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Abstract

This thesis examines the planar bending of a viscoelastic rod subject to a uni-
axial load A(i). The rod is assumed to be inextensible, and the torsion and shear
of the sections are ignored. The bending moment across a section is assumed to
depend on the curvature through a linear hereditary law of Boltzmann type. The
rod is composed of a solid material, so the creep function remains bounded for all
time. Thus a viscoelastic solid rod in simple extension eventually approaches an
equilibrium state. This is equivalent to G'(oo) := lim~oo G(t) > 0, where G(t) is
the material specific relaxation function. The exact nonlinear dynamic problem can
be linearised about the straight equilibrium position to yield an integro-differential
equation. It is this linear problem which is investigated here. The initial history of
the deflection is allowed to be nontrivial. Usually this initial history is prescribed,
but we also consider the problem without this assumption.

For constant loads, Laplace transform techniques can be employed to show that
solutions decay if A< XiG(00)/G(0), and grow exponentially if A> XiG(00)/G(0),
where Ai > 0 is the Euler critical load calculated using the instantaneous elasticity
G(0). For the standard viscoelastic material, we derive necessary and sufficient
conditions on the material parameters which ensure that the solution is oscillatory.

For time-varying loads, the evolution equation for the initial history problem
generates a semigroup, and has a unique solution which depends continuously on
the initial data. This is in contrast to the corresponding results in the quasi-static
theory. The Volterra-Graffi energy is used to construct a suitable Lyapunov func-
tion, which can be used to demonstrate that the zero solution is stable for a large
class of loads satisfying 0 < A(t) < Al1Gr(00)/Gr(0).

Multiple scale methods are also used to determine various approximate solutions.
For a standard viscoelastic material with long relaxation time, the elastic and creep
effects occur on different time scales. If A> AiG(00)/G(0), an approximate solution
is determined and is used to investigate the effect of the different types of initial
disturbance on the growth rate of the solution. Also if a standard viscoelastic mate-
rial is subject to a periodic load A("), an approximate stability region in parameter
space is found when the parametric excitation is near the principal resonance.
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Notation

Go Instantaneous modulus of elasticity, Go = G(0).

Goo Long-term (Equilibrium) modulus of elasticity, G«, = limt-n*, G(t).

An Instantaneous buckling load, An = n2n2Go (= 72n2 scaled).

7n 7n = (@-r cm2me)-1.

yl(r) History of y up to time i, iz(v) = y(t —r) for ¢« > o.

p. Laplace-Stieltjes transform of a measure /x, /i(p) = /“’e_7ifl/i¢) if /] is
a measure on R+, and /i(p) = e~7td/x(<) if /i is a measure on R.

a Laplace transform of a function a, a(p) = /“ e~pta(l) di if ft is defined
on K+, and o(lp) = e~pia(l) di if a is defined on R.

v V-ty €HAw© = y0) = 0.9.(0) = y&() = 0}
H2n Hi.

17, Measurable functions with finite norm {j.-rf/J di} 2.

p€ [1 00

L Measurable functions with finite norm esssup |z(i)|.

I7a Denotes the «-weighted 1? space of functions f with
1111~ =(J3S°c, ()\f(t)\>dt)'l12 <oo0.

M Finite measures on R+ and total variation norm.

BC Bounded continuous functions; sup-norm.

BC Bounded continuous functions tend to zero at infinity; sup-norm.

BUC Bounded uniformly continuous functions; sup-norm.



Chapter 1

Introduction

This thesis examines the dynamic planar flexure of a thin, inextensible, uniform
viscoelastic rod. Sections are labelled by their arc-length s along the central axis
from the left end. For simplicity we assume the rod has unit length. Both ends are
pinned and on the same horizontal level, (cf. Figure 1.1). Let y(s,t) be the vertical
displacement of the centroid of section s at time t. The left end is held fixed, and a

load A(t) applied to the right.

s=1

a
1
o

Figure 1.1: Buckling of a thin perfect rod under end loading.

The rod is assumed to be viscoelastic in the sense that the bending moment

M (s:t) across a section satisfies the linear constitutive equation

M (s,t) = G(0)yss(s,t) + J{;OOG(T)yss(s,t - r)dr,

where G(t) is the relaxation function of the material. This form of constitutive
equation is quite general and includes viscoelastic materials that can be modelled
by rheological structures consisting of configurations of springs and dash-pots. The
rod is assumed to be solid rather than fluid. Hence we require that the creep function
J(t) corresponding to G (i), which is defined in (2.13), remains bounded. Thus a
constant applied stress causes a bounded strain. The boundedness of J(t) is implied
by G(o0) > 0. An important example of such a model is the standard viscoelastic
material which obeys

G(t) = Goo + {Go — Goo)e at,

for some a > 0.
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The linearised dynamic equation of motion of the rod is

/*co

utt - VySStt = -Vssss - J/ G[t)yssss{t - r) dr - A(i)yss, (11)
0

for 0 < s < 1. Here A(t) is continuous and cr > 0. The term crysstt is due to rotatory

inertia. We impose the boundary conditions

0= y(O,t) = y,,(O,f), 0= y(l,t) = y,,(l,i), (1_2)

which correspond to the rod being pinned at each end. The results of this thesis are
true with obvious modifications, if the ends are both clamped, one end is clamped
and the other free or one end is clamped and the other pinned. In an initial-
history problem we require that a solution y(s,t) satisfy (1.1) and (1.2) for (s,t) G
[0,1] x [0, 00), and that y(s,t) is known for (s,t) £ [0,1] x (—o0, 0] with (1.2) holding
for —o0 < t < 0. For a problem without initial history we require that a solution
satisfy (1.1) and (1.2) for (s,t) £ [0,1] x R.

The initial history problem (1.1) and (1.2) has been studied by Dost & Glockner
[14], Szyszkowski & Glockner [39] and Spena [38] under the simplifying assumptions
that the load is constant and the initial history of y is trivial. Indeed these papers
confine their analysis to rods composed of standard viscoelastic material. However in
[14], equations (1.1) and (1.2) are derived and an equation for the Laplace transform
of the solution found. Spena derives the equations for a more general class of ageing
viscoelastic materials. Gederbaum & Mond [8] consider the dynamic problem (1.1)
and (1.2) with A(t) periodic and the initial history trivial. They analyse a retarded
version of this problem using multiple scale methods. Dall’Asta & Menditto [10] also
examine the dynamic problem (1.1) and (1.2) for trivial initial history. A variational
principle is derived, which is then used to calculate numerical solutions when A(t)
is constant and periodic. Rotatory inertia is also ignored in these papers.

The quasi-static approximation of (1.1) neglects the inertia terms, and therefore

assumes that the bending moment is constant at each instant across all sections.
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The problem reduces to

poo

ALDY(1) + GO)yss(t) + G(t)yss(t - r)dr = 0,
0

subject to
3(0*) = y(M) = &

For constant loads, this problem has been considered by Distefano [11, 12, 13].
Some of the Russian work is presented in Rabotnov [35]. The problem with A(t)
non-constant has been studied by Gurtin [19], Gurtin, Mizel & Reynolds [20] and
Reynolds [36].

A detailed discussion of the derivation of the equations (1.1) and (1.2) is given in
Chapter 2. It is important to appreciate that, though the viscoelastic rod dissipates
energy in the sense that part of the energy supplied is generally not converted to
kinetic nor free energy, the system is not necessarily dissipative. The terminal load is
doing work, and hence energy is being supplied to the system. It is shown in Chapter
2 that E(t), the sum of the kinetic and Graffi-Volterra free energies, satisfies the

inequality

The case of constant loads is investigated in Chapter 3. We use Laplace transform
techniques to show that solutions of the initial history problem exist and are unique.
We also find that the load A(t) determines the stability of the rod. Assuming that
the initial history satisfies certain mild conditions, if the load is less than the critical
value of ir2G(oo) the solution is bounded, integrable and tends to zero. For loads
exceeding this critical value, the solution can be decomposed into a sum of an
exponentially increasing term and a bounded integrable function which tends to
zero.

In the special case of the standard viscoelastic material we can obtain more
precise information. The form of its solution depends on the location in the complex
plane of the roots of a cubic equation. Necessary and sufficient conditions for all

these roots to lie in the left-half complex plane are derived in Chapter 3. These
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conditions are of course equivalent to the stability conditions applying in the general
case. We also find necessary and sufficient conditions for a pair of these roots to be
complex, implying an oscillatory motion for the rod. These conditions do not agree
with those given by Dost & Glockner [39], who developed an approximate series
solution.

In Chapter 3 we also consider solutions of the dynamic problem with no initial
history. Mild conditions on histories are specified just to ensure that the bending
moment always exists. We use work by Titchmarsh [40] involving Fourier integrals
to show that the trivial solution is unique for constant loads A < t2G(oo). Fur-
thermore, it is shown that there exists an exponential increasing solution if the load
A> 7r2G'(00). Virga and Capriz [42] use a contraction mapping argument to investi-
gate the standard displacement problem in linear viscoelasticity with Cauchy data.
We apply a similar procedure and show that, for loads satisfying A< #2G(oo), y = 0
is the only solution in a suitable weighted space of continuous functions.

Dafermos in [9] used a semigroup approach to prove existence and uniqueness,
as well as asymptotic stability of the trivial solution, for the standard displacement
problem of linear viscoelasticity, which is autonomous. In Chapter 4 we consider
time-dependent loads, and extend the method of Dafermos to this nonautonomous
initial history problem. We construct a suitable Hilbert space in which the norm of
the solution is defined to be the energy of the rod. The evolution equation is shown
to generate a Co contraction semigroup on this Hilbert space, and have a unique
solution which depends continuously on the initial data. This is in contrast to the
results in the quasi-static theory, for which Reynolds [36] showed that uniqueness
is ensured only if max”~o |A(t)] < 7t2G'(0c0). The energy of the rod is also used in
Chapter 4 to construct a Lyapunov function, which is used to demonstrate that the
zero solution is stable for a large class of loads satisfying 0 < A(t) < 7r2G'(00).

Multiple scale methods are used in Chapter 5 to determine approximate solu-
tions to various problems. In Section 5.3, we consider the rod to be of a standard
viscoelastic material with long relaxation time a-1. The elastic and creep effects
occur on different time scales. If the load is constant and A < 7r2n2G'(0), we obtain

an approximate solution valid for 0 < t < 0(a~3) for the 2th Fourier mode. The ex-
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act solution must eventually grow if 72n2G(00) < A< 72n2G(0). The approximate
solution allows an investigation of the effect of the different types of initial distur-
bance on the growth rate. The retarded problem is investigated in Section 5.4 for
general viscoelastic materials. This entails replacing the relaxation function G by its
retardation where Ge[t) = G(et). The retardation parameter e is small, so that
the elastic and creep responses occur on different time scales in the new problem.
The leading order and the first order terms are calculated using a procedure similar
to that used by Angell h Olmstead [1], [2] in their work on singularly perturbed
Volterra equations. Surprisingly if we set e = 1, in this approximate solution of the
retarded problem, we get a function which agrees exactly with the approximate so-

lution found in Section 5.3 if the rod is of standard viscoelastic material. In Section

5.5 we consider a generalisation of the results described in Section 5.3 by construct
ing a multiple scale approximation for the nth Fourier mode under the assumption
of a slowly varying load. Finally in Section 5.6 we consider periodic loads of the
form A(t) = PO+ Pi cosfit, where PO < n2n2G(00), and Pi is small. The principal
parametric resonance occurs when fl 2u, to being the natural frequency of the
rod. If the rod is elastic, the corresponding dynamic equation reduces to a family
of Mathieu equations. For ii ~ 21j, we determine an approximate stability region
in parameter space. These regions agree well with numerical calculations, but differ
qualitatively from the stability regions obtained by Cederbaum & Mond [8] in their
analysis of the retarded problem.

Finally, the derivation of the standard viscoelastic material from models involving
springs and dash-pots is presented in Appendix A. Also the algorithms used to
calculate numerical solutions to the problems considered in this work are outlined

in Appendix B.



Chapter 2

Buckling Problem

2.1 Introduction

In this chapter we briefly show how the system of dynamic equations (1.1) were
derived from the general dynamic theory of Cosserat rods. The material independent
mechanical equations are augmented with a constitutive equation that is assumed
to be of Boltzmann type which depends on a material specific relaxation function.
The geometrically exact problem is then linearised assuming small transverse dis-
placement. Also we define the Volterra-Graffi energy of the rod and show that it

satisfies an inequality which expresses the dissipative nature of the problem.

2.2 Derivation of the Mathematical Problem

This is based on the procedure described in Antman [3, 4. We model as a rod, an
axially loaded, slender, structural element, whose length is large compared to the
greatest linear dimension of the cross-section. We assume that every configuration
of the rod is determined once the centroid and orientation of each normal cross-
section are specified. The torsion and shear of the cross-sections are assumed to be
negligible and ignored. Thus, cross-sections that are normal to the line of centroids
in the unstressed configuration remain planar and normal to the line of centroids
in any deformed configuration. The length in the reference configuration from the
fixed end, along the axis of the rod, to the centroid of a cross-section is denoted by
s, and is used to label the section.

The motion of the rod of length a is given by a triplet of vector-valued functions
[0,a] x E 9 (s,1) (r(s,t),b(s,t),c(s,t)» £ R3,

where b and ¢ are orthonormal. r(s,t) is the position of the particle at the centroid of
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the cross-section  while b(.s, t) and c(s, /) represent the orientation of the section 5
at time t. In particular, b(.s, i) and c(s, I) may be regarded as tangents to curvilinear
co-ordinate curves which are the images of plane cartesian co-ordinate axes in the
reference description of section s. The orientation of the section can be deformed in
general by shear, torsion and compression. A third director is defined by a = b x c.
In the absence of shear, this director is the unit-length and is tangent to the strained

axis of centroids, (cf. Figure 2.1).

Figure 2.1: Configuration of a deformed Cosserat rod.

Let 11(5,i) be the resultant force and 111¢5,i) the resultant moment across the
section s at time t. We assume that there are no body forces or body couples acting
on the rod; in particular, we ignore gravitational effects. Conservation of linear

momentum over the interval (si,s2) C (0,a) requires that
d—&(&pAi'tds =n(s2t) - n(sut),

where p(s)A(.s) is the mass density per unit length at s. Differentiating with respect

to s gives

pPAvVU = nb. @D
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The conservation of angular momentum can be expressed in the following form

i_/t&pf/bbu chct+Arxr\t)ds:
diJ9 v '
m(s2,t) - m(si,t) + r(s2,t) x n(s2,t) - r(sl}t) x n(si}h).

Here p(s)I(s) and p(s)J(s) denote the principal mass moments of inertia of cross-
section s about lines through the centroid in the directions ¢ and b respectively.

Differentiating with respect to s and simplifying using (2.1) gives
plb  x bt* + pJc x ctt + pAr xru- ms+rsxn. (2.2)
The motionof the rod is assumed to be planar,and hence

r=s(5,0)i+jl(s,i)j,  c(st) = —k (2.3)

n = —A(s,t)i + N(s,i)j, m = M (s,i)k, (2.4)

where {i,]j, k} is a fixed orthonormal basis with vectorj pointing upwards. M is the
bending moment about an axis parallel to k, while A and N are the horizontal and
vertical components of the resultant force respectively. The rod is also assumed to
be inextensible; hence |rs| = 1. Let 6(s,t) be the angle between the tangent vector

rS(s,t) and the horizontal vector i, so that, (cf. Figure 2.2),
XS = €0s6, ys = sm9. (2-5)
The directors a and b satisfy
a = cos 9i + sin 0j, = —sin 6i + cos 0j. (2-6)

The substitution of (2.3)-(2.6) into the conservation equations (2.1) and (2.2) yields
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Figure 2.2: Planar buckling ol' a rod.

the dynamic equations, (cf. [5, 3]),

pAxu = -Aj,
pAXjtt = N,

piOu = Ms T Asin 0 H N cos 0.

For simplicity, we also assume that the rod has uniform cross-section, i.e., both pA
and pi are constant.

These dynamic equations of motion must be augmented by a constitutive as-
sumption. Here the bending moment M at the present time is assumed to depend
on the history of the curvature of the axis of the column, through a linear hereditary
law of Boltzmann type. More precisely, we suppose that there is a constant ft > 0,

and a function a : [0,00) —>[0,00), such that

M(s,t) = ROa(stt) - J/:O a(r)0s(s,t —r)dr.

The moment-curvature relaxation function is given by

R —J% a(r) dr.
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It is convenient to work with non-dimensionall variables. Therefore we set s =

5%a, X = x*a,y ~ y*a, | = t*a2\JpA/i3 and

AW )=jJA (s, t),

nv,0 =" n(m),

apA’

For notational convenience, we only use these non-dimensional variables and neglect
to write the stars.

The problem is then to find solutions of

xtt = -A,, 2.7)
ytt = Ns, (2.8)
aOtt — Ms + Asin 0 -~ Ncos 0. (2.9)

for (s,i) G(0,1) x R. ilere x(s, /), y(s,i), 0(s,i) and M(s,i) are related by

x5= cos $, y3= sin 0, (2.10)

and

POO

M(s. ) = B(s )~ ((t)Os(s, t —t) a. (2.12)
0

~ote the dimensions of the following physical variables and constants: [pA\ = ML~I, [A] =
MLT~2,[N]= MLT~\ [pi]= ML, PA= MLZT~2, [@= M L3T~3.

10
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We introduce the relaxation function G : [0, 00) —m by
G(t) = 1- f a(r)dr,
Jo

so that equation (2.11) becomes

poo »

M (s,t) = GO09s(s,t) + ] G(t)9a(s,t —t)dr, (2.12)
o

with Go := G(0) = 1. The creep function J : [0,00) — K+ is the absolutely

continuous solution of
Jf G(t)JU —t)dr = t, t > 0. (2.13)
0

It is well known that J(t)is bounded if G” := limt joo G(t) > 0, but unbounded
if Goo =0. If Goo = 0, an arbitrarily small constant moment would cause the

curvature to become unbounded in time. Hence we assume that
Gop> 0.

It is easily shown that

poo

95(s,1) = M(s,0) + | J()M(s,t —r) dr,  t£R. (2-14)

While for the remainder of this work we are mainly interested in the solutions of
the dynamic viscoelastic flexure problem with a general relaxation function, we note
an important example of a viscoelastic material, the standard viscoelastic material

(or three element model) for which
G(t) = Goo + (GO- Goo)e-at, (2.15)

where Go,Goo and aare material parameters. The derivation of (2.15) and its
properties are described in Appendix A.

Next we specify the boundary conditions associated with a rod with pinned ends

11
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and a known axial thrust2. The end s = 0 is fixed and the end s = 1 is constrained

to be level with it, so that

*0,1) —4(0,t) = 0,  y(l,i) = 0, ieR. (2.16a)

Since the ends are pinned,

M (0,i)= M (I,t) = 0, ie R (2.16b)

Due to (2.14), this implies that

0,(0,i)= 0,(1,i) = 0, iEIl. (2.16¢)

Since the axialthrust applied at s = 1is known, A (l,i) = A(i) isprescribed on R.
The dynamiccounterpart of the Euler elastica is obtained by letting a= 0, to

give the problem

xtt=-A,, (2-17)
vit = N, (2.18)
crot = 0ss + Asin 0+ N cos 0, (2.19)

subject to (2.16a)-(2.16c¢c). This has been studied in [7]3.

2.3 Linearisation of Mathematical Problem

We now considerthe linearisation of (2.7)-(2.11)about the solution x(s,t) = s,

y(s,t) =0,0(s,t) =0, A(s,t) = A(t) and N(s,t) = 0.Clearly the solution of

the linearised problem satisfies xs = 1, ys = 0, and A(s,t) = A(t). Equation (2.9)
20ther boundary conditions are treated similarly.

3This paper does not require the density and moment of inertia to be constant, but does assume
that A(i) is independent of time.

12
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becomes
roo
crott = 0.« - a(r)Oss(t- r)dr + A(i)0 + N.

Therefore

r@
N, - crOsll = -0 sss + / c*(r)0sis(E — r) dr - A(i)Os,

Jo

or, using (2.8),
roo

vit - Vysstt = -2ZWES + .{O a(T)2/««(* - r)dr - A(%.,, (2.20)

for (s, t) 6 (0,1) x R. This integro-differential equation is augmented by the bound-

ary conditions

y(0,i) = y(M) = 0, y«(0,0 = y«(i,0 = 0. *e R (2.21)

The quasi-static approximation ignores the inertia terms and the linearised prob-

lem reduces to

A{D)yY(t) + GOyas(t) + J/rOOG(t)ijss(L- r)dr =0,

subject to

2/(0,0 = y(M) = 0.

This has been studied in [19], [20] and [36] for varying load and in [11, 12, 13] for

constant loads.

2.4 Mechanical Considerations

The power, or rate of working, of the terminal load A(1,t) = A(t), acting on the rod

A()XEDL, 1) = -X(t) xal{s,t)di
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Since we shall work within the linearised theory, a quadratic approximation to the

power is required. Since

-A(i)*«(L,i) = A(i)~ fo i 0\s,t)As + ---

we define P(i), the (quadratic approximation to the) power, to be

(2.22)
Also we define the kinetic energy K(t) by
2K{t) =  (yf+ cryl) ds,
and the Voltcrra-Grafh free energyl by
269 = 1 (Otayl, - G(NLyss® - yssft- nN]2drj ds.
The total energy of the rod is given by
E(t) = K(t) + V{t). (2.23)

We can now prove the following bound on the rate of change of energy of the rod,
which expresses the fact that the work done by the external load A(E) is partially

dissipated.

Proposition 2.1 Suppose that llie relaxation function G(t) satisfies the conditions

G(l) >0, G(t) <0 and G(t) >0forallt> 0. Then

m < on ot

4The free energy is not unique within a multiplicative constant.

14



Chapter 2, Section 4 Mechanical Considerations

Proof. Rearranging equation (2.20) we have

poo .
W —cryStt  Gooyssss ‘¢ JI0 G(r) [yssss(t) yssss™  t-)] dr  A(i)yss.
(2.24)

The substitution of (2.24) into the derivative of the total energy yields

E(t) = k{t) + w(f)

10 (y*y* + cry*'y«' + G QOVssytss

- Jo  G(r) [y*s(t) - Vss(t - )] [yt«(i) - ytss¢t - r)] dr®) ds

J  (yt(vysstt Ggoyssss J  G(r) [yssss(®)  2fssss(*  t)] AT A(i)yssh
vytsVitts H G oyssviss

- J  G[t) [yM(i) - yss(t - t)] [ytss(t) - ytss(t - r)] dr?) ds

Integrating by parts using boundary conditions (2.21) yields

pl / poo ,
J [yusJo G(t)[y.,(i) - yas(t- r)] dr + A(t)yt,y,

E(t)
poo

- L G(t) [yss(t) - yaa{t - )] [ytaaft) - yias{t - )]

pi poo . pl
jo fo G(N[t/M(i) -y ss(i-r)]yiss(t-r)drds + J/O A(i)yisysds

i . [
- /IDI /poo G(r)[yss(i)-yss(i-r)]y TSY(i-r)drd5 + /r A(i)yisys ds.
Jo Jo Jo

Integrate by parts over r and using the specified properties of the relaxation function

we get

M) = - f 1o G(t) [S/mW _ Yex(*- r)]2drds + o A(t)ytsys ds
(2-25)

Calculations of these kinds are well known in viscoelasticity. See for example

Dafermos [9]. Gurtin and Reynolds proved similar results for the nonlinear quasi-

15



Chapter 2, Section 4 Meehanical Considerations

static problem in [19]. =
The second law of thermodynamics only requires that a non-constant relaxation

function satisfies, (cf. [15], Sec 3.2),

‘G

;I/o G(t) sin(a>i) d€ < 0, forallu > U (2.26)

While our restrictions on the relaxation function are stronger, experimental evidence
suggests that the stronger monoticity conditions we assume are reasonable, (cf. [15]
Sec 4.2).

'"Throughout this work it is assumed that the relaxation function belongs to C1
and is non-constant, nonnegative and nonincreasing. In terms of a(i) = —G(t)
this implies a(i) is continuous, nonnegative and nonincreasing on R+. Additional

conditions on the relaxation function or a(t) are specified where required.

16



Chapter 3

Constant Load Problem

3.1 Introduction

In this chapter we examine the dynamic linearised viscoelastic flexure problem un-
der the assumption of a constant load. Note that for constant loads the dynamic
equation is autonomous. We formulate the dynamic problem as an abstract Volterra
integro-differential equation which can be diagonalised using a Fourier Sine series.
We consider two types of problems:

In the initial history problem, the history up to some initial time t0, of the deflec-
tion is assumed to be known and the dynamic problem is solved for t > tQ We only
need to consider the initial time of to — 0, as the dynamic equation is autonomous.
Laplace transforms are used to show existence, uniqueness and asymptotic proper-
ties of the solution for t > 0. Section 3.6 deals with the special case of the standard
viscoelastic material, for which more detailed results are available. The initial his-
tory problem for the standard viscoelastic material has been studied in [39] and [14],
assuming that the initial history is zero and the rod is statically and/or dynamically
disturbed at time t = 0. These papers do not include the term due to the rotatory
inertia of the rod.

Also we consider solutions of the dynamic problem for all time. The initial his-
tory is not specified but conditions must be put on it to ensure the bending moment
always exists. Whole line Laplace transforms are used to show uniqueness of the triv-
ial solution for stable loads and the existence of a non-zero solution for loads greater
than \ nGoo. In Section 3.5 an alternative procedure is used to examine the unique-
ness of the solution of the dynamic problem when the history of the displacement is
not specified but is assumed to decay exponentially in the past. This procedure was
used by Virga and Capriz [42] to investigate the standard displacement problem in

linear viscoelasticity with Cauchy data.

17



Chapter 3, Section 2 Abstract Formulation and PiaROnalisation

3.2 Abstract Formulation and Diagonalisation

In this section we formulate the equation of motion (2.20) subject to the boundary

conditions (2.21) as a retarded functional differential equation. This equation can

be diagonalised into a family of Volterra integro-differential equations which, for

constant loads, can be analysed using Laplace transforms.

We define the operator L,,: Il —L2, for any a > 0, by

LoV =y~ w™

(3-1)

where If = //2(0,1) Bi //¢(0,1). Il is a Hilbert space when given the inner product

ri

(yiy%)H = { tfOOVito + yi(s)Z2(s) d5-

We denote the inverse of La by Ka: L2—//, i.e.,

KaLay = v, Vye H,

and

LaKay = vy, W € /A

Note that is formally self-adjoint as

l yi{s)(LY2) (s)ds= J[ yAs)(LiryD{s)ds, Vyu >§2’€II.

The equation of motion (2.20) can be written as
roo
I'trvit = Vssss “+ JI a(r)yssgs(i —t) dx
0

or

roo
sfitt = Affy$SS4’J!) ot)K,yseis(l  t)c!t

18
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Chapter 3, Section 2 Abstract Formulation and Diagonalisation

isubject to the boundary conditions (2.21). Set

V={y €H\0,i):y(0) = 3/(1) - y.(0) =y.(l) = o},

with inner product

(yuvayv = 1 Yid(«)idd)(«) + y\3)(s)yr\s)ds + {yi,y2)/l.

Then VA H and Kcysssa6 H for all y €V.
It is convenient to write the problem as a retarded functional differential equa-

tion. bet u = (y,v) where v = yt. Then we seek
roo
n(® -f A.@uE + J/o J3(ru(t —r) dr = G (3.4)

where A and D are bounded linear operators mapping V x Il into Il x //, defined

by

0 -1\ 0 o'l
A{t) = B(t)-
\K'(dt - A(i)aj) o) KO(t)K.Si Oy

The operators in (3.4) are easily diagonalised. If

u(s,f) = ™2 un(i) sin nns,

71=1

A(u(t) — 72 An(t)un(t) sinnns, (3.5)
and
B(T)u(t) = J215 n(r)u,(i)sinraiT5, (3.6)
n=

19



Chapter 3, Section 3 Problem with Initial History

where
-1 0 0
AX() = Bn(t) = _
Anin (An- A(/)) 0/ -A27na(i) 0
with
_ 22 _ 1
%n—nn, M=+ om2m

Substitution of (3.5) and (3.6) into (3.4) yields
faD
un(t) 4 An(t)un(t) + / Bn(r)un(t- «)dr = 0. (3.7)
Jo

In this chapter wo shall assume that the terminal load is constant. This allows
us to apply Laplace transforms to (3.7). In order to utilise the many known results
concerning the resolvents of Volterra integro-differential equations we rewrite (3.7)

as
. poo
u, (0 + b dfi,n(T)un(t - r) - 0, (3.8)

where pn is the 2 X2 matrix of measures

0 ~50
VA 7,,(An - A)io- A27ndG 0/

and @ is the Dirac measure concentrated at 0.

3.3 Problem with Initial History

The initial history problem corresponds to solving equation (3.8) on IR+ with a

specified history of the displacement up to time t — 0. We can decompose the

20



Chapter 3, Section 3 Problem with Initial History

integral in (3.8) into a convolutionl and a forcing function which depends on the

known initial history. Thus,
u,(t) + (fin*u,)(i) = f,(f), t>0, (%)

and un(0) is prescribed.

fn(i) = - / d//,(r)un(t- 1) , t>0.
n/it°ca(r)y, (i-r) dr
Through the following theorem we show that for mild conditions on the initial
histories the differential equation (Vo) has a unique, absolutely continuous solution.
Moreover, for a suitable forcing function f, (t), this solution possesses the same
asymptotic properties as fn(t) if the load is less than the critical value of AnGoo-
When the load is greater than this critical value the solution is in general unbounded.
This is a generalisation of the work in Miller [31] where the initial history was

assumed to be continuous.

Theorem 3.1 Let the relaxation function G(t) be an arbitrary function in C1(

If the constant load A is finite and the forcing function fn(i) belongs to L 0Q1R+;.
then (Vg has a unique, locally absolutely continuous solution in L DJIR+;R 2).
Furthermore, let the relaxation function G(t), be non-constant, nonnegative, non-
increasing and convex and let fn(i) G S, where S is one of the following function

spaces2
(i) LP(R+-R2),p G [1, 00],
(i) BC{R+;R2), BUC{R+;R2 or BCO{R+;R2),

XThe convolution fin*u, of a measure fin £ M(M+), where M (M +) is the space of finite measures
on M+, and a Lebesgue measurable function u, defined on M+, is the function

(fin*un)(i) = J/ dnn(r)un(t - t), (3.9)
[0]

defined for those t for which the function r->u, (i-r) is \fin|-integrable.
2The notation is described in page iii.
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Then, if

1. A< AnGoo the solution un £ S and un depends continuously on fn in the norm

of S. Also, iffn is continuous then un £ S.

2. A= AnGoo and the second moment of G exists, the solution can be decomposed
into

u,00 = cn+ wn(t),

where cn is a constant vector that depends on the initial history up to time

t=0andwn £ S.

3. A> \nGoo the solution can be decomposed into

un(t) = cnepitt + wn(t),

where cn is a constant vector that depends on the initial history up to time

t =0, pnis a positive real number and wn £ S.

Proof. It is known that3 there is a unique absolutely continuousmatrix-valued

function rn defined on R+ satisfying

rn{t) + {rn *n){t) = 0, r,(0) =1, (3.10)

for almost all t £ R+. rn is called the differential resolvent of (in. The unique
absolutely continuous solution of (Vo) is then given by the variation of constants

formulad

un{t) = rn(t)un(0) + (rn *fn)(t). (3-11)

The resolventrn is particularly useful for investigating the asymptotic behaviour
of the solution. A result due to Miller [31] shows that the condition rn £ L1(E+) is

equivalent to the uniform asymptotic stability of the trivial solution of equation (Vo)

3Cf. Theorem 3.1 of Ch. 3 of [18].
4Cf. Theorem 3.3 of Ch. 3 of [18].
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Chapter 3, Section 3 Problem with Initial History

in (7(R+) if the initial history is continuous. Since the measure fin £ M(R+; R2x2),
its Laplace transform5is defined on the right-half complex plane and we can use the

following Paley-Wiener type result for integro-differential equationse6.

Lemma 3.2 Let/in £ M (R+;R2x2). Then the differential resolvent rn, of fin sat-
isfies

rm £ "(R +sR 2*2),

if and only if the characteristic equation
A, (p) = det[pi + i2n(p)] =¢0, 5Rp > 0. (3.12)
Calculating the characteristic equation for (Vo) we have
A,(p) = p2+ 7TnAn(An - A- Ana(p)), (3.13)

defined on the right-half complex plane. The relationship between the location of
roots of this equation and the magnitude of the constant load is described by the

following lemma.

Lemma 3.3 If G(t) is non-constant, nonnegative, nonincreasing and convex then

the characteristic equation (3.13) has :
1. No solution for A< XnGoo.

2. A root at the origin when A= A”Goo- This root is simple if the first moment

of G exists.
3. A simple positive real root p*, when A> AnGoo.

5The Laplace transform pn(p) of a measure /in £ is the function

) po
fj-n(p)= J/o e~ptdpn(t).

defined for those p £ C for which the integral converges absolutely.
6Cf. Theorem 3.5 of Ch. 3 of [18].
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Proof. From the specified properties of G(t) and the definition of a(t), we can
see that a(t) is non-constant, nonnegative and nonincreasing. This implies that7

‘ispfsa(p) < 0 for Sp A~ 0. Examining the imaginary part of (3.13) thisimplies
y%An(p) = 2xy2- XA-fny*sa(p) >0, for y ~ 0,x >0,

where p = x + iy. Hence, if a root exists, it must lie on the positive real axis. Now

looking at (3.13) on the positive real axis we have
An(x) —x2+ 7,An (A, - A- Xna(x)), for x > 0, (3-14)

Since a{t) is non-constant, nonnegative and nonincreasing

d fCO
a(s) = —/ re~XTa(r) dr,
da; Jo

is a well-defined, negative valued, function for x > 0. Hence equation (3.14) is an

increasing function in x and has at most one root for x > 0. But

An(0) = 7nA, (A, - A- Ana(0))
—7nAn (A, A An(l Goo))

—7nAn (ATIG0 A

Therefore, if A< XnGoo the characteristic equation An(p) has no roots in the right
half complex plane ¥ > 0, but if A> XnGoo there exists one real root.

Looking at An(p) near the root x = p* we have

iyjp) = (p-ph) (2p,, + InK. \Dre~riTa(T) dr) + 0((p - pnf).
(3.15)

Thus, if A> XnGoo or if A= XnGoo and a has a finite first moment the root p = p*

has a multiplicity of one. m

7Cf. [27] page 245.
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Chapter 3, Section 3 Problem with Initial History
Lemmas 3.2 and 3.3 now imply that the differential resolvent rn, is integrable if
A< XnGao. Using Theorem 3.9, Chap 3, [18] assertion (l.) is proved.
For the case A> XnGoo we can expand the differential resolvent into a function

in L1 and an exponential term8. So we now have
r,,(t) = I<neKt + gn(t), fort £ R+,

where Kn is determined by the principal part of [pi + /¢»(p)]-1 in the sense that, in

some neighbourhood of p = p* we have

[pi + /zn(p)]_I = +9n(p)»

where the resolvent remainder gn(p) is analytic near p = pn. Calculating Kn we find

that forp p*

-1
p -1

W P» =
PO A A moE) b

Equation (3.15) now implies

(P “ Pn)['PJ + Bn(p)]-~1I

1 _ Pn
2Pi +7nA2r re~PiTa(r)dr  7pan(an A Ajjafp) pnd

+0(p- p¥),

for p near p*. Hence

Pn 1

= Zort + 7nX1 10° re-P*>Ta(r) dr \7TnAn(A - A+ o(P)) p*)

8Cf. Theorem 2.1 of Ch. 7 of [18].
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The solution of (Vo) is now given by

u, (0 = rn(f)un(0) -I- (rn * fn)(i)

ep'i/i,,un(0) + Knep"‘JE) e_p”Tfn(r) dr + gn(t)un(0) + J% gn(t - T)in(r) dr

Kn*?"L (uB(0) + A e-i>"Tfn(r) dr®) + gn(i)un(0) + (gn * /«)(*)e
By defining gn{t) = —/f,ep'f, for i < 0, we can write our solution in the form
un(t) = cnep'* + wn(i), (3.16)

where constant vector cn is given by

([ JOH . 00
¢, = Kn |*$"{’ | 4 Kn [t g-pnr dr
iun(0), Je
/
yn(0)
U«(0) + 7*A£JT e P'T /P°OF()yn(r - £) d£ dr

and
o0

wn(i) = fin(i)u(0) + fo gn(t - r)fn(r) dr.

When A= A,6” we require additional conditions on the characteristic equation
in the neighbourhood of the origin9 in order to get a similar expansion for the
solution. These smoothness requirements arc equivalent to the existence of the first
two moments of a(t). Following a similar approach to above, we get an expansion
for the solution as

Un(0 = Cn + W,(i), fort £ R+,

where vector cn is given by

1/n(0)
2w(0) + 7,A; - f)ydidr

9Cf. Theorem 3.7 of Ch. 7 of [18].
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and wn(t) is defined as before.
Note that for critical loads A> A t h e component of the solution due to the

critical characteristic exponent may vanish. This will occur if and only if

Vn(0) = 0,
poo ro

un(®) -- 7nA2v{O e~PnT /JCJ a(t + £)yn{-£) dr,

where pn > 0 is the simple root of the characteristic equation. While this solution
is bounded in the norm of S it is unstable in the sense that arbitrarily small per-
turbations in the initial history up to time t = 0 will result in solutions that do not

belongto S. =

Remark 3.4 For clarity our results in this section are presented in terms of the
Fourier modes which solve equation (3.8) rather than solutions of (3.4). Once the
Fourier modes un(t) have been obtained, the main part in proving that they define

a weak solution of (3.4) is to show that

00
An o 4|u,,(i)]2 < oo,
k=1

uniformly for 0 < t < T for each T > 0. This is an easy consequence of equation
(3.11) and regularity of the initial history. The synthesis of the Fourier modes for a

similar problem is discussed in [17].

3.4 Problem without Initial History

In considering solutions to (3.8) over the whole real line, we need to impose condi-
tions on the displacement in order that the integral in (3.8) is well defined. Further-

more, we are only interested in solutions that are physically realisable.

Definition 3.5 A solution to (3.8) over R is admissible if

un(i) 6 L1(R~).
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Chapter 3, Section '1 Problem without Initial History

We now use some results on Fourier integrals to show that under suitable con-
ditions on the relaxation function the trivial solution is unique for stable loads and

there exists an admissible, nontrivial solution for loads greater than the critical load

XjlGco-

Theorem 3.6 Let the relaxation function G(t) be non-constant, nonnegative, non-
increasing and convex and let n(t) = —G(t) satisfy a(t)ect E L(R+) for some con-

stant ¢' > 0. Let u,, be an admissible solution of (3.8) satisfying
une"dil € L2(R] R2),

and
lggoe-p un () = 0,
with 8p > c ivhere 0 < ¢ < c¢'. Then,

1. if the constant load satisfies A< \ nGoo,

u=o,

2. if X > XnGoo.

un = cncr"t,

where p’ is the simple zero of the characteristic equation (3.13) and cn is a

constant vector.

Proof.

We shall make use of the following result from [40].

Lemma 3.7 Let 4p) ke regular in the strip a\ < Rp < «2, and let=? iu))belong
to L2(1R)J and lend to O uniformly as v>-» o0, for r/ in the aboveinterval. Let

'0(p) have similar properties in b\ < Ip < 62, where P2< «l e« Let

ra+iT fh+iT
18, fa_if. <KPdep dp + qligy /- Vi(p)eP dp = 0, (3.17)
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for allt, where a\ <a < a? bi <b< P Then fand i]) are regularfor b\ < 5Rp < av,
theii' sum is O in this strip, and they tend to O as Sp 00, uniformly in any

interior strip.

We extend a(t) over the whole real line by defining a(t) = 0 for I < 0. Equation

(3.8) is now given by

/° dn(ryu,(i- 1) = o, (-00 <t < 00), (3.18)

-00

Since r*(/)ec W6 LXR) this implies ecMjn € M(IR,IR2x2) and fin(p) = e~vld[in(t)
is defined and analytic on the half-plane SR > —d. We decompose the solution
un(t) into

un(i) = u_(i) + u+(t),

where u_(—) —u+() = 0, (t < 0). Since u,,(i)e-cWE L2R] R2) u+(p) is defined
and analytic for Up > c and u_(p) is defined and analytic for 3?p < —e. Using

integration by parts, it is easily seen that
roo
J/ in(é)e_pidt = pu+(p) - u,(+0), for 5Ry > c,
(o]

and

[  un(t)e~pidt = pu_(p) + u,,(—9), for 3ip < —

J- oo

Hence for any a satisfying ¢ < a we have that

u+(p) = pu+(p)-un(+0), for Sfp = a,

I 1 /ra+iT\ 0 ; 216
- + - + = + .
7 fair PUFE) - U, (+0)] ep dp = u+(p), (3.193)
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in the mean-square sense, and

I ra+iT ft
lim — / lj,(p)ut(p)ep dp = /  d/z,(r)u+(f- r),
»0 ZIXI Ja-iT J - 00

(3.19b)

in the mean-square sense. Similarly for any b in the interval —d < b < —c we have

for u_(p)

1 rbHT

Jim — /. [pu_(p) + un(-0)]ep dp = u_(p), (3.19¢)

and

A rbehdiT roo

lim—:/ lin(p)u_(p)epidp = / djun(r)u_(f - r),
T—to0 AIXZ Jb-iT Jt

(3.19d)

with equality in the mean-square sense. Adding equations (3.19a)-(3.19d) we get

PR T kAT

lim / _ [pi+ /i,(p)]u+(p)dp+ lim / _ [pi+ /i,(p)]u_(p)dp = O,
T—soJa—iT T—»00 Jb—T
(3.20)

in the mean-square sense.
Using the results from the previous section the solution un will be continuous.
Hence u,,(—0) = un(+0). Adding equations (3.19a)-(3.19d) we get
ra-\-iT rb+iT
lim / [pi + fin(p)] u+ (p) dp + lim / [pi + jin(p)Ju_(p)dp = 0.
H»ooJa-iT T-~00Jb-iT
(3.21)

in the mean-square sense. Applying Lemma 3.7 we can extend both [pl+2~n(p)Ju+(p)
and [pi + p,(p)Ju_(p) throughout the strip b < 5% < a with u+(p) = —u_(p) in
this strip except possibly for poles at the zeros of A, (p). Hence u_(p) and u+(p)

are regular in the strip except possibly for poles at the zeros of An(p) for 5Rp > c.
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We can now write

1 ra-\-iT 1 rb+iT
un(t) = lim ----- / u+(p)epidp — lim ------ / u+(p)epidp,
n\(/)J T—roo 2tU Ja-iT +9€l) P E T-*00 22U Jb-zT +\$p) P1ep

(3.22)

and, since u+(77 + i —0 as w» + 00, we can evaluate the right-hand side by
calculus of residues in the usual way.

We are only interested in solutions that are in L1(R_). Therefore, we are only
concerned with zeros of the characteristic equation An(p) that lie on the right-half

complex plane Up > 0. Using Lemma 3.3 we find that :

1. If the load satisfies A < A,Goo, then the characteristic equation (3.13) has no
zeros on the right-half complex plane Up > 0. Hence u,(t) given by (3.22) is

not admissible and u,, = 0 is the unique solution of (3.8) over R.

2. If A> A,Goo, then An(p) has a simple real root p* > 0. Hence (3.8) has a

solution given by

where c,, iS a constant vector.

The uniqueness of the zero solution for stable loads can also be shown using the

half-line resolvent used in Theorem 3.1. =

Remark 3.8 For clarity, our result in this section is also presented in terms of the
Fourier modes which solve equation (3.8) rather than solutions of (3.4). Since we
find that there are only a finite number of Fourier modes u,,(i) there is no difficulty

in showing that we have found solutions to (3.4).

3.5 Alternative Unigueness Result

In this section we use an alternative procedure to examine the uniqueness of the
trivial solution to (3.7) for stable loads when the history of the displacement is not
specified but is assumed to decay exponentially in the past. This procedure was

used by Virga and Capriz [42] whose work is outlined in [15].
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Chapter 3, Section 5 Alternative Uniglieness Result
Given e > 0, consider the Banach space Uc of continuous functions u,, = (yn,vn)

defined on (—60,0] with
[lu,.jle := supe£|j/n(i.)| + supefijun(Z)| < oo.
t<0 t<0

Theorem 3.9 The trivial solution of (3.7) is unique in UEfor 0 < A< A,Geo, if

e > £*, where e* is the (single) positive real root of
e* = y'inA,, (An(l - a(e*)) - A. (3.23)
Proof. A solution of (3.7) which lies in Uc satisfies the equation

u,(i) —- vJ [/1,u,(r) +j Bn(r)un(r - r)dr dr, te
(3.24)

In order to show that the trivial solution is unique, we define the operator T,, on Ue

by

nt r roo i
mF,(un)(0= - J |Anu,(r) + J  Zn(r)un(r - r)dr dr,
and show that the second iterate of jFn(u,,) is a contraction for stable loads ife > e*.
We need only show that the unique solution of (3.24) on (—o0,0] is u,, —0. Then
we can apply the results of Section 3.3 to show that the solution of (3.7) is zero for
all time.

First we show that .?",(3,) 6 Ue if un £ Uc. Note that for any t < 0,

I £ p RD
A,un(r)dr- / [/ Bn(r)un(r-r)drdr
-CO J—0G o
=-[ Anuu(r)dr-[ j Bn(r—r)u,(r)drdr
—us J—o0 J—o00
= - / dr- I f Bn(r- d d
J[—(D nu,,(r) dr F ook n(r- r)dr u,(r)dr

= -ji U, +jT Bn(r)drj un(t- r)dr

vn(t - t) dr
=3 a7en, (An A ALY ct(i)di) y«(® Ay
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Chapter 3, Section 5 Alternative Uniqueness Result

Hence

oo I e

e"rifn(un)= - / e~ dr,
J0 VInA, (A« —A—A,,/0@a(r) dr)e e Tyn(i- r)y

and for stable loads 0 < A< An(700,

N (Ul < Qllo«]],+ oA, I e"T(a. - A- A,jf a(r)dr) dr|t/,||t

= g—l«,,lU t— (A.- A- A(e)) lli/nll,.
Therefore ”,,(u.,,) is bounded in Ue by
[ (us) 1L <y Hu, (3.25)
where
K = max {1,7BA,,(A* - A- Ana(e))} < max {l,7,,An(An- A)}.

This proves that »,,(u«) is in UE for all e > 0.

We consider the second iterate of Tn,

W W )= r  ABun(T)drd{+ I Anf" | Bn(r)un(r —r) dr dr dE
J—o I

J—o00 j —00 —oo Jo

+f f Bn(r) [ Anun(r)drdrd£, (3.26)
1—e030 J—00

since Bn(t)Bn(r) = 0. The integrals in (3.26) can be written as

ft i °° ro°
I/ A*un(r)drd€= / [  ABun(t- r - f)drdE,
J—00 J —00 JO O
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Chapter 3, Section 5 Alternative Uni<|ueness Result

1 An J_CDJIO Bn(r)u,,(r —r)drdrd£f = [ [@j AnBn{r - r)u,,(r) drdrdE

J_co
ri
J—COJ—(;Z)T Aan(r—t)dr un(r)dr dE
J'-oo J—oo JIO AnBn(r) dr u,,(r)dr df
AnBn(r)dr un(i - r - £)dr dE,
0 Jo JO
and

“Bn(r)  /aun(r)drdrdf=/ | BnE-r) / Anun(r)drdrdE
J- j =0 J—o0 J—®

= J[—ooJI—OOJIr Bn{£ - r)Andr un(r)drdf
= J—OOJ J[o In(r)A»dr u,,(r)drdf

= b / Bn(r)Andr un(f- £- r)drdE.
Jo Jo
Hence we can write

An(™n(un) =J jf "~Al+  AnBn(r) + Bn(r)Andr un(i- (- r)drd(

(3.27)
00 / T
n 7UA,, \An— A- J/o Ana(r) dr dr d£,
(3.28)
and
e-""n"nK))

*-f-0

Sif TcAvee(fn) (An- A- AT a(r)dr) «-M -0 T\ dr de.
>/ -£-r1)

Therefore HJyC*wiun))!'« is bounded by

Ham (A'nun)lle < 7,,An fo JE) e E(i+) An- A- NIJl:) t*(r) dr drdfjlu,,|]e.
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Chapter 3, Section 6 Standard Viscoelastic Material

Since 0 < A< XnGoo, the second iterate of J-n is a contraction if

AN I e-<thhn- A- A roa(r) drdrdE = TnA AN —- <1

This will be true ife > £* The existence of a unique positive solution can be shown
using an argument similar to that used in Lemma 3.3. m

A simple upper bound for e* is given by
e* < "7nA,,(An -A). (3.29)

Note that for continuous time-dependent loads satisfying 0 < A(t) < A*Goo, equation

(3.24) has a unique solution in UEIif £ > £*, with
£* = \JInXn (A,,(I - a(e*)) - Am),

where Am = inf*o A(i). For constant loads this is not as strong as Theorem 3.6.

3.6 Standard Viscoelastic Material

A rod comprising of standard viscoelastic material has a relaxation function of the

form
G{i) = G+ (G0-G o0)e -tli, (3.30)

with a > 0 and 0 < Goo < Go. This material has been widely used as it possesses
many of the observed properties of physical viscoelastic materials. Appendix A
contains a description of the standard viscoelastic material in terms of its rheological
model and the derivation of (3.30). Dost and Glockner [14] examined the zero initial
history problem forthestandard viscoelastic material using Laplace transforms.
We willconsidertheinitial history problem for which the history of the displace-

ment at time t = 0, denoted by, y°(r) = yn{—r) is known. After normalising, as in
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Chapter 3, Section ti Standard Viscoelastic Material

Chapter 2 we have
a(t) = a(l - Goo)e-Q. (3.31)
The contribution due to the initial history in (3.7) is now given by

@®
/ e aTyn(J - T)dr = tf3e-a\

where a3:= a(l - (?«,) 0> e“°Ti/n(r) (ir-
The dynamic equation (3.7) can be written as a system of three first order,

ordinary differential equations. To do this we define m,(i) to be

mn(t) = -i/n(0 + JI0 a(t- r)yn(T)dr

-J/»(0 + «(1 - Goo) JfO e_a(i_T)yn(r) dr.

By differentiation we find that mn(t) satisfies the differential equation

mn(f) = -y,,(i) + a(l - Goo)yn(t) - a(mn[t) + VnU))

oGaaljl(¢) JIn(0

with initial condition mn(0) = —y,,(0). Then (3.7) can be expressed as

d/Vn\ - 1 0\/yn\ (f
di Vn 7T.AA() 0 7TnA2  yn + m (3.32)
—aGco —1 R / | O )

where u,,(/) = ¥n(t) and fn(t) is given by

/»(*) = 7»A2a3e~ai.

The initial conditions are

y»(0) = a0, un(0) = ai, ron(0) = -a0-
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Chapter 3, Section 6 Constant Load Problem

Alternatively, we can write the dynamic equation as a third order scalar equation

by differentiating
ijn= - 7nA,(A, - AE))y, + 7nA2a(l - Goo) f e~aTtjn(l - r) dr + /(*).
JO
to give

VnIAVN F7nA,(An AN T7«ANANGe Adh  7nAjillAyr  fn '7ifn
=0,
(3.33)

subject Lo the initial conditions

yn(0) = «o, «(0) = «1, Y,.(0) =az

where
a2= —J«An(A, - A(0))ao+ /«(0) = 7nA*(a3- a0) + 7nAnA(0)ao.

In this section we will consider (3.32) or (3.33) for constant loads. The characteristic

equation is given by
A, (p) = p3+ apl+ 7,,An(A, - Ap + 7nAla(AnGoo - A). (3.34)

Our primary interest is in determining the values of A for which the roots of

(3.34) have negative real parts.

Theorem 3.10 The characteristic equation (S.3Jt) will have :
» Three roots with negative real parts if A< A,Goo.
» Two roots with negative real parts and a root at the origin if A= AnGoo-

 Two roots with negative real parts and a single real root greater than zero ij

AN BiGoo*

37



Chapter 3, Section 6 Constant Load Problem

Moreover, if X< Xn and 0 < a < \JStYnXn{Xh —A) then a complex pair of roots exist
for all Geo < 1. Otherwise, a complex pair of roots will exist only if G- < G" < G+

where

_2A+ An 223 (a2 37NA(A —A))32
C+= 277NA2 (3.35)

Proof. Applying the Routh-Hurwitz criterion or the Lienard-Chipart test to (3.34)
we see that the roots of (3.34) have negative (nonpositive) real parts if and only if

the determinants

a 1
Di =
aynXn’X'nGca A) 7™n(Xn A
= a7’n-"(I —Goo) > 0,
a I @)
Do = Xn(AlGgg A MnXiiti A) fi
0 0 aynxXn(XnG0 A)

P-INXn{XnGG  X'jDi)

are strictly positive (nonnegative). Hence we have that for Aless than the equilib-
rium buckling load of A,Goo, the roots of (3.34) have negative real components.

Applying the Routh-Hurwitz criterion to A,,(—p), we find that at least one root
has a negative real part for all values of A Since A, (0) < 0 for A > AnGoo this
implies there exists two roots (possibly complex conjugates) with negative real parts
and one positive real root. Finally, it is easily seen from (3.34) that the origin is
simple when A= AnGoo- This result agrees with Lemma 3.3 for general relaxation
functions.

The existence of a complex pair can be determined by examining the discriminant

of the cubic equation (3.34), which is given by

D = (MnXn(Xn A a2)3 N 2 —97,,An(An(l —Goo) ~ 2(AnGoo —A)))
- 729 2 2916
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Chapter 3, Section 6 Constant Load Problem

There exists one real root and a complex pair, three real roots at least two of which
coincide or three real distinct roots if the discriminant satisfies D > 0, D — 0 or
D < 0 respectively.

The discriminant is quadratic in G and can be solved in the usual manner
to give the expressions for the roots G_ and G+ in (3.35). The bounds in (3.35)
are complex if A< An, and a < yj3npnXn(Xn —A), then the discriminant is strictly
positive for all 0 < Goo < 1.

The region in the (a, Goo)-plane where complex roots exist is shown for various
values of the load Ain Figure 3.1. m

Theorem 3.10 implies that the trivial solution of (3.32) is asymptotically stable,
stable or unstable if the constant load Asatisfies A< AnGoo, A= XnGoo or A> AnGoo
respectively.

While the solution is unbounded when the load is greater than the critical load
XnGoo, the rate of growth in the displacement is strongly linked to the ratio between
the load and the instantaneous buckling load Xn. When the load is greater than
Xn the displacement begins to grow the instant the load is applied. But if the load
lies between the instantaneous and equilibrium buckling loads and the relaxation
time is large, the initial displacement oscillates with a decreasing amplitude and the
instability will only become apparent after a significant length of time (cf. Figure
3.2). Thus, although the solution is unstable it may behave like a damped oscillator
initially if the relaxation time is large. The critical time at which the amplitude of
the creep term is comparable to the amplitude of the damped oscillations depends
on the type of initial disturbance as well as the relaxation time. Szyszkowski &
Glockner [39] called this phenomenon of a time-dependent instability viscoelastic
instability. In Chapter 5 we examine the relationship between the type of initial
disturbance and the growth rate of the instability term in the solution.

Figure 3.2 contains plots of the solution (n = 1), for loads A= 0.1Xn < XnGoo,
A= 0.3A, > A"Goo, and A= 1.0lAn respectively for the following material parame-

ter values.
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Chapter 3t Section 6 Constant Load Problem

Parameter Value

n 1
. 9.8696
In 1.0001
Goo 0.1

a 0.1

These plots were calculated using the procedure described in Section B.3.1.
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Constant Load A = 0

a
Constant Load A = 0.5A,,

a
Constant Load A= A,

a

Figure 3.J: Regions with complex and real roots for mode n=1I.
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Stable Load : A < AnGoo

Viscoelastic Instability : XnGoo < A< Xn

Dynamic Instability : Xn < A

Figure 3.2: Stability behaviour for the standard viscoelastic material.
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Chapter

Nonautonomous Problem

4.1 Introduction

We now consider the initial history problem with time-dependent loads. We con-
struct a suitable Hilbert space in which the norm of the solution is defined to be the
energy of the rod, and extend the method of Dafermos [9] to the nonautonomous
initial history problem. Dafermos in [9] used a semigroup approach to prove ex-
istence and uniqueness, as well as asymptotic stability of the trivial solution, for
the standard displacement problem of linear viscoelasticity. The evolution equation
is shown to generate a Co contraction semigroup on this Hilbert space, and has
a unique solution which depends continuously on the initial data. This is in con-
trast to the results in the quasi-static theory, for which Reynolds [36] showed that
uniqueness is ensured only if max<0|A(t)| < AiGtqo. The energy of the rod is used to
construct a Lyapunov function, which is used to demonstrate that the zero solution

is stable for a large class of loads satisfying 0 < A(t) < AIGr",

4.2 Existence and Uniqueness

In this section we examine the existence and uniqueness of the initial history problem
for time-dependent loads. We formulate the retarded functional equation (3.4) as
an evolution equation. The state-space at time t consists of the displacement y(s,t),
the momentum ucs,i), and the history of the displacement W(S,T,t) yt(s,Ty =
y(s,t —t). The existence of a unique solution is proven using semigroups and the

contraction mapping theorem.
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Chapter 4, Section 2 Existence and Uniqueness

Definition 4.1 A triplet x = (y,v,w) is in the space W ify £ H, v £ Hq and
we LI(R+,H2fl Hgq)l. W is endowed with inner product

< (y,v,w),(y,v,w) >u=

(vv + crvsvs + GooyssVss + a(r)[yss- wss(r)][yss- Wss~dr”™ ds. (4.1)

The space 7i is complete with respect to inner product (4.1). Note that due to

(3.2), the norm on TL is given by

= (v{Lav) + Goovl, + \QaiT)[yss - Nss(r)]2dr) (4-2)

The first term on the right-hand side of (4.2) represents the kinetic energy of the rod,
and the last two terms its Graffi-Volterra free energy2. We define linear operators

A :D(A) % andB :Ti® H hy

A(y,v,w) = (v, Ka  yssss + a(T)wssss(T) dr) ,—wT),

B(y,v,w) = (0,—Kayss,0).

Here @,v,w) G D(A) if and only if (y,v,w) GH, y £V, v GH, w(-,r) GV,
wT £ LA(R+,H), iw(-,0) = vy, and -yssss + fO°a(r)wssss(r) dr £ L2. Using these

definitions, the problem of finding solutions to (3.3) becomes that of solving

N = (A + Mt)B)x, X(0)= *m (4.3)

Theorem 4.2 Suppose that the relaxation function G(t) is positive, nonincreasing
and convex with Ga0 > 0. Let A: [0,00) —R. be bounded and continuous. Then for

each Xo £ there exists a unique solution

X6 C1(R+;W)nC'(R+;D(yl)), (4.4)

1L\ denotes the a-weighted L2 space of functions / with [|/[|I* = (/™ a(i)|/(t)}3di)1r2 < co.

2Cf. Section 2.4.
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Chapter 4, Section 2 Existence and Uniqueness

of (4.3) satisfying *(0) = Xo.

The proof consists of showing that A generates a contraction semigroup. Then,
the solution of (4.3) can be written using a variation of constants formula. This
equation can be shown to possess the unique solution satisfying (4.4) if B is bounded.
In order to show that A generates a contraction semigroup on TL we must show that

A is a maximal, dissipative operator.

Lemma 4.3 Let G(t) satisfy the conditions of Theorem 4.2. Then, the operator A
is dissipative, the domain of A is dense in TL and the range of | —A is 7i. Also B

is bounded.

Proof. To show that operator A is dissipative we must prove that (AX,x)u < (0?

for all x £ By definition of TL,

(AXi X)U — j GooVss”ss “1' ( Vssss “Hj  Qi(r)iWesss (t) dT
+avs (Ko  VYssss+ o ox(t)wSS3S(t) ¢ 1))

-)-J a(r)[uss + w TSS(r)]l[yss - iudsS(r)] d rj ds

_JO {G ooySSVSS _|_ Lav h a (VSSSS

+ Jo vssyssa(r) - wvsswss(t)+ a(r)w TSY(r)[yss- wss(t)]drj ds.

Since operator La is formally self-adjoint, integration by parts shows that

(*4X ,x)u = Jo { “ v (yssss ~ Jg oi(t)wssss(t) dr”

+ VSs (YSs - o{t)wss(t) dT) +r a(rnii»TSYyss - wss(r)] drj ds
rl roo

= [/ [/ a(T)wrss(T)[yss- wss(T)]drds
Jo Jo
11 ro _

= 710 J/0 <i(r)[yss —iuss(r)]2dr ds < 0. (4.5)
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Chapter 4. Section 2 Existence and Uniqueness

To show that the range of I —A is 'H we let x = (y,u,to) be in H. We show

that the solution of the system (/ —A)x = X satisfies x £ W.

y-v =y, (4.6a)
v - Ko {"-yssss + at)wSSSJ(t)dr) = v, (4.6b)
w+ wT=w. (4.6¢)
From equation (4.6c),
wls = ~ wlsa~ 2wrssWs,

Hence, we have

reo [
™
7/O J/O a(r)™ss(r)dsdr
< [/ aMuA~r)dsdr- 2/ [ a(r)iwTsr)wXH(r) dsdr
70 jO jo jo .
feco rl r rl | t=o0 00 -i
=/ [ a(nti;x(r)dsdr — or(r) / wss(r)ds +/ | a(r)w,,(r)dsdr
JO JO L JO Jr=0 JO jo
oo A rl
< 50 {10 a(r)ug,(r) dsdr+G(0) */é y*s ds.

Ify £ Il, then v G L2(R+,//) asw G /[2(M+,/]). Solving equation (4.6¢) using

variation of constants yields
t«(r) = e-Ty + [ ei_Tu>(£)dE. 4.7
JO

Using this result for w and equation (4.6c), we see that wr 6 L\(M+,//). Now to

solve for y we substitute v from (4.6a) and w from (4.7) into (4.6b) to give

y+ Ka(ysss- J a(r)uw (r) dr) =y -t),

y+ (j-~JO0 Q(r)eTdr) "Usssu =y +v+ K, (J a(r)”™ ei-Ttessss(f) dE dr
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The coefficient (1 —f£° cv(r)e_Tdr) is strictly positive as it is bounded below by Goo-
Hence there exists a unique solution to the above equation since the operator K,, is
positive. The solution is in 11 as the right hand side is in H~2fl I1g3 Finally, v is
given by (4.6a) and is in liq

The operator B is bounded, as can be seen from

\W\Bx \\h = JIo\ K ayss)La{K,)ysA s

= jo yS(Kffyss)ds < [lyss||12 < Zj7(IT”X”«'

since Goo > 0. m
Proof. (Theorem 4.2)

By the Lumer-Philips theorem3, A generates a Co contraction semigroup S(i)t>00n

. Using the variation of parameters formula*l, (4.3) is equivalent to
X(1) = (Tx) (9 ~S()x,+ [ X()S(-1)Bx(t) dr. (4.8)
Since S(I) is a Co semigroup there exist constants ’>> 0 and M > 1 such that
WS{HH\ < Mewt, for 0 < t <o00.
Also, A(l) is bounded and G0 > 0. Therefore there exists I" such that
0<t*<1l/wlin (/I + M_Fﬁ_ag() I;j- Al

3Cf. §1.4 of [33].
Act. §4.2 of [33].
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Chapter 4, Section 3 J-jfapunov Stability

The operator T restricted to C ([0,t*],'H) : 'H —=1i is a contraction for 0 < t < t*

since for any x*C H w e have

H(TX) (0-(Ti>) (W H<MVBI { A" EDIX(r) - VMIIw dr

< i -
MI/Goo Jfo evv(t_'l')irg[&i)i] [A(D]||x(r) - VMIl« dr

= MtG r1). % TIAMIIX()- " [©lw

< max|Wi)-VW ll«,

Hence, using the contraction mapping theorem, we have a unique solution in the
interval t £ [0,f*]. This solution can be extended over the whole real line by repeat-
ing the above procedure over intervals of length t*. If the load is continuous then

differentiation of (4.8) shows that x satisfies (4.4). m

4.3 Lyapunov Stability

In this section we use the energy of the rod to analyse the stability using Lyapunov
functions. When the load is constant we get a result analogous to that derived
using Laplace transforms in Chapter 3. For time dependent loads we show that the
solution is stable for loads satisfying 0 < A(t) < AiGoo, and describeconditions for
which the solution is asymptotically stable.

From the definition of total energy (2.23) we see that

2£(*) = 1IXll« = <X, X>«. (4.9)

By differentiating (4.9) we can prove the energy inequality (2.25) using the dissipa-
tivity of A.

Proposition 4.4 Let x be a solution of (4-3) then

1 E[t) > AiGooJf y] ds.
0

Er<*<>
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Proof. From the definition of E(t) and the Poincare inequality,

E(t) =J (v(Lav) + Gooj/gg + J  u{i~)[yss ~ wss(t)]2dr) ds
> GooL y&ds

> X Goo J[) y&ds.

Differentiating (4.9) we get the relationship

E=- (Ax,x)h + X)-H
2 /pl /poo " drd /pi q
= - a(r ss(t) - t rds-A (i ssv ds
2 1 (r) [yss(t) - wss(t)] ()JO y
1 rl roo 1d rl
=2JQj0 "(T) “ wss(r)] drds+ \(t)-—" y2ds.

The desired result now follows the convexity of G(t). m
The stability behaviour of the solution of (4.3) can be analysed using a suit-
able Lyapunov function. Standard results involving Lyapunov functions imply the

following resultb.

Lemma 4.5 Suppose that V:R x —R is continuous, V (t,0) = 0 and there

exists positive definite functions6 w and W such that

(Xl < V(t,x) < w(llxIl)- (4.10)

Then, the solution of (4-3) is uniformly stable.

Theorem 4.6 Suppose that the relaxation function G(t) is positive, nonincreasing
and convex with G« > 0. Let A(t)belong to (71(R+) and suppose there exists
numbers S\ > 0 and e2> 0 such that < A(t) < AiGoo —£2- Then, if the function
F defined by

4.1

5Cf. §10.13 of [21] or Chapter 5 of [41]. o .
6A function w : M —vK is positive definite on ffi if it is continuous, w(o) = o, and w(t) > o,
fort™ o.



Chapter 4, Section 3 Lyapunov Stability

is integrable over R+, the solution of (4-3) is uniformly stable.

We prove the preliminary lemma.

Lemma 4.7 Suppose A G C'I(E+) and satisfies 0 < A(i)) < A[ for all 1 > 0.
Then, if F(t) is integrable over IR+ there exists a p(t) € Ca(R+;IR+) satisfying

p(t)>poo>0. (1
pX pX <0. (H2)
p{X1Goo- X ) - PX<O0. (H3)

Proof. Assume Aand F are as in the hypothesis of lemma. We define p(l) as

p(t) = exp J F(r)dr) . (4.12)
Since F(t) is locally integrable and positive. p(i) is positive and nonincreasing. Also

p(t) > poo m=exp F{t)dr) > 0.
Taking natural logarithm of (4.12) and differentiating we get the equation
p(t) = ~p(HF(1).

Then, from the definition of F(t) we can see that

p< —pX/IX = pX+ pX <0,

and

p<p'XJ{AiGoo-A) =» (AiGoo —X)p —Xp <0,

since p is positive and 0 < A(i)) < AjG™. =
Proof. (Theorem 4.6)
We seek a Lyapunov functional V'(Zjx) € C,(R+ x Ti\ R+) of the form

X) = P{) f(x. X)n ~ X(t) [ ylds
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Chapter A Section 3 Lyapunov Stability
for some suitable function p(t) £ C1(R+;R+).
Since the load satisfies £\ < A(t) < AjGoo —£2 and 0 < Poo < p[t) < I we can

bound V(t,x) between two positive definite functions

Pookz (x,x)n < V%x) < (X,X)u-

Differentiating V we get

(x>x)*-*(0 /. I/dr
+ p(e) L/L ji O(r) [y«(*) - uiss(r)]2dr ds - A(g,)jE y] ds
= p(0<x»X)« - [p(OMO + p(OMO0] /o y&ds

r\' roo
+ p(t) [ ct(r) [yss(t) - tvss(r)] drds.

jo

Since p(t) satisfies (M2), we have the inequality

- A + pomo] Duigs < FPAQEERN
Thus
V() <X a2fagmoW- - ADB}
PO [ £ L) B0 - w2 as

Because p(i) satisfies (M3) and the last term is negative we get

fi* x)<o. (4.13)

By applying Lemma 4.5 we get the stated result. m

We now discuss the meaning of the hypothesis in Theorem 4.6 that F is inte-
grable. The following lemma shows that for loads with a finite number of critical
points F is integrable. On the other hand, for certain oscillatory loads whose am-

plitude does not tend to zero as t —00, F is not integrable.
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Chapter 4, Section 3 Lyapunov Stability

Lemma 4.8 Suppose the load X(t) satisfies the conditions of Theorem 4-6. Then,
1. if X(t) is eventually monotonic, F is integrable.

2. if X(t) has an infinite number of critical points tk, kK £ N, then a necessary

condition for F(t) to be integrable is

alL«) =L (414
Proof. Suppose there exists t* £ R+ such that X(t) > o for all t > t*. Then

po I roo
[ F(r)dr =/ F(r)dr+ [/ F(r)dr
Jo Jo Jt*

- Jo F(t)dr - [In(AiGoo - A(Z))]* <oo,

since Fis locally integrable and £i < X(t) < AiGoo —e2 for some positive numbers
£1, e2Theproof is similar for the case A(i) < 0 for all t > t*.

Assume the load A(t) has local minima at the points i2k and local maxima at

¢2)cH where k £ N. Then

rhk+2 JL / +| ft2j+2\
I F(t)dr= - J2 | + F(r)dr
Jto mQ\'l t7 Jhj+1J
£ (_fw M dr+ fw dr'
i\ A  A(rp JojH  XiGup — A(r)
_Vv'ad _% L 1 AGy —Alg+i)\

=0\ A(ig+1i) AiGoo —A(i2j+2)y
v- (u  X(t3) (AiGoo - A(ig+i)) A
i=0
Note that all the terms in the series (4.15) are negative. Hence, taking the

exponential of (4.15) we have

. . ACG+i) (AjGoo —A(2j+2))
o p'%ZAJrZF (r)d rﬂ) - }!@ X(t%) (AiGoo - AEJ+i))

k |/ Wi X
i=0 \
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where the iuj > 0, are given by

Wj &;2\2}4) N (XiGoo —A(i2)+2)) —(A[Goo —A(ig+1))

- ~ ) A,GY # ~ (437)

The denominator in (4.16) is finite since the load satisfies ei < A(t) < AiG«, —e2,
with £i,£2 > 0. Hence, a necessary condition for the infinite product to converge is

that Wj —»0 as j —o00.

In order to prove the condition (4.14) is necessary we assume Wj —0 as j —» 00,

and
L
Since
we have
. N ALY = A = A A
lim A(2t-2) — A(i3) A|qu(1 (53> AiGoo (7(0
Hence

jllgaoA(sz) = 00.

This contradicts the boundedness of A(i). m

We will now briefly look at some important time-varying loads.

Example 4.9 An important example for which F is not integrable is given by
A(i) = Pg+ Pi cos(Oi),

where £ < PO- Pi, Po+ P\ < AiGoo - e, with e > 0. F(t) is not integrable since

A(t2j) _ PO-Pi
fi) + P\

The behaviour of the nth Fourier mode is studied in Section 5.6 using this type of
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load for the special case of a standard viscoelastic material. Numerical computations

suggest however that, even though F is nonintegrable, the solutions are bounded.

Example 4.10 In the case of nonstationary parametric excitation of the form

A(t) = PO+ cos(Hi), (4.18)

it is easily seen that Wj —=0 as j —¥ oo. In fact,

< A, G, Pa_ p— hi2t - 1j + (P0O+ P,e Yy (" - >+ p v
p-1212j+l | pP2<2> p-1212j | p-ical2j+2
< PoAIG«,- — - + P,(PO+ p)-
Po-Pi \ Po
<2 PgAi O O&A(PO + PO Lpoa (4.19)
Po- PI Po
where
tj = —1/0) arctan(P2/w) + n(j + l)/ffc, j=0,1,. .

In order to show that F(i) is integrable, we use the fact that the infinite product

(4.16) converges if and only if the series

0o

5> i, (4.20)

j=o0
converges. Using the bound (4.19) it is easily seen that the series (4.20) converges
by comparison with a geometric series. Hence, F(t) is integrable. Figure 4.1 shows
the behaviour a load given by (4.18) and the integral of F(t) calculated up to t2o

These figures were generated using the following data :

Parameter pPo Pi P2 n

Value 11 10 01 10
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Load \(t)
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Chapter 5

Multiple Scale Approach

5.1 Introduction

In this chapter we examine the dynamics of the viscoelastic rod using various mul-
tiple scale expansions. A brief outline of the procedure is discussed in the next
section.

In Section 5.3 we study the autonomous problem for the standard viscoelastic
material. If the relaxation time is large, the elastic and creep effects should occur
on different time scales. This expectation is supported by the work in Chapter
3 on constant loads A < A,,. For stable loads A < AnGoo, the deflection modes
behave like a damped linear oscillator with an exponentially decaying amplitude. If
A™MGoo < A< A, the rod’s initial oscillatory behaviour is damped, but the effect of
a slowly increasing term, due to creep, results in the rod buckling. This instability
is discernible after a critical timel that is an order of magnitude greater than the
period of the oscillations.

The retarded problem is investigated in Section 5.4 for general viscoelastic ma-
terials. This entails replacing the relaxation function G by its retardation Ge, where
Ge(t) = G(et) and retarding the known initial history. For small values of the re-
tardation parameter e the elastic and creep response occur on different time scales.
The leading order and the first order terms are calculated using a procedure similar
to that used in [1, 2]. When we set the retardation parameter e = 1in this approx-
imate solution of the retarded problem, it happens that we get a function which
agrees exactly with the approximate solution found in Section 5.3, if the rod is of
standard viscoelastic material.

In Section 5.5 we consider the effect of a slowly varying load. In particular, we

xThe term critical time is used in various senses in the literature on creep buckling. The
definition used here is not standard.
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examine the behaviour as the load slowly crosses the equilibrium buckling load.

In Section 5.6 we consider periodic loads of the form A(t) ~ PO+ P*cosilt,
where Pg < AnGoo. We know from the work in Chapter 3 that the trivial solution
is asymptotically stable if Pi = 0. We use multiple scales to examine the instability
produced by principal parametric resonance when |Pi| is small. This approach
allows us to calculate the transition curves that decompose the parameter space
into stable and unstable regions and also to calculate the form of the solution in the
neighbourhood of these curves.

Note that in order to simplify notation, we will use e to represent different
guantities in the separate problems discussed in Sections 5.3-5.6. Also, the variables

tlc, k = 0,1,2,... are used to represent different time scales throughout this chapter.

5.2 Multiple Scales

In Smith [37] second order differential equations of the form

+ = *> 0, (5.1)

subject to the initial conditions y(0) = a, y(0) = b are studied for suitable functions
/. In each case, an approximation solution was found by considering an ansatz of

the form

N
y(t\£) = A2 ekYk(t,et) + EN+Lifo(f,e), (5.2)

k=10

where each term Yk(t,ti) is assumed to depend on the fast timei, and theslow time
tl = et. This is similar to the Lindstedt-Poincare procedure, butinthis case the
fast time is ‘detuned’ and given by t+ =t m(1 + c\f£ + c2e2+ mem).

For a number of functions / in (5.1), the two-time expansion in (5.2) has been
shown to be uniform in the sense that the quantity R"[t,e) is uniformly bounded
(as £ —=0+) for all t on an expanding interval 0 <t < T/e. For example, see Kollett

[25] or Smith [37].
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Chapter 5, Section 3 Decomposition of Elastic and Creep Effects
As we shall discuss later, we need to use a more general form of the expansion
in equation (5.2). The two-time expansion of (5.2) is extended by introducing the

time scales,
tk = ekt, fork=20,1,2,.... (5.3)

Using the chain rule, it follows that the derivatives with respect to t can be written

in terms of partial derivatives with respect to the new independent variables t*, i.e.,

T7= Do + eDi + ome | —— = Dg+ 2eDoD\ me2 (D\ + 2DgD2j + e*s,
(5.4)

etc.. Here we denote the partial derivatives with respect to the new time scales by
ok = sj-- A partial differential equation in the M independent variables to,... | tn
is obtained by substituting (5.4) into (5.1).

Let us assume that the solution of this partial differential equation can be rep-

resented by a multiple scale expansion of the form

Y (t0,... ,tM"e) ~ . m), as e -» 0, (5.5)
k=0

where each term in the expansion, Yk, depends on t and e in such a way that the
result is uniformly valid over the time scales under consideration. In other words,

we require for each N that

N

N
sup y(t',e) - YAekYk{to, mm tM)) /e
o<t<T/sM v k=0 /

+1 (5.6)

be uniformly bounded for all small e. In general, the number M of slow time scales
required will be no greater than the order N to which the expansion is carried out.
The necessity of more than two time scales for higher order equations was recognised

by Kabakow [23] for systems of coupled oscillators2.

2Cf. [24], Sec. 3.5.
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5.3 Decomposition of Elastic and Creep Effects

It can be inferred from the linearised dynamic equation for the standard viscoelastic

linear material that y(s,t) = u(i)sinn7rs is a solution, if u(t) satisfies

i = -7nA,(An- At)u +7,A2a(l - GN) Jf e a(i~Tu(r) dr, t >0,
(5.7)

subject to the initial conditions u(0) = ao, un(0) = ai and a prescribed initial
history The physical parameter a, which represents the reciprocal of the relaxation
time is small for many viscoelastic materials. In the limit as the relaxation period
approaches infinity we get the dynamic equation corresponding to an elastic material.
In this section we wish to construct a uniformly valid expansion as a —0 for the
solution u(t), thereby decomposing the elastic and creep effects. We shall examine
this problem for constant loads less than the instantaneous buckling load Xn. In
particular, we shall investigate the effect which the type of initial disturbance has
on the critical time in the case of viscoelastic instability.

In order to use a multiple scale expansion, we first need to convert (5.7) into an
ordinary differential equation. The integral in equation (5.7) can be removed if we

define a function c(t) by
c(t) = 7,A2(1 - Goo) f* e~a*u (r) dr, t > 0. (5.8)

J - 00

In this chapter we will only consider the typical case of an integrable initial history

Hence c(i) is well defined as a —m0+ and satisfies the differential equation
¢ = TnA™I - Goo)u - ac, c(0) = 7nA™(l - Goo) j_@e’\r)u(r) dr.

The value of ¢ at time t = 0 depends on the initial history of u. Hence, as a —m0+
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In order to simplify expressions we introduce the parameters3

N —ATnAn(A1 A), fl — Goo).

The dynamic problem for the nth mode can be expressed as

u(t) + io2u(t) = ac(t),  c(t) = fiu(t) —ac(t), (5.10)

subject to the initial conditions u(0) = a0, u(0) = ai and equation (5.9). Let e = a.
We would like to obtain a multiple scale expansion for u(t) andc(t),uniformly valid

on the interval 0<i < T/e2as e —0. A two-time expansionofthe form (5.2) or
with a detuning of the fast time as in the Lindstedt-Poincare procedure is unsuitable
for this problem, due to the length of the time interval required to investigate the
relationship between the type of initial disturbance and the critical time. A two-
time expansion over 0 < t < T/e2 produces secular terms. Therefore, we assume

that u(t) and c(t) depend on the three time scales t/. = ekt, A= 0,1,2 such that

u(t\e) = U e), c(t;e) = C(t0,tl,t2]e).

U(to,t1,t2'e) and C(t0,ti, t2\e) satisfy the system of partial differential equations

(Do +eD\ + e2D2)2U(t0,¢i, i2;e) + uj2U(to, ti, t2;e) = eC(to, ii, t2\e),
(5.11a)

(Do + eDi + e2Z22)C(io, £) = [¢U(to,ti,t2]e) —eC(t0,¢1,t2;Em
(5.11b)

We assume that U(to,ti]€) and G("o,ii;e) satisfy the asymptotic expansions

U(to, ii; e) ~ Uo(toi ti) + eUi(to,ij) + ..., (5.12a)

G (i0,ii; e) ~ Co(Eo, i) + £Ci(i0,ii) + omm (5.12b)

3Note that w represents the natural frequency for the corresponding elastic rod and is always
positive for the range of loads examined in this section, i.e., A< An.
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Chapter 5, Section 3 Decomposition of Elastic and Creep Effects
as £ —m0.

We now successively determine Uk and Ck by substituting (5.12a)-(5.12b) into
(5.11a)-(5.11b). As the technique used here is standard we shall omit the details
and refer the reader to [24] or [22], The 0(1), O(e) and 0(e2) solutions’ dependence

on the fast time and the two slow times can be shown to be of the form

2 2
Uk(to,tl,t2) = Ake A cos(u;to + A sin(wio + gN?12)

+Fkr e A - A\ (5.13)

for k = 0,1, 2. Using the initial conditions we can calculate the constant coefficients

Ah, Bk and Fk- The 0(1) and 0(e) coefficients are given by

Agq = ao, Bo = a-y/u, Fq —cq aifilto,

A\ = —Col 1j2 —aifilto 3, B\ = aofj,/(2u}3)i Ft = ci —ao02/7(2cj1 —jluj — 1)/w 5.

The 0(e2) coefficients used in determining U2 are given by

A2 = —C\V(J “F Clo2fJjeul — Xl — 1)/Q) ,

B2= co(/i —2w2)/(2w5) —ailj,(fi —4fi>+ 8w3)/(8w7).

Remark 5.1 Note that over the interval 0 < t < 0(e~1) there may be a reordering
in the first three terms of the multiple scale expansion. This will occur for loads in
the range A,Goo < A < A, since the 0(1) solution does not contain a creep term
with the type of initial conditions assumed here. A creep term will appear in the

0(e) or 0(e2) solutions depending on the initial conditions.

Hence the type of initial disturbance has a large effect on the size of the creep
component in the solution. This effect has also been discussed in [39] where the
static and dynamic initial disturbances for the zero history problem were compared.
For constant loads that result in viscoelastic instability, i.e., if A £ (AnGoo,An),
this relationship between the type of initial disturbance and the magnitude of the

creep response component influences the critical time of the rod. We consider the
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Chapter 5, Section 3 Decomposition of Elastic and Creep Effects
multiple scale approximation and determine the critical time for which the creep
component is of the same order as the decaying elastic response for various types of
initial disturbances.

In the case of a static disturbance of size ao, with zero initial velocity (ai = 0)

and (cO= ci = 0), the creep term becomes dominant when
0((A> + eflOe-"*/*2‘~ 1) = 0{e2F1le " ~ 1M1).

Hence the static critical time is given by

12t02 — 3fi e22/i(2u>2 —/ljw —1)/ w3
ICT=i ~ 2 ~ In u2+ elil2
For loads in the interval (AnGoo,An) we have 2to2 —3/i < 0. Note also that the
critical time is independent of the size of the initial static disturbance.
The critical time for the rod with zero static disturbance (a0 = 0), an initial
history with (cO = 0), and an initial dynamic disturbance of size ai, is approximated

by
O((BO+ eAi)e-*(D<l) = O(eFDe(Mwa- L)tl),

for small e. Hence the dynamic critical time is given by

12002 - 31 " tj.LLO
tcT~e“1n2 Q-7

This relationship can also be seen in the Figures (5.1)-(5.2), which were gener-

ated using the following data.

Parameter n An In Goo £ A
Value 1 9.8696 1.0001 0.1 06 19739 (= 2\nGoo)

In each case the numerical solution (calculated using the procedure discussed in
Section B.3.1) is not plotted as it is indistinguishable from the multiple scale ap-

proximation of yn to within the thickness of the curve.

62



Chapter 5, Section 3 Decomposition of Elastic and Creep Effects

Multiple Scalcs Solution for yn(t)

Figure 5.1: Static initial disturbance with ax= c0 = c\ —0.

0 10 20 30 40 50 60 70

Figure 5.2: Dynamic initial disturbance with with a0 —c0= U
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Chapter 5, Section 4 Retarded General Dynamic Equation

5.4 Retarded General Dynamic Equation

In this section we examine the retarded problem for the general autonomous dynamic
equation. The retarded problem is formed by replacing the relaxation function
G(t) by Ge{f) G(et), and the known initial history u(t) by u(st). where e is a
small positive parameter. In the limit as e —0+, we have the dynamic equation
corresponding to an elastic material. The motivation for this approximation is
that some relaxation functions are slowly varying. We examine this problem using
multiple scales and determine the leading order terms. Also by setting e = 1, we
get a function, which we can compare with the series solution found in the previous
section for a rod of standard viscoelastic material.

The nth Fourier mode u(t), of the general autonomous initial history problem is
given by u(t)-\-jnXn(Xn—X)u(t) — —nXa G(t—-«)u () dr, with initial conditions
u(0) = «o, ¢(0) = a\ and u{t) known for t < 0.

We will consider the retarded problem with a relaxation function of the form
Ge(t) := G(et), where 0 < e < 1. So now defining a(et) = — we can write

the retarded dynamic equation as

U(i; e) + 7nAn(A,, - AU(t\e) = 7,A2¢ J% a(e(t - t))U(tse) dr + mnXaf(et),
(5.14)

where the initial history function f(t) depends on the retarded initial history u(et).
Setting e = 1 we recover the original dynamic equation and the nth Fourier mode
is given by u(t) = U(t; 1). In order to simplify notation, we denote the natural
frequency of the corresponding elastic system by u = yJ*nXiXn ~ A).

We introduce two times t0O= t and ti = et. Expanding the time derivatives in
(5.14) in terms of the new time scales we obtain a partial differential equation for

U(to,t\\E). We propose as an ansatz

[e]e]

U{t\e) = U(to, ¢1;e) ~ ~ skUn(t0,ti), as e —0. (5.15)
k=0

Since U(t0,ti]e) is the solution of an integro-partial differential equation, we
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Chapter 5, Section 4 RetardedGeneralDynamicEquatio

cannot apply the multiple scale approach in the same manner as in the previous
section. In order to overcome this difficulty we adapt the procedure described in
work performed by Angell and Olmstead [1, 2],

The leading order term is determined by substituting U{t\e) = CO("o, "i) into
equation (5.14). Hence UOQ(t0,ti) satisfies

(pi +w2) Cb(io,ii) = 7n>iej a(e(to - t))Uo(t,£t)dr +jK f(ti) + 0(e).

(5.16)

Following the approach in [1] we write the integral in terms of the fast time, t0, and

take the limit as e —0+. Hence

Uo(to, ti) = AO0(ti) COS(Wt0) + Bo(ti)sin(cjio) + (5-17)

Now in order to ensure that we have a uniform expansion in t we substitute
(5.17) into equation (5.14) and rewrite this equation in terms of the slow variable
¢i. Taking the limit as e —» 0+ while holding t\ fixed yields an equation for i'o(ii)

which can be solved using Laplace transforms to give

X ®)= TnA£/(p) = Xnfjp) (, 18x
0 to2 —7UAMa(p) An(l - a(p)) - A
where Fo(p) represents the Laplace transform of Fo(tl), etc..

The leading term for the creep, Fa(ti), can be shown to be in L1(R+) if A<
AnGoo. When \nGoo < A< An the creep term can be separated into an exponential
increasing term and a remainder which is in L1(R+).

It remains for us to determine the t\ dependence in the coefficientsao(t1) and
Bo(ti). To do this we look at the right hand side of the first orderequation.Using
U{t\e) = Zro(io, (1) + eU tojti) in (5.14) gives

(DI + W2 Ui - 7nA2e a(e(to- r))Cli(r,er) dr =

-2DgD\Ug—\1e {[D@+ u2)U0- /(eZo))+7nA23 a(e(i0-r))E/O(r,er) dr+0(e).

(5.19)
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Expanding the integral on the right hand side of equation (5.19) using integration
by parts we find that the terms involving cos(u;io) and sin(cjio) will produce secular

terms in the particular solution for U\. Hence we have

AQ(ii) = Aoexp " -T7" » #o(*i) = Boexp — [ |

We solve for Ui(t0,ti) and i'i(ii) in the usual manner to give

_ NAN - N
A(P) = W2(o;]2-L—A7 n%ﬁa(p)) FI{0) u82(0 Jau (5.20)
and Ui(t0,ti) = Ai(ti) cos(ujto) + Bi(ti) sin(wi0) + -Fi(ii).

We now have the leading order terms and the first order correction term. This
procedure can be continued to get the slow time behaviour of the first order correc-

tion term. Finally we use the initial conditions to determine AQ, BO, etc.. Hence

U(t\ e) = Vo(tj) + eFi(ti) + 0(e2)

+ (AO+ eAi)exp i~ 7" cos(wi) + + efli)exp sin(wi),
(5.21)

where FO(ti) and ii(ti) are given by (5.18) and (5.20).

Using the initial conditions at time to = 0, we have
AO0= a0- Fo(0) = a0- e /L\J>f(0)’ A1=Fy{0)=-ai"uja(0),
and

B0=au B = (W- FO(Q))Ngr ~A/(°) A r A “(0)()-

An approximate solution to the retarded problem is now given by (5.21). Setting
e = 1in (5.21) we get a candidate for an approximate solution for the dynamic
equation. Comparing this result with that calculated in the previous section for the

standard viscoelastic material we see that they happen to agree up to 0(e2).
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Chapter 5, Section 5 Slowly Varying Load
material, while setting p < 1results in the effects of the slowly varying load being
masked by the viscoelastic effects. Hence we set p = 1. We look for solutions which

satisfy
U(t0, ¢, ¢2s) 115%2) + £{JI{to, ¢1,¢2) + eee) as £ —0,

and a similar asymptotic expansion for C(to,ti,t2e). In order for the oscillations

to appear for as £ —0 it turns out that ft = k(et). Hence
O=1(¢;s) = L fc(er)dr = HO o(rdr.

The general solution to the 0(1) problem is

Ua(ta>ti) —v4o(Zt)cosio + Po(/i) sin 2o,

CO(t0,t\) = fi/kAO{ti)smtO- n/kBO(ti)costO+ ¢'o(ii).
Using the 0(1) solution we have

f2(J50 -{-1)C1 = ("cxoli-/kAa(t)) + k Aa(t\) + 2D] Ao(i 1)j sin Iq
—n«olilkBo(li) + k'Bo(i\) + 2/7i50(*i)) "oslg< OgFo(Li).

Removing secular terms over the interval 0 < t < 0(£-1) implies
M <0 = /loe-w'/2'i(,|)V~(0j7MIiO, Bo(ii) = tfoe-“S/2/<* '>v'fc(0)/fc(ii),

where if(tD) ;= /& dr.

Therefore, the fast time dependence of W\ is
U1(¢0>1) = Ai(¢l) cos 1g-F B\(ii) sin ¢0 "f 0o™o/k"l'o-

Removing the secular terms in the equation for C\ implies Fq(L\) =

This is the behaviour of the creep response, over the interval 0 <t\ < 1, due to
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Chapter 5, Section 5 Slowly Varying Load
the slowly varying load. The dependence of C\ on the fast time is easily found
by integration. Using the 0(1) and 0(e) solutions we can expand the equation
determining the fast time dependence of @2 and remove secular terms over the
interval 0 < t < 0(e_1). Hence we determine the slow time dependence of the 0(e)

coefficients as

AL(ti) - e~a® KMy /k(0)/k(t1) (A1

-1 aifj,/k(r)A0- aOfi(afi - 2a0k{r)2+ 3k'(r)/c(r))/ (2£;(r)4)B0dr),

i) = e-a° A KA JIK{0)/k(ti)(Ba

—J ai™k(T)BO0+ aofj,(aofi - 2a0fc(r)2+ 3A:'(r)fc(r))/(2A:(r)4)Ao dr).

Note that Aj(ti) and Bi(ti) will, in general, contain terms which are secular
over the interval 0(1) < ii < 0(e-1). While these terms can be removed if we use
a second slow time scale, the algebra is not straightforward.

Finally, using the initial conditions we have A0 = a0, BO = ai: FO ~ co+ai/i/fc(0),
Al= —ao(A:(0)co + ai/i)/fc(0)3 and Bi = ao(k'(Q)k(0) + ao™)/(2fc(0)2).

Figures (5.3)-(5.5) shows the behaviour of the numerical solution and the multi-
ple scale approximation for a number of slowly varying loads. In Figures (5.3) and
(5.4) we examine the behaviour for a slowly varying periodic load. The term which
determines the stability behaviour is given by the exponent of the creep term. If
limsup”™™ fiK(ti)/¢i < 1then the multiple scales approximation is stable otherwise
it is unstable if liminf~roo jj,K(ti)/ti > 1. In Figures (5.3) and (5.4) the load slowly
oscillates around the long term critical value. In Figure (5.3) the solution is stable
while in Figure (5.4) it is unstable. In Figure (5.5) the load changes from a stable

value to an unstable value at time t\ = 10.
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Parameter n n Goo a0 k(ti) e a0 ai ¢

Value 1 9.8696 1001 05 01 75—09cos(ii) 01 10 00 01

0 100 200 300 400 500 600
t-axis

Plot of slowly varying load and multiple scales creep exponent.

0 100 200 300 400 500 600
t-axis

Figure 5.3: Numerical solution with multiple scale bound on amplitude.
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Parameter n 7n Goo a0 k(ti) e a0 al @
Value 1 98696 1001 05 10 7.2+ cos(et) 01 10 00 01

0 50 100 150 200 250 300 350 400
t-axis

Plot of slowly varying load and multiple scales creep exponent.

t-axis

Figure 5.4: Numerical solution with multiple scale bound on amplitude.
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Parameter n An 7« oo «0 fe(ii) e W ax

Value 1 98696 :.0.: 05 10 7.+ .2tanh(<i —10) 01 10 0.0 01

t-axis

Plot of slowly varying load and multiple scales creep exponent.

t-axis

Figure 5.5: Numerical solution with multiple scale bound on amplitude.
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5.6 Parametrically Excited Rod

In this section we examine the stability of a rod of standard viscoelastic material

for time-dependent terminal loads of the form
A(t) = Pg+ Pi cos fit, (5.24)

where the amplitude Pi of the cos flt term is small.

The dynamic equation for the amplitude of the nth Fourier mode is given by

u(t) + An7,(Ai- PO- Picos(fii))u(i) = ac(t) (5.25a)

c(t) = fiu(t) —ac(t), (5.25b)

where c(t) is defined by (5.8) and jj, — A7,,(I —Goo)- The behaviour of a general
linear viscoelastic rod with zero initial history was studied by Cederbaum & Mond
[8] by examining the retarded equation using an approach similar to that used in
Section 5.4. We shall use a multiple scale expansion to determine approximations
to the boundaries between the regions in a suitable parameter space for which all
solutions to (5.25a)-(5.25b) are stable, and the regions in which there are unsta-
ble solutions. From Chapter 3 we know that, when Pi = 0, the general solution
of (5.25a)-(5.25b) is asymptotically stable if Pq < AnGoo. Here we examine the
phenomenon of instability due to principal parametric resonance when the constant
component of the load satisfies Pq < AnGoo.

In order to simplify our exposition we rescale the dynamic equation. We set
flt = 2t, and define u(t) := u (ff), and c(r) := (ff)- Hence equations (5.25a)-

(5.25b) can be expressed in the form
U -Fsu =ac + 2eu cos(2t), C=jlu —ac, (5.26)

where
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Figure 5.6: Stable (Ss) and unstable (£u) regions in the parameter plane for the
Mathieu equation.

Now, in order to clarify the presentation, we will drop the”notation and replace r
by t in equations (5.26).
If we take the limit as the relaxation time goes to infinity, (a —=0+), then

equation (5.26) reduces to the Mathieu equation,

u+ (5 —2ecos21u = 0. (5.27)

This is the dynamic equation for a parametrically excited elastic rod4. The transition
curves in the (6,e) plane which divide stable and unstable regions are well known.
Floquet theory considers systems of linear periodic ordinary differential equations
(see, for example, Hale [21], Magnus & Winkler [30]). Using basic Floquet theory it
is easily shown, for example in 85.5 of [30], that the transition curves intersect e = 0
at the critical points 5 = k2, for k = 0,1,2,.... Thus, at these critical points the
natural frequency w, is a nonnegative integer multiple of half the forcing frequency
i). Figure 5.6 shows the behaviour of the transition curves for |e| small and k < 2.

We look for a uniformly valid approximation on the interval 0 < t < T/e, such
that the first term in the asymptotic expansion shows the transition from stability
to instability. Hence, we assume that u(t) and c(t) depend on two time scales t0 =t
and ti such that u{t\e) = U(t0,ti,£) and c(t; e) = C(to,ti,e).

4A brief history of parametric resonance in an elastic rod due to an axial time-varying load is
contained in [32], Sec 5.1.4.
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The actual choice for the slow time scale t\ depends on the parameter region
under consideration. In particular the slow time scale is chosen so that the instability
of the solution due to resonance is determined only by the unboundedness with
respect to t1land not t0. t/(t0,ii;e) and C(to,ti]e) will now satisfy the system of

partial differential equations

(Do + ~dr_r~Di)2U(to, ty\e) 4- 8U[to, ii;e) = feU(to, t\, e) cos 2to + otC(to, t\;e),
io
(5.28)

(Do + ~Di)U (t0,ti,£) = fiU(t0,ti,e) - aC(t0,ti;e). (5.29)

Clio

We are not concerned with the solution behaviour in a neighbourhood of the
critical point corresponding to k = 0, since it can only occur for loads Pq > AnGoo.
Hence, in this region, the solution to the unperturbed problem is unstable due to
the creep component.

In order to determine the stability boundary near the kth critical point we expand

S in powers of e as
S=k2+ eS1+ e252+ eeee (5.30)

If the relaxation time is small (a large) then the motion is completely stabilised by

the viscoelastic behaviour of the rod. Hence we set
a = £p(ao + £ai + eme), for some p > 0. (5.31)

The choice used for p will be so that there is a balance between the viscoelastic

effect and the resonance due to the parametric excitation. Also we assume that
U(to,ti] e) ~ Uo(to,ti) + £UI(t0,ti) + ..., as e —0,

and a similar asymptotic expansion for C(to,t\,e).
We shall now discuss in detail the derivation of the leading behaviour in the

neighbourhood of the critical points k = 1 and k = 2.
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Case k=1

We let t\ — et. If we set p > 1, we get the aforementioned behaviour of the
Mathieu equation. On the other hand, if p < 1then the behaviour of the zero order
term is determined by the viscoelastic behaviour of the solution. Hence we set p = 1,

and the 0 (1) problem has a general solution of the form

UO(ta,ti) = Ao(tj) cost0+ BO(ti) siniO,

Co(to,ii) = Fo(ti) + /-iAo(ii) sini0O- nBO(ti) cosiO-

We now consider the 0(e) equations to determine the dependence of Ao(™i), -Bo(ii)

and FO(ti) on the slow time t\. The equation determining t/i(io,"i) is given by

(Dg- 1)T1 = ocoAo(t\) cos 3t0 + Qo6 o("i) sin 3io + ocoFo(ti)
+ 272D\ Ao(ii) + aofiAoiti) — (5i + I).£?0(ii)| sin to

—2"2D\Bo{t\) -f ctofiBoiti) + (¢i —I)Ao(ii)j cos to-

The first order solution Ui will contain terms that are not uniformly valid over
the time scale under consideration unless the coefficients of cos(/0) and sin(t0) vanish.

Thus, we require that

A- =

dh woi 2\ —ii —OQ
v 1
M

(a: 1k—0'0fi I+ M

We require that the eigenvalues rjj, j = 1,2, of M have nonpositive real parts in

order that AO(ii) and Bo(t\) are bounded. The characteristic exponents are given

by -
-a0fix Jk - 5\

* = 2 ___________ '
If aOp > 1 then the motion is completely stabilised to the first order by the dissi-
pative behaviour of the viscoelastic material. On the other hand, if aOp < 1, then

one of the chaxacteristic exponents has a positive real part when [ii| < \JI —alp,2.
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This bound on ¢1 determines the region of instability of the zero order solution. If
I*il~ 21 oddX both exponents lie m the left-half complex plane so the zero order
solution is bounded and has the form of damped modulated oscillations.

The transition curves separating the region where the zero order solution is stable

from the regions where it is unstable are given by

5= 1+ vy'e2—a2/2+ (5.32)

Therefore, the viscoelastic behaviour has a stabilising effect, in that, the instability
region is narrowed and is raised from the i-axis. This gives the following critical
amplitude, by which we mean the minimum amplitude at which the rod can become

unstable due to resonance,

hnK(Goo ~ D"

ec—alj, = a\
An —Pq

(5.33)

For smaller values of a these effects become less pronounced. This behaviour can
be seen in Figure 5.7 for various values of a. The (i, e)-parameter space is divided
into two regions £s and Eu in which the leading order term in the solution is stable
or unstable respectively. The broken lines represent the corresponding transition
curves for the Mathieu equation.

Figure 5.8 displays the solution of the leading order term for loads with stable

and unstable amplitudes using the following data.

Parameter n An 7n Goo a Po

Value 1 9.869 1.0000 01 0.02 0.0

Using (5.33) we find that the critical amplitude is given by ec = 0.177653. In
Figure 5.8(a) the amplitude of the parametric excitation is e = 0.1. Hence the zero
order solution is stable since this amplitude is less than the critical value.

The amplitude used in Figure 5.8(b) and Figure 5.8(c) is e = 0.4, which is greater
than the critical value of 0.177653. However, only the zero order solution in Figure
5.8(b) is unbounded since the value of 5\ = 0.95 used in Figure 5.8(c) does not
satisfy |5i] < yjl —OquU2.

77



Chapter 5, Section 6 Parametrically Excited Rod

Transition Curve for afi = 0.6

8

Transition Curve for afi = 0.3

5

Transition Curve for alJ, = 0.05

S

Figure 5.7: Transition curves in the (£, e)-plane with a fixed, (k = 1,2)
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(@) Multiple scale solution with a stable amplitude ($i = 0).
2.5
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0.5
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(b) Multiple scale solution with an instable amplitude (oi = 0).
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(c) Multiple scale solution with an instable amplitude (<? = .95).
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Figure 5.8: Behaviour of the 0(1) multiple scale approximation under parametric
excitation (near critical point k = 1).
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Case k=2

Similar considerations apply near the critical point 8 —A However, in this case the
slow time scale must be chosen by t\ = e2i. We also need to set p = 2 in equation
(5.31) to obtain the richest equation when e —0.

The general solution to the 0(1) problem is

Uo{to: ti) ~ Ao(ii) cos 2to - BO(h) sin 2io,

cO(tO ti) = Fo(ti) + /i/2A0(ii) sin2i0- [J./2BO(t1) cos 2t0.
Using the 0(1) solution the equation determining is given by
(Dg+ 4)[/i = AO(ii)(l + cos4t0) + BO(ti) sin4i0—¢iAOQ(ii) cos 2t0—SiBQti) sin2i0-
Hence ii = 0, otherwise the 0(e) solution would contain secular terms. Therefore,

=A1(ti) cos 210 + 5i(ii) sin 210

+ sin2i0(2A0(ii) + Ao(ti) cos 210+ BO(ti) sin2i0)/3.

We need to examine the 0(e2) equations in order to determine the slow time de-
pendence of AQ(ii) and BO(ti). Note also that we do not need to calculate the fast
time dependence of Oi(io,ti). This is because it not used in calculating U2 since it
does not appear on the right hand side of (5.28) until the 0(e3) terms.

In order to remove the secular terms in the 0(e2) equation determining fast
time dependence of Uz, we require that the coefficients of cos(2£0) and sin(2io) must

vanish. That is

1. -«07/2 +2 'a*

o Y\ -2 —aofii2t B»

vy

M

This system of equations is of the same form as that studied for the critical point
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k = 1. The eigenvalues ijj, j — 1,2, of the matrix M are given by

-alp =z 2vaz+ MN)(r2 ~ =2
fi = j -

If al0p < 1/2, then a region of instability exists since one of the characteristic

exponents has a positive real part when
li2 ~ 1/61< 1/4~]1-4a2p2. (5.34)
The transition curves near the critical point 8 = 4 are given by
8= 4+ e2/6 + e/4\Je2—4a 22+ o*e o (5.35)

Therefore, there exists a non-zero critical amplitude given by ec= 2a0fJ,, due to the
stabilising effects of the viscoelastic damping. This behaviourcan beseen in Figure

5.7 for various values of a.

Case k=3
While the process is similar for all the critical points with k > 1, the amount of
algebra required becomes lengthier as k increases. Hence we shall simply state the
leading behaviour for transitions curves and the critical amplitudes.

The slow time scale is t\ = ek and p —k in order to achieve a balance between
the resonance and viscoelastic effects.

The critical amplitude is ec = 64/3ap. with transition curve given by
8= 9+ e2/16 £ e2\je22-12 —a2p2/9 + mem,

Case k=14

The critical amplitude is ec = 1152/2ap. with transition curve given by

29
5=4+¢e2/30+ + £3\AV11522- a2p2/4+ ome .
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Conclusions

The topic of this work is to study the bending of thin perfect viscoelastic rods
subject to a longitudinal load, A(t), close to the straight equilibrium position.

For constant loads, it has been shown that the initial history problem possesses a
unique, absolutely continuous solution. Furthermore, this solution is asymptotically
stable for loads A< AIG”. When the constant load exceeds this critical value the
solution can be decomposed into a sum of exponential terms and a function in L1
Results like this had only been proved for the standard viscoelastic material. This
part of the thesis fills a gap in the literature, and leaves no important unsolved
problems behind.

The trivial solution was shown to be unique for the problem without initial
history when A< AiGoo. If AnGm < A< A,+iGoo for some n > 1, then the solution
will consist of a sum of n exponentials whose exponents are the simple positive real
roots of the characteristic equations associated with the first n Fourier modes. This
approach is important, because it suggests buckling solutions are attracted to these
exponentially increasing solutions rather than the zero solution if the load exceeds
the critical value \iGoa.

Semigroup techniques were used to show global existence and uniqueness for
continuous time-dependent loads. This is in contrast to the corresponding results
for the quasi-static problem, suggesting that the nonuniqueness that can arise on
such problems is spurious, caused by the omission of the inertia terms in the equation
of motion.

Using the energy of the rod a uniform stability result was obtained for a wide class
of loads satisfying e < A(i) < AiGoo—e. Numerical calculations suggest the existence
of a stronger result. | conjecture the zero solution is uniformly asymptotically stable
if the function F(t), given by equation (4.11), is integrable.

We also examined the behaviour of the nth Fourier mode using multiple scale

techniques. For the special case of the standard viscoelastic material with a large
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relaxation time we were able to decompose the elastic and creep effects for constant
loads satisfying A< Xn. This decomposition allowed us to examine the relationship
between the growth of the creep term and the type of initial disturbance. The
solution obtained was exceedingly accurate, and almost indistinguishable from the
numerical solution.

For general, slowly varying relaxation functions we examined the retarded equa-
tion and using the method of Angel & Olmstead [1, 2] we were able to decompose
the creep and elastic effects as the retardation parameter tends to zero.

We considered a generalisation of the results described in Section 5.3 by con-
structing a multiple scale approximation for the nth Fourier mode under the as-
sumption of a slowly varying load. In particular, we examine the behaviour as the
load slowly crosses the equilibrium buckling load.

Finally, we considered the important special case of time dependent loading of
A(l) = Po+ A cos(ttt) with Pi small. In particular, the case of the forcing frequency
being close to the primary resonant frequency of twice the natural frequency was
studied for standard viscoelastic materials. The zero order solution in a multiple
scale expansion can be unstable, but in smaller regions of parameter space than
for elastic rods. These regions of instability in fact vanish if the relaxation time is
small, as the viscoelasticity completely damps the motion. The behaviour of the
Fourier modes can be analysed for other types of time dependent loads. Important
examples would include a slowly varying load A passing through the instantaneous
critical load Xn or loads with non-stationary oscillations.

Finally, it is worth noting some other possible directions along which this work
could develop. Namely, the effect of imperfections in the rod, nonuniform cross-
section and slight extensibility could be considered. Also the geometrically exact

nonlinear model should examined.
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Appendix A

Standard Viscoelastic Material

A .l Introduction

While this work is primarily devoted to general linear viscoelastic rods, rods of stan-
dard viscoelastic material are used to corroborate the analytic results and to find
approximations to the solution under special conditions. We shall now give a brief
description of standard viscoelastic materials in terms of its rheological structure and
its mechanical properties. We show that the differential and integral form of the
stress-strain relationship can be derived from the rheological model. A more com-
prehensive description of rheological models, and in particular standard viscoelastic

materials, can be found in Chapter 5 of [16] or Chapter 3 of [35].

A.2 Rheological Model

The theory of viscoelasticity is a natural generalisation of the theory of elasticity for
solid materials and the mechanics of viscous fluids. Elastic properties exemplifed by
linear springs and viscous properties exemplifed by dash-pots can be combined in
various ways to construct rheological models of hypothetical media. The models cor-
respond in behaviour, at least qualitatively, to real substances that are intermediate
between solids and liquids.

An initial attempt at combining these properties would be to consider a material
that behaves like a spring and a dash-pot connected in series (Maxwell material) or
in parallel (Voigt material). In the linear spring the stress a and the strain e are
related by Hooke’s law

a = Et,

where E represents the spring constant or Young’s modulus. In a viscous liquid the
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stress and the strain rate are related by Newton’s law of viscosity, namely,

a = rje

where 77is the coefficient of viscosity. Although the Maxwell and Voigt models have
been used to describe the properties of various solids they both display behaviour
which is unrealistic — the Maxwell material does not possess a finite creep limit
under constant stress and shows no time-dependent recovery while the Voigt material
does not exhibit time-independent strain on loading or unloading.

The standard viscoelastic material is described using a three element model; a
spring and a dash-pot connected in parallel and this is connected to a second spring

in series (cf. Figure A.l). The strain of the spring in series ei on application of a

-mm — -

Figure A.l: Rheological model of standard viscoelastic material.

force a is

e = Fj\ , (A.l)

where Ei is the spring stiffness. The strain of the spring in parallel e2 is given by

the formula for the Voigt material, namely,
a= E282 + 772, (A-2)

where E2 is the springstiffness ofthe second spring. The totalstrain isgiven by

e = H £2Combining equations  (A.l) and (A.2)andeliminating eiand e2, we
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obtain
gJfaa —Goe (A.3)

where

o= P ,_ Elte2 : exe?
w

Using (A.3) the standard viscoelastic material can be shown to possess the fol-

lowing properties (cf. Figure A.2) :

Instantaneous elastic deformation and recovery. The material exhibits a time-
independent elastic deformation of size e0/ GO on loading or unloading of a

stress of size ag.

e Finite creep limit. Under constant stress a0 the material creeps, with a de-
creasing rate which is a characteristic of primary creep, to the finite limit

~01Goo.

e Instantaneous and time-dependent recovery. On removing a constant load 4q
the material instantaneously recovers the elastic component of the deformation

and displays an exponential rate of decay of the creep deformation.

e Exponential relaxation. If the material is subjected to a stress in order to
maintain a constant strain, the material will relax, i.e., the stress required to
maintain a constant strain will decrease over time. For the standard viscoelas-

tic material the required stress decays like a negative exponential.

Equation (A.3) can be solved for the stress (or strain) using an integrating factor

to give the integral representation of the stress-strain relationship
a{t) = GOe{ft) + aiGoo - GO)f e ~ e -~ dr. (A.4)

—00

The relaxation function (2.15) is derived from (A.4) by solving for the stress when
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Figure A.2: Creep and recovery behaviour of the standard viscoelastic material,

the strain is given by the unit step function, i.e.,

G(t) =G0+ a{G- Go) Jf e"aM dr
[¢]
= Go + (Goo —GO0) (I —e~ai)
Goo + (Go —Goo)e at.
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Appendix B

Numerical Results

B.I Introduction

In this thesis we have considered 3 problems which have been solved numerically.
Namely, the initial history problem, the Volterra integro-difFerential equation for
the Fourier modes and the solution for the standard viscoelastic material. In this
appendix we give an outline of the algorithms used.

In Chapter 2 it was shown that the linearisation of the nonlinear flexure about

the straight equilibrium solution yields the following system

yt-v, (B.I)
LOvt —-yss,s + J/0 a(r)yssas(t - r) dr - \(t)yss+ f(t,s), (132
where the operator is given by (3.1). The initial history up to timet = 0

determines / through

poo

/(mM) = fo o(i+ T)y.~(si~r)clr-
The boundary conditions are
<5, 1) = ys¥(s,t) —v(s,i) = Vii(s,t) = 0at s = 0,1 for all t.

And initial conditions

y[si0) = y°(s),
yt(s,0) = y'(:s).

In order to simplify notation, we will use y and y' to represent the derivatives with
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respect to t and s respectively.

B.2 Solution using Finite Differencing

In order to solve the above problem we discretise over a uniform grid. We represent

the functions y(s,t) and u(s,i) by their values at a discrete set of points given by

j=1,... ,ra,
k=0,1,...

where h and e are the step sizes along the spatial and time axes respectively. We shall
denote the function at these points using yjtk —y{sj,tk) = 2/((? —1)/i,fce),
and similarly for functions v and f. Also for functions independent of s we have
A = A(ijt) and ak = a(tk).

f'he time derivatives in equations (B.l) and (B.2) are approximated using

d H qu
d)i/ ik - VIM]E WiJ¥ (B.3)
and similarly for v
dV - P -
= ik viMi - vik (B.4)

The spatial derivatives in y are replaced by

dy U 4 Vj+lk (B.5)
dSZik h2
and
dAy (iv) _ Vj-2,k —4t/j_i,a + 6yjk —tyj+i'k + yj+2,k
_ - - B.6
gyl = UMk = h 4 (B-6)

In order to simplify the following discussion, we shall ignore the dependence on

s and use ijk to represent y(-, tk) and again similarly for the function v.
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Equation (B.l) can now be approximated at the mesh points by

— = (3vk+ (1 - P)vk+l, for xk = 1,2,...

where the parameter (3 £ [0,1] is used to combine an explicit and an implicit scheme
for stepping forward in time. A fully implicit scheme with (3= 1, tends to diminish
small-scale featurestotheir equilibrium formbut isonly first order accurate in
time. Onthe other hand,a fully explicit schemewith (3 =0, isonly conditionally
stable. By taking (3 = 1/2, we get a Crank-Nicolson iteration scheme which is
unconditionally stable and second order accurate in timel.

The rod is divided into m —1 segments giving m spatial points yjtk for all k.
Using equation (B.5) as an approximation for the second derivative with respect to

s and the boundary conditions in y we have

ULk — ymk — 0,
Vok = 2ir, (B.7)

ym+ik = -ym-i,k, for all k.

Similarly for v we have

—Vmk © O}
v0o,k = -Ui.fc, (B.8)

vitlk = -wm-1 fe, for all «.

Equation (B.l) can now be represented by

yife+i -1,
Vj,k-i-i (1 cfi — + e(3vj<k j 2,... , 22 1,

ymk+1 1;

1Cf. [34] sections 19.0-19.2
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fork = 1,2,..., and y® =y? for k = 0.
Turning to equation (B.2) we first look at the convolution term. This is approx-

imated using a trapezoidal rule giving

I at{T)y{iv{t - t)dr =e/2 (aGijl'y) + akft>)) +£ ~ ~kkVk-ik-
Jo \VJ f kk=i
Equation (B.2) is now given by

1/e [(vkH - avl+l) - (vk - oUk)] =

- (1- 0) [y$i + A*+iy*+i] - 0 [y[i) + Arf) + (I - 0)/Hi + Ph
+ej2a0 [ - 0)yA\ +joyi'l)] + e/2yiV) [(1 - O)ak+ + Oak]

+eJ2 < [(L- 0)yKI\-kk + Oy{*Ik m

Bringing u and v terms involving fifcH together we have

lle(u*+i - cru+1) + (1 —/?) [VKI\ + AfcHlyE+1] -e/2a 0(I —/5)jli+i =
l/e(vk- avl) - 0 [y” + \kyt] + (L- 0)fk+ + /3fk
+ e/2a0/3yky) + e/2y$y) [(L - (3)akH + (3ak\

of £ otk [(I —O0)yk+\-kk 4- 0yi-ik (B.9)
jus1

Now taking into account the s dependence, we expand the spatial derivatives using
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approximations (B.5) and (B.6) and multiplying by factor ehAto get

(hA+ ah2)vjtk+i —crh2 [vj-iA+H + W+, fcH]
+e(l —/?)(Y —er2a0) [yj-2,k+t1 —A4y]j lifcHl + (hjj.k+i — ayj+itk+i + yJ+2fcH]
+e(l — /3)\k+ih2[j/j—i,fcH —%yj k+1 + yj+i,k+i]
— (h t~crh )vjkk &h [vj—=tk't ~j+ifc]  ef3Xkh  [jlj—kfc 2yjk Uj+i,fc]
+ eli4(l —P)fk+1+ sha4(3fk
+ e(3(e/2a0 - 1)[yj-2k - 4yJ i+ 6yjik - dyi+l £+ yj+2.8

+ £2/2((1 —P)&k+i + /o) [j/j-2,0 —4ilj_il) + 6yjio —dyj+iil + i/j+2,0I

e+
+ £2 &{(1 —Q3) X
fofc=l
\yj-2,k-\-lkdt/j—~x S j/j.fc+| —fk AVt fo+I—fdc 1" 2/j+2, fo+|—ffd]

‘Wotyj—2.k—kk  Ai/f-LE-EE“TByjtk—kk  Ayj+1,k—kk FVj+2,k—kk\\ i
(B.10)

for k =1,2,..., and for k = 0, we have yA0 = y°, and vijio = y). Equation (B.10)
is only valid for 4 < j < m —3. For j outside this rangewe use the boundary
conditions given in equations (B.7) and (B.8). Hence for the fourth derivative of y*k

with respect to s we would use instead

V2™ - (syae - 4y3)k . ydi*)/h4, for j

I
~

ytk = (—43/2'b+ 6y3,ﬁ3_ 4y4’t+ nyC)/A 4’ for J

I
w

yin-2 k = {Vm=k 4ym3fc‘t6)/m_2k 4ym_ ijo/h , for J 11 2

adm—ifc = {ym-sk 4ym 2it'F 5ym—k) jh , forj m 1,

and similarly for the second derivatives.
The finite difference approximation to the linearised problem is now easily solved.

At each time point tk the solution at the next time point tk+i is given by the solution
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of the following (4m —4) x (4m —4) linear system

The function M(uk”tk+i) depends on u at all time points up to Lime tk. It is given
by the right hand side of equation (B.LO). The first m —2 entries of the vector uk
contain the values of y*k at the interior points y~ forj = 2,...,m —1and the
second m —2 entries contain the values of Vj~.

The matrix Ak+ is given by

\
1
5c2 —2c¢32¢3 —4c2  c2 c\ 2c$
€3 —4c26c2 —2c3¢c3 —4c2 c2
Ci €3 —4c26c2 — 2c3c3— 4¢2  ¢2
C2 C3- 4c26c2- 2¢3C3- 4c2 c2
c2 c3—4c2 6¢c2 —2¢3 ¢c3 —4c2 Cs CA4C5
c2 2c3 - 4c25t2 - 2c3
\ /
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Appendix B, Section 3 Numerical Solution of Fourier Modes

where

Ci=-(1

c2=e(1- /?)(1- e/2q0),
c3=e(l —(3)\k+ih2,
ct=hA+ 2ah2,

Cs= —<jh2.

For constant loads and equal step sizes the matrix Ak+i will be independent of
A and hence a significant time improvement can be achieved by generating a LU
decomposition of A and using this in solving the linear equation (B.Il). Finally we
address the problem of numerically approximating the initial history term fjtkmThe
improper integral

fj,k = J/o a(tk + T)y(Msj,-r) dr,
is first converted using change of variable u = e-T, or r = —logo;, giving

a(tk - logio)y™sj,+ logto) »

Cco

This can now be solved using an open type quadrature rule. The extended mid-
point rule was used with the refinement level decreasing as time increases since the

influence of the initial history term will diminish for larger time values.

B.3 Numerical Solution of Fourier Modes

The linear problem (B.l) and (B.2) has been solved using the Fourier series expan-

sion for y and v

0o

Vs> = x) yn{t)smmrs,
n—1
etc. The functions fn are then given by

PO

= “a(t + nyn(-r) dr,
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forn=1,2, The problem then reduces to the systems

y*=w»(i)> (B.12)
vn--hn><l - 7«A»A(D))y,, + 7,,A2 | tx()yn(t- r)dr + 7,,A2/,,, (B.13)
JO

for n = 1,2,.... The procedure used to numerically solve the integro-differential
system (B.12) and (B.13) involves reducing it to a system of Volterra equations2.

Define function zn(l.) by
= 7<<A2I0 a{r)yn(t - t)(lt +7,,Alfn. (B. 14
Equation (B.13) now implies that
¢n~  TnATIAL  A(/))yn “@zn.
Integrating over t and using initial condition u,(0) = an\ gives
vn = JO ~7nAn(A, - A(N))Y.(r) + zn(r)dr + O*1

Substituting this result into equation (B.12), integrating over t and using initial

condition y,,(0) = anQand v,,(0) = ani we get, after changing order of integration,

yn = 7nA«J0 (t- (A, - A())yn(r)dr
+ [ (t- t)zn(r) dr + Uini + 0,0. (B.15)
JO
We can now solve for function yn and zn using equations (B.15) and (B.14) using
a standardVolterra system solver. The problem of approximatingthe initial history

term inthe forcing function for equation (B.14) was solved using a scheme similar

to that used in the previous section.

zCf. Linz [28] section 11.5, [6]
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B.3.1 Solution using Fourier Series and Laplace Transform

After reducing the linear problem (B.l) and (B.2) using a Fourier series expan-
sion as described in the previous section, the resulting integro-diffcrential Volterra
system can be analytically solved using Laplace transforms under the assumption of
a constant load A Except for a small class of kernel functions a(l) and initial history
configurations, getting a closed form for the inverse Laplace transform is non-trivial.
Taking the kernel related to relaxation function of the standard viscoelastic material,

we get the following equation for the Laplace transform of yn

A a2+ (a"l + a»0a)p + aanl p Ifis
M ) ~ V3 + a/p2+ 7nAn(A, - A)p + a7,,An(AnG 0 - A)* [ }

In order to use the inverse Laplace transform we must first determine the position

of the roots in the complex plane of the characteristic equation
f{P) ~ P 't'aP "f7nAd(An Act7, An(A,G0O A).

The roots can easily be found numerically3and the solution yn(0 can then be readily

calculated.

3Cf. [34] section 5.6
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