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A bstract
This thesis exam ines the  p lanar bending of a viscoelastic rod subject to  a uni­
axial load A(i). T he rod  is assum ed to  be inextensible, and the  torsion and shear 
of th e  sections are ignored. T he bending m om ent across a section is assum ed to 
depend on th e  curvature th rough  a linear hered itary  law of B oltzm ann type. The 
rod  is com posed of a solid m ateria l, so th e  creep function rem ains bounded for all 
tim e. Thus a viscoelastic solid rod in sim ple extension eventually approaches an 
equilibrium  state . This is equivalent to  G'(oo) :=  lim ^oo G(t )  >  0, where G(t )  is 
th e  m a teria l specific relaxation  function. T he exact nonlinear dynam ic problem  can 
be linearised about th e  straigh t equilibrium  position to  yield an integro-differential 
equation. I t is th is  linear problem  which is investigated here. The in itia l h istory  of 
th e  deflection is allowed to  be nontrivial. U sually this in itia l h istory  is prescribed, 
b u t we also consider th e  problem  w ithout th is assum ption.

For constan t loads, Laplace transform  techniques can be employed to  show th a t 
solutions decay if A <  X i G ( o o ) / G ( 0 ), and grow exponentially  if A >  X iG ( o o ) /G ( 0 ) ,  
where Ai >  0 is th e  Euler critical load calculated using the  instan taneous elasticity  
G(0). For th e  s tandard  viscoelastic m ateria l, we derive necessary and sufficient 
conditions on th e  m ateria l param eters which ensure th a t th e  solution is oscillatory.

For tim e-varying loads, th e  evolution equation  for the  in itia l h istory  problem  
generates a sem igroup, and  has a unique solution which depends continuously on 
th e  in itia l data . This is in contrast to the  corresponding results in th e  quasi-s ta tic  
theory. T he V olterra-G raffi energy is used to  construct a suitable Lyapunov func­
tion, which can be used to  dem onstrate  th a t th e  zero solution is stable for a large 
class of loads satisfying 0 <  A(t) <  A1Gr(oo)/G r(0).

M ultip le scale m ethods are also used to  determ ine various approxim ate solutions. 
For a  s tan d ard  viscoelastic m ateria l w ith long relaxation  tim e, the  elastic and creep 
effects occur on different tim e scales. If A >  A iG (oo)/G (0), an approxim ate solution 
is determ ined  and is used to investigate th e  effect of th e  different types of in itia l 
d istu rbance on th e  grow th ra te  of th e  solution. Also if a standard  viscoelastic m ate­
rial is sub ject to  a periodic load A(^), an approx im ate stab ility  region in p aram eter 
space is found w hen th e  param etric  excitation  is near the  principal resonance.
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N otation
Go Instantaneous modulus of elasticity, Go =  G(0).

Goo Long-term (Equilibrium) modulus of elasticity, G«, =  limt-n*, G(t).

An Instantaneous buckling load, An =  n2n2Go (=  7r2n 2 scaled).

7n  7n =  (1 -I’  CTTl2 TV2 ) - 1 .

y l(r ) History of y up to time i, i/(t) = y(t  — r) for t  > 0.

p. Laplace-Stieltjes transform of a measure /x, /i(p) =  / “ ’ e_7,i fl/i(¿) if // is
a measure on R+, and /i(p) =  e~7’t d/x(<) if /i is a measure on R.

a Laplace transform of a function a, a(p) = / “  e~pta(l) di if ft. is defined
on K+, and o(p) =  e~pia(l) di if a is defined on R.

V v ~ { y  € H A : y(0) =  y( l)  =  0,y„(0) =  y3S(l)  =  0}.

H H2 n  Hi.

17, Measurable functions with finite norm {¡.-rf/J^di}1̂ ’.
p € [1, oo)

L°° Measurable functions with finite norm esssup |z(i)|.

l?a Denotes the «-weighted I?  space of functions f  with
11/11  ̂ =(JS°c,(l)\f(t)\>dt)'l2 <oo.

M Finite measures on R+ and total variation norm.

BC  Bounded continuous functions; sup-norm.

B C  Bounded continuous functions tend to zero at infinity; sup-norm.

BU C  Bounded uniformly continuous functions; sup-norm.
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Chapter 1

Introduction

This thesis exam ines th e  dynam ic p lanar flexure of a th in , inextensible, uniform  

viscoelastic rod. Sections are labelled by the ir arc-length s along th e  central axis 

from  th e  left end. For sim plicity we assum e th e  rod  has un it length. B oth  ends are 

pinned and  on th e  sam e horizontal level, (cf. Figure 1.1). Let y ( s , t )  be th e  vertical 

displacem ent of th e  centroid of section s a t tim e t. T he left end is held fixed, and a 

load A(t)  applied to  th e  right.

z/(M ) A(i)

5 =  0 s =  1

Figure 1.1: Buckling of a th in  perfect rod under end loading.

T he  rod  is assum ed to  be viscoelastic in  th e  sense th a t th e  bending m om ent 

M ( s : t)  across a section satisfies th e  linear constitu tive equation

roo .

M ( s , t )  =  G (0 )y ss( s , t )  +  / G ( T ) y ss( s , t  -  r )  d r,
JO

w here G(t )  is th e  relaxation  function of th e  m ateria l. This form  of constitu tive 

equation  is qu ite  general and includes viscoelastic m ateria ls th a t can be modelled 

by rheological structu res consisting of configurations of springs and dash-pots. The 

rod  is assum ed to  be solid ra th e r th a n  fluid. Hence we require th a t th e  creep function 

J ( t ) corresponding to  G (i), which is defined in (2.13), rem ains bounded. Thus a 

constan t applied stress causes a bounded strain . The boundedness of J ( t )  is im plied 

by G ( oo) >  0. An im p o rtan t exam ple of such a m odel is th e  s tandard  viscoelastic 

m a te ria l which obeys

G ( t ) =  Goo +  {Go — Goo)e at,

for some a > 0.
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C h a p te r  1 In troduction

T he linearised dynam ic equation  of m otion of th e  rod is

/ ‘CO .

Utt -  vysstt =  - V s s s s  -  /  G [ t ) y s s s s { t  -  r )  d r  -  A(i)yss, (1.1)
Jo

for 0 <  s <  1. H ere A(t) is continuous and cr > 0. T he te rm  crysstt is due to  ro ta to ry  

inertia . We im pose th e  boundary conditions

0 =  y ( 0 , t )  =  y „ (0 ,f ) ,  0 =  y ( l , t )  =  y „ ( l , i ) ,  (1-2)

w hich correspond to  th e  rod being pinned at each end. T he resu lts of this thesis are 

tru e  w ith  obvious m odifications, if th e  ends are b o th  clam ped, one end is clam ped 

and  th e  o ther free or one end is clam ped and th e  o ther pinned. In an initial- 

hi story  problem  we require th a t a solution y ( s , t )  satisfy (1.1) and (1.2) for ( s , t )  G 

[0,1] x [0, oo), and th a t y ( s , t ) is known for ( s , t )  £  [0,1] x (—oo, 0] w ith  (1.2) holding 

for —oo <  t  <  0. For a problem without  initial his tory  we require th a t a solution 

satisfy (1.1) and (1.2) for ( s , t )  £ [0,1] x R.

T he in itia l h istory  problem  (1.1) and (1.2) has been stud ied  by Dost & Glockner 

[14], Szyszkowski &c G lockner [39] and  Spena [38] under th e  simplifying assum ptions 

th a t th e  load is constan t and th e  in itia l h istory  of y  is triv ial. Indeed these papers 

confine the ir analysis to  rods com posed of s tandard  viscoelastic m aterial. However in 

[14], equations (1.1) and (1.2) are derived and an equation  for th e  Laplace transform  

of th e  solution found. Spena derives th e  equations for a m ore general class of ageing 

viscoelastic m aterials. G ederbaum  & M ond [8] consider th e  dynam ic problem  (1.1) 

and  (1.2) w ith  A(t)  periodic and th e  in itia l history triv ial. T hey analyse a re tarded  

version of th is problem  using m ultip le scale m ethods. D all’A sta  & M enditto  [10] also 

exam ine the  dynam ic problem  (1.1) and (1.2) for triv ia l in itia l history. A variational 

princip le is derived, which is then  used to  calculate num erical solutions when A(t) 

is constan t and  periodic. R o ta to ry  in e rtia  is also ignored in these papers.

T he quasi-static  approxim ation  of (1.1) neglects th e  ine rtia  term s, and therefore 

assum es th a t th e  bending m om ent is constant a t each in stan t across all sections.
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C h a p te r  1 In troduction

T he problem  reduces to

p o o  ,

A{t)y( t )  +  G(0)y ss( t ) +  / G ( t )y ss(t -  r )  d r  =  0,
Jo

sub ject to

3/(0,*) =  y (M ) =  0-

For constan t loads, this problem  has been considered by D istefano [11, 12, 13]. 

Some of th e  Russian work is presented  in R abotnov [35]. T he problem  w ith A(t) 

non-constan t has been studied  by G urtin  [19], G urtin , Mizel & Reynolds [20] and 

Reynolds [36].

A detailed  discussion of th e  derivation of the  equations (1.1) and (1.2) is given in 

C hap ter 2. I t is im p o rtan t to  appreciate  th a t, though th e  viscoelastic rod dissipates 

energy in th e  sense th a t p a rt of th e  energy supplied is generally not converted to 

k inetic  nor free energy, th e  system  is not necessarily dissipative. T he te rm inal load is 

doing work, and hence energy is being supplied to th e  system . It is shown in C hapter 

2 th a t E ( t ) ,  th e  sum  of th e  k inetic and G raffi-V olterra free energies, satisfies the  

inequality

T he case of constan t loads is investigated  in C hapter 3. We use Laplace transform  

techniques to  show th a t solutions of th e  in itia l history problem  exist and are unique. 

We also find th a t th e  load A(t)  determ ines th e  stab ility  of th e  rod. Assum ing th a t 

th e  in itia l h isto ry  satisfies certain  m ild conditions, if th e  load is less th a n  th e  critical 

value of ir2G(oo)  th e  solution is bounded, integrable and tends to  zero. For loads 

exceeding th is critical value, th e  solution can be decom posed in to  a sum  of an 

exponentially  increasing te rm  and  a bounded integrable function which tends to 

zero.

In th e  special case of th e  s tan d ard  viscoelastic m ateria l we can ob ta in  more 

precise inform ation. T he form  of its solution depends on th e  location in th e  com plex 

p lane of th e  roots of a cubic equation. Necessary and sufficient conditions for all 

these roots to  lie in  th e  left-half com plex plane are derived in  C hapter 3. These

3



C h a p te r  1 In tro d u ctio n

conditions are of course equivalent to  th e  stab ility  conditions applying in the  general 

case. We also find necessary and sufficient conditions for a pair of these roots to be 

com plex, im plying an oscillatory m otion for the  rod. These conditions do not agree 

w ith  those given by Dost & Glockner [39], who developed an approxim ate series 

solution.

In C hap ter 3 we also consider solutions of th e  dynam ic problem  w ith  no initial 

history. M ild conditions on histories are specified ju s t to  ensure th a t th e  bending 

m om ent always exists. We use work by T itchm arsh  [40] involving Fourier integrals 

to  show th a t th e  triv ia l solution is unique for constant loads A <  tt2G ( oo). Fur­

therm ore, it  is shown th a t the re  exists an exponential increasing solution if the load 

A >  7r2G'(oo). V irga and Capriz [42] use a contraction m apping argum ent to  investi­

gate th e  stan d ard  displacem ent problem  in linear viscoelasticity w ith  Cauchy data. 

We apply a sim ilar procedure and show th a t, for loads satisfying A <  tt2G ( oo), y =  0 

is th e  only solution in a su itable w eighted space of continuous functions.

Daferm os in [9] used a sem igroup approach to  prove existence and uniqueness, 

as well as asym pto tic  stab ility  of th e  triv ia l solution, for th e  s tandard  displacem ent 

p roblem  of linear viscoelasticity, which is autonom ous. In C hap ter 4 we consider 

tim e-dependent loads, and extend  th e  m ethod  of Dafermos to  th is nonautonom ous 

in itia l h istory  problem . We construct a su itable H ilbert space in which th e  norm  of 

th e  solution is defined to be th e  energy of th e  rod. The evolution equation is shown 

to  generate a Co contraction sem igroup on this H ilbert space, and have a unique 

solution which depends continuously on th e  in itia l data. This is in contrast to  the  

resu lts in th e  quasi-static  theory, for which Reynolds [36] showed th a t uniqueness 

is ensured only if m ax ^o  |A(t)| <  7t2G'(oo). The energy of th e  rod is also used in 

C hap ter 4 to  construct a Lyapunov function, which is used to  dem onstra te  th a t the 

zero solution is stab le for a large class of loads satisfying 0 <  A(t) <  7r2G'(oo).

M ultip le scale m ethods are used in C hapter 5 to determ ine approxim ate solu­

tions to  various problem s. In Section 5.3, we consider the  rod to  be of a s tandard  

viscoelastic m ateria l w ith  long relaxation  tim e a -1 . The elastic and creep effects 

occur on different tim e scales. If th e  load is constant and A <  7r2n 2G'(0), we obtain  

an approx im ate solution valid for 0 <  t  <  0 ( a ~ 3) for th e  ?2th Fourier m ode. T he ex­

4



Chapter 1 In tro d u ctio n

act so lution m ust eventually  grow if 7r2n 2G(oo) <  A <  7r2n 2G(0). T he approxim ate 

solution allows an investigation of th e  effect of th e  different types of in itia l d istur­

bance on th e  grow th rate . T he re ta rd ed  problem  is investigated  in Section 5.4 for 

general viscoelastic m aterials. This entails replacing th e  re laxation  function G  by its 

re ta rd a tio n  where G e[t) =  G(et) .  T he re ta rd a tio n  p aram eter e is sm all, so th a t 

th e  elastic  and creep responses occur on different tim e scales in th e  new problem . 

T he leading order and th e  first order te rm s are calculated using a procedure similar 

to  th a t used by Angell h  O lm stead [1], [2] in  the ir work on singularly pertu rbed  

V olterra equations. Surprisingly if we set e =  1, in  th is approxim ate solution of the 

re ta rd ed  problem , we get a function which agrees exactly  w ith  th e  approxim ate so­

lu tion  found in Section 5.3 if th e  rod  is of s tan d ard  viscoelastic m ateria l. In  Section

5.5 we consider a generalisation of th e  results described in Section 5.3 by construct­

ing a m ultip le  scale approxim ation for th e  n th Fourier m ode under th e  assum ption 

of a slowly varying load. F inally  in Section 5.6 we consider periodic loads of the 

form  A(t)  =  P 0 +  P i cos fit, where P0 < n 2n 2G(oo) ,  and Pi  is small. T he principal 

param etric  resonance occurs when f I 2u ,  to being th e  n a tu ra l frequency of the 

rod. If th e  rod  is elastic, th e  corresponding dynam ic equation  reduces to  a fam ily 

of M ath ieu  equations. For ii  ~  2lj, we determ ine an approxim ate stab ility  region 

in  p aram eter space. These regions agree well w ith  num erical calculations, b u t differ 

qualita tively  from  th e  stab ility  regions obta ined  by C ederbaum  & M ond [8] in  their 

analysis of th e  re ta rd ed  problem .

Finally, th e  derivation of th e  s tan d ard  viscoelastic m ateria l from  m odels involving 

springs and  dash-pots is presented  in A ppendix A. Also th e  algorithm s used to 

calculate num erical solutions to  th e  problem s considered in th is work are outlined 

in  A ppendix  B.

5



Chapter 2

Buckling Problem

2.1 In trod uction

In  th is chap ter we briefly show how th e  system  of dynam ic equations (1.1) were 

derived from  th e  general dynam ic theory  of Cosserat rods. T he m a teria l independent 

m echanical equations are augm ented w ith  a constitu tive equation  th a t is assumed 

to  be of B oltzm ann type which depends on a m ateria l specific relaxation  function. 

T he geom etrically  exact problem  is then  linearised assum ing sm all transverse dis­

p lacem ent. Also we define th e  V olterra-G raffi energy of th e  rod and show th a t it 

satisfies an inequality  which expresses th e  dissipative na tu re  of th e  problem .

2.2 D erivation  o f th e  M ath em atica l P rob lem

T his is based on th e  procedure described in A n tm an  [3, 4]. We m odel as a rod, an 

axially loaded, slender, s tru c tu ra l elem ent, whose length  is large com pared to  the 

g reatest linear dim ension of th e  cross-section. We assum e th a t every configuration 

of th e  rod  is determ ined  once th e  centroid and orien tation  of each norm al cross- 

section are specified. The torsion and shear of th e  cross-sections are assum ed to  be 

negligible and ignored. Thus, cross-sections th a t are norm al to  th e  line of centroids 

in th e  unstressed  configuration rem ain  p lanar and norm al to  th e  line of centroids 

in  any deform ed configuration. T he length  in th e  reference configuration from  the 

fixed end, along th e  axis of th e  rod, to  th e  centroid of a cross-section is denoted by 

s,  and  is used to  label th e  section.

T he m otion  of th e  rod  of length  a is given by a trip le t of vector-valued functions

[0, a] x E  9 ( s , t )  ( r ( s , t ) , b ( s , t ) , c ( s , t ) ^  £  R 3,

w here b and c are orthonorm al. r ( s , t )  is th e  position of th e  partic le  a t th e  centroid of

6



C h a p te r  2 , S ec tion  2 D erivation o f th e  M a them atica l Problem

the cross-section while b(.s, t) and c(s, /.) represent the orientation of the section 5 

at time t. In particular, b(.s, i) and c(s, I) may be regarded as tangents to curvilinear 

co-ordinate curves which are the images of plane cartesian co-ordinate axes in the 

reference description of section s. The orientation of the section can be deformed in 

general by shear, torsion and compression. A third director is defined by a =  b x c. 

In the absence of shear, this director is the unit-length and is tangent to the strained 

axis of centroids, (cf. Figure 2.1).

Figure 2.1: Configuration of a deformed Cosserat rod.

Let 11(5 , i) be the resultant force and 111(5, i) the resultant moment across the 

section s at time t. We assume that there are no body forces or body couples acting 

on the rod; in particular, we ignore gravitational effects. Conservation of linear 

momentum over the interval ( s i ,s2) C (0,a) requires that

d /'S1— J pAi'tds = n(s2, t)  -  n (su  t),

where p(s)A(.s) is the mass density per unit length at s. Differentiating with respect 

to s gives

pAvu = n5. (2.1)

7



T he conservation of angular m om entum  can be expressed in th e  following form

C h ap te r  2, S e ctio n  2__________________________________________________________ D erivation o f the  M a them atica l Problem

d f 32 / \
—  / p ( / b  x b t +  Jc  x ct +  Ar  x rt ) ds =
d i J Sl v '

m ( s 2, t) -  m ( s i , t )  +  r ( s2, t )  x n ( s 2,t )  -  r (s1}t) x n ( s 1}t).

H ere p (s ) I (s )  and p (s ) J ( s )  denote th e  principal mass m om ents of in e rtia  of cross- 

section s abou t lines through th e  centroid  in th e  directions c and b respectively. 

D ifferentiating w ith  respect to  s and sim plifying using (2.1) gives

p lb  x bt* +  pJc  x ctt + pAr  x ru -  m s +  r s x n . (2.2)

T he m otion  of th e  rod is assum ed to  be p lanar, and hence

r =  s(5 ,i)i +  j/(s,i)j, c (s,t) =  —k, (2.3)

n  =  — A(s,t)i  +  N(s,i)j, m  =  M (s ,i )k ,  (2.4)

w here {i, j ,  k}  is a fixed orthonorm al basis w ith  vector j  pointing upw ards. M  is the 

bending m om ent about an axis parallel to  k , while A and N are th e  horizontal and 

vertical com ponents of th e  resu ltan t force respectively. T he rod  is also assum ed to 

be inextensible; hence |r s | =  1. Let 6 ( s , t )  be th e  angle betw een th e  tangen t vector 

r S( s , t )  and  th e  horizontal vector i, so th a t,  (cf. F igure 2.2),

x s =  c o s 6 ,  y s =  s m 9 .  ( 2 -5 )

T he directors a and b satisfy

a  =  cos 9i +  sin 0j, b =  — sin 6i +  cos 0 j. (2-6)

T he su b stitu tio n  of (2.3)-(2.6) into th e  conservation equations (2.1) and  (2.2) yields

8



C h a p te r  2, S e c tio n  2 Derivation o f the M a them atica l Problem

Figure 2.2: Planar buckling ol' a rod. 

the dynamic equations, (cf. [5, 3]),

pAxu  =  -A j ,

pAxjtt =  Ns,

piOu = Ms T A sin 0 H- N cos 0.

For simplicity, we also assume that the rod has uniform cross-section, i.e., both pA 

and p i  are constant.

These dynamic equations of motion must be augmented by a constitutive as­

sumption. Here the bending moment M  at the present time is assumed to depend 

on the history of the curvature of the axis of the column, through a linear hereditary 

law of Boltzmann type. More precisely, we suppose that there is a constant ft > 0, 

and a function a  : [0,oo) —> [0,oo), such that

TO O

M (s ,t)  =  ßOa(st t) -  /  a(r)0s(s,t  — r )d r .
Jo

The moment-curvature relaxation function is given by

ß — [  a ( r )  dr.
Jo

9



Chapter 2, Section 2_____________________________________________________ Derivation of the Mathematical Problem

It is convenient to work with non-dimensional1 variables. Therefore we set s = 

5*a, x = x*a, y ~  y*a, I =  t*a2\JpA/¡3 and

A W ) = j A ( s , t ) ,

n v , 0  =  ^ n (m ),

a2pA ’

For notational convenience, we only use these non-dimensional variables and neglect 

to write the stars.

The problem is then to find solutions of

xtt =  - A , ,  (2.7)

ytt = Ns, (2.8)

aOtt — Ms +  A sin 0 -f- N cos 0. (2.9)

for (s ,i)  G (0,1) x R. ilere x(s, /), y(s,i), 0(s,i) and M (s,i)  are related by

x5 =  cos $, y 3 =  sin 0, (2.10)

and

POO

M(s, t) = Os(s, t.) ~  (x(t )Os(s , t — t ) d-r. (2.11)
Jo

^ o t e  the dimensions of the following physical variables and constants: [pA\ =  M L ~ l , [A] =  
M L T ~2, [N] = M L T ~ \  [pi] = M L , [/?] = M L ZT ~ 2, [a] = M L3T ~ 3.

10



C h a p te r  2, Section 2 D erivation o f th e  M a them atica l Problem

We in troduce th e  relaxation  function G : [0, oo) —»■ by

G(t )  =  1 -  f  a ( r )  d r,
Jo

so th a t  equation  (2.11) becom es

poo »
M ( s , t )  =  G 09s( s , t )  +  G ( t )9a(s, t  — t ) d r , (2.12)

Jo

w ith  Go :=  G(0) =  1. T he creep function J  : [0, oo) —> K.+ is th e  absolutely 

continuous solution of

f  G ( t ) J U  — t ) d r  =  t ,  t  >  0. (2.13)
Jo

It is well known th a t J ( t ) is bounded if G ^  :=  lim t_j.oo G(t )  >  0, b u t unbounded

if Goo =  0. If Goo =  0, an arb itrarily  sm all constan t m om ent would cause the

curvature to  becom e unbounded in tim e. Hence we assum e th a t

Gqo > 0.

I t  is easily shown th a t

poo ,
9s ( s , t )  = M ( s , t )  +  /  J ( t ) M ( s , t  — r )  d r , t  £ R . (2-14)

Jo

W hile for th e  rem ainder of th is work we are m ainly  in terested  in th e  solutions of 

th e  dynam ic viscoelastic flexure problem  w ith  a general relaxation  function, we note 

an im p o rtan t exam ple of a viscoelastic m ateria l, th e  s tandard  viscoelastic m ateria l 

(or th ree  elem ent m odel) for which

G(t )  =  Goo +  (G0 -  Goo)e-at, (2.15)

w here Go,Goo and  a are m ateria l param eters. T he derivation of (2.15) and its

p roperties are described in  A ppendix A.

N ext we specify th e  boundary  conditions associated w ith  a rod  w ith  p inned  ends

11



C h a p te r  2, Section  3 Linearisation o f M a them atica l Problem

and a known axial th ru s t2. T he end s =  0 is fixed and th e  end s =  1 is constrained 

to  be  level w ith it, so th a t

*(0, t)  — 2/ ( 0 , t)  =  0, y ( l , i )  =  0, i e R .  (2.16a)

Since th e  ends are pinned,

M (0 ,i)  =  M ( l , t )  =  0, ¿ e R.  (2.16b)

D ue to (2.14), th is im plies th a t

0 ,(0 ,i) =  0 ,(1 ,i) =  0, i E l .  (2.16c)

Since th e  axial th ru s t applied a t s =  1 is known, A ( l , i )  =  A(i) is prescribed on R.

T he dynam ic coun terpart of th e  Euler elastica is ob ta ined  by le tting  a  =  0, to

give th e  problem

xtt = -A ,, (2-17)

Vtt =  N „  (2.18)

crOtt =  0ss +  A sin 0 +  N cos 0, (2.19)

sub ject to  (2.16a)-(2.16c). This has been studied  in [7]3.

2.3 L inearisation  o f M ath em atica l P roblem

We now consider th e  linearisation of (2.7)-(2.11) about th e  solution x ( s , t ) =  s ,

y ( s , t ) =  0, 0 ( s , t )  =  0, A ( s , t )  =  A(t) and N ( s , t )  =  0. C learly th e  solution of

th e  linearised problem  satisfies x s =  1, y s =  0, and  A ( s , t )  =  A(t). E quation  (2.9)

2 O the r bounda ry  cond itions  are trea ted  s im ila rly .
3T h is  paper does no t requ ire  the  dens ity  and m om ent o f in e r t ia  to  be constan t, b u t does assume 

th a t A ( i) is independent o f tim e .

12
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becomes
r oo

crOtt =  0 .«  -  a ( r ) O s s ( t  -  r ) d r  +  A ( i ) 0  +  N .

Therefore
r oo

N ,  -  crOsl l  =  - O sss +  /  c * ( r ) 0 s is (£  —  r )  d r  -  A ( i ) O s ,
Jo

o r ,  u s in g  ( 2 . 8 ) ,

Vtt

roo
-  vysstt =  -2/.WSS +  / a ( T)2/««(* -  r)  d r  -  A(%.„, (2.20)Jo

for (s, t) 6 (0,1) x R. This integro-differential equation is augmented by the bound­

ary conditions

y(0,i) = y (M )  =  0, y«(0,O = y«( i ,O  = 0. * e R. (2.21)

The quasi-static approximation ignores the inertia terms and the linearised prob­

lem reduces to

roo .
A{t)y(t) +  G0yas(t) + /  G(t)ijss(L -  r )  d r  =  0,

Jo

subject to

2/(0,0 =  y (M )  =  0.

This has been studied in [19], [20] and [36] for varying load and in [11, 12, 13] for 

constant loads.

2.4 M echan ical C onsiderations

The power, or rate of working, of the terminal load A(1 ,t)  =  A(t), acting on the rod

A ( / ) x £( 1 ,  t )  =  - X ( t )  x al{ s , t ) d i



C h a p te r  2, Section  A M echanical Considerations

Since we shall work within the linearised theory, a quadratic approximation to the 

power is required. Since

-A (i)*«(l,i)  =  A (i)~  f o i 0 \ s , t ) A s  + --- 

we define P(i), the (quadratic approximation to the) power, to be

(2 .2 2 )

Also we define the kinetic energy K(t)  by

2K{t) = (y'f + cryl) d s ,

and the Voltcrra-Grafh free energy1 by

2®(<) = I  (Otayl, - G(r)[yss(t) - yss{t - r)]2 drj ds.

The total energy of the rod is given by

E(t) = K (t)  + V{t). (2.23)

We can now prove the following bound on the rate of change of energy of the rod, 

which expresses the fact that the work done by the external load A(£) is partially 

dissipated.

P ro p o s i t io n  2.1 Suppose that llie relaxation function G(t) satisfies the conditions 

G(l) > 0, G(t) < 0 and G(t) > 0 for all t >  0. Then

m  <  n * ) .

4The free energy is not unique within a multiplicative constant.
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Proof .  R earranging equation  (2.20) we have

poo .
— crySstt G<x>yssss “t- I G(r) [yssss(t) yssss^t t-)] d r  A(i)yss.

Joyu
(2.24)

T he substitu tio n  of (2.24) into th e  derivative of th e  to ta l energy yields

E ( t )  =  k { t ) +  w(f)

=  / 0 ( y * y *  +  cry * 'y « '  +  G  OO Vssytss

-  Jo G ( r ) [ y*s( t )  -  Vss ( t  -  7-)] [yt«(i) -  y t s s { t  -  r)] dr^) ds

=  J  (y t  (vysstt  Gqoyssss J  G (r)  [yssss(^) 2/ssss(* t) ]  d T  A(i)yss^

vytsVtts H- GqqyssVtss

-  J  G[t ) [yM(i) -  y ss( t -  t) ]  [ytss(t) -  y tss( t -  r)] dr^) ds

In teg ra ting  by p arts  using boundary  conditions (2.21) yields

p 1 /  poo ,
E ( t ) =  J  [yus  Jo G ( t ) [y„(i) -  y as(t -  r)] d r  +  A( t ) y t,y,

poo ,
-  /  G ( t ) [y ss( t ) -  y aa{t -  r)] [ytaa{t) -  y ias{t -  r)]

JO
p i poo . p 1

=  /  /  G (r)[ t/M(i) - y ss( i - r ) ] y iss( t - r ) d r d s  +  /  A(i)yisys ds
Jo Jo JO

p i  poo . r l
=  - /  /  G ( r ) [y ss( i ) - y ss( i - r ) ] y TSS( i - r ) d r d 5 +  /  A(i)yisys

Jo Jo Jo
ds.

In teg ra te  by p arts  over r  and  using th e  specified properties of th e  relaxation  function 

we get

M t )  =  -  f  [  G ( t ) [s/mW _  !/•»(* -  r )]2 d r ds +  [  A( t ) y t sy s ds Jo Jo Jo

( 2 - 2 5 )

C alculations of these kinds are well known in viscoelasticity. See for exam ple 

D aferm os [9]. G urtin  and Reynolds proved sim ilar results for th e  nonlinear quasi­

15



static problem in [19]. ■

The second law of thermodynamics only requires that a non-constant relaxation 

function satisfies, (cf. [15], Sec 3.2),

/ ‘GO ,

/ G(t) sin(a>i) d£ < 0, for all u  > U. (2.26)
Jo

While our restrictions on the relaxation function are stronger, experimental evidence 

suggests that the stronger monoticity conditions we assume are reasonable, (cf. [15] 

Sec 4.2).

'Throughout this work it is assumed that the relaxation function belongs to C 1 

and is non-constant, nonnegative and non increasing. In terms of a(i) = —G(t) 

this implies a(i) is continuous, nonnegative and nonincreasing on R+. Additional 

conditions on the relaxation function or a(t) are specified where required.

C h a p te r  2, S e c tio n  4____________________________________________________________________ M eehan ical Considerations

16



Chapter 3

Constant Load Problem

3.1 In trodu ction

In th is chap ter we exam ine th e  dynam ic linearised viscoelastic flexure problem  un­

der th e  assum ption  of a constant load. N ote th a t for constan t loads the  dynam ic 

equation  is autonom ous. We form ulate th e  dynam ic problem  as an ab strac t V olterra 

integro-differential equation  which can be diagonalised using a Fourier Sine series. 

We consider two types of problem s:

In  th e  init ial  his tory problem , th e  h istory  up to  some in itia l tim e t 0, of th e  deflec­

tion  is assum ed to  be known and the  dynam ic problem  is solved for t  > t Q. We only 

need to  consider th e  in itia l tim e of to — 0, as th e  dynam ic equation  is autonom ous. 

Laplace transform s are used to  show existence, uniqueness and asym pto tic  proper­

ties of th e  solution for t  > 0. Section 3.6 deals w ith  the  special case of th e  s tandard  

viscoelastic m ateria l, for which m ore detailed  results are available. T he in itia l his­

to ry  problem  for th e  standard  viscoelastic m ateria l has been studied  in [39] and [14], 

assum ing th a t th e  in itia l h istory  is zero and th e  rod  is sta tically  a n d /o r dynam ically 

d is tu rbed  a t tim e  t  =  0. These papers do not include th e  te rm  due to  th e  ro ta to ry  

in e rtia  of th e  rod.

Also we consider solutions of th e  dynam ic problem  for all tim e. T he in itia l his­

to ry  is no t specified b u t conditions m ust be p u t on it to  ensure th e  bending m om ent 

always exists. W hole line Laplace transform s are used to  show uniqueness of the  tr iv ­

ial solution for stab le  loads and th e  existence of a non-zero solution for loads greater 

th a n  \ nGoo. In Section 3.5 an alternative  procedure is used to  exam ine th e  unique­

ness of th e  solution of th e  dynam ic problem  when th e  h istory  of th e  displacem ent is 

not specified b u t is assum ed to  decay exponentially  in th e  past. This procedure was 

used by V irga and Capriz [42] to investigate th e  s tandard  displacem ent problem  in 

linear v iscoelasticity  w ith  Cauchy data.

17
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3.2 A b stract Form ulation and D iagon alisation

In this section we formulate the equation of motion (2.20) subject to the boundary 

conditions (2.21) as a retarded functional differential equation. This equation can 

be diagonalised into a family of Volterra integro-differential equations which, for 

constant loads, can be analysed using Laplace transforms.

We define the operator L„ : II —> L2, for any a > 0, by

LoV =  y ~  vy™, (3-1)

where If = / / 2(0 ,1) Pi / /¿ (0 ,1). II is a Hilbert space when given the inner product

ri
(:yi,y%)H = /  tfO O vito  + y'i(s )z/2(s ) d5-Jo

We denote the inverse of La by K a : L2 —> // ,  i.e.,

K a Lay =  y, Vy e H,

and

LaKay =  y, Vy €  /A

Note that is formally self-adjoint as

[ y i{s)(L <Jy2) ( s ) d s =  f y2{s)(L iry1){s)ds, Vyu xy2 € II. (3.2)
Jo Jo

The equation of motion (2.20) can be written as

roo
I'trVtt =  Vssss “I- I a ( r )y ssgs(i — t )  dx A(/,)ySJ,

Jo

or

Sfitt
roo

= Affyssss 4- I oĉ t )K„ysxsis(l t )c !t  A(/,)Affyss, (3-3)
Jo
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¡subject to the boundary conditions (2.21). Set

C h a p te r  3, Section  2___________________________________________ A b s tra c t Fo rm u la tion and D iagonalisa tion

V  =  {y  <E H \ 0, i ) : y(0) =  3/(1) -  y„(0) =  y„ ( l)  =  o} , 

with inner product

( y u V 2 ) v  =  I  yi4>(«)i44)(«) +  y \ 3) ( s ) y ^ \ s ) ds +  {yi,y2)//.
Jo

Then V ^  H  and Kcysssa 6 H for all y <E V.

It is convenient to write the problem as a retarded functional differential equa­

tion. bet u =  (y,v)  where v = yt . Then we seek

roo
n(t) -f /l.(i)u(£) +  /  J3(r)u(t — r)  d r  =  G, 

Jo
(3.4)

where A and D are bounded linear operators mapping V x II into II x / / ,  defined

by

0 - l \ o o'!
B (t) -

K- o ( t ) K . 8i  0y\ K ' ( d t  -  A(i)aj) o )
A{t) :=

The operators in (3.4) are easily diagonalised. If

u(s,f) =  ^2 u n(i) sin nns,
71=1

A(t)u(t) — ^2  An(t)un(t) sin nns,
n =  1

(3.5)

and

B(T)u(t) = J2  5 n(r)u„(i)sinraiT5,
n=1

(3 .6 )
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C h a p te r  3, S ection  3 Problem  w ith In itia l H istory

where

A*(<) =
- 1

VAnln (An -  A(/,)) 0 /
Bn(t) =

0 0

-A 27na(i) 0

with
\ 2 2 An =  n n , 7 n =

1
1 +  crn2TT2

Substitution of (3.5) and (3.6) into (3.4) yields

fOO
u n(t) 4- An(t)un(t) +  /  Bn(r)un(t -  t )  d r  =  0. (3.7)

Jo

In this chapter wo shall assume that the terminal load is constant. This allows 

us to apply Laplace transforms to (3.7). In order to utilise the many known results 

concerning the resolvents of Volterra integro-differential equations we rewrite (3.7)

as

poo
ù„(0 +  /  dfj,n( T ) u n(t -  r) -  0, 

JO
(3.8)

where ¡xn is the 2 x 2  matrix of measures

0 ~<50

vA„7 „(An -  A)i0 -  A27 ndG 0 /

and (S0 is the Dirac measure concentrated at 0.

3.3 P rob lem  w ith  In itia l H istory

The initial history problem corresponds to solving equation (3.8) on IR+ with a 

specified history of the displacement up to time t — 0. We can decompose the

2 0



C h a p t e r  3 ,  S e c t i o n  3_________________________________________________________________ Problem with Initial History

in tegral in (3.8) in to  a convolution1 and a forcing function which depends on the  

known in itia l history. Thus,

u „ (t)  +  (fin * u „ )(i)  =  f„(f), t  > 0, (% )

and u n(0) is prescribed.

fn(i) =  -  /  d / /„ ( r ) u n (t  -  r )
n/t°° a ( r ) y „ ( i - r )  d r

, t  >  0.

T hrough th e  following theorem  we show th a t for m ild conditions on th e  in itial 

histories th e  differential equation  (Vo) has a unique, absolutely continuous solution. 

M oreover, for a su itab le  forcing function f„ (t), th is solution possesses th e  same 

asym pto tic  properties as fn (t) if the  load is less th a n  th e  critical value of AnGoo- 

W hen  th e  load is g reater th a n  th is critical value th e  solution is in general unbounded. 

This is a generalisation of th e  work in M iller [31] w here the  in itia l h isto ry  was 

assum ed to  be continuous.

T h e o r e m  3 .1  Let  the relaxat ion func t ion  G ( t ) be an arbitrary f unc t ion  in C 1(

I f  the constant  load A is f ini te  and the forcing fu n c t io n  fn (i) belongs to L 10C(1R+; . 

then (Vq)  has a unique, locally absolutely cont inuous solut ion in L 10C(IR+; R 2). 

Furthermore,  let the relaxat ion func t ion  G( t ) ,  be non-constant,  nonnegat ive,  non ­

increasing and convex and let fn (i) G S , where S  is one o f  the following func t ion

spaces2

(i) L P ( R +- R 2) , p  G [1, oo],

(ii) B C { R + ;R 2), B U C { R + ;R 2) or B C 0{R + ;R 2),

xThe con vo lu tio n  fin * u „  o f a measure fin £  M (M + ), where M (M + ) is the  space o f f in ite  measures 
on M +, and a Lebesgue measurable fu n c tio n  u „  defined on M + , is the fu n c tio n

(fin * u n ) ( i )  =  /  dnn(r)un(t -  t) , (3.9)
Jo

defined fo r  those t fo r  w h ich  the  fu n c tio n  r - > u „ ( i - r )  is \fin |-in tegrab le.
2The  n o ta tio n  is described in  page i i i .
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T hen , i f

1. A <  AnGoo the solut ion  u n £ S  and  u n depends cont inuously  on fn in the norm  

o f  S . Also,  i f f n is cont inuous then  u n £ S .

2. A =  AnGoo and the second m o m e n t  o f  G  exists, the solut ion can be decomposed  

into

u„0 0  =  c n +  w  n (t),

where c n is a constant  vector  that depends on the ini tial  his tory up to t ime  

t  =  0 and w n £  S .

3. A >  \ n Goo the solut ion can be decomposed into

u  n (t) =  cnep*nt +  w n (t),

where c n is a cons tan t  vector that depends on the init ial  his tory  up to t im e  

t  =  0; p*n is a posit ive  real number  and w n £  S .

Proof.  It is known th a t3 the re  is a unique absolutely continuous m atrix-valued

function rn defined on R + satisfying

r n {t) +  {rn * /J,n){t) =  0, r„(0) =  I, (3.10)

for alm ost all t  £  R + . rn is called th e  different ial  resolvent  o f  (in . T he unique 

absolutely continuous solution of (Vo) is th e n  given by th e  variation  of constants 

form ula4

u n {t) =  r n ( t ) u n (0) +  (rn * f n)( t) .  (3-11)

T he resolvent rn is particu la rly  useful for investigating th e  asym pto tic  behaviour

of th e  solution. A resu lt due to  M iller [31] shows th a t th e  condition rn £  L 1(E +) is 

equivalent to  th e  uniform  asym pto tic  stab ility  of th e  triv ia l solution of equation  (Vo)

3C f. Theorem  3.1 o f Ch. 3 o f [18].
4C f. Theorem  3.3 o f Ch. 3 o f [18].

C h a p te r  3, Section 3_______________________________________________________________________ Problem  w ith  In itia l H istory
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in (7(R +) if th e  in itia l h istory  is continuous. Since th e  m easure fin £  M (R +; R 2x2), 

its  Laplace transfo rm 5 is defined on the  right-half com plex plane and we can use the 

following P aley-W iener type result for integro-differential equations6.

L e m m a  3.2 Le t  /i n £  M (R +;R 2x2). Then  the different ial  resolvent r n, o f  fin sa t­

isfies

r n £  ^ ( R + s R 2*2), 

i f  and  only i f  the characteris tic equation

A „(p) =  det[p i +  ¡2n (p)] =¿0, 5Rp >  0. (3.12)

C alculating th e  characteristic  equation  for (Vo) we have

A „(p) =  p2 +  7nAn (An -  A -  Ana ( p ) ) , (3.13)

defined on th e  righ t-half com plex plane. T he relationship  between th e  location of 

roots of th is equation  and th e  m agnitude of th e  constan t load is described by the  

following lem m a.

L e m m a  3.3 I f  G ( t ) is non-constant , nonnegative, nonincreasing and convex then  

the characteris tic  equation (3.13) has :

1. No  solut ion f o r  A <  XnGoo.

2. A  root at the origin when  A =  A^Goo- This root is s imple i f  the f irs t  m o m e n t  

o f  G  exists.

3. A  s imple posit ive real root p*, when  A >  AnGoo.

5The Lap lace tra n s fo rm  p,n(p) o f a measure / in £  is the fu n c tio n
pOO

fj-n(p)= /  e~p td p.n (t).
Jo

defined fo r  those p £  C  fo r w h ich  the in te g ra l converges absolute ly.
6C f. Theorem  3.5 o f Ch. 3 o f [18].
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Proof .  From  th e  specified properties of G ( t ) and th e  definition of a ( t) ,  we can 

see th a t a ( t )  is non-constant, nonnegative and nonincreasing. This implies th a t7 

'¡sp^sa(p) <  0 for S p  ^  0. E xam ining th e  im aginary p a r t of (3.13) this implies

y % A n(p) =  2x y 2 -  X2n-fny^sa(p)  > 0 ,  for y  ^  0, x  >  0,

w here p  =  x  +  iy.  Hence, if a roo t exists, it m ust lie on th e  positive real axis. Now

looking a t (3.13) on th e  positive real axis we have

A n (x)  — x 2 +  7 „An (A„ -  A -  Xna ( x ) ) , for x  >  0, (3-14)

Since a{ t )  is non-constant, nonnegative and nonincreasing

d a ( s )
da;

fCO
=  — /  r e ~ XTa ( r )  d r, 

Jo

is a well-defined, negative valued, function for x  > 0. Hence equation (3.14) is an 

increasing function in  x  and has a t m ost one root for x  >  0. B u t

A n(0) =  7nA„ (A„ -  A -  Ana(0 ))

— 7nAn (A„ A An( l  Goo))

— 7nAn (A71G00 A)

Therefore, if A <  Xn Goo th e  characteristic  equation  A n(p) has no roots in th e  right 

half com plex p lane 3f?p >  0, b u t if A >  XnGoo th e re  exists one real root.

Looking a t A n(p) near th e  root x  =  p* we have

i y j p )  =  ( p - p ’n) ( 2  p"„ +  I n K .  J0 T e ~ r i T a ( T )  d r )  +  0 ( ( p  -  p'n f ) .

(3.15)

Thus, if A >  XnGoo or if A =  XnGoo and a  has a finite first m om ent th e  root p =  p* 

has a m ultip licity  of one. ■

7Cf. [27] page 245.
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Lemmas 3.2 and 3.3 now imply that the differential resolvent r n, is integrable if 

A < XnGao. Using Theorem 3.9, Chap 3, [18] assertion (I.) is proved.

For the case A > XnGoo we can expand the differential resolvent into a function 

in L l and an exponential term8. So we now have

r„(t) = I<neKt + qn(t), for t £ R+,

where Kn is determined by the principal part of [pi + /¿»(p)]-1 in the sense that, in 

some neighbourhood of p = p* we have

[pi +  /zn(p)]_l =  +  9n(p)»

where the resolvent remainder qn(p) is analytic near p =  p*n. Calculating K n we find 

that for p p*

- l

W  + P»(p)] =

Equation (3.15) now implies

( P  “  P n ) [ ' P J  +  ß n ( p ) ] ~ l

_  1 _
2Pi + 7 nA2 r  re~PñTa ( r ) d r

for p near p*. Hence

p - 1

^TnAn(An A AnCt(p)) p j

P n  1

7nAn(An A Ajjäfp^)) pnJ
+  0 (p -  p*),

I<n =  72prt +  7nXl /0°° re-P*>Ta (r)  dr
P n  1

\7nAn (A -  An + o (P;) )  p*)

8Cf. Theorem 2.1 of Ch. 7 of [18].
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The solution of (Vo) is now given by

u„(0  =  r n(f)un(0) -I- (rn * fn)(i)

=  ep"i/ i„ u n(0) + Knep''‘ [  e_p”Tfn(r) d r  + qn(t)un(0) +  [  qn(t -  T)in(r) d r
Jo Jo

=  Kn*?''1 ( u B(0) + ^  e-i>"Tfn(r) dr^) +  gn(i)un(0) +  (qn * /«)(*)•

By defining qn{t) =  —/£r„ep"f, for i < 0, we can write our solution in the form

un(t) =  cnep"‘ + wn(i), (3.16)

where constant vector cn is given by

' ( / „ ( O H  too
, /" V‘ '  I i i s  I ~ - p n rc„ =  K n | I +  K n [  e

iun(0), J°
dr

/
y n (0)

U«(0) +  7*A£ J T  e P"T /T°° Of(^)yn (r -  £) d£ dr

and
fCO

wn(i) =  f/n(i)u (0) +  /  qn(t -  r)fn(r) dr. 
Jo

When A =  A„ 6 ^  we require additional conditions on the characteristic equation 

in the neighbourhood of the origin9 in order to get a similar expansion for the 

solution. These smoothness requirements arc equivalent to the existence of the first 

two moments of a(t). Following a similar approach to above, we get an expansion 

for the solution as

Un(0 =  Cn +  W„(i), for t £ R + , 

where vector cn is given by

!/n(0)

,*w(0) +  7„A; r  -  f) d i  d r

9C f. Theorem  3.7 o f Ch. 7 o f  [18].
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and w n (t)  is defined as before.

N ote th a t for critical loads A >  A t h e  com ponent of th e  solution due to the 

critical characteristic  exponent m ay vanish. This will occur if and only if

Vn( 0) =  0,
poo r oo

un(°) - - 7 nA2 /  e~PnT /  a ( t  +  £)yn { - £ )  d r,Jo Jo

w here p*n > 0 is th e  sim ple root of th e  characteristic  equation. W hile th is solution 

is bounded  in  th e  norm  of S  it  is unstab le  in the sense th a t  a rb itra rily  sm all per­

tu rb a tio n s  in th e  in itia l h istory  up to  tim e t  =  0 will resu lt in solutions th a t do not 

belong to  S .  ■

R e m a rk  3.4 For clarity  our resu lts in th is section are presented  in term s of the  

Fourier m odes which solve equation (3.8) ra th e r th an  solutions of (3.4). Once the 

Fourier m odes u n (t) have been obta ined , th e  m ain  part in proving th a t they  define 

a weak solution of (3.4) is to  show th a t

OO

^ n 4|u „ ( i ) |2 <  oo, 
k= 1

uniform ly for 0 <  t  <  T  for each T  > 0. This is an easy consequence of equation 

(3.11) and regularity  of th e  in itia l history. T he synthesis of th e  Fourier m odes for a 

sim ilar problem  is discussed in  [17].

3.4 P rob lem  w ith ou t In itia l H istory

In considering solutions to (3.8) over the  whole real line, we need to  im pose condi­

tions on th e  d isplacem ent in order th a t  th e  in tegral in (3.8) is well defined. F urther­

m ore, we are only in terested  in solutions th a t are physically realisable.

D efin ition  3.5 A  solut ion to (3.8) over  R  is adm issible i f

u n(i) 6 L 1(R~).

2 7



We now use some results on Fourier integrals to show that under suitable con­

ditions on the relaxation function the trivial solution is unique for stable loads and 

there exists an admissible, nontrivial solution for loads greater than the critical load 

XjlGco-

T h e o re m  3.6 Let the relaxation function G(t) be non-constant, nonnegative, non­

increasing and convex and let n(t) =  —G(t) satisfy a(t)ec>t E L(R+) for some con­

stant c' > 0. Let u„ be an admissible solution of (3.8) satisfying

u ne"c!il € L2(R] R2),

and

lim e-p^u„(i) =  0 ,i->±oo v ’ ’

with 51Ip >  c ivhere 0 < c < c'. Then,

1 . if  the constant load satisfies A < \ nGoo,

u =  0 ,

2. if X > XnGoo.

u n =  cncr"t,

where p’ is the simple zero of the characteristic equation (3.13) and cn is a 

constant vector.

Proof.

We shall make use of the following result from [40].

L e m m a  3.7 Let 4>{p) l>e regular in the strip a\ < sRp < «2, and let </->(?'/ iu)) belong

to L2(1R)J and lend to 0 uniformly as u> -» ±oo, for  r/ in the above interval. Let

'0(p) have similar properties in b\ <  3f?p < 62, where ¡>2 < «1 • Let

ra+iT fb+ iT
lim / <Kp)ep dp +  lim /  V’(p)eP dp =  0, (3.17)T —y 00 J a— i'l* T >00 j i r

C h a p te r  3 , S e c tio n  '1____________________________________________________________________P roblem  w ith o u t In itia l H istory
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for all t, where a\ < a < a?, bi < b < b%. Then <j> and i]) are regular for b\ < 5Rp < av, 

theii' sum is 0 in this strip, and they tend to 0 as Sp ± 00, uniformly in any 

interior strip.

We extend a(t) over the whole real line by defining a(t) = 0 for I < 0. Equation 

(3.8) is now given by

/
OO

d/.tn( r )u„(i -  r)  =  0 , ( -0 0  <  t < 00). (3.18)
-O O

Since r*(/)ec,W 6 L,X(R) this implies ec,^/jn € M(lR,IR2x2) and fin(p) = e~vld[in(t) 

is defined and analytic on the half-plane SRp > —d. We decompose the solution 

un(t) into

u n(i) =  u_(i) +  u +(t),

where u _ (—t) — u +(£) =  0, (t < 0). Since u„(i)e-cW £ L2(R] R2) u+(p) is defined 

and analytic for Up > c and u_(p) is defined and analytic for 3?p < — c. Using 

integration by parts, it is easily seen that

roo
/ ¿„(¿)e_pi dt =  pu+(p) -  u „ ( + 0 ) ,  for 5Rp > c,

Jo

and

[  11 n(t)e~pi dt = pu_(p) + u„(—0), for 3fip < —c
J —  OO

Hence for any a satisfying c < a we have that

u +(p) =  p u + ( p ) - u n(+ 0), for 5ftp =  a,

1 ra+iT
lim —  /  \pu+(p) -  u„(+0)] ep dp =  u +(p), (3.19a)

1 -+oo Z m  J a - iT

2 9



in  the  m ean-square sense, and
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I  ra + iT  f t
lim  —  / /j„(p)u+(p)ep dp =  /  d /z„ (r)u + (f -  r ) ,

»00 ZlXI J a - i T  J - oo

(3.19b)

in  th e  m ean-square sense. Similarly for any b in  th e  in terval —d  < b < —c we have 

for u_ (p )

1 rb+iT
lim  —  /  [pu_(p) +  u n( - 0 ) ] e p dp =  u _ (p ), (3.19c)

T -¥oo /7 Tl J b - iT

and

^ rb+iTrb-\-il r oo

l i m — : /  /¡n (p )u_(p )epi dp =  /  djun( r )u _ ( f  -  r ) ,
T —too AlXZ J b - i T  J t

(3.19d)

w ith  equality  in th e  m ean-square sense. A dding equations (3.19a)-(3.19d) we get

pa-fiT /■fc+t’Tra-\-il ro-^-il
lim  /  [pi +  /¡„(p)] u+(p) dp +  lim  /  [pi +  /¡„(p)] u_  (p) dp =  0,

T—s-oo J a —iT  T —»oo Jb—iT

(3.20)

in  th e  m ean-square sense.

Using th e  resu lts from  the  previous section th e  solution u n will be continuous. 

H ence u „ ( —0) =  u n (+ 0). A dding equations (3.19a)-(3.19d) we get

ra-\-iT rb+iT
lim  /  [pi +  fin (p)] u+ (p) dp +  lim  /  [pi +  jin (p)] u_  (p) dp =  0.
H-»-oo J a - i T  T-^oo J b - i T

(3.21)

in  th e  m ean-square sense. A pplying Lem m a 3.7 we can ex tend  bo th  [p l+ ^ n(p)]u+(p) 

and [pi +  p„(p )]u_ (p ) th roughout th e  strip  b < 5?p <  a w ith  u+(p) =  —u_(p) in 

th is s trip  except possibly for poles a t th e  zeros of A „(p). H ence u_ (p ) and u + (p) 

are regular in  th e  strip  except possibly for poles a t th e  zeros of A n(p) for 5Rp >  c.
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1 ra-\-iT 1 rb+iT
u n(t) =  lim  ----- /  u + (p)ep idp — lim  ------ /  u + (p)ep idp,

nV J T  —}-oo 2tU J a - i T  + W  F T-*oo 2?U J b - z T  + V  ’
(3.22)

and, since u  +(77 +  iu>) —> 0 as u> ± 0 0 , we can evaluate the  righ t-hand  side by 

calculus of residues in th e  usual way.

We are only in terested  in solutions th a t are in L 1 (R _ ). Therefore, we are only 

concerned w ith  zeros of th e  characteristic  equation  A n(p) th a t lie on the  right-half 

com plex plane Up > 0. Using Lem m a 3.3 we find th a t :

1. If the  load satisfies A <  A „Goo, then  th e  characteristic  equation  (3.13) has no 

zeros on th e  righ t-half com plex plane Up  >  0. H ence u „ (t)  given by (3.22) is 

no t adm issible and u„ =  0 is th e  unique solution of (3.8) over R.

2. If A >  A„Goo, th en  A n (p) has a sim ple real root p * >  0. H ence (3.8) has a 

solution given by

u =  cu.n

w here c„ is a constant vector.

T he uniqueness of th e  zero solution for stab le  loads can also be shown using the  

half-line resolvent used in T heorem  3.1. ■

Rem ark 3.8 For clarity, our result in  this section is also presented in te rm s of the  

Fourier m odes w hich solve equation (3.8) ra th e r th a n  solutions of (3.4). Since we 

find th a t  th e re  are only a finite num ber of Fourier m odes u „ (i)  th e re  is no difficulty 

in  showing th a t we have found solutions to  (3.4).

3.5 A ltern a tive  U niqueness R esu lt

In th is section we use an a lternative procedure to  exam ine th e  uniqueness of the  

triv ia l solution to  (3.7) for stab le loads when th e  h istory  of th e  d isplacem ent is not 

specified b u t is assum ed to  decay exponentially  in th e  past. This procedure was 

used by V irga and C apriz [42] whose work is outlined  in [15].
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Given e > 0, consider the Banach space Uc of continuous functions u„ =  (yn, vn) 

defined on (—oo,0] with

||u„j|e := supe£‘|j/n(i.)| +  supe£i|un(Z)| < oo.
t< 0  t< 0

T h e o re m  3.9 The trivial solution of (3.7) is unique in U£ for 0 <  A <  A „Geo, if 

e > £*, where e* is the (single) positive real root of

e* =  y'inA,, (An(l -  a(e*)) -  A).

Proof. A solution of (3.7) which lies in Uc satisfies the equation

(3.23)

u„(i) = -  J [/l„u„(r) -f- j  Bn(r)un(r -  r )  d r dr, t 6

(3.24)

In order to show that the trivial solution is unique, we define the operator T,, on Ue 

by
nt r roo i

dr,■F„(un)(0 =  -  J  |Anu„(r) +  J  Zin( r )u n(r -  r)  d r

and show that the second iterate of jFn(u„) is a contraction for stable loads if e > e*. 

We need only show that the unique solution of (3.24) on (—oo,0] is u„ — 0. Then 

we can apply the results of Section 3.3 to show that the solution of (3.7) is zero for 

all time.

First we show that .?"„(□„) 6  Ue if un £ Uc. Note that for any t <  0,

/ £ pi POO
A„un( r ) d r -  / / Bn(r)un(r - r ) d r d r

-CO ,/—OG J O

= - [  Anu u( r ) d r - [  j  Bn(r — r )u „ (r)  d r  dr
«/ —■©£>' J  —oo J  —oo

=  -  [  /lnu„(r) d r  -  I f  Bn(r -  r ) dr u„(r) d r
J  — OO J  — OO J  T

=  -  j i  U „  +  jT Bn(r) drj u n(t -  r)  d r

vn(t -  t )
=  ~ fJo ^ 7 « A „  (A n  A A 71 JJj c t ( i ) d i ) y « (^  ^") y

dr.
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e"rif n ( u n) =  -  /  
JO

OO

e~CT
I e

d r,
v7 nA„ (A« — A — A„ /0T a (r)  dr) e e(i T)yn(i -  r ) y 

and for stable loads 0 < A < An(7oo,

| |^ , ( u „ ) | | ,  <  i | | o « | | , + 7»A„ /  e " ,T ( a .  -  A -  A„ j f  a ( r ) d r )  d r||t/„ ||t

= -H«„|U +  —  (A. -  A -  A„«(e)) Ill/nll,.£ £

Therefore ^„(u.,,) is bounded in Ue by

| |^ ( u „ ) l l ,  < y l |u „ | |„  (3.25)

where

K  = max {1,7BA„(A* -  A -  Ana(e))} <  max { l ,7 „An(An -  A)} .

This proves that ^„(u«) is in U£ for all e > 0.

We consider the second iterate of T n,

W W ) = i  r  A2nu n( T )d r d { +  I A n f '  I Bn(r)un(r — r)  d r  dr d£
J — OO j  —OO  J — oo  J —o o  J  0

+  f  f  Bn(r) [  Anu n(r)d r  d r  d£, (3.26)
J —oo J 0 J — oo

since Bn(t)Bn(r ) =  0. The integrals in (3.26) can be written as 

/•t ri r°° r°°
I /  A*un( r ) d r d £ =  /  /  A 2nu n(t -  r  -  f) d r  d£,

J —oo J —oo J 0 JO
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I A n I  I Bn(r)u „ (r  — r)drdrd£ =  [  [  [  AnBn{r -  r)u„(r) dr dr d£
J — GO J — OO J O  J — OO J  “ OO J — DO— OO J “OO J —OO

t r i /•«
i f f  AnBn(r — t ) dr un( r ) d r d£J — OO J —OO jT
i f  I  AnBn(r) dr u „ ( r ) d r d£J-oo J — 00 J0

AnB n(r) dr un(i -  r  -  £) d r  d£,
OO /'O O  f T

0 Jo  JO

and

O
o o  f t - T  r t  /■£ l -T

Bn(r)  /4„un( r ) d r d r d f  =  /  /  Bn(£ -  r)  / Anu n(r) d r d r  d£
J — OO j  —CO J —oo J —OO

= [  I  I  Bn{£ -  r ) A n d r  un(r) d r d£J —oo J—oo Jr

=  [  [  [  J?n(r)A » d r u „ ( r )d rd fJ —oo J —oo Jo 
poo r oo pr

= /  /  /  Bn(r)An d r  u n(f -  £ -  r) dr d£.
JO Jo Jo

Hence we can write

^n(^n(un)) =  J  jf ^Al +  AnBn(r) +  Bn(r)An dr un(i -  (  -  r) dr d(

(3.27)

noo /  /T
7uA„ An -  A -  / Ana ( r )  d r  

\  Jo
dr d£, 

(3.28)

and

e - '^ n ^ n K ) )

=  j f  7«A»e"e(f+r) (An -  A -  An jT  a (r)  d r )  « - M - 0
y»(* -  f  -  0  

>^n(/ - £ - r )
dr d£.

Therefore HJyC^wiun))!!« is bounded by

II^rn (^ 'n (u n ) )| | e <  7„An f  [  e E(i+r) An -  A -  An f  t*(r) d r dr d f j|u„|]e.
Jo JO Jo
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Since 0 <  A <  XnGoo, the second itera te  of J-n is a contraction if

7 nAn r  r  e-<t+rh n -  A -  A n r  a ( r)  d r  dr d£ =  7nA„ A-^ ~ — ~ < 1.
Jo Jo Jo

This will be true if e > £*. The existence of a unique positive solution can be shown 

using an argument similar to th a t used in Lemma 3.3. ■

A simple upper bound for e* is given by

e* < ^7nA„(An -A ) . (3.29)

Note th a t for continuous tim e-dependent loads satisfying 0 <  A(t) <  A^Goo, equation 

(3.24) has a unique solution in UE if £ >  £*, with

£* = \JlnXn (A„(l -  a(e*)) -  Am),

where Am  = in f^o  A(i). For constant loads this is not as strong as Theorem 3.6.

3.6 Standard V iscoelastic  M ateria l

A rod comprising of standard viscoelastic m aterial has a relaxation function of the 

form

G{i) = Goo +  (G0 - G oo) e - tli, (3.30)

with a  >  0 and 0 <  Goo <  Go. This m aterial has been widely used as it possesses 

m any of the observed properties of physical viscoelastic materials. Appendix A 

contains a description of the standard viscoelastic m aterial in term s of its rheological 

model and the derivation of (3.30). Dost and Glockner [14] examined the zero initial 

history problem for the standard viscoelastic m aterial using Laplace transforms.

We will consider the initial history problem for which the history of the displace­

m ent at tim e t  =  0, denoted by, y°(r) =  y n { —r) is known. After normalising, as in
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Chapter 2 we have

a(t) =  a ( l -  Goo)e-Oi. (3.31)

The contribution due to the initial history in (3.7) is now given by

/OO
e_aTyn(J -  T) d r  =  tf‘3e-a\

where a3 := a(l -  (?«,) io°° e“°Ti/n(r ) (ir-

The dynamic equation (3.7) can be written as a system of three first order, 

ordinary differential equations. To do this we define m„(i) to be

m n(t) =  - i /n(0  +  I a ( t -  r )yn(T) d r
J 0

=  -J/» (0  +  «(1 -  Goo) f  e_a(i_T)yn(r) dr.
Jo

By differentiation we find that m n(t) satisfies the differential equation 

mn(f) =  -y „ (i)  +  a(l -  Goo)yn(t) -  a (m n[t) +  VnU))

=  oGqoJ/j! (¿) J/n (0

with initial condition m n(0) =  —y„(0). Then (3.7) can be expressed as

/
d_
di

/  \
Vn

Vn
0 1 0

7„A„A(/) 0 7nA2

—aGco —1 —ß

\  /  \ (  n \yn 0

vn + m

/ I 0 )

where u„(/) =  xjn(t) and f n(t) is given by

/»(*) =  7»A2a3e~ai.

The initial conditions are

y»(0) =  a0, un(0) =  ai, ron(0) =  - a 0-

(3.32)
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Alternatively, we can write the dynamic equation as a third order scalar equation 

by differentiating

ijn =  - 7 nA„(A„ -  A(£))y„ +  7 nA2a (l -  Goo) f  e~aTtjn(l -  r)  d r  +  /(*).
JO

to give

V n ”1” ^ Vn ~f* 7 nA„(An A)J/n “I" 7 « An̂ (AnG(x> A )JJn 7 nAjiilAy  ̂ fn ~f” ^ifn

= 0,
(3.33)

subject 1.o the initial conditions

yn(0) =  «o, ?y«(0) =  « 1 , y„( 0) =  a2,

where

a 2 =  —7«An(A„ -  A(0))ao +  / « ( 0) =  7nA*(a3 -  a 0) +  7nAnA(0)ao.

In this section we will consider (3.32) or (3.33) for constant loads. The characteristic 

equation is given by

A„(p) =  p3 +  ap1 +  7 „An(A„ -  A)p +  7 nA7la(AnGoo -  A). (3.34)

Our primary interest is in determining the values of A for which the roots of 

(3.34) have negative real parts.

T h e o rem  3.10 The ch a ra c te r is t ic  equation (S.3Jt) w ill  have :

• Three roots with negative real parts i f A < A„Goo.

• Two roots with negative real parts and a root at the origin if A =  AnGoo-

• Two roots with negative real parts and a single real root greater than zero ij

A ^  AjiGqo*
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Moreover, i f  X < Xn and 0 < a < \J<SrYnXn{.Xn — A) then a complex pair of roots exist 

fo r  all Geo <  1. Otherwise, a complex pair of roots will exist only if  G- < G^  < G+ 

where

G± =
2A +  An 2a3 (a2 -)- 37nA„(A — An))3/ 2

3Ar 277nA2
(3.35)

Proof. Applying the R outh-H urw itz criterion or the L ienard-Chipart test to (3.34) 

we see th a t the roots of (3.34) have negative (nonpositive) real parts if and only if 

the determ inants

D i =

Do =

a 1

a'ynXn^X'nGca A) 7^^n( Xn A)

=  a7n-^(l — Goo) > 0,

a l O  

Xn (A71 Gqq A) f̂nXjii^Xji A) fl

0 0 â ynXn(XnG00 A)

Qj'~lnXn{XnGGG X'jDi)

are strictly  positive (nonnegative). Hence we have th a t for A less than  the equilib­

rium  buckling load of A„Goo, the roots of (3.34) have negative real components.

Applying the Routh-H urw itz criterion to A „(—p), we find th a t at least one root 

has a negative real part for all values of A. Since A„(0) <  0 for A >  AnGoo this 

implies there exists two roots (possibly complex conjugates) with negative real parts 

and one positive real root. Finally, it is easily seen from (3.34) th a t the origin is 

simple when A =  AnGoo- This result agrees with Lemma 3.3 for general relaxation 

functions.

The existence of a complex pair can be determined by examining the discriminant 

of the  cubic equation (3.34), which is given by

D =
(/~lnXn(Xn A) 

729
a2)3 2 — 97„An(An( l — Goo) ~  2(AnGoo — A)))

+  a
2 9 1 6
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There exists one real root and a complex pair, three real roots at least two of which 

coincide or three real distinct roots if the discriminant satisfies D > 0, D — 0 or 

D < 0 respectively.

The discriminant is quadratic in G a n d  can be solved in the usual manner 

to give the expressions for the roots G_ and G+ in (3.35). The bounds in (3.35) 

are complex if A <  An, and a < yj3rynXn(Xn — A), then the discriminant is strictly 

positive for all 0 <  Gco <  1.

The region in the (a, Goo)-plane where complex roots exist is shown for various 

values of the load A in Figure 3.1. ■

Theorem 3.10 implies th a t the trivial solution of (3.32) is asymptotically stable, 

stable or unstable if the constant load A satisfies A <  AnGoo, A =  XnGoo or A > AnGoo 

respectively.

W hile the solution is unbounded when the load is greater than  the critical load 

XnGoo, the ra te  of growth in the displacement is strongly linked to the ratio between 

the load and the instantaneous buckling load Xn. W hen the load is greater than 

Xn the displacement begins to grow the instant the load is applied. But if the load 

lies between the instantaneous and equilibrium buckling loads and the relaxation 

tim e is large, the initial displacement oscillates with a decreasing am plitude and the 

instability will only become apparent after a significant length of tim e (cf. Figure 

3.2). Thus, although the solution is unstable it may behave like a damped oscillator 

initially if the relaxation tim e is large. The critical time at which the am plitude of 

the creep term  is comparable to the am plitude of the dam ped oscillations depends 

on the  type of initial disturbance as well as the relaxation time. Szyszkowski & 

Glockner [39] called this phenomenon of a time-dependent instability viscoelastic 

instability. In Chapter 5 we examine the relationship between the type of initial 

disturbance and the growth ra te  of the instability term  in the solution.

Figure 3.2 contains plots of the solution (n =  1), for loads A =  0.1 Xn < XnGoo, 

A =  0.3A„ >  A^Goo, and A =  1.0lAn respectively for the following m aterial param e­

te r values.

39



C h a p te r  3 t Section  6 C o n stan t Load P rob lem

Param eter Value

n 1

" n 9.8696

I n 1.0001

Goo 0.1

a 0.1

These plots were calculated using the procedure described in Section B.3.1.
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Constant Load A =  0

a
C onstan t Load A =  0.5A„

a
C onstan t Load A =  A„

a

Figure 3.J: Regions with complex and real roots for mode n = l.
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Stable Load : A <  An Goo

V iscoe las tic  In s ta b il i ty  : XnGoo < A <  Xn

D ynam ic  In s ta b il i ty  : Xn < A

Figure 3.2: Stability behaviour for the standard viscoelastic m aterial.
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N onautonom ous Problem

Chapter ^

4.1 In trodu ction

We now consider the  initial history problem with time-dependent loads. We con­

struct a suitable H ilbert space in which the norm  of the solution is defined to be the 

energy of the rod, and extend the m ethod of Dafermos [9] to the nonautonomous 

initial history problem. Dafermos in [9] used a semigroup approach to prove ex­

istence and uniqueness, as well as asym ptotic stability of the trivial solution, for 

the standard displacement problem of linear viscoelasticity. The evolution equation 

is shown to generate a Co contraction semigroup on this H ilbert space, and has 

a unique solution which depends continuously on the initial data. This is in con­

trast to the  results in the quasi-static theory, for which Reynolds [36] showed that 

uniqueness is ensured only if max<>0 |A(t)| <  AiGtqo. The energy of the rod is used to 

construct a Lyapunov function, which is used to dem onstrate tha t the zero solution 

is stable for a large class of loads satisfying 0 <  A(t) < AiGr^.

4.2 E x isten ce  and U niqueness

In this section we examine the existence and uniqueness of the initial history problem 

for tim e-dependent loads. We formulate the retarded functional equation (3.4) as 

an evolution equation. The state-space at tim e t consists of the displacement y ( s , t ), 

the m om entum  u(s,i), and the history of the displacement w ( s , r , t )  y t ( s , T ) =
y ( s , t  — t ). The existence of a unique solution is proven using semigroups and the 

contraction m apping theorem.
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D e fin itio n  4.1 A triplet x  =  ( y , v ,w) is in the space W. if y £ H, v £ Hq and 

w e  L I  (R  + , H 2 fl Hq)1 . W is endowed with inner product

<  ( y , v , w ) , ( y , v , w )  > u =

(vv  +  crvsvs + GooyssVss +  a(r)[yss -  wss(r)][yss -  W s s ^ d r ^  ds. (4.1)

The space 7i is complete with respect to inner product (4.1). Note th a t due to 

(3.2), the  norm  on TL is given by

=  ( v {L av) +  Goovl, +  JQ a iT)[yss -  ^ ss(r )]2 d r )  (4-2)

The first term  on the right-hand side of (4.2) represents the kinetic energy of the rod, 

and the last two term s its Graffi-Volterra free energy2. We define linear operators 

A  : D (A )  % and B : Ti ^  H  hy

A ( y , v, w) =  (v, K a yssss +  a(T)wssss(T) d r )  , —wT),

B ( y , v ,w )  =  (0, —K ayss,0).

Here (■y , v , w ) G D (A )  if and only if ( y ,v ,w )  G H, y £ V, v G H, w(- ,r )  G V,

wT £ L 2a(R +, H ), iw(-,0) =  y, and - y ssss + f0°° a ( r )w ssss(r) d r  £ L 2. Using these

definitions, the  problem of finding solutions to (3.3) becomes th a t of solving

^  = (A + Mt)B)x, x(0 ') = *>■ ( 4 .3 )

T h eo rem  4.2 Suppose that the relaxation function G(t) is positive, nonincreasing 

and convex with Ga0 > 0. Let A: [0,oo) —> R. be bounded and continuous. Then for

each Xo £ there exists a unique solution

X 6 C 1 (R + ;W )n C '(R + ;D (y l) ) , (4.4)

1L \  denotes the  a -we igh ted  L2 space o f fu n c tion s  /  w ith  | | / | | l *  =  ( /™  a ( i ) | / ( t ) | 3 d i ) 1^2 <  co.

2Cf. Section 2.4.
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of (4 .3)  satisfying * ( 0 )  =  X o .

The proof consists of showing th a t A  generates a contraction semigroup. Then, 

the solution of (4.3) can be w ritten using a variation of constants formula. This 

equation can be shown to possess the unique solution satisfying (4.4) if B  is bounded. 

In order to show th a t A  generates a contraction semigroup on TL we m ust show that 

A  is a maximal, dissipative operator.

L em m a 4.3 Let G(t ) satisfy the conditions of Theorem 4.2. Then, the operator A  

is dissipative, the domain of A  is dense in TL and the range of I  — A  is 7i. Also B 

is bounded.

Proof. To show th a t operator A  is dissipative we must prove th a t ( A X, x ) u  <  0? 

for all x  £ By definition of TL,

(AXi x )u  — j  Goo Vss^ss “1“ (  Vssss “H j  Oi(r)iWssss (t)  d T

+  av s ( k o yssss +  / o  cx( t ) w SS3S( t )  d r ) )

- ) -  J  a ( r ) [ u s s  +  w T S S ( r ) ] [ y s s  -  i u 4 S ( r ) ]  d r j  d s

= Jo { G °°yssVss -|- Lav h a ( Vssss

+  Jo vssyssa ( r ) -  vssw ss(t ) +  a (r )w TSS(r)[yss -  w ss(t )] d r j  ds. 

Since operator L a is formally self-adjoint, integration by parts shows th a t

(*4X , x ) u  =  J o { “  v (yssss ~  J q oi( t ) wssss( t ) dr^

+  vss ( y ss -  cx( t ) wss( t ) dT) + r  a(r)ii»TSS[yss -  wss( r ) ]  d r j  ds

r 1 r oo
=  / /  a (T )w rss(T )[yss -  wss( T ) ] d r d s

Jo Jo
1 rl roo

=  -  /  <i(r)[yss — iuss(r)]2d r  ds <  0. (4.5)
Z Jo Jo
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To show that the range of I — A  is 'H we let x  =  (y, u, to) be in ’H. We show 

that the solution of the system (/ — A ) x  =  X satisfies x  £ W.

y - v  = y, (4.6a)

v -  Ko {^-yssss +  oc(t )wSSS3(t ) d r )  =  v , (4.6b)

w +  wT = w. (4.6c)

From equation (4.6c),

wls = ~  wl sa ~  2wrssWs,

Hence, we have

rco r lr  o o  r l

/  /  a(r)™ss(r)dsdr
70 Jo

r o o  r l  r o o  r l

<  / a M u ^ r )  ds dr -  2 / / a(r)iwTSJt(r)wJSi(r) ds dr
70 j 0 jo jo

/•co r l r rl I t= oo „oo -i
=  /  /  a(r)ti;2s(r)dsdr  — or(r) /  wss(r)ds +  /  /  a(r)w„(r) dsdr

JO JO L JO J r = 0  JO jo

/•oo />1 rl
< /  /  a(r)u£,(r) ds dr +  G(0) / y*s ds.

Jo Jo */o

If y  £ I I , then u> G L2(R+, / / )  as w G //2(M+, //). Solving equation (4.6c) using 

variation of constants yields

t«(r) =  e-Ty +  [  ei_Tu>(£)d£. (4.7)
JO

Using this result for w and equation (4.6c), we see that wr 6 L \ (M+, //) . Now to 

solve for y we substitute v from (4.6a) and w from (4.7) into (4.6b) to give

y  +  K a (yssss -  J  a ( r ) u w ( r )  d r )  =  y -ft) , 

y + ( j - ~ J 0 Q(r )e_T d r )  ^Usssu = y + v + K„ ( J  a ( r )  ^  ei-Ttx>ssss(f) d£ d r

4 6



C h a p te r  4. Section 2 Existence and U niqueness

The coefficient (1 — f£° cv(r)e_T dr) is strictly positive as it is bounded below by Goo- 

Hence there exists a unique solution to the above equation since the operator K„ is 

positive. The solution is in 11 as the right hand side is in H ~2 fl IIq3 Finally, v is 

given by (4.6a) and is in IIq

The operator B is bounded, as can be seen from

\\Bx \\h =  l \ K ayss)La{ K , )y sA s
Jo

= f  ySs(Kffyss) ds  <  ||yss| | l 2 <  77—||xll«.Jo Lj 00

since Goo > 0. ■

Proof. (Theorem 4.2)

By the Lumer-Philips theorem3, A  generates a Co contraction semigroup S ( i )t>0 on 

7~i. Using the variation of parameters formula*1, (4.3) is equivalent to

x ( t )  = ( T x )  (<) ~ S ( t ) x „ +  [ '  X ( t ) S ( 1 - t ) B x ( t )  dr.  (4.8)
Jo

Since S(l)  is a Co semigroup there exist constants u> > 0 and M  > 1 such that

\\S{t)\\ < Mewt, for 0 <  t < 0 0.

Also, A (I) is bounded and G00 > 0. Therefore there exists I" such that

0 <  t* < 1/w In ( l  +  —---- U(,°° .
V M  max16R+ |A(/)|y

3Cf. §1.4 of [33].
4Cf. §4.2 of [33].
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The operator T  restricted to C  ([0, t*], 'H) : 'H —> 1i is a contraction for 0 <  t <  t* 

since for any x ^ C H w e  have

II (T x ) ( t ) - ( T i > ) ( t ) W H < M \ \ B \ \  f  A(r)e"(t“T)||x ( r )  -  V’MIIw d rJo

< Ml/Goo f  ew(t_T) m ax |A (i) |||x (r) -  V’M II«  d r
Jo i6 [0,i*]

= M t G r 1 ) . ^ ] |A(*) || |x ( f ) - ^ (t)||w

< m a x |W i)-V W II« .

Hence, using the contraction mapping theorem, we have a unique solution in the 

interval t £ [0,f*]. This solution can be extended over the whole real line by repeat­

ing the above procedure over intervals of length t*. If the load is continuous then 

differentiation of (4.8) shows th a t x  satisfies (4.4). ■

4.3 Lyapunov S tab ility

In this section we use the energy of the rod to analyse the stability using Lyapunov 

functions. W hen the  load is constant we get a result analogous to th a t derived 

using Laplace transforms in Chapter 3. For tim e dependent loads we show th a t the 

solution is stable for loads satisfying 0 <  A(t) <  AiGoo, and describe conditions for

which the solution is asymptotically stable.

From the  definition of to ta l energy (2.23) we see th a t

2£(*) =  11x11« =  <X,X>«. (4.9)

By differentiating (4.9) we can prove the energy inequality (2.25) using the dissipa-

tiv ity  of A.

Proposition 4.4 Let x  be a solution of (4-3) then

1. E[t)  >  AiGoo f  y] ds.
Jo

*■*<*>
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Proof. From the definition of E(t)  and the Poincare inequality,

E(t)  = J  ( v ( L av) +  Gooj/gg +  J  u{i~)[yss ~  wss(t )]2 d r )  ds

> Goo [  y2ss d5
Jo

> X1 G00 [  y2s ds.
Jo

Differentiating (4.9) we get the relationship 

E =  (Ax, x ) h  +  X)-H
2 p 1 poo ^ p i

=  -  /  / a(r )  [yss(t) -  wss(t )] d r d s - A ( i ) /  yssv ds
Z Jo Jo Jo
1 r l  r oo 1 rl r l

= 2 JQ j 0 " ( T) “  wss(r)] d r  ds +  \ ( t ) -  — ^  y2 ds.

The desired result now follows the convexity of G(t). ■

The stability behaviour of the solution of (4.3) can be analysed using a suit­

able Lyapunov function. S tandard results involving Lyapunov functions imply the 

following result5.

L em m a 4.5 Suppose that V : R x  —>• R is continuous, V (t,0 ) =  0 and there

exists positive definite functions6 w and W  such that

“ (llxll) <  V(t,x)  <  w (llx ll)- (4.10)

Then, the solution of  (4-3) is uniformly stable.

T h e o rem  4.6 Suppose that the relaxation function G(t ) is positive, nonincreasing 

and convex with G«> >  0. Let A(t) belong to (71(R +) and suppose there exists

numbers S\ >  0 and e2 >  0 such that <  A(t) <  AiGoo — £2- Then, if  the function

F  defined by

(4.11)

5C f. §10.13 o f [21] o r C hap te r 5 o f [41].
6A  fu n c tio n  W : M —V K  is positive definite on ffi i f  i t  is con tinuous, W (0 ) =  0 , and W(t)  >  0 ,

fo r  t ^  0 .
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is integrable over R+, the solution of (4-3) is uniformly stable.

We prove the preliminary lemma.

L em m a 4.7 Suppose A G C'I(E +) and satisfies 0 < A(i) <  A[ f or all I. > 0. 

Then, i f  F(t) is integrable over IR+ there exists a p(t) € Ca (R+;lR+) satisfying

p ( t ) > p o o > 0 .  (Ill)

pX pX < 0 .  (H2)

p{X1Goo- X ) - PX < 0 .  (H3)

Proof. Assume A and F  are as in the hypothesis of lemma. We define p(l) as

p(t) =  exp J F ( r ) d r )  . (4.12)

Since F(t)  is locally integrable and positive. p(i) is positive and non increasing. Also

p(t) > poo ■= exp F{t ) d r )  > 0.

Taking natural logarithm of (4.12) and differentiating we get the equation

p(t) = ~p(t)F(t).

Then, from the definition of F(t)  we can see that

p <  —pX/X => pX +  pX < 0,

and

p<p'XJ{A i G o o - A )  =► ( A iG o o  — X)p — Xp < 0 ,

since p is positive and 0  < A(i) < AjG ^.  ■

Proof. (Theorem 4.6)

We seek a Lyapunov functional V'(Zjx) € C,(R+ x Ti\ R+) of the form

X) = P{{) f(x. X)n ~  X(t) [  yl ds
Jo
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for some suitable function p(t) £ C 1 (R+; R +).

Since the load satisfies £\ < A(t) < AjGoo — £2 and 0 < Poo < p[t) <  I we can 

bound V ( t ,x )  between two positive definite functions

Poo£2 (x,x)n < V%x)  < (x,x)u-

Differentiating V  we get

(x»x)*- * ( 0  /  I/*drjo

+  p(¿) í  í  ó (r)  [y«(*) -  uiss(r)]2 d r  ds -  Á(¿) [  y] ds 
L/ o j o  j o

=  p(0<x»x)« -  [p(0M 0 + p(0M 0] /o y2s ds
r \  roo

+ p(t) /  ct(r) [yss(t) -  tvss(r)] d rd s .
JO j o

Since p(t) satisfies (M2), we have the inequality

-  [p(i)A(i) +  p(0M 0] Jo v l (ls <
p(/.)A(t) + p(QÁ(¿) 

A,Goo (x.x)w-

Thus

V(í,x) < X a 2,{a'g~ pW - - Á(í)p(¡)}

+ p(¿) í  f  ¿(r) [ys.,(í) -  wss(r)]2 dr ds. 
jo jo

Because p(i) satisfies (M3) and the last term is negative we get

ñ * , x ) < o . (4.13)

By applying Lemma 4.5 we get the stated result. ■

We now discuss the meaning of the hypothesis in Theorem 4.6 that F  is inte­

grable. The following lemma shows that for loads with a finite number of critical 

points F  is integrable. On the other hand, for certain oscillatory loads whose am­

plitude does not tend to zero as t —> 00, F  is not integrable.
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L em m a 4.8 Suppose the load X(t) satisfies the conditions of  Theorem 4-6. Then,

1. i f  X(t) is eventually monotonic, F  is integrable.

2. i f  X(t) has an infinite number of critical points tk, k £ N , then a necessary 

condition for F( t)  to be integrable is

a(L«) = L (4'14)

Proof. Suppose there exists t* £ R + such tha t X(t) > 0 for all t > t*. Then

poo rt* roo
/  F ( r ) d r  =  /  F (r )  d r  +  /  F ( r )  d r

Jo Jo Jt*

-  [  F ( t ) d r  -  [ln(AiGoo -  A(Z))]“  <  oo,
Jo

since F  is locally integrable and £i <  X(t) <  AiGoo — e2 for some positive numbers

£1, e2. The proof is similar for the case A(i) < 0 for all t > t*.

Assume the load A(t) has local minima at the points i 2k and local maxima at 

¿2)c+i where k £ N. Then

C h a p te r  4, S e ctio n  3   ______________________ Lyapunov S tab ility

rhk+2 JL /  + l ft 2j+2\
I  F ( t ) d r  =  -  J 2  I + F (r ) dr

J t0 ■ Q \ ' l  t-2] J h j + 1 J

.  £  ( _  f ‘w  M  dr + f ‘W  d r '
j —0 \  A (r J Ai Gtqo¿2j A(r) Jt2j+i XiGvo — A(r) 

_  V ' (] _ % L  , I AxGqq — A(t2j+i ) \
¿=0 \  A(i2j+i) AiGoo — A(i2j+2)y

v -  ( u X(t2j) (AiGoo -  A(i2j+i)) A

i=0

Note th a t all the term s in the series (4.15) are negative. Hence, taking the 

exponential of (4.15) we have

A(^2j+i) (AjGoo — A(t2j+2)) 
t0 J j=0 X(t2j) (AiGoo -  A(£2j+i))

k /  W i  x

e x p ( / i2A+2F ( r ) d r ) =  f [
'"'to / a—n

i=0 \ 
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where the iuj >  0, are given by

wj =  [/2f +l  ̂ (XiGoo — A(i2j+2)) — (A[Goo — A(i2j+i))
A(̂ 2j )

=  ~ ' ) A , G “  +  ~  ( 4 J 7 )

The denominator in (4.16) is finite since the load satisfies ei < A(t) < AiG«, —e2, 

with £ i ,£ 2  >  0. Hence, a necessary condition for the infinite product to converge is 

that Wj —► 0 as j  —> oo.

In order to prove the condition (4.14) is necessary we assume Wj —> 0 as j  —» oo,

and

lim =  ¿0 4 - 1-
j->°o A (/2j+ i)

Since

we have

lim A(¿2j-t-2) — A(i2j) =  AiGqo (  1 — -r~\ =  AiGoo 7 ^
J—»oo \ Oo / «0

Hence

lim A(Z2j ) =  oo.
j —>oo

This contradicts the boundedness of A(i). ■

We will now briefly look at some important time-varying loads.

E x am p le  4.9 An important example for which F  is not integrable is given by

A(i) =  Pq +  Pi cos(Oi),

where £ < P0 -  Pi, Po + P\ < AiGoo -  e, with e > 0. F(t)  is not integrable since

A (t2j) _ P0 - P i  
fi) +  P\

The behaviour of the n th Fourier mode is studied in Section 5.6 using this type of
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load for the special case of a standard viscoelastic material. Numerical computations 

suggest however th a t, even though F  is nonintegrable, the solutions are bounded.

E x a m p le  4.10 In the case of nonstationary param etric excitation of the form

A (t) = P0 + cos (Hi), (4.18)

it is easily seen th a t Wj —>■ 0 as j  —ï oo. In fact,

<  A , G « ,  Pa _  p— h i2 t  -  l j  +  ( P 0 +  P , e  )  ( '  -  / >„ +  p , j

p-Î2Î2j+l I p--P2<2> p-Î2Î2j I p-i°aÎ2j+2
<  PoAiG«,- — --------+  P ,(P 0 +  p ) -

P o - P i  V Po

<  2 PqAi O o , A(Po +  PO 
4*

P o -  Pl Po
a- P 2t 2 (4.19)

where

tj =  —1/Í) arc tan(P 2/w) +  n ( j  +  l)/ffc, j  =  0 ,1 , . . .  .

In order to  show th a t F ( i)  is integrable, we use the fact th a t the infinite product

(4.16) converges if and only if the series

OO

5 > i ,  (4.20)
j =o

converges. Using the bound (4.19) it is easily seen th a t the series (4.20) converges 

by comparison w ith a geometric series. Hence, F(t)  is integrable. Figure 4.1 shows 

the behaviour a load given by (4.18) and the integral of F(t)  calculated up to t 2o- 

These figures were generated using the  following data :

Param eter Po Pi P2 n

Value 1.1 1.0 0.1 1.0
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Load \ ( t )

t

t
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M ultiple Scale Approach

Chapter 5

5.1 In troduction

In this chapter we examine the dynamics of the viscoelastic rod using various mul­

tiple scale expansions. A brief outline of the procedure is discussed in the next 

section.

In Section 5.3 we study the autonomous problem for the standard viscoelastic 

m aterial. If the relaxation tim e is large, the elastic and creep effects should occur 

on different tim e scales. This expectation is supported by the work in Chapter 

3 on constant loads A <  A„. For stable loads A <  AnGoo, the deflection modes 

behave like a dam ped linear oscillator w ith an exponentially decaying amplitude. If 

A™Goo <  A <  A„, the rod’s initial oscillatory behaviour is damped, but the effect of 

a slowly increasing term , due to creep, results in the rod buckling. This instability 

is discernible after a critical tim e1 th a t is an order of m agnitude greater than  the 

period of the oscillations.

The retarded problem is investigated in Section 5.4 for general viscoelastic ma­

terials. This entails replacing the relaxation function G by its retardation Ge, where 

Ge(t) =  G(et) and retarding the known initial history. For small values of the re­

tardation  param eter e the elastic and creep response occur on different tim e scales. 

The leading order and the first order term s are calculated using a procedure similar 

to  th a t used in [1, 2]. When we set the retardation param eter e =  1 in this approx­

im ate solution of the  retarded problem, it happens tha t we get a function which 

agrees exactly with the approxim ate solution found in Section 5.3, if the rod is of 

standard viscoelastic material.

In Section 5.5 we consider the effect of a slowly varying load. In particular, we

xThe  te rm  c r it ic a l t im e  is used in  various senses in  the lite ra tu re  on creep buck lin g . The  
d e fin it io n  used here is n o t s tandard .

5 6
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examine the  behaviour as the load slowly crosses the equilibrium buckling load.

In Section 5.6 we consider periodic loads of the form A(t) ~  P0 +  P^ cosilt,  

where Pq < AnGoo. We know from the work in Chapter 3 th a t the trivial solution 

is asym ptotically stable if Pi =  0. We use multiple scales to examine the instability 

produced by principal param etric resonance when |P i| is small. This approach 

allows us to calculate the transition curves tha t decompose the param eter space 

into stable and unstable regions and also to calculate the form of the solution in the 

neighbourhood of these curves.

Note th a t in order to simplify notation, we will use e to represent different 

quantities in the separate problems discussed in Sections 5.3-5.6. Also, the variables 

t/c, k =  0, 1, 2, . . .  are used to represent different tim e scales throughout this chapter.

5.2 M u ltip le  Scales

In  Sm ith [37] second order differential equations of the form

+  =  * > 0, (5.1)

subject to the initial conditions y(0) =  a, y(0) =  b are studied for suitable functions 

/ .  In each case, an approximation solution was found by considering an ansatz of 

the form

N

y ( t \ £) = ^ 2 e kYk(t ,et) + £N+1 ifo (f ,e ) , (5.2)
k = 0

where each term  Yk(t , t i )  is assumed to depend on the fast tim e i, and the slow time

t l = et. This is similar to the Lindstedt-Poincare procedure, but in this case the

fast tim e is ‘detuned’ and given by t + =  t ■ (1 +  c\£ +  c2e2 +  ■•■).

For a num ber of functions /  in (5.1), the two-time expansion in (5.2) has been 

shown to be uniform in the sense th a t the quantity R ^ [ t , e )  is uniformly bounded 

(as £ —> 0+) for all t  on an expanding interval 0 < t < T /e .  For example, see Kollett 

[25] or Smith [37].
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As we shall discuss later, we need to use a more general form of the expansion 

in equation (5.2). The two-time expansion of (5.2) is extended by introducing the 

tim e scales,

tk = ekt, for k  =  0 ,1 ,2 , . . .  . (5.3)

Using the chain rule, it follows tha t the derivatives w ith respect to t can be written 

in term s of partial derivatives with respect to  the new independent variables t^, i.e.,

T7 =  Do +  eDi  +  • ■ • , —— =  Dq +  2eDoD\ ■+ e2 (D\  +  2DqD 2 j +  • * • ,

C h ap te r 5, S ectio n  3   _______________ D ecom position  o f E lastic and Creep Effe c ts

(5.4)

etc.. Here we denote the partial derivatives with respect to the new tim e scales by 

D k  =  § j ~ -  A partial differential equation in the M  independent variables t o , . . .  , 1-m  

is obtained by substituting (5.4) into (5.1).

Let us assume th a t the solution of this partial differential equation can be rep­

resented by a m ultiple scale expansion of the form

Y ( t 0, . . .  , t M',e) ~  ■ ■ ■ ^ m ), as e -» 0, (5.5)
k=o

where each term  in the expansion, Yk, depends on t and e in such a way tha t the 

result is uniformly valid over the tim e scales under consideration. In other words, 

we require for each N  tha t

sup
o < t < T / s M

N

y ( t ' , e ) -  Y ^ e k Y k { t o, ■ ■ ■ , t M ) ) /e
'v k= 0 /

N+1 (5.6)

be uniformly bounded for all small e. In general, the number M  of slow tim e scales 

required will be no greater than the order N  to which the expansion is carried out. 

The necessity of m ore than  two tim e scales for higher order equations was recognised 

by Kabakow [23] for systems of coupled oscillators2.

2Cf. [24], Sec. 3.5.
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5.3 D ecom p osition  o f E lastic  and C reep Effects

It can be inferred from the linearised dynamic equation for the standard viscoelastic 

linear m aterial th a t y(s,t)  =  u(i)sinn7rs is a solution, if u(t) satisfies

ü  =  - 7 nA„(An -  A( t ) ) u  + 7„A2a(l -  G^) f  e_a(i~T)u(r) dr, t  > 0,J —  OO

(5.7)

subject to the initial conditions u (0) =  ao, ún(0) =  ai and a prescribed initial 

h istory  The physical param eter a, which represents the reciprocal of the relaxation 

tim e is small for m any viscoelastic m aterials. In the lim it as the relaxation period 

approaches infinity we get the dynamic equation corresponding to an elastic material. 

In this section we wish to construct a uniformly valid expansion as a —> 0 for the 

solution u(t), thereby decomposing the elastic and creep effects. We shall examine 

this problem for constant loads less than  the instantaneous buckling load Xn. In 

particular, we shall investigate the effect which the type of initial disturbance has 

on the critical tim e in the case of viscoelastic instability.

In order to  use a m ultiple scale expansion, we first need to convert (5.7) into an 

ordinary differential equation. The integral in equation (5.7) can be removed if we 

define a function c(t) by

c(t) =  7„A2(1 -  Goo) f* e~a^ u ( r )  d r, t  > 0. (5.8)
J  — OO

In this chapter we will only consider the typical case of an integrable initial history 

Hence c(i) is well defined as a —>■ 0+ and satisfies the differential equation

¿ =  7nA^(l -  Goo)u -  ac,  c(0) =  7nA^(l -  Goo) [  e^r)u(r) dr.J — OO

The value of c at tim e t  = 0 depends on the initial history of u.  Hence, as a  —>■ 0+
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In order to simplify expressions we introduce the param eters3

^  — ^/'7nAn(A7l A), fl — Goo).

The dynamic problem for the n th mode can be expressed as

u(t)  +  io2u(t) = ac(t), c(t) =  fiu(t) — ac(t), (5.10)

subject to the initial conditions u(0) =  a0, u(0) =  ai and equation (5.9). Let e = a. 

We would like to obtain a multiple scale expansion for u( t ) and c(t), uniformly valid

on the  interval 0 <  i <  T /e 2 as e —> 0. A two-time expansion of the form (5.2) or

with a detuning of the fast tim e as in the Lindstedt-Poincare procedure is unsuitable 

for this problem, due to the length of the tim e interval required to investigate the 

relationship between the type of initial disturbance and the critical time. A two- 

tim e expansion over 0 < t < T / e 2 produces secular terms. Therefore, we assume 

th a t u(t)  and c(t) depend on the three tim e scales t /. =  ekt , A: =  0, 1,2 such th a t

u(t\e)  = U e), c(t ; e) =  C(t0, t l , t 2] e).

U(to ,t1, t 2',e) and C ( t0, t i ,  t 2\ e) satisfy the system of partial differential equations

(Do -f- eD\  +  e2 D2)2U(t0, ¿i, i 2;e) +  uj2U(to, ti ,  t 2; e) =  eC(to, i i ,  t 2 \ e),

(5.11a)

(Do +  eDi  +  e2Z?2)C,(io, £) =  [¿U(to,ti ,t2] e) — eC(t0, ¿1, t 2; £)■

(5.11b)

We assume th a t U (to , t i ]£) and G (^o,ii;e) satisfy the asymptotic expansions

U(to, ii; e) ~  Uo(toi ti) +  eUi(to, i j)  +  . . . ,  (5.12a)

G (i0,i i ;  e) ~  Co(£o, ¿i) +  £C i(io ,ii) +  • ■ ■» (5.12b)

3N o te  th a t w represents the n a tu ra l frequency fo r the correspond ing e lastic ro d  and is always 
pos itive  fo r the  range o f loads exam ined in  th is  section, i.e ., A <  An .

6 0
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as £ —>■ 0.

We now successively determine Uk and Ck by substituting (5.12a)-(5.12b) into 

(5.11a)-(5.11b). As the technique used here is standard we shall omit the details 

and refer the reader to [24] or [22], The 0(1), 0(e)  and 0(e2) solutions’ dependence 

on the fast t ime and the two slow times can be shown to be of the form

2 2 

Uk(to,tl , t 2) =  Ake ^  cos(u;to +  ^  sin(wio +  g^?^2)

+ Fk^ e ^ - ^ \  (5.13)

for k =  0,1, 2. Using the initial conditions we can calculate the constant coefficients 

Ah, Bk and Fk- The 0(1) and 0(e)  coefficients are given by

Aq =  ao, B o  =  a-y/u, Fq — cq a i f i / t o ,

A \  =  —Co/ lj2 — a i f i / t o 3 , B \  =  ao fj,/(2u j3) i  F± =  ci — ao2/^(2cj‘! — ¡jluj — 1 ) /w 5.

The 0 ( e 2) coefficients used in determining U2 are given by

A 2 =  —C\/(jJ  “I- Clo2fJj(2u! — fXOJ — 1 ) / OJ ,

B 2 =  co(/i — 2w2)/(2w 5) — ai/j,(fi — 4 fiu> +  8w3) / ( 8w7).

R e m a rk  5.1 Note that over the interval 0 <  t  <  0(e~1) there may be a reordering 

in the first three terms of the multiple scale expansion. This will occur for loads in 

the range A„Goo <  A <  A„ since the 0(1) solution does not contain a creep term 

with the type of  initial conditions assumed here. A creep term will appear in the 

0(e) or 0 (e2) solutions depending on the initial conditions.

Hence the type of initial disturbance has a large effect on the size of the creep 

component in the solution. This effect has also been discussed in [39] where the 

static and dynamic initial disturbances for the zero history problem were compared. 

For constant loads th a t result in viscoelastic instability, i.e., if A £ (AnGoo,An), 

this relationship between the type of initial disturbance and the m agnitude of the 

creep response component influences the critical tim e of the rod. We consider the

6 1
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multiple scale approximation and determine the critical tim e for which the creep 

component is of the same order as the decaying elastic response for various types of 

initial disturbances.

In the case of a static disturbance of size ao, with zero initial velocity (ai =  0) 

and (c0 =  ci =  0), the creep term  becomes dom inant when

0((A> +  eflOe-'*/*2“^ 1) =  0{e2F1e ^ ~ 1̂ 1)..

Hence the static critical tim e is given by

e22/i(2u>2 — /jw — 1) /  w31 2  to2 — 3 fi 

ÎCT=ï ~ 2 ^ ln u ;2 +  e / i / 2

For loads in the interval (AnGoo,An) we have 2to2 — 3/i <  0. Note also th a t the 

critical tim e is independent of the size of the initial static disturbance.

The critical tim e for the rod with zero static disturbance (ao =  0), an initial 

history w ith (c0 =  0), and an initial dynamic disturbance of size a i, is approximated

by

O((B0 +  e A i)e -^ (2w2)<1) =  O (eJF,0e(/*/wa- 1)tl), 

for small e. Hence the dynamic critical tim e is given by

1 2co2 -
tcT ~  ë “ ! ^ 2

3 / i
In

tj.LLO

OJ -)- £//

This relationship can also be seen in the Figures (5.1)-(5.2), which were gener­

ated using the following data.

Param eter n An In Goo £ A

Value 1 9.8696 1.0001 0.1 0.6 1.9739 (=  2 \ nGoo)

In each case the numerical solution (calculated using the procedure discussed in 

Section B.3.1) is not plotted as it is indistinguishable from the multiple scale ap­

proxim ation of yn to within the thickness of the  curve.
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Multiple Scalcs Solution for yn(t)

Figure 5.1: Static initial disturbance with a x = c0 = c\ — 0.

0 10 20 30 40 50 60 70

Figure 5.2: Dynamic initial disturbance with with a0 — c0 =  U.
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5.4 R etarded  G eneral D ynam ic E quation

In this section we examine the retarded problem for the general autonomous dynamic 

equation. The retarded problem is formed by replacing the relaxation function 

G(t ) by Ge{f) G(et),  and the known initial history u(t)  by u(st).  where e is a 

small positive param eter. In the lim it as e —> 0+ , we have the dynamic equation 

corresponding to an elastic m aterial. The motivation for this approximation is 

th a t some relaxation functions are slowly varying. We examine this problem using 

m ultiple scales and determ ine the leading order terms. Also by setting e =  1, we 

get a function, which we can compare with the series solution found in the previous 

section for a rod of standard viscoelastic material.

The nth Fourier mode u(t),  of the general autonomous initial history problem is 

given by u(t)-\-jnXn(Xn — X)u(t) — —7nX2n G(t — t ) u ( t )  dr, with initial conditions 

u (0) =  «o, ¿ (0) =  a\ and u{t ) known for t <  0.

We will consider the retarded problem with a relaxation function of the form 

Ge(t) :=  G(et), where 0 <  e <  1. So now defining a(et) = — we can write

the retarded dynamic equation as

U (i; e) +  7nAn(A„ -  A)U(t\e) = 7„A2e f  a(e(t  -  t ))U(t -, e) d r  +  ■jnX2nf (e t ) ,
Jo

(5.14)

where the initial history function f ( t ) depends on the retarded initial history u(et). 

Setting e =  1 we recover the original dynamic equation and the n th Fourier mode 

is given by u(t) = U(t; 1). In order to simplify notation, we denote the natural 

frequency of the corresponding elastic system by u  = yJ^nXiXn ~  A).

We introduce two times t 0 =  t and ti  =  et. Expanding the tim e derivatives in 

(5.14) in term s of the new tim e scales we obtain a partial differential equation for 

U(to,t\ \E).  We propose as an ansatz

OO

U{t\e) = U(to, ¿1; e) ~  ^  skUn(t0, ti),  as e —> 0. (5.15)
k=0

Since U(t0, t i ] e ) is the solution of an integro-partial differential equation, we
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cannot apply the multiple scale approach in the same m anner as in the previous 

section. In order to overcome this difficulty we adapt the procedure described in 

work performed by Angell and Olmstead [1, 2],

The leading order term  is determ ined by substituting U{t\e)  =  C/0(^o, ^i) into 

equation (5.14). Hence U0(t0,t i )  satisfies

( p i  +  w2) Cb(io,ii) =  7n > i e j  a(e(to  -  t ) ) U o ( t , £ t )  d r  + j K f ( t i )  +  0 ( e ) .

(5.16)

Following the approach in [1] we w rite the integral in term s of the fast tim e, t 0, and 

take the limit as e —> 0+ . Hence

U o( t o ,  t i )  =  A 0( t i )  cos(wto) +  B o ( t i ) sin(cjio) + (5-17)

Now in order to ensure th a t we have a uniform expansion in t we substitute

(5.17) into equation (5.14) and rewrite this equation in term s of the slow variable 

¿i. Taking the limit as e —»• 0+ while holding t\  fixed yields an equation for i'o(ii) 

which can be solved using Laplace transforms to give

J? (n) =  7nA£/(p) =  Xnfjp) (, 18x
0 to2 — 7 uA^a(p) An(l -  a(p)) -  A’

where Fo(p) represents the Laplace transform of Fo(t 1), etc..

The leading term  for the creep, Fa(ti), can be shown to be in L1(R.+) if A < 

AnGoo. W hen \ nGoo <  A <  An the creep term  can be separated into an exponential 

increasing term  and a rem ainder which is in L1(R +).

It remains for us to determ ine the t \  dependence in the coefficients A 0( t  1) and

Bo(ti).  To do this we look at the right hand side of the first order equation. Using

U{t\e)  =  Z7o(io, ¿1) +  eU ^to j t i )  in (5.14) gives

C h a p te r  5, Section 4 _________________________________     R etarded General Dynam ic Equation

( D l  + w2) U i  -  7nA2 e a(e(t0 -  r))C/i(r, er) dr =

-2DqD\Uq — \ I e {[D20 + u 2)U0 -  /(eZo)) + 7 nA2 J  a(e(i0-r))£ /0(r, er) dr+0(e).

( 5 .1 9 )
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Expanding the integral on the right hand side of equation (5.19) using integration 

by parts we find th a t the term s involving cos(u;io) and sin(cjio) will produce secular 

term s in the particular solution for U\. Hence we have

A0(ii) =  Ao exp ^ - 7" » #o(*i) =  Bo exp — ■

We solve for Ui(t0,t i)  and i 'i ( i i )  in the  usual m anner to give

A(P) =  ]!LA^ )  F l { 0 )  =  ^ a ( 0 ) a u  (5.20)
w 2 (o;2 - 7 nA 2na (p ) )  u 2

and Ui(t0, t i ) =  A i( t i )  cos(ujto) + Bi( t i )  sin(wi0) +  -Fi(ii).

We now have the leading order term s and the first order correction term . This 

procedure can be continued to  get the slow tim e behaviour of the first order correc­

tion term . Finally we use the initial conditions to determ ine A 0, B 0, etc.. Hence

U(t\ e) =  V'o(tj) +  eFi(t i)  +  0 (e 2)

+ (A0 + eAi) exp i ~ 7" cos(wi) + + efli)exp sin(wi),
(5.21)

where F0(ti)  and i i ( t i )  are given by (5.18) and (5.20).

Using the initial conditions at tim e to =  0, we have

A0 =  a0 -  Fo(0) =  a0 -  e ^ f ( 0), A 1 = Fy{0) = - a i ^ - a ( 0),U> L0

C h ap te r  5, Section 5   __ ____________ _____________________Slow I y V ary ing  Load

and

B 0 = a u  B i  =  (<■„ -  F0( Q ) ) ^ g r  ~  ^ / ( ° )  “  ^ r ^ “ (0)/(°)-

An approxim ate solution to the retarded problem is now given by (5.21). Setting 

e =  1 in (5.21) we get a candidate for an approxim ate solution for the dynamic 

equation. Comparing this result w ith tha t calculated in the previous section for the 

standard  viscoelastic m aterial we see th a t they happen to agree up to 0 ( e 2).
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material, while setting p < 1 results in the effects of the slowly varying load being 

masked by the viscoelastic effects. Hence we set p =  1. We look for solutions which 

satisfy

U(t0, ¿1, ¿2! s) /'15 2̂) +  £{Jl{to, ¿1, ¿2.) +  • • • ) as £ —> 0,

and a similar asymptotic expansion for C(to , t i , t2\e). In order for the oscillations 

to appear for as £ —> 0 it turns out that ft  =  k(et). Hence

¿0 =  /(¿; s )  =  I  fc(er)dr =  i /  ¿(r)dr.
■10 £  JO

The general solution to the 0(1) problem is

Ua(ta>ti) — v4o(Zt)cosio +  Po(/i) sin Zo,

C0(t0,t\) = f i /kA0{ t i ) sm t0 -  n / k B 0( ti )cost0 +  ¿'o(ii).

Using the 0(1) solution we have

fc2(J5o -{-1)C/ 1 =  (^cxo/i-/kAa(t{) +  k Aa(t\ ) + 2D] Ao(i 1) j sin Iq

— ^«o/i/kBo(li) +  k'Bo(i\) +  2/^i5o(^i)) ^osIq-{• (XqFo(1,i ).

Removing secular terms over the interval 0 < t < 0(£-1) implies

M  <0 =  /loe-w ' /2'i(,|)V^(oj7MiO, Bo(ii) =  tfoe-“‘>'l/2/<“ '>v'fc(0)/fc(ii),

where i f ( t L) :=  / 0£; dr.

Therefore, the fast time dependence of U\ is

U1 (¿0>  ̂1) = A i (¿i) cos 1,q -f- B \ (ii) sin ¿o "f o^o/k^l'o-

Removing the secular terms in the equation for C\ implies Fq(L\) =

This is the behaviour of the creep response, over the interval 0 < t\ < 1, due to
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the slowly varying load. The dependence of C\ on the fast tim e is easily found 

by integration. Using the 0(1) and 0(e) solutions we can expand the equation 

determ ining the fast tim e dependence of C/2 and remove secular term s over the 

interval 0 <  t < 0 (e _1). Hence we determ ine the slow tim e dependence of the 0(e) 

coefficients as

A 1( t i) -  e~a^ 2K^ y / k ( 0) / k ( t 1) ( A 1

-  J  aifj, /k(r)A0 -  a 0fi(a0fi -  2a0k {r )2 +  3k'(r)/c (r))/ (2£;(r)4)B0 d r ) ,

i) =  e - a° ^ K^ ^ J k { 0 ) / k ( t  i ) ( B a

— J  a i ^ / k ( T ) B 0 +  aofj,(aofi -  2a 0fc(r)2 +  3A:'(r)fc(r))/(2A:(r)4)Ao d r) .

Note th a t A j(ti) and Bi( t i )  will, in general, contain term s which are secular 

over the interval 0(1) < i i  <  0 (e -1 ). While these terms can be removed if we use 

a second slow tim e scale, the  algebra is not straightforward.

Finally, using the initial conditions we have A 0 =  a0, B 0 =  ai: F0 ~  co+ai/i/fc(0), 

A 1 =  —a o(A:(0)co +  ai/i)/fc(0)3 and Bi = ao(k'(Q)k(0) +  a o^ ) / ( 2fc(0)2).

Figures (5.3)-(5.5) shows the behaviour of the numerical solution and the m ulti­

ple scale approximation for a num ber of slowly varying loads. In Figures (5.3) and

(5.4) we examine the behaviour for a slowly varying periodic load. The term  which 

determines the stability behaviour is given by the exponent of the creep term. If 

lim s u p ^ ^  f i K ( t i )/¿i < 1 then  the m ultiple scales approximation is stable otherwise 

it is unstable if lim inf^oo ¡j ,K(ti)/ ti  >  1. In Figures (5.3) and (5.4) the load slowly 

oscillates around the long term  critical value. In Figure (5.3) the solution is stable 

while in Figure (5.4) it is unstable. In Figure (5.5) the load changes from a stable 

value to an unstable value at tim e t\ =  10.
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Param eter n I n G o o a 0 k(t  i) e a0 a i C o

Value 1 9.8696 1 . 0 0 1 0.5 0.1 7.5 — 0.9 cos(ii) 0.1 1.0 0.0 0.1

0 100 200 300 400 500 600
t-a x is

Plot of slowly varying load and multiple scales creep exponent.

-2
0 100 200 300 400 500 600

t-a x is

Figure 5.3: Numerical solution w ith multiple scale bound on amplitude.
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Param eter n 7 n Goo a  0 k(ti) e ao ai Co

Value 1 9.8696 1.001 0.5 1.0 7.2 +  cos(et) 0.1 1.0 0.0 0.1

0 50 100 150 200 250 300 350 400
t-axis

Plot of slowly varying load and m ultiple scales creep exponent.

t-axis

Figure 5.4: Numerical solution w ith multiple scale bound on amplitude.
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Param eter n An 7« G o o «0 fc(ii) e ÛÜ ax C o

Value 1 9.8696 1 . 0 0 1 0.5 1.0 7. +  .2 tanh(<i — 10) 0.1 1.0 0.0 0.1

t - a x i s

Plot of slowly varying load and m ultiple scales creep exponent.

t-axis

Figure 5.5: Numerical solution w ith multiple scale bound on amplitude.
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5.6 P aram etrica lly  E xcited  R od

In this section we examine the stability of a rod of standard viscoelastic m aterial 

for tim e-dependent term inal loads of the form

A (t) = Pq +  Pi cos fit, (5.24)

where the am plitude Pi of the cos f It term  is small.

The dynamic equation for the am plitude of the n th Fourier mode is given by

u(t)  +  An7„(Ari -  P0 -  Pi cos(fii))u(i) =  ac(t) 

c(t) =  fiu(t) — ac(t),

(5.25a)

(5.25b)

where c(t) is defined by (5.8) and ¡j, — A^7„ (l — Goo)- The behaviour of a general 

linear viscoelastic rod with zero initial history was studied by Cederbaum & Mond

[8] by examining the retarded equation using an approach similar to th a t used in 

Section 5.4. We shall use a multiple scale expansion to determine approximations 

to the boundaries between the regions in a suitable param eter space for which all 

solutions to (5.25a)-(5.25b) are stable, and the regions in which there are unsta­

ble solutions. From Chapter 3 we know th a t, when Pi =  0, the general solution 

of (5.25a)-(5.25b) is asymptotically stable if Pq <  AnGoo. Here we examine the 

phenomenon of instability due to principal param etric resonance when the constant 

component of the load satisfies P q <  An Goo.

In order to simplify our exposition we rescale the dynamic equation. We set 

fIt  =  2t , and define u (t ) :=  u ( f f ) ,  and c(r) :=  (f f)-  Hence equations (5.25a)-

(5.25b) can be expressed in the form

u -f- 5 u  = a c  + 2e u  cos(2t), c = j l u  — a c , (5.26)

where
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Figure 5.6: Stable (Ss) and unstable (£u) regions in the param eter plane for the 
M athieu equation.

Now, in order to clarify the presentation, we will drop th e ” notation and replace r  

by t  in equations (5.26).

If we take the lim it as the relaxation tim e goes to infinity, (a  —>■ 0+), then 

equation (5.26) reduces to the M athieu equation,

u  + (5  — 2e cos 21) u  =  0. (5.27)

This is the dynamic equation for a param etrically excited elastic rod4. The transition 

curves in the (6, e) plane which divide stable and unstable regions are well known. 

Floquet theory considers systems of linear periodic ordinary differential equations 

(see, for example, Hale [21], Magnus & W inkler [30]). Using basic Floquet theory it 

is easily shown, for example in §5.5 of [30], th a t the transition curves intersect e =  0 

at the critical points 5 =  k 2, for k =  0 , 1 , 2 , . . . .  Thus, at these critical points the 

natural frequency w, is a nonnegative integer multiple of half the forcing frequency 

i). Figure 5.6 shows the behaviour of the transition curves for |e| small and k <  2.

We look for a uniformly valid approximation on the interval 0 <  t <  T /e ,  such 

th a t the first term  in the asym ptotic expansion shows the transition from stability 

to  instability. Hence, we assume that u(t) and c(t) depend on two tim e scales t 0 = t 

and ti such th a t u{t\e)  =  U(t0, t i ,£ )  and c(t; e) =  C(to, t i ,e) .

4A  b r ie f h is to ry  o f pa ram e tr ic  resonance in  an e lastic rod  due to  an ax ia l t im e -va ry in g  load is 
con ta ined in  [32], Sec 5.1.4.
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The actual choice for the slow tim e scale t\  depends on the param eter region 

under consideration. In particular the slow tim e scale is chosen so th a t the instability 

of the solution due to resonance is determined only by the unboundedness with 

respect to t 1 and not t 0. t / ( t0, i i ;e)  and C(to,t i]e)  will now satisfy the system of 

partial differential equations

(Do +  ~rr~Di)2U(to, ty \ e) 4- 8U[to, i i ; e) =  ‘leU(to, t\, e) cos 2to +  otC(to, t \ ; e), 
dio

(5.28)

(Do +  ~ D i ) U ( t 0, t i ,£ )  = f iU(t0, t i , e )  -  a C ( t0, t i;e).  (5.29)
C l i o

We are not concerned w ith the solution behaviour in a neighbourhood of the 

critical point corresponding to k = 0, since it can only occur for loads Pq > AnGoo. 

Hence, in this region, the solution to the unperturbed problem is unstable due to 

the creep component.

In order to determ ine the stability boundary near the kth critical point we expand 

S in powers of e as

S = k 2 + eS1 + e252 +  • • • • (5.30)

If the relaxation tim e is small (a  large) then the m otion is completely stabilised by 

the viscoelastic behaviour of the rod. Hence we set

a  =  £p(ao + £ai  +  •■•), for some p > 0. (5.31)

The choice used for p will be so th a t there is a balance between the viscoelastic 

effect and the resonance due to the param etric excitation. Also we assume th a t

U(to,ti] e) ~  Uo(to,ti) +  £Ui(t0, ti)  +  . . . ,  as e —> 0,

and a similar asym ptotic expansion for C(to ,t \ ,e ) .

We shall now discuss in detail the derivation of the leading behaviour in the 

neighbourhood of the critical points k = 1 and k =  2.
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C a s e  k =  1

We let t \  — et. If we set p > 1, we get the  aforementioned behaviour of the 

M athieu equation. On the other hand, if p < 1 then the behaviour of the zero order 

term  is determ ined by the viscoelastic behaviour of the solution. Hence we set p =  1, 

and the 0 (1) problem has a general solution of the form

U0(ta,ti) = Ao(tj) cos t0 +  B 0(ti) s in i0,

Co(to,ii) =  Fo(ti) +  /-iAo(ii) s in i0 -  n B 0( t i ) cosi0-

We now consider the 0(e) equations to determine the dependence of Ao(^i), -Bo(ii) 

and F0( t i ) on the slow tim e t\.  The equation determining t/i(io ,^i) is given by

(Dq -f- 1)C/1 =  ocoAo(t\) cos 3t0 +  Q!o-6 o(^i) sin 3io +  ocoFo(ti)

+  2^2D\  Ao(ii) +  aofiAoiti) — (5i +  l).£?o(ii)| sin to 

— 2^2D\Bo{t\)  -f ctofiBoiti) +  (¿i — l)A o(ii) j  cos to-

The first order solution Ui will contain term s th a t are not uniformly valid over 

the tim e scale under consideration unless the coefficients of cos(/0) and sin(t0) vanish. 

Thus, we require th a t

A -
( a :

= i (
d h kb 0j 2 \

1 | —Oiofi l  +  ^i 

 ̂1 — i i  —OiQp
■v  ---- 1
M

We require th a t the eigenvalues rj j ,  j  = 1,2, of M  have nonpositive real parts in 

order th a t A0(ii) and Bo(t\) are bounded. The characteristic exponents are given

by _______________

- a 0fi ±  J k  -  5\
*  =   2-----------'

If a 0p > 1 then  the m otion is completely stabilised to the first order by the dissi­

pative behaviour of the  viscoelastic material. On the other hand, if a 0p < 1, then 

one of the  chaxacteristic exponents has a positive real part when |i i | <  \Jl — alp,2.
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This bound on ¿1 determines the region of instability of the zero order solution. If 

l*i I ^  ^ 1  olqIX2 both  exponents lie m the left-half complex plane so the zero order 

solution is bounded and has the form of damped m odulated oscillations.

The transition curves separating the region where the  zero order solution is stable 

from the  regions where it is unstable are given by

5 =  1 ±  y 'e2 — a 2//2 + (5.32)

Therefore, the viscoelastic behaviour has a stabilising effect, in tha t, the instability 

region is narrowed and is raised from the i-axis. This gives the following critical 

am plitude, by which we mean the minimum am plitude at which the rod can become 

unstable due to resonance,

ec — a/j, = a\ hnK(Goo ~  l)^ 
An — Pq

(5.33)

For smaller values of a  these effects become less pronounced. This behaviour can 

be seen in Figure 5.7 for various values of a. The (i, e)-param eter space is divided 

into two regions £ s and Eu in which the leading order term  in the solution is stable 

or unstable respectively. The broken lines represent the corresponding transition 

curves for the M athieu equation.

Figure 5.8 displays the solution of the leading order term  for loads w ith stable 

and unstable amplitudes using the following data.

Param eter n An 7  n G oo a Po

Value 1 9.8696 1 .0 0 0 1 0.1 0.02 0.0

Using (5.33) we find th a t the critical am plitude is given by ec =  0.177653. In 

Figure 5.8(a) the am plitude of the param etric excitation is e =  0.1. Hence the zero 

order solution is stable since this am plitude is less than  the critical value.

The am plitude used in Figure 5.8(b) and Figure 5.8(c) is e =  0.4, which is greater 

than  the critical value of 0.177653. However, only the zero order solution in Figure 

5.8(b) is unbounded since the value of 5\ =  0.95 used in Figure 5.8(c) does not 

satisfy |5i| <  yjl  — OqU2.
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Transition Curve for a f i  =  0.6

8

Transition Curve for OLfi =  0.3

5

Transition Curve for a/J, =  0.05

s

Figure 5.7: Transition curves in the (£, e)-plane w ith a  fixed, (k =  1,2)
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(a) Multiple scale solution with a stable amplitude ($i =  0).
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Figure 5.8: Behaviour of the 0(1) multiple scale approximation under param etric 
excitation (near critical point k =  1).

(c) Multiple scale solution with an instable amplitude (<?i =  .9 5 ) .  
 1 1 1 1

(b) Multiple scale solution with an instable amplitude (oi =  0).
--------------------- 1--------------------------r ~  i i

u(t)  —

j__________ i
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Similar considerations apply near the critical point 8 — A. However, in this case the 

slow tim e scale m ust be chosen by t\  =  e2i. We also need to set p = 2 in equation 

(5.31) to obtain the richest equation when e —> 0.

The general solution to the 0(1) problem is

Uo{to: t i) ~  Ao(ii) cos 2to -f- B 0(h)  sin 2io, 

c0(t0,ti) =  F0(t i) +  /i/2A 0(ii) s in2 i0 -  [J./2B0( t1) cos 2t0.

Using the 0(1) solution the equation determining is given by

(Dq +  4)[/i =  A0(ii) ( l  +  cos4t0) +  B 0(ti) s in4 i0 — ¿iA0(ii) cos 2t0 — SiBQ(ti) sin2i0-

Hence i i  =  0, otherwise the 0(e) solution would contain secular term s. Therefore,

= A 1(ti) cos 210 + 5 i ( i i )  sin 210

+  sin2 i0(2A0(ii) +  Ao(ti)  cos 210 +  B 0(ti) s in2 i0) /3 .

We need to examine the 0 (e 2) equations in order to determ ine the slow tim e de­

pendence of A0(ii) and B 0(ti).  Note also th a t we do not need to calculate the fast 

tim e dependence of O i(io ,ti). This is because it not used in calculating U2 since it 

does not appear on the right hand side of (5.28) until the 0 (e3) terms.

In order to remove the secular term s in the 0 (e 2) equation determining fast 

tim e dependence of U2 , we require th a t the coefficients of cos(2£o) and sin(2io) must 

vanish. T hat is

C h a p te r  5, S e c tio n  6______________________________________  P aram etrica lly Exci t ed Rod

h )

_i  1

U J

4
V

-«0^ /2  +  ¿2 

\  — S2 —a 0f i / 2 t
"  V ”

M

' a *

B»

This system  of equations is of the same form as tha t studied for the critical point
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k  =  1. The eigenvalues ijj, j  — 1,2, of the m atrix  M  are given by

C h a p te r  5, Sectio n  6_____________ ____________________________________________________ Param etrica lly  Excited Rod

- a 0p ±  2 \/(l2 +  ̂ ) ( r 2  ~  *2)
rii =   j -----------------------------------------'

If a 0p  <  1/ 2, then a region of instability exists since one of the characteristic 

exponents has a positive real part when

|¡2 ~  1 / 6 1 <  l / 4 ^ / l - 4 a 2p 2. (5.34)

The transition  curves near the critical point 8 =  4 are given by

8 = 4 +  e2/6  +  e /4 \Je2 — 4a 2fx2 +  • * • • (5.35)

Therefore, there exists a non-zero critical am plitude given by ec =  2aofJ,, due to the

stabilising effects of the viscoelastic damping. This behaviour can be seen in Figure

5.7 for various values of a.

C a s e  k =  3

W hile the process is similar for all the critical points with k > 1, the amount of 

algebra required becomes lengthier as k increases. Hence we shall simply state the 

leading behaviour for transitions curves and the critical amplitudes.

The slow tim e scale is t \  =  ek and p — k  in order to  achieve a balance between 

the resonance and viscoelastic effects.

The critical am plitude is ec =  64/3ap. with transition curve given by

8 =  9 +  e2/16 ±  e2\ je 22-12 — a 2p 2/9  +  ■ • ■ .

C a s e  k  =  4

The critical am plitude is ec =  1152/2 a p. w ith transition curve given by

29 i----------------
5 =  4 +  e2/ 30 +  ±  £3\A V 11522 -  a 2p 2/ 4 +  • ■ • .
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Conclusions

Chapter 6

The topic of this work is to study the bending of thin perfect viscoelastic rods 

subject to a longitudinal load, A(t), close to the straight equilibrium position.

For constant loads, it has been shown th a t the initial history problem possesses a 

unique, absolutely continuous solution. Furtherm ore, this solution is asymptotically 

stable for loads A <  Ai G ^ .  When the constant load exceeds this critical value the 

solution can be decomposed into a sum of exponential terms and a function in L 1. 

Results like this had only been proved for the standard viscoelastic m aterial. This 

part of the thesis fills a gap in the literature, and leaves no im portant unsolved 

problems behind.

The triv ial solution was shown to be unique for the problem without initial 

history when A <  AiGoo. If AnGroo <  A < A„+iGoo for some n > 1, then  the solution 

will consist of a sum of n exponentials whose exponents are the simple positive real 

roots of the characteristic equations associated with the first n Fourier modes. This 

approach is im portant, because it suggests buckling solutions are a ttracted  to these 

exponentially increasing solutions rather than  the zero solution if the load exceeds 

the critical value \iGoa.

Semigroup techniques were used to show global existence and uniqueness for 

continuous tim e-dependent loads. This is in contrast to the corresponding results 

for the quasi-static problem, suggesting that the nonuniqueness th a t can arise on 

such problems is spurious, caused by the omission of the inertia terms in the equation 

of motion.

Using the energy of the rod a uniform stability result was obtained for a wide class 

of loads satisfying e < A(i) <  AiGoo—e. Numerical calculations suggest the existence 

of a stronger result. I conjecture the zero solution is uniformly asym ptotically stable 

if the function F(t) ,  given by equation (4.11), is integrable.

We also examined the behaviour of the n th Fourier mode using multiple scale 

techniques. For the special case of the standard viscoelastic m aterial with a large
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relaxation tim e we were able to decompose the elastic and creep effects for constant 

loads satisfying A <  Xn. This decomposition allowed us to examine the relationship 

between the growth of the creep term  and the type of initial disturbance. The 

solution obtained was exceedingly accurate, and almost indistinguishable from the 

numerical solution.

For general, slowly varying relaxation functions we examined the retarded equa­

tion and using the m ethod of Angel & Olmstead [1, 2] we were able to decompose 

the creep and elastic effects as the retardation param eter tends to zero.

We considered a generalisation of the results described in Section 5.3 by con­

structing a m ultiple scale approximation for the n th Fourier mode under the as­

sum ption of a slowly varying load. In particular, we examine the behaviour as the 

load slowly crosses the equilibrium buckling load.

Finally, we considered the im portant special case of tim e dependent loading of 

A(¿) =  Po +  A  cos(ttt) with Pi small. In particular, the case of the forcing frequency 

being close to the  prim ary resonant frequency of twice the natural frequency was 

studied for standard viscoelastic m aterials. The zero order solution in a multiple 

scale expansion can be unstable, but in smaller regions of param eter space than 

for elastic rods. These regions of instability in fact vanish if the relaxation tim e is 

small, as the viscoelasticity completely damps the motion. The behaviour of the 

Fourier modes can be analysed for other types of tim e dependent loads. Im portant 

examples would include a slowly varying load A passing through the instantaneous 

critical load Xn or loads with non-stationary oscillations.

Finally, it is worth noting some other possible directions along which this work 

could develop. Namely, the effect of imperfections in the rod, nonuniform cross- 

section and slight extensibility could be considered. Also the geometrically exact 

nonlinear model should examined.
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Appendix A

Standard V iscoelastic M aterial

A .l  In trod u ction

While this work is prim arily devoted to general linear viscoelastic rods, rods of stan­

dard viscoelastic m aterial are used to corroborate the analytic results and to find 

approximations to the solution under special conditions. We shall now give a brief 

description of standard viscoelastic m aterials in term s of its rheological structure and 

its mechanical properties. We show th a t the differential and integral form of the 

stress-strain relationship can be derived from the rheological model. A more com­

prehensive description of rheological models, and in particular standard viscoelastic 

m aterials, can be found in Chapter 5 of [16] or Chapter 3 of [35].

A .2 R heolog ica l M odel

The theory of viscoelasticity is a natural generalisation of the theory of elasticity for 

solid m aterials and the mechanics of viscous fluids. Elastic properties exemplifed by 

linear springs and viscous properties exemplifed by dash-pots can be combined in 

various ways to construct rheological models of hypothetical media. The models cor­

respond in behaviour, at least qualitatively, to real substances th a t are interm ediate 

between solids and liquids.

An initial a ttem pt at combining these properties would be to consider a m aterial 

th a t behaves like a spring and a dash-pot connected in series (Maxwell m aterial) or 

in parallel (Voigt m aterial). In the linear spring the stress a  and the strain e are 

related by Hooke’s law

a = Et ,

where E  represents the spring constant or Young’s modulus. In a viscous liquid the
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stress and the strain  ra te  are related by Newton’s law of viscosity, namely,

a  =  rje,

where 77 is the coefficient of viscosity. Although the Maxwell and Voigt models have 

been used to describe the properties of various solids they both  display behaviour 

which is unrealistic —  the Maxwell m aterial does not possess a finite creep limit 

under constant stress and shows no tim e-dependent recovery while the  Voigt m aterial 

does not exhibit time-independent strain on loading or unloading.

The standard viscoelastic m aterial is described using a three element model; a 

spring and a  dash-pot connected in parallel and this is connected to a second spring 

in series (cf. Figure A .l). The strain of the spring in series ei on application of a

V - m m — -
a

------------------------ m m -----------------------
E i a

Figure A .l: Rheological model of standard viscoelastic m aterial.

force a  is

ei = f , (A.l)hj\

where Ei  is the spring stiffness. The strain of the spring in parallel e2 is given by 

the  formula for the Voigt m aterial, namely,

a =  E2 £2 +  77̂ 2, (A-2)

where E 2 is the  spring stiffness of the second spring. The to tal strain  is given by

e =  H~ £2- Combining equations (A. l)  and (A.2) and eliminating ei and e2, we
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obtain

<j -f- aa  — Gqc. -f- (A.3)

where
r  - p Ei + e2 exe2Uro — a —   , (j-qo — ------- .

77 77

Using (A.3) the standard viscoelastic m aterial can be shown to possess the fol­

lowing properties (cf. Figure A.2) :

• Instantaneous elastic deformation and recovery. The m aterial exhibits a time- 

independent elastic deformation of size er0/ G0 on loading or unloading of a 

stress of size ag.

• Finite creep limit. Under constant stress a0 the m aterial creeps, with a de­

creasing ra te  which is a characteristic of prim ary creep, to the finite limit

^01 Goo.

• Instantaneous and time-dependent recovery. On removing a constant load <7q 

the m aterial instantaneously recovers the elastic component of the deformation 

and displays an exponential rate of decay of the  creep deformation.

• Exponential relaxation. If the m aterial is subjected to a stress in order to 

m aintain a constant strain, the m aterial will relax, i.e., the stress required to 

m aintain a constant strain will decrease over time. For the standard viscoelas­

tic m aterial the required stress decays like a negative exponential.

Equation (A .3) can be solved for the stress (or strain) using an integrating factor 

to give the integral representation of the stress-strain relationship

a{t) = G0e{t) +  aiGoo -  G0) f  e ^ e - ^  d r. (A.4)
J  —  OO

The relaxation function (2.15) is derived from (A.4) by solving for the stress when
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11 I

Figure A.2: Creep and recovery behaviour of the standard viscoelastic material, 

the strain is given by the unit step function, i.e.,

G(t) = G0 + a{G0o -  Go) f  e"aM  d r
Jo

= Go + (Goo — G0)(l — e~ai)

=  Goo +  (Go — Goo)e at.
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Appendix B

Num erical R esults

B .l  In troduction

In this thesis we have considered 3 problems which have been solved numerically. 

Namely, the initial history problem, the Volterra integro-difFerential equation for 

the Fourier modes and the solution for the standard viscoelastic material. In this 

appendix we give an outline of the algorithms used.

In Chapter 2 it was shown that the linearisation of the nonlinear flexure about 

the straight equilibrium solution yields the following system

y t - v ,  (B.l)

L0vt — - y ss,s +  /  a(r)yssas(t -  r )  d r  -  \ ( t ) y ss +  f ( t , s ), (13.2)
Jo

where the operator is given by (3.1). The initial history up to time t =  0 

determines /  through

poo
/(■M) =  / o(i +  Tr) y .^ ( s i ~ r ) clr- Jo

The boundary conditions are

;</(s, t) =  ys$(s,t)  — v(s, i)  =  Vii(s, t) =  0 at s =  0,1 for all t.

And initial conditions

y[s i 0) =  y°(s), 

yt(s,0) =  y'(.s).

In order to simplify notation, we will use y and y' to represent the derivatives with

B1



respect to t and s respectively.

A ppend ix  B , Section 2___________________ Solutio n  using F in ite  D ifferencing

B .2 S olu tion  using F in ite  D ifferencing

In order to solve the above problem we discretise over a uniform grid. We represent 

the functions y(s, t)  and u(s,i) by their values at a discrete set of points given by

j  =  1, . . .  , ra, 

k =  0,1, . . .

where h and e are the step sizes along the spatial and time axes respectively. We shall 

denote the function at these points using yjtk — y{sj , tk) =  ?/((.? — l)/i,fce),

and similarly for functions v and f .  Also for functions independent of s we have 

A* = A(ijt) and a k = a ( tk).

rl'he time derivatives in equations (B.l) and (B.2) are approximated using

dy
di

ViM-1 “  ViJ*-  V j , k  -  £

and similarly for v

dv
dt = Vj,k

vi M  i -  vi,k

j.k

The spatial derivatives in y are replaced by

d2y
ds2 i,k

1/j ¡A’ ~4~ Vj+l,k
h2

and

(B.3)

(B.4)

(B.5)

dAy
8 s'1

(iv) _  Vj-2,k — 4 t / j_ i , a  +  6 y-j,k — t y j+ i ' k  +  yj+2,k
h 4= u),k = (B.6)

In order to simplify the following discussion, we shall ignore the dependence on 

s and use ijk to represent y(-, t k) and again similarly for the function v.
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A pp en d ix  B, Section 2 _Solution using F in ite  D ifferencing

Equation (B .l) can now be approximated at the mesh points by

 — =  (3vk +  (1 -  P)vk+1, for k  = 1 , 2 , . . .

where the param eter (3 £ [0,1] is used to combine an explicit and an implicit scheme 

for stepping forward in tim e. A fully implicit scheme with (3 = 1, tends to diminish 

small-scale features to their equilibrium form but is only first order accurate in

time. On the other hand, a fully explicit scheme with (3 = 0, is only conditionally

stable. By taking (3 = 1/2, we get a Crank-Nicolson iteration scheme which is 

unconditionally stable and second order accurate in tim e1.

The rod is divided into m  — 1 segments giving m spatial points yjtk for all k. 

Using equation (B.5) as an approximation for the second derivative with respect to 

s and the boundary conditions in y we have

Ul,k — ym,k — 0 ,

Vo,k =  -2/i,fc, (B.7)

ym+i,k = -ym-i ,k ,  for all k .

Similarly for v we have

— Vmtk ' 0}

v 0,k =  - U i . f c ,  ( B . 8 )

Vm+1 ,k =  - W m - 1  ,fe, for all k .

Equation (B .l) can now be represented by

y i,fc+ i - 1 ,

Vj,k-i- i ¿-(1 c-f-i — +  e(3vj<k, j  2 , . . .  ,??i 1,

ym,k+1 1;

1C f. [34] sections 19.0-19.2

B3



A ppendix  B, Scction 2 S o lu tio n  using Fin ite  D iffe rencing

for k = 1 , 2 , . . . ,  and y^o = y? for k =  0.

Turning to equation (B.2) we first look at the convolution term. This is approx­

imated using a trapezoidal rule giving

I at{T)y{iv){t -  t ) dr = e/2  (a0ijl'v) + akyt>v)) +£ ^  ^kkVk-ik-
Jo V '  kk= i

Equation (B.2) is now given by

1/e [(vk+l -  av l+l) -  (vk -  o-Ufc)] =

-  (1 -  0) [y$i + A*+iy*+i] -  0 [y[i1/) + A rf)  +  ( l -  0 ) /H i +  P h

+ e j2a0 [(1 -  0 ) y ^ \  + j0yi‘L)] +  e/2yi’v) [(1 -  0 )a k+i +  0 a k]

+ e J 2  <*** [(L -  0 )y {kl\-kk  +  0y{’-lk ■

Bringing u and v terms involving fjfc+i together we have

l/e(u*+i -  cru"+1) +  (! — /?) [Vkl\ +  Afc+1y£+1] - e / 2 a 0(l — /5)j/i+i =  

l / e (vk -  avl) -  0  [ y ^  +  \ kyt] +  (1 -  0 ) f k+l +  /3fk 

+  e/2a0/3yk v) +  e/2y$v) [(1 -  (3)ak+l +  (3ak\

•f £ otkk [(l — 0)yk+\-kk 4- 0yi- ik
jUc=1

(B.9)

Now taking into account the s dependence, we expand the spatial derivatives using
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approximations (B.5) and (B.6) and multiplying by factor ehA to get

(hA +  a h 2)vjtk+i — crh2 [vj-i,A:+i +  Wj+i,fc+i]

+ e ( l  — /?)(! — e / 2 a 0 ) [ y j - 2 ,k+ 1 — 4yj_lifc+1 +  (hj j ,k+i  — 4 y j + i t k + i  +  yJ+2,fc+i] 

+e(l —  / 3 ) \ k + i h 2 [j/j—i,fc+i — %yj,k+1 +  y j+i ,k+i ]

— (h -t~ crh )v jtk &h [vj—xtk "I-  ^j+i,fc] ef3Xkh [ j/j—i,fc 2 y j}k 2/j+i,fc]

+  e/i4( l  — P ) f k + 1 +  s h 4(3 fk

+  e ( 3 ( e / 2 a 0 -  1) [ y j - 2,k -  4yJ-_iijfc +  6y j}k -  4yi+1,fc +  yj+2,fc]

+  £2/2((l — P)& k+ i +  /fofc) [j/j-2 ,0  — 4 i / j _ i |0  +  6 y j i0 — 4 y j+ i i0  +  i/j+2,oJ 

fc—i
+  £2 OZ-kk {(1 — (3) X

fcfc=l

\yj-2,k-\-l — kk 4t/j—x S j / j . f c + l  —fcfc ^ V j+ l,fc+l—fcfc “I" 2/j+2,fc+l—fcfc]

“H/5 t y j—2,k—kk 4i/j—l,fc—fcfc “I" 6y j tk—kk ^yj+ l , k—kk ~f" Vj+2,k—kk\ \  i

(B.10)

for k = 1 , 2 , . . . ,  and for k = 0, we have y,-i0 =  y°, and Vji0 =  y ) . Equation (B.10)

is only valid for 4 <  j  <  m  — 3. For j  outside this range we use the boundary

conditions given in equations (B.7) and (B .8). Hence for the fourth derivative of y^k 

w ith respect to s we would use instead

V2™k =  ( 5 y 2 ,fc -  4y 3)k +  y4i*) / h 4, for j  =  2 ,

y t ’k =  (—43/2.fc +  6y3,fc -  4y4,fc +  yB,fc) / ^ 4, for j  =  3,

yin-2,k =  {.Vm—4,k 4ym—3,fc “I- 6j/m_2)/c 4ym_ ij/c) / h  , for J 171 2,

2/m—i,fc =  {ym-3 ,k 4ym_2ifc "I- 5ym—i,k) j h  , for j  m  1,

and similarly for the second derivatives.

The finite difference approximation to the linearised problem is now easily solved. 

At each t ime point t k the solution at the next tim e point t k+i is given by the solution
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of the following (4m — 4) x (4m — 4) linear system

A ppend ix  B , Section  2_____________________________________ __________ S o lu tio n using Fin ite  D ifferencing

The function ^(uk^tk+i) depends on u at all time points up to Lime tk. It is given 

by the right hand side of equation (B.LO). The first m — 2 entries of the vector uk 

contain the values of y^k at the interior points y ^  for j  =  2, . . . , m  — 1 and the 

second m — 2 entries contain the values of Vj^.

The matrix Ak+i is given by

\

1

5c2 — 2c32c3 — 4c2 c 2

c3 — 4c2 6 c2 — 2c3 c3 — 4c2 c2

Ci c3 — 4c2 6 c 2 — 2c3c3 — 4 c2 c 2

c\ 2c$

c2 c3 -  4 c26c2 -  2c3 c3 -  4c2 c2

c2 c3 — 4c2 6c2 — 2c3 c3 — 4c2 

c2 2c3 -  4c25 t 2 -  2c3

C’s C4 C5

\ /
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A pp en d ix  B , Section  3 Num erical S o lu tion  o f Fourier Modes

where

Ci =  - ( 1

c2=e( 1 -  /?)(1 -  e/2q0), 

c3=e(l  — ( 3 ) \ k + i h 2 , 

c±=hA +  2 ah2,

Cs = —<jh2 .

For constant loads and equal step sizes the m atrix  Ak+i will be independent of 

A; and hence a significant tim e improvement can be achieved by generating a LU 

decomposition of A  and using this in solving the linear equation (B. l l ) .  Finally we 

address the problem of numerically approximating the initial history term  f j tk■ The 

im proper integral

fj,k =  /  a( tk + T)y(lv\ s j , - r )  dr,
Jo

is first converted using change of variable u  =  e-T , or r  = — logo;, giving

a( tk -  log io)y^v\ s j , +  log to) ^
CO

This can now be solved using an open type quadrature rule. The extended mid­

point rule was used with the refinement level decreasing as tim e increases since the 

influence of the initial history term  will diminish for larger tim e values.

B .3 N u m erica l Solu tion  o f Fourier M odes

The linear problem (B .l) and (B.2) has been solved using the Fourier series expan­

sion for y and v
OO

V(s>*) =  X )  yn{ t ) s m m r s ,
n —1

etc. The functions f n are then given by

P O O

f n( t ) =  a( t  +  r )yn( - r )  dr,  
Jo
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for n =  1 ,2 , The problem then reduces to the systems

A p p e n d ix  B , Section  3 ___________________________________________________________ Num erical S o lu tion  o f Fourier M odes

y*=«»(i)> (B.12)

vn- -hn><l  -  7«A»A(i))y„ +  7 „A2 /  tx(r)yn(t -  r)  d r  +  7„A2/„, (B.13)
JO

for n = 1 , 2 , . . . .  The procedure used to numerically solve the integro-differential 

system (B.12) and (B.13) involves reducing it to a system of Volterra equations2. 

Define function zn(l.) by

= 7 «A2 f  a{r)yn(t - t )(It + 7 „Al f n. (B. 14)
Jo

Equation (B.13) now implies that

¿n ~  7 nATl(A71 A(/))yn “(■ zn.

Integrating over t and using initial condition u„(0) =  an\ gives

vn = [  ~ 7nAn(A„ -  A(r))y„(r) +  z n ( r ) d r  +  0*1.
Jo

Substituting this result into equation (B.12), integrating over t and using initial 

condition y„(0) =  anQ and v„(0) =  ani we get, after changing order of integration,

yn =  7nA« [  (t -  t)(A„ -  A(r))yn(r) d r 
Jo

+  [  (t -  t )zn(r) d r  +  Uini +  o„0. (B.15)
JO

We can now solve for function yn and zn using equations (B.15) and (B.14) using 

a standard Volterra system solver. The problem of approximating the initial history

term in the forcing function for equation (B.14) was solved using a scheme similar

to that used in the previous section.

zC f. L inz [28] section 11.5, [6]
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B .3 .1  S o lu tion  u sing  Fourier Series and L aplace T ransform

After reducing the linear problem (B .l) and (B.2) using a Fourier series expan­

sion as described in the previous section, the resulting integro-diffcrential Volterra 

system can be analytically solved using Laplace transforms under the assumption of 

a constant load A. Except for a small class of kernel functions a(l) and initial history 

configurations, getting a closed form for the inverse Laplace transform is non-trivial. 

Taking the kernel related to relaxation function of the standard viscoelastic material, 

we get the following equation for the Laplace transform of yn

- / \ _  a«t>P2 +  (a" l  +  a»0a )p  +  aanl ,p lfis
M )  ~  V3 +  a/p2 +  7nAn(A„ -  A )p  +  a7„An(AnG 00 -  A) * [ }

In order to use the inverse Laplace transform we must first determine the position 

of the roots in the complex plane of the characteristic equation

f {P) ~  P "t" aP "f 7nA7i(An A c t 7 „ A n(A„G00 A).

The roots can easily be found numerically3 and the solution yn(0  can then be readily 

calculated.

3Cf. [34] section 5.6
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