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A b s t r a c t

A flexible, generic network optimisation framework is described. The purpose o f this 

framework is to reduce the effort required to solve particular network optimisation 

problems. The essential idea behind the framework is to develop a generic network 

optimisation problem to which many network optimisation problems can be mapped. A 

number o f approaches to solve this generic problem can then be developed. To solve 

some specific network design or configuration problem the specific problem is mapped 

to the generic problem and one o f the problem solvers is used to obtain a solution. This 

solution is then mapped back to the specific problem domain. Using the framework in 

this way, a network optimisation problem can be solved using less effort than modelling 

the problem and developing some algorithm to solve the model.

The use o f the framework is illustrated in two separate problems: design of an enterprise 

network to accommodate voice and data traffic and configuration o f a core 

diffserv/MPLS network. In both cases, the framework enabled solutions to be found 

with less effort than would be required if  a more direct approach was used.



A c k n o w l e d g e m e n t s

First and foremost, I would like to thank Prof. Tommy Curran for his support, 

encouragement, insight and input throughout the course o f this work.

Dr. Dmitri Botvich was also an invaluable help without whom this thesis would not 

have been completed. The many long and wide-ranging discussions that took place in 

his office were simultaneously useful, stimulating, entertaining and enlightening.

Particular thanks are also due to Rob Brennan who gave generously of his time in 

assisting in the preparation o f the defence o f my thesis.

There are many others with whom I’ve had the pleasure to work with in various 

capacities throughout the course o f this work, many o f whom have spent some time 

within the hallowed confines o f the Advanced Telecommunications Research Lab that 

is J1 19. Most o f these people have given me faith, hope and encouragement at various 

times throughout this work, not to mention a little light relief from the toil of my 

research. I could mention many people here, but I would certainly omit some. Hence, I 

don’t want to give an exhaustive list. Rather, I want to thank the following in particular 

for their encouraging words: Dr. Noel-Edward O ’Connor, Saman Cooray, Nicola 

Cooke, Hai Wang and Eddie Cooke.

My family have also been a rock o f support over the last number o f years, without quite 

understanding what I was up when I came to DCU each day. Even though my little 

brother Liam availed o f any opportunity to mock me with the ‘eternal student’ line, it 

was always said in a good-natured manner. My parents have been particularly 

supportive over the years and I want to extend a heartfelt thanks to them.

Last, but by no means least, I would like to thank my girlfriend Dr. Ethel Ryan. Ethel 

and I started seeing each other seven months before I submitted my thesis -  a stressful 

time for any relationship, let alone one that is in its infancy. Ethel has been patient and 

tolerant while I devoted considerable time and energies to finishing my thesis and she 

had faith in me when m y self-belief was at its nadir. For this, I am and will always be 

grateful.

iii



T a b l e  o f  C o n t e n t s

A C K N O W L E D G E M E N T S ............................................................................................................................................ I l l

T A B L E  O F  C O N T E N T S ................................................................................................................................................. IV

L IS T  O F  A B B R E V IA T IO N S .......................................................................................................................................V II

C H A P T E R  1 IN T R O D U C T IO N ................................................................................................................................ 1

1.1 O bjectives o f  this W o r k ....................................................................................................................................2

1.2 T hesis O v e r v ie w   ..................................................................................................................................2

C H A P T E R  2 N E T W O R K  D E S IG N  A P P R O A C H E S .......................................................................................5

2.1 Intr o d u ctio n ........................................................................................................................................................... 5

2.2 Facility  Netw o rk  D e s ig n ..................................................................................................................................5

2.2.1 Decoupling the Topology and Dimensioning Problems.............................................................. 7

2.2.2 The MENTOR A lgorithm ..................................................................................................................11

2.2.3 A Dimensioning Approach that Eliminates Uneconomic L inks ................................................. 13

2.2.4 Reliability Problems.....................................................................................................  13

2.3 P acket-sw itched  N etw o rk  D e s ig n ............................................................................................................ 16

2.3.1 Routing in Packet-switched Networks.............................. ....................... ................................... 17

2.3.2 Network Dimensioning......................................................... ...................... ................................ . 26

2.3.3 Logical Network D esign ...................................................................................................................32

2.4 C ircuit-sw itched  N etw o r k  D e s ig n ............................................................................................................33

2.4.1 Routing in Circuit-switched Networks...........................................................................................34

2.4.2 Circuit-switched Network Dimensioning .....................................    37

2.4.3 Logical Network Design fo r  Circuit-switched N etw orks  ..........    47

2.4.4 Multirate Network Dimensioning................................................................................................   50

2.5 ATM  N etw o rk  D e s ig n .......................................................................................................................................51

2.5.1 Logical Network D esign ..................................................... ...........................................................53

2.5.2 Logical and Physical Network Design ................................     57

2.6 L a yered  A ppr o a c h es  to  N etw o r k  De s ig n ..............................................................................................59

2.7 C o n c lu sio n .............................................................................................................................................................60

C H A P T E R  3 A F L E X IB L E , A B S T R A C T  N E T W O R K  O P T IM IS A T IO N  F R A M E W O R K ........61

3.1 In tr o d u c tio n ......................................................................................................................................................... 61

3.2 M o tivatio n  for  th e  N etw o r k  O ptim isatio n  F r a m e w o r k ............................................................... 61

iv

ABSTRACT...........................................................................................................................................................II



3.2.1 A High-level View o f  the Network Optimisation Framework............................................... . 62

3.2.2 Advantages o f  this Network Optimisation Fram ework ..............................................................63

3.2.3 Caveat.................................................................................................................................................. 64

3.3 T he G eneric  N e tw o r k  D esign  P r o b lem ...................................................................................................64

3.3.1 The Input Param eters ..................................................................................  65

3.3.2 The Output Parameters.....................................................................................................................76

3.4 M a th em atical  P roblem  Form ulation  of the  G eneric  P r o b lem   .................................. 77

3.4.1 Problem Complexity  ...........        78

3.4.2 Examples o f  the Use o f  the Generic M odel.................................................................................. 80

3.5 G eneric  P roblem  Solu tion  A p pr o a c h e s ................................................................................................. 82

3.5.1 Greedy Algorithm ..............................................................................................   84

3.5.2 Simulated Annealing Algorithm ................................................ ............. ..................................... 86

3.5.3 Other Approaches ............................................................................................................................. 88

3.5.4 State-space, Neighbourhoods and Algorithms used to Solve the Generic Problem ..............91

3.6 C o n c l u sio n s .......................................................................................................................................................... 95

C H A P T E R  4 E N T E R P R IS E  N E T W O R K  D E SIG N  P R O B L E M ..............................................................96

4.1 In tr o d u c tio n .........................................................................................................................................................96

4.2 P roblem  De s c r ip t io n ........................................................................................................................................97

4.2.1 Enterprise User Demands............................................ ............... .................................. ............... 97

4.2.2 Network Realisation.......................................................................................................................... 99

4.2.3 Network Costs.................................................................................................................................. 109

4.3 Specific  P roblem  M o d e l .............................................. ............................................................................... 111

4.3.1 Formal Problem Model....................................................................   112

4.4 M apping  to  th e  G en er ic  P r o b l e m ............................................................................................................ 114

4.4.1 Determining the D em ands..............................      114

4.4.2 Determining the Link Cost Functions  .......................................................................... 116

4.4.3 Formal Mapping from  the Specific Problem to the Generic Problem .................................... 117

4.5 E xam ples and  So l u t io n s .............................................................................................................................. 117

4.5.1 The Random Problem Generator...  .................................................................................. . 118

4.5.2 Time Taken to Obtain Solutions to Problems............................................................................  122

4.5.3 Quality o f  Solutions Obtained Using this Approach   ........................... ,,..............132

4.5.4 Trade-off Between Solution Quality and Time Required to Obtain Solution ......................  142

4.5.5 Objective Analysis o f  the Results ................................................................................................  144

4.6 Co n c lu sio n ........................................................................................................................................................... 145

C H A P T E R  5 D IF F S E R V /M P L S  N E T W O R K  C O N F IG U R A T IO N  P R O B L E M .............................146

5.1 In tr o d u c tio n ......................................................................................................................   146

5.2 D iffserv  and  M P L S ..........................................................................................................................................146

5.2.1 Diffserv............................................................................................................................................... 147

5.2.2 M P L S ..................................................................................................................................................163

5.2.3 Diffserv over MPLS..........................................................................................................................164

V



5.3 P roblem  D e s c r ip t io n ...................................................................................................................................166

5.3.1 Diffserv Service Offerings.............................................................................................................. 166

5.3.2 Network Implementation................................................................................................................ 169

5.3.3 Optimisation Problem   ...........      —  170

5.3.4 Application o f  the Design Problem ..............................................................................................171

5.4 Specific  Pr o b lem  Inputs and  O u t p u t s ................................................................................................. 172

5.5 M apping  to  th e  G eneric  P roblem  M o d e l ...........................................................................................176

5.5.1 Mapping from  the Specific Problem to the Generic Problem ................................................. 177

5.5.2 Mapping from  Generic Problem Solution to the Specific Problem Solution ........................184

5.6 Ex a m ple  P r o b l e m s ......................................................................................................................................188

5.6.1 Problem Generation........................................................................................................................ 188

5.6.2 Validation o f  the Approach .................... ....... .................................. ........................ .— ..... 190

5.6.3 Solving Larger Problem s...............................................................................................................208

5.7 Co n c l u s io n s .....................................................................................................................................................217

C H A P T E R  6 C O N C L U S IO N ............................................................................................................................... 218

6.1 Contributions  in this T h esis ....................................................................................................................221

6.2 D irections for  Futu re  R e s e a r c h .........................................................................................................221

6.2.1 Development o f  the Framework........................................................   221

6.2.2 Development o f  the Specific Problem Cases.............................................................................. 223

A PP E N D IX  A E F F E C T IV E  B A N D W ID T H  D E T E R M IN A T IO N  F O R  A F T R A F F IC ...............225

A. 1 D eterm ining  th e  A ppropriate  Effec tiv e  Ba nd w id ti i .................................................................. 225

A.2 T esting  th e  E ffectiv e  B an d w id th  A p p r o a c h .................................................................................. 232

A PP E N D IX  B S C H E D U L E R  A L G O R IT H M  U SED  IN  C H A P T E R  5 .................................................240

R E F E R E N C E S ...................................................................................................................................................................244

P U B L IC A T IO N S  A R IS IN G  F R O M  T H IS  W O R K ...........................................................................................255



L is t  o f  A b b r e v ia t io n s

AD Administrative Domain

AF Assured Forwarding

AQM Active Queue Management

ATM Asynchronous Transfer Mode

BE Best Effort

BGP Border Gateway Protocol

CBR Constant Bitrate

CBT Core-Based Tree

CIR Committed Information Rate

CS Class Selector

DCR Dynamic Call Routing

DCS Digital Cross-connect System

DiffServ Differentiated Services

DNHR Dynamic Non-Hierarchical Routing

DSCP Diffserv Codepoint

D-VPN Data-Virtual Private Network

ECMP Equal Cost Multi-Path

EF Expedited Forwarding

FR Frame Relay

GA Genetic Algorithm

IETF Internet Engineering Task Force

IntServ Integrated Services

IP Internet Protocol

vii



IS-IS Intermediate System-Intermediate System

ISP Internet Service Provider

LAN Local Area Network

LDP Label Distribution Protocol

LSAR Load Sharing and Alternate Routing

LSP Label Switched Path

LSR Label Switched Router

MBAC Measurement Based Admission Control

MPLS Multi-Protocol Label Switching

OSPF Open Shortest Path First

PBX Private Branch Exchange

PDH Plesiochronous Digital Hierarchy

PHB Per-Hop Behaviour

PIM Protocol Independent Multicast

POP Point o f Presence

PSTN Public Switched Telephony Network

QoS Quality o f Service

RCAR Residual Capacity Alternate Routing

RED Random Early Detection

RIO RED for In and Out traffic

RIP Routing Information Protocol

RSVP Reservation Protocol

RSVP-TE RSVP with Traffic Engineering extensions

RTNR Real Time Network Routing

SDH Synchronous Digital Hierarchy

SHR Self-Healing Rings



SLA Service Level Agreement

SONET Synchronous Optical Network

SSL Secure Socket Layer

TCP Transmission Control Protocol

TDM Time Division Multiplexing

TOS Type o f Service

UA Unified Algorithm

VBR Variable Bitrate

VCI/VPI Virtual Channel Identifier/Virtual Path Identifier

VP Virtual Path

V-VPN Voice-Virtual Private Network

WAN Wide Area Network

WDM Wavelength Division Multiplexing

WRR Weighted Round Robin



CHAPTER 1 I n t r o d u c t i o n

Network design and configuration problems arise in a number of areas, notably 

telecommunications and traffic routing. Such problems have received considerable 

attention over past decades because they can result in considerable cost savings for 

interested parties and they are interesting and challenging problems to solve.

Much network optimisation work to date has focussed on the development of 

specialised, efficient techniques that are applicable to one specific problem. This 

typically occurred because the computing power available to solve problems was very 

limited. To solve any reasonable size problems, it was necessary to focus on a very 

particular problem and usually to simplify it and develop some efficient technique to 

obtain a solution. This took considerable effort.

Development o f such efficient approaches to tackle network design problems is a 

laborious and time consuming process: problems must be modelled, appropriate 

simplifications must be made and efficient solution algorithms must be designed. Often 

devising solution approaches is an iterative process in which one approach is tried 

which works reasonably well but there is some scope for improvement; methods to 

improve the approach are identified and implemented, resulting in better solutions, 

further improvements are proposed and implemented etc. The process can go through 

many such iterations in the search to make the approach more efficient and to solve 

larger problems in less time. All o f these efforts are quite costly.

A different approach to tackling such problems is considered here. A flexible, generic 

and more abstract approach to network design and configuration problems is proposed. 

This approach is more flexible and consequently it can be applied to a number of 

different scenarios. When compared with the specific network design approaches 

mentioned above and discussed in considerable detail below, the approach described 

here will, o f necessity, be slower. However, since computing power available today is 

orders o f magnitude more powerful and cheaper than that which has gone before, there 

is an argument for expending more resources in computing power and less on 

manpower when solving these problems. This is one o f the premises on which this work 

is founded.
1



1.1 Objectives of this Work

The primary objective of this work is to devise a flexible network optimisation 

framework that can be usefully applied to a number of different network design and 

configuration problems. At the core o f this framework is a generic network optimisation 

problem, to which many specific optimisation problems can be mapped. Issues 

pertaining to development and solution o f this generic problem naturally arise.

The objectives of this work can be itemised as follows:

• To develop a flexible network optimisation framework that can be applied to 

different network design and configuration problems;

• To develop and formulate a suitable generic network optimisation problem on which 

the framework can be based;

• To devise some approaches to solve the generic problem;

• To demonstrate the use o f this framework in the context o f some specific network 

design and configuration problems.

Two specific problems are used to demonstrate the use o f this network optimisation 

framework below. The first scenario is a variant of an enterprise network design 

problem and the second is an Internet Protocol (IP) network configuration problem, 

which incorporates new technologies that enable delivery o f Quality o f  Service (QoS) 

over IP.

1.2 Thesis Overview

The thesis is structured as follows. Chapter 2 contains quite a comprehensive discussion 

of the many variants o f network design and configuration problems that arise in the 

telecommunications domain. The discussion ranges from design o f facility networks to 

design of legacy private line based enterprise networks to Asynchronous Transfer Mode 

(ATM) networks to IP networks incorporating new technologies to support new 

services. This chapter serves to illustrate the variety o f network design and 

configuration problems that arise in the telecommunications area.

The new network optimisation framework is described in chapter 3. The motivation for 

the idea is first given. Then the generic network design problem that is the crux of this 

framework is described. The particular problem model that the problem is based on is 

first presented, together with any assumptions made in the model. Some comments on
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how the generic problem model can accommodate problems in which assumptions 

made in the generic problem model do not hold are discussed. The generic problem is 

then formalised. Some short examples o f how the model can be used in particular 

problems are also presented. This is followed by a discussion o f some approaches that 

can be used to solve the generic problem model.

The next two chapters describe in detail two particular applications of the network 

optimisation framework. In essence, these are both examples o f how the network 

optimisation framework may be applied.

In the first case, described in chapter 4, the objective is to design an enterprise network 

consisting of a number o f interconnects between premises. The demands consist of a set 

of voice and data demands and the problem is to determine the lowest cost network 

design that can accommodate the voice and data demands of the users o f the enterprise 

network. In this chapter, the problem is first discussed in detail, including the assumed 

network architecture and how it is realised. Then the specific enterprise network 

problem is formulated. This is then mapped to the generic network design problem, 

which can be solved using the approaches discussed in the previous chapter. Examples 

o f problems and how they were solved are then given for illustration purposes.

A more topical problem is discussed in chapter 5. A network configuration problem is 

discussed for IP core networks carrying traffic with QoS requirements. IP-QoS is 

receiving considerable interest in the research world due to the explosive growth of the 

Internet over the last 10 years, leading to a near ubiquity o f IP. The widespread 

availability o f IP has caused researchers to consider it as the transport layer of choice 

for future applications. However, traditionally IP has not supported applications with 

QoS requirements and hence IP networks must be developed to support QoS. Two 

technologies have been proposed quite recently -  Differentiated Services (DiffServ) and 

Multi-Protocol Label Switching (MPLS) -  which are considered by many to be essential 

to the delivery o f IP-QoS services.

Chapter 5 contains a description o f both o f these technologies, ranging from high-level 

architectural description to implementation details that are, o f necessity, assumed here 

to enable the problem to be formulated. A particular set o f service offerings are assumed 

in this problem and these are described. The specific problem is then formulated and the 

mapping from the specific problem to the generic problem is described. Some example 

problems are then solved to illustrate the use o f the approach. Two sets of examples are

3



given: examples o f small problems (problems with 5 to 7 nodes), the solutions o f which 

are simulated and examples o f larger problems to demonstrate that the optimisation 

algorithm is beneficial.



CHAPTER 2 N e t w o r k  D e s ig n  A p p r o a c h e s

2.1 Introduction

In this chapter different network design approaches for different types of networking 

problems are surveyed. Problems that arise in the following problem domains are

discussed:

• Facility network design;

• Packet-switched network design;

• Circuit-switched network design;

• ATM network design.

Problems that arise in each o f these different problem domains typically have different 

objectives and/or constraints. These arise due to the different ways in which network 

performance is measured in the different problem domains. In facility network design 

network performance measures are not usually of interest. In packet-switched network 

design problems, packet delays through the network are typical performance measures 

and a common objective is to minimise the mean packet delay time for all packets 

transiting the network. In circuit-switched networks, performance is usually measured 

in terms of the amount o f calls blocked on the network or the amount of revenue 

generated by the network. Finally, since ATM networks have both packet-like and 

circuit-like characteristics, both packet level and connection level performance 

objectives are often specified for ATM network design problems.

Here, different approaches used to solve network design problems that arise in different 

problem domains are surveyed with a view to constructing a generic model that can be 

applied to multiple problem domains.

2.2 Facility Network Design

The facility network design problem focuses on how to construct physical networks to 

carry some set o f demands. The networks are typically implemented using

Plesiochronous Digital Hierarchy (PDH), Synchronous Optical Network (SONET),
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Synchronous Digital Hierarchy (SDH) and Wavelength Division Multiplexing (WDM) 

technologies (see [Min92,YST99] for a description o f these technologies). These 

technologies have different characteristics that can alter the characteristics o f the design 

problem.

Various aspects o f the overall facility network design problem exist: equipment location 

problems, architectural design problems and topology and dimensioning problems. 

Equipment location problems focus on where to locate equipment so as to minimise the 

overall cost o f the network given some set o f demands. Typically, these demands would 

be forecast demands and the problem is a network planning one.

Architectural design problems focus on what architectures to use for different parts of 

the network. For example, it is often not clear which nodes should be backbone nodes 

and which nodes should not: the latter are ‘homed’ on a backbone node. Also, ring 

topologies are very common when using SDH or SONET and it is often not clear when 

and where these topologies should be used and when mesh topologies should be used. 

Determining and costing different facility network architectures is discussed by Doshi 

and Havardshana in [DH98] and by Cardwell et al in [CMW89].

Topology and dimensioning problems concentrate on where links should exist in the 

network and what capacity these links should have. These problems can be either green­

field problems -  problems in which there is no existing network -  or problems in which 

a network exists and the objective is to determine where capacity needs to be added to 

accommodate increasing demands. These problems could arise as subproblems o f a 

larger facility network design problem which incorporates one or both o f the other 

aspects.

The emphasis in this work is closest to the topology and dimensioning aspects of the 

overall problem, since it is a fundamental problem in network planning and design. 

Moreover, only mesh network design problems are considered here. In such problems, 

there is no hierarchical relationship between nodes and there are no architectural 

restrictions on the way the network can be configured. This is in contrast to networks 

based on rings, which arise frequently in the SONET/SDH network design, in which the 

ring nature o f parts o f the network imposes constraints on the possible node 

interconnections.

The facility network design problems considered here then are ones in which some set 

o f demands must be routed over some network (which may or may not be given); some
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cost is associated with routing the demands over the network and the problem is to 

determine a way o f routing the demands that minimises this cost. In this problem, the 

demands are specified in terms of capacities.

This problem is well-studied since it arises in a number o f areas in which significant 

cost-savings can be made if  this is optimised. The problem arises in the areas of 

telecommunications network design and planning, design of power distribution 

networks and the more general transportation sciences including problems relating to 

road network design.

Three different approaches to solve the topology and dimensioning problem are 

included here. The first approach discussed is one in which the determination o f the 

network topology is decoupled from the problem of determining the routing and link 

dimensions. In the second approach, the so-called MENTOR algorithm [KKG91] is 

described which can be used to determine a reasonable topology as well as a routing and 

hence the resulting dimensions can be obtained. The third approach discussed here is an 

approach developed by Yaged which was designed to obtain a good routing for a set of 

demands, but implicitly obtains a reasonable network topology by eliminating 

uneconomic links. These approaches are discussed in the following sections.

2.2.1 Decoupling the Topology and Dimensioning Problems 

A common approach to solve this problem is to decouple the topology and 

dimensioning problems, i.e. the topological optimisation problem is considered 

separately from the dimensioning or capacity assignment problem. Indeed, it is common 

to nest the dimensioning problem inside a topological optimisation procedure as shown 

in Figure 2-1. The dimensioning problem is one o f determining how to route the 

demands on the given network topology such that the overall cost is minimised. The 

topological optimisation problem involves costing different topologies by choosing 

different network topologies and determining the cost o f these topologies by solving the 

dimensioning problem. The lowest cost topology is chosen as the best solution.

7



Figure 2-1: Network dimensioning problem nested inside network topological

optimisation problem.

The problems are often decoupled in this manner because the coupled form of the 

problem is often too complex. This is especially true o f large network design problems. 

The decoupled problems can be solved separately and are considerably easier to solve 

than the substantially more complex coupled problem. They are solved separately in an 

iterative fashion -  the output of one feeding into the input o f the other and vice versa 

until the approach converges to a solution.

This approach arises frequently in network design problems and will be seen below in 

the context of other types of network design problem.

Topological Optimisation

Two approaches to performing the topological optimisation are discussed here. In the 

first approach, the topology optimisation problem is considered to be a combinatorial 

optimisation problem and well-known combinatorial optimisation algorithms are 

applied to solve it. This approach does not use any specific network knowledge to assist 

in the optimisation. In the second approach, such knowledge is used to obtain a good 

network topology.

Both approaches are examples o f so-called branch-exchange approaches to solve 

topological optimisation problems. Branch-exchange approaches are iterative 

approaches in which links are added and/or removed at each iteration until some
8



convergence criteria is satisfied. Here, it is useful to consider the set o f possible network 

topologies to be represented by a state space. The problem can be solved by iterating 

through the topology state space and determining the routing and associated cost for 

each topology until a good solution is obtained.

McGibney [McG95] considers the application o f general combinatoric optimization 

approaches to determine a good network topology in detail. McGibney uses link costs 

of the form shown in Figure 2-2: the link costs are linear with a non-zero offset. The 

total network cost is the sum of the individual link costs.

Figure 2-2: Link Cost function used in [McG95].

McGibney compares the use o f different well-known heuristic algorithms that can be 

used to obtain some solution to combinatorial optimisation problems. He uses variants 

o f well-known heuristics such as greedy algorithms, simulated annealing algorithms and 

genetic algorithms. Interestingly, he found that there are very many local minima in the 

problems he studied. Furthermore, these local minima often do not differ greatly in cost 

and hence the choice o f any one o f these is a reasonable solution to the problem.

The other approach to obtain a good topology is to consider properties of the current 

solution and to use this to determine how to choose the next solution. One variant o f this 

approach is one in which the starting solution is a fully connected network and links 

with the highest cost per bit are removed until no more overall cost improvements can 

be made.

Other variants o f this approach are possible in which knowledge of the result o f the 

dimensioning problem can be used to guide the topology optimisation process. This is 

true o f situations in which the topology optimisation problem arises in problems other 

than the facility network design problem, as will be seen below in the context of packet 

network design problems._______________________________________________________
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The Capacity and Flow Assignment Problem for Facility Networks

The capacity and flow assignment problem is to determine the optimal routing of the 

demands and the optimal link capacities for the given set of demands, cost functions and 

network topology. In this case, the set of routes is a sufficient solution to the problem: 

the set o f link capacities can be determined from the route configuration and the 

demands.

Different variations o f this problem exist:

• the demands can be a set o f time-dependent demands or they can be a single set of 

time-independent demands;

• splitting o f the demands may or may not be permitted;

• there can be an existing network or there may be no existing network: the problem 

may be a green field network design problem, or may be one in which the objective 

is to minimise the costs o f augmenting capacity to the network;

• the link cost functions can vary.

Different solution approaches have been proposed to solve problems with different 

characteristics. Some variants are discussed here.

If the link cost function is linear, as is the case in the problem studied by McGibney, the 

optimal routing for the demands can be determined by solving a standard Floyd- 

Warshall shortest path routing algorithm [GM84]. In this case, the link weights should 

be the slope o f the link cost functions.

The flow deviation1 method can be applied quite generally to obtain a routing for a 

given topology if the link cost functions are differentiable. Yaged used this approach in

1 The flow-deviation approach is a variant of the well-known Frank-Wolfe method that can be used to 

solve general, non-linear programming problems with convex constraint sets. It is an iterative approach 

that involves iterating through link flow vectors until a minimising vector is found. The approach 

involves determining the derivative of the objective function with respect to the link flow vector for the 

current link flow. A vector of derivatives is found -  one for each link. These values are then used as the 

link weights for a shortest path routing problem, the solution of which results in another set of link flows. 

The next link flow vector is that vector between the current vector and that obtained from the shortest 

path routing which minimises the objective function. If no reduction in the objective function is obtained 

with this move, then the algorithm terminates. The rationale for this approach -  which is based on some 

unintuitive characteristics of the optimal solution -  is discussed in more detail in [BG87].
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his work and found that it had the desirable property o f removing uneconomic links. 

Hence, it is considered below as a separate approach to solve the entire topological, 

routing and dimensioning problem. Here, it serves to note that it is one approach to 

solving the capacity and flow assignment problem.

If  the link cost functions are non-differentiable, then the problem can be considerably 

more complex to solve, especially when considered as part o f a loop iterating through 

different topologies. The link cost function could be modelled using a differentiable cost 

function and the more standard algorithms could be used in this case.

2.2.2 The MENTOR Algorithm

The MENTOR algorithm [KKG91,Ker93] is a different approach in which the network 

topology is generated more directly based on the set o f demands. In this approach, a 

spanning tree is generated quite quickly based on the demands and this is used as a kind 

o f minimal network on which to route the demands: extra links are added if  cost 

efficient. A high-level view of the MENTOR algorithm is shown in Figure 2-3. Each 

step in the algorithm is discussed in more detail below.

Figure 2-3: The MENTOR algorithm.

The spanning tree is generated by first identifying one node in the problem which is 

relatively close to the other nodes and has a reasonably large amount o f traffic switched
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through it. This node is termed the centre node and this is the first node in the tree. For 

each node, a figure o f merit which is some combination o f distance to the tree and 

demand generated by the node is calculated. The node with the highest such figure is 

then added to the tree via a direct link. The figures of merit are then updated and the 

node with the highest figure is again added to the tree. In this way all the nodes are 

added to the tree and a spanning tree results.

When the spanning tree is determined, the demands are then considered in turn. A test is 

performed to see if  installation o f the direct link is warranted between the demand’s 

source and destination. This test could be to determine if  there is sufficient demand on 

the direct link to use some high proportion o f the link. If the direct link is warranted, 

then it is installed. Otherwise the demand is part-routed on the spanning tree: the 

demand is routed to the next node in the spanning tree, where it is aggregated with other 

demands.

The order in which the demands are considered is important in this problem. The 

approach allows for demands that do not warrant a direct link to be aggregated with 

other demands. It is possible to aggregate two sets o f demands which could warrant a 

direct link when considered together, but neither of which would warrant a direct link 

when considered on its own. Some demands can be viewed as dependent on others -  if 

traffic from one demand could potentially be aggregated with traffic from another 

demand, then second demand is dependent on the first. Kershenbaum et al devised an 

elegant algorithm to determine the dependencies between the demands to determine a 

sequence in which to process the demands such that the dependent demands are 

considered after the demands on which they are dependent. The demands are then 

considered in the manner described above and a network topology and set of link 

utilisations results.

The big advantage o f the MENTOR algorithm is that it requires considerably less 

iterations: the algorithm runs in o (n 2) time. However, it does have a significant 

drawback: the algorithm only caters for demands of a single capacity. The algorithm 

does not contain a link model in which the cost o f the link varies with the used capacity 

o f the link -  only a single capacity is permitted.
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2.2.3 A Dimensioning Approach that Eliminates Uneconomic Links

Yaged studied the network topological optimisation problem in the early 70’s [Yag71]. 

He studied a problem in which a set of demands had to be routed over a network. In this 

particular variant, the link cost functions were continuous, concave cost functions of the 

link capacity. The objective was to determine how to route the demands on the network 

such that the overall network cost -  the sum of the link costs -  was minimised.

This can be a difficult problem to solve, especially for larger numbers o f nodes. The 

solution space typically has a substantial number of local minima and hence it is 

difficult to find a globally optimal solution. For larger problems, it is not even so 

straightforward to obtain a locally optimal solution.

In essence, the approach used by Yaged was a flow-deviation approach. He determined 

some characteristics o f locally optimal solutions: specifically, such solutions are 

shortest path solutions to a problem with the same topology and some specific set of 

link weights. The problem then becomes one of determining these link weights. Yaged 

proposed an iterative approach to solve the problem in which the solution at iteration 

i +1 is obtained by performing a specific mapping on the solution obtained at iteration

i . This continues until the solution converges. The mapping that Yaged suggests is one 

in which the new routing can be obtained by determining the shortest path routing on a 

network with a specific set of weights. These weights are obtained by differentiating the 

link cost functions and choosing the value o f the derivative at the current level of 

demand.

This approach has a tendency to reduce the capacity o f uneconomical links to 0. As 

such, these links can be removed and the topology that emerges is simply the set of 

links which have a capacity greater than 0. Thus, this approach can solve the topology, 

routing and dimensioning problems.

2.2.4 Reliability Problems

Network design with reliability is an area that has received considerable attention in 

recent years. This is due to the improvements in functionality o f telecommunications 

equipment; in particular the fault recovery functionality available in Self-Healing Ring 

(SHR) and Digital Cross-connect System (DCS) equipment mean that networks have 

support for automatic reconfiguration in case of failure [Wu92,VHS96]. This new 

functionality gives rise to new and interesting network design problems. Also, many
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organisations are more dependent on their network to meet their business needs and 

consequently are demanding that operators guarantee some level of service e.g. 

99.999% service availability over some time period. This means that the network 

operator has to take some measures to ensure that the network can react in the case of 

failure of a network component or a link failure to ensure that this level o f service can 

be guaranteed to the customer.

Automatic recovery mechanisms also mean that the network operator does not have to 

dispatch a maintenance team to immediately solve the problem -  the situation can be 

examined and the problem solved at some later date. This means that it can be less 

costly to fix the problem.

Network reliability has had an impact on the way in which networks are designed. 

Networks, and facility networks in particular, are now designed with reliability 

constraints in mind. A number o f variations o f network design problems incorporating 

reliability concerns have been discussed in the literature. Some have concentrated on 

spare capacity placement in an existing network, while others have been more 

concerned with the network dimensioning problem and considering how to plan spare 

capacity into the network at design time.

In [IMG98] an integer programming formulation for the network design problem 

including reliability constraints is given. A standard integer program solver is then used 

to solve the problem. In this approach, it is assumed that the costs are linear in capacity 

and that the demands are given in capacity units and that these must be rerouted. The 

approach that they propose can be used to design a mesh restorable SDH/SONET 

network which uses path restoration. It can also be used to solve a variant o f the ATM 

analogue in which the demands are multiples of some fundamental unit of demand. This 

work can also be used to dimension the spare capacity required to be added to an 

existing network with given demands and demand routing to obtain some level of 

restorability.

Kheradpir et al consider the reliability problem in a dynamic bandwidth context 

[KGS96]. The network must cater for demands dynamically. The problem is to 

determine whether the demand can be accepted without compromising the reliability of 

the network. The authors consider how the network can be configured such that the 

maximum amount o f demands can be carried while still meeting the reliability 

constraints.
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They wish to obtain full network restorability. By this they mean that any one o f some 

predefined set of failures can occur and the network will be able to reroute all the traffic 

carried on the network such that all the original demands are met. If the demands are 

sufficiently large, it may not be possible to route the demands on the network while 

maintaining the survivability conditions. Consequently, some o f the demands may be 

rejected. The author’s objective is to maximise the residual capacity on the links in the 

case o f failure and minimise the maximum blocked demand in normal operating 

conditions. This results in an equilibrium programming problem.

Kheradpir et al propose a parallel algorithm to solve this problem. The algorithm works 

by considering the normal operating situation and each o f the failure scenarios almost 

independently and solving a problem for each individual scenario. There is some 

coupling between the problems that manifests itself if  for any source-destination pair 

the residual capacity on the least loaded path between the nodes has capacity less than 

or equal to 0. If it is not possible to route a predicted demand in a particular failure 

scenario, then the demand is limited to the demand in the previous period for all failure 

scenarios. For each iteration of the loop, some o f the demand is allocated to the least 

loaded path. The least loaded paths are again recalculated and some o f the demands are 

again apportioned to the least loaded path. This is repeated until the all the demands are 

allocated or no more can be allocated without breaking the reliability constraints.

Herzberg and Bye concentrate on the problem of adding capacity to an existing network 

to ensure certain survivability constraints are met [HB94,HBU95]. They assume that 

there is an existing network, and that some fraction o f the traffic for each node pair 

needs to be rerouted in the case o f failure. Some set o f failures is given in advance -  

typically a set of single link failures -  and the problem is to determine how to add 

capacity to the network such that the cost o f the additional capacity is minimised.

Herzberg and Bye formulate the problem as an integer program. To obtain integer 

solutions, they determine a solution to the relaxed linear program, and then round up the 

solution to the nearest integer-valued solution. Next, they apply a so-called ‘tightening 

algorithm’ to the solution in order to reduce the cost o f the solution. This operates by 

considering each link in turn and determining if  unit reduction o f the link capacity still 

results in a feasible solution. If so, then the link capacity is reduced by one. The next 

link is then considered, etc. The tightening algorithm reduces the solution so that it 

approaches the solution found by the linear program.
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Other contributions have focussed on different aspects of the reliability problem: 

Balakrishnan et al consider the reliability problem in the context o f topological 

optimisation [BMM98] and there are others. Network reliability issues are not 

incorporated into this work. However, reliable network design is an important issue and 

any review o f network design cannot omit a discussion o f reliability concerns.

2.3 Packet-switched Network Design

Considerable efforts were expended on the design of packet-switched networks during 

their earliest implementations. In particular, pioneers in the field such as Kleinrock and 

Gerla spent much time modelling and analysing the ARPAnet before its introduction. 

They formulated some design problems and developed interesting approaches to solve 

the problems.

Today’s packet-switched networks have evolved significantly from those of the mid- 

late 70’s; improvements in both computing power and transmission technology have 

dramatically increased the speeds at which networks can operate. The exponential 

growth in demands fuelled by the internet over recent years has meant that the 

aforementioned technological improvements have been deployed in existing networks 

to accommodate the increasing demands.

While networking technology in general has developed significantly from the networks 

studied by Kleinrock and Gerla, the use o f IP, which was first used in the ARPAnet, has 

grown enormously and IP is fundamental to the operation o f today’s internet. 

Consequently, the early work done on packet-switched network design is still somewhat 

applicable in today’s networks.

However, new sophisticated applications are creating a demand for more complex 

network functionality. Applications require two important network functionalities which 

are as yet not implemented on a wide scale: multicast and QoS. Broadcast applications, 

for example require multicast [Obr98,Hui95] functionality in the network and most 

probably will also require QoS support.

These new functionalities may have a considerable impact on the network design 

problem. Multicast can have a profound impact on network dimensioning due to the tree 

of network resources that a multicast service requires. The number of parties involved in 

a communication can now be very large and consequently a large amount of network 

resources may be used by a single communication. Clearly this will have an effect on
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network design. Similarly, applications requiring QoS will require reserved resources: 

the network will no longer operate in simple best effort mode. This, too, will have an 

impact on the way that the network is designed. Little work has been done to date on the 

way multicast and QoS will affect the network design problem.

In practice, today’s network designers -  both enterprise network designers and Internet 

Service Provider (ISP) network designers -  tend not to use a rigorous problem 

formulation and the application o f optimisation algorithms to design their networks. 

Much of the design work is done using rules of thumb and tested using simulation 

software, and, if  necessary, network testbeds [Ker93]. This is because the growth o f a 

network with an organisation has typically been a very evolutionary process in which 

capacity was added as and when bottlenecks were identified. Little planning took place.

Lloyd-Evans [Llo96] notes that a design based on ad hoc or rules-of-thumb methods can 

be 10-20% more costly than a design based on a more systematic analysis. This 

difference can be very significant for reasonable sized networks. Also, the vast increase 

in the use of communications technologies that has occurred over the last number of 

years means that networks are considerably larger than they were before and there is 

more scope for finding ways to make cost-savings.

The remainder o f this section is structured as follows. First, routing in packet-switched 

network is discussed, since routing typically has a strong impact on dimensioning. Next, 

some systematic approaches to network dimensioning in packet-switched networks are 

discussed. These are followed by a discussion of a slightly different problem: that of 

determining how to configure a logical packet-switched network on some physical 

network.

2.3.1 Routing in Packet-switched Networks

A reasonably concise overview of routing in packet networks is included here. Routing 

in packet networks is quite a complex subject and has been studied for many years. The 

purpose o f routing in networks is to determine a path from a source to a destination in 

the network. While this is the fundamental purpose of routing, there are other concerns 

that affect the way that routing operates -  efficiency and stability for example.

Here, a number of different aspects o f routing are discussed. First, unicast routing is 

discussed. Three possible approaches to performing unicast routing are discussed: 

distance vector based routing, link state based routing and MPLS. This is followed by
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some discussion of multicast routing, which, in turn, is followed by some discussion of 

QoS and routing.

Distance Vector Routing

Distance vector routing was the first approach to facilitate routing in packet-switched 

networks. It is quite a straightforward approach in which each node broadcasts 

reachability information to its neighbouring nodes. These neighbouring nodes forward 

the newly received reachability information onto their neighbours in turn. In this way, 

the reachability information is propagated through the entire network.

When a node obtains reachability information for a new address or set o f addresses, this 

information is added to the node’s routing table. The routing table is augmented with 

the destination address/set o f addresses and the node from which this reachability 

information was obtained; this node then becomes the next hop in the path to this/these 

destination(s).

(a)

(b)

Figure 2-4: Illustration of the operation of distance vector-based routing. In (a) 

Node C sends a message to Node Y informing it that C is 2 hops from X. Node Y 

then incorporates this information into its routing table.

In the distance vector approach, distance information is propagated through the network 

with reachability information. Thus, each node receives information which can be 

interpreted as “I am x  distance away from destination a.b.c.d” from its neighbouring
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nodes. Each node can then use this information to identify the shortest path to each 

destination node. Only information pertaining to the shortest path is retained in the 

routing tables for each node: if  a node receives reachability information from a 

neighbouring node and an entry already exists for the specific destination addresses, 

then the node compares distance information. If the new information indicates that a 

shorter path to the destination exists through this neighbouring node, then the routing 

table is updated to indicate that this node has become the next-hop for this destination. 

This is illustrated in Figure 2-4.

Transmission of the distance information is quite simple in practice. Each node receives 

distance and reachability information from its neighbouring nodes. It then forwards this 

on to its neighbouring nodes. However, before forwarding on this information, it 

increases the distance to the destinations. For example, if  a node receives information 

from a neighbouring node that can be interpreted as “I am 3 nodes away from node 

a.b.c.d,” it will then forward information which can be interpreted as “I am 4 nodes 

away from node a.b.c.d” to its neighbours. Note, however, that the distance does not 

have to be a simple hop count measure: more sophisticated measures are possible if 

more control over the network resources is desired.

Routing Information Protocol (RIP) [RFC2453] and Border Gateway Protocol (BGP) 

[RFC 1771] are examples o f distance vector based routing protocols.

Distance vector based protocols are not so flexible. In all cases, the shortest path is 

chosen to the destination. However, the shortest path between a source and destination 

may be quite congested and for this reason may not be the best path between source and 

destination.

Distance vector based protocols do have some disadvantages:

• they can take some time to converge. This can be a problem in the case o f link 

failure when the network needs to react quickly to minimise the impact o f the failure 

on the network traffic;

• they are susceptible to oscillatory behaviour in certain circumstances;

• in large networks, they can require transmission o f huge amounts of information, 

and can have a detrimental effect on the network performance as a result;

• they do not differentiate between different link types, and the cost associated with 

routing on different links.
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The above deficiencies with distance vector based protocols stimulated the development 

o f link state routing schemes. It is worth noting, however, that distance vector based 

routing schemes are still very much used, particularly in the form of the interdomain 

BGP.

Link State Routing

Link state routing operates using a different paradigm than that o f distance vector based 

routing. In link state routing, network topology information is distributed throughout the 

network. Each network node then builds up a map of its local domain and each node 

then determines how to route traffic based on this network map.

In a link state protocol, the reachability information is transmitted with the link state 

information. Each edge router may be directly connected to a number o f stub networks. 

When broadcasting link state information to other routers, each edge router also 

distributes information relating to the stub networks it is connected to. This information 

is then propagated through the entire network, such that the resulting network map in 

each network node contains information pertaining to the stub networks and not just the 

core network nodes that provide interconnectivity. In this way, the reachability 

information is propagated through the network with the link state information.

Since each node has its own network map each node can make its own decision on how 

to forward packets. In theory, each node can run almost any routing algorithm to 

determine a next hop to each destination. In practice, each node typically runs a shortest 

path routing algorithm to determine how to forward packets to each destination node. 

Consequently, traffic typically follows a shortest path between source and destination 

nodes.

Open Shortest Path First (OSPF) [RFC2328] and IS-IS (short for Intermediate System- 

Intermediate System) [RFC1142] are examples of link state routing protocols.

Note that in contrast with distance vector based protocols, the shortest paths can be 

based on different metrics. In the link state routing paradigm, each link has an 

associated parameter. This parameter is then used in the shortest path calculations. 

Typically, these link parameters are simply the inverse o f the link capacity, causing 

routing algorithms to favour links of high capacity over low capacity links. However, 

they do offer some flexibility in the routing o f traffic on the network, and recently some 

authors [FTOO] have been studying how to choose these parameters well to efficiently
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carry the traffic on the network. Thus, while it is not possible to implement arbitrary 

routing on networks using link state protocols, a significant degree o f flexibility is 

possible, and many different route configurations can be realised by prudent choice of 

the link weights. This is certainly more flexible than the more restrictive distance vector 

based approach, although there is a big problem with this idea: changing the link 

weights can result in very substantial changes to the way in which traffic is carried on 

the network.

Link state routing can also be used to support demand splitting: traffic between two 

nodes can be carried over multiple equal cost paths -  this is implemented using so- 

called equal-cost multipath (ECMP) routing and is available in existing equipment. This 

offers more fine-grain control over routing in the network since it offers the possibility 

to split demands rather than having all o f the demand carried on a single path. ECMP is 

implemented in some routers by dividing the demand between a number o f paths each 

having the same cost. This provides an extra level o f flexibility in routing traffic over 

the network, but does introduce much greater complexity to the problem of choosing 

network parameters. Some work has been done on facilitating multiple paths between 

source-destination pairs to enable an unequal distribution of demand between different 

paths using OSPF [OMPID].

Multi-Protocol Label Switching

MPLS [RFC3031,Arm00] is a newer approach to routing in packet-switched networks, 

which is currently receiving much attention in both industry and the research 

community. MPLS is a technology that was initially developed to facilitate flexible 

routing of multiple protocols in data networks. Today, due to the overwhelming success 

o f IP, MPLS is mainly considered in the context o f IP networks and is considered 

primarily for use in core IP networks for three purposes:

• implementation o f tunnelling;

• traffic engineering;

• QoS support.

In MPLS, each packet has a label. Packets are switched at MPLS routers (so-called 

Label Switched Routers or LSRs) based on labels. When a labelled packet arrives at an 

LSR on one interface, the LSR looks up a routing table to determine what interface the 

packet should be sent to and what label should be assigned to it. Using this label
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switching approach, Label Switched Paths (LSPs), or paths which packets follow 

through the network can easily be configured. MPLS permits arbitrary paths to be 

configured for arbitrary traffic in the network: clearly, this is much more flexible than 

the either distance vector or link state based routing.

An important element o f the MPLS architecture are filters at the edge of the network. 

These filters may or may not exist and can be used to control what traffic enters which 

LSP. If a number o f LSPs exist between a particular source and destination, then these 

filters can be used to control which traffic is routed over which LSP. The use o f these 

filters provides more fine-grain control over traffic flows in the network. They can be 

useful, for example, in situations in which different customers pay for different levels of 

service: in this case, the different customer’s traffic should go into different LSPs.

As with other routing protocols, the essence o f MPLS is a protocol that facilitates 

distribution of routing information. In the case o f MPLS, this is the Label Distribution 

Protocol (LDP) [RFC3036]. It is used to distribute information pertaining to the 

assigned labels and also includes information such as the destination addresses that are 

reachable via a particular label. The LDP is not discussed in any detail here.

One important aspect o f MPLS is that it facilitates a separation of routing and 

forwarding. Routing relates to the way that the LSPs are routed in the network and 

forwarding relates to the determination of the next hop for a packet at each node. In the 

layer 3 routing schemes, routing and forwarding are tightly coupled, but MPLS 

decouples these operations such that it is possible to implement quite arbitrary routing 

schemes.

MPLS provides functionality to configure paths through networks that follow an 

explicit route. Thus, arbitrary paths can be configured through the network and arbitrary 

routing schemes can be implemented. In practice, some tools would be required to 

implement such routing schemes.

Explicit routes do not have to be used to configure LSPs; the network maps or 

forwarding tables generated using layer 3 routing protocols could be used to generate 

paths in MPLS networks. Using this approach, the resulting set of LSPs will be exactly 

the same as those resulting from the use o f link state routing. However, the resulting 

network is one in which MPLS routing is used and hence it is inherently more flexible. 

This could be introduced to facilitate easy migration from a network based on link state 

routing to one based on MPLS routing. As more sophisticated MPLS control tools
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become available, the advantages offered by MPLS can be exploited more 

systematically, but with MPLS routing, even manual mechanisms can be employed to 

reroute traffic -  something that is considerably more difficult with either link state or 

distance vector based routing.

MPLS was designed with flexibility in mind. Consequently it does permit arbitrary 

paths to be configured through the network and hence it permits very great flexibility in 

routing. Also, MPLS permits demand splitting, such that traffic between particular 

sources can easily be split between different paths. MPLS then offers great flexibility 

that can be used in the network design problem. The level o f flexibility offered is 

probably too great for network design and some assumptions should be made to limit 

the amount o f design variables.

A more detailed description o f MPLS is given below. Here, the most significant aspects 

of MPLS were discussed with an emphasis on the level o f flexibility offered by the 

technology and how it can impact the network design problem.

Multicast Routing

Multicast routing can be used to support multicast applications which involve 

communications between a number o f parties. These can range from large-scale 

broadcast applications such as wide-scale video distribution over IP -  something similar 

to today’s television service — to much smaller scale videoconference applications or 

interactive gaming. Multicast can also be used to distribute other data such as say stock 

prices, news etc.

The fundamental concept in multicast networking is that o f the multicast group. 

Members o f a multicast group can either be senders or receivers: senders send to the 

group, while receivers listen to any information sent to the group. In essence a multicast 

group translates to a single address that is used to distribute traffic for the group. 

Routers (in some sense) broadcast traffic sent to this address. Group senders send to the 

multicast address and rely on the network to distribute information to the receivers; 

receivers listen to the multicast address to receive information sent by the senders.

Routing protocols are then used to ensure that all parties subscribed to multicast groups 

receive traffic destined for those groups. Efficiency concerns arise quickly here: it is 

quite straightforward to ensure that all receivers receive the information: this can be 

done by broadcasting all multicast information everywhere. However, this obviously
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generates very large amounts of traffic. Hence, the routing protocol must ensure that 

information can be delivered to the receivers in an efficient manner.

Two approaches to distribution o f multicast information have been proposed: flood-and- 

prune [Dee91] and core based tree (CBT) [BFC93]. In the flood-and-prune approach, it 

is assumed that the multicast information should be distributed to all routers. Hence, the 

routers automatically broadcast multicast information to all neighbouring routers. If 

some routers do not want to receive a multicast session, then they explicitly tell their 

upstream router not to send it via a pruning message. In the CBT approach, the default 

behaviour is not to transmit a multicast session unless a downstream router explicitly 

requests it.

These two approaches are essentially different and are most suitable for different 

applications. The flood-and-prune approach is most suitable for multicast applications 

in which there is a very wide interest -  applications which will be broadcast to a very 

large set o f users. Alternatively, the CBT based approach is much more suited to 

applications in which the number o f users is small.

Protocol Independent Multicast (PIM) [DEF94] is an effort to combine these different 

approaches. PIM has two modes o f operation -  dense-mode PIM and sparse-mode PIM 

-  corresponding to the flood-and-prune approach and the CBT approach respectively.

Current approaches to facilitating multicast over IP networks are described above. 

These approaches, however, have their shortcoming, particularly when viewed in an 

interdomain context. For this reason there are still ongoing research efforts to provide 

scalable network support to multicast applications [AlmOO].

QoS and Routing

QoS is an issue that is currently o f great interest in packet-switched networks. This is 

due to the wide availability o f packet-switched networks, and the need to ensure QoS to 

achieve acceptable performance for some applications.

Many different proposals have been made in the literature to address aspects o f the 

overall QoS problem, but the question o f how end-to-end QoS will be delivered to end- 

user applications over IP networks in the real world remains unanswered. The problem 

here is not only to provide QoS but do this both economically and efficiently for both 

users and service providers. There are a number o f reasons that no realistic solution
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exists, not least o f which is the fact that there is not yet a significant application-level 

demand for QoS support from the network.

A number o f different architectures have been proposed which can deliver some levels 

o f QoS to the end-user: most noteworthy amongst these are the diffserv and Integrated 

Services (Intserv) architectures, since they have received considerable interest from both 

the research community and industry. These architectures do not make any stipulations 

relating to the operation of routing in the network, and indeed, they can operate with 

routing mechanisms that are unaware o f QoS. However, it is likely that QoS-aware 

routing will enable more efficient use o f the resources and delivery of better QoS to the 

end user.

Most of the work in routing in QoS networks has focussed on routing in the context of 

the Intserv architecture and the authors think of routing traffic on a per-application 

basis. Similar ideas, however, can be employed in the diffserv architecture, although in 

this case the flows become aggregate flows and the queuing is done on a per-class rather 

than per-application basis.

Chen and Nahrstedt provide a good overview o f QoS routing in [CN98], There, they 

describe a number of different ways routing can be implemented in to support QoS. 

These vary in terms of the assumptions made on the amount of knowledge retained in 

each node, the granularity with which network state information is distributed, the 

criteria for choosing routes and the algorithms used to choose routes. Some of the work 

reviewed there uses source routing, while other work uses distributed next-hop routing2. 

In all cases, routes are chosen based on network state information and hence, the routing 

schemes can be considered to be adaptive to the state of the network.

Adaptive routing in this manner is quite a change from the more traditional methods of 

routing in packet-switched networks. For this reason, the impact it will have on the 

network design, operation and configuration are unclear. However, it is clear that some 

of the knowledge learnt from the design and operation o f telephony networks can be 

used in this context to help solve the design, operations and planning problems that may 

arise with QoS-based networks.

2 In source routing, the route for the traffic is chosen by the source -  the nodes between source and 

destination do not decide how the traffic is routed. In next-hop routing, each node on the route determines 

the next-hop for the traffic.
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Routing has a considerable impact on network dimensioning -  an inefficient routing 

scheme can result in an expensive network to meet some performance objectives, while 

an efficient routing scheme can result in a considerably cheaper network.

From a dimensioning point o f view, observe that the above protocols can impose some 

constraints on the routing that is effected in the network. If RIP is used, then all the 

traffic to a particular destination must follow a single path. OSPF permits some splitting 

of the demand between paths. This is o f interest below, and will be discussed further in 

relation to algorithms that make assumptions on the way in which the routing is 

performed in the network. MPLS is a much more flexible routing technology and can be 

used to implement arbitrary routing, although support tools may be required to fully 

exploit the flexible routing capabilities.

The effects o f multicast and QoS traffic on network design are not at all clear. Multicast 

traffic has the potential to greatly impact the network design problem if  a large number 

o f multicast applications will be using the network. Similarly, QoS traffic can have a 

considerable impact on the network design problem if  it is to accommodate a significant 

amount o f traffic with QoS requirements. Since these technologies are not widely 

deployed, network design approaches taking these into account are not included here.

A significant difference between packet-switched network design problems and network 

design problems in other contexts is that packet delays are usually o f interest in packet- 

switched network design problems. These can arise either as constraints on the problem 

or as elements of the objective function. In either case, packet delays are usually 

aggregated into the overall mean packet delay and this appears either in the problem 

constraints or the objective function.

Approaches to solve this problem are described next. As with the facility network 

design problem, two different approaches can be used to solve this problem. In the first 

approach, the algorithm iterates through the topology state space determining a network 

cost for each topology as shown in Figure 2-1. In the second, the problem is solved 

without iterating through different network topologies.

To use the iterative approach it is necessary to be able to find a low cost solution to the 

capacity and flow assignment problem. This is discussed next, followed by some 

comments on the iteration through the topology state space. This is followed by some

2.3.2 Network Dimensioning
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comments on the network design approaches that do not use topological optimisation 

approach.

The Capacity and Flow Assignment Problem

The capacity and flow assignment problem involves determining how to route a set of 

demands on a given topology such that some cost is minimised. In this case, the routing 

alone does not immediately imply some set o f link capacities. Rather, the link capacities 

are also design variables in the problem. This is a characteristic o f the packet-switched 

network design problem. In these problems, the demands are specified in terms of 

packet arrival rates and the capacities chosen have an impact on the delays experienced 

in the network. Small capacities can be chosen, but will result in large packet delays. 

The link capacities are not as obvious from the routing and the set o f demands as they 

are in the facility network design case. Note that mean delay constraints are usually 

added to the problem to ensure that the resulting network does not have arbitrarily large 

delays. These constraints ensure that the link capacities remain sufficiently large.

Gerla and Kleinrock [GK77] give a comprehensive discussion of issues associated with 

solving this problem and they propose a number o f different solution techniques. They 

consider different variants o f the problem: essentially, the different variants differ in the 

choice o f link cost function used. A number o f different solution algorithms are 

proposed and the applicability o f these algorithms to each of the different problem 

variants is discussed.

Some simplifying assumptions are made in the model used by Gerla and Kleinrock. 

Firstly, all demands are assumed to consist o f packets arriving according to a Poisson 

process. This means that all o f the queues in the network act like M/M/1 queues: 

consequently, the queues can be easily analysed and the characteristics o f aggregate 

arrival processes are known. Secondly, some mean packet length is assumed. Thirdly, it 

is assumed that entire demands are routed on a single path, i.e., a demand is not split 

between multiple paths.

The simplest case is that in which the link costs are linear in capacity. In this case, a 

closed form expression for the optimal link capacities in terms o f the flow variables can 

be obtained by assuming that the delay is equal to the bound. The dependence on the 

link capacities can be eliminated and the resulting problem is one in which the overall 

cost function is a concave function of the link flows. A large number o f local minima
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exist and they all exist at the edge o f the domain. In particular, they all exist at comers 

of the polyhedron that constitutes the domain. There are very many such comers and it 

is not practical to search them all individually. The flow deviation approach can be used 

to obtain a locally optimal solution to this problem.

In the case in which the link costs are a concave function o f the link capacities, the 

objective function is also a concave function o f the link flow variables. Consequently, 

the flow deviation approach can again be applied. However, this situation is slightly 

more complex because it is not possible to obtain a closed form expression for the 

optimal link capacities in terms of the link flows and hence the objective function 

cannot be written as a closed form function o f the link flow vector. However, it is still 

possible to apply the flow deviation approach to obtain a good solution.

The discrete costs case is more complex. Gerla and Kleinrock propose two different 

high-level approaches to solve the problem. The first approach obtains a solution by 

iteratively solving a routing problem and then a dimensioning problem until a local 

minimum is found. The solution to the routing problem is used in the dimensioning 

problem and the solution to the dimensioning problem is used in the routing problem. 

The second approach involves approximating the discrete cost function with some 

concave cost function and solving the resulting problem. The resulting continuous 

capacities are then converted to the closest discrete capacities and the routing problem is 

again solved to obtain a good routing.

Gavish and Neuman [GN89] consider an alternative version of the capacity and flow 

assignment problem. They wish to design the network such that both the delay and 

network cost is minimised. They consider the link costs to be composed of two 

components -  a fixed cost and some capacity dependent component. This is the same as 

the cost model use by McGibney and is illustrated in Figure 2-2. In their formulation, 

the objective function consists o f both a delay term and a link cost term. Hence, the 

optimal solution will be some trade-off between a minimal delay solution and a minimal 

cost solution.

They make the same assumptions about packet arrival rates and packet sizes as those of 

Gerla and Kleinrock. They also assume a single route is chosen for each demand. 

However, their formulation is slightly different in that the set o f routes possible for each 

demand is specified in advance. They also assume that a number o f different link types
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are possible for each individual connection and that each o f these links has different cost 

characteristics.

Gavish and Neuman formulate the problem such that the decision variables are binary 

variables which represent whether or not a particular route is used and a particular link 

type is used. These decision variables are the paths that the demands are carried on and 

the link type that is chosen for each link. The problem is then formulated as an integer 

programming problem. The number o f variables in this formulation can be very large, 

even for moderate networks.

Gavish and Neuman solve the problem using a variant o f the methods o f Lagrange 

multipliers. First, they relax one o f the constraints. Specifically, they relax the constraint 

that relates the link flow variables to the routing variables: the precise relationship that 

exists between the routing variables and the link flow variables then no longer exists. 

Both o f these are then decision variables in the new problem. They do however ensure 

that the amount o f resulting flow on each link is no less than the amount of flow carried 

on the link as determined by the routing variables. Then they develop a Lagrangian 

function. They observe that terms in the resulting Lagrangian function can easily be 

grouped in a natural way and the Lagrangian function can be decoupled into sets of 

smaller functions. Minimisation of the Lagrangian can then be broken down into many 

smaller minimisation problems. Solutions to these subproblems can be obtained 

separately resulting in set o f simple relations between the decision variables and the 

Lagrange multipliers. The problem then reduces to determination o f the optimal set of 

Lagrange multipliers. This is a non-smooth optimisation problem and a subgradient 

optimisation approach is used -  this is a variant o f the steepest descent algorithm that is 

applicable to non-smooth optimisation problems.

One problem with this approach is that the resulting solution can be quite a distance 

from any feasible solution in the original problem. This can be attributed to the 

relaxation of the relationship between the routing parameters and the link flow 

variables. The authors attempt to improve the solution by imposing tighter bounds on 

the link flow variables. These bounds are determined through knowledge o f the 

candidate routes. Some demands must be carried on specific links and hence it is 

possible to determine a lower bound on the amount o f flow carried on a link. Similarly 

by examining the candidate links for each flow, it is possible to determine an upper
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bound on the amount o f flow that can be carried on each link. This technique 

significantly improves the solution quality.

Gersht and Weihmayer also consider this network design problem in [GW90]. They 

formulate the entire problem -  topology optimisation, flow and capacity assignment. 

They include node switching capacity as a consideration in the design problem. They 

impose an upper bound on the delay and they assume linear link cost functions. They 

assume some set o f candidate routes is given as an input to the problem. They also 

consider multiple different types o f facilities in the problem, with different facilities 

having different cost/capacity characteristics. In their problem formulation, the decision 

variables are the amount of traffic carried on each path and the presence/absence of 

links in the resulting network. In the formulation they propose, the demands can be split 

over multiple paths; the variables determining the amount o f traffic carried on each path 

are continuous variables. The link existence variables are binary variables. The resulting 

problem is then a mixed integer/linear programming problem.

The problem can be solved using general techniques to solve mixed integer/linear 

programming problems but Gersht and Weihmayer advocate an approach developed 

specifically for this problem. The approach they propose follows the decoupling 

approach described here, viz., the topology design is separated from the capacity and 

flow assignment problems.

The capacity and flow assignment part o f their work is described here. They use a 

straightforward approach to determine how traffic is carried on the network in their 

design. They decouple the capacity determination from the flow assignment by 

obtaining a simple relationship between the flow carried on a link and the link capacity: 

they introduce upper bounds on utilisation for links and nodes. These upper bounds can 

be related to the delay constraints. They show that the optimal solution is obtained when 

the load on the nodes and links is equal to this upper bound. Hence a relationship can be 

obtained between the link capacities and the flow carried on each link. Once this is 

established, the link capacities are no longer free variables and they focus on the routing 

problem.

To solve the routing problem, they assign a cost to each of the candidate paths for each 

demand. The lowest cost path is then chosen to route the demand. The cost o f each path 

is simply a sum of the variable costs o f each link and node that constitutes the path. If 

the node switching costs are ignored, then the cost o f the path is simply the variable
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costs associated with each link. This is equivalent to obtaining the shortest path using 

the variable costs associated with each link as the link weights and using this to route 

the demand and is exactly the same approach as that used by McGibney in his work.

Determining a Good Network Topology

Choosing a good network topology in the context o f packet-switched networks is very 

similar to choosing a good network topology in the context o f other network design 

problems. The approaches described above -  the branch-exchange approach in 

particular -  can be applied here. Indeed, this is what the authors of the articles 

mentioned above propose. However, the approaches differ in this case in that packet- 

related information from the capacity and flow assignment problem can be used to 

influence the topology selection process.

Gerla and Kleinrock propose branch-exchange algorithms for their problem in [GK77]. 

They discuss straightforward greedy approaches as well as more complex branch- 

exchange approaches based on cut-sets. In the cut-set approaches, instead o f identifying 

all possible link topologies that could be used for the next iteration, a cut-set is 

identified which contains the most saturated set o f links that connects two separate parts 

o f the network. Saturation is measured using packet-level characteristics of the problem. 

An extra link is added across this cut-set, while a lightly loaded link is removed from 

another part o f the network.

Gersht and Wiehmayer propose a so-called link reduction algorithm to iterate between 

different network topologies in [GW90]. In their approach, they start with a highly 

connected graph and proceed to remove links until removal of any more links causes 

either an increase in network cost or a resulting network configuration that does not 

meet the some of the design constraints. They propose a greedy approach in which links 

are removed that correspond to the maximal reduction in network cost.

Approaches in which the Topology Design Problem is not Decoupled

Two approaches have been proposed in which the topology design problem is not 

decoupled from the capacity and flow assignment problem. The first is the MENTOR 

approach, which is described in section 2.2.2 above. This can be used in the context of 

packet-switched network design as well as other network design types. In essence, the 

one aspect o f the network MENTOR design procedure that is network specific is the 

loading on each link in the network. Recall that a direct link is installed between two
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nodes if  there is sufficient demand. In a packet switched network design problem this 

can be determined if the delay on the link exceeds some threshold.

An alternative approach in which the topology design problem is not decoupled from 

the flow and capacity assignment problem is discussed in Gerla and Kleinrock [GK77]. 

This is similar to the work described by Yaged discussed in section 2.2.3 above. The 

flow deviation approach that they propose to solve the flow and capacity assignment 

problem naturally aggregates traffic when possible. This has the effect o f assigning no 

flow (and hence no capacity) to many links in the problem. Hence, if  this algorithm 

operates on a fully connected topology, the result is often a network which is quite 

sparsely connected. In this way a reasonable topology is a natural output of the use of 

this algorithm. Note that this approach is only applicable to situations in which the link 

cost function is concave. Consequently, it cannot be generally applied. However, there 

are a substantial number o f cases in which the link cost is either concave or can be 

approximated by a concave cost function.

2.3.3 Logical Network Design

Lee and Yee consider a logical packet-switched network design problem in 

[LY91,LY95]. In this problem, the objective is to determine a logical network 

configuration that minimises the overall network delay.

Lee and Yee assume that the physical network consists of a set of given connections 

that are easily divided into channels. They consider interconnects such as T1 

interconnects that can be divided into 64kb/s channels. These channels offer the 

flexibility to implement a logical network and the problem is then how to configure the 

channels to obtain a logical network that minimises the delay over the network.

Lee and Yee formulate the problem as a convex optimisation problem with linear 

constraints and hence a unique local optimum exists. The constraints on the problem are 

all linear. The number o f variables in the problem becomes very large very quickly and 

consequently, the problem becomes difficult to solve quickly.

Lee and Yee propose the use o f a partial branch and bound procedure to solve the 

problem. First, the relaxed form of the problem is solved. This is used as a starting point 

from which feasible solutions can be obtained, d  paths are then chosen from the 

optimal solution and a number o f modified problems are formed in which there are extra 

constraints on these paths. For each path two extra constraints are added -  one in which
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the capacity o f the path exceeds the value obtained in the initial solution and one in 

which the capacity is upper bounded by this value. This results in 2d new problems. A 

relaxed version of each of these problems is solved and if  the relaxed solution is of 

lower cost than the current minimum, rounding is performed to obtain a feasible 

solution. If the feasible solution is of lower cost than the current minimum, it replaces 

the current minimum cost solution. This procedure continues until a low cost, feasible 

solution is obtained.

The approach to choosing paths is done on a “longest and shortest first” basis: paths 

requiring small amounts o f resources from many physical links are chosen first. The 

algorithm proceeds until the shortest and fattest paths are being considered.

2.4 Circuit-switched Network Design

Circuit-switched networks have been well studied over the last few decades. Advances 

in routing techniques made possible by the development of stored-program-control 

switches introduced new complexities and challenges to the analysis o f circuit-switched 

networks. Circuit-switched network design has never been a trivial problem, even for 

networks employing simple hierarchical routing. Network design for networks using 

advanced routing techniques is a difficult problem and consequently has received 

considerable attention over the last couple o f decades.

The circuit-switched network design problem differs from the facility and packet- 

switched network design problems in that the focus is on circuit level performance. The 

grade of service measure is the connection blocking probability and the demands are 

typically measured in call arrival rates. This makes the analysis o f the problem quite 

different to that o f the earlier problems.

This section is divided into four subsections. First, routing in circuit-switched networks 

is discussed. This has a very considerable impact on network performance, and hence an 

effect on network design approaches. Different network routing mechanisms are 

described. Next, a number of different algorithms proposed to solve design problems for 

circuit-switched networks using specific routing are described. These algorithms are 

quite complex and warrant substantial discussion. Approaches to designing logical 

networks for circuit-switched networking are discussed next: this is followed by a 

discussion on multirate circuit-switched networking and an approach to design such 

networks is described.
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Many different routing schemes have been proposed to improve the efficiency of 

circuit-switched networks. These range in complexity from the simple dynamic routing 

to more complex adaptive schemes. Four routing schemes are described here. Three of 

these have been used in operational environments; the fourth is useful for modelling 

other more realistic routing schemes and is included for this reason. The most important 

ideas in advanced circuit-switched routing are encapsulated in these routing schemes.

Dynamic Non-Hierarchical Routing

Dynamic Non-Hierarchical Routing (DNHR) was originally proposed in [AKK81] and 

discussed in a network design context in the seminal paper by Ash, Cardwell and 

Murray [ACM81]. The purpose of DNHR was to increase the efficiency of AT&T’s 

network through the introduction o f two important developments in telephony 

networks: the introduction of a dynamic aspect to network routing and a relaxation of 

the strict hierarchical rules that governed routing heretofore.

A specific implementation was developed for the AT&T network, but the concept is 

slightly more general than this. The DNHR concept allows for complex routing trees 

and associated parameters to be varied throughout the day: the routing trees themselves 

can vary and/or the associated parameters. In particular, parameters such as route 

weighting parameters may vary. One example o f a routing scheme that would fall under 

the general class o f dynamic non-hierarchical routing would be one in which a number 

o f routes exist for each destination and one o f these routes is chosen at random for each 

call. The probability o f choosing each route varies throughout the day according to 

some predefined schedule. Other variants are possible. The particular variant o f DNHR 

chosen to be implemented by AT&T is often referred to as DNHR. Below, DNHR will 

be used in this sense.

In AT&T’s DNHR, a set o f routes exists in each node for calls to each destination. 

These routes are tried in order. If the first route fails, then the second route is tried etc. 

until all possibilities are exhausted, in which case the call is blocked. In this scenario, 

crankback must exist in the network -  i.e. if  the call routing fails somewhere on the 

route other than the originating node, then the call must be ‘cranked-back’ to the 

originating node where another route will be tried.

2.4.1 Routing in Circuit-switched Networks
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DNHR is dynamic in the sense that the routing tables are updated periodically 

throughout the day. A number o f routing tables exist in each node for each destination. 

These are pre-determined and the routing table that is in use at a particular time is 

dependent on the time o f day. This enables the network to cater for different traffic 

patterns throughout the day. This is particularly beneficial in a network that spans a 

number of time zones such as the AT&T network that the scheme was designed for.

It is important to note that this scheme is not adaptive to the state of the network; the 

node behaviour varies throughout the day with the changing traffic patterns, but this is 

pre-programmed behaviour -  the nodes do not adapt their behaviour to the state of the 

network.

Load Sharing and Alternate Routing

In Load Sharing and Alternate Routing (LSAR) a fixed set of routes exists for the traffic 

between the source and the destination nodes. When a call needs to be routed, one of 

these routes is chosen at random to route the call. If  the call cannot be routed 

successfully, then an alternate route is chosen. This can again be chosen at random. Like 

the DNHR scheme described above, this scheme requires crankback to operate.

This approach has the effect o f splitting the demand for a particular node-pair over a 

number o f routes in proportion to the weights associated with each route.

This type o f network routing is not used in real networks. However, networks using 

other routing schemes can be modelled by this routing scheme under appropriate 

assumptions. For this reason, this short description of LSAR is included here.

Residual Capacity Adaptive Routing

Residual Capacity Adaptive Routing (RCAR) is a general term to describe a number of 

different algorithms which are adaptive to network conditions and use (predicted) 

residual capacity on routes when determining how to route a call. Link status 

information is relayed via the signalling network in order to facilitate determination of 

lightly loaded routes.

In the two implementations described here a central processor periodically collates link 

status information, processes the data and sends updated routing information to the 

nodes as necessary. The central processor examines the variation in link utilisation 

during the time interval and uses this to predict link occupancy during the next time
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interval. This information is then used to determine lightly loaded routes and to 

configure routing functions in nodes.

It is important to note that the network status information is only updated at certain 

intervals -  the nodes do not always know the states of the network links; there can be a 

discrepancy between the nodal information and the status o f the links.

A particular scheme that falls into the general category of RCAR routing schemes is 

called Dynamic Call Routing (DCR) [Gir90]. This was implemented and trialled in 

Canada. In DCR, a fixed set of routes exists for routing traffic between two nodes. All 

of these routes contain two links. The call is first offered to the direct route. If  this is 

full, then an alternate route is chosen with some probability. These probabilities are 

proportional to the amount of forecast free capacity on the route and are updated by the 

central processor. If  the call is blocked on the alternate route, then it is lost.

Updating the probabilities forms the crux o f the routing scheme, and it was found that 

the frequency o f the updates was a very important factor in the performance of the 

scheme.

Another approach that falls into the category o f RCAR is Trunk Status Map Routing 

proposed by AT&T [Ash85]. Like the DCR scheme, this approach uses a central 

processor to collate information on the status of the links in the network. The central 

processor analyses the link status information and, if  necessary, effects changes in the 

routing in the nodes. In this scheme, it was found that the best routing strategy was to 

first try the route proposed by non-adaptive DNHR, and, if  this fails, attempt to route 

the call on the least loaded alternate path.

Real Time Network Routing

Real Time Network Routing (RTNR) is another approach that was developed by AT&T 

[ACFH91] to improve the efficiency o f their trunk network. This approach is very 

adaptive to the state o f the network and is, in principle, quite a simple approach. The 

approach uses signalling between the source and destination nodes to determine the 

most lightly loaded route between the source and destination. It does not require the use 

o f a centralised processor collating link status information to determine lightly loaded 

paths.
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Figure 2-5: Operation of RTNR -  determination of lightly loaded paths.

In this approach, one o f six states is associated with each link at any time — Lightly 

Loaded 1 (LL1), LL2, LL3, Heavily Loaded (HL), Reserved and Busy. When a call is to 

be routed on the network, the direct route is first tried if  it exists. If the direct link is 

congested, a message is sent to the terminating switch requesting its link status 

information. The link status information is returned to the originating node via the 

signalling network. The link status information takes the form o f 6 bit maps -  one for 

each link state -  that can be used to determine the status o f each o f the links connected 

to the terminating node. The originating switch then performs a bitwise AND operation 

using the local link information and the link information obtained from the destination 

node to determine the most lightly loaded alternate route for the call. A check is then 

performed to see if  the routing scheme permits this route to be used as an alternate route 

for this node pair: the routing scheme supports a mechanism to restrict particular routes 

being used for alternate traffic between node pairs. The determination o f a lightly 

loaded path is illustrated in Figure 2-5. If  a number of routes are in the same state, then 

a round robin approach is used to distribute the calls evenly between the different 

routes.

2.4.2 Circuit-switched Network Dimensioning

Since the routing scheme used in the network has a considerable impact on the network 

performance, different dimensioning algorithms were proposed for networks employing 

different routing schemes. These different network dimensioning approaches for the

37



different network routing schemes are discussed here. In these dimensioning problems, 

the network topology is assumed to be fixed and given: the topology problem is 

considered to be a separate problem.

Dimensioning DNHR Networks

Ash, Cardwell and Murray developed the Unified Algorithm (UA) for the dimensioning 

of DNHR networks, and it is discussed in some detail in [ACM81]. The algorithm 

consists of a set of heuristics that can be used to dimension a circuit-switched network 

that uses DNHR routing to accommodate a set of given demands with some specified 

grade o f service at a low cost.

Two variations o f the algorithm are discussed: the route formulation and the path 

formulation. In the route formulation o f the algorithm a set o f routing tables are 

specified as inputs to the optimisation procedure, and one element o f the design 

problem is to determine how to assign weights to these routing tables to obtain a routing 

that results in a low cost network design. In the path formulation of the algorithm, paths 

for demands are specified as problem inputs. The design algorithm then determines how 

demands are split over the paths. This differs slightly from the route formulation in that 

there is still the outstanding problem of how to choose the routing table parameters to 

realise the desired flows.

The path formulation o f the problem is more flexible, since the constraints it imposes on 

the routing are less restrictive than those o f the route formulation. Also, the authors 

found that the path formulation o f the problem usually finds lower cost solutions. This 

is because the route formulation requires routing tables to be specified at the input to the 

problem -  if  bad routing tables are input then it is difficult to obtain an efficient routing 

of demands. Hence it is difficult to obtain an efficient network operation and good 

network performance. Consequently, the network required to meet the performance 

constraints is more costly. The path formulation is much less likely to have unsuitable 

routing tables since choosing the routing tables is part o f the problem. For these reasons, 

only the path formulation o f the UA is considered here.

The path formulation o f the UA is an iterative procedure (as is the route formulation) in 

which quantities such as the routing o f the demands, the link blocking probabilities and 

the link dimensions are repeatedly recalculated until they converge. A flowchart 

illustrating the algorithm is shown in Figure 2-6.

38



Figure 2-6: Flowchart for Path Formulation of Unified Algorithm.

The iterative process contains the following steps:

1. Generate paths;

2. Obtain an optimal routing o f the demands by solving a route optimisation problem;

3. Dimension the links using the routing obtained from the previous step;

4. Perform blocking correction: dimensioning the links can cause the link blocking 

parameters to be changed. In some cases, the link blocking may exceed the desired
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link blocking for some busy hours. Small adjustments to the link capacities may be 

necessary to ensure that link blocking does not exceed the required blocking.

If the process has not converged, then a further two steps are performed:

1. Update the link metrics;

2. Update the link blocking probabilities.

Each of these steps is discussed in more detail.

The first step is to generate a set o f paths. Short paths are preferred since these require 

the least amount o f resources: only direct and two-link paths are considered. In a large 

highly connected network, there can be very many two-link paths. Hence, some way of 

reducing the number o f paths to some reasonable amount o f candidate paths is required. 

This is not discussed in [ACM81], but some reasonable path generation heuristics can 

be envisaged based on some combination of shortest geographical distance, trunks with 

largest demand and possibly non-coincidence of busy-hours.

Once the paths are determined, the problem is to determine how the demands are routed 

on the network. The objective is to minimise the cost o f the resources required to route 

the demands. A linear program is constructed to solve this problem. The variables in 

this problem are the amount o f traffic carried on each o f the links and the amount of 

traffic carried on different routes. The objective function is the sum of the marginal link 

costs and this must be minimised by solving the linear program. The output o f the linear 

program is the set o f traffic flows that should be carried on the network. This can be 

used to determine how much traffic is carried on each link.

The next step is to dimension the network using the routing obtained above. This is 

done in a reasonably straightforward manner. For each link, the maximum amount of 

flow through the link is determined over the different time periods. The maximum flow, 

together with the link blocking probability are used to determine the required link size. 

The Erlang-B blocking formula is used here to determine the required link size. The 

blocking for all hours is then determined using these link sizes.

The convergence test is then performed. If the parameters -  routing, link blocking and 

link dimensions -  have converged sufficiently closely, then the algorithm is terminated. 

Otherwise, the link blocking parameters are recalculated and the next iteration 

performed.
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The link blocking parameters are recalculated based on the routing of the demands and 

the link dimensions. The amount o f traffic incident at each link is easily calculated 

based on the routing. The cost of routing the link traffic is then formulated as the sum of 

the link costs and the cost of the traffic overflowing to other links. In general, the latter 

quantity is difficult to estimate and some approximation must be made. The resulting 

function is a non-linear function of the link dimension. This is then optimised with 

respect to the link dimension to obtain a new link dimension and a new link blocking 

parameter which is used as input to the next iteration o f the process.

The link metrics, which are essentially derivatives of the link cost function with respect 

to the link dimensions are also recalculated. These are used in the objective function of 

routing optimisation procedure. Since these parameters are sensitive to the link 

dimensions, they are recalculated at each iteration.

This is the essence of the UA algorithm. There are particulars/details of the algorithm 

which are not so relevant to this discussion and hence they are omitted here. The 

algorithm is important since it is the first algorithm that was successfully applied to 

large-scale circuit-switched dimensioning problems.

Dimensioning LSAR Networks

Girard discusses modelling of LSAR networks in [Gir90]. One problem considered 

there is dimensioning o f LSAR networks. The problem is to obtain a network design 

that results in a minimum cost network that can maximise the revenue generating 

capability o f the network. The objective function is a sum of the network costs and a 

term reflecting the amount o f revenue generated by the network. The problem also has 

some grade-of-service constraints: the blocking between node pairs must not exceed 

some pre-defmed threshold.

In the dimensioning problem, there are two sets o f parameters that need to be 

determined -  the proportion o f flow carried on each path and the link dimensions. The 

link blocking probabilities are implicitly defined once these parameters are defined; 

however, Girard chooses to introduce these as decision variables in the problem 

formulation and to introduce explicit constraints relating the load carried on each link, 

the link dimensions and link blocking probabilities.
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Figure 2-7: Flowchart for LSAR dimensioning algorithm.

The resulting problem is a large constrained non-linear programming problem. Girard 

forms a Lagrangian function incorporating the objective function and the problem 

constraints. Relations between the Lagrange multipliers and the optimal values o f the
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problem decision variables can then be determined by taking appropriate derivatives of 

the Lagrangian function. A system of equations relating all o f the unknown parameters 

results. This system o f equations, however, is large and difficult to solve.

Girard proposes a heuristic iterative approach to solve the problem in which some 

variables are fixed and the remaining ones calculated until the system converges to 

some solution. This iterative approach is illustrated in Figure 2-7.

A detailed description of the algorithm is not necessary here. However, a few comments 

are in order to give some idea of the complexity of the algorithm. The link 

dimensioning problem can be decoupled into individual link dimensioning problems in 

this formulation. The link dimensions can then be obtained using a univariate 

optimisation technique. The y  Lagrange multipliers can be determined by solving a 

linear program. The flow coefficients can be determined using a multicommodity flow 

solver. This part of the algorithm is the most time consuming. The fixed point problems 

can be solved by a repeated substitution method. Finally, the x Lagrange multipliers 

can be obtained by minimising the Lagrangian function with all other variables fixed.

The overall procedure does converge and it does converge to a local minimum of the 

LSAR dimensioning problem. However, the algorithm is quite complex and does 

require considerable amount o f processing time. Girard and Liau [GL93] report that the 

solution algorithm takes of the order o f hours on their systems for a 50 node network. 

This would probably take of the order o f 10’s o f minutes on today’s computer systems. 

However, the algorithm doesn’t scale up well.

An interesting point relating to this work is that the optimisation algorithm used has its 

roots in a mathematical model. This is in contrast to the UA, which is simply a set of 

heuristics, albeit quite reasonable ones. The mathematical model is then analysed to 

identify characteristics o f the solution and speed up the solution algorithm. The fact that 

the optimisation algorithm is (in some sense) derived from a mathematical model also 

means that it is possible to consider how close to the optimal the derived solution is. 

Furthermore, since there is a definite mathematical model to solve, different 

optimisation techniques can be applied to obtain some solution.

Dimensioning RCAR Networks

The design o f RCAR networks -  in particular the DCR variant o f RCAR -  is discussed 

in [GL93]. The basic idea behind this approach is to approximate a DCR network by an
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LSAR network and use the dimensioning procedure for LSAR. Girard and Bell used the 

same idea in [GB89] in an attempt to devise a fast algorithm to determine the network 

performance o f a DCR network.

A DCR network can be approximated by an LSAR network by noting that over the long 

term, the behaviour o f the DCR network appears stationary. The effects o f updating the 

routing periodically in response to changes in the demand disappear when the network 

is observed over a long period of time. Hence, the network can be modelled as an LSAR 

network. However, care must be taken when doing this. Since the routing is periodically 

updated in DCR, the weights for each route are not arbitrarily chosen, unlike LSAR. 

When modelling DCR using LSAR, extra constraints are introduced that relate the 

weights for each route to the amount o f free capacity on each route. Girard and Bell 

showed that DCR can be reasonably well modelled using LSAR using this approach 

[GB89],

The DCR network is then dimensioned using the LSAR dimensioning procedure and 

the relation coupling the free capacity on each route to the weight for each route. This is 

not quite as straightforward as it may at first appear. In the LSAR dimensioning 

problem, the amount of flow offered to each route was a design variable. In this 

problem, the amount o f flow offered to each route is no longer a free design variable 

since it is dependent on the occupancy o f each route.

The approach used to solve this problem is also an iterative one. A flowchart illustrating 

the approach is shown in Figure 2-8.

The design approach does have some stability concerns. It is not clear that the approach 

will converge to a solution. In the DCR design algorithm, there are three loops that must 

converge -  the flow variables, the link dimensions and the subgradient optimisation 

loop. The flow variables loop converges well. The link' dimensioning loop, however, 

does not converge quite so well, and some measures are taken to dampen the variation 

o f the resulting link dimensions. The link dimensions are weighted sums o f the link 

dimensions obtained during the current iteration using the dimensioning rule and the 

link dimensions used in the previous iteration. Similarly, the x  parameters can exhibit 

non-convergent behaviour. In the same way, dampening mechanisms are used to ensure 

that these do indeed converge.
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Figure 2-8: Flowchart for DCR dimensioning scheme [GL93].

One interesting observation made by the Girard and Liau is that they find that the 

network cost resulting from the DCR network design approach is typically higher than 

that resulting from the LSAR approach.

Dimensioning RTNR Networks

In [ACL94] the dimensioning of RTNR networks is discussed in the context of a logical 

network design problem. The overall approach is applicable to facility network design, 

but considers the inclusion o f RTNR traffic on the facility network. To this end, some 

discussion o f the dimensioning problem for RTNR networks is discussed.
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The RTNR dimensioning algorithm described in [ACL94] is based on the RTNR 

network performance model developed in [AH93]. In the dimensioning problem, it is 

assumed that some grade-of-service performance objectives, e.g. blocking probabilities, 

are given and that the resulting network is fully connected. The objective is to obtain a 

set o f link dimensions that enable the performance objectives to be just met.

The objective does not explicitly involve obtaining a minimum cost network since this 

work was done in the context o f a logical network design problem, although the 

network dimensioning algorithm should not result in link dimensions that are 

unnecessarily high. Once some set o f interswitch link capacities are obtained that meet 

the grade-of-service constraints, these can then be input to the topology design problem. 

The real cost considerations come into effect in the link dimensioning problem. The link 

dimensioning problem is formulated as a linear programming problem in which the 

objective is to minimise the extra capacity required to meet the demands. The design 

model incorporates reliability requirements by ensuring some fraction of each demand 

is routed over a physically diverse path.

The dimensioning algorithm is an iterative heuristic dimensioning algorithm. It is 

illustrated in Figure 2-9. The algorithm uses three separate models developed in the 

performance model o f [AH93], The link state probability model is used to determine the 

probability that the link is in each o f the different link states -  LL1, LL2, LL3, HL, 

Reserved, Busy -  as discussed above. In the traffic flow model, the link state 

probabilities are used to obtain the route state probabilities. These, in turn, are used to 

determine what proportion o f flow pertaining to each demand is carried on each route. 

These flow variables are the output o f the link flow model. The third aspect of the 

performance model is the adaptive trunk reservation model. This models the dynamics 

o f the trunk reservation level for each link and attempts to determine the mean trunk 

reservation level. This is dependent on the node-to-node blocking and is used in the link 

state probability model.
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Figure 2-9: The dimensioning algorithm for RTNR networks.

The link dimensioning method is not described, although it is noted that the links are 

dimensioned in terms of T1 transmission capacities. Consequently, there is considerable 

granularity in the dimensioning o f the links and hence the link dimensioning problem 

should not prove very difficult. The flow incident at each link is an input to the link 

dimensioning problem and this should be used with an inverse Erlang B formula to 

obtain dimensions for the links.

Once the dimensions o f the logical network design are determined, these can be input to 

the logical network design optimisation step. The design of logical networks is 

discussed separately in the following section.

2.4.3 Logical Network Design for Circuit-switched Networks

Development o f more sophisticated cross-connect equipment in the 80’s added extra 

flexibility to the configuration o f telecommunications networks. This enabled logical 

networks to be implemented over physical infrastructures in circuit-switched networks 

(see [Ash95] and [AS90] for a more detailed exposition of this concept). This extra
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flexibility can enable more efficient use o f the network resources. This concept was 

discussed above in the context o f packet-switched networks, and will be discussed 

below in the context o f ATM networks.

Three variants o f the logical network design problem are discussed here. In the first, the 

objective is to determine how to configure a logical network on some given physical 

resources such that the logical network can best accommodate the demands. In the 

second problem, the objective is to determine a logical network on some physical 

network which minimises the amount o f extra capacity that must be added to the 

physical network. Finally, a discussion o f a combined logical and physical network 

design and configuration problem is discussed.

The problem that arises then is how to configure the logical network using the available 

physical resources so as to maximise the network efficiency. Other variants o f logical 

network design problems are possible and arise in other networking contexts, but this is 

the only one that is discussed here.

Gopal, Kim and Weinrib studied the logical network dimensioning problem for circuit- 

switched networks in [GKW90,GKW91]. In their problem formulation, each node-pair 

was offered a certain amount o f Poisson traffic. The problem was to maximise the 

amount o f traffic carried by the network, and hence the revenue generated by the 

network, by appropriately configuring the logical network. There are no specific 

constraints on the problem. In particular, there are no constraints on the blocking 

between node pairs -  this can be arbitrarily large in the solution.

They propose a greedy algorithm to solve the problem. For each demand and each 

available path, some benefit is calculated for carrying an extra unit o f the demand on the 

path. The benefit function is a sum of the resulting increase in the amount o f carried 

traffic and some measure of the amount o f traffic that cannot use these resources if  they 

are assigned to this path.

The algorithm used by the authors does not assume any advanced routing strategies in 

the network. Hence the increase in carried traffic that results from the addition of 

capacity to a path can be determined using the Erlang-B function.

The authors find that this direct approach to solving the problem can result in networks 

that operate more efficiently than do networks with advanced routing strategies. The 

performance o f a physical network with logical overlay network is compared to that o f a 

physical network with least loaded routing when the load differs from that o f the design
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load for the physical network. The results show that the extra layer o f flexibility can 

result in better network performance. This is especially true o f cases in which the 

incident load differs considerably from the design load. Indeed, the greater the 

difference between the design load and the actual load, the better the performance 

obtained using the logical network configuration.

Ash, Chen and Labourdette discuss such logical network configuration in [ACL94], 

They consider the problem in a more realistic context than that considered by Gopal et 

al. The problem that they consider is somewhat different from that of Gopal et al. 

Instead o f trying to determine a logical network which can carry the maximum amount 

of traffic on the given physical network, they attempt to carry a specific set o f demands 

on a given physical network in such a way as to minimise the amount of capacity that 

needs to be added to the existing network. Since the demands are specified in terms of 

concrete capacities rather than call arrival rates, this problem is closer to the facility 

network design problems o f section 2.2.

Ash, Chen and Labourdette formulate the logical network design problem as a linear 

programming problem. The problem can be solved using some standard approach but 

Ash et al propose an algorithm to obtain some solution to the problem which uses 

specific domain knowledge to reduce the time required to find a solution.

Medhi also considers the logical network design problem in [Med94], He considers this 

problem in association with the physical network design problem. He assumes some 

fixed physical topology is specified and the problem is then to determine the physical 

network capacities and the logical network configurations that result in the minimum 

cost network that can accommodate the constraints. Medhi considers two types of 

constraints: survivability constraints and grade-of-service constraints. He also considers 

multiple sets o f demands -  one for each different time period. The problem he considers 

is quite comprehensive.

Medhi formulates the problem as a linear program. However, the very large number of 

variables in the problem make it difficult to solve. Consequently, some approaches to 

simplify the problem and obtain some solutions are discussed.

Medhi eliminates the circuit-switching characteristics o f the problem at a high level by 

determining the required amount o f trunks between each node-pair to deliver the grade- 

of-service constraint. This is done by assuming that direct routing is used throughout the 

network -  if  more complex routing is used, then it is considerably more difficult to
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determine the required capacity between each node pair. In this way, the demands are 

mapped from a set of loads measured in Erlangs to a set of capacities, which are much 

easier to deal with. This reduces the problem to one which is similar to the facility 

network design problem; there are no longer any specific circuit-switched aspects to the 

problem. Medhi solves the problem by decoupling the different failure scenarios and 

obtaining both a logical network configuration and a physical network configuration in 

each case. The physical link capacities chosen are the maximum capacities required 

over all failure scenarios. Details are omitted since the emphasis here is on design of 

logical circuit-switched networks.

2.4.4 Multirate Network Dimensioning

Medhi and Guptan consider the design o f multiservice, multirate switching networks in 

[MG97]. In this network, calls can occupy more than one circuit. Different services can 

then be supported: services requiring more capacity than conventional voice telephony. 

The network can be used to carry traffic for, say, a videoconference, which could 

consist o f two or more circuits. The problem they consider is how to dimension the 

network to accommodate the multiservice demands with some grade of service 

performance objectives.

In general, multirate problems are considerably more complex than those o f single­

service networks. This is because the characteristics of the different services supported 

by the multirate network can differ greatly. Different services can have different 

capacity requirements and different traffic patterns. For example, the arrival rates and 

the call durations may not be consistent with the Poisson model that approximates voice 

so well and is easy to work with analytically. Analysis and performance evaluation of 

multiservice networks is quite a difficult problem.

Medhi and Guptan approach the design problem by decoupling the problem in the same 

way as before. This time, however, the decoupling does not apply simply to a single 

service, but rather to the set o f multiservice demands are mapped to a set o f capacities. 

Each service is considered in isolation and the capacity requirements per node-pair per 

service are calculated. These are then aggregated to obtain per node-pair capacity 

requirements and these requirements are then provided as input to a mixed integer/linear 

programming solver to obtain some solution.
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The capacity required per service per node-pair is determined using the traffic 

characteristics and the capacity requirements. Direct routing is assumed, so the 

complexities introduced by multiplexing many different traffics onto a single link can 

be avoided. In this particular case, Poisson traffic is assumed and the required number 

of connections is determined using the Erlang B formula. This is converted to a required 

capacity by multiplying by the capacity required per connection.

2.5 A TM Network Design

ATM was chosen as the technology of choice for B-ISDN and received considerable 

interest in the research community in the early-mid 90’s. It was proposed as a 

technology with the ability to support many different services which may have differing 

requirements o f the network. In particular, ATM made possible the notion that different 

services could have different QoS, and ATM was the first technology to offer proper 

QoS support for connections.

ATM is a cell-based technology: it exhibits some o f the characteristics of both circuit- 

switched and packet-switched technologies. ATM transmission is cell-based 

transmission -  data is transmitted in 53-byte cells. Consequently, packet delays, loss 

and jitter can be unpredictable. In this way, ATM is similar to packet-switched 

networking. On the other hand, when a request for service arrives, the network 

determines whether or not a route exists that has sufficient available resources to meet 

the QoS requirements o f the traffic. This is similar to the behaviour of circuit-switched 

networking.

Much o f the work reported on ATM design problems in the literature concentrates on 

the extra level o f flexibility introduced by the Virtual Path (VP) concept. This enables 

traffic to be aggregated into some kind o f virtual trunks in the network. Three 

possibilities exist for the network design problem:

1. the logical network design problem -  the problem of determining the optimal logical 

network given some physical network;

2. the problem of designing an optimal physical network to accommodate some given 

logical network;

3. combined logical and physical network design.

These different problems are discussed below.
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Since ATM exhibits characteristics o f both circuit-switched and packet-switched 

networks, the emphasis in the design problem can be on either packet or connection 

level characteristics. In some earlier work, the emphasis was on packet level 

characteristics, but in later work, much more emphasis was on connection level 

measures. Each of these is discussed in the next section.

ATM services are currently on offer in the marketplace. However, it has not reached the 

levels o f penetration that were imagined at its inception. The early proponents of ATM 

envisaged a network with ATM connections directly to end users and traffic carried 

from end-to-end over ATM. However, with the enormous growth in the use o f IP and 

the high availability of IP interfaces, many now believe that an IP-based infrastructure is 

a more likely candidate for multiservice networking.

Most current ATM service offerings are semi-permanent -  as opposed to switched -  

service offerings. These could be used for high-speed Local Area Network (LAN) 

interconnections where, for example, users on the interconnected LANs use bandwidth 

intensive applications such as video.

The work described below is strongly influenced by the traditional telephony 

perspective rather than data communications perspective which is more dominant today. 

Hence, the authors think of connections being established and tom down via ATM 

signalling. This is not the state o f the market today and it is unlikely that the market will 

evolve to this point. However, the techniques described here could be applied in IP-QoS 

networks, although they may need to be modified to some extent. Hence they are 

interesting.

Since ATM connections are cell-based, it is often not obvious how to determine 

whether there are sufficient resources to accept a new connection. The problem of 

determining whether a new connection can be accommodated without adversely 

affecting existing connections is the admission control problem. A short discussion of 

this problem is included here since it is a fundamental aspect o f the operation of the 

network which has a profound impact on how the network resources are used and hence 

has an impact on how the network is dimensioned.

The admission control problem for ATM focuses on how to decide whether or not a 

particular connection can be carried on the network. Much work has been done on this 

problem and a recent overview o f contributions in this area is reported in an article by 

Knightly and Shroff [KS99]. A number o f different approaches have been proposed
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such as techniques based on average and peak rate combinatorics or maximum variance 

based approaches. One of the more interesting approaches is the so-called effective 

bandwidth approach in which the requirements o f each connection are encapsulated in a 

figure o f merit known as the effective bandwidth.

The effective bandwidth approach was originally proposed by Hui in [Hui88]. The 

concept is attractive because it means that admission control decisions can be easily 

made by comparing the available resources against the effective bandwidth. 

Alternatively, the amount o f capacity required for a number of connections is simply the 

sum of the effective bandwidths. Using this concept then, cell-based ATM networks 

bear very striking similarities to circuit-switched networks, although in the ATM case, 

the ‘circuits’ can have quite arbitrary capacities. Some o f the theory o f circuit-switched 

networking -  some o f which is discussed in section 2.4 -  can then be applied [Ros95] to 

the network design problem.

The remainder o f the section is structured as follows. The logical network design 

problem is discussed next, followed by the physical network design problem. Then a 

way to solve a combined logical and physical network design problem is discussed.

2.5.1 Logical Network Design

The logical network design problem focuses on dimensioning the VP logical network to 

meet some performance criteria. Three classes o f logical network design problem exist 

in the literature:

1. generic problems;

2. those in which the emphasis is on packet level issues ;

3. those in which the emphasis is on connection level issues.

The generic problems are ones in which the context of the VP is not considered: the 

input to the problem is the set o f VP demands. The packet level problem is one in which 

the objective is to determine the logical network configuration that minimises some 

packet level characteristic. Similarly, in the connection level problem the objective is to 

determine the logical network configuration that minimises some call level 

characteristic. Each o f these is discussed here.
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The problem in this case is to route a set o f VP demands on a network. The VP demands 

are given as an input and the objective is to determine the optimal network 

configuration. This problem was studied by Chlamtac et al in [CFZ94]. There, the 

objective was to determine a route configuration for which the maximum load on the 

physical links was minimised. This results in a network in which the load on the 

network is balanced and the network is most resilient to failure.

Chlamtac et al proposed an algorithm in which the path for each demand is chosen at 

random from the set o f shortest paths for each o f the demands. They demonstrate that 

the solution obtained using this simple approach is provably close to the optimal in a 

large network.

Optimisation of Packet Level Characteristics

Gerla, Monteiro and Pazos [GMP89] consider a logical packet-switched network design 

problem with ATM in mind. The problem they wish to solve is to determine the logical 

network that optimises some packet level characteristics given some physical network. 

In the problem, the demands are point-to-point demands specified in terms of a set of 

packet generation rates. Arbitrary paths are possible for the demands on the network: 

the problem is to determine the set o f VPs that optimises some function o f the overall 

packet delays. The set of VPs are defined by determining the routing and the 

dimensions o f the VPs.

They observe that the link rates are typically very high in ATM networks and hence the 

nodal delays are usually very small. Since these delays are small, a very accurate model 

would be required to capture the characteristics o f the node delays. Such an accurate 

model is difficult to generate. For this reason, the authors focus on issues associated 

with packet loss. They note that for some given set o f node buffer sizes, the packet 

losses are reduced if the overall packet delays are reduced. Consequently, even though 

minimisation of the packet delay is not their primary objective, the use o f a delay 

function achieves their objective which is minimisation of packet loss.

To solve the problem, some node queuing model is required. They consider an M/M/1 

node delay model. They note that the resulting solution of the topology and routing 

problem is quite insensitive to the shape o f the delay versus trunk load curve and hence, 

the exact nature o f the node delay model is not very important. Having argued that the

Generic Logical Network Design
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network can be modelled by a set of M/M/1 queues, much o f the theory developed by 

Gerla and Kleinrock in their earlier work can be applied. In particular, the overall 

network delay expected in a network o f M /M /1 queues can be used in this situation.

First, a scenario in which the initial logical network topology is given is examined. A 

flow and bandwidth allocation problem is then formulated. The decision variables in 

this problem are the set of logical link capacities and the logical link flows. The 

problem is formulated as an optimisation problem with a concave objective function 

and a set o f linear constraints. The authors suggest the use of a flow deviation approach 

to solve the problem.

The problem has a number of locally optimal solutions. The steepest descent algorithm 

finds one such solution, but the solution found is very dependent on the choice of 

starting point for the steepest descent algorithm. In this case, a common approach to 

obtain a good solution is to perform the optimisation a number o f times using different 

starting points and choose the best overall solution.

The authors then consider their choice o f an initial starting point. In obtaining a good 

starting point, they first consider how to determine the topology o f the logical network. 

They identify those node pairs that have the highest traffic demands: these node pairs 

then have a direct logical link. Nodes with smaller inter-node traffic demands have no 

direct logical link. They then obtain a particular feasible solution by constructing 

another minimisation function, the objective o f which is to minimise the total logical 

link capacities and flow. Solution of this yields some particular feasible solution -  

random variants o f this are used as initial starting points.

Optimisation of Call Level Variables

Siebenhaar [Sie94] considers the logical network design problem in the context of an 

ATM network. He considers the call level version o f the logical network design 

problem. In this case, the objective is to maximise the revenue generated by the 

network. The revenue is assumed to be a weighted sum of the mean amount o f traffic 

carried on all of the VPs in the network.

Siebenhaar assumes that the routing in the network is fixed and that a number of VPs 

exist between each node pair. He assumes that a number o f different VPs can be 

modelled as a single VP o f capacity equal to the sum of the capacities o f the individual 

VPs. He then assumes that the amount o f blocking experienced for calls between the
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node pairs is well approximated by the blocking on the single aggregate VP. This 

assumption is reasonable for large networks.

The objective then is to determine the dimensions of the VPs in the network that 

maximises the overall revenue generated by the network.

The problem formulation that he arrives at has a non-linear objective function with 

some linear and some non-linear constraints. The non-linear constraints are constraints 

on the blocking on the VP: blocking on the VP is a non-linear function of the capacity 

of the VP. The non-linear constraints make the problem more difficult to solve. 

Siebenhaar simplifies the problem by imposing a lower bound on the size of the 

aggregate VP -  it must be sufficiently large to ensure some minimum level of blocking. 

This is done by choosing some minimum blocking threshold and determining the VP 

capacity associated with this blocking threshold. This capacity can then act as a lower 

bound on the VP capacity and the chosen blocking threshold is a lower bound on the 

blocking on the VP. In this way, the non-linear constraint can be replaced with a linear 

constraint.

The above solution method can result in infeasible problem formulations. The blocking 

threshold can be made arbitrarily small, and an infeasible problem will arise. For 

example, a tiny blocking probability can be chosen such there is insufficient capacity in 

the entire network to meet the blocking constraint. To solve this problem, Siebenhaar 

introduces a so-called bisection method in which the blocking threshold is initially set, 

and if  it results in an infeasible solution, then the blocking threshold is raised, the 

problem is solved again and the process is repeated until a solution is obtained that 

minimises the objective function as well as the maximum connection blocking 

probability. To obtain a solution for each problem with linear constraints, a reduced- 

gradient approach is used in conjunction with a quasi-Newton method.

The author examines the effect o f modifying the arrival traffic. Different modifications 

are tried; both a skew modification in which the overall load remains the same, but is 

redistributed amongst the nodes and an overload modification in which the traffic in 

increased uniformly for all the node pairs. It was found that the network performed 

better with logical network optimisation in all circumstances than without logical 

network optimisation.

Arvidsson [Arv94a,Arv94b] also considered the logical network design problem in the 

context o f ATM networks. He considers the problem of determining a logical network
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configuration given some arrival rates for different services and different origin- 

destination pairs. He proposes a simple greedy approach to solve the problem in which 

each service and origin-destination pair is considered in isolation. The approach is quite 

similar to that used by Gopal et al to solve a similar problem which arises in the context 

of circuit-switched networking in [GKW91] except that it is generalised to the ATM 

case.

The benefit associated with increasing the amount o f traffic a particular VP can carry by 

one connection is calculated. The costs o f augmenting the VP by a unit o f capacity are 

determined and the benefit/loss ratio is determined. The VP with the highest benefit/loss 

ratio has its capacity increased, and this process continues iteratively until all the 

available capacity has been assigned. The benefit o f using this method is that the cost 

function can be non-linear and the capacity can be assigned in arbitrary units.

2.5.2 Logical and Physical Network Design

Some authors have considered the problem o f designing the logical and physical 

networks together. The objective in this case is to obtain a set of logical network 

connections and physical network connections such that the overall network cost is 

minimised possibly subject to some performance constraints. This differs from the 

above problem in that the physical link capacities are now decision variables rather than 

given parameters.

Medhi [Med95] considers the complex problem of dimensioning a multi-hour multi­

service network. The input to the problem is a set o f nodes and traffic requirements, and 

a possible physical network topology. The problem is to determine the set of link 

capacities that result in the minimum overall cost. In this case, the cost is assumed to be 

linear in terms of capacity. One output o f the solution process is the set of logical 

network topologies that can be used in the resulting physical network to deliver the 

desired performance.

This overall network design problem is very difficult and must be simplified. The 

general approach used by Medhi is a kind o f decoupling approach in which the 

connection-level demands are mapped to a set o f VP capacities. The problem is then to 

determine how these should be routed on the physical network. The call-level demands 

are mapped to VP capacities by first using the grade-of-service constraints to determine 

the amount o f calls that need to be carried on each VP in the network. Then, some
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model o f connection characteristics is used to determine an equivalent capacity for the 

VP. The approach used in the paper uses the equivalent capacity techniques o f Anick, 

Mitra and Sondhi [AMS 82] that is based on two-state fluid flow models and some 

specified buffer overflow probability.

Having determined a set of VP capacities, the problem is then to determine the way in 

which the demands are routed for the different busy hours. This is formulated as an 

integer programming problem. Medhi uses a subgradient3 optimisation approach to 

solve the problem. This approach was used to solve smaller problems in reasonable time 

on relatively old computing power. Specifically, the approach was used to solve a 

problem with 18 switching nodes and 23 cross-connect nodes in approximately 2 

minutes.

One shortcoming o f this approach is that the link cost functions are limited to linear cost 

functions and the solution method is designed specifically for linear link cost functions. 

Another limitation o f this approach is that the network topology is specified as an input 

to the problem. If the network topology is not known, then this approach cannot be 

applied directly, although it could most probably be nested inside one o f the algorithms 

used above to determine the network topology.

Rohne et al [RJSV98] propose an approach to design both the logical and physical 

networks. They take a more practical approach than that o f Medhi. They develop a 

practical model for the costs associated with a particular physical and logical network 

configuration. The costs include transmission costs, switching costs and connection set­

up costs. The objective is to minimise these three sets of costs while meeting the 

network performance objectives.

The problem inputs are then quite specific traffic data, specific nodal data and quite 

specific link availability data. The information is used in a heuristic approach to solve 

the network design problem. The output is a physical and logical network configuration.

The problem is solved in two steps: first, they solve the physical network design 

problem assuming that there is no segregation o f traffic onto different VPs and then

3 Subgradient optimisation is designed for situations in which the problem can be solved using a dual 

approach. In this scheme, the direction of ascent is given by the value of the constraints g ( x )  at each 

iteration.
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they try to lower costs by choosing a logical network topology in the given physical 

network.

A specific topology is assumed in the physical network design problem and some 

specific traffic routing is assumed. Given this, the approach to solve the problem is to 

iterate through all nodes and quantify the traffic on each link terminating at the node. 

This is then used to dimension the link subject to the performance constraints. This 

procedure is performed iteratively until the process converges to some solution. A 

dimensioned physical network results.

Once the physical network is designed, the authors attempt to reduce the cost of the 

network by introducing VPs. The VPs reduce the network costs by reducing the costs 

associated with call set-up and switching. As against this, the traffic segregation that 

typically occurs in VP networks can result in increased transmission capacity. Hence, 

the reduction in set-up and switching costs must be offset against the increase in 

transmission costs.

The VP network is designed by iterating through the VPs, determining the gain/loss 

incurred by cross-connecting the VP at the node. If a cost reduction results from cross- 

connecting a VP at a node, then this VP is cross-connected.

2.6 Layered Approaches to Network Design

One final approach to the network design problem that is very relevant to the work done 

here is a layered approach to the network design problem. This can be considered more 

of a framework in which to think about network design problems than a specific 

approach to solving a specific network design problem. In this framework, different 

layers within the network architecture are identified and these are designed separately, 

with the output o f one design problem feeding into another design problem. Lubacz and 

Tomaszewksi [TLOO] have developed an interesting framework in which to consider 

this approach. There, they envisage the network design to consist o f several layers -  

switching network, logical network, physical network -  and they consider each layer to 

have its own design problem. They then consider each o f the network design problems 

in isolation.

Ash et al follow a somewhat similar layered approach in [ACL94]. Indeed, the notion of 

decoupling the different layers arises in many of the contributions discussed above, 

although in most cases, this is just a convenience that simplifies the problem. For
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example, Medhi [Med97] decouples the connection level problem from the facility 

network problem by mapping from the demands to a single capacity, although he 

doesn’t explicitly think of this as constituting a layered approach to solve the problem.

Doshi and Havardshana [DH98] describe a systematic approach to network design in 

which this layering notion is clear. They consider large realistic network design 

problems in which the demands are many and varied. These demands are then mapped 

to capacities using some demand mapping modules and the capacities are then used as 

inputs to the facility network design problem. Different possibilities for the facility 

network design problem are then considered -  the facility demands can be realised in 

mesh networks or ring networks or some combination of both. Again, this notion is 

quite close to that considered here. However, Doshi and Havardshana focus exclusively 

on network design problems in the context o f public network design. Also, they think 

quite strongly in terms of determining concrete capacities for the demands as output of 

the demand modules.

These ideas are related to this work, although they do not think in quite the same way. 

Here, objective is to attempt to unify network optimisation problems: to highlight 

common characteristics of such problems and to exploit these common characteristics in 

a reusable way. In these approaches, the authors often think o f dividing the network 

design problems and tackling each one using a very different approach.

2.7 Conclusion

Here, an overview of different network design problems and different solution 

approaches has been given. These range from early studies o f facility network design 

problems to packet-switched network design problems to circuit-switched network 

design problems to ATM network design problems to more generic layered approaches 

to solve these problems. It is clear that there are many variations o f network design 

problems. Hence some approaches to characterise network design problems and abstract 

some o f the characteristics o f network design problems may be beneficial. This is the 

central concept o f this thesis and is explored in detail in the following chapters.
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CHAPTER 3 A  F l e x i b l e ,  A b s t r a c t  N e t w o r k  

O p t im is a t io n  F r a m e w o r k

3.1 Introduction

Here, a flexible, abstract network optimisation framework is described that will be used 

below to solve some specific network optimisation problems. First, the utility of the 

network optimisation framework is motivated. Then, the framework itself is described. 

The framework is divided into layers and each of the layers are described. A key 

element of the framework is the generic problem which is an abstraction of the specific 

problems. This is described in the next section. The following section discusses the 

formal mathematical model o f this generic problem. All aspects o f the generic network 

design problem are then defined and examples o f how it may be applied to types of 

specific problems are given. Finally, a high-level description o f some algorithms that 

can be used to solve the generic problem is given.

3.2 Motivation for the Network Optimisation Framework

Typically, a network optimisation problem is solved using an approach consisting of the 

following steps:

1. Develop a model for the problem;

2. Develop a formal mathematical model from the problem model;

3. Devise an algorithm or employ some standard algorithm to obtain some 

solution to the formal mathematical problem.

By observing that many network optimisation problems are similar in nature -  very 

many o f the problems listed in the previous chapter focussed on determining how to 

route demands on a network -  a generic network optimisation problem can be 

formulated that can be applied to many specific network design problems. The big 

advantage o f such an abstraction is that it can be reused and hence can result in reducing 

the time and effort required to obtain a solution to the problem.
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The network optimisation framework is illustrated in Figure 3-1. In this approach, the 

problem is decomposed into the following layers:

• the specific problem model layer;

• the mapping function;

• the generic problem model layer;

• the solution layer.

Each of these is discussed in more detail.

3.2.1 A High-level View of the Network Optimisation Framework

Specific Problem  
M odel Layer

M apping
Function

Generic Problem 
M odel Layer

jikjmm
Diffserv MP1.S Model Leased Line
Model X Model

T t t
♦ Æ  * t

Diffserv MPLS Leased Line
Mapping Function “ Mapping Function y Mapping Function y

I T i w

Generic Problem Model

Solution Solution
Solution Algorithm Algorithm 1 Algorithm 2

Layer (e.g. Greedy) (e.g. SA)

Figure 3-1: Illustration of the layered approach to solve the problem.

At the specific problem model layer, the specific network optimisation problem or 

specific problem is defined. This is defined in context-specific terms. For example, in 

an ATM network design problem, the specific network design problem could be defined 

in terms of the number and sizes o f VPs required between destinations; the demands 

could be specified in terms of numbers o f connections, associated bandwidth 

requirements and associated QoS requirements. Constraints may also exist at the 

specific problem layer that are artefacts o f the capabilities o f the technologies used in 

the problem.

The mapping function performs a mapping from the specific problem to the generic 

problem and vice versa. This mapping is necessary to apply the solution algorithms. The 

mapping is a two-way mapping in the sense that it is necessary to map from the specific
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problem to the generic problem in order to obtain a solution and it is also necessary to 

map the solution o f the generic problem back to the specific problem domain.

The generic problem is an abstraction o f network design and configuration problems 

that can be applied in many circumstances. It is defined in terms of more abstract 

quantities than the specific problem. A key characteristic of this problem is that it must 

be flexible. If it is not flexible, then it cannot be reused: if  it cannot be reused then the 

single most important motivation for this approach is lost. Having said this, there are 

constraints on how flexible the problem can be. The more general the problem, the more 

time is required to solve the problem. Hence, some balance between generality and the 

associated flexibility and tractability must be found.

The final layer is the solution layer. In general, any algorithm to solve the generic 

network design problem can be used here. However, the overall approach is made much 

more powerful if  there is a suite o f solution algorithms that can all solve the generic 

problem. The solution algorithms would have differing characteristics and the most 

appropriate can be chosen to solve the problem. One natural way of differentiating 

between solution algorithms is to consider them in terms o f time versus solution quality: 

for some applications it could be useful to obtain a solution in a small time even though 

the solution quality is not excellent, while for other applications solution quality may be 

the primary concern. Developing this suite o f solution algorithms can take some 

considerable effort. However, this needs to be done only once. Then the suite of 

algorithms can be applied to a large number of problems.

3.2.2 Advantages of this Network Optimisation Framework

The primary advantage o f using this approach is that less effort is required to solve 

specific network optimisation problems. The conventional process for solving a network 

optimisation problem described above consists o f modelling and solution stages -  using 

the approach described here, this is reduced to a modelling and mapping process. The 

work required to map from the specific problem to the generic problem is less than that 

required to develop a formal mathematical model and then develop some solution 

algorithm for it.

Also, the set o f solution algorithms would be like a well-tested library that gets reused 

over and over. This is in contrast to the situation in which a new network optimisation 

algorithm is developed for each specific problem: in this case, the solution algorithm
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must undergo rigorous testing for the results to be valid. This can take considerable time 

and effort.

This approach also has other benefits. By applying this layered approach to solving the 

network optimisation problem, the problem modelling process can be decoupled from 

the solution process. If the network optimisation problem is decomposed in this manner, 

then the work involved in solving network optimisation can also be decomposed in this 

manner. Groups with expertise in modelling network optimisation problems can focus 

their efforts on mapping specific problems to the generic one and groups with expertise 

in solving optimisation problems can concentrate on solving the generic problem.

3.2.3 Caveat

This approach is not applicable in all cases. Some applications have certain strict 

requirements that obviate the use o f this approach. For example, some network 

optimisation problems may require that solutions be found very quickly, and hence 

specific algorithms tuned to the particular application may need to be devised. Having 

said this, there is a significantly large class of problems to which this gencric approach 

can be applied to make it interesting.

3.3 The Generic Network Design Problem

In order to use this approach, it is necessary to devise a clear, well-defined problem 

model. The specific problem model can then be mapped to this generic problem model. 

Here, the generic problem model is described in detail.

The generic network optimisation problem model is described in terms of the model 

inputs and outputs. The model inputs are:

• a graph o f the nodes and candidate links,;

• the demands on the network;

• the cost functions.

The outputs o f the model are

• the overall cost and

• the network configuration that results in this cost.

Each of these is discussed in more detail below.
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3.3.1 The Input Parameters

Graph Containing the Nodes and Candidate Links

The first input to the problem is a directed graph that contains the set of nodes in the 

generic problem and the set o f  candidate links that the demands can be carried on. The 

graph can be broken down into a set o f nodes and a set o f edges.

The set of nodes in the network may map exactly to the set of nodes in the specific 

problem. Alternatively, as is discussed below, some extra nodes may be added to the set 

o f nodes in the specific problem by the mapping function.

In both cases, the set o f nodes in the generic problem contains the set of nodes in the 

specific problem. These nodes are simply the nodes through which the demands are 

routed. The nodes in the specific problem would typically be points at which traffic 

aggregation occurs. They could be the set o f Points o f  Presence (POPs) in an operator’s 

network, and the demands could be incident to each o f the POPs. They could be a set of 

core nodes within a network, and the problem is to determine how to configure the 

demands within the core network. Alternatively, they could be a set o f locations in an 

enterprise network that generate traffic and the problem is to determine how to 

interconnect these locations with minimum cost.

Here, it is implicitly assumed that the node locations are fixed. One important element 

of some network design problems is determining where to place nodes e.g. POPs. The 

node placement problem differs considerably from the route configuration problem. 

Typically in the node placement problem the cost of the network varies with the 

distances between the nodes. There is no location information in the generic problem 

model presented here; therefore, the node locations are implicitly assumed to be fixed. 

This network optimisation framework is not sufficiently flexible to be able to 

incorporate node placement problems.

The edge data in the graph is used to indicate the set o f links on which the demands can 

be routed. The graph may be fully connected, in which case all possible links are 

candidates for routing the demands. Alternatively, the graph may not be fully 

connected, in which case the network designer has decided not to use or permit a link 

between some o f the node pairs.

Each edge in the graph represents a bidirectional connection, i.e. traffic can flow in 

either direction on the link. Note, however, that each edge is directed. This facilitates
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differentiation between traffic flowing in different directions on the link, which enables 

asymmetric links to be modelled. If non-directed links are used, then it is not possible to 

differentiate between the direction o f flow o f traffic on the link and hence it is not 

possible to model asymmetric links.

Since directed edges are used to model links, it is natural to introduce the notion of 

upstream and downstream traffic. Upstream traffic is defined as traffic that flows in 

the same direction as the edge; downstream traffic flows in the opposite direction.

A rather obvious alternative to this approach is to completely decouple the upstream and 

downstream links. This could be done by using directed edges to represent links 

carrying traffic flowing in one direction. Then a bidirectional link could be represented 

by two unidirectional links. The problem with this approach is that the cost o f a link is 

often dependent on the traffic carried in both the upstream and downstream directions. 

For example, the cost o f a link may be dependent on the maximum of the upstream and 

downstream traffic rates. It is difficult to model this if  the links are completely 

decoupled. Hence it is difficult to completely decouple the upstream and downstream 

links.

Note that no specific link data exists in this problem formulation, i.e. the generic 

problem model does not contain links with some associated capacity: the edges do not 

have weights associated with them. However, as is discussed below, it is possible to 

incorporate, say, link capacities -  which would typically be modelled as weights on a 

graph -  into the cost function.

(a) (b)

Figure 3-2: Modelling two links between two nodes by introducing an extra node 

and link. The specific problem model is shown in (a) and the mapping to the

generic problem is shown in (b).

The graph of all potential links in this problem formulation is not permitted to have 

more than one edge between any two nodes. This is because the solution algorithms
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may apply algorithms to find shortest paths on the graphs: such algorithms typically 

assume a single edge between nodes. However, there are circumstances in which it may 

be useful to have two or more candidate links between two nodes. For example, in a 

network design problem, two candidate technologies may be available to implement a 

single link, each having different cost/capacity characteristics. Alternatively, in an 

enterprise network design problem, a choice o f a number of service offerings from 

different operators with different cost/capacity characteristics may be available. 

Performing an appropriate mapping when mapping from the specific problem model to 

the generic problem model can cater for this scenario. A straightforward approach to 

doing this is to insert an extra artificial node into the problem and to insert an extra link 

with cost identically equal to zero. This is illustrated in Figure 3-2.

In Figure 3-2, both the specific problem model view and generic problem model view 

are shown for a situation in which the network designer wishes to have two candidate 

links between two nodes. Node X in Figure 3-2(b) is the artificial node that is 

introduced by the mapping process. The link between nodes X and B must have a cost 

function that is identically zero.

The issue o f which link to connect to the new node is not considered here. The intention 

is merely to show that the scenario in which two candidate links at the specific problem 

model layer can map to a scenario in which only single links exist through the addition 

o f an extra node and link.

The Demands on the Network

The demands describe traffic that is assumed to be incident on the network for the 

purposes o f the problem. A particular demand describes some subset of the total traffic. 

Different specific problems can have quite different demand characteristics and demand 

characterisations.

Examples o f the ways the demands may be specified at the specific problem level 

include:

• a set o f voice traffic demands characterised by a single source and single 

destination, an arrival rate and a mean holding time;

• a set o f point-to-point data demands characterised by a bitrate;
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• a set o f data demands, all o f which are characterised by a bitrate and a single source, 

some of which may have multiple destinations to which they can transmit traffic;

• a mixture o f voice, video and data traffic in which the voice traffic is characterised 

by an arrival rate and holding time, the video traffic is characterised by another 

arrival rate and holding time and the data traffic is characterised by a mean and peak 

rate. Note that each o f these services may require a different QoS from the network.

It is clear from the above examples that the set o f demands can be quite diverse. Here 

the idea is to capture the essential characteristics o f the demands for the generic 

problem.

One natural way o f classifying different types of demands that has a very great impact 

on the problem complexity is by identifying the scope4 o f the demand. The scope o f a 

demand loosely characterises how many nodes terminate (either as source or 

destination) the traffic that constitutes the demand. Three natural examples of the scope 

o f a demand are given as examples o f the use o f scope in the context of diffserv 

networks: these are the so-called 1:1, l:n  and l:any scopes. Both the source and 

destination nodes are specified for all traffic that constitutes a demand with a 1:1 scope. 

This is illustrated in Figure 3-3(a). Demands with a l:n  scope consist o f traffic having a 

single specified source and terminating at one of a number o f specified destinations. 

This is illustrated in Figure 3-3(b). Only the source is specified for a demand with 1 :any 

scope; any destination is possible for the traffic that constitutes the demand. This is 

illustrated in Figure 3-3(c). Other scopes are possible in which the demands may cover 

some set o f source and destination nodes, but these are not considered here.

It is implicitly assumed here that there may be some variation in the demands with more 

complex scopes: otherwise they can be reduced to 1:1 scopes. For example, if  the scope 

for a particular demand is 1 :n, then it is assumed that it is not possible to say with 

certainty that each destination will receive some known fraction of the traffic. If this 

was the case, then the demand with 1 :n scope would be equivalent to n demands with

4 The term scope, as applied here, is used in the same sense as in the Differentiated Services model. This 

terminology was introduced in the diffserv framework document -  a document that described the scenario 

in which diffserv would operate. This was a working document o f  the IETF working group, which was 

not updated and consequently, it is not considered by the IETF to be a current document. Since the IETF 

do not archive contributions, no authoritative reference to this work can be given.
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1:1 scope. For demands with l:any scope there is the added complication that the set of 

destination nodes is not even known.

a
(a)

□

□  □  □
(b)

4 ' 1

'* A  ± -

(c)

Figure 3-3: Examples of demands with different scopes -  (a) 1:1 scope, (b) l:n

scope and (c) l:any scope.

Here, only demands with 1:1 scope are permitted in the generic model. There are three 

reasons for this. Firstly, network design problems in which demands with arbitrary 

scopes are permitted are difficult to solve. In the absence o f any extra knowledge, it is 

impossible to know how the traffic is distributed amongst the destination nodes for the 

more complex scopes described above.

Secondly, most established technologies only permit 1:1 scopes; the notion of more 

complex scopes is still a relatively new idea. Older technologies were not able to 

support more generic scopes and, as a result, non-broadcast communications in general 

usually had to be point-to-point. Point-to-point communications constitute a means of 

communication that many people are very comfortable with. Consequently, a 

considerable amount o f traffic on networks for years to come will be of a point-to-point 

nature. Such traffic is well characterised by demands o f 1:1 scope and hence many 

network optimisation problems will consist o f such demands.
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Thirdly, while permitting demands with a more general scope would increase the 

flexibility o f the model, this increased flexibility would come at the expense of solution 

complexity: permitting such demands would greatly increase the complexity o f the 

generic problem. So, even though flexibility is an essential characteristic o f the generic 

model, problem complexity concerns impose limits on the amount of flexibility that can 

feasibly be incorporated into the model.

Even though the demands are limited to 1:1 scope, there are some factors fuelling an 

increase in real demands with more complex scopes. Two are considered here. Firstly, 

newer technologies are enabling more sophisticated communications and enabling 

point-to-multipoint communications, resulting in applications with more generic scope 

requirements. Secondly, if  customers have large networking requirements, they often 

prefer simply to specify how much traffic they will generate and inject into the network 

rather than specifying each point-to-point demand individually. These two factors 

indicate that demands with more generic scopes must be catered for in future networks, 

which means that design and configuration tools should be able to accommodate such 

demands.

It is possible to use the mapping function to map demands with more general scope to 

demands o f 1:1 scope. Then the generic network design model can be applied to 

problems in which the demands have more general scope. O f course, this mapping is 

only possible if  some assumptions are made on the way that the traffic is split between 

the node-pairs. Such assumptions could be based on traffic models or, as is more likely, 

traffic measurements. This approach cannot produce solutions that are as good as those 

produced using an approach tailored specifically for demands with more general scope, 

but it does enable this model to be applied quickly and easily such that some reasonable 

solution to the problem can be found.

From the examples of the demands given above it is clear that there exist many different 

types o f demands that can be parameterised in different ways. The generic problem 

must be able to cater for many different types o f demands; the characteristics of 

demands in the generic problem model should not be specific to any specific problem. 

Rather, some essential characteristic(s) of the demand that can reflect the amount of 

resources required to carry the demand should be used.

In the generic problem, each demand is characterised by a single parameter. Typically 

this parameter is a bandwidth parameter, or in some cases it may be a so-called effective
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bandwidth (see [Hui88] for the initial development o f the effective bandwidth notion, or 

[Kel96] and references therein for development o f the concept and later work).

Mapping from the specific problem demands to the single parameter required in the 

generic problem can be quite complex. For demands that are characterised by Poisson 

arrivals and exponentially distributed holding times, the well known Erlang blocking 

formula [Sys86], coupled with a desired blocking parameter, can be used to determine 

some equivalent capacity that can carry the traffic while meeting the target blocking 

probability. In situations in which there is a more diverse set o f applications, each of 

which has some effective bandwidth, and there are some target blocking parameters, 

techniques such as that used by Bean, Gibbens and Zachary [BGZ94] or the techniques 

described in [RMV96] can be used to determine some capacity requirement. For 

situations in which there is a data demand characterised by a peak and a mean 

parameter, some a priori knowledge could be used to determine an effective bandwidth 

for the demand. Alternatively, a conservative approach could be simply to choose the 

peak bandwidth as the required bandwidth for the demand. Use o f effective bandwidths 

in this context will be discussed later.

Often a demand may have a QoS associated with it, meaning that the traffic that 

constitutes the demand must obtain the specified QoS. For example, packet video 

connections may have specific delay and loss requirements o f the network while other 

data traffic using the same network may not have such stringent requirements. As with 

demand parameterisation, QoS is a difficult concept to incorporate into a generic design 

model in a generic way. As was seen in the previous chapter, different networking 

technologies have different types of QoS measure. For packet traffic QoS is typically 

measured in terms o f packet delay or loss; for connection-oriented traffic QoS is 

typically measured in terms o f blocking probabilities. For connection-oriented traffic 

carried over a packet network some combination o f both measures would be used to 

reflect the QoS offered by the network as is the case in ATM.

It is assumed that the QoS requirements o f each demand are incorporated into the 

mapping from the demand parameters to the single parameter used in the generic design 

model. For example, a single bandwidth parameter can be used to model the amount of 

voice traffic to be carried between two nodes. This can be calculated based on the QoS 

requirements between the nodes: if  the intemodal traffic requires high QoS, i.e. low 

blocking, then more resources should be reserved between the node pair. Similarly, the
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effective bandwidth approach can incorporate QoS requirements into the demand. If the 

QoS required is (in some sense) high, then the effective bandwidth will also be high.

In summary, it is assumed that the demands provided as input to this network design 

problem are unidirectional point-to-point demands characterised by a single parameter 

that encapsulates the magnitude of the demand coupled with the QoS requirements of 

the demand.

The Cost Function

In general, the cost function must be a function o f the way the demands are routed on 

the network, i.e. the cost function must be a function of the route configuration. This is 

the most general form of cost function. Allowing the cost function to be explicitly 

dependent on the route configuration is not entirely natural: costs are not usually 

associated with specific routes or route configurations in network optimisation 

problems. Indeed, if  they did, then the network design problem would be solved simply 

by choosing the lowest cost route for each demand.

Here, the cost function is comprised o f two components: a link cost component and a 

node cost component. The overall cost is simply the sum of these components. Both the 

link costs and the node costs are dependent on the way the demands are routed on the 

network and hence the overall cost function is dependent on the way the demands are 

routed on the network. This is a more natural way to construct the cost function.

Some particular situations could be envisaged that are not catered for by such cost 

functions. For example, in some network optimisation problems it may be desirable to 

weight one or more routes for a demand such that they are more or less likely to be 

chosen. This is not possible using the cost functions described here. However, usually 

when a network designer wishes to achieve this, the motivation is to reduce the 

likelihood o f a demand being routed through a particular node or link. This can be 

achieved by choosing the link/node cost function appropriately: if  the node/link cost is 

high then it will become unattractive and hence there is a smaller likelihood that traffic 

will be routed on it.

Here, a higher level view can be taken: a cost function can be chosen for a particular 

node or link that makes it either attractive or unattractive, and in this manner, demands 

can be routed to/from some particular nodes/links.
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The link cost component o f the overall cost function reflects the link costs associated 

with routing the given demands in a particular manner. In network design problems, it is 

usual to have a cost associated with a link that is independent o f the costs associated 

with other links in the problem. Consequently, the total link costs can be decoupled into 

individual link costs. Moreover, the individual link cost functions are typically 

increasing functions o f the aggregate capacity carried on the link.

Since a separate link cost function exists for each link in the problem, it is not difficult 

to incorporate differences between different links into a problem. For example, different 

links in the problem may be implemented using different technologies. In this case, the 

cost function associated with different links could be quite different. It is also simple to 

model situations in which, say the cost associated with the link has some dependency on 

the distance between the link endpoints.

In the graph that is used to specify the set o f nodes and candidate links, a directed edge 

is used to indicate that a particular edge can be used to carry traffic. Despite the directed 

nature o f the edge used to represent the link, traffic can be carried in either direction on 

the link. A single cost function is used to model the link; this cost function is a function 

o f both the upstream and downstream traffic carried on the link.

This choice o f link cost model caters for situations in which the upstream and 

downstream traffics can and cannot be decoupled. For example, in a situation in which 

installation of a new symmetric bidirectional link is under consideration, the upstream 

and downstream link costs cannot be decoupled. The cost o f the new link is a function 

o f the greater of the upstream and downstream traffics. Consequently, the cost function 

must be a function o f the maximum of the upstream and downstream traffics. 

Conversely, if  the problem is to determine how to balance load on a network, then the 

upstream and downstream traffics can be completely independent, and the cost function 

can be decoupled into a cost function for the upstream traffic and a cost function for the 

downstream traffic.

The link cost functions can be very general, but usually the cost will increase with 

increases in the upstream and downstream traffic carried on the link. They can be non­

linear functions o f the upstream and downstream traffic. Examples o f the type o f cost 

functions that may be used are shown in Figure 3-4.
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Figure 3-4: Examples of different link cost functions. In (a) the cost function is 

linear in both upstream and downstream traffic; in (b) the cost increases with

capacity in a stepwise fashion.

In some cases, the network designer is interested in designing a real network in which 

the links are physical links and the costs associated with each link are the costs 

associated with installing a link o f the given capacity between the given nodes. In other 

cases, the network designer may wish to determine where to add extra capacity to a 

network to carry the given set o f demands. In this case the cost functions used in the 

generic problem are the costs associated with adding extra capacity on each link. These 

cost functions must incorporate the available link capacities into the cost function. They 

will have a value o f zero for routing capacity on the link of less than or equal to the 

capacity available on the link. In other cases, the network designer may be interested in 

traffic-engineering related problems in which the problem is to determine how best to 

route a set o f demands on an existing network. In this case, the link costs are not so 

obvious. Some function that increases with decreasing available capacity can be used to



obtain a solution in which the total used capacity is minimised and the load balanced on 

the network.

As with the link costs, the node costs can be modelled as a set of individual node costs. 

The node costs are also independent o f each other and hence it makes sense to decouple 

them: the total node costs are then the sum of the individual node costs.

COo
O

C/3O
O

Capacity

(a)

Capacity

(b) (c)

Figure 3-5: Examples of different node cost functions. The capacity is the 

aggregate capacity switched through the node. In (a) the cost function is linear in 

capacity; in (b) the cost increases with capacity in a stepwise fashion and in (c) the 

cost function is a piecewise linear approximation to an exponential function.

The node cost for each node depends on the aggregate traffic routed through the node. 

Typically, the node cost increases as the amount o f traffic switched through the node 

increases. The aggregate traffic routed through each node can be determined from the 

route configuration and knowledge o f the demands. Examples of the node costs are 

shown in Figure 3-5.

The node cost functions may be chosen in a similar manner to the link cost functions. In 

scénarios in which the objective is to construct a network the node costs can represent 

the actual costs o f installing a node. In this case, a number of different switch 

configurations may be possible for a single node, each having a different switching core 

with different switching capacity. As the required capacity increases, higher 

performance switch configurations may be required, resulting in increased cost. Hence a 

stepwise incremental cost function may be used in this case to model the node costs. 

Alternatively, if  a node is in place, and the objective is to ensure that a limit is imposed 

on the amount o f traffic switched through a node, then the node cost could increase 

exponentially as the node capacity reaches its limit.
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In general, the network optimisation problems considered here focus on how to route 

the demands on the network to minimise some cost function. The specific technologies 

involved and the problem objectives may differ greatly, but the problem ultimately 

reduces to this. The generic network optimisation problem considered here is no 

different.

The outputs o f the network optimisation problem model are then:

• an overall cost: this is the minimum value o f the objective function obtained by the 

solution algorithm,

• a network configuration: this is the route configuration of the demands on the 

network that results in the above cost.

While the solution to the generic problem consists primarily o f a route configuration, 

the network designer may be more concerned with issues other than how the demands 

are routed on the network. For example, the network designer may be interested in 

where extra capacity should be added on an existing network or how much free capacity 

will exist on a network when some set o f traffic demands are incident to the network. 

These quantities can be derived from the solution to the generic problem. Hence the 

solution to the specific problem may differ in character from that o f the generic 

problem, but in all cases it can be derived from network configuration and solution cost 

data.

In the most general solution to the generic problem the demands may be split and 

fractions o f the demands may be carried over different routes. In general, this can result 

in cheaper solutions. However, it is dependent on the technology being able to support 

arbitrary demand splitting and it also greatly increases the complexity o f the generic 

problem. For these reasons it is assumed that the demands cannot be split.

In some cases, it is very beneficial to split the demands. For example, in situations in 

which the demands are large relative to the capacities o f the connections, and the 

technology is able to support splitting o f demands, splitting demands can result in 

significantly reduced costs. Such situations are often identifiable at the specific problem 

layer and the mapping function can split large demands into a number o f smaller ones to 

reduce the overall costs.

3.3.2 The Output Parameters
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The mathematical problem can then be formulated. Denote the following given

quantities as follows:

• N : the set o f nodes in the problem;

• A : the set o f edges in the graph. These are the set of candidate links on which the

demands can be routed;

• r(N,A) : the graph relating the nodes and links;

• (\j/ x, Ca ) : the origin and destination nodes for link A e A ;

• À : the set o f unidirectional demands in the problem;

• rji : the capacity required for demand <5,. e  A, i e  1... |à| ;

• = (a , , ) :  the triplet which defines demand <5,.,zg l...|A |, where a i is the 

source node for demand <5, and /3, is the destination node for demand <5, ;

• (5, t) : the cost function for link A e A ; this is the cost o f carrying capacity s in 

the upstream direction and capacity t in downstream direction;

• yv (u) : the cost function for node v g N ; this is the cost associated with switching 

capacity u through node v ;

The following are then defined:

• P : a route configuration;

• p s : the route used by demand ô j g A in route configuration P

• I g (P) : the link-path incidence matrix for route configuration P . This has the value

0 if  p s_ does not contain link X , it has a value 1 i f  the demand is routed from i//A to

^  and has a value o f -1  if  the demand is routed from y/x to .

The overall cost function is defined as follows:

®(p)= S  h  (»» (Pi h  (p))+ X  y, (u, (p))
A e A  v e N

where:

3.4 Mathematical Problem Formulation of the Generic Problem
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• sx (P) = ^ j ] t -  the traffic carried in the upstream direction on link Ae A
<5,112, (pH

• tx (p) = -  the traffic carried in the downstream direction on link l e  A
5,11«, (P)=-l

/  \
• « ,(P )= X n * , (p ) “  2 ï i ( p ) + 5 X  + -  the total traffic switched

i ^ A | ^ = v <  MCî =v J  5 , | a , = v  < 5 , | f t= v

through node v e N .

The optimisation problem can then be formulated as follows:

Find P* = m inO (p)
p

This problem formulation does not include any constraints. In particular, there are no 

link or node constraints, i.e. constraints ensuring that the amount o f traffic carried on a 

particular link or switched through a particular node does not exceed its capacity. Not 

including such constraints in the formulation means that it is more flexible and can be 

applied in more situations. For example, this formulation can be applied in green field 

network design problems. Alternatively, it could be applied in situations in which the 

problem is to determine how much extra capacity to add to a network to ensure that the 

forecast traffic demands can be carried.

Note that there is a finite, albeit large, set of route configurations. Consequently, one or 

more minimum cost route configurations must exist. This is independent o f the nature 

o f the particular link and node cost functions specified as inputs to the problem.

3.4.1 Problem Complexity

The complexity o f this problem is dependent on both the nature of the cost function and 

the size o f the state space. The overall cost function is the sum o f a set of quite arbitrary 

link and node cost functions. In general, these will be non-decreasing functions, 

although they may not be. Typically, the state space is very large. Moreover, the state 

space typically contains many local minima: this further compounds the difficulty o f the 

problem. These factors combine to make the problem very difficult to solve.

Since each state in the state space maps to a single route configuration, the size o f the 

state space is equal to the number o f route configurations in the problem. The rate at 

which the state space grows can be illustrated as follows. The size of the state space is 

dependent on the number o f demands in the problem and the number o f routes for each
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demand. In general, the number o f routes available to each demand can be large and can 

vary with each demand. For the purposes of illustration, it is assumed that the number of 

routes available to each demand is a constant, k .  If there are D demands in the 

problem, then the number of route configurations in the problem is k D. The number of 

demands is typically dependent on the number of nodes in the problem. If demands 

exist between each node pair, then the number o f demands is o(N 2) . The number of

routes is then o(kN2 ) .

Nodes Demands Routes ( k  = 3 ) Routes(A: = 5) Routes( k = 8 )

5 20 3.49X109 9.54X1013 1.15X1018

10 90 8.87X1042 8.08X1062 1.90x10s1

15 210 1.57X10100 6.08X10146 4.46X10189

20 380 2.02X10181 4.06X10265 1.49X10343

25 600 1.87X10286 2.41X10419 7.14X10541

30 870 1.25X10415 1.27X10608 4.88X10785

Table 3-1: Approximate number of states in the state space as a function of node 

size. Here it is assumed that there are N ( N —1) demands in an N  -node problem.

Table 3-1 shows how rapidly the state space grows. Even for 30-node problems, which 

are not particularly large problems, the number o f states in the state space is enormous. 

In reality, the number o f routes is dependent on the number of nodes in the problem. 

Problems consisting o f more nodes usually contain more routes between the nodes. 

Consequently the estimates used in Table 3-1 are conservative: the actual sizes o f the 

state spaces are usually larger than the numbers quoted above.

Costing all of the states in the state space is not feasible. This is can be seen as follows. 

Assume there are only 3 routes per demand and a computer was available that could 

cost 1010 states per second5. For the 30 node problem it would take approximately 10405 

seconds or approximately 10399 years. Even tenfold increases in available processing

5 Current high-specification microprocessors operate at 1000MHz. Single processor systems based on 

such microprocessors certainly cannot cost states at this rate. Multiprocessor systems may be able to cost 

states at this rate if  specific code was written to take advantage o f the multiprocessor architecture.
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power make little difference on the time required to perform exhaustive searches o f the 

state space. Clearly then it is unrealistic to search all the states in the state space: an 

alternative approach must be used.

This problem is an example o f a combinatorial optimisation problem. Optimisation 

problems on discrete state spaces fall into this category o f problem. These problems can 

often be very difficult to solve. Difficult combinatorial optimisation problems can fall 

into the class o f so-called NP-complete or NP-hard problems (see [GJ79] for a 

discussion o f complexity o f combinatorial problems). No known algorithms exist that 

can solve NP-complete and NP-hard problems in polynomial time; the time taken to 

solve such problems can increase exponentially with problem size. In general, it is not 

possible to find the optimal solution to such problems in any reasonable time. Hence 

some heuristic algorithms are typically used to obtain some reasonable solution. Some 

such algorithms are discussed below.

3.4.2 Examples of the Use of the Generic Model

Two examples of how this generic problem formulation could be used in two different 

problems are given. In the first example, the problem is to design a network from a 

green-field scenario that can accommodate the given demands. In the second example, 

the problem is to determine whether a planned network can meet some forecast 

demands.

These problems are not considered in detail here, but rather, the objective is to illustrate 

how the generic problem can be used to solve these types of problems. Specifically, the 

technologies used to implement the network, the nature o f the demands, the cost 

functions used etc. are not considered. A more detailed exposition of how the specific 

problem model can be formulated and mapped to the generic problem model is given in 

later chapters.

The Green Field Network Design Problem

In this problem no network exists. The designer is faced with the problem of 

determining the minimum cost network that will be able to carry the given traffic 

demands.

The set of available links can be chosen according to the needs of the network designer. 

If  the network designer is willing to permit a link between every node-pair, then a fully
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connected input graph can be used. However, if  the network designer does not wish to 

permit certain links the input graph o f candidate links will not be fully connected.

The following data can be input to the generic problem. The demands are specified 

somehow in capacities: how these are calculated is not important here. The links are 

bidirectional in this problem. The cost o f each link can be exactly the cost of installing a 

bidirectional link o f capacity that is the greatest o f the upstream and downstream 

traffics. This could consist o f the cost o f installing plant plus the costs o f terminating the 

line. The node costs could be the cost of installing a node that can carry the capacity 

switched through the node. The bulk o f this cost could be the cost o f the switching 

system, which would be dependent on the capacity switched through the node, but could 

also include costs o f other node subsystems such as management systems. The overall 

cost is the sum of the link and node costs.

Once this data is input to the generic problem, a solution can be obtained. This solution 

will consist of a route configuration and an associated cost. The network designer is 

only interested in the network capacities and the overall cost. The mapping function can 

process the output o f the generic problem to obtain the link capacities and the route 

configuration data can then be discarded. This data can then be returned to the network 

designer.

The Network Planning/Forecast Problem

This problem is a little different from the problem above. Here, the problem is to 

determine whether or not a particular set o f demands can be carried on a given network. 

The intended application is a forecasting application in which the demands are forecast 

demands and the network may be either an existing network or a planned network.

There may be many ways in which the demands could be routed on the network. 

Alternatively, it may not be possible to route the demands on the network: sufficient 

resources may not exist on the network. The mapping function should be able to 

determine if  this is the case.

A natural approach to configuring the network in this context is to attempt to maximise 

the spare capacity on the network while attempting to keep the load balanced. Using this 

objective when configuring the network will have the effect o f utilising the network
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resources efficiently6 while making the network robust to changes in the demands. 

However, there is a trade-off here between efficient use o f network resources and 

balancing the load. Maximising the efficiency o f the network can often mean 

maximising the use o f cheaper nodes or links. This is not consistent with the load 

balancing objective.

This trade-off manifests itself in the choice o f link and node cost functions. If a link cost 

function is chosen that increases greatly if  the amount of spare capacity on each link 

becomes small, then the load balancing and efficiency objectives can be met. The rate at 

which this cost function increases for each o f the links determines the trade-off between 

maximising the spare capacity and ensuring that residual capacity exists on each link. 

Similarly, if  a node cost function is chosen such that the cost increases dramatically 

when the capacity switched through the node nears the node limits, load balancing can 

be achieved with respect to the nodes. In some situations, this may not be important -  

the nodes may be over-engineered and may support capacities much greater than those 

switched in the network. In this case the node costs could be made constant. Hence the 

node costs would be independent o f the capacities switched through the node.

There is the possibility that the demands cannot be accommodated on the network. The 

generic problem formulation does not permit constraints on the used capacity on each 

link. Hence, it is not possible to make states in which the traffic carried on a link or 

switched through a node exceeds the available capacity infeasible. If a very large cost is 

assigned to a link if  the capacity is exceeded, then the solution algorithm will naturally 

tend to avoid these solutions. Similarly, if  a large cost is assigned to a node if  the node 

capacity is exceeded, solutions in which the node capacity is exceeded will also be 

avoided. Also, if  the link or node cost is sufficiently large, the mapping function can 

recognise that the algorithm was unable to find a solution that enables the given set of 

demands to be carried on the network.

3.5 Generic Problem Solution Approaches

As illustrated above, the state space for these problems is very large. In general, the cost 

function can be quite complex and this can result in a state space containing many local 

minima. These two factors make it very difficult to find a specific algorithm that can be

6 Here, efficiency is used in the sense o f the minimal use o f overall network resources, i.e. maximising the 

spare capacity on the network.
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guaranteed to find a globally optimal solution for any realistic problem. Since the 

generic problem can be NP-complete or NP-hard, no known algorithm exists that can 

find solutions to reasonable size problems in reasonable time. Note that this is not a 

characteristic o f the overall approach considered here: even if  the specific problems 

were considered in isolation rather than as part o f this generic network design approach 

no known algorithm would be guaranteed to find the optimal solution. Heuristic 

algorithms that can find reasonably good solutions to the problem in reasonable time 

must be used.

Here, the notion is to have a suite or ‘toolbox’ o f heuristic algorithms that can be 

applied to find solutions to the problem. The toolbox can consist of different algorithms 

having different operating characteristics. In particular, there can be a trade-off between 

the solution quality and the execution time. For example, some algorithms may solve a 

problem relatively quickly but obtain a relatively poor solution, while other algorithms 

may solve the problem more slowly obtaining a higher quality solution.

A good description of heuristic approaches that can be used to solve combinatorial 

problems can be found in [Ree95], Some of these heuristics are so-called local search 

heuristics. The fundamental philosophy behind local search algorithms is to iterate 

through states in some subset o f the state space until some reasonable solution is found. 

Local search heuristics are typically applied in cases in which the state spaces are very 

large and it is not feasible to search all o f the states. The idea is to limit the search to 

some subset of the state space that contains ‘reasonable’ solutions. Hence it is a local 

search rather than a global search. The greedy algorithm, simulated annealing algorithm 

and tabu search algorithms described below are examples o f local search algorithms.

When considering local search heuristics it is necessary to define a neighbour relation 

between states. This implicitly introduces the concept o f a neighbourhood o f a state -  

the neighbourhood o f a state is the set of states that are neighbours of that state. 

Typically, neighbouring states are very similar. Local search algorithms typically iterate 

through the states moving from neighbour to neighbour until some terminating 

condition is reached.

The choice o f neighbourhood can affect the performance o f the algorithm. Choosing a 

neighbour relation that results in large neighbourhoods can greatly increase the 

execution times o f some algorithms. For example, algorithms that evaluate the cost of 

all the neighbours in a neighbourhood will take much longer if  the size of the
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neighbourhood is greatly increased. There are drawbacks to choosing small 

neighbourhoods: since the number o f moves possible in any state is small it may take a 

long time to navigate through all the neighbourhoods to a good solution.

Two examples o f local searches heuristics are described next. These are followed by a 

brief description of a further two examples o f local search heuristics and a short note on 

reducing the size o f the state space by limiting the amount o f routes available to each 

demand. This is followed by a description o f the particular choice o f state space and 

neighbourhood chosen for this work.

3.5.1 Greedy Algorithm

The greedy algorithm is a straightforward local search algorithm. This is the local 

search analogue o f the steepest descent techniques that can be used to find locally 

optimal solutions to problems in continuous domains. The state at iteration ¿ + 1 is 

obtained from the state at iteration i by iterating through all the neighbours of the state 

at iteration i and choosing the neighbour with the lowest cost. The algorithm terminates 

when a state is found that has a lower cost than that o f all its neighbours. A more formal 

description of the greedy algorithm is given in Algorithm 1.

Step 1 Choose some initial starting point, x0. Set i = 0

Step 2 Determine xlow, the lowest cost neighbour o f x t , by iterating through the

neighbourhood o f x t .

Step 3 If c(x t) < c(xlow) where c(x) is the cost o f state x  then terminate.

Step 4 Set x i+1 = x low , increase i , go to step 2.

Algorithm 1 : Greedy algorithm.

Like the steepest descent techniques, this local search algorithm is very sensitive to the 

initial starting point. If  a bad initial starting point is chosen, then the solution can also be 

bad. This point is illustrated in Figure 3-6. If  point ‘a ’ is chosen as the starting point for 

the algorithm, then the mi solution will be found, but if  the search algorithm is started at 

point ‘b ’, then the m2 solution will be found.
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Figure 3-6: Example of sensitivity of greedy and steepest descent algorithms to 

initial starting point. I f  the algorithm is started with starting point x -  a , then the 

solution at x  = m x will be found; if started at jc = b then the solution at x - m 2 will

be found.

To obtain good solutions, it is necessary to consider the choice of the initial starting 

point. In many problems, it is difficult to identify characteristics of a good solution that 

can be used to concentrate the algorithm on some part o f the state space. Often a 

random starting point is chosen. Often the algorithm is performed a number o f times 

with a number o f different starting points in some attempt to broaden the search to 

different parts o f the state space.

In the generic problem considered here, a few natural and yet reasonable starting points 

are considered. Choosing a route configuration entirely at random would result in a poor 

choice o f initial starting points. This could result in many long routes in the route 

configuration. Long routes are not bad per se; for example, it is reasonable to have long 

routes if  the result is a reduction in costs, and the long route uses residual capacity on 

some links. However, choosing routes at random may not result in such long routes; the 

random process is quite likely to choose long and inefficient routes to carry some of the 

demands. The initial starting point chosen here is one in which all the shortest paths are 

found on the connection graph. These are then used as the routes for the demands. 

Depending on the problem, other starting points should be chosen based on the 

assumption that more or less o f the links are used in the solution and the shortest paths 

on the graph chosen for the routes.

The time taken to find solutions using this algorithm is dependent on the size o f the 

neighbourhoods. If  the neighbourhoods are very large, then an exhaustive search of the 

neighbourhood can take a long time.
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The simulated annealing algorithm was initially proposed by Kirkpatrick et al [KGV83] 

The algorithm was inspired by the simulating the annealing process in metals. In the 

annealing process, a metal is cooled from a hot (high-energy) state to a cooler (low- 

energy) state. The state o f the metal maps to the state space in the optimisation problem 

and the energy o f the metal in a particular state maps to the cost of a state. The 

annealing process is a somewhat random one, but is characterised by a very definite 

downward trend.

Step 1 Choose some initial starting point, x0. Set i = 0 . Set the initial cooling

parameter T  = 7’init

Step 2 Choose candidate state from the neighbourhood of xt at random; call it

•^cand

Step 3 Determine S -  c(x:) -  c(xcand)

Step 4 If 5 > 0 set xM = xcand , increment i and go to step 7

Step 5 Determine p  , the probability o f accepting the state as the next state using

P = f ( S ,T )

Step 6 Choose a random variable, r , from the distribution U (0,1]. If  r > p  go to

step 2

Step 7 If necessary, reduce the cooling parameter, T , according to the cooling

schedule. If T  > r nnal go to 2, otherwise end.

Algorithm 2: General form of Simulated Annealing algorithm.

In the simulated annealing algorithm as applied to optimisation problems, the algorithm 

moves from state to state in a similar random fashion. A neighbour o f the current state is 

chosen at random. If  this costs less than the current state, then it is accepted as the next 

state. This ensures that there is a downward trend over time. However, if  it costs more 

than the current state then it is accepted as the next state with some probability. Clearly, 

this introduces the probabilistic nature o f the algorithm. It also enables the algorithm to 

‘climb’ out of troughs in the state space that would result in poor local minima, e.g. the 

mi minimum in Figure 3-6 above. The algorithm is more formally described in 

Algorithm 2.___________________________________________________________________

3.5.2 Simulated Annealing Algorithm

86



The key parameter that controls whether or not the more costly solution is accepted as 

the next state is the cooling parameter that is determined by the cooling schedule. If the 

cooling parameter is high, then the probability o f choosing a higher cost solution is 

higher. Conversely, if  the cooling parameter is low, the probability o f choosing a lower 

cost solution is low. As the algorithm progresses the cooling parameter decreases 

according to the cooling schedule; the probability o f choosing a higher cost solution 

also decreases. The logic is that during the initial part o f the execution o f the algorithm 

higher cost solutions are frequently permitted, but at the final stages o f the algorithm, 

higher cost solutions are very infrequently permitted. During the initial stages of the 

algorithm execution, the simulated annealing algorithm will resemble a somewhat 

random process jumping from one state to the next with a very small downward trend. 

As the algorithm progresses, the downward trend becomes more pronounced since the 

probability o f moving to a higher cost state decreases. In the terminal stages of the 

algorithm, the algorithm behaves in a similar manner to the greedy algorithm. The 

algorithm usually terminates when the cooling parameter reaches some pre-specified 

limit. This is illustrated in Figures 7 and 8 . It is clear that as the cooling parameter 

decreases the cost also decreases.

If an aggressive cooling schedule is used, i.e. one in which the cooling parameter is 

reduced quickly, then the algorithm behaves in a similar manner to the greedy 

algorithm. This algorithm should terminate more quickly than an algorithm in which a 

less aggressive cooling schedule is used.

Iteration

Figure 3-7: Cooling schedule used in a particular simulated annealing experiment.
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Typically, in the simulated annealing algorithm the probability o f choosing a higher cost 

solution is also dependent on the increase in cost. States that are marginally more 

expensive are more likely to be accepted as the next state than solutions that are 

considerably more expensive.

Iteration

Figure 3-8: Variation of cost with number of iterations in a particular simulated

annealing experiment.

The simulated annealing algorithm is shown in a general form in Algorithm 2. The 

cooling schedule and the way o f calculating p  are not explicitly stated. Typically, the 

cooling parameter decreases exponentially with the number of iterations, although many 

other decreasing functions could be used to control the cooling schedule. Similarly, a 

number o f different functions can be used to determine the probability that a higher cost 

state is chosen as the next state. Again, a typical choice is one in which the probability 

of accepting the higher cost state is a negative exponential function depending on the 

cost difference between the two states. The probability is often calculated using 

p  = A eBST, where A and B are positive constants. Since p  is only calculated when 8 

is negative and T always is positive, p  is guaranteed to be between 0 and 1. The 

dependency on 8 in this function ensures that the greater the increase in cost resulting 

from this state transition the less likely it is to be chosen as the next state.

3.5.3 Other Approaches

There are two other frequently used heuristics that can be applied to combinatorial 

problems — tabu search algorithms and genetic algorithms. Each of these are described
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briefly here. Techniques in which the paths available to route each o f the demands are 

limited to some particular set o f ‘good’ paths are also discussed.

Tabu Search

Tabu search algorithms attempt to incorporate memory into the solution process to 

exploit knowledge o f previously visited states and previous state transitions. This is in 

contrast to the algorithms described above which are more primitive in the sense that 

they do not learn from previous moves. The objective o f incorporating such knowledge 

into the solution process is to learn from previous efforts and guide the solution process 

through difficult parts o f the state space so as to increase the likelihood of finding a 

good solution.

Tabu searches are so-called because they operate by making certain moves tabu or 

invalid at each iteration. For example, some neighbours in the neighbourhood could be 

tabu at each iteration. Moves that are tabu are typically moves that may cause the 

process to revert to a state that was visited earlier or a state that is similar to one that 

was visited earlier. By making a set of previous moves tabu the search process can be 

guided into parts o f the search space that have not been visited before.

Tabu searches have been found to have good results for a number o f problems. 

However, they are still quite a new heuristic approach to solving problems. Also, there 

are many variations on the tabu searches that can be used. Tabu search algorithms are 

not considered any further here. The intention here was to note it as another algorithm 

that can be added to the toolbox.

Genetic Algorithms

Genetic algorithms (GAs) form another class o f algorithms that can be added to the 

toolbox of algorithms. GAs were inspired by selective breeding processes that take 

place in biology that can be used to give certain desirable characteristics to a population. 

The optimisation analogue o f this is to ‘breed’ certain ‘good’ solutions to result in 

higher quality solutions.

The approach used by GAs in general is to choose some set o f states from the state 

space. These states are then ‘cross-bred’ with the possibility o f allowing mutation to 

introduce some extra randomness in the process. Bias is given to the more optimal
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states in the cross-breeding process. This should result in a next generation that is, in 

general, more optimal than the preceding one.

While GAs have obtained useful results for many problems, they are not so directly 

applicable here for two reasons. Firstly, in the generic network problem described 

above, it is not obvious how to choose a set o f basis states. These could be chosen 

entirely at random, but this would undoubtedly result in a very poor set o f basis states 

and it would take quite some time to breed good solutions.

Secondly, GAs are particularly suitable to situations in which the states can be 

represented using binary variables, and such problems have been studied using GAs 

with some success. The problem under study here is not one that can be easily mapped 

to one containing a set o f 0/1 decision variables.

The above two issues do not mean that GAs are not applicable to the generic problem. 

However, some effort would be required to apply GAs to this approach, and even then, 

it is not clear if  the results would be good. This could certainly be an area for further 

research.

Path Pre-selection

In the above algorithms, it has been implicitly assumed that any non-cyclical route can 

be used to carry any demand. However, in many problems, many routes are bad 

candidates for routing a particular demand. Long routes, for example, are typically 

inefficient. Long routes containing one or more low capacity links are particularly 

undesirable. There may be other reasons why particular routes are undesirable, e.g. 

some routes may not be able to offer QoS sufficient for some demands.

Approaches in which the set o f routes for a particular demand are limited to a set o f pre­

determined paths could also be considered. Determining the paths in advance can 

greatly reduce the size o f  the state space by eliminating large amounts o f bad solutions. 

However, the size o f the state space will still be very large -  still far too large to search 

exhaustively.

If this approach is used, the problem of how to choose paths for each demand must be 

solved. This is not a trivial problem, and many authors have studied such routing

7 More optimal in the sense o f  lower/higher cost depending on whether a minimum or maximum cost is 

sought.
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problems. However, there are many common sense approaches that can be used to 

choose a reasonable set o f paths for each demand. For example, the k shortest paths for 

each demand could be used, where k is some user specified parameter. In the case in 

which a number o f paths are o f equal length, then those paths containing the largest 

links could be chosen.

Determining the paths in advance can take some time, particularly if  the problem is 

large: there is an overhead associated with choosing good paths. However, if  the 

solution quality is in general better i f  specific paths are selected in advance, then it may 

be worth the overhead associated with choosing the paths.

Such path pre-selection is not considered any further here. However, it is noted as an 

area that appears to hold promise for future research.

3.5.4 State-space, Neighbourhoods and Algorithms used to Solve the Generic 

Problem

In this work, local search heuristics are used to solve the generic problem. As noted 

above, these local search heuristics require definition o f a state space and a 

neighbourhood. Here, the state space and neighbourhood that are used in solving the 

generic problem are defined. Also, the particular variants of the local search heuristics 

that are used to solve the problem are described.

The state space chosen here is a way o f representing all possible route configurations. 

Each state in the state space represents a particular routing for all o f the demands on the 

network. Examples o f the way that states are represented are shown in Figure 3-9.

Two states in the state space are considered to be neighbours if  all o f the demands are 

routed on exactly the same routes except one. Further, the demand that is routed 

differently is differs only by the insertion or removal or swapping o f a node in a path. 

An example o f neighbouring route configurations is shown in Figure 3-9. These route 

configurations apply to demands that are routed over the network shown in Figure 3-10.

91



N 1 N2

<0,1) <0,1) \
/ <0,1,2> \ <0,3,2)

<0,1) <0,3)
<1,0) <l,0)
<1,2) <1,2)
<1,3) <1,1)

<2,1,3,0) <2,1,1,0)
<2,1) <2,1,1)
<2,3) <2,1)
<3,0} <1,0)

(0,1) <1,2,1) <0,1) <1,2,1) <0,1)
<0,3,2) <3,2) <0,3,2) <3,2) } <0,3,2)
<0,I) <0,3) <0,1)
<1,1,0) <1,0) <1,0)
< 1,2} <1,2) <1,2)
<1,1} <1,3) <1,3)

<2,1,1,05 <2,1,3,0) <2,1,3,0)
<2,1) t <2,1) <2,1)
<2,3) 1 <2,3) <2,3)
<1,0) /• " ~ X <3,0) <1,0)
<3,2,1) - <0,1) <1,2,1) <0,11 (3,2,1)
(3,2) <0,1,2) <1,2) / <0,1,2) (3,1,2)

<0,1) (0,1)
<1,0) <1,0)
<1,2) <1,2)
<1,1) <1,1)

<2,1,1,0) <2,1,0)
<2,1) <2,1)
<2,1) <2,1)
<3,0) (3,0)

\ <3,0,1) <3,2,1)
<3,2) <3,2)

N5 N4

Figure 3-9: State with some neighbours. The state at the centre is the central state 

and the other states are neighbours of this state. This is not an exhaustive list of

neighbours.

Figure 3-10: Network on which the routings in Figure 3-9 are based.

In Figure 3-9, all the demands in the neighbouring states are routed in the same way 

except one. The demand that is routed differently is shown in red. The different types of 

neighbours can be seen in Figure 3-9: some of the neighbours are obtained by inserting 

a node on this route, others are obtained by removing a node from the route and yet
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others are obtained by swapping a node on the route. In Figure 3-9, neighbours N2, N3 

and N6 are obtained by inserting a node on a route; neighbours N1 and N5 are obtained 

by swapping a node on a route for another node and neighbour N4 is obtained by 

removing a node from a route.

One consequence o f this choice o f neighbourhood is that the majority o f neighbours of 

any state will be states which are obtained by inserting a node into a path. This is 

because nodes can be inserted in a number o f positions on the route, and often there are 

a few possible nodes that can be inserted.

The difference in the numbers o f neighbours that are obtained via node insertion, node 

removal and node swapping is illustrated in Figure 3-11. There, the rerouting o f a 

particular demand is depicted. The rerouting is dependent on the topology of the 

network -  something that is omitted here. From Figure 3-11, it can be seen that there are 

2 nodes that could possibly be inserted between nodes A and B and there are a further 

three nodes that could possibly be inserted between nodes B and C. This results in five 

alternate ways o f routing the demand in which a node is inserted in the path. Only one 

node -  node B -  can be removed from the path since nodes A and C are terminations. 

There are two options for swapping node B with another node. In total, then, there are 8 

neighbours of the state in which this particular demand is rerouted. O f these, the 

majority are routes that entail insertion o f a node, a considerably smaller amount entail 

swapping nodes on the route and the smallest number of neighbours are obtained by 

removing nodes from the route. Clearly, the number o f neighbours obtained from 

inserting a node on a route is the greatest. This point is more important for longer 

routes: for longer routes, there are more possibilities for inserting nodes and more nodes 

can be inserted. This means that as the length o f the route increases, the fraction o f ways 

to reroute the demand that entail insertion of a node increase. This has implications for 

solving the problem and the simulated annealing algorithm in particular.

One further point is worth highlighting here: the size o f the neighbourhoods can be very 

large. For example, in the above analysis, 8 neighbours arise from rerouting o f a single 

demand. Since there may be hundreds or thousands o f demands in the network and it 

may be possible to reroute many o f them, the number o f neighbours o f each state can 

easily become very large.
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Figure 3-11: Illustration of the differences in the numbers of neighbours from the

perspective of a single route.

The above state space and neighbourhood is used to run local search optimisation 

algorithms on the generic problem. In this work, two such algorithms are used: the 

greedy algorithm and the simulated annealing algorithm. Both o f these are described at 

an abstract level above. Here, some more details are included on the implementations 

used here.

The greedy algorithm used here starts from a maximally connected network -  all the 

candidate links are present in the network. A shortest path routing algorithm is 

performed on this network to obtain an initial routing for all of the demands. This is 

used as the starting point for the greedy algorithm.

During the operation o f the algorithm, all the neighbours o f the current state are costed. 

This is done by iterating through the routing o f all o f the demands, determining how 

many ways an individual demand can be rerouted and costing each o f these reroutings. 

Thus, all the neighbours are costed and the lowest cost neighbour is chosen as the 

current state for the next iteration. The algorithm continues until the current state has a 

cost lower than that o f all its neighbours.
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The details o f the simulated annealing algorithm do not differ very substantially from 

the algorithm described in section 3.5.2 above. The same initial starting point is chosen 

for the simulated annealing algorithm as is chosen for the greedy algorithm. A state is 

chosen at random and costed: it is accepted as the next state if  it has a lower cost than 

the current state. Alternatively, it is accepted with a probability which is dependent on 

the resulting increase in cost and the cooling temperature.

One aspect o f this simulated annealing algorithm which is not obvious is that if  all of 

the demand is removed from a link, then the link is considered inefficient and is 

removed as a candidate link from the problem. This was done in order to reduce the 

number o f links used in the solution, on the premise that reducing the number of links 

would have the effect o f reducing the overall cost.

In this simulated annealing algorithm, the temperature is cooled at each iteration. The 

temperature is cooled in a geometric fashion.

The fact that a large majority o f the neighbours o f a particular state entail insertion of a 

node has implications for the simulated annealing algorithm in particular. Since this 

algorithm chooses a neighbour o f the current state at random, the neighbour chosen will 

most probably be one that entails insertion of a node. As will be seen below, this has 

implications for the performance o f the algorithm.

3.6 Conclusions

A flexible, abstract network optimisation framework has been described. The 

motivation for the framework has been given; viz. to reduce the time required to obtain 

solutions to specific network optimisation problems. The layered nature o f the 

framework was described and the functions o f the different layers were identified.

A generic problem is the crux o f this framework. The generic problem was described in 

detail here: the sets o f inputs and outputs of the problem was first described, followed 

by a mathematical formulation o f the generic network optimisation problem. Some 

short example applications o f the framework were then described.

Lastly, a number o f solution approaches that can be used to solve the generic network 

optimisation problem were discussed. These solution techniques are techniques that are 

quite generally applicable and arise in the combinatorial optimisation domain. The use 

o f some o f these solution techniques will be investigated below.
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CHAPTER 4 E n t e r p r i s e  N e t w o r k  D e s ig n  P r o b le m

4.1 Introduction

Here, a specific network design problem is discussed. The problem is motivated and the 

application o f the network optimisation framework to obtain a solution to the problem is 

demonstrated. The specific problem considered here is one that arises in the context of 

enterprise network design.

The purpose o f an enterprise network is to facilitate internal communications within the 

enterprise. As such, the bulk o f the traffic carried on the network consists o f the intra­

enterprise traffic generated within the organisation. However, some o f the traffic on the 

enterprise network may be destined for locations outside the organisation: some 

application traffic could be carried on the network to some point close to the destination 

and then it could be switched onto another network. This would be done to effect cost 

savings. This is the case for so-called ‘break-in/break-out’ voice traffic on some private 

networks -  the traffic is routed to the location on the enterprise network that is closest to 

the (off-net) destination and is switched to the public network at that point. So, some 

traffic on the enterprise network may not be intra-enterprise traffic per se.

Enterprise networks often grow in an unplanned, ad hoc way. Extra resources are added 

to the network as and when necessary. There are a number o f reasons for this, including:

• network usage data may not be readily available;

• the network is not the core business o f the enterprise and hence it may not have the 

experience or expertise to plan and optimise the network;

• often the enterprise does not even have a good inventory o f its network resources.

However, as noted in chapter 2, Lloyd-Evans [Llo96] estimates that 10-20% savings 

can be achieved by optimising packet-switched networks. Since the majority of 

enterprise networks are packet-switched networks, this is likely to be applicable in this 

case. Consequently, enterprise networks are an interesting candidate for optimisation.

Here, it is assumed that the enterprise wishes to maximise the use o f the enterprise 

network resources. Consequently, cases in which there is significant traffic aggregation
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are considered; i.e. the enterprise uses the enterprise network to carry diverse traffic 

types. This is in contrast to a situation in which the enterprise may have separate 

networks for different applications. Traffic aggregation in this manner may result in cost 

savings since only one network needs to be operated and maintained.

The specific problem considered here is to determine how to add capacity to an existing 

network at minimal cost to accommodate the demands o f the network users. As the 

problem is stated, it is implied that there is some existing network and the objective of 

the problem is to determine how to add capacity to it. However, the problem also 

encompasses the case in which there is no existing network -  the green-field network 

design problem. This can be considered to be the special case in which the existing 

network consists o f zero-capacity links. The solution to the problem is a route 

configuration -  how the demands are routed on the network -  and a set o f costs 

associated with this configuration. This problem is discussed at length throughout the 

remainder o f the chapter.

The chapter is structured as follows. A detailed description o f the problem is given in 

the next section. This is followed by a formulation of the specific problem model. This 

is mapped to the generic problem in the following section and issues that arise in the 

mapping function are discussed. Some example problems are then given to illustrate the 

use o f the framework to solve this problem and then the chapter is concluded.

4.2 Problem Description

Here, a more detailed description o f the problem is given. This entails a discussion of 

the demands on the network -  the demands o f the users o f the network. This is followed 

by a discussion on how the network may be realised, which is followed by some 

comments on the costs o f implementing the network. A short note on network evolution 

considerations is included at the end o f this section.

4.2.1 Enterprise User Demands

The network must be designed to support the applications the organisation uses; hence it 

is important to consider what applications the enterprise uses when designing the 

network. The applications used in enterprise networks are discussed next.
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While every organisation is different and uses different applications, many applications 

can be broadly categorised using the following categories:

• Interactive voice -  voice communications have traditionally been an integral 

component of private networks. Voice is still an essential form of communications, 

particularly in those cases when the communication needs to be one to one and 

interactive, and, as such, will continue to form a constituent o f any large 

organisation’s private network traffic.

• Interactive video -  interactive video refers mainly to one o f two applications: 

videoconferencing applications or one-to-one videotelephony type applications. The 

former usually have a number o f parties involved and usually take place in a 

particular videoconference suite, while the latter are usually one-to-one 

communications and take place between user desktops.

• File download — file download applications are characterised by downloading a 

particular file from a server; what is done with this file is not important. Examples 

o f file download applications include FTP and can also include applications such as 

video-on-demand.

• Collaborative working applications -  collaborative working applications are those 

in which a number of parties are simultaneously working together on the same 

material. An example o f a collaborative working application could be a document 

editing suite in which many users can simultaneously and remotely comment on a 

particular document during an editing meeting.

• Transaction based applications -  these form a very important classification of 

applications, since there are very many mission critical applications that fall into this 

category. Many applications based on database querying can be considered to be 

transaction based and web downloads can also be considered to be transaction 

based.

Rapid growth in computing power and communications equipment mean that more 

sophisticated applications are becoming possible and that the above classifications may 

require some modifications. For example, applications which incorporate elements of a 

number o f the above classifications can be envisaged. For now, however, they form a

Applications Used on Enterprise Networks
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useful, although not exhaustive classification of applications that run on enterprise 

networks.

The network designer needs to ascertain which applications the private network will 

support and the demand generated by these applications. The network designer also 

needs to know what QoS is required by the different applications and must design the 

network such that the appropriate QoS is delivered to the applications. Also, it may be 

necessary to take into account interactions between different applications -  the 

performance o f some mission critical applications could possibly be affected by traffic 

from other applications if  the no precautions are taken to ensure that mission critical 

traffic is protected.

In general, the application level quantities can be difficult to measure. The application 

level demand is often not easy to measure. Also, the data generated by the application 

can be difficult to model: this is especially true o f video traffic (see

[RMV96,BCMM94] for more discussion on this). It may also be difficult to quantify the 

QoS required by the applications -  especially in terms of network level parameters such 

as delay and loss. Also, if  the network is to be designed to accommodate future growth 

in the network, then the problem o f forecasting growth in the use of different 

applications arises. These issues are beyond the scope of this work.

For the purposes o f this study, only voice and data traffic are considered. Voice traffic is 

considered to originate from a voice terminal and data traffic is any traffic that 

originates from a computer terminal. In this case, the data traffic can be quite 

heterogeneous: it can constitute traffic from many different applications. Voice and data 

traffic have historically been considered different and consequently this differentiation 

is not unnatural. As more sophisticated applications with different requirements of the 

network are developed, this simple classification will no longer suffice. For this 

problem, however, it is assumed to suffice.

The question then is how to realise the network to accommodate the voice and data 

traffic demands.

4.2.2 Network Realisation

The network can be realised in many ways. Here, issues relating to the way that the 

network is realised are discussed. This includes addressing such issues as the network
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architecture being used, the network components used and the services used to 

implement the network to meet the demands o f the users.

Network Architecture

In most cases, the most cost-effective network design is one of a hierarchical nature. 

Even without much planning private networks have tended to evolve to a hierarchical 

architecture for cost reasons.

An example o f an hierarchical network design is shown in Figure 4-1. In this example 

three levels exist in the hierarchy -  headquarters, the regional offices and the local 

offices. The local offices are typically small offices and generate small amounts of 

traffic. These are homed on one or more o f the regional offices depending on how 

important connectivity is and what options are available to cope with failure of the 

communications between the local and regional offices. The interconnects between the 

regional offices then form the backbone network: these interconnects are typically high 

capacity. There may be high connectivity in the backbone network for efficiency and 

reliability reasons.

Legend

j J Headquarters 

(2 )  Regional Office 

/ A\  Local Office

Figure 4-1: Example of hierarchical network.

Since this architecture is typical o f private networks, the networks used in this study are 

assumed to be o f this hierarchical nature. Designing such networks is not a trivial task.



The most difficult problem to solve when designing such networks is how to determine 

the network hierarchy; specifically, which nodes are homed on which concentrator 

nodes. Once this is solved, the mesh network design problem for the highest level nodes 

must be solved.

Since determining the network hierarchy is not a simple task, some comments are 

merited here. It is not always obvious which nodes in the network should be the 

regional offices. Often the regional office is not much different than the local offices. 

For example, in the case o f a bank, the regional office may be a large branch that 

happens to have space for the network equipment. There may not be any on-site staff to 

operate this equipment; this could be performed remotely via the network. Sometimes, 

it makes sense to have the regional concentrator located in some location that may be a 

building that has the specific purpose o f housing the concentration equipment i.e. it 

doesn’t have to be a branch office. When choosing the concentration points there may 

be other factors that influence the decision, such as the availability o f service, or the 

proximity to the nearest operator’s engineering office so, for example, if  there were 

some problem with the network, then a maintenance team could be on-site within some 

short period o f time.

If there are few constraints on the choice o f the concentration points, then determination 

o f the concentrators in particular and the network hierarchy in general can be 

formulated as an optimisation problem, the objective o f which is to determine the set of 

node locations that minimise the overall network cost. This is a complex problem in 

itself and is not considered here.

The emphasis in this work is on the mesh network design problem. This is partly 

because the generic problem in the network optimisation framework can only solve 

mesh network optimisation problems, but there are other reasons for studying such a 

problem. The mesh network can form the backbone of the enterprise network. Also, the 

mesh network can consist o f high capacity links and as such can be costly: hence, there 

is an opportunity for savings to be made. In large enterprises, the backbone network can 

be large and hence the design problem can be challenging.

Network Components

Many different network components are used in private networks. The type of 

components that constitute the network is dependent on the type of traffic the network
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must carry. Here, data and voice traffic are considered. It is assumed that each node has 

voice and data communications requirements, and that it needs to communicate with 

some or all o f the other nodes in the network.
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Figure 4-2: Logical components required to access WAN in customer premises.

A number o f different functionalities are required in this scenario: functionality to 

interface with voice terminals and switch voice calls, functionality to interface with data 

terminals/LANs and perform packet routing functions and functionality to control 

access to the Wide Area Network (WAN) resources. These functionalities can be 

implemented in different network components, or alternatively, a single network 

component can implement all o f these functionalities. Whether or not all of these 

functionalities can be implemented in a single unit is dependent on the size of the 

installation: in larger installations these functionalities would typically be realised in 

different systems. In any case, the specific systems used to realise these functionalities 

are not considered here. Rather, it is assumed that these functionalities are realised 

somehow. An illustration o f the logical components required at each customer premises 

is shown in Figure 4-2.

The functionality o f the multiplexer is an important issue in the design of such 

networks. There are two fundamentally different types o f multiplexer that can be used in 

this way; the first operates using Time Division Multiplexing (TDM), while the second 

uses packet switching.

The TDM approach is the more established approach for such multiplexers and there are 

many TDM based multiplexers on the market. Companies such as Timeplex, Tellabs 

and Lucent Technologies have been selling TDM based multiplexers for many years. 

The TDM based approach involves division o f the bandwidth on the wide area link into
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a number o f fixed bitrate channels. All o f the traffic using the channel is given one of 

the channels; even traffic which is inherently variable such as data traffic is given some 

fixed rate channel. Depending on the amount o f data traffic being generated, the channel 

may be fully utilised or highly under utilised. TDM based solutions are only applicable 

in situations in which the WAN is realised using fixed bitrate channels, as opposed to 

packet-based interfaces to WAN connections.

The packet-based approach is quite different. Using this approach, the incoming traffic 

is broken down into packets at the ingress to the multiplexer, and then routed to the 

appropriate output port. In a packet-based multiplexer, all the data is transported 

through the multiplexer in packet format. It is then transmitted over the WAN in packet 

format. The WAN can be realised using leased lines or, alternatively, a packet based 

service such as ATM or Frame Relay (FR) can be used to realise the WAN.

Using packet based communications is, in principle, more efficient, since the network
. 8 . . .resources are only used when there is information to be transmitted . This is in contrast 

to channel based solutions in which bandwidth is always reserved for specific 

applications. Consider, for example, a single link which is part o f a private network; this 

could be a leased line. If the capacity on this link is divided amongst the different 

applications contending for the link resources using TDM, then there is a very hard 

division o f the link capacity: some o f the link is always reserved for voice traffic, even 

though there may be no voice traffic using the link. This is in contrast to a scenario 

based on packet switching in which capacity unused by one application can be used by 

another application. Thus, packet switching is inherently more efficient.

Network Technologies

A number o f different technologies can be used to implement the network. The private 

network can be implemented using leased lines, FR or ATM or some mixture of these 

technologies; also, some of the voice traffic could be carried over the Public Switched 

Telephony Network (PSTN) or a Voice-based Virtual Private Network (V-VPN)9. Each 

of these technologies is discussed below.

8 However, this does not necessarily mean that packet-based communication is cheaper; this is dependent 

on the tariffing scheme.

9 This is usually simply termed a VPN. However, it is called a V-VPN here to differentiate from the type 

o f VPN used in chapter 5. The V-VPN is a sophisticated bulk voice service offered by telecom operators.
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Private leased lines are the most widely-used technology for implementation of a 

private network. They generate huge amounts of revenue for operators. They are well 

established and customers are very comfortable and familiar with the use o f leased lines 

to meet their communications needs. A leased line acts as a simple transparent 

interconnect o f some specified, fixed capacity between two locations. The customer can 

then choose to use this interconnect in whatever fashion it sees fit. In particular, the 

customer could choose to implement the WAN using packet switching or use a channel 

based approach to divide the capacity on the WAN between different applications.

FR and ATM services differ fundamentally from leased line services in that they are 

packet based. This means that the WAN must be implemented on a packet-switched 

basis -  it is not possible to completely segregate the capacity for the different services 

using a channel based approach.

FR services are characterised by a Committed Information Rate (CIR). The CIR is the 

rate that the operator will ensure to the customer -  if  the customer does not exceed this 

rate, then the traffic is assured delivery. However, if  the customer exceeds the CIR, the 

operator will try to deliver the excess traffic.

In many cases, customers use FR services with no CIR -  they do not require any 

throughput commitment from the operator. The FR service that they obtain from the 

operator is a best-effort service. Since FR networks typically have a substantial amount 

o f resources, the QoS perceived by such users is usually quite reasonable. Some users, 

however, do require some throughput assurances to ensure that their applications 

receive the desired QoS. The users in this work are assumed to fall into the latter 

category and obtain FR service with a specific CIR.

ATM services are somewhat different. A number o f different ATM service types exist. 

In particular, ATM supports both Constant Bitrate (CBR) and Variable Bitrate (VBR) 

services. The former are characterised by a single peak rate; the latter are a little 

different since the customer can (roughly) specify peak and mean rates for the 

connection and the customer is allowed (within some limits) to transmit at arbitrary 

rates between these peak and mean rates. ATM CBR services are the ATM analogue of 

leased lines. Unlike the FR services, the customer will only obtain service up to this

It has functionality to implement a private numbering plan as well as advanced voice-based functionality 

including call forwarding, call back, voice mail etc.
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rate. ATM VBR services are a somewhat more complex to deal with and hence they are 

not considered here for implementation o f the private network interconnects.

Leased lines, FR and ATM offer permanent connectivity between customer sites. For 

this reason, they are very suitable for data communications. They can also be used to 

carry voice traffic. However, voice traffic imposes some stringent QoS constraints on 

the network. Consequently, when implementing the network some care must be taken to 

ensure that the desired QoS is delivered to the voice traffic. In the TDM leased line 

case, capacity is reserved for the voice traffic. Thus, QoS is assured to the voice traffic. 

In the packet based scenario, this is not necessarily the case. In the packet based 

scenario implemented using leased lines, data packets could cause voice packets to be 

queued resulting in delays for the voice packets and a degradation in perceived voice 

quality. A similar effect could be observed in the case of a network realised using ATM 

CBR connections. In both of these cases, the solution is to prioritise voice packets in the 

network.

The FR case is a little more complex, since the amount of delay introduced in the 

network is unknown. Also, the amount o f resources available to the customer is 

unknown. Here, it is assumed that the customer does not exceed the CIR. In this way, 

all the traffic can be assured o f getting to the destination and the voice traffic in 

particular will be assured o f getting to the destination. The FR scenario could also be 

realised more effectively if the FR network used the priority bit in the FR header to 

differentiate between low priority and high-priority traffic. If  the customer marked 

traffic appropriately to indicate which traffic was most important -  the voice traffic in 

this case -  then the operator could use these markings and prioritise the high priority 

traffic accordingly.

The PSTN can be used to accommodate the voice traffic. In this case, the organisation 

would pay for all inter-office calls on a usage basis. However, for a large enterprise 

network, it is quite likely that there will be a very substantial amount of inter-office 

traffic and the resulting costs could be quite high. Also, the costs incurred by the use of 

the PSTN are quite unpredictable.

One way to reduce these costs is to use V-VPN services offered by operators. Such 

services usually result in cost savings for large customers because they are considered to 

be bulk users of the service and they receive (in some sense) bulk discounts. V-VPN 

services also have the advantage o f providing advanced call related features as part of
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the V-VPN package -  voicemail, callback, call forwarding, etc. -  via the public network 

and consequently, the organisation does not need to purchase and maintain equipment to 

support such services. V-VPN services still result in variable costs, although the 

variation is smaller than that o f the PSTN.

Using a V-VPN for voice traffic and a leased line/FR/ATM network for data traffic is a 

very clear segregation in services. Here, however, the emphasis is on traffic aggregation 

rather than traffic segregation to achieve savings. Consequently, the use o f V-VPNs to 

carry voice traffic is considered no further here.

Given that the emphasis is on traffic aggregation then, the objective is to design the 

private network such that the overall network costs are minimised. Any of the above 

interconnect services could be used. The interconnects may not have sufficient capacity 

to handle all o f the voice traffic, especially when there is a peak in voice traffic. 

Consequently, it make sense to permit voice traffic to overflow onto the public network,

i.e., the private network is used for data traffic and most o f the voice traffic and the 

PSTN is used for voice traffic when there are insufficient resources on the private 

network.

Network Configuration

The mesh network design problem considered here reduces to one o f considering how 

the demands should be routed on the network. This is essentially a network 

configuration problem. Issues pertaining to configuring the network are discussed here.

Two separate network implementations are considered here: a channel based network 

implementation and a packet based network implementation. In the former, there is a 

clear separation between resources reserved for voice traffic and those reserved for data 

traffic; some channels are reserved for voice traffic and some are reserved explicitly for 

data traffic. In the latter, all the resources are shared. Both o f these scenarios are 

considered in more detail below.

In both implementations, all o f the data traffic is multiplexed on the WAN; specific 

WAN capacity is not reserved for data communications between specific node pairs. In 

today’s networks, IP traffic is very much the dominant data traffic type. Hence, it is not 

unreasonable to assume that all o f the data traffic on the network is IP traffic. IP can 

also be used to encapsulate other traffic types [RFC2661] so other traffic types can be 

carried on the network inside IP packets.
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If  all o f the data traffic on the network is IP traffic, then IP routing mechanisms must be 

used to effect a particular network configuration. OSPF is the most common intra­

domain routing protocol and it is assumed that this is used here. As discussed in chapter 

2 above, OSPF does not permit arbitrary choice of routes for the demands although it 

does provide some level o f flexibility. Here, it is assumed that this level o f flexibility is 

sufficient to implement the desired network route configuration.

(i)

(ii)

Figure 4-3: Difference between two ways of switching voice calls. In (i) the call is 

switched through the multiplexer; it is not switched in the PBX at the intermediate 

node B. Conversely, in (ii) the call is switched in the PBX at in node B.
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If the voice traffic is carried on separate channels, two options for configuring the 

network are possible. In the first, the voice channels are terminated at adjacent Private 

Branch Exchanges (PBXs); in the second, the voice channels are terminated at non- 

adjacent PBXs -  the multiplexing equipment performs a function similar to a cross- 

connect and the call is not routed through the PBX at the transit node. Both o f these 

situations are illustrated in Figure 4-3.

These two approaches differ in the way that resources are shared in the network. In the 

first approach, depicted in Figure 4-3 (i), resources are reserved exclusively for traffic 

between A and C on links AB and BC. The traffic is not switched at the PBX at node B. 

In this approach a mesh o f resources reserved for exclusive use by a particular node pair 

-  a logical network -  can be implemented. The logical network is implemented using 

the multiplexers. In the second approach, depicted in Figure 4-3 (ii), no resources are 

reserved for exclusive use by any node pair. In this case, traffic between nodes A and C 

is switched through the PBX at B. More generally, all traffic is switched at intermediate 

PBXs as appropriate. No logical network is implemented in this case.

The two approaches can differ in terms of cost and efficiency. For small networks, the 

latter implementation is more efficient, since voice channels are at a premium and the 

best use o f these channels is made possible if  there is full sharing between the voice 

channels. The alternative scenario can be more economical in larger networks. In this 

case, switching does not need to be performed at intermediate nodes and consequently, 

the cost o f the intermediate nodes is less. Specifically, the intermediate nodes need less 

voice call terminations which results in a lower cost node. Also, the total amount of 

switching to be performed at the node is less and consequently, the overall cost of the 

node may be less.

If the voice and data traffic are decoupled in this manner, they can be routed differently: 

a different route can be used for the voice traffic than that o f the data traffic. This can 

permit the network to be configured more efficiently. However, it is assumed below that 

the voice and data traffic are routed together.

The performance o f the network in which the voice channels are terminated at 

intermediate PBXs will be better than that o f a network in which they are not terminated 

at the intermediate PBXs. Consequently, if  it is assumed that the voice channels are not 

terminated at intermediate PBXs in the design process, then the performance of the 

resulting design will be better than predicted by the design approach. This assumption
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also makes the design problem more tractable: otherwise some of the techniques 

described in the section 2.4 would have to be applied to determine how many voice 

channels are required on each link. Hence, it is reasonable to assume this in the design 

process, although it may result in networks that are o f slightly higher cost than required.

A D

Figure 4-4: Illustration of how the capacity of the interconnects may be divided 

between the traffic for each of the node pairs.

If the voice traffic is packetised and transported in the same manner as the packet data, 

then the WAN capacity does not need to be segregated at all. In this case, the 

multiplexer is not needed; the router can be connected directly to the WAN link. The 

data networking routing protocols can be used to perform routing in this network. This 

scenario is illustrated in Figure 4-4.

If  this approach is used, then the voice traffic must be prioritised over the data traffic. 

This simple prioritisation can be done using, say, the Type o f  Service (TOS) header field 

in the IP packet header. This enables routers to differentiate between the different traffic 

types and to give priority to the voice traffic to facilitate timely delivery o f voice traffic.

4.2.3 Network Costs

The network costs fall into one o f three categories:

1. Capital expenditure -  these are once-off payments typically paid to purchase 

equipment;

2. Fixed recurring costs -  these are costs that must be made periodically. Examples of 

this type of cost include service subscription/service access costs;

3. Usage based costs -  these are variable costs that are incurred based on usage of a 

service. If  usage is high, then costs will be high and if  usage is low, then costs will 

be low.
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Capital expenditure cost can be incurred when purchasing or upgrading equipment. In 

this problem, the capital expenditure costs would only be associated with upgrade or 

purchase o f new node equipment.

Fixed, recurring costs are costs that are incurred on a periodic basis. These are often 

incurred for subscription/rental of services. Examples of such costs would be annual 

line rental costs or annual subscription to FR/ATM services.

Usage based costs are costs that are incurred through usage o f a particular service. For a 

voice based service, usage based costs would be costs incurred for making an individual 

call. For data-based services, usage based costs could relate to the amount o f data that 

traverses an interconnect, say10. Due to their nature, there is some variability in usage 

based costs and it is sometimes difficult to predict them very accurately.

Note that these categorisations are not rigid. Capital expenditure may be financed by 

loans, or equipment may be purchased under some kind of hire-purchase arrangement. 

In these cases, the capital expenditure could be viewed as a recurring cost. Similarly, 

recurring costs could incorporate some usage component: for example, a customer may 

pay for V-VPN service which includes some amount o f usage over the billing period.

Cost functions for these different services can be quite complex. This is the case for the 

interconnect services -  leased lines, FR or ATM. In general, they are dependent on the 

capacity and may also have a distance dependence. The costs for the interconnect 

services can be quite non-linear but they always increase with increasing capacity. 

Stepwise cost functions are good examples o f the type o f cost function that is common 

for such services.

Interconnect services may have an access component that further complicates the cost 

function. In many cases, service may not be available at the nearest exchange. 

Consequently, the customer may have to obtain some permanent connectivity to the 

nearest POP. This may be implemented using leased lines. Thus, the costs of 

implementing interconnectivity between two nodes may consist o f service access costs 

as well as service subscription costs, further increasing the complexity of the costs.

10 Usage based costs for data services could also be incurred for accessing content-based data services. 

These type o f services are not considered here.
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Predicting the usage based costs can also be non-trivial. Take, for example, the PSTN 

traffic. The usage based costs are based on the amount o f usage o f the service: for voice 

telephony, this can depend on the amount o f calls made and the duration o f each of the 

calls. There can be some error in predicting these.

The objective here is to determine the lowest cost network configuration. Implicitly, the 

notion o f comparing costs is assumed. As can be seen here, there are different types of 

costs that operate over different timescales. Some care must be taken when comparing 

them. For example, it is difficult to objectively compare a solution which has a high 

capital expenditure and a low recurring cost with one that has a higher capital 

expenditure and a lower recurring cost. This is quite a standard problem, which can be 

solved by normalising the costs with respect to some time interval.

As is seen above, the cost functions for the services used to implement the network are 

quite complex in general. Hence, it makes sense to use a flexible framework in which 

the cost functions can be quite arbitrary.

4.3 Specific Problem Model

The specific problem model is discussed next. First, the problem is discussed in terms 

o f the problem inputs and outputs. Then the problem is formulated more rigorously.

The inputs to the problem are:

• the set o f nodes;

• the set o f voice and data demands;

• the capacity required to carry a voice call on the private network;

• the set o f candidate links;

• the set o f link cost functions;

• the set o f costs functions for the public network traffic.

The voice demands are specified in terms o f the number o f call arrivals over some time 

period. The data demands are specified in terms o f capacities. The cost functions are 

both specified in terms o f cost over some time period.

The voice traffic can be carried on the private network or can be shed onto the public 

network. Not all o f the voice traffic will be carried on either the public network or the

private network -  some of the voice traffic will be carried on the public network and
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some o f the voice traffic will be carried on the private network. The capacity required to 

accommodate a voice call can be used to determine how much capacity a number of 

voice trunks requires on the private network.

An alternative formulation o f this problem could consist o f data traffic specified in 

terms o f application level demands and application level QoS measures which could 

then be translated into some capacities for the data demands. This problem is not 

essentially different, but would involve a different mapping function -  the mapping 

function would contain functionality to map the application level characteristics into 

single parameter for the generic problem.

The problem outputs are:

• the network configuration;

• the amount of traffic that is carried on the public network;

• the amount of traffic carried on the private network;

• the set o f services that constitute the private network and

• the overall cost.

The specific problem model is constructed such that it can be applied to situations in 

which the private network is implemented using all o f the technologies mentioned 

above. From the perspective o f the specific model, all o f the technologies that can be 

used to implement the interconnect appear the same. The difference between the 

technologies manifests itself in the link cost function.

4.3.1 Formal Problem Model

Define the following:

• N  : the set o f nodes in the network;

• L  : the set o f candidate links;

• G(N, L): the graph o f the network o f possible links;

• c ,: the capacity o f link / e l ;

• D : the set o f demands;
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•  X

(o,, P j, ht ,m j )\ set characterising demand d i , i e 1 ... |Z)| -  oj and p i are the source 

and destinations nodes respectively; hi is the intensity o f voice traffic associated 

with the demand and mi is the capacity of the data traffic;

v : the capacity required to carry a voice connection on the private network;

R : a routing for the demands on the network;

Q : the set o f voice channel reservations for each node pair; 

qd : the amount o f voice channels reserved for demand d e  D ;

l ‘d (r ): indicator function indicating whether or demand d e  D  is carried on link 

l e  L -  the function has a value o f 1 if the demand is carried on the link or 0 

otherwise;

X  A/ (R){pi, + qd v) -  c, : the extra capacity that must be added to link
i

I under routing R  with voice channels specified by Q ;

/ r i  (x ): the cost o f adding x  units o f capacity to link Z e l ;

/pub (<7rf): the cost o f carrying the public voice traffic for voice demand d e D ;

Fpr (R,0) = X  /pri (x i ( X ( ? ) ) : the cost o f the private network;

, ( R , Q ) =

I<eL

Fpu (q ) = X  ./pub {<3d ) : the cost of the use o f the public network resources;
d̂ D

F(R, Q) = Fpv (R, Q )+ Fpu (q ) : the overall cost.

The problem is to find

F* = m inF (R ,Q )

In general, the problem of determining the minimum costs is difficult to solve. The 

problem complexity is dependent on the nature o f the cost functions for the public and 

private network resources. Also, the amount o f overflow traffic is dependent on the 

arrival rate o f the voice traffic and the amount o f calls that can be accommodated on a 

particular link. The latter is determined using the non-linear Erlang blocking function:
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an extra non-linearity is introduced into the problem. So, even for straightforward cost 

functions, the problem is difficult to solve.

A report on solution techniques that were used to solve this problem is given in 

[MBC99] and related work was described in [MBC98]. Girard also formulates a very 

similar problem in [Gir90], but there the scope is limited to design problems in which 

the costs o f both the private network and the overflow traffic are linear. An alternative 

approach is used here, which uses the generic network design framework of chapter 3.

4.4 Mapping to the Generic Problem

In the generic problem, there is a set o f demands characterised by a single value and a 

set o f individual link cost functions. This differs a little from the specific problem in 

that the specific problem demands have both a voice and a data component and there are 

cost functions associated with the traffic carried on the private network and voice traffic 

shed onto the public network. The mapping function must reduce the parameters in the 

specific problem to appropriate parameters for the generic problem. Also, the demands 

and link capacities in the specific function are bidirectional, while their generic problem 

counterparts are unidirectional. The mapping function must also take this into account 

when performing the mapping.

4.4.1 Determining the Demands

The approach used here to split the voice demands between the public and the private 

network is a simple one. The fraction of voice traffic shed onto the public network is 

defined. This implicitly defines the fraction o f traffic carried on the private network; the 

amount o f voice channels required on the private network can be calculated from this. 

The required number o f voice channels can be solved by determining q as the solution 

to the equation

q = \E~'{h,b)\

where h is the intensity o f the voice demand, b is the fraction of traffic to be carried on 

public network and E~x (•) is the inverse o f the Erlang blocking function. The problem 

can be solved by performing an inverse Erlang calculation, but in this case, a more 

direct, iterative process is used to find the solution. At each iteration, the blocking 

probability is determined for the current number o f voice channels. The number of voice 

channels is increased until the blocking probability is sufficiently low. Then the
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required number o f voice channels has been reached. Typically, the number o f voice 

channels required is small hence the number o f iterations is small, so this approach is 

feasible.

One problem with this approach is that it is highly unlikely that the optimal solution to 

the specific problem can be found using this approach. It is very unlikely that the 

amount o f blocking associated with each demand will be approximately equal for all of 

the demands. However, the approach can find a reasonable solution and hence it is 

useful.

An alternative approach which is arguably more likely to find a better solution is to 

assume a direct link is used between each node pair and determine the optimal amount 

of voice traffic that is carried on this direct link. This idea is a little more interesting, 

and for this reason, is expanded on here.

Using this approach, the size o f the demand for each node pair is calculated by solving 

the following optimisation problem for each node pair.

Find z = n u n (mi + qv)+ (q)

where / '  and d ' are the link and the demand between the node pair respectively. Thus, 

the number o f voice trunks between each node pair can be determined.

The solution to this problem can be found in a number o f ways. As with the other 

approach, if  the intensity o f  the traffic is low, it is possible to iterate through a number 

o f different values o f the voice trunks on the direct link and choose that number that 

results in the lowest cost.

It would be interesting to explore this idea further. In particular, it would be interesting 

to see the impact it has on the results obtained.

Once the number o f voice channels for each demand has been determined, the set of

demands to be input to the generic problem can be constructed. For each demand, the 
/

triplet d t = (o,., p t , ri ) can be generated, where rt = mi + q d v,  and the set o f demands 

/
D'  -  U  dj can be constructed.

/

Note that this fixes the amount o f overflow traffic that is generated by the network. 

Once this step is performed, the problem focuses on how to determine the private
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network: the costs associated with the public network traffic are defined once the 

overflow traffic is determined.

4.4.2 Determining the Link Cost Functions

The link cost functions must be mapped from those in the specific problem to those in 

the generic problem. In the specific problem, both the demands and the links are 

assumed bidirectional, while in the generic problem, all quantities are assumed 

unidirectional. Also, the link cost functions in the specific problem are functions o f the 

excess capacity required on each link -  the cost o f the extra capacity that must be added 

to the link to accommodate the demand. The link cost functions in the generic problem 

reflect the costs o f carrying the traffic on the link rather than the extra capacity required 

on the link to accommodate the demand. Both o f these issues must be addressed in this 

mapping.

First the issue relating to the extra capacity is dealt with. This can be accommodated 

quite easily by performing a mapping on the dependent variable. The cost function -  for 

bidirectional traffic -  can then be written as:

than the excess capacity.

The function can then be extended to be bidirectional. As noted above, the demands are 

mapped from a set o f undirected demands to a set o f directed demands for the generic 

problem. Consequently, the demands can flow on either direction on each link. The link 

cost function, then, must take this into account in a way that is consistent with the 

specific problem. The approach used here is to make the cost of the directed link equal 

to the cost o f the sum o f the capacities flowing in either direction on the link, i.e.

The link cost function for the specific problem can be extended to a function suitable for 

the generic problem as follows:

The modified link cost function is dependent on the capacity carried on the link rather

/ ;  M = / P'r (*+f)
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This construction still permits arbitrary functions in the specific problem which can be 

mapped to arbitrary functions in the generic problem.

4.4.3 Formal Mapping from the Specific Problem to the Generic Problem

The mapping can then be formalised as follows:

• TV —> N ;

• A ;

• G ( N ,L ) ^  r (N ,A );

• £>'-> A;

//
•  / i  ( s , î ) - » 0 a ( m )  a n d

• Yv 0  = 0 for all v g N

Thus, the specific problem is mapped to the generic problem and it is then possible to 

obtain a solution to the generic problem in order to solve the specific problem.

4.5 Examples and Solutions

The use o f the network optimisation framework in solving the enterprise network design 

problem is demonstrated here. A number of different problems were generated and 

solved using this approach; also, different algorithms were used to solve the problems. 

The results are presented, analysed and discussed here. Two questions must be asked 

when assessing this approach to solve the problem: how long does it take to obtain some 

solution and what is the quality o f the resulting solution. These two questions are 

addressed separately here.

The test problems were generated using a random problem generator. All o f the 

problems were green field network design problems -  no problems containing existing 

networks were generated. The problems can be divided into three broad categories of 

problem -  these are characterised by the nature o f the link cost function used for the 

private network. Problems with three different link cost characteristics were generated: 

a linear link cost function, a piecewise linear link cost function and a stepwise 

incremental link cost function. These different cost functions are illustrated in Figure 

4-5. Solutions to these problems were obtained and analysed.

117



(a)

Capacity

(c)

Figure 4-5: Link cost functions used in these examples -  (a) linear link cost 

function, (b) piecewise linear link cost function and (c) stepwise incremental link

cost function.

The random generator used to determine test functions is described first. Then the two 

questions posed above are addressed.

4.5.1 The Random Problem Generator

A random problem generator tool was developed to enable different random green field 

network design problems to be generated and used to validate this approach to obtaining 

some solution. The random problem generator that was designed was quite flexible and 

enabled a number o f different variants of the problem to be generated at random. 

Problems with different numbers o f nodes, different link cost functions and different 

switched cost functions can be generated. The generator has support for distance 

dependent costs and also supports a notion o f a population associated with a location 

and demands can then be correlated with populations.

In the random problem generator, the nodes are chosen first. The number o f nodes, n , 

and / max, the width and height o f the square area on which the nodes are randomly 

placed are first specified. The node co-ordinates are then chosen from the uniform 

distribution [0, J niax ] . This enables the distance between the nodes to be calculated. 

Each of the nodes also has a relative population associated with it. This is chosen from 

the uniform distribution [0,1] and can be used to generate a set o f demands in which the 

traffic generated by a particular node pair is related to the populations o f both of the 

node pairs.

The demands are chosen next. Demands between all o f the node pairs are generated and 

the demands between each node pair consist o f a voice component specified in erlangs 

and a data component specified as a bitrate. The minimum and maximum for each of the
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voice and data demands are specified. Two possible ways of choosing the demands are 

then possible: they can be chosen entirely at random, or the demands can be correlated 

with the node populations. The first approach is straightforward and only requires a 

simple explanation -  the voice and data demands are chosen from a uniform distribution 

with specified limits -  but the second approach is somewhat more complex and a more 

detailed explanation is necessary.

In the second approach, the intemodal demands are based on the populations of the two 

nodes. The geometric mean o f the two node populations is determined. Since the node 

populations are between 0 and 1, the geometric mean of the populations is also between 

0 and 1. The value for the demand that is then chosen is by linear interpolation between 

the minimum and maximum values for each o f the demands using the geometric mean 

as the interpolation parameter. For example, if  the population values are ex and e2 and 

the minimum and maximum values of the demands are mmm and mmax respectively, 

then, using this approach, the value o f the demand between the two populations is:

m = " V n  +  4 ^ 2 ( W m aX “  ™ m in  )  •

Some random perturbation is then added to the resulting demand: some random fraction 

between +/-10% of the value o f the demand is added. This is done to make the resulting 

problem slightly less regular.

The costs are specified next. The costs can be broken down into the link costs and the 

switched call costs. The link call costs are discussed first, followed by a short discussion 

on the switched call costs.

The problem generator permits three different types o f link cost function to be 

generated: linear, piecewise linear and stepwise incremental. It also enables the link cost 

functions to be generated such that the link costs are distance dependent. This is 

optional and the case in which the link costs are not dependent on distance is discussed 

first.

If  the link costs are not dependent on the distance, then the user can choose to have 

linear, piecewise linear or stepwise incremental link costs. All the link costs must be of 

the same type in this problem generator: it is not possible to have some linear link cost 

functions and some piecewise linear link cost functions. Note that this is a characteristic 

of the problem generator -  the generic problem solvers have no problem 

accommodating very different link cost functions. The link cost functions that are
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generated permit a capacity to be mapped to a cost, and a link cost function must exist 

for all of the potential links in the problem. In the distance independent case, a set of 

parameters are chosen from which all of the link parameters are chosen at random. The 

linear parameters specified are the minimum and maximum link installation cost and the 

minimum and maximum marginal increase in capacity. This effectively defines an 

envelope on the link cost functions that are chosen as shown in Figure 4-6.

Capacity

Figure 4-6: Envelope for linear link cost function. Any link cost function can be 

chosen which is bounded by the two lines chosen in the figure.

The piecewise linear and stepwise incremental cost functions are substantially different 

from the linear cost function, but since they require the same set o f parameters to define 

the functions, they are described together here. Both o f these functions are specified 

using a finite set o f defining points -  the points that define the function. These points 

are points at which the nature o f the function changes somewhat. In the case of the 

piecewise linear function, these points are the points at which the slope changes and in 

the case o f the stepwise incremental functions, these are the points at which the function 

value increases in a stepwise manner. The function value is obtained differently for each 

o f the functions. For the piecewise linear function, the function value is obtained by 

interpolating between the defining points and extrapolating from the last one. For the 

stepwise incremental points, the function value is determined by finding the defining 

point with the maximum capacity less than the current capacity. The value of the 

function at this point is equal to the value at the current capacity.

The piecewise linear and stepwise functions are generated by choosing a fixed interval 

between the points that characterise the function. A minimum and maximum value for 

the initial value o f the function is specified by the user and a value is chosen uniformly 

from this range. Each o f the points are then generated. This is done in the same way for 

both the piecewise linear and stepwise functions, although the way that they are used
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when calculating the value of the function differs slightly in each case. Here, the 

discussion is in the context o f the piecewise linear cost function, but exactly the same 

applies for choosing the points for the stepwise incremental cost function points. It is 

assumed that the slope o f all the segments in the piecewise linear function decrease with 

increasing capacity. The slope for each segment can then obtained by multiplying the 

slope of the previous segment by some number between 0 and 1. In the generator, a 

range for the slope o f the first segment is specified and then a range for the multipliers 

from which the slopes o f the subsequent segments can be obtained is specified. Using 

this data, the set of points can be generated and both the piecewise linear and stepwise 

incremental cost functions defined.

The case in which link cost functions are distance dependent is a little more complex. 

The problem generator has support for link cost functions that vary linearly, in a 

piecewise linear fashion, or in a stepwise fashion with distance. The general approach 

used to incorporate distance into the link costs is to construct a kind of base cost- 

capacity function and a distance multipliers function. The overall function then is the 

product o f the distance multiplier function evaluated at the appropriate distance and the 

base function.

A number of different variants for constructing distance dependent link cost functions 

are then possible. Any combination o f linear, piecewise linear or stepwise incremental 

base functions and linear, piecewise linear and stepwise incremental distance multipliers 

is possible.

The switched costs then remain to be determined. Three possibilities exist for these: the 

switched costs can be fixed, random or distance dependent. In the first case, the 

switched costs are constant over all node pairs. In the second case, some range of values 

is specified and the cost per switched call between the node pairs is chosen at random 

from this range. Each node pair can have a different switched cost. The third case is one 

in which the switched call costs are dependent on the distance between the nodes. A 

single type of distance dependence is permitted here, which models existing distance 

dependent tariffs most accurately. This distance dependence is a stepwise incremental 

cost function. The parameters for this function are chosen in the same way that the 

parameters for the stepwise incremental cost function are chosen above.

This problem generator enables many types o f problems to be generated, although not 

all types are used here.
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The problem generator is used to generate a substantial number o f problems and the 

times taken to solve these problems are recorded and analysed here. The problems are 

solved using the generic problem solvers mentioned in Chapter 3. The objective is to 

compare the time taken to solve the different problems using the different problem 

solvers.

The problems have different link cost characteristics -  some of the problems have linear 

link costs, some of them have piecewise linear link costs and some of them have 

stepwise incremental cost functions as described above. None o f the problems solved 

have an existing network -  all o f the problems are green-field network design problems. 

The problems vary in size from 10 nodes to 50 nodes.

In the problems considered here, the amount o f time taken to solve the entire problem 

comprises o f the time taken to perform the mapping function plus the time taken to 

solve the generic problem. The time taken to perform the mapping function is small in 

comparison to the time taken to solve the generic problem. Hence the former is assumed 

to be negligible here for the purposes of comparing the time required to obtain 

solutions.

Results for the problems with a linear link cost function are discussed first, followed by 

discussion o f the results for the piecewise linear and stepwise incremental cost 

functions.

The parameters chosen for the linear problems used in these experiments are shown in 

Table 4-1. These parameters were used to generate problems varying in size from 10 to 

50 nodes in increments o f 5 nodes. In these problems, the costs are distance independent 

and the demands generated are not correlated with the population associated with the 

node.

Five problems o f each problem size were generated using the problem generator and the 

parameters listed above. Then they were mapped to the generic problem using software 

written to perform this function. As discussed above, the demands for the generic 

problem were generated by specifying the fraction o f the voice traffic that gets shed 

onto the public network. In all o f these cases, the fraction of traffic shed onto the public 

network was 5%. This was used to determine the number o f trunks required to carry 

voice traffic between the node pairs. The link cost functions used in the generic problem 

were exactly the link cost functions defined in the specific problem.

4.5.2 Time Taken to Obtain Solutions to Problems
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Parameter Value

Maximum intemodal distance 500

Maximum Voice Demand (Erlangs) 10

Minimum Voice Demand (Erlangs) 3

Maximum Data demand (Mb/s) 2

Minimum Data demand (Mb/s) 0.5

Data demands correlated with node size false

Demands chosen from uniform distribution true

Demands chosen from normal distribution false

Link cost data linear

Distance dependent false

Minimum link installation cost 5000

Maximum link installation cost 10000

Minimum marginal cost (Mb/s)'1 50

Maximum marginal cost (Mb/s)' 100

Distance independent switched costs; fixed call costs 0.1

Table 4-1: Parameters used in the random network generator tool to generate

problems with linear cost functions.

The two approaches described in chapter 3 were used to solve the problems described 

here. For the greedy approach to solve the problem, a fully connected initial starting 

point was chosen. For the simulated annealing algorithms, results were obtained for 

different parameter sets: specifically, results were obtained for different initial cooling 

temperature and cooling rates. The results obtained by varying these parameters are 

shown in the figures below.

The generic problem solver was run on a 270Mhz Sun UltraSparc 5 machine running 

the Solaris 2.6 operating system. The machine in question was running in multi-user, 

multi-processing mode. Consequently, any number o f processes could have been 

running concurrently with the generic problem solvers. Solaris provides a rudimentary
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mechanism to obtain information on how much time was used by a process. The 

operating system can determine how many seconds o f processor time a particular 

process consumes. This is mostly independent of the load on the system and the number 

o f users o f the system. This time is used for comparison purposes here.

A very comprehensive set o f results was obtained for the problems with linear link cost 

functions. All o f the problems were solved using the greedy and simulated annealing 

approaches. The results are shown in Figure 4-7 to Figure 4-10. Each point on the graph 

is an average o f the solutions to the five problems with the same characteristics.

The results show that the amount o f time required to solve the problem increases 

exponentially with problem size for the problem with linear link cost functions. This is 

the case for both the greedy and simulated annealing algorithms. Note that the longest 

solution times can be about 40 minutes (-2700 seconds). This is prohibitively long for 

any kind o f interactive application, but is adequate for applications in which it is more 

important to obtain a good quality solution at the expense of processing time.

The time required to solve the problem increases exponentially with the problem size 

because the size o f the neighbourhood increases exponentially with the number of 

nodes. Both the algorithms are sensitive to the size o f the neighbourhood. This is 

obvious in the case o f the greedy algorithm, since the algorithm involves costing all of 

the neighbours o f a particular state. If the number o f neighbours o f each state is 

increasing dramatically, then the time taken to search all o f the neighbours will also 

increase dramatically. It is less obvious in the case o f the simulated annealing algorithm.

In the simulated annealing algorithm, the number o f iterations is governed by the 

cooling schedule. The simulated annealing algorithm used in this work is 

straightforward: the current temperature is decreased by some fixed, specified 

proportion at each iteration. Thus, the temperature at iteration i , Tn  can be written as

Tt = T0k ‘

where T0 is the initial temperature and K is the cooling parameter. Here, the stopping 

condition is reached if  the current temperature is less than 1.0. If  the initial temperature 

and the cooling parameter are known then the number o f iterations is fixed. Importantly, 

the number o f iterations is independent o f the problem size. Consequently, the increase 

in time required to obtain a solution results from an increase in the amount o f time 

required to perform each iteration.
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Figure 4-7: Time required to obtain solution to problem with linear cost function

using the greedy algorithm.
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Figure 4-8: Time required to obtain solution to problem with linear cost function 

when simulated annealing cooling parameter is 0.98.
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Figure 4-9: Time required to obtain solution to problem with linear cost function 

when simulated annealing cooling parameter is 0.99.

Number o f Nodes in Problem

Figure 4-10: Time required to obtain solution to problem with linear cost function 

when simulated annealing cooling parameter is 0.995.
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The increase in time required to perform each iteration can be explained by noting that 

the simulated annealing algorithm operates by choosing a neighbour at random. In this 

implementation, this works by counting the number o f neighbours o f the current state 

and choosing one o f these. Since the size o f the neighbourhoods increases exponentially 

with the number o f nodes, the time required to perform the counting operation increases 

exponentially with the problem size.

Some approach which is independent o f the size o f the neighbourhood is desirable. This 

may operate more quickly and would certainly be more scalable.

Similar experiments were run for the scenarios in which the cost functions were 

piecewise linear and stepwise incremental to see if  these differ significantly (see Figure 

4-11 to Figure 4-18). The results obtained for these scenarios were not as 

comprehensive as those obtained for the linear case. The time taken to obtain a solution 

in this case is a little longer than the linear cost function case. This is because it takes 

longer to calculate the link cost function. Since this is performed very many times 

during the optimisation, a small difference in time taken to perform this calculation can 

result in a significant difference in the time taken to perform the overall computation.

Here, it is clear that scenarios containing more than 50 nodes require substantial 

amounts o f time -  almost 2 hours in some cases -  hence, unless it is possible to run the 

software, say, overnight, or possibly over a few days, the algorithms used here will not 

be able to find solutions for problems o f more than 10’s of nodes.

Note also that the computing power used when obtaining these solutions is not very 

modem. Current high-end processors can operate at 1.5 GHz11. Some experiments were 

performed to determine the difference in speed between a Pentium® III based system 

operating at 600MHz and the Sparc-based system that was used to perform these 

experiments. The experiments showed that the Pentium® system performed 

approximately 5 times faster than the Sparc system. The latest microprocessors could 

probably operate 10 times faster. Having such processing power available would 

increase the maximum size o f problem that is solvable within some specific time, but 

since the time required increases exponentially, the increase in processing power would 

only permit a relatively small increase in the maximum possible problem size.

11 Vendors sell Pentium® 4 based systems in which the processors operate at this speed.
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Number of Nodos In Probtom

Figure 4-11: Time required to obtain solution to problem with piecewise linear cost

function using greedy algorithm.

Number o f Nodes In Problem

Figure 4-12: Time required to obtain solution to problem with piecewise linear cost 

function when simulated annealing cooling parameter is 0.98.
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Figure 4-13: Time required to obtain solution to problem with piecewise linear cost 

function when simulated annealing cooling parameter is 0.99.

Number o f Nodes o f Problems

Figure 4-14: Time required to obtain solution to problem with piecewise linear cost 

function when simulated annealing cooling parameter is 0.995.

129



6000

Number of Nodes in Problem

Figure 4-15: Time required to obtain solution to problem with stepwise 

incremental cost function using greedy algorithm.
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Figure 4-16: Times required to obtain solution to problem with stepwise 

incremental cost function when simulated annealing cooling parameter is 0.98.
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Figure 4-17: Times required to obtain solution to problem with stepwise 

incremental cost function when simulated annealing cooling parameter is 0.99.

Number o f Nodes in Problem

Figure 4-18: Time required to obtain solution to problem with stepwise 

incremental cost function when simulated annealing cooling parameter is 0.995.
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Some further observations are useful. In the above experiments, the greedy algorithm 

takes the most time. The solution time for the simulated annealing algorithm when the 

cooling parameter is 0.98 are approximately 10% of that of the greedy algorithm. The 

simulated annealing run with cooling parameter o f 0.995 and initial temperature of 

10000 results in a running time comparable to that o f the greedy algorithm. The other 

parameter choices result in running times somewhere in between these two extremes. 

Obviously, the initial temperature could be made larger or the cooling parameter could 

be made closer to 1 resulting in even longer running times: the simulated annealing 

running times can o f course exceed those o f the greedy algorithm if the parameters are 

chosen appropriately.

4.5.3 Quality of Solutions Obtained Using this Approach

Considering the running time alone is not sufficient: the quality o f the solution in terms 

of the resulting cost must also be considered. If the approach takes a long time to find a 

poor quality solution, then the approach is not very useful. Here, the quality o f the 

resulting solutions is assessed.

C h o o s i n g  S i m u l a t e d  A n n e a l i n g  P a r a m e t e r s

A number o f parameters need to be specified when running the simulated annealing 

algorithm. In the instance o f the algorithm used here, three parameters are required: the 

initial temperature used in the cooling schedule; the final temperature used in the 

cooling schedule and the cooling parameter which controls the rate at which the process 

is cooled. Each of these parameters can affect both the time required to obtain a solution 

and the quality o f the resulting solution.
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Figure 4-19: Variation of result with initial temperature of simulated annealing 

algorithm for a randomly generated 10-node problem.

The initial temperature is considered first. The initial cooling temperature was varied 

substantially for one problem -  this problem was a 10-node problem. The cooling 

parameter and the final temperature remained fixed. The simulated annealing algorithm 

was run once each time using a single random seed. The SA algorithm could have been 

run a number o f times and the results averaged to obtain more representative results: 

however, the trend is very obvious, even when only one run o f the SA algorithm is used. 

It is clear that as the initial temperature increases beyond some point, the quality o f the 

solution obtained gets worse as can be seen in Figure 4-19 for this small problem.

The final solution quality gets substantially worse as the initial cooling temperature 

increases. At the highest level, this can be explained by noting that the algorithm 

permits many moves that result in poorer quality solutions in the initial period of the 

cooling schedule. The algorithm then experiences difficulty in reversing all o f these 

poor moves when the cooling schedule is nearing its end. Consequently, the final 

solution retains some o f the poor characteristics that were introduced in the initial stages 

o f the cooling schedule.
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The situation in this case is made more complex due to the fact that many of the 

neighbours of a particular state are poor neighbours: many o f the neighbours can result 

in very unsuitable routings for demands. For example, some of the neighbours can 

involve rerouting demands via expensive links. Moreover, if  such moves are accepted in 

the initial part o f the cooling schedule, a link may be removed as discussed in chapter 3. 

Removing a link in this case makes it impossible to revert to the previous situation. It is 

conceivable that the removed link could be critical to a low-cost solution: in this case, 

the simulated annealing algorithm would not be able to arrive at such a low cost 

solution.

Note also that for a fixed cooling rate, the time required to obtain the solution is related 

to the initial temperature: if  the initial temperature is increased, the time required to 

obtain a solution is also increased. Since a large initial temperature results in both a 

poorer quality solution and an increased amount of time to obtain the solution, it makes 

sense not to consider using very large initial cooling temperatures for these small 

problems.

Final Cooling Temperature

Figure 4-20: Variation of solution quality with final temperature of cooling

schedule.

The final temperature o f the cooling schedule -  when the cooling schedule reaches this 

temperature, the process terminates -  is also important. It has an effect on both the time
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taken to obtain a solution and the resultant solution quality. This can be seen in Figure 

4-20. The solution quality improves as the final temperature decreases. However, there 

is a time cost associated with this, which is shown in Figure 4-21. The amount of 

iterations increases linearly as the log o f the final temperature decreases. This arises 

directly from the fact that the cooling temperature at each interval is equal to that of the 

last interval multiplied by the cooling parameter. The question then is whether the 

increase in the time required to obtain a solution is warranted and this is dependent on 

how much time is available and what the application is. Note however, that the linear 

improvements resulting from decreasing the final temperature shown in Figure 4-19 will 

break down and decreasing the cooling temperature further will not result in any more 

cost savings. This will occur as the solution becomes closer and closer to a local 

minimum.

Final Cooling Temperature

Figure 4-21: Variation of number of iterations with final temperature. The initial 

cooling temperature is 100000 and the cooling parameter is 0.995.

The cooling parameter also has a substantial effect on both the time taken to obtain a 

result and the quality o f the result obtained. The dependence of the solution quality on 

the cooling parameter is more difficult to identify than either the initial or final cooling 

temperature, but some investigation o f the effect o f the cooling parameter on the 

solution quality follows.
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Figure 4-22: Variation of costs for different values of the cooling parameter for the 

problems with linear costs. The initial temperature is 1000. The results are relative

to some norm.
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Figure 4-23: Variation of costs for different values of the cooling parameter for the 

problems with linear costs. The initial temperature is 10000. The results are

relative to some norm.
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Figure 4-24: Variation of costs for different values of the cooling parameter for the 

problems with linear costs. The initial temperature is 100000. The results are

relative to some norm.

Examples o f how the solution quality varies with the cooling parameter are shown in 

Figure 4-22 to Figure 4-24. The results shown in these figures were obtained by using 

the simulated annealing algorithm to solve a particular problem. The results were 

averaged and the relative costs using the different approaches are shown in Figure 4-22 

to Figure 4-24. From the figures, it can be seen that for a higher initial temperature, a 

higher cooling parameter causes the quality of the solution to be worse; conversely, for 

a lower initial temperature, a higher cooling parameter causes the solution quality to be 

better. In both cases, this can be explained by the fact that the cooling parameter 

lengthens the overall cooling process, but more discussion of each case is warranted.

In the case in which the initial temperature is high, lengthening the cooling process 

means that more time is spent in this high temperature part o f the cooling schedule. 

Consequently, more poor quality moves are permitted and the solution can stray far 

from an optimal in this part o f the cooling schedule. Furthermore, the particular 

implementation o f the simulated annealing algorithm does not permit links to be 

inserted once they are removed: this makes it impossible to revert to a previous state if 

the transition to the current state results in this link removal. This can mean that poor 

quality moves are accepted in the early part o f the cooling schedule, and they cannot be
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undone later on. This gives rise to poorer quality solutions in the case in which the 

initial temperature is high and the cooling parameter is high.

When the initial temperature is low, moves that are accepted are mostly those which 

cause a reduction in the overall cost o f the solution; the probability o f accepting a move 

resulting in an increase in cost is small. Hence, using a larger cooling parameter in this 

case, causes the cooling process to be lengthened and increases the number of moves 

attempted. Since the accepted moves are predominantly those which cause a reduction 

in cost, using a larger cooling parameter in this case has the effect o f causing more 

moves resulting in a lower cost to be tried and hence the resulting solution to be of 

lower cost.

There is a region in between these two extremes for which the use o f the larger cooling 

parameter can result in increased costs for smaller problems and decreased costs for 

larger problems. This arises because the bad irreversible moves alluded to above have 

more o f an impact in the smaller problems than the larger problems.

Similar results were observed for problems with piecewise linear and stepwise cost 

functions.

The above results show that it is difficult to conclude what is the best cooling parameter 

in each case. It is dependent on the problem size and the initial cooling temperature. 

Perhaps i f  the irreversible nature o f the cooling process was modified, the process 

would be more predictable and the use of a larger cooling parameter would uniformly 

result in improved solution quality on average. However, this was not explored here 

because the solutions obtained using the greedy algorithm were so much better as is 

discussed below.

Comparison o f  Results Obtained Using Greedy and Simulated Annealing Algorithms

The simulated annealing algorithm was run for a number o f different problems and the 

results were compared with the results obtained using the greedy algorithm. A set of 

simulated annealing parameters was chosen and was applied to many o f the different 

problems. The sets o f simulated annealing parameters chosen are shown in Table 4-2.
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Problem Identifier Initial Temperature Cooling Parameter

SAI 1000 0.98

SA2 1000 0.99

SA3 1000 0.995

SA4 10000 0.98

SA5 10000 0.99

SA6 10000 0.995

SA7 100000 0.98

SA8 100000 0.99

SA9 100000 0.995

SAIO 1000000 0.98

S A ll 1000000 0.99

SA12 1000000 0.995

Table 4-2: Parameters used in each of the simulated annealing solvers.
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Figure 4-25: Comparison of results obtained using different algorithms and 

parameters for problems with linear cost functions.



Figure 4-26: Comparison of results obtained using different algorithms and 

parameters for problems with piecewise linear cost functions.
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Figure 4-27: Comparison of results obtained using different algorithms and 

parameters for problems with stepwise cost functions.

The results are shown in Figure 4-25, Figure 4-26 and Figure 4-27 for the problems 

with linear, piecewise linear and stepwise incremental cost functions respectively. In all 

cases, it is clear that the greedy algorithm performs significantly better. In the linear cost

140



function case, the difference is least but it is still quite substantial. The difference is 

considerably greater in both the piecewise linear and stepwise incremental cases.

The difference between the results obtained using the greedy algorithm and the 

simulated annealing algorithm can be explained using some of the arguments in section

4.5.2 above. Here, three different sets of solutions obtained using the simulated 

annealing algorithm are identified and considered separately.

In the case in which the initial temperature is low, the algorithm performs in a manner 

somewhat similar to the greedy algorithm: only moves that result in a lower cost state 

are accepted. However, in the simulated annealing algorithm, instead of performing an 

exhaustive search of the state space, neighbours are chosen repeatedly at random, until 

lower cost neighbours are obtained. This approach is less likely to lead to the local 

minimum than the more systematic greedy approach. For this reason, the results 

obtained using the greedy approach are better in this case.

In the first case in which the initial temperature is quite high, bad moves will be 

permitted in the earlier part of the cooling schedule. This can result in the algorithm 

entering a bad state. This, coupled with the fact that reinstallation of links is not possible 

results in a poor solution. This can be seen in Figure 4-25 to Figure 4-27 (this is shown 

in plots SA7, SA8 and SA9).

If the initial temperature is made very high and the cooling parameter is also high, the 

solution quality can improve as the cost is made number o f nodes increases as is shown 

in Figure 4-25 and Figure 4-26 (plot SA12 in particular). This does not result in a very 

good solution, but the point is to note that arbitrarily increasing the initial temperature 

does not always result in poorer and poorer solutions. This relative improvement in the 

solution probably comes about in larger problems because the amount o f links that are 

removed is reduced. Also, the number o f routes that will remain unaffected by the 

optimisation algorithm will be larger.

Overall, it can be seen that the simulated annealing algorithm generally results in poor 

quality solutions.

The difference in the results obtained in the piecewise linear and stepwise incremental 

cases can be explained by the economies o f scale that arise in these cases. In these 

cases, there are significant advantages to routing as much of the traffic as possible on a 

small set o f links. For example, rerouting a demand on a network with stepwise 

incremental cost functions may result in no increase in capacity (and hence cost) on the
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links comprising the new route. This is in contrast to the linear case, where such a 

rerouting would result in a cost being incurred on the alternate route.

The greedy algorithm attempts to do concentrate as much of the capacity as possible on 

a small number of links, availing o f the aforementioned economies o f scale. With the 

greedy algorithm, hub locations naturally arise and the other nodes in the network are 

‘homed’ on these hub locations. When solving the problem using the simulated 

annealing approach, the nature o f the algorithm means that it is less likely that these 

hubs will develop -  the resulting topology will be much more random, and the overall 

cost will be higher. Hence the cost difference between the results obtained using the 

simulated annealing approach and the greedy approach in the piecewise linear and 

stepwise incremental link cost function cases.

4.5.4 Trade-off Between Solution Quality and Time Required to Obtain 

Solution

When solving the problems above, it was clear that the greedy algorithm obtained the 

best solution all the time. However, there may be some cases in which it is desirable to 

obtain some solution in a reasonably short space of time, rather than obtaining the best 

solution in a longer time. Hence, it makes sense to consider the trade-off between the 

time required to obtain the solution and the quality o f the resulting solution.

In section 4.5.2 it was observed that time required to obtain solutions increases 

exponentially with the problem size: this is true of both the greedy approach and the 

simulated annealing approach. However, for a problem of a given size, it can take 

considerably longer to obtain a result using the greedy algorithm than it can to obtain a 

result using a simulated annealing algorithm.

Choosing a large initial cooling temperature and/or a large cooling parameter in the 

simulated annealing algorithm resulted in a considerable time taken to obtain a solution. 

Also, the resulting solution was worse than that of the greedy algorithm. Consequently, 

in this case, it is beneficial to choose parameters for the simulated annealing algorithm 

that result in a short execution time. This means that the simulated annealing algorithm 

is a more likely candidate for situations in which the time required to obtain a solution 

is more limited.
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Number of Relative Greedy Relative SA SA Solution

Nodes Greedy Cost Solution Time Cost Time

10 0.78346 0 0.807971 0

20 0.843912 12.8 0.912859 8.08

30 0.863901 126 0.969034 37.52

40 0.878137 631.8 0.987921 111.8

50 0.876892 2221 1.000717 260.08

Table 4-3: Time vs. Cost comparison of solutions for the problems with linear cost

functions. The SA algorithm results are for the SA1 parameters above.

The solutions obtained using the simulated annealing algorithm using a small cooling 

parameter resulted in very small percentage differences in solution quality (<1%). 

Consequently, the benefits o f running the algorithm multiple times with different 

random seeds to obtain different solutions are questionable -  the algorithm can be run 

once and the solution obtained. Here, the use o f the simulated annealing algorithm run 

once for a specified set o f parameters is compared with the use o f the greedy algorithm.

Number of 

Nodes

Relative 

Greedy Cost

Greedy 

Solution Time

Relative SA 

Cost

SA Solution 

Time

10 0.5487868 0 0.7929614 1

20 0.4471776 30.4 1.0380581 11.6

30 0.3997993 287.6 1.1421577 48.2

40 0.3451297 1436.4 1.1788172 136.2

50 0.3147747 4653 1.1816319 307.8

Table 4-4: Cost vs. quality comparison for problems with the piecewise linear cost

function. The SA algorithm results are for the SA1 parameters above.

In the case in which the linear cost function is used, the discrepancy between the results 

obtained using the simulated annealing algorithm and those obtained using the greedy 

algorithm are not very great for the sizes o f the problems studied. The results are shown 

in Table 4-3. Since the simulated annealing algorithm obtains the solution in relatively 

short time in this scenario -  it takes less than l/8 th the time when the problem size is 50

143



nodes -  there are some advantages to the use o f this algorithm in this case. However, 

when the cost functions are linear functions o f the capacity, more efficient techniques 

exist to solve the problem such as that proposed by McGibney. Hence, the usefulness of 

this approach in the linear case is questionable. It is included here for comparison with 

the other cases.

Num ber of Relative Greedy Relative SA SA Solution

Nodes Greedy Cost Solution Time Cost Time

10 0.47863 0 0.821101 1.0

20 0.442224 27.4 1.026898 12.2

30 0.368313 250.8 1.153846 49.8

40 0.31966 1195.4 1.184053 137.2

50 0.283738 3949.2 1.191688 302.8

Table 4-5: Cost vs. quality comparison for problems with the stepwise incremental

cost function. The SA algorithm results are for the SA1 parameters above.

The results obtained in the case in which the link cost functions are piecewise linear are 

somewhat different from those obtained when the link cost functions are linear. In this 

case, there is a very substantial discrepancy between the results obtained using the 

simulated annealing algorithm and the greedy algorithm. For the above 50 node 

problems the simulated annealing algorithm results in a cost almost 4 times higher than 

that obtained using the greedy algorithm. This solution is effectively useless. 

Consequently, the time spent obtaining this solution can be considered wasted time. 

Hence, for these problems, the results obtained by the simulated annealing algorithm are 

not very useful. The same is true o f the results obtained for the stepwise incremental 

cost function.

4.5.5 Objective Analysis of the Results

In general, it is difficult to perform any kind of objective analysis of the solution quality 

because the problem can have arbitrary cost functions. For this reason, no objective 

analysis o f the quality o f the cost function is included here.

However it was realised towards the end o f this work that one useful approach may be 

to generate linear functions which upper bound and lower bound the cost function over
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the appropriate interval. The approach used by McGibney in [McG95] could then be 

used to obtain and upper and lower bound on the solutions. These could be used to 

determine the quality o f the solution obtained using this approach. This only makes 

sense in an environment in which the link cost function is an increasing function of the 

used link capacity. Since this is usually the case, this should not be a problem.

4.6 Conclusion

This chapter serves to illustrate how the generic framework can be applied to solve a 

specific network design problem. The specific network design problem was described 

first. A model for the problem was then constructed and the mapping from this specific 

problem to the generic problem was discussed. A number o f random example problems 

were then used to illustrate the use of the approach. These were then mapped to generic 

problems and the generic problem solvers were then used to obtain solutions to the 

generic problems.

The approach was analysed both in terms o f the time taken to obtain solutions and the 

quality o f the solutions obtained. It was found that for many o f the cases the version of 

the simulated annealing algorithm was not particularly useful; the greedy algorithm 

always obtained better results and often very considerably better results. Interestingly, 

the simulated annealing algorithm that was used here sometimes obtained worse 

solutions when the parameters o f the algorithm were chosen to increase the amount of 

processing time. Hence, increased processing time sometimes resulted in poorer 

solutions. When comparing solution quality against the time required to obtain the 

solution, the simulated annealing algorithm performs very poorly in the case o f the 

piecewise linear and stepwise incremental cost functions.

The poor performance obtained in some cases above is not a specific problem with the 

framework -  the problem is with the approach used to solve the generic problem. 

Specifically, the simulated annealing algorithm was found to obtain poor results above. 

This can most probably be attributed to the choice o f state space and neighbourhood 

used in this work: an alternate choice o f state space and neighbourhood could have been 

used to obtain a much better solution. An alternate choice o f state space and 

neighbourhood could form the basis o f an alternative solution approach within the 

framework.
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CHAPTERS D if f s e r v /M P L S  N e t w o r k  C o n f ig u r a t io n

P r o b l e m

5.1 Introduction

Here, another specific problem is described that can be solved using the network 

optimisation framework discussed in Chapter 3. The specific problem under study here 

is that of configuring a core network to carry a set o f customer demands with some QoS 

requirements. In this problem the customer demands are a set of Data-based Virtual 

Private Network (D-VPN) demands with associated qualities. The core network is 

implemented using Differentiated Services or diffserv and MPLS. The problem is to 

determine how best to configure the core network such that the demands can be carried 

with the requisite QoS while balancing the load on the network.

The chapter is structured as follows. First, an overview o f both diffserv and MPLS is 

given. Next, the particular core network configuration problem considered here is 

described; the scenario is described and any assumptions made relating to the 

implementation are discussed. The problem is then formulated into a specific problem 

model. Issues associated with the mapping from the specific problem to the generic 

problem are considered next. Once an appropriate mapping function is defined, it is 

possible to apply the generic network design approach to solve the specific problem. To 

illustrate this, some diffserv/MPLS core network configuration problems are 

constructed; solutions to these problems are obtained using the generic approach 

described here. The solutions are validated by simulating some small networks, while 

larger problems are solved to illustrate the benefits o f optimising the network in this 

fashion.

5.2 Diffserv and MPLS

Diffserv and MPLS are two relatively new technologies that have been developed 

within the Internet Engineering Task Force (IETF). Diffserv was developed to facilitate 

differentiation between packets as they are processed in network nodes with a view to 

providing some support for QoS. MPLS was developed to facilitate flexible routing in
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networks and hence provide much greater control over network routing. These two 

technologies can work well together to provide QoS across a single administrative 

domain.

Each o f these technologies is considered in more detail below. Then, the current 

solutions for interoperation o f these technologies are discussed.

5.2.1 Diffserv

Diffserv [RFC2475,RFC2474] was developed as a means to offer some support for 

scalable QoS over IP through service differentiation. The idea is simple: service 

differentiation is facilitated by giving each packet one o f a standardised set of markings. 

These markings indicate how the packet should be treated by the network elements: 

different markings result in different treatments o f packets, resulting in different QoS. 

The packets are processed at each node in the network according to their marking. Thus 

the QoS required by the packet is obtained.

Here, the initial efforts to develop an IP QoS solution which resulted in the Intserv 

architecture are first discussed. The limitations o f the Intserv approach are identified. 

Then the diffserv architecture is described, including a description of standardised 

packet markings and some suggestions on how they should be treated at nodes. Devices 

which operate at the network edge to limit the amount o f traffic entering the network are 

also detailed. Some implementation details follow: a typical queue and scheduler 

implementation is described and some implementation details for the edge traffic 

conditioners are also given. Finally, some examples o f diffserv-based services are 

described.

Early Work on an IP-QoS Solution

Earlier work on IP QoS resulted in the so-called Integrated Services or Intserv 

architecture [RFC 1633]. The Intserv approach borrows much from the more 

conventional telecommunications mindset in which QoS is offered on a per-connection 

basis: it focuses on individual IP flows with QoS requirements. Before such a flow 

starts transmission, it is necessary to determine whether or not the network can meet the 

requirements o f the new flow without adversely affecting commitments made to other 

traffic. If there are not sufficient resources to carry the flow with the required QoS, the 

network identifies what QoS it can support for the flow and informs the source. The
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source then decides whether to accept this lower QoS or to abandon or defer the 

communications.

Intserv requires a signalling protocol to facilitate communications between the sources 

and the network. The Reservation Protocol (RSVP) [RFC2205, Whi97] was specifically 

developed to satisfy this need. Other signalling protocols could be developed that meet 

the requirements o f the Intserv architecture but RSVP is currently the only standardised 

solution that meets these requirements. The use o f RSVP signalling in the Intserv 

architecture in this manner results in the so-called Intserv/RSVP solution.

The Intserv architecture is a departure from the more usual thinking within the Internet 

community. Before Intserv was developed, the emphasis was very much on minimising 

the amount of critical and complex functionality in the network core and ensuring that 

most o f it remained at the edge o f the network [SRC84]. This was due to scalability and 

robustness concerns. This resulted in end-to-end protocols. For example, the 

Transmission Control Protocol (TCP) [RFC793] was designed to enable congestion 

control from the network edge. Security mechanisms such as Secure Socket Layer (SSL) 

are also implemented on an end-to-end basis. This philosophy typically results in 

robust, scalable solutions.

The Intserv architecture is not very suitable for wide-scale deployment in large core 

networks. The primary reason for this is that it suffers from scalability problems. Nodes 

in large core networks may have to simultaneously process many thousands o f flows. It 

is necessary to keep state information for each flow traversing each node and to process 

and respond to signalling messages for all o f these flows. Large core nodes would 

require very substantial resources to process all this signalling traffic. This heavy load is 

further compounded by the fact that RSVP connections are ‘soft-state’ connections -  

the flows periodically send keep-alive signalling messages to ensure that the resources 

remain reserved. For a large number of flows, the load induced by a large number of 

keep-alive messages could be significant. This large processing load and retention of 

substantial state information causes significant scaling problems: as the network size 

increases and the amount o f flows with QoS requirements increases, the required node 

size increases dramatically. Note that it is most probably feasible to implement a large 

core Intserv/RSVP-based network if  enough memory and processing power is used. 

However, such a router would necessarily be very expensive.
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Aside from the scalability problems, an end-to-end QoS solution based on Intserv 

suffers from another critical problem: evolution to such a scenario is difficult. In order 

to support end-to-end QoS using the Intserv/RSVP architecture most of the routers 

between source and destination must support RSVP. Otherwise, the communications 

between the source and destination will not receive the required QoS. If parts o f the 

connection do not contain RSVP aware routers, then the flow will only receive best 

effort service on this part o f the connection. Deploying RSVP on a large scale can 

require costly upgrades to a very large amount o f routers. Unless the benefits o f this are 

very clear, operators will be reluctant to spend the large amounts of money required to 

implement an end-to-end Intserv/RSVP-based network. Also, a partial deployment is 

not so useful, since the key benefit o f this architecture is predictable QoS; something 

that is not delivered if  signalling is only supported by a minority of routers.

A  S i m p l e r  A p p r o a c h  -  d i f f s e r v

Diffserv is a fundamentally different and much simpler approach to offer some level of 

QoS in the network. Diffserv focuses on aggregates of flows rather than single flows as 

in the Intserv case. Diffserv does not require signalling and hence requires little 

intelligence in the network core. It operates simply by giving each packet an appropriate 

marking at the network edge and treating the packet in a way that is dependent on its 

marking at each node in the network core. Consequently, it is a much simpler and much 

more scalable approach than that o f Intserv.

Diffserv focuses on facilitating services. These services are offered to the customer by 

the network operator. They are typically bulk transport services: the operator agrees to 

carry some quantified amount o f the customer traffic while offering some level of QoS. 

The specifics o f the service offering are detailed in a Service Level Agreement (SLA). 

This provides the basis for the common understanding o f the service as well as defining 

the quantifiable commitments made by both parties, e.g. the QoS to be offered by the 

operator, and the amount o f traffic that the customer can inject into the network.

Diffserv and Intserv are not mutually exclusive technologies: both can exist within a 

network. Indeed, the most likely development of today’s networks is that both diffserv 

and Intserv will be used to facilitate end-to-end QoS. Diffserv will most likely be 

deployed in the network core because it is simple and scalable, and RSVP will most 

probably be used in the access part of the network to control access to the diffserv
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resources. Such an architecture is illustrated in Figure 5-1 and is discussed further in 

[XN99],

Figure 5-1: End-to-end QoS implemented with Diffserv and RSVP.

Diffserv is interesting from a research perspective because it is a radical departure from 

the more traditional circuit-oriented view o f offering QoS (e.g. Intserv/RSVP, ATM). 

Diffserv has two key benefits over the more traditional view -  lower cost and higher 

scalability -  and hence i f  it can be used to offer a reasonable level of QoS to customers, 

then it is a more favourable approach than the more conventional alternative. However, 

it is not clear what level o f QoS can be obtained using the diffserv approach and it is not 

clear whether reasonable quantitative guarantees/assurances can be offered with diffserv 

services. Here, some efforts are made to address these concerns.

T h e  d i f f s e r v  A r c h i t e c t u r e

A complex diffserv network capable of offering diffserv-based services over a large 

geographical area will consist of multiple diffserv domains. Each domain is 

characterised by having its own set o f operating policies. These policies could, for 

example, define the specific packet markings and their corresponding treatments in the 

network, or the set o f operating characteristics for the different services supported by 

the network. A single diffserv domain would probably be managed by a single operator.

Each diffserv domain can consist of a number o f Administrative Domains (ADs) as 

shown in Figure 5-2. A diffserv domain may be very large and it is typically easier to 

manage a set o f smaller domains than a single very large domain. Hence, the diffserv 

domain is decomposed into a number o f ADs. The operator’s policies could be applied 

consistently and uniformly across all o f the ADs. A single AD is controlled by a single 

management system. The AD management systems interoperate to provide consistent 

end-to-end QoS over the diffserv domain. Each AD is then well defined by the system 

that manages it.
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Figure 5-2: Administrative Domains within a diffserv domains.

Each AD has a well-defined boundary. Nodes at the boundary -  so-called boundary 

nodes or edge routers — o f the AD connect to other ADs or other networks. These may 

be ADs operated in the same diffserv domain, ADs operated by a different operator, or 

customer networks. Nodes that do not interface with other ADs or networks are called 

interior nodes or core routers. Every node in the AD must be either a boundary node or 

an interior node. A single diffserv domain connecting two customer premises is 

illustrated in Figure 5-3.

Boundary nodes and interior nodes have slightly different functionality. Boundary 

nodes perform traffic conditioning functions, which condition the traffic, on entry to the 

network. This conditioning is performed based on an SLA negotiated between the 

customer and the operator and involves ensuring that the traffic that enters the network 

is consistent with the SLA agreed with the customer. If the customer tries to inject very 

large amounts o f traffic into the network, the conditioners will act to ensure that the 

customer’s traffic does not have a detrimental effect on the network performance 

perceived by other users o f the network. Interior nodes can simply route the traffic 

through the core treating each packet according to its packet marking. The architecture 

also has support for interior nodes performing traffic conditioning but this is not
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considered any further here: here, it is assumed that the interior nodes simply perform 

high-speed routing functions and the boundary nodes perform traffic conditioning and 

routing.

9A SA

A
Customer

C o e  muter
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CaeRw fer

M w P c n ii i

Figure 5-3: Illustration of diffserv network.

While the purpose of diffserv is to enable services to be deployed, the diffserv 

standardisation effort has not focussed on specification o f services. Rather, the diffserv 

standardisation effort has focussed on standardising an architecture within which 

services can be implemented. This involved developing a set o f building blocks that can 

be used to implement a flexible array o f services. In theory, this means that an operator 

is able to offer a wide variety o f services; in practice, the service offerings will probably 

be small in number. However, this approach is certainly more flexible than one in which 

the services themselves are specified. This means that if  new ‘killer’ applications are 

developed that require specific diffserv service offerings to be deployed, the operator 

can implement new services to cater for these new applications without difficulty.

A more detailed explanation o f the building blocks that can be used to offer diffserv 

services follows. First, the so-called Per-Hop Behaviour (PHB) -  the way that a diffserv 

node processes and queues a packet -  is discussed, followed by a discussion of the 

traffic conditioners at the edge o f the network. The former facilitate service 

differentiation by treating packets differently, depending on their marking, while the 

latter limit the amount of traffic entering the network to ensure that the network 

resources are not overutilised, compromising the QoS.
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Per Hop Behaviours and Diffserv Codepoints

The PHBs are the building blocks that have been standardised within the architecture to 

facilitate the development o f diffserv-based services. These PHBs specify how a node 

processes a packet with a given packet marking. They can be used in conjunction with 

some specific traffic conditioners at the edge of the network to implement some specific 

services.

The PHBs specify how a node should treat a packet with a specific Diffserv Codepoint 

(DSCP) or packet marking. They are specified in terms o f implementation requirements. 

The PHBs do not specify actual implementations; rather, they specify how to determine 

whether or not a particular implementation is conformant with the PHB specification.

A number o f DSCPs and their associated PHBs are standardised. Three sets of PHBs are 

defined. These are:

• the Expedited Forwarding (EF) PHB;

• the Assured Forwarding (AF) PHB group;

• the Class Selector (CS) PHBs (which includes a default PHB).

The EF and AF PHBs are new and are intended to facilitate implementation o f new 

services. The CS PHB is intended for legacy use: some existing networks use an 

approach similar to diffserv to prioritise some traffic (such as network control traffic). 

The purpose of the CS PHB is to ensure that such applications will work without 

modification in a diffserv environment.

The EF PHB [RFC2598] was designed to support services with stringent QoS 

requirements. It is intended for low loss, low delay services. The PHB specification for 

the EF service class specifies that sufficient resources must exist at the node egress to 

carry all the EF traffic. Specifically, the output resources reserved for EF traffic must be 

no less than the input EF rate. Hence EF traffic should experience minimal loss and 

delay. The EF service class is implemented using a single DSCP: all EF traffic in the 

network is marked with this codepoint.

The AF PHB group [RFC2597] was designed to be sufficiently flexible to facilitate 

deployment o f service offerings with considerably different QoS characteristics. The AF 

PHB group consists o f four classes, each o f which contains three separate drop 

precedences. The drop precedences enable traffic to be prioritised within a single class. 

Higher priority traffic is less likely to be dropped or may experience a shorter delay at a
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node. Each o f these drop precedences requires a distinct DSCP. Hence, twelve DSCPs 

are reserved for the AF PHB group. [RFC2597] specifies that traffic o f a particular class 

must leave a node in the same order in which it entered, i.e. no packet reordering can 

take place within an AF class at a node. It also specifies that the higher priority traffic 

within a class must not experience a higher long term drop probability than lower 

priority traffic within the same class.

The CS PHBs are intended to support and be consistent with legacy applications that 

support some QoS. The particular IP packet header byte that contains the DSCP was 

also used in some IP legacy networks to support some service differentiation. In non- 

diffserv IP networks this byte is called the TOS byte. Some particular values o f the TOS 

byte are typically used in legacy networks to differentiate between priorities of traffic; 

for example, network control traffic often has a particular TOS byte setting which 

differs from that of standard data traffic. The particular codepoints reserved for the CS 

PHBs are exactly consistent with the use of the TOS byte for legacy applications: a 

diffserv network will interpret TOS byte settings as indicating that the packet is marked 

with the CS PHB. Thus legacy applications using the TOS byte can work in a diffserv 

network using the CS PHBs. The CS service class simply specifies some set of 

priorities. The PHB then specifies that nodes implementing the CS service class must 

treat the different CS DSCPs with different priorities. The higher value CS codepoints 

should receive higher priority than lower valued CS codepoints.

Note that a node does not have to support all of these PHBs to be diffserv compliant. 

Similarly, an operator does not have to implement services using all of these PHBs. 

More DSCPs are reserved for local use within a diffserv domain, so an operator can 

choose to define a new PHB (assuming the equipment supports it) and associate it with 

some of the DSCPs that are reserved for local use. In this way an operator can 

implement and deploy a new service. In practice, it is more likely that an operator 

would use the DSCPs that are reserved for local use to implement another instance of 

the EF, AF or CS PHBs that has different operating characteristics if  the standardised 

set o f PHBs is not sufficient.

Traffic Conditioners

Traffic conditioners operate at the edge o f the network to condition the traffic entering 

the network. This conditioning limits the amount o f traffic o f each type that enters the 

network. The traffic conditioners determine whether or not each packet conforms to an
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SLA. If so, then the traffic conditioner performs no action; if  not, then the traffic 

conditioner can perform one of a number of actions. The traffic conditioner can do one 

of the following:

• Drop the packet -  the packet does not enter the network;

• Remark the packet -  the packet is allowed to enter the network but with a codepoint 

different from that which it originally had;

• Delay the packet -  the packet is allowed to enter the network, but must wait until 

such a time as its entry into the network is conformant with the SLA.

Which action is performed is dependent on the service that the operator implements.

Not all actions are appropriate for all services. For example, services implemented using 

the EF service class typically have low loss and delay requirements. A traffic 

conditioner at the node ingress that shapes traffic and causes delays to be introduced is 

not suitable. Also, remarking is not very suitable for EF services, since the packets 

would be marked down to lower quality services and they would arrive at the 

destination too late to be useful. AF-based services are more flexible and any of the 

above operations can be naturally applied to these services.

I m p l e m e n t a t i o n  D e t a i l s

The objective here is to determine how to configure the network to accommodate the 

customer demands in an efficient and robust manner. To do this, it is necessary to make 

some assumptions on the way the network is implemented. Here, some example 

implementations o f components o f the diffserv network are assumed and part o f the 

overall problem is to choose appropriate parameters for these devices to deliver the 

required QoS.

The standards do not define how diffserv should be implemented. Those implementing 

diffserv must decide how to construct an implementation that is compliant with the 

standards. However, the standards do describe example implementations and it is very 

likely that many implementations will be strongly influenced by the example 

implementations. Such implementations are assumed here.

Two key components in the diffserv architecture are considered here. First an 

implementation o f the combined queue and scheduler is described followed by a 

discussion on the implementation o f the traffic conditioners.
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Queues and schedulers exist in the network nodes to control access to resources. In 

general, large core network nodes can consist o f multiple switching stages and some 

form o f queuing and/or scheduling can occur at each stage. Here, the nodes are 

modelled simply as an output stage; any effects that can be attributed to characteristics 

of the internals o f the node are ignored.

Queue

Queue and Scheduler Implementations

JK xQ ua c 3  '  Output He

DeftsJt Queue

Figure 5-4: Queue/scheduler configuration assumed at the output stage of the 

diffserv code node. The scheduler determines which queue to take a packet from

when the link becomes idle.

If the nodes are modelled simply as output buffering stages, then the nodes can be 

modelled simply as a configuration of queues and schedulers as shown in Figure 5-4. 

The constraints imposed by the standards on the different codepoints coupled with 

example uses of the codepoints give rise to some rather natural queue/scheduler 

configurations. For example, EF-based services are intended to be low delay services. 

Hence, it does not make sense to have large EF buffers, otherwise large delays could be 

introduced. AF classes have a reordering constraint -  traffic from an AF flow cannot be 

reordered within a node. This implies that all the AF traffic for a particular flow should 

be queued in the same queue.

Using the above ideas, the queue scheduler system shown in Figure 5-4 was chosen. 

This consists o f four queues: one for EF, A Flx, AF2x and a default or Best Effort (BE) 

queue. This is not standards compliant in two senses: first, the CS codepoints are not 

implemented and secondly, not all four AF PHB classes are implemented. However, it 

is easier to work with a smaller number o f  traffic classes and is sufficient to validate the 

approach used here to configure the network.

In this system, some o f the queues have so-called Active Queue Management (AQM). 

This is a mechanism that operates on a queue that tries to prevent congestion by
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dropping small numbers o f packets before the queue fills up. Its purpose is to increase 

the stability o f the system, which has desirable effects such as increasing the overall 

throughput. AQM is particularly suited to adaptive traffic -  such as TCP -  which 

reduces its transmission rate when it detects a packet loss. It causes the adaptive sources 

to reduce their transmission rate in small steps. If no such mechanism was used, then the 

queue would fill and multiple packet losses could occur; for TCP sources, this would 

result in a very substantial reduction in the transmission rate. AQM attempts to increase 

stability in the system by causing single packet drops rather than multiple packet losses, 

which is more common when AQM is not used.

Floyd and Jacobson proposed the Random Early Detection (RED) AQM scheme in 

[FJ93]. RED is a particular AQM scheme in which the packet drop probability increases 

linearly with the mean queue occupancy. Clark and Fang proposed a variant of this that 

is applicable to a scenario in which traffic with different priorities or drop precedences 

use the same queue in [CF98]. The latter was termed RED for In and Out traffic (RIO). 

It operates by applying two separate RED mechanisms -  one for high priority traffic 

and one for low priority traffic. It is assumed that traffic is marked as either high 

priority or low priority somewhere in the network (most probably the edge of the 

network) and that the low priority traffic should experience a higher loss probability 

than the high priority traffic. More AQM mechanisms have been proposed, which are 

variants of the above two -  self-configuring RED [FKSS99], Fair RED [LM97], and 

others -  but they are not considered here.

Here, AQM mechanisms are assumed for the AF and BE queues, since these service 

classes would most likely contain substantial amounts o f TCP traffic. Such mechanisms 

are not used for the EF queue because the EF queue would typically not contain TCP 

flows, and these mechanisms are most suited to queues with substantial amounts of 

adaptive traffic. The AF queues contain traffic with different drop precedences and 

hence an RIO AQM mechanism is used; the BE queue contains homogeneous traffic (in 

the sense that no BE traffic has priority over other BE traffic) and hence an RED 

mechanism is used.

The scheduler assumed here is a Weighted Round Robin (WRR) scheduler. In this 

scheduler, different weights are given to each queue: the queue weights are proportional 

to the proportion o f the link resources that each queue should receive when the system 

is congested. When the system is uncongested, there can be more flexibility in the
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system, i.e. some queues can obtain more than their allocated capacity because others 

need less.

The WRR scheduling mechanism used here is based on the notion of ‘rounds’. In each 

round, some ‘credit’ is allocated to each queue to be used within the round. If a packet 

arrives at the queue, and the queue is next to be served, the scheduling mechanism first 

checks to see if  the queue has accumulated sufficient credit to allow transmission of the 

packet. If so, then the packet is transmitted on the link and the amount o f credit 

associated with the queue reduced; otherwise, other queues are examined. If every 

queue is always ready to transmit data, then the queues will be given access to the link 

in proportion to their weights. A more detailed description o f the operation of the WRR 

scheduler assumed here is in Appendix B.

Note that this is one possible implementation -  other implementations could be 

developed based on Priority Queuing, Class-based Queuing or some other queuing and 

scheduling mechanisms. These different approaches may result in better performance in 

some respect. The scheduler described here, however, meets the design requirements of 

low EF delays, controllable service differentiation for the other classes and a minimum 

resource allocation for BE traffic. Hence it can be used to deliver a reasonable level of 

QoS.

Traffic Conditioner Implementations

Traffic conditioners identify whether traffic conforms to some prespecified SLA and if 

not, the traffic is ‘conditioned’ according to the SLA so as not to have a detrimental 

impact on the network performance perceived by other network users. Since the traffic 

conditioning is only applicable in a QoS context, it is not applied to BE traffic.

Two basic methods o f operation o f conditioners have been proposed. The first is based 

on estimation of a transmission rate over a time interval and action will be taken on 

traffic that exceeds this rate; the second is based on a token bucket mechanism.

In the first approach -  the so-called time-sliding window approach -  described in 

[RFC2859], the current transmission rate o f the source is estimated. If the current rate 

estimate exceeds the target rate, then packets are dropped probabilistically, with drop 

probability (rest -  rtar )/rest where rest is the estimated rate and rtar is the target rate.

The alternative approach is based on token buckets [RFC2698]. These buckets obtain 

tokens at the target rate. If a packet arrives and all the tokens have been exhausted, then
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the packet is non-conformant, otherwise the packet is conformant, and tokens 

corresponding to the packet size are removed from the bucket.

The above two mechanisms to determine which packets in a stream are conformant to 

some given profile are parameterised by a rate and another parameter. In the case of the 

time sliding window approach, the parameter is the size o f the sliding window and in 

the case o f the token bucket approach, the second parameter is the bucket size. These 

two parameters perform similar functions, i.e., they specify over what interval the rate is 

measured.

The above two mechanisms can be used to determine whether or not packets conform to 

a particular profile: what happens if  they don’t conform is a separate issue that is closely 

coupled to the service definition. Conformant packets typically enter the network 

unchanged. Non-conformant packets, on the other hand, can be treated in three separate 

ways -  dropping, shaping or remarking. The first option would be used in a service in 

which it is critical to limit the amount o f traffic entering the network. The second option 

would be used in a case in which it was critical to limit the amount o f traffic entering 

the network, but the particular user o f the service was willing to put up with some 

delays rather than incur extra retransmission. The final case is applicable in a situation 

in which it is not so critical to limit the amount o f traffic entering the network and 

utilisation o f the resources allocated to the service is as important as assuring QoS 

targets are met.

In some cases, the traffic arriving at the conditioner is not marked at the source. In this 

case, the conditioner must also mark the traffic. This is done in accordance with the 

agreed SLA. Marking at the source is more desirable since the source can identify high 

and low priority traffic more easily. If the traffic arriving at the conditioner is unmarked 

and the conditioner is marking it, it may assume that all traffic is equal and mark 

accordingly. This can cause some applications to receive poorer QoS than they would if 

source marking was performed.

S e r v i c e  E x a m p l e s

Here, some services that can be implemented using diffserv are described. First, the so- 

called Virtual Wire service is described. Then the so-called Olympic service model is 

described. How the Olympic service model can be used to implement concrete services 

is also discussed.
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Virtual Wire Service

The Virtual W ire12 service was designed to enable dedicated or leased line circuits to be 

replaced with diffserv-based IP transport. The service is implemented using a suitably 

configured EF PHB and a suitable choice o f traffic conditioner.

The customer sees this service as a direct replacement for services based on TDM- 

switched dedicated lines. As such, the service is parameterised by a single rate. In 

principle, implementing the service over a diffserv core network permits dedicated line 

services with almost arbitrary capacity to be emulated. This service would typically be a 

costly service that would be used to carry traffic that is very sensitive to loss and delays. 

Typical applications would include interactive voice or video applications, time-critical 

transactions, stock prices, etc.

In order to implement the service, it is necessary to specify how the service should be 

implemented in the operator’s core network such that the user does not perceive any 

difference between the service implemented using diffserv and a dedicated circuit. The 

following issues arise when considering this problem:

• Configuration of edge conditioners;

• Ensuring timely delivery of packets;

• Resource reservation in the network;

• Routing o f flows in the core network.

Each o f these is discussed separately.

To offer this service, in which there are strict bounds on the QoS, network resources 

must be strongly protected. If there are fluctuations in the traffic, then the network will 

not be able to offer the required QoS. Hence, no fluctuations in the traffic are permitted. 

Only traffic conforming to the negotiated rate is permitted into the network -  any traffic 

exceeding this rate is dropped at the network ingress.

Ensuring timely delivery o f packets is not trivial. The diffserv core network is assumed 

to contain links o f much higher capacity than that required by the customer: diffserv

12 The Virtual Wire terminology was first introduced in an IETF contribution. There were problems with 

this document and at the time o f writing no definitive version of this document existed. The essence of the 

service is described here.
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was designed for large traffic aggregates after all. This, coupled with the fact that the 

core network will be switching other traffic means that the inter-packet spacing for 

packets arriving at the egress router will differ from the inter-packet spacing generated 

at the source as illustrated in Figure 5-5.
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Figure 5-5: Inter-packet spacing is changed in a diffserv domain. The higher 

transmission rates in the core network result in smaller packet transmission times 

-  hence the packets appear to be compressed in the core network.

To ensure that the service delivered to the customer is equivalent to a service based on 

dedicated connections, the packets must arrive at the egress router in time. If they arrive 

too late, then there will be an observable difference between the delivered service and 

the service that would have been obtained had a dedicated circuit been used. In order to 

assure this, some bounds are imposed on the jitter -  the variation in the delay 

experienced by each packet as it traverses the network. A so-called jitter window is 

defined: this defines the time interval in which the packet must arrive at the egress 

router. If the packet arrives at the egress router outside this jitter window, then the 

service delivered to the customer is not equivalent to a dedicated circuit based service.

There are problems associated with delivery o f this service. These problems are, in part, 

related to problems with the definition of the EF PHB [RFC2598] and are discussed in 

detail in [BBC01]. The problems arise when trying to assure end-to-end delay and jitter 

for EF traffic. The authors highlight extreme cases in which the flows are synchronised 

and large delays can be incurred for some flows at many nodes. This results in a large 

end-to-end delay.

It is worth noting here that these problems arise only when there is sychronisation 

between sources, and even then it is rare that such a situation would arise. However, if 

the objective is to make strong assurances to customers then these extreme case must be 

considered. One approach to avoiding this situation is to ensure that there is some
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random component to the source traffic. Indeed, it is likely that there would naturally be 

such a random element to the traffic, since the traffic would likely come from different 

applications and consist of different size packets. In this case, the extreme problems 

highlighted in [BBC01] would not arise.

Olympic Service Model

In the Olympic service model, there exist three distinct classes o f service -  Gold, Silver 

and Bronze. Gold service naturally offers the highest quality o f service, followed by 

silver and then bronze. These services are not intended for applications that are very 

intolerant of loss and delay. Rather, they are intended for services that can suffer some 

loss and delay without making the application unusable.

The Olympic service model is used to illustrate how the AF PHB group can be used. 

The Gold service can be implemented using one AF class, the silver using another and 

the bronze service using yet another AF class. The network can be designed and 

managed such that different AF classes have different operating characteristics. For 

example, the AF class used to implement the gold service can be configured such that 

the mean nodal packet delay is, say, 5ms, and loss ratio o f say 0.5%, or that the ratio of 

load to available resources is fixed at some parameter.

Particular services can be implemented by adding traffic conditioners to the scenario. 

With the AF service classes, there is some flexibility when choosing the traffic 

conditioners. The traffic conditioners may drop, shape or remark packets. In the case of 

services implemented using an AF class, it is most likely that the conditioners at the 

edge o f the network will remark traffic exceeding the pre-negotiated profile. So, for 

example, i f  a customer attempts to load the network with more traffic than is agreed in 

the SLA, then the excess traffic can be marked down to a lower priority.

To implement a service, it is necessary to define how the customer traffic entering the 

network is measured and what actions are taken if  the customer exceeds the agreed 

traffic. One way that this could be done could be to set a limit on the amount o f traffic 

of each priority that enters the network. If the traffic o f any of these priorities exceeds 

the agreed limit, then the packets are marked down to a lower priority. It may also be 

necessary to impose a limit on the amount of lowest priority traffic entering the 

network. If this is exceeded, then the traffic could be dropped. It may also be necessary 

to impose a limit on the overall traffic using a particular service.
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MPLS [RFC3031,Arm00] is a technology that was developed within the IETF to 

facilitate more control over routing in networks. It allows paths to be configured 

arbitrarily in the network and arbitrary traffic to be carried on each path. Once a packet 

enters one o f these paths, it will then follow that path through the MPLS domain and 

reach the other end of the path (assuming it doesn’t get dropped somewhere on the 

path).

This is in contrast to more traditional forms of routing in data networks in which each 

router typically made an isolated routing decision for each packet: each router 

determined how to forward each packet more or less independently of the other routers 

in the network -  arbitrary paths are not possible. RIP [RFC2453], OSPF [RFC2328] and 

ISIS [RFC1142] all operate by distributing network information amongst the nodes such 

that each node can make intelligent routing decisions. This has worked very well 

throughout the network, but lacks the flexibility afforded by MPLS.

This flexibility can be used manage the load on the network in a more controlled 

fashion, to perform traffic engineering functions and also to isolate different customer 

traffics o f different priorities and to treat them differently.

The basic mechanism used by MPLS to construct routes is label swapping. Each packet 

on an MPLS path has a label associated with it. This label can (and probably will) 

change as the packet traverses the network. At each node, the label o f each incoming 

packet is identified. A table look-up is then performed to find the outgoing label and 

interface for the given incoming label and interface. Then the packet is switched to the 

appropriate outgoing interface and assigned the appropriate output label. Label 

swapping is not such a new idea: it is also used in ATM. The ATM Virtual Channel 

Identifier/Virtual Path Identifier (VCI/VPI) can be considered to be equivalent to labels. 

Moreover, MPLS can be implemented over ATM such that the labels are exactly the 

VPI/VCI headers.

The label information is distributed through the network using a label distribution 

protocol which was specifically developed for MPLS [RFC3036].

The LSPs can be set up using information in the routing tables or directly from the 

management system. If  the layer 3 routing tables form the basis of the LSP network, 

then packets would follow the same routes if  the MPLS functionality was not used.

5.2.2 MPLS
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Alternatively, other means -  signalling or management actions -  can be used to 

construct arbitrary paths through the network.

MPLS does not have any inherent support for QoS. It was designed to facilitate flexible 

routing; QoS concerns were not initially taken into account when designing MPLS. 

However, it has since been recognised that MPLS, in conjunction with a signalling 

protocol -  be it constraint routed LDP [JamOl] or RSVP with Traffic Engineering 

extensions (RSVP-TE) [ABG01] -  can be used to support QoS in some way. Both 

CRLDP and RSVP-TE provide a means to configure paths in the network that have 

some QoS parameters associated with them. Examples of such parameters could include 

a peak and a committed transmission rate.

MPLS is quite a complex technology and much more could be written about it here. In 

particular, the MPLS LDP could be described at length. However, the emphasis here is 

on illustrating how the generic network design approach can be employed in some 

specific problem. For the problem of interest here, a comprehensive description of 

MPLS is not necessary. Rather, it suffices to note that MPLS can be used to implement 

arbitrary routing in a network, which is most suited to the generic problem solver.

5.2.3 Diffserv over MPLS

Using both diffserv and MPLS in a network enables an operator to implement a network 

in which QoS can be offered with some level o f assurance. Both diffserv and MPLS can 

offer some level o f QoS to customers without requiring the other. However, diffserv 

does not have any routing support; hence, it is difficult to control exactly how traffic is 

routed in the network and hence make any quantitative guarantees to the customers. 

Current MPLS implementations do offer some QoS support -  they enable paths with an 

associated bitrate to be configured in the network. This approach can suffer from the 

scalability problem of the Intserv/RSVP solution. Consequently, a more scalable 

approach which combines the benefits o f MPLS and diffserv is desirable. Combining 

diffserv and MPLS enables the operator to have sufficient control over the network to 

offer diffserv-based services to customers with some level of QoS assurances.

Diffserv and MPLS operate at different layers in the protocol stack. Some effort is 

therefore required to make these two technologies work together. Diffserv operates at 

the network layer -  the IP header contains the DSCP. MPLS is said to operate between 

the link layer and the network layer. MPLS packets are therefore switched without
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looking at the IP header, and the DSCP cannot be used to identify the QoS required by 

the packet. The problem then is how to determine what PHB should be used to treat 

each MPLS packet as it is switched through the node.

This problem has been identified within the IETF and two approaches have been 

proposed to solve the problem [LWD01]. The first approach uses the MPLS label to 

determine how the packet should be treated at the node; the second approach uses a 

field in the MPLS header coupled with the label to determine the priority of the MPLS 

packet.

In the first approach, the traffic on each LSP is mostly homogeneous, i.e. all the traffic 

is o f the same diffserv class. The problem is then to determine how the traffic on the 

LSP obtains the correct treatment at each node in the network. The solution proposed in 

this approach is to infer the required treatment from the MPLS label: the node will 

contain a table containing the set o f LSPs and their associated treatments. This is the so- 

called L-LSP solution.

In this solution, not all L-LSPs contain exactly homogeneous traffic in the sense that 

some L-LSPs may, o f necessity, carry multiple DSCPs. This is the case for AF traffic. 

The AF class imposes a reordering constraint: packets within the same AF class on a 

particular flow must not be reordered at a node. If packets from the same connection but 

with different drop precedences used different LSPs, then such a reordering of packets 

could occur. Consequently, all the AF packets associated with a single connection must 

use the same LSP. Hence, multiple codepoints are carried in a single LSP. In this case, 

it must be possible to differentiate between packets o f different drop precedences within 

an LSP. This is done using two o f the three bits in the experimental EXP field in the 

MPLS header. Some values have been standardised for these bits.

In the second approach, both the MPLS label and the EXP field are used to infer the 

priority o f a packet. Traffic consisting o f multiple codepoints are typically carried on a 

single LSP. This is the so-called E-LSP solution. The EXP field is 3 bits long, so up to 8 

different codepoints can be carried on a single LSP.

While the L-LSP solution does use the EXP field in the MPLS header, it is much less 

flexible than the E-LSP solution. In the L-LSP solution, specific fixed values of the 

EXP field are used to indicate the drop precedence of an AF packet. In other cases, the 

L-LSP carries purely homogeneous traffic and the EXP field is unused. For example, if  

the LSP carried EF traffic, or one o f the CS codepoints, this would be the case. In the fi­
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LSP solution, much more arbitrary mappings from the label and the EXP field to the 

DSCP can be used. Consequently, the traffic in an E-LSP can be much more 

heterogeneous. These mappings can be chosen by the network operator.

5.3 Problem Description

Here the specific problem that will be used to illustrate the use o f the generic network 

design approach is described. In this problem, the technologies described above are used 

to implement a core network that can offer diffserv-based D-VPN13 services to 

customers. First, the customer service offerings are described. Next, a specific way of 

implementing the network to enable the services to be implemented is discussed. Then 

the problem o f configuring the network to effect load balancing is discussed. A similar 

description of the problem studied here was discussed in [MBCOO].

5.3.1 Diffserv Service Offerings

The network operator offers D-VPN services to the customers. The D-VPN service 

offered consists of a set of different interconnects with QoS support between customer 

locations. The customer may have any number of interconnects between its premises. 

Here, it is assumed that the customer desires a fully connected network. It is assumed 

that these interconnects are static: their characteristics do not change with time, 

although some real service offerings may permit interconnects with some dynamic 

characteristics.

The customer D-VPNs can, in general, carry quite different types o f traffic -  traffic with 

different characteristics and different QoS requirements. For example, the D-VPN could 

carry delay sensitive interactive voice and video traffic as well as, say, delay-insensitive 

mail traffic; WWW traffic may also be carried with some delay or throughput 

requirements: the network may need to support some delay sensitive secure transaction 

processing. Many more examples of different traffic types with different requirements 

could be considered.

From the customer perspective, the network is implemented with diffserv. The customer 

sees only a diffserv interface into the network. It is not apparent to the customer that the

13 VPN is used here in the context o f  data networking. A different notion o f a VPN exists in conventional 

telephony: there, a VPN is a way o f using the resources o f the PSTN to implement something that looks 

like a private network. The VPN can be used to implement a private numbering plan, for example.
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network is implemented using MPLS. Indeed, the customer probably does not care very 

much how the core network is implemented as long as it is reliable and can offer the 

required QoS.

The diffserv standards stipulate that an operator can offer diffserv-based services with 

either quantitative or qualitative assurances. Services with quantitative assurances are 

ones in which the operator makes some measurable assurances to the customer; 

qualitative assurances are ones in which the operator makes some more vague 

assurances to the customer. Qualitative assurances are not strictly measurable. 

Quantitative assurances are more difficult to deliver.

For the purposes of this problem it is assumed that the customers desire quantitative 

assurances. Such assurances are desirable for the customer, so the customer can predict 

whether the service is suitable for the customer applications. Also, services with 

quantitative assurances are more difficult to deliver, which makes the research problem 

more interesting.

In reality, it is likely that customers will be able to obtain services with either qualitative 

quantitative assurances. The latter will be more expensive, but may be most suitable for 

some customers, while other customers who may not require such strict assurances will 

be able to opt for the lower cost services with only qualitative assurances.

In this problem, it is assumed that the operator offers premium services -  the 

interconnects with associated QoS -  based on the EF and AF PHBs and a default BE 

service which has no associated QoS. The EF-based services can be used to carry traffic 

with stringent delay and loss requirements and the AF-based services can support traffic 

with less stringent requirements but requiring service better than BE. Limits are 

imposed on the amount o f high-priority traffic the customer can inject into the network 

but the customer can generate as much BE traffic as desired.

This is a somewhat realistic scenario, but it does have one important drawback: the 

problem does not cater for the Class Selector codepoints. These are required in any 

diffserv implementation, but are ignored here, although the problem considered here 

could probably be extended to include such traffic if  the services using the traffic were 

defined. The purpose is to illustrate the use of this approach in a somewhat realistic 

problem rather than to obtain concrete solutions to very concrete problems.

The QoS parameters associated with each service are specified in terms o f a delay and a 

loss. In the case o f the EF-based services the QoS parameters associated with the
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service are the peak end-to-end delay and the peak loss ratio. In the case of the AF- 

based services, delay and loss parameters are specified for the situation in which the 

customer generates traffic conformant to the agreed profile. The customer can exceed 

this and the network will still attempt to deliver the excess, but it may be subjected to 

high loss and will also incur extra delays on both high and low priority traffic in buffers.

The different services operate in a slightly different manner. Specifically, they treat 

traffic in excess of the agreed rate in different ways. For the EF traffic, a limit is 

imposed on the peak traffic that a customer may inject into the network. If the customer 

exceeds this limit, then traffic is dropped at the ingress to the network. All of the EF 

traffic that enters the core network will have delay and loss assurances.

The EF-based service offerings described here are Virtual Wire service offerings as 

described above. As mentioned above, such services can suffer extreme synchronised 

behaviour which makes it difficult to offer any reasonable delay assurances. Here, it is 

assumed that some randomisation is either present or is introduced into the EF traffic to 

ensure that such synchronisation is very unlikely.

The AF traffic is a little more complex. AF supports the notion o f multiple drop 

precedences. A source can generate traffic and if it generates traffic in excess of its 

agreed profile the traffic can be reduced in priority by giving it a lower drop precedence. 

Then, if  there are sufficient resources available in the network, the network will deliver 

the lower priority traffic. If there are insufficient resources, the lower priority traffic will 

be dropped first.

Each AF class supports up to three drop precedences. However, AF-based services can 

be implemented using just two service classes. This operation is assumed here. Packets 

marked with AFxl are high priority AF packets, while packets marked with AFx2 and 

AFx3 are low priority packets.

The AF traffic is also permitted to be more variable than the EF traffic. Since the 

assurances required by the AF traffic do not need to be as stringent as those required by 

the EF traffic, it is not necessary to control the traffic entering the network in such a 

conservative fashion. The traffic conditioner for the AF traffic conditions traffic on both 

a mean and a peak rate: if  the peak rate is exceeded, traffic is marked down to a lower 

precedence and if  the mean rate is exceeded over some time period, traffic is also 

marked down. This variability is desirable in AF-based service offerings, since 

customers will be able to negotiate SLAs that match their variable requirements better.
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The conditioners can either be window based or bucket based as in [RFC2859] and 

[RFC2698] respectively. These are discussed above. In this work, the conditioners were 

assumed to be bucket based, since it is easier to offer assurances in a system in which 

the conditioners are bucket based.

The customer has some set o f applications with some associated QoS requirements. 

Since the operator defines the level o f QoS for each of the service offerings, the 

customer can determine which service offerings are most suited to which applications. 

The customer may decide to choose a number o f different service offerings for the 

different applications, or, alternatively, the customer may choose to use a single service 

for all the traffic to minimise management overheads. The latter option would be 

effectively a trade-off o f service costs against management costs: the customer chooses 

to pay more to have a single service which is easier to manage rather than to pay less to 

the operator and have higher administration costs.

Here, the demands are assumed to be point-to-point demands. Diffserv permits services 

of broader scope. Indeed, as mentioned above, these are more attractive to customers, 

and they can result in efficiency gains for operators if  managed properly (see [DGG99] 

for a more detailed discussion o f this). Such traffic can be decomposed into sets of 1:1 

demands as part o f the mapping function if  some knowledge of the demands is assumed, 

as described above. This is a non-trivial problem and is certainly an interesting area for 

further research, but it is not considered here.

5.3.2 Network Implementation

In the core network implementation considered here, it is assumed that the SLAs are 

carried over MPLS LSPs, thus permitting flexible routing. In this problem L-LSPs are 

used because they are the simplest to use and manage. Extending the problem to the use 

o f E-LSPs is not principally more difficult. However, it does require that some demands 

o f be routed together, which imposes an extra constraint on the problem. This extra 

complication is not considered here.

Here, it is assumed that a core network already exists. This core network consists of a 

set o f nodes interconnected by a set o f links. In general, the network can consist of both 

core nodes and boundary nodes: the boundary nodes have slightly different 

functionality. Such an architecture is discussed in [XN99]. Note that in many cases, 

boundary nodes can be co-located with core nodes, providing both high capacity core
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network switching and access to/from customers. This work can be applied to the 

general case, but in all o f the examples below it is assumed that every core router is co­

located with a boundary router. As such, every core router has access to/from 

customers.

The output interface to each node has a queue/scheduler system that controls access to 

the link. This is assumed to be the same as that described in section 5.2.1 above. This is 

one possible implementation, which is not necessarily the best, but serves to illustrate 

the use o f the design approach in this context.

The interconnects between the nodes are bidirectional links with some associated 

capacity. These may not necessarily be physical links -  for example, they may be SDH 

containers or ATM Virtual Pipes -  but this is not important. Thus, the network is 

implemented in order to offer the services described above.

5.3.3 Optimisation Problem

The problem then is to determine how to configure the network efficiently to 

accommodate the demands -  the set o f SLAs -  while ensuring that the required level of 

service is delivered. The objective is to ensure that the QoS targets for each service are 

attained while balancing the load on the network. Load-balancing in this manner is 

desirable, since it makes the network more robust in the face o f unexpected 

congestion/traffic patterns.

Here, only those demands that have some associated QoS are parameterised and 

explicitly routed in this problem: the BE demands are not routed explicitly through the 

network. The capacity remaining after routing the demands with QoS can be used by the 

BE traffic.

This approach can cause all o f the link capacity to be consumed by the priority demands 

leaving no resources available to the BE traffic. Clearly, this is highly undesirable. This 

can be avoided by the reserving capacity for the BE traffic in advance -  this capacity 

will not be available to the high-priority traffic in the optimisation problem. This 

reserved capacity can be removed before the optimisation problem is solved and 

replaced when the routing for the high-priority demands is determined.

Load balancing is a desirable objective since this ensures that the network is somewhat 

resilient to spikes in load or changes in traffic demands. Also, if  the demands are
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forecast demands and the network designer is determining how to plan the network, a 

solution with a balanced load will be more resilient to errors in the forecast demand.

Here, there are two key components to configuring the network: the routes have to be 

determined and the node configuration parameters must be chosen. Specifically, the 

parameters associated with the queue/scheduler system as described above need to be 

determined.

It is possible to devise a problem formulation that includes both the route configuration 

element and the node configuration element. If this was solved without decoupling the 

route configuration and node configuration element, then the load balancing would have 

to be implemented using some packet level measures -  queue delays, for example. This, 

in turn, would require that the traffic be defined using detailed packet level models. This 

formulation would result in very complex problem.

The packet-based formulation also suffers from another problem: great sensitivity to the 

traffic model used. This makes the design procedure sensitive to the traffic modelling 

assumptions. O f course, if  the traffic models are accurate, then the optimal solution may 

result in a much more efficient network configuration. However, if  the traffic models 

are inaccurate (as internet traffic models usually are -  see [PF97] for more discussion on 

this), then the network performance may be worse than predicted.

Here, no assumptions are made on the nature of the source traffic, although the traffic is 

conditioned at the ingress to the network, so the characteristics of traffic entering the 

network are known. Using this approach, the network, if  configured appropriately, can 

deliver the required QoS with a high probability. This approach does have the 

disadvantage that it may result in inefficient use o f network resources, but the emphasis 

here is on QoS delivery rather than operational efficiency. This approach can result in 

inefficiency due to over-conservative resource allocation to ensure QoS delivery. 

However, the schedulers should offer sufficient flexibility to enable underutilised 

reserved premium resources to be used by lower priority traffic.

5.3.4 Application of the Design Problem

As can be seen from the results presented in the previous chapter, it can take a 

considerable amount o f time to obtain a solution to the generic problem using the 

problem solvers developed throughout the course o f this work. Moreover, as is 

mentioned above, the generality o f the generic problem makes it difficult to find an
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algorithm which can solve the problem quickly for all but the very smallest problems. 

Consequently, the approach used to solve this specific problem is not applicable for 

making real-time decisions.

The work described here could be usefully employed to solve the optimisation problem 

in the context o f a tool which works offline to ensure that the load on the network 

remains balanced. This could operate in a network in which new demands are routed 

using some routing protocol such as, say, OSPF. This can result in a network in which 

the load is not balanced. The tool could determine a routing for the demands and 

compare it to the existing route configuration. If the new route configuration is 

substantially better than that which is configured on the network, then the network 

could be reconfigured according to the new route configuration. The problem of 

determining the optimal approach to reconfiguring the network is not considered here.

One possible problem with this approach is that the number o f demands could 

conceivably be very large. The time required to obtain a solution to the problem 

increases with the amount o f demands. Consequently, the time taken to obtain a solution 

could be large. The problem can be solved by aggregating the demands.

I f  the demands are aggregated, then the number o f demands to be routed can remain 

constant or almost constant. The solution time should then be quite constant. The 

disadvantage o f aggregating the demands in this manner is that the load may not be 

balanced as well as it could be: if  the demands are not considered in an aggregate 

fashion, the load balancing can be performed with finer granularity. There are issues 

with this: the approach used to aggregate demands in particular, but these are not 

considered here. For the purposes o f this discussion, it is sufficient to note that the size 

o f the problem can be limited by aggregation and that the network optimisation 

framework can then be used in an offline tool which ensures that the load remains 

balanced on the network.

5.4 Specific Problem Inputs and Outputs

Here, the specific problem is defined. The specific problem defined here is not defined 

in sufficient detail to be formalised and solved. Rather the specific problem is defined in 

terms o f the input parameters and the required output parameters. The problem cannot 

be formalised because the objectives are not stated in sufficient detail.
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• N  : the set o f nodes in the network;

• L : the set o f candidate bidirectional links in the network;

• G(N, L ): an undirected graph that defines how the nodes and links are connected;

• c, : the capacity o f link / e l ;

• Z : the set of customers;

• E z : the set o f directed EF SLA demands15 for customer z e Z ;

• E  = [ J  E z : the set o f directed EF SLA demands;
zeZ

• (°e’Pe’rr 3k) : the characteristics o f EF customer SLA demand e e  E -  oe is the

source node, p e is the destination node and rtpeak is the peak rate o f the demand;

• Az: the set o f directed AF customer SLA demands for customer z e Z ;

• A -  [ J  A z : the set o f directed AF SLA demands;
zeZ

• {oa, p a, r r k , r r n , t f  , s a): characteristics of the AF SLA demand -  oa is the

source node, p a is the destination node, rflpeak is the peak rate, rflmean is the mean

rate, t°n is the mean on time, is the mean off time and sa is the class for 

demand a e  Ac ;

• (i/EF,/EF): delay and loss bounds for the EF traffic;

• af/’ Iaf/ ) : delay and loss targets for the AF traffic o f class ie  {1,2} -  these targets

apply to the AF traffic o f the class with drop precedence A Fil;

• y , : fraction o f the link capacity that can be used by the priority traffic -  (l -  y , ) is

the fraction o f the link capacity reserved for the BE traffic.

The inputs to the problem are as follows14:

14 A large number o f variables are used to define this problem. Hence some o f the variable names that 

were used in the enterprise network design problem are used here in this chapter for a different purpose.

15 The demands in this problem are the SLAs: the term ‘demands’ is used throughout the following to 

refer to the set o f  SLAs.
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Most of the inputs require little explanation but a some of the parameters warrant some 

comment. The EF traffic is characterised by a peak rate. This could be for leased-line 

type applications.

The AF traffic is characterised by more parameters: the peak and mean rates and the 

mean on and off time, as well as the service class16. These parameters can be used to 

condition traffic at the network ingress. It is assumed here that these descriptors can be 

used to characterise the AF/1, where i is the service class o f the traffic. The AF service 

class permits more traffic than this to be input to the network: any traffic which is non- 

conformant with the above descriptor is given a different drop-precedence, and is more 

likely to be dropped in congested conditions.

The delay and loss bounds for the AF traffic then only apply to the AFz'l traffic. The 

network can deliver service in which the AF/1 traffic loss and delay are below the loss 

bound in all but the most difficult situations. No delay and/or loss assurances are offered 

for drop precedences other than AF/1, since it is not known how much of this traffic 

will enter the network.

The outputs o f this network configuration problem are

• R  : a route configuration -  the set o f routes for all of the demands;

• the queue/scheduler configuration parameters comprising of:

O ef , w'"pu , w^?2, Wgg) : the scheduler weights for the scheduler controlling access 

to link / e l  in the upstream direction;

-> (w'd"  , , w'jfëz , Wgd™’ ) : the scheduler weights for the scheduler controlling

access to link I e  L in the downstream direction;

(^Éf»^afi>9af2> ’̂be) : queue lengths for the queues served by the scheduler 

controlling access to link / e L in the upstream direction;

,<7 ^7  , q[\y2 ^be™ ) : queue lengths for the queues served by the scheduler 

controlling access to link l e i  in the downstream direction;

16 It is assumed here that an on-off model is used to model the demand. This is a worst case model. The 

demand will most likely be less bursty than this, but assuming the worst case is necessary to make delay 

and loss assurances.
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-> AQM configuration parameters for the queues served by the scheduler 

controlling access to link Z eL  in the upstream and downstream direction -  

these are listed separately.

A substantial amount o f parameters need to be defined to configure the queue/scheduler 

interface at each link: the scheduler weights need to be defined, the queue lengths need 

to be defined and the AQM configuration parameters for some o f the queues need to be 

defined. The scheduler weights determine what proportion o f the link is allocated to 

each queue. The meaning of the queue lengths parameters is quite clear. Here, it is 

assumed that they are measured in packets and that there is a standard packet size using 

each queue: this can be an average packet size.

The AQM configuration parameters at each interface consist o f three sets of parameters: 

configuration parameters for the AF1 queue, configuration parameters for the AF2 

queue and configuration parameters for the BE queue. The AF1 queue is assumed to 

operate like an RIO queue as described in [CF98]. The BE queue is assumed to operate 

as an RED queue as described in [FJ93]. The parameters for configuring the queues are 

then

• (th1™n»%thfn"%linterm“u\ t h 1™ni"+“%th™aXi"-% lintermf+out, jp1weieht): the AQM

configuration parameters for the AF1 queue;

• ( t h f 1“ , t h f 1“ , lin te rm f, t h f , th™*1— , linterm“ , /?2weight ) : the AQM

configuration parameters for the AF2 queue;

• (th'™n, thmax, linterm, p we'6ht ) : the AQM configuration parameters for the BE queue.

The AQM parameters require some explanation. The RED parameters used to manage 

the BE queue are explained first since these are the simplest and illustrate how AQM 

works. The first two parameters are thresholds: the first parameter determines the lower 

threshold below which AQM has no effect, and the second parameter specifies the 

upper threshold above which all packets are dropped. If the (averaged) queue length 

falls between these two thresholds, when a packet arrives, the packet can be dropped 

with some probability. This probability is dependent on the queue length: if  the queue 

length is high, then the drop probability is higher. The linterm defines the rate at which 

the drop probability increases with the queue length. Finally, the last parameter, ¿>weight ; 

determines the time interval over which the queue length is averaged.
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The AQM parameters for the AF queues are similar, but a little more complicated. In 

this case, there is a different drop probability for packets with different drop 

precedences. Since only two drop precedences are assumed in this network, the packets 

can be considered to be in-profile and out-of-profile as described in [CF98]. The AF 

queues essentially operate two different RED mechanisms; one which drops out packets 

and one which drops in packets. The AQM parameters are then analogous to the RED 

parameters, except that there are two sets o f them for the AF queue. Note that in the 

RIO case, the same queue length measurement is used as the basis for both (separate) 

RED mechanisms.

In this problem, the objective is to route the demands on the network such that the load 

on the network is balanced. The problem cannot be formulated here in any more 

specific terms. The way that load balancing is effected and the cost function that must 

be optimised are introduced in the mapping function below.

The above specific formulation is perhaps not the most natural formulation for this 

problem, since the objective o f the optimisation is specified in a vague manner. This is 

because it is constructed with the generic problem in mind. Hence, the specific problem 

models formulated in this framework will have a tendency to be somewhat biased 

towards the generic problem model. This is not surprising.

5.5 Mapping to the Generic Problem Model

Here, the problem o f mapping from the specific problem discussed above to the generic 

problem described in chapter 3 is discussed. Two aspects o f the mapping function are 

discussed here: mapping from the specific problem to the generic problem and mapping 

the solution o f the generic problem to a solution to the specific problem.

The specific problem described above is not described in sufficient detail to be 

formulated. However, it must be formulated at the generic problem layer. Consequently, 

extra information is introduced in the mapping layer that enables the problem to be 

properly formulated. This extra information and the assumptions made in the mapping 

process are described here.

The mapping layer is a two-way process and the output o f the generic problem must be 

used to generate results which are appropriate for the specific layer. The output of the 

generic problem is a routing for the demands. This is required in the solution to the
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specific problem. However, it is not sufficient: the queue/scheduler configuration 

parameters must also be obtained to solve the specific problem.

The two elements o f the mapping function are described in more detail in the following 

sections.

5.5.1 Mapping from the Specific Problem to the Generic Problem

This component of the mapping function consists o f three important elements:

• Mapping of the demands from the specific problem to the generic problem;

• Generating the cost function;

• Treatment o f the BE traffic in the model;

The problem is solved by decoupling the routing problem from the queue/scheduler 

configuration problem. This is done by determining an effective bandwidth for each 

demand. The purpose of the effective bandwidth is to attempt to quantify the amount of 

resources required by a variable-rate demand on each link. This is particularly 

applicable to the AF demands. The effective bandwidth captures the demand 

characteristics and its QoS requirements: if  each demand is allocated its effective 

bandwidth on each link in its path, the demand should obtain the desired QoS. As such, 

it enables the packet level issues to be decoupled from resource allocation and routing 

issues. Once this effective bandwidth is determined, efforts can be focussed on solving 

the routing problem.

The effective bandwidth notion can then be used to balance the load on the network. 

Instead o f using some kind o f packet based metric for load balancing, effective 

bandwidth based metrics can be used. For example, the objective can be to attempt to 

balance the aggregate effective bandwidths on the network. This can be achieved by 

choosing an appropriate cost function for the generic problem.

Finally, some preprocessing o f the specific problem may be required to ensure that there 

are sufficient resources for the BE traffic in the generic problem. This is discussed 

further below.

M a p p i n g  t h e  D e m a n d s  f r o m  t h e  S p e c i f i c  P r o b l e m  to  t h e  G e n e r i c  P r o b l e m

In the generic problem, all demands are characterised by a single parameter. In this 

specific problem, some o f the demands are characterised by more than one parameter.
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For these demands, it is necessary to map from the parameter set o f the specific problem 

to a single parameter for the generic problem.

There are three different types o f demands in the specific problem: EF demands, AF 

demands and BE demands. The EF demands are characterised by a single rate. This rate 

is used to characterise the equivalent demand in the generic problem -  no 

transformation o f this rate is necessary. If  this rate is allocated to the demand, the traffic 

will obtain the desired QoS. The BE demands are not quantified in this problem; the 

customers use the capacity available to BE traffic at will and the operator does not make 

any assurances to the customer pertaining to the level of service offered by BE traffic.

The AF demands are a little different from the EF and BE demands and they require 

more sophisticated treatment. The AF demands are quantified using a peak rate, a mean 

rate, a mean on-time and a mean off-time. The problem of mapping these parameters to 

a single parameter, such that the desired QoS is delivered, is considered in detail in 

Appendix A, but some comments are given here on the overall approach that is used.

The simplest and most conservative approach to obtain a single parameter for the AF 

traffic for the generic problem is to use the peak rate o f the demand. This will ensure 

that the users perceive a very high QoS. However, this approach has two serious 

drawbacks. Firstly, if  this approach is used, there will be little difference between EF 

and AF service. Consequently, customers will opt for the (presumably) cheaper AF 

service. Secondly, it is grossly inefficient: resource allocation based on such a 

conservative approach results in severe resource underutilisation. Hence, a less 

conservative approach is desirable.

Another approach, which cannot be used to obtain an effective bandwidth for an 

individual SLA, but rather is a means to perform admission control is Measurement 

Based Admission Control (MBAC) (see [BJSOO] for a review o f MBAC). This is 

mentioned here because it is perceived by many to be a good approach to performing 

admission control for AF services. As such, it can be used in situations in which the 

effective bandwidth ideas are used and it is useful to identify why such an approach is 

not suitable here.

The principle on which MBAC is based is that the resource utilisation is measured and 

the measured utilisation is used in conjunction with the declared parameters of the 

traffic to make an admission control decision. It is not applicable in this situation for 

two reasons: firstly, it can only work in a dynamic situation, since it measures actual
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traffic usage and secondly it cannot make very good assurances since it cannot predict 

future traffic patterns. For these reasons, it is not considered further here.

Here, a parameter based approach is used to determine the effective bandwidth required 

for an AF demand, i.e. declared parameters o f the demand are used to calculate the 

effective bandwidth. This is more sophisticated than the simplistic peak rate based 

approach.

The effective bandwidth notions were developed to solve the admission control problem 

for ATM [Hui88], The admission control problem is to determine whether a new 

connection can have access to a resource such that the appropriate QoS is delivered to 

the new connection without compromising the QoS delivered to the connections already 

using the resource. This problem can be solved using effective bandwidths by 

associating an effective bandwidth with each connection. The effective bandwidth 

reflects how much o f the resource is needed by the source to obtain the required QoS. 

The admission control decision is then simple: if  the sum of the effective bandwidths -  

including that o f the new source -  exceeds the capacity of the resource, then the new 

source is blocked.

A similar idea can be applied in this diffserv context: the effective bandwidth required 

for each SLA can be calculated and can be used to reflect the amount of resources 

required for the SLA to ensure that the required QoS is delivered. In this case, it is not 

used to perform a dynamic admission control decision; rather it is used to determine 

how much capacity on a link is required by the AF traffic to ensure that the loss and 

delay targets are met. The effective bandwidth can then be used as the single parameter 

which characterises demands in the generic problem.

The specific approach to determining an effective bandwidth that is used here is 

described in Appendix A. A brief description of the approach is included here for 

completeness.

The approach is based on the work o f Guerin [GAN91]. There, Guerin et al use an 

approach consisting o f two components to obtain an effective bandwidth for a flow: the 

first approach is based on a buffered model and the second approach is based on a 

bufferless model. In both cases, the objective is to determine the effective bandwidth 

required to ensure loss is no more than some specified bound. In the first approach, a 

variation o f the work o f Anick, Mitra and Sondhi [AMS82] is used to determine the 

effective bandwidth. There, it is assumed that a number o f homogeneous on-off sources
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are input to a buffer. The problem is to determine the required rate at which to serve the 

buffer such that the buffer loss is no more than some specified value. The effective 

bandwidth of each source is then this aggregate effective bandwidth divided by the 

number o f flows. The second approach is based on a bufferless model. The idea here is 

to determine the stationary probability that a number o f flows will be in the on state 

simultaneously. Thus the aggregate bandwidth generated by the sources can be 

determined. The effective bandwidth is chosen by choosing that aggregate bandwidth 

for which the probability of exceeding it is less than the loss probability.

Using the above two approaches, then some effective bandwidth for the set o f flows can 

be determined. The effective bandwidth that is chosen then, is the minimum of the two 

effective bandwidths as calculated above.

The effective bandwidth as determined above can be used to ensure that the loss 

experienced at the buffer does not exceed some pre-specified limit. Here, the objective 

is also to ensure that there is a bound on the delays experienced at each buffer. This is 

achieved by permitting the buffer size to be a parameter. A simple relation relating the 

maximum buffer delay, the effective bandwidth and the buffer size is introduced. The 

bandwidth and buffer size required to deliver the desired per-queue loss and delay can 

be obtained iteratively determining the required bandwidth for a given buffer size.

The Cost Function

In this problem, the objective is to determine a route configuration for the demands that 

results in a balanced network load. No objective function was defined for the specific 

problem: rather the objective was defined in higher level terms. A concrete cost function 

is necessary to solve the generic problem. Consequently, a cost function must be 

introduced in the mapping function so that the generic problem can be solved.

Any cost function can be chosen which, when used in the generic problem, results in the 

load being balanced on the network. The cost function does not necessarily have to 

reflect real costs associated with service delivery in the specific problem. Consequently, 

a quite artificial cost function may be chosen.

The generic problem does not permit complete flexibility when choosing a cost 

function. In the generic problem, the overall cost is the sum of a set o f link costs and 

node costs. The link costs and node costs are dependent on the amount o f demand 

carried on the link and the amount o f demand switched through the node, respectively.
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This obviates a large set o f cost functions, but the set o f cost functions that can be 

characterised in this manner is sufficiently broad and flexible to be useful.

In the specific problem, it is not immediately obvious how the load on the network can 

be balanced. This is especially true, given that it may be difficult to determine whether 

or not the load on the network is balanced without the use of measurement. Hence, 

choosing a cost function that balances the load on the network is a little difficult.

The effective bandwidth concept provides a solution to this. The link and node costs can 

then be written as functions of the aggregate effective bandwidth carried on the link and 

switched through the node respectively.

The load is then balanced on the network if  the effective bandwidths on the links are 

balanced, i.e. if  the difference between the aggregate effective bandwidth o f the traffic 

carried on each link is minimised. Using this approach, it is possible to show that the 

optimisation can be useful in balancing the load on the network.

In the generic problem, the cost function can have a link and a nodal cost component. 

Here, the nodal cost component is not used: the cost function is comprised solely o f link 

cost functions. However, the specific problem could easily be extended to include a 

term which can be used to balance the load through switches. Having said this, 

balancing the load on the links should balance the load on the nodes to some extent.

The purpose of load balancing is to ensure that some links are not heavily loaded while 

others are lightly loaded. The cost function chosen for this problem should have a high 

cost associated with high link utilisation. Conversely, if  the link is lightly utilised, then 

the link cost should be low. Hence, an increasing function is required.

A linear function could be used, but the rate at which it increases is not fast enough as 

the link nears full utilisation. For example, if  a link is highly utilised, then some of the 

traffic should be rerouted on an alternative path. In a system in which the link cost is 

linear in demand, rerouting the demand will probably incur a greater cost (according to 

a linear cost function), especially if  the demand is routed on a longer path. 

Consequently, the demand would not be rerouted using such a cost function.

Fortz and Thorup [FTOO] consider quite a similar problem and they use a piecewise 

linear approximation to an exponential as their link cost function. This has the effect of 

balancing the load in the problems they consider.
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Here, an exponential link cost function is used. The cost function is a function of the 

difference between the amount of capacity carried on the link and the link capacity. This 

is necessary to incorporate the capacity o f the link into the expression. Hence, the link 

cost function can be written as:

f t 0 ,up, s /down) = e Ks7~c,) + eJ{x̂ - Cl)

where s “° and s /down are the upstream and downstream capacity respectively and j  is a 

parameter that can be used to control the resulting costs. s,lip and s f0Vin are sums of the 

effective bandwidths o f the demands using the link, j  must be greater than 0.

This cost function results in a value less than 1 if the used capacity is less than the link 

capacity and results in a value of more than 1 if  the used capacity exceeds the link 

capacity.

If all o f the links in the problem have the same capacity, then the link capacity term can 

be removed since it simply acts as constant multiplier over all o f the terms in the cost 

function. However, this is not the case if  the link capacities differ: the link capacity term 

is essential in this case to effect load balancing.

The scaling parameter in the exponential was introduced to ensure that there are not 

enormous differences between the orders o f magnitude o f the terms being added to 

obtain the overall network cost function. For example, if  the capacities are measured in 

Mb/s and the link capacity is 155Mb/s and the used capacity is lOOMb/s, without the 

scaling parameter, the cost o f this link is e~55 -  1.30 x l(T 24. If then, another link has 

only 50Mb/s utilisation, then the resulting link cost is e~m  =  2.5 xlO-46. It is difficult to 

perform calculations with these two numbers due to their enormous difference. Hence, 

scaling can be added to reduce the differences. However, if  the scaling parameter 

reduces the difference too much, there may be little difference between link cost 

functions, even though the difference in spare capacity on the links may be substantial.

Note that this cost function could not have been constructed for the specific problem 

since the effective bandwidth concept was not well developed there. Hence, it is 

included in the mapping function.
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It is quite straightforward to cater for BE traffic in this problem. The amount of BE 

traffic entering the network is unpredictable. A reasonable approach to cater for the BE 

traffic which will ensure some level o f service for the BE traffic is to reserve some of 

the resources on each link for it. This can be done on an absolute or relative basis. In the 

former case some specified amount o f capacity must be reserved for the BE traffic at 

each link, while in the latter, some fraction o f each link is reserved for the BE traffic. 

These parameters could vary across the links.

In either case, the capacity made available to the BE traffic is removed from each link at 

this stage, the problem solved as before and the BE traffic is reincorporated when 

mapping from the generic problem back to the specific problem. At this stage the core 

link capacities are reduced by the amount o f capacity to be reserved for the BE traffic 

on each link. In mapping from the generic problem to the specific problem, this capacity 

is again introduced through appropriate choice o f the scheduler weights.

The core link capacities that can be used in the generic problem are then y ,c ,.

F o r m a l  M a p p i n g  f r o m  t h e  S p e c i f i c  P r o b l e m  t o  t h e  G e n e r i c  P r o b l e m

The content o f the three sections above can now be combined to perform the mapping

from the specific problem to the generic problem. Here, this mapping is formalised.

The set o f generic demands are constructed using the EF and AF demands in the 

specific problem. The generic demands are characterised by a source node, destination 

node and a single parameter characterising the demand. The EF demands in the specific 

problem are characterised in a similar manner. Consequently, the EF demands can be 

mapped directly to a set o f parameters that are can be used in the generic problem. The 

AF demands are characterised by a source node, destination node and a more complex 

set o f parameters to describe the traffic. These are mapped to the generic demands using 

the effective bandwidth approach described above.

Thus, the generic demands can be generated as follows.

First, the set o f demands in the generic problem that correspond to the EF demands in 

the specific problem can be written as:

Catering for BE Traffic
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AF demand a in the specific problem can be characterised using the parameters 
{o„, p a, ri;pcak, r('ncatl, f i ”ff, sa}. Then the equivalent demand for the generic problem 
can be written as

a = { o a, p a,ha}

where ha -  EB(rnpeak, rflmean, t°n, t °s , s a ) is the effective bandwidth of the AF demand.
These demands can then be used in the generic problem. For convenience, the following 
sets are defined:

^AFl =

A\F2 =
a\s„=2

These are the two sets of demands in the generic problem that correspond to the AF1 
and AF2 demands in the specific problem, respectively. The set of demands then used 
as input to the generic problem is

D  — M,fII ̂ A[lÛ AF2 •

The link cost function can be written as

f t (s;up, s/down ) = e J^ 'P~y'c‘ ̂ ^

The specific problem can then be mapped to the generic problem as follows:

• N - ^ N ;

• L —> A ;

• G (tf,£ )-» r(N ,A );

• A;

• f ,{ s ,t ) -> ( l)x {s ,t) and

• 7v(-)=0 for all v e  N

5.5.2 Mapping from Generic Problem Solution to the Specific Problem Solution

The solution to the generic problem consists of a route configuration. The solution to 
the specific problem consists of a route configuration as well as configuration 
parameters for the queue/scheduler systems controlling access to the links. The solution

184



to the generic network design problem - the route configuration - is part of the solution 
to the specific problem. The queue/scheduler configuration parameters must also be 
chosen to obtain a full solution to the specific problem. Here, the choice of these 
parameters is discussed.

C h o o s i n g  t h e  S c h e d u l e r  C o n f i g u r a t i o n  P a r a m e t e r s

As noted above, the schedulers in this problem are WRR schedulers. The specific 
implementation of the schedulers requires a number of parameters to be specified. Not 
all of these parameters are discussed here: only the scheduler weights are considered. 
These determine how much of the capacity of the resource - the link - is allocated to 
each queue.

The amount of resources required on each link for each traffic class can be determined 
by adding the effective bandwidths of the demands of each traffic class which are 
carried on the link. For each link, then the amount of resources required for the EF 
traffic on the link can be calculated as

e\l'e{fi)=\

where l [ { R ) is an indicator function, which returns a value of 1 if demand e e  E is 
routed on link I in the upstream direction under route configuration R ; it returns a 
value of-1 if the demand is routed on link I in the downstream direction and a value of 
0 if the demand is not routed on link /. Similarly, for the downstream traffic,

T i e d o w n  —  \ 1 ^ . P e a ^

E F  ~  2 j r e 
e | / ' ( * ) = - l

The resources required for the different AF traffic classes can be determined in a similar 
manner, except that effective bandwidths should be used, rather than the peak 
bandwidth as is used in the EF case:

w af< =  I X

The capacity assigned to the BE traffic is the traffic remaining after the resources have 
been allocated to the higher priority traffic classes. The scheduler weights can then be
written as : w^, : w'“l2 :c, -  (w ^ +w^, + w''fY1); the weights are determined here
for the traffic in the upstream direction.
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Note that the resources reserved for the BE traffic do not explicitly appear here. These 
resources impose a limit on the sum of the resources available to the higher priority 
classes and thus ensure that c, -  (ŵ . + + w^pF2 ) is large enough.

C h o o s i n g  t h e  Q u e u e  C o n f i g u r a t i o n  P a r a m e t e r s

Some of the queue configuration parameters are a little more complex to obtain. 
Guidelines suggested in previous research work are used to choose these parameters, 
rather than rigorous modelling and analysis. The queue parameters that need to be 
determined are the queue lengths and the AQM configuration parameters. Each of these 
is discussed separately.

For the AF traffic, the queue length parameters are partially calculated when choosing 
the effective bandwidths: a component of the effective bandwidth calculation described 
above is the calculation of a queue size. This is the amount of queue capacity required 
per demand. The queue sizes can be determined by adding these individual queue 
contributions. These are added in the same way as the effective bandwidth parameters 
are added to obtain the required queue length at each interface, i.e.

4af, =

Another approach is required to determine an appropriate queue length for the BE and 
EF traffic. Since delays are critical for EF traffic, the queue lengths for the EF traffic are 
bounded by delay concerns. Hence, the queue lengths should be calculated based on the 
maximum delay that can possibly accumulate in a particular buffer. The relation

The weights can be normalised so that they add to 1, although this is not so important.

can be used to determine the queue length in bits. This can then be converted to bytes or 
packets if some mean packet size is assumed. Since nothing is known about the BE 
traffic, no knowledge can be assumed when calculating the queue length for the traffic. 
Here, the same method as that used for the EF traffic is used - a maximum delay 
parameter for the BE traffic is determined and the queue size can be calculated by 
multiplying the delay by the bitrate for the BE traffic. Since delays are not a big issue 
for BE traffic, the delays experienced by the BE traffic at queues can be made large and
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the resulting queue sizes can also be large. Alternatively, all of the buffer space not 
allocated to the higher priority traffic at an interface can be allocated to the BE traffic.

The A QM parameters are also chosen using some guidelines. AQM parameters must be 
chosen for the AF and BE queues; A QM parameters do not need to be chosen for the EF 
queue. The A QM parameters for the BE traffic are discussed first. For RED, four 
parameters must be specified:

1. The minimum threshold: if the average queue length is below this, no random 
dropping will occur;

2. The maximum threshold: if the average queue length exceeds this, then all packets 
will be dropped until the queue length drops below this threshold;

3. The queue weight parameter: a parameter that determines how the average queue 
length is measured;

4. A linear term used to control the fraction of packets dropped when the average 
queue occupancy is between the minimum and maximum thresholds.

In [FJ93], Floyd and Jacobson suggest that the upper threshold should be at least twice 
the lower threshold. The maximum threshold is assumed to be exactly double the 
minimum threshold here. To ensure the utilisation of the BE traffic resources remains 
high, the maximum threshold should be high. Here, the maximum threshold chosen is 
90% of the queue length. A queue weight parameter of 0.002 is considered reasonable 
by Floyd and Jacobson: this can be used here. This choice of parameter results in an 
average queue length measure which reacts sufficiently fast to offset congestion, but 
still filters out very transient effects. Floyd and Jacobson also propose a small packet 
drop probability, claiming that a large packet drop probability will cause oscillatory 
effects. The linear drop probability term is 1/50, which results in a maximum drop 
probability of 4%.

The A QM parameters for the AF traffic can be chosen using similar guidelines. The 
work of Kim et al [KLT98], which is influenced by the earlier work of Floyd and 
Jacobson discusses how parameters for the RIO AQM scheme can be chosen. There, 
they suggest that the maximum threshold is double the minimum threshold for the out 
traffic; they also suggest that the maximum threshold for the in traffic is equal to the 
minimum threshold for the out traffic. The minimum threshold for the in traffic is half 
of the maximum threshold for the in traffic. By choosing the maximum threshold for the
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out traffic as 90% of the queue length and using the relations above, all the threshold 
values are determined. The queue weight parameter is again set to 0.002 and the linear 
drop probability terms are set to 1/50.

5.6 Example Problems

Some example problems will illustrate the use of this approach to determine a good 
network configuration. The purpose of these examples is to highlight two specific 
points: firstly, the method is validated using some small problems and secondly, the 
utility of performing the optimisation is discussed, particularly for larger problems.

The method is validated by generating some small problems, solving the problems and 
simulating the solution obtained. The output of the simulator can be used to determine 
whether the solution delivers the appropriate QoS; if not, then the solution is not valid. 
It is necessary to use small problems to validate the approach since larger problems take 
very long times to simulate. The disadvantage of using small problems is that the 
benefits of optimising the network configuration are not so great: these benefits become 
more apparent when the problem is larger. Consequently, some examples of the use of 
the optimisation in the context of larger problems are given.

5.6.1 Problem Generation

A common problem generator was used to generate the smaller problems to be used for 
validation and the larger problems that illustrate the benefits of this approach.

Each problem consists of a set of nodes, links, demands and desired network operating 
conditions. The nodes are identified by a node name: they have no interesting 
properties. Choosing the characteristics of the remaining elements of the problem was a 
little more difficult and the method used to choose these is discussed in the following 
paragraphs.

The core network links are chosen at random subject to connectivity and node degree 
constraints. The connectivity constraint stipulates that the core network be connected 
and the node degree constraint stipulates that each node has, on average, a number of 
connections to the other nodes in the network. The node degree constraint is easiest to 
accommodate. Since the average node degree is defined as

2| L
deêavg =
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where \L\ is the number of links in the network and Iat| is the number of nodes, the 

constraint can be met by choosing |l,| > deĝ |iV|/2 .

The connectivity constraint is slightly more difficult to satisfy. To ensure that this is 
satisfied, connectivity tests must be performed. Such tests determine whether all nodes 
are connected, i.e. whether it is possible to move from any node to any other node by 
traversing the links. A depth first search algorithm which is attributed to Tremaux is 
described in [GM84]; it can be used to determine whether a graph is connected.

This test can be used in an iterative procedure to ensure that the resulting network is 
fully connected. The approach is straightforward: if the network is not fully connected, 
then a link is added between two unconnected parts of the network. A link is removed at 
random. This procedure results in a connected network after a number of iterations.

The links are assumed to be bidirectional links and some capacity is assigned to the 
links when the problem is being generated. Each link also has an associated propagation 
delay which is specified by the user of the problem generation tool.

The demands are considered next. The demands are generated by a number of 
customers. It is assumed that each customer has a premises homed on one of the core 
network nodes. Each customer premises has communications requirements with the 
other premises which are part of that customer’s internal network; each customer wants 
to implement a fully connected network between its premises. Furthermore, each 
customer has demands between the nodes which require the use of different service 
classes.

In the problem considered here, four traffic types are permitted into the network: EF, 
AFlx, AF2x and BE. The EF traffic is very high priority traffic that has strict delay and 
loss requirements of the network. The AF traffic also has delay and loss requirements, 
although they are not as strict as those required for the EF traffic. The BE uses the 
resources remaining after the higher priority traffic has been catered for.

Each customer has a requirement for EF, AF1, AF2 and BE service between all of the 
premises. This is probably not a very likely scenario, but serves to illustrate that the 
approach works. However, this scenario may model a different and more realistic 
scenario reasonably well. In this second scenario, there are a larger number of 
customers, each of which only use a single service class for their intemodal demands. 
The scenario described here could model this more realistic situation.
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Only the priority demands are quantified - the customer is permitted to inject as much 
BE traffic as desired into the network but cannot expect any QoS assurances for this 
traffic type. In contrast, the other traffic types must be characterised and hence some 
QoS assurances can be given.

Since the EF traffic has very strict delay and loss requirements associated with it, it is 
characterised by a single peak rate. This is policed at the access to the network and this 
is the amount of resources that are reserved for each EF demand on its path through the 
network. When generating random EF demands, only this parameter needs to be chosen.

The AF traffic does not have such stringent requirements of the network. Also, the AF 
traffic is more likely to be more variable than the EF traffic. Consequently, a less 
conservative approach to resource reservation can be used. It is assumed that the AF 
traffic can be characterised by two rates: a peak rate and a mean rate. There is also a 
parameter that defines the maximum duration of a burst at the peak rate without being 
adversely affected. These parameters are then used to determine the effective bandwidth 
and buffer size required by the source as described above.

Finally, the network-wide loss and delay parameters are chosen for the different service 
classes which have associated QoS parameters. These only apply to the EF, AF11 and 
AF12 traffic types: specifically, they do not apply to lower priority AF traffic.

5.6.2 Validation of the Approach

The approach is validated by generating, solving and then simulating some small 
problems. While the problems are small, the amount of effort required to simulate them 
is not insignificant: there are very many parameters that need to be specified in order to 
run the simulation. Also, the amount of time required to simulate even small scenarios 
is substantial.

Simulation of the system was done using the ns IP-level simulator [FV01]. The 
simulator did not have diffserv and MPLS support when it was investigated first; 
diffserv support was added as part of this work and MPLS for ns was developed by Ahn 
[ACOO]. The diffserv functionality then worked in conjunction with the MPLS 
functionality to enable demands to be routed arbitrarily and to offer some service 
differentiation to the demands. More details on the simulator are given below.
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Two small example problems were generated to verify the concept using the simulator. 
The first problem had 7 nodes and 5 customers. It had an average node degree of 2.4, 
which resulted in 9 links. This was problem 5A. The second problem was slightly larger 
with 9 nodes and 4 customers. This problem also had an average node degree of 2.4, 
which results in a core network consisting of 11 links in this case. This was problem 5B. 
The parameters used to generate the first and second problems are listed in Table 5-1 
and Table 5-2 respectively. Using these parameters, two specific problems were 
generated.

Small Example Problems -  Generation and Solution

Property Value
Number of Nodes 7
Core Link Capacities 155
Average node degree 2.4
Number of Customers 5
Parameter for EF traffic min: 0.5 max: 1
Parameter for AF1 Mean traffic min: 0.5 max: 1
Parameter for AF1 Peak/mean min: 2 max: 2.5
Parameter for AF2 Mean traffic min: 0.75 max: 2
Parameter for AF2 peak/mean min: 2.5 max: 4
Token bucket size for peak 2000
Source on time min: 0.1 max: 0.15
EF end2end delay bound 10
EF end2end loss bound 2
AF1 end2end delay bound 75
AF1 end2end loss target 2.5
AF2 end2end delay bound 100
AF2 end2end loss target 4
Random Seed 9485
Output Dsproblem5b.test
Max route length 5

Table 5-1: Parameters used to generate problem 5A.
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The problems were then converted to generic problems. In doing this, it was necessary 
to choose the parameter j  which dampened the exponent in the exponential cost 
function. For the purposes of these experiments, this was chosen to be 0.05.

The generic problems were then specified. These were solved using the solver based on 
the greedy algorithm since this obtained the best solutions in chapter 4. Since these 
problems were very small, the solutions were found in a matter of seconds.

Parameter Value
Number of Nodes 9
Core Link Capacities (Mb/s) 155
Average node degree 2.4
Number of Customers 6
Parameter for EF traffic (Mb/s) min: 0.5 max: 1
Parameter for AF1 Mean traffic (Mb/s) min: 0.5 max: 1
Parameter for AF1 Peak/mean min: 2 max: 3.5
Parameter for AF2 Mean traffic (Mb/s) min: 0.75 max: 2
Parameter for AF2 peak/mean min: 2.5 max: 4
Token bucket size for peak (bytes) 2000
Source on time (s) min: 0.1 max: 0.15
EF end2end delay bound (ms) 10
EF end2end loss bound (%) 1
AF1 end2end delay bound (ms) 75
AF1 end2end loss target (%) 2.5
AF2 end2end delay bound (ms) 100
AF2 end2end loss target (%) 4
Seed 34867
Output Dsproblem8.test
Maximum route length 5

Table 5-2: Parameters used to generate problem 5B.

S i m u l a t i o n  I s s u e s

The solution to the generic problem coupled with the solution mapping described above 
consists of enough information to enable the core network to be configured. To simulate 
a scenario, more assumptions need to be made and more parameters need to be
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specified: for example, the source traffic characteristics and the access link properties 
need to be specified. These are defined here.

For the purposes of the simulation, a particular configuration for the customer premises 
network topology and the access link topology is assumed. This is illustrated in Figure 
5-6. In this topology, each customer premises is assumed to consist of 4 traffic- 
generating nodes. These are connected via an access multiplexer to the core node. A 
number of customer premises can be connected to the core node, each one connected 
via a different access multiplexer.

Figure 5-6: Customer premises and access network topology used in simulation.

The 4 traffic generating nodes each generate traffic of a different service class: node 0 
generates EF traffic, node 1 generates AF1 traffic, node 2 generates AF2 traffic and 
node 3 generates BE traffic. The EF source generates traffic at a constant rate with some 
random variation. The AF sources generate on-off traffic - the source transmits at a 
peak rate while on and no data is generated when the source is in the off state. This is 
oft-considered to be a kind of worst case traffic, and if the network can accommodate 
this, it can accommodate less bursty traffic. The BE sources are used to add load to the 
network; these simply generate CBR traffic, again with a random perturbation.

The AF service class is most suited to a feedback-based transport protocol such as TCP. 
In the most likely configuration of AF, most traffic will be permitted into the network, 
although some traffic will be marked down to a lower priority if it is non-conformant 
with the agreed traffic profile. AF queues will have A Q M  such as some variant of RIO 
[CF98]. If the network is becoming congested, then the A QM mechanisms will cause 
some packets to be lost. Adaptive transport protocols will react to this packet loss and 
reduce their transmission rate reducing the likelihood of congestion. Non-adaptive
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traffic sources can obtain a disproportionate amount of the resources at the expense of 
the adaptive traffic. For these reasons, AF is more suited to adaptive traffic.

TCP flows, however, are not used in this simulation. The reasons for this are twofold: 
firstly, TCP sources are much more complex and would greatly increase the simulation 
time and memory requirements and, secondly, the traffic flow between node pairs is 
more likely to be an aggregate of TCP sources rather than a single flow. TCP sources 
maintain a number of counters and timers as well as functionality to modify behaviour 
to network conditions - they are much more complex than the non-adaptive sources 
described above. Consequently, it is not feasible to run such a large simulation with 
TCP sources with the available computing power. Furthermore, the scenario described 
above is one in which the demands are aggregate demands: hence the connection 
between any two nodes will carry a substantial amount of TCP flows. The behaviour of 
a TCP aggregate is quite different to that of a single TCP flow. To simulate the system 
using TCP sources then, a number of sources would be required between each node 
pair. This is not feasible with the available computing power.

A further reason that TCP can be ignored is that this work takes the view of an operator 
delivering services with SLAs. The SLAs are measured at the IP layer. If worst case 
traffic at the IP layer is assumed, then the operator can be confident that the assurances 
offered can be met if the traffic is not worst case. If the vast majority of the traffic is 
TCP, which results in a much lighter network usage than the worst case IP traffic, then 
the network will be overengineered. Overengineering is a secondary issue: the primary 
objective here is to offer service with assurances. Once this is available, the network 
efficiency can be improved with operational experience.

The access links must be parameterised. Since the emphasis here is on the behaviour of 
the core network, it is assumed that the access links are high capacity, low delay access 
links. As such, they do not have a large impact on the perceived QoS. For these 
experiments, the access links are were chosen to have a capacity of 75Mb/s and a 
propagation delay of 0.1ms.

The core network propagation delays are also small: the network is assumed to be a 
single autonomous system, which typically covers a smaller area, rather than a large 
nation-wide network. Having said this, it is conceivable that an autonomous system 
could have a very great geographical spread. For these experiments, the core network 
link propagation delays are chosen to be 0.1ms.
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Packet sizes must also be assumed in the simulation. The EF packet sizes are assumed 
to be small, since the traffic is assumed to be delay sensitive. The traffic could, for 
example, be VoIP traffic. The EF packet sizes are assumed to be just 100 bytes17. 
Packet sizes for the other classes are assumed to be 500 bytes. Packets which are 
approximately 500 bytes in size are very common on the Internet because many 
transmission facilities have an MSS of approximately 500 bytes [TMW97].

The simulator used to perform the simulations contains MPLS and diffserv 
implementations. In the MPLS implementation, default paths through the network are 
generated based on OSPF routing as happens in real MPLS implementations. In this 
problem, the purpose of MPLS is to facilitate arbitrary routing of demands. MPLS 
explicit routing is used to enable arbitrary paths to be configured through the network. 
This is used in conjunction with a filter at the edge of the network to ensure that only 
some specific set of packets are permitted to use an LSP.

The MPLS implementation does not need to be parameterised, other than to initiate 
MPLS explicit route messages to enable the MPLS LSPs to be formed.

The diffserv implementation is as described in section 5.2.1 above. It requires a number 
of parameters to be configured properly - the scheduler weights, queue sizes and AQM 
parameters. These can all be determined using the approach described above to map 
from the solution of the generic problem to the solution of the specific problem.

The simulations were run for 100 seconds of simulation time. This was not a very long 
time, but it was sufficiently long to obtain some reasonable information on the scenario. 
The core network links were operating at a speed of 155Mb/s and in many cases were 
very highly loaded. Assuming a 500-byte packet size, 100 seconds of simulation time 
corresponded to approximately 4,000,000 packets being processed on each of the core 
network links. It was felt that this was sufficient to enable reasonable data for core 
network performance to be concluded from the simulation. The 100 second simulation 
took a number of hours on a single processor Pentium III system operating at 600MHz. 
The simulation was not made longer because it already consumed a considerable 
amount of simulation time.

17 VoIP packets are typically smaller than this -  VoIP packets are often 40 bytes long. However, 100 byte 

packets will experience longer delays than 40 byte packets.
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A number of sets of simulation results were obtained: simulation results were obtained 
when the network was stimulated with the design traffic - these were used as reference 
experiments - and when various increased traffic loads were used. In all cases, the 
network was quite heavily loaded: experiments in which the network is less heavily 
loaded are less interesting since all the users will simply obtain good service.

In each case, the packet loss and delay as perceived by the users were the primary 
measures of interest. Packet delays were obtained quite easily: each packet was marked 
with some packet generation time and the time taken for the packet to traverse the 
network was logged. End-to-end packet loss rates, however, were slightly more 
complicated to obtain so packet loss at queues in the network were obtained.

S i m u l a t i n g  P r o b l e m s  w i t h  D e s i g n  T r a f f i c

The two problems were first simulated with the design traffic as input. The results from 
problem 5A are discussed first, followed by the results obtained from simulating 
problem 5B.

Link Used Capacity 

(Mb/s)

Utilisation Link Used Capacity 

(Mb/s)

Utilisation

(0—>2) 155000.0 1.00 (l-»5) 41178.0 0.266
(2—>0) 154999.9 1.00 (5—>1) 46164.8 0.298
(0->3) 155000.0 1.00 (3—>6) 119766.2 0.773
(3—>0) 155000.0 1.00 (6—>3) 145739.5 0.940
(0 >5) 136159.5 0.878 (4->5) 139368.4 0.899
(5-40) 155000.0 1.00 (5 >4) 130365.0 0.841
(l->3) 154999.9 1.00 (5—>6) 81989.9 0.529
(3—>1) 148106.8 0.956 (6—>5) 82375.8 0.531
(l->4) 68189.6 0.440
(4—>1) 70337.0 0.454

Table 5-3: Link utilisation for problem 5A with design traffic.

Problem 5A was simulated. The core network was quite heavily loaded. The core 
network link utilisations - utilisations in both directions - are given in Table 5-3. The 
mean link utilisation is 76.69%. Six of the links are fully loaded, and some loss is
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experienced at each of these links. No packet loss occurs at the queue/scheduler systems 
controlling access to the other links.

The loss occurring at the congested queue/scheduler systems is shown in Table 5-4. The 
high priority classes do not experience any loss, while the BE traffic can experience 
over 46% loss in the case of the link going from node 3 to node 0. Clearly, the BE 
traffic does not have a very great impact on the other classes. Clearly then, there is 
service differentiation between the BE traffic class and the higher priority traffic 
classes.

The end-to-end delays are also of interest. In this experiment, a number of measuring 
components were created, each at the ingress to each customer location. This could 
measure the end-to-end delay of all packets arriving at this component. Note that they 
did not measure the delays experienced by individual flows; rather they measured the 
delays experienced by all traffic of a particular class arriving at the component. These 
measurements were then used to obtain some measure of the minimum, maximum and 
mean packet delays for all end-to-end flows. For each measuring component, the mean 
delay, and the minimum and maximum delays were recorded. These were then averaged 
over all of the components to obtain network-wide averages. These results are presented 
in Table 5-5.

Link EF loss AFlx loss AF2x loss BE loss

(0->2) 0 0 0 0.172704
(0->3) 0 0 0 0.341545
(l-»3) 0 0 0 0.173474
(2—>0) 0 0 0 0.409773
(3—>0) 0 0 0 0.464854
(5->0) 0 0 0 0.062792

Table 5-4: Loss at queue/scheduler systems for specific links in problem 5A with

design traffic.

The results show that the loss and delay requirements are easily met in this small 
problem. The EF and AF traffic experience small delay. The mean delay for the EF 
traffic is smaller than that of the AF 1 traffic, which, in turn is smaller than that of the 
AF2 traffic. The mean delays for all three are less than 1ms. This is very substantially 
lower than the required delay of 10ms for the EF traffic and 75 and 100ms for the AF1
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and AF2 traffics respectively. The minimum delay for the EF traffic is smaller than that 
of the AF traffic because the transmission delay is smaller.

EF AF1 AF2 BE

Minimum Delay (s) 0.000434 0.000572 0.000572 0.000576
Maximum Delay (s) 0.001768 0.001327 0.003352 0.107321
Mean Delay (s) 0.000671 0.000741 0.00075 0.029302

Table 5-5: Delays averaged over all the node pairs for different traffic classes for

problem 5A with the design traffic.

Interestingly, the averaged maximum delay for the EF traffic is larger than that of the 
AF traffic in this experiment. This can be explained by noting that the load generated by 
the EF traffic is approximately equal to the amount of resources allocated to it: the EF 
component of the system is constantly moderately loaded. In contrast, the AF traffic is 
generated in a bursty manner. Two factors lead to reduced delays for the AF traffic: the 
design of the scheduler and the somewhat conservative resource allocation. If an AF 
queue is underutilised for some short period, then ‘credit’ for the queue will build up. If 
a burst of AF traffic arrives in the queue then, the scheduler will have sufficient credit 
available to the queue to serve the burst quickly. This coupled with the fact that the 
conservative resource allocation mechanisms reduce the likelihood of data accumulating 
in AF queues means that the maximum delay experienced by the AF traffic can be low.

The averaged maximum delay for the AF2 traffic is over double that of the AF1 traffic. 
However, the delays are still very small - of the order of a few milliseconds. The QoS 
delivered by AF2 then is slightly worse than that delivered by AF1 services. This is 
because AF1 services have higher effective bandwidths than comparable AF2 services.

The delays experienced by the BE traffic are much larger. The averaged maximum 
delay in the system is over 100ms. The maximum over all node pairs is over 150ms. 
The mean delay is just over 29ms. Clearly, the range of the delays for the BE traffic in 
this scenario is large.

A histogram of end-to-end delays experienced by BE traffic arriving at one measuring 
component is shown in Figure 5-7. In this figure, there are two large peaks - the first 
occurring at 23ms and the second occurring at 60ms. These correspond to traffic carried 
on paths with different numbers of nodes. Traffic queued only at a single node 
contributes to the first large peak, while traffic which is carried over more than one node
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contributes to the second. There is a third peak which occurs due to traffic which 
traverses only lightly loaded links and experiences essentially no queuing. However, the 
number of such packets in Figure 5-7 is very small. From the graph it is clear that the 
number of congested links on the path has a strong bearing on the delay.
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Figure 5-7: Distribution of BE delays for traffic arriving at a single customer 

premises in problem 5A with design traffic. Note that a significant proportion of

the delays excecd 100ms.

In this experiment the EF and AF conditioners have a very small impact. The EF 
conditioners cause almost 1% of the traffic to be dropped. This is because the EF source 
is configured to generate packets in a CBR fashion with some random component 
added. The random aspect to the traffic can cause the source to generate some packets 
that are close together, although this is quite rare. When this happens, the second of the 
two packets may be dropped. The AF conditioner causes a very tiny amount of packets 
to be dropped: the proportion of dropped packets is of the order of 0.002%. This occurs 
because many AF sources run on a single host. It can be explained as follows. If many 
of the sources are in the ‘on’ state, then the aggregate rate can exceed the link rate. 
Buffering occurs. Then some of the sources generate traffic that gets buffered. This 
traffic may actually be transmitted on the link at a rate higher than that at which it was 
generated. In this case, packets could arrive at the conditioner with rate higher than the 
peak rate, resulting in packet drops for the AF traffic.
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Link Used Capacity Utilisation Link Used Capacity Utilisation

(M b /s ) (M b /s )

(0—>3) 155528.3 0.888733 (3—>7) 175000 1
(3—>0) 106292.9 0.607388 (7—>3) 175000 1
(l-*2) 148496.1 0.848549 (4—>5) 43670.01 0.249543
(2->l) 131326.8 0.750439 (5->4) 45303.98 0.25888
(l-»5) 44078.15 0.251875 (5-»6) 114150 0.652286
(5—>1) 44046.14 0.251692 (6—>5) 102966.1 0.588378
(l->6) 40791.31 0.233093 (6 >7) 154309.4 0.881768
(6—>1) 39472.68 0.225558 (7—>6) 128167.3 0.732385
(2—>4) 91653.93 0.523737 (7—>8) 127283.2 0.727333
(4—>2) 110332 0.630469 (8—>7) 156736.8 0.895639
(2—>7) 175000 1
(7—>2) 175000 1

Table 5-6: Link utilisation for problem 5B with design traffic.

Problem 5B was then simulated. In essence, the same observations were made.

L in k EF loss AFlx loss AF2x loss BE loss
(2—>7) 0 0 0 0.330095
(3—>7) 0 0 0 0.491702
(7—>2) 0 0 0 0.131651
(7—>3) 0 0 0 0.403198

Table 5-7: Loss at selected queue/schedulers for problem 5B with design traffic.

The capacity utilisations are listed in Table 5-6. Many of the links are quite heavily 
loaded, although some of them are lightly loaded. The mean link utilisation is 64.54%. 
Four of the links are used to capacity. As in the previous case, no drops are experienced 
at the links which do not have 100% utilisation. At the remaining links, the BE traffic 
suffers, while the other traffic types experience no loss. The loss experienced at each of 
these queue/scheduler systems is given in Table 5-7.

As with the previous experiment, the BE traffic can experience considerable loss - 49% 
loss in the case of the link from node 3 to node 7 - while the higher priority traffic 
experiences no loss.
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EF AF1 AF2 BE

Minimum Delay (s) 0.000434 0.00057 0.00057 0.00057
Maximum Delay (s) 0.001421 0.001378 0.001576 0.079058
Mean Delay (s) 0.000652 0.000773 0.00078 0.022968

Table 5-8: Delays averaged over all the node pairs for different traffic classes for

problem 5B with the design traffic.

The delay information was obtained as in the previous experiment. It is given in Table 
5-8. The results obtained for this problem are similar to those obtained for the previous 
one. The mean delays for the EF traffic are lower than those for the AF1 traffic, which, 
in turn, are lower than those for the AF2 traffic. In all cases, the delays experienced by 
the premium traffic are much lower than the target delays. The delays for the BE traffic 
are considerably larger.

As with the previous case, the averaged maximum EF delay is larger than the averaged 
maximum AF1 delay. The reasons used to explain this in the previous case are also 
valid here.
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Figure 5-8: Distribution of BE delays for traffic arriving at a customer premises in 

problem 5B with design traffic. A small proportion of the delays exceed 100ms.
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A sample of the delays for the BE traffic is shown in Figure 5-8. This exhibits 
similarities to Figure 5-7. Again there are three peaks in the graph: one occurs at low 
delays, one is at about 25ms and another at considerably higher values of delays. Again, 
the first peak occurs because some of the BE traffic arriving at the customer premises 
traverses a lightly loaded link experiences little or no queuing. The second peak occurs 
due to traffic traversing a single congested link, while the third peak occurs due to 
traffic traversing two congested links. Figure 5-8 differs from Figure 5-7 in that many 
more packets experience no delays in the former and the number of packets that traverse 
two congested links is much smaller.

As with the previous case, the conditioners do not have a very great impact on the 
results obtained. The EF traffic does experience approximately 1% loss, as in the 
previous experiment. This can be alleviated by increasing the amount of resources and 
the conditioner policing parameters by 5% over the negotiated EF rate. Similarly, there 
are a very tiny percentage of AF drops.

S i m u l a t i n g  P r o b l e m s  w i t h  I n c r e a s e d  E F  T r a f f i c

The effects of increasing the EF traffic in the network were examined next. Half of the 
EF sources were chosen at random and the amount of traffic generated by these sources 
was doubled. As would be expected, the impact of this on the network was minimal: the 
conditioners removed much of the excess EF traffic and the traffic that was permitted 
access to the network experienced similar conditions to those of the experiment with the 
design traffic.

Link EF loss AFlx loss AF2x loss BE loss

(0—>2) 0 0 0 0.173197
(0—>3) 0 0 0 0.338660
(l->3) 0 0 0 0.178748
(2 >0) 0 0 0 0.404585
(3—>0) 0 0 0 0.464489
(5—>0) 0 0 0 0.067283

Table 5-9: Loss at queue/scheduler systems for specific links in problem 5A with

increased E F  traffic.

Problem 5 was simulated with increased EF traffic. The link utilisations are very similar
to those in the experiment with the design traffic and the scheduler behaved in a very
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similar fashion to before: only the BE traffic experienced any loss in the network. The 
link utilisations were within 1-2% of those obtained in the previous experiment. 
Similarly, the loss experienced by the BE traffic at each of the different schedulers is 
within a few percent of the loss experienced in the experiment above. Delays are also 
similar in this experiment.

Customer ID Premises BE loss Customer ID Premises BE loss

number number

0 0 0.349034 4 0 0.274487
0 1 0.275961 4 1 0.261317
0 2 0.250303 4 2 0.335936
0 3 0.316149 4 3 0.393947
0 4 0.256898 4 4 0.242054
1 0 0.402977 5 0 0.386674
1 1 0.323102 5 1 0.32796
1 2 0.256824 5 2 0.45099
1 3 0.393514 5 3 0.392304
1 4 0.456485 5 4 0.349312
2 0 0.392956 6 0 0.412665
2 1 0.307318 6 1 0.264706
2 2 0.327093 6 2 0.330626
2 3 0.317043 6 3 0.332762
2 4 0.331132 6 4 0.249807
3 0 0.344955
3 1 0.251404
3 2 0.16679
3 3 0.330109
3 4 0.353163

Table 5-10: Fraction of EF traffic lost at conditioners in problem 5A with

increased EF traffic.

The real difference in this experiment lies in the effects of the conditioners and the end- 
to-end perceived behaviour. Firstly, the EF conditioners drop much more traffic in this 
experiment than in the previous experiment. The losses measured at each of the traffic 
conditioners are listed in Table 5-10. This is in contrast to a loss of approximately 1% in
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the reference experiment. Secondly, the perceived throughput for the EF traffic differs 
from the source transmission rate. This is due to the traffic that is dropped at the 
conditioners. The conditioner imposes an upper bound on the throughput: if the source 
exceeds this, then the transmission rate is reduced to that permitted by the conditioner. 
The delays perceived by all services are very similar to those of the reference 
experiment, since no more traffic is introduced into the network.

Similar observations were made on problem 5B with the EF traffic increased in the 
same manner.

Simulating Problems with Increased BE traffic

The BE traffic was increased: 50% of the BE traffic sources were doubled in intensity. 
Since the BE traffic is not conditioned at the edge of the network, much of this excess 
traffic entered the core network loading the core network further. However, the high 
priority traffic experienced little change.

Link Used Capacity Utilisation Link Used Capacity Utilisation

0—>2 155000 1 1—>5 58871.85 0.379818
2—>0 155000 1 5—>1 50628.67 0.326637
0—>3 155000 1 3—»6 135078.4 0.871474
3—>0 155000 1 6—»3 155000 1
0—»5 155000 1 4—»5 155000 1
5—>0 155000 1 5—>4 155000 1
1—>3 155000 1 5—>6 90700.49 0.585164
3—>1 155000 1 6—>5 109171.1 0.70433
1—>4 82479.2 0.532124
4—>1 101857.7 0.657147

Table 5-11: Link utilisation for problem 5A with increased BE traffic.

The link utilisations for the core network are shown in Table 5-11. The link utilisations 
are considerably greater than in the reference case due to the increased BE traffic. 
However, not all links are fully utilised and consequently, some links experience no 
loss. Of those links that do experience loss, only BE packets are lost - there is no loss 
for the higher priority packets. Naturally, the amount of BE loss is considerably greater 
than in the reference experiment.
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EF AF1 AF2 BE

Minimum Delay (s) 0.000434 0.000572 0.000572 0.000576
Maximum Delay (s) 0.002601 0.002335 0.006957 0.137427
Mean Delay (s) 0.000703 0.000769 0.000784 0.054825

Table 5-12: Delays for experiment 5A with increased BE traffic.

This experiment introduces considerably more traffic into the network. Hence it could 
potentially affect the delays perceived by the other traffic classes. The delays obtained 
are shown in Table 5-12. There is a substantial increase in the delays experienced by the 
BE traffic over the reference case and there are small increases in delay for the other 
traffic classes. The increase in the delay for the other traffic classes can be explained by 
the increased likelihood of a scheduler being busy serving a packet in a queue/scheduler 
system when a packet arrives. These increases are not very substantial: the delays for 
the higher priority traffic remain very small.

Similar effects were observed with the larger problem, although the increase in the 
delays experienced by the BE traffic was considerably larger.

S i m u l a t i n g  P r o b l e m s  w i t h  I n c r e a s e d  A F 1  a n d  A F 2  T r a f f i c

Finally, the amount of AF traffic entering the network was increased. The AF traffic 
was increased by doubling the peak and mean rate for 50% of the AF sources. All other 
elements of the simulation remained the same; in particular, the parameters of the 
conditioners at the edge of the network remained unchanged.

As before, the experiments were performed for both problem 5A and problem 5B, but 
the results exhibited the same characteristics. Consequently, only the results for problem 
5A are presented here.

These results differ a little from the previous ones in that some AF traffic is lost: in the 
previous cases the only packets that were dropped were BE packets. However, it is 
worth pointing out that only a tiny fraction of AF packets are dropped and also that only 
packets that are out of profile are dropped.

In the experiment with increased AF1 traffic, the AF2 traffic suffered a very small 
amount of loss. Interestingly, no AF1 packets were lost, even though the AF1 resources 
were more heavily loaded.
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EF AF1 AF2 BE
Minimum delay (s) 0.000434 0.000572 0.000572 0.000576
Maximum delay (s) 0.001845 0.001366 0.004945 0.117079
Mean delay (s) 0.00068 0.000746 0.000757 0.030063

Table 5-13: Delays for experiment 5A with increased AF1 traffic.

EF AF1 AF2 BE
Minimum delay (s) 0.000434 0.000572 0.000572 0.000576
Maximum delay (s) 0.002385 0.002042 0.00936 0.123503
Mean delay (s) 0.000688 0.000748 0.000782 0.030983

Table 5-14: Delays for experiment 5A with increased AF2 traffic.

The AF1 queues suffered no packet loss for the simple reason that the resource 
allocation for AF1 is quite conservative. Hence, when only high priority AF1 traffic is 
using the resources, they are somewhat under-utilised. It is possible to carry more traffic 
on these resources without having much of an impact on the performance perceived by 
current users of the resources. Hence, the amount of traffic generated by some users can 
be increased without adversely affecting the QoS perceived by the users. This is what 
happens in this case.

The packet loss that occurs for the AF2 traffic can be considered to be within normal 
operating conditions for the AF2 resources. A very small amount of packet loss can 
occur. Three conditions must be satisfied for this to occur: the packet must be low 
priority, a queue on the packet’s path must be (at least moderately) congested and the 
A QM mechanism must choose to drop the packet. It is rare that these three conditions 
will be met if the traffic conditioners are generating traffic which is almost exactly 
conformant with the conditioner, but it is possible. Hence, 0.02% packet loss occurs for 
the AF2 traffic at a congested queue/scheduler system.

In the case in which the AF2 traffic is increased, there is increased loss of AF2 out-of- 
profile traffic. This occurs on two links in this case. The loss is very close to 0.5% on 
one of the links and is just over 0.06% for another link. Interestingly, this link does not 
reach full saturation, although it is very highly loaded at just over 96%. In this case, the 
link is saturated over some periods of time. Also, the arrival rate to the AF2 queue is 
greater than the rate at which it can be serviced, causing the mean occupancy of the 
queue to increase. When this is sufficiently high, and there is a significant amount of
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AF2 out-of-profile traffic arriving at the queue, some of it gets dropped due to the AQM 
mechanisms. This occurs here. During other periods, the link is may not be saturated, 
but some loss may still occur because the mean queue length can remain high for a short 
time even though the queue is emptying.

While increasing the amount of AF traffic entering the network does have a deleterious 
effect on the performance, the performance is still well within the design parameters.

Shortest Path Routing Load Balanced

Problem 1 
(conn=2.5)

Mean: 1030.94 
Std. Dev.: 416.3 

Minimum: 181.583 
Maximum: 2301.98

Mean: 1042.27 
Std. Dev.: 393.027 
Minimum: 272.184 
Maximum: 2301.98

Problem 2 
(conn=3.0)

Mean: 616.65 
Std. Dev.: 375.049 
Minimum: 137.749 
Maximum: 2048.19

Mean: 642.799 
Std. Dev.: 303.031 
Minimum: 199.359 
Maximum: 1643.88

Problem 3 
(conn=3.5)

Mean: 612.088 
Std. Dev.: 346.048 
Minimum: 26.0788 
Maximum: 1833

Mean: 628.694 
Std. Dev.: 173.663 
Minimum: 270.895 
Maximum: 1043.24

Problem 4 
(conn=4.0)

Mean: 414.836 
Std. Dev.: 211.891 
Minimum: 44.4009 
Maximum: 1050.34

Mean: 426.549 
Std. Dev.: 123.244 
Minimum: 123.352 
Maximum: 938.602

Problem 5 
(conn=4.5)

Mean: 360.436 
Std. Dev.: 153.852 
Minimum: 80.5553 
Maximum: 726.974

Mean: 368.488 
Std. Dev.: 58.9925 
Minimum: 251.406 
Maximum: 632.197

Problem 6 
(conn=5.0)

Mean: 331.667 
Std. Dev.: 156.724 
Minimum: 41.641 
Maximum: 816.796

Mean: 336.299 
Std. Dev.: 88.7507 
Minimum: 130.581 
Maximum: 708.268

Table 5-15: Basic statistical properties of link loads obtained when specific 

problems solved with this approach. The problems vary in network connectivity.
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This approach to determining a good network configuration was, to some extent, 
validated above, in the sense that the QoS perceived by the end users was delivered 
appropriately. However, the load balancing nature of the network optimisation was not 
visible. No efforts were made to demonstrate the load balancing characteristics of the 
approach because the networks were so small that the choice of routes was limited and 
hence there was little chance of performing any load balancing.

Here, some effort is made to redress this: the purpose of this section is to illustrate that 
the approach described above can be used to balance load on networks.

In order to do this, some sample problems were generated using the problem generator 
described in section 5.6.1 above. Larger problems were generated and they were solved 
using the network optimisation framework.

Two sets of experiments were performed here. In the first, test problems with varying 
levels of connectivity were generated. These were generated in order to determine the 
effect of the connectivity of the network on the load balancing. In the second set of test 
problems, the effects of varying the cost function generated within the mapping function 
were determined.

0.35

I E S P  Routing 
■  Load Balanced Routing

0.3  •

0.25 .

S'
5 0 2a

5.6.3 Solving Larger Problems

>
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SI 5) 430) 545) 660) 775) 890) 1005) 1120) 1235) 1350) 1465) 1580) 1695) 1810) 1925) 2040) 2155) 2270) 2385)

Link Load (Mb/s)

Figure 5-9: Variation of link load for SP routing and load balanced routing for 30

node problem with connectivity of 2.5.
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In the first set of experiments that were performed, the network connectivity was 
altered. Six specific problem consisting of 30 nodes and varying amounts of links were 
generated. The demand between the node pairs was approximately the same in each of 
these problems. The node connectivity varied from 2.5 to 5.0 in steps of 0.5.

The problem was mapped to the generic problem; the generic problem was then solved 
using the greedy approach: the results from chapter 4 showed that the greedy algorithm 
obtained the best results. This resulted in a route configuration.

Variation o f Load Balancing with Connectivity

{0- (125- (250- (375- (500- (625- (750- (875- (1000-(1125 -(1250 -(1375 -(1500 -(1625 -(1750-(1875-(2000-(2125-(2250-(2375-
125) 250) 375) 500) 625) 750) 875) 1000) 1125) 1250) 1375) 1500) 1625) 1750) 1875) 2000) 2125) 2250) 2375) 2500)

Link Load (Mb/s)

Figure 5-10: Variation of link load for SP routing and load balanced routing for 30

node problem with connectivity of 3.0.

To determine whether the network optimisation resulted in a load balanced solution, the 
mean and standard deviation of the link utilisations were calculated. These are shown in 
Table 5-15. There, it can be seen that the load balanced solution results in slightly 
higher mean link utilisation and lower standard deviation. This indicates that the load on 
the network is more balanced after the load balancing optimisation has been performed, 
i.e., the optimisation is useful.

This analysis is not sufficient to illustrate this. To illustrate this more clearly, histograms 
of link utilisations for each of the different problems were obtained. These are shown in 
Figure 5-9 to Figure 5-14.
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Figure 5-11: Variation of link load for SP routing and load balanced routing for 30

node problem with connectivity of 3.5.
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Figure 5-12: Variation of link load for SP routing and load balanced routing for 30

node problem with connectivity of 4.0.
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Figure 5-13: Variation of link load for SP routing and load balanced routing for 30

node problem with connectivity of 4.5.
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Figure 5-14: Variation of link load for SP routing and load balanced routing for 30

node problem with connectivity of 5.0.

The load balancing effect is particularly clear in Figure 5-14. In this figure, the shortest 
path routing clearly results in a network in which there is a quite uniform variation in 
link capacity on each link; i.e. link utilisation could almost be modelled by a uniform 
random variable. This clearly does not result in a balanced load since some links have
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high loads while others have minimal loads. The link utilisation is clearly much more 
like a normal distribution in the case of routing with load balancing. In this case, there is 
a very pronounced mean value for link utilisation and some links carry traffic which is a 
small variation off this. Since the link capacities on the network homogeneous, the free 
capacity on all of the links is then quite uniform and the network load is much more 
balanced.

Property Problem ] Problem 2

Number of Nodes 30 30
Core Link Capacities (Mb/s) 3000 3000
Average node degree 5.0 3.0
Number of Customers 5 5
Parameter for EF traffic (Mb/s) Min: 0.5 Max: 1.0 Min: 0.5 Max: 1.0
Parameter for AF1 Mean traffic 
(Mb/s)

Min: 0.5 Max: 1.0 Min: 0.5 Max: 1.0

Parameter for AF1 Peak/mean Min: 2 Max: 4 Min: 2 Max: 4
Parameter for AF2 Mean traffic 
(Mb/s)

Min: 1 Max: 2 Min: 1 Max: 2

Parameter for AF2 peak/mean Min: 1.5 Max: 5 Min: 1.5 Max: 5
Token bucket size for peak 
(bytes)

2000 2000

Source on time (s) Min: 0.1 Max: 0.3 Min: 0.1 Max: 0.3
EF end2end delay bound (ms) 15 15
EF end2end loss bound (%) 1 1
AF1 end2end delay bound (ms) 50 50
AF1 end2end loss target (%) 2.5 2.5
AF2 end2end delay bound (ms) 75 75
AF2 end2end loss target (%) 4 4
Random Seed 5097038 7567434
Output Bigproblemcostl .txt bigproblemcost2.txt
Max route length 6 6

Table 5-16: Parameters used to generate problems to test the effects of the cost

function used.

From the graphs, it is clear that the load balancing has a considerable effect in the 
problems in which there is more connectivity. This occurs mainly because there are 
more alternate routes for each demand. More specifically, more alternate routes which
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differ from the current route by only one node exist. Consequently, it is much easier for 
the algorithm to move the demand away from congested points than in cases in which 
the node connectivity is small and the number of options for rerouting a demand is 
small.

Problem Shortest Path Routing Load Balancing

Bigproblemcostla
0=0.05)

Mean: 270.591 
Std. Dev.: 126.31 
Minimum: 19.3153 
Maximum: 619.684

Mean: 277.199 
Std. Dev.: 74.6691 
Minimum: 129.449 
Maximum: 619.684

Bigproblemcostlb
0=0.1)

Mean: 270.591 
Std. Dev.: 126.31 
Minimum: 19.3153 
Maximum: 619.684

Mean: 277.633 
Std. Dev.: 74.9909 
Minimum: 135.471 
Maximum: 619.684

Bigproblemcostlc
0=0-15)

Mean: 270.591 
Std. Dev.: 126.31 
Minimum: 19.3153 
Maximum: 619.684

Mean: 277.964 
Std. Dev.: 74.9769 
Minimum: 128.846 
Maximum: 619.684

Bigproblemcost 1 d 
0=0-2)

Mean: 270.591 
Std. Dev.: 126.31 
Minimum: 19.3153 
Maximum: 619.684

Mean: 278.175 
Std. Dev.: 74.7925 
Minimum: 126.081 
Maximum: 619.684

Bigproblemcostl e 
0=0.25)

Mean: 270.591 
Std. Dev.: 126.31 
Minimum: 19.3153 
Maximum: 619.684

Mean: 278.079 
Std. Dev.: 75.0447 
Minimum: 125.477 
Maximum: 619.684

Table 5-17: Basic statistical properties of link loads obtained when specific 

problems solved with this approach. The link cost functions vary -  specifically, the

pre-multiplier in the link cost varies.

For problems with smaller connectivity, the load balancing effects of the algorithm used 
are not so clear. For example, in Figure 5-9, the difference between the distribution of 
the link capacities and the case in which SP routing is used and that in which load 
balancing routing is used is minimal. The effects of load balancing are almost
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negligible: there are some load balancing effects as evidenced by the mean and standard 
deviation of the link utilisations, but they are very small.

V a r y i n g  t h e  C o s t  F u n c t i o n

The effects of using different cost functions were measured next. The link cost function 
used here is of the form

/(s/up , s f ov/tt )=

j  is a parameter that can be varied. The effects of choosing different values of j  are 
studied here.

Two problems were generated. The characteristics of the problems are listed in Table 
5-16. The two problems differed only in their connectivity: the network in the first 
problem had an average connectivity of 5.0 and the network in the second problem had 
an average connectivity of 3.0. The first problem is labelled Problem 1 and the second 
problem is labelled Problem 2. These specific problems were then mapped to a number 
of different generic problems. The only difference between these generic problems was 
the link cost function - it differed in the premultiplier coefficient, j  . Values of 0.05 to 
0.25, varying in increments of 0.05 were used in generating the generic problems.

Link Load (Mb/s)

Figure 5-15: Variation of link load for SP routing and load balanced routing for 

Problem 1 with a premultiplier of 0.05.
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These generic problems were then solved using the greedy approach. Each of the 
problems was solved in approximately an hour. The results obtained for solving 
Problem 1 are shown in Table 5-17 and the results obtained for solving Problem 2 are 
shown in Table 5-18. In each of the tables, the shortest path routing is the same: this is 
independent of the link cost function used. However, differences arise when the load is 
balanced on the network using the different cost functions. The results obtained from 
the network with higher connectivity differ from those obtained from the network with 
lower connectivity. The network with higher connectivity is discussed first.

0 .2 5

0.2

Q)>
JS 0.1 a)O'

0 .0 5

0

Figure 5-16: Variation of link load for SP routing and load balanced routing for 

Problem 1 with a premultiplier of 0.25.

The results obtained by solving Problem 1 for a number of different premultipliers are 
shown in Table 5-17. There, it can be seen that the effects of varying the link cost 
function are not so great. The lower premultiplier does result in a slightly better result 
and doesn’t take any more time to solve. Hence, it is better to use this. However, the 
size of the premultiplier chosen shuld be dependent on the size of the link capacities 
being used in the problem.

The graphs also show the same effect. The link load histograms for Problem 1 when 
mapped to the generic problem using a premultiplier of 0.05 and 0.25 are shown in 
Figure 5-15 and Figure 5-16 respectively. When the premultiplier is 0.05, the link load 
graph has a more pronounced single peak than when the premultiplier is larger.
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For the problem with less connectivity, varying the premultiplier over this range has 
almost no effect. In this problem, the number of ways of rerouting a demand is smaller 
and hence the effects of the premultiplier are minimal. This can be seen from Table 
5-18. There, some load balancing takes place, as can be seen by the small difference 
between the standard deviations for the solutions with shortest path routing and routing 
in which the load is balanced on the network. However, the differences in the different 
load balanced solutions are very minimal and hence it can be concluded that varying the 
cost function parameter in this case has little effect.

Shortest Path Routing Load Balancing

Problem 2a Mean: 578.116 
Std. Dev.: 342.49 
Minimum: 182.178 
Maximum: 2191.11

Mean: 585.704 
Std. Dev.: 320.537 
Minimum: 217.822 
Maximum: 2191.11

Problem 2b Mean: 578.116 
Std. Dev.: 342.49 
Minimum: 182.178 
Maximum: 2191.11

Mean: 585.615 
Std. Dev.: 320.572 
Minimum: 217.822 
Maximum: 2191.11

Problem 2c Mean: 578.116 
Std. Dev.: 342.49 
Minimum: 182.178 
Maximum: 2191.11

Mean: 585.688 
Std. Dev.: 320.58 
Minimum: 217.822 
Maximum: 2191.11

Problem 2d Mean: 578.116 
Std. Dev.: 342.49 
Minimum: 182.178 
Maximum: 2191.11

Mean: 585.653 
Std. Dev.: 320.548 
Minimum: 217.822 
Maximum: 2191.11

Problem 2e Mean: 578.116 
Std. Dev.: 342.49 
Minimum: 182.178 
Maximum: 2191.11

Mean: 585.702 
Std. Dev.: 320.807 
Minimum: 217.822 
Maximum: 2191.11

Table 5-18: Basic statistical properties of link loads obtained when Problem 2 is 

solved with this approach. The link cost functions vary -  specifically, the pre­

multiplier in the link cost varies.
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In this chapter, the application of the network optimisation framework to the problem of 
configuring diffserv/MPLS networks was discussed. Diffserv and MPLS technologies 
were described in detail, followed by a discussion of a particular implementation. This 
implementation is assumed here and the parameters that need to be determined to realise 
this solution are highlighted.

The specific problem that is considered here is then defined, and the objective of the 
problem is discussed. The problem is then mapped to the generic problem. This 
mapping is complicated by the fact that some of the demands are assumed to be 
characterised by a number of parameters: the mapping must reduce this to a single 
parameter. The effective bandwidth ideas developed within the context of ATM are 
used to perform this mapping.

The use of the approach is then illustrated by solving some example problems. First, 
some small example problems are solved. These are simulated to demonstrate that the 
approach works. This is then followed by use of the approach within a larger problem 
context. There, it is demonstrated that the approach has some use: the objectives are 
shown to be met to some extent.

5.7 Conclusions
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CHAPTER 6 C o n c l u s i o n

A flexible, abstract network optimisation framework has been motivated and described. 
The purpose of this framework is that it may be applied to different network design and 
configuration problems to enable software to be quickly developed to solve network 
design and configuration problems. This is a fundamentally different approach from that 
typically taken today in which each network design or configuration problem is 
considered in isolation. In this framework-based approach, an abstraction of a network 
design/configuration problem is devised and solution software is developed to solve this 
abstract problem. This solution software can be reused in order to solve many different 
network design and configuration problems. Thus, the time required to develop solution 
software is reduced.

Another important benefit of this framework based approach - which arises in any 
framework designed for reuse - is that there is increased confidence in the correct 
operation of the reusable components. Since these components are used in many 
different situations, any bugs or problems with these components should become 
apparent quickly. In this case, the reusable components are the solution algorithms to 
the generic problem. In the case in which software is written to solve a specific network 
design/configuration problem the level of confidence in the results is lower because the 
solution software will not be tested as well.

Many network optimisation problems were reviewed in Chapter 2 in order to identify 
the most essential characteristics of network design and configuration problems. It was 
observed that many network optimisation problems focus on determining how a set of 
demands should be routed on a network.

The framework concept was motivated in Chapter 3. Then the generic model, which lies 
at the heart of this framework, was described. As observed in Chapter 2, many of these 
problems focus on routing of demands and this is what the generic problem then focuses 
on. A set of nodes, links, demands and cost functions are input to the problem. The 
solution to the problem is a minimum cost routing of the demands on the network. The 
model permits arbitrary cost functions and consequently it can be used as an abstraction 
for a large amount of different network design/configuration problems.
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A number of different approaches to solving the problem were discussed. These were 
based on the use of local search heuristics that are applicable to combinatorial 
optimisation problems. Two particular approaches were chosen for use throughout the 
remainder of the work - one based on a straightforward greedy algorithm and one based 
on the simulated annealing algorithm.

The use of the framework to solve two very different network optimisation problems 
was demonstrated in Chapters 4 and 5. The first problem is an enterprise network design 
problem and the second is a diffserv/MPLS network configuration problem. In both 
cases, it was shown that it is possible to use the framework to obtain solutions to the 
specific problems.

In chapter 4, the use of this approach was illustrated in the context of a particular 
enterprise network design problem. The objective in this problem was to design a 
network of leased interconnects which can carry an enterprise’s inter-office voice and 
data traffic at a minimum cost. The interconnects could be realised using either leased 
lines, FR or ATM and could have arbitrary cost/capacity characteristics. The solution 
involved determining a network topology as well as a routing for the demands on the 
network. The network cost and the required link capacities are implied once the 
topology and routing are specified.

The particular enterprise network design problem was mapped to the generic problem 
and the generic problem solvers were used to obtain solutions, validating the use of the 
framework. Using these problem solvers, 50 node problems could be solved in a matter 
of hours. The time required to obtain a solution increased exponentially; hence, the 
solution time quickly ran to days for problems larger than 50 nodes. Note that this is a 
characteristic of the specific solution algorithm used: it is not something which is 
characteristic of the framework approach.

This problem provided a context for comparing the two generic problems solvers - that 
based on the greedy algorithm and that based on the simulated annealing algorithm. The 
solutions obtained using the greedy algorithm were substantially better than those 
obtained using the simulated annealing algorithm for all choices of the parameters of the 
simulated annealing algorithm. Moreover, the solution obtained using the greedy 
algorithm was of much higher quality for larger problems. The choice of state space was 
not very suited to the use of the simulated annealing algorithm. Better results could be 
obtained using a different choice of state space. This is discussed further below.
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In Chapter 5, a core diffserv/MPLS network configuration problem was described. The 
objective in this problem was to determine how to configure the network such that the 
load could be balanced on the network while delivering the desired QoS to the 
customers. This involved determining how the demands could be routed on the network 
as well as determining how to configure the routers in the network.

In the specific problem, some of the demands were specified in terms of packet level 
parameters. In the generic problem demands are characterised by a single parameter. 
The mapping function mapped the demands characterised by multiple parameters in the 
specific problem to a demand characterised by a single parameter for the generic 
problem. This was done using a variant of the effective bandwidth concept that was 
developed for ATM. Using this approach, packet level issues could be decoupled from 
the routing problem. With the effective bandwidth concept it was possible to focus on 
capacities - both used capacity and available capacity - and load balancing could be 
performed by balancing these capacities on the network.

Load balancing was achieved in all cases, validating the use of the framework. 
However, the amount of load balancing that was achieved was dependent on some 
characteristics of the network. Specifically, the amount of links present in the network 
had an impact on the amount of load balancing could be achieved. If there are more 
links present in the network, then there are more options for routing a particular demand 
and resulting load will be more balanced on the network.

The required QoS was delivered to the customers and this was verified through 
simulation. No reports of doing this have been reported in the literature so far. Although 
the approach involves allocating resources in a slightly conservative manner, the 
resources were allocated in a manner which was more liberal than reserving resources 
according to peak rate.

This framework could form the basis of the design of a network optimisation tool which 
could be used to solve different network optimisation problems. The reusable solution 
algorithms could form the core of the network optimisation tool and various mapping 
functions could be developed to map a number of different specific problems to the 
generic problem. Development of a module to solve a new problem would just involve 
developing the mapping function and integrating it into the optimisation tool: something 
which would certainly involve less effort than developing a customised tool to solve the 
problem.
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6.1 Contributions in this Thesis

The main contributions in this work can be summarised as follows:

• A flexible abstract network optimisation framework was developed;

• A generic problem on which the optimisation framework is based was developed;

• Approaches to solving the generic network optimisation problem based on 
combinatorial optimisation were devised;

• An approach to designing enterprise networks with voice and data demands was 
developed using the network optimisation framework;

• An approach to configuring core diffserv/MPLS networks based on this network 
optimisation framework was developed.

A final contribution, which was used in the work above, but was not discussed in detail 
is software to simulate a diffserv/MPLS network. This is an interesting and useful 
contribution which has been used by others to simulate diffserv/MPLS networks.

6.2 Directions for Future Research

The work could be extended in a number of different ways. The directions for extending 
the work can be divided into two areas: development of the framework and 
development of the approaches to solve the two specific problems considered in this 
work. Each of these is considered separately.

6.2.1 Development of the Framework

There are two further divisions that framework developments can take: the core of the 
framework can be developed or the framework can be extended to accommodate more 
and more cases. These are discussed separately in turn.

C o r e  F r a m e w o r k  D e v e l o p m e n t

It is conceivable that the generic problem proposed above has some deficiencies and 
that it could be generalised so that it could be applied in more cases. For example, the 
generic problem may be extended to incorporate traffic which has a broader scope than 
a single destination - a single demand may originate at one node, but consist of traffic 
destined for a number of nodes. Alternatively, the generic problem could be extended 
such that some reliability constraints could be incorporated into the generic problem
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model. The specific ways in which the generic model could be extended are unclear: 
this is the research problem. While these ideas appear interesting, the purpose of this 
framework is to make it general so that it can be applied in some set of cases. 
Incorporating more and more functionality into the model could make it more flexible, 
but at a cost of making it impossible to solve: it is necessary to find an appropriate 
balance between generality and tractability.

The problem solvers at the core of the framework could also be improved. Different 
algorithms could be used. Algorithms such as those referred to in Chapter 3 could be 
implemented and used to solve the problem. In particular, an approach based on pre­
selection of paths could dramatically reduce the size of the state space and facilitate 
solution of larger problems. Also, combinatorial heuristics which ‘learn’ as they 
traverse the state space and learn characteristics of a good solution could be used. 
Improved algorithms could improve the efficiency of the approach and/or the quality of 
the solution obtained.

E x t e n s i o n  o f  t h e  F r a m e w o r k

The framework can be extended: other specific problems can be identified and they can 
be mapped to the generic problem. In principle, any mesh network design or 
configuration problem in which the demands can be reduced to a single parameter and 
the costs are a function of the demand can be solved using this approach. Hence, this 
approach can be used to design circuit-switched networks, FR, ATM, SDH and IP based 
networks, if the demands are appropriately specified and the appropriate mapping 
functions determined. Also, the framework could be used to design networks which 
incorporate a number of different types of demands. Similarly, this network 
optimisation framework can be used to solve network configuration problems for 
networks using the above technologies.

The framework could be developed into a comprehensive network optimisation tool 
which could be used to solve different network design and configuration problems. The 
tool could have different modes of operation - one corresponding to each specific 
problem. The user would choose a mode of operation, enter the appropriate data, 
perform the mapping, entering any data that was required in mapping the specific 
problem to the generic problem and choose one of the generic problem solvers to obtain 
a solution to the problem.
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The big advantage of such a tool is that it could be used to solve many network 
optimisation problems. Also, the tool could be designed to be easily extensible such that 
new mapping functions could be easily configured to enable the tool to be used to solve 
new problems.

6.2.2 Development of the Specific Problem Cases

The two specific problems studied here could also be developed further. These 
developments involve making the specific model more sophisticated and introducing 
more functionality into the mapping function to reduce this extra complexity to the 
same generic problem. The development of each of these problems within the context of 
the network optimisation framework is discussed here.

D e v e l o p i n g  t h e  E n t e r p r i s e  N e t w o r k  D e s i g n  P r o b l e m

The enterprise network design problem could be extended by constructing more 
complex traffic models for the traffic on the enterprise network and using these to 
design the network. These traffic models could be models for more sophisticated 
applications using the data network: videoconference applications, transaction based 
processing, etc. Profiles of typical amounts of users could be constructed at each 
location and these could be mapped to a set of demands which could be used in the 
generic problem. The problem with this approach would be to determine how the traffic 
mix can be reduced to the single parameter required in the generic problem. The 
advantage of such an approach would be that the optimisation would result in more 
cost-efficient network that accommodated the demands.

Another way that this problem could be developed is in terms of the variety of operators 
and/or technologies that could be used to meet the needs of the enterprise. The customer 
may have a choice of a number of different operators for some, say, long-distance and 
costly links in the network. Alternatively, the enterprise may have the option of a 
number of different technologies for a particular link. In either case, the result is a 
choice between different links having different cost/capacity characteristics. The 
specific enterprise network design problem discussed above does not support this: it 
would need to be extended to accommodate this case. If it were extended in this way, a 
way of incorporating the extension into the mapping function is described in Chapter 3.
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The approach used to solve this problem could be improved by determining some less 
conservative approach to allocating network resources. The AF traffic in particular 
suffers from this very conservative approach and while this means that QoS assurances 
can be made, it is probable that the same QoS assurances can be made if a less 
conservative approach to choosing the effective bandwidth is used. An interesting 
research problem would be to investigate different approaches to determining such an 
effective bandwidth which result in less resources being allocated to the AF traffic, but 
the required QoS being delivered.

Another direction in which the work could be extended is to permit some variation in 
the characteristics of the EF traffic: customers could produce traffic which varies in 
intensity with time but still require strict loss and delay bounds. This is in contrast to the 
EF traffic considered in this model: there, the peak rate for the EF traffic is allocated in 
the network. The variable EF traffic could be policed using dual leaky bucket policers 
and non-conformant traffic could be dropped. As with the AF traffic, an effective 
bandwidth could be determined for the EF traffic in this case which could be used in the 
generic problem.

A third direction in which the work could be extended is to the case of more than two 
drop precedences for the AF traffic. The problem described above assumes only two 
drop precedences but the standards [RFC2597] specify that up to three drop precedences 
are possible in each AF traffic class. The specific problem model described above 
cannot cater for this case. Indeed, it is not clear what kind of assurances can be given 
when all three drop precedences are used. This is an area which could warrant further 
study.

Developing the diffserv/MPLS Network Configuration Problem
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APPENDIX A  Effective  Bandwidth  Determination  For  

A F Traffic

The problem of determining the effective bandwidth for the AF traffic is discussed 
briefly in chapter 5. A high-level view of the approach is given there. A detailed 
description of how this effective bandwidth is determined is given here.

A.1 Determining the Appropriate Effective Bandwidth

Many different approaches to effective bandwidth problems have been proposed (see 
[Kel96] for an overview). Here, the objective was to use a simple approach which 
performs better than the simplistic peak rate allocation strategy. The approach of 
Courcoubetis and Weber described in [CFW94] was initially investigated, but proved 
problematic because the model considered often resulted in large bandwidths - larger 
than the peak bandwidth18. This approach was also somewhat limited because it 
focussed on a single traffic flow. The approach described in Guerin et al [GAN91] was 
then tried, since it extended the effective bandwidth concept to multiple traffic flows. 
This was moderately successful and is described here.

It is important to note that the effective bandwidth work described here was carried out 
in an ATM context in which the focus is on individual traffic flows - traffic flows 
generated by a single application. Here, however, the objective is to determine an 
effective bandwidth for an SLA in which many flows can be aggregated to together. In 
both cases, the determination of the effective bandwidth is based purely on the declared 
parameters and hence the same method can be used to determine an effective bandwidth 
in each case. Here, the term flow is used to identify that for which it is necessary to 
determine an effective bandwidth. In the ATM case, flow refers to the traffic generated 
by an individual application, while in this case, flow refers to an aggregate.

18 This occurred because the expression they developed assumed that the buffer size was large. Here, to 

ensure small delays, the buffer size is necessarily small in some cases. Hence, the expression that they 

developed is not valid.
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Guerin et al proposed an approach to determine the effective bandwidth of an aggregate 
of a number of flows, but. it can also be used to determine the effective bandwidth of a 
single flow. The emphasis in their work was on devising a means to obtain an effective 
bandwidth quickly. The application that they envisaged was an ATM switch which 
would be making many admission control decisions in a small amount of time: at that 
time ATM was viewed as a successor to the telephone network and many believed that 
ATM switches would have to handle requests for service in similar quantities to today’s 
telephone networks. Consequently, admission control decisions had to be made quickly 
and hence effective bandwidths had to be determined quickly.

They proposed an approach consisting of two methods of determining an effective 
bandwidth. The resulting effective bandwidth is the lower of the two obtained using the 
different methods. The first method is one in which buffered multiplexing is assumed 
and the second is one in which bufferless multiplexing is assumed19. Buffered 
multiplexing refers to a system in which traffic is buffered before it is allowed access to 
the resource. Bufferless multiplexing refers to a system in which no such buffers exist 
and if data requires access to a congested resource, it is lost. The latter are not realistic 
systems, but are easier to model and can be used as some kind of approximation to 
buffered systems.

In the buffered multiplexing method of determining an effective bandwidth, a Markov 
model for the system is constructed and analysed. This is used to determine the capacity 
required for the aggregate of flows. In the bufferless multiplexing method, the effective 
bandwidth is determined by considering the stationary distribution of the number of 
active flows in the system and choosing the effective bandwidth such that the 
probability of the aggregate data rate of the flows exceeds the link rate is less than the 
loss probability. Both of these methods of choosing an effective bandwidth are 
conservative. Consequently, the smaller of the two can be chosen and it will still be a 
conservative estimate of the effective bandwidth. Both of these methods are discussed 
in more detail.

The first approach is largely based on the earlier work of Anick, Mitra and Sondhi 
[AMS82]. They derived expressions for the overflow probability of a buffer which is 
used to multiplex a number of on-off flows. The flows are assumed to be fluid sources

19 These are sometimes referred to as rate sharing and rate envelope multiplexing, respectively.
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with exponentially distributed on and off times. The flow transmits at some fixed rate in 
the ‘on’ state, and does not transmit any data in the ‘off state. The buffer is assumed 
infinite.

The overflow expression developed by Anick, Mitra and Sondhi can be written as

P [ x > B ] = ' £ u l e ~ v,B
1=1

where x is the buffer occupancy, B is some fixed position in the buffer, K is the 
number of multiplexed flows and u, and v,. are parameters that Anick, Mitra and
Sondhi show how to calculate. These parameters are difficult to calculate with the speed 
required by Guerin et al, so they simplified this expression.

For larger buffers, i.e., B is large, the above expression is dominated by the term 
containing the smallest v(, v,. = v0 so Guerin et al focus on this term. They also note
that for a significant part of the state space, the pre-multiplier u 0 is approximately 1. 
Thus,

P [ x > B ) ~ e ~ v°B

and (from the workings of Anick, Mitra and Sondhi) v0 can be written as

K ( S - K t ' r pesk)

V° ~  t on ( I - t ' ) ( K r pe3k - S ) S

where S is the buffer service rate, t ' is the fraction of time the source is in the ‘on’ 
state, rpeakis the peak rate of the source and t°" is the mean duration of a burst, t ' can 
be written as

t on + t os ■

The loss probability, P]oss{B) - the probability of loss in a finite buffer of size B  -  can 
be approximated by the overflow probability, P[x > *]• <hen, can be written as

An approximation to the required buffer service rate, which is the effective bandwidth 
for the aggregate set of sources, can be determined by choosing some loss probability, 
P*QSS, rewriting the above equation with an equality and solving for S . This is
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straightforward, since all of the other parameters are known. Thus, the aggregate 
effective bandwidth of a number of homogeneous sources can be determined using the 
buffered multiplexing model.

The effective bandwidth for an individual source is simply the aggregate effective 
bandwidth divided by the number of sources, i.e.

where S ' is the effective bandwidth of an individual demand. This is then used in the 
generic problem. However, some care must be taken when using this effective 
bandwidth figure in the generic problem. As the number of multiplexed sources 
increase, the size of the effective bandwidth decreases. Hence, if the effective 
bandwidth is calculated based on the premise that a large number of sources will be 
multiplexed but the actual number is quite small, then the effective bandwidth could be 
underestimated. Since diffserv is designed for situations in which a large amount of 
flows will be aggregated, it is assumed here that the amount of aggregation and the 
number of demands will be substantial.

The effective bandwidth is obtained using the bufferless model in quite a different way. 
The stationary behaviour of the flow aggregate is considered. The activity of the flows 
can range from all flows being in the ‘on’ state to all flows being in the ‘off state. The 
effective bandwidth is chosen as k rpaik, where k is chosen between 1 and K , such that 
the loss is certain to be less than Ploss. This can be done by choosing k as the smallest 
integer such that

where g , is the probability that i flows are simultaneously in the ‘on’ state. Noting that 
the probability that i flows are on can be written as a binomial, the probability g i can 
be written as

In [GAN91], Guerin et al chose to approximate this with a Guassian distribution - an 
approximation that is valid if the number of flows is large. This was done for speed

K

K

i=k

2 2 8



reasons. Here, this approximation is not necessary, so the binomial expansion of g(. can 
be used directly. Also, the number of flows in this case may be smaller and the 
Gaussian distribution may not be a good approximation to the binomial. Thus, k can be 
determined and the effective bandwidth, &rpeak, can easily be calculated.

Both approaches to obtaining an effective bandwidth are somewhat conservative: the 
method based on the buffered multiplexing is conservative because the pre-multiplier, 
u 0 can often be considerably less than 1. This is discussed in [GAN91] and in more 
detail in [CLW94]; there is some discussion of this in [BCDM95]. Consequently, 
working on the premise that this term is 1 will produce conservative results.

Similarly, the bufferless model is conservative. This is true because no buffering is 
assumed when in fact there is some buffering. This buffering serves to reduce the 
amount of loss and hence the amount of loss predicted by the bufferless model is an 
overestimate. Since both methods result in conservative values for the effective 
bandwidth, it is reasonable to choose the lower result as the effective bandwidth.

In Guerin’s approach, the only QoS measure is the loss probability. Here, the objective 
is also to ensure that the delay remains below some specified threshold. This can be 
done by permitting the queue size to be a design parameter; in Guerin’s approach, the 
queue size was a fixed parameter. If the queue size is a design variable, there are two 
degrees of freedom when choosing the parameters of the system - the queue size and 
the effective bandwidth. This extra degree of freedom should permit both delay and loss 
constraints to be satisfied in a substantial amount of cases.

If the queue size and the effective bandwidth are variable, then delay and loss 
constraints can be satisfied. In general, small queue sizes are necessary to ensure small 
delays for some fixed service rate. Similarly, small losses are usually only possible in 
systems with larger queues. Hence, if both small losses and small delays are required, a 
kind of tension arises and a compromise between these differing objectives may not be 
possible for the given service rate. Increasing the queue service rate - the effective 
bandwidth - can solve this problem. By doing this, some compromise queue size that 
meets both the delay and the loss constraints can be used to meet the requirements. 
Hence permitting the queue size and the effective bandwidth to vary enables both the 
loss and delay constraints to be met.
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Permitting queue sizes to be variable is not unreasonable in practice; existing routers are 
very flexible and facilitate sophisticated configuration of their buffer memory. In 
particular, it is not difficult to create a number of queues of specified size at an interface 
and define some scheduler discipline to enable the queues to be served.

One realistic constraint that could be added here is that the queue size should not exceed 
some pre-specified amount of buffer memory, i.e. the sum of all the queue sizes at an 
interface should not exceed the available buffer memory at the interface. However, this 
constraint is not incorporated into the problem here.

In the buffered multiplexing method used by Guerin some relationship between the 
queue size and the required capacity is developed. If both of these are free variables, 
then many queue size/capacity combinations exist that can satisfy the loss constraints. 
Not all of the solutions satisfy both the loss and delay requirements - this immediately 
rules out some of them. A trade-off exists in the remaining solution set: the trade-off 
exists between queue size and effective bandwidth - larger queue sizes result in smaller 
effective bandwidths and smaller queue sizes result in larger effective bandwidths. The 
question is then which queue size/effective bandwidth combination should be chosen

Here, a policy of choosing the lowest effective bandwidth is used. Choosing the lowest 
bandwidth is consistent with a bandwidth-constrained mindset, i.e. bandwidth is 
somewhat limited in the system. If there is an abundance of bandwidth, then diffserv is 
arguably not necessary (Kelly discusses this in [KelOO]) - it is implicitly assumed in this 
discussion that such an abundance does not exist and that congestion will occur at least 
sometimes.

To determine the appropriate effective bandwidth and buffer size, then, an additional 
relation is required. This relation relates the delay to the queue size and the effective 
bandwidth:

where B is the queue size and h is the effective bandwidth.

This can be used in conjunction with the Guerin’s buffered multiplexing model to 
obtain a queue size and effective bandwidth that meets the loss and delay requirements. 
Moreover, the resulting solution is the minimum effective bandwidth solution.
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The two equations cannot be solved easily using analytical means. An iterative numeric 
approach is used in which the buffer size is modified and the resulting effective 
bandwidth determined. This is repeated until the effective bandwidth obtained is as 
small as possible, but still meets the loss and delay constraints.

There is no queue in the bufferless multiplexing model used by Guerin and the 
determination of the effective bandwidth in this method is not dependent on any buffer 
size. In this case an effective bandwidth is determined first using the approach described 
above and a queue size is then calculated using the equation relating delay, buffer size 
and effective bandwidth above.

As before, the overall effective bandwidth/buffer size couplet is chosen by choosing the 
minimum effective bandwidth obtained via the two approaches and the queue size is its 
associated queue size.

This enables an effective bandwidth and buffer size to be obtained for an aggregation of 
a set of homogeneous flows. It is assumed that the effective bandwidth of each 
individual flow can be obtained by dividing the aggregate effective bandwidth by the 
number of flows. Similarly, the queue size required for each flow can be obtained by 
dividing the aggregate queue size by the number of flows.

Using this approach, the effective bandwidth for a demand can be determined if it is 

multiplexed through a single buffer. If the flow traverses a number of buffers, then 
some loss and delay can occur at each buffer and the overall loss and delay can be more 
unpredictable.

Here, the emphasis is on end-to-end assurances: the objective is to be able to make end- 
to-end delay and/or loss assurances to the customer. The single buffer results must be 
applied in a way that enables end-to-end assurances to be made. This is done by 
assuming that the end-to-end performance parameters can be divided equally between 
the number of stages traversed by the demand. Since the number of multiplexing stages 
a flow traverses is not known in advance, it is assumed - for the purposes of calculating 
the effective bandwidth - that the flow traverses some maximum number of 
multiplexing points.

If the maximum number of multiplexing points is ramax and the end-to-end loss and 
delay are /end_t0.end and Jend.t0_end respectively, then the permitted loss and delay at each 
queue can be written as
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f  =  end-to-end 
queue '

I

and

d, d,end-to-end
queue m,'max

The end-to-end delays, however, do not consist only of queueing delays - they also 
consist of transmission and propagation delays. Hence these must be taken into account 
when calculating the effective bandwidth. A conservative approach to doing this is to 
assume the maximum route length, and assume some propagation and transmission 
delays and subtract these from the delay budget to obtain the amount of delays that can 
be incurred from queueing.

It is straightforward to calculate these values when the end-to-end performance 
objectives are specified. These are then used as inputs - together with the flow 
characteristics - to the procedure above to obtain a buffer size and bandwidth that can 
deliver the required QoS.

Figure A -l: Topology used in simple scenario used to validate approach to

determine effective bandwidth.

A. 2 Testing the Effective Bandwidth Approach

A rudimentary test was performed to test the validity of this approach. In this test, a 
number of traffic sources are multiplexed into a single buffer. The objective is to 
demonstrate that the approach to determining the effective bandwidth and buffer size 
described above meets the loss and delay constraints. The effective bandwidth and 
buffer size for each of the flows is determined using the approach described above. 
These are then added to obtain the overall effective bandwidth required to serve the

Sources IVfcflt
Node
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queue. Similarly, the buffer sizes associated with each effective bandwidth are added to 
obtain the total buffer size. The scenario was then simulated and the resulting loss and 
delay measured.

The experiment contained 9 flows multiplexed in a single buffer. The topology is 
illustrated in Figure A-l. All of the source were on-off sources with exponentially 
distributed on and off times. Of the 9 flows, one was monitored and delay statistics for 
the monitored source were obtained. The amount of loss occurring at the multiplexing
stage was also measured.

In this experiment, the access links from the source nodes to the multiplexing node have 
a capacity of IMb/s. The link that all of the sources are being multiplexed onto has a 
capacity equal to the aggregate effective bandwidth, as does the access link to the 
destination nodes. The queue size at the multiplexing node is obtained as described
above.

The source parameters were chosen at random. These are shown, together with the 
source effective bandwidth in Table A-l.

Source On-time Off-time Peak Rate Packet Effective Buffer

(s) (s) (b/s) Size Bandwidth Size (bits)

(bytes) (b/s)

1 0.575758 1.12453 515002 333 507090 5072.02

2 0.482431 1.17507 261687 375 209350 2093.5

3 0.291242 0.622087 768253 217 614603 6146.03

4 1.17983 0.379901 369304 359 366556 3665.77

5 0.824973 0.840969 452478 317 447618 4476.32

6 0.452081 1.01662 473894 222 379115 3791.15

7 0.585979 1.14312 956476 398 942031 9420.17

8 1.11577 0.203031 596784 359 592185 5921.63

9 1.04545 0.492173 987064 292 978739 9786.38

Table A-l: Source parameters used in experiment to validate approach to

determine effective bandwidth.
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The effective bandwidths were chosen to satisfy a 2% loss requirement and a delay 
requirement of no more than 50ms. As discussed above, the approach used to determine 
effective bandwidths is somewhat conservative and the loss and delay obtained when 
the system was simulated were considerably lower than the target loss and delay 
parameters. The experiment was run once: 3000 seconds of simulation time were 
simulated. The overall buffer loss was 0.052% in this experiment. Clearly, this is much 
lower than the target loss rate of 2%.

The confidence interval on the loss rate is difficult to determine accurately. However, 
other simulations were performed that produced similar results. This coupled with the 
fact that the difference between the loss rates - target and simulated - is so substantial, 
can be used to argue that the loss rate obtained in any real situation is indeed 
substantially lower than the target loss rate20.

Observe that in a number of eases, the effective bandwidth is quite close to the peak 
rate, but in other cases, the effective bandwidth is substantially lower. These lower 
effective bandwidths, when aggregated, will result in a substantially lower resource 
allocation than peak rate allocation. Consequently, even though the approach used here 
is quite conservative, savings can still be made.

The end-to-end delay distribution as perceived by the foreground source is shown in 
Figure A-2. Most (over 88%) of the packets are not subject to a delay longer than 
5.4ms. The remainder are subject to varying delays with a maximum delay of 50ms. 
The variation in the delays arises from differences in the queuing delay experienced by 
the packets.

The minimum delay is comprised of transmission delays and propagation delays. The 
propagation delays on each of the three links is 0.1ms, totalling 0.3ms overall. The 
transmission delays are substantially greater. In this experiment, the packet size for the 
foreground traffic is 333 bytes. The first link is a IMb/s link, resulting in a transmission 
delay for a 333-byte packet of 2.664ms. The second link has the aggregate effective

20 Some initial investigations were performed to obtain confidence intervals on this result. The work of 

[Raa95] was studied, but it differs slightly from the case here. His emphasis is on obtaining confidence 

intervals for different parameters -  specifically the queue occupancy parameters. His work is not entirely 

unrelated to the problem of obtaining confidence intervals here. However, the measured loss and delay 

are sufficiently far from the target loss and delay that it is highly unlikely that the simulation results 

would not meet the loss and delay targets.
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bandwidth capacity - 4.53Mb/s in this case - and incurs a transmission delay of 
0.588ms. The third link in the connection also has this capacity and incurs the same 
delay. The total propagation and transmission delays are then 4.14ms.

0.6

3 Occurrence of delay

H

^  ^  ^  ^  ^  ^  ^  ^
Tim e in terval (s)

Figure A-2: End-to-end delay distribution as perceived by foreground traffic

source in experiment.

In the results obtained many of the packets were delivered with a latency of 4.14ms. 
These packets experienced no queuing: the link onto which all the traffic is being 
multiplexed was free when these packets arrived at the multiplexer. Those packets 
delivered with a latency of greater than 4.14ms experienced some queuing.

Both the loss and the delay are much smaller than the target rates: it is clear that the 
approach used to determine the effective bandwidth is conservative. However, the 
objective here is not to devise a highly efficient approach to determine an effective 
bandwidth; rather it is to use some approach to determine an effective bandwidth in the 
generic network design approach to enable some solution to this problem to be 
obtained. Clearly, this works for sources multiplexed through a single stage.

Extending this to the case in which there are multiple multiplexing points is also 
possible. The previous example was extended to five multiplexing points. In this case, 
the foreground traffic was mixed with interfering traffic at a number of multiplexing 
points. This interfering traffic was then routed off the path of the foreground traffic and
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more background traffic was introduced to be multiplexed with the foreground traffic. 
The scenario is illustrated in Figure A-3.

M U H te tt) r .  DetnJ^MBW B 
Node Node

Figure A-3: Abstract topology used in more complex scenario used to validate 

approach to determine effective bandwidth. In this case there are more 

multiplexing stages. Five multiplexing stages were used in the experiments.

Source On-time Off-time Peak Rate Packet Effective Buffer
(s) (s) (b/s) Size Bandwidth Size (bits)

(bytes) (b/s)

0 0.575758 1.12453 515002 333 507090 5072.02

1 0.482431 1.17507 261687 375 209350 2093.5

2 0.291242 0.622087 768253 217 614603 6146.03

3 1.17983 0.379901 369304 359 366556 3665.77

4 0.824973 0.840969 452478 317 447618 4476.32

5 0.452081 1.01662 473894 222 379115 3791.15

6 0.585979 1.14312 956476 398 942031 9420.17

7 1.11577 0.203031 596784 359 592185 5921.63

8 1.04545 0.492173 987064 292 978739 9786.38

9 0.821026 0.869587 409329 465 404908 4049.07

10 0.465589 0.367046 503246 316 493872 4937.74

11 0.872332 1.02891 702712 359 695555 6954.35

12 0.651232 0.917737 495386 483 488659 4886.47
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13 0.541648 1.23828 255571 354 204457 2044.57

14 0.427325 0.226729 693966 261 680110 6800.54

15 1.15323 0.265306 445632 290 442275 4422.61

16 1.16979 0.748018 782519 285 776579 7764.89

17 1.13791 0.943095 593867 487 589224 5892.33

18 1.02961 0.614206 421479 306 417859 4178.47

19 0.460382 0.936742 789225 369 631380 6313.8

20 1.08936 0.629673 864075 453 857050 8570.56

21 0.316561 1.23774 568665 356 454932 4549.32

22 0.178773 1.20486 911938 428 547163 5471.63

23 0.578707 0.957083 821161 321 808623 8087.16

24 0.250301 0.733097 416847 461 333478 3334.78

25 0.734586 0.201555 895385 205 884945 8848.88

26 1.07787 0.467172 485929 489 481955 4820.56

27 1.22267 1.09037 619082 266 614568 6146.24

28 0.791624 0.517932 490800 278 485346 4852.29

29 0.308785 0.201999 283588 272 275851 2757.57

30 0.598541 0.971787 416384 351 410233 4102.78

31 0.180436 0.63237 609607 265 487686 4876.86

32 0.363414 1.20782 512666 257 410133 4101.33

33 0.353482 0.89705 290174 435 232139 2321.39

34 0.136809 0.688506 382310 479 229386 2293.86

35 1.19158 0.720129 903772 408 897038 8970.95

36 1.21623 0.7006 548925 467 544921 5448

37 0.932256 1.12261 804774 395 797093 7969.97

38 0.913785 0.834934 454839 480 450423 4503.17
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39 0.894327 0.252154 529779 385 524650 5245.36

40 0.278354 0.615036 733444 207 586755 5867.55

Table A-2: Source parameters for multistage experiment.

Multiplexing Stage Loss Probability
1 0.076%
2 0.052%
3 0.016%
4 0.044%
5 0.060%

Table A-3: Loss probabilities at each multiplexing stage.

The parameters of all the sources and the effective bandwidths and buffer sizes are 
shown in Table A-2. As before, the simulation was run for 3000 simulation seconds. 
The amount of packet loss at each buffer was again very small. The packet losses per 
buffer are shown in Table A-3. The aggregate packet loss for the flow was 0.39% 
which, again, is very substantially less than the target value of 2%.

Delay Frequency
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Figure A-4: Frequency of delays in multistage effective bandwidth experiment.

The end-to-end delay perceived by the end station is shown in Figure A-4. Over 87% of 
the packets are delayed between 12-16ms, which is still substantially lower than the

238



target delay. However, it is worth noting that the delay is increasing and that ultimately, 
the delays may be comparable to the target delays. The considerable increase in delay 
over the single stage case can be accounted for by the increased number of transmission 
delays and propagation delays: the queuing delays are still very small, although they are 
greater than they were in the single stage case.

The above experiments illustrate that the effective bandwidth approach chosen can 
deliver the required loss and delay in the case in which the source characteristics are 
known. The AF traffic class, however, usually permits the customers to exceed their 
traffic contract and will attempt to carry this excess traffic if the traffic class is not 
congested21. Consequently, the total traffic in the network can, in extreme cases, greatly 
exceed the contracted traffic. In this case, it is difficult to assure that the target operating 
conditions are met.

The AF traffic class does permit differentiation of packets into different drop 
precedences. A well configured diffserv network supporting AF traffic classes should 
be able to carry traffic conforming to the traffic contract as higher priority than non- 
conformant traffic. The lower priority traffic should then be dropped in case of 
congestion. Thus, while the AF class may be congested, it can assure delivery of traffic 
up to the traffic contract: traffic in excess of the contract receives no such assurances. 
The delays can also be assured: the buffer sizes are chosen on the premise that there is 
no differentiation of traffic. As such, the queue sizes are chosen such that even if the 
queues are almost always full, the packets will be delivered in no more than the required 
delay. If this traffic differentiation does exist, and the queues are configured such that 
the low priority traffic is only delivered when queues are uncongested, then it should 
have little impact on the high priority traffic and hence the delays can also be assured.

21 This is an AF configuration issue: it can be operated to work in a different fashion, but this is the most 

likely mode of operation.
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APPENDIX B S c h e d u l e r  A l g o r i t h m  Us e d  in  C h a p t e r  5

A particular scheduler is used in Chapter 5. There, the details of the scheduler are 
omitted since they are not central to the discussion. However, the scheduler 
implementation used is quite interesting and is included here for completeness.

This scheduler determines which of a number of queues should have access to a link. In 
this case, the queues are the queues for the diffserv traffic: specifically, the scheduler 
serves 4 queues - an EF queue, an AF1 queue, an AF2 queue and a BE queue. The 
scheduler controls how much of the link resources are allocated to each of the above 
queues.

The scheduler used is a variant of a W R R  scheduler. Typically, this type of scheduler 
operates on a round basis — in each round, it serves each queue a certain number of 
times. The scheduler implemented here is slightly different: in each round, each queue 
is allocated some amount of ‘credit’ which is proportional to its weight. As the queue is 
served, the credit is used up. This is more flexible than the less adaptive system which 
simply serves each queue a certain number of times.

The scheduler iterates through the queues in the system checking if they have packets 
ready for transmission and credit available to transmit the packets. If queue i has just 
been served, this iteration process starts at queue i + 1. This makes it unlikely that a 
single queue will be served twice in succession. Using this approach, the intervals 
between serving a particular queue are not very long.

The fraction of the link resources allocated to each queue is dependent on the weight 
associated with the queue. The link resources are divided in proportion to the weights. 
For example, if the weights were 1:2:3:5, then l/ll of the link resources would be 
allocated to the first queue, 2/11 of the link resources to the second queue, etc.

The scheduler used here operates on a packet-by-packet basis: the scheduler chooses a 
particular queue to serve, removes a packet from the queue, transmits it on the link and 
then determines which queue to serve next. This is in contrast to the way most realistic 
schedulers operate: each time they serve a queue, a number of packets are typically
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removed. However, for the purposes of this work, the scheduler operating on a packet- 
by-packet basis is reasonable.

The scheduler used here has some more interesting details. The next round is 
automatically initiated once the aggregate credit - the sum of the credit available to all 
the queues - drops below some limit. If only one queue has packets ready for 
transmission and has no credit available, the next round is started early. This is to ensure 
that the utilisation of the link remains high.

Starting rounds early in this fashion can cause credit to build up for queues that do not 
use their available credit over some period of time. Ultimately, this can lead to large 
accumulations of credit for particular queues. This is undesirable because it means that 
the previously dormant queue can start generating traffic and dominate access to the 
link for a prolonged period, during which time the other queues will not get access to 
the resource.

The above undesirable situation is avoided by imposing a limit on the amount of credit 
that can accumulate for a particular queue. This is done by testing the amount of credit 
allocated to each queue when increasing the available credit because the next round is 
starting. If the increase causes the available credit to exceed the limit, the available 
credit is reduced to the limit.

Limiting the credit available to any queue in this fashion means that the scheduler may 
not divide the available link capacity in exactly the proportions of the specified weights 
over the long term. If a particular queue is not being used, then the credit will 
accumulate up to the limit. Once the limit is reached, the queue starts to lose capacity 
that it could have used. Consequently, the proportions specified by the weights no 
longer reflect the usage of the link.

So, while the scheduler resources may not be divided according to the weights over the 
long term, in periods of congestion, the scheduler resources are divided in the 
appropriate proportions. This is a critical distinction. It is only in congested periods that 
the operation of the scheduler really matters. In uncongested periods, the capacity of the 
resource will exceed the demand, and the QoS perceived by all the users will be 
excellent. Outside of these times, the difference in QoS delivered by each service class 
can be observed.

The particular algorithm used for the scheduler in the simulations described in chapter 5 
is listed in Algorithm 3.
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Procedure StartNextRound:
AggregateBytes=AggregateBytes+BytesPerRound 
For i=l to NumberOf Queues

Bytes(i)=Bytes(i)+Weights(i)*AggregateBytes 
If (Bytes (i) >Threshold (i) )

Bytes(i)=Threshold(i)
EndProcedure

Step 1: Initialisation
Set BytesPerRound,MinimumAggregateBytes,AggregateBytes 
For i = l to NumberOfQueues

Set Threshold (i), Weights (i)
Set Bytes (i) = 0 

Set CurrentQ=0 
Call StartNextRound

Step 2: Find Q ueue to Service 
Set QueueToServe= -1
For j =CurrentQ to CurrentQ+NumberOfQueues 

Set PacketSize=SizeOfNextPacket(j)
If((PacketSize>0) and (Bytes(i) > PacketSize))

Set QueueToServe=j 
Break

If (QueueToServe ! = -1)
Goto 3 

Call StartNextRound
For j =CurrentQ to CurrentQ+NumberOfQueues 

Set PacketSize=SizeOfNextPacket(j)
If((PacketSize>0) and (Bytes(i) > PacketSize))

Set QueueToServe=j 
Break

If (QueueToServe=-l)
Goto 4

D e f in e  P r o c e d u r e :
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St e p  3: Se r v ic e  Q u e u e , R e d u c e  C o u n t e r s  A p p r o p r ia t e l y

Set AggregateBytes=AggregatesBytes- Packet Size 
Set Bytes(CurrentQ)=Bytes(CurrentQ)-PacketSize 
If  (AggregateBytes<MiniraumAggregateBytes)

Call StartNextRound
Goto 2

St e p  4: W a it  f o r  P a c k e t  

Sleep

Algorithm 3: Scheduling algorithm used in the diffserv queue/scheduler systems

described in Chapter 5.
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