
fn-update4();

case 2: fn-ad5();
fn-update5();

case 3: fn-ad6();
fn-update6();

case 4: fn-ad7();
fn-update7();

}
}

System Order : 1 2 3

fn-ad (average)

fn-update (average)

0.183 0.360 0.809

0.15+ 0277 0.247

Table showing the average execution times
for the functions fn-ad it fn-update.

TABLE 3

51

Chapter 4: parallel implementation of a STR

Only two functions arc ever called in a call to AD-CTRL. The average timing
measurements for these sub-functions arc given in Table 3.

The longest run time of 0.809 [mS] is less than that for the longest RLS
decomposed function, thus the longest stage length/minimum sample time still remains
at 0.997 [mS]. The diophantine routine is less than this value thus averting any need
to break it down further. The Gaussian Elimination function, Gauss-El, however is far
too long at 5.36 [mS] for third order process control thus necessitating some degree of
decomposition. This function is broken down as follows;

ga-el()
{

LOOPl
fn-gal();
fn-ga2();

LOOP2
fn-ga3();

end LOOP2
end LOOPl

fn-ga4():
}

The tabulated results are given below and again no function exceeds the
maximum stage length in the RLS routine.

System Order 1 2 3

fn-gal 0.156 0.280: 0.432

fn-ga2 Dials. 0.408 ;:0.500

fn-ga3 0.488 0.676 0:760

fn-ga4 0.260 •:':i0;520::: 0.764

Table showing the execution times
the constituent functions of the
Gaussian elimination routine.

TABLE 4

4.3.4 Speedup Results and Performance Analysis

The maximum stage lengths for each process order controller are summarised in

table 5 and the respective speed-ups over the unpipelined version are also given.

52

For control of a third order system the speedup is more significant than for
lower orders. This is due to the fact that as the order is decreased the constant
overheads become more significant as the order-dependent calculations become simpler
(i.e smaller loops, smaller arrays, simpler matrices ... etc.). Furthermore as the order is
increased so too is the number of stages. Most stages are contained within order
dependent loops and some are contained in nested order dependent loops whereby an
increase to (n+l)th order from nth order would result in n+1 extra stages per loop.
This in turn would increase the throughput delay of the pipeline.

Chapter 4: parallel implementation of a STR

fn-main
System
Order

Longest
Pipeline Stage

Speedup
Factor

17.8 mS 3 fn-ls6 9 0.997 mS 17.85 :

9.68 mS 2 fn-lsl 9 0.688 mS : : 14.07

3.90 mS 1 fn-lsl 9 0.500 mS raoo

Table showing the maximum speedups possible for
1st, 2nd and 3rd order systems, by the pipelining
technique.

NJ}. Speedup = (fh-mainy (Longest Stage)

Thu is based on the assumption that the time between two consecutive control signals from the pipelined

STR is equal lo die ¡lowest stage o f tie pipeline. Thus tp eed if if the lime between control signals in the

unpipelined STR (Full STR Cycle) divided by the longest pipeline stage.

TABLE 5.

The graph section also contains ’computation time versus system order’ graphs for
the Least squares routine and the Gaussian elimination routine. As can be seen the
time of execution increases exponentially with order. To determine the relationship
between order and time a line can be fitted to die graph of ln(Time) Vs. Order. This
technique yields the following results;

For RLS routine ;

Execution Time = Exp(0.841x0rder - 0.401)

For Gauss Elimination ;

Execution Time = Exp(0.719x0rder + 0.434)

53

Chapter 4: parallel implementation of a STR

4.4 SUMMARY

The last section presented encouraging figures for the increase in the speed of the
pipelined controller execution time. However, these figures represent absolute and
theoretically achievable speedups. In an actual hardware implementation there are
several aspects to be considered. There would be overheads associated with the passing
of infonnation from processor to processor and the delay in sending such information.
Additionally, because of the high degree of decomposition of the main functions the
pipeline would have many stages and the actual number of stages would vary
depending on the order of the system to be controlled. This would make the devotion
of one processor to each stage quite unfeasible. Thus, there would have to be
time-sharing on most processors slowing down the pipeline even further. Nevertheless,
considering the system remains stable any speedup, provided it is achievable at an

acceptable cost is to be welcomed.

By examining the sub-functions of the main processes it was possible to devise a
five-stage pipeline with a speedup of 4.24, due to the execution time of the slowest
stage being 4.03 milliseconds. This compares with a maximum figure of 5.0 for the
theoretical speedup of a five-stage pipeline with each stage receiving equally balanced
work-loads. The most important initial concern when implementing a pipeline is to
ensure that the controller remains stable despite the imposition of parallelism upon the

calculation sequence. In appendix C, graphs 4.1 to 4.6 show how each of the
parameters, estimated by the recursive least squares to model the 3rd order process
being controlled, converges. All paramters converge quite rapidly and all have a
maximum error which occurs in the first few cycles of the STR pipeline. It is
necessary that the parameters behave in this manner, to avoid sporadic errors after the
pipeline completes its first few initial starup cycles. Graph 4.7 shows the response of
the STR to a step input The control signal is also shown. The control signal doesn’t
behave in an erratic or erroneous manner and the system output converges quickly and
accurately.

From a mathematical viewpoint there are a few points to consider with regard to
pipelines in general. The time of the slowest function within the programme will
naturally constitute the longest stage, but it will also be equal to the time delay of
the pipeline (i.e. the time between two consecutive pipeline outputs). Therefore the
theoretical overall speedup will be expressed as a ratio of total unpipelined execution

time to run-time of the slowest stage of the pipeline. Furthermore the recursive least
squares routine will always begin at the start of a sample period and not when the

previous pipeline stage completes. The delay introduced by the pipeline will always be
a unit number of sample periods therefore. Finally, if the algorithm decomposes into

54

say, ten subtasks, for example it is not sufficient (although it is a requirement) to say
that all ten subtasks can execute in sequence in less than ten sample periods. It must

also be shown that each subtask individually takes less than one sample period to

execute. Consequentially the minimum sample period that can be chosen in the control
process is equal to the time of the slowest stage.

In conclusion it can be said that a reduction in sample period for the system
makes it possible for the real time execution of algorithms which would otherwise be
confined to the realms of control textbooks.

Chapter 4: parallel implementation of a STR

55

CHAPTER 5

Development of a Parallel Simulator
for the PUMA 560 Robot Arm

5.1 THE PUMA 560 ROBOT MODEL

This chapter initially develops a 3rd order dynamic model for the first three
joints of a PUMA 560 robot The PUMA 560 manipulator aim, which is an elbow

type industrial robot, is illustrated in Figure 17. The manipulator has six degrees of
freedom. The positions of the first three links determine the end-effector position,

while the last three links specify tool orientation. For convenience the first three joints

are referred to as the waist, shoulder and elbow joints respectively and the final three
joints collectively form the wrist and gripper. In order to specify tool position and

orientation, knowledge of the link sizes and joint angles is required. In the geometric
sense, a link may be considered to be a rigid structure, supporting one or two joint
axes. When specifying the link dimensions it is therefore necessary to give the
relationship between the joint axes. There are two groups of manipulator joint: revolute
joints and prismatic joints. The PUMA 560 joints are of the former type. Thus, any
joint can be fully described by two dimensions: Link length and Link twist (or
angle) [70]. Further, any link with the exception of the end links, will have two
common normals associated with i t One for the lower joint and one for the higher

link. The distance along the axis between the two normals is called the distance
between the links, The angle between the links is measured in a plane normal to
the axis. To summarise, the four parameters associated with a link are:
(i). Link length, shortest distance between axes,
(ii). Link twist, angle between axis measured in plane perpendicular to a common

normal,
(iii). Distance between two links, distance measured along axis,

and,
(iv). Angle between links, angle measured between common normal on plane
perpendicular to axis.

Specification of the four values above for each of the six manipulator links
allows one to determine the link and end-effector positions. This, however, would

prove to be a tedious task. To simplify the procedure it is convenient to assign a

coordinate frame to each link, and then to form a set of homogeneous transformations

which describe the relative position and orientation of each link to that of the previous

one [70,71].

56

Chapter 5: parallel simulation o f the puma 560 arm

FIGURE 17

The initial task is that of chosing a coordinate frame for each joint and
specifying origins and axes. The scheme adopted is that presented by Denivit &
Hartenburg[72]. The origin of each coordinate frame for a link n is chosen as the
intersection of the common normal between the axes of joints n and n+1, and the

axis of the (n+l)th joint The axis selection technique suggested by Paul[70] is also
adopted. It designates the z axis of the cartesian frame of joint n to be the axis of
rotation of joint n. The x axis is specified as the normal directed from joint n
towards joint n+1. Finally, the y axis completes the conventional orthogonal set of
right handed axes.

As stated, knowledge of the angular position of the first three links gives
end-effector position, while tool orientation is determined by the wrist joints. The
positioning and path tracking problem is dominated by the dynamics of these three
links. Normally, when tracking a given path, the gripper and payload are treated as a

lumped mass on link three. This does not introduce significant errors since the last

three links are dimensionally small and the payload travels with the third link. It is

sufficient to model the manipulator in space by modeling the dynamics of the initial

three links of the aim[73].

Once each link is given a specified coordinate frame the task reduces to

57

developing an interrelationship scheme between joints. This makes it possible to
ascertain the position of each manipulator link at any time. One method of achieving
this is to create homogeneous transformations which are conveniently performed using
matrix algebra. In this context, the transformation matrices are known as T matrices
(e R4*4). These are chosen to transform the origin of a reference coordinate frame to
the origin of the present frame under consideration, as suggested by Denivit &
Hartenburg[72]. Using this method, the effect on the end joint of movement of the
first joint can be calculated by multiplying the intermediate joint to joint transformation

Chapter 5: parallel simulation o f the puma 560 am

By inspection the model can be decomposed into subtasks, some of which can be
executed independently or in parallel. The manner of decomposition determines whether
these concurrent subtasks are classified as fine grain parallellism or coarse/medium
grain parallelism[69]. The scheme chosen involves exploiting both medium grain and
coarse grain parallelism, in an attempt to develop a parallel simulator which will
achieve significant speedup over the standard sequential model. Before specifying
parallelism in the PUMA 560 manipulator dynamics the 3rd order model must first be

derived.

5.1.1 Thud Order Dynamical Equations

matrices.

11

Vi

(Oj = motor p o s i t i o n
Lj = armature inductance

Rj = armature r e s i s t a n c e
i j = armature curren t
. ekj = torque constantk | = vo l tage constan t

Vj = armature vo l tage

FIGURE 18

58

Chapter 5: parallel simulation o f the puma 560 arm

The third order model for the PUMA 560 manipulator is an extension of the

second order model to incorporate the actuator dynamics and friction forces. Quite
often the friction forces in manipulators are significant, and in larger manipulators they
can account for up to 25% of the required torque for motion[71]. Friction in the
PUMA 560 is modeled as Coulomb friction. Actuation of the joints is achieved by
means of permanent magnet d.c. servomotors. There are two types of motor employed
in the robot, 100 Watt motors for the first three links and 50 Watt motors for each
of the three wrist joints. Only the larger motors need to be analysed. Figure 18 shows
a simple equivalent circuit of such a d.c. servomotor.

The equations modeling this circuit are attained relatively easily. Equation 14
expresses the input voltage, Vi, as a function of the armature current, armature
resistance, armature inductance and motor angular position.

V | = R j . / j 4* L j . d t j + k j . dt&j
d t dt

□ Eqn 14.

Further, the torque produced by a dc motor is proportional to the armature
current of the dc motor

Fi = M . i i
□ Eqn 15.

where Fj is the torque experienced at joint i.

The joint position be can related to the motor position by the following equation:

<0i = Nj.q i
□ Eqn 16.

where Nj is the gearing ratio of joint i.

By substitution of equations 15 and 16 into equation 14 the following relationship
is derived:

Vj = k f . N j . ^ i + (RjF j + LpiJEi) /kJ
□ Eqn 17.

Equation 17 expresses a relationship between the input voltage to the robot joint

motors and the resulting torque and torque derivative. This equation is not sufficient

on its own to model the robot manipulator. Every sample period it is required to

59

evaluatethe torque and the torque derivative, so an equation representing the
manipulator should incorporate these additional calculations. There are several schemes
to do this, the most common being the Euler-Lagrangian (E-L) technique. For a
open-loop kinematic chain type manipulator with n degrees of freedom the

Euler-Lagrangian is formulated as follows:

n n n
F | = X j q j + I a i 4 i + E E C j j j^q j q^ + Gj + Hjqj

j= l j= l k=l

□ Eqn 18.

where,
Qj = position of joint i,
Fj = torque acting on joint i,
Iai = actuator inertia of joint i,
Djj = effective coupling of joint i,
Dÿ = coupling inertia on i joint due to joint j,
Cÿj = centripetal force on i due to joint j,

Cjjk = coriolis force on joint i due to joints j and k,
Gj = gravity loading of joint i,
Hj = coefficient of friction for joint i.

Bejczy, [75], has defined the inertial, centripetal and gravity terms as follows,
using the trigonometric abbreviations given:

Sj = Sin(qj),

Cj = Cos(qj),
Sij = Sin(qj + qj),

Cÿ = Cos(qi + qp.

D ,, = mik 2,yy

+ m2(k 22xxs 2 2 + k 22yyC22 + a 22C22 + 2 a 2x 2C22) +
“ 3[(k 23XXS22 3 + k 23ZZC223 + d 23 + a 2 2C2 2 + a 23C223

+ 2 a 2a 3C2C23 + 2 x 3(a 2C2C23 + 3 3C223) +

2y 3d 3 + 2z 3(a 3C23S 23 + â 2C2S 23)]
□ Eqn 19.

D , , = *2*2Z2S 2 +

Chapter 5: parallel simulation of the puma 560 arm

60

m3 t (d 3Xg + a 3y 3 + a 3d 3) S 23 +

3 a 2^3)S2 ■ d 3ZgC23]

Chapter 5: parallel simulation of the puma 560 arm

^i3 ~ m3 tx 3d3 + a 3y 3 + a 3d 3) S 2 3 - z 3d 3C 23]

D2 2 = m2 (k 2 2ZZ + a2 2 + 2 a 2x 2) +

m3 [(2 a 2a 3 + 2 a 2x 3)C3 + 2 a 2z 2S 3 +

k 23yy a 2 2 a ̂3 2a 3x 3]

^23 ~ ®3t(a 2X3 a 2a 3) "̂3 ®2^3^3
233x 3 + a 23 + k 23yy]

^33 — m3(k 23yy a 2 3 2a 3x 3)

^112 = m2(k 22xx _ ^ 22yy ‘ fl22 * 2 a 2x 2)C2S2 +
® 3 f k 2 3XX 2 ̂2 + ^3^3 * 2S2S 3S 23) +
k 2 3ZZ (2 S 2S 3S 2 3 ■ -̂2 ^ 2 ' ^ 3^ 3) +
x 3(_2 a 2C2S 23 + 4 a 3S 2S 3S 23 +

a 2̂ s “ 2 a 3C2S 2 - 2 a 3C3S 3) +

Z3(a 2^2C23 " a 2^2^23 2 a 3C223 - 3 3) +
a 2a 3^3 * 2 a 2a 3C2S 23 - a 22C2S 2 +
2 a 23S 2S 3S 23 - a 23(C2S 2 + C3S 3)]

□ Eqn 20.

□ Eqn 21.

□ Eqn 22.

□ Eqn 23.

□ Eqn 24.

□ Eqn 25.

^113 = m3 t ^ 23xx(^2^2 + ^3^3 ~ 2S 2S 3S 23) +
k 23z z (2 S 2S 3S 23 - C2S 2 - S 3C3) +

x s (4 a 3S 2S 3S 23 - 2 a 3C2S 3 - 2 a 3C3S 3
a 2C2S 23) + z 3(2 a 3C223 + a 2C2C2 3 ■ a 3) +

2 a 2 3S 2S 3S 2 3 - a 2a 3C 2S 23 - a 2 3C 2S 2 - a 2 3C 3S 3]

□ Eqn 26.

^•122 = m2a 2Z2^2 +

m3 [d 3Z 3^ 2 3 + (d 3x 3 + a 3y 3 + a 3d 3) C 2 3]

□ Eqn 27.

61

Chapter 5: parallel simulation o f the puma 560 arm

^ 1 2 3 = + (d g X g + S g J ^ g + U g d g ^ J g]

0 1s a = m3 [d 3z 3S23 + (dgXg + a 3y 3 + a 3d 3)C23]

C213 = 0 (because o f genera l PUMA geometry)

0 2 2 3 = ® 3 ̂C " ̂ 2X 3 ” ^ 2 ^3 ^ 3 ^ 2Z3^ 3-1

^ 2 3 3 = ®3 [(* ® 2 * 3 _ ̂2 ̂3) ̂ 3 ®2Z3^ 3 ^

Gt = 0 (because o f genera l PUMA 560 geometry)

G2 = m2g (x 2 + a 2)C2 -

m3g (x 3C23 + z 3S 23 + a 3C23 + a 2C2)

G3 — -m3g (x 3C2 3 + z 3S 2 3 + **3^ 23)

By Newton’s second law of physics, the following equalities hold:

Ci jk " Cikj
Cijk = -Ckj i fo r i , k * j
Cij j = 0 fo r i^ j

The equalities of equation 36 give rise to the following relationships:

d 2 , = D 1 2 . D 1 3 — ^31 ’ ® 3 2 “ ^ 2 3 ’

^1 11 = c = c = 0 c2 2 2 3 3 3 ' 12 1 — c 1 12 ’
c 13 1 = c 113* c = c13 2 12 3 ’ r 2 2 1 = r 2 12 ’
c 2 3 1 = c 2 13’ c = c2 3 2 '-'2 2 3 ’ r 3 2 1 = c 3 1 2 ’
c'■'3 3 1 = r 3 13 ’ c = c3 3 2 '■'323* cv'2 11 = _c 1 12’

□ Eqn 28.

□ Eqn 29.

□ Eqn 30.

□ Eqn 31.

□ Eqn 32.

□ Eqn 33.

□ Eqn 34.

□ Eqn 35.

□ Eqn 36.

62

Chapter 5: parallel simulation o f the puma 560 arm

C = -C C = -C C' 'SII 113* 213’
C = C = C = 0'-'313 3 2 3 2 1 2 u

= -C3 2 2 '"22 3 *

□ Eqn 37.

The quantities xj, yj and zj are the Cartesian coordinates of the centre of mass
of joint i referenced to the base of the robot The quantity mj is the mass of joint i
and k 2̂ , k 2jyy and k 2^ are the radii of gyration for joint i. The quantities dj
and aj are the link twists and the link lengths. The values of these geometric and
inertial parameters which relate to the three primary joints of the PUMA 560 are
listed in Table 6 and Table 7. These are the estimates obtained by Bejczy [75]. He

arrived at these values by first taking detailed measurements of all link internal
components, then calculating their individual moments of inertia, and later getting the
cumulative effect using the Parallel Axis Theorem, Goldstein [76].

Centre of Mass

Xi

00.00 30.88

-32.89 0.00

-2.04 -1.37

*i

03.89

20.38

00.30

Mass

g.s2/cm

: 13.21

| | 22.80 &

05.11

Radius of Gyration (cm)

K.IXX ■yy
K 2

izz

1816.30 0151.93 1811.1

0595.70 1355.60 1513.60

0151.48 :0155.23 0020.70

TABLE 6

PUMA 560 Geometric Parameters

a2(cm) ;| d2(cm) I d3(cm)

43.18 | b i : 9 ï | I - i5 .05 i| 43.31

• . • •

■ 'y
1 !|||;::|p| f

T A B U E 7

It also possible to evaluate the first derivative with respect to time of the

expression for torque, in the normal way:

The q u a n t i t y Fj is the f i r s t d e r i v a t i v e o f the j o i n t torque
and is given by the equation overleaf:

63

3
Fj = £ (Djjq j + Djjqj) + IaiQi

j= l

Chapter 5: parallel simulation o f the puma 560 arm

3 3
+ I I (CijkQj qk + CijkQj qk + CijkQj qk)

j= l k=l

+ Gj + Hjqi

□ Eqn 38.
By substituting the expression for torque and torque derivative into equation 18 the

complete model can then be written as:

Vi - k i - N i .q i + R i .[Hjqj + G{

3 . . 3 3 . . t
+ X ®ijQi + 1 aiQi + 5) X C j j k q j q k] / k i

j= l j= l k=l

3
+ L i . [Gj + X (D j j q j + D i j q j) + la iQ i

j= l

3 3 t
+ X X(C j j kq j Qk + C-ijkQjQk + ^ijkQjQk) + ^iQi

j= lk=l

□ Eqn 39.
This is the third order model equation for each primary joint of the PUMA 560.

5.1.2 Matrix Representation o f Robot Manipulator Model

By observation, it can be seen that equation 39 may be rewritten in matrix form.
A method described by Anderson[77] suggests the following notation, which has been
adopted:

LMAT = Diagonal(L j /k * , L 2/k* , L 3/ k |)

RMAT = Diagonal(R , / ^ , R2/k* , R3/ k |)

HMAT = Diagonal(H , , H2, H3)

IMAT = Diagonal(I a i , I a 2 , I a 3)

KMAT = Di agonal (N ^ e , N2k<$, N3ke)

G = Gravity Vector(G , , G2, G3)

Chapter 5: parallel simulation o f the puma 560 arm

D = matrix which contains all the effective and coupling inertial terms,
D 1 = matrix which contains the centripetal and coriolis forces experienced by joint 1,
D 2 = matrix which contains the centripetal and coriolis forces experienced by joint 2,
D 3 = matrix which contains the centripetal and coriolis forces experienced by joint 3.

The simulator is defined as having three inputs (actuator voltages) and three
outputs types, namely joint accelerations, velocities and positions. The simulator is
designed to aid in the evaluation of possible control algorithms and to decide their
suitability for manipulator control. It is desired to have a simulator that will run as
closely as possible to real time.

Hence equation 39 can be rewritten as :

3 J

' q 7 '
= LMAT. [D + IMAT]. q8 +

. q 9 .

[LMAT.D + RMAT.(D + IMAT } + HMAT

[(q4. q5- q6)-D1 1 " q7 "
LMAT. (q4> q5* q6)-D2 ■ qe

(q4. q5> q6)-D3 j . q9 .

[LMAT.

+ LMAT.

(q?, qe, q9).D' (q4, qs, q6).D'
(q7, qs, q9) .D2 + RMAT. (q4, qs, qe).D2
(q7, qe, q9).D3 (q4, qs, qs).D3

' (q4. q5- qe) ? 1 ' r q4 1
(q4. q5> q 6)-P2 + RMAT.HMAT + KMATJ. q 5
(q4. q5- q s) - D3 . q 6 .

+ LMAT.G + RMAT.G

The following quantities are defined to simplify the model equation
□ Eqn 40a.

S = LMAT.[D + IMAT]

□ Eqn 40b.

65

E (q) =

Chapter 5: parallel simulation o f the puma 560 arm

LMAT.
(q4. q 5. q e) - D1
(q 4* q 5« q 6) - D2
(q 4- q 5* q 6) - D3

r > + HMAT

'I ' q 7 '
• q ej . q 9 .

(LMAT.

+ LMAT.

(q7, qe, q ^ . D 1 (q4, qs, q6) .D1
(q 7, qe, q<}).D2 + RMAT. (q4, qs, q6>.D2
(q 7, qe, qg) .D3 (q4, qs, qe) .D3

' (q4 . q 5 * q 6) - P 1 r q 4 1
(q 4 - q 5 * q 6) P2 + RMAT.HMAT + KMATJ. q 5
(q 4 . q 5- q 6)-D3 . q 6 .

+ LMAT.G + RMAT.G

Hence the model equation can be written as :

' v , ' q 7

v 2 II to q 8 + E (q)
. V 3 . . q 9 .

Rearranging one gets

’ q 7 r V, ■

=> q 8 = - n - ’ .ECq) + r 1. V2

. q 9 . . V 3 .

□ Eqn 40c.

□ Eqn 41.

□ Eqn 42.

The following relationships are a consequence of the definitions of joint position,
velocity and acceleration:

Hence the full ninth order comprehensive model for the first three joints of the

66

PUMA 560 can be written in state space format:

Chapter 5: parallel simulation o f the puma 560 arm

' qi ' q 4 " 0 0 0 '

q 2 q 5 0 0 0

4 3 q e 0 0 0

q 4 q 7 0 0 0

q 5 = q fl + 0 0 0

q 6 q 9 0 0 0

q 7

q e - r ’ .ECq) B ' 1

. q 9 .

□ Eqn 43.

The state vector for the model is q (e R9), where,

q = [qi q 2 q 3 q i qs q 6 qz qa qa

Note that E(q) is a vector whose elements are dependent on the vector q and
the manipulator parameters,

P(q) e R3.

This vector is complex and requires considerable processor time to compute at
each interval. It is very nonlinear, and the sine and cosine functions are required to
calculate the elements of the inertial, centripetal and coriolis matrices. Gravity terms
are also a nonlinear element

D is a matrix whose elements are dependent upon the vector q and the
manipulator parameters,

E € R3X 3.

This matrix is derived from two static matrices and D, the inertial matrix which

is dependent on the state vector.

67

Chapter 5: parallel simulation o f the puma 560 arm

S. 1.3 Computational Model for Computer simulation

Possessing a model for the PUMA 560 manipulator in matrix form is a vital step

towards computer simulation of the aim. There are several outstanding aspects yet to

be considered, however. The first concern in implementing the state description of

equation 43 is to find an adequate numerical integration technique which is suitable
for digital computer applications. A numerical integration method is used to calculate

the system states at time k, based on the values of states at time k-1, and the present
system inputs. The simplest technique is the Euler method. This approximates the
curve x = f(t) by a polygon whose slope, at each time tj- is given by the tangent to
the curve x = f(t) at tr. It is a first order method with a truncation error per step of
order h 2. Errors occur because the slope of f(t) changes over the interval h. A better
approximation of the slope, over the interval, will result in a closer estimate of the
function.

A much more accurate system is to implement fourth order Runge-Kutta
numerical integration. This method takes a weighted sum of slopes about each point,
denoted by t, and is a self-starting technique. The step size is easily changed between
iterations, and stability is one of its more desirable properties. Runge-Kutta integration
is also quite suited to systems with piece-wise constant inputs, as would be the case
under normal simulation conditions.

For the nth order equation written as :

x = f(x,t)

xj — fj(x,, Xj, ... Xp, t) l<i<n,

the formula for advancing the solution one step is :

xi,r+ 1 = xi,r + (kii + 2(kj2 + lq3) + kj4)/6

where,

xi,r+ 1 = xi0r+i) = xi0o + (r+1)h)

kii - hfi(xi r , X2,r> — >41,r» V)

ki 2 = WiOh.r + 0.5k,,, ... Xnr + 0.51^,, V+0 5)

ki 3 = Mi(x1fr + 0.5k:, 2, ... Xnjr + 0.5kfl 2, tr+o.s)

ki4 = hfj(xi r + 0.5k, 3, ... Xq j + O.Skng, tr+1)

68

Chapter 5: parallel simulation o f die puma 560 arm

For tiie nth order system with an external input :

x = f(x,u,t)

Xj fi(x i» x 2* *■" xn* 1̂» 0 1 1̂»

the Runge-Kutta algorithm must be altered.

If the system has an external input then the function must also be differentiated
with respect to the input When the input is held constant over the interval then the
partial derivatives with respect to the input will be zero giving no cause for adapting
the standard formula. Thus the input will be treated like a system state and the

following solution applies :

xj = fj(x,, x 2, ... xn, Uj, t) l<i<n,

the formula for advancing the solution one step is

xi,r+i = xi,r + fcii + 2 0q2 + kia) + ^ 4 V6

where,

xi,r+i = xi([r+1) = xi0o + (r+1)h)

kii = ^fi(x i,r’ x 2,r> — ^i,r’ ui,r> V)
ki2 = hfj(xi r + 0.5k, ,, ... Xqj + 0.51^,, Uj4-+0_5, tr+0.5)

k i3 = hfj(x, r + 0.5k, 2, ... + 0.5kjj2i Ui.r+o.s’ V+0.5)
ki4 = hfj(x,r + 0.5k, 3, ... xnj + 0.51̂ 3, uj)r+1) V+,)

This set of equations is implemented in the simulation of the PUMA 560 robot

arm.

A further concern in the simulator implementation is the matrix inversion
routine. Execution of equation 43 involves inverting the £ matrix (as defined in
equation 40b). It needs to be shown that the inversion will not fail due to

non-singularity. Recall that D is defined as;

= LMAT. [D + IMAT]

69

Where the matrices are defined as:

LMAT = Di agonal (L ^ k * , L 2/ k | , L 3/ k |)

IMAT = Diagonal(I a i , I a 2 , I a3)

Both LMAT AND IMAT are diagonal matrices, (e R3*3). The elements of LMAT
are quotients of the motor equivalent circuit parameters, i.e. armature inductance
divided by the torque constant for the motor. The first three motors of the PUMA
560 robot are, for practical purposes, identical and thus have identical equivalent
circuit parameters. Thus, in the case of the PUMA 560 arm LMAT is merely a
positively scaled version of the identity matrix. IMAT contains the reflected motor
inertias, which by definition are positive, and incidentally, due to manipulator design
are comparatively large. The remaining matrix for consideration is the D matrix. This

is defined previously as:

D(q) = [dy]
and is symmetric as determined by Bejczy[75] and is also positive definite:

i.e.

Chapter 5: parallel simulation o f the puma 560 arm

dij = djj for all i.j

dii > 0 for all i

dii2 < dydjj for all ij

Therefore it is deduced that I) is positive definite from the above definitions of
the constituent matrices LMAT, IMAT and D, over the space of operation defined by
the positive values of elements in the equivalent model of the joint motors. Hence, 2
is defined as being non-singular. One final consideration in the inversion routine is
from a practical point of view, rather than a theoretical one. Round-off errors must be
kept small during the inverse evaluation. In Gauss Jordan elimination round off errors
occur when there are large magnitude differences in the elements of matrix columns.

A technique to reduce this effect is known as partial pivoting, which involves taking
the largest element in the matrix column as the pivotal coefficient In this manner
round off was found to be satisfactory when testing matrix inverses with elements

differing in the order of 103 using double precision arithmetic. Single precision

reduced accuracy by about 15%.

The Runge Kutta integration technique described above combined with the robot

model in a state-space form that is decomposed into algebraic matrix operations

provide adequate mechanisms for computer simulation of the PUMA 560 manipulator,

as will be shown in this section.

70

Chapter S: parallel simulation of the puma 560 arm

Flowchart of PUMA 560 robot arm simulator

FIGURE 19

Figure 19 shows the flowchart of operations required to simulate the forward
dynamics of the manipulator, as derived in sections 5.1.1 and 5.1.2. The initial

variable and array assignment is the first phase followed by the reading of fixed robot

parameters, those estimated by bejczy[75], from data files. The evaluation of the

inertial, centripetal, coriolis and gravitational terms is accomplished by implementing

equations 19 to 37, using the read parameters. Before the algorithm enters the

71

simulation loop the constant matrices arc evaluated. These matrices include the
parameters which model the dc motors of the manipulator joints, and will be explained
more fully in this section when the software implementation is discussed. The next
step, the beginning of the simulator loop, is to implement the robot dynamical state
equations, and solve for the differential of the states in the ninth order model given
by equation 43.

Chapter 5: parallel simulation of the puma 560 arm

Declarations
: * parameter!

LMAT[3][3]
RMAT[3][3]
HMAT[3][3]
IMAT[3][3]
KMAT[3][3]

naU-matrixO u _ r

biUal

set-up-eonst-ma

Calculate Ki.i's

: Si:;:;

Calculate Ki,2s

lii gh-states{)

: CalculâtB K U ’fl :

high-st*W) :

Calculate Ki.4'*

iiigh-state#0 :::

t<stime
Check I

mm

3jMAT[3][3] = 0

t>=stlme

* User enters initial condition!
k parameters (angles, voltage ... etc.)

* Robot parameters set

* Coefficients defined

* Calculate Runge Kutta coefficents

* Calculate high states of system
i.e. acceleration derivatives

• Check for end of simulation time

Flowchart illustration of the software computational model for PUMA 560 simulation

FIGURE 20

The highest 3 states represent the derivatives of the accelerations of the three
joints and a fourth order Runge Kutta numerical integration technique is used to solve

for the acceleration values. When the states have been solved the current positions,

72

velocities and accelerations of the joints are updated. The following step is to check

whether the joint positions are within physical limits, and if not to adjust them
accordingly. Finally after these current values for position, velocity and acceleration

have been recorded a time check is made to see if the simulation time is complete. If

so the loop is terminated and the simulation ends, otherwise the cycle rebegins.

The software model for the simulator, which is derived from the computational
model of Figure 19, is illustrated in Figure 20. Functions are defined as independent
routines, containing one or more tasks (not necessarily an ADA-type task), which may
be evoked during the execution of the main functioa A function is defined by the
notation function(). The actual simulator was initially written in the C language for
validation using the TurboC editor (derived from ANSI Q[80], but the software model
will be explained from an objective viewpoint, not necessitating a knowledge of C.

As before the initial task is to create the arrays and variables necessary for
computation. The state vector is stored in XMAT[3][3] and this is initially assigned a
null value, by calling the function null-matrix(). The initialiseO routine prompts the
user for several items of information: the initial positions of the robot manipulator
joints, the sample period for simulation, the simulation duration time and finally the
voltages to be applied to the first three joints. Further to this it also evaluates the
robot parameters including the coriolis, centripetal, inertial and gravitational forces. The
equations used are those given by equations 19 to 37. Based on these parameters the
function set-up-const-matO constructs the constant system matrices, LMAT (inductance
matrix), RMAT (resistance matrix), HMAT (frictional matrix), IMAT (inertial matrix)

and KMAT (torque constant matrix). At this point it is possible to construct the state

space model for the system using the parameters and matrices calculated previously.
The loop in the simulation is based upon solving this state space description. Fourth
order Runge Kutta is used to determine the integral value of the differentiated states.
The function high-statesO, which is one of the most computationally intensive functions
in the programme is used to evaluate the ninth order state model, given in equation
43. This function can be decomposed into a series of sub-functions. Figure 21 is a
graphical illustration of the sequential flow of operations and sub-functions within the

function high-statesO.

There is considerable parallelism inherent in the computations of high-statesO,
which will be examined in Section 5.2.1 and quantified numerically in Section 5.5.

The sequential flow of processing will only be considered in this Section, however.

Looking at Figure 21 the first function to be executed is set-up-matO. This creates the

coriolis, centripetal and inertial matrices and evaluates their derivatives. The following

two functions are define-d-barQ and define-pbarO which are implementations of

Chapter 5: parallel simulation o f the puma 560 arm

73 i

Chapter 5: parallel simulation of the puma 560 arm

equations 40b and 40c respectively, which evaluate E and R(q).

The calculations involved in define-pbarO are substantially more significant than

those of define-b-barO- In order to evaluate the ninth order state space model of
equation 43 a matrix inversion must be performed on the quantity d-bar. This is
achieved by the routine mat-inverseO and die result is multiplied by pbar using

mat-by-vecO-

1 ----------- ►
set-up-tnal()

Given the k~l »tales set up
derivative» k coriolis/centripetal
matrices, & inertial matrix.

define-d-ba^)

define-pbarO

d-bar=UiAT.(dll+DiAT)

"=}LMAT.dl 1 +RMATdl 1 +(RMAT JMAT+HMAT)
+LMAT(ve])Dij(acc)+jmT^MAT+mT)
+LliAT(acc.Di) +RMAT(veLDi)
+LMAT(Telii)}(vel)+LMAT(g)+mT(g)

mat - in versed d - bar)

~ ~ ’ T------
mat-by-vec(}

 *£jJbar = d-bar^

pbar.dbar

get-YoltsQ

1
mat-by-vec() ---------

Retrieve user choice of joint voltages,

dbar.volta

Tector-add()

~ T

h
= dbar.(-pbar(X))+(dbar).V

Sequential flowchart of function high-states().

FIGURE 21

The system input of the state model is defined as the three joint voltages, and
therefore these must be retrieved from the stored user input This is achieved by the

simple routine get-voltsO- Following two elementary matrix/vector operations, multiply

and add, the derivatives of the three highest states are evaluated. On completion of

high-statesO these values are passed, using memory pointers[79], back into the main

74

function, mainO, whereupon they are used as inputs to the Runge Kutta routine. The
high-statesO function is called from the main function four times during the simulation
loop, due to the order of the numerical integration routine. Section 5.2 examines this

computational model for parallelism and qualifies the different granularity of parallelism
present. The proceeding Section, Section 5.3, looks at the software aspects of
parallelising the simulator, and develops coding in parallel C for the concurrent
processes. A hardware implementation scheme is proposed in Section 5.4 and this is
furthered by Section 5.5, the penultimate Section of this Chapter, which tackles the
numerical analysis of the parallel simulator performance, yielding indices such as
parallelism, bounded parallelism, processor efficiency and speedup. It also validates the
model by examining its performance under particular input tests and analysing the
output in graphical form.

5.2 PARALLELISM INHERENT IN COMPUTATIONAL MODEL

To examine for parallelism one must not merely examine the computational model
but must also look carefully at the actual software implementation of the simulator, so
that there is no dichotomy between the theoretical parallelism and that which is
practical within the software model. This Section examines the software resulting from
the model in matrix form, and attempts to quantify the parallelism of the calculations

objectively.

The flowchart of the sequential model, Figure 20, shows cleariy the looping
nature of the simulator with initial assignment overheads. This loop is traversed several
hundred times in a typical simulation run. The functions and calculations executed
within the loop are therefore the main target of parallel decomposition, and not the
initial matrix calculations and variable assignments, which are only performed once per
run. The two tasks of interest then, are the Runge Kutta routine and the high-statesO
function. Firstly, the Runge Kutta numerical integration routine is examined. For a
system with an external input, which is constant over the period of integration, the
following equations apply:

xj = fj(X|, Xj, ... xn , Uj, t) 1 <i<n,

the formula for advancing the solution one step is

xi,r+1 = xi,r + (ki, + 20q 2 + ki3) + ki<)/6

Chapter 5: parallel simulation o f the puma 560 arm

where,

xi,r+1 = xi(lr+ 1) = xi(to + (r+1)h>

75

kii = Wj(x,r, x2>r, ... ^ r, u jj, tf)
ki2 = hfj(x, r + 0.5k,, , ... Xjjr + 0-51^,, Uj,c+Cl 5, tr+0.5)

k j3 = hfj(xi r + 0.5k, 2, ... x^f + 0^1^2, Ujr+0-5. V+0.5)

ki 4 = Wi(x i,r + 0.5k, 3, ... + O^l^g, 11̂ + , , V+i)

These equations are highly sequential, in fact sequentiality is an integral part of
any numerical integration technique. In order to evaluate a state from its derivative its
previous value and the relevant four Runge Kutta parameters must be known. The
Runge Kutta technique doesn’t lend itself to parallelisation methods, but were it
neccessary (and it will seen not to be) it would be suitable for pipelining. It would

also be possible to implement die elementary coefficient evaluations on a systolic array
type architecture, such as a PACE chip[81,82,83]. The various parameters could be fed
in from previous calculations, the present coefficients calculated and these then used to
estimate the states for the state space model evaluation and finally fed into the
systolic array for the next sample time evaluations, and so on until completion of

simulation time. This would, however, be quite exorbitant when one considers the
added complexity in incorporating a systolic array into a coarse grain multiprocessor
system (used for executing the larger grain parallelism of the other functions), and that
the Runge Kutta evaluations only constitute 8% of the calculation overheads within the
simulator software loop, thus offering no more than an maximum increase of 0.08 to a
speedup of one, or 0.3 to a speedup of 2. It is concluded that the Runge Kutta
routine remains sequential as no significant benefit is gained in altering it otherwise.

One’s attention turns therefore to the only otter function in the loop;

high-statesO- The overall speedup depends on how successful the decomposition of this
function is. The sequential representation of this function is illustrated in block diagram
form in Figure 21, Section 5.1.2. As can be seen, it is comprised of eight
subfunctions, which generally differ considerably in their execution times. The first task
is the setting up of the time variant matrices, accomplished by a call to the function
set-up-matO- This function initially defines the coefficients used in the formulation of
thematrices, sets up parameter derivatives and evaluates the inertial coupling
parameters between the joints and stores them in the matrix, dll . The next step in the
sequential implementation is to evaluate the coriolis and centripetal forces on each of
the joints. It is possible to perform these calculations separately for each of the three
joints and their decoupled nature is justified through graphical analysis in Section 5.5.
Figure 22 shows these stages of operation in graphical form. Following the coriolis

and centripetal calculations the inertial coupling matrix derivative is evaluated. The

final task of function set-up-matO is to calculate and store the derivatives of the
coriolis and centripetal forces on the three joints. Once again three separate

Chapter 5: parallel simulation o f the puma 560 arm

76

Chapter 5: parallel simulation o f the puma 560 am

computational paths may be established, one for each joint.

Block diagram illustration of parallel form of function set-up-m at().
FIGURE 22

On completion of this function, whereupon die various forces which the joints are

subject to are stored in matrix form in memory, the control of programme flow is
returned to the function high-statesO- The reduction in run-time for the function
set-up-matO based on the separate evaluation of link forces is examined and quantified
in Section 5.5. The next two functions to be executed in the sequential flowchart of

high-statesO are define-d-barO and define-pbarO- Both these functions require common
variables but do not alter their respective values, thus can be run independently.
Unfortunately the run times of the two function are dramatically different, and in fact

executing both concurrently would give a moderate speedup of 1.08 over the sequential

execution, as illustrated in Section 5.5. It is possible however to decompose

define-pbarO into two concurrent processes. Recall the definition of E(q). (p-bar),

shown overleaf:

77

E (q) =

Chapter 5: parallel simulation o f the puma 560 arm

LMAT.

[LMAT.

LMAT.

) + RMAT.{ D + IMAT } + HMAT +

(q 4 > q 5 » q e) D’ ' q 7 '
(q 4 > q 5 > q 6) - D2 • q e +
(q 4 . q 5 - q 6) - D3 J . q 9 .

(q7, qe, q9).D1 ‘ (q*. qs, qe).D1
(q7, qe, q9).D2 + RMAT. (q̂ . qs, qe).D2
(q7, qe, q9).D3 (q*. qs, qe).D3

(q4. qs* qe)?1 1 r q41
(q4. qs» q6) P 2 + RMAT.HMAT + KMAT). q5
(q4> Qs. q6)-D3 . q6 .

cont ’d-*

+ LMAT.G + RMAT.G

□ Eqn 44.

From this definition the calculations can be partitioned into two equations with
the first equation defined as follows;

E i(q) =

[LMAT.D + RMAT. { D + IMAT } + HMAT +

LMAT.
(q 4 > q 5 . q e) - D1
(q 4 . q 5 - q 6) - D2
(q 4 . q 5 . q e) - D3

q 7
• q 8j . q 9 .

+ LMAT.G + RMAT.G

□ Eqn 45.

The second equation is defined to be EiCq) and is thus given as the remainder
of equation 44;

E i(q) =

(LMAT.

+ LMAT.

' (q7, qe, q O - D 1 (q4 , qs, qB).D’
(q 7, qe, q 9) . D 2 + RMAT. (q4, qs, qe) .D2
(q7, qe, q 9) . D 3 (q4 , qs, qe) .D3

' (q 4 . q s . q e) ? 1 '
(q 4 . q 5 . q e) - 1? 2 + RMAT.HMAT + KMATJ. q 5
(q 4 . q 5 . q 6) - D3 . q G .

□ Eqn 46.

The two resulting processes are notated as define-plbarO and define-p2bar0- By
executing these two processes in parallel along with define-d-bar() results in speedup

78

of almost 2.2 over the serial execution time, yielding a processor efficiency of more

than 0.7.

Chapter 5: parallel simulation o f the puma 560 arm

i
! Define cûüitaüU

B et u p <JeriT*U vet
: : óf : p ar àmètór»:ox^

 r ~— ^

evàlüate

X
Evaluate, joint if

.X Coriolia :vx
:::::::Cèntribel*l-

 I..........

Evaluate, joint 2;i

CoriolU xxx:x:x
•.:x:xC«n(rfMl$:^:x::

: d223J31)31 : x

Evaluate, joint 3;

x>x CorioliS

r n m m .

Evaluate ddl xx Evaluate dd2
»

Evaluate dd3

Evaluate Inertial matrix
deriv'aÜyë.ïdil ' ' ^xxxx:

Evaluate derivative of
corioHs & centripetal
forces for Joint 1. x

E v a lu a t e d e r iv a t iv e o f

corioHs k cen tri petal ’
forces for /oint 2,
jgg dd223[3][3] : ; ;x:

X
define-d-

Evaluate derivative of
corioUs k centripetal
force# for Joint 3, ;

define-pbarlO

mat-lnye«e{)

define-pi>ar2()

mat-by-vecO mat-by-yec

mat-l>y-vec()

I

I
vector-addf)

j '

:x^ectM'-*dd{)

T ~

Parallel Decomposition of function high-states().

FIGURE 23

79

Chapter 5: parallel simulation o f the puma 560 arm

The remaining matrix/vector operations are relatively fast, with the exception of

the inversion routine, which must be performed on I>. Examining equation 43, it is

observed that only the inverse of 12, and not I) itself, is required for state evaluation,
and therefore this may be evaluated in parallel with the evaluation of Ri(q) and
£i(q). This further increases speedup and efficiency since the processor previously
dedicated to solving £>, would have spent some time awaiting the other two
processors, assigned to R i and Ez, to finish and now has an additional task to occupy
some of its waiting time.

The get-voltsO, mat-by-vecO and vector-addO functions have reasonably short
execution times due to their simplicity, and have a limited effect on speedup and
efficiency, but nonetheless there is some scope to run them in parallel. This is
illustrated clearly in Figure 23 which displays the coarse grain parallelism inherent in

the high-statesO function.

The timing indices for high-statesO and its sub-functions are contained in section
5.5 and an evaluation of speedup and processor efficiency based on these values is
derived. It is worth noting at this stage that the maximum parallelism in the

parallelised simulator is in fact equal to the number of joints being simulated, three.
The objective is therefore to attempt to achieve speedup as close to this figure as
possible.

Another method of approach to implementing the simulator in parallel involves
the pipelining of the main simulation loop. The loop, as illustrated in Figure 20, calls
the function high-statesO four times and interspersed between these calls the Runge
Kutta numerical integration coefficients are evaluated. The pipeline would optimally
consist of four stages, each executing a high-statesO function and evaluating a set of
Runge Kutta coefficients. Because the input to the pipeline would be derived from the
previously generated pipeline output the initial four inputs would be estimates (because
for the first four sample periods the pipeline would have an inaccurate output), and
this would result in a transient error not found in the sequential implementation. This
is examined in more detail in Section 5.5. Further, because the maximum parallelism
in the overall simulator is three, if a pipeline were implemented then for optimal
speedup twelve processors would be necessary to achieve maximum speedup. As the
number of processors is reduced speedup is reduced, (and processor efficiency is

increased). This degradation in performance is chartered as a function of available
processors in Section 5.5.

80

Chapter 5: parallel simulation o f the puma 560 arm

5 3 PARALLEL C MODEL OF PARALLEL SIMULATOR

Both the sequential and parallel models of the PUMA 560 simulator were
extensively investigated in Sections 5.1 and 5.2. In this section Parallel C
[84,85.Appendix B] is introduced and a scheme to implement the simulator in this

language is developed.

Parallel C is, as one might expect, an extension of the C language to incorporate
facilities to specify concurrency in processes. It is designed specifically for
implementation on a target Transputer[86,..,89] system. A more commonly used
language on Transputer systems is the Occam [Appendix B] programming language,
developed by INMOS. It offers the user some powerful constructs. Occam also allows
for the channel data type and gives the user some control over the placement of
processes on different Transputers, but has several disadvantages. For one, it is a new
language, with a small existing base of source code and programming know-how.
Another problem is the static nature of the language: every variable must be allocated
at compile time and no recursion is allowed. Although some claim that any problem
can be solved without dynamic allocation of variables or the use of recursion, it is
often much easier and less complex to use recursion. Occam also has a smaller set of
statements and operators than many more popular languages. On the other hand, the
programming language C is well-known to software developers and is particularly
suited to systems programming and the handling of matrix and array operations. Vast
source code libraries for the C language can be obtained, and unlike Occam, a C
programme is dynamic. It provides for recursion and dynamic allocation of variables,
and has powerful expression syntax and range of statements. The only thing C lacks
is a dedicated set of statements and operators for the Transputer.

To obtain both the advantages of the C language and the Transputer architecture,
C had to be extended with some statements and datatypes dedicated to the Transputer.
These extensions had to fit in with the C programming language in a logical way. A
brief description of these extensions is perhaps appropriate at this point

The first of the extensions to the C language is the channel datatype, a new data
type providing synchronised communication between processes, and processors. A
programmer uses channel variables to transmit data between separate processes running
concurrently on the same Transputer as well as declaring the external links of each
Transputer. From the programmers point of view, process-to-process communication is

the same, regardless of whether the processes are on the same chip or not The

Transputer’s specialised hardware handles both types of message sending with equal

facility.

81

Using the keyword channel, one can declare a variable of the channel type;

channel chl,ch2,ch3,ch4;

Each channel variable declared in this way, will occupy one word in memory.
Sending a message with the aid of a channel variable is most simply performed with
an assignment operator. Channels can also be used in expressions, just like any other
data types. When channel variables are read they take their values from other

processes rather from memory.

Another language extension is the link interface. Every Transputer has four

high speed serial links, and each link is mapped to two internal channels. It is
interesting to note how the link interfaces are integrated into the Transputer instruction
set A link behaves like any other channel. There are only a few differences. A link

communicates only between processes on different Transputers, and are DMA based, so
they consume no processor time. The links are placed at fixed addresses. Using
pointers, it is not difficult to access the links from within a C programme. On
conventional machines, a common technique to access a memory mapped I/O register
is by creating a pointer to the type of the that register and initialising this pointer
with the address of that I/O register. The same technique can be used to access the

links on the Transputer:

channel *LinkOOut = LENKOUT;

This declaration defines a pointer to the channel LinkOOut This value stands for

the address of this link, address 0x80000000 on a T414 Transputer. To send
information across this link, the following expression suffices:

♦LinkOOut = value;

This expression sends the value value over the link.

The system timer is a reserved word in the C compiler that can be accessed if it
were an integer variable. The system clock, incremented every 64 microseconds Qow
priority process) or every microsecond (high priority process), is available as the timer

variable. For example:

mainO
{
.... int t;
t = timer;
}

Chapter 5: parallel simulation of the puma 560 arm

82 t

This would simply load the current system timer value into t. Another powerful
ability of the timer is to put a process to sleep for a determined amount of time.
This allows a time oriented application to put itself to sleep to free up cpu time, and
then reawaken itself to continue processing. A process puts itself to sleep, for example
for xxx clock cycles, by the following command:

timer += xxx;

An essential addition to the C language for parallélisation is the par construct
The par construct allows the programmer to instantiate several parallel processes within
the body of the programme. A par construct consists of the keyword par, followed by

a complex statement:

par{
statementl;

I* subprocess 1 */
statement;

/* subprocess 2 */

Chapter S: parallel simulation o f the puma 560 arm

statementn;
/* subprocess n*/
}

Statements nested within the par construct statement are executed in parallel. A
compiled par statement will continue to execute until all of these subprocesses have
terminated. On the Transputer, the par statement translates into machine instructions

quite easily. Each subprocess in a par statement is instantiated with the aid of only
two Transputer instructions, namely the startp and the endp instruction. Naturally
enough, the startp initiates a subprocess and at the end of a par statement each
subprocess is terminated with a endp instructioa After the last subprocess has ended,
the calling process resumes execution.

The alt construct is another important language extension for parallel
programming. Like the par construct it is closely tied to hardware features of the
Transputer. The alt construct is used to wait for certain events and can also used
instead of a standard C switch statement or nested if statements. The syntax of the alt
minors that of the C’s switch statement:

alt {
guard guardexpression:

code;

guard guardexpression:

83

code;
default:

code;
}

In the alt construct two new keywords appear alt and guard. The keyword alt

indicates the start of an alt statement. The guards compare to case labels in a switch
statement However there are some principle differences. Guards are evaluated at
runtime whereas case statements are evaluated at compile time. Therefore, guard
expressions are not restricted to constant expressions. They can use complex
expressions that must be evaluated at runtime.

The guards in an alt statement are evaluated in the order in which they are
placed within the alt braces. The result of a guard expression can be active or
inactive. The code of the first guard that is active will be executed. If none of the
guards is active, the process executing the alt will be descheduled until one of the
channel or timer guards becomes active. There are five types of guard:

boolean guard

channel guard without boolean
channel guard with boolean
timer guard without boolean
timer guard with boolean

The boolean guard is the simplest of these different types of guards. A boolean
guard consists of the keyword guard, followed by an expression with a boolean result.
If the result of the boolean expression is true, the guard is active, otherwise the guard
is inactive. The boolean guard can be used instead of nested if statements, for
example:

if (a<3) b=l;
else if (a>8) b=2;
else if (a>5) b=3;

is equivalent to, and can be replaced by:

alt {
guard a<3: b=l; break;
guard a>8: b=2; break;
guard a>5: b=3; break;

}

Channel guards are the second type of guards. The channel guard consists of an
expression with a channel address and an optional boolean expressioa The channel
guard is active if the channel it points to is active (ready for input or output) and the
optional boolean expression, if present, is true. The channel guard is very useful for

84

Chapter 5: parallel simulation o f the puma 560 arm

Chapter 5: parallel simulation of the puma 560 arm

multiplexing multiple internal channels to one external channel:

The third type of guard is the timer guard. Briefly, like the channel guard it
may be used with or without a boolean expression. A timer guard, for example, can
be used to timeout a channel. This can be done by using the timer guard in an alt
with some channel guards. As a final alt example, suppose it is necessary to timeout

a channel for 1000 internal clock cycles. This can be achieved in the following
Parallel C coding extract:

alt {
guard &intchannel: /* channel to wait for */

outchannel = intchannel;
guard timep=timer+1000: /* this guard if no message in 1000 cycles*/
printfC'Error: no response from channelNn");
exit(0);
break;

}

By exploiting these extensions to the C instruction set processes can be specified
to execute concurrently, or in parallel if the hardware to do so is available. If a
multiprocessor hardware is not available (consider a uni-Transputer) then the processes
are executed in a time-sharing regime. Using these extensions the coding of the
PUMA 560 simulator in parallel may be accomplished with little difficulty. The initial
C coding of the simulator, described in Section 5.2.3, can be modified by specifying
the parallelism. Figure 20, which illustrates the sequential comptutational model, shows
the sequence of process execution. Figures 22 and 23 detail, in graphical format, the
parallelism in the functions set-up-mat0 and high-statesO respectively. These are the
only functions along with define-pbarO, which can be decomposed into medium/large
grain parallel processes. The sequential C programming of the function set-up-mat0 is
given in simplified form as:

set-up-mat(xl,x2,x3,x4,x5,x6) /*system states*/

define-constants(...);
par-derivative(...);
eval-d(.„);
eval-d 11 (...);

/* Define sine and cosine constants*/
/* Set up parameter derivatives */
/* Evaluate dl, d2, d3 */
/* Evaluate dll[3][3], inertial matrix */

eval-dl23(...); /* Evaluate coriolis and centripetal */
/* forces for joint 1 */

eval-d223(...); /* Evaluate coriolis and centripetal */
/* forces for joint 2 */

eval-d323(...); /* Evaluate coriolis and centripetal */
/* forces for joint 3 */

eval-ddl(...); f* Evaluate derivative of dl */

eval-dd2(.„); /* Evaluate derivative of d2 */
85

Chapter 5: parallel simulation o f the puma 560 arm

eval-dd3(.„);

eval-dd 11 (...);

eval-ddl23(...);

eval-dd223(...);

eval-dd323(...);

}

/* Evaluate derivative of d3 */

/* Evaluate derivative of inertial */
/* coupling matrix */
I* Evaluate derivative of coriolis and */
/* centripetal forces on joint 1 ddl23[3][3]*/
/* Evaluate derivative of coriolis and */
/* centripetal forces on joint 2 d223[3][3]*/
I* Evaluate derivative of coriolis and */
f* centripetal forces on joint 3 d323[3][3]*/

The above cited subfunctions are fictitious functions used for simplicity and
represent blocks of coding in the actual programme. Based on Figure number 22 the
processes can be reorganised in parallel form, and the software rewritten to

accommodate this specification:

set-up-mat(xl,x2,x3,x4,x5,x6
{
seq{

define-constants(.„);
par-derivative(...);

eval-d(...);
eval-dll (...);

par{
seq{

eval-dl23(.„);

eval-ddl(...)
}

seq{
eval-d223(...);

eval-dd2(„.)
}

seq{
eval-d323(...);

eval-dd3(...)
Ì

) /‘•'First 6 system states*/

f* Define sine and cosine constants*/
/* Set up parameter derivatives */

/* Evaluate dl, d2, d3 */
f* Evaluate dll[3][3], inertial matrix */

I* Evaluate coriolis and centripetal */
/* forces for joint 1 */
/* Evaluate derivative of dl */

/* Evaluate coriolis and centripetal */
/* forces for joint 2 */
/* Evaluate derivative of dl */

/* Evaluate coriolis and centripetal */
/* forces for joint 3 */
/* Evaluate derivative of dl */

par{

eval-ddll[3][3]

eval-dd 123(...);

eval-dd223(...);

eval-dd323(...);

/* Evaluate derivative of inertial */
/* coupling matrix */

/* Evaluate derivative of coriolis and */
/* centripetal forces on joint 1 ddl23[3][3]*/
/* Evaluate derivative of coriolis and */
/* centripetal forces on joint 2 d223[3][3]*/
/* Evaluate derivative of coriolis and */
/* centripetal forces on joint 3 d323[3][3]*/

86

In this parallel realisation the use of channels is not necessary, since no

inter-process communication takes between active processes. The functions eval-di230
and eval-ddiO require and alter variables common to both, but because they are
executed sequentially variables may be read from memory without the danger of

simultaneous read and write.

Chapter 5: parallel simulation o f the puma 560 arm

In a likewise fashion the function high-statesO can also be modified to
accommodate parallélisation. Figure 21 shows the sequential nature of this function,
whilst Figure 23 demonstrates the parallelism to be found in the operations contained
in the function. Recall the task of high-statesO is to evaluate the derivatives of the
three joint accelerations, or the three highest states of the system state vector, of the
state space model given by equation 43. The simplified coding of this function, before
parallélisation is given below:

high-states(x 1 ,x2,x3 ,x4 ,x5 ,x6,x7,x8 ,x9)
{

}

set-up-mat(...);
define-d-bar(...);
define-pbar(...);
mat-inverse(d-bar);
mat-by-vec(...);
get-volts(...);
mat-by-vec(.„);
vector-add(...);

/* Setup initial matrices */
/* Solve equation 40b */

Solve equation 40c */
Invert equation 40b */
Multiply pbar by dbar */
Retrieve joint voltages from file */
Multiply dbar by voltage vector */

/*
/*
/*
/*
/*
/* Add result of two multiplications */

A scheme of parallelisation based on the schematic representation of Figure 23
can consequently be imposed on the function high-statesO- Note that the function
define-pbarO can be decomposed into two almost equally workload-balanced
subfunctions, pbarlO and pbar20, as outlined in Section 5.2. An outline of the parallel
C implementation of the function is given:

high-states(xl,x2>x3,x4,x5,x6,x7,x8,x9)
{

seq{
define-constants(...);
par-derivative(...);

eval-d(...);
eval-dll(...);

par{
seq{

eval-dl23(.„);

eval-ddl(...)
}

seq{
eval-d223(...);

eval-dd2(...)

/* Define sine and cosine constants*/
/* Set up parameter derivatives */

/* Evaluate d l, d2, d3 */
/* Evaluate dll[3][3], inertial matrix */

/* Evaluate coriolis and centripetal */
/* forces for joint 1 */
/* Evaluate derivative of dl */

/* Evaluate coriolis and centripetal */
f* forces for joint 2 */
/* Evaluate derivative of dl */

Chapter S: parallel simulation o f the puma 560 arm

}
seq{

eval-d323(...);

eval-dd3(...)
}

}

eval-ddll[3][3]

eval-ddl23(...);

eval-dd223(...);

eval-dd323(...);

}

par{
seq{

define-d-bar(...);
mat-inverse(d-bar);
get-volts(...);
mat-by-vec(...);
}

seq{
define-pbarl (...);
mat-by-vec(-);

seq{
define-pbar2(...);
mat-by-vec(...);
}

}
vector-add(...);
vector-add(-);

}
}

It is observed that both pbarl and pbar2 are multiplied by dbar (the inverse of
d-bar). To perform this multiplication the result from mat-inverse(d-bar) must be sent
to the respective mat-by-vecO functions. This can be achieved by using channels of
correct data type, two dimensional arrays, between the functions mat-inverse(d-bar) and
the two mat-by-vecO functions. There is one major drawback however in doing so.
Both define-pbarl0 and define-pbar20 are almost three times as computationally
intensive as mat-inverse(d-bar), and therefore although the two channels in
mat-inverse(d-bar)may be ready to transmit data the receive points in both
multiplication functions will not be active for a considerably longer time, as both

function will be awaiting pbarl0 and pbar20 to complete. This would cause a
processor, assuming a processor has been allocated, to suspend execution and thus

reduce the available processing power in the multiprocessor system. The method by

which this is overcome is to change the receive points to the pbarl 0 and pbar2()

88

/* Evaluate coriolis and centripetal */
I* forces for joint 3 */
I* Evaluate derivative of dl */

/* Evaluate derivative of inertial */
/* coupling matrix */

/* Evaluate derivative of coriolis and */
I* centripetal forces on joint 1 ddl23[3][3]*/
/* Evaluate derivative of coriolis and */
/* centripetal forces on joint 2 d223[3][3]*/
/* Evaluate derivative of coriolis and */
I* centripetal forces on joint 3 d323[3][3]*/

/* Solve equation 40b */
/* Invert equation 40b */
/* Retrieve joint voltages from file */
/* Multiply dbar by voltage vector */

/* Solve equation 45 */
f* Multiply pbarl by dbar */

I* Solve equation 46 */
f* Multiply pbar2 by dbar */

i* Add dbar.pbarl and dbar.pbar2 */
I* Add previous sum to dbar.voltage to */
f* yield 3x1 vector of highest states*/

functions at roughly a point in the sequence of calculations when mat-inverse(d-bar)
would complete execution and would be ready to transmit. The mat-inverse(d-bar)

function would then be able to terminate without waiting or being descheduled. The
data received by from the channel could is then transferred to the mat-by-vecO
functions through normal variable assignment and storage. The channels are defined as:

channel d-to-pl, d-to-p2;

and are specified as vector data types, using the assignment keyword, VECTOR ,
when defining their structure types:

struct VECTOR {
float v[3];

} db;

inverse-to-pl = inverse-to-p2 = db;

As mentioned in Section 5.2 not only can one exploit the parallelism inherent in

the sequence of operations to be performed in the simulator, one can also apply the
principle of pipelining to the loop of the simulation computational model. Pipelining
provides a efficient method of utilising a multiprocessor system when there is no
apparent parallelism in an application. A pipeline is basically several processors

operating on the same stream of data in tandem. To apply pipelining in this case one
must first consider the nature of the programme, and examine for suitability.

The first obstacle is the fact that the simulator data stream flows in a loop. This
means that the first processing stage of the pipeline awaits its input data from the last
processing stage. Naturally enough the last stage ultimately depends on the first stage
to supply it with data which is processed via the remaining intermediate stages. This
deadlock situation is overcome by feeding the initial stage with dummy data until such
time as the last stage begins to output process data. At that point the dummy input is
removed and the processed data is fed back int the first cycle, thus completing the
cycle. The effects of doing this are investigated in Section 5.5. The error introduced
by the initial data performs in a transient manner and eventually significantly after a
number of sample periods. Refer to Figure 20 which illustrates the sequential flow of
tasks in the complete simulator. The coding for the simulator is given in the

simplified format:

mainO
{

define-parameters(...);
null-matrix(...);

Chapter 5: parallel simulation o f the puma 560 arm

89

initialise^.);
set-up-const-m at(...);

runge-kutta(l,...);
high-states(...);
runge-kutta(l,...);
high-states(...);
runge-kutta(l,.„);
high-states(...);
runge-kutta(l,„.);
high-states(...);
sim-time-check(t);

}
To create the pipeline it is necessary to define each pipeline stage. The simulator

loop decomposes naturally into for stages of equal execution times. Each stage contains
a Runge-Kutta numerical integration coefficient evaluation routine and a high-statesO
function. The software realisation of the pipeline can therefore be written:

mainO
{
seq{

define-parameters(...);
null-matrix(...);
initialise(...);
set-up-const-mat(...);

do{
par(

seq{
if iteration < 4

{ get-dummy-data(iteration,...) = ch-stagel; }
else

{ input-datal = ch-stagel; }
runge-kutta(l,...);
high-states(...);
ch-stage2 = output-datal;
}

seq{
input-data2 = ch-stage2;
runge-kutta(l,...);
high-states(...);
ch-stage3 = output-data2;
}

seq(
input-data3 = ch-stage3;
runge-kutta(l,...);
high-states(...);
ch-stage4 = output-data3;
}

seq{
input-data4 = ch-stage4;
runge-kutta(l,.„);
high-states(...);
ch-stagel = output-data4;
}

}
} while (sim-time-check(t)==0);

}
}

Chapter 5: parallel simulation o f the puma 560 arm

90

Chapter 5: parallel simulation o f the puma 560 arm

The function get-dummy-dataO supplies the input data to the first processing stage
for the first four iterations, or sample periods. On the third iteration the last
processing stage begins processing data, and produces its first output at the end of the

fourth sample period. It is interesting to note at this point that four processors would
normally be required for optimum speedup results on a four stage pipeline but because

the maximum paralellism of the high-statesO function is three, then for best results
overall twelve independent processors are needed. The following Section discusses the
hardware aspects of implementing the parallel simulator.

5.4 OPTIMISED HARDWARE STRUCTURE FOR PARALLEL IMPLEMENTATION

OF S IMUL ATOR

5.4.1 The Transputer Architecture

Ideally a parallel language should have as its target architecture a multiprocessor
system which contains identical processing units. The combination of various

processors, although desirable in very specific instances, reduces programming flexibility
and limits scope for application modifications. In most instances the specific tailoring
offered by a pot pouri of processing elements is far outweighed by the resulting
programming constraints. Generalised parallel programming techniques are centred
around the practice of programming for transparent hardware configurations, for the
purposes of portability and modificatioa It should not be necessary for the programmer
to be aware of individual processor speeds or processor topologies for general parallel
processing applications, and only after the software is designed should an attempt be

made to develop optimal processor amalgamations, if necessary.

The parallel C programming language was written specifically for the
Transputer[86,...,89] processor. A Transputer is a single VLSI device with memory,
processor and communications links for direct connection to other Transputers.
Concurrent systems can be constructed from a collection of Transputers which operate

concurrently and communicate through links. The Transputer can therefore be used as
an integral unit in concurrent systems construction. An important property of VLSI
technology is that communication between devices is very much slower than

communication on the same device. Memory is of paramount importance in the
execution of instructions in computers, and a Transputer therefore possesses its own on
board memory on the same integrated circuit

Since it’s development by INMOS in early 1986 the Transputer has become one
of the more widely used processors in parallel system realisatioa In VLSI technology
it is observed that communication between separate devices is much slower than

91

communications within a single device. Thus a processor can spend a lot of time
accessing it’s memory store. Based on this premise the Transputer was designed with

both processor and memory on the same integrated circuit

Communication between Transputers is executed in serial fashion using point to

point connections. A system consists of a number of Transputers connected in some
ordered fashioa Each Transputer can be directly connected to a maximum of 4
neighbouring Transputers. A notable feature of the Transputer is that it can support
concurrent processes internally, albeit by time sharing the processor between the

processes.

The small number of registers, six, is testament to the availability of fast
on-board memory. This fact, coupled with the presence of a simple instruction set
makes for fast data paths when executing a task. The six registers are as follows;

(i). The workspace pointer which points to an area of store where local variables are

kept
(ii). The instruction pointer which points to the next instruction to be executed.
(iii).The operand register which is used in the formation of instruction operands.

(iv). The A,

(v). B,
(vi). and C registers which form an evaluation stack, and are the sources and

destinations for most arithmetic and logical operations.

One of the design decisions of the Transputer is that it should be programmable
in a high level language and therefore the small and simple instruction set makes for
easy and efficient compilation. The instruction set is independent of processor

wordlength so that the microcode is equally applicable to two Transputers of differing
wordlength. Each instruction is 1 byte. The first four most significant bits are the
function code and the second four are the data. Included in the set are 13 of the
most necessary functions for a computer to operate realistically, including ;

Chapter 5: parallel simulation o f the puma 560 arm

load constant

load local
load non-local
jump

add constant

store local
store non-local

conditional jump

load local pointer
load non-local pa­

cali

Two of the function codes arc used to allow for the extension of the operand to

any length. They are ’prefix’ and ’negative prefix’. The 4 least significant bits of the

operand register are used to hold the data bits which is then treated as the operand.

92

In the case where the prefix instruction is used the 4 data bits are loaded as normal
and then shifted up 4 places. The negative prefix is the same except the data is

complemented before shifting. Thus operands of any length up to the size of the
operand register can be represented. Even with this facility research shows that

approximately 80% of executed functions are encoded in a single byte. Therefore in
only 20% of cases is a prefix used. This augurs well for encoding efficiency. This
means also that several instructions will be got during a memory fetch cycle.

Transputers not only operate in parallel but also support the parallel C model of
concurrency internally. There is a microcoded scheduler present which enables any
number of processes to be executed concurrently by sharing the processor time. The
actual processor itself does not have to dynamically allocate the storage space since

this is handled by the parallel C compiler. A feature of the scheduler is that it
prevents inactive processes from consuming processor time.

Parallel C communications are point to point, synchronised and unbuffered.
Between Transputers the channel is implemented by a point to point serial link and
internally the channel between two processes is realised by a single word in memory.

The clock of the Transputer operates with a period of 1 microsecond and its
current value can be accessed via a ’Read Timer’ instruction A process may arrange
its input against the timer so that it begins to execute at a fixed point in time. This
is done using a ’Timer Input’ instruction. This is basically a descheduling of the
process priority. On arrival of the specified time the process is then re-scheduled.

Several schemes have been proposed for the multiprocessor control of robot
manipulators [90,91,92], but very few schemes implement a real time model of the
forward dynamics of such manipulators, for the purpose of controller evaluation.
Nonetheless, it is interesting to note the various methods used to balance the workload
among the processing units of these parallel controllers, as this problem is not unlike
the scheduling problem for the simulator software. Jones and Fleming [93] propose a
technique whereby the calculations involved in inverse dynamical equation evaluation
are distributed among a processor farm, thus ensuring a high rate of efficiency.
Unfortunately, the overheads of an intensive scheduling algorithm, which is necessary

to ensure continuous processor activity, prove to be as computationally demanding as
the calculations themselves, as expressed by Jones;

The structure chosen is a processor ’farm’ the initial measurements showed

that the scheduling process itself took longer than the computation of tasks ... thus

destroying any speed-up due to parallelism."

Chapter 5: parallel simulation o f the puma 560 arm

93

Chapter S: parallel simulation o f the puma 560 arm

Although this problem was surpassed somewhat by the introduction of
’pre-determined schedules’ the inter-Transputer communications overhead proved also to

be substantial. This was not anticipated in simulation tests by Jones and Fleming.
Since communications are constant due to the fixed nature of the software and since

also the controller needs to work within a limited and fast sample time, the percentage
overhead for Transputer communications becomes prominent, and by adding more
processors can be increased even further. This problem would be reduced in an
application where, according to Jones,

" ... given a problem with ten times as much computation - and ten times as
much time to accomplish it - the overheads would not be as serious."

Unfortunately, the aspirations of Jones due not apply to the parallel
implementation of the PUMA 560 robot simulator. It is proposed, based on these
observations that a Transputer configuration be used, other than a processor farm,

whereby complete processes be mapped onto individual Transputers. This removes the
need for dynamic scheduling and simplifies the performance analysis, and more
importantly improves actual speedup. The generalised software routines of Section 5.3
illustrated the fact that at only one instance during one cycle of the simulator (one
sample period) were channels utilised. This has major benefits in the overall run-time
of the simulator and proves to be a quite desirable property in the software design.
Considering that the maximum parallelism (the maximum number of processes
occurring in parallel) is three, equal to the number of simulated links, the optimum
number of Transputers is also three. If it is desired to implement a four stage pipeline
structure as described in Section 5.3 then one must provide three processors for each

of these stages, twelve Transputers in all, to achieve optimum performance.

5.42 The IMS B008 Motherboard

From a practical viewpoint a Transputer system may be housed in a conventional
IBM PC (XT or AT) by means of the IMS B008 motherboard [94], which is plugged
into the computer in the same manner as any normal extension board. It has slots for
up to ten TRAMs (TRAMs are board-level Transputers that integrate processor,
memory and peripheral functions, and which communicate with the outside world by
means of INMOS serial links, arranged in a standard DIL pin-out). Links 1 and 2

from each of the TRAMs are hard wired on the IMS B008, such that the TRAMs,
when plugged in, foim a pipeline of processing elements. The remaining links can be

’softwired’ using an INMOS IMS C004 programmable link switch, incorporated on the
IMS B008. This arrangement allows a large variety of networks to be created under

94

direct software control. Figure 24 illustrates the main blocks of the IMS B008
motherboard.

The IMS C004 device is controlled by an IMS T212 16-bit Transputer.
Configuration data for the IMS C004 is fed into link 1 of the IMS T212, which then
passes it on to the IMS C004 on link 3. The same data is also passed out of the
IMS T212 link 2 to the 37-way D-connector on the edge of the board. In this way

IMS B008 boards can be cascaded with the IMS T212's forming a chain.
Configuration data passes down this chain, with each IMS T212 sending the
appropriate data to the IMS C004 to which it is connected.

Chapter S: parallel simulation o f the puma 560 arm

IBM Bus (8 Bits)

□ L

Slav»
Logic

Interrupt DMA Reset
Logic logic Logic

IMS
C012

PatchUnkl

Slot3
Unk2 r
SloM
Link?-

If driven
from IBM
Bus

If just
powered
trom Bus

Patch
oreo

tor links
(24 pin

NL x
heoder)

PatchUnkO

Reset, ate. to TRAM 0

-Subsystem from TRAM 0

IMS C004 Link Switch

5 MHz
Clock

Down

Subsystem

IMS T212

Tronsputer

Slot 0 Slot 1 Slot 9
Pipe
Head

1 2 1 2 * 1 - r

Conflg

ConfigDown
 ►

Simplified Block diagram representation of IMS B008 Motherboard

FIG U R E 24

An interface to the IBM bus is provided so that the programme running on the

95

IBM PC can control the TRAMs on the IMS B008 and pass data to or from them.
Data communication can take ¡dace by means of a software routine which uses
polling, or via a DMA mechanism which gives a higher data rate. Different events on
the IMS B008, selectable by the programmer, can generate an interrupt on the IBM
PC to continuously poll status registers on the IMS BOOS, so that the PC can cany
on with other tasks while programmes are running on the IMS B008.

As mentioned the IMS B008 has sufficient slots to accommodate ten TRAMs.
The board is hardwired such that TRAM(N), link 2 is connected to TRAM(N+1), link
1, producing a 10 TRAM pipeline configuration. However TRAM3, link 2 and
TRAM4, link 1 are taken to the patch area, (refer to [94], appendix F, for a detailed

description), so that this pipeline may be broken if the user so wishes. The link

entering the first TRAM of the pipeline (TRAMO, link 1) is termed the Pipehead, and
the link leaving the last TRAM (TRAM9, link 2) is called the Pipetail.

Chapter 5: parallel simulation o f the puma 560 arm

ConfigUP :

(Link 1)

IMS

T212

X; ConflgDown

(Rnk 2)

Link Z W Ï m Z

X:j , Config

TRAM 0-9

ConflgUP

(Link I)!

ConflgDown :

(link 2)

Unk 31

•; Config

, TRAM 0-9 Links ' .

I ConflgUP

(Unk 1) :

X Config Down

• (link 2) ;

: Unk s m m m

Config

xXxxTRAM 0-9 Unlct

Board 1 Board 2 Board 3

Schematic Representation of IMS T212 Configuration Pipeline

FIG URE 25

Pipehead is connected to the patch area so that input to the pipeline may be

sourced from the either the IBM PC or another IMS B008 board and the pipetail is

connected to the 37-way D-connector, facilitating connectimi to external boards. This

96

allows for the construction of very complex topologies consisting of multiple IMS
B008 motherboards, although this will be seen not to be necessary in this particular

application. Since link 1 and 2 of each TRAM are used in the formation of the
pipeline both link 0 and 3 are left for connection to other TRAMs on the same or
neighbouring motherboards for the construction of TRAM systems. The design of the
IMS B008 is such that TRAMO, link 3 and TRAM(1..9), links 0 and 3 are taken
direcdy to the IMS C004, a 32-way link switch. TRAMO, linkO is not connected
directly to the IMS C004 switch since it is connected to the patch area to facilitate
connection to the IBM bus. It is also possible to connect TRAMO, link 0 to the
switch via the patch area, if needed.

The IMS C004 has 32 link outputs and 32 link inputs and a configuration link.
The 32 links may be optionally connected to one another by the sending of the
correct configuration signals along the C004 configuration link. As will be seen this

allows for link 0 or 3 of any TRAM to be connected to link 0 or 3 of another
TRAM. In addition eight links are taken from the IMS C004 switch to the 37-way
connector, and permits inter-connection between TRAMs on different IMS BOOS
motherboards. Control of the IMS C004 switch is executed on a T212 16-bit
Transputer. Innovatively links 1 and 2 of the T212 are taken to the D-connector so
that they too may be pipelined in the same manner as the TRAMs. Configuration data
may be sent in on link 1, sent out on link 2 and so on along the chain of T212’s.

Each T212 extract the data applicable to its subject IMS C004 programmable switch.
Figure 25 shows how this mechanism is realised.

5.4.3 A Tailored Transputer Topology

In the instance of the pipeline realisation of the parallel simulator, as discussed in
Section 5.4.2, it was found that twelve processing units were needed to achieve
optimum speed performance. The layout of these Transputers would involve three
Transputers processing in parallel at each of the four stages of the pipeline. Each IMS
B008 board is capable of supporting ten TRAMs, thus one board is insufficient. Two
boards are necessary, and two of the pipeline stages, or six TRAMs, can be located
on both. Because of the particular physical layout of the IMS B008 TRAM slots
(cooling requirements) and the physical size of TRAM cards slots 0,1 & 2 on IMS
B008 board 1 were chosen as processing stage 1 of the pipeline, slots 4,5 & 9 on
IMS B008 board 1 were chosen as processing stage 2 and the same slot numbers
were chosen on IMS B008 board 2 as stages 3 and 4 respectively. It is necessary to

devise a connection scheme for these TRAMs, so that both localised parallelism is

maintained and also the overall data flow of the pipeline is consistent It is imperative
that a system of control hierarchy is established. It is proposed that the application on

Chapter 5: parallel simulation o f the puma 560 arm

97

the TRAM network run under the control of TRAMO, board 1. This facilitates
programme development and debugging at a localised level and prevents the resetting
of this TRAM every time the application is reset The control TRAM is defined as
the source of the notReset and notAnalyse control signals and can be established by

the setting of appropriate jumpers on the IMS B008 motherboard. By connection of
subsystem ports of the TRAMs to the Subsystem line, shown in Figure 24, the reset,
analyse and error functions of the TRAMs are put under the control of TRAMO. This
includes the IMS T212 Transputer whicli controls die IMS C004 switch.

Furthermore, the configUp link of the IMS T212 (link 1) must be connected to
the pipehead, link 1 of TRAMO. The allows the TRAM running the Module

Motherboard Software (MMS)[95] to feed the configuration data directly to the IMS
T212, which relays it onto the IMS C004 switch This connection can be made via
the patch area. The IMS C012 link is also connected to TRAMO (link 0), so that
TRAMO always boots down this link, again via the patch area.

Chapter 5: parallel simulation o f the puma 560 arm

Schematic representation of a two IMS B008 board TRAM system.

FIGURE 26

98

Chapter 5: parallel simulation o f the puma 560 arm

The TRAM slots that are vacant can be by-passed by connection of location
points for links 1 and 2 by special 8-pin pipejumpers. Figure 26 demonstrates the
hierarchical layout of the twelve TRAMs, where TRAMO on board 1 is the controller.
All other TRAMs are connected to die Reset, Analyse and Error line. Interface
between the two boards is by connection of TRAM9, board 1, link2 to TRAMO,
board 2, linkl. The separation of the TRAMs on two different boards is transparent to
the application In order for TRAMO to control all the TRAMs on the second board it
is necessary to connect the SUBSYSTEM port, on board 1, to the UP port on board
2. Continuation of the pipeline is achieved by connecting Pipetail, board 1 to
Pipehead, board 2. This means that the patch area cm board 2 must be altered so that
the ConfigUpLink on its IMS T212 is brought to the 37 way D-connector via
PatchLinkO. Therefore board 1, ConfigDownLink should be connected to board 2,

PatchLinkO. These and several other control connections, which are made across the
two D-connectors, are given in Table 8.

BOARD 1 PIN NO. BOARD 2 PIN NO. :

notSubsystemResat 33 ;.x:x. : notUpRes#! 20 g :

notSubsystemAnalyse 15Ü&S i noHlpAnalyse 2 m
:: notSubsystemError 34 S x notSubSystemError 21 S:;:;

> PlpetailUnkOut 16 ; ■ PatchUnkl U M
1 PIpetallLInkln 35 : ; PotchUnkOutl z i w

■: ConflgDownUnkOut 17x®;: PatchLinkO 13 X

•: ConfigDownUnkln 36 ij: PatchUnkOutO 31 m

Table showing the necessary connections between the
two D-connectors of the two IMS B008 motherboards.

TABLE 8

To interface with the IBM PC bus the IMS B008 must implement some sort of

protocol. The simplest method is polling. This technique is explained lully in reference

[94].

For higher data rates, a DMA interface has been incorporated into the IMS BOO8.

For a complete understanding of this mechanism it is imperative that the DMA
controller chip in the PC is understood [96], Once die DMA controller has been
initialised, the DMA interface may be used in several ways. A value of "0" is written

99

to the DMA control register on the IMS B008 board when data is to be transferred
from the PC to the board. A value of "1" signals data transfer in the opposite

direction. The EMS B008 makes a DMA request for a single byte at a time. In this
manner a byte is transferred in between each instruction execution on the PC’s

processor. In general a DMA transfer has twice the data transfer rate as an optimised
assembly routine for polling. Termination of a DMA transfer is denoted in two ways:
the DMA controller can be polled by reading the status register, or an interrupt can
be sent to signal transmission end. To avoid the IBM PC CPU having to continuously
poll the IMS B008 DMA controller’s status register interrupts may be used. The IMS
B008 is capable of interrupting the PC on the occurrence any one of the four events:

□ A DMA transfer has completed
□ An error has occurred on the IMS B008
□ The IMS B008 is ready to receive a byte of data via the IMS C012
□ The IMS B008 is ready to send a byte of data via the IMS CO 12

The 4 types of interrupt are individually enabled/disabled by the interrupt control
register, located at boardbase+$13. It is also important to note that the link speeds are
all set to 20 Mbits/sec by setting the speed switch on the IMS B008 board to 000.
There are 7 other switch combinations which allow the user to select combinations of
speeds of the TRAMs and the IMS T212 Transputer.

In order to connect the TRAMs in a pre-determined configuration it is necessary

to write a softwire file specifying the proposed connection scheme to be implemented
by programmable links, and also a hardwire file listing the jumper settings, or
hardwired connections between TRAMs. These files are read by the Module
Motherboard Software (MMS) and by examining the hardwired file the softwire file is
tested for illegal combinations. The softwire file contains a list of user specified
connections between TRAMs, whilst the hardwire file contains a list of connections
already made on the board by the physical placing of jumpers. The MMS needs to
examine the hardwire file first, before programming the links in the softwire file, since
certain combinations of TRAM link connections would be illegal. Without deliberating

on the details of the formulation of softwire and hardwire files, (this can referenced in
the MMS user guide [96]), the softwire file for this particular application would be as

follows:

SOFTWIRE
PIPE 0

SLOT 0, LINK 3 TO SLOT 2, LINK 3
SLOT 4, LINK 3 TO SLOT 9, LINK 3
SLOT 9, LINK 2 TO EDGE 3

PIPE 1
SLOT 0, LINK 1 TO EDGE 6
SLOT 0, LINK 3 TO SLOT 2, LINK 3

Chapter 5: parallel simulation o f the puma 560 arm

100

Chapter 5: parallel simulation o f the puma 560 arm

SLOT 4, LINK 3 TO SLOT 9, LINK 3
END

And the hardwire file, which specifies the definition of board types and pipeline

layout, reads as follows:

DEF boarda
SIZES

T2 1
C4 1
SLOT 10
EDGE 10

END

T2 CHAIN
T2 0, LINK C4 0

END

HARDWIRE
SLOT 0L-INK 2 TO SLOT 1LINK 1
SLOT 1JJNK 2 TO SLOT 2LINK 1
SLOT 2.LINK 2 TO SLOT 3LINK 1
SLOT 3.LINK 2 TO SLOT 4LINK 1
SLOT 4.LINK 2 TO SLOT 5LINK 1
SLOT 5JLINK 2 TO SLOT 6LINK 1
SLOT 6L-INK 2 TO SLOT 7JJNK 1
SLOT 7L-INK 2 TO SLOT 8 LINK 1
SLOT 8,LINK 2 TO SLOT 9,LINK 1

C4 O.LINK 10 TO SLOT OLINK 3

C4 0.LINK 1 TO SLOT 1LINK 0
C4 0.LINK 11 TO SLOT l.LINK 3

C4 OLINK 2 TO SLOT 2LINK 0
C4 OLINK 12 TO SLOT 2LINK 3

C4 OLINK 3 TO SLOT 3,LINK 0
C4 OLINK 13 TO SLOT 3LINK 3

C4 OLINK 4 TO SLOT 4LINK 0
C4 OLINK 14 TO SLOT 4.LINK 3

C4 0,LINK 5 TO SLOT 5,LINK 0
C4 OLINK 15 TO SLOT 5LINK 3

C4 OLINK 6 TO SLOT 6.LINK 0
C4 OLINK 16 TO SLOT 6LINK 3

C4 OLINK 7 TO SLOT 7LINK 0
C4 0,LINK 17 TO SLOT 7LINK 0

C4 OLINK 8 TO SLOT 8LINK 0
C4 OLINK 18 TO SLOT 8.LINK 3

C4 OLINK 9 TO SLOT 9,LINK 0
C4 OLINK 19 TO SLOT 9LINK 3

101

Chapter 5: parallel simulation of the puma 560 arm

C4 0.LINK 20 TO EDGE 0
C4 0,LINK 21 TO EDGE 1
C4 0.LINK 22 TO EDGE 2
C4 0.LINK 23 TO EDGE 3
C4 0.LINK 24 TO EDGE 4
C4 0.LINK 25 TO EDGE 5
C4 0JLINK 26 TO EDGE 6
C4 0.LINK 27 TO EDGE 7
C4 0.LINK 28 TO EDGE 8
C4 04JNK 29 TO EDGE 9

DEF boardb
SIZES

T2 1
C4 1
SLOT 10
EDGE 10

END

T2 CHAIN
T2 0, LINK C4 0

END

HARDWIRE
SLOT 0JLINK 2 TO SLOT 1.LINK 1
SLOT 1JLINK 2 TO SLOT 2.LINK 1
SLOT 2 .LINK 2 TO SLOT 3JLINK 1
SLOT 3 .LINK 2 TO SLOT 4.LINK 1
SLOT 4 .LINK 2 TO SLOT 5.LINK 1
SLOT 5 .LINK 2 TO SLOT 6,LINK 1
SLOT 6 .LINK 2 TO SLOT 7 .LINK 1
SLOT 7.LINK 2 TO SLOT 8.LINK 1
SLOT 8JLINK 2 TO SLOT 9.LINK 1

C4 0.LINK 10 TO SLOT 0.LINK 3

C4 0.LINK 1 TO SLOT 1.LINK 0
C4 0.LINK 11 TO SLOT 1.LINK 3

C4 0.LINK 2 TO SLOT 2.LINK 0
C4 0.LINK 12 TO SLOT 2.LINK 3

C4 0.LINK 3 TO SLOT 3.LINK 0
C4 0.LINK 13 TO SLOT 3.LINK 3

C4 0.LINK 4 TO SLOT 4.LINK 0
C4 0.LINK 14 TO SLOT 4.LINK 3

C4 0.LINK 5 TO SLOT 5.LINK 0
C4 0.LINK 15 TO SLOT 5 .LINK 3

C4 0.LINK 6 TO SLOT 6.LINK 0
C4 0.LINK 16 TO SLOT 6JLINK 3

C4 0.LINK 7 TO SLOT 7.LINK 0
C4 0.LINK 17 TO SLOT 7.LINK 0

C4 0.LINK 8 TO SLOT 8.LINK 0
C4 0.LINK 18 TO SLOT 8 .LINK 3

102

C4 O.LINK 9 TO SLOT 9,LINK 0
C4 0.LINK 19 TO SLOT 9JLINK 3

C4 0.LINK 20 TO EDGE 0
C4 OJJNK 21 TO EDGE 1
C4 OJJNK 22 TO EDGE 2
C4 0.LINK 23 TO EDGE 3
C4 OJJNK 24 TO EDGE 4
C4 0.LINK 25 TO EDGE 5
C4 0.LINK 26 TO EDGE 6
C4 0.LINK 27 TO EDGE 7
C4 0.LINK 28 TO EDGE 8
C4 0,LINK 29 TO EDGE 9

PIPE boarda, boardb END

END

The language which describes the connections is known as HL1. Two boards are
defined in the above listing, as is can be seen from the description DEF boardx. The
description of both boards is the same. The hardwire file initially specifies, for each

board, the quantity of on-board IMS T212 Transputers (T2) as one and the quantity of
IMS C004 programmable switches (C4) also as one. The number of slots and edges
are both defined as ten. The T2CHAIN command describes how the IMS T212

Transputer is connected to the IMS C004 switch The command in the above hardfile
designates that Transputer 0 is connected to C004 0 via link 3. The pursuing list of
extensive hardwire specifications are used to inform the MMS of the actual
connections between TRAMs.

When the MMS is instigated it is supplied with the two configurations files. It
then proceeds to programme the links specified in the softwire file, all the while
monitoring each combination of link connections to avoid an illegal connection of a
link which has already been hardwired as per the hardwire file. It achieves this link
programming by the passing configuration information on to each IMS T212, which
decides whether the data is applicable to the C004(’s) under its control. The IMS
T212’s are organised in a pipeline structure (see Figure 33) so that the data is passed
wholly along through all IMS T212’s. The MMS, which is run from the DOS prompt
on the PC, offers the user a suite of menu functions and makes debugging and
diagnostic testing of the source files possible without the hardware being on-line. In
conclusion this Section details the Transputer hardware scheme necessary for optimum
speed performance of the parallel PUMA 560 robot manipulator simulator. The

following Section attempts to formulate this performance mathematically. It also

graphically investigates the relationship between processor availability, by examining

performance degradation due to reduced processing power. From the pending results
some conclusions are drawn.

Chapter 5: parallel simulation o f the puma 560 arm

103

5.5 EVALUATION OF SIMULATOR PERFORMANCE IN PARALLEL FORM

Chapter 5: parallel simulation o f the puma 560 arm

It is imperative that before actually evaluating model performance indices, such as

speedup, processor efficiency etc., one must first validate the model accuracy and
vindicate its representation of the physical PUMA 560 manipulator. The following
Section, Section 5.5.1, attempts to do this by examining open loop tests on the each
of the links. The results are compared against expected manipulator responses, and
against certain characteristics inherent in the manipulator. Assuming a fully validated
model Section 5.5.2 proceeds to perform an analysis on the proficiency of the
parallelised simulator.

5.5.1 Evaluation of PUMA 560 Manipulator Model

The most appropriate method of testing the model is to graphically examine the
simulator output over a given time domain in response to particular inputs. All

graphical data is displayed in Appendix C, and any graphical data quoted in this
Section is contained in the same. The tests carried out on the robot simulator are

listed and explained in sequence below:

TEST 1: The first test is to monitor the behaviour of each joint whilst their respective
’hold’ voltages are applied. The joint hold voltages are the voltages required to hold
each joint in a fixed position of 0 radians. Graphs 5.1,5.2 and 5.3 show the joint

positions, velocities and accelerations respectively. Both joint 1 and 3 behave in a very
constrained manner and there is a small deviation in the position of joint 2 from 0

radians, albeit of the order of 105 radians. Both velocity and acceleration can be
predicted from the joint position trajectory. The acceleration of joint 2 is the only
significant joint acceleration, and is a maximum at l lxlO6, from which it decreases in
a underdamped fashion to almost zero over a three second period.

The following seven tests are designed to examine the coupling effects between
the three joints due to joint positioning, movement and acceleratioa

TEST 2: The second test, the first of these coupling tests, graphs 5.4, 5.5 & 5.6,
involves moving joint 1 whilst both joint 2 and 3 are held still. This is to examine
the coupling effects on joints 2 & 3 due to movement of joint 1. The response of
joint 1 is denotative of an integrative system, or a motor with constant inertial load,
which is as desired. The velocity and acceleration, joint 1, are derived directly from

the ramp and step nature of the position and as can be seen they are both almost
zero for the other two joints. The movement in the other two joints was found to be

of the order of 0.05° and because of the nature of the first joint this is to be

104

expected.

TEST 3: Both joint 1 and joint 2 are moved whilst joint 3 is held steady for the

third test The third joint stays at the zero radian position whilst the other two joints
are moved, see graph 5.7, and as a result its velocity and acceleration are both zero
(graphs 5.8,5.9). The coupling effect of joint 2 on joint 1 seems to be more
significant in this case compared to the instance where joint 2 is stationary. This is
explained by the changing coupling centripetal and inertial torques as joint 2 changes
position, whilst joint is moving.

TEST 4: In this test, as opposed to test 3, joint 2 is held while joints 1 & 3 are
moved, by a step input For most of the duration of the test joint 2 remains
stationary, except near to simulation termination it deviates from the zero position and
this is reflected in the joint velocity and the erratic acceleration at about 12 seconds.
(Graphs 5.10, 5.11 & 5.12 give position, velocity & acceleration.) The cause of this is
joint 3 reaching its joint limit and suddenly stopping. This is consistent with the
actual jarring that would occur in the actual robot performance. This is a reflection of
the strong coupling between joints 2 & 3, which is present in the robot

TEST 5: In this particular test all joints are moved, by applying a step voltage to
each joint to examine for the coupling effects between all three joints. Fust joint 1
reaches it joint limit then ditto joint 3 and finally joint 2(negative step). Compare this
to the case where joint 3 is held, and joint 2 reached its limit much quicker (graph

5.7). This can be attributed to the decreased speed due to the increased coupling
effects between joints 2 & 3 when the robot arm is moving, which is consistent with

the actual PUMA 560.

TEST 6: Tests 6 and 7 involve moving joint 2 whilst holding joint 1 or both joints 1
and 3 steady. Test 6 specifies that both joint 1 and 3 are held and joint 2 moved to
examine the coupling effects due to joint 2. Graph 5.16 shows the positions of the
joints. Other than a small rippling deviation on joint 3 the effect of joint 2 on the
other two joints is minimal (graph 5.16), and there is a smaller coupling effect on
joint 1 than on joint 3. Again this is consistent with the real manipulator system.

TEST 7: This the penultimate test involves moving joints 2 & 3 and holding joint 1.
When both joint 2 & 3 reach their limits joint 1 deviates from the 0 radian stationary

position. This is consistent with the actual event of both manipulator joints reaching

their limits simultaneously.

TEST 8: For this test joints 1 & 2 are held whilst joint 3 is moved to its joint limit

Chapter 5: parallel simulation o f the puma 560 arm

105

to test the coupling effects of joint 3. The abrupt termination of joint 3’s trajectory at

the joint limit causes a resonance in joints 1 and 2, as can be seen in graph 5.22.
This is also reflected in the erratic velocity and acceleration performance, shown in

graphs 5.23 and 5.24.

In most cases, especially those which are most significant, the behaviour of joint
trajectories can be explained by reference to the actual robot As with the robot the
coupling effects varied between the different joints, and also depended on joint
movement Joint 1 has the least coupling effect on the other joints. This is explained
by the physical construction of the first joint It revolves in a horizontal plane, whilst
the other two joints operate in a vertical plane. The strong coupling between joint 2
and 3 is explained by the fact that the location of joint 3 has a large effect on the
degree of loading experienced by joint 2, and once again this is present in the
simulator of the PUMA 560 robot manipulator.

5.5.2 Analysis of Speedup and Processor Efficiency

In Chapter 3 the performance indices of a parallel system were extensively

investigated and formulated. Speedup for a parallel programme was defined as the
sequential execution time for that programme divided by the execution time of the
parallel version. In this Section speedup is evaluated on the assumption of unlimited
availability of processing units. In Section 5.5.3 the eventuality of constraints on the
number of processors available is considered and its effect on speedup, and
consequently processor efficiency. In order to evaluate the speedup of the parallel
simulator the execution times of the sub-processes must first be measured. Table 9
shows the execution times of the required C function routines. Both the run times on
an Intel 80286|iP and INMOS T414-20 Transputer are given. This is to facilitate the
performance comparision for two different multiprocessor systems. A T414-20
Transputer is quoted at 11.5|xs per FLOP and the INTEL 80286 microprocessor

performs at 54(is per FLOP.

The reader’s attention is drawn to figures 22 and 23, in Section 5.2, which

illustrate the parallelism in the software programme functions set-up-matO and
high-statesO respectively. Based on the timing measurements given in table 9 speedup
can be calculated using these flowcharts as guides to the processes executed in

parallel. Using both the information in Table 9 and figures 22 and 23 a graph of the

scheduling scheme for the processes can be extracted. The first task is to evaluate the

speed increase for the parallelised version of set-up-matO- Figure 27 demonstrates the
schedule of execution for this function, although it must be noted this schematic
representation is not drawn to scale, and is intended for illustration (note, however,

Chapter 5: parallel simulation o f the puma 560 arm

106

that the longer the process box the longer the execution time).

Chapter 5: parallel simulation o f the puma 560 arm

E x e c u t i o n T i m e [m S] x v x x x x x x

F u n c t i o n N a m e X y / x ' : - i ; x ' / I N T E L 8 0 2 8 8 * iP I f I N M 0 S T 4 1 4 - 2 0 :

•I-:-:-:-:-:-:-:-:-:-:-:-:*:-:-:-»:-:-:*:-

: : : : : h i f h - s U t e a () | p i ^ i : | : 4 2 i 2 8 ' ¿ j w ! * i i

n u l l - m a t r i x (] ; ! v ! v ; v ! v X v ! v ! ; ! v 0 0 . 2 7 5 I v I v X 0 . 0 0 5 8

x x x x v e c t o r - a d d 0 . 0 3 6 6

: : : v e c t o r - s u b () 0 . 0 3 7

m a t - s u b () 0 0 . 5 5 2 0 . 1 1 7 5

x m a t - a d d () 0 0 . 5 5 2 l i i i i l i i i l 0 . 1 1 7 5 g i ;

m a t - m u l t () 0 1 . 3 0 0 0 . 2 7 6 8

:: x v e c - b y - m a t (» l l i l l l i 1 0 0 . 5 1 2 0 . 1 0 9

m a t - b y - v e c () 0 0 . 5 1 2 0 . 1 0 9 g S g g : ; : :

m a t - i n v e r s e 0 5 . 9 5 8 i i i i j i j S j S j j i i ® 1 . 2 6 8 4 : x

/ | e t - v o l t 3 () 0 . 0 0 2

i n i t i a l i s e O 1 2 9 . 7 4 1 i W i 3 0 j ^ $ g i

s e t - u p - c o n s t - m a t () : x x x X X X 0 1 . 5 7 6 : 0 . 3 3 5 6

s e t u p - m a t () 2 . 6 1 4 1

d e f i n e - d - b a i () > 0 1 . 8 5 6 • 0 . 3 9 5 2

X;:;:;:;:» d e f i n e - p - b a r {) 4 . 4 8 5 7

Execution times of software functions used in simulation

TABLE 9

Execution of the function, set-up-matO, begins at time 0, and completes at time
T4. The first task to be scheduled is die initialisation of variables and assignment of
parameters, which takes 0.262ms. At time T1 when this completes the three joint
forces evaluation routines are scheduled, and the longest of these, for joint 1, takes
106.9ns. At time T2 the inertial matrix is evaluated on its own in sequential fashion,

taking 188.6ns. The final group of tasks is to calculate the derivatives of the joint
forces, (centripetal and coriolis forces), and these may be calculated in parallel for

each joint The slowest of these processes is again for joint 1, and has an execution

time of 229.0ns, as compared to 37.4|is and 26.2ns for joints 2 and 3 respectively.

The slowest path in this realisation is therefore 787.3ns. This value may be

ported into the parallel version of high-statesO, which may now be evaluated.

The scheduling scheme corresponding to die parallel implementation of high-statesO is

107

shown in Figure 28. Initially the sut-up-matO function is executed in parallel form, as
described above. For the purpose of schedule illustration it is represented by a single
process on a single processor, it would of course require three processors to exploit its

maximum parallelism.

Processor
Assignment

Chapter 5: parallel simulation o f the puma 560 arm

Schedule of processes for function set-up-matQ

FIGURE 27

The computational patii, on completion of set-up-matO, forks three ways:

define-d-barO, define-pbarlO and define-pbar20- The define-d-barO routine is followed
by the functions mat-inverseO, get-voltsO and mat-by-vecO whose aggregate execution
time along with that of define-d-barO is less than either define-pbarlO or

define-pbar20.

Processor
Assignment

P1 define-d-ba mat-inverse get volts nai-by-ve<

P2 set-up-mat define-pborl mat-by-vec vec-add

P3 define-pbar2 mat-by-vec

T1 T2 T3 T4 T5
1 -
T6 Time

Scheduling graph of sub-functions In the function high-statesQ

FIGURE 28

Of the two latter functions define-pbaf20 takes the longest time, taking 2.272ms. The
two other computational paths are placed in a wait state on completion of their tasks,

awaiting the completion of the longest path. This degrades the processor efficiency

108

rate. If no wait states occurred, assuming unlimited availability of processors, and the
"n" processors were continually busy then the speedup would be equivalent to the
maximum parallelism (the maximum number of processes that can run in parallel for
that application). This is the optimal and ideal situation, with no possibility of
realisation in an actual parallel system. The factors which prevent this are
predominately inter-processor communications and unbalanced processor workloads.

The next two processes to be scheduled are the mat-by-vecO multiplication
routines, both with execution times of 109.0|is. These are followed by two sequential
vector addition routines (36.6|is each).

The computationally longest path is found to be 3.242 milliseconds. In order to
evaluate the theoretical speedup, recall that the execution time for the sequential
version of high-statesO is 8.993ms. Using the computational model of Figure 20, it is
observed that the run-time for one simulation loop(i.e. four calls to high-statesO and
the evaluation of the Runge Kutta coefficients), in sequential form, is 37.194ms:

Sequent ia l execution time 37.194
Speedup = P a r a l l e l execu t ion time = 15.254 s 2.438

Therefore, since no more than three processors are required at any processing
stage, the efficiency for a 3-processor system is given by:

-Speedup 2 . 4 38
E f f i c i e n c y = n = 3 = 0.8127

These values, which represent absolute speedup and efficiency and do not allow
for overheads normally present in a multiprocessor system, are for the non-pipelined
case. Introduction of the pipeline technique offers the prospect of a much improved
speedup margin and greater processor efficiency, at the expense of a larger
multiprocessor system. The pipelining principle, as applied to the simulator, involves
the division of the simulator loop in processing stages which can be executed
concurrently. Sections 5.2 and 5.3 describe this method in detail and it was found that
the simulation loop naturally decomposed into four pipeline stages, each containing a
Runge Kutta coefficient evaluation routine and a call to the function high-statesO- The
combination of the pipeline and the exploited parallelism inherent to each pipeline

stage yields a speedup four times greater than without pipelining:

Speedup = 4 x 2.438 = 9.752

and a processor utilisation efficiency given by:

Efficieny = Speedup-rl2 = 9.752+12 = 0.8126

It is assumed, once more, that there is unlimited availability of processors, and

Chapter 5: parallel simulation o f the puma 560 arm

for the pipeline the optimal number is twelve, hence the figure for efficiency. This is
derived from the fact that the optimal number for each stage is three (maximum
parallelism is three), and there are four stages in all. Section 5.5.3 considers the
effects on speedup and efficiency of both limiting the number of processors and
adding additional processors to the optimised multiprocessor system.

One further concern in the usage of a pipeline architecture is the effect on the
simulator performance. In this particular application the output of the pipeline is fed
back into the input of the pipeline. In normal sequential operation the first processing
stage is fed initial start up data, (joint angular position), defined by the user. This
information is processed and passed onto the second stage, which processes it further,
and likewise to stage three and four. When stage four has completed, the relevant data
is returned to stage one, thus rebeginning the simulation software loop. By pipelining
the software because all stages start at the same time there is no available output
from stage one to serve as input to stage two. The second stage must be fed
temporary data (i.e. initial conditions) until the first stage has completed processing. It
takes one complete sample period before accurate data from processing stage one is
available to the second processing stage. Likewise stage three must wait two sample
periods before it can be supplied with correctly processed data from both stage one
and two, and for stage four it takes three sample periods. During this initial period
errors in PUMA 560 manipulator simulation performance are most likely to occur.

In order to quantify this error the pipelined simulator output is compared to the
output from the unpipelined simulator. The errors on all three joint positions were
found to be of similar magnitude. Graph 5.29 shows the average percentage error
between the pipelined response and the unpipelined response to step inputs on the
manipulator joints. As expected the initial error is quite large, due to the inaccuracy of
the data being fed into the various processing stages. This average percentage error
decays dramatically over the next few iterations. On about the tenth iteration the error
has almost been removed from the output joint positions of the simulator, and is
found to be less than 0.2 of a percent Considering that the simulator is only based
on a manipulator mathematical model errors of this magnitude are quite insignificant.
As the number of loop traversals progresses the error becomes less significant due to
the fact that over time the information being fed into each stage becomes more
accurate, and thus the output data from each stage also increases in accuracy. In a
typical simulation run over several seconds the simulation loop is traversed several
hundred times. Despite the initial start-up error the pipelined simulator still provides a
good method for evaluating the manipulator performance over longer periods of

operation andsor for evaluating joint response to various controllers under typical

conditions of time-span and sample period.

Chapter 5: parallel simulation o f the puma 560 arm

110

Chapter 5: parallel simulation o f the puma 560 arm

5.5.3 Introduction of Hardware Constraints

Naturally, having considered optimised performance of the simulator and having
assumed ideal hardware conditions, one is inclined to ask what would happen if these
favourable conditions were replaced by more restrictive limitations on hardware.

The unpipelined case is considered first, and the results are used in the similar
formulations needed for the pipelined case. The two important performance indices
which change under varying hardware constraints are speedup and processor efficiency,
so the investigation will be focussed on the behaviour of these two parameters. Before
graphically examining these though, it will be necessary to specify a processor
allocation scheme, in both the pipelined and unpipelined case, so as to evaluate
speedup and efficiency as functions of the number of processors.

5.5.3.1 Effects on speedup and processor efficiency

In the unpipelined case, since the optimal number of processors is three, only
three instances need to be considered for speedup evaluation1 a uni-processor system, a
dual-processor system, and a three-processor multiprocessor system. The first case is

trivial and the speedup is unity, since only one processor is available, thus the
simulator is implemented sequentially. The second case requires the rescheduling of

processes given in Figures 28 and 27. In the function set-up-matO, (see Figure 27),
when calculating the forces on the three joints one processor must evaluate for two
joints. Fortunately, the calculations for joints 2 and 3 combined (63.5|is) are less
demanding for joint 1 alone (106.9ns), and again in the evaluation of the force
derivatives the computational path for joint 1 is longer (229.3ns) than for the other
joints (63.6ns). Hence, despite only two processors being available the speedup of the
function set-up-matO remains unaltered. Looking at Figure 28, it can be seen that
high-states also has a maximum parallelism of three. With only two processors
available one processor executes the longest, or critical, path whilst the other executes

the other path(s). The function define-pbar20, is the longest of the first three parallel
paths, thus this assigned to the first processor. The other processor is scheduled the
other two paths, which combine to form a slower path, taking 4.112 milliseconds. The

remaining operations which have a maximum parallelism of two, are schedule as
before. The new execution time for this function, considering set-up-matO remains

unaltered, becomes 4.973 milliseconds. Speedup is re-evaluated, as before, to yield:

speedup s 1.677

and from this efficiency is derived as:

111

Efficiency = Specdup+2 3 0.8385.

The last case, with three available processors, is the optimal assignment scheme
alreadydescribed and for which speedup and efficiency have been calculated.
Additional processors over and above this optimal number do not enhance speedup,

since all tasks are already assigned to processors, but the processor efficiency rate

decreases exponentially.

Although it is not mathematically correct to graphically represent speedup versus
processor numbers, or efficiency versus processor numbers, as continuous curves, (since
processornumbers only exist as whole numbers discrete points are a correct
representation), it is nonetheless a good technique for illustrating the trend over the
range of processor unit numbers with clarity.

Graphs 5.25 and 5.26 demonstrate the performance of speedup and processor
efficiency against processor numbers respectively. The shape of the speedup curve is
quite typical for parallélisation of a system with a reasonable degree of parallelism. As
the number of processing units is increased the rate of returns on speedup decreases,
until the point of no return when maximum speedup is reached. The processor
efficiency curve is not particularly untypical but it is noticed that the efficiency does
not decrease in as smooth a manner as the speedup increases. This is due to the fact
that the speedup over the range zero to three processors has its least rate of increase
when going from one to two processors. This can be observed as a slight dip in the
speedup curve over this range at the two processor region and is reflected by this
observed lack of decrease in processor efficiency in the same region. It is simply a
peculiarity of this particular system.

The pipelined case is slightly more difficult to analyse as the range zero to
twelve processing elements must be examined, and the processes rescheduled in a
manner which optimises speedup under the prevailing circumstances. It is assumed that
before the pipeline is operational there must be a minimum of four processors present,
one for each pipelining stage. Less than four processors gives a performance identical
to the unpipelined case, which has already been considered. For example a
uni-processor system would have to calculate each pipeline stage individually which is
merely the sequential case. With four processors each stage is scheduled to execute on
a separate processor. Each stage takes as long as it would in the sequential case

because there is only one processor available to it, but by merit of the fact that all
four stages are executing concurrently on different processors a speedup of four is

achieved. The processor efficiency is thus unity. The time between successive outputs

from the pipeline is equal to the time of the slowest stage, which in this instance is
any stage since all stages have equal execution times.

Chapter 5: parallel simulation o f the puma 560 arm

112

Chapter 5: parallel simulation o f the puma 560 arm

Despite adding a fifth processor to the system, which can be arbitrarily assigned

to any of the four stages to speed up that stage by 1.677 (5.544 milliseconds), the

slowest execution time remains the same. Thus so to does the time between pipeline

outputs, and also the overall speedup. It is possible to assign a portion of the
workload from each of the four stages to this processor and this would theoretically

increase overall speedup. The practice, however, would be quite different The
overheads involved in dynamically scheduling and partitioning the excess workloads for
this additional processor would overwhelmingly outweigh the theoretical gain in
speedup, as experienced by Jones and Fleming [93] in their attempt to implement the
inverse dynamics of a robot manipulator. Dynamic partitioning and scheduling of the
workloads is thus avoided. As a consequent of unchanged speedup the processor
efficiency decreases and is given by:

Efficiency = 4.0 + 5 = 0.8.

Addition of a sixth and then a seventh processor, although increasing the

execution times of two more stages, are not reflected as an increase in overall
speedup, as the slowest stage remains constant The processor efficiency does however
decrease. The addition of an eighth processor however brings all four processing stages

up to the same speed, 5.544 milliseconds, due to the fact that each stage with two
processors assigned to it has a localised speedup of 1.677. As there are four stages
executing concurrently with individual speedups of 1.677 the overall speedup becomes:

Speedup = 4 x 1.677 = 6.708

and efficiency is formulated as:

Efficiency = 6.708+8 = 0.8385

In a likewise fashion the addition of three more processors is reflected in the
speedup of three of the processing stages, but not in the overall speedup. The addition
of a twelfth processor, however, produces a greater speedup, evaluated as follows:

Speedup = 4 x 2.438 = 9.752

and efficiency for twelve processors in the pipeline is:

Efficiency = 9.752+12 = 0.81266

These results are represented graphically in graphs 5.27 and 5.28, which show

speedup and efficiency versus the number of processors respectively. The speedup
graph, because of the particular scheduling scheme chosen to avoid large dynamic

overheads, increases in discrete steps, from the initial speedup of four for a four
113

processor system to a maximum of 9.752 for twelve processors and greater. The

number of processors used to implement the simulator therefore should be a multiple
of four up to a maximum of twelve, as no other amount of processors is justified (or

is necessary), as can be seen from the discrete speedup ’plateaux’ of the graph. Graph
5.28, which shows the relationship between efficiency and processor numbers, is
derived directly from the speedup graph. It has the appearance of a sawtooth
waveform, with the peaks denoting the localised maximum processor efficiency when
the number of processors is either 4, 8 or 12. The alternating decreases and increases
in the graph are attributed to the discrete levels of speedup which remain constant
over given intervals along the x-axis of the graph. In Chapter seven several
conclusions with regard to the parallel simulator, both pipelined and unpipeliend, are
presented and the overall performance is analysed in the context of an accurate
representation of the actual manipulator dynamics. The following section summarises

the procedures, the propositions and the prominent aspects of this chapter.

1 6 S U M M A R X .

The objective of this chapter is to create an accurate parallelised simulator for the
PUMA 560 robotic manipulator. To achieve this a validated third order model must
first be derived. It is possible to extend the second order model to incorporate the
effects of a first order motor model, the relationship between joint voltage and torque,
and the substantial joint frictional forces, although it must be noted that the effects of
link elasticity and gearing backlash have been ignored apropos in the assumption of
their negligible contribution to the manipulator dynamics. In Section 5.1 the complete
third order model is derived. By matrix representation the model is placed in a third
order state space format, and furthermore by incorporating into this representation the
relationships between joint positions and velocities, joint velocities and accelerations
and, joint accelerations and their derivatives a more complete ninth order state space
model is accomplished.

The robotic model is then incorporated into a complete simulation routine, which
includes the Runge Kutta technique of numerical integration necessary to extrapolate

the lower states from their derivatives. In Section 5.2.3 the complete computational
model is presented. An exploration of the inherent coarse grained parallelism in the
simulator is undertaken in Section 5.2, in a piece-wise fashion Each sub-function

within the simulator is examined individually, and then collectively at a more coarse

grained level. The parallel functional models and overall parallel model are established,

and in Section 5.3 a coding scheme based on these models is presented in Parallel C.
A method of pipelining the simulator over four stages is considered and its effect on

simulation accuracy is investigated. In the following section, Section 5.4, a specifically

Chapter 5: parallel simulation o f the puma 560 arm

114

tailored Transputer topology, necessary to host the parallel simulator software, is
described, and the IMS BOOS TRAM motherboard, which hosts the Transputers, is
introduced to the reader.

Finally, in the last section on simulator analysis, the performance of the simulator

is validated under a series of tests which examine for characteristic PUMA 560
manipulator behaviour in the model dynamics. The overall speedup of the parallel
simulator compared to the sequential implementation is evaluated in Section 5.5.2 for
both the pipelined case and the unpipelined case and from the results a value for the
processor efficiency is derived. The eventuality of reduced availability of processors is
also considered and the effect on efficiency is inferred. The results are graphically
illustrated for both the pipelined and unpipelined simulators in Appendix C (Graphs
5.25 to 5.31). In Chapter seven conclusions based on observations from these graphs
are presented.

Chapter 5: parallel simulation o f the puma 560 arm

115

CHAPTER 6

Development of a Parallel Computed Torque
Algorithm for Robotic Control

Incorporating P-D Feedback

6.1 COMPUTED TORQUE ALGORITHM (FEEDFORWARD rONTROII-E^

Due to the phenemonal growth of robots in the last twenty years there has been
a wealth of techniques and schemes developed for robotic control, often based on
older and/or existing control algorithms. This has facilitated the usage of robots in
demanding and errorphobic applications. One of the major obstacles in controlling a

robot is not to devise a control regime, but to calculate the control signals to move
the robot to the desired positions. There are two aspects to this problem: firstly a path
must be determined to bring the robot end-effector to the desired location in an
acceptable and efficient manner and secondly the voltages to move the manipulator
joints through this chosen trajectory must be calculated. Neither task is trivial.
Trajectory planning is an extensive field of study and involves the optimisation of
several factors, which is classical problem to be found throughout all mathematical
fields of study. The calculation of voltages to move the manipulator to desired
set-points involves the evaluation of the inverse dynamics of the manipulator, which is
recognised as being computationally intensive. The inverse dynamics of a robot are
equations which describe the system input (voltages) in terms of the system outputs
(joint positions, velocities and accelerations), as contrasted with the forward dynamics
which express the robot output parameters in terms of the joint driving-voltage inputs.
This allows the voltages, needed to generate the necessary torque to move the
manipulator to a desired position, to be repetitively calculated, as the trajectory is

traversed.

The Computed Torque feedforward algorithm is as its name suggests a technique
whereby using the inverse dynamical model of the Puma 560 manipulator the torque
required to move the manipulator to a desired position is calculated and applied in a

feedforward fashion directly to the inputs of the robot In practice not only are the
torques calculated but so also are the voltages to generate these torque, using
knowledge of the 100 Watt permanent magnet dc motors used in the joints. Figure 29

shows schematically how this control technique is configured. As there is no feedback

mechanism any errors in the final end-effector position are not compensated for, and

generally this technique requires an accurate model for acceptable performance. Because

most robot models neglect higher order dynamics computed torque without feedback is

116

not usually practical. In Section 6.2 a feedback scheme utilising P-D control for

enhanced performance is introduced.

Desired Position, 4

Chapter 6: a parallel controller for the puma 560

V«
41ft.
4Computed

Torque
PUMA 560 Manipulator

•w ard f o lk

Block diagram representation of Computed Torque feedforward
control of PUMA 560 manipulator

FIGURE 29

6.1.1 Inverse Dynamics of Robotic Manipulator

Derivation of the inverse dynamical model for the Puma 560 robot manipulator is
based on the equations presented in Section 5.1. Recall that the second-order
Euler-Langrangian differential equation of motion for a manipulator with n degrees of

freedom is given by:

n n n
Fj = I DijQi + I a i^i + E E CjjkQjQk + + ^ i ^ i

j=l j = l k=l

□ Eqn 47.
where,

= position of joint i,
Fj = torque acting on joint i,

Iai = actuator inertia of joint i,
Djj = effective coupling of joint i,
Djj = coupling inertia on i joint due to joint j,

Cÿj = centripetal force on i due to joint j,

Cjjk = coriolis force on joint i due to joints j and k,

Gj = gravity loading of joint i,
Hi = coefficient of friction for joint i.

and that the differential equation for the equivalent circuit which models the 100
117

Watt permanent magnet dc motors driving the manipulator joints is:

Chapter 6: a parallel controller for die puma 560

Vi = R { . / { + L j . ¿ ¿ i + kf . df f l i
d t d t a n□ Eqn 48.

The torque produced by a dc motor is proportional to fee armature current of the

dc motor

Fj = k f . i i
□ Eqn 48a.

where Fj is the torque experienced at joint i.
The joint position be can related to the motor position by the following equation :

©i = Nj .qj
□ Eqn 48b.

where Ni is the gearing ratio of joint i.
Substituting equations 48a & 48b into equation 48 gives the following equation for

joint voltage :

Vi = k f . N j . ^ j + C R i F i + L i - j JE i W i

□ Eqn 49.

The q ua n t i t y Fj is the d e r i v a t i v e o f the j o i n t torque and is
given by :

3
Fj = X, (Di j qj + Di jqj) + I a i Q i

j=l

3 3
+ I I (Cijkflj ^k + Ci jkqj 9k + ^i jkQj <ik)

j= l k=l

+ Gi + Hiqi
□ Eqn 50.

The total model can then be written as :

Vj - k i . N i . q i + R i .[Hiqi + ®i

3 . . 3 3 . . t
+ X Di jqj + I a i qi + 1 1 C i j kqjqk +

j = l j = l k=l

118

3
L j . [G{ + X (Dj jqj + D j j q j) + IaiQi

j = l

3 3 . . . t
+ I KCijkqj % + CijkqjQk + Cjjkqjqk) + Hiqi

j=lk=l

□ Eqn 51.

This is the third order model equation for each primary joint of the PUMA 560.
The scheme introduced in Section 5.1.2, whereby the above equation was modified to
matrix form, again is useful in deriving the inverse dynamical model of the robot

manipulator. Recall the following matrix definitions:

LMAT = Diagonal (L , / k t , L a/ k | , Lg/k*)

RMAT = Diagonal(R ^ k } , R2/k*, R3/ k |)

HMAT = Diagonal (H , , H2, H3)

IMAT = Diagonal (I a i , I a 2 , I a3)

KMAT = Diagonal (N,k®, N2k^, N3k<5)

G = Gravi ty Vector(G , , G2, G3)

D = matrix which contains all the effective and coupling inertial terms,
D 1 = matrix which contains the centripetal and coriolis forces experienced by joint 1,
D 2 = matrix which contains the centripetal and coriolis forces experienced by joint 2,
D 3 = matrix which contains the centripetal and coriolis forces experienced by joint 3.

Based on these definitions the following matrix model is derived:

Chapter 6: a parallel controller for the puma 560

M
<

—*

i 1----rs.
. cr
•

v 2 = LMAT. [D + IMAT] . q e

. V3 . . ^9 .

[LMAT.D + RMAT.{ D + IMAT } + HMAT +

' (q4 > q 5’ q 6) - D' q 7
LMAT. (q«i» q 5> q G)-i>2 • q 8

. (q4 > q 5- q 6) - D3 . j . .

119

Chapter 6: a parallel controller for the puma 560

(LMAT.

+ LMAT.

(q7, qe. q 9) .D1
(q 7 , qe, q 9) .D2
(q?, qs . qs) .D3

(q4 . q 5> q e) .D1
(q4 * q 5> q 6) .1)2
(q4 < q s . q 6) .D3

+ RMAT.G

+ RMAT.
(q 4l qs , q e) . D 1
(q4, qs , q e) . D2
(q4, qs , q s) . D 3

+ RMAT.HMAT + KMAT)
q 4
q 5
q e

The following quantities arc defined to simplify the model equation

1. D = LMAT.[D + IMAT]

□ Eqn 52.

□ Eqn 53a.

2 . E(q) =

(LMAT.D + RMAT. { D + IMAT } + HMAT +

(q4 » qs • q 6) - D1 i q 7 ‘
LMAT. (q4- q 5* q 6) - D2 • q 8 +

. (q4 . q 5- q 6) - D3 . j . q 9 .

(LMAT.

+ LMAT.

(q ?, qs , q 9) . D 1 (q 4 , qs , q e i . D 1
(q 7, qe, q 9) . D 2 + RMAT. (q4 , qs , q e) . D 2
(q 7 , qe, q 9) . D 3 (q 4 , qs, q e) . D 3

' (q4 < q 5. qs) ? 1 ' \ q * 1
(q4 - q 5- q 8) P 2 + RMAT.HMAT + KMATJ. q 5
(q4 - q 5- q 6) - D3 . .

+ LMAT.G + RMAT.G

Hence the model equation can be written as :

□ Eqn 53b.

' V, ' ' q 7
V 2 = £• q 8 + E(q)

. V3 . . q 9 .

□ Eqn 53c.

This model relates the voltage on the joint motors to the joint acceleration

derivatives, and is defined as the inverse dynamical model of the PUMA 560 robotic
manipulator, upon which the computed torque algorithm is founded.

120

Chapter 6: a parallel controller for the puma 560

6.12 Sequential Flow Chart of Software Model of Algorithm

The sequential flow of operations for the computed torque software routine is best
illustrated by a flow diagram. Figure 30 shows the sequence of computations necessary
to evaluate the inverse dynamics of the robot manipulator. The function notation

developed in Section 5.3 holds true in this chapter, as do the function definitions,
although these will be described for completeness.

Sequential flow diagram of Computed

torque function { com-tor() j

FIGURE 30

The input to the algorithm is defined as joint positions. These set-points are

derived by trajectory planning. This is necessary as the algorithm always attempts to

generate a signal to reach the desired end-effector position in one step and without

intermediate points the algorithm attempts to reach the final location in one sample

period, which in general is not possible. The set-points along the path are stored in a
data file, from which the computed torque function reads values from specific data

121

fields. The first function executed is setup-matO- This function is basically the
initialising and assignment routine needed to establish the matrices and vectors used in

the inverse dynamical model evaluation. Following this function is the define-d-barO
routine. This involves the evaluation of equation 53a. Likewise the next function,

define-pbarO, involves implementing equation 53b. The ensuing three functions,

var-assignO, mat-by-vecO and vector-addO, are a simple variable assignment routine, a
matrix by vector multiplication and an elementary vector addition respectively. These
latter three functions constitute only a small portion of the overall function execution
time, as will be seen in Section 6.6. The outputs of the function are the voltages
required to generate the joint torques to achieve the new set-point positions. These
signals are made available to the actual robot manipulator, or are applied to the model
during controller evaluation.

6.1.3 Flow Diagram Exhibiting Medium/Coarse Grain Parallelism

Establishing the overall parallelism inherent in the computed torque controller is
best done by examining each individual sub-function for parallelism separately, and
then, by inspection, determining whether complete sub-functions may be run
concurrently. It is found that it is in fact possible to decompose two of the more
significant functions into parallel computational paths. The first function, setup-matO, is
practically identical to that described in Section 5.2, and may be decomposed as
shown in Figure 31.

This decomposition is based on the separation of calculations in a joint-wise
fashion. The maximum parallelism reflects this and is equal to three. The various tasks
shown in the schematic diagram for setup-matO are explained completely in Section
5.2 and it is deemed not necessary to repeat these explanations. This parallel model
may be incorporated into the overall parallelised algorithm. Of die remaining functions
define-p-barO may be decomposed into two processes, of almost equal execution times,
thus giving a localised speedup of almost two. The two sub-processes are defined to
calculate Ei(q) and Ei(q). The expressions for and R2 are given as follows:

E i(q) =

(LMAT.D + RMAT.{ D + IMAT } + HMAT +

Chapter 6: a parallel controller for the puma 560

(q 4 . q 5 . q 6) - D ’ 1 q 7
LMAT. (q 4 > q 5 - q 6) - D2 • q fl

(q 4 . q 5 > q 6) - D3 j . <*9 .

+ LMAT.G + RMAT.G

□ Eqn 54.

122

Ei(q) =

Chapter 6: a parallel controller for the puma 560

(LMAT.

+ LMAT.

(q?, qs, qs) . D 1
(Q7, qs, qs) D 2
(q7, qe. qs) . D 3

(q<. q5- q6) D 1

(q4. q5. q6) D 2

(q4. q5. q6) . D 3

+ RMAT.
(q 4 , q s . q s) . D ’
(q « , q 5 , q e) . D 2
(q 4 , q s , q 6 > . D 3

+ RMAT.HMAT + KMAT].
q 4
q5
q6

□ Eqn 55.

Block diagram illustration of parallel form of function set-up-m at().

FIGURE 31

The complete parallel software model may be represented in block diagram form
as shown in Figure 32.

123

Chapter 6: a parallel controller for the puma 560

Evaluate derivative of
eoriolis k centripetal
forces for Joint 1,

ddl23[3][3)
 , ■ -----------

Evaluate derivative of
coriolis k centripetal
forces for Joint 2.

dd223[3][3]

Evaluate derivative of
eoriolis k centripetal
forces for Joint 3,

dd323[3}[3]
I ~

X

define-d-bar{} define-pbail()
1

define-pbar2()

vxr-assL

mal-by-vecO

vectojr-add()

“ I

Parallel Decomposition of computed torque function, com-tor()

FIGURE 32

124

Once again the maximum parallelism is found to be three. This creates an upper
bound on speedup of three, although it would be impossible to achieve this due to the
presence of other computational paths of finite execution time, with a parallelism

which is less than three. The define-d-barO, define-pbarlO and define-pbar20 functions
may be executed concurrently, as illustrated. It will be found in Section 6.6 during the
speedup analysis that the processor executing the define-d-barO function spends
considerable time awaiting the other two computational paths to complete and this
contributes to overall processor inefficiency. The evaluation of speedup is based on this
model of execution and the results of timing measurements.

6.2 PD FEEDBACK CONTROL

As mentioned in Section 6.1 control of the Puma 560 manipulator solely by the
computed torque algorithm is deficient in many respects. An error occurring in joint

position is not compensated for in this method, and for applications which have
limited workspace environments this could result in damage due to mispositioning of
the robot arm on the assumption that the set-point has been achieved. Furthermore,

errors occurring in end-effector position every sample period would accumulate as time
progressed, since no feedback signal is available to indicate the misalignment in
position. There is also the problem of non-linearity in the robot model. This requires
varying degrees of compensation, due to inaccuracies in the inverse dynamical model,
depending on the location, velocity and acceleration of the joints.

These problems anay be overcome by incorporating a feedback compensation
mechanism which adds to the feedforward control signal a compensation term which is
based on the error and the behaviour of the error between the desired set-points and
the actual joint locations and velocities. The feedback scheme used is PD control.

The PD controller behaves in the same manner as a phase lead compensator. A
phase lead compensator is used to improve the stability margins of a system. It also
increases system bandwidth, thus giving the system a faster speed of response. The

drawback of this technique is naturally the likelihood of increased high-frequency noise
problems due to the increased high frequency gains. In general, if the generation of a
system output depends on the rate of change of the actuating signal then that system
is said to possess derivative error compensation. Comparably, if the output generation

depends on a scalar times the actuator signal then the system employs proportional

control. Combination of these two techniques provides the basis for PD control or

proportional plus derivative control. The general forms of the proportional and
derivative terms are as shown below, respectively:

Chapter 6: a parallel controller fo r the puma 560

125

Cp = Kp.en
Cd = K(j(en-en. ,)/h

Where,
Cp'. Proportional control term
C(j: Differential control term
Kp! a constant scaling term for proportional control

K̂ j: a constant scaling term for derivative control
e^ the error signal at sample time n
h : the sample time.

The following explains in detail the actual algorithm used, and how the feedback

terms are calculated. It also describes how each joint is modeled as a linear SISO
system and is continuously parameterised by an identification routine, in order to make

the PD feedback mechanism more effective.

6.2.1 The P-D Algorithm & Recursive Least Squares Identification

Before examining the PD feedback controller, there are two other important

aspects to be considered: firstly, the algorithm is used to control a process represented
by a linear model preferably in transfer function form, so it will be necessary to
specify a linearisation scheme for the Puma 560 manipulator dynamics so that each
joint may be represented by a linear approximation during each sample period.
Secondly, assuming the form of the linear model has been established, an identification

routine is needed to recursively update the parameters of this model as the manipulator
changes position and loading effects, forces, etc. vary.

To obtain a linear model for each joint one must once again consider the

equations governing the behaviour of the joints.

Taking the torque equation (Eqn 47),

n n n
Fj = X Ojjqj + I a i Q i + E £ CijkQjQk + Gj + Hjqj

j=l j= l k=l

Chapter 6: a parallel controller fo r the puma 560

if the coupling and gravity terms are ignored then :

Fi = 1 a iq i + Hiqi
□ Eqn 56.

126

and,

= I a iQi + ^ iq i
□ Eqn 57.

Substituting equations 56 and 57 into equation 48 gives :

V i = M I a i q i / k j + (R i l a i + M ^ i } - Q i^ i

+ (k f . Ni . kJ + RiHi] . 4 i / k j

□ Eqn 58.

This is a linear model for each of three primary joints of the PUMA 560 robot
It ignores the nonlinear terms which are present in the comprehensive model, so there

is
no coupling or gravity terms present It can also be represented by the following

transfer function :

Q i i l = ________ b_________
V(s) s 3 + a , . s 2 + a 2.s

where,
q = joint position,
v = armature voltage,

b = kj / (L i . I ai)

a, = (Lj .Hj + R i - 1a i) / (L j . I a j)

a 2 = (Rj-Hi + k f . N i . k [) / (L i . I a i)

Computing the coefficients of the transfer function results in the following three
models,

Linear model for Joint 1:

QOd = ________ 687 ,1 058__________
V(s) s 3 + 333 . 46s 2 + 11219.45s

Chapter 6: a parallel controller for the puma 560

127

Chapter 6: a parallel controller for the puma 560

Linear model for Joint 2:

Q U I = _______225 .9552_________
V(s) s 3 + 333.47s2 + 6380.87s

Linear model for Joint 3:

Q U I = _________ 915.7552________
V(s) S3 + 333.58s2 + 12853.34s

These transfer function models, which have constant coefficients values, are
sufficient for use with simple controllers, but unfortunately due to the nature of robotic
movement their accuracy varies, so it is necessary to continuously perform parameter
estimation on the models in anticipation of small coefficient changes. This ensures that
the errors in the linear model are minimised and that the compensation signals
generated by the PD algorithm are made more accurate. The identification routine

employed is the recursive least squares algorithm.

In many practical cases of identification the observations are obtained sequentially

and it is desirable to obtain least-squares estimates sequentially as N, the number of
observations, increases. The process of obtaining estimates sequentially is called
Recursive identification. Recursive identification is apt to show an improvement in the
parameter estimates as N is increased. In obtaining a recursive formula the result
obtained for N observations is used to calculate the estimate for N+l observations. In
general the equation representing the estimation procedure is given by [97]:

y(N) = C(N)x(N) + e(N)

Where,

y(N): The vec tor of outputs at time N

C(N) =

y (n - l) . . . y(0) u(n) . . . u(0)
y(n) . . . y (1) u(n+l) . . . u (l)

y(N- l) y(N-n) u(N) u(N-n)
e(N): The e r r o r vector

Assuming the Nth estimate is available then the (n+l)st estimate is formulated as
follows:

128

[$! „] ■ [cS£,) i *<»+»+ (: & ,]

Where,

c(N +l) = [y (N) :y(N-1): . . . : y (N- n + l) : u (N+ l) : u (N) : . . . :u(N-n+l)]

The optimal value of x(N+l) may be extracted from this equation to yield (refer to
[97] for a complete derivation):

r 1
x (N + l) = [C * (N) : c * (N + l)] r C(N) i [C * (N) : c * (N + l)] r y(N) l

1 c(N+l) J I y(N+l)J

Chapter 6: a parallel controller for the puma 560

By using the elementary matrix inversion lemma

(A+BD)'1 = A-i-A^Bfl+DA-iB^DA-1

and by equating terms this equation may be simplified further to give:

x(N + l) = [C * (N) C (N)] - 1 -

f ^ f N ^ C f N ^ l ^ c ^ f N + n c f N + l) [C*(N) C(N) 1‘ 1
1-lwnj.i '»rrVNnrvw'*1+c(N+l) [C (N)C(N)]*1c (N + l) [C * (N) y (N) + c * (N + l) y (N + l)]

Based on the previous estimation evaluation, the equation for x(N) is:

x(N)= [C*(N)C(N)]‘1C*(N)y(N)

Before combining this equation with the equation for x(N+l), to obtain a
recursive relationship between estimates, the following definition is made. Let:

r c* (N) C(N) Mc*(N+n____
K(N+1) = l+c(N+l)[C*(N)C(N) J^c^ i N+l)

The equation for x(N+l) now becomes:

x(N+l) = x(N) + K(N+l) [y(N+l) -c(N+l)x(N)]

This is the desired recursive formula. It provides updated estimates provided one
or more observations are available. The present estimate is obtained by adding to the

129

last estimate a correction term, which is proportional to the difference between the

observed output, y(N+l), and the estimated output, c(N+l)x(N).

The PD algorithm is supplied with a linear model for each joint from the

recursive least squares routine, in the form:

b ' z t C
T(z) = a z 2 + bz + c

Based on this model a compensation signal is calculated. The generalised form of
the algorithm is defined as follows:

if b 2 - 4ac < 0
polel = -b/2
pole2 = -b/2

Else
polel = -b-/(bM ac)
pole2 - -b+Xb2-4ac)

If pole2 > 1
pole2 = 1
polel = -b+1

Ky.T__
K<j = (b’+c’)

K^.(l-polel)
Kp = h.polel 1

Qo — (Kp.h+K^j)/h

Qi =Kd/h

AV = Q qCjj - Q ^ . ,

= Kp^n + Kd(en'en-1V*1

The final control signal is based on both the values of the present and the

previous error. Initially the system poles are calculated (i.e. the values which set the
denominator of T(z) to zero) and a test is performed to determined whether these are

complex or real. If complex the imaginary part is neglected and if real they are left

unchanged. The next step is to ensure that the model is stable, by checking whether
130

Chapter 6: a parallel controller for die puma 560

the magnitudes of the poles are greater than unity, and setting them to unity if the
check proves positive. The next task is to evaluate the error-proportional feedback term
and the error-derivative feedback term. This is achieved by the equations shown. The

proportional term, Kp, and the derivative term, K^, are multiplied by the error are the

error differential over one sample period respectively, to give the final compensation
voltage, AV. This voltage is added to the voltage signal being applied to the actual
robot manipulator joints, to account for the error in end-effector position. This

procedure is applied to the three joint linear models, and as will be seen in the next
section, Section 6.2.2, the algorithm can be executed separately for each joint.

6.2.2 Coarse Grain Decomposition of Algorithm

The PD algorithm is suitable for both coarse grain and medium grain
decomposition. The decomposition of the algorithm in a coarse grain manner will first

be considered. As a consequence of the decoupling of the three joints into three
separate linear models, it is also possible to generate control signals separately for
each joint during each sample period. The PD algorithm consists effectively of three
separate controllers, one for each joint, and their calculations are completely uncoupled.
Figure 33 illustrates this point more clearly by showing the three concurrent
computational paths, and their identical calculations.

Aside from the three control signal computations there are very few overheads in
the algorithm, thus ensuring an average parallelism in the algorithm of almost three, as
will be seen in Section 6.6 when examining the algorithmic speedup. The use of
uncoupled linear models to represent the joints introduces errors due to modelling
inaccuracies. These errors are reflected in marginal mis-positioning of the joints, but
this produces an increased output error which drives the PD routine. The derivative
term is then adjusted accordingly, and also prevents overshoot in the response.
Likewise, the proportional term in the PD control evaluation scheme responds in a
manner which acknowledges the error magnitude, and proportional control provides the
action necessary to reduce steady-state errors.

As a direct result of the need for three separate linear models there are also

three separate identification routines to needed to update the models. Figure 34
demonstrates the parallel decomposition of the identification routine.

Chapter 6: a parallel controller for the puma 560

131

Chapter 6: a parallel controller for the puma 560

Joint 1

If é -4 a c < 0

polel 1 = - b / 2

poiel 2= - b / 2

,!se
2

polel 1 = -b -V (b -4 a c)

pole12=-b+v(b -¿ a c)

if poie 12> 1

pole 12=1

pole 11 = -b + 1

Kd1= (b '+c')
^(l-polell)

Kpi= " (h.pole 11)

Q,0= (Kp1.h+Kd,) /h

Q n = K di/h_________

:o V un *n-1
= <o1en+ Kdl/K® n-en-(J

Joint 2

If fc?-4ac<0

pole21 = - b / 2

pole22= - b / 2

□se

p o le 2 1 = -b -v (b -4 a c)

D o le22= -b + v(b -4 a c)

if pote22>T

pole22=1

pole21 = -b + 1

Kv. T
(b+FT
KjT(l-poie2l)

Kp2= 'h.BoieUl]

Q20= (Ko2.h+Kd2)/h

021= ^ 2 A 1________

AV = Q20en-O2ie'1_1
= Kp2*n+ rTen - l)

NOTE:

m . _________
Joint 3

If tf -4 a c < 0

pole31# - b / 2

pole32= - b / 2

Else
2

pole31 = - b - v (b -4 a c)

p o le 32=-b +v (b -4 a c)

po(e32>î

pole32=1

po le31=-b+1

Kv. T
K jT— (b +C)

?Cf̂ (1 — pole31)
Kp3= (h .po ieó l)

0 30= (Kp3.h+Kd3)/h

031= Kd3/h________

= KD3, n+

The linear model for each joint is given by the following
2nd order transfer function:

b 'z + c'

a z 2+ bz + c

Flowchart illustration of the pd controller showing parallelism inherent in calculations.

FIGURE 33

The first task is to initialise the necessary variables, parameters and matrices.

Secondly, a test is performed to see if the routine is making its first run. If so then
the linear models must be given initial estimates, and if not then this is not necessary.

The computational path of the function can then be split three ways, and each of

these paths estimates a new linear model parameter set for each of the joints. The

132 I

three identification routines employ the recursive least squares method and require past
estimates, a system input vector and a system output vector to optimally estimate the
current system transfer function parameters.

Chapter 6: a parallel controller for the puma 560

Parallel decomposition of Recursive Least Squares routine, rls().

FIGURE 34

62.3 Medium Grain Parallelism

The larger grain parallelism which is found in the PD algorithm is due to the
fact that the feedback control of the three joints results in three separate PD
controllers. In a sense the parallelism is a result of the system design rather than
actual parallelism in the algorithm itself. Examining the algorithm however shows that
there is a considerable degree of medium grain parallelism This parallelism, which
manifests itself as a concurrency among the simple arithmetic instructions, is best
implemented on an medium grained array architecture. Implanentation on any larger

grain parallel architecture would be of little benefit due to mismatch in granularity
between process and processor. In Section 6.5 this parallelism is examined more

closely and a medium grain parallel architecture is proposed.

133

6.3 COMBINING FEEDFORWARD AND FEEDBACK CONTROL

Chapter 6: a parallel controller for die puma 560

The preceding sections have separately examined both the feedforward and
feedback paths and their effectiveness. It now remains to describe the combination of
both these to form a complete controller for the Puma 560 robot manipulator. Figure
35 illustrates the complete controller in block diagram fashion.

The feedforward path consists of the computed torque algorithm wliich computes
a control signal based on the inverse dynamical model of the Puma 560 manipulator,
as described in Section 6.1.1. The user initially specifies the desired final destination
of the manipulator end-effector. The computed torque algorithm receives an input from
a trajectory planning scheme, at each sample period, which defines the new
end-effector position. This position serves as input to the inverse dynamical
calculations, and the solution of these equations yields the torque necessary to achieve

this position in one sample period. The algorithm also calculates the voltage needed to
generate the torque required. This voltage is applied to the robot joints, via specialised

hardware, or to the robot simulator in the case of controller performance appraisal.

Desired Position, 4

9t/uUxvJtr folk

Block diagram representation of Computed Torque feedforward
and PD feedback control of PUMA 560 manipulator

FIGURE 35

Naturally enough, inadequacies in the inverse model dynamics manifest themselves

as misalignment of the joints to the desired positions. This mismatch in actual position

and desired position may be represented by an error signal, A0. A0 is used to drive

134

the PD controller in a feedback loop. The PD controller, as described in Section 6.2,
is designed to account for the errors typical of modelling inaccuracies, such as
positional overshoot of the end-effector. In order for the PD algorithm to calculate a
satisfactory compensation signal it must posses an accurate linear model of the

system(s) being controlled, in this case the three joints. A recursive least squares
estimation is performed on the three joints every sample period and the linear model
is supplied to the PD controller. The compensation voltage is then superimposed, or
added, to the actual voltage being generated by the feedforward controller. This
assumes linearity, and is valid if the control signal updates are applied every sample
period and if the sample periods are short enough so that the manipulator is
adequately represented by the linear model, which is updated every sample period. For
the purposes of controller appraisal the validated simulator for the Puma 560 robot
manipulator may be used, so that the full range of inputs may be applied without the
possibility of physical damage to the robot.

6.4 SOFTWARE MODEL OF PARALLELISED FEEDBACK

&_ FEEDFORW ARD -CO NTROLLER

The parallel C parallel programming language was introduced in Chapter 5,
Section 5.3 and the various C language extension constructs, needed to specify
concurrency, were also examined. It is not necessary therefore to repeat this
introduction to this language (refer to Appendix B for further reference). However, for
completeness and clarity, recall the following language extensions.

The channel datatype:

Channel chanl,chan2,chan3;

The Transputer link interface:

channel *LinkOOut = LENKOUT;

The system timer

mainO

{
int t;

t = timer

}

Chapter 6: a parallel controller for the puma 560

135

Chapter 6: a parallel controller for àie puma 560

The par construct:

par{

statementl;
statement;

statement3;

The alt construct:

alt{
guard guardexpressionl:

code;
guard guardexpression2:

code;
guard guardexpression3:

code;

Some of these constructs are used in the coding scheme for the parallel versions
of both the computed torque feedforward and PD feedback controllers.

6.4.1 Parallel C Implementation of Computed Torque Algorithm

The flowchart of the computed torque algorithm is given in Section 6.1.2 (Figure
30). The functions are given in sequential format and the notation developed in
Section 5.3 is maintained. The first function is the setup-mat function, which may be
decomposed quite significantly into parallel form. Figure 31, Section 6.1.2 demonstrates
the parallelism in the function. The sequential C programming of the function

setup-matO is given in simplified form as:

set-up-mat(xl,x2,x3,x4,x5,x6) /*system states*/

define-constants(...);
par-derivative(...);
eval-d(...);
eval-dll(...);

f* Define sine and cosine constants*/
/* Set up parameter derivatives */
/* Evaluate dl, d2, d3 */
/* Evaluate dll[3][3], inertial matrix */

eval-dl23(...); /* Evaluate coriolis and centripetal */
/* forces for joint 1 */

eval-d223(...); /* Evaluate coriolis and centripetal */
f* forces for joint 2 */

136

Chapter 6: a parallel controller for die puma 560

eval-d323(...); /*
f*

eval-ddl(...); /*

eval-dd2(.„); I*

eval-dd3(...); I*

eval-ddll(...); /*
/*

eval-ddl23(...); /*
/*

eval-dd223(...); /*
/*

eval-dd323(...); /*
/*

f* Evaluate derivative of dl */

/* Evaluate derivative of d2 */

/* Evaluate derivative of d3 */

}

The simplified sub-functions given above represent blocks of coding in the actual
programme. Based on Figure 31 the processes can be reorganised in parallel form, and
the software rewritten to accommodate this specification:

setup-mat(xl,x2,x3,x4,x5,x6
{
seq{

define-constants(...);
par-derivative(...);

eval-d(...);
eval-dll(...);

par{
seq{

eval-dl23(...);

seq{

eval-ddl(...)
}

eval-d223(...);

eval-dd2(„.)
}

seq{
eval-d323(...);

eval-dd3(...)
}

) /* First 6 system states*/

/* Define sine and cosine constants*/
/* Set up parameter derivatives */

/* Evaluate dl, d2, d3 */
/* Evaluate dll[3][3], inertial matrix */

/* Evaluate coriolis and centripetal */
/* forces for joint 1 */
/* Evaluate derivative of dl */

/* Evaluate coriolis and centripetal */
/* forces for joint 2 */
/* Evaluate derivative of dl */

/* Evaluate coriolis and centripetal */
/* forces for joint 3 */
/* Evaluate derivative of dl */

par{

eval-dd 11 [3] [3]

eval-ddl23(...);

eval-dd223(...);

/* Evaluate derivative of inertial */
f* coupling matrix */

/* Evaluate derivative of coriolis and */
/* centripetal forces on joint 1 ddl23[3][3]*/
/* Evaluate derivative of coriolis and */
/* centripetal forces on joint 2 d223[3][3]*/

137

eval-dd323(...); /* Evaluate derivative of coriolis and */
f* centripetal forces on joint 3 d323[3][3]*/

}
1

}

In this listing the parallelism is made explicit, ami reflects the parallelism
determined by inspection in Section 6.1.3. The next step is to develop a parallel
software model for the complete feedforward controller. The readers attention is drawn
to Figure 30 in Section 6.1.3 which shows the sequential model for the computed
torque algorithm and Figure 32, again in Section 6.1.3, which illustrates clearly the
concurrency to be found in the algorithm. The sequential coding for the algorithm is
given in generalised form as:

com-torO
{

setup-matO;
define-d-barO;
define-pbarO;
var-assignO;
mat-by-vecO;
vector-addO;

}

Based on Figure 32 this can be coded in parallel C, to exploit the inherent
parallelism, as follows:

Chapter 6: a parallel controller for the puma 560

com-torO
{
seq{

define-constants(...);
par-derivative(...);

eval-d(...);
eval-dll(...);

par{
seq{

eval-dl23(...);

eval-ddl(...)
}

seq{
eval-d223(...);

eval-dd2(...)
}

seq{
eval-d323(...);

eval-dd3(...)
}

}

eval-dd 11 [3] [3]

I* Define sine and cosine constants*/
/* Set up parameter derivatives */

/* Evaluate dl, d2, d3 */
f* Evaluate dll[3][3], inertial matrix */

/* Evaluate coriolis and centripetal */
/* forces for joint 1 */
/* Evaluate derivative of dl */

/* Evaluate coriolis and centripetal */
/* forces for joint 2 */
/* Evaluate derivative of dl */

/* Evaluate coriolis and centripetal */
f* forces for joint 3 */
/* Evaluate derivative of dl */

/* Evaluate derivative of inertial */
/* coupling matrix */

138

Chapter 6: a parallel controller for the puma 560

}

par{
eval-ddl23(...); /* Evaluate derivative of coriolis and */

I* centripetal forces on joint 1 ddl23[3][3]*/
eval-dd223(...); /* Evaluate derivative of coriolis and */

/* centripetal forces on joint 2 d223[3][3]*/
eval-dd323(...); /* Evaluate derivative of coriolis and */

f* centripetal forces on joint 3 d323[3][3]*/
}

par{
define-d-barO;
define-pbarlO;
define-pbar20;

}
var-assignO;
mat-by-vecO;
vector-addO:

}

The functions given above may be broken down into more elementary functions,
but there are no further traces of parallelism, other than localised medium grain
parallelism such as matrix operations and vector algebra. In Section 6.6 the execution
time for the functions are listed. The performance of the parallel controller,
incorporating both feedforward and feedback, is evaluated in terms of speedup over the
sequential case, processor efficiency and other performance indices.

6.4.2 Parallel C Implementation of the PD Feedback Controller

The PD controller decomposes effectively into three computational paths. Section
6.2 illustrates this clearly and specifies the individual algorithmic computations. The
sequential software model in generalised C coding is given as:

pd-controlO
{

rlsO; I* Perform identification on jointl, */
f* joint2 and joint3 sequentially. */

/*** Linear models for each joint are now available ***/

/** Joint 1, calculate compensation feedback voltage **/
eval-poleO; I* Evaluate poles of linear model */
pole-testO; /* Test for stability */
eval-kdO; I* Evaluate derivative constant V
eval-kpO; I* Evaluate proportional constant */
eval-derivative-controlO; I* Calculate differential */

f* control term */
eval-proportional-controlO; /* Calculate proportional */

f* control term */
delta-voltageO; /* Derive compensation voltage */

/** Joint 2, calculate compensation feedback voltage **/
eval-poleO; !* Evaluate poles of linear model */

139

Chapter 6: a parallel controller fo r the puma 560

pole-testO; /* Test for stability */
eval-kdO; J* Evaluate derivative constant */
eval-kpO; f* Evaluate proportional constant */
eval-derivative-controlO; /* Calculate differential */

f* control term */
eval-proportional-controlO; /* Calculate proportional */

[* control term */
delta-voltageO; /* Derive compensation voltage */

/** Joint 3, calculate compensation feedback voltage **/
eval-poleO; f* Evaluate poles of linear model */
pole-testO; /* Test for stability */
eval-kdO; /* Evaluate derivative constant */
eval-kpO; I* Evaluate proportional constant */
eval-derivative-controlO; /* Calculate differential */

I* control term */
eval-proportional-controlO; /* Calculate proportional */

/* control term */
delta-voltageO; /* Derive compensation voltage */

}

The initial task is to call the identification function, rlsO, so as to obtain a linear
model for each joint. The recursive least squares function performs a least squares
estimation of the parameters of the three linear models in sequence, and the C code is

quite straightforward:

rlsO
{

}

initO;
first-runO;
fh-lsO;
fn-lsO;
fo-isO;

f* Identify joint 1 */
f* Identify joint 2 */
f* Identify joint 3 */

The initialisation of variables and the general linear model is performed by the
function initO. When the rlsO routine is run for the first time, there are no past
estimates upon which to base the present estimates, so approximations are used. The
first-runO function checks to see if it is a first run and if so generates approximations
for the estimates. A least squares routine is called for each of the three joints. This
function is denoted as fii-lsO in the code. The generalised C code for the rlsO
function, which may be modified to explicitly declare concurrency, in parallel C is as

follows:

rlsO

{
seq{

initO;

first-runO;
par{

140

£n-lsO; /* Identify joint 1 */
fii-lsO; I* Identify joint 2 */
fn-lsO; /* Identify joint 3 */

}
)

}

Following the call to risO in the function pd-controlO are the three PD
controllers for each joint in sequence. The eval-poleO function simply evaluates the
poles, or roots of the transfer function denominator, of the linearised system. This is

followed by pole-testO, which examines the poles to determine whether the linear
model represents a stable or unstable system, and adjust the pole values accordingly.

The two ensuing functions, eval-kdO and eval-kpO, are as their names suggest
evaluation routines for Kj and Kp. Kd and Kp are the two controller constants for
derivative and proportional control respectively, and determine the weighted response of
each of the two types of control response. Having computed the two control constants
it is then possible to evaluate the derivative and proportional control terms, and this is

achieved by calls to the functions eval-derivative-contiolO and
eval-proportional-controlO. On completion of these two functions the compensation
voltage which is fed back into the robotic manipulator joint actuator inputs is

calculated by the function delta-voltageO. This whole routine, which is completed for
each of the three joints, is reflected in the parallelised coding of pd-controlO:

pd-controlO
{

seq{
initO;
first-nmO;
par{

fii-lsO;
fii-lsO;
fii-lsO;

}

/*** Linear models for each joint are now available ***/

par{
seq{

/** Joint 1, calculate compensation feedback voltage **/
eval-poleO; /* Evaluate poles of linear model */
pole-testO; /* Test for stability */
eval-kdO; I* Evaluate derivative constant */
eval-kpO; /* Evaluate proportional constant */
eval-derivative-contiolO; I* Calculate differential

*/
I* control term */

eval-proportional-controlO; /* Calculate proportional
*/

I* control term */

Chapter 6: a parallel controller for the puma 560

141

Chapter 6: a parallel controller for the puma 560

delta-voltageQ; /* Derive compensation voltage

*/

*/

*/

*/

*/

*/

}
seq{

/** Joint 2, calculate compensation feedback voltage **/
eval-poleO; /* Evaluate poles of linear model
pole-testO; /* Test for stability
eval-kdO; I* Evaluate derivative constant
eval-kpO; /* Evaluate proportional constant */

*/

eval-derivative-controlO;

eval-proportional-controlO;

delta-voltageQ;

f* Calculate differential

f* control term */
f* Calculate proportional

f* control term */
/* Derive compensation voltage

}
seq{

[** Joint 3, calculate compensation feedback voltage **/
eval-poleO; f* Evaluate poles of linear model
pole-testO; /* Test for stability
eval-kdO; /* Evaluate derivative constant
eval-kpO; I* Evaluate proportional constant */

*/

eval-derivative-controlO; !* Calculate differential

I* control term *1
eval-proportional-controlO; f* Calculate proportional

/* control term *1
delta-voltageQ; /* Derive compensation voltage

This coding specifies that the identification routines on each of the joints should

be executed concurrently, and so also should the three PD feedback control signal
evaluation routines. In Section 6.5 it will be shown that the three PD controllers may
in fact be implemented on a finer grain hardware topology than a Transputer known
as the PACE chip. The implications for the generalised software scheme given above
are not significant. The PD control of each joint is still performed in parallel and
evocation of the controller can still be represented by a call to one function, instead
of the several functions above, albeit the coding of the function will be very different
to accommodate the interface between the Transputer and the PACE architecture. This
will be discussed in more detail in Section 6.5. The maximum parallelism of the
algorithm is seen to be three, as a direct consequence of three joints being controlled.
In Section 6.6 during analysis of the performance of the parallel controller the average
parallelism, which is equivalent to the speedup, will be calculated.

142

There are effectively three main functions within the complete
feedforward/feedback controller the computed torque algorithm, the recursive least
squares estimation routine and the PD controller. In the sequential model these three
function are executed in sequence every sample period, thus ensuring that a control
signal is generated every sample period. Figure 36a illustrates the sequence of
(execution of the overall controller, with the parallel simulator used in proxy of the
actual robot.

Chapter 6: a parallel controller for the puma 560

6.4.3 Software Model of Complete Controller

Computed Torque Algorithm

Recursive Least Squares

Routine.

Proportional-Differential

Controller calculation.

Control signal applied to

PUliA 560 simulator, as a

voltage input

Sequential model of Computed torque controller incorporating pd feedback

FIGURE 36a

The overall controller is contained in a software loop which continues until the

run time has expired. The purpose of a controller is to regulate and direct the robotic

manipulator along a fixed trajectory to a desired end position The main object of a

control algorithm is to generate control signals which achieve this as accurately as is

143

possible, under various restrictions. Feedback is often used to reduce the error and add
to the stability of the controlled system by making it closed loop. In this instance the

user determines the desired end position and a path planning algorithm determines the
trajectory of the manipulator, accommodating any special considerations which may
exist such as obstacles or limited workspace, and stores the path in a data file. The
computed torque algorithm then reads data from this file and calculates the voltages

necessary at each step.

The rlsO function performs an identification on the robot model, and produces

three linear models, which it supplies to the pd-controlO routine. This routine, as
shown in Section 6.2, calculates voltages to compensate for the error and rate of
change of error in the end-effector’s position. The computed torque algorithm can be
run independently of the risO routine and the PD controller, thus it may be specified
in the software to run concurrently with these two functions. The PD controller must
await the outcome of the identification routine before it can proceed to calculate the
compensatory control voltages. The PD controller and the identification routine must be
executed in sequence. It is possible to run the identification routine in parallel with
the PD controller, by supplying the controller with the most recently estimated linear
models (i.e. those calculated in the previous sample period). There would be a need to
investigate the degradation in performance as a result of doing this. Fortunately it is
not necessary to implement this proposal since the combined execution time of the
identification routine and the PD controller evaluation function is shorter than that of

the more computationally intensive computed torque algorithm. The critical path is

therefore unaffected by the running of the functions risO and pd-controlO in parallel
and thus the speedup also remains unaffected. As a result the two functions remain in
sequential execution order. The software for achieving the overall controller is written

in general form as:

mainO

seq{

par{
seq{

define-constants(...);
par-derivative(...);

eval-d(.„);
eval-d 11 (...);

par{
seq{

eval-dl23(...);

Chapter 6: a parallel controller for the puma 560

/* Define sine and cosine constants*/
/* Set up parameter derivatives */

/* Evaluate dl, d2, d3 */
/* Evaluate dll[3][3], inertial matrix */

/* Evaluate coriolis and centripetal */
/* forces for joint 1 */

144

Chapter 6: a parallel controller for the puma 560

eval-ddl(„.)
}

seq{
eval-d223(...);

eval-dd2(„.)
}

seq{
eval-d323(...);

eval-dd3(...)
}

}

eval-ddl 1 [3][3]

par{
eval-ddl23(...);

eval-dd223(...);

eval-dd323(...);

)

par{
define-d-barO;
define-pbarlO;
define-pbar20;

}
var-assignO;
mat-by-vecO;
vector-addO;

}
seq{

seq{
initO;
first-runO;
par{

fn-lsO;
fo-lsO;
fri-lsO;

}

/*** Linear models for each joint are now available ***/

par{
seq{

/** Joint 1, calculate compensation feedback voltage **/
eval-poleO; f* Evaluate poles of linear model */
pole-testO; /* Test for stability */
eval-kdO; /* Evaluate derivative constant */
eval-kpO; /* Evaluate proportional constant */
eval-derivative-controlO; /* Calculate differential*/

/* control term */
eval-proportional-controlO; /* Calculate proportional*/

I* control term */
delta-voltageO; /* Derive compensation voltage*/

}

/* Evaluate derivative of dl */

/* Evaluate coriolis and centripetal */
/* forces for joint 2 */
/* Evaluate derivative of dl */

/* Evaluate coriolis and centripetal */
/* forces for joint 3 */
/* Evaluate derivative of dl */

/* Evaluate derivative of inertial */
/* coupling matrix */

/* Evaluate derivative of coriolis and */
f* centripetal forces on joint 1 ddl23[3][3]*/
/* Evaluate derivative of coriolis and */
I* centripetal forces on joint 2 d223[3][3]*/
/* Evaluate derivative of coriolis and */
/* centripetal forces on joint 3 d323[3][3]*/

145

seq{
/** Joint 2, calculate compensation feedback voltage **/
eval-poleO; I* Evaluate poles of linear model */
pole-testO; /* Test for stability */
eval-kdO; /* Evaluate derivative constant */
eval-kpO; /* Evaluate proportional constant */
eval-derivative-controlO; I* Calculate differential*/

/* control term */
eval-proportional-controlO; /* Calculate proportional*/

/* control term */
delta-voltageO; /* Derive compensation voltage*/

}
seq{

/** Joint 3, calculate compensation feedback voltage **/
eval-poleO; /* Evaluate poles of linear model */
pole-testO; /* Test for stability */
eval-kdO; /* Evaluate derivative constant */
eval-kpO; /* Evaluate proportional constant */
eval-derivative-controlO; /* Calculate differential*/

/* control term */
eval-proportional-controlO; /* Calculate proportional*/

/* control term */
delta-voltageO; /* Derive compensation voltage*/

}
}

}
apply-control-si gnalO;

} while(time<run-time);
}

}
}

The function apply-control-signalO is a fictitious function use to represent the
process of relaying the control signals to the Puma 560 controller board or to the
robotic simulator. As is evident, one can see that at no point does the parallelism
exceed the value of three. The average parallelism of the complete controller will be
calculated in Section 6.6, based on this software model, and on the assumption firstly
of unlimited processor supply and secondly in the eventuality of limited processor
availability. In the following section an optimal hardware scheme is developed in an
attempt to exploit the inherent parallelism of the controller fully to achieve higher

performance margins.

Chapter 6: a parallel controller for the puma 560

146

6.5 OPTIMISED HARDWARE STRUCTURE FOR IMPLEMENTATION
OF PARALLEL CONTROLLER

The coarse grain parallel decomposition of the feedforward and feedback
algorithmsoutlined above is ideally suited to implementation on a Transputer
multiprocessor system, due mainly to matched granularity and speed considerations. The
medium grain decomposition of the PD controller algorithm, as mentioned in Section
6.2.3, is better suited to a more finer grain topology than a Transputer system, and in
Section 6.5.2 the PACE processing architecture is evaluated for this purpose. By
combining a multiprocessor system, of large granularity, with a finer grain array
processor one can tailor the hardware to the specific software application, thus

exploiting the full range of inherent parallelism. The major drawback is of course the
probable loss of flexibility in the multiprocessor architecture to accommodate significant

alterations or modifications in the software and the inability to expand the number of
processors without having to change the software to re-establish optimality between the
application and the hardware topology. In order to reduce scheduling overheads each
concurrent process is assigned to a single processor, thus avoiding the need to employ
complex scheduling algorithms which are necessary in applications where the

one-to-one relationship between processes and processors is not specified.

In Chapter 5, Section 5.4.1, the Transputer processor architecture is profiled in
detail, and in Section 5.4.2 a technical description is given of the IMS B008
motherboard, which can house several Transputers. It shall therefore not be necessary
to give as detailed a description of either the Transputer or the IMS B008
motherboard in this section, and the reader is referred to the respective sections and
references [89] & [94] for further informatioa

6.5.1 The Transputer and Coarse Grain Parallelism

The Parallel C coding of the computed torque and PD algorithms is given in
Section 6.4. The Parallel C language is written specifically for the Transputer. As with
the parallel Puma 560 manipulator simulator the parallel controller for the same is also
proposed for implementation on a multi-Transputer system.

The software of the overall controller specifies two main computational paths,

each of which is subdivided into a maximum of a further three computational paths.
The two main paths are the computed torque feedforward algorithm and the PD
control feedback algorithm incorporating the identification routine. Both algorithms have

a maximum parallelism of three, thus it is possible to have a maximum of six

Chapter 6: a parallel controller for the puma 560

147

processes concurrently active at particular times. Naturally, to achieve optimum
performance one processor should be made available to execute each of these six
processes. A six Transputer system must be designed to host the controller. As with
the parallel simulator an IMS B008 motherboard is proposed to house the Transputer
network, and since only six Transputers are needed one motherboard is sufficient.
Recall the hardware topology of the IMS B008 Transputer management board, as

shown in Figure 36b.

Chapter 6: a parallel controller for the puma 560

IBM Bus (8 Bits)

Simplified Block diagram representation of IMS 8008 Motherboard

FIGURE 36b

A maximum of ten TRAMs (TRAnsputer Modules) may be accommodated on the

one motherboard, although to actually achieve this physical alterations, such as

extension boards, must be made to the board. The TRAM slots are hardwired so that

TRAM(N), link 2 is connected to TRAM(N+1), link 1. This leaves links 0 and 3

148

available for user defined connections, and to create various topologies. In Figure 36 it
can be seen that links 0 and 3 of the TRAMs (except for link 3 of TRAMO) are
brought to a switch network known as the IMS C004 link switch. The IMS C004 is
a 32 link-in 32 link-out switch, which facilitates the connection of links from different
TRAMs. This is achieved by sending the configuration data along the IMS C004
configuration link. The switch is controlled by a T212 16-bit Transputer, housed
permanently on the IMS B008 board. It is possible to pipeline the T212’s of different
IMS B008 motherboards to permit the interconnection of TRAMs on different boards,

which fortunately in this instance is not necessary.

The slots chosen for the six TRAMs on the IMS B008 motherboard are slots 0,
1 & 3 for the feedforward controller and slots 4, 8 and 9 for the PD feedback
controller and identification routine. In this manner both the pipehead (TRAMO, linkl)
and the pipetail(JRAM9, link 2) are included in the configuration. To run an
application over the Transputer network it is necessary to establish a control hierarchy

among the TRAMs.

TRAMO is chosen as the application host TRAM. This means that the application
runs under the control of TRAMO, and on completion of all the sub-processes on
other TRAMs control is returned to TRAMO. TRAMO is also defined as the source of
the notReset and notAnalyse signals for all other TRAMs in the network. This is
achieved by the setting of jumpers on the motherboard. Incidentally, this prevents the
control TRAM, TRAMO, from being reset every time the application network is reset,
which saves considerable time during debugging. The subsystem ports of the TRAMs
must be connected to the subsystem line, see Figure 36, to place the reset, analyse
and error functions under the control of TRAMO and to realise the desired TRAM
hierarchical structure. In order for the configuration data to be sent to the IMS C004
switch it is imperative that the cocfigUp link of the IMS T212 on-board Transputer
(link 1) be connected to the pipehead, which is defined as link 1 of TRAMO (the
TRAM running the MMS[95]). This is accomplished by connection via the patch area,
as shown in Figure 36. The IMS C012 link, which is connected to control lines for
TRAMO, is also connected to link 1 via the patch area. This facilitates the booting
down of this link by TRAMO. Unlike the case of the parallel simulator, there is no

need to perform inter-board connections of the various control signals,
notSubSystemReset, ConfigDownLinkOut, etc., as the complete system is housed on
ore motherboard. The remaining unoccupied TRAM slots are bypassed by the use of

pipejumpers. These are simple cross connectors which are inserted into the TRAM

slots to connected the locations for linkl and link2.

It is necessary to specify a softwire file, as described in Chapter 5, to list the

Chapter 6: a parallel controller for the puma 560

149

number and nature of desired connections between TRAMs. The connection between

TRAM3 (link2) and TRAM4 (linkl) may be optionally disconnected via the patch
area. In this application this connection is removed to break the continuity of the

pipeline and create two separate TRAM systems, under the control of TRAMO. The
softwire file is specified as:

Chapter 6: a parallel controller for the puma 560

SOFTWIRE
PIPE 0

SLOT 0, LINK 3 TO SLOT 3, LINK 3
SLOT 4, LINK 3 TO SLOT 9, LINK 3

END

Along with the softwire file the Module Motherboard Software (MMS) must also
be supplied with a hardwire file. This file contains a list of the connections physically
present on the board. It is necessary to produce this file so that the MMS can decide
whether the connections specified in the softwire file are legitimate. If the softwire
connections are legal they are implemented by the MMS by sending the configuration
data to the IMS C004 via the IMS T212 Transputer. The hardwire file is written
below:

DEF boarda
SIZES.

T2 1
C4 1
SLOT 10
EDGE 10

END

T2CHAIN
T2 0, LINK C4 0

END

HARDWIRE
SLOT 0,LINK 2 TO SLOT 1.LINK 1
SLOT 1,LINK 2 TO SLOT 2 LINK 1
SLOT 2.LINK 2 TO SLOT 3LINK 1
SLOT 3 LINK 2 TO SLOT 4LINK 1
SLOT 4LINK 2 TO SLOT 5LINK 1
SLOT 5 LINK 2 TO SLOT 6LINK 1
SLOT 6LINK 2 TO SLOT 7LINK 1
SLOT 7 LINK 2 TO SLOT 8LINK 1
SLOT 8 LINK 2 TO SLOT 9 LINK 1

C4 OLINK 10 TO SLOT 0LINK 3

C4 OLINK 1 TO SLOT 1LINK 0
C4 OLINK 11 TO SLOT 1LINK 3

C4 OLINK 2 TO SLOT 2LINK 0
C4 OLINK 12 TO SLOT 2LINK 3

C4 OLINK 3 TO SLOT 3LINK 0

150

C4 O.LINK 13 TO SLOT 3LINK 3

C4 OJLINK 4 TO SLOT 4LINK 0
C4 OJLINK 14 TO SLOT 4JLINK 3

C4 OJLINK 5 TO SLOT 5 LINK 0
C4 OLINK 15 TO SLOT 5JLINK 3

C4 OJLINK 6 TO SLOT 6JLINK 0
C4 OJLINK 16 TO SLOT 6LINK 3

C4 OLINK 7 TO SLOT 7LINK 0
C4 OJLINK 17 TO SLOT 7JLINK 0

C4 OJLINK 8 TO SLOT 8LINK 0
C4 OLINK 18 TO SLOT 8JLINK 3

C4 OJLINK 9 TO SLOT 9LINK 0
C4 OLINK 19 TO SLOT 9JLINK 3

C4 OJLINK 20 TO EDGE 0
C4 0.LINK 21 TO EDGE 1
C4 OJLINK 22 TO EDGE 2
C4 OL-INK 23 TO EDGE 3
C4 OJLINK 24 TO EDGE 4
C4 OJLINK 25 TO EDGE 5
C4 OLINK 26 TO EDGE 6
C4 0,LINK 27 TO EDGE 7
C4 OJLINK 28 TO EDGE 8
C4 OLINK 29 TO EDGE 9

END

Chapter 6: a parallel controller for the puma 560

Incidentally, the speed of the serial TRAM links may be set at several different
values. For this application a speed of 20Mb/sec is chosen for all links and is
accomplished by setting the three-toggle speed switch to 0x000. In this hardwire file
only one board is defined. The board is specified to posses one IMS T212 Transputer
and only one IMS C004 reconfigurable switch. The T2CHAIN command specifies how
the T212’s are connected to the IMS C004 switches. In this instance this command is
trivial as only one T212 Transputer and one IMS C004 switch are present and only
one connection is specified. The main body of the hardwire file describes all the fixed

connections present on the motherboard.

The following section describes how the more finer parallelism inherent in the
controller (specifically the PD algorithm) may be implemented on an array processor.

6.5.2 PACE «Programmable Adaptive Control Engine» Architecture

The PACE chip, which is being developed at the University of Nottingham by

Spray and Jones[81,82,83], is a medium grain array processor. It has been designed to

support irregularly structured algorithms on a regularly structured array.

151

Chapter 6: a parallel controller for the puma 560

Communications
Strategy

Computation „ . ,
Strategy ,ixec!

Comment: Systolic

Cellular Automato

Static ^ D y n a n ^

Variable Fin* Medium Coorse

Low-level
data

manipulation

Functionally
Program m able

Program m able
systolic

Single
cigrammotite arithmetic

Systolic computation

Increasing Flexibility

Taxonomy of Cellular Automato

FIGURE 37

Figure 37 shows a taxonomy of cellular automata. These autonomous cellular
arrays (ACA) have individual PE autonomy. To cope with both regular and irregular
flows within algorithms, the requirement for programmability in the communications
topology of an array becomes considerable, through the desire for efficient support of
general algorithms within low-complexity processing elements. Hence the category of
architectures possessing a programmable interconnect is of particular interest when

discussing the PACE architecture. The multi-processing element systems shown in

Figure 37 are explained further below:

□ The fine grained processors operate at bit level, and exploit the finest degree of
parallelism

o The medium grained processors consist of PE’s which operate at the word level
and are suitable for exploiting the parallelism present in algorithmic calculations.

□ The coarse grained systems are created by the combination of several processors,

all of which are capable of hosting individual programmes.

Based on the above scheme of classification the PACE architecture is categorised

as a synchronous medium grained ACA array. Contrasting with a systolic array, which

is suitable for exploiting fine grain parallelism in a regular function on a regular
array, the PACE architecture is suitable for exploiting medium grain parallelism in

both regular and irregular functions. To do this it must support the following

constructs:

152

Chapter 6: a parallel controller for die puma 560

□ Sequential operation of instructions,
□ Iteration,
□ Alternation

The advantage of the array structure of the PACE is that not only is the medium
grain parallelism of a function exploited, but so too is the pipelinability of die
function. In supporting irregularity in the application function several aspects have to
be considered. The first concern is programmability. A sufficient range of operators
must be present to allow for algorithm flexibility, such as multiply/add, logical
AND/OR, and division. Too large a range would cause excessive PE complexity, so
only the most important and most common operators are included. Related to this
concern is the aspect of programmable on-board communications. The optimum
communications strategy is generally very application specific, but based on Snyder’s
scheme [98] an 8-way interconnectivity, in a general purpose scenario, is the maximum
most commonly required and this is used in PACE.

An important consideration in array architectures is the need for data
synchronisation, for both regular and irregular functions. It is necessary to ensure that

the operands meet at the right time at the right processing element and it should
independent of the nature of the data. Finally, one must ensure that conditionality is

supported. This is one of the basic constructs listed above.

With regard to hardware the PACE architecture can be described at chip level as
multiple PEs arranged in a rectangular, 8-way fully duplex locally interconnected array.
Programming and testing are achieved through a series of communications lines which
pass through all elements. Individual elements within the array may be chosen for
either downloading information or for testing by use of the column and row select
lines. Where two enabled lines cross, the processing element is selected to input from
or output to the global communications lines mentioned above. Global clock and
control lines ensure that all elements are operating in the same mode (reset, load, test,
run) and are all in phase with the same clock beats.

At the processing element level, each structure is subdivided into the four basic

functional blocks:

□ Communications unit: inter-PE transfer of data and operand selection
□ Processing unit: stores and decodes instructions, performs tasks on an ALU.

□ Test unit: makes internal states and operating mode visible to user
□ Control unit: controls the other 3 units, decodes global clock and select signals

153

Chapter 6: a parallel controller for the puma 560

The overall control of the PACE array is of paramount importance to the
application under consideration, parallel control of the PUMA 560 manipulator. Each
PE must obey the globally broadcast control and clock signals. The globally broadcast

control mechanisms are:

□ Reset: All processors are halted, and registers are reset.
□ Load: The selected processor in the array downloads the port communication
configuration, the operand source information and the function to be implemented.
□ Test: The selected processing element outputs test results onto the shared data lines,
whilst continuing to operate as in the ’process’ state.
□ Process: The processor performs the specified function on the data supplied by the
operands, and permits data communication from ports, otherwise known as the ’run’

state of the processor.
□ Halt: In the absence of any of the above modes the processor is held in a halted

state, where information is neither lost nor received.

There are four phases to every clock cycle, denoted by the beats 0 ^ 0 , ,0 2,0 3.
Before being supplied to the processing elements each signal is completely decoded.

The different beats are explained as follows:

O 0: Prepare the processor for input latching.
4*,: If in load mode download the configuration data, otherwise latch input data into
ports, and operand registers.
0 2: Prepare the processor for output data latching.
0 3: If not in load mode, latch results from ALU, and latch the outputs of the ports,

otherwise do nothing.

The four beats are used to avoid glitching effects in the PACE array processors.
Foraperfonnance assessment of the PACE array and an analysis of PACE
applications the reader is referred to [82]. The following section describes how this
architecture may be availed of to implement a standard PID algorithm in an efficient
manner, by exploitation of medium grain parallelism. Based on this scheme an adapted
PACE configuration is developed in Section 6.5.2.2 for the more elementary PD
controller, and this is in turn tailored to suit the feedback requirements of the parallel
controller for the PUMA 560 robot manipulator arm.

154

It was mentioned in the last section that the PACE architecture is being
developed in an attempt to realise irregular algorithms on regular array type structures.
The PID first order controller has an irregular algorithmic structure, since in the course
of its execution it requires multiple interspersed multiply and addition operations and it
also ’remembers’ and uses previous parameters (i.e. through feedback of the previous
modelling eiror). In a PID controller a control signal is generated according / to a
function of the current error, an accumulated derivative error term and an integral term
over previous errors. Figure 38 illustrates the topology of a PACE realisation of the
PID controller.

Chapter 6: a parallel controller for the puma 560

6.5.2.1 Implementation of PID control on the PACE chip

M osten Kilostnum

Kdlostden Kdlastnum

_ Kdlostnum Kdnum _ Kpnum
Dn “ Kdlostden" • n-1 + 7 3 ^ " - e n Pn Kpden* e n

Kdlostnum U„ = Pn + I„ + Dn
n Kdlastd,n * *n-1 T Kdden

PID Controller Implementation, on the PACE architecture.

FIGURE 38

The array supports two parallel branches of feedback loops, one for the integral

term evaluation and the other for the derivative term. The schematic diagram of the

PACE array shows how data paths may be directed through other PEs in order to join
two PEs separated by more than one row or column. The various numerators and

155

denominators for the three controller terms are fed into the array through a PE on the
peripheral of the array (i.e. a PE contained in the first or last row, or in the first or
last column). Both the integrative derivative terms include a weighted component based
on the last evaluation. The proportional term is a scaled version of the modelling
error. The output is sent to an edge PE via a transfer command (TRA). The next
section, Section 6.2.2.2, modifies this implementation to accommodate a PD controller,
by dismissing the integral term. The resulting topology is further modified to realise
the PD control scheme used in the feedback control of the robot arm.

Chapter 6: a parallel controller for the puma 560

6.52.2 Adaptation of the PID implementation to a PD algorithm

Adaptation of the PID controller to a PD controller simply involves the removal
of the integrative term from the control signal summation, Un, in Figure 38. Integral
control is often used to meet high accuracy requirements and in this instance
proportional plus derivative control is sufficiently accurate to account for modelling
errors. Figure 39 illustrates the PACE configuration proposed to implement a standard
PD controller.

Kdlastden Kdlostnum Kd.dan

^num

KPden

Kdml_num

_ Kdlos*num D Kdnum
D„ - Kdlostden" • n-1 + ■ R a^T -e n

KPrp _ -num■ e. pn+ Dn
n ^Pden

PACE architecture implementation of standard pd controller.

FIGURE 39

The layout is derived directly from the PID realisation, and involves only ten

processing elements in a two by five array foimaL The output from the controller is

evaluated by the addition of the proportional and derivative terms, whilst the input
remains unchanged as en, the current joint positioning error. This error represents the

156

Chapter 6: a parallel controller for the puma 560

error between actual joint position and the desired joint position. The desired joint
positions serve as input to the computed torque feedforward controller and this
controller applies the voltages needed to generate the necessary torques to attain these
positions. The errors arise mainly due to inaccuracies in the model of the robotic
inverse dynamics used by the computed torque feedforward controller.

This PACE implementation of the standard PD controller may be modified to
implement the PD feedback controller used in the controller under consideration. rtbc
computational model of the PD controller is illustrated in Figure 33. Based on this
model the modified PACE implementation proposed is shown in schematic form in

Figure 40.

The previous array inputs and outputs remain unaltered and at the same locations,
but there is an additional input, the sample period h This is provided as a separate

inputto facilitate future modification in an efficient manner, and doesn’t add

significantly to the complexity.

^num

e n

KPden

Kdnum

K d lM t^ Kdlos)num Kddm

c . K<ini™ Kdl0Std.n [,
" " ^ ¡ ¡ 7 • *" * K<ilas,nUm •

Where, Kdlast = Previous value
i/ ji i nurn of Kd

o _ num num
n-1 = Kdlastden • e n- i Kdlastdan = Previous value

of Kdden
PACE architecture designed to Implement the PD controller used
in feedback control of the PUMA 560 robotic manipulator.

FIGURE 40

There is one feedback loop, whereby the scaled error term in the derivative calculation

from the last iteration, D ^.,, is multiplied by quotient and then subtracted from the

current value. The result is then divided by the sample period, h. The final controller

feedback term (voltage) is evaluated by adding to the derivative term the proportional

157

term which is scaled version of the current error. This PD control technique is
performed for each joint in parallel, thus necessitating three separate PACE PD
controller arrays. The following section contains a proposal as to how these PACE
arrays may be controlled in a slave-master configuration within a multi-Transputer

processing system.

6.5.3 Interfacing die Transputer and the PACE Chip

In order to implement the three joint feedback PD controllers a scheme must be
devised to incorporate the PACE architecture with the multi-Transputer system, which
hosts the main programme. The most appropriate direction is to assign a Transputer
the task of controlling, transmitting to and receiving from the PACE array.

Unfortunately, the PACE architecture is not yet generally available, and the interfacing
specifications are only schematic. Despite these obstacles it was a strategically decided
that for the purposes of illustration and investigation, which are among the thesis
objectives, the PACE architecture should remain in the hardware scheme, at least in
theory. The specifying of an interfacing prototype between PACE and the Transputer is
not a sisyphean task but only a general framework is possible. It would not be
difficult to extend this generalisation to incorporate the specific pin-outs, voltages and

speed specifications of either architecture.

As specified the Transputer will generate the signals necessary to control the
PACE array. A Transputer communicates with the outside world via it’s four links.
These links are tailored for inter-Transputer communications protocols, but it is
possible to develop simple hardware to modify the output. A serial to parallel
converter is necessary to bring the output signal into an appropriate format, and
likewise a parallel to serial converter is needed to return data from the array. The
four links are designated to different channels, each with a different task. One channel
would be necessary to communicate with the control Transputer, specified to be
TRAMO in Section 6.5.1. The other three are used as the PE address line, the array
control line and a two-way data line. The Transputer links are connected via the IMS
C004 switch to the edge-connector and from there to the external interface hardware.

Since only ten PEs are necessary the first two rows and the first five columns
need ever be activated. The remaining row and column lines are hardwired to a

unselect signal. An eight bit address is used, the first two bits are for row selection,
the next three are for column selection and the last three bits are redundant (these last

three bits are present to conform to a serial to parallel chip standard). One byte may

be sent via the appropriate channel to specify the address of the selected PE. Each of
the required PEs can be programmed in sequence before operation begins, and each

Chapter 6: a parallel controller for die puma 560

158

element will maintain its programmed function until the controller has completed
operation, or until a global reset is sent. A generalised pseudo-coding scheme to
realise the software interface between the Transputer and the PACE array is formulated

as follows:

Chapter 6: a parallel controller for the puma 560

PD.BEGIN
DEFINE address.Kdlast.num
DEFINE address.KdlasLden
DEFINE address.Kdjium
DEFINE address.Kd.den

DEFINE address.Kp.num
DEFINE address.Kp.den

DEFINE address.h
DEFINE address.error.in
DEFINE address.control.out

DEF CHANNEL chanl = address.channel
DEF CHANNEL chan2 = control.channel
DEF CHANNEL chan3 = data.channel
DEF CHANNEL chan4 = linleto.TRAMO

chan2 = RESET - Send global reset to PACE array

ROW=0:COLUMN=0
chanl = ROW.CHANNEL.OOO -- Select Processing Element (1 Byte)

ROW=0:COLUMN=1
chanl = ROW.CHANNEL.OOO
chan2 = LOAD
chan3 = ADD
chan2 = LOAD
chan3 = PORT.CONFIG

ROW=0:COLUMN=2
chanl = ROW.CHANNEL.OOO
chan2 = LOAD
chan3 = DIV
chan2 = LOAD
chan3 = PORT.CONFIG

ROW=0:COLUMN=3
chanl = ROW.CHANNEL.OOO
chan2 = LOAD
chan3 = DIV
chan2 = LOAD
chan3 = PORT.CONFIG

ROW=0:COLUMN=4
chanl = ROW.CHANNEL.OOO
chan2 = LOAD
chan3 = MULT
chan2 = LOAD

chan3 = PORT.CONFIG

chan2 = LOAD
chan3 = TRA
chan2 = LOAD

- Specify LOAD control command
— Send function type
— Specify LOAD for data
- Send the comm.s port configuration data

159

Chapter 6: a parallel controller fo r the puma 560

chan3 = PORT. CONFIG

RO W= 1 :COLUMN=0
chanl = ROW. CHANNEL. 000
chan2 = LOAD
chan3 = MULT
chan2 = LOAD
chan3 = PORT.CONFIG

ROW=l :COLUMN=l
chanl = ROW. CHANNEL. 000
chan2 = LOAD
chan3 = DIV
chan2 = LOAD
chan3 = PORT.CONFIG

ROW= 1 :COLUMN=2
chanl = ROW. CHANNEL. 000
chan2 = LOAD
chan3 = SUB
chan2 = LOAD
chan3 = PORT.CONHG

ROW=l :COLUMN=3
chanl = ROW. CHAN NEL. (XX)
chan2 = LOAD
chan3 = DIV
chan2 = LOAD
chan3 = PORT.CONFIG

RO W= 1 :COLUMN=4
chanl = ROW.CHANNEL.OOO
chan2 = LOAD
chan3 = MULT
chan2 = LOAD
chan3 = PORT.CONFIG

LOOP
kdlastnum
kdlastden
kdnum
kdden
kpniun
kpden
h
en

chan40
chan40
chan40
chan40
chan40
chan40
chan40
chan4Q

— Receive constants from TRAMO
- in a specified order

chanl = address.KdlasLnum
chan2 = LOAD
chan3 = kdlastnum
chanl = address.KdlasLden
chan2 = LOAD
chan3 = kdllastden
chanl = address.Kd.num
chan2 = LOAD
chan3 = kdnum
chanl = address.Kd.den
chan2 = LOAD
chan3 = kdlden

— Set up parameters

160

chanl = address.Kp.num
chan2 = LOAD
chan3 = kpnum
chanl = address.Kp.den
chan2 = LOAD
chan3 = kpden

chanl = addrcss.h
chan2 = LOAD
chan3 = h
chanl = address.error.in
chan2 = LOAD
chan3 = en

chan3 = PROCESS — Instigate PE processing of data

chanl = address.control.out
chan3 = DOWNLOAD
chan4 = chan3 — Send control signal back to TRAMO

END LOOP
chan2 = RESET — Send global reset to PACE array

PD.END

The above pseudo code serves to illustrate the interfacing protocol between the
two processing hardwares. The actual coding, in Parallel C for example, would be

highly dependent on the specific addressing, control and data connection protocols of
the PACE array. The initial programme instructions are the definitions of the addresses
of the various parameters used in the PD algorithm. This is performed only once, as
these are fixed addresses. Next, each processing element is assigned an operator using
the addressed LOAD command, and again this assignment is performed only once per
PE, although were it necessary it would be possible to re-assign the PE with a new
operator in a dynamical fashion, which is one of the major advantages of the PACE
architecture. A second LOAD command is executed on each PE in the two by five
array, this time to supply the configuration information for the PE communications

port. This specifies the manner in which the PE is connected to its neighbouring PEs,
and is basically a description of the localised topology.

The main body of the programme consists of a loop, containing a list of
functions. The first task is the channel based updating of values. Fresh data is read
from TRAMO via chan4, and assigned in a set order to the proportional and derivative
terms’ parameters. Having received and assigned these values the next step is to
transmit these values via the interface to the PACE array, to the originally assigned
addresses. This is accomplished by addressing the correct location on chanl, followed
by a LOAD command over chan2, and completed by sending the updated value via

chan3. This procedure is used to relay all of the parameters in sequence. On
completion of this collection of assign/transmit routines the PEs are globally
commanded to begin execution of the algorithm, using the PROCESS command

broadcast across the array. The PE process the data based on a clock signal and this

Chapter 6: a parallel controller for the puma 560

161

signal is subdivided into four beats to enhance synchronisation ami avoid localised

processor glitching. The four beats are described in Section 6.5.2. The final routine is
to retrieve the output data from the PACE array, defined as controlout and found at
the location given by the address addres.control,out. The command channel transmits a
DOWNLOAD command over the control line, with the above address. The output
value is transmitted back to TRAMO via chan4. It is possible that the feedforward
calculations may not yet be complete (on TRAMO, TRAM1 & TRAM3) at this point
in time, and the PD controller may spend time waiting for completion to allow
transmission over chan4. This processor idling does not effect overall speedup, as the
PD controller has completed at this stage, and has to await the end of the sample
period to rebegin the loop in any case. The loop is terminated on completion of the
controller task. This will be determined by TRAMO, the application host TRAM. The
following section considers the performance of the overall system under variable
conditions, from unlimited processor availability to a more restrined hardware scenario.
For the purposes of performance evaluation, the execution time for the PD controller

is taken as being equal to its execution time on a TRAM.

6.6 ANALYSIS OF PERFORMANCE OF PARALLEL CONTROLLER

This previous sections in this chapter illustrate how the parallelism inherent in the
computed torque feedforward/PD feedback controller may be exploited at both the
medium and coarse grain level to yield higher execution speeds. The actual speedup
and processor efficiency, based on the hardware scheme and software model, are
calculated in this section.

6.6.1 Evaluation of Controller Output Performance

Before proceeding to analyse the improved performance margins of the controller,
the integrity of the controller must first be validated and the accuracy of the control
strategy must also be examined. The most appropriate method to illustrate the
controller effectiveness is through the use of graphical data. All graphs referenced in
this section are contained in Appendix C.

The primary purpose of a robotic controller is to direct the manipulator along a
trajectory in a specified manner, by the use of predetermined set-points. Before

proceeding to appraise the controller accuracy, one must first choose a desired
start-point and end-point for the robotic manipulator end-effector, and then subsequently

devise a trajectory of set-points along which the manipulator is directed by the

particular control technique. The use of intermediate set-points is a sine qua non for
most robotic control strategies, and allows positional targets for each of the joints to

Chapter 6: a parallel controller for the puma 560

162

be set for each sample period. In the absence of an intermediate set-point the
controller may attempt to generate the control signal to move the end-effector to the

desired end-position in one sample period. Obviously, this is generally not possible.

Graph 6.1 illustrates the chosen trajecctory, and note that the path is not just
ageometric route but also has a time-scale. The objective of the feedforward/feedback

controller is to direct the PUMA 560 manipulator along a path which mimics this
trajectory as closely as possible, bearing in mind also the path’s location in the time

domain.

The trajectory is stored in a data file, containing set-points for every 5
milliseconds increment over a total time span of ten seconds, or a total of 2000
points. The controller reads these set-points sequentially and attempts to generate a
control signal every sample period to achieve the necessary joint positions, via the
computed torque feedforward control strategy. Added to this signal is a compensation
control signal driven by the previous positional error and generated by the PD
feedback controller. Graph 6.2 illustrates the actual manipulator path, which seems to
closely follow the desired trajectory. Note that there are only two time zones when
the manipulator joints move significantly: the initial movement from zero-position to
the hold positions and the final return to the zero-positioa Before examining the error
in the joint positioning, there are several items of graphical data to be considered.

The velocity, acceleration and acceleration derivative are illustrated in graphs 6.3,
6.4 and 6.5. The velocities, or the joint positional derivatives, for joint one and three
are at a minimum at the point of inflection during the initial manipulator region of
movement, and likewise are at a maximum at the point of inflection during the second
region of manipulator movement, and vice versa for joint two, which moves in the
opposite sense of direction to the other two joints. As a result of the sample period
being small (0.005 sec.) compared to the simulation time (10 sec.) the existence of
small scale random perturbations in joint velocities at each sample period, due to noise
and error compensation control signals, are not evident from the graph and the
velocity graphs appear to be apparently smooth curves. Examination of the joint
accelerations, however proves the existence of these perturbations. This can be seen
from the fact that whilst the graphical representation of the joint accelerations follows
a well defined low frequency large amplitude pattern, there is an obvious disruption of
the signal by a high frequency component, but of a much smaller amplitude. For an

Ideal controller, there should be no very high frequency acceleration components and
the manipulator should accelerate in a smooth manner, but in a physical situation

jarring of the joints when stopping or starting prevents this being realised. The
derivative of the acceleration of a joint should, ideally, be small. The graphical

representation of the joint acceleration derivatives, Graph 6.5, further demonstrates the

Chapter 6: a parallel controller for the puma 560

163

existence of noise in joint positioning, and has significantly large components due to
the existence of the high frequency acceleration terms riding on the waveform of the
more dominant lower frequency acceleration terms. The voltages generated by the

controller, every sample period, to achieve the necessary motor torques to drive the
manipulator along the desired trajectory are presented in graphical format in Graph 6.6.

The low frequency component of the voltage curve represents the ideal voltages needed
to control an ideal manipulator, with a non-noisy motor response, smooth dynamics at
start-up and stop, etc. The high frequency component, which over a shorter time span
and shorter voltage cross-section would naturally be more evident, is a representation
of the controller’s response to anomalies in the inverse dynamical model used by the
controller, the error in the linearisation technique, the stop/start error in joint behaviour

and other less significant related factors.

The final graph shows the error performance over the simulation time. The most
noticeable feature of the curve is the absence of a steady state error, which vindicates
the usage of PD feedback control. This is a desirable property for most robotic
controllers, where the accurate placement of the joints in rest positions and/or the
maintaining of fixed positions is important. A second feature is the apparent absence
of error overshoot, thus implying that the response of the controller is sufficiently
damped to avoid overshoot in joint position, at least in this instance. The
prevention/minimisation of overshoot can be attributed to the derivative component of
the PD controller which provides action in anticipation of system output (i.e. joint
positions) overshoot The joint position error is most positive at the point where the
joint velocity is a minimum, and most negative at the point where joint velocity is a
maximum. By numerical analysis of the error response data and the joint velocities it
is observed that the error is almost directly proportional to the joint velocity. There is
a delay in the change in the error as a function of the velocity, but over the 2000
sampleperiod simulation time it is practically instantaneous. The constant of
proportionality is given by:

K s -5.166.103

Furthermore the rate of change of joint positioning error is equal to a scaled
version of the joint acceleration curve, with the scaling factor again equal to K. The
significance of this observation is that the slower the joints are moved then the more
accurately the manipulator adheres to the given trajectory, and more specifically, if the

manipulator motion is speeded up by a factor of two then the dynamic error

approaches a value twice its previous value at a rate almost identical to the

instantaneous rate of change of the joint velocity, or acceleration. Thus attempts to

impose rapid changes in joint position on the manipulator should be avoided. This can

be accomplished by generating the trajectory set-points under certain differential

Chapter 6: a parallel controller for the puma 560

164 I

constraints. The overall performance of the controller proves to be acceptable, with a
maximum recorded error of 0.009 radians for joint three, which constitutes 0.6% of
maximum joint extension, and is an error of 1.8% in joint position at that point.

6.6.2 Speedup and Processor Efficiency In the Parallel Controller

One of the most important objectives, if not the most important objective, of
parallelisatSon is to decrease the execution time of an algorithm, and thus to achieve a
speedup greater than unity. Figure 32, in Section 6.1.3, demonstrates clearly the
parallel computational paths that exist in the computed torque routine, com-torO- By
examining this model speedup and processor efficiency, in the case of unlimited

processor availability, may be evaluated, based on the function execution times for
both the INTEL 80286 multiprocessor system, and the multi-Transputer system housed

in the IMS B008 motherboard. The times quoted in the following analysis are based

on the execution times on the IMS T414-20 Tranputer. Table 10 contains a listing of

the execution times for the functions com-torO, risO and pd-control0. These times are
for sequential execution. Returning our attention to Figure 32, Section 6.1.3, it now

possible to evaluate the speedup for the com-torO function. The initial task in the

function is to execute the sub-function setup-matO. This is not unlike the set-up-mat0
routine used in the PUMA 560 simulator, and is decomposed in the same manner.
The function is decomposed in joint-wise fashion, (i.e. the operations are divided
between, and performed separately on, the three joints), yielding a maximum
parallelism of three.

Chapter 6: a parallel controller for the puma 560

Execution time [ms] : :

Function INTEL 80286 IMS T414-20 :

com-tor() 28.650 W& Igijiji&ioi «

risQ 10.451 ::::::::::::: 2.226

pd-controlQ 04.512

Where, com-tor() : Computed Torque Routine
risQ: Recursive Least Squares Algorithm
pd-controlQ: PD Feedback Controller

Table showing the execution times of the main
functions of the controller

TABLE 10

Recall the schedule of process execution for set-up-mat0, described in Section

165

5.5, shown in Figure 41. The scheduling sequence for the subtasks for the function

setup-matO is exactly the same as for the function set-up-matQ. Although this function,
setup-matO, is identical in format to the set-up-matO the sequential execution time in
this instance is less, since the subtasks computations are less intensive, but because the
algorithmic structure and decomposition technique remain the same the speedup for
both functions are practically equal. The length of the longest computational path in
the parallel version of setup-matOis 0.629 milliseconds, about 1.25 times faster than

the function set-up-matO-

Processor
Assignment

Chapter 6: a parallel controller for the puma 560

i k

PI Forces, Joint 1 Force Deriv. J1

P2 Initialisation Forces, Joint 2 Inertial Matrix Force Deriv. J2

P3 Forces, Jo in f 3 Force Deriv. J3

0
T1

r
12

Time
T4

Schedule of processes for function s e t-u p -m a t()

FIGURE 41

This parallel execution time can be incorporated into the parallel version of the
feedforward controller com-torO. The reader’s attention is drawn to Figure 32 once

more. Having evaluated the setup-matO function parallel execution time, it remains to
evaluate the complete execution time of the parallelised com-torO. This is achieved by

appraising the speed of execution of the define-d-bar<), defineplbarO and define-p2bar0
functions in parallel and, the speed of execution of var-assignO, mat-by-vecO and
vector-addO in sequence, and finally adding to these two times the execution time of
the parallel setup-matO routine. The slowest of the three functions in parallel is
define-p2bar(3, which takes 1.815 milliseconds. The three sequential functions,

var-assignO, mat-by-vecO and vector-addO. have execution times of 10.6, 87.1 and 29.2
microseconds respectively, giving a combined run-time of 126.9 microseconds. The

overall execution time for the computed torque routine, which is equal to the run-time
of the longest or critical path, is thus 2.570 milliseconds. The speedup, as defined in

Chapter3, may now be calculated on the assumption of unlimited processor

availability:

sequential execution time 6.101
Speedup = parallel execution time = 2.570 = 2.374

166

This figure of speedup, which is also equal to the average parallelism of the
algorithm, shows a reasonably high degree of parallelism in the computed torque
controller when one considers that the function has a maximum parallelism of three.
For all systems of equal maximum parallelism the maximum speedup is given as equal
to the value of the maximum parallelism. The speedup given above is almost eighty
percent of the maximum in this instance. The processor efficiency is derived from the

speedup figure:

_______ Speedup 2.373
Efficiency = Number of processors = 3 = 0.791

These values of speedup and processor efficiency for the inverse dynamical
calculations of the computed torque algorithm compare with a speedup and a processor
efficiency of 2.438 and 0.8127 respectively for the parallel PUMA 560 simulator,
which evaluates the forward dynamical equations of the robot. The speedup of the
forward dynamical equations is 1.03 times greater than the speedup of the inverse
dynamical equations. This is only a marginal difference reflecting the similarities in the
nature of the decomposition of the two problems, including the fact that three
manipulator joints are under consideration in both cases. Likewise the processor

efficiency, since it is a scaled version of speedup, is also greater for the forward
dynamical parallel realisation by the same factor.

The execution of the two functions in the feedback path of the complete

controller, risO and pd-controlO, may also be calculated in the same manner. In
Section 6.2 both these functions were examined for parallelism. The recursive least

squares routine, denoted risO, is shown in block diagram parallel form in Figure 34,
Section 6.2. Note that the first task is to initialise the variables and vectors used in
the routine and has an execution time of 60.2 microseconds. The next task is to
ascertain whether the call to ris() is the first call in the controller run If no previous
estimates are available, then it is necessary to initiate the parameter estimates. This
routine takes 99.2 microseconds to execute. The main body of the programme consists
of the least squares estimation of each of the joints. These identifications may be
performed concurrently, and the execution time for each routine is 707.7 microseconds.
The parallel execution time for the complete function takes 848.0 microseconds in the
first call and 748.9 microseconds subsequently, after the initial estimates have been
established.

In the feedback loop of the controller each joint is identified by a linear model

and controlled by a separate PD controller, implemented by the function pd-control().
The three PD controllers have been specified in Section 6.5.2.2 to run on a PACE
array under the supervision of a master programme on a host Transputer. The software
model for this realisation is also presented in Section 6.5.2.2. The sequential

Chapter 6: a parallel controller for the puma 560

combination of the identification routine and PD controller runs in parallel with the
feedforward controller, com-torO- Note that the combined recursive least squares routine
and PD controller must complete execution before the computed torque controller to
avoid becoming the critical path of of the overall controller, and lowering the speedup.
Considering the recursive least squares routine has a parallel execution time of 748.9|is
the maximum execution time permitted for the PD controller is therefore 1.8211ms.
The total sequential time for the PD controller is only 0.961ms, and the faster parallel
implementation is one third of this at 0.320ms. Because of the general unavailability
of the PACE architecture, and the withdrawal of the PACE software simulator [99] for
revision, it is not possible to perform timing measurements for the medium-grained
PACE array realisation of the PD algorithm, but it is plausible to assume that by
incorporating the PACE architecture as specified in Section 6.5.3, the critical path of
the overall parallelised controller, consisting of the computed torque feedforward control

strategy, remains unaltered. Otherwise if the risO/pd-controlO combination were to
become the critical path then the PACE array would have to execute the PD control
algorithm at least a speed over four and a half times slower than the Transputer

realisation, even allowing for a Transputer-PACE interface communications overhead of

20%. For the purposes of controller evaluation the PD controller may be ran on a

Transputer, since the overall speedup remains unaffected. A schematic representation of
the schedule of process execution in the feedforward/feedback controller is given in

Figure 42.

Chapter 6: a parallel controller for the puma 560

Processor
Allocation-

Co
• i

Ce
S'0 S I

Recursive Least PD Feedback
Squares Routine Controller

TO T1 T2
1 w

T3

Time

Graphical representation of the block processing
schedule in the Feedforward/Feedback controller

FIGURE 42

The graph gives a time-scale representation for each of the three main processes,

although not precisely to scale. The critical path is evidently the feedforward path.

168

There are two main computational paths in the controller, with each of these paths
decomposing into a maximum of three subpaths, giving a maximum parallelism of six.
The only path of interest in the speedup evaluation is the longest path. With the

proviso of unlimited processors this path is equal to the parallel execution time of the

com-torO function, 2.570ms. The overall speedup is given by the expression:

9.287
Speedup = 2.570 = 3.614

Despite a the system having a maximum parallelism of six the speedup falls well
short of its upper bound. Among the factors causing this are algorithmic sequentiality,
processor idling and a critical path which is significantly longer than the next slowest
path, all of which are all effectively inter-related to one another. The processor
efficiency is derived from the speedup as follows:

_______Speedup 3.614
Efficiency = Number of processors = 6 = 0.6023

The relatively low processor efficiency reflects the presence of a comparitively
slow critical path, which also ensures that processor efficiency will remain effectively
constant despite a reduction in the number of processors in the system. This is
because the second slowest path requires much less processing power to execute in the

same time as the critical path and the removal of the first few processors does not
therefore alter this critical path. This will be discussed and graphically illustrated in
the following section, when the eventuality of reduced processor availability is

considered.

6.6.3 Introduction of Hardware Constraints

A natural extension to the analysis of a system under ideal conditions is the
consideration of the system performance under less favourable circumstances and
possibly the establishment of thresholds below, or above, which the system
performance indices remain constant In this particular case the optimum performance
of the controller is achieved in the presence of six Transputers. What now needs to
be considered is the nature of the degradation in performance resulting from a
reduction in Transputer numbers: how does the speedup decrease, and how does

processor efficiency behave as a function of processor numbers?

The following section attempts to graphically answer these questions and

furthermore it gives explanations as to why the performance indices behave in the

manner they do.

Chapter 6: a parallel controller for the puma 560

169

A reduction of one in the number of processors effectively means that the work
previously executed by this processor must now be shared among the remaining

processors. The manner in which this work is shared or allocated is vitally important
An ad-hoc method of dividing the woik-load among the processors would be a futile
scheme and a travesty of software management The specific application generally

determines the way in which the extra work is consumed and it would be veiy
difficult to programme a multi-purpose compiler to optimise the woik-load and speedup
simultaneously, without introducing considerable dynamic management oveiheads. The
scheme employed here involves maintaining the modularity of the processes and
re-assigning complete processes to single processors. The diagrams showing the
parallelism of the controller functions, contained in Sections 6.1.3, 6.2.2 and 6.2.3,

clearly illustrate the processes by the use of blocks, and these processes are treated as
indivisible tasks. Removal of a processor creates extra processes, available for
execution, and the most important concern during re-allocation of these processes is the
preservation of the critical path at its present length. Provided the critical path remains
constant the process allocation is arbitrary. During the following analysis the PD
controller execution time is defined as its parallel run-time cm the T414-20 Transputer
(32.0|xs for each PD controller), for the purposes of illustration (in the absence of
timing measurements on the PACE array).

In the optimal hardware configuration six Transputers are assigned to the
controller. Three are assigned to the feedforward inverse dynamical equations
calculation, and three are devoted to the feedback path, which involve a recursive least
squares routine in sequence with a PD controller. By removing one Transputer a five
Tranpsuter multiprocessing system is left to implement the controller. Despite this the
speedup remains unchanged, although processor efficiency increases. Three Transputer
are still dedicated to the critical path of the controller, or the computed torque
evaluation, but only two Transputers execute the feedback path. This reduces the
maximum parallelism of both the parallel recursive least squares algorithm and the
three-joint PD controller to two. By inspection this increases the execution time of
both algorithms by 688.6|is and 320.3(is respectively (due to the reassignment to
another processor of one of the three least squares routines and one of the three PD
controllers). The feedback computational path is increased from 1.0692ms to 2.0781ms,
which implies that the critical path remains unaffected by the one-processor reduction.

Removal of a second Transputer, to leave a four Transputer system, is the next

stage of analysis. Previous to this removal the feedback path has two Transputers
assigned to it whilst the feedforward path has three dedicated Transputers. If a further

Chapter 6: a parallel controller for the puma 560

6.6.3.1 Effects on speedup and processor efficiency

170

Tranpsuter is removed from the feedback path the one remaining Transputer has an

additional workload which adds 1.009ms to the computational time for the feedback

path, equal to its sequential execution time of 3.087ms. Thus this path becomes the
critical path and reduces speedup to a value of 3.01 and processor efficiency becomes

0.752.

It is possible however to avoid such a severe degradation in speedup, when one
considers the fact that of the three Transputers assigned to the feedforward path one
or two are often idle, awaiting the completion longer path. This is apparent from
Figure 32, Section 6.1.3, which shows the computed torque algorithm in parallel form.

It is possible to assign the idle Transputers to execute complete processes from the
feedback path, with the minimal effect on the critical path length. By evaluating
several combinations of process allocation the optimum scheme was determined. After
approximately 790|is the three Transputers in the forward path begin to execute the

functions define-d-barO. define-plbarO and define-p2bar0 in parallel. About lOOps
previously the one Transputer in the feedback path would have completed executing
the second of the three recursive least squares routines, which take 688ps each. The

define-d-barO, define-plbarO and define-p2bar0 function have execution times of
315.6ps, 1.76ms and 1.815ms respectively, so the Transputer hosting the define-d-bar()
function on completion idles for 1.499ms, which is sufficient time to execute the two
least squares routines, allowing for scheduling overheads. If this processor therefore is
assigned these two functions then the uni-Transputer in the feedback path has its
processing time reduced by approximately 1.377ms and the critical path remains
unaltered. Speedup also remains unchanged from the original value achieved with
optimal processor assignment and processor efficiency is increased

Theeventuality of only three Transputers being available creates a more
complicated scenario. In the four Transputer system the Transputer in the feedback
path hosts one least squares routine and three PD controllers. The solution in finding
the optimal process assignment is again achieved by evaluating different allocation
schemes and selecting that which yields minimum critical path length. It is found that
the most effective method is to remove the Transputer from the feedback path and
integrate the feedback calculations with those of the feedforward path on the same
three Transputers with an amended scheduling scheme. The appropriate assignment

criteria in the case of three Transputers is restricted in that the three individual PD
controllers must be executed sequentially with their respective least squares routine (i.e.

the identification routine must be complete before the PD controller can begin to
generate a compensation signal). Note that in the computed torque evaluation the final

three functions, var-assignO, mat-by-vec0 and vector-addO are executed sequentially and
two Transputers are idle. The optimal assignment is to use the two idle Transputers to

Chapter 6: a parallel controller for the puma 560

171

host the extra processes. One Transputer executes the final least squares routine and a
PD controller while the other hosts the remaining PD controller. The reason why one
of these two PD controllers is placed on the same Transputer as the identification

routine is to avoid the necessity of channels. Since it must await the final least
squares routine to complete before beginning execution channels communicating the
data to the PD controller would be necessary were it on a separate TRAM. The

extended critical path takes 3.422ms to complete. Speedup takes on a new degraded
value of 2.7136 and processor efficiency is a respectable 0.904, which is to be
expected considering the reduced processing power.

Only two more Transputer topologies remain to be analysed: a uni-Transputer
system and a dual-Transputer system. The case of only one Transputer is the
benchmark standard used to evaluate all other cases and has a speedup of unity and a

processor efficiency also of unity. The performance indices for the case of a
dual-Transputersystem requires a little more thought The availability of two
Transputers to implement the controller creates the possibility of many different

processor allocation schemes, but as before that which minimises the critical path is
the only one of practical interest. The initial four sequential functions of the computed
torque algorithm, see Figure 32, are executed on one transputer as before. The
following three parallel processes, which evaluate the joint centripetal and coriolis
forces, have the same execution time on two Transputers as three, since the two

fastestprocesses combined still execute quicker than the slowest process. On
completion of the slowest process the outputs are collated and the inertial matrix is
calculated as before. Following this again there are three parallel processes to be
executed, and once more the slowest process takes longer to execute than the other
two processes. The controller up until this stage has preserved its value of speedup.
The remaining processes to be executed have a major impact on the final value of
speedup, however. The following three parallel computational paths, (a) define-d-barO
and the two identification routines, (b) define-plbarO and (c) define-p2bar0 must be
implemented on two processors. The summation of the two fastest paths gives an
execution time of 3.458ms. The final operations, which again are distributed among
three parallel computational paths, must also be assigned in the most efficient manner
to two processors. Fortunately, in this instance the two fastest paths combined are
computationally shorter than the slowest path, so no extra time is added to the overall
controller execution time. Combining the above observations and timing measurements

the controller execution time is modified to a tow time of 5.254ms. This execution
time yields a moderate value for speedup of 1.77 and consequently processor efficiency

for the dual-Transputer system becomes 0.884, a decrease on the previous case, (three

Transputers), because the process modularity prevented processes being decomposed
equally among the two Transputers, and in two instances the longer of the two

Chapter 6: a parallel controller for the puma 560

172

parallel computational paths was considerably slower than the other faster path and

was reflected by an increase in processor idling.

This data is best expressed through the medium of a graph, and in Appendix C
Graph 6.8 contains the piece-wise linear curve representing the performance of speedup
as a function of the number of TRAMs available. The increase in speed from one to
four processors is practically linear, and remains constant having reached its maximum
at a value of 3.614. Likewise Graph 6.9 charters the progress of processor efficiency
as the number of available TRAMS varies. A significant drop in processor efficiency
appears at the two-processor stage. This reflects the fact that the increase in speedup
from one to two processors is less than the theoretical linear increase from one to
four processors. Note that at this value the efficiency curve decreases in a more acute
manner than the speedup curve because the scales are different (the speedup scale
spans a wider range). Based on the timing measurements presented in this section
Graph 6.10 demonstrates the manner in which the overall controller execution time
behaves as die number of TRAMs is increased from one to twelve. It must be
mentioned that because the number of TRAMs may only increase in a discrete integer

fashion the graphical data is correctly expressed as a series of points, and that these
points are extended to a curve in the above graphs for the purposes of analysis and
to illustrate the trend more clearly. The final section terminates this chapter by
summarising the various sections and briefly concluding the overall results of the
parallelised computed torque feedforward/FD compensator feedback controller. A more
comprhehensive conclusion is made in Chapter 7, which is the concluding chapter of

the thesis.

6.7 SUMMARY.

Itisno understatement to say that the field of parallel processing holds
tremendous possibilities for development of new, and the modification of existing,
algorithms in the study of control engineering. In this chapter a scheme is proposed to
utilise a parallel language software system and a multi-Transputer plus PACE array

hardware system to exploit the inherent concurrency of operations in a robotic control
strategy. In order to determine the coarse and medium grain parallelism in the overall
controller the controller itself must be decomposed into well defined independent
functions. These functions are examined and coded in a manner which explicitly
declares the concurrency at an operational level. Furthermore, at a more coarse grained
level, it is also possible to declare the concurrency between the functions themselves.

The overall controller may be divided into two independent paths: feedforward
and feedback. The feedforward path consists of a computed torque algorithm. The

Chapter 6: a parallel controller fo r the puma 560

173

PUMA 560 robotic manipulator is adequately modeled by a set of third order
dynamical equations, with joint motor voltage as input and the derivative of joint
accelerations as output. By incorporating the relationship between joint position and
velocity, joint velocity and acceleration and joint acceleration and its derivative a ninth
order state-space model is achieved. In the computed torque algorithm the inverse
dynamics of the robotic are modeled, as per equation 53c, Section 6.1.1. Whilst the
forward dynamics model the response of the joints to an input voltage the inverse
dynamics of a robot define the voltages necessary to achieve the desired joint loci.
Therefore, when supplied with the desired joint set-points the computed torque
algorithm attempts to generate the voltages necessary to accomplish these positions
within one sample period. In Section 6.1 this algorithm is described and based on the

inverse dynamical model the presence of coarse grained parallelism is identified.

The second computational path of the controller is the feedback path. The major
drawback of using a computed torque controller is inability of the controller to
respond to errors in joint positioning, in the absence of feedback. Any mispositioning
due to modelling inaccuracies accumulates as time progresses and may become
significant By incorporating a feedback path a compensation voltage may be generated

to offset the error. In Section 6.2 a PD feedback controller, which is driven by the
error in the joint positions, is introduced. In order for the PD controller to generate

accurate control signals the joints are represented by a continuously updated linear
model generated by a recursive least squares identification routine. The presence of
considerable medium grained parallelism in the PD algorithm is presented in Section

6.2.3, and the coarse grained parallelism illustrated in Section 6.2.2 is based on the
observation that three joints each have a separate PD controller dedicated to them. The
linear model identification routine may also be decomposed in a coarse grained
manner, and this is shown in Section 6.2.2.

The software coding of the parallelised controller is given in Section 6.4, using
the combined feedforward feedback controller model developed in Section 6.3. Parallel
C is used to explicitly declare operational concurrency, and is designed specifically for
compilation into Transputer machine code. The following Section describes the host
hardware for the controller, which is proposed to incorporate the PACE programmable
array. The PACE architecture is an ideal target system for the medium grained
decomposition of the PD controller, and a standard PID control algorithm application

on the array is modified to accommodate the less complex PD controller, which is
described in Section 6.5.2.2. To avail of the PACE architecture one must devise a

scheme to interface the Transputer and PACE topologies to harmonise their operations.
By assigning chip control to a Transputer an interface methodology is presented in
Section 6.5.3.

Chapter 6: a parallel controller for the puma 560

174

Chapter 6: a parallel controller for tìte puma 560

The final section deals with the analysis of the controller performance in parallel

form, and considers the effects of reduced processor numbers. Speedup and processor
efficiency are the two most prominent indices when considering the effect of a varying
hardware environment. When the number of processors is at or below the optimum
quantity then the maximum parallelism will always be equal to this number of
processors. Furthermore, the average bounded parallelism for a given number of
processors, as described in Chapter 3, is equal to the speedup at that same number of
processors. The numerical findings of Section 6.6 are presented in their most eloquent
form in Appendix C, which contains the graphical data.

175

CHAPTER 7

Conclusions

A comprehensive introduction to parallel processing is given in Chapter 2, and
the general hardware and software manifestations of parallel processing theory are also
included. The technique of concurrent processing provides a powerful platform for
enhanced algorithmic performance and it is on this premise that an attempt is made to
apply it to aspects of control engineering. To evaluate the effectiveness of the
application a parallel decomposition scheme to an algorithm one must possess a
thorough understanding of the formulation and interrelationships of relevant
computational performance indices. In Chapter 3 the parallel performance indices of
speedup, processor efficiency, parallelism, maximum parallelism and bounded parallelism
are extensively considered and formulated and their relationship with the software
construction and hardware topology is examined. The limitations and bounds of these
performance benchmarks are sought and graphically illustrated.

Within an algorithm or a specified sequence of calculations there may be
considerable scope for operational concurrency. In some instances, however,
sequentiality may be ingrained in the nature of the computations and attempting to
impose parallelism on them proves to be futile. There is a technique whereby
concurrency may be created in the operations, by use of the pipelining technique. This
is described in detail in Chapter 2, but in Chapter 4 the application to the field of
control engineering is aptly illustrated by the pipelining of an explicit self tuning

regulator (STR). The STR is part of the family of control strategies known as
adaptive controllers. The STR controller generally decomposes into three tasks:
identification of the controlled process with a linear model, controller parameter
evaluation and control signal generation. It performs these three tasks every sample
period. The identification routine is completely sequential, the parameter evaluation
likewise and the control signal generation is a short and also sequential task. At a

coarse grained level the three processes are highly sequential and offer no scope for
parallelisation. By the use of pipelining the overall speed of the algorithm may be
greatly enhanced at the cost of increased initial transient error and extra processing
power, as described in Chapter 4. Graph 4.1 to Graph 4.6 illustrate the convergence of

the controller parameters for a five stage pipeline, and vindicate its operational
stability. Graph 4.7 shows both the controller and the system response to a desired

unit step output. Some transient errors on the system output signal are evident but
prove to be insignificant and the error is found to be less than 0.5% after five sample
periods. The performance of the five-stage pipelined STR as a function of controller

176

system order is chartered in Graph 4.8, Appendix C, page Cl. It is found that the
execution time increases in an exponential fashion as the system order increases, with

a time constant approximately equal to 2.16.

Alternatively, in the instance where considerable scope does exist for

parallélisation of an algorithm the benefits in enhanced performance can be quite
significant One of the most computationally intensive tasks in practical robot
engineering is the software implementation of a mathematical model of the manipulator
dynamics. In Chapter 5 an attempt is made to create a parallel simulator for the Puma
560 robot manipulator which is faster than the sequential model, but demonstrates the
same degree of modeling integrity. The third order model presented in Chapter 5 is
based on a second order model derived by Paul[70]. The second order model neglects
some important dynamics of the Puma 560 arm and is therefore a poor model for use
in a simulator when validating and testing a controller technique, especially one which
operates within restricted error margins.

The open-loop performance of the model is tested by using a suite of different
tests, which examine for various dynamics and responses, so that the simulator output
may be compared with the actual manipulator response. From the graphical results,
analysed in Section 5.5.1, it can be concluded that the dominant characteristics of the

robot dynamics are adequately described by a third order dynamical model.

The mathematical model of the manipulator is examined for parallelism. The
maximum parallelism was found to be 3 and the average parallelism was found to be
equal to 2.438, which is equivalent to the ideal speedup in the instance of unlimited
availabilty of processors, as shown in Chapter 3. It is interesting to note that the
maximum parallelism in the model does not exceed the number of joints being
simulated. This is to be expected since the computational model of each individual
joint is quite sequential in nature and there is generally three computational paths in
parallel throughout the simulator. There are some coupling terms which must be

calculated for each of the three joints in sequence, which reduces the average
parallelism for the joint calculations below a value of three. The remaining calculations
and assignments (matrix calculation and set up, variable assignment, etc.) would require

a average parallelism of much greater than three in order to give the system an
overall parallelism of three or greater. These additional overheads are found to be

mostly sequential, or at best have a maximum parallelism of three. The object

therefore is to attempt to attain as near a speedup as possible to the ideal value. The

factors which degrade actual speedup are mostly inter-processor communication and
process partitioning and scheduling overheads. Although it is important that processor
efficiency is as close to unity as possible to ensure a cost effective multiprocessor

Chapter 7: conclusions

177

system the most important factor is obviously speedup, since this is the objective of
parallelisation. As mentioned in Section 5.5, Jones & Fleming [93] found that through
using a processor farm to share the workload and thus increase processor efficiency,
the scheduling overheads became significant and in some instances took more
processing time than the actual computations. In Chapter 5 die parallel model of the

simulator is ideally implemented in parallel on three Transputers, which means that
each concurrent process could be run on a separate processor. This ensured reduced
scheduling overheads. Furthermore, the communications between processes was kept to

a minimum to avoid unnecessary idling of processors.

The execution time of the simulator on a T414-20 Transputer network as
described above is determined against processor numbers and is displayed in Graph
5.30. On an optimal system of three Transputers the simulator takes 15.256
milliseconds per iteration, compared to 37.194 milliseconds on a single Transputer.
Increasing the number of Transputers beyond three has no effect on the performance
of the simulator, other than enhanced integrity due to the availability of extra
Transputers in the event of the failure of one the active Transputers. This is evident
in Graph 5.25, which illustrates the performance of speedup as a function of the

number of processors.

The introduction of pipelining enhances the execution time of the simulator even
further. The iterative loop of the simulator naturally decomposes into four processing
stages, with each containing a call to the function high-statesO and a routine to
evaluate the Runge Kutta numerical integration coefficients. In the unpipelined case the
parallel model is optimally implemented by three processors. In the pipelined case,
therefore, the optimal number of processors will be three for each of the four stages,
or twelve overall. This is quite a costly hardware realisation but proves to be a

relatively fast implementation of the forward dynamics of the Puma 560 robot
manipulator. The execution times of the simulator for different numbers of T414-20
Transputers is illustrated in graph 5.31. Note however that the addition of extra
processors is only permitted in blocks of four and a smooth curve is fitted to the
points so that the natural trend of decreasing execution times is best illustrated. The
fastest execution time, which occurs when twelve Transputers are used, is 3.8784
milliseconds. This is a speedup of almost 9.6 over the sequential case. The compares
to an execution time of 17.9091 milliseconds for the pipeline of twelve INTEL 80286
(iProcessors. The pipelining technique introduces errors due to data uncertainty in the

initial stages of processing. After 5 loop iterations this percentage error reduces to an
average of just over 1.5%, and on completion of ten iterations this error is no more

than 0.2%. For most applications of the simulator, (controller validation, manipulator

response, etc.), this initial margin of transient error is acceptable. This is graphically

Chapter 7: conclusions

178

illustrated in Graph 5.31. There are many instances however, where the initial response
is of vital importance, sometimes more so than the long term steady state response
(e.g. impulse response of joints) and in these situations the pipelined simulator may

prove to be inadequate.

In conclusion Chapter 5 has shown how the forward dynamics of the Puma 560
robot manipulator may be modeled adequately by third order differential equations.
These equations may be transformed to matrix form and simulated in software. The
software model, and not simply the equations themselves, may be examined for
parallelism. By calculating the average parallelism of the model oik also calculates the
theoretical speedup of the parallel realisation over the sequential implementation. By
optimising the hardware to the parallelised software model the speedup is also

optimised. By increasing the number of processors above an optimal value the
processor efficiency is decreased but speedup remains unchanged. The introduction of

pipelining offers further scope for enhanced performance, but at the cost of extra
hardware and decreased data accuracy in the initial stages. This can be acceptable in
some applications where the initial data is not vitally important. Overall, though, it is
seen how once again some of the concepts from the exciting area of parallel
processing can be exploited to the betterment of performance indices in the field of
control engineering.

In the same spirit as Chapter 5 Chapter 6 presents a parallelisation strategy for a
PUMA 560 robotic manipulator controller. The controller is defined as having two
paths: a feedforward path and a feedback path. The computationally more intensive
feedforward path contains a computed torque algorithm, which is based on the inverse
dynamical model of the manipulator. Ideally this path generates the necessary control
signals to achieve the desired joint set-points, (supplied from a path planner routine),
but in reality errors in joint positioning are unavoidable. Factors which contribute to
the errors include inaccurate joint coefficients in the inverse dynamical model, joint
stiffness and joint motor modeling errors, and to a lesser extent joint elasticity and
gearing backlash. Without compensation these errors accumulate as time progresses,

which may result in large final errors. A feedback path consisting of a linear model
identification routine and a PD controller, driven by the joint positional error, is
incorporated to generate the necessary compensatory voltages to offset the error. One
of the reasons a PD control strategy is used is to avoid overshoot in the system
output, which is desirable in this instance when you consider that the system output is
the vector of joint positions. Graph 6.7, Appendix C, page C.12, illustrates the

behaviour of the error over a given trajectory. By observation it can be seen that the

error is proportional to the joint velocity (see Graph 6.3, page C.10) with a constant

of proportionality equal to -5.166xl03. Thus it is necessary to optimise the velocity of

Chapter 7: conclusions

179

the joints under an error and time cost function. If the error is to be kept within a
certain margin, then it is possible to incorporate a differential constraint into the path
planning methodology used to generate the desired trajectory. This would prove to be
an interesting optimisation problem, but unfortunately it is not within the scope of this

thesis to postulate a solution.

The maximum parallelism in the computed torque algorithm is found to be equal
to the number of joints being controlled, three. By further inspection the average
parallelism of the algorithm is determined to be 2.374, which in the eventuality of an
optimal number of processors being available yields a processor efficiency of 0.791.
The speedup is quite respectable and represents almost eighty percent of the figure for
maximum parallelism (recall that the value speedup may not exceed the figure for
maximum parallelism). The values of speedup and efficiency for the Puma 560
simulator, which is based on the forward dynamical equations, are 2.438 and 0.8127
respectively, which are comparable to the values for the computed torque algorithm,

which is based on the inverse dynamical model.

The feedback path is also examined for computational parallelism. Within this
path there is scope for both medium grained and coarse grained parallel decomposition
Overall each joint is assigned an individual PD feedback controller, and each joint is
separately identified by a recursive least squares routine. The sequential operation of
identification and PD control may be performed on each of the three joints in parallel.
This represents the coarse grained decomposition of the feedback path. At a finer
grained level there is considerable scope for medium grained parallelisation of each of
the three PD algorithms. Based on a PACE array PID algorithm realisation by
Jones[81] the PD controller evaluations are mapped onto a medium grained array
processor. This method exploits both parallelism and pipelinability.

The major obstacle of combining processors of two different granularity is the
necessity to define and create an operational interface regime, to facilitate efficient
inter-processor communication. In Chapter 6 such an interface definition is given for
the PACE and Transputer topologies. Due to general unavailability of the PACE chip
it is not possible to specifically code or build the interface. For the purposes of
simulation and in the absence of a PACE array the PD algorithm is hosted on a
TRAM on the IMS B008 motherboard.

The coarse grained decomposition of the feedback path yields a maximum

parallelism of three, for the same reasons as explained for the forward path, and the
execution time is found to be much less than the execution time of the feedforward

path. The feedforward computational path is therefore defined as the critical path for

Chapter 7: conclusions

180

the overall parallelised controller. Furthermore the maximum parallelism of the
complete controller is found to be six, which occurs when the maximum number of
processes are active simultaneously for both the feedforward and feedback paths.
Naturally, six processors constitute the optimal hardware topology. It is interesting to
observe the performance of speedup, equal to the bounded parallelism, for lesser
numbers of processors, shown in graphical form in Appendix C, Graph 6.8. For four
and five TRAM systems the speedup remains unaltered, and the degradation normally
associated with reduced processing power is absent. This is explained by the fact that
in the controller there are two computational paths (feedforward and feedback) which

are completely independent, and whilst both have a maximum parallelism of three both
paths have substantial sequential calculations. During die sequential calculations of, say,

the feedforward path one or two processors may be idle, and it is possible to reassign
these processors to processes in the feedback path, in the case where the feedback
path has a number of processors less than the optimum. In the instance of three or
less processors being assigned to the controller speedup degrades rapidly to unity. The
performance of processor efficiency as a function of the number of processors may be
inferred from the speedup curve. Graph 6.9 illustrates this performance index. Processor
efficiency increses when the number of processors is increased from two to three. This
reflect the fact that the slope of the speedup curve from one processor to two
processors is less than over the range two processors to three processors. Although this
slope difference is slight in Graph 6.8 it is amplified by the shorter y-axis scale of
Graph 6.9 to give a much more dramatic change in the processor efficiency curve.

Chapter 7: conclusions

181

REFERENCES

[1] Lea, R. M. "The influence of technology on parallelism " in "Major Advances in

Parallel Processing", Editor C. Jesshope, Technical Press 1987, pp.3-13

[2] Lea, R. M "The influence of technology on parallelism " in "Major Advances in

Parallel Processing", Editor C. Jesshope, Technical Press 1987, pp.3-5

[3] Jones, Dr. S "Parallel processing in control ", Editor PJ. Fleming, IEE Control
Engineering Series 38, Pubi. Peter Peregrinus Ltd 1988, page 5.

[4] Kinniment, D. J. "VLSI & Machine Architecture", Computer Science Dept., Technical
report, University of Newcastle upon Tyne, UK, 1985.

[5] Jones, Dr. S. "Parallel processing in control ", Editor PJ. Fleming, IEE Control

Engineering Series 38, Pubi. Peter Peregrinus Ltd 1988, page 3.

[6] Jones, Dr. S. "Parallel processing in control ", Editor P.J. Fleming, IEE Control
Engineering Series 38, Pubi. Peter Peregrinus Ltd 1988, page 4.

[7] Lea, R. M. "The influence of technology on parallelism " in "Major Advances in
Parallel Processing", Editor C. Jesshope, Technical Press 1987, pp. 8-10.

[8] DeCegama, A. L. "The Technology of Parallel Processing" Prentice Hall, Chap. 1.

[9] Sweazey, P. & Smith, A. J. "A class of compatible cache consistency protocols &

their support by the IEEE Futurebus" 1986 IEEE conference on Computer
Architectures, 1987, pp. 414-423

[10] Flynn, M. J. "Very high speed computing systems" Proceedings of IEEE, Dec. 1966,

pp.1901-1909.

[11] Kuck, D. J. "The structure of computers and computations", Volume 1, New York

Wiley, 1978.

[12] Basu, A. "A classification of parallel processing systems", Proceedings of IEE

conference on computer design, 1984, pp.222-225.

[13] DeCegama, A. L. "The Technology of Parallel Processing" Prentice Hall, page 63.

[14] Keller, R. M. et al. "Simulated performance of a reduction based multiprocessor"

IEEE Computer, July 1984, pp.70-82.

[15] Jones, Dr. S. "Parallel processing in control ", Editor PJ. Fleming, IEE Control

Engineering Series 38, Publ. Peter Peregrinus Ltd 1988, p.5.

[16] Me Cabe, A. "Systolic arrays and special purpose silicon in "Major advances in
parallel processing" Editor C. Jesshope, Technical Press 1987, pp.13-33.

[17] Hudson, J. "Systolic array architectures for optimal filtering", IEE Computing and
Control division conf. "Recent advances in Parallel Processing for Control", Bangor,

Wales, 7th July 1988.

[18] Megson, G. M. "Transputer implementation of systolic arrays for model reduction",
IEE Computing and Control division conf. "Recent advances in Parallel Processing for

Control", Bangor, Wales, 7th July 1988.

[19] Irwin, G. "Occam simulation of a systolic architecture for parallel kalman filtering",
IEE Computing and Control division conf., "Parallel Processing in Control - The

Transputer and other architectures", 20-22 Sept. 1987.

[20] Gaston, F. Irwin, G. "The application of systolic and wavefront arrays to adaptive
beamforming", IEE Computer and Control division conf., "Parallel Processing: A new

direction for control", London, Feb. 1987.

[21] Gaston, F. "Systolic kalman filtering - An overview", Dept, of elect, engineering, The

Queens University of Belfast, Northern Ireland, United Kingdom.

[22] Gaston, F. Irwin,G "VLSI architectures for square root covariance kalman filtering",

Proc. SPIE conf., San Diego, Aug. 1989.

[23] Irwin, G. Gaston, F. "Systolic square root covariance kalman filtering" Dept of
elect engineering, The Queens University of Belfast, Northern Ireland, United

Kingdom.

[24] Irwin, G. Gaston, F. "Linear quadratic optimal controller realisation on systolic arrays"
Dept of elect, engineering, The Queens University of Belfast Northern Ireland, United

Kingdom.

References

[25] Irwin, G. Gaston, F "A systolic parameter estimator for real time control" Dept of

elect, engineering, The Queens University of Belfast, Northern Ireland, United
Kingdom.

[26] Kung, R. "A new approach to linear filtering and prediction problems” Trans.

ASME, J. basic Eng. , 1960, 82D, pp34-45.

[27] Ward, C. "A novel algorithm and architecture for adaptive digital beamforming" IEEE

Trans. Antennas and Propagation, 1986, AP-34, pp338-346.

[28] Kung, H. "Systolic communication" Proc. Int. Conf. on systolic arrays, May 1988,

pp695-703.

[29] Guez, A. "Neuromorphic architecture for adaptive robot control : A preliminary

analysis" 1987, Inteml Conf. of Neur. Net. (ICNN).

[30] Guez, A. "Solution to the inverse kinetics problem in robotics by neural networks"

March, 1988, International Conf. on Neural Networks, (ICNN)

[31] Hopfield, J. "Computing with Neural Networks - A model ", SCIENCE vol.233, 8

Aug. 1986, pp.625-633.

[32] Murtagh, F. & Adorf, H "Clustering Based on neural network processing",

COMPSTAT ’88, Copenhagen, Aug.-Sept. 1988.

[33] Matema, T. "Neural networks enter high speed maiketplace " Computer Technology,

Vol (vii)., no.7, June 1987.

[34] Zeidenberg "Modelling the brain", BYTE, December 1987, pp. 237-246.

[35] McKittrick, B. J. "Development and implementation of a correlation based stereo

algorithm", School of Electronic Engineering, Dublin City University, 1989

[36] Hillis, W. D. "The Connection Machine" Cambridge, MA, The MIT press, 1985.

[37] Siegel, H. J. et al. "The PASM parallel system prototype", IEEE 1985 COMPCON,

pp.429-434.

[38] Me Kittrick, B. J. "Parallel Processing and Control: A Survey", Technical report,

Control Technology Research Unit (CTRU), Dublin City University, March, 1990.

References

References

[39] Young, S. "An introduction to ADA" 2nd Edition.

[40] Griffiths, S. "Introduction to OCCAM Development", IEE Computing and Control
division conf., "Parallel Processing in Control - The Transputer and other

architectures", 20-22 Sept. 1987.

[41] Ahuja et al. "Linda and friends", IEEE Computer, August 1986, pp.26-34.

[42] James McGraw et al. "SISAL: Streams and Iteration in a Single Assignment
Language", Language reference manual, Version 1.2, University of Texas, Computer
Science Dept, March 1, 1985.

[43] Bigler, B. M. et al "Parallel dynamic storage allocation" 1985, IEEE Int conf. on

par. proc. pp.272-275

[44] Fox, G. C. & Otto, S. W. "Concurrent computation and the the theory of complex

system" Knoxville Hypercube conf Aug ’85

[45] Fox, G. C. "Load balancing and sparse matrix vector multiplication on the Hypercube"

Caltech preprint C3, page 327.

[46] DeCegama, A. L. "The Technology of Parallel Processing" Volume 1, Prentice Hall,

New Jersey, 1990, page 44.

[47] Irwin, G. Gaston, F. "Systolic square root covariance kalman filtering" IT90, San

Diego, March 1990.

[48] Ahmed, S. "Optimal design of multiple arithmetic-based robot controllers", Purdue

University.

[49] Daniel, R. W. Shaikey P. M. "Transputer control of of a PUMA 560 robot via the

virtual bus" IEE proc., Vol 137, PtD, No.4, July 1990.

[50] Katbab, A. "A multiprocessor architecture for robot arm control" Microprocessing &

Microprogramming 24 (1988) 673-680, North Holland.

[51] "A multiprocessor-based controller for the control of mechanical manipulators" IEEE

Journal of robotics and automation, Vol. RA-1, No.4, December 1985.

[52] Prof J. W. Ponton, McKinnel, R. "Nonlinear process simulation and control using

Transputers", IEE proc., Vol. 137, Pt.D, No.4, July, 1990.

[53] Skogestad, S. Morari, M. "The dominant time constant for distillation columns"
Computing and Chem. Eng., 1987, 11, (6), pp.607-618.

[54] Sargent, R. W. H. Sullivan, G. R. "Development of feed changeover policies for

refinery distillation units", I & EC, pre d&d, 1979, 18, (1), pp.113-124.

[55] Eager, D. L. Zahoijan, J. Lazowska, E. D. "Speedup versus efficiency in parallel
systems" IEEE Trans on comp., Vol. 38, No.3, March 1989.

[56] Young, S. "An introduction to ADA" 2nd Edition.

[57] DeCegama, Angel L. "The technology of parallel processing" Volume 1, Prentice Hall,

New Jersey, 1990.

[58] Minsky, M. Papert, S. "On some associative, parallel and analog computations" in
Associative Information Technologies, E J Jacks, Editor, New York, Elsevier, North

Holland, 1971.

[59] Kluck, D. J. et al "The effects of programme restructuring, algorithm change and
architecture choice on programme parallelism" Proc. Int. Conf. on Par. Proc., 1984,

pp.129-138.

[60] Heidelberger, P. Trivedi, K. S. "Queueing network models for parallel processing with

asynchronous tasks" IEEE Trans. CompuL, Vol C-31, N o.ll, 1982, pp.1099.

[61] Fayolle, G. King, P. J. B. Mitrani, I. "On the execution of programs by many

processors" in Proc. 9th Int. Symp. Comput. Performance modeling, Measurement

Evaluation, 1983, pp.217-228.

[62] Chen, T. C. "Overlap and pipeline processing" in Introduction to Computer
Architecture, H stone, Editor, SRA, 1975, pp.375-431.

[63] Amdahl, G. M. "Validity of the single processor approach to achieving large-scale
computing capabilities", Proc. AFIPS, Vol 30, 1967, pp.483-485.

[64] Denning, P. J. Buzen, J. P. "The operational analysis of queueing networks models"

CompuL Survey, Vol 10, No. 3, pp.225-261.

References

v

[65] Muntz, R. R. Wong, J. W. "Asymptotic properties of closed queueing networks
models" in Proc. of 8th Princeton conf. inform, sci. syst., 1974, pp.348-352.

[66] Kumar, B. Gonslaves, A. "Modelling & Analysis of distributed software systems"
Proc. 7th ACM symp. oper. syst principles, 1979, pp.2-8.

[67] Graham, S. L. Kessler, P. B. McKusick, M. K. "gprof: a call Graph execution
PROFiler" Proc. of the ACM SIGPLAN ’82 Symp. on Compiler Construction, June,

1982, pp.120-126.

[68] Anstrom, Wittenmark "Computer controlled systems" Prentice Hall Information and

System Sciences series, 1984.

[69] DeCegama, Angel L. "The technology of parallel processing" Prentice Hall, New

Jersey, 1990, page 9.

[70] Paul, R. "Robot manipulator mathematics, programming control" The MIT press, 1981

[71] Craig, J. "Introduction to robotics, mechanics and control" Addison-Wesley Publishing

Company.

[72] Denivit J. & Hartenberg, R. "A Kinematic notation for lower-pair mechanisms based

on matrices" ASME Journal of applied mechanics, June, 1985.

[73] Leahy et al "Efficient dynamics for the Puma 600" Robotics and Automation, San

Francisco, CA., 1986.

[74] Stone, H. et al "Dynamic modeling of a three DOF robotic manipulator" IEEE
Transactions on System Man and Cybernetics, Vol. SMC-14, No.4, July/Aug., 1984.

[75] Bejczy et al "Nonlinear feedback control of a Puma 560 robot arm by computer"

Proc. of 24th confer, on decision and cont, Dec., 1985.

[76] Goldstein, H. "Classical mechanics", 2nd edition. Addison-Wesley Publishing Company.

[77] Carr, S. Anderson, G. et al "An LQG approach to selftuning with applications to

robotics" Robotic control: Theory and applications, Peter Pergrinus Ltd. for IEE, 1988.

[78] Tang, P. Yew, C. Fang, Z. Zhu, C. Q. "Deadlock prevention in processor
self-scheduling for parallel nested loops" University of Illinois, CSRD report no.626,

'Reference?,

Jan., 1987.

[79] Turbo C, User Guide, Borland International.

[80] Turbo C, Reference Guide, Borland International.

[81] Jones, S. Spray, A. "Implementing irregularly structured functions On regularly
structured aiTays" Dept of Elect & Electronic Eng., University of Nottingham,
University Park, Nottingham, NG7 2RD, United Kingdom.

[82] Jones, S. Spray, A. "PACE: A regular array for implementing irregularly structured
algorithms" Dept, of Elect & Electronic Eng., University of Nottingham, University
Park, Nottingham, NG7 2RD, United Kingdom.

[83] Jones, S. Spray, A. "PACE architecture & Kalman filtering" Dept, of Elect. &
Electronic Eng., University of Nottingham, University Park, Nottingham, NG7 2RD,

United Kingdom.

[84] Poplett, J. "The development of a parallel C", TCC-0910-1 to TCC-0910-7.

[85] "Parallel C", Publ. by 3L limited, Supplier: SENSION - Transputer products division,

Denton Drive, Norwich, Chesire CW9 7LU.

[86] Taylor, R. "Survey of Transputer Applications". May 1986.

[87] May, D. "The Transputer", "Major Advances in Parallel Processing”, Editor C.

Jesshope, Technical Press 1987, pp. 33-47.

[88] May, D. & Shepherd, R. "The Transputer Implementation of OCCAM" in "Parallel
Processing in Control" Editor P.J. Fleming, IEE Control Engineering Series 38, Publ.

Peter Peregrinus Ltd 1988, p.85.

[89] Fleming, PJ. "OCCAM and the Transputer" in "Parallel Processing in Control", Editor

P.J. Fleming, IEE Control Engineering Series 38, Publ. Peter Peregrinus Ltd 1988,

pp.27-99.

[90] Daniel, R. W. Sharicey, P. M. "Tranpsuter control of a Puma 560 robot via the

virtual bus", IEE Proc., Vol. 137, P t D, No.4, July, 1990.

[91] Ahmad et al "Optimal design of multiple arithmetic processor-based controllers" School

References

of Electronic Engineering, Purdue University, West Lafayette, Indiana 47906, USA.

References

[92] Lee, C. S. G. Chang, P. R. "Efficient parallel algorithms for robot forward dynamics
computation" School of Electronic Engineering, Purdue University, West Lafayette,

Indiana 47906, USA.

[93] Jones, D. I. Fleming, P. J. "Inverse Dynamics equations for Robot Control" in
Parallel Processing and Control, Editor P J Fleming, IEE Control Eng. Series 38,

1988, pp.l 17-125.

[94] "IMS B008 User guide & reference manual" Published by INMOS, Product support

[95] "Module Motherboard Software - User guide" Published by INMOS, Product support

[96] INTEL 8237 DMA controller chip, IBM PC-AT, Data Sheet.

[97] Ogata, K. "Discrete time control systems" Prentice Hall International editions, 1987,
Chapter 7.

[98] Snyder, L. "Introduction to the configurable highly parallel computer" IEEE comp,

mag., January, 1982, pp 47-56.

[99] PACE software simulator, available on request from:
Dept of Elect & Electronic Eng., University of Nottingham, University

Park, Nottingham, NG7 2RD, United Kingdom.

Parallel Processors - An Evaluation

A.l THE TRANSPUTER

Since it’s development by INMOS in early 1986 the transputer [A1][A2][A3]
has become one of the more widely used processors in parallel system realisation. In
VLSI technology it is observed that communication between seperate devices is much
slower than communications within a single device. Thus a processor can spend a lot
of time accessing it’s memory store. Based on this premise the transputer was
designed with both processor and memory on the same integrated circuit.

Communication between transputers is executed in serial fashion using point to

point connections. A transputer system consists of a number of transputers connected
in some ordered fashion. Each transputer can be directly connected to a maximum
of 4 neighbouring transputers. A notable feature of the transputer is that it can support
concurrent processes internally, albeit by time sharing the processor between the

processes.

The small number of registers, six, is testament to the availability of fast
on-board memory. This fact, coupled with the prescence of a simple instruction set
makes for fast data paths when executing a task. The six registers are as follows;

□ 1. The workspace pointer which points to an area of store where local

variables are kept
□ 2. The instruction pointer which points to the next instruction to be executed.

□ 3. The operand register which is used in the formation of instruction operands.
□ 4. The A,

□ 5. B,
□ 6. and C registers which form an evaluation stack, and are the sources and

destinations for most arithmetic and logical operations.

One of the design decisions of the transputer is that it should be programmable

in a high level language and therefore the small and simple instruction set makes for
easy and efficient compilation. The instruction set is independent of processor
wordlength so that the microcode is equally applicable to two transputers of differing
wordlength. Each instruction is 1 byte. The first four most significant bits are the

function code and the second four are the data. Included in the set are 13 of the

most necessary functions for a computer to operate realistically, including ;

Appendix A: parallel processors

APPPENDIX A

A.l

Appendix A: parallel processors

load constant
load local

load non-local
jump

add constant

store local
store non-local
conditional jump

load local pointer

load non-local ptr
call

Two of the function codes are used to allow for the extension of the operand
to any length. They are ’prefix’ and ’negative prefix’. The 4 least significant bits of
the operand register are used to hold the data bits which is then treated as the
operand. In the case where the prefix instruction is used the 4 data bits are loaded
as normal and then shifted up 4 places. The negative prefix is the same
except the data is complemented before shifting. Thus operands of any length up to
the size of the operand register can be represented. Even with this facility research
shows that approximately 80% of executed functions are encoded in a single byte.
Therefore in only 20% of cases is a prefix used. This augurs well for encoding
efficiency. This means also that several instructions will be got during a memory fetch

cycle.

Transputers not only operate in parallel but also support the OCCAM model
[A4][A5][A6][A7][A8][A9][A10] of concurrency internally. There is a microcoded

scheduler present which enables any number of processes to be executed concunently
by sharing the processor time. The actual processor itself does not have to dynamicaly

allocate the storage space since this is handled by the OCCAM compiler. A feature of
the scheduler is that it prevents inactive processes from consuming processor time.

OCCAM communications are point to point, synchronised and unbuffered.
Between transputers the channel is implemented by a point to point serial link and

internally the channel between two processes is realised by a single word in memory.
Refer to [A4] for a more detailed account of the internal communications of

transputers.

The clock of the transputer operates with a period of 1 microsecond and it’s

current value can be accessed via a ’Read Timer’ instruction A process may arrange
it’s input against the timer so that it begins to execute a fixed point in time. This is
done using a ’Timer Input’ instructioa This is basically a descheduling of the process
priority. On arrival of the specified time the process is then re-scheduled.

A.2

Appendix A: parallel processors

A.2 THE BBN BUTTERFLY

Of all the commercial parallel processors supporting shared memory the BBN
Butterfly [A11][A12] is the most popular. It was developed in Edinburgh by the BBN
laboratory whose active fields of research include ;

□ Advanced control theory
□ Process monitoring and data analysis
□ Artificial intelligence
□ Computer simulation systems
□ Computer networks and communications
□ Parallel processing

By drawing from these areas of expertise the Butterfly parallel processor was
designed to be a powerful and flexible tool in the hardware realisation of real time

control applications. The following are the main architectural features of the processor

□ It is a MIMD machine
□ It is a tightly coupled, shared memory machine
□ It is expandable over a wide variety of configurations
□ It provides an integrated environment for both

numeric and symbolic computation
□ The machine has a very large memory.

Shared memory on the Butterfly is implemented by a ’unique switch

technology architecture’ [A ll]. Two of the pioneering control tasks of the Butterfly
were the Falcon system and the analysis of airframe test data. Falcon is a system
whereby, in a chemical plant, the production of paracetamol is both monitored and
simulated whilst it proceeds through a four stage chemical reaction. The system runs
through multiple batches to detect imperfections in the production process while
pinpointing faults. Thus an operator, by careful monitoring, is capable of improving the

production quality of the plant. The whole start to finish process takes twelve hours

and process simulation takes about 10 minutes on the Butterfly. This enables process

results for a particular set of plant parameters to be obtained quickly without having

to actually produce any paracetamol. The Falcon system also incorporates a diagnostic

facility based on AI techniques.

A.3

The second application was real time data acquisition and reduction in a

system used for analysis of airframe test data. Because of the nature of such tests
quite a considerable amount of data is generated at reasonably high rates. The
Butterfly is used to multiplex, sift and store the data and proves to be cost effective
for this application. Languages which are suitable for die processor include parallel
versions of FORTRAN 77, C, Ada and Lisp. This means that AI techniques suitable
for control purposes may be implemented on the Butterfly parallel processor.

Appendix A: parallel processors

A.4

Appendix A: parallel processors

A.3 AMDAHL VECTOR PROCESSOR SERIES

Amdahl have developed a range of four vector processors [A13]. The hardware
and software emphasis are on reliability. All processors, as are most Amdahl

computers, are IBM system/370 compatible. Main memory consists of 256 Megabytes
which allows for the running of large memory tasks. There are 16 or 32 i/p channels.
This means many external devices may be attached. Operations can be overlapped
since both the scalar and the vector units of the VP are highly pipelined.

□ Operating system : IBM MVS/XA

□ Languages

□ VP500
□ VP1100
□ VP1200
□ VP 1400

: FORTRAN 66
FORTRAN 77
(Libraries are in FORTRAN)

142 MFLOPS
286 MFLOPS
571 MFLOPS
1142 MFLOPS

The Amdahl vector processor range is the only series of machines delivering

more than a Gigaflop that is IBM compatible and can run IBM’s mainline operating

system.

Appendix A: parallel processors

A.4 CYBERPLUS. Control Data Corporation

The CYBERPLUS [A14] is a parallel processing system employing a
multi-processor and pipelined functional unit concept Each processor is connected to a

CYBER 180 computer via a ring group, which allows up to 16 processors to be
integrated on a single ring group to the CYBER. Multiple ring groups of processors
may also exist in the same CYBER 180. These can be connected to the memory of
the CYBER as well as the memory of each CYBERPLUS processor. Peak performance
is 91 MFLOPS in 32-bit mode and 61 MFLOPS in 64-bit mode.

□ Operating system : That of the CYBER 180 which
is currently a dual state machine running two

O.S.’s NOS & NOS/VE.
□ Languages supported : FORTRAN, Pascal, Prolog,

Lisp, Cobol and C. Software for CYBERPLUS runs on
CYBER 180. Uses FORTRAN ANSI 77 compiler.

□ Performance (Dongarra Benchmark [A 14])

FORTRAN 2.5 MFLOPS per processor
CODED-BLAS 12 MFLOPS per processor

Hie CYBERPLUS system incorporates direct memory access which allows for

inter-processor transfer rates of up to 2600 Megabits.

A.6

Appendix A: parallel processors

A.5 ASPRO (Associative PROccssor)

This computer is produced by Goodyear Aerospace Corporation (GAC) [A15]
and is in fact quite small at only 0.44 cu.ft It operates in SEMD fashion and can
deliver enormous computational power. Initially designed for use in the Grumman E-2C
AEW aircraft it has also found favour in some commercial applications. It’s small size
and low power consumption (260W) are attributable to the use of custom CMOS
VLSI and multi-chip CMOS random access memory.

Memory consists of 16 CMOS RAM chips plus additional logic chips for
buffering, in a single hybrid and the custom VLSI chip contains 32 processing
elements or the equivalent of 8,000 transistors.

□ Operating system : V A X /V M S or UNIX

□ Languages supported : ASPRO-Assembler FORTRAN 77

□ Performance : 40 - 50 MIPS

A.7

Appendix A: parallel processors

A. 6 NCUBE Parallel Processing Systems

A NCUBE parallel processing system [A16] combines a serial host processor
with a sophisticated parallel processor called a "hypercube" or "N-cube" with from 4

to 1024 processing nodes. These nodes are 100% VLSI, with 128 KB or 512 KB
memory and a proprietary processor chip. Into this propietary processor are integrated
IEEE 32-bit and 64-bit floating point, error correcting memory interface, and 22 DMA
communications channels. Compatible systems range from 4-node PC/AT-based to a
1024-node supercomputer.

□ Operating system : AXIS ... runs on host
VERTEX ... runs on node

□ Languages supported : FORTRAN 77 and C
Medium grain parallelism

□ Performance : Up to 2000 MIPS
400 M FLOPS

8x180 MB/sec I/O
8 GB/sec mem

A.8

References

[Al] Taylor, R. "Survey of Transputer Applications", May 1986.
[A2] May, D. "The Transputer", "Major Advances in Parallel Processing", Editor C.

Jesshope, Technical Press 1987, pp. 33-47.
[A3] May, D. & Shepherd,R. "The Transputer Implementation of OCCAM" in

"Parallel Processing in Control" Editor P.J. Fleming, IEE Control Engineering

Series 38, Pubi. Peter Peregrinus Ltd 1988, p.85.
[A4] Fleming, P.J. "OCCAM and the Transputer" in "Parallel Processing in Control",

Editor PJ. Fleming, IEE Control Engineering Series 38, Pubi. Peter Peregrinus

Ltd 1988, pp.27-99.
[A5] Taylor, R. "Concurrent Programming in OCCAM" in "Major Advances in

Parallel Processing” Editor C. Jesshope, Technical Press 1987, pp.221-236.
[A6] Fleming, P. J. "Programming in OCCAM", IEE Computing and Control division

conf., "Parallel Processing in Control - The Transputer and other architectures",

20-22 Sept 1987.
[A7] Fleming, P. J. "OCCAM model of Parallelism" IEE Computing and Control

division conf., "Parallel Processing in Control - The Transputer and other

architectures", 20-22 Sept 1987.
[A8] Brain, S. "Transputer Implementation of OCCAM" IEE Computing and Control

division conf., "Parallel Processing in Control - The Transputer and other
architectures", 20-22 Sept. 1987.

[A9] Jones, D. I. "OCCAM Structures in Control" IEE Computing and Control
division conf., "Parallel Processing in Control - The Transputer and other

architectures", 20-22 Sept 1987.
[AIO] Griffiths, S. "Introduction to OCCAM Development", IEE Computing and

Control division conf., "Parallel Processing in Control - The Transputer and
other architectures", 20-22 Sept. 1987.

[A ll] Hunt, K. O’Neill, G. "Real time data acquisition and control on the Butterfly
parallel processor ", IEE Computing and Control division conf. "Recent

advances in Parallel Processing for Control", Bangor, Wales, 7th July 1988.
[A 12] BBN advanced computers " Butterfly parallel procesor " in "Major advances in

parallel processing" Editor C. Jesshope, Technical Press 1987, pp.351-353.
[A 13] Amdahl corp. "Amdahl vector processor series " in "Major advances in parallel

processing" Editor C. Jesshope, Technical Press 1987, pp.347-348
[A14] ControlData corp. " CYBERPLUS in "Major advances in parallel

processing" Editor C. Jesshope, Technical Press 1987, pp.356-358.
[A15] Goodyear Aerospace corp. " ASPRO " in "Major advances in parallel

processing" Editor C. Jesshope, Technical Press 1987, pp.366-367.
[A 16] NCUBE " Neu be parallel processing systems" in "Major advances in parallel

processing" Editor C. Jesshope, Technical Press 1987, pp.379-381.

Appendix A: parallel processors

A.9

Appendix B: parallel languages

APPENDIX B

Parallel Languages - An Evaluation

Of paramount importance to the commercial growth of parallel processing is
the competence of computer languages usable on parallel architectures. Fortunately, as
parallel processing becomes more necessary in many fields most language writers have
seen the wisdom in producing a ’parallel’ version of their language compilers. This
chapter contains sections outlining several of these languages and both their merits and

demerits.

B.l -OCCAM

In a parallel programming structure several processes may be running
simultaneously. If, as is often the case, some of the processes rely on others for data
then some form of synchronisation must be implemented. In a conventional language
this would create quite a burden for the programmer, but in occam [B1]-[B7]
this problem is alleviated somewhat. An important concept in occam is the ’process’.
This is the fundamental unit of programming. It is defined as a set of operations
which begins execution at a point in time and likewise terminates at a point in time.
Many of these processes may execute concurrently. In occam a process is built from
three primitive processes or ’primitives’ which are;

Assignment
Input
Output

These can be combined to form the following constructs ;

SEQ ... Sequential
PAR ... Parallel
ALT ... Alternative

IF ... Conditional

WHILE ... Iteration

Communication between processes are done via channels which are point to

point links. The channels are one-way and are self-synchronising since
communications only take place when both the sender and receiver processes are
ready. In OCCAM if one processes is ready before the other then it will wait til the

other is ready also. Examples of the three occam primitives are shown below;

(i). Assignment
v := e

"v" is assigned the value of "e".
B.l

Appendix B: parallel languages

(ii). Input
c ? v

A value is sought from a channel "c" to be
stored in "v".

(iii). Output
c ! e

The value of expression "e" is output to
channel "c".

The SEQ and PAR constructs are an integral part of OCCAM. SEQ indicates
that any proceeding operations are to be executed sequentially. The following example

shows this;

SEQ
ADC? meas.signal
scaled.signal := meas.signal*scale.factor
DAC! scaled.signal

A measurement signal is input through ADC, scaled and then output through
DAC. This can be graphically represented by figure 6. Contrasting to this is the PAR
construct which indicates parallel operation of the following processes. As an example

consider two processes to be executed concurrently;

PAR
... process 1
... process 2

Indentation indicates constituents of the same process. In the above example
process 1 and process2 are both component processes of the parent PAR process.

Occam does not support transmission of values between processes by use of a
shared variable. The use of channels is employed to overcome this. Finally the ALT
construct is used where several concurrent processes must wait on input data. The

process to be initiated is the one for which data becomes available first It could be
termed a ’first-come first-served’ system.

B.2

Appendix B: parallel languages

32 APA

The ADA language [B8] is not exclusively a parallel programming language as

it can operate just as efficiently on sequential algorithms. The method by which extra
processes are introduced in concurrent operation is by use of the ’task1 command. For
example, consider a scenario where several external devices must be serviced at
regular, but unpredictable intervals. In sequential programming this could only be
overcome by the use of polling. In ADA each of the device service routines would be
branched from the main process using the task statement. The general structure of an

ADA programme is as follows:

procedure NAME is
- specification c f the data to
— be used by the programme

begin
— sequence of statements defining
- the actions to be performed

end NAME

Say there are two devices, devl & dev2 which are keyboards, then the task

operation is introduced as follows ;

task DEVI;

task body DEVI is
CH-.CHARACTER;

begin
loop

READ(1,CH) ; WRITE(1,CH) ;
end loop

end DEVI;

task DEV2;

task body DEV2 is
CH.-CHARACTER;

begin
loop

READ(l.CH) ; WRiTE(l,CH) ;
end loop

end DEV2;

The two processes may now run independently. The main programme from

which the tasks originate is then tenned the parent processes and the tasks the
offspring. In order for the parent process to terminate the offspring must first be

completed.

For communication between two processes shared variables may be used but as
B.3

in most protocols it is not advisable for two reasons. Firstly, there is the
synchronisation problem which occurs if the consumer process is operating at a
different rate (either slower or faster) to the producer process. Secondly, access to the
shared variable(s) must be limited to one process at any given time and this is known
as the mutual exclusion problem. ADA does have a much more elaborate method of
inter-process communication which is termed the ’rendezvous’. The caller makes an
’entry’ call which is defined by some other task known as the server. This entry is
similar to a procedure. The server may or may not respond immediately but when it
does so it issues an accept statement and at this point the rendezvous commences.
Data is transferred via parameters contained in the entry call and reply data in the
accept statement. On completion of the accept statement the rendezvous is broken and
both processes recommence their respective operations.

Appendix B: parallel languages

B.4

Appendix B: parallel languages

B.3 PARLOG

PARallel LOGic programming (PARLOG) [B9] is quite a novel concept. It is
based on a technique of incorporating concurrency into standard logic programming.
Most standard programming languages are ’imperative’ because of their syntax
structure. From operations information about machine state can be derived whereas in
logicprogramming the state of the hardware is completely transparent to the
programming code. In 1965 LISP was developed as the first declarative programming
language and today it still remains the most widely used of it’s type. It is what is
termed a ’functional’ programming language because it is based on abstract formalism.
It has a strong relationship with human language thus making it very high level.

Another form of functional or declarative programming, a type with
which is of most concern here, is logic programming where statements are predicate

logic i.e. Horn clauses [40]. The most frequently used logic language is prolog [40]
which was developed in 1972 as a human orientated language. Parallelism in

declarative programming can be divided into two main catagories ;

(1). RESTRICTED PARALLELISM : The concurrent evaluation of several
arguments of a function expression. This is quite straightforward to implement since

arguments are essentially independent.

(2). STREAM PARALLELISM : The evaluation of a function expression

concurrently with one of it’s arguments. The value of the argument can be

communicated incrementally to the expression.

It must be kept in mind however, before applying parallel techniques to
PROLOG, that it is not a suitable language for this purpose and neither is any logic
language for that matter but with the advent of parallel processing machines an
attempt is being made to create a compatibility between software and hardware. With
specific regard to logic programming the above classifications of parallelism may be

further refined ;

(1). Restricted AND parallelism : Concurrent evaluation of several calls in a

conjunction which are independent, i.e. don’t share the same variables.

(2). Stream AND parallelism : Concurrent evaluation of 2 calls which share a

variable, with the value of the shared variable communicated incremently between the

B.5

Because of the non-deterministic nature of logic programming two further

classifications of parallelism arise;

(3). OR parallelism : Concurrent application of several clauses in a procedure

while solving a call.

(4). All solutions AND parallelism : Concurrent evaluation of several calls in a

conjunction, each working on a different solution.

Intuitively, types (3) and (4) are the easiest to implement for the simple reason
that no inter-process communication occurs and several processes run concurrently and
independently. In fact, it is method (2) that is applied to the logic programme
structure to realise a parallel implementation known as PARLOG. This method is
chosen since it allows for concurrent processes to communicate via shared variables
and this gives a much broader definition to the parallelism than types (3) and (4).
Information is then passed incrementally between processes. Each process is a set of
clauses and each clause constitutes a sentence. Hierarchal communications is by

incremental transfer of data from process to outer function.

Appendix B: parallel languages

calls.

B.6

Appendix B: parallel languages

B.4 PARALLEL C

As is stated in section 4, the advent of commercially succesful parallel
processors and consequently the growth of a lucrative software market has enticed
many language writers to develop parallel versions of their languages and the C

language is no exception [B10][B11]. C has powerful expressional syntax and is well
known to most software engineers. Vast libraries of software written in C exist and
huge amounts of software tasks have been implemented by it also. These reasons
make it desirable to have a parallel version usable on parallel architectures, such as
the transputer. Another attractive feature is that C unlike Occam for example, has

dynamic allocation of variables and permits recursioa What remains is to add in, in a
logical way, several operators to make C implementable on a transputer system.

B.4.1 CHANNEL DATATYPE

The first and most vital addition is the incorporation of a ’channel’ datatype.
This provides a vehicle for inter-processor communications.

channel chanl, chan2, chan3;

This example intialises three channels, chanl, chan2 and chan3. Fortunately the
transputers specialised hardware handles all channels in an identical fashion
regardless of whether the two processes are on the same chip or not. Each channel
when declared occupies one word of memory. Consider the example;

int a;
a=chanl;

This assigns a value to ’a’ by reading a value from channel chanl. It is
important to note that channels may be used in a similar fashion to conventional
variables, the only difference being that they read their values from other processes
rather than a specific memory location. When a process outputs a value to a channel
another process must likewise input that value from the channel, as in the following

example;

channel AtoB;

M)
{

AtoB = 1;

B.7

}

B()
{

printfl "Received from A : %dw ", (int)AtoB);

}

P.42 LINK

A transputer has 4 high speed serial links, and internally each link is

represented by two channels. Three differences between links and channels are :

□ A link communicates between processes on different transputers,

□ Links are DMA based, and thus consume no processor time,

□ Links are placed at fixed addresses,

but otherwise they are essntially the same. The link can be accessed using a

pointer as follows;

channel *UnkOout = UNKOOUT;

This defines a pointer to the channel LinkOout, which is initialised with the
value of LINKOOUT (0x80000000 on , a T414 transputer). Sending information across

this link is as simple as;

*LinkOout = val ;

which sends the value ’val’ over the link.

B.4.3 TIMER

Also incorporated is the system timer. This may be accessed as if it were an
integer variable and available to all concurrent processes, thus giving a universal point
of reference to all processes. Processes can then be synchronised or may even be put

to sleep.

B .4 .4 PA R CONSTRUCT

Another important instruction is the ’par’ construct which allows the

programmer to instantiate many parallel processes.

Appendix B: parallel languages

B.8

Appendix B: parallel languages

par{
statement 1;
f* subprocess 1 */

statement 2;
I* subprocess 2*/

}

statement n;
f* subprocess n */

Any statements nested in the par construct arc executed in parallel.

B .4 .5 ALT CONSTRUCT

Not unlike the alt statement in occam, the alt construct is a direct result of
the transputer hardware upon which it is implemented. It can, in fact be used in
replacement of the switch statement found in conventional C.

alt {
guard guardexpl :

code;
guard guardexp2 :

code;
default :

code;
}

The guards are not unlike ’case’ labels in the switch statement. But whereas
case labels must contain constant values guards can be dynamic and contain
expressions. The guards are examined in order of sequence and if active then the
corresponding process is activated, but if all guards are inactive then the alt will be
descheduled until one of the channel or timer guards becomes active. There are five

types of guards ;

□ Boolean guard
□ Channel guard without boolean,
□ Channel guard with boolean,
□ Timer guard without boolean,

B.9

. R eferences

Appendix B: parallel languages

[B1] Fleming, PJ. "OCCAM and the Transputer" in "Parallel Processing in Control",
Editor P.J. Fleming, IEE Control Engineering Series 38, Publ. Peter Peregrinus

Ltd 1988, pp.27-99.
[B2] Taylor, R. "Concurrent Programming in OCCAM" in "Major Advances in

Parallel Processing" Editor C. Jesshope, Technical Press 1987, pp.221-236.
[B3] Fleming, P. J. "Programming in OCCAM', IEE Computing and Control division

conf., "Parallel Processing in Control - The Transputer and other architectures",

20-22 Sept 1987.
[B4] Fleming, P. J. "OCCAM model of Parallelism" IEE Computing and Control

division conf., "Parallel Processing in Control - The Transputer and other

architectures", 20-22 Sept 1987.
[B5] Brain, S. "Transputer Implementation of OCCAM" IEE Computing and Control

division conf., "Parallel Processing in Control - The Transputer and other

architectures", 20-22 Sept 1987.
[B6] Jones, D. I. "OCCAM Structures in Control" IEE Computing and Control

division conf., "Parallel Processing in Control - The Transputer and other

architectures", 20-22 Sept 1987.
[B7] Griffiths, S. "Introduction to OCCAM Development", IEE Computing and

Control division conf., "Parallel Processing in Control - The Transputer and

other architectures", 20-22 Sept 1987.
[B8] Young, S. "An introduction to ADA" 2nd Edition.

[B9] Gregory, S. "Parallel logic programming in PARLOG"

[B10] Poplett, J. "The development of a parallel C", TCC-0910-1 to TCC-0910-7.
[Bll] "Parallel C", Publ. by 3L limited, Supplier: SENSION - Transputer products

division, Denton Drive, Norwich, Chesire CW9 7LU.

B.10

Appendix C: graphical data

Appendix C

Graphical Data

Graphical Index

Graph Graph Tide

The following graphs illustrate results from the STR implemented in Chapter 4:
4.1 Convergence of estimated process parameter 1
4.2 Convergence of estimated process parameter 2
4.3 Convergence of estimated process parameter 3
4.4 Convergence of estimated process parameter 4
4.5 Convergence of estimated process parameter 5
4.6 Convergence of estimated process parameter 6
4.7 Response of S.T.R. controlled system to a step input
4.8 Execution time of S.T.R. versus model order of controlled system

The following graphs contain results of tests petformed on the Puma 560 robot:
5.1 joints 1, 2 and 3 held: joint positions versus time
5.2 joints 1, 2 and 3 held: joint velocities versus time

5.3 joints 1, 2 and 3 held: joint accelerations versus time
5.4 joints 2 and 3 held: joint positions versus time

5.5 joints 2 and 3 held: joint velocities versus time

5.6 joints 2 and 3 held: joint accelerations versus time

5.7 joint 3 held: joint positions versus time

5.8 joint 3 held: joint velocities versus time

5.9 joint 3 held: joint accelerations versus time

5.10 joint 2 held: joint positions versus time

5.11 joint 2 held: joint velocities versus time

5.12 joint 2 held: joint accelerations versus time

5.13 all joints are moved: joint position versus time

5.14 all joints are moved: joint velocities versus time

5.15 all joints are moved: joint accelerations versus time

5.16 joint 1 and 3 held: joint positions versus time

5.17 joint 1 and 3 held: joint velocities versus time
5.18 joint 1 and 3 held: joint accelerations versus time
5.19 joint 1 held: joint positions versus time
5.20 joint 1 held: joint velocities versus time
5.21 joint 1 held: joint accelerations versus time
5.22 joint 1 and 2 held: joint positions versus time

5.23 joint 1 and 2 held: joint velocities versus time
5.24 joint 1 and 2 held: joint accelerations versus time

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

Appendix C: graphical data

-a
cuI—1r-
<

Graph 4.4

2 4 6
Time(seconds)

u
E
co
o0>X
U

System Order

C.l

Appendix C: graphical data

Time(seconds)

xlO~* Graph 5.3

/V2

1

h , , j3
v..--

j i \ /

Timet seconds)

Time(seconds)

Time(seconds)

0
0 5 10 15 20

Time(seconds)

Graph 5.6

Timet seconds) Time(seconds)

Graph 5.5

j l

5
Time(seconds)

Graph 5.7

A
cc

eI
er

ai
io

n(
ra

ds
/s

ec
/s

ec
)

Po
sit

io
n(

ra
ds

)
V

el
oc

ity
(ra

ds
/s

ec
)

A
cc

el
er

at
io

n(
ra

ds
/s

ec
/s

ec
)

Appendix C: graphical data

Graph 5.9

5 10 15
Time(seconds)

V3TD
2
o

U

73

i—

UU
<

Time(seconds)

Graph 5.12

Time(seconds)
5 10 15

Time(seconds)

Time(seconds)

Graph 5.15

5 10 15
Time(seconds)

o

-3

y_o
>

V)
-3

si

£

Graph 5.14

j l

; j3

j2

5 10 15
Time(seconds)

Graph 5.16

5 10 15
Time(seconds)

20

C.3

V
el

oc
ity

(r
ad

s/
se

c)

A
ce

el
er

at
io

ni
ra

ds
/s

ec
/s

ec
)

Po
sii

io
n(

ra
ds

)
V

el
oc

ity
(r

ad
s/

se
c) 0

- 0.1

- 0.2

-0.3

0.1 Graph 5.17

Appendix C: graphical data

1 T
j3

ri1

' JÏ

J2 *
1»
1 _

' 1 *1 •l V ■ i
5 10 15

Time(seconds)
20

5/3

C 3

73u.JU
13oCJ
<

CJ

C/3"O«

cjc
1)
>

Graph 5.18

5 -0.5

5 10 15
Time(seconds)

Time(seconds) Time(seconds)

15

10

5

0

-5

-10

Graph 5.21---Ì

'j3

|l!

: ¡I
h

____ i i

j i
2

0 5 10 15
Time(seconds)

20

uu«3
u<U•si
■si-a
w'—'
C O

<u
CJo
<

15

10

5

0

-5

-10

Time(seconds)
0 5 10 15

Time(seconds)

— r t

-J3 JU

i

r :
!
1 1

* *1
' » 1

!

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ » ■

Ï
-

» •

20

C.4

Pr
oc

es
so

r
E

ff
ic

ie
nc

y

Appendix C: graphical data

Number of Processors
Graph 5.25: Speedup Versus Number of Processing Units

Number of Processors

Graph 5.26: Efficiency Versus Number of Processing Units.

C.5

E
ff

ic
ie

nc
y

Appendix C: graphical data

y
i/T

10 ■=
9.5 I

9 I

3.5 I

a I

7.5 I

6.5 I
<1 _ |

0 3*■!
5.5 %

u 3
4.5 I

1 ■=-

3.5 =r T T

7 3 9 10 11 12 13 14 15 16 17
Number of Processors

Graph 5.27: Speedup Versus Processing Numbers (With Pipeline)

I 7 3 3 10 11 12 13 14 15 16 17

Number of Processors
iraiph 5.28: Efficiency Versus Processing Numbers (With Pipeline)

C.6

Appendix C: graphical data

Number of Loop Iterations
Graph 5.29: Percentage error in pipelined simulator versus

the number of iterations of simulator loop.

Number of Processors

Graph. 5.30: Execution time of simulator loop versus
number of processors

C.7

Ex
ec

ut
io

n
tim

e
[m

s]

Appendix C: graphical data

Number of Processors

Graph 5.31: Execution time of pipelined simulator versus
number of processors defined in modules of four

Po
sit

io
n(

ra
ds

)
Po

si
tio

n(
ra

ds
)

Appendix C: graphical data

Graph 6.1

Graph 6.2

C.9

A
cc

el
er

ai
io

n(
ra

ds
/s

ec
A2

)
V

el
oc

ily
(r

ad
s/

se
c)

Appendix C: graphical data

Graph 6.3

Time(seconds)

Graph 6.4

Time(seconds)

C.10

V
ül

la
gc

(v
ol

ls
)

A
cc

el
er

at
io

n
D

er
iv

at
iv

e

Appendix C: graphical data
Graüh 6.5

1000

Graph 6.6

Time(seconds)

C.11

Er
ro

r
(r

ad
s)

Appendix C: graphical data

Graph 6.7

C.12

Pr
oc

es
so

r
E

ff
ic

ie
nc

y

Appendix C: graphical data

Number of Processors

Graph 6.8: Illustration of the speedup of th e parallel controller
as a function of the num ber of TRAMS

Number of Processors
Graph 6.9: Illustration of the processor efficiency in the
parallel im plem entation of the PUMA 560 controller

C.13

Ex
ec

ut
io

n
tim

e
[m

s

Appendix C: graphical data

1 2 3 4 5 6 7 8 9 10 11 12

Number of Processors

Graph 6.10: Execution time for Feedforward/Feedback controller for
the PUMA 560 manipulator versus number of Processors

C.14

