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ABSTRACT

The boundary value problem involving the magnetohydrodynamic ballooning

equation,

(1 + x2)d2y/dx2 + 2xdy/dx - (X+~°( + x2) - ~(1 + x2))y = 0, x « R,

with boundary conditions y — > 0 as X — >Toq , arises from a study of
the stability of disturbances in a magnetically confined plasma.
In order to facilitate the analysis, the equation is transformed to

Schrodinger form,

'+ [X- g1y =0

g(x) £ R, with the same boundary conditions and the results of
Titchmarsh applied. Two cases are examined, The first with S*= 0
(modified Legendre equation) and the second with~<*> 0. In both cases
the Titchmarsh-Weyl coefficients m( x) are constructed and their
singularities examined. The singularities yield expressions for the
eigenvalues of the problem. In the second case the expressions involve
the joining factors of the spheroidal equation, K*>.) and K~ Ff ).
which join solutions at infinity with solutions about (1. For the case
'£'> 0, the limit of mCX ) as X1— > 0, is shown to be the m(>» )

coefficient in the case '4,= 0.
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CHAPTER 1

THE STABILITY OF MAGNETICALLY CONFINED PLASMAS
THE DERIVATION OF AN EXPRESSION FOR THE GROWTH RATE
OF A DISTURBANCE

INTRODUCTION

This thesis concerns itself with a problem which arises
physically as a result of the attempt to contain an
extremely hot ionised gas using magnetic forces. The
ionised gas or plasma is hydrogen, heated to a few million
degrees Celsius. If such a plasma is compressed
sufficiently, it will undergo nuclear fusion to produce
helium and enormous quantities of energy. This energy, in
the form of heat, can be used to produce steam which in
turn drives generators, thus producing electricity. This
is a relatively clean source of energy and the fuel,
hydrogen, is abundant in sea water.

Because of the high temperature of the plasma, no material
could contain it without being itself vapourised. However
the plasma is composed of charged particles (electrons and
positively charged ions) and therefore feels the effects
of electromagnetic force fields. In practice, magnetic
forces are used to contain the plasma in a "magnetic
bottle", for sufficient time to allow the plasma to be
heated so that fusion can take place. Practical devices
have been built which try to achieve these conditions, but
unfortunately, they are all subject to limitations, due to
instabilities- in the plasma, which grow with increased
power input. The instabilities lead to a breakdown of the

confining field and escape of the plasma. This limits the



power output of such devices to levels which are uneconom-
ical for commercial purposes. The origin and properties of
these instabilities are thus key questions to be answered
in assessing the viability of a controlled, nuclear fusion
device.

In order to decribe the instabilities a model is required.
The model is in the form of a plasma slab of infinite ex-
tent. This is an idealisation of practical devices, which
typically have a toroidal geometry (the Tokamaks). In the
case of the Tokamaks, the magnetic "walls"” develop weak-
nesses similar to the ballooning experienced in rubber
inner tubes or to aneurysms in blood vessels. A radial
(centripetal) force is required in this case to constrain
the plasma to a circular path. This force can be simulated
in the plane slab model, by a uniform gravitational force
f.ield acting perpendicularly to the plane surfaces of the
slab and to the applied magnetic field.

THE BASIC EQUATIONS

The basic equations of resistive Magnetohydrodynamics,
under the conditions of low plasma density and over time
intervals where there is assumed to be no significant heat

transfer, are given in [11] to be

(1.1)
0 (1.2)
° (1.3)



The symbols have their usual meaning and Akt - V'bt +'£.V

Ohm's Law has the form

(1.4)

and the truncated Maxwell's equations are

(1.5)

Combining (1.4) and (1.5) yields the induction equation,
which describes the rate of change of £ due to the motion

of the plasma and resistive diffusion.

(1.6)

- S7* (Sc * +-

v) Constant.

The first term measures the effect on the magnetic field J3
of convective motion in the plasma. The second term
measures the effects of diffusion due to the resistivity
of the plasma. The similarity between (1.6) and equations
in the hydrodynamics of viscous and incompressible fluids
allows one to use many of the conclusions of hydrodynamics,

in particular one can define a magnetic Reynolds number,



analogous to the Reynolds number in hydrodynamics which

measures the ratio of the inertial (convective) forces to
the viscous forces. For (1.6) the ratio of the magnitude
of the two terms, one convective, one resitive defines the

magnetic Reynolds number.

V and a are a characteristic velocity and dimension of the
particular problem.

If vj = 0 (the case of an infinitely conducting plasma)
then s-* og and the first term in (1.6) dominates. The
equation now represents the case of Flux-freezing, where
the magnetic field lines are constrained to move with the
plasma. As a result of this, they possess an effective
mass and behave like stretched elastic string, allowing
the propagation of transverse waves along the lines of
force. The speed at which these waves travel is found to

be
\JK= U/CUTVA" 'f*

and is known as the Alfven wave speed, see [1] [3] and
[11]. This allows us to define a basic time scale
(The hydrodynamic time scale)

A = Oo(uw
on which disturbances in the plasma propagate along the
field. "XMcan vary enormously, depending on the problem
considered, but in Laboratory fusion plasmas ~ ~
This shortness implies that disturbances will propagate

very rapidly through the plasma and if inclined to grow,



would do so very quickly. This is partly the reason why

Magnetohydrodynamic instabilities impose such a severe

limitation on thermonuclear fusion plasma confinement. I f
S 1 then (1.6) is basically the resistive diffusion
equation

~ UTi -
This has a characteristic diffusion time -tv = <<

This time scale again varies considerably, depending on
the problem under consideration, for laboratory thermo-
nuclear fusion plasmas Tn~I| - 10 msecs.

The ratio of the two time scales

is the magnetic Reynolds number with \J*xthe Alfven wave
speed. It is an important quantity in resistive instability
theory. In the case of plasmas generated in laboratory
fusion experiments, S is large -in the range 103 - 107.
The significance of this is that resistive diffusion
effects are small and the condition of flux-freezing con-
sidered to hold to good approximation.

If one layer of plasma with density ~ , is supported
against gravity by another layer, whose density is less
than @ , then another instability analogous to the
Rayleigh-Taylor instability in an incompressible fluid can
occur. The Rayleigh-Taylor instability arises in the case

where a heavier liquid is supported against gravity by a

lighter liquid. In the Magnetohydrodynamic case a charact-
eristic time scale exists where
and is the adverse density gradient. In a highly



conducting plasma, confined by a sheared, magnetic field
in the presence of a gravitational acceleration, acting
normal to the magnetic surfaces, the instabilities,called
the tearing, rippling and resistive g-modes will be
characterised by time scales which depend on the three
characteristic time scales, and % of the problem.
The time scale r on which these instabilities grow in the

linear domain, is found to scale like

where a, b, c¢ are fractional powers and lal,\blI<I.

As can be seen from the above a disturbance can propagate
by a number of different means through the plasma at
different rates and all of it depending on the equilibrium
state of the plasma.

The next step in the stability analysis of the model, upon
deciding on the equilibrium state, is to perturb the state
and derive an expression for the growth rate of the per-
turbation. Analysis of this expression will reveal the
conditions for unfavourable growth rates and the character-
istic time for their propagation. The expression typically
is a boundary value problem and in an important set of ex-
amples the boundary value problem turns out to be a form of
the oblate spheroidal equation whose properties are the

concern of the remaining chapters of this work.

AN EXAMPLE LEADING TO THE SPHEROIDAL EQUATION
We will choose as our model the plane slab with an infin-

itely conducting plasma (VM = 0). The equilibrium magnetic

field Eo = [Box(y), 0, Boz(y)]' The equilibrium



density <M(y) varies in the vertical y-direction only,

The gravitational acceleration is g = gev® . Assume a
stationary equilibrium (V6 ~ 0). Perturbed quantities
will be written as f = fQ +f. where f is the equi-
librium value and the perturbing value. The equations
being perturbed are (1.1) (use (1.5) to eliminate j), (1.2)
and (1.6). Terms up to the first order in the perturbing
guantities are taken, i.e a standard linearisation process,
see [3, Ch.l]. We then look for incompressible modes

i.e. O + The linearised form of (1.1) s

The third term is the equilibrium term and equals zero.

Taking the curl then eliminates the pressure term giving

- v x ~ ( ( o , + ( . $ < . a.?)

(1.2) becomes: o' (1.8)

(where prime indicates diff. w.r.t. y) and (1.6) with v) = O

becomes N —

= (1.9)

In addition of course A
Because the coefficients of the linearised equations above,

are functions of y only (independent of x, z and t) we can



represent the perturbed quantities by their Fourier trans-

forms which have the form
cL*.9>(iVoO<-4'"vtv t * 7 ", (1.10)

See description in [3, Ch.I] and [11]

Here f~ represents any perturbed quantity.

k = [kX, 0, kz] is the wave vector in the x - z plane

and w is the growth rate of the disturbance.The object of
the exercise is to derive an expression for the growth
rate o , from which the stability of the equilibrium state
may be determined. Broadly speaking, the system is said to
be stable if the real part of to is negative forall k. |If
it turned out to be positive for even one valueofk, then
it would be unstable. The disturbance growing with time.
The imaginary part of , will determine whether the system
is subject to oscillations. Non-zero values of Im(ui)
implying oscillations.

Note: the operator C"o ~AX, =xCvVvij, £ and in this case

V- Vi« - . (1.11)

Equation (1.8) now reduces to

) (1.12a)

and the y-component of (1.9) s

(1.12h)

Proceeding as in [11], we obtain the equation



We can simplify this equation by making an approximation.
We assume the density inhomogeneity to be weak and make
the Boussinesq approximation (see [3, Ch.2] and [11, 11]),
which assumes <M(y) to be constant, while still

retaining in the gravitational term on the right.

(1.23) then becomes

+<*mf - g )\Th, - O (1#14)

where quantities have been normalised as follows

V*z_"Mo., = it (

T,-0.(V«oV|fto] , G* (-silOVC™*

Here a represents a characteristic dimension of the
current layer.

From [11] it is known that the most dangerous modes will
be localised about (known as the resonant
surface). In the neighbourhood of this surface, field
lines can interchange without undergoing significant dis-
tortion and as a result, shear tends to localise the in-
stability about this surface. The resonant surface corres-
ponds to F(y>) = 0 where we assume F(”a ) = 0 when = 0.
Considering only localised modes about = 0 (where the
amplitude decays rapidly away from y> = 0) then

F(y* ) s F'(0)y> (Taylor expansion about y* = 0) and we

obtain the equation



where

The boundary conditions —> & as jX—" + oo then
constitute an eigenvalue problem for the eigenvalue as
a function of the gravitational-shear term G/(F')Z‘.

An equation of the same type arises in a more complicated
way in ideal ballooning, (See Los Alamos technical report
L A-9055- MS, by R. b. Paris and R.Y. Dagazian, 1982).
The authors take as their model the case of a magetised
plasma slab equilibrium with magnetic shear. The

equilibrium magnetic field is

They simulate toroidal curvature effects by introducing a
gravitational acceleration modulated along a given line of

force.

They then consider perturbations of the form

This is the crucial form of a ballooning perturbation, k»1

lines, while f(z) describes slow dependence along the field
lines. Neglecting the variation of perturbed quantities as
limits S-*0, k-*>Ware taken, then taking the divergence of
the equation of motion, we arrive at the equation

describing ideal ballooning

By letting z = sz we obtain

10



If we compare (1.15a) with the oblate spheroidal equation

with imaginary argument i.e.

we see a n

a LA »op. « (PoF*-Y*-1 t - to + Q» C\V )
This is a Sturm-Liouville-type boundary value problem and
to determine the eigenvalues, we employ the Titchmarsh-Weyl
theory, which had its origins in the famous 1910 paper of

Hermann Weyl where he showed that the differential equation

-(*W v * = > 7 0 «C°,w)

when >k is not real, always has a non-trivial solution which
is absolutely square-integrable on the interval [O, oq ).
Given two solutions 0 and (> which satisfy the initial

conditions
G>co)\ ) M v 0

c|>Co,>0- O <£'Co ,>) - 1

he demonstrated the existence of a coefficient m(V)
(the Titchmarsh-Weyl coefficient) regular in the two half

planes of C created by the real line, the solution being

Vest,>0 - © - )

% € £0, 00)
where

00

) It )1 <60 . (>> 0),

11



The poles and zeros of m(?0 yielding the eigenvalues of

0 (x,>>) and <|)(x,X) respectively.

THE LAYOUT OF THE THESIS

The layout of the remaining chaptersis as follows:

Chapter 2 is a review of spectral theory by the Titchmarsh
method. It begins with the regular Sturm-Liouville case on
[a,b], then examines the singular case leading to a series
expansion, firstly on the interval [O, w) and then on

(-w, © ). This last caseis of particular relevance to
this work, especially thecase where the potential function
q(x) 1is even. The Titchmarsh-Weyl coefficient, m(>s) is
defined and the relationship between the poles and zeros
of m(>\) and the eigenvalues of the boundary value problem
established. Finally the general singular case is examined
and the spectral function k(X) defined. The extension to
the interval (-¢«,««) follows along with definitions of the
functions "SO.), 7 ) and TO.). The general classific-
ation of spectra are described. Chapter 3 consists of
examples illustrating the theory of Chapter 2. Some

theorems on the dependence of the spectrum of

vV + 0

on qg(x) are listed and discussed. Finally the potential
functions of the Magnetohydrodynamic ballooning equation
for different values of the parameters y* and are
examined in detail, properties of the spectrum for the
various values of the parameters are elucidated using the

listed theorems.

12



Chapter 4 examines the special case of the Magneto-
hydrodynamic equation when O, where it reduces to the
associated Legendre equation with imaginary argument.
Expressions for the eigenvalues and eigenfunctions are
derived using two different methods, one, that of
truncated hypergeometric series, the second using the
Titchmarsh-Wey 1 coefficient m(>0. Chapter 5 looks at the
properties of the spheroidal functions which are sol-
utions of the Magnetohydrodynamic ballooning equation.

The case”™ >0 only is considered (real growth rate

The spheroidal functions Ps£(x,'S) and QsT/XjS) can be
expressed as infinite series of Legendre functions about
the equations singularities 1, while they can be expressed
as infinite series of Bessel functions as \:>M— The join-
ing factors Kv(?) linking the two types of series are
derived, and a number of methods for evaluating the char-
acteristic exponent > described. Chapter 6 begins by
constructing the even and odd solutions f> and in terms
of PSv(x,*i£) and Qs”~Cx,”) and hence in terms of*F-, hyper-
geometric functions. The two solutions 0 and (f) are
continued as infinite series of Bessel functions Sle(x ,
using the joining factors. m(>J is then calculated by

comparing the solution

v - 0 + v* <P
to Suv@(x ). Arelation for the eigenvalues 1is then
derived. Finally, by using an approximation for mw(\) for
smallN”e show that m~0O m~CS) corresponds to the m()O
obtained in the case 0 of Chapter 4.

13



CHAPTER 2

REVIEW UF THE SPECTRAL THEORY BY TITCHMARSH'S METHOD

In this chapter we will outline the conditions under which
an arbitrary function f(x) may be expressed in terms of
the eigenfunctions of a singular self-adjoint boundary
value problem.

y" + (fs- q(x))y =0 (2.1)
where y(x) is L"(-to, ).
We will proceed as follows:

(1) The regular case
(2) Thesingular case with series expansion on[0,00)

(3) Thesingular case with series andintegral terms
on [0, OO
(4) The singular case over the full interval (- w,6 &)

Firstly then, we review the regular case, that of the
formally self-adjoint boundary value problem on a finite
interval J[a,b].

y* + (X - a(x))y =0

with boundary conditions:

V/ivO(\-,x + -0

V) % -C

In all cases V is a complex parameter, a and O are given
real numbers. In this instance also q(x) is assumed
continuous on [a,bj. The methods described are those
given in [15]. For an alternative method see [4]. The
problem (2.2) above is the classical Sturm-Liouville one.
The expansion of f(x) in this case involves Cauchy's

residue theorem and integration around a large circular

14



contour in the X - plane. In [15, Ch.I] the proof
involves asymptotic expansions of the solutions of (2.2)
for large I'M and the point-wise convergence of the series
is established by comparison with the Fourier series i.e.
the case g(x) = 0.

We will now outline the proof in the regular case:

Let <j>(x,X) and 'V.(x,%) be solutions of (2.2) such that

$(0iX) -

X a » = 0c'OA) =
Let X= s where s is real and positive when X is real
and positive and s = 0o’ + ix . Then, as |Isj-*M it is proved
in [15, p. 10] that, assuming Sin* 0 (Sin™> j: 0).

<p(.x\) -C « s ¢ M - + 008%r"

= +o0Cd"""e0)

The Wronskian of <*>(x,X) and X(x,*>-), ~(%) is independent

of x and it follows from above that

cjOO - sSA"Cbhb-00”"0cS”™"Q . 4 0OC<2nfICbh*°0)

If Sincx. = 0 (Sin® = 0) similar results can be obtained.
We assume though that Sinoc (and Sini® )£ Q. W will

outline the proof that when f(x) is of bounded variation

- 15 -



in the neighbourhood of x, it may be expanded in terms of
the eigenfunctions of (2.2).

*
Let {cn be the positively oriented rectangular contour in

the s-plane with vertices i Rn> -Rn + iRn where

K= (n +1/2)tt/(b - a). Let 17,* = (-Rn> Rn~

(the contour less the real line portion), also let Vy* be
the arc in the X-plane corresponding to . Wk note
that on and inside 1"« , \sin s(b - a

for some constant IK , hence
| 4 OUsl-1J
(00) s Stv»sC\»-0

Then for x > t and on 1"** and inside

oUa-.wxKt,>0o _ crsc”N-0 c”Msct
o (\) “o~ V lsl' /e

Writing the trigonometric functions as exponentials, the

first term becomes on re-arranging.
-tie

Since S , W& can use the binomial

expansion on the last term to give
~Ar~LI* g%, %, % 2.3)

where £ (s,x,t) is a sum of terms of the form
exp [2 misCic*. + +KX + Y], with m=1,2,....

JjV) N real numbers with the property that

SLw>"io- 4- fiw Wb+ wa U, + v (.Gw»r- 0t —O



for t outside [a, x] and where
F 'cs”™~?™ocisr’ '™ --50) <«

Similarly for t e [x, b]

= 0 + E'c<A rt]t F+Cs, o (2. 4)

where again the exponents in A (s,x,t) vanish

only for t outside [x,b] and

o - OCuinfe*1*"0) isi— **>
It is proved in [15, Ch.I] that when f(x) is of bounded

variation

vV n n + c o0 «A-b] <A\

- + fCat-0)] t (2.5)

If we let $(xf>) equal the quantity in the braces above,
then we can show by differentiating, that it is a solution

of the non-homogeneous boundary value problem.
Gs -

with the same boundary conditions as (2.2) for all V
Also it is proved in [15, Ch.I] that all the zeros of u(V)
must be simple and on the real axis (say \ 0~tf x.. ).
Then at "™\n the Wronskian of 4>(x> ) arld M(x,V,) is

zero and so <M and are linearly dependent

- 17 -



Now from the boundary conditions, kn is neither 0 nor oo

hence at'V =V A | » has the residue

Recalling the result at (2.5) and the fact that

V)i — C CaviwtT)

Then,
Vo<mm> - il’tia \/\ J t (2.6)
This is the Sturm-Liouville expansion, see also [14]

If the Wronskian co( x ) has a branch point, then this

introduces a continuous spectrum component to the

expansion of f(x). It appears as an additional integral
term on the right hand side of (2.6). It is possible that
the series in (2.6) may have only a finite number of

terms. See [15, Ch. 1 and Ch. 4].

THE SINGULAR CASE

We now take a look at the results pertaining to the sing-
ular case. That is the case where q(x) hasa discontinuity
at one end of the interval or both, or the interval goes
to infinity in one direction or both. We will examine
first a special case, that one where the expansion is
always a series. This case is somewhat simpler than the

most general one (which will be dealt with next) but it is



the one relevant to the problem which will be examined
later.

The particular case then, to be considered is the one on
the interval (O, co ) where g(x) is continuous on that
interval.

The finite interval case with a singularity at one end is
analagous. The problem, over the whole real line or the
similar finite interval with a singularity at both ends,
can be dealt with by breaking the interval up into two
parts at some regular point of qg(x). We would then deal
with each interval separately.

Let F(x) and G(x) satisfy the differential equations

(2.7)
and the corresponding equation with V instead of V
respectively, then
(2.8)
If Vv - } 'X=V - > Ca.= o G- £ this gives
m;u n ~vjcCf f ) - j.vjbCf.f; (2.9)



Now let 3 8 be the

solutions of (2.7) such that

¢j*Co) — (B to) ——Cxo «.
: (2.10)
0 (o) - OacA. 0>Co) -
6 1t . Then

Voal C &) - 0 Cr) fe0 - C>IvTesl VOV 1 - |

The general solution of (2.7) can be written in the form
O(x) + \ é>(x) e Consider the solutions which satisfy a

real boundary condition at x = b, say

QR F O Cegl PO S - 0!

e IR = Rearranging it gives

' os\<v) - 4 ~Ch) (2.11)
(frth™) dotC» V c£>'CiO

For each b as CotC> wvaries, \ describes a circle in the
complex plane, say cN. Replacing CotC> by a complex
variable z, we obtain

GOV 40 (1)
- #0071 v <E'(b)

When = - (BA(b) j <£>(b), 1 =0 . Hence the centre of
the circle ¢ corresponds to the conjugate
z = - ("(b)j & (b):

it is therefore

T = VJuCs .7 )
VAOD, ¢)

20



Also

VO < ikt M R i s

which has the same sign as ~? by (2.9) with F = ¢ ,

since

vicct]) - O.

Hence, if *»>> 0, the exterior of ¢ corresponds to the
upper half of the z - plane.

Because - ©'(b) j (f)\b) is on ¢ ( z = 0) the radius rb
of ¢/ is

VUM )]
VIkCA,2) |

= \J w2 j QN (2.12)

by (2.9) and (2.10).
\ is inside ¢, if w z <O, if i( z -2z )> 0,

that is if
4>sz__* .1 <t)'ch) + e (b)\

V] T<£>h‘)"+|§5t}"§ R 3EG] £ ?

i.e.. iiff _ _ - -
rnrvi,<*>) + 1Vv,C4>©) +I1VIwCG.it)e vifcCe. €)J >0/

viJk(a+'l14>, © > °

by (2.9) if

Jq

21 -



Since \z-nlo N3t ., VOC*r, Y} * Q etc.,

VJoCO +'l4>] = \ -\ = <*0.
Therefore is interior to ¢ when V > 0, and
Nolet+l<f> iV n (2-13)
The same is true if "'070. In each case the sign of irrfL

is opposite to that of v

It follows that, if \ is inside ¢ and 0 * b' < b,
then

Hence \ is also inside c*,. Hence c¢”, includes c” if
b' < bh. It follows that, as b —*oa , the circles c”

converge either to a limit-circle or to a limit-point.
If m=m()\ ) is the limit-point, or any point on the

limit-circle,

Yo
_ PP —LVAVA
0 +W\ (p ] clx -~ (2.14)

for all values of b. Hence

<. —uws W (2.15)
v

It follows that, for every value of X other than real

values, (2.7) has a solution
,>>) = 9 0 * + vwCm }

22



belonging to L2(O, co ). The function m(X) is the
Titchmarsh-Weyl coefficient.

In the limit-circle case, ~ tends to a positive limit as
b ; hence, by (2.12), <k>(x) is 12(0,00); so in fact,
in this case, every solution of (2.7) belongs to

L2(0, e*).

For a given £ ="A(*)>is an analytic function of X ;
in fact it is a meromorphic function, regular except for
poles on the real axis.

This is because the poles of V X) arethe zeros of

and this is just -CO(')n), the Wronskianas denoted earlier.
It is proved in [15, Ch. 1] that the zeros of ii*>(X) are
all real and simple. Also it is proved in [15, Ch. 2]
that \ (>) is analytic in the upper and lower half-
-planes. Hence in both the limit-point and limit-circle
cases the m(}\ ) function is analytic in both half-planes,
with its (simple) poles on the real axis. The functions
in the two half-planes are not necessarily analytic con-
tinuations of each other. This would be the general case,
but in this instance, we make the simplifying assumption
that they are. Therefore m(X) is a single meromorphic
function of the whole complex plane, whose only singular-
ities are simple poles on the real axis, X«,

and the residues at those points may bedenoted, Tq,

From (2.11) it can be seen that \ (>\) takes conjugate
values for conjugate values of X , and hence so do M(X)

and4”(x, A ).

23



We will now write down some results for the functions
S™M(x,>.) and defined earlier. Firstly though, we
need two lemmas. The proofs of these lemmas are to be found

in [15, Ch.2].

Lemma 1:

For any fixed complex X and *

,VC*.* 8) — O (2.16)
Lemma 2:
Let fn(x) be a sequence of functions which converges in
mean square to f(x) over any finite interval,
while

for all n

Then f(x) is L2(0,00), and if g(x) belongs to L2(0,cx>)

We now apply these two results from (2.8)

The first term on the right is

[Go* GooTJd = vv,00 -v*CV) and>



I
if > and X are not real, the second term tends to zero as

, by lemma 1 (2.16). Hence

(>A )~ c - A (2.17)
If we take "X = X , we obtain

(2.18)
so that the case of equality holds in (2.15).

Now let "Xnbe an eigenvalue, and let 'X,= X* + jV -2 0.

Then for any fixed X. ,

"X Cl.
o]
Jo
Because the left hand side is
jjveunr>4vv*cvo+ ) - ) -*u>0]w

and each of the three terms contributes zero to the limit.

Also, by (2.18),

p))
\J\>H'(*>onk ¢lvwool = 0CO
o
as'V-~0, since the pole of m(Vo at X», is simple. On

multiplying (2.17) by tV/rn, making "~-~0, and using
lemma 2 we see that 4>(x, >«) is L2(0, £0), and
.0°

= V - Xy, (2.19)

If X is equal to a different eigenvalue X»,, on multiply-

ing (2.19) by ~ /r and making V-»0, gives us

- 25 -



(2.20)
If X tends to the same eigenvalue V"~ |, it follows similarly
that
bo
1
' XvOl d "C (2.21)
Hence the functions
CoO — 'O\ <f>C"AO0
(2.22)
form an orthonormal set.
(2.19) can now be written
oo 'i
(2-25)

SOME PROPERTIES OF THE RESOLVENT OPERATOR fruy.V)

Let f(y) be L2(0, oG ), and let
Xy -

where <) and Njr are as defined above. Then, for every X,
$(x, X) is an analytic function of V , regular for
imV 2~ 0 or imX < 0. Also if f(y) is continuous, $>(y,X)

satisfies the differential equation

- T,U)) $ - {30 (2.25)
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and

so that $>(x,\ ) also satisfies the boundary condition
N(»DCoot = <J)(0,>O5Vv* - o . (2.26)

It can be shown [15, Ch.2] that $ has a simple pole at

V* and its residue there is

'O = Hi, Cx.")

= Cv~rv~"rO, (2.27)
Hence, the cn are the generalised Fourier co-efficients.

Also, it can be shown that

Cv,”v,00

8>C"A) - nrao

The Green's function G(x,y,>s) is the solution of the basic
equation with the right hand side equal to the Dirac delta
function centred on x = y. It is symmetrical in x and y; a

continuous function of x for each y, but such that

M o~

\ - N

It is of integrable squared-modulus with respect to either

variable, and satisfies the boundary condition.

C(Oj~j\) (Lhok + ijttoc — O



In terms of the functions defined already

Q Chi-, ,V} - - X) A

AYCAj A ,O0 - - VCCAj

THE INTERVAL (- oo, @)

We now consider the case where the interval is (-«a,00), or
there is a singularity at both ends of a finite interval.
Assume q(x) continuous over (- & , 00).

Let «c(x,V ) and O0(x,\) be the solutions of

y" + (V- q(x))y =0

such that

ECo) = O *Co)= -i ,
©0') -1 ©'(0) = o0

Then W4 ,0 ) =1
By the previous theory there are functions m~(\)and

m2(X) regular in the upper half plane, such that
W.C"X) = eo*ax) + wv> 0" >0
is L 0) and

WAINVO - ec*, >0 +vu0o<X(*X]

9
is L (0, oo ). Then

(2.28)

(2.29)

VICn" m0 - WLCV)- wutx] .
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As in (2.18)
» 0
: uw W
- 00
a (2.30)
_ vrwy
vIxua)lVv v
Hence imtm”) > 0 and im(m2) < 0 , when v >0
The Green's function in this case is
c ~oO
w/O) - WC >0
(2.31)
and
.00
(2.32)
where f is an arbitrary function to be expanded. The expan-
sion will reduce to a series if both m~(\) and n”iX.)
are meromorphic functions.
We have
9c*.,V)+w”0O >0 o
= W\,0'} —WWOO )
There are three possibilities:
(i) At an eigenvalue , m~A(\,,) = m(\,>) =ai 0,
mr(X ) - m2(\) ~ (\-\Jb
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Then " (x,V) has the residue

L6 (*>«V a<)>(:>(-/0]F[jK%x*) + aiCAr.x0JCCvIJi~r ( (2,33)

(ii) m (X ) and m9(X) both have simple zeros

m2( X ) aj (W —X*i) m2(~ ) * a2(” ™0

Then ~(Xjin) has thé residue

_4_QC»x»Il>0j9cvi> .~ <IN : (2-34)

(iiij m*\ ) and m2(\) both have simple poles

V v)~ s;-'X; "2(X} ~
Then "?(x,X) has the residue

a” N | C2.35)

The theory in this case is much the same as that already

considered. A particular case of relevance in this work
is the case where q(x) is an even function. Then 4>(x, \)
is an odd function of x and O0(x,X) 1is an even function
of x. It follows that if O0(x,X) + m2(X )?™)(x,X) is
L2 (0, ) then 9(x, X) - m2(X ) <p(x,X ) is L2(- &,0).
Hence m-~(X) = -m2(X)* All eigenvalues occur under
(ii) or (iii) above and each eigenfunction is either odd
or even. This result will be particularly useful in the

case of the Magnetohydrodynamic ballooning equation.

THE LIMIT PQINT AND LIMIT CIRCLE CASES
These may be interpreted in terms of the number of linearly

2
independent L (0,00) solutions as follows.
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The differential equation y" + (X- g(x))y = 0 has two

independent solutions Q(x,X ) and ”>(x, X ) where

SuU, X >*i e'Co,v>= 0
$(.0j>0= o <J>'(c>/>0 - - J
The equation, when is not real, always has a solution

(non-trivial) which is absolutely square-integrable on the

interval [O, oo )

VCAO =m90* X) + w00 X)

0
The equation can be classified into two mutually exclusive

cases, limit-point and limit-circle. From above with the
same conditions on X it follows that either BCxj'N ) and
<f>(x, X ) are both not integrable-square, or both 6(x,\ )
and <J>(x, X ) are integrable-square. The first is the limit-
point case, the second the limit-circle case. In the
limit-circle case, for each X (real or complex) the differ-
ential equation y" + (X- q(x))y = 0, has only integrable-
square solutions.

In fact, also, all solutions are integrable-square for
real X . In the limit-point case, there is not a single
value of X (real or complex) for which the equation has
two such linearly independent solutions. One of the sol-
utions may be square-integrable for certain real values

of X , but not both at the same point. In addition, if at
some point X (im\ £ ,0) either the limit-point or limit-
circle case holds, then, it holds for all strictly

complex X
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THE GENERAL SINGULAR CASE

In this case we remove the requirement that the Titchmarsh-
Weyl co-efficient m(X) be meromorphic only. We know only
that it is an analytic function of X , regular in the upper
half plane, and that im m (X ) ¢(.0. A consequence of this

is that a continuous spectrum may also arise. We will just
list some results, the proofs of which may be found in

[15, Ch.3].

THE TITCHMARSH-KODAIRA FUNCTION k(X )

Assume the interval to be [0, o0 ]:

Define k(X) = lim I f ;01 J,. (2.36)
»

i
&-»0
then the expansion theorem for f(x) can be written

f(x) (2.37)
(see [15]).

When the interval is (-oo, 00 ), we have, corresponding to

the three cases, (2.33), (2.34) and (2.35) the following:

(2.38)

(2.39)

T0>) = Ho (2.40)
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We then obtain the formal expansion formula

"TY.Jj(X) s (X)
p @
J~% J-00
(2.41)
+ \ <DU wo V

On the [0,o00) interval, we can use the k(X) function to
determine the spectrum of the equation y"+(X-q(x))y = 0.
If k(\) 1is constant over any interval of real values of

X 1 then such an interval contributes nothing to the expan-
sion formula (2.37). Thus the spectrum can be defined as
the complement of the set of open intervals over which

k( \ ) is constant. That is, a point at which k(X) is dis-
continuous belongs to the spectrum. This set forms the
discrete spectrum.

The continuous spectrum is the set of points where k(X)

is continuous but in the neighbourhood of which k(X ) is
not constant. The continuous spectrum may also contain

points of the discrete spectrum.

TRANSFORMATION TO SCHRODINGER FORM

Throughout this chapter we have assumed that the equation
is in the Schrodinger or normal form y" + (X - q(x))y = 0.
There is no loss of generality in this assumption because
the more general second order equation may always be trans-

formed as shown below:

Qi V«.



Let r a

V] = U =17
jloLtxS”
then
where ~>(w) = [b(x) - 7ja' (x) ]/Ja(x7 "e(w) = c¢(x)
Put vy = r(w)u where r(w) = , We obtain

which is of standard form. W assume b'(x) and a"(x) exist.



CHAPTER 3

EXAMPLES AND SOME PROPERTIES OF THE POTENTIAL

FUNCTION g (x)

In this chapter we will illustrate the theory outlined in
Chapter 2 with some examples. The examples will cover the
three cases which were described there. Then we will exr

amine the way the function q(x) can determine the spectrum
of y"+(X -qgq(xJ)y = 0.
Some theorems will be stated and a qualitative picture of

g(x; as a potential function in a Schrodinger type equation

will be used, to provide a physical interpretation of the
ideas discussed. Examples, using the Legendre and Magneto-
hydrodynamic ballooning equations will demonstrate how q(x)

may allow one to determine the type of spectrum to be ex-
pected and also how that spectrum depends on the wvarious
parameters involved in g(x).

The first case we examined was the classical Sturm
-Liouville one where q(x) was assumed to be continuous on

some finite interval [a,b]. The problem to be solved was

y* + (A - q(x))y =0

with solutions and 'X U jX) where the boundary

conditions are

(CRY)
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We take the simplest case where g(x) = 0 on [a,b],

gives us the Fourier equation
yIl + Xy - 0

which has two linearly independent solutions

$O(x ,>s) Cos JV X

\(x,\ ) = Sin

and WQ("X)

this

(3.2)

Given our two solutions in (3-2) we wish to construct

solutions which satisfy the boundary conditions

Two such solutions are

ijiu A) - | \ VvV ) + 'TW -.C *»

and XO0t.'i0O- ¢ * DX.tOO

(3.1).

If we now apply the boundary conditions in (3.1) we will

obtain the following

K <4C0fc_vO -vA'Xo(0riX') -

+ 7" . Co~rX) - - Cr.*

and

CACVjjX" m'DV-0C

c KCb,V) + 0'X..CA".K)



This 1s a set of four equations in four unknowns;
A, B, C and D. Assume = 0 and ”~>= 0, then, solvingjWe

obtain the two solutions

>fv

(3.4)
= - ~Cv."Cac.-0

and the Wronskianco(V) is
Co(.V> = (3.5)

>5:

The zeros of 14\ ) are V* where

Vi« = Vio-0>7 wozifd, (36)

*> = 0 is not an eigenvalue in this case because U(0) ~ 0

w'(.>0 - CV .-QC~ftP.-0Q _ SUffrCb-cO
* X * /
Vs-V W
c-o*c>»-~" _ Cc-iTcv.-e-f (3-7)
From
~ y»CVvv,*) /\**0’
V.00 - ACacTsT) )
HC”-)” Vt,= - S C -~ (™) _ _ (3.8)
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Using these results in (2.6) we obtain the Fourier sine
series
60

veuT b
b - C*VTTI ' " P>

If we put <=+¢# and b =~ we obtain the cosine series

M = N N\ N\ *x = N N
1t>0 \Y £ Cv > aC7 Z'\A— 1 =a n
The general Fourier series will be obtained using different

boundary conditions, namely if V(x) 1is a solution of
Fourier's equation which satisfies the following periodic

conditions

H' "a) V (b)

'wW*(a) = V'(b).
Another example this time involving Bessel's equation of
order v

y'" + Ay 1+ (>n- ") y =0 (3.9)
on the interval a £ x i b e® where a > 0, and boundary
conditions as before.
Solutions of Bessel's equation (3.9) are

x) and Y A ("Mk.x).

Letting y = x 1/2.u we obtain the equation

uM v-~r1r>»0 (3.10)

Thisequation is of the form (3.1)and its solutions are

SxJv (Ex . x) and Yv ( . X) .
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— I \
<p0& j >0 -

where s =J* Then

o*(>N = s MNETVA.<)M(s.00”"V(0O TvVvU .x5] - %m (3'n)

let ok = 0 and = 0 then

£ (x,v) ="Co."y['ivrrojvUco -"x"O0OTvCs.oo0],

% (x,>s ) =~ACb~AjVvCs-~vCS.bJ- "fvCs.A'S"vC?2.V>X |)
andU)(>s ) =?-(o..b~AT~Ca.s"Nv(b.9) - NvCa.O0-S"bs) ]

Hence
co(\) =

+ CWO-VvCo* O - TvCfX S~A"Us™’j

Using (3.11) we can substitute for Y] and after some
rearranging we obtain

to'CvO = +
IA s"Sv CV..O T-S TvCfc.0OJ

Co.. c TvCh>) _ -~<aVv)7
"ur"- ITANO 'S'vCv>shj

Hence if the zeros ofco( V ) are Vv>

Vv, iSA*T TACbsO- ~AC<x.5s.)
'->*] — o c.' - ~——— —_ . —C—
and
«., = (m&) TvCVjo/T-Ao"O

Again using (2.6) we obtain the Fourier Bessel expansion
€))] - ML oo hi

(3.12)
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We will now look at an example involving the second case.
That is, the case where there is a singularity at one or

both ends of the x interval, but the Titchmarsh-Weyl co-

efficient m(>s) is meromorphic, leading to a purely series
expansion of the arbitrary function f(x).

We will again look at Bessel's equation (3.10)

Out this time on the interval 0 << x ab , b finite.
= s for convenience. The basic solutions of the
equation areTxJv (x.s)ixYv(x.s) as for the last example,
<jXx,> ) and £>(x, X ) are the solutions which satisfy the
following boundary conditions.
cfltw) - a - -1
e o0 o0 - i e'cv> -- 0

The interval (0,b] has the singularity at the point x =0
and when a) >\ we are in the limit point case. This is
easily shown if we put X = 0 in equation (3.9). The solut-
inns of this simpler equation are x_O and x_V and these
will be L2(0,b) when'~.*- V \i . Hence we will be in the
limit circle case. When ">= 0 the solutions 1 and Inx are
also L2(0,b) and the limit circle case applies here also.

The limit point case is somewhat easier to deal with
because we need to use only the boundary conditions at the
regular point b and that the solution ~(x,>0 =
+m(\ ).(D(x,%) be 12(0,b) (in this case). We will deal
only with the limit point case as this will be the only one
relevant to later chapters. Some examples of the limit

circle case may be found in [14] and [15].



The solutions satisfying the above boundary conditions are

<fc*» =£ mO Xcb.o-V™~.0oXcu)]

and (3.13)

The solution which is L2(0,b) is QéJv(x.s) and so the
Titchmarsh-Weyl coefficient m(>*) can be found by arranging

2
that it cancel the non-L (0,b) part of

giving us some constant multiple of Qﬁ,,(x.s). Upon doing
the calculations we find that
r-, 1.
(3.14)
The eigenvalues >« are the poles of m(>\ ) which are the
zeros of J¥v (bS™ ). If we expand Jv (bi>J ) in a Taylor

series about >\~
l.e.Xcw Ix)=TvO0>J\.)+kwU Tv(bK-XV-vo +

31 Jg' A (bj>1* ) = 0. Hence the residue 'A, of m(\)

at is

<'v>-

by inserting the Taylor expansion into (3.14). Also

Jv(*./v>) NvC3t /x*)

JAVT r!l(>rK )
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using the Wronskian relation at X* . Hence the normalised

eigenfunctions are (from (2.2))

My del" 0 )

The Fourier-Bessel expansion will be

(3.15)

The two problems dealt with in later chapters both have
Titchmarsh-Weyl coefficients which are of the form de-
scribed here. The problems are the modified Legendre
equation on the interval [0,00] and the Magnetohydrodynamic
ballooning equation on (- ob, 00 ).

We will now look at some examples illustrating the third
case covered in Chapter 2. The Fourier equation again

provides a simple example. We have

on the interval (- dt, 00 ) and boundary conditions at the

origin.

4>(0)

Sine* (™ (0) - -Cos<*

0(0)

Cos<* 0' (0) = Sinot
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© toi» r +

: CL«Q0C )
M¢:*\) » ~inoi,C«nixd j=" -

If for example we choose «.="1 then

Ny V\ - 5 Ovo (sC >fx)
00*,>0 - — = Ll .
(3.16)
(jrerAXxn = CcbCA L .'/x)
i m(iliC
assuming imX> 0 then <6 will be in L (0. ~ )
irfr* 0
while the <L will be in L (-*>,0).
The solutions (X,X) and "V2(X,X) will be constant

multiples of these. Writing

X} 4 W.CX}g)C* X) e [?(- o)

we find that

* * -L/XC*.
vr.00O0 - A~ V.O~rX) - JI>T A ;
similarly with e L~(.0.»cx0O (3.17)
ftIXa*.
W\,.00 - "7=r K1 Ata Yl = 77k

Using the expressions in Chapter 2, (2.38), (2.39) and

(2.A0) we have

5'CO = - ¢ " w.CO-wum] ~ A x>0 10 > 7

2'(>Q X -u , ro¢tt v>0, ov~r.0,
LwCX") - wu(.>0 ) N

V)CX™ - o . (3.18)
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Hence using (2.41)

?2vO = v X <y +
< _&a A (3.19)
+ Il crcgJE jry. chrc™MiS) A
jo '/a J- O J

The ordinary form of Fouriers formula.

The case of Bessel's equation on the interval (0,&°) pro-
vides us with our final example. We have already examined
the case on the interval (0,b), we must now examine the
case (b,<v>) before dealing with the full interval (0,00).
In this latter case of course both end points are singular.
Firstly though the case (b,©*). W will take the
same boundary conditions at b as for the previous Bessel's
function example i.e. ot= 0. Thus we will have the same

two linearly independent solutions (taking's = s )e

9 Cx,V>=72 7 5[Jv U .oVvchr .0 -~ (*.«OTJ (fa.O ]

The only solution which is small as x-*oo for im(s)>0, is

hvec.~n.0 = "3CCac.0+ i'WvC~™O

Hence M~ (x,X) = 0(x,X) + m("X) <E)(x ) must be a

multiple of this; therefore

w V v_ -s"cwo+i-~Cfa-0 j_ s h" cw |

Tnto S Cc e+ <3-20>



IT X>q 1.e. s real then,
RGO 1ChS)

-s’\cbs_li‘VL(J:\7v>305 -+I\/'Itvj<(.lb*(:)rsJ(bO s

A i
~e«bh ' T'ChO*--C(.b.0O ,

using the Wronskian. A similar formula applies when X < 0.
Now to the (0,00 <case. We break up the interval into the
two intervals (0,b] and [b,00) and take the point b as our
basic point instead of 0 as in Chapter 2. Assuming the same
boundary conditions as before we obtain the same solutions
i.e.

t/Ixx/lo = -x aox (b s)]

ec=52s['Xi*s)"Cks) 0TjChs)] +

where as before X = 52. Taking the limit point case
i.e. \>>n then the solution which is L2(0, b) is
xV'Jv(xs) and the solution which is L2(b, ttO ) is
X"H”Mixs). Hence from (3.14)
we>o = -2 1N —; - A-
Cb.0 b

and ,

* *XCA.0t"vCbs) -X C\,0

*'TvC".0
wC' 'Tv (3.21)

and from (3.20)

. Ss?cto N



and (3.22)

. \

- OA X%6) = i*» JjTy (V>0 V-1~Uol

(.T~(bs) MiCbO).

J

that is whenX” 0 s> 0 and real, when\ <0 s = it, purely
imaginary.
Hence (2.41) gives
f(x) (3.23)
because in this case d*i(u) = m~(u)d™(u) and

dr(u) = [m~(u)]d™(u), see [15, Ch.3].

THE SPECTRUM OF y" + (X - q(x))y =0

AND ITS DEPENDENCE ON q(X).

The equation y" + ("X- g(x))y = 0 can be considered to be
a one dimensional, time independent Schrodinger equation.
It is well known from basic quantum mechanics that the type
of spectrum obtained for the equation with given boundary
conditions, will depend entirely on thefunction q(x). This
function is wusually known as the potentialfunctionbecause
of its association with the potential energy term in class-
ical and quantum theory. Because most second order linear
differential equations can be converted to Schrodinger form
using the prescription in Chapter 2, we can obtain a poten-
tial function associated with that equation. With this

function we can determine the spectrum of the equation.
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The necessary theorems and their proofs are to be found in
[15, Ch.5]. Here, we shall merely state the theorems, the
conditions under which they work and apply them to our

equation (the Magnetohydrodynamic ballooning equation).

0 (3-24)

As the parameters fA and ~ are varied (independently) the
spectrum will be shown to depend on them and on another
parameter called the characteristic exponent see Ch. 5
& 6. For some values the spectrum changes its character
guite abruptly.

Firstly though, we must obtain the potential function asso-
ciated with the oallooning equation (3.24).

Using the method described in Chapter 2, we transform the

equation (3.24) to

where
(3.26)
and
(3.27)
2 2 .
We shall assume that andX ~ are real quantities.

The theorems determining how the spectrum depends on qg(x)

follow. (Note: we are dealing with the (-00, 00) interval)



THEOREM (i) : If qgq(x)— as x-*+0o , then both )

and ) are meromorphic, hence the functions
i YAX)\) Wv(>QM->00
Ny Mvii Xox , VAUT- w»«) W.0Ov) - WWO)
occurring in the (-0q.,00) theory, (see Ch.2) are also
meromorphic. This implies that the expansion is a series

and the spectrum discrete.

THEOREM (ii) : If q(x) is L(- oo, 0o0), there is a continuous
spectrum on (0,&0)f with a point spectrum (which may be
null) on (~<yj, 0). These are proved in [15, Ch. 5].

Before these theorems are applied nowever to our potential
function q(x), it would be useful to know how its behaviour

depends on the parameters y anc*”" o

ojCx) = ACcnUSc - CV*YJ *0 Sa-J-ObL

This has stationary points at the origin and at

| -U 1w « 0

(3.28)
: : : K
These stationary points will be real when A0 and
"W and when < 0 and N>t
For all other values of yAand S the only stationary point
will be at the origin. When )(A > 0 it will be a local
minimum and when \ KE 0 it will be a local maximum. Its

height above or below the x axis is given by (in all cases)

<\(<0 -~ + 7 nx (3.29)
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The various regions described above are illustrated on the
following graph of against >61' (see fig. 1).
The shaded regions are where (3.28) has real solutions.
Graphs of qg(x) for typical values of "Vand'*‘in the various
regions follow. They serve to illustrate how g(x) behaves
as the two parameters are varied.
We may now investigate the type of spectrum to be expected
as "a_and "4 are varied. The first case we take is that of
'A>O and y* ‘. g(x) has the form illustrated in
fig. 2. As one can see this has the shape of a classical
"potential well" and so, qualitatively at least, one would
expect bound states to occur, i.e. a discrete spectrum.
g(x) =0(Q~" ) as x-"-&° and so satisfies the require-
ments of theorem (i). Hence a discrete spectrum does in
fact exist (over the whole real V line).
The second case we can examine is that when NV= 0. See
fig 3. In this case
ki)SiLcCCaO
(3.30)

and the equation reduces to the associated Legendre equat-

ion with imaginary argument. It is obvious that q(x) is
L(- c0o,0) and so theorem (ii) applies. Hence we can con-
clude that a continuous spectrum exists for-A-= - (\+ I) on
(0,00) and a discrete one bounded below on (-M,0). For
then, the continuous spectrum exists for (-&o ,-f7h) and the
finite discrete spectrum exists on the interval (-kj,00).
We examine this case (N =0) in detail in Chapter 4.

When 0 (see fig. 4), q(x)-* -0Q as x—a+ 00 and a
"potential well™ no longer exists. It seems likely then

that there is only a continuous spectrum in this case.
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CHAPTER 4

DETERMINATION OF THE EIGENVALUES IN THE CASE~ = 0

In this chapter the special case where the parameter X
equals zero is examined. The Titchmarsh-Weyl co-efficient
will be constructed and from it the eigenvalue and eigen-
functions explicitly determined.

Our boundary value problem is:
0 + A+**0 - -0
0 (4.1)

y(x)—*0 as x->-00 x€ R »

With "S = 0 this reduces to the modified Legendre equation

with the same boundary conditions.

0 «¢ O 'Ss*-+ ~i> ~TAT' 0 (4_2}

y(x)-=> 0 as x—i x £ R.

The properties of Legendre's equation and its solutions

have been well documented (see for ex. [5], [9] or [16]).

We obtain the modified equation by making the substitution

in Legendres equation

0-"YyYE£2 - - « ™+ £5>5+0 ° u-3)



where > =\>(V +1) in this case. We will obtain the solut-
ions of (4.3) firstly and then use the above subsitution

to find the solutions to the modified equation (4.2).
THE SPECTRUM UF THE MODIFIED LEGENDRE EQUATION
By using the substitution

x = Sinh(u),

y = /[ Cosh(u),

i.e. we can transform equation (4.2) to Schrédinger form,

see [15, p. 22], also Chapter 3:

cu

In the case of the modified Legendre equation

A - - V. -1n (4.4)

Cj*Cu) == - ( Sa U . (4.5)

g(u) in this case is L(0,00) and we can conclude that X
will have a continuous spectrum on (-o00, - Ki) and a finite
discrete spectrum on the interval (-'<<, oo ) (see Ch.3).
We will see that the position of eigenvalues and their

number depends on the parameter 7
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THE SOLUTIONS OF LEGENDRE'S EQUATION

(4.3) is a linear second order differential equation with
three regular singular points at +1 and . They have
indices +%* at +1 and -N> andS>+l at oo

Homogeneous linear equations with three regular singular
points are all forms of Riemann's equation (or Papperitz
equation), see [5], [8], [9] or [16].

The symbol

represents the complete set of solutions of Riemann's
equation where the singularities are at z=zn(n = 1,2,3)
and the constants an, bn are the exponents belonging to
z=zn'

It was shown by B. Riemann (185*7) that

ct, (Xt &j
» Yn Dby

(4.7)

and
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where

(4-9)

A, B, C, D are constants such that AD-BC $ 0.

We can combine the expressions (4.7) and (4.8) to get

p . Ct, aV a
b
or |1 \ 5,
ip- CX+Q a. j-vo
4.1
i LA e ) ( 0)
where
— 4- —
T_ C » A L=

Hence we can express the solutions of any Riemann-type
equation in terms of the solutions of any other Riemann
-type equation.

If we choose our singularities "En to be at the standard
points O, f@Q and 1, and choose and o' so that two ofthe
indices are zero we can express the solutions of our

general equation as follows:
11 n 1



Solving for A, B, C and D

+£ =0 Ktx.+ Q - O -> “1IV& Ci>
CTi, +O
1Q - oo = C 0=20 e Nob
Crv+Cl (4.12)
ANy + A Ao Ce - 0 oaft-@ o S - Ay ¢l
C =tv+ t)

and choosing A =1 we find that

(4.13)
If in the original equation z2 =« , then from (4.12)
(ii) C = 0 and again choosing A =1 we obtain
?2 - Azl
3 (4.14)
now take the form
00
9 a~
IIO,
0o 1 (4.15)
= U_ T -0 _g 0 Gvt (X-wW  <w> 0
|t,- Cx | N3N+ ex., -V Ok) b * c*

where 't is as in (4.14)
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The equation with its singularities at the standard points

is the hypergeometric equation

T(T* CCa+bt—O'I'—c]p' + o-bf = o , (4.16)

It is quite usual therefore, to express solutions of the

Kiemann equation in terms of the solutions of (4.16) which

are
0o 4
C
f - 9 © 0- 0
i1- C C- G- b (4.17)

The two independent solutions at the origin are

ux = F(a, b; |c|] \ )
and

u2 = T1"0 F(b - ¢ + 1, a - c¢c +1;12 - ¢c| %)

where F is the gauss hypergeometric function defined by the

series

j> Coo,,

F(a,b\o( = :D>; Y>1 COv> rc«o

t 1< 1

The solutions of (4.3) can be expressed

follows :
j 4 00 -< T
-V “/ g i 1
> = p "
m»9%0, V+ 1

(4.18)



Using (4.15) we can express these solutions in terms of the

hypergeometric equations solutions. Thus

CJ

-V

u pl+v + i

Comparing the p equation in (4.19) with that in (4.17) we
find that one solution of Legendres equation at +1 is

defined to be [9, page 170]
TP) - 0 °f(y_v,- 14 I4V* A0-A0)  (4.20)

where a = y* , b =y+\>+1 ¢ =1 +u . The second

independent solution at +1 is
Pv(0= C%+ 0~CI' V+ 1,H-)* <A. 21)
for y. not an integer. From (4.20) it is also obvious that

2100 =" cv--0 F(-v-v, U v-kli-v kd -V>).(4.22)

These solutions are known as Legendres function of the
first kind.
The Legendre function of the second kind is defined from

one of the solutions about the point at infinity
(fc+
a ,to0 -1i fcv + 23)

See [9, page 170, 12.07]

- 56 -



The properties of the Legendre functions are well document-
eU. Some of these are listed in later chapters of this work
where necessary. These properties and many more are to be
found in the references already quoted.

Our objective is to construct the Titchmarsh-Weyl co-effic-
ient. In order to do this we need solutions to Legendre's

equation Q(z) and <j)(z), which satisfy the boundary

conditions.

ecco - i = 0

<£>ccD cjy(cO~-i-

1l
o

Such that

HACEO = 0¢*0 + wh X>0(]>C-0

is L2(0,*o). m2(X) is the Titchmarsh-Weyl co-efficient.
This is because qgq(u) is an even function of u (see (4.5))
and hence m-~(X) = -m2(X). Also 0(z) is an even function
of a while <gX2) is an odd function, (see Chapter 9u).
Neither of the two solutions defined so far satisfy the
boundary conditions above. But from the analytic continu-
ation of the hypergeometric functions [5, Sn 2.10] we can
express P\)/r(z) in terms of two solutions which do satisfy

the boundary conditions, namely
(L+~5 4- 7 (4.24)

where A & B are constants and z = ix, also



(4.25)

kfcx*)= R * -tv -jcY,1-tv -it» 17*1-X'5

[5, Sn 3.2 (22)]. Applying the boundary conditions to

(4.24) gives us:
W6

(a) ©00 =0 . rGh-it* | + 41
(4.26)

(b) 4>(y-) s-oC(4 + 0oCO . F"Oc- NNV j-5(.V)

Note that O(x) 1is an even function of x and ~(x) 1is odd
as expected. These two functions are expressed in terms
of hypergeometric functions which converge as x-*0.

In order to construct the Titchmarsh-Weyl co-efficient we
must express 6>(x) and (£>(x) in terms of hypergeometric

functions which coverge as X —» 00

The analytic continuation of F(a, blclz) as z—*ta is

FCGADIC]0 = 0" F (a,t-C + )

FCb, 1° C+ b H-0.+ b ) ¥~ ) ;

- _pcprcb-co o -rco rc” -b)
s,)"rcb)rcc-n , rc™rrcc-b»n

[83, 2.10, (2)]- Hence



fciiron ;
1" tV*) r 108>  eit") (4.27)

rnv-soP G\VVO

A>0.- rc'tv-tvijrctv -nrnn)

Tiheireifgre as x—" Q@

gC30 rco f (-»ov. + 0 {e*?2"")
+ 0C-X— )
r C'-tv - i vop ctv*l—
(4.28)
Similarly, using the same transformation:
. INYK !
(her) ~ f >0 rCfenyc-* + 0C-""0*'-)
SN L t\VOP (U AN +iV)
roorc-~x-o00"" m Ny
PC k. A)P C "t" tV +%voO (419
For a discrete spectrum and that implies that

In that case the x" term is not L"(0,&0).
Hence in the expression forS'2(x), which is 12(0,<W),
the terms containing x"™in <[>(x) and 0(x) must cancel each

other. We have therefore:

M4.0 0 - 0" ) + wuM-ck?™*)
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where we have eliminated the non - L° terms by choosing

w, (k PC« + if-OPo +£~+£*0
wa ° O - . (4-30)

From the zeros and poles of i®tCX) we can find the eigen-

values of 8(x) and <f>(x) respectively.

THE EIGENVALUES AND EIGENFUNCTIONS OF 6(x)

N

We will denote 0(X) by 0§(x). The eigenvalues of 0v(x)
are those values of v which make m(N) zero. We observe
that m(\) 1is zero at the poles of "'k 10
or Ky ,
The poles of PC't4nTV occur where

k +k=* n =20, 1, 2,...
or vV - - JA- 1

But when V>--~ that implies that

@V - N -1 > - Y

or V' , where [ ] denotes the integer part.
For n to bepositive . If we assume y*> 0, then

this gamma function will not have any poles. On the other
hand the second gamma function will have poles when y>*7

Poles occur when

V. - -i . y\NdyA- 1 , n=0, 1,2,....

where square brackets again denote the integer part. We see



therefore that the even eigenvalues >*n are given

expression

We observe from the foregoing analysis that when

by the

IH* |

there is no discrete spectrum. When 9v(x) will

have j even eigenvalues if

The case where reduces equation (A.3a) to
equation. We know from the previous chapter that
equation has a continuous spectrum over the whole

axis.

THE EIGENFUNCTIONS Q,(x) :

Fourier's

this

real X

We note that the n subscript denotes the eigenfunction

associated with the n eigenvalue which are known to be

simple. We observe from the previous section that

eigenfunction is given by

now

ks® n~*
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where as usual, (a)» = fu + k)/i”(a). What is the limit
of (a)k as a - n (n an integer)? There are three cases;

n<k, n = k and n>Kk. When n sk it is easy to see that
(-n)k - 0.

When n = k we have using [5, Sn 1.2, (3)]
(-k)k = (—2)kkl
When n > k we see by putting a = -n in the expression
f(atk)/ P(a) = (a+k)(a+k-1)(a+k-2)...(a+2)(a+1)
that (-n)*» = (-D”nl/k

We conclude from this, that the infinite series in (4.33)
will be truncated after the n - term. Hence Q,F,)(x) is a
polynomial of degree 2n, multiplied by the factor

(1 +x)

We give some examples:-

-0 \o = \aCv-- O

GO =c'+~ - | )

THE EIGENVALUES AND EIGENFUNCTIONS OF <fr(x)

We let 4>(x) = cj?y(x) as in the previous section. The
eigenvalues of (j)v(x) are those values of v which make
m2(\) singular. The poles of m2(\) occur at the

poles of PO + ~ 3 or f"1C1+ oN + 4.1*)
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The poles of PQl4 ~*+Y) occur where

V b - | A n =0 1, 2,....

and for a discrete spectrum -0 *- . Hence

VAL W\ (.Y + X )]

and poles will exist when
The poles of PO +JeV --7) occur where
BV =y»-"-i- n - 0, 1, 2.
and so i S\E>\ .
Thus poles will exist when |a*
Hence from the expression V +*0 we obtain the odd

eigenvalues.

= (JH “ C*W'  *A)0vI~C*i-Y +0 )  r\-0,\}d|

We note that there will be no odd eigenvalues when
and that there will be j odd eigenvalues when
1+ 2 , -
§2 5w _rh P20 1, 2,

We can conclude that the discrete spectrum of (4.2) will

be null when é

THE ODD EIGENFUNCTIONS t (x)
(J)M(x) denotes the n**1eigenfunction. From (4.26) the

eigenfunctions are:

4>vbO - -xO-o0c*) . F(vi+ I- , (4.33)
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Following the same argument as for {:N,If(x), the hyper-

geometric function will be truncated to a polynomial of
even power. Hence <j>*(x) will be a polynomial of degree
2n+l, multiplied by the factor (1 + x2)

Again we give some examples:-

N=0 >s0 = CM' ;

*T*.

1 - CVi- w- 0O >

=- Ci#6™ (* - V-i*-00.

AN ALTERNATIVE METHOD FOR FINDING THE EIGENVALUES OF
9v AND <=C
If we transform F~(-x2) and F2(-x2) of (4.25)

using the following transformation

F (a d O -0 -it. FCb.c-alclin) %E<C

and then let z = ix, xeR [3, Sn. 2.10 (6)], we will

obtain the following expressions:

F,C——")= 0 + 35 "Cwv ,
<-i»-0= . u-34)
As x-"o00 1 in both hypergeometric functions on

the right hand side of (4.34).



We know that F(a,b, ¢ 1) will converge absolutely if
Re(c-a-b)>0 for (4.34) if (assuming v to be real).
But, for a discrete spectrum, A>> , which means that
both hypergeometric functions in (4.34) will diverge,
unless, these infinite series terminate. We can find the
eigenvalues of t7w(x) as follows:-
CT*y)
VI-20 (VA.VM ° (435)
Now this series will terminate if
(i) "0
(i) (» +7
In other words if
(i) rcv”™-"vo
di) (Ji* *kv ")
The left hand side of (i) equals:
+ 0 -(-fc +



and this will be equal to zero if

Flan'» - 1 , h integer

Then implies that
} y>Kk
Similarly from (ii):
v = - ij Y~") mm-) - - %lv> - 1
implies that
< -=r
Hence the even eigenvalues are:-
\ n=(IH- 0 CIVIL> -t .

The eigenvalues of $/*) are found similarly from

fF(\V*ky-ky, M -irsoO =

_y (j mjv - c~
~ Ly o (%.)* Al (4.36)

The series terminates if

ro+tv-iy-»-")

(@D ro+tv-w)

p O +1tv emtv")



(i) is zero when

\>a n a positive integer

a.melwith then

Therefore n =20, 1, 2...

(ii) is zero when

V = and

implies W< --At*+7 0 .

Therefore n

1
o
=
N

-[a(\*+"Vva) ], i

Hence the odd eigenvalues are
A=)y - A0 0 VTV s

These results are identical to the results already obtained
by locating the zeros and poles of the Titchmarsh-Weyl

co-efficient.



CHAPTER 5

JOINING FACTORS FOR LEGENDRE AND SPHEROIDAL

FUNCTIONS

The equations to be examined in this chapter arise when

the wave equation

yVvV + O (5.

is solved by separation of variables in certain systems of

curvilinear coordinates, namely The prolate and oblate

spheroidal coordinates.

PROLATE SPHEROIDAL COORDINATES :-
These coordinates u,v,<j> are introduced by means of the

equations

x=cSinh(u)Sin(v)Cos($), y=cSinh(u)Sin(v)Sin("),

z=cCosh(u)Cos(v), c constant > 0. (5.2)

The surfaces u = constant form a confocal family of
prolate spheroids, and the surfaces v = constant a
confocal system of two sheeted hyperboloids, the foci of
the confocal system being the points x =y =0, Z =1tc.

The respective ranges of u, v, and are:

o< U <& j 0 <Tr ( 0o&4d euT\

The surfaces = constant are meridian planes ~>= 0, and
&= 2f being the same, u =0 is a degenerate ellipsoid

which reduces to the segment x =y =0 -c6z£fc,
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while

v = 0 and v =TT are the two halves of the degenerate
hyperboloid of the system reducing respectively to

Xx =y =0, z> ¢ and x =y =0, z" -c.

Thus, the entire axis of revolution (z axis) is a singular
line of the coordinate system.

Using the equations introduced by (5.2)

V v ¢ -

] a
+ Ce S >>' ¢ 4 N A "oe

If there are normal solutions of the form

y = Ucu)Vcv;ct “tN a.t)

Then the functions U, V must satisfy the ordinary

differential equations

+ CotUu~”n™ - u + Ujm =o(5 5)

where V and ~ are separation constants, and S=kc.
(5.6) is the trigonometric form of the Spheroidal

equation, and (5.5) may be reduced to (5.6) by the change

of variable u = iv.
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For a wave function ~ which is continuous inside, or
outside a spheroid u = constant, must be a periodic
function of with period 2TJ, and hence ja in (5.4) must
be an integer. Also,” must be bounded on ellipsoids
u = constant i.e. V(v) must oe a solution of (5.6) which
is bounded for osv
As in the case of Legendres eqn. [5, 3.1(2)], to which
(5.6) reduces when k = 0, such solutions exist only for
certain characteristic values of . The bounded
solutions of (5.6) are called Spheroidal wave functions.
If Y is to be continuous inside a spheroid u = constant
then it must be bounded on the degenerate spheroid u = 0;
this determines the choice of U(u) and indicates that U(u)
is a constant multiple of V(iv), that is U(u) is a
modified spheroidal wave function of the first kind. On
the other hand, if V is a wave function regular outside a
spheroid u = constant then wusually its behaviour at
infinity is prescribed to be asymptotically that of
ro'expiikr)
where

r=(xn*+ y%+ z1)y'= c[ (Sinh(u)Sin(v) )*+ (Cosh(u)Cos(v) T

u
is approximately 11% w h e n u is large. The solutions of
(5.5) determined by their behavior at infinity are called

modified spheroidal wave functions of the third Kkind.



OBLATE SPHEROIDAL COORDINATES:-

These coordinates u,v, < are introduced by means of the

equations.

X
1

cCosh(u)Sin(v)Cos(4>) , y = cCosh(u)Sin(v)Sin(£) ,

N
1

cSinh(u)Cos(v), c constant >0. (5.7)

The surfaces u = constant form a confocal family of oblate
spheroids, the surfaces v = constant a confocal system of
one-sheeted hyperboloids, and the surfaces <= constant
are meridian planes. The focal circle of the confocal
system is the circle x'+ yx=c¢~, z = 0.

The ranges of u,v, ¥ are respectively

Oi u<m , o<ntf£Trj VT

&= 0 and = 2~ being the same meridian plane.

u= 0 is a degenerate spheroid which covers the area inside
the focal circle twice. v= 0, and v=Tt are two halves of a
degenerate hyperboloid reducing respectively to the
positive, and negative z-axis, and v=\ is a degenerate
hyperboloid which lies in the plane z = 0, and covers the
area outside the focal circle twice. Thus the entire
X,y-plane is a singular surface of the coordinate system.

Using the equations introduced by (5.7)
VV 4-K'V =

- N3N Uuu - + Tov"- +C<*vv,J (5 8)

+ + w-M - cs



If there are normal solutions of the form

(5-9)
the functions U and V must satisfy the ordinary
differential equations:

-\-V-CMUN, - vALV U =0

(5.10)
0o .- AV O -'i-So.sr- "G ~<-V ]\| = o (5.11)
Here V and y> are separation constants and ~ = kec.

Note: In (5.11) is replaced with (compare with (5.6)).

(5.10) may be transformed to (5.11) by the substitution
u = i(v-"Vvi .

For the spheroidal wave functions |a must again be an

integer. The solutions U(u) are as for the prolate

spheroidal case, with slight modifications: for details

see [bb, Page 96].

In the case of the ballooning eigenvalue problem the

equation is

This can be obtained from (5.6) by the substitution
v z€C

which gives the algebraic form of the Spheroidal equation

© - (5.13)

- 72 -



Now the substitution 2z = -ix xtR, transforms (5.13) to
(5.12). Assumingy"™ and are real, and y(x)-> 0 as x-"i oO
are the boundary conditions, then (5.12) subject to these
conditions is a symmetric Sturm-Liouville problem. Hence
the spectrum is a subset of the real X-axis. In
particular the eigenvalues are real, and the

eigenfunctions yn(x;>.*) form an orthogonal set on

(-oo0,cP) (n =0, 1,2...). Unlike the Spheroidalwave
functions where isrestricted to integer values
(y. = m), in the ballooning equation case it takes

arbitrary real values.

The characteristic exponent v which depends on'S ,w and>*
will generally take complex values in the ballooning
equation case, whereas for the spheroidal wave functions

it was restricted to integer values ('O = ni m).

In this chapter we will examine the properties of the
solution to (5.13), bearing in mind that these are the
solutions to the ballooning eigenvalue problem (5.12) with
imaginary argument. We observe that equation (5.13) has
regular singular points at z = il, with exponents at
both 1 and -1. These can be found using standard
techniques to be seen in [2] or [13]. There is an
irregular singularity at & , and two solutions of (5.13)
behave at o° like a2 times a single valued function, and zv"™
times a single valued function. Here v is called the
characteristic exponent of (5.13). In general it is a

function of V,”~ andS
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It is more usual though and more convenient to
represents as a function ofv, yA and ~ . This dependence

is denoted by the notation ) as in [5b], [10] and

[12].

SOLUTIONS OF THE SPHEROIDAL EQUATION

mmen"A: 0 (5.13) reduces to Legendres Equation as
described in Chapter 4, while for IIM 1 (5.13) may be
approximated by Bessels equation. This suggests that
solutions of the Spheroidal equation may be found as
infinite series of Legendre or Bessel functions. The
Legendre Series solutions (solutions of the first type)
are valid close to il. While the Bessel series solutions
(solutions of the second type) are valid close to the
irregular point at 60 . The two types of solution are
analytically connected by joining factors which ensure
matching in the domain where both are valid. These

joining factors will be derived in a later section.

SOLUTIONS OF THE FIRST TYPE
The Spheroidal equation (5.13) is a second order

differential equation, and therefore has two linearly

independent solutions. Near il we take these to be
(5.14)
a
Vi-»
(5.15)
«(H, 0
V a eo
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Where we make the restriction p+V £ 0, 11, 12, —

because GIv+vt(»Ois not defined for these values.

For (5.14), z is in the complex plane cut along the real
axis from - og to +1 and |Arg(z +I1)|" Tt

See [5, 3.2 (6)]. For (5.15) x is on the cut (-1,1): See
[5, 3.4]. We will deal with the solutions in (5.14).

Other solutions wvalid in a neighbourhood of il are

Relationships between these various solutions can be found
using the properties of the Legendre functions, and the

expansion coefficients 0-'v,vQ'O.

THE RECURRENCE RELfITION FOR frgj)
Substitution of one of the solutions in (5.14), or (5.15)

leads to the following three-term recurrence relation:

féev + -EXv+-lv - -0 r
4 ->0(N + >
+Cv + +Y * +it ¥y-«v')h
(y vvoC~>) +v T + v-0
ANIX '~ (VvE i< XV + *ET 40 m*sr + N~
- (0]

(5.16)

where a%= a”.jMand >Ss 0,=x1,



Using (5.16), the coefficients a:r%/*;Vr and aWH *satisfy the

following relations:

-v-1

-i4 rcv-~"o0rCyv

AVjir - P(y+ tOP(V- +%<40 ~V'Ir e

SOME PROPERTIES OF THE SOLUTIONS OF THE FIRST TYPE
From the properties of Legendre functions [5, 3.3.1], we

can establish the following identities:-

| (5.18)
S ¢ATr(-v - ;* 0 —
r @"TCv+vOQKVASCfcj'i)-Trn t* 1Sv ('ro (5.19)
Tsv”~'O -rcv+ "o i?4 vfe;v)- "ro snN*)
(5.20)
THE CIRCUIT RELATIONS:
GsvCre' Gtsv(i=;~.) (5.22)
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THE CHARACTERISTIC EXPONENT*U
The exponent arises in the following way: A solution of
(5.13) valid near +1 or -1 is expressible in terms of an

infinite series of Legendre functions (5.14a).
Glsvde 210 Q-Vj\it0 .
<"t:-#o

Since (5.13) remains unchanged when z is replaced by -z
then is also a solution. Using the circuit

relations for the Legendre function [5, 3.3.1]

t* [ tti \ rj« a'* o\
(5.23)

Then the two solutions of (5.13) Qs”(z;**) and
Qsv ( ze * ;-<) are proportional i.e. (5.22)
We can ootain an expression for V as follows:
To avoid complications with the Dranch points we let
Zo> 1. Take as a fundamental set the solutions yp(z)
and y2(z) of (5.13), satisfying
yl (zo) = 17y'lI(zo) = 0 and y2(Zo) = ° >
Y'*Z(Zo) = 1. Then a general solution of (5.13) is

y(z) = Ay~(z) + 8y2(z) , A and 8 constants.

Since y(-z) must also be a solution, then the circuit

relation condition

n k constant.
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implies

using the initial conditions at zQ we find that

= Me
therefore
k'V .b.e”1 .
it follows that
aC”?ct..~1) - O + 'A,.0t.eT'O -0
(5.24)
Ko*.*Bo+ = °

This is a pair of homogeneous linear equations in A and

B. For a non-trivial solution the determinant must equa

zero, that is

which implies

\C +



where W(qu?K ) is the Wronskian which is known to equal
1, at zQ, from the boundary conditions. This gives the

condition on Kk;

q§4WW 4Q,tvﬁ\' A =0

which implies

_ %0, C r» - M
or (5.25)
which has solutions, >, -s)+2n, and -1-v, and -1-%¥V+2n
where n =0, il, T12,.... Hence the two solutions
satisfy the circuit relations about tl: thus
The two solutions will have Laurent expansions convergent
in which have the form

"a.00 = -1l

(5.26)

These two solutions satisfy the above circuit relations.
In addition they will oe linearly independent solutions as
long as (n an integer), because in that

case Vs -t-V and the two solutions are proportional to

each other.
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When -wW the second independent solution will contain
a logarithmic term. It will not be necessary to study

this case in detail.

SOLUTIONS OF THE SECOND TYPE

These are solutions which are convergent for large z.
They have the form:
-1

Sriv.-0s 0 EpC* W 'CL.Ur-0 (5-27)

Where, writing T=Sz,

TA) ..

(5.28)

We recall that J and Y oscillate at infinity on the real
positive ~f axis, while HP and HQO are exponentially small
or large on the imaginary T axis.

See [5b, 16.9, (5) and (6)] for details. The Q.t,~(N ) are
the same as for the solutions of the first kind, and thus

are governed by the same recurrence relation (5.16). Also

Avh O - ¢ Jeov , AW
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is a normalising factor. It is chosen so that as z—<%

in |Arg('i.z) 14. Tt

ey Ty —*t-0"
i), . . .
Then (zj'tf) possesses the asymptotic behaviour
Ckro -~ <5-25)
as z— in |Arg ( S.2)|<TT .
NK.'Cvf » and hence S”~',is of the form V' times a function

which is single valued near 00

[5b]: sf is called a solution of the first kind.

Sv”7is called a solution of the second kind (associated
with the -1-"Vexponent) and from (5.28), (5.29) it is seen
that 83 and S\L;(u)vanish exponentially as z-»«o in the half
planes Im( S>z) > 0, and Im( Sz) <0 respectively. Thus S\a/le/
are solutions of the third kind. Besides the four
solutions Sv there are the twelve other solutions

S—\I/iLI) and SJr\);c (j =1,2,3,4). Numerous relations exist

between these various solutions as a result of (5.29), or

(5.17) and identities between Bessel functions.
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A Tew which we shall use later are listed below.

5 N = (5.30)
Mis') -A1*%00 0- 'y i c«
Sav ~ Sshi +t Y = \

-¢ttCv +JO_,nCU)

A _Ay = e, s v.* (5.31)
gq*r=-< ICC" s«v* +C 7]
foeor* ~I"*fC * 10 c 1410 "iwCv+0On

Sv - L-~-v-, - >v . <2 J (5.32)

NrN-TtsNMNe. . 2'"M0- ¢ ]

References for these relationships can be found in
[5b, Page 138]. As in the case of Bessel functions, it
turns out that any two of the four solutions S\lrmare

linearly independent as long asv +\ ~ n an integer.

THE JOINING FACTOR K )

From (5.22) with the substitution -~-1 for v we see that

Qs\r(zj'o, Is a solution of the first kind, as is Stt/ij)(zj‘i),
i.e. they are both associated with the exponent's? at oo .

This means that they are proportional to each other and

from [5b, 16.9, (28)] we can write:

/0= Qs™NOfc ™ (5.33)
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u

Where Kv('i( ) is a parameter dependent constant called the
joining factor. ) can be determined by expanding
SACz,** ) and Qs”z,”) as Laurent double series in powers

of 22, and equating coefficients of like powers of z2

[9, Ch. 4] and [5b, 16.9].
From (5.14b) and [5, 3.2, (41)] we have:

*o(t-v T *x o /v.,C*n0O =

fCrt’ 0= p(V

Using the Legendre duplication formula in the F function
and rearranging we obtain:

A&V O -y ~)"GuU v ,w) =

Similarly from [5a , 7.2, (2)] and (5.27) and (5.28)

we have ) -

(5.35)

o.(} o W.

In (5.35) Sv (z,-tf) is multiplied by the factor (1-z )
while in (5.34) Qs”(z,S) is multiplied by (1-z-2)"4 .

This problem can be resolved using (5.30)

Qr=c¢°®



Hence =

s gt Pyt
o 'tlIr(»+'V.i.+VC-t-.0 (5.36)

If now, both sides of (5.33) are multiplied by

o _ LN
zb(l-z 2) & e can equate the R.H.S. of (5.34) and

(5.36) and obtain: M~ n
tax"oi¥~y~6<oQLy,Af\pro.v’\4"n) “
-» t-
=AT (v-M\<,v(.-<)y'¢ic-oV , ,U(v pr"~™rTfr-v-n-->mn
Cs-w”-.0

(5.37)

We see now that the problem is essentially that of finding

k when
= ki
ys-*otso mIsw t;6
Where )
Scl~0O -yoO ’
1 < _
C*x - VrU.av,".UJ t,pCv+X+V<_+*)
and
i -r iffz a.N-<t?
For a particular t let j = r+t, then t = j-r



Hence

-0 <--» isT N3-»0

»

Therefore
<m-"t-o k= dsat o b )
Similarly
f E =f -A fo
f;-to

= (vi
-1 =- 5
implies j = 0 and that implies r = -t
Hence
0 Y
vfC- STs- O»
«4 ® <=0

V'«'



We see therefore that:

Using (5.17) we can replace a* with alJjvr , also
C.v-yO - -Ss i—TxCy”--0) and
sZSrerT) = rcec ro+v-,»).

Hence we have
%cif klc-o0
e ro"-v.) =

[>*(- | ’

" tZ [c-0"a U -tAX < “rcv v --cV)
(5.38)

All of the S™"W(z,-0 can be expressed in terms of S”"iz,")
by (5.32) and Ps”(z,if) may be expressed in terms of
Qs”iz,) by for example, rearranging (5.19).

Therefore it is clear that (5.33) suffices to express any
one of the Bessel function series in terms of Legendre
function series, and vice versa. For further properties

of the joining factors, and references see [5b] or [10].



THE EXPRESSION FOR >s IN TERMS OF VA  AND O

An expression for 'hU'O in powers of can be obtained
employing the technique of infinite determinants or more
conveniently, continued fractions, using the three-term
recursion relation (5.16) as a starting point. The
continued fraction approach has the advantage of providing
expressions for the coefficients af£jVP(y)as well. The
procedures are analogous to those used in dealing with
Mathieus equation, see [8, page 557] or

[5b, Ch. 16.2]. For the Spheroidal equations case see

also [10] and [12].

As >\ is expressed as a function of the variable among
others v will have to be determined. The relation for
finding v will be derived in the next chapter and is quite

complicated as it involves the joining factors Ky(® ) and
K.I(").

In general v will be complex, but Rev = -1/2 ensuring
that X is always real.

When 'V = o0 our equation (5.13) reduces to Legendres

equation, and (as previously described in Ch.A) in that

case
>\ - ev>(s>+ 0

mis then expressed in terms of and "x can be explicitly

determined. The same principles apply in the case of the

Spheroidal equation, but the relations are substantially
more difficult and cannot be solved explicitly. W give

two methods which are commonly used in these circumstances.



THE INFINITE DETERMINANT METHOD

IT we write the recurrence relation (5.16) in the form:

(see [10])

(5.39)
Where
L, (-V+T-<=- Y ) (va K- Y-
r ANMPCN+K -A X v o+ T'T+ 't)
W - -l- (v Vot Vx4 O
* £04 4VOCV TR (5.40)
Cv =v N @ tO ;r"-\
CUr - O-Vjev*'(r™
This is a set of linear homogeneous equations
N\
roe X T ° 1
82 1 B8 0 0 0 ..cab 0
. a - 0
o OAi / C~ 0 o .°«xt 0
o 0 04, >0 0 m » g® 0
0] o o) g* 1 Oft, 0
[ &. i Ot
*J



and the condition for their non-trivial solution is that

the determinant

(5.41)

From [16, page 36] we can see that this determinant is
absolutely convergent because the product of its diagonal
elements is convergent (to one), and the sum of the
off-diagonal elements is absolutely convergent. This can
be seen from the expressions for Ar , and Br where

\Ar | and |Br|~ T ~as "C-*ioo.

When ~ is small enough, the central 3 x 3 determinant

gives \ to 0O(\'").
i.e.
e (M-

Substituting in the values for AQ A®, BQ and B"

gives us
v(v«-o0-tLi+ \V/ +
(>>1pm >X~v- \)C-NHrO _ (V- ~* OC.V- fr™* Xv-»
-vx N0 . +0 (>-0+> X ™ 4sV.(5v +0
+0<S*)
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By taking higher order determinants, better approximations

for ~ can be found, though the process quickly becomes

unwieldly.

CONTINUED FRACTIONS
This is computationally more efficient, and provides
expressions for the coefficients a”s') as well. If we

re-arrange (5.39) we can obtain the following ratios:

N o f 1.
and
Q
Therefore
Hence
al.J'C-h a:,,U")R,Rv...R,
(5.43)
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The expression for equivalent to (5.41) can be deduced

from

(5.44)
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CHAPTER 6

THE TITCHMARSH-WEYL COEFFICIENTS WHEN ~ = 0

I/\

In this chapter we construct the functions

v
and W which satisfy the boundary conditions:
0Co3= 1J. , e'too = o
(J)Co) = O , $'(0) = -1

We recall from Chapter 2 that an L2 solution V U ;\) of
a second order singular ordinary differential equation,

may always be constructed from two such solutions i.e.

= 0o j> * wcv>. ,
. . U
The functions will be constructed from the PSv(z;V) and
Qst(z;-<), solutions to
X7
V. +(X + VO-fO - TArz)] -0 (6 1}
obtained in (5.14).
Then the substitution in 0(z), and ()(z) of z = ix, XxX£R

provides the solutions to the ballooning equation

(6.2)
Using these expressions ( 0(x), and <|>(x)) we look for
solutions to (6.2).
= 0jC*;>0 mM .vCxrO"rvU;*)
which is L2(- oo, 0) and (6.3)

IV ;y) +

2
which is L (0, 00).
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This involves constructing the Titchmarsh-Weyl m(\) co-
efficient. Because the potential function q(x) in this case
is even, from the theory in Chapter 2, we can deduce that
9 (x) and <>(x) are even and odd functions respectively.
This implies, in turn, that m~”(?0 = -m2(X).

It will be shown that the m(X) functions can be expressed
in terms of the joining factors ("S), and K~,(N). The
poles and zeros of the m(>.) functions then give implicit
expressions for the eigenvalues X* corresponding to the
eigenfunctions <f>(x;X*0 and O0(x; >.*0 respectively.
Finally it will be shown that asS-»o m(x ,"i )= m("K, 0)

where

w % ,<0-al}l )Pu

-\.wOT(x viv

is the m(>.) function for Legendres equation deduced in
(4.30). We observe from (5.14) that the solutions to (6.1)

near 1-1 are

i-Q V A a-V)GiLACO (6'4)

- *0

y.-vW - O ,t \ £ “L ..
Where the Legendre functions are defined from

[5, Page 126, (22)] as follows:-

(6-5)
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where and F~ are Gauss hypergeometric functions

(6.6)

Note that both are even Functions of z. The constants in

(6.5) are given by

a, - [T(i0O -v- k-*0).
(6.7)
be =-dfrey -Vt-ANy) .pchtty +
Also
Q.tm.«K’\ r” i't¥-1) tr F,CO + civ-Ti F-xC*)]
(6.8)
where F~ and F* are as in (6.6), while from
[5, Page 134, (40)]
N[ Gfe(t+ M + £
a- PC\Ca vO)
(6.9)
1 r ¢ A~ ~V 3

We recall that O0(z) and <£>(z) are solutions which are even
and odd functions respectively, Such that their Wronskian

w(Q(o), <£(0)) = 1L



Hence, there are solutions to (6.1) which are linear
combinations of its two solutions Ps?(v,"<) and Qs”™(t:;'?*)

satisfying the above conditions. Thus we can write:
OvC't;'i) =K PsvO *;'*} + ILQistc”";'*)

(6.10)

=IMPsvCv*O +IN QsiC'fc-i'O
where K, L, M, N are functions of ~,v only.
THE Q~”(x; ) FUNCTION

Using the right hand side of (6.A), (6.5) and (6.8) in

(6.10) we obtain:

(6.11)

LEfc-oVw icXeo -

We observe that 0(z) is an even function, therefore the

odd parts of (6.11) must cancel. This implies that:

K .-O -is .

D>r

Substituting for dr and b® from (6.9) and (6.7) we

K =
e [ATIL HOTI(V \y-iv* + o

obtain

Using the fact that 1Ct} O -'T) =W Le»dicTH t We can

write
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= SchrC-v -y -e*<)/rr -

r -C- Nyttt

TUT <
If we rewrite 0.s(rO we have

=T Y IL e”'v)
TR (6.12)

L can be found from the condition O0(o) = 1. The expression

for ©(z) can now be written:

6{co?™ ~ L |> o/ w [ N Noo- e Jfev>,

Using (6.7), and (6.9) we observe that

—\<(Si> + ~
— a, : .
is equal to
-Tr<27 -
V+yOPCi",i'vetv-'r)i +-t» --tv* * 0

APO +iV - +T)

\T
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) far 1l S jr(n>*yoTcV

% .v(\+ & 'k.+ + > s"™"+vorcv”™r-T.v-'0
We note, using Vc*i -TTCac? that
.C
A A A _t_A_AN " _ N\ '
rC V+EA+>A1C -t vV '-'0 »o?CI.V'L\’/O

wnich implies that (6.13) is equal to

[E
+

t,')7TE~!1<Nn-IO

1 90~?b>"rolL -v'-~--0

We observe that

1-nTfe.v"Cv +Va)

Hence (6.13) becomes

litCO-V~O
TTQA
on using the fact that 9.Co"i 5ch”™ = "i>v,n.'t |,
Substituting this back into the expression for 0(z),
putting z = ix we finally obtain
©vuU ;-0 =

.arft g A * A0 «e-pMIL. < AC -ifav ,M)-T "(*e)
Rh53A5T (M-~v-L l-r)

and

(S-14)



THEJ k x;i) FUNCTION

Substituting the right hand side of (6.4), (6.5) and (6.8)

into the expression for <7(z) in (6.10), we obtain

(J>v(v'0= i

+-e W £ (-o0'0!l.,,cx-£cI\<*>1 dr *Fl«")] (6.15)

Note in this case that <b(z) is an odd function which
implies that the even parts of (6.15) must cancel.

Hence

Substituting the expressions for f£xaand C» in (6.7) and

(6.9) into the above equation, yields upon simplifying:

im= «@>re*-

“ 12.G>0i£.Cv-*- \+)

(6.16)
N can be found from the condition that <j>'(0) = -1.

<j)(z) can be written as

0CO =

Cm- 00



Now using (6.7) and (6.9) we find that

IM k HNdUel"

(v +vOT\i +1v -&**+0 p --t~-70

After some simplification we obtain the R.H.S. equal to

\\ -1

k?~ k*+'r'>

Again we observe the elementary trigonometric identity

n"Cvi-K)
- C—CLcfficCvavO = T7T-.— “

Hence
Mb, "HNdu
~riIN
CV. TrICV \WOrY-v-*- K+5PCV "anN'"'v 3

on performing the same manipulations as in the 0(z) case.

Employing the substitution z = ix, we can now write down
the expression for AR
=slsil*g1n~"5A If\]y~CoV, .. t(* W)W Flop

72 ~ S VAANFCAVY»*)(6-17)



THE CONSTRUCTION OF THE mf£ (y ) FUNCTION (FOrV ~0)

We are now in a position to construct the two functions

AvCx-.V)3 ©U * . ;*0 +
and
0St*;'0O +Vv\rC'<'-)<t>vCac;'4).

Where is L2(-00,0), and is L2(0,«0). For this we
need to construct the functions m’%(’x,x), and m2%,(>»,',t).
Now from Ch. 2 when (6.2) is transformed to standard form
[15, page 22], we find that the potential term q(x) is an
even function. This implies that m~('k/'O = -m *(V,"*).
Hence we only have to deal with the [0,00) interval i.e.
find v(\»'t) » As already noted (x) is of integrable
square as X-**a therefore it must be a multiple of one of
the solutions of (6.2) convergent at «0.
Thus

HA5(x;*) = hy(x), (6.18)
where h is a constant.
WhenHk> 0, the solution y(x) associated with the correct

asymptotic behaviour as x—=**0 is

S,ci*sNj. (619)

From (5.27,28) we recall that S”is a linear combination
of Hankel functions which are small at infinity on the

positive imaginary axis, i.e. in this <case when x isreal.
The continuation of S, fix*) onto the [0,1)interval can

be expressed as follows:-
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therefore
(6.20)

U
The constants A and B involve the joining factors Kv(”* ),

and K* ((~ ) and are found as follows: From (5.32) we have

ftO
and from (5.33) we know that Sv(z;'i) is a multiple of

QsJL (z;*)

S* Ct>0 -0O0S:-~"Cv-v ) " ANOKITHIxY) Qsl.,U ;x)

We can find the expression for SUERZ;V) in terms of

Qs”™(z;V) by changing v to -v-1, Hence:

therefore

Ci?o0Nv> -

ft G AK V) :

+SACVAA)euC'l VvV UK ~AiU"') QAC-t:%)]

(6 .21)
Also from (5.19) we have the identity
S,uv,rrr(.v--2)Q % M IC-km»")= - A CjO rPvPsMJv,O .
0 Mq@
hence Co~ Tr~ S vC*v; 'O -
e;";c'v* A X ¢cc W vPsV 0] t
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Simplifying we find that
o ™ Y
O;u*) _

Kstv)+ A~ k lc ~ )

Qsvr ™)
Ceo'M'v
-h <£ * (6.22)
Sﬂ?z"<) is now in the required form where
a = <£"v'kV )
and (6.23)
o v I® - KvCr"+72Q- K,,Cv)J

From (6.18) and (6.20), writing m”(v,,S)=m, we have
[K saM]PNg*™ +Ql +WNJQ
-VicC/rNMNT7T) a RMe3IM) -*-UGu v(I* in5]

hence

k +wjM*-i£$yA 0

LN = J o
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Multiplying (i) by O and (ii) by A and rearranging, we find
We must now look for the zeros, and poles of m

THE POLES OF m

The poles of m occur where
EM. AM:- o (assuming AL - BK £ 0)

Substituting for the various quantities from(6.18) and

(6.23) yields:

IN*O

rearranging we have

(6.25)
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Writing the trigonometric functions as exponentials we

obtain

therefore the condition for m to have poles is

.26)
T ZEROSOF m
The zerosof m occur where
AlL-- BIK = °
Again substituting in for the various quantities from
(6.12) and (6.23) yields
Kwvcv)
Cé(y*-v)ceDu(.v+7~3 N nv;l N
CATVYV faw ‘Klc™N)+cew ‘K :>")] ,
IL* °
i
rearranging we have
[[Cio Tlv. — <3 ~ ~ Ceo”C'v-v-M "K vC x'] .27)
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Again writing the cosines as sums of exponentials, we find

on simplifying that

Therefore the condition for m to have zeros is

(6.28)

Hence from (6.24) we find that

(6.29)

At >=\ w» L and N do not have any zeros or poles because
then the eigenfunctions would either vanish, or cease to be
L2. L or N could have branch points, but assuming the
theorems of [15, Ch.5] to hold then as q(x)-*o* there is
no continuous spectrum, only a discrete one, bounded below.
The condition that (6.29) be zero or infinity corresponds
to equation (3.8 of [12]) which was obtained by totally

different methods, without appealing to the Titchmarsh-

-Weyl theory.
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THE EXPRESSION FOR mj(x,s) asS-»Q

In this section we show that as't-~0, i\v(v,'<) reduces to
the m(>\) function obtained for Legendres equation in
Chapter 4 (4.30). We consider Legendres equation to be the
unperturbed equation, i.e. prior to the application of
the "{(U x') term.

To begin with, we note the following properties of the
coefficients a~ W), and the normalising constant

Av('O) given in [10]:

from the continued fraction representation

.p\,c
av,,to) =o
and (6.30)

ai,0oco = 1
Hence we have

A,V) - - 1 K

X - 04

allowing? to tend to zero in (5.38) yields
»
i f +v-voe~rrcv-'0
AL P
Kt\) auJ io Fovy O £ .

similarly

\V/* eixi - F W I (-vix)
) a ~ -e -~ r u = -~

as S-* o .
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hence using (6.29) u, \
Y'AIWCV. »N) ~

N | re* .vo rci”™o
“ 'I ~\ 7! f L
rc*-o0&eeMl. . ,,~v~"TWV.VT1iI-; """ T1
rcv~™o ra-n > j
as 0. If we factor out and take the limit as"i—0,
we obtain,
A'tfcr+v'y
N e ltnvfe*  1\M
(6.31)
< C00M0*-**0)jl__
We can find expressions for L and N when » = 0 from the

boundary conditions on 9 and (>at x = 0.

We have
OvCo,o0) = |
This implies
c ., ¢4c-"-0l -
SAAC.VVIADYPO+AV-A)P(A).-VV)_AyA) )
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Hence

it
I— "m °f tvI4 <2/%7y *V) *

"okt 0

Also from

We have

eV Nrdfo”™IN = .
(y +-y}T(V* "tvOfX v -tv)

Which gives us

iki ANy ANrecvM-rMorc-fcv -jvop
um o * ir “if*- <"Cy'*o *
"*% : 0
Therefore
JUu = AN(u”rv -AvVOTO»:-ky- kv)

Substituting this expression into (6.31) we obtain

\ai\*(vo> - ~A"V ($rky-kt)

If we use the identities

, Cary -y (vay AR — —— e
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and

\Ct+ “kvO

then upon simplifying we find that

~ ~ 3PQ
Av (> * = 'Wcitkr* -iv¥)n CV

Which agrees with (4.30), as we set
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out

Tr

to prove.
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