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Abstract

We develop hyperasymptotic expansions for two general classes of homogeneous differential equa-
tions with an irregular singularity of arbitrary integer rank at infinity. The first is the general
second-order differential equation. The second extends this result to a restricted case of a higher
order linear differential equation. In both of these cases the result is expressed in terms of certain
hyperterminant integrals which are generalisations of those found in other papers in the case of a

rank one singularity.
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Chapter 1

Introduction

This thesis consists of two related works. The second chapter is concerned with the computation of
hyperasymptotics for solutions of a general second- order linear ordinary differential equation with
ahigh rank irregular singularity at infinity. In the third chapter we calculate hyperasymptotics for
high order differential equations (greater order than two) which have some restrictions applied. For
any differential equation with a higher order than two there is the possibility of having solutions
of mixed exponential rank. Exponential rank is defined for our purposes as the order of the
polynomialin the leading (exponential) behaviour of the solution asit tends towards the (irregular)
singularity. The hyperasymptotic results in the third chapter are restricted to the case of single
rank problems.

The word hyperasymptotics was first used by Berry and Howls [s] to indicate an improvement
beyond superasymptotics. To understand these terms we need to understand the definition of
Poincare asymptotics [4, 19]. Poincare’s definition of the asymptotic relation ~ (is asymptotic to)
is that if we have a function f(z) and a power series oasz~s (possibly divergent) where as

are some complex numbers, then
n
f(z) ~'~2asz~s = <Dz~ asz (i.i)
s=0

It we use the asymptotic series as an approximation to the original function then the error is
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of polynomial order. A convergent expansion satisfies the Poincare definition of asymptotics but
the properties of convergent series are well studied and for the purposes of asymptotics in general,
not interesting. If we look at the properties of the error for a series which is divergent we can
see that the asymptotic series first gets closer and closer to the value of the original function,
the error falls to a minimum and then rises without bound. When the error is at a minimum
it is of exponentially small size, this is superasymptotics. The value of n at the point at which
we truncate the series to minimise the error depends in general on \2\. The truncation generally
occurs after the term of the series which is smallest in modulus.

The beautiful property of the Poincare definition is that these representations are unique. That
is the coefficients in (1.1) can be determined uniquely from the analytic function /. This means
if we have two representations satisfying the Poincare definition then the values of the coefficients
in the two series are the same.

The asymptotic relation (1.1) is not complete. These relations are only valid, in general, for
limited sectors of the complex plane. In this thesis we attempt to give maximal sectors of validity
in all cases. However the analytic solutions of the differential equation are usually valid for all
arguments. This leads to the property of Stokes’ Phenomenon where the analytic solution has
different asymptotic representations in different sectors of the complex plane. These sectors of
validity overlap. In the sector of common validity of two representations the functions must differ
by an exponentially small factor. It is this factor, not apparent in the Poincare definition that we
study in hyperasymptotics.

In hyperasymptotics we re-expand the remainder term, in some manner, to reduce this error
still further. In this way hyperasymptotics is a method of generating very accurate approximations
to functions which in the case of this thesis are solutions of differential equations.

The original works by Berry [5] and Berry and Howls [6] were on the hyperasymptotics of
ordinary differential equations. Olde Daalhuis and Olver developed the concepts for differential
equations in [13, 14] and these two papers are the ones which develop the central technique we use

in the thesis. In these two papers Olde Daalhuis and Olver develop their idea of using a Stielt-
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jes’ transform and the connection formulae for the solutions of the second order linear ordinary
equation with anirregular singularity of rank one to generate the hyperasymptotic expansions.

The second chapter of the thesis is derived from these last two papers in conjunction with a
paper on the calculation of Stokes' multipliers (also by Olde Daalhuis and Olver [15]).

Olde Daalhuis has used the techniques developed by Balser, Jurkat and Lutz [3] in the closely
related area of summability to develop hyperasymptotic expansions for a high order equation with
a singularity of unit rank [18].

In the third chapter of this thesis we use the same sources as the first but in addition we use
some of the techniques of summability and resurgence. The results are of the same character as
the first but are generated by using quite different methods.

The area of summability attempts to take divergent series and sum these series to generate
an analytic function. This analytic function then has the asymptotic behaviour of the divergent
series it is derived from. In general the divergent series are generated by looking for series which
satisfy an equation formally. In our case we have formal solutions to a differential equation. An
early work on summability is that of Turritin [24] in which he generates all formal solutions to a
linear Ordinary Differential Equation in matrix form and then proceeds to show which of these he
can sum. An important idea developed in this paper is the idea that any matrix form Ordinary
Differential Equation can be transformed into a canonical form. Braaksma[7] uses Turritin’s idea
to write a very deep and general paper about the calculation of Stokes" multipliers for these types
of equation. This paper of Braaksma's uses the more general theory of multisummability. A very
well written and clear account of this generalisation of the summability theory is in Balser [2]. It
also contains a good introduction to the more basic ideas of summability. Multisummability is
needed to deal with the cases of mixed exponential rank.

Summability uses the techniques of the Laplace transform and its inverse, the Borel transform.
The action of the appropriate (formal) Borel transform on a divergent series is to transform it
into a convergent series which describes an analytic function out to its radius of convergence. If

it is then possible to analytically continue this function to a function of less than exponential size
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then the Laplace transform can be taken. By a simple application of Watson’slemma the Laplace
transform can be shown to be asymptotic to the original formal expansion in certain sectors of the
complex plane. The extent of these sectors is related closely to the structure of the singularities
of the analytically continued Borel transform.

To generate hyperasymptotics more information is needed than is given by the basic techniques
of summability. The process of summation will generate many more solutions (in general) than
the total number of linearly independent solutions possible for the particular differential equation
studied. This leads to linear relationships between sets of solutions. The relationships between the
many solutions of the differential equation are connection formulae. The basic idea of the general
area of resurgence is to generate these connection formulae by looking at the behaviour of the
Borel transformed solutions’ singularity structure using the alien calculus. These techniques have
not been presented for the problems in these chapters but this approach could have be used. A
good introduction to the ideas (and a source of references) of resurgence is the paper by Delabaere
[8]. | have also been led through some of the concepts by Chris Luke who has given papers and

lectures to the staff at Dublin City University [10, 9].



Chapter 2

The Second Order Problem

2.1 Introduction

The general linear homogeneous differential equation of the second order is given by

cPW .dW
dzi +n*)-te+9{z)W = 0. (2.1)

The problem we shall study is that of an irregular singularity of rank r at infinity. In this case the
functions / and g can be expanded in power series about infinity of the form
‘ co
f(z)=zr~1'£ i o2y =22r22j2 *
s=0 s—-0
which converge in an open annulus \2\ > a. At least one of the coefficients /o0, go, gi iS non-zero
otherwise the singularity would have lower rank.

This equation (2.1) is studied in detail for the case r = 1in [14] where a method of rigorous
re-expansion of the remainder terms in the asymptotic expansion of the solution is developed. The
re-expansions are in terms of certain multiple integrals, the so called hyperterminant integrals. This
equation is also studied in [15] for the case r arbitrary and a method for the calculation of Stokes’
multipliers is derived. Using these results we have developed the hyperasymptotic expansions (See
[12] and [14] for references) for the differential equation (2.1) for the general case of the second

order linear differential equation of arbitrary rank r.
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2.2 Setting up the problem
By making the transformation

w(z) = exp Q J f(t)dt™ W(z) (2.2)

the differential equation(2.1) is transformed to the equation

=W (23

where

We may assume without loss of generality that \fo —<b is non zero* then the square root of ¢

can be expanded in the form
[o]e)
W.)}*- g

We now define sectors

where a = pho-

If we define Sk to be any closed sector properly interior to <Sfc i US*.. U5\.+i then the differential

equation (2.3) has unique solutions Wk(z) defined by

00
wic(z) ~ - z—*00 in 5* (2.4)
3=0 23

for k even and

00
Wk{z) ~ e~z ¥2 z —»00 in Sk (2.5)
s=0 2

for k odd (see [15] and [22]). These sectors differ slightly from those in [15] and because of this so

do the solutions w. The order r polynomial £ is given by

1 <b>
fro(r~s)z

>The case when \fo —go is zero is dealt with by using the transformation of Fabry, see [22).
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and the coefficients fii, -, ast=and asi2 can be calculated using a recursion relation derived by
substituting the expressions (2.4) and (2.5) into the differential equation (2.3) (see [15]).

We would now like to define a new variable x such that
xr = 2£(2)

so that the polynomial £ in the exponent of the asymptotic form of the solutions (2.4), (2.5)
becomes simply xr. We can do this by writing
E° G

Xs
3=0
calculating the coefficients cs by reversion of power series. Performing a full reversion of power
series is laborious but if we now truncate this series and make the change of variables

®

5=0

we can then transform equation (2.1) to write down a new differential equation for w in the

variahle x

cPW dw A NTir
-d™ +fix?  +s" w=0 m

We can apply the transform (2.2) to this differential equation and this yields an equation with
solutions in the form (2.4), (2.5) with the polynomial £ having the simple form xT/2 in the new
variable x. Without loss of generality we can now assume that equation (2.1) is in the correct form

initially so that when we derive (2.3) there are two solutions which have the following behaviour

for k even and
wk(z) ~ z->00in Sk
for k odd.
There are only two linearly independent solutions to the second order differential equation
(2.3) so there must be a linear relationship between any three solutions; a connection formula. In
particular we can write

Wk+2 (z) —Ck+lwk+i(z) + wk(z) . (2.6)

%
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The coefficient of WK(z) is unity because Wk+2{z) and WKk(z) have the same dominant asymptotic
form in their common sector of validity.

We now define functions
uk{z) = exr/2z-"iledlk™ rwk{ze-kKl/r)

for k even and

uk(z) = ezr/2z-"13ell*knL/Twk{ze-kni/r)

for k odd. These functions have the asymptotic form

Uk(z) ~ z —*00 in So

0 (e~Wr)s

for k even and
00

Mz) ~ £ E;—Eav%’zr) 2 -> 00 in 50

s=0

for k odd. Using the connection formula (2.6) for w we can now define connection formulae for u
uk+2(ze2nt/r) = Ck+lezrz“e-k™ ruk+i(ze™ r)+ «*(*) 2.7)

for k even
uk+2(zeZrjilr) = CkHefz~ue ™ ruk+l(ze”r) + «*(*) 28
for k odd. The number —72 —/tl. Note that uk+2r(z) = uk{z).
In a similar manner to [15] we can now write down a Stieltjes integral representationfor each

of the functions uk. The representation has a slightly different form depending onwhetherk is an

even or odd integer.

Lemma 1 For even k
1 ,.eC-2+*HMr< fr

Jpel-V +k- I>¢/e* t(t — 2)

-w»V (3ijHl r -~ . (9
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For odd k

yi r*-ZBR~-" ujH(te M -~ T)iti
2iu Jpei-*i+<*-Vmfr t(t—2

r—1 rooe “2j_ H : ’
K TZaj/ _ eirt-uu2j(teW-ky1Lr)
rx> ' J/pe-vii-k))nt/r t(t —2)

d . (2.10)
We use these integral representations for uk to derive an integral representation for the remainder
after truncation of its asymptotic series. This is done by expanding the term (t - z)~I as a finite
geometric series. The details of the proof are similar to [15] and are omitted. As a byproduct of

this process we also find an integral representation for the coefficients of the asymptotic expansion

for Uk- These can be used to develop asymptotic expansions for the coefficients (see [15, 14]).

Theorem 1
n—4

u*(2) = £_ wze-&/ry + R{z'n) (2.11)

where the coefficients as<j in the expansion are given by

axi = 7 Ve-9mi/r [ uZj(t)ts~1dt

roo
+Y,C2j+ie-Vj+1Katu,FLr / e~irt3+“- lu2j+I(t)dt (2.12)
Jr

and

Rk(z,n) =- 2" in_18R(z-,p,n)

! >«/rV A . p-Qi+)n+irt/r £ e u2j+I(t) /o io\
RN P fe-W-k+DAr  zat
-6 -
for k even and
n—
= 0.2 2.14
Uk(@) = Y2 e kirirryr (214)
where
r— _ ) rpe-"
(12== —2j+X)anifr, u2j+1(t)t3 1dt
2in BO Jpc-'r/r

+J2¢2e-We-9Lifr | e-trt'-u-1Wj(ct  (2.15)

j=o Jp
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and
Rk{z,n) = ZniZ—TeJJ(a;p,n)
1 , .
I oamrerm, i . 0e-t'tn-W-1LB(i)
grazn 1 oL C2e-ZM-wnifr g (e-2j-foyifr _ Adt (216)
for A odd.

The definition of e* is given by

t-1
% - “2jttWoror “ajft)*1 i
gk\ziP>2§ _/%n( I tei-\71+\}'rrt/r_ di
J=0
for fteven and by
eo( ) ,,('2i+fC-|)7I’t/r r ' «23+1(0 K _v N

y~ wir fe(-2,+fc-IWr_

for fc odd.

In the integrals in (2.13) and (2.16) above z has been restricted to the phase range |phz| <
' —& We would like now to include the phases tir/r. We do this by analytically continuing the
integrals. This is performed in the standard way, indenting the straight line contours fromt = p
to t —oo in a semi-circle ||z]| —i| = S where the indentation goes to the left (resp. to the right) of
z when 0 < phz < ir/r (resp. —ir/r < phz < 0) (see figures 2.1,2.2). We shall call this contour V.
With this extension and the continuation formulae we can get a representation for any solution of

the differential equation for any z.

Figure 2.1: V for 0 < phz < ir/r Figure 2.2: V for -ir/r < phz < 0
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2.3 Optimal expansion at level zero (Poincare asymptotics)

We now wish to minimise the remainder in (2.11) and (2.14) to determine the optimal number
of terms of these expansions to use with the single standard Poincare asymptotic series. We will
consider in detail the case for even K\ the calculations are similar for odd k.

Let n = No in (2.11). The remainder term is given in (2.13). We deal with the two terms

separately. The first term is estimated by
— = 0(pN°z~No) . (2.17)

In the second term of (2.13) we can see that the dominant contribution to the bound occurs when
—lir < phz < 0 and arises from the integral for which 2j —k = 0 L The path along which we
integrate is indented at \2 to pass to the right of \2\. To derive sharp error bounds we need to
perform the analytic continuation of the previous section in a different way.

Starting with the dominant integral (assume 0 > phz > —x/r)

/@De-trtNo+»-1Uk+I{t) A
Jp te-wk-z

we replace z by zexp(—kt/r) and make the substitution t = vxr (taking the principal branch) to

give
giri/r roo e-vv(NO+u,)/r-1 Wfc+1(vi)
S | *lq

Now we perform the analytic continuation allowing z to be real and indenting the contour in
semi-circle centred on and to the right of z of radius ¢i in the v plane.

We bound this integral in two parts. For the integrals

SKilr 1 jRRT-&E A roo | e-yy(NoHOSVr- luk+1(vi:)
Jpr Nz\r+51J vir- z v

we can say that Ww¥r —z| = o (1), ukis o(1) uniformly on the region \2 > p so that the sum of
the integrals is

0(1)T((NO+ ~oj)/r). (2.18)

tor symmetrically when 0 < ph”: < 7r/r and 2j —k= —2.
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For the part of the integral around the semicircle we have \v —\z\r\ = 5i so that

=e,r + 0(1) (219)
ro4-1|'s, V'P -z 1 il
uniformly in the region of validity for z.
Now we assume that
No=po\z\r + ao (2.20)

where (3 > 0is 0(1) and ao is bounded. Now using this form for Noand comparing (2.19) to

(2.18) and using Stirling’s asymptotic estimate for the gammafunction we have

e~|4 v + <S|VHR)/r~1 _ e-N|rPaw+cLa+Hlu-r jp O\2\r+a0+Mu)/r
T((NO+ ®u>)/r) ~ 0 1

[(f3o\z\r + a0+ SRw)/r]-V°oWr+00+3t“ ST+
= 0(1)e~"iZM\2\13" r+ao+~Ukre A 1 (130/1)~ AT MNZ\~ &N ZA R0 I A+
=0(h)e-~r\z\~r/2 (e0°/r(130/r)-~Mr~A = 0(\z\~r/2) .
The last step is due to the fact that e°/r(/30/r)~P°/r has its maximum at (0= r. This estimate
for the semi-circular indentation of the integral can therefore be absorbed in the estimate for the
straight line part of the integral (2.18) and this is our final estimate for the integral. The remainder
term in (2.13) is then estimated by

O(T((NO+ 9tu;)/r)z-N°+1) . (2.21)

Using the value of No in (2.20) and Stirling’s formula we can minimise (2.21) with respect to /%-

We find that
Z- No+t1T((No+ dtoj)/r) = 0(1) \e-~ar\p O/r)~a/TA  [z]it«"-»-[a

and /3= r for the remainder to be minimal. Substituting this value of j30 in (2.21) we find that

the minimal remainder estimate for k even is

O(Z I-r/2+1Rwe-|*|

The corresponding estimate for k odd may be shown in a similar manner to be

Q(zl-r/2-Uwe-\z\r) _
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2.4 Optimal expansion at level one

To construct the first level of hyperasymptotic expansions we re-expand the remainder terms in
(2.13) and (2.16). The calculations for even and odd K are similar so only the even K calculations

will be shown. Substituting the expressions (2.14) into (2.13) we find that

7i-n0 A1l ri
Rk(z,N0) = ~ 2iu ekNol,i/r aai2'52C2j+le-Vj+1HNo+u- a'r x
0 X
GV -k+i(z<No - s) + RI(z; NO,Ni)
where
OBt N
Gk =] (2.22)
and
-1—No
RI(z;No,N1) = — ~ e ° k(z;p;No)

r e-triNs¥- ks ~

i N o N aay ¢ g+ 1o A1 Now: 9 Ir
Tt A sy J ' In le-(2j-k+Dyirt./r _ z

ZMe g A c2.41x
2m 9:0

S2j+) (W, +u ) TrUr * "flojr1gs ) f

Jv s ie-(2-fc+DWr _ *
Now we estimate the remainder as in the previous section and then proceed to minimise it. The
first term on the right hand side of (2.23) is estimated as before in (2.17) to be 0 (z~ NopNo).

In the second term in (2.23) we have that \te~(2~k+"~*l/r —z\ > \2\ —p in the worst case so
that

P p—triNo+v-I-s
I te-ffi-ww +9»-)/r./])) =01z-"~/No) .

Prom [15] we have that

«§,2 = <9(r((s —"™w)/r)) as s —400

so that the whole second term is estimated by

O{T((Ni -Lj)/r)z-N‘pN°/NO) .
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In thethird term taking the expression for $.j+i(t, -Wi)from (2.16) and replacingall occurrences
of p by p —s(to ensure convergence of the integrals), we have that

e- r tNo+u- i R°.+1(t,N1)

V  te-W-B)Tir- 2z

I f  e—Tj.NO—Ni+u [
©20rt Jpie_(2_fe+l)Mr - zdt ~5,NI"+
1 1 /o0 —tij.Ni—ui—1 (+\
a(2j+1)Ni-KL/r \ p— (2NQVi—ui)TTilr |/ e 1-13
+ 2* |-stie-W-V-Wr-rl

The estimate for the integral of the eterm is given by (2.17) so we have that

f e-tTtN° - NI+u,&4+1(t-,p- S;Ni)

| m="°" ~ gy Td\b-Ni+ Suym .

The double integral written out in full is
Jv Jp-s (ie-CM-"Wr-z)(iie-(2i-21-9)m/T-t) v
We estimate this by noting that |te-(2j-k+Dmh/r —z| > Sand |tze- (21 2'~7t/r —i| > |i]0(]).
Then (2.24) splits into the product of two single integrals and is estimated by
= O(T{(NO-Ni + Kw)Mr((JVi“ "MAQ) =m
All of the other terms can be absorbed into this estimate so that we have our final estimate that
RE{z-NO,N1) = O(z-NO+1T{{NO- N 1+ Au)/r)T((N1-Stij)/r)) . (2.25)

Following (2.20) we now assume the standard form for No and Nz

No = A)Zr+ao >

Ni = [3izr+ai .

Po> [?1 > o are o (1) and ao, a\ are hounded.
Using Stirling’s formula to give an asymptotic estimate for the gamma functions in (2.25) we

find that

RI(z; NO,Ni) = O (z-fol2IT- “ot 1)|z|(ko- fal)IzIr+ @ - * 1+Rw- r/2x

T / o\ Mr

I 00-01 Po—Pi A2y g2, I A (2.26)
r | (2
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We find that the estimate (2.26) is minimised when 0o — = r and 0\ = r so that 0o = 2r and

the optimal estimate for the remainder at level 1 is

RANo0,") =zkre-W

2.5 General Levels

The complete expansion for Uk(z) can now be written down and proved by induction. The number

i’k in Theorem 2 is 1 when k is even and 0 when k is odd.

Theorem 2 —it/r < phz <n/r. For k even

No—l )
aal + Z};l}tigekNmn/r

»=_€') (ze~k”’lUr)a

% N,, —I
xE(-)" E
n:S ) s=0
n—=2 -1
< Clft+vt r-(2j,+u,)(NI-N 13, +(-Yu)Tn/r
n
1=0 @) 2m
~N o CA,.
Ja=0  2m
X G2N-k+1,2jt-2j0- 1 2(3,-1-in-aM -1)»(Z;\ “ NU---,N,x-2 ~ Nn- UN,-i - s)
+ RE(z-No,NIt...,Np)
where the remainder is estimated by
RE(z;NO,Ni,..., Np) = O(Z- N°+1r((NO- N, + 9fw)/r)r((N, - N2- Xu)/r) x ...

X r((ATp_! - Np+ (-y-"?Ru))/r)r((Np+ (=)p™)/r)) .
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For k odd
No- 1
Uk{z) = £ fre? "ry'*(' y|-Naek\DL/r
S:
P W..-1
R g

n-2 r-%

C2ji+ I-il)
«II;b Lﬁ om

r—1
X £ CZjn-_l_.+’\n.e-(2-jn, i+i/,,)(Nn-i-8+(-)"u)nt./r
w0 AN

<(2),+1-1, ) (Ni-NnLi- (= w)m./r

XG2jo-k,2n-2jo+1  20,, Lj,, 2+(-1)"(% Ni,...,Nn,2 ”n-l.~n-1 5s)

+/$(*: Wo, M ..., tfp)

where the remainder is estimated by

RR(Z; mINI,...,N,) = 0(z~N+Ir((No - NX- 8ow)/r)r(@Vi - iv2+3M/r) x ...

X T((Np_i- WP+ (-)P“23iu;)in)r((yVp+ (—)p_I32u)l) .

In the case where the expansions are optimally truncated after 71 series the number of terms in
the final re-expansion is Np = r\z\r + a,, then in each previous expansion the number of terms
increases approximately by this amount, i.e. N,,_i = (i + I)r|z|r+ ap-i , etc. The optimal error
term in this case is Rj! = <D(zl ~p%e~p\Z][r).

The general integral G appearing in the expansions above is given by

Gl9%0\Z.xSz2\M<o, M,...... )=

roo roo tr—&*— [AowyAii4 INAN(-) -1

‘e N _
o do S iBwr ) tid-rieh i cimeka iy Ty ¢ e et @20

forn > 1and for n = 0 it is given by (2.22).
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2.6 On calculation of the integrals G appearing in expan-

sions

The integrals (2.27) and (2.22) (often called terminant integrals) can be calculated numerically by
writing them in terms of the integrals in [14]. We can then use some results in [12] which express
these simpler integrals as a convergent infinite series of confluent hypergeometric functions.

To recast our integrals in terms of those in [12] we first substitute t = vl tj = vAr,j =

1,...,ninto (2.27) taking the principal branch in all cases. We then use the results

T~1
@E’SEL) home = e Bee jlc:):é)ve_km» Irzr- - jo
and
r—1
(vne fn7rtytrr _ V'@ kvt v M=

to show that (2.27) can be expressed as a certain sum of integrals F defined in [12] (in the case

where k\,... ,kn are all odd integers):

Gk% Z , kM Mo,M1,..., Mn) =

n r— r—1 r—1
¢ £ zr 1ot e-Wo+kin +-+knjn)n,/rEn+lizr. {Mqg+ Ntw)rt A
1
j0=0 j1=0  jn=0

(MI+ji-j2-w)r+ 1., (Mntjnt (-1)nw)r) .

To calculate with Theorem 2 we then use the results of [12]. These calculations for various examples

confirm numerically the theoretical error estimates of Theorem 2.

2.7 Conclusions

In Theorem 2 we have obtained in general form a hyperasymptotic expansion at all levels for
solutions of a second order homogeneous linear ordinary differential equation which has an irregular
singularity at infinity of arbitrary rank r.

As in [14] this expansion for sufficiently large level p is numerically unstable. This instability is

due to the fact thatin general we sum a divergent series past the point where the last term added
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is of order one, leading to severe cancellation. This may be dealt with in the same manner as in
(14). The optimal numerically stable scheme will use less terms than the corresponding optimal
series from Theorem 2 but will not be as accurate for the same level p.

We may also extend the region of validity of the exponentially improved expansions in a similar
manner to [14] section 10 with a corresponding weakening of the error estimates in the expanded
sectors. This is really only of theoretical interest, however; in practice the high accuracy results
in this paper can be used to generate approximations to any solution anywhere in the complex

plane by direct use of the connection formulae (2.7) and (2.8).



Chapter 3

The High Order Problem

3.1 Introduction
In this chapter we study solutions of the linear differential equation
Dw(z) =0 (3.1)

in the complex z plane. The operator D is defined by

D=ir *-n{@Dan (*)" €¥)
n=0
where the numbers v and r are non-negative integers and the coefficient functions cin(z) have the

form
(00]

anz) =£ annez~me
0
Thesesumsconverge in somecommon annulus \2\ > p. The order of the differential equation
is then vand therank of the essential singularity at infinity is r.We wish, first,to study the
asymptotic behaviour of the solutions of this equation at infinity. We must impose some conditions
on the coefficient functions an to ensure that the type of behaviour of the solutions is restricted

to one exponential level r*. We therefore assume that the coefficient avo is non-zero.

'i.e. the form of the leading asymptotic term in each solution is with A, non-zero in each case.
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There are two main results in this chapter. Firstwe will find solutions in sectors (with maximum
region of validity) which have the formal solutions of (3.1) as their asymptotic behaviour. The
approach taken is to obtain a Laplace transform representation of the analytic solutions. Then
secondly we will obtain hyperasymptotic expansions for these solutions using methods similar to

those in chapter 2.

3.2 Formal Solutions

For our present purposes we have found it convenient to transform the differential operator (3.2)
which has rank r to another operator which has rank one. To this end we make the transform
zr = zT. This gives us a second differential operator

=" en(zr)h-"- . (3.3)

n=0 r

The coefficient functions bn are now power series in zT1/r which converge in an annulus \zr\> pr.

@
K{zt) = £ bnmz~m/r , (3.4)
m0
Now we solve the equation
Drw =0, (3.5)

Obviously the solutions w(z) and w(zr) are equal.

The characteristic polynomial of (3.3) is

pw =E B'xne
n=0

Due to the conditions on the coefficients of the functions an both 6,0 and £m are non zero.
This means that P(A) has v zeros. Additionally, at this point we make the assumption that the
zeros of the polynomial P are simple. In general the admission of non-simple roots leads to an
equation with many ranks (or exponential levels) of solutions or logarithmic-type solutions neither
of which we wish to discuss in this chapter. This condition implies that P*(xn) is not zero for all

n—1,..., V.
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We wish to show now that the unique formal solutions to (3.5) are of the form

r—1
Wj(zr) = exp(Ajzr + y~jXiszI~T)z7i$i(zr) | (3.6)

s—1

00

4>i(Zr) = 1 + ﬁ:lcwn n/T m

Throughout this chapter the hat on any symbol means that the symbol is to be interpreted in a
formal sense, i.e. any infinite series appearing in the definition of the symbol may not converge.

As a by-product of this demonstration we will also find equations which each of the <si@r)
satisfies. These equations will then be used to calculate the analytic solutions through the process
of Borel summation. We proceed by showing that if we substitute the ansatz for the formal
solutions into the differential equation each of the coefficients can be calculated uniquely. When
the Borel sum has been calculated it is a simple matter to use Watson’s lemma to show that the

analytic solution (in the form of a Laplace transform) is asymptotic to the formal expansion from

which it has been derived and find the maximal sectors of validity.

3.2.1 The derivation of the formal solution and as a by-product differ-

ential equations for fa

The first step in the process of demonstrating that the functions wi(zr) defined in (3.6) are
formal solutions of the differential equation (3.5) is to split the coefficient functions sn into two

components, the constant and variable parts. To this end we define the functions
b'n(Zr')y = "l(zr) bno

derived from the coefficient functions bn defined in (3.4).

At this stage we also define the operator

to simplify the notation somewnhat.
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We also define functions bk (zr) which appear during the following calculation which are defined

for k —1,... ,r. The functions bk are convergent power series in the variable zl/r,
RCT)= E *L*r"mir «
m=0
Following the definition bKO is the constant term in the power series and thus we define
£'(*.) =£(*r)-4£0 *

The exact values of the coefficients are derived from those of the functions bn(zr) in the following

manner:
No=X>0(")ATr* @7
Ji=5)
bl%Zr) = j2K(*r)(nV r a
n—s vt
and

bkt 1(zr) = e-Xikzr~Kir ¢ 1»;(2r) Q 9 s-V iii"“/r .

If we study these equations we can see that despite complex behaviour in the higher order terms

the constant coefficients remain the same, i.e. that

h =ho

for k = 2,..., r. Note that

“o0—0

To calculate the coefficients in the formal expansion we need to peel off the highest order terms

in sequence, to do this we define the functions

Wi{zr) =: e~Wnizr) (3.8)

fti,k-i{zr) =: eX'k IxI~"k~1)/rftik{zr) for . (3.9

Now we write the formal solution in the form defined in 3.8, substitute this in the differential
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equation (3.5) and multiply by the factor e_AiZr. This gives us the sequence of equations

0 = e~XzZrDTWi(zr)

—_ H N H
= £ £ (jXw +71‘E0K(2r)50(1-)«m£1

71=0 5=0
I 2/\ v n/\
= ¢(fenoArti+renoErjAr® +EfcnWEIJA rsh 9 m
71=0 71=1 S—1 X7 71=0 5=0 X'

The first sum in the last equation is the characteristic polynomial P(A) times wn. As this is the
highest order term in zTand the only order one term we set this to zero to give the characteristic
values A; We note here that the derivatives of Wik are all of order at least z7 ' smaller than
Wik, k —1  ,r. We now reverse the order of the sums to give the equation
¢ N>+ g M (M= 0 (3-10)
5=1 5=0
The functions bi(zr) we have defined earlier (3.7).
We remark that we have from (3.7) that

60=E N0 A ri=P(A)"° -

71=1
Because the reciprocal ofthis term will occur when the remaining coefficients in the formal solution
are calculated the assumption that there are no repeated roots of the characteristic polynomial is
essential for formal solutions of this type. Also we note here that b= o(zr 1r), fors=1,..., v.

The calculations involving the product of derivatives of the exponential and a function are too

complicated to work with so in subsequent calculations we will use the fact that
dmeKZrkr = (Km{l- k/r)mz-nk/T+ 0{z~"m T¥/r- 1))eKz'~KT

because we only require the leading order term. The lower orders are absorbed by the coefficient
functions b. This statement is true for k= 1,..., r —1.
Now we substitute the next term of the desired formal solution into (3.10) i.e. we write

the equation in terms of Wiz (zr) and this gives us on substitution and pre-multiplication by
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exp(-Aazr~1/)

(a-v*i-") W

3=0 71=0

The C@™V/r) terms are
(i + (1- ur)b\oxn)z-lir

whicii we set to zero to give

. . m
Rf(a' T (I-1/r)6}0 "

The principle is now clear and the calculations in practice are straightforward to carry out. At

the Ath stage we will have the differential equation:

n=1 n=0

We calculate the coefficients in (3.9) successively by setting the highest order term in the
equation to zero. Because of this procedure we can see that b = 0(zr Al/r) and at each stage we

get a similar formula for the A”.

I ¢ 0 ¢
AK = =1 . k/n)bvo

fork=2,... ,r —1

We now consider the rth stage. We will have reached the equation
n=1 n=0
We can see that the coefficient functions have the following behaviour
65*%(zr) = 0(z~1),
KO = bhO-

Now if we substitute into this equation the functions

Wir = Z?M Zr)
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we find that

Since we can assume the first coefficient of the power series 4si(zr) is unity it is useful for our
purposes to write the differential equation for <ti@r) in terms of the function ‘ipizr) = (fi@r) —1.

We can write the differential equation for ifj,;(zt.) as

~A2ds(zr)ip™ + do(zr) = 0
s=0

Writing the system in this way and then substituting the series for all the functions into the
differential equation we can easily develop a sequence of equations for the coefficients of fj)icr).
We can then find all of the coefficients uniquely in terms of the coefficients of the functions ds(zr).

With this the functions *wi(zr) have been shown to be formal solutions of (3.5). During this
process we have also developed a differential equation which the formal power series ipi(zr) satisfies.
This will be used in the next section to prove the existence of analytic solutions to (3.5) and to

show that their asymptotic form in certain sectors is the corresponding formal solution.

3.2.2 Analytic Solutions

When we use the Borel-Laplace method three things must be shown. The first is that the formal
Borel transform (which is an analytic germ) can be analytically continued outside its circle of
convergence at the origin. In the present case we can show that analytic continuation of the
germ to infinity is possible. The second is to show that the analytically continued function is of
exponential size to ensure convergence of its Laplace transform. The third is to show that the
computed Laplace transform representation solves the original differential equation.

First we will specify the particular form of Borel transform used in this chapter. There are two
types of Borel transform in this chapter the analytic and the formal. The analytic is equivalent

to the classical definition of the inverse Laplace transform. The formal Borel transform has the
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same effect as the analytic on analytic functions but is also allowed to operate on formal power
series term by term.

If f(z) is an analytic function with no singularities in \2 > p then the analytic Borel transform
of / is defined as

B{f{zm) = ~-Jc f{z)e"dz (3.12)

where the contour C begins at —oo —0i, proceeds in a counter-clockwise loop around the singu-

larities and finishes at —o0 + oi. In particular

_fS.

This is basically the definition of the formal Borel transform. To be more precise if we take a

formal (possibly divergent) power series with no constant term
hZ)=y%d<Z~kI'r
k=

then

00 i-lclr—1

with r € N+. If the form of the divergence in the formal power series is mild (the coefficients
grow like a geometric series times a gamma function) then the process of taking the formal Borel
transform results in a convergent analytic power series in some neighbourhood of the origin. If
this power series can be analytically continued to infinity and can be bounded by an exponential
function then we can take the inverse transform. This defines an analytic function which is
asymptotic to the formal series it is derived from: This is the process of Borel summation. We
note here that

B(df(zrM ) = -ZB(f(zrM )

The Borel transform of the product of two analytic functions is the convolution of their cor-
responding Borel transforms. If /(£) and <) are analytic functions then their convolution is

defined as

f*9—}0 f(£- u)g(u)du ,
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For simplicity during calculations we choose the contour to be a straight line. This is general
enough for our purposes and makes the estimation of convolutions much simpler.

If /(£) is an analytic function in £ the Laplace transform that we use is

rooe®
EUEN() = [ me-exi

where 6 S R less some set of points . The contour is a straight line from the origin to infinity
in the direction 9. We may only calculate this integral where f(z) is non-singular, hence the
set of permissible angles 9 is restricted to those without any singularities of the function we are
transforming. The set A is therefore the set of directions for which f(z) has a singularity.

The Borel transform specified in (3.12) is not strictly the inverse of this Laplace transform.
The exact inverse is the Borel transform with the contour rotated to a direction —a where the

direction of the Laplace transform is in a direction a, for some complex number a. 9is the phase

Before we make a statement of the main theorem of the first section of the chapter some
definitions are necessary.
If A, i —1,...,v are the roots of the characteristic equation P(A) = o for the differential

operator (3.5) then we define numbers
9ij = ph(Ai- Aj) ,i=£]j (3.13)

on the half open interval (0, 2ex. We order these numbers 9ij for each i on this interval and we
call these ordered numbers

fori=1,...,

In particular a\ = rmin.yfly. We have consequently the relationship that a\ < < eee<
We then define these values for all integer subscripts =+ 2mrforj=1,..,v—i,

We define extensions of the numbers otj,

for all integer q.
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Now we define sectors

Sk =iz m ~ < Ph2: < \ - °fc-i} =

Lemma 2 For integer k there exist analytic solutions of the differential equation (3.5)

Wk(zr) ~ exp(Aizr + " Aiszr~T)z2(i>i(zr)

s=1

as \2\ —00 in any closed sub-sector of Sk.

Note If equality holds for any two or more successive ak then the corresponding wk will be
identical. This happens when Ai and two or more of the Aj are co-linear.

Lemma 2 is proved as stated above by showing that the Borel transform of the series part of
the solution (j>i@zr) is summable. For this we have to prove the following theorem regarding the

Borel transform of the analytic solutions wk(zT).

Theorem 3 The Borel transform of (f5i(zr) is analytic in £1/ and is analytically continuable to
infinity with only afinite number of singularities at the points Xi —Xj, j * i. The Borel transform

of &i(zr) is of exponential size in sectors bounded away from and not containing singularities.

During the proof of Theorem 3 we will need the following bound on the Borel transform of an

analytic function.

Lemma 3 Let f(zr) be an analytic function of z~r which can be represented by a convergent

power series in a neighbourhood \zT\> pT of infinity

0o

f(zr) = £ tkz-xwir n>0 .

k=n

There exists an a such that the Borel transform of f, /(£), is entire in the transform variable

where a, the complex conjugate of a, is on the centre line of the sector

P={f:mi<phf< 02 , 02- 0i<Ts
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Lemma 4 Foroc,0 > 1/r, r a positive integer, the Beta function, B(a, 0), is bounded above by a

positive constant B.

Proof

We prove this using three cases.

e Case 1fora,0> 1

An integral definition of the beta function is
B{a,0) = j\\-t)a~xtp-Idt .
Jo

Taking absolute values this is clearly bounded above by 1 when a,0 > 1. In this case,
therefore,

B(a,0) < 1.

e Case 2 fora > I,/3 < 1

Using the same integral definition of the Beta function as in Case 1 we can see the first term
(1 —£)“-1 is bounded above by 1. On integration we can see that the bound for the integral

becomes 1/0 which is maximised for 0 = 1/r. So that we have the bound that
B{<*0) <r

Since the Beta function is symmetric in its arguments this bound holds also fora < \,0 > 1.

Finally we have

e Case 3 fora < I,/3 < 1. The Beta function is decreasing in both a and 0 for increasing
a and 0 so the largest value of the Beta function is for a,0 = 1/r. Using the fact that the

Beta function can also be written in terms of a ratio of Gamma functions we can show that
B(l/r,1/r) = 2B(l/r + 1,1/r) .
According to case 2 the last Beta function is bounded above by r and so

B(a,0) < 22



CHAPTER 3. THE HIGH ORDER PROBLEM 32

Now if we choose B = 2r then we have the result. o
Proof of Lemma 3.

The Borel transform of /, from our definition of the analytic Borel transform in section 3.2.2,

frk/r-1

k=n W)
Using the ratio test and knowing that the original analytic functions’ power series expansion

converged for \zr\> pr we can show that the radius of convergence of the Borel transform /(£) is
infinite and so the function represented by it is entire.
We rewrite this expression in the form

gn/r-1 -~ fk+ne /r
r(nfr)  r((fct n)/ryrv(nir)

and taking the modulus

\f(n\ <1~ " 1y \h+nmkir
1 T(nlr) T((fe + n)/r)/T(n/r)

Now we need to show that the sum on the right hand side is less than an exponential function.

We use the fact that since the original series expansion in the zr plane was convergent we can
bound the absolute value of the coefficients by a geometric series. Each term fn < DKn where
D,K are some finite positive constants, K > p.

We also use the lemma above showing that the Beta function is bounded above by a finite
constant B.

Let 7 = minr(i), t> 0.

Rewriting the sum

Yy! Ifc+nll™|fclr = \frk+n+q\\ A rk+ A/ r

NT((fe 4 mYfr)avnir) .  T{rk+q+n)/n)/T{n/r)

PR el dagr 7 ameiie

cTiqo T((rk # 4% n)/r)fT¢h/r) ™ T((g+ n)/r)/Y(n/r)

\fe=1 g=0 v 9=0 /
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We must bound this sum for |E| greater than and less than unity. For |E| < 1

r—1 r— 1
=M
<7=0 <7=0
and when |£| > 1
r—1 r—1
= MKl
Hl
g=0 <7=0

We can now bound the sum by an exponential C exp(Q|£|) where C and Q are positive real
numbers. Q = 1+ 2Krand C —2DBMKn/7. Once we choose |a| large enough this is equivalent

to the sum being bounded by Cexp(9?a£) in a sector P whose centre-line is any direction |d|. *

3.2.3 Proof of Theorem 3

Consider (3.11) and the definitions following it. We have that

ds(oo) = bbo=:d30 . (3.14)

We define

ds{zr) := ds(zr) dsO

and write (3.11) in the form

it +Y,d™Zr)™ = -do(*r) (3.15)
3=0 5=0
Note here that
do{zr) = O0(z-*-1/n), (3.16)
daf{zr) - d,0 = 0{z~I'r)), Iks<u . (3.17)

Considering the differential equation (3.11) we write

~d jos S)@2r) + f£ s (2r)V4a')(zr)= ~do(zr) (3.18)

3=0 8=0
introducing the parameter e to flag the subdominant terms in the differential equation and write

0o

M zr) = 1£: . () o (319
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Later we set eto one to give our result. Substituting this formula into (3.18) we get differential

equations for each of the functions ipl (zr):

\%

~2ds0$ {s)(zr) - ~-do(zr) ,
5=0
¢ MoV ERW(M) = -y2d*(zr)$~1s)(zr) , k> 1.

At this stage we take the Borel transform of this set of differential equations and derive a set of

convolution equations for ipk, k = 0,..., 00 the Borel transform of the functions Tp*
X>0(-0't°> = ~do(0 ,
s=0
X>0(-E)stt = -i>*(0*[(-£)'Efc] ,*>1 «
Prom (3.14) we have that

B0=bi0="E£bnoffx 4=

n=s

and this means that

X>.0(-C) = ¢ (-« (" ("JATT

5=0 5=0 71=S

so that the equations for the ipk(£) can be written

= do(0 (3.20)
P(Ai - - - E<E(0 *[(-O""1] ,fc>1. (3.21)
s=0

Looking at equation (3.20) we can see that pe°(zr) is analytic on the Riemann surface of z~ Thar
the singularities which may occur at the points £ = Aj—Aj on all of the sheets.

The convolution of an entire function with one with singularities will produce a function with
singularities at the same points. The functions d*(zr) are analytic and the functions (—0 Sv* have
singularities at the points £ = A; —Aj so the convolution has singularities at the same points.

Consequently i1 and all the higher iterates ipk are analytic apart from the points £ = Aj —Aj.
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Now we must show that the sum defined in (3.19) converges when eis set to unity. In fact we
prove that the sum of the Borel transforms of these functions converges. We then show that the
inverse transform exists and solves the differential equation (3.15).

The functions (), d*(£), s = 0... v are Boreltransforms of functions satisfying the conditions

of Lemma 3 and consequently from (3.17) we have the following bounds

0 < Cr(llﬁ]lJ\r/l) ot

1
um < Cr(llﬂjl) (3.22)

o el

where C is a suitably chosen real constant and the complex number a is chosen so that |a| is
sufficiently large, a is the centre line of some sector s = £:6\ < phi; < $2, @2 —e: < T In
addition we choose  and 02 so that < g2 < for any k. If we take any closed
sub-sector of S, Q, then the closest distance from Q to the nearest singularity of the functions ip

is bounded below. We bound in a different way for |£| less than and greater than 1. For |£ > 1

we have
A A 1<
For |f| < 1 we have
A—A— <4
If £ G Q then
c Km fori@<i

iP(Ai-oi -\"ieforiei>i (3.23)

Using this information and the equation (3.20) we can bound ipxin a sector Q. We take the
cases where |£| < 1 and [£| > 1 separately.
+ Case: [f| <1

From equation (3.20) we can see that
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Using this bound and substituting it into the expression for \iji|, equation (3.21), we can

develop a bound for [i>¥.

Erom equation (3.21) we have that
figk(0*M (0] (3-25)
s=0
d*(£) has different bounds for for s = 0 and for s = 1,..., u. Therefore the terms in the sum
have identical bounds for s = 1,..., uand for s = 0. The calculations however are similar.

For s = 0 we have

In the convolution integrals we simplify the calculations by integrating only along straight-
line paths. We can do this because all functions inside the integrals are analytic inside the
sector in which we integrate. Substituting in the bounds given in equations (3.22) and (3.24)

and taking the absolute value inside the integral means that the s = 0 term is bounded by

C2K fm N
70 r(l/r+1) Fi/r+ 1)

Finally we integrate by parts to transform this term to a form similar to the terms we have
for s=1,..., v. Then using the definition of the Beta function we get the following bound
for the s = 0 term

. e
rC2KeUa|i,(2/r + I) .

This bound differs from the bound we derive for the other terms in the sum in equation 3.25

only by a factor of r so our final bound for the sum is

MIEL < fr+)CKz (G

Substituting this bound to calculate a bound for the next ip we begin to see the forming

pattern. The general result we arrive at, which we may prove by induction, is that
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Case: |E| > 1

Rom equation (3.20) and (3.23) we can see that

(327)

Again we substitute this bound into the expression for |, equation (3.21) and get that

Fors=1,...,u the bounds for the terms in the sum are again identical. We will again deal

with the special case for s = 0 to illustrate our method.

For a—0 we have
na
do<)*#(€) <Jo &((i-u)Tg(u)du\| .

Obviously now we have to separate the integral into the region from 0 to 1 and from 1 to

E|. Substituting in the bounds given in equations (3.22) and (3.27) we get the bound

\A <Hfl-ul) “ *+ /[ (I1il-])"/V /-~

We can now, however, recombine the two integrals by noting that in the second u > 1 and
SO we can rewrite as ul/r 1. Finally again for the special case we integrate by parts
to transform this term to a form similar to the terms we have for s = 1,..., v. Then using

the definition of the Beta function we get the following bound for the s = 0 term

; |E[2/r
MRS 27 +1)

Then when we combine the terras in the sum in (3.28)
te!lNl < +

and the general result is
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We have reached the stage where we have a bound on the Borel transform of the ip\ functions
which appearing on the right hand side ofequation (3.19). We need to find ipi. First we needto sum
these Borel transforms to give the Borel transform of ~ Then we take the inverse transform to
get mi. For the inverse transform to converge we need to prove the sum is less than an exponential
function.

We need to sum the Borel transforms over all k = 0,..., 00. The part which varies with k is
the same in both cases The ratio test can be used to show that the sum of these terms converges
for all £. Now we show that the sum is smaller than an exponential function. First let us take a

generic series
MK EGRN ) = BTy i (r

h K U r(fc+ (9+ 1)/r + l)/fcl

The last sum over q is smaller than a constant if |£] < 1. If |E] > 1then it is smaller than a

constant, L, times |E|. Our bound for the sum is then given by

L\Ni/re(i+M)\E\ (3.30)

In the case where [E| > 1, |£]-" < |£|_L, so that the bound (3.29) is bounded by (3.26) and
they can be merged.

Let M = (r+ v)CK. Then the bound becomes
VAL < cjre™|£]-IM for (A )
for all values of £. Using (3.30) we arrive at the final bound
IN01 <QI£IUr- Kk

where Q = CK(1 + L) and a has been adjusted suitably.

Using this result we may now prove Lemma 2.

3.2.4 Proofof Lemma 2

Proof Since ip. is of less than exponential size we can take its Laplace transform along some
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straight line [0,00eie],

roo0G19

(3.31)
Jo

provided that direction does not contain one of the singularities of vj . The singularities of
occur at the set of points  defined in (3.13).

As is well known for any particular valid direction ofintegration 9the Laplace transform (3.31)
is well defined for \zr\large enough and for —7t/2 —9 < phz < n/2 —e6. If we have a sector in
the £ plane with 9\ <6 < 92 and this sector contains no singularities of ip.Qthen by continuously
varying 9 between the two boundaries we define an analytic continuation of the Laplace transform
valid in the sector —7t/2 — 96t &< phz,, < 7t/2 —9\ —5 where 5> 0 is some small number. In
particular we may choose o'\_i < < %< cr\- The sector defined above for this choice of 9\ and
02 defines the possible closed subsectors of sk. Now using Watson’s lemma we can show that the
Laplace transform of ix , (3.31), is asymptotic to (;i@ZT) —1in any of these closed subsectors.

Finally we need to prove this Laplace transform satisfies the equation (3.11). This proof is
straightforward and will be omitted. It uses the definitions of the Borel and Laplace transforms

and the definition of convolution. *
Corollary 1 The functions u\(z) are uniformly 0(1) in closed sub-sectors of Sk.

Proof By definition
pooe®

40) =1+ !O tIQ~Znd" .
Taking absolute values and using the bound for i> obtained in the proof of Theorem 3 we can

show the integral is 0(1/zr) and the result follows. e

3.3 Hyperasymptotics

Using the results derived in the first section, specifically lemma 2, which give the asymptotic be-
haviour of solutions of the differential equation (3.5), we now proceed to derive hyperasymptotic

expansions for the same solutions. We do this in a similar manner to [11] and [14] by proceeding
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from a connection formula for the solutions to an integral transform. This integral transform
is then rewritten as the first n terms of the asymptotic expansion plus a remainder. The re-
mainder contains references to the other solutions and the iteration of this expression gives the

hyperasymptotics.

3.3.1 Connection Formulae

The first stage in this process is the derivation of connection formulae for the solutions wk(z) to
the differential equation (3.5).

In general there will exist a connection formula of the form

WE) =it cijwly ()
on a common line of validity of the functions w. The integer is defined as the 1which gives
the least erf for cj ><Jk_1.

However on observation of the relative asymptotic behaviour of the solutions this simplifies
greatly to

m(z) = Wt_l(z)+c;iJijiIk(z)

where the value ofj is the value for which 6ij = ak_1. If there is more than one value ofj satisfying
this statement then the connection formula becomes a sum over these values and wk(z) becomes
Wk+q_x(z) where qis the number of different values of j for which $y satisfies the equality. This
is not dealt with explicitly in the text because it leads to the same final representation as in the
general case of no repeated values. This case corresponds to three or more co-linear values of Aj.

Instead of directly using the solutions Wk(z) we now strip offthe leading asymptotic behaviour

and analyse the solutions uk(z) where these are defined as

r—1
uk(z) = exp[—AjZ - £ \isz1-s/r]z-TiWl(z) .

5—1

The functions uk(zr) are analytic in z and o(1) in Sk.

If we now define functions

D{j(z) = z™~Tiexp[(A] - Xt)z + £_(A ja- Arz1-7})

3=1
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then the connection formulae for the functions uk(z) are
40):4-i0)+chDa(z)ui‘ikO) L]

3.3.2 An integral transform of Stieltjes type

Because uk(zr) is analytic in 2 for large enough z and assuming cr*._1 < ak we can use the Cauchy

integral formula to write it in the form

*
1 HE A

where the contour Ck starts at per<k- 117y goes along a straight line to along a circle

centred at the origin to Re~ax/r, along a straight line to p&-a*nTand back to the starting point

along the circular path centred at the origin. This integral is valid for z inside the region bounded

by the contour ck. For z outside this region the integral around the contour is zero.

We know that these functions u\(zr) are uniformly o(1) inside the sector st. The contour Ck
lies entirely in this sector. If we now take the limit as R —00 then the part of the integral along
the larger circular arc, radius R tends to zero and we are left with the other three parts of the
contour to integrate over.

In one of the straight line integrals we replace uk(£r) using the connection formula and then
transfer the integration contour to the other side of the sector. We repeat this process r(v —1)
times which brings us through 2ir when we use the fact that uk(z exp(2-7rir)) = 4 +r(i/-i)0) and
q +r(,_1 = ckexp[27rir(Tj —t*)]. This process produces the following Stieltjes integral transform

of 4 (zr). For -<4 < phz < -t4~

r v
400 =£ £ (ViW +«U-iW)
9=1p=I
where
ooz ot A(r
KO oy -iife g~ 2)
and

looe_"Kl/r Dij(zT)ulj (Er)

Q@) =-—Gi |/ 7 & .

2m S, (r+1) J pe—ki/T £(£ —2)
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There is an im plicit dependence here ofj on i and k since ak = Bij.
In all of these integrals we use the partial geometric series expansion
1 1%
=7 zAAzd +fi~2)
Now we define
rpe

pis=—% | A(r)yr~ A

rae 'adtr
Qt= 27]n ‘i, (fcH) Joe-Vlii/r a3(d 4Li,(k+1)( ort,

Z1 —m rpe 3 ANrAn -1

ei"(Z) = —272 / 1
N e e « =t
12J2) =e2)-- _c*i_ adco _
ZITl “i.Ck+H) et -,(fc+i) £- Z

W ith these definitions we can write our representation for the functions u\(zT) as

A4*N=E *"E E (*&>(*)+«bp)w) +E E *&w .
s=0 9=1P=1 9=1 p=1
The dependence of the right hand side on k is gone. The sector of validity determines the value
of k. We therefore define

V) =E>~‘£ £ K,>m +«&>(*))+ EE<)W
s=0 <?=1 p=1

a=1 p=1
In the remainder term and  elsewhere wecanremovethelower index on any ubecause the
sector ofthe argumentto the functions isalways welldefined by theintegration  range.This
allows us to change all of the u angles back to the original 9. By indenting the contour on the
left (respectively right) in the straight line integrals if necessary we may analytically continue our
representation so that the representation for uk(zr) is valid for —<k < phz < ~Jk_1and we have

thus established the following theorem.

Theorem 4 We may represent solutions u%z) of the differential equation (3.5) in the form

%
Uifzr) ="£z-scl+Ri(z)

3=0
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in the sector —abo< phZ < —o\_1for any integer k. The remainder term Rh(z) on truncation of

the asymptotic expansion for ul(zr) is given by

ECM - EEK L, = 03

g=0 i1

q=0p

The symbol [0?] stands for the contour from pexp(—6~/r) to 00exp(—#?/r).

As a by-product of the proof of this theorem we can find a representation for the coefficients in
the asymptotic expansion (using the fact that a Poincare expansion is unique) in the form of a

sum of integrals.

3.3.3 Superasymptotics

In this section we estimate the remainder in Theorem 4 and then proceed to minimise the estimate
to obtain superasymptotics for 'u*(z), i.e. the order of the remainder term is exponentially small.
In the following we will assume that the number of terms in each series at optimal truncation is
proportional to \ATplus a bounded number. This means that in this section the number of terms

in the first or zeroth level expansion is
Ni =ti\z\r+ai

There axe two parts to the remainder term (3.32): we estimate these separately. The first part

involves the functions et 0(z). This is easily estimated for z inside the contour C to be
~KO (2) = B(1F1“% 1°) o

This term is small compared to the next term and is absorbed during the estimation process
into the second term estimate. The second term of the remainder consists of a double sum of
integrals but only one of these is relevant to our estimate.

Taking an individual term from the double sum and by finding its asymptotic behaviour we

can show, using Laplace’'s Method, that
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where ¢ty = |Aj —Aj|, wij = $7] —n and
Pijg(0 = - X>., - Arfeenr+s AV T
a=|

If we analytically continue the function by indenting the contour around the singularity this
estimate can be shown to be true (under certain technical restrictions which do not limit us in
practice) also for z on the line of integration . The details of this estimation axe long and will be
omitted.

For this estimate to be minimal we find that
Ro=r\ij m

W ith this minimal estimate we can see that in the limit as \22= — oo the dominant integral
in the second sum in (3.32) is the one which has the smallest value of M i as long as the

multiplier, Kjq, is non-zero.

3.3.4 Level one

To obtain the level one expansion we substitute the seriesexpansions withremainder term for

the solutions v2(z) which occur in the remainder term in(3.32). When wedo this weobtain the

expansion
1. * . LA o' 1 3 7). . {¢r\Erin—S—
- q=0p=1 3jtig=1 s=0 L ’{ L
where the second level remainder term
fIWi,«.,w=-"rE ET—lA la , N [

The first term is estimated as before. We now need to estimate the double integrals which
occur in the second term. To estimate the integrals successfully we must first substitute p—5for p
in the integration limits in the inner integrals. \2 —p > 5> 0is a small number. Once we do this
the estimate for integrals of e terms can be absorbed in the second sum estimate. The estimate

for the double integrals in the second sum decouples when the denominator of the integrand is
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bounded below by s and becomes essentially equivalent to a product of the two integrals in the

level zero case. The final estimate which we arrive at is that

Z\u*i+Hs, , -r

If the two contours in successive integrations are in the same direction then the outer must
avoid the inner on the right to give the correct analytic continuation. If we need to do this then
the estimate is weakened by a factor of |z| every time.

Minimising this estimate we find that

Al

tiHHj + Mjji) i

rthu m

Pi
The largest of these minima determines the order of the remainder term and this is given by the

term with the smallest value of the sum /zy + fijjt over all possible values of j and j\ excluding

those paths which have a Stokes’ multiplier which is zero.

3.3.5 Some Integrals

To simplify the statement of the theorem we define the following integrals:

for the first order integrals and for the orders greater than one:

t _ Lf DiiiODi» (ff)eeeDj*in(q " 01 T1mm 4o Gride
\eigi ol

f
|[°&]J Bn-sin A~ *)(il ~ 0 mem(& - ~n-1)
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3.3.6 The Hyperasymptotic Theorem

With the first few levels calculated we can see the emerging pattern. The full hyperasymptotic
expansion for each of the functions u* is expressed in the following theorem (which can be proved

by induction).

Theorem 5
K K M2 B«
1=0 JN g=0 \s=0 © 0
Il KB (
+ oy culm ¢ 'G

m oy . m , .

(.’1/\9120 Zm *«:O 3 {.N)b- N[1+ 1 N{l- s)

, "yl ~Ked 1 y'¢'G ij jjigi - <jlj202 \
4}(4« é@l@ © 91 32/&)1 '(J\NO(—Nl +I19' N1 —.N i Jilgll Nt —Jz‘!l)qK) (Z)

+ *.
r— !Ny -ip / " \
E Y'" V' ipir | ' Y' ¢»ri 3q . e .3p-i3pQp) , B
v n \ n "* KNo-Ni+I"Ni-Ni+V ™ Np-s )w
9p="° \ s=0
+ IE(*) .

Our estimate for the remainder appearing in the theorem is

zmm E.E = 2ui
jjti <=0 jXJij qt=0
Hb-Vj mr
X e0e )X
Hhr V Nh
o A ( gh \ ~or
oPCRpipR(==n *) M) = Aor
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This estimate is minimised when

A - S

M - r(vjh+Nih) >

pip = rlijp_Jp .

The largest of these minima determines the order of the remainder term and this is given by the
term with the smallest value of the sum over all fi excluding those paths which have a Stokes’

multiplier which is zero.

3.3.7 Conclusions

In this chapter we have shown the existence of the hyperasymptotic expansion for the class of
linear ordinary differential equations of high order with a large (but non infinite) integer rank
irregular singularity at infinity with a single type of dominant exponential behaviour at infinity.
This gives results which are similar in nature to those of Olde Daalhuis [18] for rank one irregular
singularities but using a different method and extending them to high rank irregular singularities.
In the rank one case our result reduces to that of Olde Daalhuis.

The obvious anddifficultgeneralisation of this work is to treatthe case where the exponential
behaviours of the solutions at infinity is not restricted to one level. Thiscase of mixed exponential
rank is very complicated and introduces very difficult treatments when a solution of lower expo-
nential rank can not be seen at any hyperasymptotic level of a higher one. It is not clear whether

for a general problem any general hyperasymptotic theorem can he found.
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