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ABSTRACT

Due to its inherent stability, ease o f  handling and availability, horseradish peroxidase 

(HRP) will continue to be used more extensively in analytical and industrial situations. 

It is often used as a model for other peroxidases.

Developments in the fields of protein stabilisation and biosensor construction 

are discussed in Chapter one; also, various enzymatic methods for treating phenolic 

effluents are reviewed. The effects o f  chemical modifiers on native HRP were 

investigated (Chapter two). Homobifunctional crosslinkers specific for lysine residues 

were employed. No loss o f  enzyme activity occured on reaction with such N- 

hydroxysuccinimide (NHS) compounds. Derivative forms o f  HRP displayed greater 

thermostability and a greater tolerance o f  water-miscible organic solvents. Enhanced 

resistance towards dénaturants was noted. Structural changes in the vicinity o f  the 

heme o f  HRP derivatives were studied by UV/Visible spectrophotometry and 

fluorimetry. The extent o f  modification on HRP’s six lysines has been determined.

The NHS derivatives of HRP have also been employed in the removal of 

phenols from aqueous solution (Chapter three). HRP catalyses the oxidation o f  toxic 

aromatic compounds in the presence o f  hydrogen peroxide. Reaction products 

polymerise to form high molecular weight materials which can be easily separated from 

aqueous solution. Modified peroxidases displayed greater removal efficiencies of 

phenols compared to the native enzyme over a wide range o f  reaction conditions, 

including high temperatures. For some pollutants, the efficiency o f  removal is high.

Native HRP has also been used in the development o f  a biosensor for the 

selective determination o f  uric acid (Chapter four). The sensor was found to function 

efficiently without the necessity for an electron transfer mediator. The mechanism of 

the sensor’s response was thought to be due to direct electron transfer from the 

electrode to HRP. A monomer, o-aminophenol, which was electrodeposited at the 

working surface o f  the electrode, was found to protect the biocomponents from 

interferences and fouling. The sensor was incorporated into a flow injection system for 

the quantification o f  uric acid in human serum. Recoveries compared favourably with a 

standard spectrophotometric method.
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CHAPTER 1

INTRODUCTION



1.1 FOREWORD

This first section o f  this chapter deals with the characteristics and properties of 

peroxidase enzymes, and especially those o f  horseradish peroxidase (HRP). The role of 

peroxidase in physiologically important reactions is discussed, along with its moderate 

stability in a range o f  adverse conditions. Although HRP exhibits characteristics similar 

to that o f  an ideal enzyme, its catalytic ability could be considerably stabilised by 

immobilisation techniques and/or specific chemical modification. Use of additives has 

also been reported to stabilise HRP. The aforementioned strategies have also enhanced 

H R P’s catalytic ability in adverse environmental conditions.

The second part details the various methods for treating phenolic wastes 

(enzymatic, microbial, incineration, activated carbon, chemical oxidation, etc.) Aspects 

o f  soluble and immobilised peroxidases systems are discussed. Strategies towards 

enhancing the (soluble) peroxidase process are listed. Reactor design has been shown 

to be crucial in achieving greater efficiency in the system, also, a good understanding 

o f  H RP’s catalytic mechanism is essential if the removal o f  phenolic waste from water 

is to be improved.

The final section o f  this chapter deals with the development o f  biosensors and 

particularly the role o f  HRP in the entire field. The progress in uric acid sensor 

research is also reviewed. The applications o f  various working electrode designs are 

discussed, as well as procedures for immobilising the biocomponent in the electrode 

configuration. Most attention is placed on the process o f  electropolymerisation. The 

future prospects o f  such devices are discussed.
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1.2 BIOCHEMISTRY AND STABILISATION OF HRP

1.2.1 Introduction

Peroxidases constitute a class o f  enzymes which are extensively distributed throughout 

the plant and animal kingdom. Their widespread presence would suggest that they are 

an essential component o f  practically all living systems. Peroxidases play an active role 

in metabolism, i.e. participation in coupled oxidations and in the protection o f  the cell 

against peroxide poisoning. They are also known to play an integral role in cell wall 

biosynthesis. In plant cells they are located mainly in the cell wall, vacuoles, transport 

organelles and on membrane-bound ribosomes [1], Peroxidases occur naturally in 

human saliva, the adrenal medulla and in the liver, kidney and leucocytes. Products 

from human salivary peroxidase participate in the regulation of oral bacterial growth 

and metabolism [2], Peroxidase from a previously unreported source was reported by 

Shindler el at. [3], The enzyme was found in all specimen human cervical mucus 

samples collected from different patients. Electrophoretic techniques have shown a 

type o f  peroxidase to be a major component o f  the soluble protein of cervical mucus. 

The kinetic mechanism proposed for the cervical mucus peroxidase, utilising 2,2'- 

azinobis(3-ethylbenzothiazo!ine-6-sulphonic acid) as a substrate, is identical to a 

previous mechanism proposed for horseradish peroxidase

O f all the peroxidases, most research has been devoted to horseradish 

peroxidase (HRP), which was discovered in 1903 by Bach Horseradish roots are one 

o f  the richest sources o f  peroxidase enzyme. HRP was the fourth haemoprotein to be 

crystallised.

1.2.2 Structure of  HRP molecule

Horseradish peroxidase is an oxidoreductase (donor: hydrogen peroxide

oxidoreductase; E.C. 1.11.1.7; HRP). Similar to all peroxidases, it functions in the 

transfer o f  hydrogen to hydrogen peroxide from hydrogen donors (DH) [4], As many 

as 40 isoenzymes have been detected Evidence suggests that some apparent



isoenzymes may be HRP molecules with variations in carbohydrate composition Three 

important isoenzymes exist: isoenzyme A (acidic), isoenzyme C (neutral or slightly 

basic) and a strongly basic HRP. The latter has been called cyanoperoxidase due to its 

isolation from plants as a ferric-cyanogenic complex [5], Native HRP consists of a 

polypeptide chain containing 308 amino acid residues [6], The amino terminus is 

blocked by a pyrrolidene carboxyl residue. C-terminal peptides have been isolated with 

and without a terminal serine. HRP contains a single iron(III) protoporphyrin IX 

prosthetic group in which the iron centre is coordinated to a histidine residue in the 

fifth position. This protoporphyrin IX group is held in place by electrostatic 

interactions between the propionic acid side chain o f  the heme and a lysine molecule in 

the apoprotein. HRP isoenzyme C consists of two compact domains, between which 

the heme group is positioned [6], The iron group has six coordination positions; four 

o f  which are occupied by porphyrin nitrogen atoms and the fifth by a protein group 

(histidine) [7], The sixth position can be occupied by various compounds: peroxidases 

appear to operate by exchange o f  substrate in this position [4], The components of the 

peroxidase molecule have been described [6], (Figure 1.1).

PEROXIDASE MOLECULE

1

Protohaematin IX (active site) Glycoprotein

I

Iron Protoporphyrin IX Colourless apoprotein

Figure 1.1: Various components o f  peroxidase molecule
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The covalent structure o f  HR.P consists o f  two domains, one of which incorporates the 

heme group Eight neutral carbohydrate side chains are attached through asparagine 

residues at positions 13, 57, 158, 186, 198, 214, 250 and 268 [6] The carbohydrate 

residues are mainly located in the C-terminal half o f  the polypeptide. There are four 

disulphide bridges located between the cysteine residues 11-91, 44-49, 97-301 and 

177-209. No free amino groups exist and only two titratable histidines occur. The 

carbohydrate portion (which accounts for approximately 18% of HRP [8]) appears to 

shield the six lysines on the protein backbone. The enzyme contains a single tryptophan 

residue that emits fluorescence, but it is not located in the active site [9]

HRP is a metalloprotein, where calcium appears to play a major role in 

maintaining the structural stability of the enzyme [7], The protein contains 2 moles 

calcium per mole o f  enzyme Treatment o f  HRP with 6 M guanidine hydrochloride-10 

mM EDTA for approximately 4 hours can remove the bound calcium, which results in 

a significant decrease in thermal stability. Addition o f  calcium appears to restore 

stability. Due to the glycoprotein nature o f  HRP, it is released from plant cells in a 

calcium-controlled process [10] which appears to have a role in the elongation o f  

plants through the rigidification of cell walls. The total molecular weight o f  the enzyme 

is approximately 44kDa, taking into account the carbohydrate, but not counter ions or 

bound water. HRP has a working pH range o f  4.0 - 8.0 [9],

1.2.3 G eneral peroxidase isoenzymes

Peroxidase isoenzymes are widely distributed throughout the plant and animal 

kingdom. In callus, vegetative and floral buds o f  Nicoticina labacum  (tobacco plant), 

47 isoenzymes have been isolated, with over half o f  these performing a defined 

functional role [11], In plant cells, peroxidases are mainly located in areas such as the 

cell wall and transport organelles [1], The various locations o f  such isoenzymes is 

usually based on their electrophoretic mobility. The large prevalence o f  peroxidase in 

the cell wall has been ascribed to anionic isoenzymes. These are regarded as important 

in the normal functioning o f  the cell wall due to their high affinity for lignin precursors.



As a result of this, anionic isoenzymes have been detected predominantly in the stems 

o f  highly lignified tobacco plants, but appear to be absent from the callus [12], 

Moderately anionic isoenzymes are also found at high levels in similar areas as anionic 

isoenzymes, but are found in high levels in the callus. Such isoenzymes appear to 

increase in concentration upon tissue damage in plants. In tobacco cells, cationic 

isoenzymes are mainly located in vacuoles. Unlike their anionic counterparts, they 

possess a low affinity towards lignin precursors. They are predominantly located in the 

root and callus tissue and function in the formation o f  hydrogen peroxide which may 

be utilised by other isoenzymes. This classification o f  isoperoxidases does not hold in 

other plant systems. For example, in other plants, the majority o f  peroxidase activity is 

attributed to cationic isoenzymes.

Shannon et al. succeeded in isolating seven peroxidase isoenzymes from 

horseradish root by purification techniques such as ammoniun sulphate precipitation 

and column chromatography on carboxymethyl (CM-)cellulose and DEAE-cellulose 

[13], Activity in the seven isolated isoenzymes accounted for approximately 86% of 

the original activity. Due to the glycoprotein nature o f  HRP, carbohydrate is present in 

each o f  the isoenzymes, although it was shown that peroxidase activity occurs in the 

absence o f  carbohydrate. The isoenzymes isolated by Shannon et al. appear to fall into 

two individual groups. One group possesses a high content of arginine, a basic amino 

acid. The second group contains neutral and acidic residues. Spectrophotometric 

analysis o f  the isolated isoenzymes displayed two distinctive absorption spectrum 

patterns.

1.2.4 Functions and Catalysis of  peroxidases

Peroxidases have long been associated with a wide range o f  physiological events, such 

as active roles in metabolism and in lignin synthesis. The enzymes have also been 

suggested as having a role in chlorophyll degradation. Peroxidase activity also appears 

to be involved in indole-3-acetic acid (IAA) catabolism and ethylene biosynthesis [9], 

both of which are plant hormones. Its presence in IAA catabolism suggests a possible



role for peroxidases in the regulation of plant growth, whilst ethylene is involved in the 

regulation o f  aspects in plant growth and development, such as fruit ripening [9].

Peroxidases catalyse the oxidation o f  a range o f  substrates. The process is 

characterised by the formation o f  Compounds I and II (Figure 1.2), which are active 

intermediates. The initial step of the reaction involves the two electron oxidation o f  the 

heme group o f  the enzyme by hydrogen peroxide [14], This interaction, between the 

resting enzyme ferriperoxidase (Fep3 ) and H2 O2 , results in the formation o f  an unstable 

intermediate, known as Compound I. This intermediate interacts with an electron 

donor with the loss o f  one oxidising equivalent to form Compound II. In the absence 

o f  an electron donor, or at low concentrations o f  hydrogen peroxide, Compound I (the 

product of the oxidation reaction) decomposes slowly [2] Suitable electron donors 

employed in the formation o f  Compound II would include most chromophores used in 

peroxidase activity assays A reductive step returns Compound II to the resting state. 

This entire cycle is common to most peroxidase reactions. An excess of hydrogen 

peroxide results in total enzyme inactivation. However, in the absence o f  H 2O2 , 

oxidase reactions have been found to be catalysed by peroxidases 0 2 is reduced to a 

superoxide radical (O 2” ) in a reaction where Compounds I and II do not participate. 

Two forms o f  peroxidase (ferroperoxidase and Compound III) are involved A reaction 

between hydrogen peroxide and Compound II results in the formation of Compound 

III [15], thus substrate inhibition is usually the reason for the appearance o f  Compound 

III (red in colour). It is generally accepted that Compound III is relatively inert, due 

partially to the fact that it is not an essential part o f  the peroxidase cycle [16].

7



Oxidised donor <-> Peroxidase

nIT H 2 O2  + other substrates

t Compound I

1 e‘ transferal -I H  donor —> oxidised donor

Hydrogen donor Compound II

•I excess o f  substrate

Compound III (inactive)

Figure 1.2: Scheme o f peroxidase catalysis

1.2.5 Stability of  HRP

Native HRP exhibits characteristics similar to that o f  an ideal enzyme. Its catalytic 

activity is maintained for long periods o f  time at room temperature. Activity may also 

be maintained in buffers o f  varying ionic strength and in a pH range o f  4 - 11 [9] for 

short intervals o f  time, even though its optimum pH is between 6 - 8 .

It has been demonstrated that peroxidase can function when suspended in 

water miscible organic solvents, even with minimal water bound to the protein surface 

[17], Whilst enzymes can function in anhydrous organic solvents such as hexane or 

toluene [18], water miscible solvents often lead to protein inactivation. An enzyme's 

catalytic activity is affected only by its bound water and not by the free water in the 

particular solvent. The presence of this bound water ensures enzymatic activity in 

organic media [19], Water is involved in all non-covalent interactions that help to 

maintain protein conformation. It has been suggested that enzymes such as HRP 

require approximately 1CP molecules o f  water per enzyme molecule. This layer of 

water is thought to act as lubricant or plasticiser, with the ability to form hydrogen 

bonds with various functional groups.

8



Different considerations apply to water-miscible organic solvents; however, Gorman 

and Dordick described the desorption o f  tritiated water bound to HRP in a range o f  

organic solvents such as methanol or hexane [19], Desorption o f  tritiated water was 

almost immediate, with most o f  the desorbable T 2 O released in the first five minutes. 

This phenomenon, known as "water stripping" [20], appears adequate to account for 

the catalytic sensitivity o f  nearly all enzymes in water-miscible organic media. It has 

also been reported that suspending enzymes in organic solvents can alter a number o f  

their fundamental properties [21], Substrate specificities can be significantly modified 

by placing enzymes in such environments It has also been suggested that the pH 

dependence o f  an enzyme can be changed, i.e. the activity of an enzyme in an organic 

medium depends on the pH of the solution from which the enzyme was lyophilised. A 

significant increase in thermostability of an enzyme is possible in the presence of water- 

miscible organic solvents. Low volumes o f  water miscible organic solvents such as 

dioxane or acetonitrile, appear to cause partial denaturation in HRP [19] Fluorimetric 

analysis illustrates a conformational difference in HRP's sole tryptophan residue when 

exposed to organic solvents. Absorbance and EPR spectroscopy suggest exposure o f  

the active site to the organic solvent, which results in reduced local polarity and 

enhanced H-bonding of phenolic residues to the enzyme.

The thermal inactivation kinetics of horseradish peroxidase have been studied 

extensively. Chang el at. found that HRP’s thermal inactivation profile in the presence 

o f  sugars deviates from first order kinetics over a temperature range of 60-94°C [23], 

The process was estimated to be 1 5-order The authors also demonstrated, using 

electrophoretic techniques, the presence of four HRP isoenzymes with a reaction order 

o f  1.5. This deviation from a pure first order process has been attributed to such 

factors as the formation o f  enzyme aggregates with varying heat stabilities, the 

presence of heat-stable and heat-labile isoenzymes and series type enzyme inactivation 

kinetics. It was shown, by the use of differential scanning calorimetry (DSC), that 

sucrose, which is a non-reducing sugar, stabilised the enzyme against 

thermoinactivation, where as reducing sugars such as fructose, glucose and lactose



brought about an increase in thermal inactivation. Hendrickx et al. observed biphasic 

thermoinactivation for solid state HRP in the temperature range 140-160°C. This was 

ascribed to the presence o f  two fractions of HRP displaying first order kinetics [24], 

Enhanced thermostability has been reported by Ugarova el al. [25] Horseradish 

peroxidase was chemically modified with carboxylic acid anhydrides and 

picrylsulphonic acid at the epsilon-amino groups o f  the lysines. First order thermal 

decay kinetics were observed for HRP derivatives at a temperature of 56°C.

Calcium is a vital constituent of the peroxidase molecule and has a role in 

maintaining the structural stability. In spite of the fact that calcium does not participate 

in the peroxidase catalytic reaction, the thermal stability o f  the enzyme has been 

reported to decrease significantly when exposed to guanidine hydrochloride made up in 

EDTA [7], Calcium removal results in a disturbance in the vicinity of the heme group 

as determined by NMR spectroscopy [26] Peroxidase, which functions in plant growth 

through the rigidification o f  the cell wall, is released from cells in a Ca2+-controlled 

process [10]. Thus, peroxidase with a deficient calcium content could lead to plant 

injury and death.

Manganese, phenols and hydrogen peroxide are all known to affect the stability 

o f  peroxidase. They have also been shown to act as promotion agents in IAA 

oxidation As stated previously, peroxidase is considered the main enzyme responsible 

for IAA catabolism Manganese was found to have a stimulatory role on oxidation o f  

IAA by HRP [27]; however the general function o f  Mn2+ is unclear. Activation o f  the 

IAA/peroxidase reaction by phenols such as /?-coumaric acid was due to its ability to 

reduce Compound III, producing ferriperoxidase and H2O 2 for the peroxidative cycle. 

It is thought that the optimum concentration range o f  hydrogen peroxide to which 

HRP can catalyse efficiently is narrow Low concentrations of hydrogen peroxide 

result in decreased HRP activity, whilst too high a concentration is inhibitory. Cyanide 

and sulphide reversibly inhibit HRP but carbon monoxide does not. The enzyme is 

quite sensitive to bacteria, bacteriostatic agents and other chemicals found in tap water.
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1.2.6 Peroxidase activity assays

Peroxidases are capable o f  catalysing the oxidation o f  a range o f  substrates. 

Essentially, HRP functions in decomposing two molecules o f  hydrogen peroxide, the 

natural substrate of the enzyme, into oxygen and water by a two electron oxidation 

step, i.e. hydrogen peroxide is reduced in the presence o f  a hydrogen donor. HRP has a 

low affinity for the second molecule o f  hydrogen peroxide and other electron donors 

may be employed [28], The native HRP is regenerated by the hydrogen donor, which is 

oxidised. This is known as the oxidation/reduction type reaction [29], The 

concentration of hydrogen peroxide in the reaction can be estimated by monitoring the 

concentration o f  the oxidised hydrogen donor

A wide range of indicator molecules or substrates exist, which are capable o f  

assessing peroxidase activity. Substrates may be incorporated into colorimetric, 

luminescent, fluorimetric, electrochemical and hydroxylation reactions, employed in the 

detection o f  HRP and hydrogen peroxide. The best assays provide a direct measure o f  

enzyme activity, usually by coloured product formation (colorimetric assays). When 

chromogenic substrates are used as hydrogen donors, oxidation results in the 

formation o f  a coloured product. Chromogenic substrates for HRP include 3,3',5,5'- 

tetramethylbenzidine (TMB), a non-carcinogenic chromogen which yields a blue 

reaction product at sites o f  HRP activity when oxidised by the HRP/H2O2 complex 

[30], It has also been used as a chromogen for HRP in enzyme-immunoassay [31], 

Sustrates such as o-phenylenediamine (OPD), o-dianisidine and mesidine have also 

been used; however, their oxidation products are carcinogenic Chlorpromazine and 4- 

methoxy-alpha-naphthol have been quoted as efficient substrates, as has 2,2'-azino-di- 

(3-ethyl-benzothiazoline-(6)-sulphonic acid), known as ABTS. Other chromogenic 

substrates include 4-chloro-l-naphthol (4-CN), 3,3'-diaminobenzidine (DAB) and 3- 

methyl-2-benzothiazoline hydrazone hydrochloride (MBTH) [28], An ideal 

chromogenic substrate should be non-carcinogenic and easy to use It also should be 

readily soluble in aqueous solutions, stable and exhibit high molar absorptivity [32],
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unlike guaiacol (a H-donor still in widespread use) which produces an unknown 

mixture of oxidation products

HRP also possesses an intrinsic ability to catalyse chemiluminescent type 

reactions. Chemiluminescence involves the emission o f  light during a reaction. 

Luminol, which is one o f  the most commonly used chemiluminescent reagents, can be 

oxidised by HRP in an alkaline solution to yield 3-aminophthalate and light [33] in the 

presence o f  hydrogen peroxide. It is possible to detect extremely low levels o f  H 20 2 by 

employing excess HRP and luminol in the reaction mixture. Intensity may be measured 

at 425nm. Chemiluminescence has also been used in the determination of superoxide 

dismutase [34] Superoxide dismutase can be determined as it acts by inhibiting the 

chemiluminescence produced by a HRP/luminol reaction. The detection limit for the 

system reached a level as low as nanogram quantities Reagents such as luminol can be 

used in conjunction with such enhancers, to determine hydrogen peroxide in flowing 

streams or bioreactor situations. A HRP/luminol reaction has been used in the 

determination o f  alkaline phosphatase [35] This system involves the use o f  5-bromo-4- 

chloro-3-indoyl phosphate as a substrate The assay has found applications in enzyme 

immunoassay and DNA probe assays.

HRP and hydrogen peroxide may also be detected by fluorimetric methods. 

Fluorescent substrates such as 1,2-diarylethylenediamines and catechols, when 

incubated with HRP and H20 2 at 37°C for a 10 minute period, can determine 

peroxidase activity [36], Fluorimetric intensities were measured at 500 nm, with an 

excitation wavelength o f  360 nm. Hydrogen peroxide was reported to have been 

detected in a system incorporating fluorescein dye, which contained peroxidase and 3- 

(N-morpholine)propanesulphonic acid (MOPS buffer). Light emission was detected by 

a photomultiplier tube. The detection limit was comparable to systems involving 

luminol [37], Another fluorimetric technique for hydrogen peroxide determination 

involves p-hydroxy-phenylacetic acid (POPHA), which reacts with HRP to form a 

fluorescent dimer The amount of this dimer present is proportional to the 

concentration of H 20 2. Excitation and emission wavelengths were 320 and 400 nm
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respectively [38] Modification o f  this assay may allow peroxidase activity 

determination. It is feasible to determine hydrogen peroxide, by fluorimetric means, in 

the absence of HRP The feasibility of using hematin, as a substitute for HRP was 

explored by Genfa e! cil. [39] with /?-cresol being used as a substrate. In a flow- 

injection system, hematin achieved a limit of detection of 5nM H20 2

The concentration of H 2 O 2 in a reaction can also be determined 

electrochemically, in the presence o f  HRP Such reactions involve HRP utilising a 

hydrogen donor that can be monitored voltammetrically upon electrochemical 

reduction [40], Hydrogen donors that act as electron mediators and can be easily 

monitored voltammetrically are essential Electron mediators employed in such 

situations include hydroquinone, o-toluidine, resorcinol and catechol.

1.2.7 Other  functions o f  HRP

Horseradish peroxidase possesses the ability to carry out a large range of reactions, 

such as the catalysis of one-electron oxidations of phenols Phenols, such as p-cresol 

and /9-hydroxyphenylacetate are convened to phenoxy radicals, which spontaneously 

result in polymer formation [41] HRP reactions in organic solvents include 

hydroxylations, N-demethylations, sulphoxidations and other oxidations of various 

organic substances HRP can catalyse the hydroxylation o f  certain aromatic 

compounds by molecular oxygen where dihydroxyfumaric acid acted as a hydrogen 

donor [42], This topic is dealt with in the second section o f  this chapter. The ability o f  

the enzyme to function in a number o f  organic solvents is a well reported phenomenon 

[17], Enzyme activity is maintained even when the bulk water is replaced by organic 

solvents. The determination o f  physiologically important analytes is feasible in organic 

media (e.g. cholesterol determination using cholesterol oxidase and HRP; a bienzyme 

system [43],

13



Proteins, such as HRP, find many applications in medical and industrial fields, such as 

diagnostics, therapeutics, bioreactors, fine chemicals, enzyme-based electrodes and 

biosensors. In applied enzymology, the most important goal is to obtain proteins which 

exhibit a high degreee o f  reliability and reproducibility. Enzymes can be stabilised by a 

range o f  methods, including immobilisation, chemical modification, use of additives 

and protein engineering Enzymes exhibit properties similar to that of an ideal catalyst. 

The relative advantages of an enzyme over conventional catalysts are summarised in 

Table 1.1. The problems o f  industrial related enzymes may be overcome by pursuing a 

specific stabilisation method which would be compatible with the particular enzyme.

Table 1.1

Relative advantages and disadvantages of  an enzyme over conventional catalysts

1.2 .8 P r o t e i n  s t a b i l i s a t i o n  - g e n e r a l  o v e r v i e w

Advantages Disadvantages

High catalytic activity Thermal inactivation

High degree of substrate specificity Inactivation by chemical reagents

Operation under mild conditions Radiation modification

Minimal bi-product formation Environmental modification

Low cost bulk production -

1.2.9 Natural ly existing stable enzymes

Enzymes exist that possess relatively high stability Such proteins may occur in readily 

available organisms which are capable o f  living at elevated temperatures (55-100°C). 

In such microorganisms (thermophiles), or indeed halophiles (exist in high salt 

conditions), the cell’s supramolecular structures, e.g. ribosomes, are very stable in 

extreme conditions [44] The presence or absence o f  calcium and substrate is believed
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to affect the thermostability o f  amylases. The latter acts in the rigidification of the 

protein’s conformation while calcium ions have an activation and stabilisation role on 

amylase. Bound ions function in holding the enzyme structure together [45] 

Thermostable enzymes have been isolated from the fungus Aspergillus niger, which 

displays an optimum temperature o f  65°C Reports also exist on the glycolytic enzyme 

lactate dehydrogenase from Thermologa mciritima, a thermophilic eubacterium. The 

enzyme is stable up to 90°C and displays an extremely high tolerance of guanidine 

hydrochloride (GnCl) [46], Such thermostable enzymes often display relatively high 

activity in the presence of protein dénaturants, such as GnCl, urea, detergents, organic 

solvents and proteolytic enzymes.

1.2.10 Dénaturation

The activity o f  any enzyme requires that the structural and functional integrity o f  the 

active site remains intact. However, the tertiary structure can be irreversibly disrupted 

by a range o f  physical, chemical and biological forces. In addition to dénaturation at 

high temperatures, proteins may also denature at low temperatures. Dénaturation 

refers to the conformational change that results in the loss of molecular function, which 

may be reversible or not. Inactivation results from changes in the degree of association 

or aggregation o f  the molecule, as well as modification of amino acid side chains. 

Mozhaev et al. put forward a number of causes of protein inactivation, such as thiol- 

disulphide exchange, cleavage o f  S-S bonds, dissociation o f  oligomeric proteins into 

subunits and conformational changes in the macromolecule [47], Thus, stability in a 

protein is a balance between stabilising (hydrophobic) interactions and the loss of 

conformational entropy as the protein is unfolded [48],

Reactivation of proteins may take several hours and require quick or slow 

cooling or prolonged incubation at intermediate temperatures. Denatured enzymes may 

become only partially or fully active after hours of exposure to normal temperatures. If  

high temperatures exist for long periods of time, enzyme activty will not return as 

irreversible inactivation processess will have occurred [49],



1.2.11 Enzyme immobilisation

The immobilisation o f  enzymes or proteins onto insoluble matrices forms the 

fundamental step of many biotechnology processes and analytical devices. By 

definition, an immobilised enzyme is one that is physically localised in a certain position 

or converted from a water soluble mobile state to a water insoluble immobile one [44]. 

Immobilised enzymes can show different thermal kinetic values relative to their soluble 

counterparts. As immobilised enzymes simulate the state o f  enzymatic proteins within 

the intracellular microenvironments of living cells, they can provide us with a good 

model system to study. Information concerning the primary, secondary, tertiary and 

quaternary structure of proteins has been obtained through the use o f  immobilised 

enzymes. Furthermore, information on enzyme reactions and intracellular 

microenvironmental properties, among other aspects, has been elucidated through such 

investigations. A number o f  immobilisation techniques exist:

1 . binding to carriers by covalent bonds or by adsorptive interactions;

2  entrapment in gels, beads or fibres,

3. crosslinking or co-crosslinking with bifunctional reagents;

4. encapsulation in microcapsules or membranes [44],

Immobilisation can be used as a method to stabilise an enzyme (Section 1.4.4). 

Optimisation o f  such a procedure with respect to a number of factors such as pH, 

reaction time and temperature is necessary to achieve maximum attachment and 

activity. Studies on the multipoint covalent attachment of trypsin to agarose gels were 

performed by Blanco et al. [50], Immobilisation techniques have been assessed on 

native HRP Stabilisation towards extremes in temperature was achieved by 

encapsulation o f  the enzyme with a low molecular weight polymeric glutaraldehyde 

followed by crosslinking with a second layer consisting o f  polyacrylamide derivatives. 

This bilayered synthetic cage, surrounding the enzyme, appears to enhance its intrinsic 

stability. It is then possible to immobilise the enzyme onto a polyacrylamide-hydrazine

16



gel by crosslinking reactions [51], Martinek et at. observed an increase in 

thermostability in immobilised derivative forms of chymotrypsin and trypsin by seven 

hundred fold in the temperature range 60-100°C [52], Enzymes were firstly acylated 

with acryloyl chloride and then copolymerised with acrylamide. It was deduced that 

the greater the number o f  attachment points between the enzyme (due to the 

preliminary modification step) and the polymer support, the greater the stabilisation 

achieved. Rigidification o f  enzymes such as trypsin prevents unfolding (and therefore 

activity loss) in extreme conditions.

Chemical compounds, such as urea, are potent protein dénaturants. They 

compete with water in binding to the polypeptide and so disrupt inter- and intra-chain 

hydrogen bonds which help maintain the native protein structure. Weng et al. reported 

a decrease in thermostability of immobilised HRP at elevated temperatures in the 

presence of organic solvents such as dodecane, decanol and tetradecane. The Z value 

(temperature increment needed for a 10-fold reduction of the D value o f  the agent, °C, 

where D is the decimal reduction time[in minutes]) o f  peroxidase was changed from 

26.3° C to 14.1°C by the method o f  immobilisation. This was lowered to 11.1 °C in the 

presence o f  an organic solvent [53],

1.2.12 Chemical  modification of  proteins

Soluble enzymes can be chemically modified by a number of methods so as to alter 

their structural and kinetic properties. Bifunctional or crosslinking reagents, which find 

uses in the preparation o f  conjugates for immunoassays, diagnostic imaging and other 

applications, can be used to chemically modify and thereby stabilise protein molecular 

structure [54], Bifunctionally reactive compounds include bis-imidates, bis- 

succinimides and bis-maleimides. The latter compounds react specifically with thiols 

whilst the first two crosslink amino groups. These are regarded as homobifunctional 

reagents, in that they possess a similar type o f  reactive group at either end o f  the 

molecule. Heterobifunctional reagents have different reactive groups at each end of the 

molecule. Such reagents introduce both inter- and intra- molecular bridges in proteins



[55], Such intramolecular crosslinks act in the stabilisation of the tertiary structure o f  a 

protein. In crosslinking reactions, thiol and amino groups are predominantly targetted. 

Such functional groups are reactive and occur frequently in protein primary structures. 

Other groups that can be targetted include carboxyl groups on glutamyl and aspartyl 

resudues, guanidino groups on arginine residues and phenol groups on tyrosines As 

opposed to site-directed mutagenesis and protein engineering, relatively little structural 

information is required regarding the target protein Such modification experiments are 

often simple to carry out and protocols may be implemented and data obtained rapidly

[45], In crosslinking reactions, the protection of the active site residues by substrate or 

reversible inhibitors is important. It is also imperative that functional groups targetted 

for reagents are not involved in catalysis Potential target sites must be distant from the 

active site of the enzyme and not buried in the folded protein structure

It is known that unfolding is an essential step in protein denaturation [56], 

Thus, denaturation can be retarded if molecular "braces" are placed across the protein 

backbone so as to prevent unfolding [57], Molecular rigidification, employing 

bifunctional reagents, is achieved by crosslinking functional groups on the protein 

backbone. In theory, a crosslinked enzyme should be more stable than the native form. 

The extent of crosslinking that occurs depends largely on the length of the reactive 

molecule, and hence on the distance between the molecular centres to be linked [56], 

For example, bis-succinimides are capable o f  forming successful crosslinks [56, 58], 

Data from crosslinking experiments carried out on HRP, shows that the longer 

ethylene glycol derivative (EG-NHS), which is 14.0A long, stabilises the enzyme to a 

greater extent than the suberic acid derivative (SA-NHS) which only spans 1 1  A. 

Imidoesters shorter than l l A  have failed to stabilise native HRP [59], These results 

would indicate that there is a threshold or minimum distance to obtaining a stable 

crosslink in HRP. In the same way, the modification o f  chymotrypsin by Torchillin et 

al. was successful for some diamines used, but not for others of differing molecular 

lengths [56], In order to prove the theory, chymotrypsin was reacted with equal 

quantities o f  dithiols o f  HS-(CH2)n-SH, (n ranges from 4 to 10), i.e. same type



molecules but with differing molecular lengths This study showed that intramolecular 

crosslinking renders the enzyme more tolerant o f  extreme conditions such as 

temperature (as observed by Ryan et al. [59]) salt action and denaturing agents. 

Ugarova et al. also reported that chemical modification o f  the epsilon-amino groups on 

lysine residues could alter the thermal stability of HRP [25], The enzyme was modified 

with anhydrides o f  monocarboxylic acids and by anhydrides o f  dicarboxylic acids and 

by picrylsulphonic acid (TNBS). The native HRP possessed greater catalytic activity 

around 50°C, whereas the modified enzyme displays a maximum activity in the range 

55-65°C.

A variety o f  other chemical modification procedures exist apart from the use of 

bifunctional crosslinking reagents [60] These are predominantly based on the 

strengthening o f  hydrophobic interactions by non-polar reagents and the introduction 

of new polar or charged groups that give additional ionic or hydrogen bonds to the 

enzyme [45]. It was reported that the monofunctional methyl acetimidate was used to 

alter 17 o f  the available 24 lysine residues of lactate dehydrogenase from pig heart. 

Acetamidinalon has no effect on net charge; however, a shift in pK values occurs from

10.2 to 12.5. The enzyme derivative displayed enhanced tolerance of heat and 

alkalinity [61], Other chemical modifcation methods involve the hydrophilisation of the 

protein surface to reduce unfavourable surface hydrophobic contacts with water [62], 

Dramatic stability enhancement has been reported for surface-hydrophilised derivatives 

o f  chymotrypsin (1000 fold at 60°C) Alkylation o f  the enzyme with glyoxylic acid 

followed by cyanoborohydride reduction introduces -NHCHjCOO" groups which are 

not hydrophobic to the same extent as existing -NH2 groups on the protein surface. 

Treatment with anhydrides or chloroanhydrides of aromatic carboxylic acids followed 

resulting in the addition o f  up to five carboxylic groups to each lysine residue 

previously altered. Acylation results in a more hydrophilic protein with increased 

thermostability. This effect may possibly be explained by a decrease o f  non-polar 

clusters located on the protein surface; contact of such clusters with water molecules 

has been reported to destabilise the enzyme [44, 63] A wide range o f  reagents are



available with selectivity for specific groups on amino acids which are summarised in 

Table 1.2. [45],

TA B L E  1.2

Modification reagents used in protein stabilisation

Residue for modif icat ion Reagent Reaction

Amine  (Lys) O-methylisourea 

Acid Anhydrides 

Imidates 

Iodoacetic acid 

Borohydrides and carbonyl 

compounds

Guanidination

Acylation

Amidination

Alkylation

Réduction

Alkylation

Carboxyl  (Asp, Glu) Carbodiimides Amidination

Guanidino (Arg) Dicarbonyls Not known

Imidazole (His) Diethylpyrocarbonate Addition

Indole (Trp) N-bromosuccinimide Oxidation

Thiol  (Cys) Maleimido compounds 

Iodoacetic acid 

N-ethylmaleimide

Addition 

Redn. & S-carboxymethyln. 

Alkylation

1.2.13 Enzyme stabilisation in organic solvents

It was formerly accepted that organic solvents destabilise protein molecules. However, 

many enzyme processes located in vivo occur in chemical compositions very much 

different to that o f  aqueous media Use o f  soluble enzymes in biphasic aqueous-organic 

systems and in anhydrous organic solvents may be a novel development, but it is not so
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surprising. Klibanov proposed a number o f  rules to ensure an enzyme's activity in 

organic media [64]:

1 the particular solvent should be hydrophobic and show little affinity for 

water;

2 . homogenous dispersion o f  the enzyme in the organic solvent,

3 lyophilisation o f  the enzyme from solution o f  its optimum pH prior to

its use in an organic solvent.

Ahern and Klibanov also pointed out that water plays an integral role in

thermoinactivation reactions o f  proteins, such as deamidination of asparagine residues

or destruction of cysteine residues [49] Therefore, the less water available, such 

reactions are unlikely to occur (Section 1 2.5).

Zaks and Russell reported that suspending enzymes in a variety o f  organic 

solvents can alter a number o f  their fundamental properties [21], For example, the 

activity o f  chymotrypsin in an organic medium depends entirely on pH o f  the solution 

from which the particular enzyme was lyophilised. Substrate specificities of subtilisin 

and chymotrypsin were altered significantly when placed in the presence of organic 

solvents. The thermostability of many enzymes, including HRP, is enhanced in the 

presence o f  certain solvents. However, partial denaturation of HRP occured in low 

volumes o f  water-miscible organic solvents such as dioxane, methanol and acetonitrile

[19].

The conformations of enzymes in organic media can also be influenced by 

"ligand memory" [21], Subtilisin, freeze-dried from aqueous solutions containing 

specific ligands, such as N-acetyl-L-phenylalanine, was found to be much more stable 

at 111°C in octane than subtilisin prepared without a ligand. It was also observed that, 

in the case o f  chymotrypsin, up to 65% butanol could be tolerated without any effect 

on catalytic activity. Activity lost above a critical solvent concentration could be 

completely recovered, by dilution in buffer This leads to the conclusion, that unlike
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thermoinactivation o f  proteins at high temperatures, the solvent effect is due to 

reversible denaturation, rather than to irreversible inactivation [45]

1.2.14 Stabilisation through the use of  additives

The stabilisation o f  enzymes in soluble form is an important technological goal. Such 

soluble enzymes are used in detergents, the food and textile industries, cosmetic 

applications and in the diagnostic and medical fields. Compounds such as neutral 

detergents, sodium azide, maltodextrin and special buffers have been employed as 

additives to prevent alteration of the native structure o f  proteins through every step of 

protein purification Additives may also be used to overcome the problem o f pure- 

protein storage. Lyophilisation, in conjunction with a range o f  inorganic salts, is a 

common preservation technique. Purified enzymes can also be stabilised with sucrose, 

glycerol, sorbitol or ethanol and stored below 0°C [45],

The ultimate aim or goal of an additive or preservative, is to increase the 

stability of the enzyme. Gray defined the term “additive”, in this context, as being a 

soluble species which has an effect on the thermal stability of the protein structure

[65], Sucrose, for example, has long been a recommended additive in the stabilisation 

o f  soluble chymotrypsin. Other additives that may be used to stabilise an enzyme 

include bivalent metal ions, ammonium sulphate, ethylene glycol and various 

surfactants [6 6 ], Such compounds can strongly bind to proteins because they are 

substrates or products o f  the enzyme reaction, allosteric effectors, coenzymes or 

coenzyme derivatives. The stabilising effect produced by the use of such additives may 

be explained in two different ways.

1 The binding o f  the additive (through single/multipoint attachment) to 

the active portion o f  the native enzyme as opposed to the inactive 

unfolded polypeptide, causes a shift in equilibrium to the former, having 

a beneficial effect on the entire enzyme (see reaction 1.1 ) [65],
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2, If lower internal energies arise due to the binding of the additive, the 

resulting "enzyme-substrate" complex is more resistant towards 

denaturing agents.

The protective effect on enzymes exhibited by certain additives has been explained in 

terms o f  the influence that such compounds have on water activity and localisation. 

Interactions with water molecules results in the formation o f  water clusters, thus 

leading to an overall net reduction in the volume o f  free water in and around the 

protein structure A similar theory was put forward by Ahern et ah, in that the 

presence o f  water contributes to the process o f  thermal inactivation; a decreasing 

volume o f  water acts in retarding protein inactivation [49], At the same time, such 

water clusters could possibly reduce potential collisions between the protein and any 

solvent present in the microenvironment.

1.2.15 Other stabilisation techniuues

An increase in stability is observed when enzymes are bound to large molecular weight 

polyhydroxy compounds, such as polyethylene glycol [67], Gibson et al. reported the 

stabilisation o f  HRP and other enzymes involving a polymer-carbohydrate system [6 8 ], 

Enzymes are dried under vacuum at room temperature in the presence of a soluble 

polymer, such as DEAE-dextran (carbohydrate sugar) Activity was maintained for 

two months at 37°C, in the presence of stabilisers. Control activity (for unstabilised 

HRP) dropped to approximately 26%.

Modification of HRP with ethanol-methoxypolyethylene glycol resulted in a 

shift in optimum pH from 5.0 for native HRP to 3.5 for the derivative. The modified 

derivative alone was active in such organic solvents as toluene, dioxane and methylene 

chloride. The authors noted that the derivative was also more sensitive to hydrogen
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peroxide inhibition in the presence o f  toluene. Data suggests that 2 to 3 amino groups 

were altered in the modification process [69],

The carbohydrate moiety on HRP can be used as a target for conjugation o f  

short aliphatic chains (hexadecylamine and octylamine). The optimum temperature for 

biocatalysis o f  the former (HRP-C16) was increased by 10 degrees. HRP-C16 

displayed increased solubility in toluene, chloroform and dimethylsulphoxide. The 

octylamine form, HRP-C 8 , appeared to be less soluble. The addition o f  the short C 8  

chain introduced only 3 octylamine chains into the carbohydrate moiety, and as a 

result, had little effect on the catalytic properties o f  the enzyme. The activity of the 

HRP-C16 derivative remained high in toluene and chloroform, even at 70°C [70],

1.2.16 Applications of  HRP

HRP has long been an invaluable tool in the life sciences. It functions as an indicator in 

oxidase-based coupled enzyme assays, in enzyme immunoassays, neurohistochemistry, 

DNA labelling and in biosensor construction. The enzyme is particularly suitable for 

diagnostic sensors due to the absence, under normal circumstances, o f  HRP inhibitors 

in serum and urine [32] Production of easily detectable compounds promotes HRP's 

use in clinical, analytical and industrial situations.

HRP possesses several properties that make it suitable as an enzyme label in 

enzyme linked immunosorbent assays (ELISA) [4], such as high turnover number and 

reasonable stability upon storage The enzyme is capable o f  working well in varying 

assay conditions (i.e variations in pH of solution, ionic strength, buffer types and 

radical temperature changes) Tijssen also reported HRP as having the lowest cost per 

unit mass, o f  all commercially available enzymes used in EIA systems. Both HRP and 

urease produce easily detectable products, in a system where clear-cut visible 

endpoints are essential The products of enzymes such as (3-galactosidase are less 

strongly coloured. HRP can be easily detected using a wide range o f  substrates, in 

colorimetric, flourimetric, luminescent and various other assays.
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In ELISA-type systems, the enzyme (IIRP) is labelled or attached onto a 

second layer o f  antobodies [71], This enzyme-second antibody conjugate is capable of 

converting an added colourless substrate into a coloured product or indeed, a non- 

fluorescent substrate, into an intensely fluorescent product. The amount of product 

formed is proportional to the concentration o f  antigen present. Less than a nanogram 

o f  protein can be detected by ELISA detection systems.

A number o f  antibody-enzyme conjugation methods have been reported. 

Nakane and Kawaoi used sodium periodate to conjugate HRP to antibodies, where 

H R P’s carbohydrate residues are oxidised by periodate [12]. This produces aldehyde 

groups which bond with unprotonated amino -NH2 on the antibody. Nilsson et a l .  

conjugated HRP and immunoglobulins using N-succinimidyl 3-(2-pyridyldithio) 

propionate (SPDP), which is a heterobifunctional reagent [73], Other methods of 

conjugation have been reported [4],

HRP also finds uses in the area of neurohistochemistry. It has been frequently 

used in the study o f  the neural network in the central nervous system (CNS). Such a 

technique involves the tracing of neural connections after injection of HRP into the 

CNS [74], Tetramethylbenzidine, an insoluble chromogen, has been used to stain for 

peroxidase activity in fixed brain-slice specimens. Sites o f  HRP activity in tissue 

specimens can give us information about which nerves in the brain transport HRP and, 

therefore, proteins. HRP also finds uses in the study o f  fluid pinocytosis, which is 

defined as the uptake o f  media by enclosure in small membrane vesicles that bud from 

the cell surface. This phenomenon occurs in practically all cells. HRP movement in the 

cell can monitored microscopically, through the visualisation of insoluble reaction 

products. The enzyme acts as a suitable marker since it is soluble and does not 

interfere with cellular activities [75],
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1.3 USE OF PEROXIDASE IN WASTEWATER TREATMENT

1.3.1 Introduction

Biological treatment o f  organic waste is a well established technology which has 

produced many beneficial products and contributed towards conservation through 

recycling of substrates for different final uses Water covers over 80% o f  the earth's 

surface. However 90% of  water is contained in the oceans (making it unusable 

directly), 2% in the polar ice caps and the remainder beneath the earth’s surface. Thus, 

only a small fraction is available for human consumption. Pollution has been defined as 

the "introduction by man into the environment o f  substances or energy liable to cause 

hazards to human health, harm to living resources and ecological damage, or 

interferences with legitimate uses of the environment" [76]. Pollutants may be certain 

metals, a range o f  organic compounds or gases Their relative importance in pollution 

terms is linked to their perceived toxicity to humans Therefore, the effective treatment 

o f  waste is an important requirement, especially in highly industrialised and populated 

areas, where waste disposal has become a problem due to intensive farming, the 

growth o f  the agro-industry and urban centres. In 1976, the United States Resource 

Conservation and Recovery Act (RCRA) attempted to address the proper management 

o f  hazardous wastes by identifying the origin o f  such wastes, developing appropriate 

technologies to manage such compounds and implementing regulations to protect 

public health and the environment in an effort to gain a response from both the public 

and industry sectors [77] The EC through its Community Action Programme on the 

environment, has developed similar strategies. The main objectives involved reducing 

the quantity of non-recoverable waste, recovering and reusing waste for raw material 

and energy purposes and to manage non-reusable waste and dispose o f  it safely [78], 

Although constant progress is being made, there is much room for improvement. 

Systems have been put in place where the movement of hazardous waste can be traced 

from the point o f  origin to the place of final disposal Under 1984 amendments to the 

1976 RCR act, the United States Environmental Protection Agency (EPA) is required
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to evaluate and, if necessary, prohibit land disposal o f  certain wastes The EC places 

the most dangerously toxic compounds on its "Black List", the less toxic on a "Grey 

List" [79], Similarly, the U.S. EPA lists 129 chemicals on its list of priority pollutants. 

Included on the list are 11 extractable organic compounds including phenol (a 

monohydroxy derivative of benzene) and related compounds. Ingestion of small 

amounts o f  carbolic acid (phenol) can cause nausea, vomiting, paralysis and sometimes 

death from respiratory failure or cardiac arrest. Such compounds may also 

bioaccumulate and thus affect the food chain [80], Phenol and its derivatives are a 

mark of industrial pollution. In drinking water containing chlorine and phenolics, a 

chlorophenol taste can arise at phenol concentrations below 0.1 jig L ' 1 . Pure phenols 

cannot be tasted in drinking water at 1 pg L' 1 levels [81], Tastes and odours from 

water can be the result of organic matter, minerals, specific compounds such as phenol 

or mercaptans, or chlorine and its derivatives Such compounds become troublesome 

at very low levels (e g. < 2  ppb for phenol)

1.3.2 General  peroxidase catalysed reactions

Peroxidase is capable o f  catalysing the oxidation of a wide range o f  compounds, due to 

the strong redox properties of its oxidised form and also the long distance electron 

transfer processes that occur in proteins No apparent limit in the size of the substrate 

exists, ranging from phenols [82] to biopolymers such as lignin. Dordick el al. have 

reported that HRP is capable of depolymerising lignin in an organic medium such as 

dioxane but not in aqueous solution [83] The rate of peroxidase-catalysed breakdown 

o f lignin in dioxane was shown to be much lower under anaerobic conditions, unlike 

classical peroxidative coupling of phenols in water which is unaffected by molecular 

oxygen. Harkin el al. have shown that peroxidase is the only known enzyme capable of 

polymerising /?-coumaryl alcohol, a lignin precursor, into lignin-like polymers in the 

presence o f  hydrogen peroxide [84] Under certain conditions, HRP can catalyse the 

hydroxylation of some aromatic compounds by molecular 0 2 in the presence of 

dihydroxyfumaric acid acting as a hydrogen donor L-3,4-dihydroxyphenylalanine (L-
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Dopa), a drug used in the treatment of Parkinson's disease, has been produced with 

yields o f  up to 70% from the enzymatic hydroxylation o f  L-tyrosine. The rate of 

conversion is dependent on the presence of molecular O 2 , reaction temperature and the 

concentration o f  the mediator [42],

Until recently, very few studies have been carried out on the O-demethylation 

reactions catalysed by peroxidases. Contrary to prior expectations, a peroxidase system 

(HRP and H 2 0 2) is capable of catalysing such a reaction on the cytotoxic agent, 9- 

methoxyellipticine. The near complete conversion o f  the substrate is observed with 

peroxide in the reaction mixture The decrease in the quinone-imine concentration 

during the conversion is related to a copolymerisation o f  the quinone-imine and the 

starting material. It was also noted that methanol is formed during such reactions [85], 

Gillette et al. reported the first N-demethylation-type reaction involving peroxidase. It 

involved the catalysis o f  aminopyrine(4-dimethyl-aminoantipyrine) in the presence of 

peroxide (which was generated from the oxidation o f  glucose by glucose oxidase) [8 6 ]. 

Its oxidative capacity on o-phenylenediamine (OPD) has resulted in the development 

and optimisation of an activity assay which is sensitive to 16ng L ’ 1 of peroxidase and is 

linear in the 16-200ng L " 1 range [87]

1.3.3 Methods for treating phenolic wastes

1.3.3.1 Microbial: under properly controlled conditions, microorganisms can be 

developed that are suitable for treating or removing phenols from waste. Biological 

means for treating such compounds are feasible over a wide concentration range. 

Lewandowski and colleagues have reported on three bacterial species, Klebsiella 

pneumoniae, Serrafia liqvefaciens and Pseudomonas putida , as being capable of 

degrading phenol It was noted that commercial preparations of these species were not 

capable o f  similar behaviour [8 8 ] Microbial cells are often immobilised in 

polysaccharide gels. This results in a higher initial biomass concentration and faster 

reaction times than with free cells. Loadings o f  greater than 1010 cells per ml of gel
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have been reported [89] Immobilised cells offer the advantage o f  repeated use if the 

system is properly designed and operated. Kokubu el a/, have reported an extended 

half-life for Sfreplomyces frad iae  activity provided optimum environmental conditions 

are maintained [90], Microbial methods, however, do suffer from drawbacks such as 

the slow diffusion of substrate (phenol) through the cell wall, cell lysis and cell 

reactions yielding products which may affect the primary reaction. However, use of 

microbial cells avoids the neccesity for expensive enzyme purification processes and 

also, inside a cell, all the enzymes involved in a reaction are arranged in a logical 

fashion. It is not possible to mimic such arrangements when immobilising enzymes in a 

reactor

1.3.3.2 Incineration: incineration processes burn organic matter in sludge and 

produce an inert ash as a result Since the combustible portion o f  most sludges is 

below 75%, a substantial proportion of ash remains for disposal. The incineration 

products o f  phenol are carbon dioxide and water according to the following reaction:

C6 H5OH + 7 0 2 -»  6 CO 2 + 3H20

Due to the low solubility o f  phenol in water (approx, 10%), mechanical mixing is 

necessary. To sustain the required combustion temperature o f  871°C, a supplemental 

fuel oil is added [91 ]

1.3.3.3 Activated carbon: this technique is useful for the treatment o f  lower phenol 

concentrations. It is quite versatile and may remove other organic materials present in 

the phenol-containing stream by adsorption. Powdered activated carbon takes the form 

o f  grains between 10 and 50 |.iM in size [92], It has a finite capacity for removing 

phenol from wastewater which can then be regenerated by chemical or thermal means. 

These processes are sometimes not considered as they are expensive and not applicable 

for many wastewater types. A relatively low energy-consumption technique has been
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developed where supercritical fluid C 0 2 passes through the loaded activated carbon 

and removes the adsorbed material by putting it into solution. This technique is 

particularly useful for pesticides as they can be resold as dry pesticides [93] Activated 

carbon cannot be regenerated when mixed with hydroxide wastes. The factors 

affecting activated carbon as an option for phenol removal have been discussed [91],

1.3.3.4 Chemical  oxidation methods: chemical oxidising agents such as chlorine 

dioxide, ozone, potassium permanganate and hydrogen peroxide have been applied to 

convert phenol into less harmful substances. Oxidising agents have also been used in 

water treatment to remove iron and manganese and to reduce tastes and odours. H 20 2 

in the presence o f  iron salts is an effective oxidiser of phenols over a wide 

concentration range. The reaction appears not to be temperature dependent [91], The 

advantage o f  using peroxide is that it has no adverse effect on the environment

Ozonation, a fairly recent entry into the American wastewater treatment field, 

offers certain advantages as a method of coal-conversion wastewater clean-up. Ozone 

has been shown to be about as twice as effective than H 20 2 in the destruction of 

phenols The end products are carbon dioxide and water. The potency of ozone is 

unaffected by pH; however, a major disadvantage is that it decomposes rapidly to 

molecular oxygen It can be employed in either a batch or continuous treatment system 

and due to its instability, it must be generated on site by passing dry air through an 

electrical charge with a power consumption o f  approximately 15Kw hour per kg o f  

ozone produced [94] Potassium permanganate has been used for treating paint 

stripping wastes It oxidises phenol adequately by employing a nine times greater 

weight o f  KMn0 4  The oxidation o f  phenol is carried out according to the following 

reaction scheme. The reaction works best in solutions o f  moderate alkalinity [91],

3C6 H60  + 28K M n04 + 5H20  -> 18 C 0 2 + 28KOH + 28M n02
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1.3.3.5 Aeration: phenol can be removed to some extent from water by aeration. An 

important factor is the rate at which air enters the water and also the rate at which it is 

transferred to phenols in solution Aeration can be o f  quiescent or forced means. 

Typical aeration methods would be classed as (a) diffused, (b) submerged turbine and 

(c) surface. Aerating devices in reactors should be designed so that air can be 

transferred at a sufficient rate to satisfy the demands of the technique [95], Liquid 

depths o f  reactors are usually no more than 5 metres. The air requirements for a 

reactor should be based on the mass transfer coefficients for the particular device. 

Relative efficiencies for various reactor set ups have been discussed [91]

1.3.4 Use of  immobilised peroxidases in phenol  removal from aqueous solutions

A recent development has been the use of immobilised enzymes in wastewater 

treatment The most important features in this area are the low cost o f  the solid, the 

production of reusable material and the elimination of waste-disposal problems. A 

process based on immobilised rather than soluble enzymes is thought to be more 

effective in treating highly contaminated phenolic waters. Considerable financial 

savings due to reuse o f  enzymes are possible. Siddique et al. immobilised HRP on a 

cellulose disk by coupling the enzyme with periodate Nylon balls and tubing were also 

compared as insoluble reactor matrices More than 80% of  4-chlorophenol was 

removed for all enzyme supports so long as HRP activity was not limiting Removal 

efficiencies were not affected by reactor flow rates [96] HRP has been immobilised on 

granular chickenbone for the complete removal o f  phenol from aqueous solutions. The 

insoluble polyphenols that are produced due to the peroxidative oxidation of phenol 

are collected on the porous support The mass transfer properties o f  this 

immobilisation technique permit the processing o f  large volumes o f  wastewater [97], A 

similar strategy involves the immobilisation of peroxidase onto a filter paper via the 

precursor (adipic acid dihydrazide) of an immobilising agent. The insoluble precipitate 

is then removed from the filter paper The reaction is not temperature dependent and is
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capable o f  removing aromatic amines, naphthalene and phenol from aqueous solution 

[98],

Entrapment o f  HRP in alginate beads resulted in substantial increases in colour 

removal from phenolic industrial effluents. Further increases were noted when laccase 

and HRP were co-entrapped in gel beads which demonstrates both oxidases potential 

for such applications [99], HUP has been incorporated on its own into glass beads by 

precipition of enzyme solution with glass powder. This methodology was used for the 

determination o f  phenols and aromatic amines in organic solvents containing H 20 2. 

Such a technique may have future applications by direct packing of the peroxidase- 

modified glass beads in a reactor for the removal o f  phenols from aqueous effluents

[43], HRP immobilised on a CNBr-Sephadex 4B column with ImM HC1 has been 

shown to improve the removal o f  colour from Kraft effluent. Removal, by this 

technique, is enhanced by a factor of 2 .6 ; thus it would appear that the removal of 

soluble phenolic compounds is dependent on the immobilisation of the enzyme so that 

it is biochemically stabilised and reusable [100], Some examples are given below of 

surfaces used for the covalent attachment o f  enzymes [ 1 0 1 ],

T A B L E  1.3

SU PP O R T  M A T E R IA L M O D IFICA TIO N  R EA C TIO N

Poly-/>ami nopolystyrene Diazotization

Maleic anhydride Copolymerised with vinyl ether

Polyacrylamide Amino ethyl and hydrazide derivatives

Methacrylamide Allyl glycidyl ether

Polyacrylamide Diazotization

Nylon O-alkylation

Nylon N-alkylation
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1.3.5 Use of  soluble peroxidases in phenol removal  from aqueous solutions

The industrial use o f  soluble enzymes as biocatalysts dates back to the early 1900's 

with the development of enzyme processes to manufacture cheese products, bread, 

beer and wine. Enzymes are able to differentiate between chemicals of closely related 

structures (hydroxytoluenes in the case of HRP) [96] and can catalyse reactions over a 

wide temperature range (0 -110°C) and in the pH range 2-14 Various enzymes have 

been shown to perform similar reactions such as removal o f  amines and phenols from 

aqueous solution, e.g. HRP and tyrosinase can oxidise catechol in the presence of 

peroxide to produce o-quinones [ 1 0 2 ]

Other peroxidases besides HRP have been reported to polymerise phenols from 

water in the presence of H 2O2 . Carmichael el at. have compared the oxidation of 

phenols by HRP and a fungal chloroperoxidase. Both enzymes were equally effective 

in removing phenol and cresol; however, HRP appeared to be more capable of 

oxidising 2,3- and 2,6-dimethylphenols. The fungal chloroperoxidase displayed a 

greater affinity for 3-chlorophenol A fungal peroxidase isolated from Coprinus 

m acrorhizm  was studied for its ability to oxidise a selection o f  aromatic contaminants. 

The enzyme possessed the ability to catalyse the same reactions as HRP, removing 

98.2% phenol with stirring when mixed with peroxide [104], Spiker et al. reported on 

a Streplomyces viridospom s variant of lignin peroxidase with the ability to oxidise 

phenols but unable to remove non-phenolics. 4-aminoantipyrine was included to act as 

a marker for lignin peroxidase activity [105] A recombinant peroxidase originally 

isolated from a basidiomycete and which closely resembles HRP was studied for its 

potential to degrade a wide range of aromatics. The enzyme is inexpensive to produce 

and can function in a wide range of environmental conditions. Side-products due its 

oxidative properties include CO 2 , H20  and native peroxidase [106], The phenol- 

removing characteristics o f  other peroxidase-types have also been studied [107],
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1.3.6 Strategies to enhance phenol removal by peroxidases

It is known that the removal efficiency o f  phenol from aqueous solution by a 

HRP/H 20 2 system decreases with a reduction in the concentration o f  peroxidase [108], 

However, a plausible explanation for the incomplete removal o f  phenol by low 

concentrations o f  peroxidase is the inactivation o f  the enzyme. It is thought that this 

inactivation takes place during the oxidation o f  the substrate, possibly due to the 

interactions o f  phenoxy radicals with the enzyme’s active centre [109], HRP in soluble 

form has a finite catalytic lifetime when used to precipitate phenolic substrates [ 1 1 0 ], 

Nakamoto el at. have proposed incorporating gelatin or polyethyleneglycol into the 

HRP/H 20 2/phenol reactor to alleviate such a problem [111]. Gelatin competitively 

suppresses HRP adhesion to polyaromatics thus reducing the amount of enzyme 

required. Also, phenol removal rates exhibited greater pH dependence using PEG 

instead o f  gelatin [112], Removal efficiencies were in excess o f  90% at pH 5-8 but 

decreased rapidly when the pH exceeded 9 It was estimated that the amount o f  HRP 

required was reduced 40- and 75- fold compared with the same process in the absence 

o f  PEG, for treating 1 and lOmM phenol solutions respectively [113], Thus, it would 

appear that the use o f  additives can offer an option towards reducing costs o f  phenol 

removing processes involving soluble enzymes

1.3.7 Catalytic cycle of  HRP

The one-electron oxidation o f  aromatic substrates (AH 2 ) catalysed by peroxidase is 

depicted in the following mechanism:

E + H 20 2 -> E; + H 20

Ei + AH 2 —> Eii + ‘AH

Eh + AH 2 —> E + 'AH + H20

The native enzyme (E) is oxidised by peroxide to the active intermediate called 

Compound I (Ei). This state o f  HRP will accept an aromatic compound into its active



site and catalyse its oxidation The resulting free radical (*AH) is released back into 

solution leaving HRP in the Compound II (E;;) state. The formation o f  free radicals by 

Compound I has been verified using electron paramagnetic resonance [114] 

Compound II oxidises a second aromatic molecule and releases it into solution while 

the enzyme returns to its native state (E). It is known that the rate o f  phenol oxidation 

by Compound II is higher than that of Compound I. Oxidation o f  phenol by 

Compounds I and II is approximately 1000 times higher than that of aniline [115], Free 

radicals diffusing from the enzyme into solution combine to form polyaromatic 

products which are usually less soluble than their monomeric precursors and will 

therefore precipitate from solution Polymers failing to precipitate can return to the 

active site resulting in greater polymer formation with still reduced solubility in water

[116], Two free radicals are formed for every H2 0 2 molecule consumed (one molecule 

o f  peroxidase can remove 1000 molecules o f  phenol) [109] However, insoluble dimers 

(free radicals) will react again at HRP’s active site resulting in greater free radical 

formation. These radicals will also polymerise to form trimers, tetramers or larger 

polymers which readily precipitate out o f  solution. Thus, a stochiometric reaction ratio 

o f  peroxide to free radicals is usually 1:1 An important consideration is the 

concentration o f  peroxide neccessaiy for complete removal of aromatics Increasing 

the concentration o f  H 20 2 improves removal efficiencies up to a certain point [107], 

Arnao el a/, have demonstrated that a loss of peroxidase activity occurs with an 

apparent bi-exponential behaviour when HRP is stochiometrically deficient to H20 2

[117], Thus it is preferable to use a ramped addition where greater amounts of 

peroxide are used at the beginning of the reaction when H 20 2 is consumed rapidly and 

scaled down amounts are used in the later stages [118], An attempt was made to 

identify the end-products of phenol oxidation by HRP/H 20 2 GC-MS analysis 

confirmed the formation o f  both o,o'~ and /?,/?'-biphenol Spectral data indicated that 

the latter is further oxidised to />diphenoquinone [82] as peroxidase is known to 

catalyse the oxidation o f  catechol to o-quinone [ 1 0 2 ]
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1.3.8 Resistance of  aromatic c o m p o u n d s  to biodcnradation

It is known that some phenolic compounds and aromatic amines have higher bio­

removal efficiencies than others Compounds such as o -, m- and p-nitrophenol, p- 

cyanophenol and pyrogallol do not precipitate when exposed to a HRP/H 2O2 system. 

Two possibilities could explain this First, the specific reactivity of the particular 

compound towards peroxidase and hydrogen peroxide, and second, compounds such 

as naphthols, for example, are more rapidly removed, as their polyaromatic products 

are more hydrophobic (and are therefore more water-insoluble), resulting in greater 

precipitation from solution [119] Compounds with high removal efficiencies can aid 

the removal of those that are not readily precipitated. Phenol has been shown to be 

more readily oxidised in the presence of such compounds as 3,3'-dimethoxybenzidine, 

o-dianisidine, benzidine or 8 -hydroxyquinoline [119, 120] The explanation for this is 

that free radicals from benzidine, for example, attack and precipitate phenol. This 

mechanism is reported to work with non-phenolic and non-amine compounds. Also, 

ortho- and meta-substituted cresols [ 1 2 1 ] are removed at a greater rate than p-cresol at 

pH 4.0 [96, 120], 4-chlorophenol has a high removal rate than 2- and 3-chlorophenols 

[120] Naphthalene is easily removed from aqueous solution by adding phenol [98], 

Carmichael et at. noted that removal rates of phenol and cresol were similar but 

monochlorophenols were most readily oxidised by HRP and a fungal chloroperoxidase

[103],

On the other hand, Capestany et a/, demonstrated phenol as being more 

susceptible to bio-induced oxidation than monochlorophenol, with pentachlorophenol 

the most difficult phenolic compound to degrade. The halogenation o f  the phenol 

nucleus reduces the availability of the molecule for oxidation [122], Increased 

resistance to biological oxidation is related to increased substitution and position o f  Cl 

atoms on the aromatic ring [123] Nevertheless, Li et al. reported a manganese 

peroxidase which was capable o f  oxidising pentachlorophenol more efficiently than 

phenol. Another fungal peroxidase, lignin oxidase, displayed similar degradation 

capacities for various chlorinated phenolic compounds [124] A wide range o f  phenol
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and chlorophenol contaminants have been enzymatically removed from wastewater

[104],

1.3.9 Reactor configurations

An enzyme reactor is described as a vessel in which a reaction catalysed by free or 

immobilised enzymes takes place, together with all the equipment necessary for 

sampling and control. In industrial situations, the economic feasibility o f  the process 

will depend on the useful lifetime of the biocatalyst. Reactor systems (see Figure 1.5) 

must be developed which will maintain and extend the biocatalyst’s efficiency by 

reducing its rate o f  inactivation through such mechanisms as free radical binding, 

Compound III formation, and the entrapment of the enzyme in formed precipitates 

[125], Various types o f  reactors used in the removal o f  undesirable compounds from 

wastewater have been described by Harrison. The advantages and disadvantages o f  all 

systems must be considered in order to develop an industrial

Figure 1.3: Examples o f  reactor systems for immobilised enzymes/cells, (a) batch
reactor, (b) recycle batch reactor, (c) continuous flow reactor and (d) 
packed bed reactor with total recycle.

37



process which produces high product yields quickly with minimum cost [101] Nicell el 

al. have compared the performance o f  batch and continous stirred tank reactors 

(CSTRs) for the peroxidase catalysed removal o f  phenol and chlorophenol from 

wastewater [116], Removal o f  aromatics using the CSTR design operated in series was 

found to be preferable [126] when environmental conditions such as pH and 

temperature are optimised [125] Removal efficiencies were best at 25°C; however, the 

removal o f  phenol and amines from aqueous solution using immobilised peroxidase has 

been reported as working satisfactorily over the temperature range 0-95°C [98], 

Siddique and coworkers employed a recycle batch reactor for 4-chlorophenol 

degradation HRP was immobilised in cellulose disks, nylon balls and tubing in the 

reaction vessel and removal efficiencies were in excess o f  80% [96] Other reactor 

designs such as packed-bedslime digestors for phenol degradation have been shown to 

be effective oxidisers o f  phenolics into soluble polymerised precipitates [127], This 

precipitate may be recovered for use as a fuel [109],

1.3.10 Oxidation of  phenolics in non-iumcous media

Enzyme catalysis in organic solvents has many applications in industrial processes. 

HRP catalyses the oxidative coupling o f  phenols in a wide range of aqueous-organic 

solvent mixtures [128], A phenol resin has been produced in a 1,4-dioxane/phosphate 

buffer mixture (80:20%v/v) using H 20 2 as an oxidising agent. The polyaromatic 

precipitate can be removed by filtration and washed with methanol to separate phenol, 

peroxidase and other contaminants [129] It has been noted that increasing the 

percentage dioxane in the reaction mixture results in a proportional increase in the 

oxidation o f  /^-cresol, also, the apparent Km of  phenols increases as the solvent polarity 

decreases [130], Lignin p-cresol copolymers have been produced in 50-70% mixtures 

o f  dioxane (both lignin and /^-cresol are highly soluble in dioxane) [131], Use of 

organic solvents such as dioxane also plays a major role in controlling the molecular 

weight o f  the resin. Polymers in excess of 25kDa have been synthesised. These 

phenolic resins or polymers are useful as developer resins for carbonless recording
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materials and as adhesives. Attempts to synthesise phenolic polymers in aqueous 

solution using HRP/H 2 0 2 have not been successful as o f  yet due to the inability of the 

medium to dissolve the polymer compound [132]

1.3.11 General  treatment of  industrial effluents

The ability o f  HRP to catalyse colour removal from bleach plant extraction effluent is 

well known [133], A HRP/H 2 0 2 system initially produces a faster rate of 

decolourisation than mycelium from Coriolus versicolor, however, a greater 

proportion is removed by the latter activity over a two day period. Davis et al. have 

reported similar findings using soluble laccase, HRP and Coriolus versicolor [99], 

Laccase phenol-oxidases secreted by Trametes versicolor can oxidise a wide variety of 

biological and synthetic phenolic compounds [100], Such enzymes are functionally 

superior to lignin-peroxidase from Penicillhim chysosporium  for pollutant 

dechlorination and are also more stable and cheaper to produce [134]

High phenol and ammonia concentrations are typical of coal conversion 

process wastewaters. Numerous experiments have demonstrated that the concentration 

o f  phenol can be removed to achieve levels as low as 20ng cm3. Other major 

constituents include sulphur compounds and cyanides. Biological oxidation shows a 

very high potential for applications to hydrocarbonization wastewater treatment. In 

bioreactors for phenol degradation, the phenolic content is reduced by greater than 

99.5% using trace metal-phosphate-supplemented hydrocarbonization scrubbing water 

as a reactor. The concentrations of other organic compounds (polyaromatic 

hydrocarbons and xylenols) are also reduced [135],
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1.4 B IO S E N S O R S

1.4.1 Introduction

Biosensors are sensing devices which incorporate biological material in their 

construction and were first described in 1962 by Clark and Lyons, where glucose was 

determined by measuring the consumption o f  dissolved oxygen [136], A biosensor can 

be defined as “a probe that encorporates a bioactive substance that can specifically 

recognise a species o f  interest with a physiochemical transducer” . Biosensor 

development attracts interest from such far reaching fields as pharmacology, 

biochemistry and electronics An ideal biosensing device should exhibit a number of 

characteristics such as being relatively small in size, a fast response time, be highly 

selective and possess a high affinity for the analyte of interest [137] However, the 

numerous practical problems that exist are partly due to the active biocatalytic layer. 

Problems also arise when the analyte o f  interest is present in a complex matrix, such as 

blood plasma. Detection o f  a particular analyte can be prone to interference or matrix 

effects. A biosensor is usually composed o f  two components, a means o f  recognition 

and a method o f  transduction Biomolecular sensing may be defined as the detection of 

analytes o f  biological interest, using an enzyme or receptor which has a specific affinity 

for a target molecule The occurence o f  a physical/chemical signal in response to this 

biorecognition, which is subsequently converted by the transducer into a secondary 

signal, is usually electrical in nature [138], with a transduction mode which can 

monitor either thermal, electrochemical, optical or mass changes

1.4.2 Transduction

The purpose o f  the transducer is to convert the biochemical signal into an electronic 

signal that can be easily manipulated. A range of transduction techniques exist in 

biosensor technology such as electrochemical, optical, calorimetric and piezoelectric- 

type devices. There are two main methods in electrochemical detection; amperometry 

and potentiometry The former involves the application of a constant potential or
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voltage with respect to a reference electrode. This results in a non-spontaneous 

electron transfer. The current (produced between the working and auxiliary electrodes) 

is due to the reduction or oxidation of an electrochemical species at the working 

electrode and is proportional to the concentration o f  the analyte [139]. Steady state is 

a condition at which the rates o f  diffusion o f  the electroactive surface are equal. Net 

sensor current is dependent on factors such as charge transfer, adsorption, chemical 

kinetics, diffusion, convection and substrate mass transfer. The Clark electrode was the 

first reported transducer associated with biocatalytic recognition. Transduction of the 

signal due to an enzyme-based sensor can be useful in a number of ways:

1 . the electrode detects a naturally existing cofactor, e.g. oxygen, or a 

product o f  an enzymatic reaction e.g. hydrogen peroxide The resulting 

current is then proportional to the concentration of analyte,

2 . mediators or cofactors have been employed in biosensor systems that 

reduce potential interferences by operating at lower applied voltages,

3. the electrode itself is used as a mediator to aid direct electron transfer 

where the catalytic activity is reacting directly at the electrode surface.

1.4.3 Working electrodes

Glassy carbon electrodes have been commonly used as amperometric sensors. Stulik et 

al. reviewed a number o f  techniques for the activation of solid electrodes such as 

polishing, chemical and electrochemical pretreatment, application of heat and 

electromagnetic radiation [140], Electrochemical pretreatment o f  solid surfaces 

activates surface groups which may enhance the electrode’s response A glassy carbon 

electrode with immobilised uricase modified with Nafion and methyl viologen was 

constucted for the detection o f  uric acid The biosensor had the advantage o f  high 

sensitivity and fast response times as compared with previous sensors [141], Glassy 

carbon type electrodes have also been successfully used in flow injection analysis (FIA) 

systems. A detection limit lower than others previously reported for H 20 2 has been



obtained [142], The electrode had similar deection limits in both static and flow 

systems; however, the incorporation o f  the electrode in an FIA system resulted in a 

wider dynamic range and a greater sampling frequency

The carbon paste electrode was invented over 35 years ago by Adams [143], 

Amperometric biosensors based on mixed carbon paste redox enzymes have been of a 

source o f  considerable interest Biocatalysts have been found to retain their cataltic 

ability for an unexpected length of time Carbon in the form of graphite is particularly 

suitable for electrode fabrication since the working surface may be easily renewed. It 

may be necessary to add a mediator to the enzyme/carbon paste mixture to enhance 

electron transfer. A HRP modified carbon paste electrode useful for the determination 

of aniline at low ppb levels was reported [144], FIRP was dispersed in carbon paste 

and immobilised on a Nafion membrane Addition o f  triethylamine to the carrier stream 

in an FIA system increased sensitivity and suppressed memory effects Good recovery 

was obtained when samples o f  spiked oils containing different concentrations o f  aniline 

were analysed. The simultaneous incorporation of ferrocene [Fe(Cp)2] and HRP into a 

carbon paste matrix resulted in an effective electrode for sensing hydrogen peroxide 

[145], HRP catalyses the reduction o f  H 20 2 in the presence of an electron transfer 

mediator according to the below reaction. The electrochemical reduction o f  the 

oxidised mediator provides the amperometric signal for the measurement of peroxide 

FIA analysis o f  H20 2 had a high sampling frequency o f  approximately 70 per hour.

H 20 2 + Medrcd —̂ H20  ' Medox

Xanthine oxidase was adsorbed on carbon paste and physically entrapped in a semi­

permeable membrane for the detection o f  hypoxanthine and xanthine. Measurement of 

the latter compound was based on the detection of enzymatically liberated uric acid 

which was electrochemically oxidised at 0 4 V vs. Ag/AgCl The dynamic range of the 

electrode remained constant for 6  days, however, some compounds were found to 

interfere [146], Carbon paste (without bioactivity) has proven to be of great benefit in
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the voltammetric measurement of uric acid, a major constituent o f  body fluids. Urate 

rapidly adsorbs at carbon surfaces [147] A subsequent flow injection system with 

adsorptive accumulation of uric acid at the electrode surface showed good precision 

and compared favourably with other adsorbable species.

Cai et a!, investigated the influence o f  electrochemical pretreatment o f  carbon 

paste electrodes on the oxidation o f  uric acid [148], Anodic pretreatment at 1.4V SCE 

for a short period o f  time greatly enhanced the response to urate. The authors 

attributed the improved responses to the actual preanodization potential, the duration 

of the applied voltage and the degree o f  alkalinity o f  the supporting electrolyte.

The fabrication and characteristics o f  graphite epoxy modified electrodes have 

been reported [149] Unmodified epoxy-bonded graphite electrodes possess desirable 

electrochemical, mechanical and chemical properties and have been used for in vivo 

voltammetry and microanalysis Gilmartin et a!, have described the preparation and 

analytical utility o f  chemically modified graphite-epoxy resin electrodes as 

amperometric sensors for uric acid [150] The precision of surface-surface 

reproducibility was calculated as being 7 3% (n=5). Cobalt phthalocyanine (CoPC-) 

doped epoxy resin electrodes coated with cellulose acetate membranes appeared to act 

in reducing the overpotential required (<600 mV) for the oxidation o f  peroxide 

(liberated from the uricase catalysed oxidation o f  uric acid).

uric acid + O2 + 2H20  — —> allantoin + CO2 + H2 O 2

This methodology was further developed for the evaluation o f  modified screen printed 

carbon electrodes (SPCEs) with a view to developing an amperometric sensor for uric 

acid [150, 151], The system entailed a CoPC electrode for the electrocatalytic 

oxidation o f  H 20 2 by means of a cellulose acetate (CA)-uricase bilayer. Amperometric 

calibrations were linear up to 1 mM, with a limit of detection of 13 xlO '^M . Precision 

o f  electrode fabrication was 4 9% (n=6 ) with a deviation in signal intensity o f  14% 

over a week
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Platinum has been widely used as an electrode materia! (based on hydrogen peroxide 

and oxygen consumption modes) because o f  its inherent superior catalytic response 

Nanjo and Guilbault used a platinum electrode for the selective detection o f  uric acid in 

serum and urine [152] The working surface area o f  the electrode was covered with 

immobilised uricase, acting as a thin reaction layer. The initial rate of disappearance of 

dissolved oxygen was proportional to the uric acid concentration present.

An amperometric platinum based sensor was able to enhance selectivity 

towards peroxide determination when pretreated with 4-aminophenol and phenol 

solutions [153], This makes possible the elimination o f  interferences encountered in 

clinical monitoring. This approach has the advantage over a permselective barrier such 

as cellulose acetate in that it almost completely eliminates potential paracetamol 

interference from glucose measurements. The polymerisation of phenol at the electrode 

surface is dependent on the applied potential; however, this coating is rather unstable.

The reduction of electrode poisoning can be achieved by dispersing a Nafion 

film incorporating platinum particles on a glassy carbon electrode This has been 

shown to act as a selective and sensitive surface area for monitoring glucose [154]. 

Tatsuma reported on the use of a tin(IV) oxide plate electrode for the amperometic 

detection o f  lactate, pyruvate, cholesterol and uric acid [155] The tin(IV) oxide 

bilayer modified electrodes were prepared by firstly treating the surface with 1 0 % 

aqueous (3-aminopropyl) triethoxysilane followed by 2.5% glutaraldehyde. HRP was 

immobilised onto the surface by passive adsorption. The respective oxidase activity 

(e.g. uricase) was immobilised after the further treatment of the electrode with 

glutaraldehyde solution The system has the advantage o f  using the minimum amount 

o f  enzyme; however, response times were slow (approximately 5 minutes)

Potentiometric transducers measure the difference in potential between the 

working electrode and a second reference electrode while the current remains constant. 

The systems are based on the Nernst equation, where a logarithmic relationship exists 

between the potential and the activity of the ion in solution. Examples o f  

potentiometric devices include ion selective electrodes (ISEs) and gas-sensing
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electrodes [156] Potentiometric enzyme electrodes have been fabricated by 

immobilising or covalently binding an enzyme or biological component onto or in the 

selective membrane of an ion/gas selective electrode [157], The most common 

example o f  this type of device would be the ammonia sensor, based on the hydrolysis 

o f  urea, creatine and amides and the oxidation o f  amines and amino acids. These 

devices are based on the consumption or formation o f  substrate or product 

respectively, which causes a change in the activity, a¡, o f  the ion for which the 

membrane is selective.

1.4.4 Immobilisation of  biological components  onto electrode surfaces

Modification o f  an electrode is achieved by immobilising a biological molecule onto an 

electrode’s working surface area. A good immobilisation technique is one that will be 

applicable to a wide range o f  surfaces. Many surfaces have hydroxyl groups attached 

to them whether adjacent to carbon, silicon or other atoms. Surface pretreatment with 

titanium tetrachloride (activates existing surface groups), can provide a stable titanium 

link between the surface and a designated biocomponent. This link is resistant to a 

wide range o f  physiological pH values and is also non-biodegradable. Titanium 

tetrachloride can also have a use in premodifying surfaces that possess -NH2 groups 

The most important consideration is that the biocatalyst exhibits maximum activity in 

its immobilised state, where the active centre o f  the component is facing towards the 

solution of interest. A bound bioactivity comparable to activity in free solution is the 

main goal o f  immobilisation techniques [158]. Important factors in immobilisation 

include:

1. ability o f  the biocomponent to function over a wider pH range than in

solution;

2 . the ability to achieve greater stability;

3. an ability to dispense with its coenzyme;

4 the possibility o f  co-immobilising more than one biocatalyst;
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5. exhibition o f  maximum activity.

It is important that overloading o f  the solid support with the biocomponent be avoided. 

This can result in a decrease in the overall performance because of the restricted access 

of the analyte to the active centre This problem may be overcome through the use of a 

porous surface on the solid support [158], Taking this into account, it is important that 

the biocomponent does not leak into the analyte solution while the biosensor is in 

operation. This is generally not a problem except where the biocatalyst is a microbial

1.4.4.1 Adsorption:  A variety of substances are capable o f  adsorbing enzymes and 

other proteins onto their surfaces, e g alumina, charcoal, cellulose, silica gel, glass, 

collagen, hydroxyapatite and clay This list may also include ion exchangers such as 

DEAE cellulose and a variety o f  phenolic resins. The advantage is that no reagents are 

required and only a minimum of activation or "clean-up" steps are necessary.The 

process is less disruptive to the protein than other immobilisation methods. Binding 

forces are due to hydrogen bonds, salt linkages and van der Waals forces. Even though 

it is a convenient immobilisation technique, it is not stable, as the aforementioned 

binding forces are susceptible to changes in pH, temperature, ionic strength and the 

presense o f  substrate [159, 160] This method can be performed by dropping an 

aliquot of the protein solution on the carrier and allowing the solvent to evaporate. The 

preferred application is adsorption on graphite electrodes [161] A hydrogen peroxide 

sensor has been prepared by adsorption o f  HRP onto a glassy carbon surface using 

hydroquinone as a mediator. When used in an FIA system, the electrode gives stable 

responses for at least two weeks without desorption effects [142], Unlike the latter 

case, a glucose electrode was described where the mediator, Meldola Blue and glucose 

dehydrogenase were co-adsorbed at a carbon surface [162], Porous carbon paper, 

acting as a supporting material for uricase, has been used as a basis for an 

amperometric sensor for uric acid. The concentration o f  uric acid is measured when the
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sample solution is dropped onto the membrane and the resulting current measured at 

an applied potential o f  -0.6V. The thickness o f  the paper was considered as being 

extremely important in obtaining a rapid electrode response; the performance being 

dependent on the rate o f  oxygen transfer through the enzyme modified carbon felt 

[163],

1.4.4.2 Covalent  binding: generally, stable attachment o f  proteins to a support is best 

achieved by covalent binding or attachment. Covalent binding between the enzyme and 

the support matrix is accomplished through suitable functional groups in the enzyme 

which are not essential for its catalytic activity (Figure 1.4) [164], Amino acids 

essential for this purpose used in covalent linkage generally results in loss o f  enzyme 

activity The affinity of the enzyme for the substrate may be affected by conformational 

changes brought about by covalent bonding. Nucleophilic functional groups present in 

amino acid side chains o f  proteins provide the target for coupling. These range from 

amino, carboxylic acid, hydroxyl, phenolic, imidazole and thiol groups. Coupling 

preferably occurs at low temperature, low ionic strength and within the physiological 

pH range. Coupling is often carried out in the presence o f  the enzyme’s substrate to 

protect the active site Covalent binding of enzymes to electrode surfaces has been 

achieved on metals, graphite and conducting polymers. These surfaces require 

pretreatment (oxidation) prior to binding. Such surface hydroxy groups are reacted 

with silanizing reagents such as (aminopropyl)triethoxy silane to produce up to three 

bonds on the electrode surface [165, 166], Bifunctional reagents, such as

glutaraldehyde, can be used to form intermolecular cross-links, which results in the 

binding of the protein to a solid support [167]; however, a large amount o f  biological 

sample is somtimes required [158], Moreover, the degree of oxidation o f  graphite 

electrodes can be increased by electrochemical oxidation resulting in active carboxylic 

groups on the surface. These groups can be activated for protein coupling using 

dicyclohexylcarbodiimide. Such techniques, if carried out correctly, can result in a 

monolayer of enzyme permitting rapid substrate diffusion to the active site Yao et at.



immobilised a number oxidases on glass particles using 4% glutaraldehyde for FIA 

analysis of glucose, cholesterol and uric acid in blood serum [168], Uricase was loaded

as bold numbers.

on the glass particle column for two hours at room temperature by circulating 0.1M 

enzyme-borate solution. Enzymatically generated H 20 2 was detected at a poly(l,2- 

diaminobenzene) film coated platinum electrode at a constant potential o f  0.6V vs. 

Ag/AgCl Estimated sample throughput was 38 per hour

1.4.4.3 Entrapment in a matrix, the entrapment of biomolecules behind or within a 

polymer film has a number o f  advantages such as providing a stable environment and 

enhanced porosity, allowing for both movement o f  substrate and electrolyte. This 

method of preparation can be applied to any enzyme since the protein molecule is 

trapped in a three-dimensional lattice. Physical entrapment in a gel matrix e.g. gelatin 

[169], involves casting the gel over the electrode surface and holding it in place with a 

dialysis membrane such as cellulose acetate [170, 171], Immobilisation is as simple as

48



physical adsorption: the enzyme need only be mixed with the paste or prepolymer and 

applied to the solid surface Kinoshita el al. described the application o f  a plastic 

carbon disk electrode covered with a dialysis membrane for assaying inorganic 

phosphate and adenosine deaminase in seaim based on the measurement of uric acid at 

0.45V against a saturated calomel electrode [172], The dialysis membrane (20 jaM 

thick) was fixed by covering with a nylon net. The membrane covering the electrode 

provided a stable diffusion layer for uric acid, resulting in a reproducible steady state 

current. It also acted as a barrier to high molecular weight proteins in serum, 

preventing contamination This method does, however, suffer from two major 

drawbacks: (a) large diffusionai barriers to the transport o f  substrate and product, 

leading to reaction retardation with high molecular weight substrates such as trypsin, 

ribonuclease and dextranase, and (b) continuous loss o f  enzyme as some pore sizes 

permit escape; however crosslinking the protein with glutaraldehyde can alleviate this 

problem. The main advantage o f  this technique is its compatibility with mass 

production methodologies such as screen-printing [173]

1.4.4.4. Electropolymerisation: membranes can be produced at the working surface 

area o f  electrodes using this technique Conducting polymers represent a class o f  new 

materials that have electronic conductivity. Polyacetylene was the first polymer that 

could be made electronically conductive The first experiments were made in the mid 

1970's and since then a number of conducting polymers have been synthesised. The 

most important polymers are polyacetylene, polypyrrole, polythiophene, poly-3- 

alkylthiophenes, poly(phenylene) and polyaniline [174], Such polymer films are 

prepared by chemical or electrochemical polymerisation from a monomer solution 

containing an electrolyte salt. In the latter case, a three electrode voltammetric cell is 

normally used. Reduction o f  the polymer film can be accomplished either 

electrochemically where the potential is kept at the reduction potential o f  the polymer 

or chemically, where the polymer film is washed with a reducing solution such as 

ammonia. Polymer films are self-regulatory with uniform thickness. The chemical and
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physical properties of such films can be easily controlled by the polymerisation 

conditions [164],

The properties o f  polypyrrole-modified amperometric cholesterol electrodes have been 

discussed [175], Polypyrrole layers show electrical conductivity, this has been used in 

designing mediator-based biosensors. The polymer can only be used at low potentials 

as it loses its conductivity properties when higher potentials are applied [176], Results 

have demonstrated that polypyrrole cholesterol sensors remain stable in organic 

solvent systems. Thus, they would have applications in cholesterol determination in 

foodstuffs such as butter and oil [175] Incorporation of glucose oxidase into 

polypyrrole has attracted most attention. It has been possible to directly incorporate 

glucose oxidase and an electron transfer mediator, ferrocene carboxylic acid, 

simultaneously into a polypyrrole film by electropolymerisation o f  pyrrole. The 

sensor’s behaviour is determined by the balance o f  the diffusion of reactants and 

products within the film and the kinetics o f  the immobilised activity [177], Foulds et a/. 

reported on the electrochemical deposition o f  a redox enzyme, glucose oxidase, in 

polypyrrole. Ferrocene was incorporated into the polymer to create a reagentless 

glucose sensor. A number of different types of polymer were examined for their 

compatibility with the redox activity, showing faster enzymatic regeneration times than 

others, however, all polymer films regained their initial cyclic voltammetric behaviour 

when rinsed in protein-free electrolyte solution [178]

Some workers have directly incorporated glucose oxidase into polyaniline. This 

was carried using microelectrode technology, for which resistance problems (due to 

the growth o f  a less conductive polymer) were not a problem [179] Other workers 

have successfully incorporated polysaccharide matrices such as cellulose and 

dinitrocelluose into polyaniline conducting composites [180], The physical properties 

o f  the composites can be varied by changing the polysaccharide matrix material, thus 

allowing the material to be tailored to meet specific requirements 1 0 % glycerol was 

found to increase the polymer composite lifetimes. Thiophene-based polymers, 

polythiophene and its derivative, poly-3-methylthiophene have shown to have
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enhanced conductivity properties after electrochemical doping in aqueous media. The 

undoped polymer appeared to be oxidised by by-products derived from H 2 0 2 

oxidation. Such ion exchange can be used to incorporate active species [181], King el 

al. successfully copolymerised [Ni(cyclanN-CH2 CH 2 -thiophene)]2+ with 3- 

methylthiophene and achieved in more adherent stable films The solubility o f  the 

oligomers was reduced. The Ni(II) redox behaviour was unaffected by incorporation 

into the conducting polymer matrix [182], An amperometric biosensor for 

hypoxanthine was constructed by forming a layer o f  gluataraldehyde cross-linked 

xanthine oxidase on a platinum electrode followed by electropolymerisation of a 

submonolayer film o f  resorcinol and 1,3-diaminobenzene in aqueous solution. 

Electrodes were stable for up to 60 days and could be used for over 6  hours without 

any adverse effects [183] Geise and colleagues reported on a sensor for serum glucose 

determination by FIA The authors used a poly( 1,3-DAB/resorcinol) matrix. Glucose 

oxidase was immobilised at the electrode surface with glutaraldehyde The biosensor 

was found to be effective for 5 months The electropolymerised film was found to 

effectively block non-electroactive species commonly found in blood serum, thus 

preventing electrode fouling, while minimising diffusional problems [184], The 

electrochemical properties of various heteroaromatic compounds used as conducting 

polymers have been discussed. Advantages include the existence of a three-dimensional 

reaction zone at the electrode surface permitting a greater rate o f  electron transfer 

However, disadvantages in certain cases include poor adherence o f  polymerised films 

and incompatibility with some enzyme immobilisation procedures [164], However, 

electropolymerisation appears to be one o f  the most promising avenues for the mass 

production o f  biosensors.

1.4.5 Kinetics of  amnerometric  electrodes

Amperometric detection has found wide application to selective measurements in 

biological media Such sensors combine the specificity o f  the enzyme for its particular 

substrate with the direct transduction o f  reaction rate into a current. First generation



devices, for example bienzyme electrodes [136, 186], involved directly measuring the 

consumption o f  dissolved oxygen or the enzymatic production of hydrogen peroxide. 

Such responses were somewhat affected by ambient O 2 . These biosensors were 

generally prepared by physical entrapment o f  soluble enzymes behind membranes or by 

attaching such membranes to a transducer Second generation systems have been 

developed where the enzyme performs the first redox reaction with its substrate but is 

then reoxidised by a mediator instead of 0 2, the mediator is subsequently oxidised by

the electrode (Figure 1.5) [187, 188], Various ferrocene/ferrocinium couples are
3 -

efficient mediators. Other species, such as [Fe(CN)6] and N-methylphenazinium 

(NMP+) can also be used. A simpler method is where no mediator is applied, but where 

the reduced enzyme can be direactly oxidised at the electrode surface [189] The 

feasibility o f  using conducting organic salts such as NMP+ for oxidising reduced forms 

of  enzyme complexes has been demonstrated A large range o f  salt have been shown to 

be electrochemically active with glucose oxidase [190] and indeed with a number of 

different flavoproteins.

using an artificial electron acceptor
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In optimising an electrode’s performance, it is important to understand the kinetic 

behaviour of the immobilised enzyme along with other factors affecting stability, 

dynamic range and response time If the catalytic activity o f  the enzyme is high, the 

overall reaction rate may be limited by mass transfer to the catalytic layer. A parameter 

which defines the former situation is referred to as the Damkoehler number, where

is the maximum rate o f  homogenous enzymatic reaction and Km the Michaelis-Menten 

constant. For a Da value < 0 . 1 ,  the reaction will be catalysis-controlled whilst for 

values > 1 0 , the reaction will exhibit mass transfer characteristics Conversely, catalysis- 

limited rates will be observed if the opposite occurs. A non-linear Lineweaver-Burk or 

Eadie-Hofstee plot would suggest a mass transfer limited process [191], Mass transfer 

limitations cause Km values to increase, if the rate of enzymatic catalysis is fast 

compared to the rate o f  substrate transportation to the biocatalytic layer. It must be 

noted that in glucose-based systems, the presence o f  oxygen can increase Km values 

[192]; however, more rapid oxidation by the oxidase could alleviate this problem 

Under kinetically-controlled conditions, the current/concentration-relationship would 

be non-linear and the dynamic range o f  the electrode narrowed. Such sensor 

configurations usually incorporate a membrane between the enzyme layer and solution 

and a current response proportional to the diffusional flux which is not limited by the 

enzyme’s kinetics unless the activity becomes too low. As long as the enzyme’s activity 

is high, the response o f  the sensor will be unaffected [193], However, the response 

itself will become kinetically controlled and unsteady when the activity decays. An 

important point to note is that the kinetic parameters o f  immobilised activities are not
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similar to those in solution because o f  conformational changes, steric effects and 

diffusional constraints [194]

1.4.6 Applications

Biosensors have been the focus o f  considerable attention in recent years as potential 

successors to a wide range of analytical techniques in the food and cosmetics 

industries, clinical chemistry and environmental monitoring Even though the potential 

for biosensor development in an area such as human health is limited, the actual cost o f  

reagents and the sensor element would be minimal compared to that of a more 

established analytical technique [195], Nevertheless, a biosensor must be practical and 

have analytical utility if it is to be economically feasible It is apparent which 

technologies (including membrane fabrication, screen printing and thin-film methods) 

are, in theory, suitable for the mass production o f  enzyme electrodes This knowledge 

has led to the commercialisation o f  enzyme analysers that are used mainly for glucose 

or lactic acid determination [ 196]

1.4.6.1 Medical applications: the clinical chemistry laboratory has often favoured the 

use o f  more sophisticated and automated analytical devices However, the necessity for 

more rapid results in the treatment of patients has led to the development of dedicated 

single specimen devices, for measuring important blood analytes and capable of giving 

rapid results. It would be an advantage if some types of investigations were performed 

in a doctor’s office, hospital out-patient clinics or in the ward itself to provide on-the- 

spot data and necessary aid in diagnosing a medical problem. Blood gas (O2 and C 0 2) 

and electrolyte (Na' and K ') estimation will presumably continue to be by chemical 

sensors; however, there is a requirement in clinical situations for accurate continuous 

monitoring. Approximately 20 self-contained analysers based on enzyme electrodes for 

the determination of 15 analytes are commercially available [197] The ExacTech is a 

pen shaped amperometric device for the selective determination of glucose in blood. 

Glucose estimations were carried out by placing an aliquot of sample on the working
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electrode surface and measurements were referred to a Ag/AgCl reference electrode 

The device is marketed by MediSense, Abingdon, U.K. and Cambridge in the U S A  

[158] A bienzyme amperometric glucose electrode coupled with a pH probe has been 

used for short term in vivo monitoring o f  glucose based on the liberation o f  hydrogen 

peroxide [198] Glucose oxidase and catalase were immobilised in a hydrogel bilayer. 

The most important aspect of such in vivo-type sensors is their susceptibility to 

intereferences from physiological components. Encapsulation of needle-shaped glucose 

sensors with silanised membranes reduced the adsorption o f  proteins at the membrane 

surface [199], Silanizing reagents such as (aminopropyl) triethoxysilane can react with 

surface hydroxy or oxide groups. Yoshino and Osawa coupled uricase at a H 20 2 

permselective membrane which is applied to the commercial uric acid analyser, UA 

300A by Fuji Electric, Japan The system is based on the liberation o f  peroxide from 

the oxidation of urate by uric oxidase [200], Commercial biosensors are also available 

for other clinically important analytes such as lactic acid [2 0 1 ], cholesterol [2 0 2 ] and 

urea [203],

The development of miniaturised voltammetric sensors for in vivo study is a 

focus o f  great interest. Unlike in vitro analysis, where the electrode sensitivity depends 

on the enzyme’s reaction rate, diffusion of analyte and the efficiency of the 

electrochemical response, in vivo applications are influenced by such considerations as 

analyte diffusion in tissue, physiological reactions and the presence o f  metabolites 

Thus, the sensor’s activity and sensitivity are at risk. Miniaturisation o f  biosensors can 

offer greater in vivo biocompatibility and the chance of devising multisensor arrays and 

probes [204], In vivo voltammetry has provided a novel route towards neurological 

studies. Neurotransmitter movement between sensory neurons can be studied by 

implanting a probe in the brain for a fixed duration The sensor only has a fixed lifetime 

due to biological matrix effects [205], Future work will undoubtedly focus on the 

development o f  probes for the selective determination of organic drugs and the 

monitoring o f  in vivo enzymatic and immunochemical reactions



1.4.6.2. Food industry: biosensors have applications in the food industry at both the 

manufacturing and processing stages A fibre optic sensor for the chemiluminescent 

FIA analysis o f  glucose in soft drinks has been developed. Glucose oxidase and 

peroxidase were covalently attached to polyamide and polyvinylidene difluoride-based 

membranes. Results compared favourably with a standard spectrophotometric method 

and the authors reported on the use of this technology in analysis of other analytes by 

coimmobilising the suitable oxidase with peroxidase [206], Jawad et al. have 

described the electrochemical quantitative analysis of uric acid in milk. The peak in the 

urate oxidation wave at 0.8V was exploited This method proved a highly accurate and 

rapid method without the necessity o f  milk pretreatment prior to analysis [207], 

Adenosine-5'-monophosphate (AMI3) concentrations in fish have been determined 

using a xanthine oxidase-based enzyme electrode. AMP was oxidised to uric acid and 

the disappearance of dissolved oxygen monitored The sensor was stable for greater 

than 30 days [208], Specific enzyme based sensors have been developed for sugars

[209] The determination o f  L-glutamate is important in fermentation control as many 

food products contain it as a flavouring agent [210] A synopsis o f  the state of 

electroanalytical techniques in the food sector has been given by Mannino and Wang 

[211].

1.4.6.3. Environmental monitoring: biosensors are used in the monitoring of 

pollution Kalvoda has reviewed current methods [212], Monitoring of pesticides and 

herbicides can be carried out using enzyme electrodes. An amperometric sensor for the 

detection o f  phenols has been reported Tyrosinase was dispersed in a ruthenium- 

doped carbon paste mixture and used in an FIA system which facilitated the 

determination o f  phenolics in a complex sample [188], Another approach involved 

immobilising the same enzyme in a nylon membrane [213], Hall et al. described an 

electrode selective for />cresol in chloroform [214], The requirement for reliable and 

robust devices capable o f  measuring acid rain or industrial pollutants in the soil or 

water will pave the way for future large scale development.
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1.3.6.4 Industrial applications: biosensors have applications in process and quality 

control However, many processes require sensors at remote parts o f  a manufacturing 

system where it is difficult to gain easy access to replace a sensor component. Many 

food processes require high temperature sterilisation procedures, thus making 

biosensors incompatible. Future work could be directed at these problems in order to 

make such devices more robust for industrial applications.
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2.1 INTRODUCTION

Proteins such as horseradish peroxidase (HRP) play important roles in many processes 

encountered throughout biotechnology. Production of easily detectable compounds 

promotes the enzyme’s use in clinical, analytical and industrial situations; it has 

applications in enzyme immunoassay [1], DNA probes [2] and in biosensor 

construction [3], as well as organic synthesis [4], HRP has good stability 

characteristics which contribute to its widespread use [5], However, a stabilised form 

of  the enzyme is desirable, which could function more efficiently in adverse conditions, 

e.g. extremes o f  temperature [6 ], high pressure, pH values, intensive irradiation, high 

concentrations o f  organic solvents [7], highly concentrated salt solutions etc. 

Frequently, the literature stresses that the art of enzyme stabilisation should be learned 

from nature (from studying microorganisms that exist under extreme conditions) [8 ],

The general principle o f  protein stabilisation has been defined in terms o f  “the 

inactivation o f  the enzyme due to unfolding of its molecular structure under a certain 

denaturing action may be sharply retarded provided the protein globule is rigidified by 

a chemical modification or immobilisation” [9], Denaturation refers to a 

conformational change that results in the loss o f  molecular function, which may be 

reversible or irreversible. By definition, an immobilised enzyme is one that is physically 

localised in a certain position, or converted from a water soluble mobile state to a 

water insoluble immobile one [ 1 0 ],

Protein structural and sequence studies have depended heavily on specially 

designed chemical compounds designed to modify specific functional groups o f  

proteins. Different chemical modification strategies used to stabilise enzyme activity 

have been reviewed [11], The chemistry of such reactions is well understood allowing
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for specific side chains to be targetted. Such compounds can be further classed as 

bifunctional reagents, which may be further subdivided into homobifunctional (where 

both functional groups are identical) and heterobifunctional (two different functional 

groups are located on the same molecule) and zero-length crosslinkers [ 1 2 ], 

Bifunctionally reactive compounds include bis-imidates, bis-succinimides and bis- 

maleimides. The latter type reagents react specifically with thiols, whilst the first two 

crosslink amino groups. Such reagents have been shown to induce crosslinking (both 

intra- and inter- molecular links), especially within membranes [13],

Bifunctionally-induced inter- and intra- molecular crosslinks act by reinforcing 

the active conformation o f  the protein, decreasing the entropy and reducing the rate of 

denaturation [14], The maximum or minimum cross-linkable distance of a reagent 

naturally has a significant effect on the success o f  crosslink formation. For example, a 

bis-imidate shorter than 5A usually yields few or no crosslinks, whereas extensive 

crosslinking can be achieved when the length is between 11-22A [15], Beyond this 

range, greater crosslink length may not be considerably advantageous. 

Heterobifunctional reagents, as previously stated, incorporate two dissimilar functional 

groups, one photosensitive (e.g. azide) and one conventional (e.g. imidate). 

Crosslinking in this case can be controlled both selectively and sequentially. The major 

application o f  hetero- reagents is in macromolecular photoaffinity labelling which 

involves the binding o f  polypeptide ligands to a reagent and specific receptors [13]. 

Zero-length crosslinkers induce direct conjugation between two chemical groups, 

without introducing extrinsic material. Examples include carbodiimides and 

carbonyliimidazole, which induce condensation o f  a carboxyl and amine group, 

forming an amide bond [ 1 2 ],
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In crosslinking reactions, the protection o f  the active site residues by substrate or 

reversible inhibitors is important and also to ensure that functional groups targetted for 

modification are not involved in biocatalysis. Potential target sites must be distant from 

the enzyme’s active centre and not buried in the folded protein structure. Acylating and 

alkylating agents are the most commonly used functional groups [12], Acylating agents 

are considered to be amino-specific while alkylating agents are thiol-specific. 

Homobifunctional reagents contain either type, whereas heterobifunctional reagents 

may contain a combination of both The specificity of these chemicals for a specific 

amino acid side chain depends on the relative reactivity of the nucleophile; however, 

several side chains may react with the same bifunctional reagent [ 1 2 ],

This chapter describes the use o f  bis-succinimides to modify free s-amino 

groups o f  commercial HRP under mild conditions o f  pH and temperature. Reaction of 

HRP with the bifunctional reagents, ethylene glycol bis-succinimidyl succinate (EG- 

NHS) and suberic acid bis[N-hydroxysuccinimide ester] (SA-NHS) have yielded 

derivatives which display greater thermostability and organo-tolerance. The thermal 

stability o f  HRP has also been enhanced by acetylation using the monofunctional 

modifier, acetic acid N-hydroxysuccinimide ester (AA-NHS). These modifications 

preserve the carbohydrate moiety for subsequent reaction and/or immobilisation.

N-hydroxysuccinimide esters were initially developed by Anderson et al. [16], 

NHS esters are stable for several months at 4-25°C under anhydrous conditions. 

Reaction o f  NHS esters occurs at pH 6-9, with a high degree o f  reactivity (to most 

accessible protein groups) attained within 10-20 minutes [12], The reaction o f  HRP 

with an NHS ester involves the nucleophilic attack of an amine on the acid carboxyl of 

an N-hydroxysuccinimide ester to form an amide, releasing the N-hydroxysuccinimide.
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2.2 EXPERIMENTAL

2.2.1. Materials

Peroxidase (E.C. 1.11.1.7.) Type VI from horseradish was obtained from Sigma 

Chemicals, Dorset, U.K. and Boehringer Mannheim, Germany.

Sigma also supplied 3,3’, 5, 5 ’-tetramethylbenzidine dihydrochloride (TMB) in powder 

and tablet form, o-phenylenediamine (OPD), borax, ethylenediaminetetraacetic acid 

(EDTA), albumin (bovine), tris (hydroxymethyl) aminomethane hydrochloride, Tween 

2 0 , sodium hydroxide, citric acid, guanidine hydrochloride and all crosslinking and 

chemical modification reagents.

Dimethylsulphoxide (DMSO) and analytical grade hydrogen peroxide came from BDH 

Ltd., U.K.

Methanol, dimethylformamide and tetrahydrofùran were purchased from Labscan, 

Dublin, Ireland.

Bicinchoninic acid protein assay reagent was obtained from Pierce Chemical Co., 

Illinois, U.S.A.

96-well flat bottomed microtitre plates were obtained from Greiner, Germany.

ECL luminescent reagent was supplied by Amersham International pic., U.K. 

DEAE-Sepharose was obtained from Pharmacia, Sweden.

0.20pm filters and all Corning glassware was obtained from Corning, New York, 

U.S.A.

All other reagents were o f  analytical grade and obtained from Merck, Germany; BDH 

Ltd., Poole, Dorset, U.K. or from Riedel de Haen, Germany.

Enzfitter software was obtained from Biosoft, U.K.
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A  Morgan Grundy (Crowley, Middlesex, U.K.) waterbath with a Techne Tempette 

Junior TE-8J heating unit was used in denaturation studies.

A Titertek Twinreader type 381 (Flow Laboratories Ltd., Scotland) was used to read 

absorbances on microtitre plates.

An Amerlite plate reader supplied by Amersham International pic., was employed in 

luminescence assays.

A Perkin Elmer luminescence spectrometer was used for all fluorescence studies.

A Heraeus Christ Labofuge 6000 centrifuge was employed to centrifuge samples in 

universal tubes (l-20ml volumes).

A Shimadzu UV/Visible spectrophotometer was used for all spectral determinations.

2 .2 .2 . E quipm ent
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2.3.1. Horseradish peroxidase microassav

Horseradish peroxidase (HRP) activity was measured using a method similar to that of 

Ryan et al. [17] and based on that of Bos et al. [18] and Gerber et al. [19], HRP was 

prepared at a concentration o f  lmg ml"1 in 0.1M phosphate buffer, pH 7.0. Serial 

dilutions from stock HRP were made in 0 .0 1M phosphate, pH 7.0 containing 0.002% 

Tween 20 to a final concentration o f  80f.ig L '1. The hydrogen donor, 

tetramethylbenzidine dihydrochloride (TMB), was used in powder form at a 

concentration o f  0.1 g L'V

Dimethylsulphoxide, at 2% final volume, was used to initially dissolve powder 

TMB. The buffer employed was 0 .1M sodium citrate, pH 5.5. Prior to assay, 30% v/v 

hydrogen peroxide (H20 2) was added to (O.lg L '1) TMB solution to give a final 

concentration o f  0.03%, i.e., 3j.il peroxide per 10ml TMB.

All assays for HRP activity were carried out in quadruplicate in 96 well flat- 

bottomed microtitre plates. Fifty microlitre aliquots o f  80f.ig L '1 HRP samples were 

pippetted into wells and the plate was allowed to achieve thermal equilibrium (25°C) in 

a Titertek plate reader. 150f.il of buffered substrate (TMB and H20 2) was dispensed 

into each well to initiate the reaction. The plate was then gently shaken to ensure the 

formation o f  a homogenous mixture in each well. Reaction mixtures turned blue with 

time, indicating catalytic activity Control wells contained 50f.il 0 .01M phosphate 

buffer, pH 7.0. Reactions were allowed proceed for 2 minutes before A^o values were 

determined. An alternative would be to add 50j.il 2M sulphuric acid to each well and 

measure absorbances at 450nm

2 .3  M E T H O D S
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HRP catalytic activities were also determined using the ECL luminescence assay. 

100j.il enzyme fractions, prepared in 0 .01M phosphate buffer, pH 7.0, were dispensed 

into wells and 100j.il Amerlite luminescence reagent added to start the reaction. 

Luminescence intensity values were measured after 2 minutes.

2.3.2. Thermal inactivation o f  HRP

Thermal inactivation o f  HRP samples was carried out at 65°C and 72.5°C for periods 

o f  up to 60 minutes. All samples were 80j.ig L '1 (standard assay concentration) in 

0.01M phosphate buffer, pH 7.0 + 0.002% Tween 20. Aliquots o f  each sample were 

withdrawn onto ice at various time intervals throughout the hour. Each was assayed 

under the standard assay conditions as described in the previous section. Percent 

relative catalytic activity (% RCA) was determined for each time point (the activity at 

time t as a percentage o f  that at time zero). The apparent or pseudo half-lives, defined 

as the time required for HRP activity to be reduced to 50% of its initial value, were 

estimated by inspection o f  plots of percent activity versus time. Rate constants (k) 

were calculated from fits o f  data points to a single exponential decay (Enzfitter

programme; also, = true half-life)
k

2.3.3. Determination o f  protein concentration

Protein concentration was determined using the bicinchoninic (BCA) method of Smith 

et al. [20], In this method, protein reacts with Cu2+ in an alkaline environment 

producing Cu+. BCA is a sensitive, stable and highly specific reagent for Cu+, forming 

a water soluble product which exhibits strong absorbance at 562nm. The BCA assay, 

supplied in kit form by Pierce Chemical Co., contains two reagents.
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Reagent A: an alkaline buffer containing sodium carbonate, sodium bicarbonate,

sodium tartrate and BCA reagent

Reagent B: 4% (v/v) copper sulphate solution.

The working solution was prepared by mixing 50 parts o f  Reagent A with 1 part 

Reagent B. A range o f  protein standards were prepared from a 2mg ml'1 solution o f  

BSA using PBS as diluent. 10j.il o f  each standard or unknown protein sample was 

pippetted into quadruplicate wells of a 96-well microtitre plate. Controls, consisting of 

10j.il o f  diluent, were also included. 200j.il o f  working reagent was added to solutions 

and then gently mixed. The plates were covered and incubated at 37°C for 30 minutes. 

A56o values were determined on a Titertek Twinreader Plus.

2.3.4. Extended storage studies

Studies were performed on HRP samples diluted in 0.01M phosphate buffer, pH 7.0 

Samples were aliquoted into sterile microtubes and stored at 4°C. At certain time 

intervals, samples were withdrawn from storage and then diluted in 0 .01M phosphate 

buffer, pH 7.0. Thermal inactivation studies were carried out as described in Section

2.3.2.

2.3.5. Chemical modification o f  HRP

The protocol for the N-hydroxysuccinimide modification o f  HRP was similar to that of 

Ryan et aI. [17] and based on that o f  Ji [12], Partis et a!. [21] and Massague et al.

[22], N-hydroxysuccinimide and bifunctional N-hydroxysuccinimide esters [suberic 

acid bis(N-hydroxysuccimimide ester) and ethylene glycol bis(succinic acid N- 

hydroxysuccinimide ester)] and the monofunctional control, acetic acid N-
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hydroxysuccinimide ester, were initially dissolved in 5% v/v DMSO and added to lmg 

ml'1 solutions (as determined by BCA reagent) o f  HRP in 0.1M phosphate buffer, pH 

7.0. Prior to use, esters were stored at 4UC (AA-NHS at -18°C) under anhydrous 

conditions. Reactions proceeded for approximately 60 minutes at room temperature, 

unless otherwise stated, and were terminated by adding an equal volume (1050p.l) of 

cold 0.1 M Tris-HCl, pH 7.0. Enzyme samples were diluted to the standard assay 

concentration in 0.01M phosphate, pH 7 0, and assayed for initial recoveries and % 

RCA as described previously (Section 2.3.1)

The chemical modification protocol was optimised with respect to the; 

concentration o f  modifier used in the reaction (0.1-5.0mg ml'1) and duration time of 

the reaction (10-90 minutes) Reaction temperature (25°C) and pH o f  the reaction 

medium (7.0) were kept constant All reactions were terminated with cold 0.1M Tris- 

HCl, pH 7.0

2.3.6. Comparison o f  fresh and aged succinimides

Native HRP (Boehringer source) was modified using the N-hydroxysuccinimide (NHS) 

esters, SA-NHS and EG-NHS The aged NHS esters had been stored in a freezer at - 

18°C in a dessicator for over 3 years while the fresh reagents had been purchased a 

short time before use. The modification reaction was carried out as described in 

Section 2.3.5. Catalytic activities were measured using the TMB method.

2.3.7. Organic solvent profiles

Organic solvent profiles o f  various HRP samples were determined at 25 and 60°C with 

exposure times o f  60 and 10 minutes, respectively. Native HRP, acting as a control,
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was included in all experiments. Methanol (MeOH), dimethylformamide (DMF) and 

tetrahydrofuran (THF) were selected for investigation as they possess respectively low, 

medium and high denaturation capacities [23], Reaction mixtures were set up with 

increasing 10% volumes o f  organic solvent in 0 .01M phosphate buffer, pH 7.0. Four 

50j.il aliquots were withdrawn from each reaction mixture onto ice and assayed under 

the standard conditions. Replicate solvent tolerance experiments had a relative 

standard deviation o f  3.6% (n=3).

2.3.8. pH activity profiles

HRP samples investigated were (a) Native, (b) SA-NHS, (c) EG-NHS and (d) AA- 

NHS FLRPs. The pH range examined was 6.0-9.0. At each pH value, the succinimide 

modification reaction was carried out at a HRP protein concentration o f  lmg ml' in 

0.1M phosphate buffer o f  the appropriate pH, length o f  exposure to the particular 

modifier was 20 minutes. Reactions were terminated by addition o f  0.1 M Tris-HCl o f  

the appropriate pH. Subsequent enzyme dilutions for assay to a final concentration of 

20(,ig L '1 were carried out in 0 .01M phosphate, o f  the suitable pH. Activity was 

assessed by both TMB and ECL assays. The experiment was repeated using 0.05 M 

borate as buffer in place o f  0 .1M phosphate.

2.3.9. Determination o f  free amino groups

Free amino group estimation in various HRP samples was carried out using a method 

similar to that o f  Fields [24], This method is useful for checking the extent o f  blocking 

or unblocking of amino groups in proteins and peptides. HRP was added to 0.5ml 

borate buffer (0.1M Na2 B4 0 7  in 0.1M NaOH, pH 9.5) and the volume made up to
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1.0ml with ultra-pure water. 20j.il o f  a 1.8 M TNBS (trinitrobenzenesulphonate) 

solution was added to the sample and mixed thoroughly. The reaction was allowed 

proceed for 5 minutes at room temperature before being terminated with 2,0ml 0.1 M 

NaH 2P 0 4 / 1 .5 mM sodium sulphite solution. A420 values were determined (phosphate 

acting as a control) Free lysine content was estimated from an N-acetyl-L-lysine 

standard curve in the range O.l-lO.OmM. All HRP samples, native and NHS 

derivatives, were dialysed against 0.05M phosphate buffer, pH 7.0, for approximately 

18 hours at 4°C prior to TNBS estimation.

2.3.10 Stability towards denaturing and reducing agents

12M guanidine hydrochloride (GnCl), a protein denaturant, was prepared in 0 .01M 

EDTA [25], Equal volumes o f  12M GnCl and HRP were added together to give a final 

denaturant concentration o f  6M. Exposure time was approximately 10 hours at 25°C. 

The protein content o f  each sample was O. lmg ml'1. Test and control samples were 

diluted to the optimum assay concentration (80j.ig L '1) and their activities assayed 

under the standard conditions

2-Mercaptoethanol, a reducing agent, was added to GnCl-treated stocks to a 

final concentration o f  25mM [26], Treatment time was 60 minutes at room 

temperature. Samples were then diluted and assayed as described previously, to assess 

the effect o f  a denaturant combined with that o f  a reducing agent. Native and modified 

samples were exposed solely to 6M GnCl/EDTA. The effects o f  the denaturing and 

chelating agents on the thermostability of HRP at 65°C were investigated. Control 

samples were included throughout
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2.3.11 Fluorescence studies

All fluorescence spectra were recorded using a Perkin Elmer LS-50 fluorimeter in the 

spectral range 300-400nm, with a 1cm light path cell. Excitation and emission slit 

widths were set at lO.Onm [27], The fluorimetric emission o f  the tryptophan residue in 

HRP was measured at XmK (335nm) by exciting at 280nm. The concentration of 

peroxidase in all fluorimetric experiments was 0.4(.iM. HRP samples were incubated at 

65°C and aliquots withdrawn onto ice at regular intervals (10 minutes). Samples were 

allowed cool prior to spectral analysis. Fluorimetric emission of buffers were 

substrated from sample intensities. A correlation between HRP fluorimetric emission 

and % relative activity at 65°C was carried out by assaying the above samples for 

activity (TMB).

2.3.12 UV/Visible spectrophotometric analysis

Spectra o f  all HRP samples (concentration: 0.4g L’1) were determined using the 

spectrum mode on the Shimadzu recording spectrophotometer. Absorbances were read 

over the wavelength range 200-500nm. The effect o f  elevated temperature on native 

HRP was investigated by monitoring the absorbance o f  the characteristic Soret band at 

403nm.
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2.4 RESULTS AND DISCUSSION

2.4.1. TMB assay

A microassay for HRP activity was used as previously described by Ryan el al. [17]. 

TMB was employed as the hydrogen donor. The HRP-TMB reaction was optimised 

with respect to enzyme concentration only, as the optimisation of other relevant 

experimental parameters had been previously addressed.

Many hydrogen donors form coloured products on oxidation and this is 

particularly useful in the development o f  a colorimetric assay. Other commonly used 

hydrogen donors, often refered to as chromogenic substrates, include o- 

phenylenediamine (OPD) and 2,2’-azino-di-(3-ethyl-benzthiazoline-sulphonate). HRP 

catalyses the peroxide oxidation o f  such substrates by transferring electrons from the 

hydrogen donor to peroxide to yield a coloured product.

The optimum working pH range o f  HRP is 4.0-8.0 [28], Img ml’1 HRP stock 

solutions were prepared in 0.1M phosphate buffer, pH 7.0 and stored at 4°C. Serial 

dilutions o f  stock were made up in 0 01M phosphate, pH 7.0. HRP can be inactivated 

by polystyrene microtitre plates if Tween 20 is omitted from the diluent (0.01M 

phosphate) [29], Plates containing HRP samples only were allowed to achieve thermal 

equilibrium (25°C) for 5 minutes in a Titertek Twinreader Plus prior to initiating the 

TMB reaction [19], 50j.il HRP and 150j.il TMB buffered substrate solution were the 

assay volumes (1:3 ratio) [18] HRP activity can be measured indirectly by following 

the rate o f  transformation o f  the hydrogen donor (TMB). Enzyme activity was 

represented by a colour change in the wells (colourless to blue). The intensity of the 

blue colour was proportional to the concentration of HRP present. A range of HRP 

concentrations ranging from 1.0 to 90.0j.ig L’1 were assayed at various time intervals at
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a wavelength o f  620nm (Figures 2.1 and 2.2). Although TMB has an absorption peak 

at 650nm, no filter was available for this wavelength. The absorption at 450nm can be 

measured if the FtRP-TMB reaction reaction is terminated using 2M H2S 0 4 [18]. The 

colour o f  the reaction turns from blue to bright yellow due to the loss o f  two electrons 

(from the substrate) under acidic conditions. The use o f  acid is said to increase the 

sensitivity o f  the assay 2-4 fold, however, A^o readings were regarded as being 

adequate.

Figure 2.1: Absorbance (620nm) o f  TMB as a function o f  HRP concentration.
■ l.Ofig L '1; •  2.0(.ig L '1; a 3.0j_ig L '1
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0.8

Figure 2.2: Absorbance (620nm) as a function of HRP concentration
■ 60|ig L '1, •  70|ig L '1; a  80(.ig L '1; ▼ 90|ig L '1;

The optimum assay conditions were determined as being: 80f.ig L’1 HRP read after 2 

minutes at 620nm at 25°C. 80|.ig L '1 was chosen as a linear increase in absorbance with 

time is desirable [19], At this HRP concentration, the reaction displayed a linear 

response for 2 minutes only, followed by a rapid decline in absorbance, which 

suggested that the rate o f  reaction was extremely fast. Assays for HRP using other 

hydrogen donors have been reported where the reaction response is linear for 2 

minutes [30], A high absorbance value is desirable in standard assays as it is then 

possible to observe small differences in enzyme activity. Assay results (in 

quadruplicate) were found to be quite reproducible (% R.S.D. < 4.0%).

TMB in the dihydrochloride form is described as being water/buffer soluble. 

However, problems were encountered in dissolving TMB even at low water
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concentrations. Bos et al. used various organic solvents to dissolve TMB free base, 

which is insoluble in water [18], where as the suppliers recommended DMSO. It was 

found necessary to dissolve the dihydrochloride form o f TMB in DMSO (at 2% of  the 

final buffer volume) before adding to citrate buffer, pH 5.5. TMB tablets were found 

not to fully dissolve in the same buffer. The only problem encountered in the use of 

TMB as a hydrogen donor was that care was required in its preparation as the 

substrate is susceptible to photo- and thermal-oxidation. All glassware used in TMB 

preparation was thoroughly washed and rinsed in ultra-pure water. TMB solution was 

stored at 4°C in a sealed, covered glass beaker after preparation. The hydrogen donor 

was found to spontaneously oxidise (turn blue) in the absence o f  HRP system. The 

concentration o f  H20 2 used in the microplate assay was 0.03%. Greater concentrations 

could cause protein inactivation[19]

To summarise, a microassay for HRP using the highly sensitive, non-mutagenic 

and non-carcinogenic hydrogen donor 3, 3 ’, 5, 5’-tetramethylbenzidine dihydrochloride 

was used as the standard assay in the following chemical modification studies. TMB, 

which has an absorption spectrum showing three peaks at 370, 655 and 450nm, is 

superior to some o f the other commercially available hydrogen donors [18, 31], It has 

a rapid reaction rate and is ideal for use in kinetic enzyme assays and immunoassays. 

The advantages o f  this assay include high sensitivity, lower enzyme concentration, 

absence o f  toxic effects from reagents and short incubation and assay times.
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As chemical modification o f  HRP’s lysine residues has previously yielded derivatives 

with greater thermostability [17], it was decided to optimise the modification 

procedure, based on previous methods, employing ethylene glycol bis succinimidyl 

succinate (EG-NHS) only, which gave better stabilisation than the SA-NHS reagent. 

Preliminary results confirmed that succinimides are best used at neutral to mildly 

alkaline pH values [12], Thus, 0.1M phosphate buffer pH 7.0, was used in all 

modification trials. Native HRP acted as a control in all experiments. l.Omg ml'1 HRP 

was modified with EG-NHS dissolved in 5% v/v DMSO.

The effect o f  increasing the concentration o f  EG-NHS modifier is observed in 

Figure 2.3 where modified HRPs were incubated at 72.5°C for 60 minutes. The 

reaction time o f  EG-NHS ester on native HRP was 60 minutes.

2 .4 .2 .  Optim isation o f  MRP modification protocol

Figure 2.3: The effect o f  ester concentration on HRP thermostability at 72.5°C
+ 5.0mg ml'1; ♦ 4.0mg ml’1, •  0.1 mg ml'1, a 0.5mg ml'1;
▼ l.Omg ml'1; «O.Omg ml'1
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Assay for initial recoveries after the crosslinking reaction yielded 100% activity for all 

samples. The thermostability o f  the various HRP derivatives appeared to be directly 

dependent on the concentration o f  ester used. 4.0 and 5.0mg ml'1 NHS samples yielded 

less than optimal stabilisation despite their molar excess over the available target lysine 

residues o f  HRP. The 0. lmg ml'1 concentration was limiting at all exposure times while

0.5mg ml'1 became so at 40 minutes and longer. Therefore, the l.Omg ml'1 NHS 

concentration was selected for use in the time variable experiment.

Figure 2.4 illustrates the effect o f  exposure time o f  l.Omg ml'1 EG-NHS ester 

on lmg ml'1 HRP in 0.1M phosphate buffer pH 7.0. Thermal inactivation curves for 

l.Omg ml'1 FERP solutions modified with EG-NHS for 10, 20, 40, 60 and 90 minutes 

are shown in Figure 2.4.

Figure 2.4: Dependence o f  ester exposure time on HRP thermostability at 72.5°C
•  20min; ♦ 90min; ▼ 60min; ▲ 40min;« lOmin;
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It appeared, up to a certain point, that greater exposure times yield more stabilised 

derivatives o f  the enzyme. However, a variation in thermal stabilities with increasing 

ester exposure time was increasingly apparent with longer reaction times (at 72.5°C). 

Ten minutes was clearly too short, while ninety minutes went beyond the optimal time 

for maximum stabilisation. A period o f  20-60 minutes was found to be adequate.

These results suggested that succinimide stabilisation o f  HRP was best 

achieved at pH 7.0, using an ester concentration o f  l-2mg ml'1 with a reaction time o f  

20-60 minutes,

2.4.3. Effect o f  pH on enzyme modification and activity

The pH range investigated was 6 0-9 0 At each pH value, modification was carried 

out at a HRP concentration of lmg ml'1 in 0 1M sodium phosphate of the appropriate 

pH. HRP samples investigated were:

1. Native; 2. SA- and EG-NHS derivatives and 3. AA-NHS derivative 

The results obtained are depicted in Figures 2.5 and 2.6. Variation o f  activity with pH 

in the range 6.0-9.0 was minor when using the TMB method of detection. However, 

Figure 2.5 shows the pH profile of the various HRP fractions in phosphate buffer using 

the ECL detection system. Greater fluctuations were noted, especially in the case of 

SA-NHS HRP where a distinct bell-shaped curve with a peak in catalytic activity at pH

8.0 was apparent. This probably reflects the greater sensitivity o f  the ECL assay and its 

ability to detect relatively minor differences between HRP concentrations and 

activities. Activity at pH 6.0 was by far the lowest within the pH range studied. 

Activities o f  the EG-NHS and AA-NHS forms showed less variation in
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Figure 2.5: pH dependence o f  HRP preparations in phosphate buffer.
■ Native; •  SA-NHS; a  EG-NHS; ▼ AA-NHS;

pH

Figure 2.6: pH dependence o f  HRP preparations in borate buffer
■ Native, •  SA-NHS; a EG-NHS, ▼ AA-NHS;
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pH than SA-NHS HRP Responses were almost constant in the 8.0-9.0 range for 

acetylated HRP and 7.0-9.0 for EG-NHS HRP. As borax buffer has been reported to 

have a stabilising effect on HRP [32], all HRP preparations were made up in 0.05M 

borate. Activities determined in borax by the TMB method displayed a flat pH profile 

over the range 6.0-9.0 but with a sharp decline in activity at pH 10.0 for all enzyme 

forms. Using ECL detection, the lowest activity occured at pH 6.0 (Figure 2.6). 

However, activities o f  all FIRP preparations increased with a corresponding increase in 

pH up to pH 9.0, before a sharp decline at pH 10 0. The pH o f  a working medium is a 

factor that affects catalytic activity when the enzyme’s active site is controlled by 

ionising groups.

Overall, these results agree with literature assertions that succinimide 

compounds are best used at neutral to mildly alkaline pH values. The best results arise 

from the use o f  phosphate buffer at pH 7,0-8.0 or with borate made up at pH 9.0.

2.4.4. Thermal studies on Native HRP

The thermal inactivation o f  native HRP was carried out at 65 and 72.5°C (Figure 2.7). 

It was observed that after a 10 minute exposure at the higher temperature (72.5°C), % 

relative catalytic activity (% RCA) dropped to 15.13% and HRP activity was 

practically zero at 40 minutes. Incubation at 65°C produced a slightly greater level of 

enzyme activity; a % RCA of approximately 35% after 10 minutes. Also, some residual 

activity existed after one hour. An enzyme loses activity at high temperatures due to 

unfolding o f  the protein backbone. Inactivation is often caused by the destruction of 

one or two “weak points”, such as hydrolysable peptide bonds, easily oxidised 

functional groups, etc. [33],
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Figure 2.7: Thermostability profiles o f  native HRP at 65 and 72.5°C
•  65°C;h 72.5°C;

Activity is lost if exposure to high temperatures is prolonged, as unfolding disrupts the 

active site to an extent that is irreversible. Thermal inactivation is the process that is 

responsible for the gradual loss of enzyme activity with time at an elevated 

temperature. Irreversible thermoinactivation is treated as a two step process

N < ■ k - >D — * -> I

where N, D and I are the native, reversibly denatured and irreversibly inactivated forms 

o f  a protein, respectively. Inactivation usually begins with a reversible unfolding step 

(N<-»D) characterised by K, an equilibrium constant, and is followed by the D -*I 

transition which is controlled by a rate constant, k. Irreversible inactivation may be due
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to a number o f  factors including chemical processes [34], protein aggregation [33], or 

incomplete/incorrect protein refolding or renaturation. This implies that the irreversible 

status o f  an inactivated protein may in fact be due to the conformation o f  the tertiary 

structure [35], The rate o f  inactivation (V in) and the apparent rate constant (k) are 

governed by both the reversible and irreversible steps, according to the following 

equation (2.1):

v ' “ = z f i = k - [ N ° ] a " d k ' " = r i l '  ( 2 I )

where [N0] and [N] are the initial and current concentrations o f  the native enzyme 

[36], Inhibition o f  the irreversible steps (by decreasing k) can be achieved by site- 

directed mutagenesis [37], Chemical modification or immobilisation strategies [11] can 

be used to reduce the extent o f  initial unfolding, i.e., to decrease the equilibrium 

constant, K.

Thermal inactivation o f  commercial native HRP preparations deviated from a 

first order decay at 65 and 72.5°C during a 60 minute incubation period (k-value at 

65°C was calculated to be 0.098 ± 0.012) Chang el al. observed that soluble HRP’s 

thermal inactivation characteristics did not follow first order kinetics over the 

temperature range 60-94°C [38], The process was estimated as being o f  the order o f

1.5. Hendrickx et a !  noted a biphasic inactivation process for solid-state HRP in the 

range 140-160°C; this phenomenon possibly being due to the presence o f  two 

individual HRP fractions with first-order kinetic properties [39], Ugarova and 

colleagues observed first-order thermal decay patterns for HRP at 56°C [6],
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2.4.5. Thermal studies on HRP derivatives

Treatment with succinimides led to noticeable increases in the thermal stability o f  HRP 

at 65°C (Figure 2.8) All derivatives displayed approximate 400% increases in apparent 

half-life.

Figure 2.8: Thermostability profiles o f  native and modified forms o f  HRP at 65°C
■ Native; •  S A-NHS; a  EG-NHS; t  AA-NHS,

HRP-treated with AA-NHS showed greater heat tolerance despite this reagent’s 

inability to form crosslinks. The succinimide modification protocol did not result in any 

loss o f  HRP activity. Single exponential fits of thermal inactivation data indicated a 

five-fold stabilisation at 65°C with apparent half-lives of 7 and 39 minutes for native 

and acetylated (AA-NHS) HRPs, respectively: k-values were calculated to be 0.098 ± 

0.012 and 0.018 ± 0.002 min'1, respectively. These values are for comparing stability
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only; they may not represent true half-lives since HRP’s thermal inactivation is not first 

order [38], Stabilisations persisted on storage at 4°C.

Table 2.1 shows the apparent half-lives (in minutes) for NHS-modified samples 

at 72.5°C.

TA B L E  2.1

Apparent half lives at 72.5°C of  HRP fractions stored at 4°C

Time (days) 1 7 14 21

Native HRP 8.80 5 89 5.09 5.08

SA-NHS HRP 12.30 7.50 7.85 6.89

E G -N H S H R P 13.09 10.45 8.54 6.94

A A -N H S HRP 8.16 7 33 6.94 6.27

In this regard, it is interesting to note that modification of HRP with AA-NHS 

enhanced thermostability, although not to the same degree as bis-succinimide 

modification. At neutral pH, the amine functions o f  lysine residues are mostly 

protonated and thus positively charged. However, unprotonated lysines will exist in 

equilibrium with the changed form Such unprotonated lysines react nucleophilically 

with the ester carbonyl group o f  the N-hydroxysuccinimide ester to form an amide, 

with the release o f  the N-hydroxysuccinimide. An amide cannot carry a charge and the 

positive charge o f  the original amino group is lost [12], Although one would expect 

more alkaline conditions to favour such a reaction, rapid hydrolysis of the succinimide 

ester occurs in basic mixtures Hydrolysis inactivates the NHS ester and so decreases
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the efficiency o f  the reaction. Hydrolysis is favoured in dilute protein solutions and 

acylation in more concentrated samples

HRP— NH-
V .0 O

ch3— a
■O — N

HRP— N— C

H

*
O

O

Acetic Acid 
N-Hydroxysuccinimide Ester

oL
CM- + HO— N

\

O

Acetylated HRP N-Hydroxysuccinimide

Modification o f  HRP with the monofimctional reagent enhanced thermostability o f  the 

enzyme, possibly due to charge neutralisation in the absence o f  any crosslinking (see 

above). The acetyl group introduced by the acetylation reaction is small and electrically 

neutral. It cannot bring about charge reversal and is too small to provide significant 

shielding o f  close-lying groups. Neutralisation of like charges’ repulsion may be 

responsible for the observed stabilisation: a decreased number of like charges will 

lessen the protein’s tendency to unfold at high temperatures. There exists an alternative 

explanation. H R P’s 6 lysine residues are located at positions 65, 84, 149, 174, 232 and 

241 [40], Lysine (Lys) 174 is thought to interact with the heme prosthetic group: it is
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therefore unlikely to react with the acetylating agent, as any such reaction would likely 

cause inactivation Of the 5 available lysines, at least 3 occur in regions of positive 

hydropathic character, indicating hydrophobicity (titration o f  AA-NHS HRP’s free 

amino groups suggests alteration o f  3 lysines; see Section 2.4 8.). Only lysine 65 and 

the heme-associated 174 are in hydrophilic portions of the enzyme. Neutralisation of 

positive charges within such hydrophobic sequences may well have a thermostabilising 

effect. This interpretation may be relevant to the increased “organotolerance” observed 

for acetylated HRP (see Section 2 4.6 ).

Acetylated HRP did not confer the same degree o f  thermostability on HRP at 

72.5°C as did SA- and EG-NHS HRPs, even though all three reagents displayed 

similar effects at the lower temperature o f  65(iC (Figure 2 8) It is probable that the 

AA-NHS ester is bound to FIRP in a one-point modification (as this chemical modifier 

does not possess the ability to form protein crosslinks) and this charge neutralisation is 

not sufficient to withstand a temperature of 72 5°C for long periods. The lack of a 

chemical crosslink gives only limited protection against high temperature. EG-NHS 

derivatives appeared to be more thermostable than SA-NHS HRPs at both 

temperatures (65 and 72.5°C)

Native and modified forms of HRP were exposed to temperatures in the range 

25-80°C for periods o f  30 minutes (Figure 2.9). Native HRP appeared to have an 

optimum working temperature o f  35°C, however its activity decreased rapidly at 

temperatures greater than 50°C In the range 60-80°C, NHS derivatives exhibit greater 

stability, particularly noticeable around the 60°C mark. In some cases, EG-NHS forms 

appeared more thermotolerant than acetylated HRPs and vice-versa. The thermal 

profile o f  EG-NHS HRP showed a gradual decline in relative activity between 40 and
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80°C, unlike that o f  acetylated HRP, where catalytic activity was lost more rapidly. 

Both bifunctional forms displayed similar activity profiles over the range investigated.

Apparent thermal activation, as opposed to thermal inactivation, was noted for 

all HRP forms at 42°C (Figure 2.10). As the temperature o f  incubation increases, the 

extent o f  thermal activation decreases This phenomenon has been reported for some 

immobilised and chemically modified enzymes [41],

Temperature (C)

Figure 2.9: Activity of native and modified HRPs as a function of temperature
■ Native; •  SA-NHS; ▲ EG-NHS, ▼ AA-NHS;

Ryan et al. previously reported a 6- to 23-fold thermostabilisation following reaction 

o f  bis-succinimides with H RP’s lysine residues [17], Another class o f  crosslinking 

reagents, bis-imidates, resulted in little or no stabilisation despite earlier successes in 

crosslinking and stabilising alanine aminotransferase [42], Overall, bifunctional 

succinimide forms o f  HRP displayed greater thermostability (compared with the
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monofunctional derivative). Bis-succinimides are capable o f  forming protein crosslinks 

[12, 16] unlike the AA-NHS compound. The SA-NHS compound spans a distance of 

11 A, whereas the EG-NHS can form a link 14A long. It was apparent that EG-NHS 

stabilised HRP to a greater extent than SA-NHS. It is known that imidoesters shorter 

than 1 lA  failed to stabilise HRP [17], These results would suggest that this may be the 

minimum distance to obtain a stable crosslink. Unambiguous demonstration o f  such 

molecular links is still awaited.

F igure  2.10: Activity o f  native and bifunctional HRPs at 42°C. 
•  Native HRP; ■ EG-NHS HRP;
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2.4.6. Exposure to water-miscible organic solvents

As previously stated, methanol, dimethylformamide and tetrahydrofuran were selected 

for investigation as they possess respectively low, medium and high denaturation 

capacities as defined by Khmelnitsky et a/. [23], In most cases, native HRP was 

inactivated as the percentage volume o f  organic solvent was increased. Overall, 

modified forms o f  peroxidase were found to be more organo-tolerant. The stability 

profiles o f  all derivatives in MeOH at 25°C closely resemble that of the native enzyme, 

indeed, the native form displayed marginally better catalysis. At the 60°C exposure to 

MeOH (Figure 2 11), all modified HRPs underwent an activation up to 20% v/v 

MeOH, whilst activities fell to zero at the 40% level o f  the organic solvent. Acetylated 

HRP, for example, was more active in 20% v/v MeOH than in aqueous solution (% 

RCA of 217% at 20% MeOH). Complete loss o f  native HRP activity was observed at 

all MeOH concentrations tested. DMF had similar adverse effects on modified HRPs. 

In a 1:1 ratio o f  phosphate buffer and DMF at 25°C (Figure 2.12), SA- and EG-NHS 

each retained only 4% of their relative activities in aqueous solution. The acetylated 

form appeared to be able to withstand the effects o f  DMF to a greater extent. Native 

HRP was catalytically inactive under the given experimental conditions. At 60°C, 

activities were practically zero at 30% DMF (Figure 2.13). However, modified HRPs 

were much more tolerant of DMF than was native HRP, which again was found to be 

inactivated at all concentrations tested. THF appeared to be less detrimental to HRP 

activity than DMF, despite the former having the higher denaturation capacity [23], 

The bifunctional derivatives were found to be slightly more active in 10% THF than in 

aqueous solution at room temperature (Figure 2.14). At this level, acetylated HRP
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activity was below 80% of  that in aqueous solution, however, its relative activity in 20- 

30% THF was similar to that in 100% 0.1M phosphate buffer, pH 7.0.

F igure 2.11: Effect o f  methanol on native and HRP derivatives at 60°C 
■ Native; a  SA-NHS; •  EG-NHS; ▼ AA-NHS;

Increasing the level of THF to 50% reduced the % RCA to approximately 38%. Both 

SA- and EG-NHS forms possessed marginally better catalysis at 50% v/v THF, % 

RCAs o f  44 and 51% respectively. Native HRP retained some activity at all TITF 

concentrations investigated (% RCA of  14% at 50% v/v THF), in contrast to its 

characteristics in MeOH and DMF. No increases in catalytic activity were noted in the 

presence o f  THF at 60°C (Figure 2 15). Steep decreases in activities occured at THF 

volumes greater than 10%. However, derivatives were slightly more tolerant o f  THF 

than the native enzyme. Tables 2.2 and 2.3 summarise the findings of all organo- 

tolerance experiments.
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T A B L E  2.2

The % volume solvent required to reduce catalytic activity by 50% at 25°C

Solvent Native HRP SA-NHS HRP E G -N H S HRP AA -N H S HRP

MeOH 6 8 9 9

DM F 9-10 9 15 16

THF 16 44 49-50 46

TA BL E 2.3

The % volume solvent required to reduce catalytic activity by 50% at 60°C

Solvent Native HRP SA-NIIS HRP EG-NHS HRP AA -N H S HRP

M eOH 9-10 10 39-40 39-40

DM F 9-10 15 13 13

THF 6 13 11 11

The stability properties o f  native and modified peroxidases in various water-organic 

solvent homogeneous mixtures have been examined. Each sample was diluted into the 

optimal assay mix after exposure to solvent to assess catalytic activity under the 

standard conditions and to avoid any solvent effects on the TMB assay. Native and 

modified HRPs behaved quite differently in mixtures o f  water and organic co-solvents. 

The native enzyme was inactive in MeOH volumes o f  10% or greater. Over a two-fold 

activation in 20% v/v MeOH at 60HC was observed for acetylated HRP, whilst both 

bis-succinimide derivatives showed similar levels o f  activation.
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Figure 2.12: Effect o f  Dimethylformamide on native and HRP derivatives at 25°C 
■ Native; a  SA-NHS;« EG-NHS; ▼ AA-NHS;

This activation effect may be solvent specific Khmelnitsky el at. have noted numerous 

examples o f  enzyme activation by moderate concentrations (10-30% v/v) o f  organic 

solvents. In some cases, the activation effect reached values “as high as tenfold” [43], 

M eOH more than doubled the calcium dependent adenosine triphosphatase (Ca2+- 

ATPase) activity of spinach chloroplast coupling factor 1 [EC 3.6.1.3]. The Km for 

ATP was halved in the presence of 20% MeOH and optimum activity occured at a 

30% level [44] Batra and Gupta studied the effects o f  four solvents on the kinetic 

parameters of four enzymes, including HRP, at 10% v/v acetonitrile or THF; HRP 

activity was 20% greater than in aqueous buffer and the Km for o-dianisidine was 

notably reduced The same report noted a 216% activation o f  polyphenol oxidase in 

20% DMF [45] Vazquez-Duhalt el cil. , studying polyethylene glycol-modified HRP in

98



methanol, noted a four-fold decrease in apparent Km for guaiacol compared with its 

value in buffer (although kCJl also decreased significantly) [46], A similar reduction of 

H RP’s Km for TMB has possibly occurred in the presence o f  MeOH This may account 

for the activation that was observed here (Figure 2.11). Alternatively, the activation 

may have been due to “conformational changes in the enzyme molecule caused by the 

introduction o f  the organic solvent into the system” [43], HRP derivatives may adopt 

an altered, more active conformation in the methanol-aqueous system while the native 

enzyme simply denatures and loses activity

Figure 2.13: Effect o f  Dimethylformamide on native and HRP derivatives at 60°C 
■ Native; a  SA-NHS, •  EG-NHS; ▼ AA-NHS;

In each o f the systems tested, increasing solvent concentrations resulted in loss of 

peroxidase activity However, chemical modification o f  HRP with NHS esters greatly 

improves tolerance in water-organic co-solvent mixtures. The effect on native HRP

99



was much more detrimental than on modified forms (Figures 2.12 and 2.13). However, 

all FIRP derivatives were completely inactivated by approximately 30% v/v DMF at 

60°C (Figure 2.13) and by >50% v/v DMF at 25°C (Figure 2.12). Nevertheless, 

reaction with succinimides (by either forming lysine crosslinks and/or altering protein 

surface charges) brought about significant improvement in peroxidase stability in DMF. 

Native and modified forms appeared to be more stable in THF than in DMF at room 

temperature, even though THF was classed as having the higher denaturation capacity

[23], HRP derivatives were marginally more active in 10-20% THF than in aqueous 

solution (Figure 2.14); however, this catalytic activity was not sustained at the elevated 

temperature (Figure 2 15).

F igure 2.14: Effect o f  Tetrahydrofuran on native and HRP derivatives at 25°C. 
■ Native, a SA-NHS; •  EG-NHS; ▼ AA-NHS;
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Figure 2.15: Effect o f  Tetrahydrofuran on native and HRP derivatives at 60°C
■ Native; a SA-NHS, •  EG-NHS; ▼ AA-NHS;

Even though enzymes can function in anhydrous organic solvents such as hexane or 

toluene [47], water miscible organic solvents often lead to protein inactivation. 

Gorman and Dordick described the desorption of tritiated water (T20 )  bound to HRP 

in a range o f  organic media [48], The fractions of bound T20  desorbed from HRP by 

MeOH, DMF and THF were 0.56, 0.40 and 0 37, respectively. Peroxidase was shown 

to retain less T20  in solvents o f  moderate polarity (DMF and THF) than, for example, 

chymotrypsin. However, the requirement of some water for peroxidase activity in a 

range o f  organic solvents has been well documented [48,49], Although DMF has the 

higher dielectric constant, it desorbs significantly less bound H20  from the enzyme 

surface than MeOH. It was suggested that as methanol’s structure is closer to that of 

water than DMF, MeOH could replace water as well as strip it away [48], This theory
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of  “water stripping” has been previously reported for anhydrous organic solvents [50], 

It is questionable whether water stripping is relevant to the present findings Here, 

substantial inactivation has taken place at solvent concentrations <50%, i e., where the 

concentration o f  water in the system is greater than 28M. Thus, there is still adequate 

water available to solvate the HRP molecules Gorman and Dordick have opined that 

MeOH may replace the water around the HRP molecule [48], It is possible that all 

three solvents have a greater affinity than H20  for the surface o f  HRP and that they 

can replace water bound to the enzyme molecule, even when they are present at low 

concentrations. No direct evidence for this hypothesis exists, but it is interesting to 

recall the work o f  Arakawa and Timasheff in understanding the stabilising and 

destabilising effects of certain solutes on proteins. Stabilising solutes such as 

ammonium sulphate, are preferentially excluded from the immediate neighbourhood of 

protein molecules relative to their concentration in the bulk solvent In contrast, 

destabilising additives such as thiocyanate bind preferentially to proteins. Their 

concentration tends to be higher in the vicinity o f  the protein molecules than in the bulk 

solvent [51], The solvents used here may act in a similar manner to destabilising ions, 

disrupting the water “shell” surrounding the HRP molecule and leading to unfolding 

and loss o f  function The bifunctionally modified HRPs resist this solvent-induced 

activity loss much more successfully than does the native enzyme, due to the probable 

presence o f  one or two intramolecular crosslinks. Neutralisation of positive charges on 

lysines in hydrophobic sequences may offer an explanation for acetylated H RP’s 

organotolerance. It would be interesting to ascertain whether these activity losses in 

solvents might be reversible (due to denaturation) or irreversible (due to inactivation)
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HRP has a complex thermal inactivation profile which cannot be described in terms o f  

a “normal” half-life, since this convention applies to first-order processes (such as 

radioactive decay) only. The apparent half-lives referred to here are empirically 

determined from thermal inactivation profiles and correspond to the time at which 50% 

o f  the initial HRP activity remains.

2 .4 .7 ,  L on g  and short term stability studies
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Figure  2.16: Apparent half-lives calculated at 72 5°C over a 42-day period 
■ Native (Sigma), ▼ Native (Boehringer); a  EG-NHS (Sigma);
•  SA-NHS (Sigma)

All modified forms were observed to have longer half-lives when incubated at 72.5°C 

than the native enzyme and also maintained these values on extended storage at 4°C 

for up to 42 days. Results are depicted in Figure 2.16 It was observed that the 

Boehringer source o f  HRP was more catalytically active than the Sigma source. After 

one day (Tl), native Sigma HRP had a half-life (t/,) value o f  5.26 minutes compared
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with 6.65 minutes for native Boehringer HRP No loss o f  activity was observed after 

chemical modification. Furthermore, EG-NHS HRP possessed a greater ty2 value than

SA-NHS HRP. Stability factors ( [t./,]) of respectively 1.30 and 1.10 were
Nat.

calculated for both derivatives. It was clear that the thermostability o f  even the most 

tolerant o f  the modified HRPs declined with longer and longer storage periods (0.75 

minutes after a 42 day storage at 4°C; however, modified form half-life values were 

consistently better than the native enzyme (Figure 2.16). This could have implications 

for use o f  such derivatives in a commercially manufactured product.

2.4.8 Determination o f  free a mi n o group s

Various HRP forms were reacted with trinitrobenzenesulphonate (TNBS) to determine 

their unmodified lysine contents N-hydroxysuccinimide esters react specifically with 

the e-amino groups located on lysine amino acids. Native HRP has 6 free or unaltered 

lysines and a blocked N-terminus [40] This method is useful for checking the extent o f  

blocking or unblocking o f  amino groups in proteins and peptides, owing to the short 

time required for reaction (5 minutes at 25°C). An N-acetyl-L-lysine standard curve 

was set up (see Section 2.3.9 ) and the concentration o f  free lysine in each HRP sample 

was estimated (Table 2.4) Data suggested that up to 80% o f  lysine amino groups had 

been altered by the addition o f  bifunctional reagents, i.e., 4-5 lysines were chemically 

modified. This would imply the formation of two molecular crosslinks on the 

polypeptide backbone. Acetylated H RP’s free amino content was calculated at 

0.4 ImM, which indicated that 3 o f  the available lysines had been acylated by the AA- 

NFIS reagent. However, neutralisation of the positive charges o f  lysine amino groups 

has a stabilising effect even in the absence of crosslinking. This result compared
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favourably with stabilisation o f  up to 23-fold obtained when bis-succinimides were 

employed (where up to 5 residues were modified) [17], Obviously, bis-succinimides 

are more successful stabilisers o f  HRP

TA B LE 2.4

TNBS estimation of  free lysine content  in native and modified HRP samples

HRP Sample Free lysine (mM) % Relative to Native

Native 0.90 100

SA-NHS 0 22 24

EG-NHS 0 19 21

AA-NHS 0 41 46

Therefore, the difference may be due to the likely formation o f  an intramolecular 

crosslink by the bifunctional reagents or to the greater proportion of lysine residues 

chemically altered: note that Ugarova e! a!, concluded that stabilisation resulted from 

the degree o f  modification rather than from the nature o f  the modifier [6], TNBS 

reacted with all 6 HRP lysines only at 40°C; the same reaction at 4°C modified only 3 

Reaction at 0°C with anhydrides modified between 3 and 4 amino groups.

It is known that non-crosslinking chemical modifications can benefit the 

stability of enzymes other than HRP. Tuengler and Pfleiderer acetamidinated 17 o f  the 

24 lysines o f  pig heart lactate dehydrogenase, converting them to arginine-like 

structures. Modification increased the enzyme’s tolerance o f  heat, alkali and tryptic 

digestion [52], Melik-Nubarov and colleagues used glyoxylic acid and sodium 

cyanoborohydride to perform reductive alkylation o f  up to 10 amino groups in a -
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chymotrypsin. The enzyme was dramatically stabilised against heat: modified forms 

tolerated 60°C 1000-fold better than did the native enzyme. The effect was ascribed to 

hydrophilisation of the protein surface, resulting in decreased contact between water 

and non-polar clusters [36, 53] This was a remarkable result from such simple 

chemical alterations with low molecular weight compounds. Using the same enzyme, 

Mozhaev et al. later carried out acylation (using carboxylic acid anhydrides) and 

reductive alkylation (with aliphatic aldehydes) of the protein. These compounds could 

not form crosslinks. They obtained a wide range o f  “hydrophilised” and 

“hydrophobised” derivatives. The stabilised enzyme forms had identical fluorescence 

emission spectra to the native chymotrypsin. Increasing stability correlated with 

increasing hydrophilisation, whether this was due to the nature o f  the modifier itself or 

to the number o f  lysines modified by the compound in question (up to a limiting value)

[36],

To conclude, a five-fold increase in HRP’s apparent half-life at 65°C resulted 

from modification with AA-NHS 3 of the enzyme’s 6 lysine amino acid residues were 

altered. This level o f  thermostabilty at 65°C was comparable to bis-succinimide 

modification o f  IiRP. The difference (enhanced stability o f  EG-NHS) may be due to 

the presence of molecular crosslinks, although thermostabilisation is known to be due 

to the nature o f  the chemical modifier [6], These results have confirmed that one need 

not crosslink HRP to achieve enhanced thermostability.
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2.4.9. Effects o f  denaturing and reducing agents

IIRP is a metalloprotein where calcium aids its stability It is reported to contain two 

bound calcium ions [54] The removal of protein-bound calcium by EDTA and 

unfolding o f  the protein backbone with guanidine hydrochloride (GnCl) has been 

reported by Haschke and Friedhoff [54] It was attempted to ascertain whether 

reaction of HRP with succinimides could confer resistance to GnCl-EDTA 

denaturation. All HRP samples (protein content o f  0.1 mg ml'1) were exposed to 6M 

GnCl-O.OlM EDTA for 10 hours and their relative catalytic activities assessed. The 

EG-NHS derivative possessed a relative activity o f  45% and appeared to be able to 

withstand the effects o f  the denaturant better than the native enzyme (% RCA of 23). 

GnCl-EDTA appeared to have an even more detrimental effect on acetylated HRP (% 

RCA o f  15%) 0.025M 2-mercaptoethanol was added to GnCl-treated stocks for 60 

minutes at 25°C. An activity check (by TMB) revealed complete inactivation of all 

HRP forms. The reducing agent alone had no effect on HRP GnCl-EDTA-treated 

HRP samples were incubated at 65()C Activities were calculated as a percentage of 

initial activity (zero time) in their respective control samples and are depicted in Figure 

2.17.

Guanidine hydrochloride was chosen as a test denaturant in preference to urea 

as the latter has been shown to have a limited effect on HRP [55], EG-NHS HRP 

retained more activity than the native enzyme This suggests that the bifunctional 

reagent crosslinks HRP and this theory may be reinforced when looking at the effect o f  

GnCl-EDTA on acetylated HRP Modification o f  lysines without crosslinking appeared 

therefore not to counteract the denaturing effects of GnCl. Addition of
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mercaptoethanol to GnCl-treated samples eliminates catalytic activity irrespective of 

whether peroxidase is crosslinked or not

Figure 2.17: Effect o f  6 M guanidine hydrochloride/lOmM EDTA on Native and 
EG-NHS HRPs thermostability at 65°C.
a EG-NHS, no GnCl; r  EG-NHS + GnCl; ■ Native, no GnCl; •  Native 
+ GnCl;

The effect o f  EDTA alone on HRP was investigated (Figure 2.18). It was seen that 

longer exposure times and increasing concentrations o f  EDTA reduced native HRP 

activity at 45°C. SA-NHS HRP withstood the effects of the chelating agent better than 

native HRP. The effects o f  EDTA were not as detrimental when the incubation 

temperature was 25°C (results not shown) For a 3-hour exposure at 45°C, native HRP 

was rapidly inactivated to a level of 28% whereas SA-NHS FIRP had a % RCA nearly 

double that of the native enzyme Thus EDTA effects appeared to depend on the 

length and temperature o f  incubation
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Figure 2.18: Effect o f  EDTA on HRP activity at 45°C as a function o f  concentration 
& time. ▼ SA-NHS (60 mins.);* SA-NHS (120 mins.); + SA-NHS (180 
mins.) ■ Native (60 mins.); •  Native (120 mins.); a Native (180 mins );

Mercaptoethanol, in the absence o f  GnCI, does not affect HRP catalytic activity. This 

illustrates the importance of the enzyme’s four disulphide bridges to its overall 

molecular stability and shows that modification with EG-NHS does not compensate for 

loss o f  the -S-S- links. It would be interesting to observe the renaturation patterns of 

the three peroxidase forms as unfolding has been shown to be reversible when the 

denaturant (GnCI) is removed [55] Pappa and Cass reported an increase in tryptophan 

fluorimetric emission on exposure o f  HRP to guanidine hydrochloride concentrations 

greater than 1M. Denaturation o f  holo-HRP was complex, with two distinct steps. 

These were attributed to unfolding o f  the polypeptide and to the loss o f  the heme 

prosthetic group. Such fluorescence increases have been thought to be due to an 

increase in the tryptophan (Trp)-heme distance (usually > 2.2nm) [55], The sole Trp
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residue in holo-HRP C seems to lie in a hydrophobic region o f  the protein, also, it does 

not react with Koshland’s reagent (2-hydroxy-5-nitrobenzylbromide) but is prone to 

modification in the apoprotein following removal of the heme [56], The lysine residue 

at position 174 also interacts with the heme group [57]. It is possible that acylation of 

this residue has occurred, perhaps altering the lysine-heme interaction and therefore 

delaying the loss o f  the heme group during the inactivation process. It is more likely, 

however, that the observed stabilisations arose from decreased unfolding of the 

polypeptide chain. In any case, action o f  bis-succinimides with HRP lysines increased 

the functional stability o f  the protein in the presence o f  a dénaturant, by preventing 

either gross unfolding or loss o f  the heme The effects of mercaptoethanol (alone) were 

investigated (Figure 2.19).

Figure 2.19: Effect o f  mercaptoethanol on native and acetylated FIRPs 
•  Native HRP, ■ AA-NHS HRP;



Native and AA-NHS HRPs were incubated at various concentrations o f  the reducing 

agent up to 6M. Up to a 2M level, native HRP had a better tolerance o f  

mercaptoethanol than did acetylated HRP A slight activation was noted at 1M. In the 

3.0-6.0 M range, the native enzyme was less stable than modified forms. Acetylated 

possessed the greatest catalytic activity in this range The results suggest that charge 

neutralisation as opposed to crosslink formation conferred the best resistance to the 

reducing agent.

2.4 10 UV/Visible spectrophotomeiric analysis

Spectral methods can be used to determine and characterise protein conformational 

changes. Such methods are sensitive and only require small amounts of protein. 

Another feature is that they are non-destructive as samples can be recovered after 

analysis. The UV/Visible absorbance spectra o f  native and modified HRPs were 

recorded in the range 200-500nm Greater absorbance in the spectral range 200-250nm 

was noted for derivatives, possibly due to excess NHS ester and DMSO remaining in 

solution. The characteristic absorption spectrum of  native HRP shows a major Soret 

band at 403nm (Figure 2.20) [58], Changes in the microenvironment of the heme 

present in the active site o f  HRP can shift the intensity and position o f  this band. For 

modified HRP samples, this peak at 403nm seemed to decrease slightly. This may have 

in fact been due to conformational changes brought about by bis-succinimide 

modification. Changes in the heme environment o f  native HRP at 65°C were studied by 

monitoring the relative absorbance of the Soret band (Figure 2.21). The heme site 

remained intact for 20 minutes, followed by a decrease in the heme absorbance with 

prolonged exposure. These findings were similar to that of Ryu and Dordick [58],
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Figure 2.20: Characteristic UV/Visible spectrum of  native HRP displaying Soret band
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Figure  2.21: Effect o f  high temperature on the characteristic Soret band at 403 nm.
(Spectra o f  decreasing intensity correspond to longer exposure times).
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Fluorimetry was used to investigate the effects o f  thermal inactivation on the 

microenvironment of the single tryptophan residue in native and bifunctionally 

modified HRPs. Changing emissions from the fluorescent residue during the 

inactivation suggested alterations in the tertiary structure o f  the protein. Ugarova el al. 

deduced that the aromatic amino acid (which is not located in the same domain as the 

active site [40]) is a fluorescent group in HRP which is sensitive to the overall 

conformation o f  the protein moiety [59] Thus, it was attempted to correlate changes 

in fluorimetric emission with loss of catalytic activity at 65°C for native and EG-NHS 

HRPs. The native enzyme was completely inactivated after 50 minutes (Figure 2.22). 

A gradual increase in fluorescence occurred which levelled off between 40 and 60 

minutes. The greatest increase occurred between 20 and 30 minutes while most o f  the 

catalytic activity had already been lost by 20 minutes. In contrast, EG-NHS HRP 

demonstrated greater catalytic thermostability and little net change in fluorimetric 

emission (Figure 2.23). Modification with the EG-NHS ester resulted in partial 

quenching o f  tryptophan fluorescence (zero time reading) relative to that of the native 

enzyme; also, greater emission fluctuations occurred over the 60 minute incubation. 

Fluorescence measurements revealed differences between native and EG-NHS HRPs 

upon thermal inactivation at 65°C In proteins such as peroxidase that contain both 

tyrosine and tryptophan aromatic amino acids, fluorescence is usually dominated by the 

contribution o f  tryptophan. Changes in protein structure, due to environmental factors 

such as extreme temperature, often lead to changes in fluorimetric emission. Intensities 

at Xmax for example, generally decrease by 1% per degree increase in temperature [27],

2.4.11. Fluorescence studies



Time (minutes)

Figure 2.22: Remaining Activity/Fluorescence profile of Native HRP at 65°C. 
n HRP activity, •  Fluorimetrie emission

Figure  2.23: Remaining Activity/Fluorescence profile o f  EG-NHS HRP at 65°C 
n HRP activity; •  Fluorimetrie emission.
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Peak emission wavelengths can shift toward that o f  free tryptophan in solution [59], 

However, the exact location of this maximum can also depend on the choice of buffer 

used [27], Thus, it is advisable that buffers employed should not fluoresce at 

wavelengths greater than 250nm. Ugarova et al. recorded that the fluorescent 

properties o f  H RP’s Trp residue changed under the same conditions as those causing 

conformational changes [59] and concluded that the Trp amino acid acted as a 

fluorescent label sensitive to the overall conformation o f  the protein In the present 

studies, samples taken at various time intervals from a HRP solution (0 4p.M in 

concentration) undergoing thermoinactivation at 65°C were cooled and stored on ice 

(for approximately 20 minutes) until fluorimetric determination and assay of catalytic 

activity measurements were carried out

The modified peroxidase form showed greater thermostability at 65°C than did 

the native enzyme. Minimal changes in fluorescence occurred with the native enzyme 

below 20 minutes exposure, but most activity was lost in this time Possibly, a 

relatively small conformational change results in the loss o f  the heme, resulting in an 

inactive but still-folded apoenzyme This sharp increase in intensity after 20 minutes 

suggests that native peroxidase undergoes thermal denaturation, resulting in the Trp 

residue becoming more accessible to the medium, i.e. a loss of activity before 

unfolding [55], After 40 minutes at 65°C, no fluorimetric intensity changes occurred 

which would indicate that H R P’s Trp residue remained in contact with the reaction 

medium No change in \ max was observed. The sigmoidal shape noted (Figure 2.22) is 

characteristic o f  a simple two-state transition between the native (N) and unfolded (U) 

forms o f  peroxidase, where inactivation is reversible [55],
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The fluorescence emission profile o f  EG-NHS HRP was different to that o f  the native 

form (Figure 2.23). Fluorimetrie emission intensities o f  the EG-NHS derivative were 

less than those of the native at 65(IC.
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Figure 2.24: Fluorimetric emission profiles o f  Native and EG-NHS HRPs.
(280nm excitation)

Changes in emission were more pronounced at various time points (Figure 2.23); 

however, the net fluorimetric changes were of much less magnitude than that o f  native 

FtRP. Schmid noted that increases and decreases in fluorimetric emission can occur 

upon protein unfolding [21]. Data indicated that EG-NHS FIRP’s fluorescent label was 

not exposed to the reaction medium to the same extent as that o f  native peroxidase and 

remained buried in a more intact, chemically stabilised protein conformation. 

Fluorescence emission is observed when an excited electron returns from the first
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excited state back to the ground state As some energy is always lost by non-radiative 

processes such as vibrational transitions, the energy o f  the emitted light is always less 

than that o f  the absorbed light; hence, the fluorimetric emission is always shifted to 

longer wavelengths Fluorimetric emission is much more sensitive to changes in the 

environment of the chromophore than is light absorption. Fluorescence is thus an 

excellent method for investigating conformational changes in proteins.

A great deal of information can be obtained about protein aromatic side chains 

when the solvent composition around these residues is varied. The location of such 

residues can be studied by using probes such as ethylene glycol, dimethyl sulphoxide 

and sucrose This technique is known as solvent perturbation

The fluorometric emission of proteins originates from phenylalanine, tyrosine 

and tryptophan residues In proteins that contain all three amino acids, emission is 

usually dominated by the contribution o f  the tryptophan residues (HRP has a single 

Trp). This is because both their absorbance at the wavelength of excitation and their 

quantum yield of emission are considerably greater than the respective values for 

tyrosine and phenylalanine. The latter’s fluorescence is not observed in native proteins 

because its sensitivity is very low The other factor in fluorescence analysis is transfer 

o f  energy between residues. Phenylalanine emission is barely observed because it is 

practically quenched by energy transfer to the other two aromatic amino acids. 

Tyrosine and tryptophan absorb strongly around 280nm, where phenylalanine emits. In 

proteins that contain both tyrosine and tryptophan, emission of the former is barely 

detectable, for a number o f  reasons

1 Tryptophan emission is too strong



2. In folded proteins, Trp emission is frequently shifted to shorter 

wavelengths towards tyrosine

3. Non-radiative energy transfer can occur from tyrosine to tryptophan 

residues in the compact native protein structure. In a hydrophobic 

environment (the interior o f  a folded protein), Trp emission occurs at 

shorter wavelengths.

To conclude, HRP contains a single tryptophan residue at position 117 on the 

polypeptide backbone, thus simplifying the interpretation of any fluorimetric results. It 

location in the three-dimensional structure has not been identified due to the absence of 

an X-ray crystallographic structure, but previous spectroscopic and chemical 

modification studies have suggested that it is not a part o f  the catalytic site [56], A 

marked difference was observed in the tryptophan fluorescence o f  native and 

bifunctional HRPs upon thermal inactivation at 65°C. Native HRP underwent a sharp 

increase in fluorimetric emission after 20 minutes, at which point % RCA was 

practically zero EG-NHS HRP, in contrast, demonstrated greater thermostability and 

little net change in emission Chemical modification o f  up to 5 lysines resulted in partial 

quenching o f  Trp emission relative to that of the native enzyme, also greater emission 

fluctuations occurred over the 60 minute incubation at 65°C.



It has been demonstrated that simple chemical modifications can greatly stabilise HRP 

activity in a range o f  adverse environmental conditions. These beneficial reactions 

appeared to be equally effective on the Boehringer as well as on the Sigma enzyme 

source. Reaction o f  N-hydroxysuccinimide esters with HRP’s lysine side chains 

resulted in derivatives with increased heat resistance and a greater tolerance o f  water- 

miscible organic solvents. The increased tolerance o f  organic solvents may be just as 

important as the enhanced thermostability for commercial applications.

Derivatives also showed greater stability in the presence o f  denaturing and 

reducing agents. These observations may be attributed to the introduction of molecular 

crosslinks between adjacent lysine amino acids (in the case o f  bis-succinimides). 

Evidence supporting the existence o f  such crosslinks may lie with the fluorescence 

data, where emissions from bifunctional preparations were less in magnitude than those 

o f  their native counterparts at ambient and high temperatures.

The behaviour o f  acetylated HRP illustrated that “point” modification of lysine 

residues benefits overall enzyme stability, despite this reagents’ inability to form 

protein crosslinks. This would suggest that the formation of “molecular bridges” is not 

critical for increased thermal or organic solvent stability, although the AA-NHS 

reagent is limited to lysines on the polypeptide chain. The improved stability may have 

arisen from the addition to the free amino groups o f  the lysines or perhaps from 

neutralisation of the amino groups’ positive charge.

SA- and EG-NHS esters are bifunctional compounds which are capable of 

crosslink formation. SA-NHS spans a distance o f  11A while EG-NHS bridges a 14A 

gap. The latter-type reagent consistently yielded a more stable HRP derivative. This

2 .4 .12 C onclusion



could be related to the difference in crosslink length formed by the two compounds, 

assuming that a crosslink has indeed formed SA-NHS is a non-cleavable crosslinker 

while EG-NHS may be cleaved with hydroxylamine. However, this is unlikely to 

present a problem in practice. Hydroxylamine at concentrations greater than ImM acts 

as an inhibitor o f  HRP and so is unlikely to occur in any HRP-based system.

It is quite apparent that reaction has occurred with the HRP lysine residues. 

The number of free amino groups decreased after succinimide treatment. Post­

modification TNBS values indicated that 4-5 o f  H RP’s lysine amino acids were 

chemically altered (3 with AA-NHS). This would suggest that two crosslinks at most 

could have formed in the HRP molecule since any crosslink will o f  course involve two 

adjacent lysines

HRP is extensively glycosylated and while the carbohydrate side chains (18% 

of  the enzyme) contain the amino sugar glucosamine, these are invariably acetylated 

[60] and therefore blocked from reaction with either the succinimides or TNBS. Note 

that the carbohydrate side chains remain available for reaction with periodate or other 

agents for immobilisation procedures

The work presented here has future potential in many areas including industrial 

applications, biosensors, clinical assays and reagents. Indeed, the application o f  these 

succinimide derivatives in waste-water treatment is the subject o f  Chapter 3 in this 

thesis. Stabilised enzymes have the advantages o f  longer life and a wider range of 

applications than other less stable activities. These experiments have clearly 

demonstrated a quantitative difference between native and chemically modified forms 

o f  HRP which could be considered for a wide number o f  future developments.
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CHAPTER 3

PHENOL REMOVAL FROM 
AQUEOUS SYSTEMS AT HIGH 

TEMPERATURES BY 
CHEMICALLY MODIFIED 

HORSERADISH PEROXIDASES



3.1 INTRODUCTION

In 1746, Benjamin Franklin wrote “when the well’s dry, we know the worth o f  water” . 

At that time people were primarily concerned with finding a reliable source o f  water. 

Its quality was often taken for granted. The quantity o f  pollutants contaminating water 

resources was relatively small and those existing pollutants were removed through 

natural processes Increasing population, growing industry and rapidly developing 

technology since the industrial revolution have increasingly tested nature’s capacity for 

maintaining clean water. Increased water use and wastewater discharge have added 

impurities to water which overload natural cleansing processes, either because of the 

amount or the chemical complexity o f  the impurities. Hence, we are compelled to turn 

to technology to protect our water supply.

Aromatic compounds such as phenols are present in wastewater of a number of 

industries including high temperature coal conversion, petroleum refining, resins and 

plastics. The term “phenols” in this context includes not only parent phenol (C6 H 5 OH) 

but an assortment o f  organic compounds containing one or more hydroxyl (OH) 

groups attached to an aromatic ring Phenols in water sources have special adverse 

effects. Such aromatic hydroxy compounds can be toxic at elevated levels and are 

known or suspected to be carcinogens [I] As little as 0 005mg L ’ 1 o f  phenol will 

impart objectionable tastes and odours to drinking water when it combines with 

chlorine to form chlorophenols. Thus, the removal o f  such chemicals from water or 

industrial effluents is of great practical significance.

Current methods for removing phenolics from wastewater include microbial 

degradation, adsorption on activated carbon, chemical oxidation (using agents such as
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ozone, hydrogen peroxide or chlorine dioxide), incineration, solvent extraction and 

irradiation [2-5], The choice depends on economic and other factors.

Klibanov el al. first proposed a horseradish peroxidase (HRP) method for the removal 

o f  toxic aromatics from aqueous solution [6]. HRP catalyses the oxidation o f  a variety 

o f  phenols and aromatic amines in the presence of H 2 O2 , generating phenoxy radicals. 

These free radicals diffuse from the active centre of the enzyme into solution [7] where 

they can form dimers, trimers, etc which eventually result in higher oligomers and 

polymers which are nearly water-insoluble (formation of polyaromatic products). Such 

polymers have been produced by Saunders and colleagues from several phenols and 

aromatic amines [8], One molecule o f  peroxide can remove approximately 103 

molecules o f  phenol [9], Moreover, two free radicals are generated for every molecule 

o f  peroxide consumed (reaction 3 1)

H 2 O2 + 2AH2 —> 2 'AH + 2H20  (3 1)

This enzymatic approach is suitable for the treatment of wastewater containing 

aromatic contaminants A significant feature o f  these apparently non-toxic 

polyaromatic products is that, in contrast to their monomeric precursors, they are 

practically insoluble in water [10], Therefore, peroxidase-catalysed oxidation reactions 

transform phenols from water-soluble compounds into water-insoluble ones. This 

phenomenon, if general, could be used for the removal of pollutants from water 

because insoluble chemicals may be easily separated from the water by simple filtration 

or sedimentation procedures [11, 12], This enzymatic method has many advantages 

over conventional procedures [9, 12], Although current methods such as solvent



extraction and adsorption onto activated carbon are effective, they suffer from such 

shortcomings as high cost, incomplete purification, formation of hazardous by­

products and applicability to only a limited concentration range. In order to achieve a 

high degree of phenol removal, large amounts of enzyme are required to counteract the 

effects of enzyme inactivation, thus limiting the industrial applicability of the method 

[13, 14], It has been postulated that this inactivation most likely occurs as a result of 

the interactions o f  phenoxy radicals with the enzyme’s active site [9], If this is the case, 

it would be extremely difficult or near impossible to reduce the amount of enzyme 

required. Nakamoto et at. have pointed out that enzyme inactivation may in fact be 

attributed to the adsorption o f  enzyme molecules onto the end product polymer, thus 

limiting diffusion of substrate to the active centre [15], Among other strategies, 

additives such as polyethylene glycol (PEG) and gelatin can exert a significant

protective effect on HRP by suppressing enzyme adsorption without changing the 

reaction stoichiometry between H2O 2 and phenol [16], It was noted that the higher the 

concentration o f  phenol, the greater the effect o f  PEG. Immobilisation techniques 

where the enzyme is suitably attached (e g periodate linkage) to an insoluble carrier, 

offer the possibility o f  delayed protein inactivation by helping to prevent unfolding [17- 

19], However, mass transfer limitations can evolve whereby the formation of reaction 

products on the carrier matrix can reduce the capacity for enzyme-catalysed

polymerisation reactions [20],

At temperatures greater than 50°C, peroxidase-catalysed decolorisation of 

bleached kraft mill effluent significantly decreases [21] whereas no apparent activity

loss is observed for phenol removal in the range 5-35°C [16], HRP loses catalytic

activity at elevated temperatures due to unfolding o f  the protein backbone. Inactivation
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in this instance is often caused by the destmction of one or two “weak points” such as 

hydrolysable peptide bonds or easily oxidised functional groups [22], However, 

thermostability o f  HRP has been significantly enhanced by chemical modification with 

a range o f  amino-specific bis-succinimides [23]

The purpose o f  the following work was to investigate the effects of 

monofunctional and bifunctional succinimides on the HRP-catalysed removal o f  parent 

phenol and other phenolic compounds (including chlorinated compounds) at high 

temperatures (>50°C). The nature o f  the specific chemical modification (reactivity 

towards the s-amino groups on HRP’s lysine amino acid residues) leaves the 

carbohydrate moiety (18% o f  the enzyme) intact for further chemical reactions and/or 

immobilisation procedures.

127



3.2 E X P E R IM E N T A L

3.2.1- M aterials

Horseradish peroxidase (EC 1.11 1 7, type I, RZ - 1.9, 190 purpurogallin units.mg'1 

solid) and catalase (EC 1.11.6, 7,080 units.mg'1 protein) were purchased from Sigma. 

Phenol, 2-, 3- and 4-chlorophenol (99% + loose crystals), 2-naphthol, guaiacol, 2- and 

4-cresol and pyrogallol were also obtained from Sigma Chemicals.

Sigma also supplied the bifunctional reagent ethylene glycol bis-succinimidyl succinate 

(EG-NHS) and the monofunctional modifier acetic acid N-hydroxysuccinimide ester 

(AA-NHS).

Tween 20, citric acid, tris (hydroxymethyl) aminomethanehydrochloride, sodium 

hydroxide (30% solution in water), dimethylsulphoxide (DMSO) and analytical grade 

hydrogen peroxide came from BDH Ltd , Poole, Dorset, U.K.

Bicinchoninic acid protein assay reagent was obtained from Pierce Chemical Co., 

Illinois, U.S.A

96-well flat bottomed microtitre plates were obtained from Greiner, Germany. 

Acetonitrile, methanol and all other chemicals used were o f  analytical grade and were 

obtained from Labscan Ltd., Dublin, Ireland or from Aldrich Chemicals.
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The disappearance o f  phenolic substrates was monitored using a System Gold™ High 

Performance Liquid Chromatograph from Beckman Instruments linked up to an 

Elonex PC-466 computer. The system incorporated a programmable solvent module 

126 and a detection module 166 at absorbance units full scale (AUFS) 0.05, with 

detection at 280nm.

A (iBondapak™ Cl 8 column (3.9mm i.d. x 300mm) from Waters allowed separation 

o f  the compounds o f  interest.

Mobile phases were filtered with 0.22(.iM membrane filters (Millex-GV, Millipore 

Corporation) and placed in an ultrasonic bath for 30 minute periods.

UV/Visible spectra o f  phenols were carried out using a Shimadzu spectrophotometer.

A Heraeus Christ Labofuge 6000 centrifuge was used in phenol clearance experiments. 

A Titertek Twinreader type 381 (Flow Laboratories Ltd., Scotland) was used to read 

absorbances on microtitre plates.

3.2.2. Equipment
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3.3 M E T H O D S

3.3.1. Chemica 1 modication of Horseradish peroxidase

The method for succinimide modification was similar to that of Ryan et al. [23] (full 

details in Chapter 2). Equal volumes o f  HRP (prepared in 0.1M phosphate buffer, pH 

7.0) and N-hydroxysuccinimide ester (each typically lmg ml'1) were mixed together 

and the reaction allowed to proceed for approximately 20 minutes at room tempertaure 

before being terminated with an equal volume o f  cold 0.1M Tris-HCl, pH 7.0. As these 

succinimides (EG- and AA-NHS) possess limited solubility in water, they were initially 

dissolved in an organic solvent such as DMSO The ester-solvent formed an emulsion 

which allowed the reaction to proceed

3 .3 2. Determination o f  protein concentration

Protein estimation o f  HRP samples was previously described in Chapter 2. 10f.il of  

each standard or protein sample was pipetted into quadruplicate wells of a 96-well 

microtitre plate. Controls consisting of 10j.il diluent were also included. 200j.il of 

working reagent was added to solutions and gently mixed. The plates were covered 

and incubated at 37°C for 30 minutes A56o values were determined on a Titertek 

Twinreader Plus

3.3 .3. Determination o f  HRP activity

A method based on that of the Sigma Bulletin and similar to that of Pokora et al. was 

employed to estimate HRP activity/concentration [24], A “unit” o f  peroxidase is 

defined as the amount o f  enzyme which produces a change o f  12 absorbance units 

measured at a 1cm pathlength in one minute at 420nm when HRP is added to a



solution containing lOOinM potassium phosphate, 44mM pyrogallol and 8mM 

hydrogen peroxide and having a pH o f  6.0. Purpurogallin, the oxidation product o f  

pyrogallol (1,2,3-trihydroxybenzene) was measured at 420nm at room temperature.

3.3.4. Phenol precipitation reactions

Phenol precipitation reactions were carried out in triplicate (% relative standard 

deviation o f  less than 4.5%) in 30ml vials. Reaction solutions were allowed to achieve 

thermal equilibrium in a water bath (accuracy ± 0.5°C). Mixtures were prepared by 

adding measured amounts o f  phenolic compound, HRP enzyme and hydrogen peroxide 

individually into buffer solutions of varying pH values. Polymerisation reactions were 

initiated by adding H20 2 The reacting solution was agitated by a magnetic stirrer and 

Teflon coated stir bars. Reactions were terminated by the addition of large doses of 

catalase enzyme (a final concentration of 30nmol dm'3) solution to periodically 

withdrawn 1.0ml samples. (Catalase rapidly converts peroxide to oxygen and water, 

the consumption o f  peroxide thus halting the peroxidase-catalysed reaction) . Samples 

were then treated with a 40g L '1 solution o f  alum [A12(S04)3-14H20 ]  to enhance 

colloidal particle coagulation. Reaction solutions o f  varying pH were adjusted to 

approximately 6.3 (using either hydrochloric acid or sodium hydroxide) to optimise 

floe formation. After 20 minutes, samples were centrifuged at 3,000 x g for 40 minutes 

at room temperature. Residual phenol and 4-chlorophenol concentrations in the clear 

supernatant were detected by direct spectrophotometric measurement o f  absorbance at 

280nm (s- 1400M'1 cm'1 for both) [25], Peroxide, HRP, catalase or alum did not 

interfere with absorbance measurements at this wavelength.



The concentrations o f  phenols used in this investigation were expressed in terms o f  

molar quantities for convenience. A ImM concentration corresponds to 94.1 and 128.6 

mg L '1 for phenol and 4-chlorophenol, respectively.

3.3.5. HPLC analysis o f  residual phenols

The removal o f  phenols was also monitored using a System Gold ™ High Performance 

Liquid Chromatograph (supplied by Beckman Instruments) linked up to an Elonex PC- 

466 computer. Reversed-phase chromatography was achieved using a jiBondapak™ 

Cl 8 column (3.9mm x 300mm) from Waters. A number o f  mobile phase compositions 

were examined for their ability to resolve mixtures. Acetonitrile and methanol mobile 

phases were examined for their respective abilities to separate the compounds o f  

interest. The effect o f  flow rate on resolution efficiency was also investigated. All 

mobile phases were filtered with 0.22|.iM membrane filters (Millex-GV, MilHpore 

Corporation) and placed in an ultrasonic bath for approximately 30 minutes.
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3.4 RESULTS AND DISCUSSION

3A  1. Optimisation o f  1 iPLC  analysis

All phenol removal experiments were analysed by HPLC as described in Section 3.3.5. 

The initial aim was to elucidate optimum working conditions. Regardless o f  its 

composition, an acetonitrile (CH3CN)-water mobile phase failed to resolve a mixture 

o f  phenolic compounds such as parent phenol and 4-chlorophenol. Retention times for 

both phenolics were practically identical; 2.95 minutes for phenol and 3.11 for 4- 

chlorophenol. Addition of methanol to the CH^CN-based carrier stream (70% CH3CN, 

10% MeOH and 20% H20 )  had little impact on phenol resolution. With a MeOH 

based mobile phase, however, retention times were significantly changed. It was 

apparent that as the % v/v o f  MeOH in the mobile phase was increased, the respective 

retention times of both compounds on the Cl 8 column was reduced. Parent phenol had 

shorter retention times in the 20-70% v/v range; however, both compounds have 

similar elution patterns when using an 80% v/v MeOH phase. 4-Chlorophenol was 

extremely difficult to elute when using <40% v/v MeOH. For example, when a 20% 

v/v MeOH phase was employed, 4-chlorophenol was unable to elute; a prolonged 

washing with 100% v/v was necessary to regenerate the column. The effect of MeOH 

composition in the mobile phase is depicted in Figure 3 1 As expected, the efficiency 

o f  separation was enhanced with an increasing water content in the mobile phase 

(buffer-based phases were not used as water was found to be sufficient). 60-80% v/v 

water-containing mixtures offered similar resolution; less than 60% v/v delivered 

adequate separation. Retention times o f  phenolics were shown to be dependent on the 

flow rate o f  the system (Figure 3 2). An increase in the flow rate resulted in shorter



Figure 3.1: Effect o f  methanol composition in mobile phase on retention time.
■ phenol; •  4-chlorophenol, detection - 280nm, flow rate - 1.4ml min'1.
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Figure 3.2: Effect o f  flow rate on retention. ■ phenol; •  4-chlorophenol.
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retention times for both phenol and 4-chlorophenol, with phenol itself having the 

shorter retention time (when using a 50:50 MeOH-water mobile phase). Rapid 

decreases in retention times were especially apparent when employing flow rates in the 

range 0.3-0.8ml min'1 (4-chlorophenol had a retention time of 20 99 minutes when the 

system was operated at 0.3ml min'1, the time was reduced to 7.84 minutes when 

operated at 0.8ml min'1). Table 3.1 summarises the retention times o f  a range of 

phenolic compounds that were used in this study. The mobile phase used was 50:50 

MeOH-water and the flow rate was 1.4ml min’1 ImM standards of phenols were 

prepared in 0.01M phosphate buffer, pH 7.0 and diluted 1:5 with mobile phase. 

Samples were filtered and thoroughly degassed prior to analysis. 20j.il o f  each sample 

was run on a C l 8 column and the concentration o f  aromatics were determined by 

monitoring the absorbance at 280nm

Table 3.1

Retention times o f  a range o f  phenols Experimental conditions (section 3.4.1.)

Phenol compound Retention time (minutes)

Phenol 2.90

2-Chlorophenol 3.95

3-Chlorophenol 5.28

4-Chlorophenol 5.08

2-Naphthol 6.41

Resorcinol 2.28

Guaiacol 3.04

2-Cresol 3.90

4-Cresol 3.78
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HRP can remove o f  a wide variety o f  aromatic compounds from aqueous solution and 

is effective over a wide range of concentrations [9], Even though the enzyme has good 

stability characteristics [26], an economically feasible treatment method at high 

temperatures would require a substantial increase in biocatalytic efficiency and lifetime. 

To describe quantitatively the degree o f  water purification achieved, the parameter 

“removal efficiency” is used, defined as the percentage o f  pollutant removed from 

solution under the given experimental conditions. Upon addition of HRP and H 20 2 to a 

ImM solution o f  phenol (made up in 0 .0 1M borate buffer, pH 9.0), the solution 

immediately turns dark followed by separation o f  a brown precipitate (which can be 

easily removed by centrifugation) A colourless solution is obtained after 

centrifugation. To determine the relative removal efficiency by this treatment, a 

solution o f  phenol is analysed before and after addition of the HRP system (HRP- 

H 2O2). Under these conditions, treatment for 24 hours resulted in near-complete 

removal o f  parent phenol (>98%). Reduction in the treatment time led to less overall 

removal o f  the aromatic. Removal efficiencies were greater when the reacting solution 

was agitated, rather than being in a quiescent state. It should be pointed out that 

treatment with peroxidase or peroxide alone did not result in any aromatic removal 

from aqueous solution

Figure 3.3 summarises the treatment accomplished during the removal o f  ImM 

phenol in batch reactors as a function o f  enzyme dose. In the case o f  doses o f  0.25 and 

0.50U ml'1, the amount o f  enzyme supplied to the reactor was limiting, as indicated by 

the significant residual concentrations of phenol at all time intervals (residual 

concentrations determined as described in Section 3 3 4 ). In contrast, the 1.0U ml'1

3.4.2 HRP-catalysed oxidation o f  phenol
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dose o f  HRP resulted in a greater degree o f  removal Under actual treatment 

conditions, care must be taken to make full use o f  enzyme lifetime in order to avoid 

waste o f  catalyst and to improve the economic feasibility o f  the method.

F igure  3.3: Phenol removal as a function of initial enzyme dose.
■ 0 25U; •  0 50U, a  0 75U, ▼ 1 00U ml'1

In the past, peroxidase enzymes have not been available at a cost and in a purity 

amenable to many biocatalytic processes, such as the treatment of contaminated waters 

and, particularly, wastewater treatment. For example, horseradish roots, the main 

source o f  FIRP, are cultivated generally in small quantities and are propagated through 

root cuttings, thus making it difficult to scale up production. The limited availability of 

horseradish root extract, coupled with the shortage of alternative sources o f  enzyme, 

has created a very expensive market for such enzymes. Accordingly there is a need for



relatively inexpensive methods for treating contaminated waters, and particularly for 

use in wastewater treatment to remove hazardous or toxic materials.

3.4.3. Effect o f  pH

Since the pH o f  industrial effluents may vary, the pH dependence o f  the enzymatic 

removal o f  phenol was examined. H20 2 was equimolar with phenol (ImM) in all tests. 

The percentage phenol remaining in solution after a 10 minute exposure to the HRP 

system was determined. HRP precipitated phenol in the pH range 4 0-11.0. Particularly 

good removal was achieved between pH 6.0 and 9.0, with an optimum at pH 9.0 [9], 

Virtually no catalytic activity was observed below 2.0 or above 11.0. Activity 

increased substantially in the range 4 0-8.0. Boric acid buffer was employed at pH 9.0 

and phosphate was used at pH 8.0.

65

35
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PH

Figure 3.4: Dependence o f  4-chlorophenol removal on pH o f  reaction medium.



It has been reported that borate has a protective effect on HRP activity [15], This fact 

may go some way towards explaining the observed profile. The pH profile for 4- 

chlorophenol (4-CP) removal had a similar trend to that o f  phenol except that the pH 

for optimum removal was found to be 8 0 (Figure 3.4).

Nicell el al. pointed out that in the presence o f  excess HRP, greatest removal 

o f  4-CP was achieved in a solution that had a pH o f  3.9. This was attributed to the 

reduced solubilities of polyaromatic products in media o f  lower pH values [31], Use of 

an excess amount of HRP represented a loss in catalytic efficiency . The optimum was 

defined as the pH at which the greatest number o f  substrate molecules were 

polymerised per amount o f  enzyme provided. They concluded that phenol oxidation 

was best at pH 8.1.

The activity o f  HRP was found to be pH-dependent (Figure 3.4). Oxidase 

reactions are typically carried out in the pH range 3.0-10.0 and particularly between

4.0 to 9.0 [6], A pH value may be selected at which the enzyme is highly active for 

economic and environmental reasons; however, the pH o f the aqueous composition 

may not lie in this pH range Soils or sludges could be modified (with potassium 

phosphate) to bring their pH into working pH ranges, but because o f  HRP’s broad 

activity, it would be possible to treat soil or sludge as they exist.
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Inactivation of HRP as a function of time at temperatures between 5 and 65°C has 

been reported [12] Native HRP was subject to rapid inactivation at temperatures 

above 65°C during phenol removal (Figure 3.5). The temperature maximum of  this 

catalytic effect was around 50°C with over 50% of phenol removed within 10 minutes. 

Thus, more than twice the concentration o f  phenol was oxidised at 50°C than at 80°C. 

A similar degree o f  removal can be achieved at all temperatures when sufficient 

enzyme is supplied to the batch reactor initially; however, this represents a loss in 

catalytic efficiency and a corresponding increase in cost. A number o f  reasons may 

account for reduced phenol removal at temperatures greater than 65°C. Klibanov et al. 

noted that neither phenol nor peroxide alone inactivate the peroxidative reaction [9], 

They suggested the possibility o f  interactions between enzymatically generated pheno-

3 .4 .4 .  T em perature studies

Tcmpcraturc (C)

Figure 3.5: The effect of temperature on native HRP-catalysed removal o f  phenol
from aqueous
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-xy radicals and the enzyme’s active centre. Alternatively, inactivation may be due to 

the adsorption of protein molecules onto polyaromatic products. This would adversely 

affect aromatic substrate diffusion to the active site [15], Also, peroxidase activity is 

lost if the enzyme is exposed to high temperatures for prolonged periods, as unfolding 

disrupts the active site to an irreversible extent Irreversible enzyme thermoinactivation 

is responsible for the gradual loss o f  enzyme activity with time at an elevated 

temperature. It may be treated as a two-step process, where N, D and I are the native, 

reversibly denatured and irreversibly inactivated forms o f  a protein, respectively 

(equation 3.2). K and k represent the equilibrium and rate constants. Various aspects 

o f  thermal inactivation have been addressed in Chapter 2 (Section 2 4.3).

N  <——— > D — -— >1 (3.2)

Nicell et al. reported that the extent o f  4-CP removal from aqueous solution in a batch 

reactor was dependent on temperature, except where HRP was present in an excess 

amount and exposure temperatures were below 50°C [12] Significant improvement in 

the efficiency o f  the process occurred when carrying out the reaction below 35°C. HRP 

activity was stable for long periods when stored at low temperatures [23], It is possible 

that the catalyst’s longer lifetime at lower temperatures was due to a slower reaction 

rate [27] rather than to decreased thermal denaturation o f  the enzyme. Lower reaction 

rates would suggest a lower concentration of free radicals during the polymerisation 

process at any given time; the rate o f  enzyme adsorption onto polymer products [16] 

and/or interactions with the active centre [6] would be minimised. HRP-catalysed 

colour removal from bleach plant effluent was severely hampered when carried out at
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temperatures greater than 60°C The thermal inactivation characteristics o f  native HRP 

at elevated temperatures in this range have been reported [28], Results here have 

demonstrated that the efficiency of phenol removal from aqueous solution decreased as 

the enzyme was exposed to a temperature o f  70°C for long periods. Catalytic activity 

o f  a 1U ml'1 enzyme fraction was practically zero after 60 minutes. Thus a strategy is 

desirable that in some way improves catalytic efficiency under these conditions

3 4.5. Effect o f  succinimides on phenol removal

Treatment o f  HRP with the amino-specific reagent, acetic acid N-hydroxysuccinimide 

ester (AA-NHS) led to noticeable increases in phenol precipitation at 70°C (Figure 

3.6). Note that modification o f  HRP with higher concentratons o f  the acetylating agent 

(2.0 and 3.0mg ml'1) led to increased phenol removal, i.e., to a more thermostable form 

of the enzyme. The optimum ester concentration was approximately 1.5mg ml'1. 

Concentrations above this did not lead to any further increases in removal efficiency. 

These stabilisations persisted on storage at 4°C. Also, modification with the agent did 

not alter the enzyme’s pH profile It is important to note that the succinimide 

modification protocol did not result in any loss of HRP’s ability to catalyse the 

oxidation of phenols However, chemical modification o f  HRP did not result in any 

improvement in phenol removal at room temperature.

A 6- to 23-fold thermostabilisation of HRP at 75°C following reaction o f  bis- 

succinimides with 5 of the available 6 lysine residues has been reported [23], Analysis 

o f  acetylated FfRP’s free amino groups indicated that the modifying agent altered three 

lysines [28]. Thermal inactivation o f  these commercial preparations deviated from a 

first-order decay at this temperature. Similar observations were made by Chang et al.
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who estimated the process to be 1 5-order [29] when the thermal inactivation profile of 

HRP deviated from first-order kinetics in the range 60 - 94°C.

Figure 3.6: Removal efficiency (%) o f  phenol as a function of AA-NHS
concentration at 70°C. ■ O.Omg ml'1; •  0.2mg ml'1; ▲ 0.6mg ml'1; ▼ 
0.8mg ml'1; ♦ 1.4mg ml'1

Ugarova and colleagues studied the thermostability o f  the enzyme following 

modification o f  its lysine amino groups with a variety o f  carboxylic acid anhydrides and 

with trinitrobenzenesulphonate (TNBS) Some of these compounds reversed the 

positive charge on the lysines These chemical treatments led to restricted 

conformational mobility and to increased thermostability. Stabilisation was due to the 

extent o f  modification, i.e., the number o f  lysines modified (not the nature o f  the 

modifier). The authors reported first-order thermal decay kinetics o f  HRP derivatives 

at 56°C [30],
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Urrutigoity and Souppe reported on the attachment o f  polyethylene glycol (PEG) to 

periodate-oxidised carbohydrate chains o f  HRP, enhancing the enzyme’s solubility and 

activity in chloroform and toluene [31] Oxidised PEGs of differing molecular weights 

have been attached to free amino groups (as opposed to the carbohydrate moiety) of 

HRP, increasing organotolerance [32], Wu e / a!, have demonstrated that the addition 

o f  PEG had a significant protective effect on the HRP activity. The amounts o f  HRP 

required to remove 1 0 and 10 OmM phenol from solution were reduced 40- and 75- 

fold, respectively, in the presence o f  PEG [16] Apparent enzyme inactivation during 

phenol oxidation processes is thought more likely to be due to adsorption o f  enzyme 

molecules by the end-product polymer [15, 16], By adding proteins or hydrophilic 

synthetic polymers, enzyme adsorption is competitively suppressed; inactivation is 

therefore alleviated and this in turn reduces the overall cost o f  the process. The extent 

o f  PEG ’s inhibitory effects are thought to be primarily dependent on PEG molecular 

weight [15] In a similar fashion, maximum removal o f  phenol occurs at pH 9.0, as 

borate possesses a protective effect on the enzyme’s activity.

Chemical modification can dramatically increase enzyme stability [33], In this 

study, amino-specific succinimides have been employed to modify HRP’s lysine 

residues with the aim o f  increasing thermostability, thus reducing the amount of 

peroxidase neeeded to catalyse the removal o f  phenolics from aqueous solution at high 

temperatures. By specifically targetting the lysine amino acids [34], the carbohydrate 

portion has been left intact for further modification This could be exploited, in that 

additives such as PEG or gelatin are capable o f  protecting HRP from the effects of 

polyaromatic substrates [15] This approach could complement the specific chemical
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modification described here, resulting in the production o f  a HRP derivative with 

improved phenol removal capabilities at ambient and elevated temperatures.

HRP can be immobilised on surfaces such as paper or plastic or on beads or 

like surfaces. Materials that could be used as the solid phase encompass the whole 

range of polymers. Some of the most prevalent are polymers of ethylenically- 

unsaturated monomers (e g. styrene, acrylic acid derivatives, ethylene, propylene), 

polysaccharides (e g. cellulose, dextran, agarose), polypeptides (e g gelatin/collagen, 

cross-linked proteins such as albumin), nylon and glass Composites on the foregoing 

have also been used alone, and in conjunction with inorganic materials other than silica 

such as crystalline calcium phosphate. Preferably the surface is also useful for filtering 

the precipitated solids from the solution, such as with filter paper. Additional examples 

include other forms o f  cellulose, glass fibre filters and other porous solid phases of 

natural or synthetic origin.

The choice o f  immobilisation technique is crucial, as each strategy presents 

different problems Nicell e! a t attached HRP to cellulose filter disks placed in a filter 

holder to remove 4-CP from water in a heterogenous reactor design. Filter disks were 

chosen as the reactor matrix to minimise contact time o f  the enzyme with the free 

radicals. The system operated on the basis of pumping 4-CP (containing H20 2) through 

the filter disks. Enzyme activity decreased as the concentration o f  products deposited 

on the filter disks increased. Results indicated that mass transfer limitations existed in 

the system. However, the authors did point out that the system was slightly more 

efficient than utilising a solubilised enzyme system as the enzyme, in its free state, had 

a finite catalytic lifetime and the rate o f  enzyme addition to the system was crucial to 

the system’s efficiency
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The entrapment o f  HRP in alginate beads improved colour removal from phenolic 

industrial effluents [17] However, the beads were deemed unsuitable for continuous 

use as enzymes were rapidly released into solution. HRP has been immobilised on a 

different reactor matrix, CNBr-Sepharose 4B, for decolourising kraft effluent. Mass 

transfer limitations and leaching o f  peroxidase activity to the reaction medium were not 

apparent [35] The ability o f  horseradish peroxidase attached in three different reactor 

matrices: cellulose filter paper, nylon balls and nylon tubing, to remove 4-CP from 

aqueous solution was evaluated [18], Results indicated that over 80 % removal 

efficiency could be obtained as long as HRP activity was not limiting in the reactor; 

however, enzyme inactivation by reaction intermediates was observed.

Mass transfer appeared to be a problem when employing immobilised HRP or 

any other source o f  peroxidase Findlay described a novel solid support for practical 

immobilisation which could be used for either enzymes or cells [19]. Biobone is 

composed o f  clean granular chicken bone. The material is extremely porous and is 

made up o f  crystals o f  the mineral hydroxyapatite (calcium phosphate) embedded in a 

protein matrix o f  connective tissue Oxidised phenol is collected on the support and 

removal efficiencies of over 99 99% were reported Due to the porosity o f  the matrix, 

mass transfer limitations were significantly reduced and the system demonstrated the 

ability to process large volumes o f  phenol waste.
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3 .4 .6 .  Effect o f  reaction l im e on 4 -C P  removal

In any chemical reactor, the conversion achieved is dependent on the reaction time. 

Experiments were carried out to estimate the time scale o f  the polymerisation reaction 

o f  ImM 4-CP. Results for the substrates’ conversion as a function o f  time by native 

and HRP derivatives at 37 and 70 C are shown in Figure 3.7.
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Figure 3.7: % Removal efficiency o f  4-CP as a function o f  reaction time and HRP
preparation in a batch reactor at 37 and 70°C. •  Native 70°C; ▼ AA-
NHS 70°C; a  EG-NHS 70°C; ■ Native 37°C.

Maximum removal was achieved within 10 minutes which indicated a relatively fast

reaction rate. This was followed by a very slow removal process (a removal efficiency 

o f  >98% after 24 hours). This slowdown in reaction rate could be attributed to the 

simultaneous decrease in the concentration o f  all the reacting species (phenol, HRP 

and peroxide). Similar behaviour was observed for parent phenol. Both derivatives 

appeared to be more efficient in removing 4-CP at 70°C than native HRP. After 20

147



minutes, modified HRPs catalysed the removal o f  approximately 55% of  4-CP in 

solution whereas native HRP precipitated just over 40% in the same time at 70°C. 

Removal efficiencies o f  succinimide-treated HRP fractions were less than 10% lower 

than that o f  native peroxidase at 37l)C, with acetylated HRP possessing marginally 

better ability over the bifunctional form (EG-NHS HRP).

As previously stated, the slowdown in reaction rate after 15 minutes can be 

attributed to a decrease in the concentration o f  all the reacting species. Carmichael et 

al. have shown that multiple additions of cosubstrate (peroxide) resulted in stepwise 

substrate oxidation [36], an indication o f  the relative stability of their peroxidase 

(chloroperoxidase) over the course o f  the experiment. Naturally this observation is 

totally dependent on the concentration o f  individual peroxide spikes. On the other 

hand, the presence o f  excess peroxide would result in Compound II (Eu) formation, 

which can be oxidised to Compound III (E^); see Reaction 3.6. Compound III is 

peroxidatically inactive but not terminally inactivated, as it spontaneously decomposes 

to native peroxidase (Reaction 3.7) [37], Thus, the slow removal phase may in fact be 

due to Compound III formation, as any accumulation o f  HRP in this state results in a 

loss in catalytic efficiency [38], The one-electron oxidation o f  aromatic substrates 

(AH2) catalysed by peroxidase is well understood and is usually depicted by the 

following mechanism where E is the native enzyme and E| refers to Compound I.

E + H2O2 —> E| + H2O (3.3)

E| + AH2 —> En + ’AH (3.4)

Eh + AH2 —> E + ’AH + H20 (3.5)

Eji + H20 2 —> Eiii + H20 (3.6)

£ ¡ ¡ 1  —> E + O2 (3.7)
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Nicell el cil.have postulated that the enzyme is distributed between the Compounds I 

and II and native enzyme forms immediately following the start of the reaction [10], 

Model predictions indicated that the maximum levels o f  Compounds I and II 

concentrations are achieved within the first 2 milliseconds under the given experimental 

conditions (4-CP - ImM, F120 2 - lmM, HRP - 0.64U ml'1, at 25°C and pH 7.0). It was 

assumed that the amount o f  enzyme inactivated at any time is directly proportional to 

the quantity o f  aromatic substrate removed from solution.

3.4.7. Effect o f  hydrogen peroxide concentration on polymerisation 

Experiments have demonstrated that the removal o f  phenolics by HRP is not a function 

o f  H20 2 except when its concentration is limiting. It is important to limit the addition 

o f  peroxide to the reaction as an excess would inhibit the enzyme’s catalytic ability

[37]. The oxidative capabilities of native and acetylated HRPs on parent phenol over a 

temperature range (50-80°C) at different peroxide concentrations (0.5 and l.OmM) is 

shown in Figure 3 8 An initial ImM peroxide spike in the batch reactor resulted in 

appreciably greater removal rates for the derivative enzyme at ambient and high 

temperatures. The removal o f  4-CP as a function o f  H20 2 concentration in the 

presence o f  excess enzyme at 70°C was shown to be linear (Figure 3.9) and would 

suggest a reaction stoichiometry of one Phenol removal under the same conditions 

appeared not to exhibit linearity, nevertheless, a one-to-one phenol-peroxide reaction 

stoichiometry was chosen for further experiments. After the initial levelling out period 

(see Figure 3.8), one additional spike of ImM peroxide to the reactor resulted in a 

further 12% reduction in the level of residual 4-CP over a 30 minute period. Further 

additional spikes o f  HRP did not result in any further oxidation of phenolics.
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Klibanov et al. noted that 2 mol of peroxide were necessary to polymerise 1 mol of 

phenol when peroxide was added at the beginning o f  the reaction [9], The generation 

o f  two free radicals per molecule o f  peroxide has also been suggested [38], Removal of 

such compounds from water at low peroxide concentrations (<0.3mM) results in the 

formation of soluble products which become larger polymers (possessing reduced 

solubility) in the presence o f  higher peroxide concentrations. These larger polymers 

readily precipitate from aqueous solution [ 12]

Temperature (C)

Figure 3.8: Dependence of phenol removal on temperature and concentration o f
hydrogen peroxide, a  AA-NHS HRP (l.OmM H2O 2); ▼ AA-NHS 
HRP (0.5mM H20 2); ■ Native ( I OmM H20 2); •  Native (0.5mM 
H2O2)

Based on the foregoing, peroxide concentrations were generally kept around l.OmM in 

all experiments It was concluded that initial concentrations greater than l.OmM in the 

batch reactor did not improve the system’s efficiency. Peroxide concentrations greater
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than l.OmM could possibly contribute to the suicide inactivation o f  the enzyme [37], It 

is known that in the absence of a reductant substrate and with excess peroxide, HRP 

displays the kinetic behaviour of a suicide inactivation, peroxide being the suicide 

substrate. Greater HRP inactivation can occur as the initial level o f  peroxide in the 

system is increased, enzyme inactivation or total loss o f  activity occurs with an 

apparently bi-exponential time course. Rather than being inactivated by the 

cosubstrate, the authors concluded that HRP (due to reduction o f  Compound I by 

peroxide) acts as a catalase activity in the absence of any reductant source

Figure 3.9: 4-CP removal at 70HC by native HRP as a function o f  hydrogen
peroxide HRP concentration - 1.2U ml'1.

The type o f  peroxide used in oxidative-type reactions is generally hydrogen peroxide, 

but other peroxides are useful Other potentially useful peroxides include methyl 

peroxide and ethyl peroxide The preferred oxidising agent (hydrogen peroxide), can
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be dissolved in water for addition to the contaminated water. Pokora el al. have 

recommended the use o f  a ramped addition system, where higher amounts of peroxide 

are used at the beginning o f  the reaction when peroxide is consumed rapidly and scaled 

down amounts o f  peroxide are used in the later stages [39], For reaction on soils and 

sludges, higher applications o f  peroxide (as well as of peroxidase) may be required.

3.4.8. Effect o f  HRP concentration on 4-CP removal

4-CP removal at different concentration levels of HRP preparations is illustrated in 

Figure 3.10. The amount o f  enzyme required for aromatic precipitation will depend 

primarily on its activity The enzyme is not consumed during the course o f  the reaction, 

but it does gradually lose activity During this experiment, all reactions were halted 

after a 20 minute period. Increasing the concentration o f  the enzyme produced better 

removal o f  4-CP. In the case of enzyme doses up to 0 8U ml"1, the amount of enzyme 

supplied to the reaction was limiting, as indicated by the significant residual 

concentration o f  4-CP Near-constant removal efficiencies were observed over the 

range 1.2-4.0U ml’1 These initial FIRP spike concentrations were therefore well in 

excess o f  the amount required for treatment, i e., a proportion o f  each HRP fraction 

remained active following the oxidation of the substrate. Treatments of longer 

duration (24 hours) required lower initial spike concentrations than those required for 

3 hour treatments. Thus, one can increase the time of treatment to offset the reduction 

in removal efficiency at low enzyme concentrations [25],

The number o f  reactions catalysed by individual peroxidase molecules can be 

substantially increased by keeping an initially low concentration of enzyme in the 

system, i.e. < 1U ml’1 [12, 25] Greater HRP concentrations gave similar removal
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efficiencies In this case, each peroxidase molecule catalyses fewer reactions and this 

represents a decrease in catalytic efficiency. At higher enzyme concentrations (>1.0U 

ml"1), phenoxy radicals generated may find an enzyme’s active site more readily, but as 

the reaction proceeds and the concentration o f  the aromatic decreases, free radical 

polymerisation becomes much more difficult [38],

Figure 3.10: 4-Chlorophenol as a function of HRP concentration
•  Native HRP at 70°C, ▼ AA-NHS HRP at 70°C; a  EG-NHS HRP at 
70°C,b Native HRP at 37°C.

Oxidative enzymes such as HRP are applicable to the removal o f  a variety o f  aromatic 

substrates from industrial wastewater and are effective over a wide concentration 

range [6, 9], Peroxidase inactivation during the removal process at high temperatures 

is presumably due to the unfolding of the protein conformation [40], It has been 

demonstrated that the amount o f  peroxidase required to remove phenolics at 70°C was



reduced by modification o f  HRP with s-amino-specific succinimides These reagents 

(e.g. AA-NHS) act by neutralising the amino group’s positive charge during the course 

o f  the reaction [41] This charge neutralisation possibly accounts for HRP’s enhanced 

thermostability, which in turn leads to a greater rate o f  phenol removal at high 

temperatures. Monoflinctional protein modifiers such as AA-NHS esters are unable to 

form molecular crosslinks Modification of HRP with bifunctional-type succinimides 

such as EG-NHS has also been shown to improve thermostability at elevated 

temperatures [23], however, their overall removal capabilities were shown to be 

marginally lower than that o f  acetylated HRP (see Section 3.4.10). Bifunctional, as 

opposed to monofunctional succinimides, can form protein crosslinks [37, 41], 

Evidence supporting the existence of such links in the EG-NHS form of  HRP has been 

put forward (see Section 2.4.1 1) Net fluorimetric emissions from modified HRPs were 

smaller in magnitude than that of the native enzyme at both room 25°C and 65°C, 

indicating that the conformational ability of the derivative was in some way restricted.

The ethylene glycol compound spans a molecular distance o f  14A. It is possible 

that the presence o f  such intramolecular crosslinks interferes with the one-electron 

oxidation o f  aromatic substrates [12], thus slightly decreasing removal capabilities. It is 

feasible that crosslinked HRP is less able to contort in binding some substrates, or 

more likely, both reagent types (EG- and AA-NHS) modify different proportions o f  

N H 2 groups (AA-NHS modifies 3 lysines whereas EG-NHS modified up to 5 residues) 

[23, 42]

As shown previously, the removal of aromatics from aqueous solution is 

dependent on the initial concentrations of both HRP and peroxide up to a certain point. 

However, the amount o f  peroxidase added to the body o f water was not generally
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dependent on the concentration of the aromatic hydroxy compound. It was apparent 

that the more critical variable appeared to be the amount of substrate employed, for the 

oxidase enzyme used to generate H2O 2 , since the amount o f  peroxide which can 

ultimately be generated will be limited by the amount of substrate provided Thus, the 

greater the concentration o f  aromatic in the solution to be treated, the greater the 

amount o f  oxidase substrate will preferably be employed. The order of addition of 

these reagents to the reaction mixture is not critical to the overall efficiency of the 

reaction. The amount of enzyme required for total water purification could be 

accomplished by reducing the contact time between the enzyme and aromatic 

molecules Shorter contact time prolongs the operating lifetime of the enzyme and, as a 

result, it may be used to treat a much greater volume of solution than if it had been 

simply been included in a solution. Strategies o f  this kind typically involve immobilising 

the enzyme (Chapter 1) and preferably incorporating the matrix-enzyme complex into a 

continuous flow reactor [38] so that its contact time with the aromatic and peroxide 

mixture can be controlled by the flow rate In this way, the solution can be repeatedly 

contacted by the enzyme through recycling or by passage through a series of reactor 

elements on which the enzyme is immobilised [18] Substantial amounts of the oxidised 

phenol can accumulate without drastically decreasing enzyme activity [43],

A number of other enzymes apart from peroxidase can be utilised in this type of 

oxidation reaction. These include haloperoxidases, lactoperoxidase, ligninase 

(manganese-dependent or -independent), tyrosinase (polyphenol oxidase) and 

cytochromes as well as heme proteins such as hemoglobin. Some o f  these enzymes use 

oxygen as a substrate (e.g. tyrosinase) while others use peroxide as an oxidative 

substrate to activate the enzyme All are regarded as “oxidative” or “oxidatic”



enzymes. Equivalent results can be achieved where oxygen is dissolved in the aqueous 

solution for oxidative enzymes The relative effectiveness o f  different enzymes 

possessing phenol-removal capabilities have been assessed [11]

3.4.9. Simultaneous biodegradation o f  phenol and 4-chlorophenol in batch reactors 

The disappearances o f  phenol and 4-CP catalysed by native and acetyiated HRPs at 

70°C were monitored Modified HRP displayed a greater ability to oxidise both 

aromatics, either individually or when combined. When phenol was incubated with the 

native enzyme (1U ml'1) at pH 8.0, minimal substrate depletion was noted However, 

when incubated in the presence o f  ImM 4-CP, phenol removal was significantly 

improved. 4-CP was readily precipitated from solution when exposed on its own to the 

HRP system However, when it was exposed to the native enzyme at 70°C in the 

presence of ImM phenol, its removal was notably less than that observed when it was 

the sole substrate (Figure 3 11) Co-polymerisation of both phenolics at the elevated 

temperature (Figure 3.12) was enhanced when the native enzyme was replaced with 

acetyiated HRP (concentration o f  1U ml'1) These results implied that 4-chlorophenol 

is a better substrate than parent phenol and that acetyiated HRP oxidises phenolic 

mixtures more efficiently than the native enzyme at elevated temperatures. Also, the 

transformation of phenol was enhanced by the presence of 4-CP and the removal of the 

latter from aqueous solution was inhibited by the presence o f  phenol It has been 

reported that easily removed pollutants, i.e., those with higher removal efficiencies, aid 

in the oxidation o f  more difficult to remove compounds [6], Free radicals generated 

from the former-type compounds react with those o f  the other type, resulting in the
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production of high molecular weight insoluble mixed polymers that readily precipitate 

from solution. This same mechanism has been shown to work with non-phenol and 

non-amine type compounds [44] Naphthalene and azobenzene (both hazardous 

pollutants that do not react with HRP) were precipitated in the presence of 2,3- 

dimethoxyphenol or 8-hydroxyquinoline and the HRP system Presumably, free 

radicals enzymatically produced from the latter two compounds attacked and 

precipitated the more difficult-to-remove compounds. In this case, it is quite possible 

that both phenol and 4-CP are equally reactive towards HRP, but that the oxidation 

products of phenol may have a lower combined molecular weight and therefore be 

fairly soluble in water; 4-CP reaction products may not possess the same degree of 

water solubility.

The discovery o f  enhanced enzymatic removal of poorly removed or non­

removable compounds in mixtures of pollutants has important application []]. Real 

industrial wastewaters contain many different pollutants. Here, even if only a few of 

them can be easily precipitated by HRP, the removal o f  others by the HRP system will 

be facilitated [11]. Nevertheless, the fact that 4-CP has been shown to be more readily 

oxidised (Figures 3.11 and 3.12) has in its own right important application. Due to the 

wide use o f  chlorine as a bleaching agent for chemically produced wood pulps in the 

pulp and paper industry, dilute pulp mill bleaching effluents contain undesirable levels 

o f  adsorbable organic halogens in the form o f  chlorophenols, chloroaliphatics, 

chlorocatechols, polymerised chloroaromatics etc. Chlorophenols are major 

intermediates o f  phenoxyalkanote herbicides and other pesticides which retain their 

toxic properties for an indefinite period since they easily form soil bound residues [24], 

The effect o f  chlorinated compounds such as pentachlorophenol (PCP),



polychlorinated biphenyls (PCBs), chlorinated benzene etc released into the 

environment is an immediate concern for the entire population Increasingly stringent 

regulations are necessary if the levels of such compounds in the environment are to be 

reduced

Strategies towards directly enhancing an enzyme’s ability to remove such 

compounds can only improve a system’s performance up to a certain point The choice 

o f  a suitable reactor could further decrease the cost o f  the process Batch type reactors 

suffer from substrate saturation at the start of the reaction in the presence of excess 

peroxide [18], In such systems, the enzyme is susceptible to inactivation as reaction 

intermediates can interfere with biocatalysis, although immobilisation techniques could 

alleviate this problem [19], Nicell and colleagues reported that treating wastewater in a 

continuous stirred tank reactor (CSTR) gave greater removal than in batch systems. A 

high degree o f  aromatic conversion can be achieved in batch reactors using long 

retention times but at the price o f  high costs and difficult operation at a large scale [12, 

38], A continuous flow system was thus regarded as the only economically feasible 

option for treating contaminated waters, as reactant and enzyme concentration are 

lowered immediately upon entering the reactor; therefore inactivation of HRP is 

automatically reduced by the low stready state concentration of HRP in the reacting 

mixture. In addition, the concentration o f  peroxide can be maintained at a low level, 

thus reducing the possibility o f  Compound III formation [37] Catalytic turnovers [25] 

achieved in the continuous set-up were higher than those observed in batch reactors 

when adequate reaction time was allowed



Clearance tests in batch reactors were performed for a variety o f  phenolic substrates 

including parent phenol, chlorinated phenols and alkylphenols (Table 3 2) Data shows 

the concentration (mM) o f  each phenolic removed after a 20 minute exposure, by 

which time a levelling off period was visible in the HRP system. The reaction 

conditions used in this survey were not optimised for near or complete removal of 

phenolics but were standardised to determine the relative susceptibilities of these 

compounds to oxidation by native and derivative peroxidases. Incubation temperatures 

were 37 and 70°C. In some cases, removal efficiencies were very high (4-chlorophenol 

and 2-naphthol) whereas 3-chlorophenol was less prone to enzyme-catalysed 

precipitation. Preliminary results indicated that complete removal of such substrates 

was feasible with prolonged exposure to the HRP system. For comparative purposes, 

the reaction time was limited to 20 minutes. The pH for optimum removal o f  all 

aromatic substrates was in the range 7 0-9 0 (which is close to the typical pH o f  coal 

conversion [9]) with the exception o f  2-naphthol (pH 5 5)

Acetylated HRP appeared to possess an overall greater ability to oxidise 

phenolics than EG-NHS HRP at 70WC. Certain compounds showed significant 

differences in removal efficiences, however, some compounds were found to be more 

difficult to precipitate from aqueous solutions than others, eg . 3-CP. O f the eight 

aromatics studied, 4-CP was most readily removed from water. There are at least two 

explanations for the performance o f  3-CP: the compound has a low reactivity towards 

the peroxidase or alternatively, 3-CP may be sufficiently reactive towards the enzyme 

but the products o f  its enzymatic oxidation may have a low molecular weight and be 

soluble in water

3 4 10 Removai o f  a ranue o f  phenolics
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T ab le  3.2

Concentration (mM) of phenol removed after 20 minutes by the HRP system.

Phenolic pH Nat. (37°C) Nat. (70°C) EG. (70°C) AA (70°C)

Phenol 9 0 50 0 32 0.37 0.39

2-CP 8 0 63 0 41 0 57 0.55

3-CP 8 0 31 0 08 0.27 0.27

4-CP 8 0 64 0.42 0.58 0.54

2-naphthol 5.5 0 55 0.30 0.44 0.45

Guaiacol 6 0.52 0,31 0.43 0.47

2-creso! 7 0 57 0.34 0 47 0.47

4-cresol 7 0 56 0 28 0 44 0.45

Addition of an easily removable compound (the oxidation products of which are 

obviously water insoluble) such as 4-CP might result in the formation o f  high 

molecular weight mixed polymers which are nearly insoluble in aqueous media This 

approach could indeed facilitate the removal o f  such difficult aromatic hydroxy 

compounds by HRP in water Certain phenols cannot be enzymatically precipitated at 

all (e.g. nitrophenols), however, co-polymerisation would seem to be the best 

approach.

Aromatics with electron-donating substituents (methyl groups) at the meta­

position favour removal over those with substituents at the ortho- or para- positions. 

The opposite applies for electron withdrawing groups ( e g  Cl) [6], Results have 

shown this to be true as 3-CP was less susceptible to enzymatic oxidation than 2- or 4- 

CP. Ingols el al. showed that resistance to biodégradation increased with increasing
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substitution o f  Cl atoms on the aromatic ring and with their position For example, 

phenol has been shown to be more readily oxidised than pentachlorophenol [45] In the 

same way, different sources of peroxidase enzymes were found to influence particular 

oxidative reactions differently Manganese peroxidase (MnP) was more active towards 

pentachlorophenol than phenol, the opposite applied for ligin peroxidase (LiP) [46] 

Some synergism between the two peroxidases was observed in the degradation o f  

various chlorinated phenolic compounds.
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It has been demonstrated that modification o f  HRP with amino specific bifunctional 

and monofunctional chemical reagents can substantially increase the rate of phenolic 

removal from aqueous solutions at high temperatures. Complete recovery o f  enzyme 

activity was apparent after modification These stabilisations persisted on storage at 

low temperatures. It is possible that the presence o f  intramolecular crosslinks in the 

ethylene glycol derivative o f  HRP in some way hinders the enzyme’s ability to catalyse 

the oxidation o f  aromatic hydroxy compounds The acetylating agent (AA-NHS) 

cannot form such links, stabilisation in this case is possibly due to the charge 

neutralisation (3 lysines modified) It is therefore plausible that the absence of such 

crosslinks resulted in the uninterrupted movement o f  aromatic molecules to and from 

the enzyme’s active centre, even though EG-NHS is capable of forming a considerably 

sized link o f  14A length Nevertheless, this relatively straightforward procedure makes 

the HRP-catalysed removal o f  aromatics more feasible in view of the costs involved.

There is a possibility o f  retarding enzyme inactivation by controlling the rate of 

hydrogen peroxide addition to the reaction mixture. Further improvement could be 

achieved by using an immobilisation technique or through modification o f  the enzyme’s 

carbohydrate moiety (which has been left intact after succinimide modification).

Previous authors have shown that the use o f  additives such as polyethylene 

glycol and gelatin can increase HRP’s efficiency in removing aromatics. This strategy 

could be used in conjunction with chemical modification, thus offering a form o f  

peroxidase with enhanced oxidative capabilities at ambient and high tempertures. 

Incorporation of such a derivative in a continuous flow reactor system whereby the 

immobilised activity could deliver substantial improvements in water detoxification.

3 .4  11. C onclusion
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Proposals such as these could possibly result in the production o f  an enzyme with 

tolerance comparable to that of a bacterial or fungal cell. The genes o f  this potential 

HRP derivative could then be cloned into efficient enzyme-producing microorganisms, 

as recombinant peroxidases have been previously shown to improve phenol removal 

[47], resulting in the formation o f  harmless end products such as CO 2 , H20  and native 

peroxidase.
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CHAPTER 4

THE USE OF 
HORSERADISH PEROXIDASE 

IN A POLYMER-BASED 
SENSOR FOR DETECTING 

URIC ACID



4.1 INTRODUCTION

Uric acid (2,6,8-trihydroxypurine), a primary end product of purine metabolism, is a 

constituent o f  many body fluids It consists o f  fused pyrimidine and imidazole rings. 

With the exception of urea, it represent the most significant fraction o f  non-protein 

nitrogen in uricotelic organisms such as man. As uric acid (urate) is the chief end- 

product o f  purine metabolism, its measurement remains the most important means of 

assessing a range of disorders associated with altered purine metabolism, most notably 

gout and hyperuricaemia [1] Other medical conditions, such as leukaemia and 

pneumonia, have been associated with enhanced urate levels. Additionally, the activity 

o f  chemotherapeutic drugs can be assessed by monitoring the uric acid, as increased 

nucleoprotein degradation results in elevated purine excretion. Concurrent with its

O
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clinical significance, an entire spectmm of methodologies has evolved for its 

determination. As early as 1894, Offer reported on the production o f  a blue colour 

(tungsten blue) by uric acid in alkaline solution with phosphotungstic acid [2, 3], 

Numerous modifications on this colorimetric procedure have ensued. The poisonous 

nature o f  the oxidising agents involved and susceptibility to other reducing agents has 

restricted the analytical utility of colorimetric methods [3], Bulger and Johns 

introduced uricase to enhance the selectivity of uric acid determinations [4], Uricase 

specifically catalyses the scission o f  the purine ring (see above).
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uric acid + 0 2 + 2H20  <-» allantoin + C 0 2 + H :02 pH 7 2/8.5 (4.1)

uric acid + 0 2 + 2H:0  urea + allantoin pH 7.2 (4.2)

uric acid + 0 2 + 2H:0  urea + allantoin + alloxanic acid pH 9.0 (4.3)

It is known that the chief products o f  urate oxidation in acidic media are alloxan and 

urea. Allantoin and its enzymatically reduced product, allantoic acid (both known as 

ureides), account for 70-80% of the organic nitrogen in the xylem of  nitrogen-fixing 

soybean plants and other species o f  tropical grain legumes [5], However, many 

variations on the oxidation o f  uric acid by uricase have evolved, generally following the 

same principles.

Uric acid has an absorption peak in the region 290-293nm [3], Absorption in 

this range is due to the chromophore existing at the C(4)=C(5) bond. As this is the site 

o f  uricase activity, no absorption is observed for its oxidation products. The decrease 

in absorbance is directly proportional to substrate concentration [6], Practical 

considerations such as deproteinisation o f  the sample and the use o f  expensive 

equipment have limited spectroscopic uricase methods. Hydrogen peroxide liberated 

from the oxidative decarboxylation o f  urate by uricase (Equation 1) has been used to 

indirectly quantify uric acid [7] This colorimetric method, by Lorentz and Berndt, 

decribes the oxidation of «-dianisidine by peroxidase in the presence of H2O2 to a 

brown quinonediimine (3,3-dimethoxy-4,4-diimino-diphenoquinone). A linear response 

in colour development up to 20f.ig was observed, corresponding to 8mg of substrate 

per 100ml of serum

Electrochemical sensors have been previously shown to be particularly suited 

to the determination of uric acid [8-10], The first amperometric method for its 

quantitative determination in biological fluids was reported by Nanjo and Guilbault
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[11], Using a platinum electrode, which was covered with a thin layer o f  immobilised 

uricase, the disappearance o f  dissolved oxygen (no measurable amounts o f  H20 2 were 

detected) was used as a means o f  measuring uric acid present (applied potential: -0 6V 

vs. Ag/AgCI). A suggested problem was that H2O 2 complexation to allantoin occurred, 

possibly due to the choice o f  background electrolyte employed Keedy and Vadgama, 

also using a platinum working electrode, were able to measure uric acid via peroxide 

liberation [12],

Uric acid has also been shown to readily adsorb onto carbon paste electrode 

surfaces [13-14], which has led to the development o f  a controlled adsorption process 

for its selective determination in flowing streams [15]. Carbon, in the form o f  graphite, 

is a relatively inexpensive and versatile material and is particularly suitable for the 

fabrication o f  electrodes. Although uric acid is electroactive at such surfaces, its 

oxidation requires undesirably high overvoltages (typically greater than +0.4V) [16], 

Preanodisation o f  carbon paste electrodes in alkaline media at 1.4V vs. SCE was 

reported to enhance sensitivity [14] Such electrochemical pretreatment strategies are 

unique to carbon-based electrodes. Such improvements are thought to be due to the 

generation o f  hydrophilic electron transfer mediating groups Oxidation o f  the 

electrode material also results in a lowering of the overpotential and increased 

wettability [14], Coulometry, using a porous carbon felt electrode, has been applied to 

urate determination in human urine. The analyte o f  interest was electrolysed with 

nearly 100% current efficiency at the working surface [17],

The disappearance o f  0 2 [11], H20 2 [12] or C 0 2 production [18] have been 

exploited for urate detecting. In the first situation, dissolved O2 may also be consumed 

by compounds such as ascorbic acid and thiol-containing substances [19], Moreover,
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ascorbate and thiols may also react with enzymatically liberated H20 2 Various systems 

have exploited the anodic electroactivity o f  H20 2 in urate sensing [20-22], regardless 

o f  the known disadvantages. The elimination o f  interferences was achieved by Kulys el 

al. when HRP served as a catalyst for the reaction between H20 2 and 

hexacyanoferrate(II) followed by reduction o f  the resulting hexacyanoferrate(III) at 0V 

vs. Ag/AgCl [23], Tatsuma el al. noted that the anodic current (potential: 0.5V) using 

a bienzyme electrode was due primarily from urate oxidation and partially to H20 2 

oxidation. Its detection in peroxidase-based systems can be affected as oxidised urate 

can donate electrons to HRP, thus reducing its capacity to detect biocatalytically 

generated peroxide [24].

The feasibility o f  employing HRP for amperometric detection o f  organic 

peroxides is well known [25], In 1979, direct electron transfer between carbon black 

and HRP’s active site was reported [26], Gorton has reviewed the increasing number 

o f  reports on mediatorless electrodes where charge transfer occurs between the 

electrode and enzyme only if the enzyme is in intimate contact with the conducting 

surface [27], A mediatorless bienzyme sensor for glucose has been reported even 

though the nature o f  electron transfer was unclear [28], although Wollenberger el al. 

have suggested the role of surface functionalities in reagentless electron mediation

[29],

In this chapter, the development and application o f  a novel reagentless 

bienzyme carbon paste electrode for the indirect amperometric determination o f  uric 

acid is described via the biocatalytic production o f  H20 2. The co-immobilisation of 

HRP and uricase in carbon paste in the absence o f  an added electron transfer mediator, 

coupled with the electropolymerisation o f  o-aminophenol at the working surface of the

171



electrode acting as a conducting polymer, has proven to be an interesting alternative to 

conventional methods for constructing biosensors. Modified surfaces are o f  interest 

from an analytical viewpoint in that they may be used to enhance analyte permeability, 

while at the same time reducing interference effects. The sensor was also examined for 

its applicability to uric acid quantification in human serum.
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4.2 EXPERIMENTAL

4.2.1 Materials

Horseradish peroxidase (HRP, E.C 1.11.1.7, type VI A), uric acid, uricase (uric acid 

oxidase, E.C. 1.7.3.3), allopurinol, ascorbic acid, bilirubin, cellulose membrane dialysis 

tubing (12000 Da cutoff) and EDTA were purchased from Sigma Chemicals.

Hydrogen peroxide was obtained from Aldrich Chemicals. 

o-Aminophenol was purchased from Fluka Chemika.

Spectroscopic grade graphite powder was purchased from Ultra Carbon, Dicoex, 

Bilbao, Spain, and paraffin oil from Uvasol, Merck, Bilbao, Spain.

All other reagents (e.g. sulphuric acid, sodium hydroxide) were o f  analytical grade. 

Serum samples were obtained from Bio-Quim Laboratories, Oviedo, Asturias, Spain.
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Cyclic voltammetry and amperometry were performed using a Metrohm E612 VA 

Scanner in conjunction with an E641 VA detector.

A Linseis LY1600 x-y  plotter was used to record all cyclic voltammograms.

A Linseis L6012B recorder was used for amperometric measurements.

Static measurements were carried out in a 20ml Metrohm glass cell, incorporating a 

conventional three electrode system

The working solution in the glass cell was magnetically agitated at 500rpm. The rate of 

agitation was measured using an electronic speed meter (Heidolph 2001).

A  piston-type carbon paste electrode with a Teflon body and stainless steel contact 

acted as the working electrode. The active surface was a disk with geometric 

proportions o f  7 .1 mm2.

A silver/silver chloride/saturated potassium chloride electrode acted as the reference 

electrode. A platinum wire served as the auxiliary (counter) electrode.

The Flow Injection Analysis (FI A) consisted o f  a twelve cylinder Spetec Perimax 12 

peristaltic pump and a six-port rotary valve (Rheodyne 7125) as carrier propulsion and 

injection systems, respectively.

Analysis was carried out in a home made thin-layer flow cell (Kissinger design) [30], 

equipped with a working electrode o f  geometric proportions as described previously.

A downstream compartment connected to the thin layer cell outlet contained the 

reference electrode incorporating a low resistance liquid junction and a stainless steel 

waste tube acting as a counter electrode.

The kinetic parameters Km and Vmax were calculated using the Enzfitter programme 

(Biosoft, Cambridge, U.K.).

4 .2.2. Egujpment
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4.3.1. Carbon paste preparation

Carbon paste was prepared by thoroughly mixing 1.8ml o f  paraffin oil with 5g of 

spectroscopic grade graphite powder using a pestle and mortar for approximately 30 

minutes, at which stage the mixture was uniformly wetted and homogeneous. Gritty 

graphite types were avoided as they can yield irregular electrode surfaces, resulting in 

lower peak currents. The mulling agent should be of low volatility, possess very low 

solubility in the medium of interest and contain no electroactive impurities.

4.3.2. Electrode preparation

Uricase, HRP and ferrocene (used in preliminary trials) were added to unmodified 

paste and mixed thoroughly for 30 minutes. To pack the electrode, a small but excess 

amount o f  enzyme-modified carbon paste was pressed into the electrode well (depth of 

approximately 2mm). The electrode was then inverted and the modified paste pressed 

onto a flat sheet o f  white paper. The surface o f  the electrode was then smoothed by 

moving the electrode in a circular motion. It was important not to apply too much 

pressure as the graphite-oil mixture can be separated, resulting in high resistance 

contact between the paste and metal contact. Any excess paste remaining on the teflon 

body was wiped away with a lens tissue, taking care not to damage the carbon paste 

surface. Electrodes (with no enzymes incorporated) could be renewed by removing a 

small layer of carbon paste from the surface and re-packing as before. If  a completely 

new electrode was required, the electrode well was cleaned out in an ultrasonic bath, 

dried and re-packed.

4 .3 . M E T H O D S
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Electropolymerisation o f  the monomer (u-aminophenol) at the working surface area of 

the electrode was carried out in 0.1 M acetic acid, pH 5.0, in the potential range 0-0.7V 

for 10 minutes (or a defined number o f  individual polymer layers) at a scan rate of 

50mV s’1. The acetic acid medium was purged with helium to remove molecular 

oxygen present. The quality o f  the electro-deposited layer was verified by carrying out 

a cyclic voltammogram scan in the afore mentioned potential range. The electrode was 

then rinsed for a short period of time in 0 .1M phosphate buffer (pH dependent on the 

working background electrolyte).

In both static and flow injection systems, the assembled cell was equilibrated 

with the supporting or background electrolyte (which was not purged with helium as 

molecular oxygen acts as a natural cofactor to the uricase reaction) while applying the 

working potential. Amperometric signals were recorded after the transient signal 

decayed.

4 .3 .3 .  P o lym er  film preparation
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4.4 R E S U L T S  A N D  D IS C U S S IO N

4 4 1 Cyclic vokainmetrv studies on polv(fj-aminophenol)

Cyclic voltammetry (CV) was performed on bare and polymer-modified electrodes to 

examine the permselective and electrocatalytic properties o f  the electropolymerised 

polymer membrane. Working electrodes were composed of 100% carbon paste (no 

enzyme present) Figures 4.1 and 4 2 depict the electro-oxidation of uric acid to 

allantoin at bare and modified electrodes, respectively

I I 1“  ; i---------- 1
0 0.2 0.-1 0.6 0.8 1.0 

E /  V (Ag/AgCl)

Figure 4.1: Cyclic voltammetric behaviour o f  uric acid at bare carbon paste
electrode (CPE). A- phosphate buffer pH 6 5; B- 0 5mM uric acid, C- 
l.OmM uric acid Sensitivity- 5pA, Scan range- 0—> +1 0V, Scan rate- 
50mVs’’.
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Figure 4.2: Cyclic voltammetric behaviour o f  uric acid at a poly(o-aminophenol)-
modified carbon paste electrode (CPE). A- phosphate buffer pH 6.5, B-
0.5mM uric acid; C- l.OmM uric acid. Sensitivity- 5p.A; Scan range- 
0—>+1.OV; Scan rate- SOmVs'1

Oxidation type reactions o f  reduced biomolecules such as uric acid involve anodic 

(oxidation) processes, the magnitude of this current being proportional to the 

concentration o f  analyte present. This process occurred using both electrodes. At an 

almost identical applied potential (0.4V), the anodic current produced at the poly(o- 

aminophenol) modified electrode was approximately half o f  that observed at the bare 

carbon paste electrode. This was expected as membrane-covered electrodes generally 

yield currents o f  restricted magnitude due to the imposition of additional diffusion 

barriers. The ratio between the current at the polymer-coated electrode and that o f  the
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bare one is a measure o f  coating permeability Under such conditions, the cyclic 

voltammograms o f  uric acid did not exhibit any cathodic peaks (reduction current), 

therefore the oxidation process was considered to be irreversible. It was noted that as 

the cyclic scan rate was increased, the oxidation potential value (Ep) shifted in the 

anodic direction Similar findings were reported by Gilmartin et al. [31] Cai and 

colleagues pointed out that by applying a preanodisation potential (1.4V) for 40 

seconds, the overall performance o f  a carbon paste electrode (CPE) for detecting uric 

acid could be substantially improved [14], Changes include enhanced sensitivity, 

improvement in the shape of the signal and a shift o f  the oxidation potential in the 

cathodic direction. When using a glassy carbon electrode instead of a CPE, the same 

effects could be observed although peak currents at CPEs were notably less due to 

slower rates o f  charge transfer due to layers o f  non-conducting pasting liquid at the 

electrode surface [32] This problem could be overcome by preanodisation [33],

As previously stated, cyclic voltammetry o f  uric acid did not produce any 

reduction peaks Goyal et al. reported on a single oxidation peak and on the reverse 

negative sweep, two reduction peaks. One o f  these peaks was shown to form a quasi- 

reversible couple with the lone oxidation peak [34], The authors postulated that both 

cathodic peaks represented urea and 6-thioalloxan. The greater susceptibility of uric 

acid to electrochemical oxidation compared with 6-thiouric acid (purine) was believed 

to be due to the mercapto group, which can easily undergo oxidation

It was deduced that direct electron transfer occurred between the uric acid and 

the electrode The difference in the shape of the oxidation waves suggested that the 

polymer-coated electrode did in fact suffer from mass transfer limitations. Such 

polymer films have advantages over more conventional films [35],
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Direct electron transfer is rarely encountered with high molecular weight enzymes 

whose active centres lie deeply buried in the polypeptide structure. Nevertheless, a 

knowledge o f  the electron transfer mechanism is fundamental in the development of 

amperometric enzyme electrodes One must distinguish between oxidoreductases with 

prosthetic groups bound tightly to the protein matrix (flavoproteins) and 

oxidoreductases without an integrated cofactor (NAD+-dependent dehydrogenases) 

whose substrate can be used as a redox mediator. Steric properties of some 

oxidoreductases decrease the accessibility of the active site. Hence, mechanisms 

involving natural or artificial electroactive compounds, which act as “electron shuttles” 

or mediators, must provide redox coupling between the electrode and the redox centre 

in the biological component [36].

A study was therefore undertaken to examine the necessity for an electron 

mediator [27] CPEs incorporating 5% w/w ferrocene (and 85% paste, 7% uricase and 

3% HRP) exhibited slow responses and less than desirable sensitivity in response to 

uric acid (Figure 4.3). Peaks in current were followed by slow, gradual decreases to 

the existing baseline level. This was thought to be due to the diffusion of ferricinium 

ions to the bulk solution. Coating the electrode’s working surface area with a cation- 

exchange material such as Nafion could prevent such a diffusional effect [37] Non­

ferrocene containing CPEs did not exhibit this behaviour.

It would appear that the nature o f  the electrode’s response is independent of 

mediator-type compounds and that direct electron transfer possibly exists between the 

the enzyme(s) and the electrode (carbon paste). More direct evidence o f  this 

hypothesis is given later However, in light of the above result, it is possible that HRP’s

4 .4 .2 .  M ediator  studies
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heme group is exposed and orientated in the direction of the electrode, thus facilitating 

the direct electron transfer process Electron transfer must run over a distance o f  at 

least 1.2nm, the minimum distance between the electrode and the plane o f  closest 

approach to the heme edge. These findings do prove that a well orientated and 

positioned enzyme increases the probability of rapid electron transfer, a prerequisite for 

umediated biosensing. Although direct electron transfer based on small redox proteins 

and modified surfaces has not been reported to any great extent, the understanding of 

possible electron transfer mechanisms is important for systems incorporating proteins 

with catalytic activity.

12 nA

8 m inutes

Figure 4.3: Typical amperometnc responses obtained when ferrocene was included
in the carbon paste Electrode composition: 85% carbon paste, 5% 
ferrocene; 7% uricase and 3% HRP. Responses to 1 xlO^M injections 
o f  substrate.
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The variation o f  enzyme loading is a means for determining the minimum amount of 

enzyme required for maximum sensitivity. This reveals the magnitude o f  the enzyme 

reserve o f  diffusion-controlled sensors.

An investigation was performed to elucidate the optimum ratio o f  HRP and 

uricase required in the paste mixture for immobilisation. The percentage of 

immobilised enzyme in the paste in all preliminary experiments did not exceed 15% 

w/w. Greater percentages did not improve the response characteristics of the 

electrode. Different paste mixtures were prepared with either HRP or uricase 

maintained at a fixed level while the amount of the other was varied. Figure 4 4 

illustrates the responses to 3 x 10'4M uric acid for various paste compositions. As the 

proportion o f  uricase in the paste was increased, sensitivity also increased. Response 

times were also noted to decrease with increasing amounts of uricase up to a certain 

point, after which they were stable. Carbon paste incorporating 3% w/w HRP gave rise 

to the greatest sensitivity; higher percentages gave no further improvement The 

relationship that exists between the sensitivity o f  an electrode and the immobilised 

biocomponent depends primarily on the affinity of the oxidase (uricase) for its specific 

substrate (uric acid). Generally, in conventional enzymology where coupled enzymatic 

reactions are used in solution for determining the concentration of a target analyte, it is 

recommended that a higher auxilliary enzyme activity be maintained compared with 

that o f  the detecting one, thus preventing the response o f  the first enzyme being limited

[38], It is neccessary for the auxilliary enzyme to oxidise as much of the intermediate 

metabolite in the microenvironment as possible into substances that can be detected by 

an electrochemical transducer. In addition, it is unnecessary to load higher activity into

4 .4 .3  Effect o f  e n z y m e lo a ding on sen sor response
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the paste if no improvement in sensitivity is achieved. Thus a paste mixture o f  7% w/w 

uricase and 3% w/w HRP was subsequently used. The co-immobilisation o f  enzymes

% w/w enzyme

Figure 4.4: Effect o f  enzyme loading on sensor performance.
■ uricase fixed at 7% w/w; •  HRP fixed at 3% w/w; Measurements 
were performed in 0 .1M phosphate buffer, pH 6.5, on addition o f  3 
x 10’4M substrate.

on a support matrix poses a number o f  problems. Commercially available enzymes 

generally have different specific activities that are difficult to modify and the yield of 

immobilisation (depending on several parameters such as the nature o f  the support, the 

enzyme composition and the immobilisation procedure) could be completely different 

for the two enzymes involved Also, as immobilisation o f  two biocatalysts is carried 

out in one step, a competition may occur between the enzymes for the available 

binding sites o f  the activated matrix
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The enzyme loading, to a major extent, determines the overall stability o f  a biosensor. 

An enzyme reserve can be built up by employing more enzyme activity in front of the 

electrochemical probe than is minimally required to achieve diffusion control As long 

as this reserve lasts, the sensitivity will remain essentially constant. This is relevant only 

to sensors for substrate determinations If inhibitors o f  biosensing catalytic reactions 

are to be measured, kinetic control is desirable This permits the enzyme loading to be 

varied only with in a relatively narrow range. It is practical to use a sensor 

intermittently for analysis, rather than prolonged continuous use. Exceptions to this 

rule are biosensors intended for in situ applications where an extended usage period is 

imperative The Fuji Electric (Japan) UA-300 analyser uses a uricase membrane fixed 

to a hydrogen peroxide-selective layer, as little as 20j.il of blood serum is required and 

a sample throughput o f  50-60 per hour with a relative precision of 3.0% [39],

The method for preparing the graphite/paraffin oil mixture was similar to that 

o f  Cai et at. [14], The procedure for incorporating HRP and uricase into the carbon 

paste was based on that o f  Wollenberger et al. [29] and Dominguez-Sanchez et al.

[40], The carbohydrate side chains of HRP (18% o f  the enzyme) allow the enzyme to 

be immobilised onto an insoluble matrix such as carbon paste [41], It may be true that 

higher responses are obtained in response to substrate additions when enzymes are 

added to graphite prior to adding paraffin oil [27] As it is well known, dry graphites 

have very high capacitive current (one of the original reasons for producing paste 

electrodes was to lower the residual current) [42], Obviously the magnitude o f  a 

carbon paste electrode’s current drops with an increasing quantity of the pasting liquid 

in the graphite, however, this is often accompanied by a decrease in sensitivity o f  the 

electrode CPEs incorporating paraffin oil as the mulling agent (as opposed to such
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materials as silicone oil, bromonaphthalene and nujol [mineral oil]), have the widest 

useful potential range [43]

Most CPEs exhibit background current o f  200nA or even lower over a wide 

potential range [44], Methods proposed to decrease such currents are based on 

removing adsorbed electroactive species, in particular oxygen. Prior to paste 

preparation, graphite can be pretreated by exposure to high temperatures with 

subsequent impregnation o f  the pores by cerasin wax, by nitrogen saturation or 

hydrogen reduction o f  preheated carbon [45], CPEs suffer substantially from the 

presence o f  oxygen entrapped in the paste, brought in by the carbon molecules but also 

by the preparation o f  the paste [42], In voltammetric measurements, oxygen seriously 

interferes with detection when the applied potential is in the negative range Parasitic 

oxygen signals can be partially suppressed by using highly lipophilic pasting liquid such 

as tricresyl phosphate [46]. The heterogeneity o f  carbon paste is disadvantageous with 

respect to applications o f  CPEs in nonaqueous media, because the electrode material 

obviously disintegrates [42], Admixing a surfactant to the paste may lead to a greater 

level o f  stability in the paste in some solvent systems. Silicone oil-based carbon paste 

materials can be exposed to media such methanol, acetonitrile, dimethylformamide or 

dimethylsulphoxide (50% mixtures with water) [47], The first reported CPEs 

incorporating an enzyme appeared in 1988, where glucose oxidase (GOD) was directly 

blended into the organic phase consisting o f  graphite powder and silicon oil [48], Since 

then, immobilisation o f  an enzyme into an organic phase composite electrode (carbon 

paste, carbon cement, carbon epoxy resins) has become an increasingly popular way 

for the construction o f  enzyme electrodes. Peroxidase-modified CPEs have been used

185



for the determination o f  H20 2 and other organic peroxides, with both soluble and 

immobilised electron donors acting as mediators [25, 27, 40]

4.4.4. Amperometric studies on poly(o-aminophenol)

The permeability characteristics o f  poly(o-aminophenol) acting as a conducting 

polymer were compared to those o f  a cellulose dialysis membrane (12000Da cutoff) by 

amperometry. An optimised enzyme loading was used for electrode designs. The 

polymer modified electrode (bienzyme reaction) displayed a higher maximum enzyme 

reaction rate (Vmax o f 3.17 x l0 ' 'm in‘') compared to that o f  the cellulose membrane 

encapsulated electrode (Vmax- 1.91 x 10 ' lmin'1). The Km of the latter electrode was 

1.99 x l0 ‘3mol which was slightly higher than that of the polymer coated electrode (Km- 

1.92 xl0~3mol). The higher Km value would suggest mass transfer limitations between 

the enzyme layer and the analyte solution (Figure 4 5) The parameter which describes 

this behaviour is referred to in chemical engineering literature as the Damkoehler 

number [49];

Vq  „  max

where Vmax is the maximum rate of the homogenous reaction rate and Km is the 

Michaelis constant (assuming that the enzyme(s) obey(s) Michaelis-Menten kinetics). 

For a Dfl value o f  <0 1, the reaction is catalysis-controlled, while for values greater 

than 10, the reaction is controlled by mass transfer. As stated above, mass transfer 

limitations cause the Km value to increase; however, increased oxygen concentrations 

also cause this effect.
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If  an enzyme electrode was actually operated under kinetically controlled conditions, 

the current-concentration relationship would be non-linear and a useful range o f  less 

than one magnitude would result However, such sensors are operated with a 

membrane between the enzyme and solution. This provides a barrier and a response 

proportional to the diffusional flux which is not limited by enzyme kinetics.

F igure  4.5: Dependence o f  response on the type of membrane encapsulation.
■ Poly(tf-aminophenol) CPE; •  Cellulose membrane CPE; Applied 
potential - +0.05V.

This can be a factor when the enzyme’s activity becomes too low. This is the reason 

why an amperometric electrode’s response remains constant for an extended period. 

The response o f  a biosensor is independent o f  enzyme activity as long as the bio­

activity is high enough [50], However, the enzyme decays gradually and reaches a 

point where the response becomes kinetically controlled. At this point, the sensor 

response is no longer constant.
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Hydrolysis o f  membrane films has been reported to increase porosity [51], A similar 

idea was investigated for poly(o-aminophenol). On storage at 25°C in 0.1M phosphate 

buffer, pH 7.5, amperometric responses to standard additions of urate increased by 

approximately 150% after 2 hours. The enzymatic production o f  peroxide due to 

uricase biocatalysis may have altered the selectivity characteristics of the polymer in 

some way, causing an increase in film permeability with time. Such increases in signal 

size remained for 24 hours followed by a return to initial signal intensities; this 

phenomenon was probably due to a variety of causes.

The effect o f  increasing the concentration o f  monomer during the 

electropolymerisation process was examined In quiescent solution, an increasing 

concentration resulted in more intense signals to injections of 5 xlO'3M uric acid 

standards (Figure 4.6).

F igure 4.6: Effect o f  monomer concentration on biosensor response.
■ 5 x 10’3M o-aminophenol; •  1 xlO'4M o-aminophenol; Applied 
potential - +0.05V
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This effect was also observed when the sensor was incorporated into a flowing stream 

set-up. Faster response times were recorded (24 seconds for tgs% of signal) for a 

polymer built from 5 xlO'^M o-aminophenol as opposed to 39 seconds for a 10-fold 

increase in the concentration o f  monomer (flow rate: 1ml min'1). Operation at a higher 

flow rate o f  2 ml min'1 resulted in a 42% reduction in response times. These results 

suggested that a rapid replenishment o f  the analyte solution from the surface o f  the 

electrode occurred, i.e. lack o f  analyte trapping. Another origin of the difference in 

response between monomer concentrations is that the faster the sample plug passes the 

electrode, the smaller the fraction of consumed sample in the enzyme layer at the 

electrode surface (kinetic limitations) The parameters affecting FIA o f  uric acid are 

discussed later. However, fast response times are an important prerequisite in flowing 

stream set-ups; typically the quicker the response, the smaller the signal.

In electrochemical polymerisation, the material formed will be in the oxidised 

form. Reduction o f  the polymer can be carried out either electrochemically (with the 

potential kept at the reduction potential o f  the polymer) or chemically (whereby the 

film is washed with a reducing agent such as ammonia). It has been demonstrated that 

the use of polymer coating to produce modified surfaces provides certain advantages 

during analysis [52]. Perhaps the most significant o f  these is that multilayered, 

dynamic, polymer coatings provide a three dimensional reaction zone at the electrode 

surface. This gives rise to an increase in the flux o f  reactions that can occur, which in 

turn increases sensitivity Historically, the first polymerisation processes carried out by 

electrochemical means were indirect as they involved production o f  an initiator at the 

electrode and the remainder o f  the process occurred in solution. A description o f  such

189



processes and other electropolymerisation schemes was the subject of a recent review 

by Beck [53],

The polymer film was formed at the CPE surface by electrodeposition (Figures 

4.7A and 4.7B) Polymerisation o f  o-aminophenol continues until the surface is 

completely covered, which is signalled by the current decreasing to a minimum as the 

monomer cannot penetrate this film [54] This polymer is required only for retaining 

the immobilised enzyme deposition, thus it was not mandatory to assure complete 

coverage o f  the elecrode surface [52], Nyugen ei al. pointed out that if less than a

F igure 4.7: (A) Polymerisation o f  5 x 10°M  o-aminophenol 0.1M acetic acid, pH
5.5, at the working surface of the CPE. (B) Single cyclic scan verifying 
successful polymerisation (carried out in background electrolyte.
Scan range - 0—> +0.7V, Scan rate 50mVs’', Sensitivity 0.5(_iA.
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monolayer o f  polymer was formed over the working surface, the immobilised 

enzyme(s) could still be retained and, more importantly, the electrode’s recovery and 

response was improved [55], This compares favourably with the findings 

above.Growth in the biosensor field is expected to include substantial development in 

biosensors that incorporate polymer films in their design. Frequently, incorporation o f  

a polymer film renders a biosensor feasible for an application for which it would be 

otherwise unsuitable Such a film may prevent interferences and electrode fouling that 

would otherwise preclude its use (interferences are discussed later). The low cost o f  

manufacture o f  such electrode materials should result in a range o f  disposable devices 

for routine use in analytical laboratories in the near future.

4.4.5. Hydrodynamic studies

Even though amperometric signals obtained were characteristic o f  membrane diffusion 

processes, it was important to ensure that these currents were due to enzymatically 

generated H20 2, and not to direct electron transfer o f  urate electrons at the working 

surface o f  the CPE. Voltammograms were constructed for four electrode designs over 

the range -0 .1-0.3V (Figure 4.8). The four electrode types were:

1. 100% w/w carbon paste;

2. 93% w/w carbon paste and 7% w/w uricase,

3. 97% w/w carbon paste and 3% w/w HRP;

4. 90% w/w carbon paste, 7% w/w uricase and 3% w/w HRP.
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Polymer (PAP) concentration was 5 xlO '3M. Stepwise potential increases (50mV) 

were applied and the resulting steady state currents (in response to 4 xlO'4M urate)

5
§o
c.9
o3TD
y6
co
«T3

Applied potential (mV)

Figure 4.8: Hydrodynamic voltammograms o f  4 x ]0 '4M uric acid recorded in
0.1M phosphate buffer, pH 6.5, for different electrode configurations. 
All electrodes were modified with 5 xlO"3M poly(o-aminophenol). ■ 
100% w/w carbon paste; a  7% w/w uricase; •  3% w/w HRP; ▼ 7% 
uricase and 3% w/w HRP

were recorded and plotted versus applied potential (mV). At potentials more negative 

than -0.2V, a rapid loss of activity occurred, possibly due to the irreversible reduction 

o f  HRP [56], Reduction processes were apparent for all electrodes with the exception 

o f  the unmodified CPE. Moreover, the respective electrodes containing uricase and 

HRP only, exhibited relatively weak cathodic currents in the presence o f  uric acid. 

Reduction current was significantly larger in the case o f  the bienzyme electrode (7% 

uricase and 3% HRP). The optimum working potential was found to be 50mV. All 

voltammograms showed a sharp anodic rise in the range 0.30-0.65V (Figure 4.9).
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Direct oxidation o f  uric acid occurred at potentials greater than 0.25V, peaking at 

approximately 0.5 V [22] (for a 100% w/w CPE, no enzyme present).

Applied potential (mV)

Figure 4.9: Hydrodynamic voltammogram of  optimum bienzyme electrode design
Responses to 4 xlO'4M uric acid were recorded in 0 .1M phosphate
buffer, pH 6.5.

The magnitude o f  this oxidation current was greater when uricase was added to the 

carbon paste. In the aforementioned potential range, a great deal o f  noise due to 

background currents and potential interference from other electroactive compounds 

exists. It was previously attempted to elucidate the observed reduction current (at

0.05V) by cyclic voltammetry; however, no cathodic return was visible therefore, 

under the given experimental conditions, the oxidation o f  the substrate was considered 

as being irreversible. These findings were similar to that o f  Jawad et a I. [57], From 

hydrodynamic studies, it appeared that the magnitude o f  the urate oxidation wave
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masked the reduction process, i.e. CV was not sensitive enough to detect the reduction 

current (in the range -0.1-0.25V). Figure 4.9 depicts the anodic response o f  the 

bienzyme CPE in the potential range 0.3-0.65V. The oxidation o f  4 xlO"4M uric acid 

increased substantially as the potential was increased. It was calculated that the 

reduction current at 0.05 V was approximately 1% of  the corresponding oxidation 

process at 0.65V. The implication o f  these findings is that the response o f  the sensor 

was due to the biocatalytic production o f  H 2O2 and not to direct transfer o f  uric acid to 

the carbon paste. These results, however, do not show whether direct electron transfer 

between HRP and the carbon paste has occurred

4.4.6. Kinetic studies

As no artificial mediator (soluble or insoluble) was added to the sensor configuration, 

the existence o f  a naturally occuring mediator for the uricase-peroxidase reaction was 

investigated. The nature o f  the electrode has by now been shown not to be due to 

direct urate transfer to the electrode (implying a bienzyme reaction). At this point, 

poly(o-aminophenol) and uric acid were considered as potential cofactors to the 

reaction as depicted below.

uric acid + 0 2 + 2H>0 — "r'cme—> allantoin + C 0 2 + H2O2 (4.4)

H20 2 + Mcdred — H20  + Medox (4.5)

HRP catalyses the reduction o f  H20 2 in the presence o f  an electron transfer mediator 

according to reaction (4.5) The electrochemical reduction o f  the oxidised mediator 

generated by the enzymatic reaction provides the amperometric signal for the
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measurement o f  peroxide It is well known that HRP can utilise a wide range of 

cofactors [27], Oxidoreductases such as HRP, possess a redox active site [41] capable 

o f  undergoing oxidation by the peroxide and reduction by the mediator.

A CPE modified with 3% w/w HRP only was used in all kinetic trials. Various 

configurations o f  the HRP electrode were then prepared:

1. A HRP CPE with 5 x 10°M poly(o-aminophenol) electrodeposited at the 

surface,

2. An electrode similar above except that 5 xlO'3M uric acid was included in 

the background electrolyte solution (voltammetric cell);

3. A HRP CPE with a cellulose acetate membrane (12000Da cutoff) 

encapsulating the working surface area instead o f  the polymer present; also 5 

xlO'3M o-aminophenol in the bulk solution.

The poly(o-aminophenol) modified electrode (number 1) was compared to the 

cellulose membrane configuration (number 3) employing uric acid as the test mediator. 

The latter electrode displayed a significantly higher affinity for H 2O2 (Km-2.83 xlCT 

3M). Electrode number one had a Km value o f  2.45 xlO’5M. The reaction rate also 

increased in the presence o f  uric acid With polymer-based electrodes, the affinity of 

HRP for H 20 2 was not enhanced in the presence o f  urate. This suggested that po ly(o  

aminophenol) did not act as mediator to the reaction, even though both o- and p -  

aminophenol have been reported as being excellent electron donors to oxidised HRP. 

This was further illustrated when H 2O 2 was added to 0 .1M phosphate buffer containing 

5 xlCT3M o-aminophenol (electrode number 3). The resulting current was anodic in
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nature A relatively small reduction current was observed from an electrode 

incorporating uricase and poly(oaminophenol) on injection of uric acid. It was 

therefore concluded that the electrocatalytic reduction o f  H20 2 by HRP immobilised on 

carbon paste took place without an artificial or naturally existing mediator; thus the 

nature o f  the sensor’s response was due to direct electron transfer from the enzyme 

(HRP) to the carbon paste.

Peroxidases are capable of catalysing the oxygenation of a variety o f  substrates 

in the presence o f  H20 2 The enzymatic reaction involves Compound I (HRP-I) which 

contains Fe(IV) and a porphyrin-radical cation, and Compound II (HRP-II) with one 

Fe(IV) while a donor (AH) is oxidised (see reaction numbers 4.6-4.9).

HRP + H:0 2 —> HRP-I + H20 (4 6)

HRP-I + AH -> HRP-II + *A (5 7)

HRP-II + AH —» HRP + *A (5.8)

HRP + H20 2 + 2H’ - > HRP-I + 2H20 (5.9)

HRP adsorbed on carbon black has been reported for the electrocatalytic reduction of 

H20 2, i.e., the formation o f  HRP-I (reaction 4.6) and regeneration o f  HRP by direct 

electron transfer from the electrode to the hemin Fe(IV) without a mediator [26], 

Catalytic current was found to be proportional to peroxide concentration. The overall 

reaction involves the production o f  water while electron transfer occurs, thus a current 

can be measured (reaction 4.9) An intimate contact between HRP and the conducting 

surface is required to achieve such direct charge transfer between the enzyme and the 

electrode. Recent studies have documented the possibility of direct electron transfer to 

the peroxidase active centre The proposed mechanism is depicted in Figure 4.10. The
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elimination of artificial electron transfer mediation is desirable for practical sensing 

applications. Jonsson-Pettersson described reagentless bienzyme sensors based on 

HRP adsorbed onto spectroscopic graphite for detecting H 2O 2 and glucose at a very 

variable applied potential (-50mV) and with short response times [28]

F igure 4.10: Proposed mechanism of direct electron transfer from the electrode to
the peroxidase active centre

The mechanism responsible for the electron transfer between HRP and the electrode 

was unknown. Bogdanovskaya el al. have postulated that the protein-bound prosthetic 

group may be involved in the heterogenous electron transfer, as such signals differ 

from those obtained from the free prosthetic group and also from that o f  the 

apoenzyme [58] The authors also suggested that the entire adsorbed enzyme is 

involved in electron transfer, however, Ikeda el al. surmised that only a small fraction 

o f  adsorbed enzyme molecules have a role in direct electron transfer [59], This fraction



is thought to be biocatalytically inactive and structurally altered; the greater proportion 

o f  enzyme molecules are active and therefore play no role in electron mediation. 

Detection of H 20 2 has been described where HRP was entrapped by 

electropolymerisation o f  pyrrole [60]. Efficient charge transfer occured between the 

electrode and HRP without added mediation. When covered with a layer of detecting 

enzyme (GOD), this modified peroxide electrode served as a glucose sensor which 

worked well at a low potential

Wollenberger et a l  have suggested that electon transfer in reagentless sensors 

may be aided by surface functionalities on the electrode surface [29], The feasibility of 

HRP to facilitate fast electron transfer from different organic peroxides (2-butanone, 

cumene, hydrogen peroxides etc ) to carbon material when incorporated in the bulk of 

the electrode is known. Reports also exist on direct transfer between graphite 

electrodes and peroxidases other than HRP, such as cytochrome c peroxidase [61] and 

a fungal peroxidase from Arthromyces ramosvs [62].

Wang el al. have described a simple approach to enhance the sensitivity of 

mediatorless HRP electrodes. Signal amplification is attributed to the accumulation and 

subsequent detection o f  the oxidised form of HRP (Figure 4.10) [63], The biospecific 

enhancement o f  the substrate response while facilitating the quantitation o f  micromolar 

concentrations o f  H 2O 2 could also minimise interferences from electroactive species 

present.

The possible role o f  surface functionalities in reagentless biosensors has been 

previously mentioned [29], Another valid explanation might be that thermal pre­

treatment of carbon paste (prior to enzyme immobilisation), which is most efficient for 

obtaining a catalytic effect, introduces oxygen-containing functionalities on the
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electrode surface which are capable of mediating the electron transfer from 

Compounds I and II (Reactions 4.6 and 4.7) [64] Thus, it appears that the method for 

preparing the carbon paste is critical to the efficiency of direct electron transfer.

Examples o f  reagentless enzyme sensors for glucose, alcohols and amino acids 

have been reported [64], The uric acid selective sensor reported here would appear to 

fit into this class o f  biosensor Accordingly, it is an example o f  a third generation 

biosensor, which is defined as a device that does not require the addition of any 

external reagents [41].

4.4.7. pH dependence o f  biosensor

The response o f  the biosensor was found to be pH-dependent (Figure 4.11). The range 

studied was 5.0-9.0. Greater sensitivity was achieved at lower pH values; a best fit 

approximation suggested an optimum pH of 6.6. However, a “compromise” pH value 

o f  7.5 was chosen in order to mimic the macroenvironment o f  physiological fluids and 

to promote the long term stability o f  the electrode. Noisy baselines were recorded 

when using background solutions in the pH range 5 0-7.0. As variation in the ionic 

strength o f  the electrolyte solution is thought not to have an effect on uricase-HRP 

sensitivity when immobilised [12], it was not investigated. Nanjo and Guilbault noted, 

however, that the type o f  buffer solution employed had an effect on overall sensor 

response (recall here that the concentration of uric acid was related to the rate of 

oxygen consumed) [11]. Greater buffer concentrations were directly proportional to 

decreasing electrode reaction rates. Ammonium sulphate concentration also had an 

effect on the initial reaction rate, the rate decreasing with a proportional increase in
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concentration This suggested that low ionic media are more favourable for 

measurements with a uricase only  electrode.

PH

Figure  4.11: Effect o f  pH on the amperometric response o f  the PAP-modified carbon 
paste biosensor. Applied potential - +0.05V. Background electrolye - 
0 .1M phosphate. ■ Experimental da ta ;  Best fit approximation curve.

The pH o f  a working medium is a factor that affects the response o f  a biosensor when 

the enzyme’s activity is controlled by ionising groups. It is important to elucidate the 

best pH range in order to make the electrode more compatible with the matrix o f  

interest. The reported optimum pH o f  immobilised uricase is in the range 8.5-9.2 [17, 

31, 57], where as HRP works well in the range 6.0-8.0 [65], However, the pH of most 

physiological fluids lies below this. Keedy et al. reported a low pH-dependence for a 

uricase electrode in solution [12], It must be remembered that the pH and ionic 

strength affect not only the immobilised activities, but possibly diffusion o f  urate to the 

working surface area o f  the electrode and also, the rate o f  direct electron transfer
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between HRP and the carbon paste Thus, it is important to obtain a compromise 

configuration when designing amperometric biosensors

A large excess o f  immobilised enzyme in the carbon paste can minimise the 

effect of pH variations on the measuring process. Therefore, the pH profiles in the 

linear measuring range (dynamic range) control should, in theory, be substantially less 

sharp than those of the respective enzymes in solution, i.e. on injecting significantly 

lower concentrations of uric acid, the response o f  the sensor is not overly dependent 

on pH. A strategy towards minimising pH-dependency would be to carry out analysis 

in the presence of dithiothreitol (DTT), a reducing agent [66] Increased current 

responses were reported in increasing DTT concentrations in the sample solution, the 

amplification factor for a I xlO‘6M uric acid solution was increased to 133 when 5 

xlCT2M DTT solution was used. The process involved the regeneration of uric acid by 

the reduction of the ternary complex consisting of uricase, uric acid and oxygen and by 

the accompanying formation o f  the hydroxyl radical from the coordinated oxygen

All amperomeric studies were carried out between 25 and 30°C It is known 

that the rate o f  reaction can increase with temperature up to a point, above which the 

effects o f  thermal inactivation dominate over that o f  the increase in the collision 

frequency Enzyme stabilisation by immobilisation is frequently reflected in an increase 

in the optimum temperature for substrate conversion If kinetic and diffusional control 

are superimposed, the higher collision frequency results in a substantial acceleration of 

enzyme efficiency with increasing temperature. Therefore, the activation energy 

determined at lower temperatures is ascribed to the enzyme reaction and that at higher 

temperatures to diffusion. In addition, the temperature profile is affected by
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temperature-dependent conformational changes of the enzyme [65] and decreasing 

solubility of the cosubstrate

4.4.8. Interference studies

In reactions between the immobilised biomolecule and the sample (which is often a 

highly complex matrix e.g. serum), undesired binding events or measuring effects may 

occur. Particulary in biosensors that use coupled enzyme reactions, the substrates o f  

each individual reaction will interfere, therefore, increasing complexity of biosensors 

results in decreased selectivity Interferences can also occur on the level o f  the 

transducer reaction. Nevertheless, an important prerequisite of quantifying an analyte 

in physiological fluids is a high degree o f  selectivity

A range o f  naturally occuring substances in blood were tested for their 

potential interference effects. Results were compared with a standard uric acid 

response which acted as a control (5 x 10'^M) Alternate uric acid injections were made 

in a voltammetric cell containing 0 1M phosphate buffer (control) and another cell 

containing a known concentration of the test interferent made up in background 

solution Ascorbic acid gave approximately 2 and 15% increases in signal for mean 

(2.8 x 10‘4M) and upper (3 41 xlO'4M) levels found in serum, respectively. The 

presence of bilirubin was found to have a detrimental effect on urate amperometric 

signals. Figure 4.12 illustrates the responses obtained in the presence and absence of 

the substance. A concentration o f  1 7 xlO^M bilirubin resulted in a 35% decrease in 

signal intensity As bilirubin is too big to pass through the polymer layer, it is possible 

that some form of interaction occurs with uric acid at the working surface, resulting in 

a diminished current As the bilirubin concentration tested was high and anticipated
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physiological levels would be significantly lower, it was hoped that this fact coupled 

with dilution of serum samples, would minimise this effect. The observed increases in 

signals in the presence o f  ascorbic acid may be attributed to changes in the

Figure 4.12: Typical amperometric responses in the presence (A) and absence (B) of 
bilirubin. Multiple injections of 1 xlO'4M uric acid standards in 
phosphate buffer. Applied potential - +0.05V

permeability o f  the polymer layer. Alternatively, the presence o f  ascorbic acid may in 

some way interfere with electron transfer between HRP and the paste.

A number of approaches have been employed to prevent interferences. These 

include using polymeric films to block potential electroactive substances, using a low 

potential in performing the determination, utilising differential measurement and
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removing the interferences by chemical means. Polymeric films prevent interferences 

from reaching the electrode surface that could otherwise be oxidised. A few examples 

o f  the use of such films used in this capacity have been described by Emr and 

Yacynch[35],

A minor problem that can occur in the analysis of biological samples is 

electrode fouling. It is defined as “the passivation o f  the electrode surface by the 

adsorption o f  non-electroactive species” . High molecular weight compounds such as 

proteins are a major source o f  fouling, which can result in a decrease in overall 

efficiency. Electropolymerised films of nanometer thickness can effectively block 

interferents and prevent fouling, while minimising problems associated with diffusion. 

Sasso and co-workers addressed fouling in a biological matrix with an 

electropolymerised poly( 1,2-DAB) film that prevented fouling of the biosensor by 

proteins in blood serum [66],

The use o f  an appropriate polymer film to impart biocompatibility is important 

in preventing interferences from reaching the electrode surface and to preclude fouling. 

Additionally, for in vivo applications, the use of biocompatible polymeric layers can 

eliminate blood clotting effects as well as immune reaction products.
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Figure 4.13 shows the typical amperometric responses recorded as a function o f  uric 

acid concentration Responses were linear up to a concentration of 1 xlO'4M (Figure

4.14) with a detection limit (L.O D.) o f  3.14 xlO'6M and a correlation coefficient of

0.9996 (n=6). The reproducibility expressed in terms o f  relative standard deviation was 

2.2% (n=4) for a concentration o f  2 xlO‘5M urate. The sensor had a response time 

(tgg%) o f  37 seconds. The signal was stable for 2 days while the electrode was stored in 

background electrolye at room temperature.

4.4 9. Calibration characteristics in static systems

Figure 4.13: Amperometric responses to increasing concentrations o f  uric acid (10’ 
to 10"'1) at a PAP-modified bienzyme carbon paste electrode at an 
applied potential o f +0.05V Supporting electrolye was 0.1M phosphate 
buffer, pH 7.5
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Figure 4.14: Calibration plot for the amperometric determination o f  uric acid in a 
static system. Applied potential - +0.05V vs. Ag/AgCl. Supporting 
electrolyte was 0 .1M phosphate buffer, pH 7.5.

The use o f  polymer films to extend the dynamic range o f  a biosensor has been readily 

accomplished by employing a film that blocks a certain percentage o f  analyte from 

reaching the working surface. This reduces the response for a given concentration of 

the analyte, which in effect increases the linear range. The choice o f  polymer 

membrane is important as not all films are capable of blocking a portion o f  a particular 

analyte.
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The bienzyme electrode was incorporated as the working electrode in a flow injection 

(FI) system Preliminary results suggested that uric acid detection was feasible over a 

wide range of experimental conditions. The applied working potential was fixed at

0.05V vs. Ag/AgCl. The carrier stream used was 0.1M phosphate buffer, pH 7.5. 

Carrier solutions were thoroughly degassed with helium prior to operation. Somewhat 

noisy baslines and high background currents were found with carrier streams in the pH 

range 5.0-7.0. As with analysis in quiescent solution, peak currents were marginally 

higher at pH values below 7.0; for a 2 xlO"4M urate standard, an increase of 33% in 

signal was noted (using a carrier stream of pH 6.0) relative to injecting the same 

standard into a carrier stream with a pH of 7.5. Signals in quiescent solution were 

approximately 19.5% higher.

The effect o f  varying the flow rate of the carrier stream was examined (Figure

4.15). Three electrodes were tested in the FI system with a % R.S.D. o f  less than 

6.0%. Flighest sensitivity for a 5 x l0 '5M injection o f  uric acid was obtained at a flow 

rate of 0.85ml min'1 with appreciable decreases in responses at higher flow rates. 

Moreover, operation at high flow rates resulted in distorted baselines. Decreasing the 

sample loop volume from 500|_il to 300f.il decreased sensitivity, resulting in a 

narrowing o f  the dynamic range and lower detection limits. Use of the smaller loop 

resulted in slight memory effects. Longer washing times at the expense o f  sample 

frequency could alleviate this problem; however, use o f  the larger loop eliminated this 

problem. The most suitable monomer concentration for poly(o-aminophenol) coating 

o f  the electrode surface was 5 x 10°M, even though a 10-fold less concentration 

improved response times and more rapid returns to baseline levels (see Section 4.4.4.).

4.4.10 A pplication o f  sensor in a flow injection system
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Figure 4.15: Variation o f  the electrode response with flow rate. Applied potential - 
+0.05V vs. Ag/AgCl. Uric acid concentration - 5 x l0-5M

The calibration characteristics o f  the electrode in flowing streams were examined. 

Figure 4.16 shows the typical signals to uric acid standards. The calibration plot 

(Figure 4.17) provided a linear response up to 2 xlO'4M with a slope, intercept and 

correlation coefficient o f  2.13 xlO4 nA.L.mol'1, 0.7 InA and 0.9996 (n=6), 

respectively. No linear ranges existed at higher substrate concentrations. The limit of 

detection was calculated at 6.8 x l0 '6M. Increasing the flow rate from 0.85 to 2.0ml 

min'1 reduced the L.O.D. to 8.1 x l0 ‘6M and also the dynamic range A series o f  6 

repetitive injections o f  (1 xlO'4) uric acid yielded a % R.S.D. o f  2.0%. The maximum 

allowable sample frequency was estimated as being 20 per hour. The electrode when 

incorporated into the FI system, was found to be more stable. This may be partly

j _____i_____I_____ i_____i_____ i_____I_____i_____!_
0.5 1.0 1.5 2.0 2.5

Flow rate (inl/min)
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explained by the continuous flow o f  the carrier stream washing unreacted urate from 

the carbon paste o f  the working electrode. The influence o f  allopurinol on urate amper-

Figurc 4.16: Flow injection amperometric responses to uric acid (M) additions. A - 2 
x 1 O'5, B - 4 xlO'5; C - 6 x 1 O'5; D - 8 xlO'5M; E - 1 xlO'4; F - 2 x l0 ‘4;
G - 4 x 1 O'4; H - 6 x 10‘4; I - 8 x ] O'4. Carrier stream was 0 .1M 
phosphate buffer, pH 7.5; Flow rate - 1ml min’1, Sample loop volume - 
500|.il; Applied potential - +0.05V vs. Ag/AgCI.

ometric signals was then studied. Allopurinol, a drug, inhibits xanthine oxidase, in that 

its oxidised form (oxypurinol) binds tightly to the reduced form of the enzyme The 

oxidase catalytically converts hypoxanthine to uric acid and peroxide [67], Allopurinol 

is used in the treatment o f  chronic gout and hyperuricaemia (symptoms associated with 

enhanced urate levels). A high concentration o f  the oxidase inhibitor (1 x l0 '3M) was 

added to the carrier stream (0.1M phospahte buffer, pH 7.5) No adverse effects such 

as high background current, basline drift or signal noise were observed Repeated
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injections o f  1 xlO'4M uric acid were carried out in the presence and absence o f  the 

drug. A reduction o f  10.5% in response was observed. Two possibilities may account 

for this: oxidation o f  allopurinol (thus interfering with the oxidase’s catalytic 

mechanism) and/or blockage or interaction at the working surface. Again, it was hoped 

that dilution o f  real samples would alleviate such a problem. Flow injection analysis

Uric acid (uM)

Figure 4.17: Calibration plot for uric acid in a flow injection system. Applied
potential - +0.05V; Carbon paste modified with 7% uricase and 3% 
HRP and coated with 5 xlO'?M o-aminophenol.

(FIA) has gained tremendous importance for bioprocess control during the last few 

years. Although it is not an in si/it or a real on-line analytical technique, it can be 

automated and operated at very high analysis cycle frequencies. One o f  the most 

important advantages o f  FIA is the use of very small volumes. The principle o f  FIA is 

depicted in Figure 4.18. Defined samples volumes are injected periodically into a buffer 

carrier stream (C). When an analyte reagent (R) is combined with the buffer stream,
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the sample and reagent can react in a reaction coil (RC) before the reaction products 

are monitored by a detector system (D) Mixing o f  the sample with the buffer and 

reagent flow occurs by controlled dispersion The sample is transported through the 

system by a rapidly flowing buffer stream. It is not necessary for the analytical reaction 

to reach its equilibrium. When all o f  the parameters such as

s

Figure 4.18: Principle o f  flow injection analysis. (C: carrier flow, R: reagent flow, S 
sample, RC: reaction coil, D detector, W: waste

flow rate and reaction time are constant, reliable detection can be made before the 

reaction equilibrium is attained (dynamic measurement). This results in high 

frequencies o f  analysis and short analysis times. Another advantage o f  FIA is the 

provision for sample preconditioning before reaction and monitoring. Thus, the 

reaction can be am  under its optimal conditions Sample preconditioning can involve 

achievement o f  an optimal reaction matrix and/or an optimal sample dilution [68],

Immobilised enzymes can be used in the detection step. The injected sample 

passes the immobilised enzyme(s) and the enzymatic reaction is measured by a special



transducer. The system can be recalibrated frequently by injecting calibration solutions 

instead o f  a sample. The entire analyte system (enzyme and sensor) is calibrated under 

real analysis conditions. Deactivated enzyme preparations or sensors can be replaced 

without any problems.

As previously described in Section 4.4.4, faster response times occured when the 

polymer concentration at the electrode surface was reduced. Greater concentrations 

resulted in somewhat delayed returns to the original baseline levels. An explanation for 

this may be where a sample o f  the substrate passes the electrode surface, some 

peroxide could still be produced by the enzyme-substrate complex, i.e. analyte 

trapping. The dispersion o f  the flow system at 0.85 and 2.48ml min'1 was evaluated 

from measurements o f  5 xlO'5M uric acid. The dispersion factors [69], given below, o f

0  ŝiendj'siale 

p̂eak max

the flow system, were 1.0 for a flow rate o f  0.85ml min'1 and 1.15 for 2.48ml min'1
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The justification for using a bienzyme CPE with a conducting polymer layer relates to 

the need to overcome electrochemical interference and fouling by sample components 

such as ascorbic acid, biliaibin and proteins present in physiological samples. 

Therefore, it was pertinent to evaluate the sensor in analysing real samples

The biosensor was used for the analysis o f  uric acid in humam serum and 

results were compared to a standard UV spectrophotometric method. Samples were 

diluted 1:10 with the background electrolyte and the pH adjusted to 7,5 (when 

necessary). Diluted serum samples were then injected directly into the flow system and 

the concentration o f  urate present in each sample was estimated using a calibration 

plot. The data obtained (summarised in Table 4.1) compared favourably with the 

results determined by UV specrophotometry Repeated exposure of the electrode to 

diluted sera had no adverse effect on the size o f  the amperometric signal. The lower 

measured urate levels in samples were likely to have been the result of a greater 

selectivity of the uricase enzyme for its substrate, although an adverse effect of 

physiological sample components on the electrochemical reaction cannot be ruled out 

even though membrane fouling was not evident.

To date, analysis o f  unspiked or real human serum compared as well as, if not 

better, than other previously reported enzyme-electrode methods for detecting uric 

acid in a complex physiological matrix The polymer appeared to have effectively 

protected the electrode from interferences and fouling. In interference studies, the 

concentrations o f  potential interferents tested were much higher than anticipated 

physiological levels. Moreover, serum samples were simply diluted with background

4.4 11. Analysis o f  real samples
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electrolyte rather than carrying out extraction procedures which are time consuming 

and restrict the frequency o f  sampling.

T a b l e  4 . 1

Determination of uric acid in real serum samples with the poly(o-aminophenol)  
bienzyme carbon paste electrode. Experimental conditions as described in text.

Serum sample Urate (mg L ') * Urate (mg L 1) + Results (%)

1 5.3 4.9 93

2 4 6 4.1 90

3 5 5 5.2 95

4 6 2 5.6 91

5 3 9 3.7 95

* Concentration (mg L  ‘) as determined by UV spectrophotometry at 293nm.
+ Concentration (mg L '1) as determ ined by sensor at -H).05V vs. Ag/AgCI

Bienzyme electrode flow injection analysis approaches are convenient to use and lend 

themselves to dealing with large numbers of samples. In particular, the uricase-HRP 

electrodes offer possibilities for quality control monitoring in the clinical environment.
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In this study, a novel reagentless sensor for detecting uric acid has been described 

based on the co-immobilisation of HRP and uricase in carbon paste The sensor was 

incorporated into a flow injection analysis system where the concentration of uric acid 

in a complex physiological matrix could be determined with great accuracy. It was 

found possible to amperometrically detect uric acid by immobilising uricase alone; 

however, such a method required high overpotentials (>0.4V) and would be therefore 

susceptible to interference from electroactive species present in real samples It is 

therefore desirable to construct a sensor that operates efficiently at a favourable 

potential (<0.25V) and that possesses a short response time.

The response o f  the biosensor was shown to be due to the biocatalytic 

production of hydrogen peroxide and not due to direct transfer of urate ions across the 

polymer film Peroxide was shown to be electrocatalytically reduced via the relatively 

facile direct electron transfer from the electrode to the Compound I form of 

immobilised HRP. HRP is then regenerated by direct transfer from the paste to the 

hemin Fe(IV) without the necessity for an artificial mediator or cofactor. The precise 

nature of this mechanism is still somewhat unclear; however, oxygen-containing 

functionalities on the electrode surface which were introduced during paste preparation 

may offer some explanation. The composition and procedure for preparing the carbon 

paste may therefore contribute to heterogenous electron transfer. Due to its 

configuration, the electrode may be classed as a third generation biosensor as no 

external reagents were added to the system

Conducting polymers can be electrodeposited at the working surface of a CPE 

with great precision. This film functions in retaining both immobilised enzymes in the

4.4.12. Conclusion
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bulk o f  the electrode. Poly(o-aminophenol) was stable for a considerable length o f  time 

when stored in background electrolye at room temperature. Physical characteristics 

such fdm thickness could be easily controlled thus regulating the rate o f  analyte 

diffusion to the immobilised biocatalytic layer. Sensor response times could also be 

controlled by regulating the polymer thickness. Amperometric biosensors are in general 

limited by interferents present in complex physiological matrices such as serum. 

Poly(o-aminophenol) appeared to adequately protect the electrode from interferences 

and fouling.

The HRP-uricase based sensor was successfully used to determine the 

concentration o f  uric acid in human serum with great accuracy. Results compared 

favourably with a standard UV spectrophotometric method, regardless o f  the fact 

samples were simply diluted in buffer rather than pursuing arduous extraction 

techniques.
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CHAPTER 5

CONCLUSIONS



Native HRP is a moderately stable enzyme. The initial aim o f  this project was to 

investigate the effects of chemical crosslinkers and non-crosslinkers on HRP activity, 

and to determine the effects of these reagents on HRP thermostability. A range o f  

amino-specific reagents were used. Reaction o f  HRP’s lysine amino acids with both 

bifunctional and monofunctional succinimides did not result in any loss in catalytic 

activity; also, the treated HRP fractions were more heat-stable and these stabilisations 

persisted on storage at a low temperature (4°C).

All chemical derivatives o f  HRP displayed a greater level o f  thermostability 

when exposed to temperatures o f  at least 55-60°C for extended periods. Modified 

HRPs also resisted solvent-induced activity loss much more successfully than did 

native HRP. The solvents used in this investigation (MeOH, DMF and THF) may act 

in a similar fashion to destabilising ions, in that they disrupt the water “shell” 

surrounding the HRP molecule (which is thought to be critical for catalysis), leading to 

unfolding and loss o f  function. Derivatives also possessed greater stability in the 

presence o f  denaturing, reducing and chelating agents.

The number of free amino groups in all HRP derivatives decreased after 

reaction with succinimide compounds. Bifunctional reagents (SA-NHS and EG-NHS) 

modified 4-5 o f  H RP’s lysines whereas the acetylating agent (acetic acid N- 

hydroxysuccinimide ester) modified 3 residues. These results implied that two 

crosslinks at most could have formed in the case of bifunctional HRP derivatives. From 

both experimental data and the literature, it could be concluded that the degree o f  

stabilisation obtained is related to the molecular length o f  the chemical crosslinker. 

Increased stability in adverse conditions (with AA-NHS HRP) was thought to be due 

to charge neutralisation, as the acetylating reagent is unable to form molecular

220



crosslinks in proteins. Fluorescence and UV/Visible spectroscopy have also pointed to 

changes in the unfolding characteristics o f  protein derivatives after bis-succinimide 

modification

Succinimide-treated HRPs have also been shown to increase the amount of 

phenols removed from aqueous systems at high temperatures. Overall, acetylated HRP 

had a marginally better ability to catalyse the removal o f  toxic aromatics; this may be 

attributed to the absence o f  intramolecular crosslinks, the presence of which may have 

in some way interfered with the efficiency o f  the enzyme’s catalytic cycle. Crosslinks 

may slow down or even block the diffusion o f  aromatic molecules to the active site, 

thus limiting the degree o f  free radical formation. It is therefore possible that the 

restriction on free radical formation is related to the frequency and length (A) o f  such 

bonds. Nevertheless, the difference in phenol oxidation between acetylated and 

bifunctional HRPs was relatively minor

Native HRP was shown to be an effective component in a biosensor for 

detecting uric acid (an end product o f  purine metabolism). The sensor had the 

advantage over more conventional enzyme-based devices in that it operated efficiently 

without the necessity for an electron transfer mediator (cofactor). The exact nature of 

this mechanism is unclear, but oxygen-containing functionalities on the working 

surface area of the electrode are thought to play an important role in electron 

mediation. Heterogeneous electron transfer between the electrode and the Compound I 

form o f  HRP is thought to depend on the exact procedure for preparing the carbon 

paste (the temperature o f  the graphite prior to adding paraffin oil is important). As the 

biosensor was observed to operate in this fashion, it can be classed as a third 

generation biosensor, i.e. no external reagents were required for its operation. The
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electrodeposition of o-aminophenol at the surface of the carbon paste electrode (as 

opposed to employing more conventional membranes) appeared to protect the 

biocomponent from interferences and fouling

The commercial potential of biosensors varies greatly from one application to 

another. However, the entire biosensor concept has been slow to be accepted, mainly 

due to non-acceptance in clinical circles A number o f  problems may exist in 

developing a market for biosensing devices, such as product recalls, entrenched 

competition, legislative problems, poor marketing or distribution, and especially poor 

production design. However, the potential of these devices could be very great indeed 

if good marketing strategies were put in place and also if all technical difficulties were 

overcome

Chemical methods employed in protein stabilisation could greatly benefit 

biosensor development. Preventing the unfolding o f  the protein chain is o f  great 

importance in attempting to improve the stability o f  designated enzymes. A 

coordinated effort involving both specific chemical alteration and immobilisation on 

solid supports (or within a matrix) could be beneficial in improving the overall 

performance o f  a biosensor. A modified enzyme is considerably less prone to unfolding 

under adverse conditions even though it is capable o f  a certain degree o f  movement 

necessary for efficient biocatalysis However, gross conformational changes are 

prevented by covalent attachment to an insoluble, inflexible solid support. The 

chemical modification strategy described above could be used in conjunction with an 

immobilisation technique, as succinimides do not react with HRP’s carbohydrate side 

chains (18% o f  total enzyme). A dual approach could therefore be advantageous, in 

that an improvement in storage (working lifetime) and operational stability could be
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attained, i.e. the production of a robust and reusable device capable of operating under 

field conditions. The future direction o f  research will no doubt be concentrated on non- 

invasive self-contained biosensors where physiologically important metabolites such as 

uric acid could be quantified through direct analysis of saliva or sweat.

Similar dual stabilisation strategies could be beneficial in treating phenol 

effluents. As described in Chapter 3, a chemically stabilised and/or immobilised 

peroxidase could be applied to a continuous flow reactor where effluent is constantly 

pumped through the system In this way, maximum utilisation could be obtained from 

the biocatalyst. Careful consideration of the stabilisation strategies to be undertaken 

could eventually produce peroxidases with bioactivity and tolerance levels as good as 

(if not better than) bacterial or fungal cells. A HRP system for purifying phenol effluent 

could be complemented by a stabilised peroxidase-based biosensor for selectively 

detecting individual phenols or a group o f  phenols.

It is likely that combining different stabilisation strategies (chemical 

modification, immobilisation, use of additives, protein engineering etc.) will become 

increasingly important in biotechnology processes Stabilisation can be implemented 

based on one or a combination of procedures. Manufacturing processes may eventually 

require specially stabilised biocomponents for designated tasks. Specific chemical 

modification may not alone alter the protein’s conformation but also its active centre, 

resulting in an enzyme derivative with greater biocatalysis or even multifunctional 

capabilities.

The specific chemical modification of HRP described here has yielded 

derivatives with very high thermostability and tolerance of water-miscible organic 

solvents. These HRP derivatives have demonstrated the feasibility o f  employing HRP
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in the removal o f  phenols from aqueous solutions. The potential also exists for 

applications in bioorganic biosynthesis (in the presence o f  high concentrations of 

water-miscible organic solvents, for example, the production o f  phenolic polymers, by 

the HRP system, may be useful as thermorésistant resins or as conductive polymers). 

Stabilisations (such as these) would certainly be beneficial to areas such as those 

mentioned above and others including neurohistochemistry, DNA labelling and 

immunology.
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