
DCU
D u b l in C it y U n iv e r s it y

School o f Electronic Engineering

A Flexible, Abstract Network

Optimisation Framework and its

Application to Telecommunications

Network Design and Configuration

Problems

Sean Murphy BEng.

Theses submitted in partial fulfilment o f the requirements for the award o f PhD.

Name of Supervisors: Prof. Thomas Curran

Dr. Dmitri Botvich

Submission Date: 18th June 2001.

D e c l a r a t io n

I hereby certify that this material, which I now submit for assessment on the programme

of study leading to the award o f PhD is entirely my own work and has not been taken

from the work o f others save to the extent that such work has been cited and

acknowledged within the text o f my work.

Signed: ID Number: 93700288

Date: ^ ^c\ |

A b s t r a c t

A flexible, generic network optimisation framework is described. The purpose o f this

framework is to reduce the effort required to solve particular network optimisation

problems. The essential idea behind the framework is to develop a generic network

optimisation problem to which many network optimisation problems can be mapped. A

number o f approaches to solve this generic problem can then be developed. To solve

some specific network design or configuration problem the specific problem is mapped

to the generic problem and one o f the problem solvers is used to obtain a solution. This

solution is then mapped back to the specific problem domain. Using the framework in

this way, a network optimisation problem can be solved using less effort than modelling

the problem and developing some algorithm to solve the model.

The use o f the framework is illustrated in two separate problems: design of an enterprise

network to accommodate voice and data traffic and configuration o f a core

diffserv/MPLS network. In both cases, the framework enabled solutions to be found

with less effort than would be required if a more direct approach was used.

A c k n o w l e d g e m e n t s

First and foremost, I would like to thank Prof. Tommy Curran for his support,

encouragement, insight and input throughout the course o f this work.

Dr. Dmitri Botvich was also an invaluable help without whom this thesis would not

have been completed. The many long and wide-ranging discussions that took place in

his office were simultaneously useful, stimulating, entertaining and enlightening.

Particular thanks are also due to Rob Brennan who gave generously of his time in

assisting in the preparation o f the defence o f my thesis.

There are many others with whom I’ve had the pleasure to work with in various

capacities throughout the course o f this work, many o f whom have spent some time

within the hallowed confines o f the Advanced Telecommunications Research Lab that

is J1 19. Most o f these people have given me faith, hope and encouragement at various

times throughout this work, not to mention a little light relief from the toil of my

research. I could mention many people here, but I would certainly omit some. Hence, I

don’t want to give an exhaustive list. Rather, I want to thank the following in particular

for their encouraging words: Dr. Noel-Edward O ’Connor, Saman Cooray, Nicola

Cooke, Hai Wang and Eddie Cooke.

My family have also been a rock o f support over the last number o f years, without quite

understanding what I was up when I came to DCU each day. Even though my little

brother Liam availed o f any opportunity to mock me with the ‘eternal student’ line, it

was always said in a good-natured manner. My parents have been particularly

supportive over the years and I want to extend a heartfelt thanks to them.

Last, but by no means least, I would like to thank my girlfriend Dr. Ethel Ryan. Ethel

and I started seeing each other seven months before I submitted my thesis - a stressful

time for any relationship, let alone one that is in its infancy. Ethel has been patient and

tolerant while I devoted considerable time and energies to finishing my thesis and she

had faith in me when m y self-belief was at its nadir. For this, I am and will always be

grateful.

iii

T a b l e o f C o n t e n t s

A C K N O W L E D G E M E N T S .. I l l

T A B L E O F C O N T E N T S ... IV

L IS T O F A B B R E V IA T IO N S ...V II

C H A P T E R 1 IN T R O D U C T IO N .. 1

1.1 O bjectives o f this W o r k ..2

1.2 T hesis O v e r v ie w ..2

C H A P T E R 2 N E T W O R K D E S IG N A P P R O A C H E S ...5

2.1 Intr o d u ctio n ... 5

2.2 Facility Netw o rk D e s ig n ..5

2.2.1 Decoupling the Topology and Dimensioning Problems.. 7

2.2.2 The MENTOR A lgorithm ..11

2.2.3 A Dimensioning Approach that Eliminates Uneconomic L inks ... 13

2.2.4 Reliability Problems... 13

2.3 P acket-sw itched N etw o rk D e s ig n .. 16

2.3.1 Routing in Packet-switched Networks.............................. 17

2.3.2 Network Dimensioning... 26

2.3.3 Logical Network D esign ...32

2.4 C ircuit-sw itched N etw o r k D e s ig n ..33

2.4.1 Routing in Circuit-switched Networks...34

2.4.2 Circuit-switched Network Dimensioning 37

2.4.3 Logical Network Design fo r Circuit-switched N etw orks 47

2.4.4 Multirate Network Dimensioning.. 50

2.5 ATM N etw o rk D e s ig n ...51

2.5.1 Logical Network D esign53

2.5.2 Logical and Physical Network Design 57

2.6 L a yered A ppr o a c h es to N etw o r k De s ig n ..59

2.7 C o n c lu sio n ...60

C H A P T E R 3 A F L E X IB L E , A B S T R A C T N E T W O R K O P T IM IS A T IO N F R A M E W O R K61

3.1 In tr o d u c tio n ... 61

3.2 M o tivatio n for th e N etw o r k O ptim isatio n F r a m e w o r k ... 61

iv

ABSTRACT...II

3.2.1 A High-level View o f the Network Optimisation Framework... . 62

3.2.2 Advantages o f this Network Optimisation Fram ework ..63

3.2.3 Caveat.. 64

3.3 T he G eneric N e tw o r k D esign P r o b lem ...64

3.3.1 The Input Param eters .. 65

3.3.2 The Output Parameters...76

3.4 M a th em atical P roblem Form ulation of the G eneric P r o b lem 77

3.4.1 Problem Complexity 78

3.4.2 Examples o f the Use o f the Generic M odel.. 80

3.5 G eneric P roblem Solu tion A p pr o a c h e s ... 82

3.5.1 Greedy Algorithm .. 84

3.5.2 Simulated Annealing Algorithm 86

3.5.3 Other Approaches ... 88

3.5.4 State-space, Neighbourhoods and Algorithms used to Solve the Generic Problem91

3.6 C o n c l u sio n s .. 95

C H A P T E R 4 E N T E R P R IS E N E T W O R K D E SIG N P R O B L E M ..96

4.1 In tr o d u c tio n ...96

4.2 P roblem De s c r ip t io n ..97

4.2.1 Enterprise User Demands.. 97

4.2.2 Network Realisation.. 99

4.2.3 Network Costs.. 109

4.3 Specific P roblem M o d e l 111

4.3.1 Formal Problem Model.. 112

4.4 M apping to th e G en er ic P r o b l e m .. 114

4.4.1 Determining the D em ands.............................. 114

4.4.2 Determining the Link Cost Functions .. 116

4.4.3 Formal Mapping from the Specific Problem to the Generic Problem 117

4.5 E xam ples and So l u t io n s .. 117

4.5.1 The Random Problem Generator... .. . 118

4.5.2 Time Taken to Obtain Solutions to Problems.. 122

4.5.3 Quality o f Solutions Obtained Using this Approach ,,..............132

4.5.4 Trade-off Between Solution Quality and Time Required to Obtain Solution 142

4.5.5 Objective Analysis o f the Results .. 144

4.6 Co n c lu sio n ... 145

C H A P T E R 5 D IF F S E R V /M P L S N E T W O R K C O N F IG U R A T IO N P R O B L E M146

5.1 In tr o d u c tio n .. 146

5.2 D iffserv and M P L S ..146

5.2.1 Diffserv... 147

5.2.2 M P L S ..163

5.2.3 Diffserv over MPLS..164

V

5.3 P roblem D e s c r ip t io n ...166

5.3.1 Diffserv Service Offerings.. 166

5.3.2 Network Implementation.. 169

5.3.3 Optimisation Problem — 170

5.3.4 Application o f the Design Problem ..171

5.4 Specific Pr o b lem Inputs and O u t p u t s ... 172

5.5 M apping to th e G eneric P roblem M o d e l ...176

5.5.1 Mapping from the Specific Problem to the Generic Problem ... 177

5.5.2 Mapping from Generic Problem Solution to the Specific Problem Solution184

5.6 Ex a m ple P r o b l e m s ..188

5.6.1 Problem Generation.. 188

5.6.2 Validation o f the Approach— 190

5.6.3 Solving Larger Problem s...208

5.7 Co n c l u s io n s ...217

C H A P T E R 6 C O N C L U S IO N ... 218

6.1 Contributions in this T h esis ..221

6.2 D irections for Futu re R e s e a r c h ...221

6.2.1 Development o f the Framework.. 221

6.2.2 Development o f the Specific Problem Cases.. 223

A PP E N D IX A E F F E C T IV E B A N D W ID T H D E T E R M IN A T IO N F O R A F T R A F F IC225

A. 1 D eterm ining th e A ppropriate Effec tiv e Ba nd w id ti i .. 225

A.2 T esting th e E ffectiv e B an d w id th A p p r o a c h .. 232

A PP E N D IX B S C H E D U L E R A L G O R IT H M U SED IN C H A P T E R 5 ...240

R E F E R E N C E S ...244

P U B L IC A T IO N S A R IS IN G F R O M T H IS W O R K ...255

L is t o f A b b r e v ia t io n s

AD Administrative Domain

AF Assured Forwarding

AQM Active Queue Management

ATM Asynchronous Transfer Mode

BE Best Effort

BGP Border Gateway Protocol

CBR Constant Bitrate

CBT Core-Based Tree

CIR Committed Information Rate

CS Class Selector

DCR Dynamic Call Routing

DCS Digital Cross-connect System

DiffServ Differentiated Services

DNHR Dynamic Non-Hierarchical Routing

DSCP Diffserv Codepoint

D-VPN Data-Virtual Private Network

ECMP Equal Cost Multi-Path

EF Expedited Forwarding

FR Frame Relay

GA Genetic Algorithm

IETF Internet Engineering Task Force

IntServ Integrated Services

IP Internet Protocol

vii

IS-IS Intermediate System-Intermediate System

ISP Internet Service Provider

LAN Local Area Network

LDP Label Distribution Protocol

LSAR Load Sharing and Alternate Routing

LSP Label Switched Path

LSR Label Switched Router

MBAC Measurement Based Admission Control

MPLS Multi-Protocol Label Switching

OSPF Open Shortest Path First

PBX Private Branch Exchange

PDH Plesiochronous Digital Hierarchy

PHB Per-Hop Behaviour

PIM Protocol Independent Multicast

POP Point o f Presence

PSTN Public Switched Telephony Network

QoS Quality o f Service

RCAR Residual Capacity Alternate Routing

RED Random Early Detection

RIO RED for In and Out traffic

RIP Routing Information Protocol

RSVP Reservation Protocol

RSVP-TE RSVP with Traffic Engineering extensions

RTNR Real Time Network Routing

SDH Synchronous Digital Hierarchy

SHR Self-Healing Rings

SLA Service Level Agreement

SONET Synchronous Optical Network

SSL Secure Socket Layer

TCP Transmission Control Protocol

TDM Time Division Multiplexing

TOS Type o f Service

UA Unified Algorithm

VBR Variable Bitrate

VCI/VPI Virtual Channel Identifier/Virtual Path Identifier

VP Virtual Path

V-VPN Voice-Virtual Private Network

WAN Wide Area Network

WDM Wavelength Division Multiplexing

WRR Weighted Round Robin

CHAPTER 1 I n t r o d u c t i o n

Network design and configuration problems arise in a number of areas, notably

telecommunications and traffic routing. Such problems have received considerable

attention over past decades because they can result in considerable cost savings for

interested parties and they are interesting and challenging problems to solve.

Much network optimisation work to date has focussed on the development of

specialised, efficient techniques that are applicable to one specific problem. This

typically occurred because the computing power available to solve problems was very

limited. To solve any reasonable size problems, it was necessary to focus on a very

particular problem and usually to simplify it and develop some efficient technique to

obtain a solution. This took considerable effort.

Development o f such efficient approaches to tackle network design problems is a

laborious and time consuming process: problems must be modelled, appropriate

simplifications must be made and efficient solution algorithms must be designed. Often

devising solution approaches is an iterative process in which one approach is tried

which works reasonably well but there is some scope for improvement; methods to

improve the approach are identified and implemented, resulting in better solutions,

further improvements are proposed and implemented etc. The process can go through

many such iterations in the search to make the approach more efficient and to solve

larger problems in less time. All o f these efforts are quite costly.

A different approach to tackling such problems is considered here. A flexible, generic

and more abstract approach to network design and configuration problems is proposed.

This approach is more flexible and consequently it can be applied to a number of

different scenarios. When compared with the specific network design approaches

mentioned above and discussed in considerable detail below, the approach described

here will, o f necessity, be slower. However, since computing power available today is

orders o f magnitude more powerful and cheaper than that which has gone before, there

is an argument for expending more resources in computing power and less on

manpower when solving these problems. This is one o f the premises on which this work

is founded.
1

1.1 Objectives of this Work

The primary objective of this work is to devise a flexible network optimisation

framework that can be usefully applied to a number of different network design and

configuration problems. At the core o f this framework is a generic network optimisation

problem, to which many specific optimisation problems can be mapped. Issues

pertaining to development and solution o f this generic problem naturally arise.

The objectives of this work can be itemised as follows:

• To develop a flexible network optimisation framework that can be applied to

different network design and configuration problems;

• To develop and formulate a suitable generic network optimisation problem on which

the framework can be based;

• To devise some approaches to solve the generic problem;

• To demonstrate the use o f this framework in the context o f some specific network

design and configuration problems.

Two specific problems are used to demonstrate the use o f this network optimisation

framework below. The first scenario is a variant of an enterprise network design

problem and the second is an Internet Protocol (IP) network configuration problem,

which incorporates new technologies that enable delivery o f Quality o f Service (QoS)

over IP.

1.2 Thesis Overview

The thesis is structured as follows. Chapter 2 contains quite a comprehensive discussion

of the many variants o f network design and configuration problems that arise in the

telecommunications domain. The discussion ranges from design o f facility networks to

design of legacy private line based enterprise networks to Asynchronous Transfer Mode

(ATM) networks to IP networks incorporating new technologies to support new

services. This chapter serves to illustrate the variety o f network design and

configuration problems that arise in the telecommunications area.

The new network optimisation framework is described in chapter 3. The motivation for

the idea is first given. Then the generic network design problem that is the crux of this

framework is described. The particular problem model that the problem is based on is

first presented, together with any assumptions made in the model. Some comments on

2

how the generic problem model can accommodate problems in which assumptions

made in the generic problem model do not hold are discussed. The generic problem is

then formalised. Some short examples o f how the model can be used in particular

problems are also presented. This is followed by a discussion o f some approaches that

can be used to solve the generic problem model.

The next two chapters describe in detail two particular applications of the network

optimisation framework. In essence, these are both examples o f how the network

optimisation framework may be applied.

In the first case, described in chapter 4, the objective is to design an enterprise network

consisting of a number o f interconnects between premises. The demands consist of a set

of voice and data demands and the problem is to determine the lowest cost network

design that can accommodate the voice and data demands of the users o f the enterprise

network. In this chapter, the problem is first discussed in detail, including the assumed

network architecture and how it is realised. Then the specific enterprise network

problem is formulated. This is then mapped to the generic network design problem,

which can be solved using the approaches discussed in the previous chapter. Examples

o f problems and how they were solved are then given for illustration purposes.

A more topical problem is discussed in chapter 5. A network configuration problem is

discussed for IP core networks carrying traffic with QoS requirements. IP-QoS is

receiving considerable interest in the research world due to the explosive growth of the

Internet over the last 10 years, leading to a near ubiquity o f IP. The widespread

availability o f IP has caused researchers to consider it as the transport layer of choice

for future applications. However, traditionally IP has not supported applications with

QoS requirements and hence IP networks must be developed to support QoS. Two

technologies have been proposed quite recently - Differentiated Services (DiffServ) and

Multi-Protocol Label Switching (MPLS) - which are considered by many to be essential

to the delivery o f IP-QoS services.

Chapter 5 contains a description o f both o f these technologies, ranging from high-level

architectural description to implementation details that are, o f necessity, assumed here

to enable the problem to be formulated. A particular set o f service offerings are assumed

in this problem and these are described. The specific problem is then formulated and the

mapping from the specific problem to the generic problem is described. Some example

problems are then solved to illustrate the use o f the approach. Two sets of examples are

3

given: examples o f small problems (problems with 5 to 7 nodes), the solutions o f which

are simulated and examples o f larger problems to demonstrate that the optimisation

algorithm is beneficial.

CHAPTER 2 N e t w o r k D e s ig n A p p r o a c h e s

2.1 Introduction

In this chapter different network design approaches for different types of networking

problems are surveyed. Problems that arise in the following problem domains are

discussed:

• Facility network design;

• Packet-switched network design;

• Circuit-switched network design;

• ATM network design.

Problems that arise in each o f these different problem domains typically have different

objectives and/or constraints. These arise due to the different ways in which network

performance is measured in the different problem domains. In facility network design

network performance measures are not usually of interest. In packet-switched network

design problems, packet delays through the network are typical performance measures

and a common objective is to minimise the mean packet delay time for all packets

transiting the network. In circuit-switched networks, performance is usually measured

in terms of the amount o f calls blocked on the network or the amount of revenue

generated by the network. Finally, since ATM networks have both packet-like and

circuit-like characteristics, both packet level and connection level performance

objectives are often specified for ATM network design problems.

Here, different approaches used to solve network design problems that arise in different

problem domains are surveyed with a view to constructing a generic model that can be

applied to multiple problem domains.

2.2 Facility Network Design

The facility network design problem focuses on how to construct physical networks to

carry some set o f demands. The networks are typically implemented using

Plesiochronous Digital Hierarchy (PDH), Synchronous Optical Network (SONET),

5

Synchronous Digital Hierarchy (SDH) and Wavelength Division Multiplexing (WDM)

technologies (see [Min92,YST99] for a description o f these technologies). These

technologies have different characteristics that can alter the characteristics o f the design

problem.

Various aspects o f the overall facility network design problem exist: equipment location

problems, architectural design problems and topology and dimensioning problems.

Equipment location problems focus on where to locate equipment so as to minimise the

overall cost o f the network given some set o f demands. Typically, these demands would

be forecast demands and the problem is a network planning one.

Architectural design problems focus on what architectures to use for different parts of

the network. For example, it is often not clear which nodes should be backbone nodes

and which nodes should not: the latter are ‘homed’ on a backbone node. Also, ring

topologies are very common when using SDH or SONET and it is often not clear when

and where these topologies should be used and when mesh topologies should be used.

Determining and costing different facility network architectures is discussed by Doshi

and Havardshana in [DH98] and by Cardwell et al in [CMW89].

Topology and dimensioning problems concentrate on where links should exist in the

network and what capacity these links should have. These problems can be either green­

field problems - problems in which there is no existing network - or problems in which

a network exists and the objective is to determine where capacity needs to be added to

accommodate increasing demands. These problems could arise as subproblems o f a

larger facility network design problem which incorporates one or both o f the other

aspects.

The emphasis in this work is closest to the topology and dimensioning aspects of the

overall problem, since it is a fundamental problem in network planning and design.

Moreover, only mesh network design problems are considered here. In such problems,

there is no hierarchical relationship between nodes and there are no architectural

restrictions on the way the network can be configured. This is in contrast to networks

based on rings, which arise frequently in the SONET/SDH network design, in which the

ring nature o f parts o f the network imposes constraints on the possible node

interconnections.

The facility network design problems considered here then are ones in which some set

o f demands must be routed over some network (which may or may not be given); some

6

cost is associated with routing the demands over the network and the problem is to

determine a way o f routing the demands that minimises this cost. In this problem, the

demands are specified in terms of capacities.

This problem is well-studied since it arises in a number o f areas in which significant

cost-savings can be made if this is optimised. The problem arises in the areas of

telecommunications network design and planning, design of power distribution

networks and the more general transportation sciences including problems relating to

road network design.

Three different approaches to solve the topology and dimensioning problem are

included here. The first approach discussed is one in which the determination o f the

network topology is decoupled from the problem of determining the routing and link

dimensions. In the second approach, the so-called MENTOR algorithm [KKG91] is

described which can be used to determine a reasonable topology as well as a routing and

hence the resulting dimensions can be obtained. The third approach discussed here is an

approach developed by Yaged which was designed to obtain a good routing for a set of

demands, but implicitly obtains a reasonable network topology by eliminating

uneconomic links. These approaches are discussed in the following sections.

2.2.1 Decoupling the Topology and Dimensioning Problems

A common approach to solve this problem is to decouple the topology and

dimensioning problems, i.e. the topological optimisation problem is considered

separately from the dimensioning or capacity assignment problem. Indeed, it is common

to nest the dimensioning problem inside a topological optimisation procedure as shown

in Figure 2-1. The dimensioning problem is one o f determining how to route the

demands on the given network topology such that the overall cost is minimised. The

topological optimisation problem involves costing different topologies by choosing

different network topologies and determining the cost o f these topologies by solving the

dimensioning problem. The lowest cost topology is chosen as the best solution.

7

Figure 2-1: Network dimensioning problem nested inside network topological

optimisation problem.

The problems are often decoupled in this manner because the coupled form of the

problem is often too complex. This is especially true o f large network design problems.

The decoupled problems can be solved separately and are considerably easier to solve

than the substantially more complex coupled problem. They are solved separately in an

iterative fashion - the output of one feeding into the input o f the other and vice versa

until the approach converges to a solution.

This approach arises frequently in network design problems and will be seen below in

the context of other types of network design problem.

Topological Optimisation

Two approaches to performing the topological optimisation are discussed here. In the

first approach, the topology optimisation problem is considered to be a combinatorial

optimisation problem and well-known combinatorial optimisation algorithms are

applied to solve it. This approach does not use any specific network knowledge to assist

in the optimisation. In the second approach, such knowledge is used to obtain a good

network topology.

Both approaches are examples o f so-called branch-exchange approaches to solve

topological optimisation problems. Branch-exchange approaches are iterative

approaches in which links are added and/or removed at each iteration until some
8

convergence criteria is satisfied. Here, it is useful to consider the set o f possible network

topologies to be represented by a state space. The problem can be solved by iterating

through the topology state space and determining the routing and associated cost for

each topology until a good solution is obtained.

McGibney [McG95] considers the application o f general combinatoric optimization

approaches to determine a good network topology in detail. McGibney uses link costs

of the form shown in Figure 2-2: the link costs are linear with a non-zero offset. The

total network cost is the sum of the individual link costs.

Figure 2-2: Link Cost function used in [McG95].

McGibney compares the use o f different well-known heuristic algorithms that can be

used to obtain some solution to combinatorial optimisation problems. He uses variants

o f well-known heuristics such as greedy algorithms, simulated annealing algorithms and

genetic algorithms. Interestingly, he found that there are very many local minima in the

problems he studied. Furthermore, these local minima often do not differ greatly in cost

and hence the choice o f any one o f these is a reasonable solution to the problem.

The other approach to obtain a good topology is to consider properties of the current

solution and to use this to determine how to choose the next solution. One variant o f this

approach is one in which the starting solution is a fully connected network and links

with the highest cost per bit are removed until no more overall cost improvements can

be made.

Other variants o f this approach are possible in which knowledge of the result o f the

dimensioning problem can be used to guide the topology optimisation process. This is

true o f situations in which the topology optimisation problem arises in problems other

than the facility network design problem, as will be seen below in the context of packet

network design problems.___
9

The Capacity and Flow Assignment Problem for Facility Networks

The capacity and flow assignment problem is to determine the optimal routing of the

demands and the optimal link capacities for the given set of demands, cost functions and

network topology. In this case, the set of routes is a sufficient solution to the problem:

the set o f link capacities can be determined from the route configuration and the

demands.

Different variations o f this problem exist:

• the demands can be a set o f time-dependent demands or they can be a single set of

time-independent demands;

• splitting o f the demands may or may not be permitted;

• there can be an existing network or there may be no existing network: the problem

may be a green field network design problem, or may be one in which the objective

is to minimise the costs o f augmenting capacity to the network;

• the link cost functions can vary.

Different solution approaches have been proposed to solve problems with different

characteristics. Some variants are discussed here.

If the link cost function is linear, as is the case in the problem studied by McGibney, the

optimal routing for the demands can be determined by solving a standard Floyd-

Warshall shortest path routing algorithm [GM84]. In this case, the link weights should

be the slope o f the link cost functions.

The flow deviation1 method can be applied quite generally to obtain a routing for a

given topology if the link cost functions are differentiable. Yaged used this approach in

1 The flow-deviation approach is a variant of the well-known Frank-Wolfe method that can be used to

solve general, non-linear programming problems with convex constraint sets. It is an iterative approach

that involves iterating through link flow vectors until a minimising vector is found. The approach

involves determining the derivative of the objective function with respect to the link flow vector for the

current link flow. A vector of derivatives is found - one for each link. These values are then used as the

link weights for a shortest path routing problem, the solution of which results in another set of link flows.

The next link flow vector is that vector between the current vector and that obtained from the shortest

path routing which minimises the objective function. If no reduction in the objective function is obtained

with this move, then the algorithm terminates. The rationale for this approach - which is based on some

unintuitive characteristics of the optimal solution - is discussed in more detail in [BG87].

10

his work and found that it had the desirable property o f removing uneconomic links.

Hence, it is considered below as a separate approach to solve the entire topological,

routing and dimensioning problem. Here, it serves to note that it is one approach to

solving the capacity and flow assignment problem.

If the link cost functions are non-differentiable, then the problem can be considerably

more complex to solve, especially when considered as part o f a loop iterating through

different topologies. The link cost function could be modelled using a differentiable cost

function and the more standard algorithms could be used in this case.

2.2.2 The MENTOR Algorithm

The MENTOR algorithm [KKG91,Ker93] is a different approach in which the network

topology is generated more directly based on the set o f demands. In this approach, a

spanning tree is generated quite quickly based on the demands and this is used as a kind

o f minimal network on which to route the demands: extra links are added if cost

efficient. A high-level view of the MENTOR algorithm is shown in Figure 2-3. Each

step in the algorithm is discussed in more detail below.

Figure 2-3: The MENTOR algorithm.

The spanning tree is generated by first identifying one node in the problem which is

relatively close to the other nodes and has a reasonably large amount o f traffic switched

11

through it. This node is termed the centre node and this is the first node in the tree. For

each node, a figure o f merit which is some combination o f distance to the tree and

demand generated by the node is calculated. The node with the highest such figure is

then added to the tree via a direct link. The figures of merit are then updated and the

node with the highest figure is again added to the tree. In this way all the nodes are

added to the tree and a spanning tree results.

When the spanning tree is determined, the demands are then considered in turn. A test is

performed to see if installation o f the direct link is warranted between the demand’s

source and destination. This test could be to determine if there is sufficient demand on

the direct link to use some high proportion o f the link. If the direct link is warranted,

then it is installed. Otherwise the demand is part-routed on the spanning tree: the

demand is routed to the next node in the spanning tree, where it is aggregated with other

demands.

The order in which the demands are considered is important in this problem. The

approach allows for demands that do not warrant a direct link to be aggregated with

other demands. It is possible to aggregate two sets o f demands which could warrant a

direct link when considered together, but neither of which would warrant a direct link

when considered on its own. Some demands can be viewed as dependent on others - if

traffic from one demand could potentially be aggregated with traffic from another

demand, then second demand is dependent on the first. Kershenbaum et al devised an

elegant algorithm to determine the dependencies between the demands to determine a

sequence in which to process the demands such that the dependent demands are

considered after the demands on which they are dependent. The demands are then

considered in the manner described above and a network topology and set of link

utilisations results.

The big advantage o f the MENTOR algorithm is that it requires considerably less

iterations: the algorithm runs in o (n 2) time. However, it does have a significant

drawback: the algorithm only caters for demands of a single capacity. The algorithm

does not contain a link model in which the cost o f the link varies with the used capacity

o f the link - only a single capacity is permitted.

12

2.2.3 A Dimensioning Approach that Eliminates Uneconomic Links

Yaged studied the network topological optimisation problem in the early 70’s [Yag71].

He studied a problem in which a set of demands had to be routed over a network. In this

particular variant, the link cost functions were continuous, concave cost functions of the

link capacity. The objective was to determine how to route the demands on the network

such that the overall network cost - the sum of the link costs - was minimised.

This can be a difficult problem to solve, especially for larger numbers o f nodes. The

solution space typically has a substantial number of local minima and hence it is

difficult to find a globally optimal solution. For larger problems, it is not even so

straightforward to obtain a locally optimal solution.

In essence, the approach used by Yaged was a flow-deviation approach. He determined

some characteristics o f locally optimal solutions: specifically, such solutions are

shortest path solutions to a problem with the same topology and some specific set of

link weights. The problem then becomes one of determining these link weights. Yaged

proposed an iterative approach to solve the problem in which the solution at iteration

i +1 is obtained by performing a specific mapping on the solution obtained at iteration

i . This continues until the solution converges. The mapping that Yaged suggests is one

in which the new routing can be obtained by determining the shortest path routing on a

network with a specific set of weights. These weights are obtained by differentiating the

link cost functions and choosing the value o f the derivative at the current level of

demand.

This approach has a tendency to reduce the capacity o f uneconomical links to 0. As

such, these links can be removed and the topology that emerges is simply the set of

links which have a capacity greater than 0. Thus, this approach can solve the topology,

routing and dimensioning problems.

2.2.4 Reliability Problems

Network design with reliability is an area that has received considerable attention in

recent years. This is due to the improvements in functionality o f telecommunications

equipment; in particular the fault recovery functionality available in Self-Healing Ring

(SHR) and Digital Cross-connect System (DCS) equipment mean that networks have

support for automatic reconfiguration in case of failure [Wu92,VHS96]. This new

functionality gives rise to new and interesting network design problems. Also, many

13

organisations are more dependent on their network to meet their business needs and

consequently are demanding that operators guarantee some level of service e.g.

99.999% service availability over some time period. This means that the network

operator has to take some measures to ensure that the network can react in the case of

failure of a network component or a link failure to ensure that this level o f service can

be guaranteed to the customer.

Automatic recovery mechanisms also mean that the network operator does not have to

dispatch a maintenance team to immediately solve the problem - the situation can be

examined and the problem solved at some later date. This means that it can be less

costly to fix the problem.

Network reliability has had an impact on the way in which networks are designed.

Networks, and facility networks in particular, are now designed with reliability

constraints in mind. A number o f variations o f network design problems incorporating

reliability concerns have been discussed in the literature. Some have concentrated on

spare capacity placement in an existing network, while others have been more

concerned with the network dimensioning problem and considering how to plan spare

capacity into the network at design time.

In [IMG98] an integer programming formulation for the network design problem

including reliability constraints is given. A standard integer program solver is then used

to solve the problem. In this approach, it is assumed that the costs are linear in capacity

and that the demands are given in capacity units and that these must be rerouted. The

approach that they propose can be used to design a mesh restorable SDH/SONET

network which uses path restoration. It can also be used to solve a variant o f the ATM

analogue in which the demands are multiples of some fundamental unit of demand. This

work can also be used to dimension the spare capacity required to be added to an

existing network with given demands and demand routing to obtain some level of

restorability.

Kheradpir et al consider the reliability problem in a dynamic bandwidth context

[KGS96]. The network must cater for demands dynamically. The problem is to

determine whether the demand can be accepted without compromising the reliability of

the network. The authors consider how the network can be configured such that the

maximum amount o f demands can be carried while still meeting the reliability

constraints.

14

They wish to obtain full network restorability. By this they mean that any one o f some

predefined set of failures can occur and the network will be able to reroute all the traffic

carried on the network such that all the original demands are met. If the demands are

sufficiently large, it may not be possible to route the demands on the network while

maintaining the survivability conditions. Consequently, some o f the demands may be

rejected. The author’s objective is to maximise the residual capacity on the links in the

case o f failure and minimise the maximum blocked demand in normal operating

conditions. This results in an equilibrium programming problem.

Kheradpir et al propose a parallel algorithm to solve this problem. The algorithm works

by considering the normal operating situation and each o f the failure scenarios almost

independently and solving a problem for each individual scenario. There is some

coupling between the problems that manifests itself if for any source-destination pair

the residual capacity on the least loaded path between the nodes has capacity less than

or equal to 0. If it is not possible to route a predicted demand in a particular failure

scenario, then the demand is limited to the demand in the previous period for all failure

scenarios. For each iteration of the loop, some o f the demand is allocated to the least

loaded path. The least loaded paths are again recalculated and some o f the demands are

again apportioned to the least loaded path. This is repeated until the all the demands are

allocated or no more can be allocated without breaking the reliability constraints.

Herzberg and Bye concentrate on the problem of adding capacity to an existing network

to ensure certain survivability constraints are met [HB94,HBU95]. They assume that

there is an existing network, and that some fraction o f the traffic for each node pair

needs to be rerouted in the case o f failure. Some set o f failures is given in advance -

typically a set of single link failures - and the problem is to determine how to add

capacity to the network such that the cost o f the additional capacity is minimised.

Herzberg and Bye formulate the problem as an integer program. To obtain integer

solutions, they determine a solution to the relaxed linear program, and then round up the

solution to the nearest integer-valued solution. Next, they apply a so-called ‘tightening

algorithm’ to the solution in order to reduce the cost o f the solution. This operates by

considering each link in turn and determining if unit reduction o f the link capacity still

results in a feasible solution. If so, then the link capacity is reduced by one. The next

link is then considered, etc. The tightening algorithm reduces the solution so that it

approaches the solution found by the linear program.

15

Other contributions have focussed on different aspects of the reliability problem:

Balakrishnan et al consider the reliability problem in the context o f topological

optimisation [BMM98] and there are others. Network reliability issues are not

incorporated into this work. However, reliable network design is an important issue and

any review o f network design cannot omit a discussion o f reliability concerns.

2.3 Packet-switched Network Design

Considerable efforts were expended on the design of packet-switched networks during

their earliest implementations. In particular, pioneers in the field such as Kleinrock and

Gerla spent much time modelling and analysing the ARPAnet before its introduction.

They formulated some design problems and developed interesting approaches to solve

the problems.

Today’s packet-switched networks have evolved significantly from those of the mid-

late 70’s; improvements in both computing power and transmission technology have

dramatically increased the speeds at which networks can operate. The exponential

growth in demands fuelled by the internet over recent years has meant that the

aforementioned technological improvements have been deployed in existing networks

to accommodate the increasing demands.

While networking technology in general has developed significantly from the networks

studied by Kleinrock and Gerla, the use o f IP, which was first used in the ARPAnet, has

grown enormously and IP is fundamental to the operation o f today’s internet.

Consequently, the early work done on packet-switched network design is still somewhat

applicable in today’s networks.

However, new sophisticated applications are creating a demand for more complex

network functionality. Applications require two important network functionalities which

are as yet not implemented on a wide scale: multicast and QoS. Broadcast applications,

for example require multicast [Obr98,Hui95] functionality in the network and most

probably will also require QoS support.

These new functionalities may have a considerable impact on the network design

problem. Multicast can have a profound impact on network dimensioning due to the tree

of network resources that a multicast service requires. The number of parties involved in

a communication can now be very large and consequently a large amount of network

resources may be used by a single communication. Clearly this will have an effect on

16

network design. Similarly, applications requiring QoS will require reserved resources:

the network will no longer operate in simple best effort mode. This, too, will have an

impact on the way that the network is designed. Little work has been done to date on the

way multicast and QoS will affect the network design problem.

In practice, today’s network designers - both enterprise network designers and Internet

Service Provider (ISP) network designers - tend not to use a rigorous problem

formulation and the application o f optimisation algorithms to design their networks.

Much of the design work is done using rules of thumb and tested using simulation

software, and, if necessary, network testbeds [Ker93]. This is because the growth o f a

network with an organisation has typically been a very evolutionary process in which

capacity was added as and when bottlenecks were identified. Little planning took place.

Lloyd-Evans [Llo96] notes that a design based on ad hoc or rules-of-thumb methods can

be 10-20% more costly than a design based on a more systematic analysis. This

difference can be very significant for reasonable sized networks. Also, the vast increase

in the use of communications technologies that has occurred over the last number of

years means that networks are considerably larger than they were before and there is

more scope for finding ways to make cost-savings.

The remainder o f this section is structured as follows. First, routing in packet-switched

network is discussed, since routing typically has a strong impact on dimensioning. Next,

some systematic approaches to network dimensioning in packet-switched networks are

discussed. These are followed by a discussion of a slightly different problem: that of

determining how to configure a logical packet-switched network on some physical

network.

2.3.1 Routing in Packet-switched Networks

A reasonably concise overview of routing in packet networks is included here. Routing

in packet networks is quite a complex subject and has been studied for many years. The

purpose o f routing in networks is to determine a path from a source to a destination in

the network. While this is the fundamental purpose of routing, there are other concerns

that affect the way that routing operates - efficiency and stability for example.

Here, a number of different aspects o f routing are discussed. First, unicast routing is

discussed. Three possible approaches to performing unicast routing are discussed:

distance vector based routing, link state based routing and MPLS. This is followed by

17

some discussion of multicast routing, which, in turn, is followed by some discussion of

QoS and routing.

Distance Vector Routing

Distance vector routing was the first approach to facilitate routing in packet-switched

networks. It is quite a straightforward approach in which each node broadcasts

reachability information to its neighbouring nodes. These neighbouring nodes forward

the newly received reachability information onto their neighbours in turn. In this way,

the reachability information is propagated through the entire network.

When a node obtains reachability information for a new address or set o f addresses, this

information is added to the node’s routing table. The routing table is augmented with

the destination address/set o f addresses and the node from which this reachability

information was obtained; this node then becomes the next hop in the path to this/these

destination(s).

(a)

(b)

Figure 2-4: Illustration of the operation of distance vector-based routing. In (a)

Node C sends a message to Node Y informing it that C is 2 hops from X. Node Y

then incorporates this information into its routing table.

In the distance vector approach, distance information is propagated through the network

with reachability information. Thus, each node receives information which can be

interpreted as “I am x distance away from destination a.b.c.d” from its neighbouring

1 8

nodes. Each node can then use this information to identify the shortest path to each

destination node. Only information pertaining to the shortest path is retained in the

routing tables for each node: if a node receives reachability information from a

neighbouring node and an entry already exists for the specific destination addresses,

then the node compares distance information. If the new information indicates that a

shorter path to the destination exists through this neighbouring node, then the routing

table is updated to indicate that this node has become the next-hop for this destination.

This is illustrated in Figure 2-4.

Transmission of the distance information is quite simple in practice. Each node receives

distance and reachability information from its neighbouring nodes. It then forwards this

on to its neighbouring nodes. However, before forwarding on this information, it

increases the distance to the destinations. For example, if a node receives information

from a neighbouring node that can be interpreted as “I am 3 nodes away from node

a.b.c.d,” it will then forward information which can be interpreted as “I am 4 nodes

away from node a.b.c.d” to its neighbours. Note, however, that the distance does not

have to be a simple hop count measure: more sophisticated measures are possible if

more control over the network resources is desired.

Routing Information Protocol (RIP) [RFC2453] and Border Gateway Protocol (BGP)

[RFC 1771] are examples o f distance vector based routing protocols.

Distance vector based protocols are not so flexible. In all cases, the shortest path is

chosen to the destination. However, the shortest path between a source and destination

may be quite congested and for this reason may not be the best path between source and

destination.

Distance vector based protocols do have some disadvantages:

• they can take some time to converge. This can be a problem in the case o f link

failure when the network needs to react quickly to minimise the impact o f the failure

on the network traffic;

• they are susceptible to oscillatory behaviour in certain circumstances;

• in large networks, they can require transmission o f huge amounts of information,

and can have a detrimental effect on the network performance as a result;

• they do not differentiate between different link types, and the cost associated with

routing on different links.

19

The above deficiencies with distance vector based protocols stimulated the development

o f link state routing schemes. It is worth noting, however, that distance vector based

routing schemes are still very much used, particularly in the form of the interdomain

BGP.

Link State Routing

Link state routing operates using a different paradigm than that o f distance vector based

routing. In link state routing, network topology information is distributed throughout the

network. Each network node then builds up a map of its local domain and each node

then determines how to route traffic based on this network map.

In a link state protocol, the reachability information is transmitted with the link state

information. Each edge router may be directly connected to a number o f stub networks.

When broadcasting link state information to other routers, each edge router also

distributes information relating to the stub networks it is connected to. This information

is then propagated through the entire network, such that the resulting network map in

each network node contains information pertaining to the stub networks and not just the

core network nodes that provide interconnectivity. In this way, the reachability

information is propagated through the network with the link state information.

Since each node has its own network map each node can make its own decision on how

to forward packets. In theory, each node can run almost any routing algorithm to

determine a next hop to each destination. In practice, each node typically runs a shortest

path routing algorithm to determine how to forward packets to each destination node.

Consequently, traffic typically follows a shortest path between source and destination

nodes.

Open Shortest Path First (OSPF) [RFC2328] and IS-IS (short for Intermediate System-

Intermediate System) [RFC1142] are examples of link state routing protocols.

Note that in contrast with distance vector based protocols, the shortest paths can be

based on different metrics. In the link state routing paradigm, each link has an

associated parameter. This parameter is then used in the shortest path calculations.

Typically, these link parameters are simply the inverse o f the link capacity, causing

routing algorithms to favour links of high capacity over low capacity links. However,

they do offer some flexibility in the routing o f traffic on the network, and recently some

authors [FTOO] have been studying how to choose these parameters well to efficiently

20

carry the traffic on the network. Thus, while it is not possible to implement arbitrary

routing on networks using link state protocols, a significant degree o f flexibility is

possible, and many different route configurations can be realised by prudent choice of

the link weights. This is certainly more flexible than the more restrictive distance vector

based approach, although there is a big problem with this idea: changing the link

weights can result in very substantial changes to the way in which traffic is carried on

the network.

Link state routing can also be used to support demand splitting: traffic between two

nodes can be carried over multiple equal cost paths - this is implemented using so-

called equal-cost multipath (ECMP) routing and is available in existing equipment. This

offers more fine-grain control over routing in the network since it offers the possibility

to split demands rather than having all o f the demand carried on a single path. ECMP is

implemented in some routers by dividing the demand between a number o f paths each

having the same cost. This provides an extra level o f flexibility in routing traffic over

the network, but does introduce much greater complexity to the problem of choosing

network parameters. Some work has been done on facilitating multiple paths between

source-destination pairs to enable an unequal distribution of demand between different

paths using OSPF [OMPID].

Multi-Protocol Label Switching

MPLS [RFC3031,Arm00] is a newer approach to routing in packet-switched networks,

which is currently receiving much attention in both industry and the research

community. MPLS is a technology that was initially developed to facilitate flexible

routing of multiple protocols in data networks. Today, due to the overwhelming success

o f IP, MPLS is mainly considered in the context o f IP networks and is considered

primarily for use in core IP networks for three purposes:

• implementation o f tunnelling;

• traffic engineering;

• QoS support.

In MPLS, each packet has a label. Packets are switched at MPLS routers (so-called

Label Switched Routers or LSRs) based on labels. When a labelled packet arrives at an

LSR on one interface, the LSR looks up a routing table to determine what interface the

packet should be sent to and what label should be assigned to it. Using this label

21

switching approach, Label Switched Paths (LSPs), or paths which packets follow

through the network can easily be configured. MPLS permits arbitrary paths to be

configured for arbitrary traffic in the network: clearly, this is much more flexible than

the either distance vector or link state based routing.

An important element o f the MPLS architecture are filters at the edge of the network.

These filters may or may not exist and can be used to control what traffic enters which

LSP. If a number o f LSPs exist between a particular source and destination, then these

filters can be used to control which traffic is routed over which LSP. The use o f these

filters provides more fine-grain control over traffic flows in the network. They can be

useful, for example, in situations in which different customers pay for different levels of

service: in this case, the different customer’s traffic should go into different LSPs.

As with other routing protocols, the essence o f MPLS is a protocol that facilitates

distribution of routing information. In the case o f MPLS, this is the Label Distribution

Protocol (LDP) [RFC3036]. It is used to distribute information pertaining to the

assigned labels and also includes information such as the destination addresses that are

reachable via a particular label. The LDP is not discussed in any detail here.

One important aspect o f MPLS is that it facilitates a separation of routing and

forwarding. Routing relates to the way that the LSPs are routed in the network and

forwarding relates to the determination of the next hop for a packet at each node. In the

layer 3 routing schemes, routing and forwarding are tightly coupled, but MPLS

decouples these operations such that it is possible to implement quite arbitrary routing

schemes.

MPLS provides functionality to configure paths through networks that follow an

explicit route. Thus, arbitrary paths can be configured through the network and arbitrary

routing schemes can be implemented. In practice, some tools would be required to

implement such routing schemes.

Explicit routes do not have to be used to configure LSPs; the network maps or

forwarding tables generated using layer 3 routing protocols could be used to generate

paths in MPLS networks. Using this approach, the resulting set of LSPs will be exactly

the same as those resulting from the use o f link state routing. However, the resulting

network is one in which MPLS routing is used and hence it is inherently more flexible.

This could be introduced to facilitate easy migration from a network based on link state

routing to one based on MPLS routing. As more sophisticated MPLS control tools

22

become available, the advantages offered by MPLS can be exploited more

systematically, but with MPLS routing, even manual mechanisms can be employed to

reroute traffic - something that is considerably more difficult with either link state or

distance vector based routing.

MPLS was designed with flexibility in mind. Consequently it does permit arbitrary

paths to be configured through the network and hence it permits very great flexibility in

routing. Also, MPLS permits demand splitting, such that traffic between particular

sources can easily be split between different paths. MPLS then offers great flexibility

that can be used in the network design problem. The level o f flexibility offered is

probably too great for network design and some assumptions should be made to limit

the amount o f design variables.

A more detailed description o f MPLS is given below. Here, the most significant aspects

of MPLS were discussed with an emphasis on the level o f flexibility offered by the

technology and how it can impact the network design problem.

Multicast Routing

Multicast routing can be used to support multicast applications which involve

communications between a number o f parties. These can range from large-scale

broadcast applications such as wide-scale video distribution over IP - something similar

to today’s television service — to much smaller scale videoconference applications or

interactive gaming. Multicast can also be used to distribute other data such as say stock

prices, news etc.

The fundamental concept in multicast networking is that o f the multicast group.

Members o f a multicast group can either be senders or receivers: senders send to the

group, while receivers listen to any information sent to the group. In essence a multicast

group translates to a single address that is used to distribute traffic for the group.

Routers (in some sense) broadcast traffic sent to this address. Group senders send to the

multicast address and rely on the network to distribute information to the receivers;

receivers listen to the multicast address to receive information sent by the senders.

Routing protocols are then used to ensure that all parties subscribed to multicast groups

receive traffic destined for those groups. Efficiency concerns arise quickly here: it is

quite straightforward to ensure that all receivers receive the information: this can be

done by broadcasting all multicast information everywhere. However, this obviously

23

generates very large amounts of traffic. Hence, the routing protocol must ensure that

information can be delivered to the receivers in an efficient manner.

Two approaches to distribution o f multicast information have been proposed: flood-and-

prune [Dee91] and core based tree (CBT) [BFC93]. In the flood-and-prune approach, it

is assumed that the multicast information should be distributed to all routers. Hence, the

routers automatically broadcast multicast information to all neighbouring routers. If

some routers do not want to receive a multicast session, then they explicitly tell their

upstream router not to send it via a pruning message. In the CBT approach, the default

behaviour is not to transmit a multicast session unless a downstream router explicitly

requests it.

These two approaches are essentially different and are most suitable for different

applications. The flood-and-prune approach is most suitable for multicast applications

in which there is a very wide interest - applications which will be broadcast to a very

large set o f users. Alternatively, the CBT based approach is much more suited to

applications in which the number o f users is small.

Protocol Independent Multicast (PIM) [DEF94] is an effort to combine these different

approaches. PIM has two modes o f operation - dense-mode PIM and sparse-mode PIM

- corresponding to the flood-and-prune approach and the CBT approach respectively.

Current approaches to facilitating multicast over IP networks are described above.

These approaches, however, have their shortcoming, particularly when viewed in an

interdomain context. For this reason there are still ongoing research efforts to provide

scalable network support to multicast applications [AlmOO].

QoS and Routing

QoS is an issue that is currently o f great interest in packet-switched networks. This is

due to the wide availability o f packet-switched networks, and the need to ensure QoS to

achieve acceptable performance for some applications.

Many different proposals have been made in the literature to address aspects o f the

overall QoS problem, but the question o f how end-to-end QoS will be delivered to end-

user applications over IP networks in the real world remains unanswered. The problem

here is not only to provide QoS but do this both economically and efficiently for both

users and service providers. There are a number o f reasons that no realistic solution

24

exists, not least o f which is the fact that there is not yet a significant application-level

demand for QoS support from the network.

A number o f different architectures have been proposed which can deliver some levels

o f QoS to the end-user: most noteworthy amongst these are the diffserv and Integrated

Services (Intserv) architectures, since they have received considerable interest from both

the research community and industry. These architectures do not make any stipulations

relating to the operation of routing in the network, and indeed, they can operate with

routing mechanisms that are unaware o f QoS. However, it is likely that QoS-aware

routing will enable more efficient use o f the resources and delivery of better QoS to the

end user.

Most of the work in routing in QoS networks has focussed on routing in the context of

the Intserv architecture and the authors think of routing traffic on a per-application

basis. Similar ideas, however, can be employed in the diffserv architecture, although in

this case the flows become aggregate flows and the queuing is done on a per-class rather

than per-application basis.

Chen and Nahrstedt provide a good overview o f QoS routing in [CN98], There, they

describe a number of different ways routing can be implemented in to support QoS.

These vary in terms of the assumptions made on the amount of knowledge retained in

each node, the granularity with which network state information is distributed, the

criteria for choosing routes and the algorithms used to choose routes. Some of the work

reviewed there uses source routing, while other work uses distributed next-hop routing2.

In all cases, routes are chosen based on network state information and hence, the routing

schemes can be considered to be adaptive to the state of the network.

Adaptive routing in this manner is quite a change from the more traditional methods of

routing in packet-switched networks. For this reason, the impact it will have on the

network design, operation and configuration are unclear. However, it is clear that some

of the knowledge learnt from the design and operation o f telephony networks can be

used in this context to help solve the design, operations and planning problems that may

arise with QoS-based networks.

2 In source routing, the route for the traffic is chosen by the source - the nodes between source and

destination do not decide how the traffic is routed. In next-hop routing, each node on the route determines

the next-hop for the traffic.

25

Routing has a considerable impact on network dimensioning - an inefficient routing

scheme can result in an expensive network to meet some performance objectives, while

an efficient routing scheme can result in a considerably cheaper network.

From a dimensioning point o f view, observe that the above protocols can impose some

constraints on the routing that is effected in the network. If RIP is used, then all the

traffic to a particular destination must follow a single path. OSPF permits some splitting

of the demand between paths. This is o f interest below, and will be discussed further in

relation to algorithms that make assumptions on the way in which the routing is

performed in the network. MPLS is a much more flexible routing technology and can be

used to implement arbitrary routing, although support tools may be required to fully

exploit the flexible routing capabilities.

The effects o f multicast and QoS traffic on network design are not at all clear. Multicast

traffic has the potential to greatly impact the network design problem if a large number

o f multicast applications will be using the network. Similarly, QoS traffic can have a

considerable impact on the network design problem if it is to accommodate a significant

amount o f traffic with QoS requirements. Since these technologies are not widely

deployed, network design approaches taking these into account are not included here.

A significant difference between packet-switched network design problems and network

design problems in other contexts is that packet delays are usually o f interest in packet-

switched network design problems. These can arise either as constraints on the problem

or as elements of the objective function. In either case, packet delays are usually

aggregated into the overall mean packet delay and this appears either in the problem

constraints or the objective function.

Approaches to solve this problem are described next. As with the facility network

design problem, two different approaches can be used to solve this problem. In the first

approach, the algorithm iterates through the topology state space determining a network

cost for each topology as shown in Figure 2-1. In the second, the problem is solved

without iterating through different network topologies.

To use the iterative approach it is necessary to be able to find a low cost solution to the

capacity and flow assignment problem. This is discussed next, followed by some

comments on the iteration through the topology state space. This is followed by some

2.3.2 Network Dimensioning

2 6

comments on the network design approaches that do not use topological optimisation

approach.

The Capacity and Flow Assignment Problem

The capacity and flow assignment problem involves determining how to route a set of

demands on a given topology such that some cost is minimised. In this case, the routing

alone does not immediately imply some set o f link capacities. Rather, the link capacities

are also design variables in the problem. This is a characteristic o f the packet-switched

network design problem. In these problems, the demands are specified in terms of

packet arrival rates and the capacities chosen have an impact on the delays experienced

in the network. Small capacities can be chosen, but will result in large packet delays.

The link capacities are not as obvious from the routing and the set o f demands as they

are in the facility network design case. Note that mean delay constraints are usually

added to the problem to ensure that the resulting network does not have arbitrarily large

delays. These constraints ensure that the link capacities remain sufficiently large.

Gerla and Kleinrock [GK77] give a comprehensive discussion of issues associated with

solving this problem and they propose a number o f different solution techniques. They

consider different variants o f the problem: essentially, the different variants differ in the

choice o f link cost function used. A number o f different solution algorithms are

proposed and the applicability o f these algorithms to each of the different problem

variants is discussed.

Some simplifying assumptions are made in the model used by Gerla and Kleinrock.

Firstly, all demands are assumed to consist o f packets arriving according to a Poisson

process. This means that all o f the queues in the network act like M/M/1 queues:

consequently, the queues can be easily analysed and the characteristics o f aggregate

arrival processes are known. Secondly, some mean packet length is assumed. Thirdly, it

is assumed that entire demands are routed on a single path, i.e., a demand is not split

between multiple paths.

The simplest case is that in which the link costs are linear in capacity. In this case, a

closed form expression for the optimal link capacities in terms o f the flow variables can

be obtained by assuming that the delay is equal to the bound. The dependence on the

link capacities can be eliminated and the resulting problem is one in which the overall

cost function is a concave function of the link flows. A large number o f local minima

27

exist and they all exist at the edge o f the domain. In particular, they all exist at comers

of the polyhedron that constitutes the domain. There are very many such comers and it

is not practical to search them all individually. The flow deviation approach can be used

to obtain a locally optimal solution to this problem.

In the case in which the link costs are a concave function o f the link capacities, the

objective function is also a concave function o f the link flow variables. Consequently,

the flow deviation approach can again be applied. However, this situation is slightly

more complex because it is not possible to obtain a closed form expression for the

optimal link capacities in terms of the link flows and hence the objective function

cannot be written as a closed form function o f the link flow vector. However, it is still

possible to apply the flow deviation approach to obtain a good solution.

The discrete costs case is more complex. Gerla and Kleinrock propose two different

high-level approaches to solve the problem. The first approach obtains a solution by

iteratively solving a routing problem and then a dimensioning problem until a local

minimum is found. The solution to the routing problem is used in the dimensioning

problem and the solution to the dimensioning problem is used in the routing problem.

The second approach involves approximating the discrete cost function with some

concave cost function and solving the resulting problem. The resulting continuous

capacities are then converted to the closest discrete capacities and the routing problem is

again solved to obtain a good routing.

Gavish and Neuman [GN89] consider an alternative version of the capacity and flow

assignment problem. They wish to design the network such that both the delay and

network cost is minimised. They consider the link costs to be composed of two

components - a fixed cost and some capacity dependent component. This is the same as

the cost model use by McGibney and is illustrated in Figure 2-2. In their formulation,

the objective function consists o f both a delay term and a link cost term. Hence, the

optimal solution will be some trade-off between a minimal delay solution and a minimal

cost solution.

They make the same assumptions about packet arrival rates and packet sizes as those of

Gerla and Kleinrock. They also assume a single route is chosen for each demand.

However, their formulation is slightly different in that the set o f routes possible for each

demand is specified in advance. They also assume that a number o f different link types

28

are possible for each individual connection and that each o f these links has different cost

characteristics.

Gavish and Neuman formulate the problem such that the decision variables are binary

variables which represent whether or not a particular route is used and a particular link

type is used. These decision variables are the paths that the demands are carried on and

the link type that is chosen for each link. The problem is then formulated as an integer

programming problem. The number o f variables in this formulation can be very large,

even for moderate networks.

Gavish and Neuman solve the problem using a variant o f the methods o f Lagrange

multipliers. First, they relax one o f the constraints. Specifically, they relax the constraint

that relates the link flow variables to the routing variables: the precise relationship that

exists between the routing variables and the link flow variables then no longer exists.

Both o f these are then decision variables in the new problem. They do however ensure

that the amount o f resulting flow on each link is no less than the amount of flow carried

on the link as determined by the routing variables. Then they develop a Lagrangian

function. They observe that terms in the resulting Lagrangian function can easily be

grouped in a natural way and the Lagrangian function can be decoupled into sets of

smaller functions. Minimisation of the Lagrangian can then be broken down into many

smaller minimisation problems. Solutions to these subproblems can be obtained

separately resulting in set o f simple relations between the decision variables and the

Lagrange multipliers. The problem then reduces to determination o f the optimal set of

Lagrange multipliers. This is a non-smooth optimisation problem and a subgradient

optimisation approach is used - this is a variant o f the steepest descent algorithm that is

applicable to non-smooth optimisation problems.

One problem with this approach is that the resulting solution can be quite a distance

from any feasible solution in the original problem. This can be attributed to the

relaxation of the relationship between the routing parameters and the link flow

variables. The authors attempt to improve the solution by imposing tighter bounds on

the link flow variables. These bounds are determined through knowledge o f the

candidate routes. Some demands must be carried on specific links and hence it is

possible to determine a lower bound on the amount o f flow carried on a link. Similarly

by examining the candidate links for each flow, it is possible to determine an upper

29

bound on the amount o f flow that can be carried on each link. This technique

significantly improves the solution quality.

Gersht and Weihmayer also consider this network design problem in [GW90]. They

formulate the entire problem - topology optimisation, flow and capacity assignment.

They include node switching capacity as a consideration in the design problem. They

impose an upper bound on the delay and they assume linear link cost functions. They

assume some set o f candidate routes is given as an input to the problem. They also

consider multiple different types o f facilities in the problem, with different facilities

having different cost/capacity characteristics. In their problem formulation, the decision

variables are the amount of traffic carried on each path and the presence/absence of

links in the resulting network. In the formulation they propose, the demands can be split

over multiple paths; the variables determining the amount o f traffic carried on each path

are continuous variables. The link existence variables are binary variables. The resulting

problem is then a mixed integer/linear programming problem.

The problem can be solved using general techniques to solve mixed integer/linear

programming problems but Gersht and Weihmayer advocate an approach developed

specifically for this problem. The approach they propose follows the decoupling

approach described here, viz., the topology design is separated from the capacity and

flow assignment problems.

The capacity and flow assignment part o f their work is described here. They use a

straightforward approach to determine how traffic is carried on the network in their

design. They decouple the capacity determination from the flow assignment by

obtaining a simple relationship between the flow carried on a link and the link capacity:

they introduce upper bounds on utilisation for links and nodes. These upper bounds can

be related to the delay constraints. They show that the optimal solution is obtained when

the load on the nodes and links is equal to this upper bound. Hence a relationship can be

obtained between the link capacities and the flow carried on each link. Once this is

established, the link capacities are no longer free variables and they focus on the routing

problem.

To solve the routing problem, they assign a cost to each of the candidate paths for each

demand. The lowest cost path is then chosen to route the demand. The cost o f each path

is simply a sum of the variable costs o f each link and node that constitutes the path. If

the node switching costs are ignored, then the cost o f the path is simply the variable

30

costs associated with each link. This is equivalent to obtaining the shortest path using

the variable costs associated with each link as the link weights and using this to route

the demand and is exactly the same approach as that used by McGibney in his work.

Determining a Good Network Topology

Choosing a good network topology in the context o f packet-switched networks is very

similar to choosing a good network topology in the context o f other network design

problems. The approaches described above - the branch-exchange approach in

particular - can be applied here. Indeed, this is what the authors of the articles

mentioned above propose. However, the approaches differ in this case in that packet-

related information from the capacity and flow assignment problem can be used to

influence the topology selection process.

Gerla and Kleinrock propose branch-exchange algorithms for their problem in [GK77].

They discuss straightforward greedy approaches as well as more complex branch-

exchange approaches based on cut-sets. In the cut-set approaches, instead o f identifying

all possible link topologies that could be used for the next iteration, a cut-set is

identified which contains the most saturated set o f links that connects two separate parts

o f the network. Saturation is measured using packet-level characteristics of the problem.

An extra link is added across this cut-set, while a lightly loaded link is removed from

another part o f the network.

Gersht and Wiehmayer propose a so-called link reduction algorithm to iterate between

different network topologies in [GW90]. In their approach, they start with a highly

connected graph and proceed to remove links until removal of any more links causes

either an increase in network cost or a resulting network configuration that does not

meet the some of the design constraints. They propose a greedy approach in which links

are removed that correspond to the maximal reduction in network cost.

Approaches in which the Topology Design Problem is not Decoupled

Two approaches have been proposed in which the topology design problem is not

decoupled from the capacity and flow assignment problem. The first is the MENTOR

approach, which is described in section 2.2.2 above. This can be used in the context of

packet-switched network design as well as other network design types. In essence, the

one aspect o f the network MENTOR design procedure that is network specific is the

loading on each link in the network. Recall that a direct link is installed between two

31

nodes if there is sufficient demand. In a packet switched network design problem this

can be determined if the delay on the link exceeds some threshold.

An alternative approach in which the topology design problem is not decoupled from

the flow and capacity assignment problem is discussed in Gerla and Kleinrock [GK77].

This is similar to the work described by Yaged discussed in section 2.2.3 above. The

flow deviation approach that they propose to solve the flow and capacity assignment

problem naturally aggregates traffic when possible. This has the effect o f assigning no

flow (and hence no capacity) to many links in the problem. Hence, if this algorithm

operates on a fully connected topology, the result is often a network which is quite

sparsely connected. In this way a reasonable topology is a natural output of the use of

this algorithm. Note that this approach is only applicable to situations in which the link

cost function is concave. Consequently, it cannot be generally applied. However, there

are a substantial number o f cases in which the link cost is either concave or can be

approximated by a concave cost function.

2.3.3 Logical Network Design

Lee and Yee consider a logical packet-switched network design problem in

[LY91,LY95]. In this problem, the objective is to determine a logical network

configuration that minimises the overall network delay.

Lee and Yee assume that the physical network consists of a set of given connections

that are easily divided into channels. They consider interconnects such as T1

interconnects that can be divided into 64kb/s channels. These channels offer the

flexibility to implement a logical network and the problem is then how to configure the

channels to obtain a logical network that minimises the delay over the network.

Lee and Yee formulate the problem as a convex optimisation problem with linear

constraints and hence a unique local optimum exists. The constraints on the problem are

all linear. The number o f variables in the problem becomes very large very quickly and

consequently, the problem becomes difficult to solve quickly.

Lee and Yee propose the use o f a partial branch and bound procedure to solve the

problem. First, the relaxed form of the problem is solved. This is used as a starting point

from which feasible solutions can be obtained, d paths are then chosen from the

optimal solution and a number o f modified problems are formed in which there are extra

constraints on these paths. For each path two extra constraints are added - one in which

32

the capacity o f the path exceeds the value obtained in the initial solution and one in

which the capacity is upper bounded by this value. This results in 2d new problems. A

relaxed version of each of these problems is solved and if the relaxed solution is of

lower cost than the current minimum, rounding is performed to obtain a feasible

solution. If the feasible solution is of lower cost than the current minimum, it replaces

the current minimum cost solution. This procedure continues until a low cost, feasible

solution is obtained.

The approach to choosing paths is done on a “longest and shortest first” basis: paths

requiring small amounts o f resources from many physical links are chosen first. The

algorithm proceeds until the shortest and fattest paths are being considered.

2.4 Circuit-switched Network Design

Circuit-switched networks have been well studied over the last few decades. Advances

in routing techniques made possible by the development of stored-program-control

switches introduced new complexities and challenges to the analysis o f circuit-switched

networks. Circuit-switched network design has never been a trivial problem, even for

networks employing simple hierarchical routing. Network design for networks using

advanced routing techniques is a difficult problem and consequently has received

considerable attention over the last couple o f decades.

The circuit-switched network design problem differs from the facility and packet-

switched network design problems in that the focus is on circuit level performance. The

grade of service measure is the connection blocking probability and the demands are

typically measured in call arrival rates. This makes the analysis o f the problem quite

different to that o f the earlier problems.

This section is divided into four subsections. First, routing in circuit-switched networks

is discussed. This has a very considerable impact on network performance, and hence an

effect on network design approaches. Different network routing mechanisms are

described. Next, a number of different algorithms proposed to solve design problems for

circuit-switched networks using specific routing are described. These algorithms are

quite complex and warrant substantial discussion. Approaches to designing logical

networks for circuit-switched networking are discussed next: this is followed by a

discussion on multirate circuit-switched networking and an approach to design such

networks is described.

33

Many different routing schemes have been proposed to improve the efficiency of

circuit-switched networks. These range in complexity from the simple dynamic routing

to more complex adaptive schemes. Four routing schemes are described here. Three of

these have been used in operational environments; the fourth is useful for modelling

other more realistic routing schemes and is included for this reason. The most important

ideas in advanced circuit-switched routing are encapsulated in these routing schemes.

Dynamic Non-Hierarchical Routing

Dynamic Non-Hierarchical Routing (DNHR) was originally proposed in [AKK81] and

discussed in a network design context in the seminal paper by Ash, Cardwell and

Murray [ACM81]. The purpose of DNHR was to increase the efficiency of AT&T’s

network through the introduction o f two important developments in telephony

networks: the introduction of a dynamic aspect to network routing and a relaxation of

the strict hierarchical rules that governed routing heretofore.

A specific implementation was developed for the AT&T network, but the concept is

slightly more general than this. The DNHR concept allows for complex routing trees

and associated parameters to be varied throughout the day: the routing trees themselves

can vary and/or the associated parameters. In particular, parameters such as route

weighting parameters may vary. One example o f a routing scheme that would fall under

the general class o f dynamic non-hierarchical routing would be one in which a number

o f routes exist for each destination and one o f these routes is chosen at random for each

call. The probability o f choosing each route varies throughout the day according to

some predefined schedule. Other variants are possible. The particular variant o f DNHR

chosen to be implemented by AT&T is often referred to as DNHR. Below, DNHR will

be used in this sense.

In AT&T’s DNHR, a set o f routes exists in each node for calls to each destination.

These routes are tried in order. If the first route fails, then the second route is tried etc.

until all possibilities are exhausted, in which case the call is blocked. In this scenario,

crankback must exist in the network - i.e. if the call routing fails somewhere on the

route other than the originating node, then the call must be ‘cranked-back’ to the

originating node where another route will be tried.

2.4.1 Routing in Circuit-switched Networks

34

DNHR is dynamic in the sense that the routing tables are updated periodically

throughout the day. A number o f routing tables exist in each node for each destination.

These are pre-determined and the routing table that is in use at a particular time is

dependent on the time o f day. This enables the network to cater for different traffic

patterns throughout the day. This is particularly beneficial in a network that spans a

number of time zones such as the AT&T network that the scheme was designed for.

It is important to note that this scheme is not adaptive to the state of the network; the

node behaviour varies throughout the day with the changing traffic patterns, but this is

pre-programmed behaviour - the nodes do not adapt their behaviour to the state of the

network.

Load Sharing and Alternate Routing

In Load Sharing and Alternate Routing (LSAR) a fixed set of routes exists for the traffic

between the source and the destination nodes. When a call needs to be routed, one of

these routes is chosen at random to route the call. If the call cannot be routed

successfully, then an alternate route is chosen. This can again be chosen at random. Like

the DNHR scheme described above, this scheme requires crankback to operate.

This approach has the effect o f splitting the demand for a particular node-pair over a

number o f routes in proportion to the weights associated with each route.

This type o f network routing is not used in real networks. However, networks using

other routing schemes can be modelled by this routing scheme under appropriate

assumptions. For this reason, this short description of LSAR is included here.

Residual Capacity Adaptive Routing

Residual Capacity Adaptive Routing (RCAR) is a general term to describe a number of

different algorithms which are adaptive to network conditions and use (predicted)

residual capacity on routes when determining how to route a call. Link status

information is relayed via the signalling network in order to facilitate determination of

lightly loaded routes.

In the two implementations described here a central processor periodically collates link

status information, processes the data and sends updated routing information to the

nodes as necessary. The central processor examines the variation in link utilisation

during the time interval and uses this to predict link occupancy during the next time

35

interval. This information is then used to determine lightly loaded routes and to

configure routing functions in nodes.

It is important to note that the network status information is only updated at certain

intervals - the nodes do not always know the states of the network links; there can be a

discrepancy between the nodal information and the status o f the links.

A particular scheme that falls into the general category of RCAR routing schemes is

called Dynamic Call Routing (DCR) [Gir90]. This was implemented and trialled in

Canada. In DCR, a fixed set of routes exists for routing traffic between two nodes. All

of these routes contain two links. The call is first offered to the direct route. If this is

full, then an alternate route is chosen with some probability. These probabilities are

proportional to the amount of forecast free capacity on the route and are updated by the

central processor. If the call is blocked on the alternate route, then it is lost.

Updating the probabilities forms the crux o f the routing scheme, and it was found that

the frequency o f the updates was a very important factor in the performance of the

scheme.

Another approach that falls into the category o f RCAR is Trunk Status Map Routing

proposed by AT&T [Ash85]. Like the DCR scheme, this approach uses a central

processor to collate information on the status of the links in the network. The central

processor analyses the link status information and, if necessary, effects changes in the

routing in the nodes. In this scheme, it was found that the best routing strategy was to

first try the route proposed by non-adaptive DNHR, and, if this fails, attempt to route

the call on the least loaded alternate path.

Real Time Network Routing

Real Time Network Routing (RTNR) is another approach that was developed by AT&T

[ACFH91] to improve the efficiency o f their trunk network. This approach is very

adaptive to the state o f the network and is, in principle, quite a simple approach. The

approach uses signalling between the source and destination nodes to determine the

most lightly loaded route between the source and destination. It does not require the use

o f a centralised processor collating link status information to determine lightly loaded

paths.

36

LL

LL

1
B U S Y

LL

pI3

B U S Y
HL 2

LL
L e g e n d
L L = L ig h t l y l o a d e d
H L = H e a v i l y l o a d e d

L i g h t l y lo a d b i t m a p
f r o m o r i g i n a t i n g s w i t c h

0 0 1 1 1 ► A N D « 0 0 1 0 1

1 ►AND«

1r
Do ¡1 0 1

0 1

C a n d i d a t e l i g h t l y l o a d e d p a t h s

L i g h t l y l o a d e d b i t m a p
f r o m t e r m i n a t i n g s w i t c h

A l l o w e d v ia s w i t c h l is t

Figure 2-5: Operation of RTNR - determination of lightly loaded paths.

In this approach, one o f six states is associated with each link at any time — Lightly

Loaded 1 (LL1), LL2, LL3, Heavily Loaded (HL), Reserved and Busy. When a call is to

be routed on the network, the direct route is first tried if it exists. If the direct link is

congested, a message is sent to the terminating switch requesting its link status

information. The link status information is returned to the originating node via the

signalling network. The link status information takes the form o f 6 bit maps - one for

each link state - that can be used to determine the status o f each o f the links connected

to the terminating node. The originating switch then performs a bitwise AND operation

using the local link information and the link information obtained from the destination

node to determine the most lightly loaded alternate route for the call. A check is then

performed to see if the routing scheme permits this route to be used as an alternate route

for this node pair: the routing scheme supports a mechanism to restrict particular routes

being used for alternate traffic between node pairs. The determination o f a lightly

loaded path is illustrated in Figure 2-5. If a number of routes are in the same state, then

a round robin approach is used to distribute the calls evenly between the different

routes.

2.4.2 Circuit-switched Network Dimensioning

Since the routing scheme used in the network has a considerable impact on the network

performance, different dimensioning algorithms were proposed for networks employing

different routing schemes. These different network dimensioning approaches for the

37

different network routing schemes are discussed here. In these dimensioning problems,

the network topology is assumed to be fixed and given: the topology problem is

considered to be a separate problem.

Dimensioning DNHR Networks

Ash, Cardwell and Murray developed the Unified Algorithm (UA) for the dimensioning

of DNHR networks, and it is discussed in some detail in [ACM81]. The algorithm

consists of a set of heuristics that can be used to dimension a circuit-switched network

that uses DNHR routing to accommodate a set of given demands with some specified

grade o f service at a low cost.

Two variations o f the algorithm are discussed: the route formulation and the path

formulation. In the route formulation o f the algorithm a set o f routing tables are

specified as inputs to the optimisation procedure, and one element o f the design

problem is to determine how to assign weights to these routing tables to obtain a routing

that results in a low cost network design. In the path formulation of the algorithm, paths

for demands are specified as problem inputs. The design algorithm then determines how

demands are split over the paths. This differs slightly from the route formulation in that

there is still the outstanding problem of how to choose the routing table parameters to

realise the desired flows.

The path formulation o f the problem is more flexible, since the constraints it imposes on

the routing are less restrictive than those o f the route formulation. Also, the authors

found that the path formulation o f the problem usually finds lower cost solutions. This

is because the route formulation requires routing tables to be specified at the input to the

problem - if bad routing tables are input then it is difficult to obtain an efficient routing

of demands. Hence it is difficult to obtain an efficient network operation and good

network performance. Consequently, the network required to meet the performance

constraints is more costly. The path formulation is much less likely to have unsuitable

routing tables since choosing the routing tables is part o f the problem. For these reasons,

only the path formulation o f the UA is considered here.

The path formulation o f the UA is an iterative procedure (as is the route formulation) in

which quantities such as the routing o f the demands, the link blocking probabilities and

the link dimensions are repeatedly recalculated until they converge. A flowchart

illustrating the algorithm is shown in Figure 2-6.

38

Figure 2-6: Flowchart for Path Formulation of Unified Algorithm.

The iterative process contains the following steps:

1. Generate paths;

2. Obtain an optimal routing o f the demands by solving a route optimisation problem;

3. Dimension the links using the routing obtained from the previous step;

4. Perform blocking correction: dimensioning the links can cause the link blocking

parameters to be changed. In some cases, the link blocking may exceed the desired
39

link blocking for some busy hours. Small adjustments to the link capacities may be

necessary to ensure that link blocking does not exceed the required blocking.

If the process has not converged, then a further two steps are performed:

1. Update the link metrics;

2. Update the link blocking probabilities.

Each of these steps is discussed in more detail.

The first step is to generate a set o f paths. Short paths are preferred since these require

the least amount o f resources: only direct and two-link paths are considered. In a large

highly connected network, there can be very many two-link paths. Hence, some way of

reducing the number o f paths to some reasonable amount o f candidate paths is required.

This is not discussed in [ACM81], but some reasonable path generation heuristics can

be envisaged based on some combination of shortest geographical distance, trunks with

largest demand and possibly non-coincidence of busy-hours.

Once the paths are determined, the problem is to determine how the demands are routed

on the network. The objective is to minimise the cost o f the resources required to route

the demands. A linear program is constructed to solve this problem. The variables in

this problem are the amount o f traffic carried on each o f the links and the amount of

traffic carried on different routes. The objective function is the sum of the marginal link

costs and this must be minimised by solving the linear program. The output o f the linear

program is the set o f traffic flows that should be carried on the network. This can be

used to determine how much traffic is carried on each link.

The next step is to dimension the network using the routing obtained above. This is

done in a reasonably straightforward manner. For each link, the maximum amount of

flow through the link is determined over the different time periods. The maximum flow,

together with the link blocking probability are used to determine the required link size.

The Erlang-B blocking formula is used here to determine the required link size. The

blocking for all hours is then determined using these link sizes.

The convergence test is then performed. If the parameters - routing, link blocking and

link dimensions - have converged sufficiently closely, then the algorithm is terminated.

Otherwise, the link blocking parameters are recalculated and the next iteration

performed.

40

The link blocking parameters are recalculated based on the routing of the demands and

the link dimensions. The amount o f traffic incident at each link is easily calculated

based on the routing. The cost of routing the link traffic is then formulated as the sum of

the link costs and the cost of the traffic overflowing to other links. In general, the latter

quantity is difficult to estimate and some approximation must be made. The resulting

function is a non-linear function of the link dimension. This is then optimised with

respect to the link dimension to obtain a new link dimension and a new link blocking

parameter which is used as input to the next iteration o f the process.

The link metrics, which are essentially derivatives of the link cost function with respect

to the link dimensions are also recalculated. These are used in the objective function of

routing optimisation procedure. Since these parameters are sensitive to the link

dimensions, they are recalculated at each iteration.

This is the essence of the UA algorithm. There are particulars/details of the algorithm

which are not so relevant to this discussion and hence they are omitted here. The

algorithm is important since it is the first algorithm that was successfully applied to

large-scale circuit-switched dimensioning problems.

Dimensioning LSAR Networks

Girard discusses modelling of LSAR networks in [Gir90]. One problem considered

there is dimensioning o f LSAR networks. The problem is to obtain a network design

that results in a minimum cost network that can maximise the revenue generating

capability o f the network. The objective function is a sum of the network costs and a

term reflecting the amount o f revenue generated by the network. The problem also has

some grade-of-service constraints: the blocking between node pairs must not exceed

some pre-defmed threshold.

In the dimensioning problem, there are two sets o f parameters that need to be

determined - the proportion o f flow carried on each path and the link dimensions. The

link blocking probabilities are implicitly defined once these parameters are defined;

however, Girard chooses to introduce these as decision variables in the problem

formulation and to introduce explicit constraints relating the load carried on each link,

the link dimensions and link blocking probabilities.

41

Figure 2-7: Flowchart for LSAR dimensioning algorithm.

The resulting problem is a large constrained non-linear programming problem. Girard

forms a Lagrangian function incorporating the objective function and the problem

constraints. Relations between the Lagrange multipliers and the optimal values o f the

42

problem decision variables can then be determined by taking appropriate derivatives of

the Lagrangian function. A system of equations relating all o f the unknown parameters

results. This system o f equations, however, is large and difficult to solve.

Girard proposes a heuristic iterative approach to solve the problem in which some

variables are fixed and the remaining ones calculated until the system converges to

some solution. This iterative approach is illustrated in Figure 2-7.

A detailed description of the algorithm is not necessary here. However, a few comments

are in order to give some idea of the complexity of the algorithm. The link

dimensioning problem can be decoupled into individual link dimensioning problems in

this formulation. The link dimensions can then be obtained using a univariate

optimisation technique. The y Lagrange multipliers can be determined by solving a

linear program. The flow coefficients can be determined using a multicommodity flow

solver. This part of the algorithm is the most time consuming. The fixed point problems

can be solved by a repeated substitution method. Finally, the x Lagrange multipliers

can be obtained by minimising the Lagrangian function with all other variables fixed.

The overall procedure does converge and it does converge to a local minimum of the

LSAR dimensioning problem. However, the algorithm is quite complex and does

require considerable amount o f processing time. Girard and Liau [GL93] report that the

solution algorithm takes of the order o f hours on their systems for a 50 node network.

This would probably take of the order o f 10’s o f minutes on today’s computer systems.

However, the algorithm doesn’t scale up well.

An interesting point relating to this work is that the optimisation algorithm used has its

roots in a mathematical model. This is in contrast to the UA, which is simply a set of

heuristics, albeit quite reasonable ones. The mathematical model is then analysed to

identify characteristics o f the solution and speed up the solution algorithm. The fact that

the optimisation algorithm is (in some sense) derived from a mathematical model also

means that it is possible to consider how close to the optimal the derived solution is.

Furthermore, since there is a definite mathematical model to solve, different

optimisation techniques can be applied to obtain some solution.

Dimensioning RCAR Networks

The design o f RCAR networks - in particular the DCR variant o f RCAR - is discussed

in [GL93]. The basic idea behind this approach is to approximate a DCR network by an

43

LSAR network and use the dimensioning procedure for LSAR. Girard and Bell used the

same idea in [GB89] in an attempt to devise a fast algorithm to determine the network

performance o f a DCR network.

A DCR network can be approximated by an LSAR network by noting that over the long

term, the behaviour o f the DCR network appears stationary. The effects o f updating the

routing periodically in response to changes in the demand disappear when the network

is observed over a long period of time. Hence, the network can be modelled as an LSAR

network. However, care must be taken when doing this. Since the routing is periodically

updated in DCR, the weights for each route are not arbitrarily chosen, unlike LSAR.

When modelling DCR using LSAR, extra constraints are introduced that relate the

weights for each route to the amount o f free capacity on each route. Girard and Bell

showed that DCR can be reasonably well modelled using LSAR using this approach

[GB89],

The DCR network is then dimensioned using the LSAR dimensioning procedure and

the relation coupling the free capacity on each route to the weight for each route. This is

not quite as straightforward as it may at first appear. In the LSAR dimensioning

problem, the amount of flow offered to each route was a design variable. In this

problem, the amount o f flow offered to each route is no longer a free design variable

since it is dependent on the occupancy o f each route.

The approach used to solve this problem is also an iterative one. A flowchart illustrating

the approach is shown in Figure 2-8.

The design approach does have some stability concerns. It is not clear that the approach

will converge to a solution. In the DCR design algorithm, there are three loops that must

converge - the flow variables, the link dimensions and the subgradient optimisation

loop. The flow variables loop converges well. The link' dimensioning loop, however,

does not converge quite so well, and some measures are taken to dampen the variation

o f the resulting link dimensions. The link dimensions are weighted sums o f the link

dimensions obtained during the current iteration using the dimensioning rule and the

link dimensions used in the previous iteration. Similarly, the x parameters can exhibit

non-convergent behaviour. In the same way, dampening mechanisms are used to ensure

that these do indeed converge.

44

Figure 2-8: Flowchart for DCR dimensioning scheme [GL93].

One interesting observation made by the Girard and Liau is that they find that the

network cost resulting from the DCR network design approach is typically higher than

that resulting from the LSAR approach.

Dimensioning RTNR Networks

In [ACL94] the dimensioning of RTNR networks is discussed in the context of a logical

network design problem. The overall approach is applicable to facility network design,

but considers the inclusion o f RTNR traffic on the facility network. To this end, some

discussion o f the dimensioning problem for RTNR networks is discussed.

45

The RTNR dimensioning algorithm described in [ACL94] is based on the RTNR

network performance model developed in [AH93]. In the dimensioning problem, it is

assumed that some grade-of-service performance objectives, e.g. blocking probabilities,

are given and that the resulting network is fully connected. The objective is to obtain a

set o f link dimensions that enable the performance objectives to be just met.

The objective does not explicitly involve obtaining a minimum cost network since this

work was done in the context o f a logical network design problem, although the

network dimensioning algorithm should not result in link dimensions that are

unnecessarily high. Once some set o f interswitch link capacities are obtained that meet

the grade-of-service constraints, these can then be input to the topology design problem.

The real cost considerations come into effect in the link dimensioning problem. The link

dimensioning problem is formulated as a linear programming problem in which the

objective is to minimise the extra capacity required to meet the demands. The design

model incorporates reliability requirements by ensuring some fraction of each demand

is routed over a physically diverse path.

The dimensioning algorithm is an iterative heuristic dimensioning algorithm. It is

illustrated in Figure 2-9. The algorithm uses three separate models developed in the

performance model o f [AH93], The link state probability model is used to determine the

probability that the link is in each o f the different link states - LL1, LL2, LL3, HL,

Reserved, Busy - as discussed above. In the traffic flow model, the link state

probabilities are used to obtain the route state probabilities. These, in turn, are used to

determine what proportion o f flow pertaining to each demand is carried on each route.

These flow variables are the output o f the link flow model. The third aspect of the

performance model is the adaptive trunk reservation model. This models the dynamics

o f the trunk reservation level for each link and attempts to determine the mean trunk

reservation level. This is dependent on the node-to-node blocking and is used in the link

state probability model.

46

Solve link state
probabil i ty m o d e l

1r

So lv e traffic flow
m o d e l

' f

So lv e t runk
re serv a t io n m o d e l

i t

D im e n s i o n links

'

C o n ve

f

raed?

 ±________

(E " d

Figure 2-9: The dimensioning algorithm for RTNR networks.

The link dimensioning method is not described, although it is noted that the links are

dimensioned in terms of T1 transmission capacities. Consequently, there is considerable

granularity in the dimensioning o f the links and hence the link dimensioning problem

should not prove very difficult. The flow incident at each link is an input to the link

dimensioning problem and this should be used with an inverse Erlang B formula to

obtain dimensions for the links.

Once the dimensions o f the logical network design are determined, these can be input to

the logical network design optimisation step. The design of logical networks is

discussed separately in the following section.

2.4.3 Logical Network Design for Circuit-switched Networks

Development o f more sophisticated cross-connect equipment in the 80’s added extra

flexibility to the configuration o f telecommunications networks. This enabled logical

networks to be implemented over physical infrastructures in circuit-switched networks

(see [Ash95] and [AS90] for a more detailed exposition of this concept). This extra

47

flexibility can enable more efficient use o f the network resources. This concept was

discussed above in the context o f packet-switched networks, and will be discussed

below in the context o f ATM networks.

Three variants o f the logical network design problem are discussed here. In the first, the

objective is to determine how to configure a logical network on some given physical

resources such that the logical network can best accommodate the demands. In the

second problem, the objective is to determine a logical network on some physical

network which minimises the amount o f extra capacity that must be added to the

physical network. Finally, a discussion o f a combined logical and physical network

design and configuration problem is discussed.

The problem that arises then is how to configure the logical network using the available

physical resources so as to maximise the network efficiency. Other variants o f logical

network design problems are possible and arise in other networking contexts, but this is

the only one that is discussed here.

Gopal, Kim and Weinrib studied the logical network dimensioning problem for circuit-

switched networks in [GKW90,GKW91]. In their problem formulation, each node-pair

was offered a certain amount o f Poisson traffic. The problem was to maximise the

amount o f traffic carried by the network, and hence the revenue generated by the

network, by appropriately configuring the logical network. There are no specific

constraints on the problem. In particular, there are no constraints on the blocking

between node pairs - this can be arbitrarily large in the solution.

They propose a greedy algorithm to solve the problem. For each demand and each

available path, some benefit is calculated for carrying an extra unit o f the demand on the

path. The benefit function is a sum of the resulting increase in the amount o f carried

traffic and some measure of the amount o f traffic that cannot use these resources if they

are assigned to this path.

The algorithm used by the authors does not assume any advanced routing strategies in

the network. Hence the increase in carried traffic that results from the addition of

capacity to a path can be determined using the Erlang-B function.

The authors find that this direct approach to solving the problem can result in networks

that operate more efficiently than do networks with advanced routing strategies. The

performance o f a physical network with logical overlay network is compared to that o f a

physical network with least loaded routing when the load differs from that o f the design
48

load for the physical network. The results show that the extra layer o f flexibility can

result in better network performance. This is especially true o f cases in which the

incident load differs considerably from the design load. Indeed, the greater the

difference between the design load and the actual load, the better the performance

obtained using the logical network configuration.

Ash, Chen and Labourdette discuss such logical network configuration in [ACL94],

They consider the problem in a more realistic context than that considered by Gopal et

al. The problem that they consider is somewhat different from that of Gopal et al.

Instead o f trying to determine a logical network which can carry the maximum amount

of traffic on the given physical network, they attempt to carry a specific set o f demands

on a given physical network in such a way as to minimise the amount of capacity that

needs to be added to the existing network. Since the demands are specified in terms of

concrete capacities rather than call arrival rates, this problem is closer to the facility

network design problems o f section 2.2.

Ash, Chen and Labourdette formulate the logical network design problem as a linear

programming problem. The problem can be solved using some standard approach but

Ash et al propose an algorithm to obtain some solution to the problem which uses

specific domain knowledge to reduce the time required to find a solution.

Medhi also considers the logical network design problem in [Med94], He considers this

problem in association with the physical network design problem. He assumes some

fixed physical topology is specified and the problem is then to determine the physical

network capacities and the logical network configurations that result in the minimum

cost network that can accommodate the constraints. Medhi considers two types of

constraints: survivability constraints and grade-of-service constraints. He also considers

multiple sets o f demands - one for each different time period. The problem he considers

is quite comprehensive.

Medhi formulates the problem as a linear program. However, the very large number of

variables in the problem make it difficult to solve. Consequently, some approaches to

simplify the problem and obtain some solutions are discussed.

Medhi eliminates the circuit-switching characteristics o f the problem at a high level by

determining the required amount o f trunks between each node-pair to deliver the grade-

of-service constraint. This is done by assuming that direct routing is used throughout the

network - if more complex routing is used, then it is considerably more difficult to

49

determine the required capacity between each node pair. In this way, the demands are

mapped from a set of loads measured in Erlangs to a set of capacities, which are much

easier to deal with. This reduces the problem to one which is similar to the facility

network design problem; there are no longer any specific circuit-switched aspects to the

problem. Medhi solves the problem by decoupling the different failure scenarios and

obtaining both a logical network configuration and a physical network configuration in

each case. The physical link capacities chosen are the maximum capacities required

over all failure scenarios. Details are omitted since the emphasis here is on design of

logical circuit-switched networks.

2.4.4 Multirate Network Dimensioning

Medhi and Guptan consider the design o f multiservice, multirate switching networks in

[MG97]. In this network, calls can occupy more than one circuit. Different services can

then be supported: services requiring more capacity than conventional voice telephony.

The network can be used to carry traffic for, say, a videoconference, which could

consist o f two or more circuits. The problem they consider is how to dimension the

network to accommodate the multiservice demands with some grade of service

performance objectives.

In general, multirate problems are considerably more complex than those o f single­

service networks. This is because the characteristics of the different services supported

by the multirate network can differ greatly. Different services can have different

capacity requirements and different traffic patterns. For example, the arrival rates and

the call durations may not be consistent with the Poisson model that approximates voice

so well and is easy to work with analytically. Analysis and performance evaluation of

multiservice networks is quite a difficult problem.

Medhi and Guptan approach the design problem by decoupling the problem in the same

way as before. This time, however, the decoupling does not apply simply to a single

service, but rather to the set o f multiservice demands are mapped to a set o f capacities.

Each service is considered in isolation and the capacity requirements per node-pair per

service are calculated. These are then aggregated to obtain per node-pair capacity

requirements and these requirements are then provided as input to a mixed integer/linear

programming solver to obtain some solution.

50

The capacity required per service per node-pair is determined using the traffic

characteristics and the capacity requirements. Direct routing is assumed, so the

complexities introduced by multiplexing many different traffics onto a single link can

be avoided. In this particular case, Poisson traffic is assumed and the required number

of connections is determined using the Erlang B formula. This is converted to a required

capacity by multiplying by the capacity required per connection.

2.5 A TM Network Design

ATM was chosen as the technology of choice for B-ISDN and received considerable

interest in the research community in the early-mid 90’s. It was proposed as a

technology with the ability to support many different services which may have differing

requirements o f the network. In particular, ATM made possible the notion that different

services could have different QoS, and ATM was the first technology to offer proper

QoS support for connections.

ATM is a cell-based technology: it exhibits some o f the characteristics of both circuit-

switched and packet-switched technologies. ATM transmission is cell-based

transmission - data is transmitted in 53-byte cells. Consequently, packet delays, loss

and jitter can be unpredictable. In this way, ATM is similar to packet-switched

networking. On the other hand, when a request for service arrives, the network

determines whether or not a route exists that has sufficient available resources to meet

the QoS requirements o f the traffic. This is similar to the behaviour of circuit-switched

networking.

Much o f the work reported on ATM design problems in the literature concentrates on

the extra level o f flexibility introduced by the Virtual Path (VP) concept. This enables

traffic to be aggregated into some kind o f virtual trunks in the network. Three

possibilities exist for the network design problem:

1. the logical network design problem - the problem of determining the optimal logical

network given some physical network;

2. the problem of designing an optimal physical network to accommodate some given

logical network;

3. combined logical and physical network design.

These different problems are discussed below.

51

Since ATM exhibits characteristics o f both circuit-switched and packet-switched

networks, the emphasis in the design problem can be on either packet or connection

level characteristics. In some earlier work, the emphasis was on packet level

characteristics, but in later work, much more emphasis was on connection level

measures. Each of these is discussed in the next section.

ATM services are currently on offer in the marketplace. However, it has not reached the

levels o f penetration that were imagined at its inception. The early proponents of ATM

envisaged a network with ATM connections directly to end users and traffic carried

from end-to-end over ATM. However, with the enormous growth in the use o f IP and

the high availability of IP interfaces, many now believe that an IP-based infrastructure is

a more likely candidate for multiservice networking.

Most current ATM service offerings are semi-permanent - as opposed to switched -

service offerings. These could be used for high-speed Local Area Network (LAN)

interconnections where, for example, users on the interconnected LANs use bandwidth

intensive applications such as video.

The work described below is strongly influenced by the traditional telephony

perspective rather than data communications perspective which is more dominant today.

Hence, the authors think of connections being established and tom down via ATM

signalling. This is not the state o f the market today and it is unlikely that the market will

evolve to this point. However, the techniques described here could be applied in IP-QoS

networks, although they may need to be modified to some extent. Hence they are

interesting.

Since ATM connections are cell-based, it is often not obvious how to determine

whether there are sufficient resources to accept a new connection. The problem of

determining whether a new connection can be accommodated without adversely

affecting existing connections is the admission control problem. A short discussion of

this problem is included here since it is a fundamental aspect o f the operation of the

network which has a profound impact on how the network resources are used and hence

has an impact on how the network is dimensioned.

The admission control problem for ATM focuses on how to decide whether or not a

particular connection can be carried on the network. Much work has been done on this

problem and a recent overview o f contributions in this area is reported in an article by

Knightly and Shroff [KS99]. A number o f different approaches have been proposed

52

such as techniques based on average and peak rate combinatorics or maximum variance

based approaches. One of the more interesting approaches is the so-called effective

bandwidth approach in which the requirements o f each connection are encapsulated in a

figure o f merit known as the effective bandwidth.

The effective bandwidth approach was originally proposed by Hui in [Hui88]. The

concept is attractive because it means that admission control decisions can be easily

made by comparing the available resources against the effective bandwidth.

Alternatively, the amount o f capacity required for a number of connections is simply the

sum of the effective bandwidths. Using this concept then, cell-based ATM networks

bear very striking similarities to circuit-switched networks, although in the ATM case,

the ‘circuits’ can have quite arbitrary capacities. Some o f the theory o f circuit-switched

networking - some o f which is discussed in section 2.4 - can then be applied [Ros95] to

the network design problem.

The remainder o f the section is structured as follows. The logical network design

problem is discussed next, followed by the physical network design problem. Then a

way to solve a combined logical and physical network design problem is discussed.

2.5.1 Logical Network Design

The logical network design problem focuses on dimensioning the VP logical network to

meet some performance criteria. Three classes o f logical network design problem exist

in the literature:

1. generic problems;

2. those in which the emphasis is on packet level issues ;

3. those in which the emphasis is on connection level issues.

The generic problems are ones in which the context of the VP is not considered: the

input to the problem is the set o f VP demands. The packet level problem is one in which

the objective is to determine the logical network configuration that minimises some

packet level characteristic. Similarly, in the connection level problem the objective is to

determine the logical network configuration that minimises some call level

characteristic. Each o f these is discussed here.

53

The problem in this case is to route a set o f VP demands on a network. The VP demands

are given as an input and the objective is to determine the optimal network

configuration. This problem was studied by Chlamtac et al in [CFZ94]. There, the

objective was to determine a route configuration for which the maximum load on the

physical links was minimised. This results in a network in which the load on the

network is balanced and the network is most resilient to failure.

Chlamtac et al proposed an algorithm in which the path for each demand is chosen at

random from the set o f shortest paths for each o f the demands. They demonstrate that

the solution obtained using this simple approach is provably close to the optimal in a

large network.

Optimisation of Packet Level Characteristics

Gerla, Monteiro and Pazos [GMP89] consider a logical packet-switched network design

problem with ATM in mind. The problem they wish to solve is to determine the logical

network that optimises some packet level characteristics given some physical network.

In the problem, the demands are point-to-point demands specified in terms of a set of

packet generation rates. Arbitrary paths are possible for the demands on the network:

the problem is to determine the set o f VPs that optimises some function o f the overall

packet delays. The set of VPs are defined by determining the routing and the

dimensions o f the VPs.

They observe that the link rates are typically very high in ATM networks and hence the

nodal delays are usually very small. Since these delays are small, a very accurate model

would be required to capture the characteristics o f the node delays. Such an accurate

model is difficult to generate. For this reason, the authors focus on issues associated

with packet loss. They note that for some given set o f node buffer sizes, the packet

losses are reduced if the overall packet delays are reduced. Consequently, even though

minimisation of the packet delay is not their primary objective, the use o f a delay

function achieves their objective which is minimisation of packet loss.

To solve the problem, some node queuing model is required. They consider an M/M/1

node delay model. They note that the resulting solution of the topology and routing

problem is quite insensitive to the shape o f the delay versus trunk load curve and hence,

the exact nature o f the node delay model is not very important. Having argued that the

Generic Logical Network Design

54

network can be modelled by a set of M/M/1 queues, much o f the theory developed by

Gerla and Kleinrock in their earlier work can be applied. In particular, the overall

network delay expected in a network o f M /M /1 queues can be used in this situation.

First, a scenario in which the initial logical network topology is given is examined. A

flow and bandwidth allocation problem is then formulated. The decision variables in

this problem are the set of logical link capacities and the logical link flows. The

problem is formulated as an optimisation problem with a concave objective function

and a set o f linear constraints. The authors suggest the use of a flow deviation approach

to solve the problem.

The problem has a number of locally optimal solutions. The steepest descent algorithm

finds one such solution, but the solution found is very dependent on the choice of

starting point for the steepest descent algorithm. In this case, a common approach to

obtain a good solution is to perform the optimisation a number o f times using different

starting points and choose the best overall solution.

The authors then consider their choice o f an initial starting point. In obtaining a good

starting point, they first consider how to determine the topology o f the logical network.

They identify those node pairs that have the highest traffic demands: these node pairs

then have a direct logical link. Nodes with smaller inter-node traffic demands have no

direct logical link. They then obtain a particular feasible solution by constructing

another minimisation function, the objective o f which is to minimise the total logical

link capacities and flow. Solution of this yields some particular feasible solution -

random variants o f this are used as initial starting points.

Optimisation of Call Level Variables

Siebenhaar [Sie94] considers the logical network design problem in the context of an

ATM network. He considers the call level version o f the logical network design

problem. In this case, the objective is to maximise the revenue generated by the

network. The revenue is assumed to be a weighted sum of the mean amount o f traffic

carried on all of the VPs in the network.

Siebenhaar assumes that the routing in the network is fixed and that a number of VPs

exist between each node pair. He assumes that a number o f different VPs can be

modelled as a single VP o f capacity equal to the sum of the capacities o f the individual

VPs. He then assumes that the amount o f blocking experienced for calls between the

55

node pairs is well approximated by the blocking on the single aggregate VP. This

assumption is reasonable for large networks.

The objective then is to determine the dimensions of the VPs in the network that

maximises the overall revenue generated by the network.

The problem formulation that he arrives at has a non-linear objective function with

some linear and some non-linear constraints. The non-linear constraints are constraints

on the blocking on the VP: blocking on the VP is a non-linear function of the capacity

of the VP. The non-linear constraints make the problem more difficult to solve.

Siebenhaar simplifies the problem by imposing a lower bound on the size of the

aggregate VP - it must be sufficiently large to ensure some minimum level of blocking.

This is done by choosing some minimum blocking threshold and determining the VP

capacity associated with this blocking threshold. This capacity can then act as a lower

bound on the VP capacity and the chosen blocking threshold is a lower bound on the

blocking on the VP. In this way, the non-linear constraint can be replaced with a linear

constraint.

The above solution method can result in infeasible problem formulations. The blocking

threshold can be made arbitrarily small, and an infeasible problem will arise. For

example, a tiny blocking probability can be chosen such there is insufficient capacity in

the entire network to meet the blocking constraint. To solve this problem, Siebenhaar

introduces a so-called bisection method in which the blocking threshold is initially set,

and if it results in an infeasible solution, then the blocking threshold is raised, the

problem is solved again and the process is repeated until a solution is obtained that

minimises the objective function as well as the maximum connection blocking

probability. To obtain a solution for each problem with linear constraints, a reduced-

gradient approach is used in conjunction with a quasi-Newton method.

The author examines the effect o f modifying the arrival traffic. Different modifications

are tried; both a skew modification in which the overall load remains the same, but is

redistributed amongst the nodes and an overload modification in which the traffic in

increased uniformly for all the node pairs. It was found that the network performed

better with logical network optimisation in all circumstances than without logical

network optimisation.

Arvidsson [Arv94a,Arv94b] also considered the logical network design problem in the

context o f ATM networks. He considers the problem of determining a logical network

56

configuration given some arrival rates for different services and different origin-

destination pairs. He proposes a simple greedy approach to solve the problem in which

each service and origin-destination pair is considered in isolation. The approach is quite

similar to that used by Gopal et al to solve a similar problem which arises in the context

of circuit-switched networking in [GKW91] except that it is generalised to the ATM

case.

The benefit associated with increasing the amount o f traffic a particular VP can carry by

one connection is calculated. The costs o f augmenting the VP by a unit o f capacity are

determined and the benefit/loss ratio is determined. The VP with the highest benefit/loss

ratio has its capacity increased, and this process continues iteratively until all the

available capacity has been assigned. The benefit o f using this method is that the cost

function can be non-linear and the capacity can be assigned in arbitrary units.

2.5.2 Logical and Physical Network Design

Some authors have considered the problem o f designing the logical and physical

networks together. The objective in this case is to obtain a set of logical network

connections and physical network connections such that the overall network cost is

minimised possibly subject to some performance constraints. This differs from the

above problem in that the physical link capacities are now decision variables rather than

given parameters.

Medhi [Med95] considers the complex problem of dimensioning a multi-hour multi­

service network. The input to the problem is a set o f nodes and traffic requirements, and

a possible physical network topology. The problem is to determine the set of link

capacities that result in the minimum overall cost. In this case, the cost is assumed to be

linear in terms of capacity. One output o f the solution process is the set of logical

network topologies that can be used in the resulting physical network to deliver the

desired performance.

This overall network design problem is very difficult and must be simplified. The

general approach used by Medhi is a kind o f decoupling approach in which the

connection-level demands are mapped to a set o f VP capacities. The problem is then to

determine how these should be routed on the physical network. The call-level demands

are mapped to VP capacities by first using the grade-of-service constraints to determine

the amount o f calls that need to be carried on each VP in the network. Then, some

57

model o f connection characteristics is used to determine an equivalent capacity for the

VP. The approach used in the paper uses the equivalent capacity techniques o f Anick,

Mitra and Sondhi [AMS 82] that is based on two-state fluid flow models and some

specified buffer overflow probability.

Having determined a set of VP capacities, the problem is then to determine the way in

which the demands are routed for the different busy hours. This is formulated as an

integer programming problem. Medhi uses a subgradient3 optimisation approach to

solve the problem. This approach was used to solve smaller problems in reasonable time

on relatively old computing power. Specifically, the approach was used to solve a

problem with 18 switching nodes and 23 cross-connect nodes in approximately 2

minutes.

One shortcoming o f this approach is that the link cost functions are limited to linear cost

functions and the solution method is designed specifically for linear link cost functions.

Another limitation o f this approach is that the network topology is specified as an input

to the problem. If the network topology is not known, then this approach cannot be

applied directly, although it could most probably be nested inside one o f the algorithms

used above to determine the network topology.

Rohne et al [RJSV98] propose an approach to design both the logical and physical

networks. They take a more practical approach than that o f Medhi. They develop a

practical model for the costs associated with a particular physical and logical network

configuration. The costs include transmission costs, switching costs and connection set­

up costs. The objective is to minimise these three sets of costs while meeting the

network performance objectives.

The problem inputs are then quite specific traffic data, specific nodal data and quite

specific link availability data. The information is used in a heuristic approach to solve

the network design problem. The output is a physical and logical network configuration.

The problem is solved in two steps: first, they solve the physical network design

problem assuming that there is no segregation o f traffic onto different VPs and then

3 Subgradient optimisation is designed for situations in which the problem can be solved using a dual

approach. In this scheme, the direction of ascent is given by the value of the constraints g (x) at each

iteration.

58

they try to lower costs by choosing a logical network topology in the given physical

network.

A specific topology is assumed in the physical network design problem and some

specific traffic routing is assumed. Given this, the approach to solve the problem is to

iterate through all nodes and quantify the traffic on each link terminating at the node.

This is then used to dimension the link subject to the performance constraints. This

procedure is performed iteratively until the process converges to some solution. A

dimensioned physical network results.

Once the physical network is designed, the authors attempt to reduce the cost of the

network by introducing VPs. The VPs reduce the network costs by reducing the costs

associated with call set-up and switching. As against this, the traffic segregation that

typically occurs in VP networks can result in increased transmission capacity. Hence,

the reduction in set-up and switching costs must be offset against the increase in

transmission costs.

The VP network is designed by iterating through the VPs, determining the gain/loss

incurred by cross-connecting the VP at the node. If a cost reduction results from cross-

connecting a VP at a node, then this VP is cross-connected.

2.6 Layered Approaches to Network Design

One final approach to the network design problem that is very relevant to the work done

here is a layered approach to the network design problem. This can be considered more

of a framework in which to think about network design problems than a specific

approach to solving a specific network design problem. In this framework, different

layers within the network architecture are identified and these are designed separately,

with the output o f one design problem feeding into another design problem. Lubacz and

Tomaszewksi [TLOO] have developed an interesting framework in which to consider

this approach. There, they envisage the network design to consist o f several layers -

switching network, logical network, physical network - and they consider each layer to

have its own design problem. They then consider each o f the network design problems

in isolation.

Ash et al follow a somewhat similar layered approach in [ACL94]. Indeed, the notion of

decoupling the different layers arises in many of the contributions discussed above,

although in most cases, this is just a convenience that simplifies the problem. For

59

example, Medhi [Med97] decouples the connection level problem from the facility

network problem by mapping from the demands to a single capacity, although he

doesn’t explicitly think of this as constituting a layered approach to solve the problem.

Doshi and Havardshana [DH98] describe a systematic approach to network design in

which this layering notion is clear. They consider large realistic network design

problems in which the demands are many and varied. These demands are then mapped

to capacities using some demand mapping modules and the capacities are then used as

inputs to the facility network design problem. Different possibilities for the facility

network design problem are then considered - the facility demands can be realised in

mesh networks or ring networks or some combination of both. Again, this notion is

quite close to that considered here. However, Doshi and Havardshana focus exclusively

on network design problems in the context o f public network design. Also, they think

quite strongly in terms of determining concrete capacities for the demands as output of

the demand modules.

These ideas are related to this work, although they do not think in quite the same way.

Here, objective is to attempt to unify network optimisation problems: to highlight

common characteristics of such problems and to exploit these common characteristics in

a reusable way. In these approaches, the authors often think o f dividing the network

design problems and tackling each one using a very different approach.

2.7 Conclusion

Here, an overview of different network design problems and different solution

approaches has been given. These range from early studies o f facility network design

problems to packet-switched network design problems to circuit-switched network

design problems to ATM network design problems to more generic layered approaches

to solve these problems. It is clear that there are many variations o f network design

problems. Hence some approaches to characterise network design problems and abstract

some o f the characteristics o f network design problems may be beneficial. This is the

central concept o f this thesis and is explored in detail in the following chapters.

60

CHAPTER 3 A F l e x i b l e , A b s t r a c t N e t w o r k

O p t im is a t io n F r a m e w o r k

3.1 Introduction

Here, a flexible, abstract network optimisation framework is described that will be used

below to solve some specific network optimisation problems. First, the utility of the

network optimisation framework is motivated. Then, the framework itself is described.

The framework is divided into layers and each of the layers are described. A key

element of the framework is the generic problem which is an abstraction of the specific

problems. This is described in the next section. The following section discusses the

formal mathematical model o f this generic problem. All aspects o f the generic network

design problem are then defined and examples o f how it may be applied to types of

specific problems are given. Finally, a high-level description o f some algorithms that

can be used to solve the generic problem is given.

3.2 Motivation for the Network Optimisation Framework

Typically, a network optimisation problem is solved using an approach consisting of the

following steps:

1. Develop a model for the problem;

2. Develop a formal mathematical model from the problem model;

3. Devise an algorithm or employ some standard algorithm to obtain some

solution to the formal mathematical problem.

By observing that many network optimisation problems are similar in nature - very

many o f the problems listed in the previous chapter focussed on determining how to

route demands on a network - a generic network optimisation problem can be

formulated that can be applied to many specific network design problems. The big

advantage o f such an abstraction is that it can be reused and hence can result in reducing

the time and effort required to obtain a solution to the problem.

61

The network optimisation framework is illustrated in Figure 3-1. In this approach, the

problem is decomposed into the following layers:

• the specific problem model layer;

• the mapping function;

• the generic problem model layer;

• the solution layer.

Each of these is discussed in more detail.

3.2.1 A High-level View of the Network Optimisation Framework

Specific Problem
M odel Layer

M apping
Function

Generic Problem
M odel Layer

jikjmm
Diffserv MP1.S Model Leased Line
Model X Model

T t t
♦ Æ * t

Diffserv MPLS Leased Line
Mapping Function “ Mapping Function y Mapping Function y

I T i w

Generic Problem Model

Solution Solution
Solution Algorithm Algorithm 1 Algorithm 2

Layer (e.g. Greedy) (e.g. SA)

Figure 3-1: Illustration of the layered approach to solve the problem.

At the specific problem model layer, the specific network optimisation problem or

specific problem is defined. This is defined in context-specific terms. For example, in

an ATM network design problem, the specific network design problem could be defined

in terms of the number and sizes o f VPs required between destinations; the demands

could be specified in terms of numbers o f connections, associated bandwidth

requirements and associated QoS requirements. Constraints may also exist at the

specific problem layer that are artefacts o f the capabilities o f the technologies used in

the problem.

The mapping function performs a mapping from the specific problem to the generic

problem and vice versa. This mapping is necessary to apply the solution algorithms. The

mapping is a two-way mapping in the sense that it is necessary to map from the specific

62

problem to the generic problem in order to obtain a solution and it is also necessary to

map the solution o f the generic problem back to the specific problem domain.

The generic problem is an abstraction o f network design and configuration problems

that can be applied in many circumstances. It is defined in terms of more abstract

quantities than the specific problem. A key characteristic of this problem is that it must

be flexible. If it is not flexible, then it cannot be reused: if it cannot be reused then the

single most important motivation for this approach is lost. Having said this, there are

constraints on how flexible the problem can be. The more general the problem, the more

time is required to solve the problem. Hence, some balance between generality and the

associated flexibility and tractability must be found.

The final layer is the solution layer. In general, any algorithm to solve the generic

network design problem can be used here. However, the overall approach is made much

more powerful if there is a suite o f solution algorithms that can all solve the generic

problem. The solution algorithms would have differing characteristics and the most

appropriate can be chosen to solve the problem. One natural way of differentiating

between solution algorithms is to consider them in terms o f time versus solution quality:

for some applications it could be useful to obtain a solution in a small time even though

the solution quality is not excellent, while for other applications solution quality may be

the primary concern. Developing this suite o f solution algorithms can take some

considerable effort. However, this needs to be done only once. Then the suite of

algorithms can be applied to a large number of problems.

3.2.2 Advantages of this Network Optimisation Framework

The primary advantage o f using this approach is that less effort is required to solve

specific network optimisation problems. The conventional process for solving a network

optimisation problem described above consists o f modelling and solution stages - using

the approach described here, this is reduced to a modelling and mapping process. The

work required to map from the specific problem to the generic problem is less than that

required to develop a formal mathematical model and then develop some solution

algorithm for it.

Also, the set o f solution algorithms would be like a well-tested library that gets reused

over and over. This is in contrast to the situation in which a new network optimisation

algorithm is developed for each specific problem: in this case, the solution algorithm

63

must undergo rigorous testing for the results to be valid. This can take considerable time

and effort.

This approach also has other benefits. By applying this layered approach to solving the

network optimisation problem, the problem modelling process can be decoupled from

the solution process. If the network optimisation problem is decomposed in this manner,

then the work involved in solving network optimisation can also be decomposed in this

manner. Groups with expertise in modelling network optimisation problems can focus

their efforts on mapping specific problems to the generic one and groups with expertise

in solving optimisation problems can concentrate on solving the generic problem.

3.2.3 Caveat

This approach is not applicable in all cases. Some applications have certain strict

requirements that obviate the use o f this approach. For example, some network

optimisation problems may require that solutions be found very quickly, and hence

specific algorithms tuned to the particular application may need to be devised. Having

said this, there is a significantly large class of problems to which this gencric approach

can be applied to make it interesting.

3.3 The Generic Network Design Problem

In order to use this approach, it is necessary to devise a clear, well-defined problem

model. The specific problem model can then be mapped to this generic problem model.

Here, the generic problem model is described in detail.

The generic network optimisation problem model is described in terms of the model

inputs and outputs. The model inputs are:

• a graph o f the nodes and candidate links,;

• the demands on the network;

• the cost functions.

The outputs o f the model are

• the overall cost and

• the network configuration that results in this cost.

Each of these is discussed in more detail below.

64

3.3.1 The Input Parameters

Graph Containing the Nodes and Candidate Links

The first input to the problem is a directed graph that contains the set of nodes in the

generic problem and the set o f candidate links that the demands can be carried on. The

graph can be broken down into a set o f nodes and a set o f edges.

The set of nodes in the network may map exactly to the set of nodes in the specific

problem. Alternatively, as is discussed below, some extra nodes may be added to the set

o f nodes in the specific problem by the mapping function.

In both cases, the set o f nodes in the generic problem contains the set of nodes in the

specific problem. These nodes are simply the nodes through which the demands are

routed. The nodes in the specific problem would typically be points at which traffic

aggregation occurs. They could be the set o f Points o f Presence (POPs) in an operator’s

network, and the demands could be incident to each o f the POPs. They could be a set of

core nodes within a network, and the problem is to determine how to configure the

demands within the core network. Alternatively, they could be a set o f locations in an

enterprise network that generate traffic and the problem is to determine how to

interconnect these locations with minimum cost.

Here, it is implicitly assumed that the node locations are fixed. One important element

of some network design problems is determining where to place nodes e.g. POPs. The

node placement problem differs considerably from the route configuration problem.

Typically in the node placement problem the cost of the network varies with the

distances between the nodes. There is no location information in the generic problem

model presented here; therefore, the node locations are implicitly assumed to be fixed.

This network optimisation framework is not sufficiently flexible to be able to

incorporate node placement problems.

The edge data in the graph is used to indicate the set o f links on which the demands can

be routed. The graph may be fully connected, in which case all possible links are

candidates for routing the demands. Alternatively, the graph may not be fully

connected, in which case the network designer has decided not to use or permit a link

between some o f the node pairs.

Each edge in the graph represents a bidirectional connection, i.e. traffic can flow in

either direction on the link. Note, however, that each edge is directed. This facilitates

65

differentiation between traffic flowing in different directions on the link, which enables

asymmetric links to be modelled. If non-directed links are used, then it is not possible to

differentiate between the direction o f flow o f traffic on the link and hence it is not

possible to model asymmetric links.

Since directed edges are used to model links, it is natural to introduce the notion of

upstream and downstream traffic. Upstream traffic is defined as traffic that flows in

the same direction as the edge; downstream traffic flows in the opposite direction.

A rather obvious alternative to this approach is to completely decouple the upstream and

downstream links. This could be done by using directed edges to represent links

carrying traffic flowing in one direction. Then a bidirectional link could be represented

by two unidirectional links. The problem with this approach is that the cost o f a link is

often dependent on the traffic carried in both the upstream and downstream directions.

For example, the cost o f a link may be dependent on the maximum of the upstream and

downstream traffic rates. It is difficult to model this if the links are completely

decoupled. Hence it is difficult to completely decouple the upstream and downstream

links.

Note that no specific link data exists in this problem formulation, i.e. the generic

problem model does not contain links with some associated capacity: the edges do not

have weights associated with them. However, as is discussed below, it is possible to

incorporate, say, link capacities - which would typically be modelled as weights on a

graph - into the cost function.

(a) (b)

Figure 3-2: Modelling two links between two nodes by introducing an extra node

and link. The specific problem model is shown in (a) and the mapping to the

generic problem is shown in (b).

The graph of all potential links in this problem formulation is not permitted to have

more than one edge between any two nodes. This is because the solution algorithms

66

may apply algorithms to find shortest paths on the graphs: such algorithms typically

assume a single edge between nodes. However, there are circumstances in which it may

be useful to have two or more candidate links between two nodes. For example, in a

network design problem, two candidate technologies may be available to implement a

single link, each having different cost/capacity characteristics. Alternatively, in an

enterprise network design problem, a choice o f a number of service offerings from

different operators with different cost/capacity characteristics may be available.

Performing an appropriate mapping when mapping from the specific problem model to

the generic problem model can cater for this scenario. A straightforward approach to

doing this is to insert an extra artificial node into the problem and to insert an extra link

with cost identically equal to zero. This is illustrated in Figure 3-2.

In Figure 3-2, both the specific problem model view and generic problem model view

are shown for a situation in which the network designer wishes to have two candidate

links between two nodes. Node X in Figure 3-2(b) is the artificial node that is

introduced by the mapping process. The link between nodes X and B must have a cost

function that is identically zero.

The issue o f which link to connect to the new node is not considered here. The intention

is merely to show that the scenario in which two candidate links at the specific problem

model layer can map to a scenario in which only single links exist through the addition

o f an extra node and link.

The Demands on the Network

The demands describe traffic that is assumed to be incident on the network for the

purposes o f the problem. A particular demand describes some subset of the total traffic.

Different specific problems can have quite different demand characteristics and demand

characterisations.

Examples o f the ways the demands may be specified at the specific problem level

include:

• a set o f voice traffic demands characterised by a single source and single

destination, an arrival rate and a mean holding time;

• a set o f point-to-point data demands characterised by a bitrate;

67

• a set o f data demands, all o f which are characterised by a bitrate and a single source,

some of which may have multiple destinations to which they can transmit traffic;

• a mixture o f voice, video and data traffic in which the voice traffic is characterised

by an arrival rate and holding time, the video traffic is characterised by another

arrival rate and holding time and the data traffic is characterised by a mean and peak

rate. Note that each o f these services may require a different QoS from the network.

It is clear from the above examples that the set o f demands can be quite diverse. Here

the idea is to capture the essential characteristics o f the demands for the generic

problem.

One natural way o f classifying different types of demands that has a very great impact

on the problem complexity is by identifying the scope4 o f the demand. The scope o f a

demand loosely characterises how many nodes terminate (either as source or

destination) the traffic that constitutes the demand. Three natural examples of the scope

o f a demand are given as examples o f the use o f scope in the context of diffserv

networks: these are the so-called 1:1, l:n and l:any scopes. Both the source and

destination nodes are specified for all traffic that constitutes a demand with a 1:1 scope.

This is illustrated in Figure 3-3(a). Demands with a l:n scope consist o f traffic having a

single specified source and terminating at one of a number o f specified destinations.

This is illustrated in Figure 3-3(b). Only the source is specified for a demand with 1 :any

scope; any destination is possible for the traffic that constitutes the demand. This is

illustrated in Figure 3-3(c). Other scopes are possible in which the demands may cover

some set o f source and destination nodes, but these are not considered here.

It is implicitly assumed here that there may be some variation in the demands with more

complex scopes: otherwise they can be reduced to 1:1 scopes. For example, if the scope

for a particular demand is 1 :n, then it is assumed that it is not possible to say with

certainty that each destination will receive some known fraction of the traffic. If this

was the case, then the demand with 1 :n scope would be equivalent to n demands with

4 The term scope, as applied here, is used in the same sense as in the Differentiated Services model. This

terminology was introduced in the diffserv framework document - a document that described the scenario

in which diffserv would operate. This was a working document o f the IETF working group, which was

not updated and consequently, it is not considered by the IETF to be a current document. Since the IETF

do not archive contributions, no authoritative reference to this work can be given.

68

1:1 scope. For demands with l:any scope there is the added complication that the set of

destination nodes is not even known.

a
(a)

□

□ □ □
(b)

4 ' 1

'* A ± -

(c)

Figure 3-3: Examples of demands with different scopes - (a) 1:1 scope, (b) l:n

scope and (c) l:any scope.

Here, only demands with 1:1 scope are permitted in the generic model. There are three

reasons for this. Firstly, network design problems in which demands with arbitrary

scopes are permitted are difficult to solve. In the absence o f any extra knowledge, it is

impossible to know how the traffic is distributed amongst the destination nodes for the

more complex scopes described above.

Secondly, most established technologies only permit 1:1 scopes; the notion of more

complex scopes is still a relatively new idea. Older technologies were not able to

support more generic scopes and, as a result, non-broadcast communications in general

usually had to be point-to-point. Point-to-point communications constitute a means of

communication that many people are very comfortable with. Consequently, a

considerable amount o f traffic on networks for years to come will be of a point-to-point

nature. Such traffic is well characterised by demands o f 1:1 scope and hence many

network optimisation problems will consist o f such demands.

69

Thirdly, while permitting demands with a more general scope would increase the

flexibility o f the model, this increased flexibility would come at the expense of solution

complexity: permitting such demands would greatly increase the complexity o f the

generic problem. So, even though flexibility is an essential characteristic o f the generic

model, problem complexity concerns impose limits on the amount of flexibility that can

feasibly be incorporated into the model.

Even though the demands are limited to 1:1 scope, there are some factors fuelling an

increase in real demands with more complex scopes. Two are considered here. Firstly,

newer technologies are enabling more sophisticated communications and enabling

point-to-multipoint communications, resulting in applications with more generic scope

requirements. Secondly, if customers have large networking requirements, they often

prefer simply to specify how much traffic they will generate and inject into the network

rather than specifying each point-to-point demand individually. These two factors

indicate that demands with more generic scopes must be catered for in future networks,

which means that design and configuration tools should be able to accommodate such

demands.

It is possible to use the mapping function to map demands with more general scope to

demands o f 1:1 scope. Then the generic network design model can be applied to

problems in which the demands have more general scope. O f course, this mapping is

only possible if some assumptions are made on the way that the traffic is split between

the node-pairs. Such assumptions could be based on traffic models or, as is more likely,

traffic measurements. This approach cannot produce solutions that are as good as those

produced using an approach tailored specifically for demands with more general scope,

but it does enable this model to be applied quickly and easily such that some reasonable

solution to the problem can be found.

From the examples of the demands given above it is clear that there exist many different

types o f demands that can be parameterised in different ways. The generic problem

must be able to cater for many different types o f demands; the characteristics of

demands in the generic problem model should not be specific to any specific problem.

Rather, some essential characteristic(s) of the demand that can reflect the amount of

resources required to carry the demand should be used.

In the generic problem, each demand is characterised by a single parameter. Typically

this parameter is a bandwidth parameter, or in some cases it may be a so-called effective

70

bandwidth (see [Hui88] for the initial development o f the effective bandwidth notion, or

[Kel96] and references therein for development o f the concept and later work).

Mapping from the specific problem demands to the single parameter required in the

generic problem can be quite complex. For demands that are characterised by Poisson

arrivals and exponentially distributed holding times, the well known Erlang blocking

formula [Sys86], coupled with a desired blocking parameter, can be used to determine

some equivalent capacity that can carry the traffic while meeting the target blocking

probability. In situations in which there is a more diverse set o f applications, each of

which has some effective bandwidth, and there are some target blocking parameters,

techniques such as that used by Bean, Gibbens and Zachary [BGZ94] or the techniques

described in [RMV96] can be used to determine some capacity requirement. For

situations in which there is a data demand characterised by a peak and a mean

parameter, some a priori knowledge could be used to determine an effective bandwidth

for the demand. Alternatively, a conservative approach could be simply to choose the

peak bandwidth as the required bandwidth for the demand. Use o f effective bandwidths

in this context will be discussed later.

Often a demand may have a QoS associated with it, meaning that the traffic that

constitutes the demand must obtain the specified QoS. For example, packet video

connections may have specific delay and loss requirements o f the network while other

data traffic using the same network may not have such stringent requirements. As with

demand parameterisation, QoS is a difficult concept to incorporate into a generic design

model in a generic way. As was seen in the previous chapter, different networking

technologies have different types of QoS measure. For packet traffic QoS is typically

measured in terms o f packet delay or loss; for connection-oriented traffic QoS is

typically measured in terms o f blocking probabilities. For connection-oriented traffic

carried over a packet network some combination o f both measures would be used to

reflect the QoS offered by the network as is the case in ATM.

It is assumed that the QoS requirements o f each demand are incorporated into the

mapping from the demand parameters to the single parameter used in the generic design

model. For example, a single bandwidth parameter can be used to model the amount of

voice traffic to be carried between two nodes. This can be calculated based on the QoS

requirements between the nodes: if the intemodal traffic requires high QoS, i.e. low

blocking, then more resources should be reserved between the node pair. Similarly, the

71

effective bandwidth approach can incorporate QoS requirements into the demand. If the

QoS required is (in some sense) high, then the effective bandwidth will also be high.

In summary, it is assumed that the demands provided as input to this network design

problem are unidirectional point-to-point demands characterised by a single parameter

that encapsulates the magnitude of the demand coupled with the QoS requirements of

the demand.

The Cost Function

In general, the cost function must be a function o f the way the demands are routed on

the network, i.e. the cost function must be a function of the route configuration. This is

the most general form of cost function. Allowing the cost function to be explicitly

dependent on the route configuration is not entirely natural: costs are not usually

associated with specific routes or route configurations in network optimisation

problems. Indeed, if they did, then the network design problem would be solved simply

by choosing the lowest cost route for each demand.

Here, the cost function is comprised o f two components: a link cost component and a

node cost component. The overall cost is simply the sum of these components. Both the

link costs and the node costs are dependent on the way the demands are routed on the

network and hence the overall cost function is dependent on the way the demands are

routed on the network. This is a more natural way to construct the cost function.

Some particular situations could be envisaged that are not catered for by such cost

functions. For example, in some network optimisation problems it may be desirable to

weight one or more routes for a demand such that they are more or less likely to be

chosen. This is not possible using the cost functions described here. However, usually

when a network designer wishes to achieve this, the motivation is to reduce the

likelihood o f a demand being routed through a particular node or link. This can be

achieved by choosing the link/node cost function appropriately: if the node/link cost is

high then it will become unattractive and hence there is a smaller likelihood that traffic

will be routed on it.

Here, a higher level view can be taken: a cost function can be chosen for a particular

node or link that makes it either attractive or unattractive, and in this manner, demands

can be routed to/from some particular nodes/links.

72

The link cost component o f the overall cost function reflects the link costs associated

with routing the given demands in a particular manner. In network design problems, it is

usual to have a cost associated with a link that is independent o f the costs associated

with other links in the problem. Consequently, the total link costs can be decoupled into

individual link costs. Moreover, the individual link cost functions are typically

increasing functions o f the aggregate capacity carried on the link.

Since a separate link cost function exists for each link in the problem, it is not difficult

to incorporate differences between different links into a problem. For example, different

links in the problem may be implemented using different technologies. In this case, the

cost function associated with different links could be quite different. It is also simple to

model situations in which, say the cost associated with the link has some dependency on

the distance between the link endpoints.

In the graph that is used to specify the set o f nodes and candidate links, a directed edge

is used to indicate that a particular edge can be used to carry traffic. Despite the directed

nature o f the edge used to represent the link, traffic can be carried in either direction on

the link. A single cost function is used to model the link; this cost function is a function

o f both the upstream and downstream traffic carried on the link.

This choice o f link cost model caters for situations in which the upstream and

downstream traffics can and cannot be decoupled. For example, in a situation in which

installation of a new symmetric bidirectional link is under consideration, the upstream

and downstream link costs cannot be decoupled. The cost o f the new link is a function

o f the greater of the upstream and downstream traffics. Consequently, the cost function

must be a function o f the maximum of the upstream and downstream traffics.

Conversely, if the problem is to determine how to balance load on a network, then the

upstream and downstream traffics can be completely independent, and the cost function

can be decoupled into a cost function for the upstream traffic and a cost function for the

downstream traffic.

The link cost functions can be very general, but usually the cost will increase with

increases in the upstream and downstream traffic carried on the link. They can be non­

linear functions o f the upstream and downstream traffic. Examples o f the type o f cost

functions that may be used are shown in Figure 3-4.

73

Figure 3-4: Examples of different link cost functions. In (a) the cost function is

linear in both upstream and downstream traffic; in (b) the cost increases with

capacity in a stepwise fashion.

In some cases, the network designer is interested in designing a real network in which

the links are physical links and the costs associated with each link are the costs

associated with installing a link o f the given capacity between the given nodes. In other

cases, the network designer may wish to determine where to add extra capacity to a

network to carry the given set o f demands. In this case the cost functions used in the

generic problem are the costs associated with adding extra capacity on each link. These

cost functions must incorporate the available link capacities into the cost function. They

will have a value o f zero for routing capacity on the link of less than or equal to the

capacity available on the link. In other cases, the network designer may be interested in

traffic-engineering related problems in which the problem is to determine how best to

route a set o f demands on an existing network. In this case, the link costs are not so

obvious. Some function that increases with decreasing available capacity can be used to

obtain a solution in which the total used capacity is minimised and the load balanced on

the network.

As with the link costs, the node costs can be modelled as a set of individual node costs.

The node costs are also independent o f each other and hence it makes sense to decouple

them: the total node costs are then the sum of the individual node costs.

COo
O

C/3O
O

Capacity

(a)

Capacity

(b) (c)

Figure 3-5: Examples of different node cost functions. The capacity is the

aggregate capacity switched through the node. In (a) the cost function is linear in

capacity; in (b) the cost increases with capacity in a stepwise fashion and in (c) the

cost function is a piecewise linear approximation to an exponential function.

The node cost for each node depends on the aggregate traffic routed through the node.

Typically, the node cost increases as the amount o f traffic switched through the node

increases. The aggregate traffic routed through each node can be determined from the

route configuration and knowledge o f the demands. Examples of the node costs are

shown in Figure 3-5.

The node cost functions may be chosen in a similar manner to the link cost functions. In

scénarios in which the objective is to construct a network the node costs can represent

the actual costs o f installing a node. In this case, a number of different switch

configurations may be possible for a single node, each having a different switching core

with different switching capacity. As the required capacity increases, higher

performance switch configurations may be required, resulting in increased cost. Hence a

stepwise incremental cost function may be used in this case to model the node costs.

Alternatively, if a node is in place, and the objective is to ensure that a limit is imposed

on the amount o f traffic switched through a node, then the node cost could increase

exponentially as the node capacity reaches its limit.

75

In general, the network optimisation problems considered here focus on how to route

the demands on the network to minimise some cost function. The specific technologies

involved and the problem objectives may differ greatly, but the problem ultimately

reduces to this. The generic network optimisation problem considered here is no

different.

The outputs o f the network optimisation problem model are then:

• an overall cost: this is the minimum value o f the objective function obtained by the

solution algorithm,

• a network configuration: this is the route configuration of the demands on the

network that results in the above cost.

While the solution to the generic problem consists primarily o f a route configuration,

the network designer may be more concerned with issues other than how the demands

are routed on the network. For example, the network designer may be interested in

where extra capacity should be added on an existing network or how much free capacity

will exist on a network when some set o f traffic demands are incident to the network.

These quantities can be derived from the solution to the generic problem. Hence the

solution to the specific problem may differ in character from that o f the generic

problem, but in all cases it can be derived from network configuration and solution cost

data.

In the most general solution to the generic problem the demands may be split and

fractions o f the demands may be carried over different routes. In general, this can result

in cheaper solutions. However, it is dependent on the technology being able to support

arbitrary demand splitting and it also greatly increases the complexity o f the generic

problem. For these reasons it is assumed that the demands cannot be split.

In some cases, it is very beneficial to split the demands. For example, in situations in

which the demands are large relative to the capacities o f the connections, and the

technology is able to support splitting o f demands, splitting demands can result in

significantly reduced costs. Such situations are often identifiable at the specific problem

layer and the mapping function can split large demands into a number o f smaller ones to

reduce the overall costs.

3.3.2 The Output Parameters

76

The mathematical problem can then be formulated. Denote the following given

quantities as follows:

• N : the set o f nodes in the problem;

• A : the set o f edges in the graph. These are the set of candidate links on which the

demands can be routed;

• r(N,A) : the graph relating the nodes and links;

• (\j/ x, Ca) : the origin and destination nodes for link A e A ;

• À : the set o f unidirectional demands in the problem;

• rji : the capacity required for demand <5,. e A, i e 1... |à| ;

• = (a , ,) : the triplet which defines demand <5,.,zg l...|A |, where a i is the

source node for demand <5, and /3, is the destination node for demand <5, ;

• (5, t) : the cost function for link A e A ; this is the cost o f carrying capacity s in

the upstream direction and capacity t in downstream direction;

• yv (u) : the cost function for node v g N ; this is the cost associated with switching

capacity u through node v ;

The following are then defined:

• P : a route configuration;

• p s : the route used by demand ô j g A in route configuration P

• I g (P) : the link-path incidence matrix for route configuration P . This has the value

0 if p s_ does not contain link X , it has a value 1 i f the demand is routed from i//A to

^ and has a value o f -1 if the demand is routed from y/x to .

The overall cost function is defined as follows:

®(p)= S h (»» (Pi h (p))+ X y, (u, (p))
A e A v e N

where:

3.4 Mathematical Problem Formulation of the Generic Problem

77

• sx (P) = ^ j] t - the traffic carried in the upstream direction on link Ae A
<5,112, (pH

• tx (p) = - the traffic carried in the downstream direction on link l e A
5,11«, (P)=-l

/ \
• « ,(P)= X n * , (p) “ 2 ï i (p) + 5 X + - the total traffic switched

i ^ A | ^ = v < MCî =v J 5 , | a , = v < 5 , | f t= v

through node v e N .

The optimisation problem can then be formulated as follows:

Find P* = m inO (p)
p

This problem formulation does not include any constraints. In particular, there are no

link or node constraints, i.e. constraints ensuring that the amount o f traffic carried on a

particular link or switched through a particular node does not exceed its capacity. Not

including such constraints in the formulation means that it is more flexible and can be

applied in more situations. For example, this formulation can be applied in green field

network design problems. Alternatively, it could be applied in situations in which the

problem is to determine how much extra capacity to add to a network to ensure that the

forecast traffic demands can be carried.

Note that there is a finite, albeit large, set of route configurations. Consequently, one or

more minimum cost route configurations must exist. This is independent o f the nature

o f the particular link and node cost functions specified as inputs to the problem.

3.4.1 Problem Complexity

The complexity o f this problem is dependent on both the nature of the cost function and

the size o f the state space. The overall cost function is the sum o f a set of quite arbitrary

link and node cost functions. In general, these will be non-decreasing functions,

although they may not be. Typically, the state space is very large. Moreover, the state

space typically contains many local minima: this further compounds the difficulty o f the

problem. These factors combine to make the problem very difficult to solve.

Since each state in the state space maps to a single route configuration, the size o f the

state space is equal to the number o f route configurations in the problem. The rate at

which the state space grows can be illustrated as follows. The size of the state space is

dependent on the number o f demands in the problem and the number o f routes for each

78

demand. In general, the number o f routes available to each demand can be large and can

vary with each demand. For the purposes of illustration, it is assumed that the number of

routes available to each demand is a constant, k . If there are D demands in the

problem, then the number of route configurations in the problem is k D. The number of

demands is typically dependent on the number of nodes in the problem. If demands

exist between each node pair, then the number o f demands is o(N 2) . The number of

routes is then o(kN2) .

Nodes Demands Routes (k = 3) Routes(A: = 5) Routes(k = 8)

5 20 3.49X109 9.54X1013 1.15X1018

10 90 8.87X1042 8.08X1062 1.90x10s1

15 210 1.57X10100 6.08X10146 4.46X10189

20 380 2.02X10181 4.06X10265 1.49X10343

25 600 1.87X10286 2.41X10419 7.14X10541

30 870 1.25X10415 1.27X10608 4.88X10785

Table 3-1: Approximate number of states in the state space as a function of node

size. Here it is assumed that there are N (N —1) demands in an N -node problem.

Table 3-1 shows how rapidly the state space grows. Even for 30-node problems, which

are not particularly large problems, the number o f states in the state space is enormous.

In reality, the number o f routes is dependent on the number of nodes in the problem.

Problems consisting o f more nodes usually contain more routes between the nodes.

Consequently the estimates used in Table 3-1 are conservative: the actual sizes o f the

state spaces are usually larger than the numbers quoted above.

Costing all of the states in the state space is not feasible. This is can be seen as follows.

Assume there are only 3 routes per demand and a computer was available that could

cost 1010 states per second5. For the 30 node problem it would take approximately 10405

seconds or approximately 10399 years. Even tenfold increases in available processing

5 Current high-specification microprocessors operate at 1000MHz. Single processor systems based on

such microprocessors certainly cannot cost states at this rate. Multiprocessor systems may be able to cost

states at this rate if specific code was written to take advantage o f the multiprocessor architecture.

79

power make little difference on the time required to perform exhaustive searches o f the

state space. Clearly then it is unrealistic to search all the states in the state space: an

alternative approach must be used.

This problem is an example o f a combinatorial optimisation problem. Optimisation

problems on discrete state spaces fall into this category o f problem. These problems can

often be very difficult to solve. Difficult combinatorial optimisation problems can fall

into the class o f so-called NP-complete or NP-hard problems (see [GJ79] for a

discussion o f complexity o f combinatorial problems). No known algorithms exist that

can solve NP-complete and NP-hard problems in polynomial time; the time taken to

solve such problems can increase exponentially with problem size. In general, it is not

possible to find the optimal solution to such problems in any reasonable time. Hence

some heuristic algorithms are typically used to obtain some reasonable solution. Some

such algorithms are discussed below.

3.4.2 Examples of the Use of the Generic Model

Two examples of how this generic problem formulation could be used in two different

problems are given. In the first example, the problem is to design a network from a

green-field scenario that can accommodate the given demands. In the second example,

the problem is to determine whether a planned network can meet some forecast

demands.

These problems are not considered in detail here, but rather, the objective is to illustrate

how the generic problem can be used to solve these types of problems. Specifically, the

technologies used to implement the network, the nature o f the demands, the cost

functions used etc. are not considered. A more detailed exposition of how the specific

problem model can be formulated and mapped to the generic problem model is given in

later chapters.

The Green Field Network Design Problem

In this problem no network exists. The designer is faced with the problem of

determining the minimum cost network that will be able to carry the given traffic

demands.

The set of available links can be chosen according to the needs of the network designer.

If the network designer is willing to permit a link between every node-pair, then a fully

80

connected input graph can be used. However, if the network designer does not wish to

permit certain links the input graph o f candidate links will not be fully connected.

The following data can be input to the generic problem. The demands are specified

somehow in capacities: how these are calculated is not important here. The links are

bidirectional in this problem. The cost o f each link can be exactly the cost of installing a

bidirectional link o f capacity that is the greatest o f the upstream and downstream

traffics. This could consist o f the cost o f installing plant plus the costs o f terminating the

line. The node costs could be the cost of installing a node that can carry the capacity

switched through the node. The bulk o f this cost could be the cost o f the switching

system, which would be dependent on the capacity switched through the node, but could

also include costs o f other node subsystems such as management systems. The overall

cost is the sum of the link and node costs.

Once this data is input to the generic problem, a solution can be obtained. This solution

will consist of a route configuration and an associated cost. The network designer is

only interested in the network capacities and the overall cost. The mapping function can

process the output o f the generic problem to obtain the link capacities and the route

configuration data can then be discarded. This data can then be returned to the network

designer.

The Network Planning/Forecast Problem

This problem is a little different from the problem above. Here, the problem is to

determine whether or not a particular set o f demands can be carried on a given network.

The intended application is a forecasting application in which the demands are forecast

demands and the network may be either an existing network or a planned network.

There may be many ways in which the demands could be routed on the network.

Alternatively, it may not be possible to route the demands on the network: sufficient

resources may not exist on the network. The mapping function should be able to

determine if this is the case.

A natural approach to configuring the network in this context is to attempt to maximise

the spare capacity on the network while attempting to keep the load balanced. Using this

objective when configuring the network will have the effect o f utilising the network

81

resources efficiently6 while making the network robust to changes in the demands.

However, there is a trade-off here between efficient use o f network resources and

balancing the load. Maximising the efficiency o f the network can often mean

maximising the use o f cheaper nodes or links. This is not consistent with the load

balancing objective.

This trade-off manifests itself in the choice o f link and node cost functions. If a link cost

function is chosen that increases greatly if the amount of spare capacity on each link

becomes small, then the load balancing and efficiency objectives can be met. The rate at

which this cost function increases for each o f the links determines the trade-off between

maximising the spare capacity and ensuring that residual capacity exists on each link.

Similarly, if a node cost function is chosen such that the cost increases dramatically

when the capacity switched through the node nears the node limits, load balancing can

be achieved with respect to the nodes. In some situations, this may not be important -

the nodes may be over-engineered and may support capacities much greater than those

switched in the network. In this case the node costs could be made constant. Hence the

node costs would be independent o f the capacities switched through the node.

There is the possibility that the demands cannot be accommodated on the network. The

generic problem formulation does not permit constraints on the used capacity on each

link. Hence, it is not possible to make states in which the traffic carried on a link or

switched through a node exceeds the available capacity infeasible. If a very large cost is

assigned to a link if the capacity is exceeded, then the solution algorithm will naturally

tend to avoid these solutions. Similarly, if a large cost is assigned to a node if the node

capacity is exceeded, solutions in which the node capacity is exceeded will also be

avoided. Also, if the link or node cost is sufficiently large, the mapping function can

recognise that the algorithm was unable to find a solution that enables the given set of

demands to be carried on the network.

3.5 Generic Problem Solution Approaches

As illustrated above, the state space for these problems is very large. In general, the cost

function can be quite complex and this can result in a state space containing many local

minima. These two factors make it very difficult to find a specific algorithm that can be

6 Here, efficiency is used in the sense o f the minimal use o f overall network resources, i.e. maximising the

spare capacity on the network.

82

guaranteed to find a globally optimal solution for any realistic problem. Since the

generic problem can be NP-complete or NP-hard, no known algorithm exists that can

find solutions to reasonable size problems in reasonable time. Note that this is not a

characteristic o f the overall approach considered here: even if the specific problems

were considered in isolation rather than as part o f this generic network design approach

no known algorithm would be guaranteed to find the optimal solution. Heuristic

algorithms that can find reasonably good solutions to the problem in reasonable time

must be used.

Here, the notion is to have a suite or ‘toolbox’ o f heuristic algorithms that can be

applied to find solutions to the problem. The toolbox can consist of different algorithms

having different operating characteristics. In particular, there can be a trade-off between

the solution quality and the execution time. For example, some algorithms may solve a

problem relatively quickly but obtain a relatively poor solution, while other algorithms

may solve the problem more slowly obtaining a higher quality solution.

A good description of heuristic approaches that can be used to solve combinatorial

problems can be found in [Ree95], Some of these heuristics are so-called local search

heuristics. The fundamental philosophy behind local search algorithms is to iterate

through states in some subset o f the state space until some reasonable solution is found.

Local search heuristics are typically applied in cases in which the state spaces are very

large and it is not feasible to search all o f the states. The idea is to limit the search to

some subset of the state space that contains ‘reasonable’ solutions. Hence it is a local

search rather than a global search. The greedy algorithm, simulated annealing algorithm

and tabu search algorithms described below are examples o f local search algorithms.

When considering local search heuristics it is necessary to define a neighbour relation

between states. This implicitly introduces the concept o f a neighbourhood o f a state -

the neighbourhood o f a state is the set of states that are neighbours of that state.

Typically, neighbouring states are very similar. Local search algorithms typically iterate

through the states moving from neighbour to neighbour until some terminating

condition is reached.

The choice o f neighbourhood can affect the performance o f the algorithm. Choosing a

neighbour relation that results in large neighbourhoods can greatly increase the

execution times o f some algorithms. For example, algorithms that evaluate the cost of

all the neighbours in a neighbourhood will take much longer if the size of the

83

neighbourhood is greatly increased. There are drawbacks to choosing small

neighbourhoods: since the number o f moves possible in any state is small it may take a

long time to navigate through all the neighbourhoods to a good solution.

Two examples o f local searches heuristics are described next. These are followed by a

brief description of a further two examples o f local search heuristics and a short note on

reducing the size o f the state space by limiting the amount o f routes available to each

demand. This is followed by a description o f the particular choice o f state space and

neighbourhood chosen for this work.

3.5.1 Greedy Algorithm

The greedy algorithm is a straightforward local search algorithm. This is the local

search analogue o f the steepest descent techniques that can be used to find locally

optimal solutions to problems in continuous domains. The state at iteration ¿ + 1 is

obtained from the state at iteration i by iterating through all the neighbours of the state

at iteration i and choosing the neighbour with the lowest cost. The algorithm terminates

when a state is found that has a lower cost than that o f all its neighbours. A more formal

description of the greedy algorithm is given in Algorithm 1.

Step 1 Choose some initial starting point, x0. Set i = 0

Step 2 Determine xlow, the lowest cost neighbour o f x t , by iterating through the

neighbourhood o f x t .

Step 3 If c(x t) < c(xlow) where c(x) is the cost o f state x then terminate.

Step 4 Set x i+1 = x low , increase i , go to step 2.

Algorithm 1 : Greedy algorithm.

Like the steepest descent techniques, this local search algorithm is very sensitive to the

initial starting point. If a bad initial starting point is chosen, then the solution can also be

bad. This point is illustrated in Figure 3-6. If point ‘a ’ is chosen as the starting point for

the algorithm, then the mi solution will be found, but if the search algorithm is started at

point ‘b ’, then the m2 solution will be found.

84

Figure 3-6: Example of sensitivity of greedy and steepest descent algorithms to

initial starting point. I f the algorithm is started with starting point x - a , then the

solution at x = m x will be found; if started at jc = b then the solution at x - m 2 will

be found.

To obtain good solutions, it is necessary to consider the choice of the initial starting

point. In many problems, it is difficult to identify characteristics of a good solution that

can be used to concentrate the algorithm on some part o f the state space. Often a

random starting point is chosen. Often the algorithm is performed a number o f times

with a number o f different starting points in some attempt to broaden the search to

different parts o f the state space.

In the generic problem considered here, a few natural and yet reasonable starting points

are considered. Choosing a route configuration entirely at random would result in a poor

choice o f initial starting points. This could result in many long routes in the route

configuration. Long routes are not bad per se; for example, it is reasonable to have long

routes if the result is a reduction in costs, and the long route uses residual capacity on

some links. However, choosing routes at random may not result in such long routes; the

random process is quite likely to choose long and inefficient routes to carry some of the

demands. The initial starting point chosen here is one in which all the shortest paths are

found on the connection graph. These are then used as the routes for the demands.

Depending on the problem, other starting points should be chosen based on the

assumption that more or less o f the links are used in the solution and the shortest paths

on the graph chosen for the routes.

The time taken to find solutions using this algorithm is dependent on the size o f the

neighbourhoods. If the neighbourhoods are very large, then an exhaustive search of the

neighbourhood can take a long time.

85

The simulated annealing algorithm was initially proposed by Kirkpatrick et al [KGV83]

The algorithm was inspired by the simulating the annealing process in metals. In the

annealing process, a metal is cooled from a hot (high-energy) state to a cooler (low-

energy) state. The state o f the metal maps to the state space in the optimisation problem

and the energy o f the metal in a particular state maps to the cost of a state. The

annealing process is a somewhat random one, but is characterised by a very definite

downward trend.

Step 1 Choose some initial starting point, x0. Set i = 0 . Set the initial cooling

parameter T = 7’init

Step 2 Choose candidate state from the neighbourhood of xt at random; call it

•^cand

Step 3 Determine S - c(x:) - c(xcand)

Step 4 If 5 > 0 set xM = xcand , increment i and go to step 7

Step 5 Determine p , the probability o f accepting the state as the next state using

P = f (S ,T)

Step 6 Choose a random variable, r , from the distribution U (0,1]. If r > p go to

step 2

Step 7 If necessary, reduce the cooling parameter, T , according to the cooling

schedule. If T > r nnal go to 2, otherwise end.

Algorithm 2: General form of Simulated Annealing algorithm.

In the simulated annealing algorithm as applied to optimisation problems, the algorithm

moves from state to state in a similar random fashion. A neighbour o f the current state is

chosen at random. If this costs less than the current state, then it is accepted as the next

state. This ensures that there is a downward trend over time. However, if it costs more

than the current state then it is accepted as the next state with some probability. Clearly,

this introduces the probabilistic nature o f the algorithm. It also enables the algorithm to

‘climb’ out of troughs in the state space that would result in poor local minima, e.g. the

mi minimum in Figure 3-6 above. The algorithm is more formally described in

Algorithm 2.___

3.5.2 Simulated Annealing Algorithm

86

The key parameter that controls whether or not the more costly solution is accepted as

the next state is the cooling parameter that is determined by the cooling schedule. If the

cooling parameter is high, then the probability o f choosing a higher cost solution is

higher. Conversely, if the cooling parameter is low, the probability o f choosing a lower

cost solution is low. As the algorithm progresses the cooling parameter decreases

according to the cooling schedule; the probability o f choosing a higher cost solution

also decreases. The logic is that during the initial part o f the execution o f the algorithm

higher cost solutions are frequently permitted, but at the final stages o f the algorithm,

higher cost solutions are very infrequently permitted. During the initial stages of the

algorithm execution, the simulated annealing algorithm will resemble a somewhat

random process jumping from one state to the next with a very small downward trend.

As the algorithm progresses, the downward trend becomes more pronounced since the

probability o f moving to a higher cost state decreases. In the terminal stages of the

algorithm, the algorithm behaves in a similar manner to the greedy algorithm. The

algorithm usually terminates when the cooling parameter reaches some pre-specified

limit. This is illustrated in Figures 7 and 8 . It is clear that as the cooling parameter

decreases the cost also decreases.

If an aggressive cooling schedule is used, i.e. one in which the cooling parameter is

reduced quickly, then the algorithm behaves in a similar manner to the greedy

algorithm. This algorithm should terminate more quickly than an algorithm in which a

less aggressive cooling schedule is used.

Iteration

Figure 3-7: Cooling schedule used in a particular simulated annealing experiment.

87

Typically, in the simulated annealing algorithm the probability o f choosing a higher cost

solution is also dependent on the increase in cost. States that are marginally more

expensive are more likely to be accepted as the next state than solutions that are

considerably more expensive.

Iteration

Figure 3-8: Variation of cost with number of iterations in a particular simulated

annealing experiment.

The simulated annealing algorithm is shown in a general form in Algorithm 2. The

cooling schedule and the way o f calculating p are not explicitly stated. Typically, the

cooling parameter decreases exponentially with the number of iterations, although many

other decreasing functions could be used to control the cooling schedule. Similarly, a

number o f different functions can be used to determine the probability that a higher cost

state is chosen as the next state. Again, a typical choice is one in which the probability

of accepting the higher cost state is a negative exponential function depending on the

cost difference between the two states. The probability is often calculated using

p = A eBST, where A and B are positive constants. Since p is only calculated when 8

is negative and T always is positive, p is guaranteed to be between 0 and 1. The

dependency on 8 in this function ensures that the greater the increase in cost resulting

from this state transition the less likely it is to be chosen as the next state.

3.5.3 Other Approaches

There are two other frequently used heuristics that can be applied to combinatorial

problems — tabu search algorithms and genetic algorithms. Each of these are described

88

briefly here. Techniques in which the paths available to route each o f the demands are

limited to some particular set o f ‘good’ paths are also discussed.

Tabu Search

Tabu search algorithms attempt to incorporate memory into the solution process to

exploit knowledge o f previously visited states and previous state transitions. This is in

contrast to the algorithms described above which are more primitive in the sense that

they do not learn from previous moves. The objective o f incorporating such knowledge

into the solution process is to learn from previous efforts and guide the solution process

through difficult parts o f the state space so as to increase the likelihood of finding a

good solution.

Tabu searches are so-called because they operate by making certain moves tabu or

invalid at each iteration. For example, some neighbours in the neighbourhood could be

tabu at each iteration. Moves that are tabu are typically moves that may cause the

process to revert to a state that was visited earlier or a state that is similar to one that

was visited earlier. By making a set of previous moves tabu the search process can be

guided into parts o f the search space that have not been visited before.

Tabu searches have been found to have good results for a number o f problems.

However, they are still quite a new heuristic approach to solving problems. Also, there

are many variations on the tabu searches that can be used. Tabu search algorithms are

not considered any further here. The intention here was to note it as another algorithm

that can be added to the toolbox.

Genetic Algorithms

Genetic algorithms (GAs) form another class o f algorithms that can be added to the

toolbox of algorithms. GAs were inspired by selective breeding processes that take

place in biology that can be used to give certain desirable characteristics to a population.

The optimisation analogue o f this is to ‘breed’ certain ‘good’ solutions to result in

higher quality solutions.

The approach used by GAs in general is to choose some set o f states from the state

space. These states are then ‘cross-bred’ with the possibility o f allowing mutation to

introduce some extra randomness in the process. Bias is given to the more optimal

89

'J
states in the cross-breeding process. This should result in a next generation that is, in

general, more optimal than the preceding one.

While GAs have obtained useful results for many problems, they are not so directly

applicable here for two reasons. Firstly, in the generic network problem described

above, it is not obvious how to choose a set o f basis states. These could be chosen

entirely at random, but this would undoubtedly result in a very poor set o f basis states

and it would take quite some time to breed good solutions.

Secondly, GAs are particularly suitable to situations in which the states can be

represented using binary variables, and such problems have been studied using GAs

with some success. The problem under study here is not one that can be easily mapped

to one containing a set o f 0/1 decision variables.

The above two issues do not mean that GAs are not applicable to the generic problem.

However, some effort would be required to apply GAs to this approach, and even then,

it is not clear if the results would be good. This could certainly be an area for further

research.

Path Pre-selection

In the above algorithms, it has been implicitly assumed that any non-cyclical route can

be used to carry any demand. However, in many problems, many routes are bad

candidates for routing a particular demand. Long routes, for example, are typically

inefficient. Long routes containing one or more low capacity links are particularly

undesirable. There may be other reasons why particular routes are undesirable, e.g.

some routes may not be able to offer QoS sufficient for some demands.

Approaches in which the set o f routes for a particular demand are limited to a set o f pre­

determined paths could also be considered. Determining the paths in advance can

greatly reduce the size o f the state space by eliminating large amounts o f bad solutions.

However, the size o f the state space will still be very large - still far too large to search

exhaustively.

If this approach is used, the problem of how to choose paths for each demand must be

solved. This is not a trivial problem, and many authors have studied such routing

7 More optimal in the sense o f lower/higher cost depending on whether a minimum or maximum cost is

sought.

90

problems. However, there are many common sense approaches that can be used to

choose a reasonable set o f paths for each demand. For example, the k shortest paths for

each demand could be used, where k is some user specified parameter. In the case in

which a number o f paths are o f equal length, then those paths containing the largest

links could be chosen.

Determining the paths in advance can take some time, particularly if the problem is

large: there is an overhead associated with choosing good paths. However, if the

solution quality is in general better i f specific paths are selected in advance, then it may

be worth the overhead associated with choosing the paths.

Such path pre-selection is not considered any further here. However, it is noted as an

area that appears to hold promise for future research.

3.5.4 State-space, Neighbourhoods and Algorithms used to Solve the Generic

Problem

In this work, local search heuristics are used to solve the generic problem. As noted

above, these local search heuristics require definition o f a state space and a

neighbourhood. Here, the state space and neighbourhood that are used in solving the

generic problem are defined. Also, the particular variants of the local search heuristics

that are used to solve the problem are described.

The state space chosen here is a way o f representing all possible route configurations.

Each state in the state space represents a particular routing for all o f the demands on the

network. Examples o f the way that states are represented are shown in Figure 3-9.

Two states in the state space are considered to be neighbours if all o f the demands are

routed on exactly the same routes except one. Further, the demand that is routed

differently is differs only by the insertion or removal or swapping o f a node in a path.

An example o f neighbouring route configurations is shown in Figure 3-9. These route

configurations apply to demands that are routed over the network shown in Figure 3-10.

91

N 1 N2

<0,1) <0,1) \
/ <0,1,2> \ <0,3,2)

<0,1) <0,3)
<1,0) <l,0)
<1,2) <1,2)
<1,3) <1,1)

<2,1,3,0) <2,1,1,0)
<2,1) <2,1,1)
<2,3) <2,1)
<3,0} <1,0)

(0,1) <1,2,1) <0,1) <1,2,1) <0,1)
<0,3,2) <3,2) <0,3,2) <3,2) } <0,3,2)
<0,I) <0,3) <0,1)
<1,1,0) <1,0) <1,0)
< 1,2} <1,2) <1,2)
<1,1} <1,3) <1,3)

<2,1,1,05 <2,1,3,0) <2,1,3,0)
<2,1) t <2,1) <2,1)
<2,3) 1 <2,3) <2,3)
<1,0) /• " ~ X <3,0) <1,0)
<3,2,1) - <0,1) <1,2,1) <0,11 (3,2,1)
(3,2) <0,1,2) <1,2) / <0,1,2) (3,1,2)

<0,1) (0,1)
<1,0) <1,0)
<1,2) <1,2)
<1,1) <1,1)

<2,1,1,0) <2,1,0)
<2,1) <2,1)
<2,1) <2,1)
<3,0) (3,0)

\ <3,0,1) <3,2,1)
<3,2) <3,2)

N5 N4

Figure 3-9: State with some neighbours. The state at the centre is the central state

and the other states are neighbours of this state. This is not an exhaustive list of

neighbours.

Figure 3-10: Network on which the routings in Figure 3-9 are based.

In Figure 3-9, all the demands in the neighbouring states are routed in the same way

except one. The demand that is routed differently is shown in red. The different types of

neighbours can be seen in Figure 3-9: some of the neighbours are obtained by inserting

a node on this route, others are obtained by removing a node from the route and yet

92

others are obtained by swapping a node on the route. In Figure 3-9, neighbours N2, N3

and N6 are obtained by inserting a node on a route; neighbours N1 and N5 are obtained

by swapping a node on a route for another node and neighbour N4 is obtained by

removing a node from a route.

One consequence o f this choice o f neighbourhood is that the majority o f neighbours of

any state will be states which are obtained by inserting a node into a path. This is

because nodes can be inserted in a number o f positions on the route, and often there are

a few possible nodes that can be inserted.

The difference in the numbers o f neighbours that are obtained via node insertion, node

removal and node swapping is illustrated in Figure 3-11. There, the rerouting o f a

particular demand is depicted. The rerouting is dependent on the topology of the

network - something that is omitted here. From Figure 3-11, it can be seen that there are

2 nodes that could possibly be inserted between nodes A and B and there are a further

three nodes that could possibly be inserted between nodes B and C. This results in five

alternate ways o f routing the demand in which a node is inserted in the path. Only one

node - node B - can be removed from the path since nodes A and C are terminations.

There are two options for swapping node B with another node. In total, then, there are 8

neighbours of the state in which this particular demand is rerouted. O f these, the

majority are routes that entail insertion o f a node, a considerably smaller amount entail

swapping nodes on the route and the smallest number of neighbours are obtained by

removing nodes from the route. Clearly, the number o f neighbours obtained from

inserting a node on a route is the greatest. This point is more important for longer

routes: for longer routes, there are more possibilities for inserting nodes and more nodes

can be inserted. This means that as the length o f the route increases, the fraction o f ways

to reroute the demand that entail insertion of a node increase. This has implications for

solving the problem and the simulated annealing algorithm in particular.

One further point is worth highlighting here: the size o f the neighbourhoods can be very

large. For example, in the above analysis, 8 neighbours arise from rerouting o f a single

demand. Since there may be hundreds or thousands o f demands in the network and it

may be possible to reroute many o f them, the number o f neighbours o f each state can

easily become very large.

93

Figure 3-11: Illustration of the differences in the numbers of neighbours from the

perspective of a single route.

The above state space and neighbourhood is used to run local search optimisation

algorithms on the generic problem. In this work, two such algorithms are used: the

greedy algorithm and the simulated annealing algorithm. Both o f these are described at

an abstract level above. Here, some more details are included on the implementations

used here.

The greedy algorithm used here starts from a maximally connected network - all the

candidate links are present in the network. A shortest path routing algorithm is

performed on this network to obtain an initial routing for all of the demands. This is

used as the starting point for the greedy algorithm.

During the operation o f the algorithm, all the neighbours o f the current state are costed.

This is done by iterating through the routing o f all o f the demands, determining how

many ways an individual demand can be rerouted and costing each o f these reroutings.

Thus, all the neighbours are costed and the lowest cost neighbour is chosen as the

current state for the next iteration. The algorithm continues until the current state has a

cost lower than that o f all its neighbours.

94

The details o f the simulated annealing algorithm do not differ very substantially from

the algorithm described in section 3.5.2 above. The same initial starting point is chosen

for the simulated annealing algorithm as is chosen for the greedy algorithm. A state is

chosen at random and costed: it is accepted as the next state if it has a lower cost than

the current state. Alternatively, it is accepted with a probability which is dependent on

the resulting increase in cost and the cooling temperature.

One aspect o f this simulated annealing algorithm which is not obvious is that if all of

the demand is removed from a link, then the link is considered inefficient and is

removed as a candidate link from the problem. This was done in order to reduce the

number o f links used in the solution, on the premise that reducing the number of links

would have the effect o f reducing the overall cost.

In this simulated annealing algorithm, the temperature is cooled at each iteration. The

temperature is cooled in a geometric fashion.

The fact that a large majority o f the neighbours o f a particular state entail insertion of a

node has implications for the simulated annealing algorithm in particular. Since this

algorithm chooses a neighbour o f the current state at random, the neighbour chosen will

most probably be one that entails insertion of a node. As will be seen below, this has

implications for the performance o f the algorithm.

3.6 Conclusions

A flexible, abstract network optimisation framework has been described. The

motivation for the framework has been given; viz. to reduce the time required to obtain

solutions to specific network optimisation problems. The layered nature o f the

framework was described and the functions o f the different layers were identified.

A generic problem is the crux o f this framework. The generic problem was described in

detail here: the sets o f inputs and outputs of the problem was first described, followed

by a mathematical formulation o f the generic network optimisation problem. Some

short example applications o f the framework were then described.

Lastly, a number o f solution approaches that can be used to solve the generic network

optimisation problem were discussed. These solution techniques are techniques that are

quite generally applicable and arise in the combinatorial optimisation domain. The use

o f some o f these solution techniques will be investigated below.

95

CHAPTER 4 E n t e r p r i s e N e t w o r k D e s ig n P r o b le m

4.1 Introduction

Here, a specific network design problem is discussed. The problem is motivated and the

application o f the network optimisation framework to obtain a solution to the problem is

demonstrated. The specific problem considered here is one that arises in the context of

enterprise network design.

The purpose o f an enterprise network is to facilitate internal communications within the

enterprise. As such, the bulk o f the traffic carried on the network consists o f the intra­

enterprise traffic generated within the organisation. However, some o f the traffic on the

enterprise network may be destined for locations outside the organisation: some

application traffic could be carried on the network to some point close to the destination

and then it could be switched onto another network. This would be done to effect cost

savings. This is the case for so-called ‘break-in/break-out’ voice traffic on some private

networks - the traffic is routed to the location on the enterprise network that is closest to

the (off-net) destination and is switched to the public network at that point. So, some

traffic on the enterprise network may not be intra-enterprise traffic per se.

Enterprise networks often grow in an unplanned, ad hoc way. Extra resources are added

to the network as and when necessary. There are a number o f reasons for this, including:

• network usage data may not be readily available;

• the network is not the core business o f the enterprise and hence it may not have the

experience or expertise to plan and optimise the network;

• often the enterprise does not even have a good inventory o f its network resources.

However, as noted in chapter 2, Lloyd-Evans [Llo96] estimates that 10-20% savings

can be achieved by optimising packet-switched networks. Since the majority of

enterprise networks are packet-switched networks, this is likely to be applicable in this

case. Consequently, enterprise networks are an interesting candidate for optimisation.

Here, it is assumed that the enterprise wishes to maximise the use o f the enterprise

network resources. Consequently, cases in which there is significant traffic aggregation
96

are considered; i.e. the enterprise uses the enterprise network to carry diverse traffic

types. This is in contrast to a situation in which the enterprise may have separate

networks for different applications. Traffic aggregation in this manner may result in cost

savings since only one network needs to be operated and maintained.

The specific problem considered here is to determine how to add capacity to an existing

network at minimal cost to accommodate the demands o f the network users. As the

problem is stated, it is implied that there is some existing network and the objective of

the problem is to determine how to add capacity to it. However, the problem also

encompasses the case in which there is no existing network - the green-field network

design problem. This can be considered to be the special case in which the existing

network consists o f zero-capacity links. The solution to the problem is a route

configuration - how the demands are routed on the network - and a set o f costs

associated with this configuration. This problem is discussed at length throughout the

remainder o f the chapter.

The chapter is structured as follows. A detailed description o f the problem is given in

the next section. This is followed by a formulation of the specific problem model. This

is mapped to the generic problem in the following section and issues that arise in the

mapping function are discussed. Some example problems are then given to illustrate the

use o f the framework to solve this problem and then the chapter is concluded.

4.2 Problem Description

Here, a more detailed description o f the problem is given. This entails a discussion of

the demands on the network - the demands o f the users o f the network. This is followed

by a discussion on how the network may be realised, which is followed by some

comments on the costs o f implementing the network. A short note on network evolution

considerations is included at the end o f this section.

4.2.1 Enterprise User Demands

The network must be designed to support the applications the organisation uses; hence it

is important to consider what applications the enterprise uses when designing the

network. The applications used in enterprise networks are discussed next.

97

While every organisation is different and uses different applications, many applications

can be broadly categorised using the following categories:

• Interactive voice - voice communications have traditionally been an integral

component of private networks. Voice is still an essential form of communications,

particularly in those cases when the communication needs to be one to one and

interactive, and, as such, will continue to form a constituent o f any large

organisation’s private network traffic.

• Interactive video - interactive video refers mainly to one o f two applications:

videoconferencing applications or one-to-one videotelephony type applications. The

former usually have a number o f parties involved and usually take place in a

particular videoconference suite, while the latter are usually one-to-one

communications and take place between user desktops.

• File download — file download applications are characterised by downloading a

particular file from a server; what is done with this file is not important. Examples

o f file download applications include FTP and can also include applications such as

video-on-demand.

• Collaborative working applications - collaborative working applications are those

in which a number of parties are simultaneously working together on the same

material. An example o f a collaborative working application could be a document

editing suite in which many users can simultaneously and remotely comment on a

particular document during an editing meeting.

• Transaction based applications - these form a very important classification of

applications, since there are very many mission critical applications that fall into this

category. Many applications based on database querying can be considered to be

transaction based and web downloads can also be considered to be transaction

based.

Rapid growth in computing power and communications equipment mean that more

sophisticated applications are becoming possible and that the above classifications may

require some modifications. For example, applications which incorporate elements of a

number o f the above classifications can be envisaged. For now, however, they form a

Applications Used on Enterprise Networks

98

useful, although not exhaustive classification of applications that run on enterprise

networks.

The network designer needs to ascertain which applications the private network will

support and the demand generated by these applications. The network designer also

needs to know what QoS is required by the different applications and must design the

network such that the appropriate QoS is delivered to the applications. Also, it may be

necessary to take into account interactions between different applications - the

performance o f some mission critical applications could possibly be affected by traffic

from other applications if the no precautions are taken to ensure that mission critical

traffic is protected.

In general, the application level quantities can be difficult to measure. The application

level demand is often not easy to measure. Also, the data generated by the application

can be difficult to model: this is especially true o f video traffic (see

[RMV96,BCMM94] for more discussion on this). It may also be difficult to quantify the

QoS required by the applications - especially in terms of network level parameters such

as delay and loss. Also, if the network is to be designed to accommodate future growth

in the network, then the problem o f forecasting growth in the use of different

applications arises. These issues are beyond the scope of this work.

For the purposes o f this study, only voice and data traffic are considered. Voice traffic is

considered to originate from a voice terminal and data traffic is any traffic that

originates from a computer terminal. In this case, the data traffic can be quite

heterogeneous: it can constitute traffic from many different applications. Voice and data

traffic have historically been considered different and consequently this differentiation

is not unnatural. As more sophisticated applications with different requirements of the

network are developed, this simple classification will no longer suffice. For this

problem, however, it is assumed to suffice.

The question then is how to realise the network to accommodate the voice and data

traffic demands.

4.2.2 Network Realisation

The network can be realised in many ways. Here, issues relating to the way that the

network is realised are discussed. This includes addressing such issues as the network

99

architecture being used, the network components used and the services used to

implement the network to meet the demands o f the users.

Network Architecture

In most cases, the most cost-effective network design is one of a hierarchical nature.

Even without much planning private networks have tended to evolve to a hierarchical

architecture for cost reasons.

An example o f an hierarchical network design is shown in Figure 4-1. In this example

three levels exist in the hierarchy - headquarters, the regional offices and the local

offices. The local offices are typically small offices and generate small amounts of

traffic. These are homed on one or more o f the regional offices depending on how

important connectivity is and what options are available to cope with failure of the

communications between the local and regional offices. The interconnects between the

regional offices then form the backbone network: these interconnects are typically high

capacity. There may be high connectivity in the backbone network for efficiency and

reliability reasons.

Legend

j J Headquarters

(2) Regional Office

/ A\ Local Office

Figure 4-1: Example of hierarchical network.

Since this architecture is typical o f private networks, the networks used in this study are

assumed to be o f this hierarchical nature. Designing such networks is not a trivial task.

The most difficult problem to solve when designing such networks is how to determine

the network hierarchy; specifically, which nodes are homed on which concentrator

nodes. Once this is solved, the mesh network design problem for the highest level nodes

must be solved.

Since determining the network hierarchy is not a simple task, some comments are

merited here. It is not always obvious which nodes in the network should be the

regional offices. Often the regional office is not much different than the local offices.

For example, in the case o f a bank, the regional office may be a large branch that

happens to have space for the network equipment. There may not be any on-site staff to

operate this equipment; this could be performed remotely via the network. Sometimes,

it makes sense to have the regional concentrator located in some location that may be a

building that has the specific purpose o f housing the concentration equipment i.e. it

doesn’t have to be a branch office. When choosing the concentration points there may

be other factors that influence the decision, such as the availability o f service, or the

proximity to the nearest operator’s engineering office so, for example, if there were

some problem with the network, then a maintenance team could be on-site within some

short period o f time.

If there are few constraints on the choice o f the concentration points, then determination

o f the concentrators in particular and the network hierarchy in general can be

formulated as an optimisation problem, the objective o f which is to determine the set of

node locations that minimise the overall network cost. This is a complex problem in

itself and is not considered here.

The emphasis in this work is on the mesh network design problem. This is partly

because the generic problem in the network optimisation framework can only solve

mesh network optimisation problems, but there are other reasons for studying such a

problem. The mesh network can form the backbone of the enterprise network. Also, the

mesh network can consist o f high capacity links and as such can be costly: hence, there

is an opportunity for savings to be made. In large enterprises, the backbone network can

be large and hence the design problem can be challenging.

Network Components

Many different network components are used in private networks. The type of

components that constitute the network is dependent on the type of traffic the network

1 0 1

must carry. Here, data and voice traffic are considered. It is assumed that each node has

voice and data communications requirements, and that it needs to communicate with

some or all o f the other nodes in the network.

tn
co

0 .g
1 Ĉl)

I-

tn
-2 E
CO ' p
Q E

CD

Figure 4-2: Logical components required to access WAN in customer premises.

A number o f different functionalities are required in this scenario: functionality to

interface with voice terminals and switch voice calls, functionality to interface with data

terminals/LANs and perform packet routing functions and functionality to control

access to the Wide Area Network (WAN) resources. These functionalities can be

implemented in different network components, or alternatively, a single network

component can implement all o f these functionalities. Whether or not all of these

functionalities can be implemented in a single unit is dependent on the size of the

installation: in larger installations these functionalities would typically be realised in

different systems. In any case, the specific systems used to realise these functionalities

are not considered here. Rather, it is assumed that these functionalities are realised

somehow. An illustration o f the logical components required at each customer premises

is shown in Figure 4-2.

The functionality o f the multiplexer is an important issue in the design of such

networks. There are two fundamentally different types o f multiplexer that can be used in

this way; the first operates using Time Division Multiplexing (TDM), while the second

uses packet switching.

The TDM approach is the more established approach for such multiplexers and there are

many TDM based multiplexers on the market. Companies such as Timeplex, Tellabs

and Lucent Technologies have been selling TDM based multiplexers for many years.

The TDM based approach involves division o f the bandwidth on the wide area link into

1 0 2

a number o f fixed bitrate channels. All o f the traffic using the channel is given one of

the channels; even traffic which is inherently variable such as data traffic is given some

fixed rate channel. Depending on the amount o f data traffic being generated, the channel

may be fully utilised or highly under utilised. TDM based solutions are only applicable

in situations in which the WAN is realised using fixed bitrate channels, as opposed to

packet-based interfaces to WAN connections.

The packet-based approach is quite different. Using this approach, the incoming traffic

is broken down into packets at the ingress to the multiplexer, and then routed to the

appropriate output port. In a packet-based multiplexer, all the data is transported

through the multiplexer in packet format. It is then transmitted over the WAN in packet

format. The WAN can be realised using leased lines or, alternatively, a packet based

service such as ATM or Frame Relay (FR) can be used to realise the WAN.

Using packet based communications is, in principle, more efficient, since the network
. 8 . . .resources are only used when there is information to be transmitted . This is in contrast

to channel based solutions in which bandwidth is always reserved for specific

applications. Consider, for example, a single link which is part o f a private network; this

could be a leased line. If the capacity on this link is divided amongst the different

applications contending for the link resources using TDM, then there is a very hard

division o f the link capacity: some o f the link is always reserved for voice traffic, even

though there may be no voice traffic using the link. This is in contrast to a scenario

based on packet switching in which capacity unused by one application can be used by

another application. Thus, packet switching is inherently more efficient.

Network Technologies

A number o f different technologies can be used to implement the network. The private

network can be implemented using leased lines, FR or ATM or some mixture of these

technologies; also, some of the voice traffic could be carried over the Public Switched

Telephony Network (PSTN) or a Voice-based Virtual Private Network (V-VPN)9. Each

of these technologies is discussed below.

8 However, this does not necessarily mean that packet-based communication is cheaper; this is dependent

on the tariffing scheme.

9 This is usually simply termed a VPN. However, it is called a V-VPN here to differentiate from the type

o f VPN used in chapter 5. The V-VPN is a sophisticated bulk voice service offered by telecom operators.

103

Private leased lines are the most widely-used technology for implementation of a

private network. They generate huge amounts of revenue for operators. They are well

established and customers are very comfortable and familiar with the use o f leased lines

to meet their communications needs. A leased line acts as a simple transparent

interconnect o f some specified, fixed capacity between two locations. The customer can

then choose to use this interconnect in whatever fashion it sees fit. In particular, the

customer could choose to implement the WAN using packet switching or use a channel

based approach to divide the capacity on the WAN between different applications.

FR and ATM services differ fundamentally from leased line services in that they are

packet based. This means that the WAN must be implemented on a packet-switched

basis - it is not possible to completely segregate the capacity for the different services

using a channel based approach.

FR services are characterised by a Committed Information Rate (CIR). The CIR is the

rate that the operator will ensure to the customer - if the customer does not exceed this

rate, then the traffic is assured delivery. However, if the customer exceeds the CIR, the

operator will try to deliver the excess traffic.

In many cases, customers use FR services with no CIR - they do not require any

throughput commitment from the operator. The FR service that they obtain from the

operator is a best-effort service. Since FR networks typically have a substantial amount

o f resources, the QoS perceived by such users is usually quite reasonable. Some users,

however, do require some throughput assurances to ensure that their applications

receive the desired QoS. The users in this work are assumed to fall into the latter

category and obtain FR service with a specific CIR.

ATM services are somewhat different. A number o f different ATM service types exist.

In particular, ATM supports both Constant Bitrate (CBR) and Variable Bitrate (VBR)

services. The former are characterised by a single peak rate; the latter are a little

different since the customer can (roughly) specify peak and mean rates for the

connection and the customer is allowed (within some limits) to transmit at arbitrary

rates between these peak and mean rates. ATM CBR services are the ATM analogue of

leased lines. Unlike the FR services, the customer will only obtain service up to this

It has functionality to implement a private numbering plan as well as advanced voice-based functionality

including call forwarding, call back, voice mail etc.

104

rate. ATM VBR services are a somewhat more complex to deal with and hence they are

not considered here for implementation o f the private network interconnects.

Leased lines, FR and ATM offer permanent connectivity between customer sites. For

this reason, they are very suitable for data communications. They can also be used to

carry voice traffic. However, voice traffic imposes some stringent QoS constraints on

the network. Consequently, when implementing the network some care must be taken to

ensure that the desired QoS is delivered to the voice traffic. In the TDM leased line

case, capacity is reserved for the voice traffic. Thus, QoS is assured to the voice traffic.

In the packet based scenario, this is not necessarily the case. In the packet based

scenario implemented using leased lines, data packets could cause voice packets to be

queued resulting in delays for the voice packets and a degradation in perceived voice

quality. A similar effect could be observed in the case of a network realised using ATM

CBR connections. In both of these cases, the solution is to prioritise voice packets in the

network.

The FR case is a little more complex, since the amount of delay introduced in the

network is unknown. Also, the amount o f resources available to the customer is

unknown. Here, it is assumed that the customer does not exceed the CIR. In this way,

all the traffic can be assured o f getting to the destination and the voice traffic in

particular will be assured o f getting to the destination. The FR scenario could also be

realised more effectively if the FR network used the priority bit in the FR header to

differentiate between low priority and high-priority traffic. If the customer marked

traffic appropriately to indicate which traffic was most important - the voice traffic in

this case - then the operator could use these markings and prioritise the high priority

traffic accordingly.

The PSTN can be used to accommodate the voice traffic. In this case, the organisation

would pay for all inter-office calls on a usage basis. However, for a large enterprise

network, it is quite likely that there will be a very substantial amount of inter-office

traffic and the resulting costs could be quite high. Also, the costs incurred by the use of

the PSTN are quite unpredictable.

One way to reduce these costs is to use V-VPN services offered by operators. Such

services usually result in cost savings for large customers because they are considered to

be bulk users of the service and they receive (in some sense) bulk discounts. V-VPN

services also have the advantage o f providing advanced call related features as part of

105

the V-VPN package - voicemail, callback, call forwarding, etc. - via the public network

and consequently, the organisation does not need to purchase and maintain equipment to

support such services. V-VPN services still result in variable costs, although the

variation is smaller than that o f the PSTN.

Using a V-VPN for voice traffic and a leased line/FR/ATM network for data traffic is a

very clear segregation in services. Here, however, the emphasis is on traffic aggregation

rather than traffic segregation to achieve savings. Consequently, the use o f V-VPNs to

carry voice traffic is considered no further here.

Given that the emphasis is on traffic aggregation then, the objective is to design the

private network such that the overall network costs are minimised. Any of the above

interconnect services could be used. The interconnects may not have sufficient capacity

to handle all o f the voice traffic, especially when there is a peak in voice traffic.

Consequently, it make sense to permit voice traffic to overflow onto the public network,

i.e., the private network is used for data traffic and most o f the voice traffic and the

PSTN is used for voice traffic when there are insufficient resources on the private

network.

Network Configuration

The mesh network design problem considered here reduces to one o f considering how

the demands should be routed on the network. This is essentially a network

configuration problem. Issues pertaining to configuring the network are discussed here.

Two separate network implementations are considered here: a channel based network

implementation and a packet based network implementation. In the former, there is a

clear separation between resources reserved for voice traffic and those reserved for data

traffic; some channels are reserved for voice traffic and some are reserved explicitly for

data traffic. In the latter, all the resources are shared. Both o f these scenarios are

considered in more detail below.

In both implementations, all o f the data traffic is multiplexed on the WAN; specific

WAN capacity is not reserved for data communications between specific node pairs. In

today’s networks, IP traffic is very much the dominant data traffic type. Hence, it is not

unreasonable to assume that all o f the data traffic on the network is IP traffic. IP can

also be used to encapsulate other traffic types [RFC2661] so other traffic types can be

carried on the network inside IP packets.

106

If all o f the data traffic on the network is IP traffic, then IP routing mechanisms must be

used to effect a particular network configuration. OSPF is the most common intra­

domain routing protocol and it is assumed that this is used here. As discussed in chapter

2 above, OSPF does not permit arbitrary choice of routes for the demands although it

does provide some level o f flexibility. Here, it is assumed that this level o f flexibility is

sufficient to implement the desired network route configuration.

(i)

(ii)

Figure 4-3: Difference between two ways of switching voice calls. In (i) the call is

switched through the multiplexer; it is not switched in the PBX at the intermediate

node B. Conversely, in (ii) the call is switched in the PBX at in node B.

107

If the voice traffic is carried on separate channels, two options for configuring the

network are possible. In the first, the voice channels are terminated at adjacent Private

Branch Exchanges (PBXs); in the second, the voice channels are terminated at non-

adjacent PBXs - the multiplexing equipment performs a function similar to a cross-

connect and the call is not routed through the PBX at the transit node. Both o f these

situations are illustrated in Figure 4-3.

These two approaches differ in the way that resources are shared in the network. In the

first approach, depicted in Figure 4-3 (i), resources are reserved exclusively for traffic

between A and C on links AB and BC. The traffic is not switched at the PBX at node B.

In this approach a mesh o f resources reserved for exclusive use by a particular node pair

- a logical network - can be implemented. The logical network is implemented using

the multiplexers. In the second approach, depicted in Figure 4-3 (ii), no resources are

reserved for exclusive use by any node pair. In this case, traffic between nodes A and C

is switched through the PBX at B. More generally, all traffic is switched at intermediate

PBXs as appropriate. No logical network is implemented in this case.

The two approaches can differ in terms of cost and efficiency. For small networks, the

latter implementation is more efficient, since voice channels are at a premium and the

best use o f these channels is made possible if there is full sharing between the voice

channels. The alternative scenario can be more economical in larger networks. In this

case, switching does not need to be performed at intermediate nodes and consequently,

the cost o f the intermediate nodes is less. Specifically, the intermediate nodes need less

voice call terminations which results in a lower cost node. Also, the total amount of

switching to be performed at the node is less and consequently, the overall cost of the

node may be less.

If the voice and data traffic are decoupled in this manner, they can be routed differently:

a different route can be used for the voice traffic than that o f the data traffic. This can

permit the network to be configured more efficiently. However, it is assumed below that

the voice and data traffic are routed together.

The performance o f the network in which the voice channels are terminated at

intermediate PBXs will be better than that o f a network in which they are not terminated

at the intermediate PBXs. Consequently, if it is assumed that the voice channels are not

terminated at intermediate PBXs in the design process, then the performance of the

resulting design will be better than predicted by the design approach. This assumption

108

also makes the design problem more tractable: otherwise some of the techniques

described in the section 2.4 would have to be applied to determine how many voice

channels are required on each link. Hence, it is reasonable to assume this in the design

process, although it may result in networks that are o f slightly higher cost than required.

A D

Figure 4-4: Illustration of how the capacity of the interconnects may be divided

between the traffic for each of the node pairs.

If the voice traffic is packetised and transported in the same manner as the packet data,

then the WAN capacity does not need to be segregated at all. In this case, the

multiplexer is not needed; the router can be connected directly to the WAN link. The

data networking routing protocols can be used to perform routing in this network. This

scenario is illustrated in Figure 4-4.

If this approach is used, then the voice traffic must be prioritised over the data traffic.

This simple prioritisation can be done using, say, the Type o f Service (TOS) header field

in the IP packet header. This enables routers to differentiate between the different traffic

types and to give priority to the voice traffic to facilitate timely delivery o f voice traffic.

4.2.3 Network Costs

The network costs fall into one o f three categories:

1. Capital expenditure - these are once-off payments typically paid to purchase

equipment;

2. Fixed recurring costs - these are costs that must be made periodically. Examples of

this type of cost include service subscription/service access costs;

3. Usage based costs - these are variable costs that are incurred based on usage of a

service. If usage is high, then costs will be high and if usage is low, then costs will

be low.

109

Capital expenditure cost can be incurred when purchasing or upgrading equipment. In

this problem, the capital expenditure costs would only be associated with upgrade or

purchase o f new node equipment.

Fixed, recurring costs are costs that are incurred on a periodic basis. These are often

incurred for subscription/rental of services. Examples of such costs would be annual

line rental costs or annual subscription to FR/ATM services.

Usage based costs are costs that are incurred through usage o f a particular service. For a

voice based service, usage based costs would be costs incurred for making an individual

call. For data-based services, usage based costs could relate to the amount o f data that

traverses an interconnect, say10. Due to their nature, there is some variability in usage

based costs and it is sometimes difficult to predict them very accurately.

Note that these categorisations are not rigid. Capital expenditure may be financed by

loans, or equipment may be purchased under some kind of hire-purchase arrangement.

In these cases, the capital expenditure could be viewed as a recurring cost. Similarly,

recurring costs could incorporate some usage component: for example, a customer may

pay for V-VPN service which includes some amount o f usage over the billing period.

Cost functions for these different services can be quite complex. This is the case for the

interconnect services - leased lines, FR or ATM. In general, they are dependent on the

capacity and may also have a distance dependence. The costs for the interconnect

services can be quite non-linear but they always increase with increasing capacity.

Stepwise cost functions are good examples o f the type o f cost function that is common

for such services.

Interconnect services may have an access component that further complicates the cost

function. In many cases, service may not be available at the nearest exchange.

Consequently, the customer may have to obtain some permanent connectivity to the

nearest POP. This may be implemented using leased lines. Thus, the costs of

implementing interconnectivity between two nodes may consist o f service access costs

as well as service subscription costs, further increasing the complexity of the costs.

10 Usage based costs for data services could also be incurred for accessing content-based data services.

These type o f services are not considered here.

1 1 0

Predicting the usage based costs can also be non-trivial. Take, for example, the PSTN

traffic. The usage based costs are based on the amount o f usage o f the service: for voice

telephony, this can depend on the amount o f calls made and the duration o f each of the

calls. There can be some error in predicting these.

The objective here is to determine the lowest cost network configuration. Implicitly, the

notion o f comparing costs is assumed. As can be seen here, there are different types of

costs that operate over different timescales. Some care must be taken when comparing

them. For example, it is difficult to objectively compare a solution which has a high

capital expenditure and a low recurring cost with one that has a higher capital

expenditure and a lower recurring cost. This is quite a standard problem, which can be

solved by normalising the costs with respect to some time interval.

As is seen above, the cost functions for the services used to implement the network are

quite complex in general. Hence, it makes sense to use a flexible framework in which

the cost functions can be quite arbitrary.

4.3 Specific Problem Model

The specific problem model is discussed next. First, the problem is discussed in terms

o f the problem inputs and outputs. Then the problem is formulated more rigorously.

The inputs to the problem are:

• the set o f nodes;

• the set o f voice and data demands;

• the capacity required to carry a voice call on the private network;

• the set o f candidate links;

• the set o f link cost functions;

• the set o f costs functions for the public network traffic.

The voice demands are specified in terms o f the number o f call arrivals over some time

period. The data demands are specified in terms o f capacities. The cost functions are

both specified in terms o f cost over some time period.

The voice traffic can be carried on the private network or can be shed onto the public

network. Not all o f the voice traffic will be carried on either the public network or the

private network - some of the voice traffic will be carried on the public network and

1 1 1

some o f the voice traffic will be carried on the private network. The capacity required to

accommodate a voice call can be used to determine how much capacity a number of

voice trunks requires on the private network.

An alternative formulation o f this problem could consist o f data traffic specified in

terms o f application level demands and application level QoS measures which could

then be translated into some capacities for the data demands. This problem is not

essentially different, but would involve a different mapping function - the mapping

function would contain functionality to map the application level characteristics into

single parameter for the generic problem.

The problem outputs are:

• the network configuration;

• the amount of traffic that is carried on the public network;

• the amount of traffic carried on the private network;

• the set o f services that constitute the private network and

• the overall cost.

The specific problem model is constructed such that it can be applied to situations in

which the private network is implemented using all o f the technologies mentioned

above. From the perspective o f the specific model, all o f the technologies that can be

used to implement the interconnect appear the same. The difference between the

technologies manifests itself in the link cost function.

4.3.1 Formal Problem Model

Define the following:

• N : the set o f nodes in the network;

• L : the set o f candidate links;

• G(N, L): the graph o f the network o f possible links;

• c ,: the capacity o f link / e l ;

• D : the set o f demands;

1 1 2

• X

(o,, P j, ht ,m j)\ set characterising demand d i , i e 1 ... |Z)| - oj and p i are the source

and destinations nodes respectively; hi is the intensity o f voice traffic associated

with the demand and mi is the capacity of the data traffic;

v : the capacity required to carry a voice connection on the private network;

R : a routing for the demands on the network;

Q : the set o f voice channel reservations for each node pair;

qd : the amount o f voice channels reserved for demand d e D ;

l ‘d (r): indicator function indicating whether or demand d e D is carried on link

l e L - the function has a value o f 1 if the demand is carried on the link or 0

otherwise;

X A/ (R){pi, + qd v) - c, : the extra capacity that must be added to link
i

I under routing R with voice channels specified by Q ;

/ r i (x): the cost o f adding x units o f capacity to link Z e l ;

/pub (<7rf): the cost o f carrying the public voice traffic for voice demand d e D ;

Fpr (R,0) = X /pri (x i (X (?)) : the cost o f the private network;

, (R , Q) =

I<eL

Fpu (q) = X ./pub {<3d) : the cost of the use o f the public network resources;
d̂ D

F(R, Q) = Fpv (R, Q)+ Fpu (q) : the overall cost.

The problem is to find

F* = m inF (R ,Q)

In general, the problem of determining the minimum costs is difficult to solve. The

problem complexity is dependent on the nature o f the cost functions for the public and

private network resources. Also, the amount o f overflow traffic is dependent on the

arrival rate o f the voice traffic and the amount o f calls that can be accommodated on a

particular link. The latter is determined using the non-linear Erlang blocking function:

113

an extra non-linearity is introduced into the problem. So, even for straightforward cost

functions, the problem is difficult to solve.

A report on solution techniques that were used to solve this problem is given in

[MBC99] and related work was described in [MBC98]. Girard also formulates a very

similar problem in [Gir90], but there the scope is limited to design problems in which

the costs o f both the private network and the overflow traffic are linear. An alternative

approach is used here, which uses the generic network design framework of chapter 3.

4.4 Mapping to the Generic Problem

In the generic problem, there is a set o f demands characterised by a single value and a

set o f individual link cost functions. This differs a little from the specific problem in

that the specific problem demands have both a voice and a data component and there are

cost functions associated with the traffic carried on the private network and voice traffic

shed onto the public network. The mapping function must reduce the parameters in the

specific problem to appropriate parameters for the generic problem. Also, the demands

and link capacities in the specific function are bidirectional, while their generic problem

counterparts are unidirectional. The mapping function must also take this into account

when performing the mapping.

4.4.1 Determining the Demands

The approach used here to split the voice demands between the public and the private

network is a simple one. The fraction of voice traffic shed onto the public network is

defined. This implicitly defines the fraction o f traffic carried on the private network; the

amount o f voice channels required on the private network can be calculated from this.

The required number o f voice channels can be solved by determining q as the solution

to the equation

q = \E~'{h,b)\

where h is the intensity o f the voice demand, b is the fraction of traffic to be carried on

public network and E~x (•) is the inverse o f the Erlang blocking function. The problem

can be solved by performing an inverse Erlang calculation, but in this case, a more

direct, iterative process is used to find the solution. At each iteration, the blocking

probability is determined for the current number o f voice channels. The number of voice

channels is increased until the blocking probability is sufficiently low. Then the

114

required number o f voice channels has been reached. Typically, the number o f voice

channels required is small hence the number o f iterations is small, so this approach is

feasible.

One problem with this approach is that it is highly unlikely that the optimal solution to

the specific problem can be found using this approach. It is very unlikely that the

amount o f blocking associated with each demand will be approximately equal for all of

the demands. However, the approach can find a reasonable solution and hence it is

useful.

An alternative approach which is arguably more likely to find a better solution is to

assume a direct link is used between each node pair and determine the optimal amount

of voice traffic that is carried on this direct link. This idea is a little more interesting,

and for this reason, is expanded on here.

Using this approach, the size o f the demand for each node pair is calculated by solving

the following optimisation problem for each node pair.

Find z = n u n (mi + qv)+ (q)

where / ' and d ' are the link and the demand between the node pair respectively. Thus,

the number o f voice trunks between each node pair can be determined.

The solution to this problem can be found in a number o f ways. As with the other

approach, if the intensity o f the traffic is low, it is possible to iterate through a number

o f different values o f the voice trunks on the direct link and choose that number that

results in the lowest cost.

It would be interesting to explore this idea further. In particular, it would be interesting

to see the impact it has on the results obtained.

Once the number o f voice channels for each demand has been determined, the set of

demands to be input to the generic problem can be constructed. For each demand, the
/

triplet d t = (o,., p t , ri) can be generated, where rt = mi + q d v, and the set o f demands

/
D' - U dj can be constructed.

/

Note that this fixes the amount o f overflow traffic that is generated by the network.

Once this step is performed, the problem focuses on how to determine the private

115

network: the costs associated with the public network traffic are defined once the

overflow traffic is determined.

4.4.2 Determining the Link Cost Functions

The link cost functions must be mapped from those in the specific problem to those in

the generic problem. In the specific problem, both the demands and the links are

assumed bidirectional, while in the generic problem, all quantities are assumed

unidirectional. Also, the link cost functions in the specific problem are functions o f the

excess capacity required on each link - the cost o f the extra capacity that must be added

to the link to accommodate the demand. The link cost functions in the generic problem

reflect the costs o f carrying the traffic on the link rather than the extra capacity required

on the link to accommodate the demand. Both o f these issues must be addressed in this

mapping.

First the issue relating to the extra capacity is dealt with. This can be accommodated

quite easily by performing a mapping on the dependent variable. The cost function - for

bidirectional traffic - can then be written as:

than the excess capacity.

The function can then be extended to be bidirectional. As noted above, the demands are

mapped from a set o f undirected demands to a set o f directed demands for the generic

problem. Consequently, the demands can flow on either direction on each link. The link

cost function, then, must take this into account in a way that is consistent with the

specific problem. The approach used here is to make the cost of the directed link equal

to the cost o f the sum o f the capacities flowing in either direction on the link, i.e.

The link cost function for the specific problem can be extended to a function suitable for

the generic problem as follows:

The modified link cost function is dependent on the capacity carried on the link rather

/ ; M = / P'r (*+f)

116

This construction still permits arbitrary functions in the specific problem which can be

mapped to arbitrary functions in the generic problem.

4.4.3 Formal Mapping from the Specific Problem to the Generic Problem

The mapping can then be formalised as follows:

• TV —> N ;

• A ;

• G (N ,L) ^ r (N ,A);

• £>'-> A;

//
• / i (s , î) - » 0 a (m) a n d

• Yv 0 = 0 for all v g N

Thus, the specific problem is mapped to the generic problem and it is then possible to

obtain a solution to the generic problem in order to solve the specific problem.

4.5 Examples and Solutions

The use o f the network optimisation framework in solving the enterprise network design

problem is demonstrated here. A number of different problems were generated and

solved using this approach; also, different algorithms were used to solve the problems.

The results are presented, analysed and discussed here. Two questions must be asked

when assessing this approach to solve the problem: how long does it take to obtain some

solution and what is the quality o f the resulting solution. These two questions are

addressed separately here.

The test problems were generated using a random problem generator. All o f the

problems were green field network design problems - no problems containing existing

networks were generated. The problems can be divided into three broad categories of

problem - these are characterised by the nature o f the link cost function used for the

private network. Problems with three different link cost characteristics were generated:

a linear link cost function, a piecewise linear link cost function and a stepwise

incremental link cost function. These different cost functions are illustrated in Figure

4-5. Solutions to these problems were obtained and analysed.

117

(a)

Capacity

(c)

Figure 4-5: Link cost functions used in these examples - (a) linear link cost

function, (b) piecewise linear link cost function and (c) stepwise incremental link

cost function.

The random generator used to determine test functions is described first. Then the two

questions posed above are addressed.

4.5.1 The Random Problem Generator

A random problem generator tool was developed to enable different random green field

network design problems to be generated and used to validate this approach to obtaining

some solution. The random problem generator that was designed was quite flexible and

enabled a number o f different variants of the problem to be generated at random.

Problems with different numbers o f nodes, different link cost functions and different

switched cost functions can be generated. The generator has support for distance

dependent costs and also supports a notion o f a population associated with a location

and demands can then be correlated with populations.

In the random problem generator, the nodes are chosen first. The number o f nodes, n ,

and / max, the width and height o f the square area on which the nodes are randomly

placed are first specified. The node co-ordinates are then chosen from the uniform

distribution [0, J niax] . This enables the distance between the nodes to be calculated.

Each of the nodes also has a relative population associated with it. This is chosen from

the uniform distribution [0,1] and can be used to generate a set o f demands in which the

traffic generated by a particular node pair is related to the populations o f both of the

node pairs.

The demands are chosen next. Demands between all o f the node pairs are generated and

the demands between each node pair consist o f a voice component specified in erlangs

and a data component specified as a bitrate. The minimum and maximum for each of the

118

voice and data demands are specified. Two possible ways of choosing the demands are

then possible: they can be chosen entirely at random, or the demands can be correlated

with the node populations. The first approach is straightforward and only requires a

simple explanation - the voice and data demands are chosen from a uniform distribution

with specified limits - but the second approach is somewhat more complex and a more

detailed explanation is necessary.

In the second approach, the intemodal demands are based on the populations of the two

nodes. The geometric mean o f the two node populations is determined. Since the node

populations are between 0 and 1, the geometric mean of the populations is also between

0 and 1. The value for the demand that is then chosen is by linear interpolation between

the minimum and maximum values for each o f the demands using the geometric mean

as the interpolation parameter. For example, if the population values are ex and e2 and

the minimum and maximum values of the demands are mmm and mmax respectively,

then, using this approach, the value o f the demand between the two populations is:

m = " V n + 4 ^ 2 (W m aX “ ™ m in) •

Some random perturbation is then added to the resulting demand: some random fraction

between +/-10% of the value o f the demand is added. This is done to make the resulting

problem slightly less regular.

The costs are specified next. The costs can be broken down into the link costs and the

switched call costs. The link call costs are discussed first, followed by a short discussion

on the switched call costs.

The problem generator permits three different types o f link cost function to be

generated: linear, piecewise linear and stepwise incremental. It also enables the link cost

functions to be generated such that the link costs are distance dependent. This is

optional and the case in which the link costs are not dependent on distance is discussed

first.

If the link costs are not dependent on the distance, then the user can choose to have

linear, piecewise linear or stepwise incremental link costs. All the link costs must be of

the same type in this problem generator: it is not possible to have some linear link cost

functions and some piecewise linear link cost functions. Note that this is a characteristic

of the problem generator - the generic problem solvers have no problem

accommodating very different link cost functions. The link cost functions that are

119

generated permit a capacity to be mapped to a cost, and a link cost function must exist

for all of the potential links in the problem. In the distance independent case, a set of

parameters are chosen from which all of the link parameters are chosen at random. The

linear parameters specified are the minimum and maximum link installation cost and the

minimum and maximum marginal increase in capacity. This effectively defines an

envelope on the link cost functions that are chosen as shown in Figure 4-6.

Capacity

Figure 4-6: Envelope for linear link cost function. Any link cost function can be

chosen which is bounded by the two lines chosen in the figure.

The piecewise linear and stepwise incremental cost functions are substantially different

from the linear cost function, but since they require the same set o f parameters to define

the functions, they are described together here. Both o f these functions are specified

using a finite set o f defining points - the points that define the function. These points

are points at which the nature o f the function changes somewhat. In the case of the

piecewise linear function, these points are the points at which the slope changes and in

the case o f the stepwise incremental functions, these are the points at which the function

value increases in a stepwise manner. The function value is obtained differently for each

o f the functions. For the piecewise linear function, the function value is obtained by

interpolating between the defining points and extrapolating from the last one. For the

stepwise incremental points, the function value is determined by finding the defining

point with the maximum capacity less than the current capacity. The value of the

function at this point is equal to the value at the current capacity.

The piecewise linear and stepwise functions are generated by choosing a fixed interval

between the points that characterise the function. A minimum and maximum value for

the initial value o f the function is specified by the user and a value is chosen uniformly

from this range. Each o f the points are then generated. This is done in the same way for

both the piecewise linear and stepwise functions, although the way that they are used

1 2 0

when calculating the value of the function differs slightly in each case. Here, the

discussion is in the context o f the piecewise linear cost function, but exactly the same

applies for choosing the points for the stepwise incremental cost function points. It is

assumed that the slope o f all the segments in the piecewise linear function decrease with

increasing capacity. The slope for each segment can then obtained by multiplying the

slope of the previous segment by some number between 0 and 1. In the generator, a

range for the slope o f the first segment is specified and then a range for the multipliers

from which the slopes o f the subsequent segments can be obtained is specified. Using

this data, the set of points can be generated and both the piecewise linear and stepwise

incremental cost functions defined.

The case in which link cost functions are distance dependent is a little more complex.

The problem generator has support for link cost functions that vary linearly, in a

piecewise linear fashion, or in a stepwise fashion with distance. The general approach

used to incorporate distance into the link costs is to construct a kind of base cost-

capacity function and a distance multipliers function. The overall function then is the

product o f the distance multiplier function evaluated at the appropriate distance and the

base function.

A number of different variants for constructing distance dependent link cost functions

are then possible. Any combination o f linear, piecewise linear or stepwise incremental

base functions and linear, piecewise linear and stepwise incremental distance multipliers

is possible.

The switched costs then remain to be determined. Three possibilities exist for these: the

switched costs can be fixed, random or distance dependent. In the first case, the

switched costs are constant over all node pairs. In the second case, some range of values

is specified and the cost per switched call between the node pairs is chosen at random

from this range. Each node pair can have a different switched cost. The third case is one

in which the switched call costs are dependent on the distance between the nodes. A

single type of distance dependence is permitted here, which models existing distance

dependent tariffs most accurately. This distance dependence is a stepwise incremental

cost function. The parameters for this function are chosen in the same way that the

parameters for the stepwise incremental cost function are chosen above.

This problem generator enables many types o f problems to be generated, although not

all types are used here.

1 2 1

The problem generator is used to generate a substantial number o f problems and the

times taken to solve these problems are recorded and analysed here. The problems are

solved using the generic problem solvers mentioned in Chapter 3. The objective is to

compare the time taken to solve the different problems using the different problem

solvers.

The problems have different link cost characteristics - some of the problems have linear

link costs, some of them have piecewise linear link costs and some of them have

stepwise incremental cost functions as described above. None o f the problems solved

have an existing network - all o f the problems are green-field network design problems.

The problems vary in size from 10 nodes to 50 nodes.

In the problems considered here, the amount o f time taken to solve the entire problem

comprises o f the time taken to perform the mapping function plus the time taken to

solve the generic problem. The time taken to perform the mapping function is small in

comparison to the time taken to solve the generic problem. Hence the former is assumed

to be negligible here for the purposes of comparing the time required to obtain

solutions.

Results for the problems with a linear link cost function are discussed first, followed by

discussion o f the results for the piecewise linear and stepwise incremental cost

functions.

The parameters chosen for the linear problems used in these experiments are shown in

Table 4-1. These parameters were used to generate problems varying in size from 10 to

50 nodes in increments o f 5 nodes. In these problems, the costs are distance independent

and the demands generated are not correlated with the population associated with the

node.

Five problems o f each problem size were generated using the problem generator and the

parameters listed above. Then they were mapped to the generic problem using software

written to perform this function. As discussed above, the demands for the generic

problem were generated by specifying the fraction o f the voice traffic that gets shed

onto the public network. In all o f these cases, the fraction of traffic shed onto the public

network was 5%. This was used to determine the number o f trunks required to carry

voice traffic between the node pairs. The link cost functions used in the generic problem

were exactly the link cost functions defined in the specific problem.

4.5.2 Time Taken to Obtain Solutions to Problems

1 2 2

Parameter Value

Maximum intemodal distance 500

Maximum Voice Demand (Erlangs) 10

Minimum Voice Demand (Erlangs) 3

Maximum Data demand (Mb/s) 2

Minimum Data demand (Mb/s) 0.5

Data demands correlated with node size false

Demands chosen from uniform distribution true

Demands chosen from normal distribution false

Link cost data linear

Distance dependent false

Minimum link installation cost 5000

Maximum link installation cost 10000

Minimum marginal cost (Mb/s)'1 50

Maximum marginal cost (Mb/s)' 100

Distance independent switched costs; fixed call costs 0.1

Table 4-1: Parameters used in the random network generator tool to generate

problems with linear cost functions.

The two approaches described in chapter 3 were used to solve the problems described

here. For the greedy approach to solve the problem, a fully connected initial starting

point was chosen. For the simulated annealing algorithms, results were obtained for

different parameter sets: specifically, results were obtained for different initial cooling

temperature and cooling rates. The results obtained by varying these parameters are

shown in the figures below.

The generic problem solver was run on a 270Mhz Sun UltraSparc 5 machine running

the Solaris 2.6 operating system. The machine in question was running in multi-user,

multi-processing mode. Consequently, any number o f processes could have been

running concurrently with the generic problem solvers. Solaris provides a rudimentary

123

mechanism to obtain information on how much time was used by a process. The

operating system can determine how many seconds o f processor time a particular

process consumes. This is mostly independent of the load on the system and the number

o f users o f the system. This time is used for comparison purposes here.

A very comprehensive set o f results was obtained for the problems with linear link cost

functions. All o f the problems were solved using the greedy and simulated annealing

approaches. The results are shown in Figure 4-7 to Figure 4-10. Each point on the graph

is an average o f the solutions to the five problems with the same characteristics.

The results show that the amount o f time required to solve the problem increases

exponentially with problem size for the problem with linear link cost functions. This is

the case for both the greedy and simulated annealing algorithms. Note that the longest

solution times can be about 40 minutes (-2700 seconds). This is prohibitively long for

any kind o f interactive application, but is adequate for applications in which it is more

important to obtain a good quality solution at the expense of processing time.

The time required to solve the problem increases exponentially with the problem size

because the size o f the neighbourhood increases exponentially with the number of

nodes. Both the algorithms are sensitive to the size o f the neighbourhood. This is

obvious in the case o f the greedy algorithm, since the algorithm involves costing all of

the neighbours o f a particular state. If the number o f neighbours o f each state is

increasing dramatically, then the time taken to search all o f the neighbours will also

increase dramatically. It is less obvious in the case o f the simulated annealing algorithm.

In the simulated annealing algorithm, the number o f iterations is governed by the

cooling schedule. The simulated annealing algorithm used in this work is

straightforward: the current temperature is decreased by some fixed, specified

proportion at each iteration. Thus, the temperature at iteration i , Tn can be written as

Tt = T0k ‘

where T0 is the initial temperature and K is the cooling parameter. Here, the stopping

condition is reached if the current temperature is less than 1.0. If the initial temperature

and the cooling parameter are known then the number o f iterations is fixed. Importantly,

the number o f iterations is independent o f the problem size. Consequently, the increase

in time required to obtain a solution results from an increase in the amount o f time

required to perform each iteration.

1 2 4

0 10 20 30 40 50 60

Number of Modes In Problem

Figure 4-7: Time required to obtain solution to problem with linear cost function

using the greedy algorithm.

0 10 20 30 40 50 60

Number of Nodes In Problem

Figure 4-8: Time required to obtain solution to problem with linear cost function

when simulated annealing cooling parameter is 0.98.

125

0 10 20 30 40 50 60

Number of Nodes In Problem

Figure 4-9: Time required to obtain solution to problem with linear cost function

when simulated annealing cooling parameter is 0.99.

Number o f Nodes in Problem

Figure 4-10: Time required to obtain solution to problem with linear cost function

when simulated annealing cooling parameter is 0.995.

126

The increase in time required to perform each iteration can be explained by noting that

the simulated annealing algorithm operates by choosing a neighbour at random. In this

implementation, this works by counting the number o f neighbours o f the current state

and choosing one o f these. Since the size o f the neighbourhoods increases exponentially

with the number o f nodes, the time required to perform the counting operation increases

exponentially with the problem size.

Some approach which is independent o f the size o f the neighbourhood is desirable. This

may operate more quickly and would certainly be more scalable.

Similar experiments were run for the scenarios in which the cost functions were

piecewise linear and stepwise incremental to see if these differ significantly (see Figure

4-11 to Figure 4-18). The results obtained for these scenarios were not as

comprehensive as those obtained for the linear case. The time taken to obtain a solution

in this case is a little longer than the linear cost function case. This is because it takes

longer to calculate the link cost function. Since this is performed very many times

during the optimisation, a small difference in time taken to perform this calculation can

result in a significant difference in the time taken to perform the overall computation.

Here, it is clear that scenarios containing more than 50 nodes require substantial

amounts o f time - almost 2 hours in some cases - hence, unless it is possible to run the

software, say, overnight, or possibly over a few days, the algorithms used here will not

be able to find solutions for problems o f more than 10’s of nodes.

Note also that the computing power used when obtaining these solutions is not very

modem. Current high-end processors can operate at 1.5 GHz11. Some experiments were

performed to determine the difference in speed between a Pentium® III based system

operating at 600MHz and the Sparc-based system that was used to perform these

experiments. The experiments showed that the Pentium® system performed

approximately 5 times faster than the Sparc system. The latest microprocessors could

probably operate 10 times faster. Having such processing power available would

increase the maximum size o f problem that is solvable within some specific time, but

since the time required increases exponentially, the increase in processing power would

only permit a relatively small increase in the maximum possible problem size.

11 Vendors sell Pentium® 4 based systems in which the processors operate at this speed.

127

Number of Nodos In Probtom

Figure 4-11: Time required to obtain solution to problem with piecewise linear cost

function using greedy algorithm.

Number o f Nodes In Problem

Figure 4-12: Time required to obtain solution to problem with piecewise linear cost

function when simulated annealing cooling parameter is 0.98.

1 2 8

0 10 20 30 40 50 60

Number o f Nodes in Problem

Figure 4-13: Time required to obtain solution to problem with piecewise linear cost

function when simulated annealing cooling parameter is 0.99.

Number o f Nodes o f Problems

Figure 4-14: Time required to obtain solution to problem with piecewise linear cost

function when simulated annealing cooling parameter is 0.995.

129

6000

Number of Nodes in Problem

Figure 4-15: Time required to obtain solution to problem with stepwise

incremental cost function using greedy algorithm.

Number of Nodes In Problem

Figure 4-16: Times required to obtain solution to problem with stepwise

incremental cost function when simulated annealing cooling parameter is 0.98.

130

Number of Nodes In Problem

Figure 4-17: Times required to obtain solution to problem with stepwise

incremental cost function when simulated annealing cooling parameter is 0.99.

Number o f Nodes in Problem

Figure 4-18: Time required to obtain solution to problem with stepwise

incremental cost function when simulated annealing cooling parameter is 0.995.

131

Some further observations are useful. In the above experiments, the greedy algorithm

takes the most time. The solution time for the simulated annealing algorithm when the

cooling parameter is 0.98 are approximately 10% of that of the greedy algorithm. The

simulated annealing run with cooling parameter o f 0.995 and initial temperature of

10000 results in a running time comparable to that o f the greedy algorithm. The other

parameter choices result in running times somewhere in between these two extremes.

Obviously, the initial temperature could be made larger or the cooling parameter could

be made closer to 1 resulting in even longer running times: the simulated annealing

running times can o f course exceed those o f the greedy algorithm if the parameters are

chosen appropriately.

4.5.3 Quality of Solutions Obtained Using this Approach

Considering the running time alone is not sufficient: the quality o f the solution in terms

of the resulting cost must also be considered. If the approach takes a long time to find a

poor quality solution, then the approach is not very useful. Here, the quality o f the

resulting solutions is assessed.

C h o o s i n g S i m u l a t e d A n n e a l i n g P a r a m e t e r s

A number o f parameters need to be specified when running the simulated annealing

algorithm. In the instance o f the algorithm used here, three parameters are required: the

initial temperature used in the cooling schedule; the final temperature used in the

cooling schedule and the cooling parameter which controls the rate at which the process

is cooled. Each of these parameters can affect both the time required to obtain a solution

and the quality o f the resulting solution.

132

2 500000

Final Cost

Initial Cooling Temperature

Figure 4-19: Variation of result with initial temperature of simulated annealing

algorithm for a randomly generated 10-node problem.

The initial temperature is considered first. The initial cooling temperature was varied

substantially for one problem - this problem was a 10-node problem. The cooling

parameter and the final temperature remained fixed. The simulated annealing algorithm

was run once each time using a single random seed. The SA algorithm could have been

run a number o f times and the results averaged to obtain more representative results:

however, the trend is very obvious, even when only one run o f the SA algorithm is used.

It is clear that as the initial temperature increases beyond some point, the quality o f the

solution obtained gets worse as can be seen in Figure 4-19 for this small problem.

The final solution quality gets substantially worse as the initial cooling temperature

increases. At the highest level, this can be explained by noting that the algorithm

permits many moves that result in poorer quality solutions in the initial period of the

cooling schedule. The algorithm then experiences difficulty in reversing all o f these

poor moves when the cooling schedule is nearing its end. Consequently, the final

solution retains some o f the poor characteristics that were introduced in the initial stages

o f the cooling schedule.

133

The situation in this case is made more complex due to the fact that many of the

neighbours of a particular state are poor neighbours: many o f the neighbours can result

in very unsuitable routings for demands. For example, some of the neighbours can

involve rerouting demands via expensive links. Moreover, if such moves are accepted in

the initial part o f the cooling schedule, a link may be removed as discussed in chapter 3.

Removing a link in this case makes it impossible to revert to the previous situation. It is

conceivable that the removed link could be critical to a low-cost solution: in this case,

the simulated annealing algorithm would not be able to arrive at such a low cost

solution.

Note also that for a fixed cooling rate, the time required to obtain the solution is related

to the initial temperature: if the initial temperature is increased, the time required to

obtain a solution is also increased. Since a large initial temperature results in both a

poorer quality solution and an increased amount of time to obtain the solution, it makes

sense not to consider using very large initial cooling temperatures for these small

problems.

Final Cooling Temperature

Figure 4-20: Variation of solution quality with final temperature of cooling

schedule.

The final temperature o f the cooling schedule - when the cooling schedule reaches this

temperature, the process terminates - is also important. It has an effect on both the time

134

taken to obtain a solution and the resultant solution quality. This can be seen in Figure

4-20. The solution quality improves as the final temperature decreases. However, there

is a time cost associated with this, which is shown in Figure 4-21. The amount of

iterations increases linearly as the log o f the final temperature decreases. This arises

directly from the fact that the cooling temperature at each interval is equal to that of the

last interval multiplied by the cooling parameter. The question then is whether the

increase in the time required to obtain a solution is warranted and this is dependent on

how much time is available and what the application is. Note however, that the linear

improvements resulting from decreasing the final temperature shown in Figure 4-19 will

break down and decreasing the cooling temperature further will not result in any more

cost savings. This will occur as the solution becomes closer and closer to a local

minimum.

Final Cooling Temperature

Figure 4-21: Variation of number of iterations with final temperature. The initial

cooling temperature is 100000 and the cooling parameter is 0.995.

The cooling parameter also has a substantial effect on both the time taken to obtain a

result and the quality o f the result obtained. The dependence of the solution quality on

the cooling parameter is more difficult to identify than either the initial or final cooling

temperature, but some investigation o f the effect o f the cooling parameter on the

solution quality follows.

135

Number of Nod«s in Problem

Figure 4-22: Variation of costs for different values of the cooling parameter for the

problems with linear costs. The initial temperature is 1000. The results are relative

to some norm.

20 30 40

Number of Nodes In Problem

Figure 4-23: Variation of costs for different values of the cooling parameter for the

problems with linear costs. The initial temperature is 10000. The results are

relative to some norm.

136

Number o f Nod»s in Problem

Figure 4-24: Variation of costs for different values of the cooling parameter for the

problems with linear costs. The initial temperature is 100000. The results are

relative to some norm.

Examples o f how the solution quality varies with the cooling parameter are shown in

Figure 4-22 to Figure 4-24. The results shown in these figures were obtained by using

the simulated annealing algorithm to solve a particular problem. The results were

averaged and the relative costs using the different approaches are shown in Figure 4-22

to Figure 4-24. From the figures, it can be seen that for a higher initial temperature, a

higher cooling parameter causes the quality of the solution to be worse; conversely, for

a lower initial temperature, a higher cooling parameter causes the solution quality to be

better. In both cases, this can be explained by the fact that the cooling parameter

lengthens the overall cooling process, but more discussion of each case is warranted.

In the case in which the initial temperature is high, lengthening the cooling process

means that more time is spent in this high temperature part o f the cooling schedule.

Consequently, more poor quality moves are permitted and the solution can stray far

from an optimal in this part o f the cooling schedule. Furthermore, the particular

implementation o f the simulated annealing algorithm does not permit links to be

inserted once they are removed: this makes it impossible to revert to a previous state if

the transition to the current state results in this link removal. This can mean that poor

quality moves are accepted in the early part o f the cooling schedule, and they cannot be

137

undone later on. This gives rise to poorer quality solutions in the case in which the

initial temperature is high and the cooling parameter is high.

When the initial temperature is low, moves that are accepted are mostly those which

cause a reduction in the overall cost o f the solution; the probability o f accepting a move

resulting in an increase in cost is small. Hence, using a larger cooling parameter in this

case, causes the cooling process to be lengthened and increases the number of moves

attempted. Since the accepted moves are predominantly those which cause a reduction

in cost, using a larger cooling parameter in this case has the effect o f causing more

moves resulting in a lower cost to be tried and hence the resulting solution to be of

lower cost.

There is a region in between these two extremes for which the use o f the larger cooling

parameter can result in increased costs for smaller problems and decreased costs for

larger problems. This arises because the bad irreversible moves alluded to above have

more o f an impact in the smaller problems than the larger problems.

Similar results were observed for problems with piecewise linear and stepwise cost

functions.

The above results show that it is difficult to conclude what is the best cooling parameter

in each case. It is dependent on the problem size and the initial cooling temperature.

Perhaps i f the irreversible nature o f the cooling process was modified, the process

would be more predictable and the use of a larger cooling parameter would uniformly

result in improved solution quality on average. However, this was not explored here

because the solutions obtained using the greedy algorithm were so much better as is

discussed below.

Comparison o f Results Obtained Using Greedy and Simulated Annealing Algorithms

The simulated annealing algorithm was run for a number o f different problems and the

results were compared with the results obtained using the greedy algorithm. A set of

simulated annealing parameters was chosen and was applied to many o f the different

problems. The sets o f simulated annealing parameters chosen are shown in Table 4-2.

138

So
lu

tio
n

Tim
e

(s
)

Problem Identifier Initial Temperature Cooling Parameter

SAI 1000 0.98

SA2 1000 0.99

SA3 1000 0.995

SA4 10000 0.98

SA5 10000 0.99

SA6 10000 0.995

SA7 100000 0.98

SA8 100000 0.99

SA9 100000 0.995

SAIO 1000000 0.98

S A ll 1000000 0.99

SA12 1000000 0.995

Table 4-2: Parameters used in each of the simulated annealing solvers.

2 5

2

15

1

0 5

0
0 10 20 30 40 50 60

N u m b e r o f N o d o s In Problem

Figure 4-25: Comparison of results obtained using different algorithms and

parameters for problems with linear cost functions.

Figure 4-26: Comparison of results obtained using different algorithms and

parameters for problems with piecewise linear cost functions.

1.4

0 8

0 2

20 30 40

Number o f Nodes in Problem

Figure 4-27: Comparison of results obtained using different algorithms and

parameters for problems with stepwise cost functions.

The results are shown in Figure 4-25, Figure 4-26 and Figure 4-27 for the problems

with linear, piecewise linear and stepwise incremental cost functions respectively. In all

cases, it is clear that the greedy algorithm performs significantly better. In the linear cost

140

function case, the difference is least but it is still quite substantial. The difference is

considerably greater in both the piecewise linear and stepwise incremental cases.

The difference between the results obtained using the greedy algorithm and the

simulated annealing algorithm can be explained using some of the arguments in section

4.5.2 above. Here, three different sets of solutions obtained using the simulated

annealing algorithm are identified and considered separately.

In the case in which the initial temperature is low, the algorithm performs in a manner

somewhat similar to the greedy algorithm: only moves that result in a lower cost state

are accepted. However, in the simulated annealing algorithm, instead of performing an

exhaustive search of the state space, neighbours are chosen repeatedly at random, until

lower cost neighbours are obtained. This approach is less likely to lead to the local

minimum than the more systematic greedy approach. For this reason, the results

obtained using the greedy approach are better in this case.

In the first case in which the initial temperature is quite high, bad moves will be

permitted in the earlier part of the cooling schedule. This can result in the algorithm

entering a bad state. This, coupled with the fact that reinstallation of links is not possible

results in a poor solution. This can be seen in Figure 4-25 to Figure 4-27 (this is shown

in plots SA7, SA8 and SA9).

If the initial temperature is made very high and the cooling parameter is also high, the

solution quality can improve as the cost is made number o f nodes increases as is shown

in Figure 4-25 and Figure 4-26 (plot SA12 in particular). This does not result in a very

good solution, but the point is to note that arbitrarily increasing the initial temperature

does not always result in poorer and poorer solutions. This relative improvement in the

solution probably comes about in larger problems because the amount o f links that are

removed is reduced. Also, the number o f routes that will remain unaffected by the

optimisation algorithm will be larger.

Overall, it can be seen that the simulated annealing algorithm generally results in poor

quality solutions.

The difference in the results obtained in the piecewise linear and stepwise incremental

cases can be explained by the economies o f scale that arise in these cases. In these

cases, there are significant advantages to routing as much of the traffic as possible on a

small set o f links. For example, rerouting a demand on a network with stepwise

incremental cost functions may result in no increase in capacity (and hence cost) on the
1 4 1

links comprising the new route. This is in contrast to the linear case, where such a

rerouting would result in a cost being incurred on the alternate route.

The greedy algorithm attempts to do concentrate as much of the capacity as possible on

a small number of links, availing o f the aforementioned economies o f scale. With the

greedy algorithm, hub locations naturally arise and the other nodes in the network are

‘homed’ on these hub locations. When solving the problem using the simulated

annealing approach, the nature o f the algorithm means that it is less likely that these

hubs will develop - the resulting topology will be much more random, and the overall

cost will be higher. Hence the cost difference between the results obtained using the

simulated annealing approach and the greedy approach in the piecewise linear and

stepwise incremental link cost function cases.

4.5.4 Trade-off Between Solution Quality and Time Required to Obtain

Solution

When solving the problems above, it was clear that the greedy algorithm obtained the

best solution all the time. However, there may be some cases in which it is desirable to

obtain some solution in a reasonably short space of time, rather than obtaining the best

solution in a longer time. Hence, it makes sense to consider the trade-off between the

time required to obtain the solution and the quality o f the resulting solution.

In section 4.5.2 it was observed that time required to obtain solutions increases

exponentially with the problem size: this is true of both the greedy approach and the

simulated annealing approach. However, for a problem of a given size, it can take

considerably longer to obtain a result using the greedy algorithm than it can to obtain a

result using a simulated annealing algorithm.

Choosing a large initial cooling temperature and/or a large cooling parameter in the

simulated annealing algorithm resulted in a considerable time taken to obtain a solution.

Also, the resulting solution was worse than that of the greedy algorithm. Consequently,

in this case, it is beneficial to choose parameters for the simulated annealing algorithm

that result in a short execution time. This means that the simulated annealing algorithm

is a more likely candidate for situations in which the time required to obtain a solution

is more limited.

142

Number of Relative Greedy Relative SA SA Solution

Nodes Greedy Cost Solution Time Cost Time

10 0.78346 0 0.807971 0

20 0.843912 12.8 0.912859 8.08

30 0.863901 126 0.969034 37.52

40 0.878137 631.8 0.987921 111.8

50 0.876892 2221 1.000717 260.08

Table 4-3: Time vs. Cost comparison of solutions for the problems with linear cost

functions. The SA algorithm results are for the SA1 parameters above.

The solutions obtained using the simulated annealing algorithm using a small cooling

parameter resulted in very small percentage differences in solution quality (<1%).

Consequently, the benefits o f running the algorithm multiple times with different

random seeds to obtain different solutions are questionable - the algorithm can be run

once and the solution obtained. Here, the use o f the simulated annealing algorithm run

once for a specified set o f parameters is compared with the use o f the greedy algorithm.

Number of

Nodes

Relative

Greedy Cost

Greedy

Solution Time

Relative SA

Cost

SA Solution

Time

10 0.5487868 0 0.7929614 1

20 0.4471776 30.4 1.0380581 11.6

30 0.3997993 287.6 1.1421577 48.2

40 0.3451297 1436.4 1.1788172 136.2

50 0.3147747 4653 1.1816319 307.8

Table 4-4: Cost vs. quality comparison for problems with the piecewise linear cost

function. The SA algorithm results are for the SA1 parameters above.

In the case in which the linear cost function is used, the discrepancy between the results

obtained using the simulated annealing algorithm and those obtained using the greedy

algorithm are not very great for the sizes o f the problems studied. The results are shown

in Table 4-3. Since the simulated annealing algorithm obtains the solution in relatively

short time in this scenario - it takes less than l/8 th the time when the problem size is 50

143

nodes - there are some advantages to the use o f this algorithm in this case. However,

when the cost functions are linear functions o f the capacity, more efficient techniques

exist to solve the problem such as that proposed by McGibney. Hence, the usefulness of

this approach in the linear case is questionable. It is included here for comparison with

the other cases.

Num ber of Relative Greedy Relative SA SA Solution

Nodes Greedy Cost Solution Time Cost Time

10 0.47863 0 0.821101 1.0

20 0.442224 27.4 1.026898 12.2

30 0.368313 250.8 1.153846 49.8

40 0.31966 1195.4 1.184053 137.2

50 0.283738 3949.2 1.191688 302.8

Table 4-5: Cost vs. quality comparison for problems with the stepwise incremental

cost function. The SA algorithm results are for the SA1 parameters above.

The results obtained in the case in which the link cost functions are piecewise linear are

somewhat different from those obtained when the link cost functions are linear. In this

case, there is a very substantial discrepancy between the results obtained using the

simulated annealing algorithm and the greedy algorithm. For the above 50 node

problems the simulated annealing algorithm results in a cost almost 4 times higher than

that obtained using the greedy algorithm. This solution is effectively useless.

Consequently, the time spent obtaining this solution can be considered wasted time.

Hence, for these problems, the results obtained by the simulated annealing algorithm are

not very useful. The same is true o f the results obtained for the stepwise incremental

cost function.

4.5.5 Objective Analysis of the Results

In general, it is difficult to perform any kind of objective analysis of the solution quality

because the problem can have arbitrary cost functions. For this reason, no objective

analysis o f the quality o f the cost function is included here.

However it was realised towards the end o f this work that one useful approach may be

to generate linear functions which upper bound and lower bound the cost function over

144

the appropriate interval. The approach used by McGibney in [McG95] could then be

used to obtain and upper and lower bound on the solutions. These could be used to

determine the quality o f the solution obtained using this approach. This only makes

sense in an environment in which the link cost function is an increasing function of the

used link capacity. Since this is usually the case, this should not be a problem.

4.6 Conclusion

This chapter serves to illustrate how the generic framework can be applied to solve a

specific network design problem. The specific network design problem was described

first. A model for the problem was then constructed and the mapping from this specific

problem to the generic problem was discussed. A number o f random example problems

were then used to illustrate the use of the approach. These were then mapped to generic

problems and the generic problem solvers were then used to obtain solutions to the

generic problems.

The approach was analysed both in terms o f the time taken to obtain solutions and the

quality o f the solutions obtained. It was found that for many o f the cases the version of

the simulated annealing algorithm was not particularly useful; the greedy algorithm

always obtained better results and often very considerably better results. Interestingly,

the simulated annealing algorithm that was used here sometimes obtained worse

solutions when the parameters o f the algorithm were chosen to increase the amount of

processing time. Hence, increased processing time sometimes resulted in poorer

solutions. When comparing solution quality against the time required to obtain the

solution, the simulated annealing algorithm performs very poorly in the case o f the

piecewise linear and stepwise incremental cost functions.

The poor performance obtained in some cases above is not a specific problem with the

framework - the problem is with the approach used to solve the generic problem.

Specifically, the simulated annealing algorithm was found to obtain poor results above.

This can most probably be attributed to the choice o f state space and neighbourhood

used in this work: an alternate choice o f state space and neighbourhood could have been

used to obtain a much better solution. An alternate choice o f state space and

neighbourhood could form the basis o f an alternative solution approach within the

framework.

145

CHAPTERS D if f s e r v /M P L S N e t w o r k C o n f ig u r a t io n

P r o b l e m

5.1 Introduction

Here, another specific problem is described that can be solved using the network

optimisation framework discussed in Chapter 3. The specific problem under study here

is that of configuring a core network to carry a set o f customer demands with some QoS

requirements. In this problem the customer demands are a set of Data-based Virtual

Private Network (D-VPN) demands with associated qualities. The core network is

implemented using Differentiated Services or diffserv and MPLS. The problem is to

determine how best to configure the core network such that the demands can be carried

with the requisite QoS while balancing the load on the network.

The chapter is structured as follows. First, an overview o f both diffserv and MPLS is

given. Next, the particular core network configuration problem considered here is

described; the scenario is described and any assumptions made relating to the

implementation are discussed. The problem is then formulated into a specific problem

model. Issues associated with the mapping from the specific problem to the generic

problem are considered next. Once an appropriate mapping function is defined, it is

possible to apply the generic network design approach to solve the specific problem. To

illustrate this, some diffserv/MPLS core network configuration problems are

constructed; solutions to these problems are obtained using the generic approach

described here. The solutions are validated by simulating some small networks, while

larger problems are solved to illustrate the benefits o f optimising the network in this

fashion.

5.2 Diffserv and MPLS

Diffserv and MPLS are two relatively new technologies that have been developed

within the Internet Engineering Task Force (IETF). Diffserv was developed to facilitate

differentiation between packets as they are processed in network nodes with a view to

providing some support for QoS. MPLS was developed to facilitate flexible routing in

146

networks and hence provide much greater control over network routing. These two

technologies can work well together to provide QoS across a single administrative

domain.

Each o f these technologies is considered in more detail below. Then, the current

solutions for interoperation o f these technologies are discussed.

5.2.1 Diffserv

Diffserv [RFC2475,RFC2474] was developed as a means to offer some support for

scalable QoS over IP through service differentiation. The idea is simple: service

differentiation is facilitated by giving each packet one o f a standardised set of markings.

These markings indicate how the packet should be treated by the network elements:

different markings result in different treatments o f packets, resulting in different QoS.

The packets are processed at each node in the network according to their marking. Thus

the QoS required by the packet is obtained.

Here, the initial efforts to develop an IP QoS solution which resulted in the Intserv

architecture are first discussed. The limitations o f the Intserv approach are identified.

Then the diffserv architecture is described, including a description of standardised

packet markings and some suggestions on how they should be treated at nodes. Devices

which operate at the network edge to limit the amount o f traffic entering the network are

also detailed. Some implementation details follow: a typical queue and scheduler

implementation is described and some implementation details for the edge traffic

conditioners are also given. Finally, some examples o f diffserv-based services are

described.

Early Work on an IP-QoS Solution

Earlier work on IP QoS resulted in the so-called Integrated Services or Intserv

architecture [RFC 1633]. The Intserv approach borrows much from the more

conventional telecommunications mindset in which QoS is offered on a per-connection

basis: it focuses on individual IP flows with QoS requirements. Before such a flow

starts transmission, it is necessary to determine whether or not the network can meet the

requirements o f the new flow without adversely affecting commitments made to other

traffic. If there are not sufficient resources to carry the flow with the required QoS, the

network identifies what QoS it can support for the flow and informs the source. The

147

source then decides whether to accept this lower QoS or to abandon or defer the

communications.

Intserv requires a signalling protocol to facilitate communications between the sources

and the network. The Reservation Protocol (RSVP) [RFC2205, Whi97] was specifically

developed to satisfy this need. Other signalling protocols could be developed that meet

the requirements o f the Intserv architecture but RSVP is currently the only standardised

solution that meets these requirements. The use o f RSVP signalling in the Intserv

architecture in this manner results in the so-called Intserv/RSVP solution.

The Intserv architecture is a departure from the more usual thinking within the Internet

community. Before Intserv was developed, the emphasis was very much on minimising

the amount of critical and complex functionality in the network core and ensuring that

most o f it remained at the edge o f the network [SRC84]. This was due to scalability and

robustness concerns. This resulted in end-to-end protocols. For example, the

Transmission Control Protocol (TCP) [RFC793] was designed to enable congestion

control from the network edge. Security mechanisms such as Secure Socket Layer (SSL)

are also implemented on an end-to-end basis. This philosophy typically results in

robust, scalable solutions.

The Intserv architecture is not very suitable for wide-scale deployment in large core

networks. The primary reason for this is that it suffers from scalability problems. Nodes

in large core networks may have to simultaneously process many thousands o f flows. It

is necessary to keep state information for each flow traversing each node and to process

and respond to signalling messages for all o f these flows. Large core nodes would

require very substantial resources to process all this signalling traffic. This heavy load is

further compounded by the fact that RSVP connections are ‘soft-state’ connections -

the flows periodically send keep-alive signalling messages to ensure that the resources

remain reserved. For a large number of flows, the load induced by a large number of

keep-alive messages could be significant. This large processing load and retention of

substantial state information causes significant scaling problems: as the network size

increases and the amount o f flows with QoS requirements increases, the required node

size increases dramatically. Note that it is most probably feasible to implement a large

core Intserv/RSVP-based network if enough memory and processing power is used.

However, such a router would necessarily be very expensive.

148

Aside from the scalability problems, an end-to-end QoS solution based on Intserv

suffers from another critical problem: evolution to such a scenario is difficult. In order

to support end-to-end QoS using the Intserv/RSVP architecture most of the routers

between source and destination must support RSVP. Otherwise, the communications

between the source and destination will not receive the required QoS. If parts o f the

connection do not contain RSVP aware routers, then the flow will only receive best

effort service on this part o f the connection. Deploying RSVP on a large scale can

require costly upgrades to a very large amount o f routers. Unless the benefits o f this are

very clear, operators will be reluctant to spend the large amounts of money required to

implement an end-to-end Intserv/RSVP-based network. Also, a partial deployment is

not so useful, since the key benefit o f this architecture is predictable QoS; something

that is not delivered if signalling is only supported by a minority of routers.

A S i m p l e r A p p r o a c h - d i f f s e r v

Diffserv is a fundamentally different and much simpler approach to offer some level of

QoS in the network. Diffserv focuses on aggregates of flows rather than single flows as

in the Intserv case. Diffserv does not require signalling and hence requires little

intelligence in the network core. It operates simply by giving each packet an appropriate

marking at the network edge and treating the packet in a way that is dependent on its

marking at each node in the network core. Consequently, it is a much simpler and much

more scalable approach than that o f Intserv.

Diffserv focuses on facilitating services. These services are offered to the customer by

the network operator. They are typically bulk transport services: the operator agrees to

carry some quantified amount o f the customer traffic while offering some level of QoS.

The specifics o f the service offering are detailed in a Service Level Agreement (SLA).

This provides the basis for the common understanding o f the service as well as defining

the quantifiable commitments made by both parties, e.g. the QoS to be offered by the

operator, and the amount o f traffic that the customer can inject into the network.

Diffserv and Intserv are not mutually exclusive technologies: both can exist within a

network. Indeed, the most likely development of today’s networks is that both diffserv

and Intserv will be used to facilitate end-to-end QoS. Diffserv will most likely be

deployed in the network core because it is simple and scalable, and RSVP will most

probably be used in the access part of the network to control access to the diffserv

149

resources. Such an architecture is illustrated in Figure 5-1 and is discussed further in

[XN99],

Figure 5-1: End-to-end QoS implemented with Diffserv and RSVP.

Diffserv is interesting from a research perspective because it is a radical departure from

the more traditional circuit-oriented view o f offering QoS (e.g. Intserv/RSVP, ATM).

Diffserv has two key benefits over the more traditional view - lower cost and higher

scalability - and hence i f it can be used to offer a reasonable level of QoS to customers,

then it is a more favourable approach than the more conventional alternative. However,

it is not clear what level o f QoS can be obtained using the diffserv approach and it is not

clear whether reasonable quantitative guarantees/assurances can be offered with diffserv

services. Here, some efforts are made to address these concerns.

T h e d i f f s e r v A r c h i t e c t u r e

A complex diffserv network capable of offering diffserv-based services over a large

geographical area will consist of multiple diffserv domains. Each domain is

characterised by having its own set o f operating policies. These policies could, for

example, define the specific packet markings and their corresponding treatments in the

network, or the set o f operating characteristics for the different services supported by

the network. A single diffserv domain would probably be managed by a single operator.

Each diffserv domain can consist of a number o f Administrative Domains (ADs) as

shown in Figure 5-2. A diffserv domain may be very large and it is typically easier to

manage a set o f smaller domains than a single very large domain. Hence, the diffserv

domain is decomposed into a number o f ADs. The operator’s policies could be applied

consistently and uniformly across all o f the ADs. A single AD is controlled by a single

management system. The AD management systems interoperate to provide consistent

end-to-end QoS over the diffserv domain. Each AD is then well defined by the system

that manages it.

150

Figure 5-2: Administrative Domains within a diffserv domains.

Each AD has a well-defined boundary. Nodes at the boundary - so-called boundary

nodes or edge routers — o f the AD connect to other ADs or other networks. These may

be ADs operated in the same diffserv domain, ADs operated by a different operator, or

customer networks. Nodes that do not interface with other ADs or networks are called

interior nodes or core routers. Every node in the AD must be either a boundary node or

an interior node. A single diffserv domain connecting two customer premises is

illustrated in Figure 5-3.

Boundary nodes and interior nodes have slightly different functionality. Boundary

nodes perform traffic conditioning functions, which condition the traffic, on entry to the

network. This conditioning is performed based on an SLA negotiated between the

customer and the operator and involves ensuring that the traffic that enters the network

is consistent with the SLA agreed with the customer. If the customer tries to inject very

large amounts o f traffic into the network, the conditioners will act to ensure that the

customer’s traffic does not have a detrimental effect on the network performance

perceived by other users o f the network. Interior nodes can simply route the traffic

through the core treating each packet according to its packet marking. The architecture

also has support for interior nodes performing traffic conditioning but this is not

151

considered any further here: here, it is assumed that the interior nodes simply perform

high-speed routing functions and the boundary nodes perform traffic conditioning and

routing.

9A SA

A
Customer

C o e muter

C o e muter

CaeRw fer

M w P c n ii i

Figure 5-3: Illustration of diffserv network.

While the purpose of diffserv is to enable services to be deployed, the diffserv

standardisation effort has not focussed on specification o f services. Rather, the diffserv

standardisation effort has focussed on standardising an architecture within which

services can be implemented. This involved developing a set o f building blocks that can

be used to implement a flexible array o f services. In theory, this means that an operator

is able to offer a wide variety o f services; in practice, the service offerings will probably

be small in number. However, this approach is certainly more flexible than one in which

the services themselves are specified. This means that if new ‘killer’ applications are

developed that require specific diffserv service offerings to be deployed, the operator

can implement new services to cater for these new applications without difficulty.

A more detailed explanation o f the building blocks that can be used to offer diffserv

services follows. First, the so-called Per-Hop Behaviour (PHB) - the way that a diffserv

node processes and queues a packet - is discussed, followed by a discussion of the

traffic conditioners at the edge o f the network. The former facilitate service

differentiation by treating packets differently, depending on their marking, while the

latter limit the amount of traffic entering the network to ensure that the network

resources are not overutilised, compromising the QoS.

152

Per Hop Behaviours and Diffserv Codepoints

The PHBs are the building blocks that have been standardised within the architecture to

facilitate the development o f diffserv-based services. These PHBs specify how a node

processes a packet with a given packet marking. They can be used in conjunction with

some specific traffic conditioners at the edge of the network to implement some specific

services.

The PHBs specify how a node should treat a packet with a specific Diffserv Codepoint

(DSCP) or packet marking. They are specified in terms o f implementation requirements.

The PHBs do not specify actual implementations; rather, they specify how to determine

whether or not a particular implementation is conformant with the PHB specification.

A number o f DSCPs and their associated PHBs are standardised. Three sets of PHBs are

defined. These are:

• the Expedited Forwarding (EF) PHB;

• the Assured Forwarding (AF) PHB group;

• the Class Selector (CS) PHBs (which includes a default PHB).

The EF and AF PHBs are new and are intended to facilitate implementation o f new

services. The CS PHB is intended for legacy use: some existing networks use an

approach similar to diffserv to prioritise some traffic (such as network control traffic).

The purpose of the CS PHB is to ensure that such applications will work without

modification in a diffserv environment.

The EF PHB [RFC2598] was designed to support services with stringent QoS

requirements. It is intended for low loss, low delay services. The PHB specification for

the EF service class specifies that sufficient resources must exist at the node egress to

carry all the EF traffic. Specifically, the output resources reserved for EF traffic must be

no less than the input EF rate. Hence EF traffic should experience minimal loss and

delay. The EF service class is implemented using a single DSCP: all EF traffic in the

network is marked with this codepoint.

The AF PHB group [RFC2597] was designed to be sufficiently flexible to facilitate

deployment o f service offerings with considerably different QoS characteristics. The AF

PHB group consists o f four classes, each o f which contains three separate drop

precedences. The drop precedences enable traffic to be prioritised within a single class.

Higher priority traffic is less likely to be dropped or may experience a shorter delay at a

153

node. Each o f these drop precedences requires a distinct DSCP. Hence, twelve DSCPs

are reserved for the AF PHB group. [RFC2597] specifies that traffic o f a particular class

must leave a node in the same order in which it entered, i.e. no packet reordering can

take place within an AF class at a node. It also specifies that the higher priority traffic

within a class must not experience a higher long term drop probability than lower

priority traffic within the same class.

The CS PHBs are intended to support and be consistent with legacy applications that

support some QoS. The particular IP packet header byte that contains the DSCP was

also used in some IP legacy networks to support some service differentiation. In non-

diffserv IP networks this byte is called the TOS byte. Some particular values o f the TOS

byte are typically used in legacy networks to differentiate between priorities of traffic;

for example, network control traffic often has a particular TOS byte setting which

differs from that of standard data traffic. The particular codepoints reserved for the CS

PHBs are exactly consistent with the use of the TOS byte for legacy applications: a

diffserv network will interpret TOS byte settings as indicating that the packet is marked

with the CS PHB. Thus legacy applications using the TOS byte can work in a diffserv

network using the CS PHBs. The CS service class simply specifies some set of

priorities. The PHB then specifies that nodes implementing the CS service class must

treat the different CS DSCPs with different priorities. The higher value CS codepoints

should receive higher priority than lower valued CS codepoints.

Note that a node does not have to support all of these PHBs to be diffserv compliant.

Similarly, an operator does not have to implement services using all of these PHBs.

More DSCPs are reserved for local use within a diffserv domain, so an operator can

choose to define a new PHB (assuming the equipment supports it) and associate it with

some of the DSCPs that are reserved for local use. In this way an operator can

implement and deploy a new service. In practice, it is more likely that an operator

would use the DSCPs that are reserved for local use to implement another instance of

the EF, AF or CS PHBs that has different operating characteristics if the standardised

set o f PHBs is not sufficient.

Traffic Conditioners

Traffic conditioners operate at the edge o f the network to condition the traffic entering

the network. This conditioning limits the amount o f traffic o f each type that enters the

network. The traffic conditioners determine whether or not each packet conforms to an

154

SLA. If so, then the traffic conditioner performs no action; if not, then the traffic

conditioner can perform one of a number of actions. The traffic conditioner can do one

of the following:

• Drop the packet - the packet does not enter the network;

• Remark the packet - the packet is allowed to enter the network but with a codepoint

different from that which it originally had;

• Delay the packet - the packet is allowed to enter the network, but must wait until

such a time as its entry into the network is conformant with the SLA.

Which action is performed is dependent on the service that the operator implements.

Not all actions are appropriate for all services. For example, services implemented using

the EF service class typically have low loss and delay requirements. A traffic

conditioner at the node ingress that shapes traffic and causes delays to be introduced is

not suitable. Also, remarking is not very suitable for EF services, since the packets

would be marked down to lower quality services and they would arrive at the

destination too late to be useful. AF-based services are more flexible and any of the

above operations can be naturally applied to these services.

I m p l e m e n t a t i o n D e t a i l s

The objective here is to determine how to configure the network to accommodate the

customer demands in an efficient and robust manner. To do this, it is necessary to make

some assumptions on the way the network is implemented. Here, some example

implementations o f components o f the diffserv network are assumed and part o f the

overall problem is to choose appropriate parameters for these devices to deliver the

required QoS.

The standards do not define how diffserv should be implemented. Those implementing

diffserv must decide how to construct an implementation that is compliant with the

standards. However, the standards do describe example implementations and it is very

likely that many implementations will be strongly influenced by the example

implementations. Such implementations are assumed here.

Two key components in the diffserv architecture are considered here. First an

implementation o f the combined queue and scheduler is described followed by a

discussion on the implementation o f the traffic conditioners.

155

Queues and schedulers exist in the network nodes to control access to resources. In

general, large core network nodes can consist o f multiple switching stages and some

form o f queuing and/or scheduling can occur at each stage. Here, the nodes are

modelled simply as an output stage; any effects that can be attributed to characteristics

of the internals o f the node are ignored.

Queue

Queue and Scheduler Implementations

JK xQ ua c 3 ' Output He

DeftsJt Queue

Figure 5-4: Queue/scheduler configuration assumed at the output stage of the

diffserv code node. The scheduler determines which queue to take a packet from

when the link becomes idle.

If the nodes are modelled simply as output buffering stages, then the nodes can be

modelled simply as a configuration of queues and schedulers as shown in Figure 5-4.

The constraints imposed by the standards on the different codepoints coupled with

example uses of the codepoints give rise to some rather natural queue/scheduler

configurations. For example, EF-based services are intended to be low delay services.

Hence, it does not make sense to have large EF buffers, otherwise large delays could be

introduced. AF classes have a reordering constraint - traffic from an AF flow cannot be

reordered within a node. This implies that all the AF traffic for a particular flow should

be queued in the same queue.

Using the above ideas, the queue scheduler system shown in Figure 5-4 was chosen.

This consists o f four queues: one for EF, A Flx, AF2x and a default or Best Effort (BE)

queue. This is not standards compliant in two senses: first, the CS codepoints are not

implemented and secondly, not all four AF PHB classes are implemented. However, it

is easier to work with a smaller number o f traffic classes and is sufficient to validate the

approach used here to configure the network.

In this system, some o f the queues have so-called Active Queue Management (AQM).

This is a mechanism that operates on a queue that tries to prevent congestion by

156

dropping small numbers o f packets before the queue fills up. Its purpose is to increase

the stability o f the system, which has desirable effects such as increasing the overall

throughput. AQM is particularly suited to adaptive traffic - such as TCP - which

reduces its transmission rate when it detects a packet loss. It causes the adaptive sources

to reduce their transmission rate in small steps. If no such mechanism was used, then the

queue would fill and multiple packet losses could occur; for TCP sources, this would

result in a very substantial reduction in the transmission rate. AQM attempts to increase

stability in the system by causing single packet drops rather than multiple packet losses,

which is more common when AQM is not used.

Floyd and Jacobson proposed the Random Early Detection (RED) AQM scheme in

[FJ93]. RED is a particular AQM scheme in which the packet drop probability increases

linearly with the mean queue occupancy. Clark and Fang proposed a variant of this that

is applicable to a scenario in which traffic with different priorities or drop precedences

use the same queue in [CF98]. The latter was termed RED for In and Out traffic (RIO).

It operates by applying two separate RED mechanisms - one for high priority traffic

and one for low priority traffic. It is assumed that traffic is marked as either high

priority or low priority somewhere in the network (most probably the edge of the

network) and that the low priority traffic should experience a higher loss probability

than the high priority traffic. More AQM mechanisms have been proposed, which are

variants of the above two - self-configuring RED [FKSS99], Fair RED [LM97], and

others - but they are not considered here.

Here, AQM mechanisms are assumed for the AF and BE queues, since these service

classes would most likely contain substantial amounts o f TCP traffic. Such mechanisms

are not used for the EF queue because the EF queue would typically not contain TCP

flows, and these mechanisms are most suited to queues with substantial amounts of

adaptive traffic. The AF queues contain traffic with different drop precedences and

hence an RIO AQM mechanism is used; the BE queue contains homogeneous traffic (in

the sense that no BE traffic has priority over other BE traffic) and hence an RED

mechanism is used.

The scheduler assumed here is a Weighted Round Robin (WRR) scheduler. In this

scheduler, different weights are given to each queue: the queue weights are proportional

to the proportion o f the link resources that each queue should receive when the system

is congested. When the system is uncongested, there can be more flexibility in the

157

system, i.e. some queues can obtain more than their allocated capacity because others

need less.

The WRR scheduling mechanism used here is based on the notion of ‘rounds’. In each

round, some ‘credit’ is allocated to each queue to be used within the round. If a packet

arrives at the queue, and the queue is next to be served, the scheduling mechanism first

checks to see if the queue has accumulated sufficient credit to allow transmission of the

packet. If so, then the packet is transmitted on the link and the amount o f credit

associated with the queue reduced; otherwise, other queues are examined. If every

queue is always ready to transmit data, then the queues will be given access to the link

in proportion to their weights. A more detailed description o f the operation of the WRR

scheduler assumed here is in Appendix B.

Note that this is one possible implementation - other implementations could be

developed based on Priority Queuing, Class-based Queuing or some other queuing and

scheduling mechanisms. These different approaches may result in better performance in

some respect. The scheduler described here, however, meets the design requirements of

low EF delays, controllable service differentiation for the other classes and a minimum

resource allocation for BE traffic. Hence it can be used to deliver a reasonable level of

QoS.

Traffic Conditioner Implementations

Traffic conditioners identify whether traffic conforms to some prespecified SLA and if

not, the traffic is ‘conditioned’ according to the SLA so as not to have a detrimental

impact on the network performance perceived by other network users. Since the traffic

conditioning is only applicable in a QoS context, it is not applied to BE traffic.

Two basic methods o f operation o f conditioners have been proposed. The first is based

on estimation of a transmission rate over a time interval and action will be taken on

traffic that exceeds this rate; the second is based on a token bucket mechanism.

In the first approach - the so-called time-sliding window approach - described in

[RFC2859], the current transmission rate o f the source is estimated. If the current rate

estimate exceeds the target rate, then packets are dropped probabilistically, with drop

probability (rest - rtar)/rest where rest is the estimated rate and rtar is the target rate.

The alternative approach is based on token buckets [RFC2698]. These buckets obtain

tokens at the target rate. If a packet arrives and all the tokens have been exhausted, then
158

the packet is non-conformant, otherwise the packet is conformant, and tokens

corresponding to the packet size are removed from the bucket.

The above two mechanisms to determine which packets in a stream are conformant to

some given profile are parameterised by a rate and another parameter. In the case of the

time sliding window approach, the parameter is the size o f the sliding window and in

the case o f the token bucket approach, the second parameter is the bucket size. These

two parameters perform similar functions, i.e., they specify over what interval the rate is

measured.

The above two mechanisms can be used to determine whether or not packets conform to

a particular profile: what happens if they don’t conform is a separate issue that is closely

coupled to the service definition. Conformant packets typically enter the network

unchanged. Non-conformant packets, on the other hand, can be treated in three separate

ways - dropping, shaping or remarking. The first option would be used in a service in

which it is critical to limit the amount o f traffic entering the network. The second option

would be used in a case in which it was critical to limit the amount o f traffic entering

the network, but the particular user o f the service was willing to put up with some

delays rather than incur extra retransmission. The final case is applicable in a situation

in which it is not so critical to limit the amount o f traffic entering the network and

utilisation o f the resources allocated to the service is as important as assuring QoS

targets are met.

In some cases, the traffic arriving at the conditioner is not marked at the source. In this

case, the conditioner must also mark the traffic. This is done in accordance with the

agreed SLA. Marking at the source is more desirable since the source can identify high

and low priority traffic more easily. If the traffic arriving at the conditioner is unmarked

and the conditioner is marking it, it may assume that all traffic is equal and mark

accordingly. This can cause some applications to receive poorer QoS than they would if

source marking was performed.

S e r v i c e E x a m p l e s

Here, some services that can be implemented using diffserv are described. First, the so-

called Virtual Wire service is described. Then the so-called Olympic service model is

described. How the Olympic service model can be used to implement concrete services

is also discussed.

159

Virtual Wire Service

The Virtual W ire12 service was designed to enable dedicated or leased line circuits to be

replaced with diffserv-based IP transport. The service is implemented using a suitably

configured EF PHB and a suitable choice o f traffic conditioner.

The customer sees this service as a direct replacement for services based on TDM-

switched dedicated lines. As such, the service is parameterised by a single rate. In

principle, implementing the service over a diffserv core network permits dedicated line

services with almost arbitrary capacity to be emulated. This service would typically be a

costly service that would be used to carry traffic that is very sensitive to loss and delays.

Typical applications would include interactive voice or video applications, time-critical

transactions, stock prices, etc.

In order to implement the service, it is necessary to specify how the service should be

implemented in the operator’s core network such that the user does not perceive any

difference between the service implemented using diffserv and a dedicated circuit. The

following issues arise when considering this problem:

• Configuration of edge conditioners;

• Ensuring timely delivery of packets;

• Resource reservation in the network;

• Routing o f flows in the core network.

Each o f these is discussed separately.

To offer this service, in which there are strict bounds on the QoS, network resources

must be strongly protected. If there are fluctuations in the traffic, then the network will

not be able to offer the required QoS. Hence, no fluctuations in the traffic are permitted.

Only traffic conforming to the negotiated rate is permitted into the network - any traffic

exceeding this rate is dropped at the network ingress.

Ensuring timely delivery o f packets is not trivial. The diffserv core network is assumed

to contain links o f much higher capacity than that required by the customer: diffserv

12 The Virtual Wire terminology was first introduced in an IETF contribution. There were problems with

this document and at the time o f writing no definitive version of this document existed. The essence of the

service is described here.

160

was designed for large traffic aggregates after all. This, coupled with the fact that the

core network will be switching other traffic means that the inter-packet spacing for

packets arriving at the egress router will differ from the inter-packet spacing generated

at the source as illustrated in Figure 5-5.

i— n— i

C u sto m I s e s I M B EtpesG Hauler C it tn c r

Figure 5-5: Inter-packet spacing is changed in a diffserv domain. The higher

transmission rates in the core network result in smaller packet transmission times

- hence the packets appear to be compressed in the core network.

To ensure that the service delivered to the customer is equivalent to a service based on

dedicated connections, the packets must arrive at the egress router in time. If they arrive

too late, then there will be an observable difference between the delivered service and

the service that would have been obtained had a dedicated circuit been used. In order to

assure this, some bounds are imposed on the jitter - the variation in the delay

experienced by each packet as it traverses the network. A so-called jitter window is

defined: this defines the time interval in which the packet must arrive at the egress

router. If the packet arrives at the egress router outside this jitter window, then the

service delivered to the customer is not equivalent to a dedicated circuit based service.

There are problems associated with delivery o f this service. These problems are, in part,

related to problems with the definition of the EF PHB [RFC2598] and are discussed in

detail in [BBC01]. The problems arise when trying to assure end-to-end delay and jitter

for EF traffic. The authors highlight extreme cases in which the flows are synchronised

and large delays can be incurred for some flows at many nodes. This results in a large

end-to-end delay.

It is worth noting here that these problems arise only when there is sychronisation

between sources, and even then it is rare that such a situation would arise. However, if

the objective is to make strong assurances to customers then these extreme case must be

considered. One approach to avoiding this situation is to ensure that there is some

1 6 1

random component to the source traffic. Indeed, it is likely that there would naturally be

such a random element to the traffic, since the traffic would likely come from different

applications and consist of different size packets. In this case, the extreme problems

highlighted in [BBC01] would not arise.

Olympic Service Model

In the Olympic service model, there exist three distinct classes o f service - Gold, Silver

and Bronze. Gold service naturally offers the highest quality o f service, followed by

silver and then bronze. These services are not intended for applications that are very

intolerant of loss and delay. Rather, they are intended for services that can suffer some

loss and delay without making the application unusable.

The Olympic service model is used to illustrate how the AF PHB group can be used.

The Gold service can be implemented using one AF class, the silver using another and

the bronze service using yet another AF class. The network can be designed and

managed such that different AF classes have different operating characteristics. For

example, the AF class used to implement the gold service can be configured such that

the mean nodal packet delay is, say, 5ms, and loss ratio o f say 0.5%, or that the ratio of

load to available resources is fixed at some parameter.

Particular services can be implemented by adding traffic conditioners to the scenario.

With the AF service classes, there is some flexibility when choosing the traffic

conditioners. The traffic conditioners may drop, shape or remark packets. In the case of

services implemented using an AF class, it is most likely that the conditioners at the

edge o f the network will remark traffic exceeding the pre-negotiated profile. So, for

example, i f a customer attempts to load the network with more traffic than is agreed in

the SLA, then the excess traffic can be marked down to a lower priority.

To implement a service, it is necessary to define how the customer traffic entering the

network is measured and what actions are taken if the customer exceeds the agreed

traffic. One way that this could be done could be to set a limit on the amount o f traffic

of each priority that enters the network. If the traffic o f any of these priorities exceeds

the agreed limit, then the packets are marked down to a lower priority. It may also be

necessary to impose a limit on the amount of lowest priority traffic entering the

network. If this is exceeded, then the traffic could be dropped. It may also be necessary

to impose a limit on the overall traffic using a particular service.

162

MPLS [RFC3031,Arm00] is a technology that was developed within the IETF to

facilitate more control over routing in networks. It allows paths to be configured

arbitrarily in the network and arbitrary traffic to be carried on each path. Once a packet

enters one o f these paths, it will then follow that path through the MPLS domain and

reach the other end of the path (assuming it doesn’t get dropped somewhere on the

path).

This is in contrast to more traditional forms of routing in data networks in which each

router typically made an isolated routing decision for each packet: each router

determined how to forward each packet more or less independently of the other routers

in the network - arbitrary paths are not possible. RIP [RFC2453], OSPF [RFC2328] and

ISIS [RFC1142] all operate by distributing network information amongst the nodes such

that each node can make intelligent routing decisions. This has worked very well

throughout the network, but lacks the flexibility afforded by MPLS.

This flexibility can be used manage the load on the network in a more controlled

fashion, to perform traffic engineering functions and also to isolate different customer

traffics o f different priorities and to treat them differently.

The basic mechanism used by MPLS to construct routes is label swapping. Each packet

on an MPLS path has a label associated with it. This label can (and probably will)

change as the packet traverses the network. At each node, the label o f each incoming

packet is identified. A table look-up is then performed to find the outgoing label and

interface for the given incoming label and interface. Then the packet is switched to the

appropriate outgoing interface and assigned the appropriate output label. Label

swapping is not such a new idea: it is also used in ATM. The ATM Virtual Channel

Identifier/Virtual Path Identifier (VCI/VPI) can be considered to be equivalent to labels.

Moreover, MPLS can be implemented over ATM such that the labels are exactly the

VPI/VCI headers.

The label information is distributed through the network using a label distribution

protocol which was specifically developed for MPLS [RFC3036].

The LSPs can be set up using information in the routing tables or directly from the

management system. If the layer 3 routing tables form the basis of the LSP network,

then packets would follow the same routes if the MPLS functionality was not used.

5.2.2 MPLS

163

Alternatively, other means - signalling or management actions - can be used to

construct arbitrary paths through the network.

MPLS does not have any inherent support for QoS. It was designed to facilitate flexible

routing; QoS concerns were not initially taken into account when designing MPLS.

However, it has since been recognised that MPLS, in conjunction with a signalling

protocol - be it constraint routed LDP [JamOl] or RSVP with Traffic Engineering

extensions (RSVP-TE) [ABG01] - can be used to support QoS in some way. Both

CRLDP and RSVP-TE provide a means to configure paths in the network that have

some QoS parameters associated with them. Examples of such parameters could include

a peak and a committed transmission rate.

MPLS is quite a complex technology and much more could be written about it here. In

particular, the MPLS LDP could be described at length. However, the emphasis here is

on illustrating how the generic network design approach can be employed in some

specific problem. For the problem of interest here, a comprehensive description of

MPLS is not necessary. Rather, it suffices to note that MPLS can be used to implement

arbitrary routing in a network, which is most suited to the generic problem solver.

5.2.3 Diffserv over MPLS

Using both diffserv and MPLS in a network enables an operator to implement a network

in which QoS can be offered with some level o f assurance. Both diffserv and MPLS can

offer some level o f QoS to customers without requiring the other. However, diffserv

does not have any routing support; hence, it is difficult to control exactly how traffic is

routed in the network and hence make any quantitative guarantees to the customers.

Current MPLS implementations do offer some QoS support - they enable paths with an

associated bitrate to be configured in the network. This approach can suffer from the

scalability problem of the Intserv/RSVP solution. Consequently, a more scalable

approach which combines the benefits o f MPLS and diffserv is desirable. Combining

diffserv and MPLS enables the operator to have sufficient control over the network to

offer diffserv-based services to customers with some level of QoS assurances.

Diffserv and MPLS operate at different layers in the protocol stack. Some effort is

therefore required to make these two technologies work together. Diffserv operates at

the network layer - the IP header contains the DSCP. MPLS is said to operate between

the link layer and the network layer. MPLS packets are therefore switched without

164

looking at the IP header, and the DSCP cannot be used to identify the QoS required by

the packet. The problem then is how to determine what PHB should be used to treat

each MPLS packet as it is switched through the node.

This problem has been identified within the IETF and two approaches have been

proposed to solve the problem [LWD01]. The first approach uses the MPLS label to

determine how the packet should be treated at the node; the second approach uses a

field in the MPLS header coupled with the label to determine the priority of the MPLS

packet.

In the first approach, the traffic on each LSP is mostly homogeneous, i.e. all the traffic

is o f the same diffserv class. The problem is then to determine how the traffic on the

LSP obtains the correct treatment at each node in the network. The solution proposed in

this approach is to infer the required treatment from the MPLS label: the node will

contain a table containing the set o f LSPs and their associated treatments. This is the so-

called L-LSP solution.

In this solution, not all L-LSPs contain exactly homogeneous traffic in the sense that

some L-LSPs may, o f necessity, carry multiple DSCPs. This is the case for AF traffic.

The AF class imposes a reordering constraint: packets within the same AF class on a

particular flow must not be reordered at a node. If packets from the same connection but

with different drop precedences used different LSPs, then such a reordering of packets

could occur. Consequently, all the AF packets associated with a single connection must

use the same LSP. Hence, multiple codepoints are carried in a single LSP. In this case,

it must be possible to differentiate between packets o f different drop precedences within

an LSP. This is done using two o f the three bits in the experimental EXP field in the

MPLS header. Some values have been standardised for these bits.

In the second approach, both the MPLS label and the EXP field are used to infer the

priority o f a packet. Traffic consisting o f multiple codepoints are typically carried on a

single LSP. This is the so-called E-LSP solution. The EXP field is 3 bits long, so up to 8

different codepoints can be carried on a single LSP.

While the L-LSP solution does use the EXP field in the MPLS header, it is much less

flexible than the E-LSP solution. In the L-LSP solution, specific fixed values of the

EXP field are used to indicate the drop precedence of an AF packet. In other cases, the

L-LSP carries purely homogeneous traffic and the EXP field is unused. For example, if

the LSP carried EF traffic, or one o f the CS codepoints, this would be the case. In the fi­

le s

LSP solution, much more arbitrary mappings from the label and the EXP field to the

DSCP can be used. Consequently, the traffic in an E-LSP can be much more

heterogeneous. These mappings can be chosen by the network operator.

5.3 Problem Description

Here the specific problem that will be used to illustrate the use o f the generic network

design approach is described. In this problem, the technologies described above are used

to implement a core network that can offer diffserv-based D-VPN13 services to

customers. First, the customer service offerings are described. Next, a specific way of

implementing the network to enable the services to be implemented is discussed. Then

the problem o f configuring the network to effect load balancing is discussed. A similar

description of the problem studied here was discussed in [MBCOO].

5.3.1 Diffserv Service Offerings

The network operator offers D-VPN services to the customers. The D-VPN service

offered consists of a set of different interconnects with QoS support between customer

locations. The customer may have any number of interconnects between its premises.

Here, it is assumed that the customer desires a fully connected network. It is assumed

that these interconnects are static: their characteristics do not change with time,

although some real service offerings may permit interconnects with some dynamic

characteristics.

The customer D-VPNs can, in general, carry quite different types o f traffic - traffic with

different characteristics and different QoS requirements. For example, the D-VPN could

carry delay sensitive interactive voice and video traffic as well as, say, delay-insensitive

mail traffic; WWW traffic may also be carried with some delay or throughput

requirements: the network may need to support some delay sensitive secure transaction

processing. Many more examples of different traffic types with different requirements

could be considered.

From the customer perspective, the network is implemented with diffserv. The customer

sees only a diffserv interface into the network. It is not apparent to the customer that the

13 VPN is used here in the context o f data networking. A different notion o f a VPN exists in conventional

telephony: there, a VPN is a way o f using the resources o f the PSTN to implement something that looks

like a private network. The VPN can be used to implement a private numbering plan, for example.

166

network is implemented using MPLS. Indeed, the customer probably does not care very

much how the core network is implemented as long as it is reliable and can offer the

required QoS.

The diffserv standards stipulate that an operator can offer diffserv-based services with

either quantitative or qualitative assurances. Services with quantitative assurances are

ones in which the operator makes some measurable assurances to the customer;

qualitative assurances are ones in which the operator makes some more vague

assurances to the customer. Qualitative assurances are not strictly measurable.

Quantitative assurances are more difficult to deliver.

For the purposes of this problem it is assumed that the customers desire quantitative

assurances. Such assurances are desirable for the customer, so the customer can predict

whether the service is suitable for the customer applications. Also, services with

quantitative assurances are more difficult to deliver, which makes the research problem

more interesting.

In reality, it is likely that customers will be able to obtain services with either qualitative

quantitative assurances. The latter will be more expensive, but may be most suitable for

some customers, while other customers who may not require such strict assurances will

be able to opt for the lower cost services with only qualitative assurances.

In this problem, it is assumed that the operator offers premium services - the

interconnects with associated QoS - based on the EF and AF PHBs and a default BE

service which has no associated QoS. The EF-based services can be used to carry traffic

with stringent delay and loss requirements and the AF-based services can support traffic

with less stringent requirements but requiring service better than BE. Limits are

imposed on the amount o f high-priority traffic the customer can inject into the network

but the customer can generate as much BE traffic as desired.

This is a somewhat realistic scenario, but it does have one important drawback: the

problem does not cater for the Class Selector codepoints. These are required in any

diffserv implementation, but are ignored here, although the problem considered here

could probably be extended to include such traffic if the services using the traffic were

defined. The purpose is to illustrate the use of this approach in a somewhat realistic

problem rather than to obtain concrete solutions to very concrete problems.

The QoS parameters associated with each service are specified in terms o f a delay and a

loss. In the case o f the EF-based services the QoS parameters associated with the
167

service are the peak end-to-end delay and the peak loss ratio. In the case of the AF-

based services, delay and loss parameters are specified for the situation in which the

customer generates traffic conformant to the agreed profile. The customer can exceed

this and the network will still attempt to deliver the excess, but it may be subjected to

high loss and will also incur extra delays on both high and low priority traffic in buffers.

The different services operate in a slightly different manner. Specifically, they treat

traffic in excess of the agreed rate in different ways. For the EF traffic, a limit is

imposed on the peak traffic that a customer may inject into the network. If the customer

exceeds this limit, then traffic is dropped at the ingress to the network. All of the EF

traffic that enters the core network will have delay and loss assurances.

The EF-based service offerings described here are Virtual Wire service offerings as

described above. As mentioned above, such services can suffer extreme synchronised

behaviour which makes it difficult to offer any reasonable delay assurances. Here, it is

assumed that some randomisation is either present or is introduced into the EF traffic to

ensure that such synchronisation is very unlikely.

The AF traffic is a little more complex. AF supports the notion o f multiple drop

precedences. A source can generate traffic and if it generates traffic in excess of its

agreed profile the traffic can be reduced in priority by giving it a lower drop precedence.

Then, if there are sufficient resources available in the network, the network will deliver

the lower priority traffic. If there are insufficient resources, the lower priority traffic will

be dropped first.

Each AF class supports up to three drop precedences. However, AF-based services can

be implemented using just two service classes. This operation is assumed here. Packets

marked with AFxl are high priority AF packets, while packets marked with AFx2 and

AFx3 are low priority packets.

The AF traffic is also permitted to be more variable than the EF traffic. Since the

assurances required by the AF traffic do not need to be as stringent as those required by

the EF traffic, it is not necessary to control the traffic entering the network in such a

conservative fashion. The traffic conditioner for the AF traffic conditions traffic on both

a mean and a peak rate: if the peak rate is exceeded, traffic is marked down to a lower

precedence and if the mean rate is exceeded over some time period, traffic is also

marked down. This variability is desirable in AF-based service offerings, since

customers will be able to negotiate SLAs that match their variable requirements better.

1 6 8

The conditioners can either be window based or bucket based as in [RFC2859] and

[RFC2698] respectively. These are discussed above. In this work, the conditioners were

assumed to be bucket based, since it is easier to offer assurances in a system in which

the conditioners are bucket based.

The customer has some set o f applications with some associated QoS requirements.

Since the operator defines the level o f QoS for each of the service offerings, the

customer can determine which service offerings are most suited to which applications.

The customer may decide to choose a number o f different service offerings for the

different applications, or, alternatively, the customer may choose to use a single service

for all the traffic to minimise management overheads. The latter option would be

effectively a trade-off o f service costs against management costs: the customer chooses

to pay more to have a single service which is easier to manage rather than to pay less to

the operator and have higher administration costs.

Here, the demands are assumed to be point-to-point demands. Diffserv permits services

of broader scope. Indeed, as mentioned above, these are more attractive to customers,

and they can result in efficiency gains for operators if managed properly (see [DGG99]

for a more detailed discussion o f this). Such traffic can be decomposed into sets of 1:1

demands as part o f the mapping function if some knowledge of the demands is assumed,

as described above. This is a non-trivial problem and is certainly an interesting area for

further research, but it is not considered here.

5.3.2 Network Implementation

In the core network implementation considered here, it is assumed that the SLAs are

carried over MPLS LSPs, thus permitting flexible routing. In this problem L-LSPs are

used because they are the simplest to use and manage. Extending the problem to the use

o f E-LSPs is not principally more difficult. However, it does require that some demands

o f be routed together, which imposes an extra constraint on the problem. This extra

complication is not considered here.

Here, it is assumed that a core network already exists. This core network consists of a

set o f nodes interconnected by a set o f links. In general, the network can consist of both

core nodes and boundary nodes: the boundary nodes have slightly different

functionality. Such an architecture is discussed in [XN99]. Note that in many cases,

boundary nodes can be co-located with core nodes, providing both high capacity core

169

network switching and access to/from customers. This work can be applied to the

general case, but in all o f the examples below it is assumed that every core router is co­

located with a boundary router. As such, every core router has access to/from

customers.

The output interface to each node has a queue/scheduler system that controls access to

the link. This is assumed to be the same as that described in section 5.2.1 above. This is

one possible implementation, which is not necessarily the best, but serves to illustrate

the use o f the design approach in this context.

The interconnects between the nodes are bidirectional links with some associated

capacity. These may not necessarily be physical links - for example, they may be SDH

containers or ATM Virtual Pipes - but this is not important. Thus, the network is

implemented in order to offer the services described above.

5.3.3 Optimisation Problem

The problem then is to determine how to configure the network efficiently to

accommodate the demands - the set o f SLAs - while ensuring that the required level of

service is delivered. The objective is to ensure that the QoS targets for each service are

attained while balancing the load on the network. Load-balancing in this manner is

desirable, since it makes the network more robust in the face o f unexpected

congestion/traffic patterns.

Here, only those demands that have some associated QoS are parameterised and

explicitly routed in this problem: the BE demands are not routed explicitly through the

network. The capacity remaining after routing the demands with QoS can be used by the

BE traffic.

This approach can cause all o f the link capacity to be consumed by the priority demands

leaving no resources available to the BE traffic. Clearly, this is highly undesirable. This

can be avoided by the reserving capacity for the BE traffic in advance - this capacity

will not be available to the high-priority traffic in the optimisation problem. This

reserved capacity can be removed before the optimisation problem is solved and

replaced when the routing for the high-priority demands is determined.

Load balancing is a desirable objective since this ensures that the network is somewhat

resilient to spikes in load or changes in traffic demands. Also, if the demands are

170

forecast demands and the network designer is determining how to plan the network, a

solution with a balanced load will be more resilient to errors in the forecast demand.

Here, there are two key components to configuring the network: the routes have to be

determined and the node configuration parameters must be chosen. Specifically, the

parameters associated with the queue/scheduler system as described above need to be

determined.

It is possible to devise a problem formulation that includes both the route configuration

element and the node configuration element. If this was solved without decoupling the

route configuration and node configuration element, then the load balancing would have

to be implemented using some packet level measures - queue delays, for example. This,

in turn, would require that the traffic be defined using detailed packet level models. This

formulation would result in very complex problem.

The packet-based formulation also suffers from another problem: great sensitivity to the

traffic model used. This makes the design procedure sensitive to the traffic modelling

assumptions. O f course, if the traffic models are accurate, then the optimal solution may

result in a much more efficient network configuration. However, if the traffic models

are inaccurate (as internet traffic models usually are - see [PF97] for more discussion on

this), then the network performance may be worse than predicted.

Here, no assumptions are made on the nature of the source traffic, although the traffic is

conditioned at the ingress to the network, so the characteristics of traffic entering the

network are known. Using this approach, the network, if configured appropriately, can

deliver the required QoS with a high probability. This approach does have the

disadvantage that it may result in inefficient use o f network resources, but the emphasis

here is on QoS delivery rather than operational efficiency. This approach can result in

inefficiency due to over-conservative resource allocation to ensure QoS delivery.

However, the schedulers should offer sufficient flexibility to enable underutilised

reserved premium resources to be used by lower priority traffic.

5.3.4 Application of the Design Problem

As can be seen from the results presented in the previous chapter, it can take a

considerable amount o f time to obtain a solution to the generic problem using the

problem solvers developed throughout the course o f this work. Moreover, as is

mentioned above, the generality o f the generic problem makes it difficult to find an

171

algorithm which can solve the problem quickly for all but the very smallest problems.

Consequently, the approach used to solve this specific problem is not applicable for

making real-time decisions.

The work described here could be usefully employed to solve the optimisation problem

in the context o f a tool which works offline to ensure that the load on the network

remains balanced. This could operate in a network in which new demands are routed

using some routing protocol such as, say, OSPF. This can result in a network in which

the load is not balanced. The tool could determine a routing for the demands and

compare it to the existing route configuration. If the new route configuration is

substantially better than that which is configured on the network, then the network

could be reconfigured according to the new route configuration. The problem of

determining the optimal approach to reconfiguring the network is not considered here.

One possible problem with this approach is that the number o f demands could

conceivably be very large. The time required to obtain a solution to the problem

increases with the amount o f demands. Consequently, the time taken to obtain a solution

could be large. The problem can be solved by aggregating the demands.

I f the demands are aggregated, then the number o f demands to be routed can remain

constant or almost constant. The solution time should then be quite constant. The

disadvantage o f aggregating the demands in this manner is that the load may not be

balanced as well as it could be: if the demands are not considered in an aggregate

fashion, the load balancing can be performed with finer granularity. There are issues

with this: the approach used to aggregate demands in particular, but these are not

considered here. For the purposes o f this discussion, it is sufficient to note that the size

o f the problem can be limited by aggregation and that the network optimisation

framework can then be used in an offline tool which ensures that the load remains

balanced on the network.

5.4 Specific Problem Inputs and Outputs

Here, the specific problem is defined. The specific problem defined here is not defined

in sufficient detail to be formalised and solved. Rather the specific problem is defined in

terms o f the input parameters and the required output parameters. The problem cannot

be formalised because the objectives are not stated in sufficient detail.

172

• N : the set o f nodes in the network;

• L : the set o f candidate bidirectional links in the network;

• G(N, L): an undirected graph that defines how the nodes and links are connected;

• c, : the capacity o f link / e l ;

• Z : the set of customers;

• E z : the set o f directed EF SLA demands15 for customer z e Z ;

• E = [J E z : the set o f directed EF SLA demands;
zeZ

• (°e’Pe’rr 3k) : the characteristics o f EF customer SLA demand e e E - oe is the

source node, p e is the destination node and rtpeak is the peak rate o f the demand;

• Az: the set o f directed AF customer SLA demands for customer z e Z ;

• A - [J A z : the set o f directed AF SLA demands;
zeZ

• {oa, p a, r r k , r r n , t f , s a): characteristics of the AF SLA demand - oa is the

source node, p a is the destination node, rflpeak is the peak rate, rflmean is the mean

rate, t°n is the mean on time, is the mean off time and sa is the class for

demand a e Ac ;

• (i/EF,/EF): delay and loss bounds for the EF traffic;

• af/’ Iaf/) : delay and loss targets for the AF traffic o f class ie {1,2} - these targets

apply to the AF traffic o f the class with drop precedence A Fil;

• y , : fraction o f the link capacity that can be used by the priority traffic - (l - y ,) is

the fraction o f the link capacity reserved for the BE traffic.

The inputs to the problem are as follows14:

14 A large number o f variables are used to define this problem. Hence some o f the variable names that

were used in the enterprise network design problem are used here in this chapter for a different purpose.

15 The demands in this problem are the SLAs: the term ‘demands’ is used throughout the following to

refer to the set o f SLAs.

173

Most of the inputs require little explanation but a some of the parameters warrant some

comment. The EF traffic is characterised by a peak rate. This could be for leased-line

type applications.

The AF traffic is characterised by more parameters: the peak and mean rates and the

mean on and off time, as well as the service class16. These parameters can be used to

condition traffic at the network ingress. It is assumed here that these descriptors can be

used to characterise the AF/1, where i is the service class o f the traffic. The AF service

class permits more traffic than this to be input to the network: any traffic which is non-

conformant with the above descriptor is given a different drop-precedence, and is more

likely to be dropped in congested conditions.

The delay and loss bounds for the AF traffic then only apply to the AFz'l traffic. The

network can deliver service in which the AF/1 traffic loss and delay are below the loss

bound in all but the most difficult situations. No delay and/or loss assurances are offered

for drop precedences other than AF/1, since it is not known how much of this traffic

will enter the network.

The outputs o f this network configuration problem are

• R : a route configuration - the set o f routes for all of the demands;

• the queue/scheduler configuration parameters comprising of:

O ef , w'"pu , w^?2, Wgg) : the scheduler weights for the scheduler controlling access

to link / e l in the upstream direction;

-> (w'd" , , w'jfëz , Wgd™’) : the scheduler weights for the scheduler controlling

access to link I e L in the downstream direction;

(^Éf»^afi>9af2> ’̂be) : queue lengths for the queues served by the scheduler

controlling access to link / e L in the upstream direction;

,<7 ^7 , q[\y2 ^be™) : queue lengths for the queues served by the scheduler

controlling access to link l e i in the downstream direction;

16 It is assumed here that an on-off model is used to model the demand. This is a worst case model. The

demand will most likely be less bursty than this, but assuming the worst case is necessary to make delay

and loss assurances.

174

-> AQM configuration parameters for the queues served by the scheduler

controlling access to link Z eL in the upstream and downstream direction -

these are listed separately.

A substantial amount o f parameters need to be defined to configure the queue/scheduler

interface at each link: the scheduler weights need to be defined, the queue lengths need

to be defined and the AQM configuration parameters for some o f the queues need to be

defined. The scheduler weights determine what proportion o f the link is allocated to

each queue. The meaning of the queue lengths parameters is quite clear. Here, it is

assumed that they are measured in packets and that there is a standard packet size using

each queue: this can be an average packet size.

The AQM configuration parameters at each interface consist o f three sets of parameters:

configuration parameters for the AF1 queue, configuration parameters for the AF2

queue and configuration parameters for the BE queue. The AF1 queue is assumed to

operate like an RIO queue as described in [CF98]. The BE queue is assumed to operate

as an RED queue as described in [FJ93]. The parameters for configuring the queues are

then

• (th1™n»%thfn"%linterm“u\ t h 1™ni"+“%th™aXi"-% lintermf+out, jp1weieht): the AQM

configuration parameters for the AF1 queue;

• (t h f 1“ , t h f 1“ , lin te rm f, t h f , th™*1— , linterm“ , /?2weight) : the AQM

configuration parameters for the AF2 queue;

• (th'™n, thmax, linterm, p we'6ht) : the AQM configuration parameters for the BE queue.

The AQM parameters require some explanation. The RED parameters used to manage

the BE queue are explained first since these are the simplest and illustrate how AQM

works. The first two parameters are thresholds: the first parameter determines the lower

threshold below which AQM has no effect, and the second parameter specifies the

upper threshold above which all packets are dropped. If the (averaged) queue length

falls between these two thresholds, when a packet arrives, the packet can be dropped

with some probability. This probability is dependent on the queue length: if the queue

length is high, then the drop probability is higher. The linterm defines the rate at which

the drop probability increases with the queue length. Finally, the last parameter, ¿>weight ;

determines the time interval over which the queue length is averaged.

175

The AQM parameters for the AF queues are similar, but a little more complicated. In

this case, there is a different drop probability for packets with different drop

precedences. Since only two drop precedences are assumed in this network, the packets

can be considered to be in-profile and out-of-profile as described in [CF98]. The AF

queues essentially operate two different RED mechanisms; one which drops out packets

and one which drops in packets. The AQM parameters are then analogous to the RED

parameters, except that there are two sets o f them for the AF queue. Note that in the

RIO case, the same queue length measurement is used as the basis for both (separate)

RED mechanisms.

In this problem, the objective is to route the demands on the network such that the load

on the network is balanced. The problem cannot be formulated here in any more

specific terms. The way that load balancing is effected and the cost function that must

be optimised are introduced in the mapping function below.

The above specific formulation is perhaps not the most natural formulation for this

problem, since the objective o f the optimisation is specified in a vague manner. This is

because it is constructed with the generic problem in mind. Hence, the specific problem

models formulated in this framework will have a tendency to be somewhat biased

towards the generic problem model. This is not surprising.

5.5 Mapping to the Generic Problem Model

Here, the problem o f mapping from the specific problem discussed above to the generic

problem described in chapter 3 is discussed. Two aspects o f the mapping function are

discussed here: mapping from the specific problem to the generic problem and mapping

the solution o f the generic problem to a solution to the specific problem.

The specific problem described above is not described in sufficient detail to be

formulated. However, it must be formulated at the generic problem layer. Consequently,

extra information is introduced in the mapping layer that enables the problem to be

properly formulated. This extra information and the assumptions made in the mapping

process are described here.

The mapping layer is a two-way process and the output o f the generic problem must be

used to generate results which are appropriate for the specific layer. The output of the

generic problem is a routing for the demands. This is required in the solution to the

176

specific problem. However, it is not sufficient: the queue/scheduler configuration

parameters must also be obtained to solve the specific problem.

The two elements o f the mapping function are described in more detail in the following

sections.

5.5.1 Mapping from the Specific Problem to the Generic Problem

This component of the mapping function consists o f three important elements:

• Mapping of the demands from the specific problem to the generic problem;

• Generating the cost function;

• Treatment o f the BE traffic in the model;

The problem is solved by decoupling the routing problem from the queue/scheduler

configuration problem. This is done by determining an effective bandwidth for each

demand. The purpose of the effective bandwidth is to attempt to quantify the amount of

resources required by a variable-rate demand on each link. This is particularly

applicable to the AF demands. The effective bandwidth captures the demand

characteristics and its QoS requirements: if each demand is allocated its effective

bandwidth on each link in its path, the demand should obtain the desired QoS. As such,

it enables the packet level issues to be decoupled from resource allocation and routing

issues. Once this effective bandwidth is determined, efforts can be focussed on solving

the routing problem.

The effective bandwidth notion can then be used to balance the load on the network.

Instead o f using some kind o f packet based metric for load balancing, effective

bandwidth based metrics can be used. For example, the objective can be to attempt to

balance the aggregate effective bandwidths on the network. This can be achieved by

choosing an appropriate cost function for the generic problem.

Finally, some preprocessing o f the specific problem may be required to ensure that there

are sufficient resources for the BE traffic in the generic problem. This is discussed

further below.

M a p p i n g t h e D e m a n d s f r o m t h e S p e c i f i c P r o b l e m to t h e G e n e r i c P r o b l e m

In the generic problem, all demands are characterised by a single parameter. In this

specific problem, some o f the demands are characterised by more than one parameter.

177

For these demands, it is necessary to map from the parameter set o f the specific problem

to a single parameter for the generic problem.

There are three different types o f demands in the specific problem: EF demands, AF

demands and BE demands. The EF demands are characterised by a single rate. This rate

is used to characterise the equivalent demand in the generic problem - no

transformation o f this rate is necessary. If this rate is allocated to the demand, the traffic

will obtain the desired QoS. The BE demands are not quantified in this problem; the

customers use the capacity available to BE traffic at will and the operator does not make

any assurances to the customer pertaining to the level of service offered by BE traffic.

The AF demands are a little different from the EF and BE demands and they require

more sophisticated treatment. The AF demands are quantified using a peak rate, a mean

rate, a mean on-time and a mean off-time. The problem of mapping these parameters to

a single parameter, such that the desired QoS is delivered, is considered in detail in

Appendix A, but some comments are given here on the overall approach that is used.

The simplest and most conservative approach to obtain a single parameter for the AF

traffic for the generic problem is to use the peak rate o f the demand. This will ensure

that the users perceive a very high QoS. However, this approach has two serious

drawbacks. Firstly, if this approach is used, there will be little difference between EF

and AF service. Consequently, customers will opt for the (presumably) cheaper AF

service. Secondly, it is grossly inefficient: resource allocation based on such a

conservative approach results in severe resource underutilisation. Hence, a less

conservative approach is desirable.

Another approach, which cannot be used to obtain an effective bandwidth for an

individual SLA, but rather is a means to perform admission control is Measurement

Based Admission Control (MBAC) (see [BJSOO] for a review o f MBAC). This is

mentioned here because it is perceived by many to be a good approach to performing

admission control for AF services. As such, it can be used in situations in which the

effective bandwidth ideas are used and it is useful to identify why such an approach is

not suitable here.

The principle on which MBAC is based is that the resource utilisation is measured and

the measured utilisation is used in conjunction with the declared parameters of the

traffic to make an admission control decision. It is not applicable in this situation for

two reasons: firstly, it can only work in a dynamic situation, since it measures actual

178

traffic usage and secondly it cannot make very good assurances since it cannot predict

future traffic patterns. For these reasons, it is not considered further here.

Here, a parameter based approach is used to determine the effective bandwidth required

for an AF demand, i.e. declared parameters o f the demand are used to calculate the

effective bandwidth. This is more sophisticated than the simplistic peak rate based

approach.

The effective bandwidth notions were developed to solve the admission control problem

for ATM [Hui88], The admission control problem is to determine whether a new

connection can have access to a resource such that the appropriate QoS is delivered to

the new connection without compromising the QoS delivered to the connections already

using the resource. This problem can be solved using effective bandwidths by

associating an effective bandwidth with each connection. The effective bandwidth

reflects how much o f the resource is needed by the source to obtain the required QoS.

The admission control decision is then simple: if the sum of the effective bandwidths -

including that o f the new source - exceeds the capacity of the resource, then the new

source is blocked.

A similar idea can be applied in this diffserv context: the effective bandwidth required

for each SLA can be calculated and can be used to reflect the amount of resources

required for the SLA to ensure that the required QoS is delivered. In this case, it is not

used to perform a dynamic admission control decision; rather it is used to determine

how much capacity on a link is required by the AF traffic to ensure that the loss and

delay targets are met. The effective bandwidth can then be used as the single parameter

which characterises demands in the generic problem.

The specific approach to determining an effective bandwidth that is used here is

described in Appendix A. A brief description of the approach is included here for

completeness.

The approach is based on the work o f Guerin [GAN91]. There, Guerin et al use an

approach consisting o f two components to obtain an effective bandwidth for a flow: the

first approach is based on a buffered model and the second approach is based on a

bufferless model. In both cases, the objective is to determine the effective bandwidth

required to ensure loss is no more than some specified bound. In the first approach, a

variation o f the work o f Anick, Mitra and Sondhi [AMS82] is used to determine the

effective bandwidth. There, it is assumed that a number o f homogeneous on-off sources

179

are input to a buffer. The problem is to determine the required rate at which to serve the

buffer such that the buffer loss is no more than some specified value. The effective

bandwidth of each source is then this aggregate effective bandwidth divided by the

number o f flows. The second approach is based on a bufferless model. The idea here is

to determine the stationary probability that a number o f flows will be in the on state

simultaneously. Thus the aggregate bandwidth generated by the sources can be

determined. The effective bandwidth is chosen by choosing that aggregate bandwidth

for which the probability of exceeding it is less than the loss probability.

Using the above two approaches, then some effective bandwidth for the set o f flows can

be determined. The effective bandwidth that is chosen then, is the minimum of the two

effective bandwidths as calculated above.

The effective bandwidth as determined above can be used to ensure that the loss

experienced at the buffer does not exceed some pre-specified limit. Here, the objective

is also to ensure that there is a bound on the delays experienced at each buffer. This is

achieved by permitting the buffer size to be a parameter. A simple relation relating the

maximum buffer delay, the effective bandwidth and the buffer size is introduced. The

bandwidth and buffer size required to deliver the desired per-queue loss and delay can

be obtained iteratively determining the required bandwidth for a given buffer size.

The Cost Function

In this problem, the objective is to determine a route configuration for the demands that

results in a balanced network load. No objective function was defined for the specific

problem: rather the objective was defined in higher level terms. A concrete cost function

is necessary to solve the generic problem. Consequently, a cost function must be

introduced in the mapping function so that the generic problem can be solved.

Any cost function can be chosen which, when used in the generic problem, results in the

load being balanced on the network. The cost function does not necessarily have to

reflect real costs associated with service delivery in the specific problem. Consequently,

a quite artificial cost function may be chosen.

The generic problem does not permit complete flexibility when choosing a cost

function. In the generic problem, the overall cost is the sum of a set o f link costs and

node costs. The link costs and node costs are dependent on the amount o f demand

carried on the link and the amount o f demand switched through the node, respectively.

180

This obviates a large set o f cost functions, but the set o f cost functions that can be

characterised in this manner is sufficiently broad and flexible to be useful.

In the specific problem, it is not immediately obvious how the load on the network can

be balanced. This is especially true, given that it may be difficult to determine whether

or not the load on the network is balanced without the use of measurement. Hence,

choosing a cost function that balances the load on the network is a little difficult.

The effective bandwidth concept provides a solution to this. The link and node costs can

then be written as functions of the aggregate effective bandwidth carried on the link and

switched through the node respectively.

The load is then balanced on the network if the effective bandwidths on the links are

balanced, i.e. if the difference between the aggregate effective bandwidth o f the traffic

carried on each link is minimised. Using this approach, it is possible to show that the

optimisation can be useful in balancing the load on the network.

In the generic problem, the cost function can have a link and a nodal cost component.

Here, the nodal cost component is not used: the cost function is comprised solely o f link

cost functions. However, the specific problem could easily be extended to include a

term which can be used to balance the load through switches. Having said this,

balancing the load on the links should balance the load on the nodes to some extent.

The purpose of load balancing is to ensure that some links are not heavily loaded while

others are lightly loaded. The cost function chosen for this problem should have a high

cost associated with high link utilisation. Conversely, if the link is lightly utilised, then

the link cost should be low. Hence, an increasing function is required.

A linear function could be used, but the rate at which it increases is not fast enough as

the link nears full utilisation. For example, if a link is highly utilised, then some of the

traffic should be rerouted on an alternative path. In a system in which the link cost is

linear in demand, rerouting the demand will probably incur a greater cost (according to

a linear cost function), especially if the demand is routed on a longer path.

Consequently, the demand would not be rerouted using such a cost function.

Fortz and Thorup [FTOO] consider quite a similar problem and they use a piecewise

linear approximation to an exponential as their link cost function. This has the effect of

balancing the load in the problems they consider.

181

Here, an exponential link cost function is used. The cost function is a function of the

difference between the amount of capacity carried on the link and the link capacity. This

is necessary to incorporate the capacity o f the link into the expression. Hence, the link

cost function can be written as:

f t 0 ,up, s /down) = e Ks7~c,) + eJ{x̂ - Cl)

where s “° and s /down are the upstream and downstream capacity respectively and j is a

parameter that can be used to control the resulting costs. s,lip and s f0Vin are sums of the

effective bandwidths o f the demands using the link, j must be greater than 0.

This cost function results in a value less than 1 if the used capacity is less than the link

capacity and results in a value of more than 1 if the used capacity exceeds the link

capacity.

If all o f the links in the problem have the same capacity, then the link capacity term can

be removed since it simply acts as constant multiplier over all o f the terms in the cost

function. However, this is not the case if the link capacities differ: the link capacity term

is essential in this case to effect load balancing.

The scaling parameter in the exponential was introduced to ensure that there are not

enormous differences between the orders o f magnitude o f the terms being added to

obtain the overall network cost function. For example, if the capacities are measured in

Mb/s and the link capacity is 155Mb/s and the used capacity is lOOMb/s, without the

scaling parameter, the cost o f this link is e~55 - 1.30 x l(T 24. If then, another link has

only 50Mb/s utilisation, then the resulting link cost is e~m = 2.5 xlO-46. It is difficult to

perform calculations with these two numbers due to their enormous difference. Hence,

scaling can be added to reduce the differences. However, if the scaling parameter

reduces the difference too much, there may be little difference between link cost

functions, even though the difference in spare capacity on the links may be substantial.

Note that this cost function could not have been constructed for the specific problem

since the effective bandwidth concept was not well developed there. Hence, it is

included in the mapping function.

182

It is quite straightforward to cater for BE traffic in this problem. The amount of BE

traffic entering the network is unpredictable. A reasonable approach to cater for the BE

traffic which will ensure some level o f service for the BE traffic is to reserve some of

the resources on each link for it. This can be done on an absolute or relative basis. In the

former case some specified amount o f capacity must be reserved for the BE traffic at

each link, while in the latter, some fraction o f each link is reserved for the BE traffic.

These parameters could vary across the links.

In either case, the capacity made available to the BE traffic is removed from each link at

this stage, the problem solved as before and the BE traffic is reincorporated when

mapping from the generic problem back to the specific problem. At this stage the core

link capacities are reduced by the amount o f capacity to be reserved for the BE traffic

on each link. In mapping from the generic problem to the specific problem, this capacity

is again introduced through appropriate choice o f the scheduler weights.

The core link capacities that can be used in the generic problem are then y ,c ,.

F o r m a l M a p p i n g f r o m t h e S p e c i f i c P r o b l e m t o t h e G e n e r i c P r o b l e m

The content o f the three sections above can now be combined to perform the mapping

from the specific problem to the generic problem. Here, this mapping is formalised.

The set o f generic demands are constructed using the EF and AF demands in the

specific problem. The generic demands are characterised by a source node, destination

node and a single parameter characterising the demand. The EF demands in the specific

problem are characterised in a similar manner. Consequently, the EF demands can be

mapped directly to a set o f parameters that are can be used in the generic problem. The

AF demands are characterised by a source node, destination node and a more complex

set o f parameters to describe the traffic. These are mapped to the generic demands using

the effective bandwidth approach described above.

Thus, the generic demands can be generated as follows.

First, the set o f demands in the generic problem that correspond to the EF demands in

the specific problem can be written as:

Catering for BE Traffic

183

AF demand a in the specific problem can be characterised using the parameters
{o„, p a, ri;pcak, r('ncatl, f i ”ff, sa}. Then the equivalent demand for the generic problem
can be written as

a = { o a, p a,ha}

where ha - EB(rnpeak, rflmean, t°n, t °s , s a) is the effective bandwidth of the AF demand.
These demands can then be used in the generic problem. For convenience, the following
sets are defined:

^AFl =

A\F2 =
a\s„=2

These are the two sets of demands in the generic problem that correspond to the AF1
and AF2 demands in the specific problem, respectively. The set of demands then used
as input to the generic problem is

D — M,fII ̂ A[lÛ AF2 •

The link cost function can be written as

f t (s;up, s/down) = e J^ 'P~y'c‘ ̂ ^

The specific problem can then be mapped to the generic problem as follows:

• N - ^ N ;

• L —> A ;

• G (tf,£)-» r(N ,A);

• A;

• f ,{ s ,t) -> (l)x {s ,t) and

• 7v(-)=0 for all v e N

5.5.2 Mapping from Generic Problem Solution to the Specific Problem Solution

The solution to the generic problem consists of a route configuration. The solution to
the specific problem consists of a route configuration as well as configuration
parameters for the queue/scheduler systems controlling access to the links. The solution

184

to the generic network design problem - the route configuration - is part of the solution
to the specific problem. The queue/scheduler configuration parameters must also be
chosen to obtain a full solution to the specific problem. Here, the choice of these
parameters is discussed.

C h o o s i n g t h e S c h e d u l e r C o n f i g u r a t i o n P a r a m e t e r s

As noted above, the schedulers in this problem are WRR schedulers. The specific
implementation of the schedulers requires a number of parameters to be specified. Not
all of these parameters are discussed here: only the scheduler weights are considered.
These determine how much of the capacity of the resource - the link - is allocated to
each queue.

The amount of resources required on each link for each traffic class can be determined
by adding the effective bandwidths of the demands of each traffic class which are
carried on the link. For each link, then the amount of resources required for the EF
traffic on the link can be calculated as

e\l'e{fi)=\

where l [{ R) is an indicator function, which returns a value of 1 if demand e e E is
routed on link I in the upstream direction under route configuration R ; it returns a
value of-1 if the demand is routed on link I in the downstream direction and a value of
0 if the demand is not routed on link /. Similarly, for the downstream traffic,

T i e d o w n — \ 1 ^ . P e a ^

E F ~ 2 j r e
e | / ' (*) = - l

The resources required for the different AF traffic classes can be determined in a similar
manner, except that effective bandwidths should be used, rather than the peak
bandwidth as is used in the EF case:

w af< = I X

The capacity assigned to the BE traffic is the traffic remaining after the resources have
been allocated to the higher priority traffic classes. The scheduler weights can then be
written as : w^, : w'“l2 :c, - (w ^ +w^, + w''fY1); the weights are determined here
for the traffic in the upstream direction.

185

Note that the resources reserved for the BE traffic do not explicitly appear here. These
resources impose a limit on the sum of the resources available to the higher priority
classes and thus ensure that c, - (ŵ . + + w^pF2) is large enough.

C h o o s i n g t h e Q u e u e C o n f i g u r a t i o n P a r a m e t e r s

Some of the queue configuration parameters are a little more complex to obtain.
Guidelines suggested in previous research work are used to choose these parameters,
rather than rigorous modelling and analysis. The queue parameters that need to be
determined are the queue lengths and the AQM configuration parameters. Each of these
is discussed separately.

For the AF traffic, the queue length parameters are partially calculated when choosing
the effective bandwidths: a component of the effective bandwidth calculation described
above is the calculation of a queue size. This is the amount of queue capacity required
per demand. The queue sizes can be determined by adding these individual queue
contributions. These are added in the same way as the effective bandwidth parameters
are added to obtain the required queue length at each interface, i.e.

4af, =

Another approach is required to determine an appropriate queue length for the BE and
EF traffic. Since delays are critical for EF traffic, the queue lengths for the EF traffic are
bounded by delay concerns. Hence, the queue lengths should be calculated based on the
maximum delay that can possibly accumulate in a particular buffer. The relation

The weights can be normalised so that they add to 1, although this is not so important.

can be used to determine the queue length in bits. This can then be converted to bytes or
packets if some mean packet size is assumed. Since nothing is known about the BE
traffic, no knowledge can be assumed when calculating the queue length for the traffic.
Here, the same method as that used for the EF traffic is used - a maximum delay
parameter for the BE traffic is determined and the queue size can be calculated by
multiplying the delay by the bitrate for the BE traffic. Since delays are not a big issue
for BE traffic, the delays experienced by the BE traffic at queues can be made large and

186

the resulting queue sizes can also be large. Alternatively, all of the buffer space not
allocated to the higher priority traffic at an interface can be allocated to the BE traffic.

The A QM parameters are also chosen using some guidelines. AQM parameters must be
chosen for the AF and BE queues; A QM parameters do not need to be chosen for the EF
queue. The A QM parameters for the BE traffic are discussed first. For RED, four
parameters must be specified:

1. The minimum threshold: if the average queue length is below this, no random
dropping will occur;

2. The maximum threshold: if the average queue length exceeds this, then all packets
will be dropped until the queue length drops below this threshold;

3. The queue weight parameter: a parameter that determines how the average queue
length is measured;

4. A linear term used to control the fraction of packets dropped when the average
queue occupancy is between the minimum and maximum thresholds.

In [FJ93], Floyd and Jacobson suggest that the upper threshold should be at least twice
the lower threshold. The maximum threshold is assumed to be exactly double the
minimum threshold here. To ensure the utilisation of the BE traffic resources remains
high, the maximum threshold should be high. Here, the maximum threshold chosen is
90% of the queue length. A queue weight parameter of 0.002 is considered reasonable
by Floyd and Jacobson: this can be used here. This choice of parameter results in an
average queue length measure which reacts sufficiently fast to offset congestion, but
still filters out very transient effects. Floyd and Jacobson also propose a small packet
drop probability, claiming that a large packet drop probability will cause oscillatory
effects. The linear drop probability term is 1/50, which results in a maximum drop
probability of 4%.

The A QM parameters for the AF traffic can be chosen using similar guidelines. The
work of Kim et al [KLT98], which is influenced by the earlier work of Floyd and
Jacobson discusses how parameters for the RIO AQM scheme can be chosen. There,
they suggest that the maximum threshold is double the minimum threshold for the out
traffic; they also suggest that the maximum threshold for the in traffic is equal to the
minimum threshold for the out traffic. The minimum threshold for the in traffic is half
of the maximum threshold for the in traffic. By choosing the maximum threshold for the

187

out traffic as 90% of the queue length and using the relations above, all the threshold
values are determined. The queue weight parameter is again set to 0.002 and the linear
drop probability terms are set to 1/50.

5.6 Example Problems

Some example problems will illustrate the use of this approach to determine a good
network configuration. The purpose of these examples is to highlight two specific
points: firstly, the method is validated using some small problems and secondly, the
utility of performing the optimisation is discussed, particularly for larger problems.

The method is validated by generating some small problems, solving the problems and
simulating the solution obtained. The output of the simulator can be used to determine
whether the solution delivers the appropriate QoS; if not, then the solution is not valid.
It is necessary to use small problems to validate the approach since larger problems take
very long times to simulate. The disadvantage of using small problems is that the
benefits of optimising the network configuration are not so great: these benefits become
more apparent when the problem is larger. Consequently, some examples of the use of
the optimisation in the context of larger problems are given.

5.6.1 Problem Generation

A common problem generator was used to generate the smaller problems to be used for
validation and the larger problems that illustrate the benefits of this approach.

Each problem consists of a set of nodes, links, demands and desired network operating
conditions. The nodes are identified by a node name: they have no interesting
properties. Choosing the characteristics of the remaining elements of the problem was a
little more difficult and the method used to choose these is discussed in the following
paragraphs.

The core network links are chosen at random subject to connectivity and node degree
constraints. The connectivity constraint stipulates that the core network be connected
and the node degree constraint stipulates that each node has, on average, a number of
connections to the other nodes in the network. The node degree constraint is easiest to
accommodate. Since the average node degree is defined as

2| L
deêavg =

188

where \L\ is the number of links in the network and Iat| is the number of nodes, the

constraint can be met by choosing |l,| > deĝ |iV|/2 .

The connectivity constraint is slightly more difficult to satisfy. To ensure that this is
satisfied, connectivity tests must be performed. Such tests determine whether all nodes
are connected, i.e. whether it is possible to move from any node to any other node by
traversing the links. A depth first search algorithm which is attributed to Tremaux is
described in [GM84]; it can be used to determine whether a graph is connected.

This test can be used in an iterative procedure to ensure that the resulting network is
fully connected. The approach is straightforward: if the network is not fully connected,
then a link is added between two unconnected parts of the network. A link is removed at
random. This procedure results in a connected network after a number of iterations.

The links are assumed to be bidirectional links and some capacity is assigned to the
links when the problem is being generated. Each link also has an associated propagation
delay which is specified by the user of the problem generation tool.

The demands are considered next. The demands are generated by a number of
customers. It is assumed that each customer has a premises homed on one of the core
network nodes. Each customer premises has communications requirements with the
other premises which are part of that customer’s internal network; each customer wants
to implement a fully connected network between its premises. Furthermore, each
customer has demands between the nodes which require the use of different service
classes.

In the problem considered here, four traffic types are permitted into the network: EF,
AFlx, AF2x and BE. The EF traffic is very high priority traffic that has strict delay and
loss requirements of the network. The AF traffic also has delay and loss requirements,
although they are not as strict as those required for the EF traffic. The BE uses the
resources remaining after the higher priority traffic has been catered for.

Each customer has a requirement for EF, AF1, AF2 and BE service between all of the
premises. This is probably not a very likely scenario, but serves to illustrate that the
approach works. However, this scenario may model a different and more realistic
scenario reasonably well. In this second scenario, there are a larger number of
customers, each of which only use a single service class for their intemodal demands.
The scenario described here could model this more realistic situation.

189

Only the priority demands are quantified - the customer is permitted to inject as much
BE traffic as desired into the network but cannot expect any QoS assurances for this
traffic type. In contrast, the other traffic types must be characterised and hence some
QoS assurances can be given.

Since the EF traffic has very strict delay and loss requirements associated with it, it is
characterised by a single peak rate. This is policed at the access to the network and this
is the amount of resources that are reserved for each EF demand on its path through the
network. When generating random EF demands, only this parameter needs to be chosen.

The AF traffic does not have such stringent requirements of the network. Also, the AF
traffic is more likely to be more variable than the EF traffic. Consequently, a less
conservative approach to resource reservation can be used. It is assumed that the AF
traffic can be characterised by two rates: a peak rate and a mean rate. There is also a
parameter that defines the maximum duration of a burst at the peak rate without being
adversely affected. These parameters are then used to determine the effective bandwidth
and buffer size required by the source as described above.

Finally, the network-wide loss and delay parameters are chosen for the different service
classes which have associated QoS parameters. These only apply to the EF, AF11 and
AF12 traffic types: specifically, they do not apply to lower priority AF traffic.

5.6.2 Validation of the Approach

The approach is validated by generating, solving and then simulating some small
problems. While the problems are small, the amount of effort required to simulate them
is not insignificant: there are very many parameters that need to be specified in order to
run the simulation. Also, the amount of time required to simulate even small scenarios
is substantial.

Simulation of the system was done using the ns IP-level simulator [FV01]. The
simulator did not have diffserv and MPLS support when it was investigated first;
diffserv support was added as part of this work and MPLS for ns was developed by Ahn
[ACOO]. The diffserv functionality then worked in conjunction with the MPLS
functionality to enable demands to be routed arbitrarily and to offer some service
differentiation to the demands. More details on the simulator are given below.

190

Two small example problems were generated to verify the concept using the simulator.
The first problem had 7 nodes and 5 customers. It had an average node degree of 2.4,
which resulted in 9 links. This was problem 5A. The second problem was slightly larger
with 9 nodes and 4 customers. This problem also had an average node degree of 2.4,
which results in a core network consisting of 11 links in this case. This was problem 5B.
The parameters used to generate the first and second problems are listed in Table 5-1
and Table 5-2 respectively. Using these parameters, two specific problems were
generated.

Small Example Problems - Generation and Solution

Property Value
Number of Nodes 7
Core Link Capacities 155
Average node degree 2.4
Number of Customers 5
Parameter for EF traffic min: 0.5 max: 1
Parameter for AF1 Mean traffic min: 0.5 max: 1
Parameter for AF1 Peak/mean min: 2 max: 2.5
Parameter for AF2 Mean traffic min: 0.75 max: 2
Parameter for AF2 peak/mean min: 2.5 max: 4
Token bucket size for peak 2000
Source on time min: 0.1 max: 0.15
EF end2end delay bound 10
EF end2end loss bound 2
AF1 end2end delay bound 75
AF1 end2end loss target 2.5
AF2 end2end delay bound 100
AF2 end2end loss target 4
Random Seed 9485
Output Dsproblem5b.test
Max route length 5

Table 5-1: Parameters used to generate problem 5A.

191

The problems were then converted to generic problems. In doing this, it was necessary
to choose the parameter j which dampened the exponent in the exponential cost
function. For the purposes of these experiments, this was chosen to be 0.05.

The generic problems were then specified. These were solved using the solver based on
the greedy algorithm since this obtained the best solutions in chapter 4. Since these
problems were very small, the solutions were found in a matter of seconds.

Parameter Value
Number of Nodes 9
Core Link Capacities (Mb/s) 155
Average node degree 2.4
Number of Customers 6
Parameter for EF traffic (Mb/s) min: 0.5 max: 1
Parameter for AF1 Mean traffic (Mb/s) min: 0.5 max: 1
Parameter for AF1 Peak/mean min: 2 max: 3.5
Parameter for AF2 Mean traffic (Mb/s) min: 0.75 max: 2
Parameter for AF2 peak/mean min: 2.5 max: 4
Token bucket size for peak (bytes) 2000
Source on time (s) min: 0.1 max: 0.15
EF end2end delay bound (ms) 10
EF end2end loss bound (%) 1
AF1 end2end delay bound (ms) 75
AF1 end2end loss target (%) 2.5
AF2 end2end delay bound (ms) 100
AF2 end2end loss target (%) 4
Seed 34867
Output Dsproblem8.test
Maximum route length 5

Table 5-2: Parameters used to generate problem 5B.

S i m u l a t i o n I s s u e s

The solution to the generic problem coupled with the solution mapping described above
consists of enough information to enable the core network to be configured. To simulate
a scenario, more assumptions need to be made and more parameters need to be

192

specified: for example, the source traffic characteristics and the access link properties
need to be specified. These are defined here.

For the purposes of the simulation, a particular configuration for the customer premises
network topology and the access link topology is assumed. This is illustrated in Figure
5-6. In this topology, each customer premises is assumed to consist of 4 traffic-
generating nodes. These are connected via an access multiplexer to the core node. A
number of customer premises can be connected to the core node, each one connected
via a different access multiplexer.

Figure 5-6: Customer premises and access network topology used in simulation.

The 4 traffic generating nodes each generate traffic of a different service class: node 0
generates EF traffic, node 1 generates AF1 traffic, node 2 generates AF2 traffic and
node 3 generates BE traffic. The EF source generates traffic at a constant rate with some
random variation. The AF sources generate on-off traffic - the source transmits at a
peak rate while on and no data is generated when the source is in the off state. This is
oft-considered to be a kind of worst case traffic, and if the network can accommodate
this, it can accommodate less bursty traffic. The BE sources are used to add load to the
network; these simply generate CBR traffic, again with a random perturbation.

The AF service class is most suited to a feedback-based transport protocol such as TCP.
In the most likely configuration of AF, most traffic will be permitted into the network,
although some traffic will be marked down to a lower priority if it is non-conformant
with the agreed traffic profile. AF queues will have A Q M such as some variant of RIO
[CF98]. If the network is becoming congested, then the A QM mechanisms will cause
some packets to be lost. Adaptive transport protocols will react to this packet loss and
reduce their transmission rate reducing the likelihood of congestion. Non-adaptive

Cudomer
Hermes

C o e
Node

193

traffic sources can obtain a disproportionate amount of the resources at the expense of
the adaptive traffic. For these reasons, AF is more suited to adaptive traffic.

TCP flows, however, are not used in this simulation. The reasons for this are twofold:
firstly, TCP sources are much more complex and would greatly increase the simulation
time and memory requirements and, secondly, the traffic flow between node pairs is
more likely to be an aggregate of TCP sources rather than a single flow. TCP sources
maintain a number of counters and timers as well as functionality to modify behaviour
to network conditions - they are much more complex than the non-adaptive sources
described above. Consequently, it is not feasible to run such a large simulation with
TCP sources with the available computing power. Furthermore, the scenario described
above is one in which the demands are aggregate demands: hence the connection
between any two nodes will carry a substantial amount of TCP flows. The behaviour of
a TCP aggregate is quite different to that of a single TCP flow. To simulate the system
using TCP sources then, a number of sources would be required between each node
pair. This is not feasible with the available computing power.

A further reason that TCP can be ignored is that this work takes the view of an operator
delivering services with SLAs. The SLAs are measured at the IP layer. If worst case
traffic at the IP layer is assumed, then the operator can be confident that the assurances
offered can be met if the traffic is not worst case. If the vast majority of the traffic is
TCP, which results in a much lighter network usage than the worst case IP traffic, then
the network will be overengineered. Overengineering is a secondary issue: the primary
objective here is to offer service with assurances. Once this is available, the network
efficiency can be improved with operational experience.

The access links must be parameterised. Since the emphasis here is on the behaviour of
the core network, it is assumed that the access links are high capacity, low delay access
links. As such, they do not have a large impact on the perceived QoS. For these
experiments, the access links are were chosen to have a capacity of 75Mb/s and a
propagation delay of 0.1ms.

The core network propagation delays are also small: the network is assumed to be a
single autonomous system, which typically covers a smaller area, rather than a large
nation-wide network. Having said this, it is conceivable that an autonomous system
could have a very great geographical spread. For these experiments, the core network
link propagation delays are chosen to be 0.1ms.

194

Packet sizes must also be assumed in the simulation. The EF packet sizes are assumed
to be small, since the traffic is assumed to be delay sensitive. The traffic could, for
example, be VoIP traffic. The EF packet sizes are assumed to be just 100 bytes17.
Packet sizes for the other classes are assumed to be 500 bytes. Packets which are
approximately 500 bytes in size are very common on the Internet because many
transmission facilities have an MSS of approximately 500 bytes [TMW97].

The simulator used to perform the simulations contains MPLS and diffserv
implementations. In the MPLS implementation, default paths through the network are
generated based on OSPF routing as happens in real MPLS implementations. In this
problem, the purpose of MPLS is to facilitate arbitrary routing of demands. MPLS
explicit routing is used to enable arbitrary paths to be configured through the network.
This is used in conjunction with a filter at the edge of the network to ensure that only
some specific set of packets are permitted to use an LSP.

The MPLS implementation does not need to be parameterised, other than to initiate
MPLS explicit route messages to enable the MPLS LSPs to be formed.

The diffserv implementation is as described in section 5.2.1 above. It requires a number
of parameters to be configured properly - the scheduler weights, queue sizes and AQM
parameters. These can all be determined using the approach described above to map
from the solution of the generic problem to the solution of the specific problem.

The simulations were run for 100 seconds of simulation time. This was not a very long
time, but it was sufficiently long to obtain some reasonable information on the scenario.
The core network links were operating at a speed of 155Mb/s and in many cases were
very highly loaded. Assuming a 500-byte packet size, 100 seconds of simulation time
corresponded to approximately 4,000,000 packets being processed on each of the core
network links. It was felt that this was sufficient to enable reasonable data for core
network performance to be concluded from the simulation. The 100 second simulation
took a number of hours on a single processor Pentium III system operating at 600MHz.
The simulation was not made longer because it already consumed a considerable
amount of simulation time.

17 VoIP packets are typically smaller than this - VoIP packets are often 40 bytes long. However, 100 byte

packets will experience longer delays than 40 byte packets.

195

A number of sets of simulation results were obtained: simulation results were obtained
when the network was stimulated with the design traffic - these were used as reference
experiments - and when various increased traffic loads were used. In all cases, the
network was quite heavily loaded: experiments in which the network is less heavily
loaded are less interesting since all the users will simply obtain good service.

In each case, the packet loss and delay as perceived by the users were the primary
measures of interest. Packet delays were obtained quite easily: each packet was marked
with some packet generation time and the time taken for the packet to traverse the
network was logged. End-to-end packet loss rates, however, were slightly more
complicated to obtain so packet loss at queues in the network were obtained.

S i m u l a t i n g P r o b l e m s w i t h D e s i g n T r a f f i c

The two problems were first simulated with the design traffic as input. The results from
problem 5A are discussed first, followed by the results obtained from simulating
problem 5B.

Link Used Capacity

(Mb/s)

Utilisation Link Used Capacity

(Mb/s)

Utilisation

(0—>2) 155000.0 1.00 (l-»5) 41178.0 0.266
(2—>0) 154999.9 1.00 (5—>1) 46164.8 0.298
(0->3) 155000.0 1.00 (3—>6) 119766.2 0.773
(3—>0) 155000.0 1.00 (6—>3) 145739.5 0.940
(0 >5) 136159.5 0.878 (4->5) 139368.4 0.899
(5-40) 155000.0 1.00 (5 >4) 130365.0 0.841
(l->3) 154999.9 1.00 (5—>6) 81989.9 0.529
(3—>1) 148106.8 0.956 (6—>5) 82375.8 0.531
(l->4) 68189.6 0.440
(4—>1) 70337.0 0.454

Table 5-3: Link utilisation for problem 5A with design traffic.

Problem 5A was simulated. The core network was quite heavily loaded. The core
network link utilisations - utilisations in both directions - are given in Table 5-3. The
mean link utilisation is 76.69%. Six of the links are fully loaded, and some loss is

196

experienced at each of these links. No packet loss occurs at the queue/scheduler systems
controlling access to the other links.

The loss occurring at the congested queue/scheduler systems is shown in Table 5-4. The
high priority classes do not experience any loss, while the BE traffic can experience
over 46% loss in the case of the link going from node 3 to node 0. Clearly, the BE
traffic does not have a very great impact on the other classes. Clearly then, there is
service differentiation between the BE traffic class and the higher priority traffic
classes.

The end-to-end delays are also of interest. In this experiment, a number of measuring
components were created, each at the ingress to each customer location. This could
measure the end-to-end delay of all packets arriving at this component. Note that they
did not measure the delays experienced by individual flows; rather they measured the
delays experienced by all traffic of a particular class arriving at the component. These
measurements were then used to obtain some measure of the minimum, maximum and
mean packet delays for all end-to-end flows. For each measuring component, the mean
delay, and the minimum and maximum delays were recorded. These were then averaged
over all of the components to obtain network-wide averages. These results are presented
in Table 5-5.

Link EF loss AFlx loss AF2x loss BE loss

(0->2) 0 0 0 0.172704
(0->3) 0 0 0 0.341545
(l-»3) 0 0 0 0.173474
(2—>0) 0 0 0 0.409773
(3—>0) 0 0 0 0.464854
(5->0) 0 0 0 0.062792

Table 5-4: Loss at queue/scheduler systems for specific links in problem 5A with

design traffic.

The results show that the loss and delay requirements are easily met in this small
problem. The EF and AF traffic experience small delay. The mean delay for the EF
traffic is smaller than that of the AF 1 traffic, which, in turn is smaller than that of the
AF2 traffic. The mean delays for all three are less than 1ms. This is very substantially
lower than the required delay of 10ms for the EF traffic and 75 and 100ms for the AF1

197

and AF2 traffics respectively. The minimum delay for the EF traffic is smaller than that
of the AF traffic because the transmission delay is smaller.

EF AF1 AF2 BE

Minimum Delay (s) 0.000434 0.000572 0.000572 0.000576
Maximum Delay (s) 0.001768 0.001327 0.003352 0.107321
Mean Delay (s) 0.000671 0.000741 0.00075 0.029302

Table 5-5: Delays averaged over all the node pairs for different traffic classes for

problem 5A with the design traffic.

Interestingly, the averaged maximum delay for the EF traffic is larger than that of the
AF traffic in this experiment. This can be explained by noting that the load generated by
the EF traffic is approximately equal to the amount of resources allocated to it: the EF
component of the system is constantly moderately loaded. In contrast, the AF traffic is
generated in a bursty manner. Two factors lead to reduced delays for the AF traffic: the
design of the scheduler and the somewhat conservative resource allocation. If an AF
queue is underutilised for some short period, then ‘credit’ for the queue will build up. If
a burst of AF traffic arrives in the queue then, the scheduler will have sufficient credit
available to the queue to serve the burst quickly. This coupled with the fact that the
conservative resource allocation mechanisms reduce the likelihood of data accumulating
in AF queues means that the maximum delay experienced by the AF traffic can be low.

The averaged maximum delay for the AF2 traffic is over double that of the AF1 traffic.
However, the delays are still very small - of the order of a few milliseconds. The QoS
delivered by AF2 then is slightly worse than that delivered by AF1 services. This is
because AF1 services have higher effective bandwidths than comparable AF2 services.

The delays experienced by the BE traffic are much larger. The averaged maximum
delay in the system is over 100ms. The maximum over all node pairs is over 150ms.
The mean delay is just over 29ms. Clearly, the range of the delays for the BE traffic in
this scenario is large.

A histogram of end-to-end delays experienced by BE traffic arriving at one measuring
component is shown in Figure 5-7. In this figure, there are two large peaks - the first
occurring at 23ms and the second occurring at 60ms. These correspond to traffic carried
on paths with different numbers of nodes. Traffic queued only at a single node
contributes to the first large peak, while traffic which is carried over more than one node

198

contributes to the second. There is a third peak which occurs due to traffic which
traverses only lightly loaded links and experiences essentially no queuing. However, the
number of such packets in Figure 5-7 is very small. From the graph it is clear that the
number of congested links on the path has a strong bearing on the delay.

S'
a 0.08a-0)
u_

I 0.06
£

® Proportion of BE delays

(1 1 - n

□ _ _ LI J - - O □ L] 1 ! L . . Q n n .

o- Q>-
Delay (s)

Figure 5-7: Distribution of BE delays for traffic arriving at a single customer

premises in problem 5A with design traffic. Note that a significant proportion of

the delays excecd 100ms.

In this experiment the EF and AF conditioners have a very small impact. The EF
conditioners cause almost 1% of the traffic to be dropped. This is because the EF source
is configured to generate packets in a CBR fashion with some random component
added. The random aspect to the traffic can cause the source to generate some packets
that are close together, although this is quite rare. When this happens, the second of the
two packets may be dropped. The AF conditioner causes a very tiny amount of packets
to be dropped: the proportion of dropped packets is of the order of 0.002%. This occurs
because many AF sources run on a single host. It can be explained as follows. If many
of the sources are in the ‘on’ state, then the aggregate rate can exceed the link rate.
Buffering occurs. Then some of the sources generate traffic that gets buffered. This
traffic may actually be transmitted on the link at a rate higher than that at which it was
generated. In this case, packets could arrive at the conditioner with rate higher than the
peak rate, resulting in packet drops for the AF traffic.

199

Link Used Capacity Utilisation Link Used Capacity Utilisation

(M b /s) (M b /s)

(0—>3) 155528.3 0.888733 (3—>7) 175000 1
(3—>0) 106292.9 0.607388 (7—>3) 175000 1
(l-*2) 148496.1 0.848549 (4—>5) 43670.01 0.249543
(2->l) 131326.8 0.750439 (5->4) 45303.98 0.25888
(l-»5) 44078.15 0.251875 (5-»6) 114150 0.652286
(5—>1) 44046.14 0.251692 (6—>5) 102966.1 0.588378
(l->6) 40791.31 0.233093 (6 >7) 154309.4 0.881768
(6—>1) 39472.68 0.225558 (7—>6) 128167.3 0.732385
(2—>4) 91653.93 0.523737 (7—>8) 127283.2 0.727333
(4—>2) 110332 0.630469 (8—>7) 156736.8 0.895639
(2—>7) 175000 1
(7—>2) 175000 1

Table 5-6: Link utilisation for problem 5B with design traffic.

Problem 5B was then simulated. In essence, the same observations were made.

L in k EF loss AFlx loss AF2x loss BE loss
(2—>7) 0 0 0 0.330095
(3—>7) 0 0 0 0.491702
(7—>2) 0 0 0 0.131651
(7—>3) 0 0 0 0.403198

Table 5-7: Loss at selected queue/schedulers for problem 5B with design traffic.

The capacity utilisations are listed in Table 5-6. Many of the links are quite heavily
loaded, although some of them are lightly loaded. The mean link utilisation is 64.54%.
Four of the links are used to capacity. As in the previous case, no drops are experienced
at the links which do not have 100% utilisation. At the remaining links, the BE traffic
suffers, while the other traffic types experience no loss. The loss experienced at each of
these queue/scheduler systems is given in Table 5-7.

As with the previous experiment, the BE traffic can experience considerable loss - 49%
loss in the case of the link from node 3 to node 7 - while the higher priority traffic
experiences no loss.

200

EF AF1 AF2 BE

Minimum Delay (s) 0.000434 0.00057 0.00057 0.00057
Maximum Delay (s) 0.001421 0.001378 0.001576 0.079058
Mean Delay (s) 0.000652 0.000773 0.00078 0.022968

Table 5-8: Delays averaged over all the node pairs for different traffic classes for

problem 5B with the design traffic.

The delay information was obtained as in the previous experiment. It is given in Table
5-8. The results obtained for this problem are similar to those obtained for the previous
one. The mean delays for the EF traffic are lower than those for the AF1 traffic, which,
in turn, are lower than those for the AF2 traffic. In all cases, the delays experienced by
the premium traffic are much lower than the target delays. The delays for the BE traffic
are considerably larger.

As with the previous case, the averaged maximum EF delay is larger than the averaged
maximum AF1 delay. The reasons used to explain this in the previous case are also
valid here.

E ProDoralion of BE delays

.EL □ D n

«V , /

Delay (s)

Figure 5-8: Distribution of BE delays for traffic arriving at a customer premises in

problem 5B with design traffic. A small proportion of the delays exceed 100ms.

201

A sample of the delays for the BE traffic is shown in Figure 5-8. This exhibits
similarities to Figure 5-7. Again there are three peaks in the graph: one occurs at low
delays, one is at about 25ms and another at considerably higher values of delays. Again,
the first peak occurs because some of the BE traffic arriving at the customer premises
traverses a lightly loaded link experiences little or no queuing. The second peak occurs
due to traffic traversing a single congested link, while the third peak occurs due to
traffic traversing two congested links. Figure 5-8 differs from Figure 5-7 in that many
more packets experience no delays in the former and the number of packets that traverse
two congested links is much smaller.

As with the previous case, the conditioners do not have a very great impact on the
results obtained. The EF traffic does experience approximately 1% loss, as in the
previous experiment. This can be alleviated by increasing the amount of resources and
the conditioner policing parameters by 5% over the negotiated EF rate. Similarly, there
are a very tiny percentage of AF drops.

S i m u l a t i n g P r o b l e m s w i t h I n c r e a s e d E F T r a f f i c

The effects of increasing the EF traffic in the network were examined next. Half of the
EF sources were chosen at random and the amount of traffic generated by these sources
was doubled. As would be expected, the impact of this on the network was minimal: the
conditioners removed much of the excess EF traffic and the traffic that was permitted
access to the network experienced similar conditions to those of the experiment with the
design traffic.

Link EF loss AFlx loss AF2x loss BE loss

(0—>2) 0 0 0 0.173197
(0—>3) 0 0 0 0.338660
(l->3) 0 0 0 0.178748
(2 >0) 0 0 0 0.404585
(3—>0) 0 0 0 0.464489
(5—>0) 0 0 0 0.067283

Table 5-9: Loss at queue/scheduler systems for specific links in problem 5A with

increased E F traffic.

Problem 5 was simulated with increased EF traffic. The link utilisations are very similar
to those in the experiment with the design traffic and the scheduler behaved in a very

202

similar fashion to before: only the BE traffic experienced any loss in the network. The
link utilisations were within 1-2% of those obtained in the previous experiment.
Similarly, the loss experienced by the BE traffic at each of the different schedulers is
within a few percent of the loss experienced in the experiment above. Delays are also
similar in this experiment.

Customer ID Premises BE loss Customer ID Premises BE loss

number number

0 0 0.349034 4 0 0.274487
0 1 0.275961 4 1 0.261317
0 2 0.250303 4 2 0.335936
0 3 0.316149 4 3 0.393947
0 4 0.256898 4 4 0.242054
1 0 0.402977 5 0 0.386674
1 1 0.323102 5 1 0.32796
1 2 0.256824 5 2 0.45099
1 3 0.393514 5 3 0.392304
1 4 0.456485 5 4 0.349312
2 0 0.392956 6 0 0.412665
2 1 0.307318 6 1 0.264706
2 2 0.327093 6 2 0.330626
2 3 0.317043 6 3 0.332762
2 4 0.331132 6 4 0.249807
3 0 0.344955
3 1 0.251404
3 2 0.16679
3 3 0.330109
3 4 0.353163

Table 5-10: Fraction of EF traffic lost at conditioners in problem 5A with

increased EF traffic.

The real difference in this experiment lies in the effects of the conditioners and the end-
to-end perceived behaviour. Firstly, the EF conditioners drop much more traffic in this
experiment than in the previous experiment. The losses measured at each of the traffic
conditioners are listed in Table 5-10. This is in contrast to a loss of approximately 1% in

203

the reference experiment. Secondly, the perceived throughput for the EF traffic differs
from the source transmission rate. This is due to the traffic that is dropped at the
conditioners. The conditioner imposes an upper bound on the throughput: if the source
exceeds this, then the transmission rate is reduced to that permitted by the conditioner.
The delays perceived by all services are very similar to those of the reference
experiment, since no more traffic is introduced into the network.

Similar observations were made on problem 5B with the EF traffic increased in the
same manner.

Simulating Problems with Increased BE traffic

The BE traffic was increased: 50% of the BE traffic sources were doubled in intensity.
Since the BE traffic is not conditioned at the edge of the network, much of this excess
traffic entered the core network loading the core network further. However, the high
priority traffic experienced little change.

Link Used Capacity Utilisation Link Used Capacity Utilisation

0—>2 155000 1 1—>5 58871.85 0.379818
2—>0 155000 1 5—>1 50628.67 0.326637
0—>3 155000 1 3—»6 135078.4 0.871474
3—>0 155000 1 6—»3 155000 1
0—»5 155000 1 4—»5 155000 1
5—>0 155000 1 5—>4 155000 1
1—>3 155000 1 5—>6 90700.49 0.585164
3—>1 155000 1 6—>5 109171.1 0.70433
1—>4 82479.2 0.532124
4—>1 101857.7 0.657147

Table 5-11: Link utilisation for problem 5A with increased BE traffic.

The link utilisations for the core network are shown in Table 5-11. The link utilisations
are considerably greater than in the reference case due to the increased BE traffic.
However, not all links are fully utilised and consequently, some links experience no
loss. Of those links that do experience loss, only BE packets are lost - there is no loss
for the higher priority packets. Naturally, the amount of BE loss is considerably greater
than in the reference experiment.

204

EF AF1 AF2 BE

Minimum Delay (s) 0.000434 0.000572 0.000572 0.000576
Maximum Delay (s) 0.002601 0.002335 0.006957 0.137427
Mean Delay (s) 0.000703 0.000769 0.000784 0.054825

Table 5-12: Delays for experiment 5A with increased BE traffic.

This experiment introduces considerably more traffic into the network. Hence it could
potentially affect the delays perceived by the other traffic classes. The delays obtained
are shown in Table 5-12. There is a substantial increase in the delays experienced by the
BE traffic over the reference case and there are small increases in delay for the other
traffic classes. The increase in the delay for the other traffic classes can be explained by
the increased likelihood of a scheduler being busy serving a packet in a queue/scheduler
system when a packet arrives. These increases are not very substantial: the delays for
the higher priority traffic remain very small.

Similar effects were observed with the larger problem, although the increase in the
delays experienced by the BE traffic was considerably larger.

S i m u l a t i n g P r o b l e m s w i t h I n c r e a s e d A F 1 a n d A F 2 T r a f f i c

Finally, the amount of AF traffic entering the network was increased. The AF traffic
was increased by doubling the peak and mean rate for 50% of the AF sources. All other
elements of the simulation remained the same; in particular, the parameters of the
conditioners at the edge of the network remained unchanged.

As before, the experiments were performed for both problem 5A and problem 5B, but
the results exhibited the same characteristics. Consequently, only the results for problem
5A are presented here.

These results differ a little from the previous ones in that some AF traffic is lost: in the
previous cases the only packets that were dropped were BE packets. However, it is
worth pointing out that only a tiny fraction of AF packets are dropped and also that only
packets that are out of profile are dropped.

In the experiment with increased AF1 traffic, the AF2 traffic suffered a very small
amount of loss. Interestingly, no AF1 packets were lost, even though the AF1 resources
were more heavily loaded.

205

EF AF1 AF2 BE
Minimum delay (s) 0.000434 0.000572 0.000572 0.000576
Maximum delay (s) 0.001845 0.001366 0.004945 0.117079
Mean delay (s) 0.00068 0.000746 0.000757 0.030063

Table 5-13: Delays for experiment 5A with increased AF1 traffic.

EF AF1 AF2 BE
Minimum delay (s) 0.000434 0.000572 0.000572 0.000576
Maximum delay (s) 0.002385 0.002042 0.00936 0.123503
Mean delay (s) 0.000688 0.000748 0.000782 0.030983

Table 5-14: Delays for experiment 5A with increased AF2 traffic.

The AF1 queues suffered no packet loss for the simple reason that the resource
allocation for AF1 is quite conservative. Hence, when only high priority AF1 traffic is
using the resources, they are somewhat under-utilised. It is possible to carry more traffic
on these resources without having much of an impact on the performance perceived by
current users of the resources. Hence, the amount of traffic generated by some users can
be increased without adversely affecting the QoS perceived by the users. This is what
happens in this case.

The packet loss that occurs for the AF2 traffic can be considered to be within normal
operating conditions for the AF2 resources. A very small amount of packet loss can
occur. Three conditions must be satisfied for this to occur: the packet must be low
priority, a queue on the packet’s path must be (at least moderately) congested and the
A QM mechanism must choose to drop the packet. It is rare that these three conditions
will be met if the traffic conditioners are generating traffic which is almost exactly
conformant with the conditioner, but it is possible. Hence, 0.02% packet loss occurs for
the AF2 traffic at a congested queue/scheduler system.

In the case in which the AF2 traffic is increased, there is increased loss of AF2 out-of-
profile traffic. This occurs on two links in this case. The loss is very close to 0.5% on
one of the links and is just over 0.06% for another link. Interestingly, this link does not
reach full saturation, although it is very highly loaded at just over 96%. In this case, the
link is saturated over some periods of time. Also, the arrival rate to the AF2 queue is
greater than the rate at which it can be serviced, causing the mean occupancy of the
queue to increase. When this is sufficiently high, and there is a significant amount of

206

AF2 out-of-profile traffic arriving at the queue, some of it gets dropped due to the AQM
mechanisms. This occurs here. During other periods, the link is may not be saturated,
but some loss may still occur because the mean queue length can remain high for a short
time even though the queue is emptying.

While increasing the amount of AF traffic entering the network does have a deleterious
effect on the performance, the performance is still well within the design parameters.

Shortest Path Routing Load Balanced

Problem 1
(conn=2.5)

Mean: 1030.94
Std. Dev.: 416.3

Minimum: 181.583
Maximum: 2301.98

Mean: 1042.27
Std. Dev.: 393.027
Minimum: 272.184
Maximum: 2301.98

Problem 2
(conn=3.0)

Mean: 616.65
Std. Dev.: 375.049
Minimum: 137.749
Maximum: 2048.19

Mean: 642.799
Std. Dev.: 303.031
Minimum: 199.359
Maximum: 1643.88

Problem 3
(conn=3.5)

Mean: 612.088
Std. Dev.: 346.048
Minimum: 26.0788
Maximum: 1833

Mean: 628.694
Std. Dev.: 173.663
Minimum: 270.895
Maximum: 1043.24

Problem 4
(conn=4.0)

Mean: 414.836
Std. Dev.: 211.891
Minimum: 44.4009
Maximum: 1050.34

Mean: 426.549
Std. Dev.: 123.244
Minimum: 123.352
Maximum: 938.602

Problem 5
(conn=4.5)

Mean: 360.436
Std. Dev.: 153.852
Minimum: 80.5553
Maximum: 726.974

Mean: 368.488
Std. Dev.: 58.9925
Minimum: 251.406
Maximum: 632.197

Problem 6
(conn=5.0)

Mean: 331.667
Std. Dev.: 156.724
Minimum: 41.641
Maximum: 816.796

Mean: 336.299
Std. Dev.: 88.7507
Minimum: 130.581
Maximum: 708.268

Table 5-15: Basic statistical properties of link loads obtained when specific

problems solved with this approach. The problems vary in network connectivity.

207

This approach to determining a good network configuration was, to some extent,
validated above, in the sense that the QoS perceived by the end users was delivered
appropriately. However, the load balancing nature of the network optimisation was not
visible. No efforts were made to demonstrate the load balancing characteristics of the
approach because the networks were so small that the choice of routes was limited and
hence there was little chance of performing any load balancing.

Here, some effort is made to redress this: the purpose of this section is to illustrate that
the approach described above can be used to balance load on networks.

In order to do this, some sample problems were generated using the problem generator
described in section 5.6.1 above. Larger problems were generated and they were solved
using the network optimisation framework.

Two sets of experiments were performed here. In the first, test problems with varying
levels of connectivity were generated. These were generated in order to determine the
effect of the connectivity of the network on the load balancing. In the second set of test
problems, the effects of varying the cost function generated within the mapping function
were determined.

0.35

I E S P Routing
■ Load Balanced Routing

0.3 •

0.25 .

S'
5 0 2a

5.6.3 Solving Larger Problems

>
0.15

(200- (315- (430- (545- (660- (775- (890- (1005- (1120- (1235- (1350- (1465- (1580- (1695- (1810- (1925- (2040- (2155- (2270-
SI 5) 430) 545) 660) 775) 890) 1005) 1120) 1235) 1350) 1465) 1580) 1695) 1810) 1925) 2040) 2155) 2270) 2385)

Link Load (Mb/s)

Figure 5-9: Variation of link load for SP routing and load balanced routing for 30

node problem with connectivity of 2.5.

2 0 8

In the first set of experiments that were performed, the network connectivity was
altered. Six specific problem consisting of 30 nodes and varying amounts of links were
generated. The demand between the node pairs was approximately the same in each of
these problems. The node connectivity varied from 2.5 to 5.0 in steps of 0.5.

The problem was mapped to the generic problem; the generic problem was then solved
using the greedy approach: the results from chapter 4 showed that the greedy algorithm
obtained the best results. This resulted in a route configuration.

Variation o f Load Balancing with Connectivity

{0- (125- (250- (375- (500- (625- (750- (875- (1000-(1125 -(1250 -(1375 -(1500 -(1625 -(1750-(1875-(2000-(2125-(2250-(2375-
125) 250) 375) 500) 625) 750) 875) 1000) 1125) 1250) 1375) 1500) 1625) 1750) 1875) 2000) 2125) 2250) 2375) 2500)

Link Load (Mb/s)

Figure 5-10: Variation of link load for SP routing and load balanced routing for 30

node problem with connectivity of 3.0.

To determine whether the network optimisation resulted in a load balanced solution, the
mean and standard deviation of the link utilisations were calculated. These are shown in
Table 5-15. There, it can be seen that the load balanced solution results in slightly
higher mean link utilisation and lower standard deviation. This indicates that the load on
the network is more balanced after the load balancing optimisation has been performed,
i.e., the optimisation is useful.

This analysis is not sufficient to illustrate this. To illustrate this more clearly, histograms
of link utilisations for each of the different problems were obtained. These are shown in
Figure 5-9 to Figure 5-14.

209

0.3

DSP Routing
■ Load Balanced

. . . . □ . □
(0- (100- (200- (300- (400- (500- (600- (700- (800- (900- (1000- (1100- (1200- (1300- (1400- (1500- (1600- (1700- (1800- (1900-

100) 200) 300) 400) 500) 600) 700) 800) 900) 1000) 1100) 1200) 1300) 1400) 1500) 1600) 1700) 1800) 1900) 2000)

Link Load (Mb/s)

Figure 5-11: Variation of link load for SP routing and load balanced routing for 30

node problem with connectivity of 3.5.

(0-75) (75- (150- (225- (300- (375- (450- (525- (600- (675- (750- (825- (900- (975- (1050 -(1 1 25 -(1 2 00 -(1 2 75 -(13 50 -(1425-
ISO) 225) 300) 375) 450) 525) 600) 675) 750) 825) 900) 975) 1050) 1125) 1200) 1275) 1350) 1425) 1500)

L ink Load (Mb/s)

Figure 5-12: Variation of link load for SP routing and load balanced routing for 30

node problem with connectivity of 4.0.

210

0.4

0.35

0.3

>*o
S 0.25S’it
■5 0.2m<uoc

0.15

01

0.05

0.45

Figure 5-13: Variation of link load for SP routing and load balanced routing for 30

node problem with connectivity of 4.5.

0.5

0 45

0 4

0.35

o 0.3

IT »
i t 0 25
<u |
| 02

0 15

0 1

0 05

Figure 5-14: Variation of link load for SP routing and load balanced routing for 30

node problem with connectivity of 5.0.

The load balancing effect is particularly clear in Figure 5-14. In this figure, the shortest
path routing clearly results in a network in which there is a quite uniform variation in
link capacity on each link; i.e. link utilisation could almost be modelled by a uniform
random variable. This clearly does not result in a balanced load since some links have

□ SP Routing

fl fl n ik f
. 11J i l l j M X e l « =

(0-50) (50- (100- (150- (200- (250- (300- (350- (400- (450- (500- (550- (600- (650- (700- (750- (800- (850- (900- (950-
100) 150) 200) 250) 300) 350) 400) 450) 500) 550) 600) 650) 700) 750) BOO) 850) 900) 950) 1000)

L ink Load (Mb/s)

IUSP Routing

- 1

o D 1 1 1 1 I L I L I U L U L I C U a c m ca

(0-50) (50- (100- (150- (200- (250- (300- (350- (400- (450- (500- (550- (600- (650- (700- (750- (800- (850- (900- (950-
100) 150) 200) 250) 300) 350) 400) 450) 500) 550) 600) 650) 700) 750) 800) 850) 900) 950) 1000)

L ink Load (Mb/s)

2 1 1

high loads while others have minimal loads. The link utilisation is clearly much more
like a normal distribution in the case of routing with load balancing. In this case, there is
a very pronounced mean value for link utilisation and some links carry traffic which is a
small variation off this. Since the link capacities on the network homogeneous, the free
capacity on all of the links is then quite uniform and the network load is much more
balanced.

Property Problem] Problem 2

Number of Nodes 30 30
Core Link Capacities (Mb/s) 3000 3000
Average node degree 5.0 3.0
Number of Customers 5 5
Parameter for EF traffic (Mb/s) Min: 0.5 Max: 1.0 Min: 0.5 Max: 1.0
Parameter for AF1 Mean traffic
(Mb/s)

Min: 0.5 Max: 1.0 Min: 0.5 Max: 1.0

Parameter for AF1 Peak/mean Min: 2 Max: 4 Min: 2 Max: 4
Parameter for AF2 Mean traffic
(Mb/s)

Min: 1 Max: 2 Min: 1 Max: 2

Parameter for AF2 peak/mean Min: 1.5 Max: 5 Min: 1.5 Max: 5
Token bucket size for peak
(bytes)

2000 2000

Source on time (s) Min: 0.1 Max: 0.3 Min: 0.1 Max: 0.3
EF end2end delay bound (ms) 15 15
EF end2end loss bound (%) 1 1
AF1 end2end delay bound (ms) 50 50
AF1 end2end loss target (%) 2.5 2.5
AF2 end2end delay bound (ms) 75 75
AF2 end2end loss target (%) 4 4
Random Seed 5097038 7567434
Output Bigproblemcostl .txt bigproblemcost2.txt
Max route length 6 6

Table 5-16: Parameters used to generate problems to test the effects of the cost

function used.

From the graphs, it is clear that the load balancing has a considerable effect in the
problems in which there is more connectivity. This occurs mainly because there are
more alternate routes for each demand. More specifically, more alternate routes which

212

differ from the current route by only one node exist. Consequently, it is much easier for
the algorithm to move the demand away from congested points than in cases in which
the node connectivity is small and the number of options for rerouting a demand is
small.

Problem Shortest Path Routing Load Balancing

Bigproblemcostla
0=0.05)

Mean: 270.591
Std. Dev.: 126.31
Minimum: 19.3153
Maximum: 619.684

Mean: 277.199
Std. Dev.: 74.6691
Minimum: 129.449
Maximum: 619.684

Bigproblemcostlb
0=0.1)

Mean: 270.591
Std. Dev.: 126.31
Minimum: 19.3153
Maximum: 619.684

Mean: 277.633
Std. Dev.: 74.9909
Minimum: 135.471
Maximum: 619.684

Bigproblemcostlc
0=0-15)

Mean: 270.591
Std. Dev.: 126.31
Minimum: 19.3153
Maximum: 619.684

Mean: 277.964
Std. Dev.: 74.9769
Minimum: 128.846
Maximum: 619.684

Bigproblemcost 1 d
0=0-2)

Mean: 270.591
Std. Dev.: 126.31
Minimum: 19.3153
Maximum: 619.684

Mean: 278.175
Std. Dev.: 74.7925
Minimum: 126.081
Maximum: 619.684

Bigproblemcostl e
0=0.25)

Mean: 270.591
Std. Dev.: 126.31
Minimum: 19.3153
Maximum: 619.684

Mean: 278.079
Std. Dev.: 75.0447
Minimum: 125.477
Maximum: 619.684

Table 5-17: Basic statistical properties of link loads obtained when specific

problems solved with this approach. The link cost functions vary - specifically, the

pre-multiplier in the link cost varies.

For problems with smaller connectivity, the load balancing effects of the algorithm used
are not so clear. For example, in Figure 5-9, the difference between the distribution of
the link capacities and the case in which SP routing is used and that in which load
balancing routing is used is minimal. The effects of load balancing are almost

213

negligible: there are some load balancing effects as evidenced by the mean and standard
deviation of the link utilisations, but they are very small.

V a r y i n g t h e C o s t F u n c t i o n

The effects of using different cost functions were measured next. The link cost function
used here is of the form

/(s/up , s f ov/tt)=

j is a parameter that can be varied. The effects of choosing different values of j are
studied here.

Two problems were generated. The characteristics of the problems are listed in Table
5-16. The two problems differed only in their connectivity: the network in the first
problem had an average connectivity of 5.0 and the network in the second problem had
an average connectivity of 3.0. The first problem is labelled Problem 1 and the second
problem is labelled Problem 2. These specific problems were then mapped to a number
of different generic problems. The only difference between these generic problems was
the link cost function - it differed in the premultiplier coefficient, j . Values of 0.05 to
0.25, varying in increments of 0.05 were used in generating the generic problems.

Link Load (Mb/s)

Figure 5-15: Variation of link load for SP routing and load balanced routing for

Problem 1 with a premultiplier of 0.05.

214

These generic problems were then solved using the greedy approach. Each of the
problems was solved in approximately an hour. The results obtained for solving
Problem 1 are shown in Table 5-17 and the results obtained for solving Problem 2 are
shown in Table 5-18. In each of the tables, the shortest path routing is the same: this is
independent of the link cost function used. However, differences arise when the load is
balanced on the network using the different cost functions. The results obtained from
the network with higher connectivity differ from those obtained from the network with
lower connectivity. The network with higher connectivity is discussed first.

0 .2 5

0.2

Q)>
JS 0.1 a)O'

0 .0 5

0

Figure 5-16: Variation of link load for SP routing and load balanced routing for

Problem 1 with a premultiplier of 0.25.

The results obtained by solving Problem 1 for a number of different premultipliers are
shown in Table 5-17. There, it can be seen that the effects of varying the link cost
function are not so great. The lower premultiplier does result in a slightly better result
and doesn’t take any more time to solve. Hence, it is better to use this. However, the
size of the premultiplier chosen shuld be dependent on the size of the link capacities
being used in the problem.

The graphs also show the same effect. The link load histograms for Problem 1 when
mapped to the generic problem using a premultiplier of 0.05 and 0.25 are shown in
Figure 5-15 and Figure 5-16 respectively. When the premultiplier is 0.05, the link load
graph has a more pronounced single peak than when the premultiplier is larger.

3 S hortest Patti Routing

I Load Balancing

(0 - (3 0 - (6 0 - (9 0 - (1 2 0 - (1 5 0 - (1 8 0 - (2 1 0 - (2 4 0 - (2 7 0 - (3 0 0 - (3 3 0 - (3 6 0 - (3 9 0 - (4 2 0 - (4 5 0 - (4 8 0 - (5 1 0 - (5 4 0 - (5 7 0 -
3 0) 6 0) 9 0) 1 2 0) 150) 1 8 0) 2 1 0) 2 4 0) 2 7 0) 3 0 0) 3 3 0) 3 6 0) 3 9 0) 4 2 0) 4 5 0) 4 8 0) 5 1 0) 5 4 0) 5 7 0) 6 0 0)

L in k L o a d

215

For the problem with less connectivity, varying the premultiplier over this range has
almost no effect. In this problem, the number of ways of rerouting a demand is smaller
and hence the effects of the premultiplier are minimal. This can be seen from Table
5-18. There, some load balancing takes place, as can be seen by the small difference
between the standard deviations for the solutions with shortest path routing and routing
in which the load is balanced on the network. However, the differences in the different
load balanced solutions are very minimal and hence it can be concluded that varying the
cost function parameter in this case has little effect.

Shortest Path Routing Load Balancing

Problem 2a Mean: 578.116
Std. Dev.: 342.49
Minimum: 182.178
Maximum: 2191.11

Mean: 585.704
Std. Dev.: 320.537
Minimum: 217.822
Maximum: 2191.11

Problem 2b Mean: 578.116
Std. Dev.: 342.49
Minimum: 182.178
Maximum: 2191.11

Mean: 585.615
Std. Dev.: 320.572
Minimum: 217.822
Maximum: 2191.11

Problem 2c Mean: 578.116
Std. Dev.: 342.49
Minimum: 182.178
Maximum: 2191.11

Mean: 585.688
Std. Dev.: 320.58
Minimum: 217.822
Maximum: 2191.11

Problem 2d Mean: 578.116
Std. Dev.: 342.49
Minimum: 182.178
Maximum: 2191.11

Mean: 585.653
Std. Dev.: 320.548
Minimum: 217.822
Maximum: 2191.11

Problem 2e Mean: 578.116
Std. Dev.: 342.49
Minimum: 182.178
Maximum: 2191.11

Mean: 585.702
Std. Dev.: 320.807
Minimum: 217.822
Maximum: 2191.11

Table 5-18: Basic statistical properties of link loads obtained when Problem 2 is

solved with this approach. The link cost functions vary - specifically, the pre­

multiplier in the link cost varies.

216

In this chapter, the application of the network optimisation framework to the problem of
configuring diffserv/MPLS networks was discussed. Diffserv and MPLS technologies
were described in detail, followed by a discussion of a particular implementation. This
implementation is assumed here and the parameters that need to be determined to realise
this solution are highlighted.

The specific problem that is considered here is then defined, and the objective of the
problem is discussed. The problem is then mapped to the generic problem. This
mapping is complicated by the fact that some of the demands are assumed to be
characterised by a number of parameters: the mapping must reduce this to a single
parameter. The effective bandwidth ideas developed within the context of ATM are
used to perform this mapping.

The use of the approach is then illustrated by solving some example problems. First,
some small example problems are solved. These are simulated to demonstrate that the
approach works. This is then followed by use of the approach within a larger problem
context. There, it is demonstrated that the approach has some use: the objectives are
shown to be met to some extent.

5.7 Conclusions

217

CHAPTER 6 C o n c l u s i o n

A flexible, abstract network optimisation framework has been motivated and described.
The purpose of this framework is that it may be applied to different network design and
configuration problems to enable software to be quickly developed to solve network
design and configuration problems. This is a fundamentally different approach from that
typically taken today in which each network design or configuration problem is
considered in isolation. In this framework-based approach, an abstraction of a network
design/configuration problem is devised and solution software is developed to solve this
abstract problem. This solution software can be reused in order to solve many different
network design and configuration problems. Thus, the time required to develop solution
software is reduced.

Another important benefit of this framework based approach - which arises in any
framework designed for reuse - is that there is increased confidence in the correct
operation of the reusable components. Since these components are used in many
different situations, any bugs or problems with these components should become
apparent quickly. In this case, the reusable components are the solution algorithms to
the generic problem. In the case in which software is written to solve a specific network
design/configuration problem the level of confidence in the results is lower because the
solution software will not be tested as well.

Many network optimisation problems were reviewed in Chapter 2 in order to identify
the most essential characteristics of network design and configuration problems. It was
observed that many network optimisation problems focus on determining how a set of
demands should be routed on a network.

The framework concept was motivated in Chapter 3. Then the generic model, which lies
at the heart of this framework, was described. As observed in Chapter 2, many of these
problems focus on routing of demands and this is what the generic problem then focuses
on. A set of nodes, links, demands and cost functions are input to the problem. The
solution to the problem is a minimum cost routing of the demands on the network. The
model permits arbitrary cost functions and consequently it can be used as an abstraction
for a large amount of different network design/configuration problems.

218

A number of different approaches to solving the problem were discussed. These were
based on the use of local search heuristics that are applicable to combinatorial
optimisation problems. Two particular approaches were chosen for use throughout the
remainder of the work - one based on a straightforward greedy algorithm and one based
on the simulated annealing algorithm.

The use of the framework to solve two very different network optimisation problems
was demonstrated in Chapters 4 and 5. The first problem is an enterprise network design
problem and the second is a diffserv/MPLS network configuration problem. In both
cases, it was shown that it is possible to use the framework to obtain solutions to the
specific problems.

In chapter 4, the use of this approach was illustrated in the context of a particular
enterprise network design problem. The objective in this problem was to design a
network of leased interconnects which can carry an enterprise’s inter-office voice and
data traffic at a minimum cost. The interconnects could be realised using either leased
lines, FR or ATM and could have arbitrary cost/capacity characteristics. The solution
involved determining a network topology as well as a routing for the demands on the
network. The network cost and the required link capacities are implied once the
topology and routing are specified.

The particular enterprise network design problem was mapped to the generic problem
and the generic problem solvers were used to obtain solutions, validating the use of the
framework. Using these problem solvers, 50 node problems could be solved in a matter
of hours. The time required to obtain a solution increased exponentially; hence, the
solution time quickly ran to days for problems larger than 50 nodes. Note that this is a
characteristic of the specific solution algorithm used: it is not something which is
characteristic of the framework approach.

This problem provided a context for comparing the two generic problems solvers - that
based on the greedy algorithm and that based on the simulated annealing algorithm. The
solutions obtained using the greedy algorithm were substantially better than those
obtained using the simulated annealing algorithm for all choices of the parameters of the
simulated annealing algorithm. Moreover, the solution obtained using the greedy
algorithm was of much higher quality for larger problems. The choice of state space was
not very suited to the use of the simulated annealing algorithm. Better results could be
obtained using a different choice of state space. This is discussed further below.

219

In Chapter 5, a core diffserv/MPLS network configuration problem was described. The
objective in this problem was to determine how to configure the network such that the
load could be balanced on the network while delivering the desired QoS to the
customers. This involved determining how the demands could be routed on the network
as well as determining how to configure the routers in the network.

In the specific problem, some of the demands were specified in terms of packet level
parameters. In the generic problem demands are characterised by a single parameter.
The mapping function mapped the demands characterised by multiple parameters in the
specific problem to a demand characterised by a single parameter for the generic
problem. This was done using a variant of the effective bandwidth concept that was
developed for ATM. Using this approach, packet level issues could be decoupled from
the routing problem. With the effective bandwidth concept it was possible to focus on
capacities - both used capacity and available capacity - and load balancing could be
performed by balancing these capacities on the network.

Load balancing was achieved in all cases, validating the use of the framework.
However, the amount of load balancing that was achieved was dependent on some
characteristics of the network. Specifically, the amount of links present in the network
had an impact on the amount of load balancing could be achieved. If there are more
links present in the network, then there are more options for routing a particular demand
and resulting load will be more balanced on the network.

The required QoS was delivered to the customers and this was verified through
simulation. No reports of doing this have been reported in the literature so far. Although
the approach involves allocating resources in a slightly conservative manner, the
resources were allocated in a manner which was more liberal than reserving resources
according to peak rate.

This framework could form the basis of the design of a network optimisation tool which
could be used to solve different network optimisation problems. The reusable solution
algorithms could form the core of the network optimisation tool and various mapping
functions could be developed to map a number of different specific problems to the
generic problem. Development of a module to solve a new problem would just involve
developing the mapping function and integrating it into the optimisation tool: something
which would certainly involve less effort than developing a customised tool to solve the
problem.

220

6.1 Contributions in this Thesis

The main contributions in this work can be summarised as follows:

• A flexible abstract network optimisation framework was developed;

• A generic problem on which the optimisation framework is based was developed;

• Approaches to solving the generic network optimisation problem based on
combinatorial optimisation were devised;

• An approach to designing enterprise networks with voice and data demands was
developed using the network optimisation framework;

• An approach to configuring core diffserv/MPLS networks based on this network
optimisation framework was developed.

A final contribution, which was used in the work above, but was not discussed in detail
is software to simulate a diffserv/MPLS network. This is an interesting and useful
contribution which has been used by others to simulate diffserv/MPLS networks.

6.2 Directions for Future Research

The work could be extended in a number of different ways. The directions for extending
the work can be divided into two areas: development of the framework and
development of the approaches to solve the two specific problems considered in this
work. Each of these is considered separately.

6.2.1 Development of the Framework

There are two further divisions that framework developments can take: the core of the
framework can be developed or the framework can be extended to accommodate more
and more cases. These are discussed separately in turn.

C o r e F r a m e w o r k D e v e l o p m e n t

It is conceivable that the generic problem proposed above has some deficiencies and
that it could be generalised so that it could be applied in more cases. For example, the
generic problem may be extended to incorporate traffic which has a broader scope than
a single destination - a single demand may originate at one node, but consist of traffic
destined for a number of nodes. Alternatively, the generic problem could be extended
such that some reliability constraints could be incorporated into the generic problem

221

model. The specific ways in which the generic model could be extended are unclear:
this is the research problem. While these ideas appear interesting, the purpose of this
framework is to make it general so that it can be applied in some set of cases.
Incorporating more and more functionality into the model could make it more flexible,
but at a cost of making it impossible to solve: it is necessary to find an appropriate
balance between generality and tractability.

The problem solvers at the core of the framework could also be improved. Different
algorithms could be used. Algorithms such as those referred to in Chapter 3 could be
implemented and used to solve the problem. In particular, an approach based on pre­
selection of paths could dramatically reduce the size of the state space and facilitate
solution of larger problems. Also, combinatorial heuristics which ‘learn’ as they
traverse the state space and learn characteristics of a good solution could be used.
Improved algorithms could improve the efficiency of the approach and/or the quality of
the solution obtained.

E x t e n s i o n o f t h e F r a m e w o r k

The framework can be extended: other specific problems can be identified and they can
be mapped to the generic problem. In principle, any mesh network design or
configuration problem in which the demands can be reduced to a single parameter and
the costs are a function of the demand can be solved using this approach. Hence, this
approach can be used to design circuit-switched networks, FR, ATM, SDH and IP based
networks, if the demands are appropriately specified and the appropriate mapping
functions determined. Also, the framework could be used to design networks which
incorporate a number of different types of demands. Similarly, this network
optimisation framework can be used to solve network configuration problems for
networks using the above technologies.

The framework could be developed into a comprehensive network optimisation tool
which could be used to solve different network design and configuration problems. The
tool could have different modes of operation - one corresponding to each specific
problem. The user would choose a mode of operation, enter the appropriate data,
perform the mapping, entering any data that was required in mapping the specific
problem to the generic problem and choose one of the generic problem solvers to obtain
a solution to the problem.

222

The big advantage of such a tool is that it could be used to solve many network
optimisation problems. Also, the tool could be designed to be easily extensible such that
new mapping functions could be easily configured to enable the tool to be used to solve
new problems.

6.2.2 Development of the Specific Problem Cases

The two specific problems studied here could also be developed further. These
developments involve making the specific model more sophisticated and introducing
more functionality into the mapping function to reduce this extra complexity to the
same generic problem. The development of each of these problems within the context of
the network optimisation framework is discussed here.

D e v e l o p i n g t h e E n t e r p r i s e N e t w o r k D e s i g n P r o b l e m

The enterprise network design problem could be extended by constructing more
complex traffic models for the traffic on the enterprise network and using these to
design the network. These traffic models could be models for more sophisticated
applications using the data network: videoconference applications, transaction based
processing, etc. Profiles of typical amounts of users could be constructed at each
location and these could be mapped to a set of demands which could be used in the
generic problem. The problem with this approach would be to determine how the traffic
mix can be reduced to the single parameter required in the generic problem. The
advantage of such an approach would be that the optimisation would result in more
cost-efficient network that accommodated the demands.

Another way that this problem could be developed is in terms of the variety of operators
and/or technologies that could be used to meet the needs of the enterprise. The customer
may have a choice of a number of different operators for some, say, long-distance and
costly links in the network. Alternatively, the enterprise may have the option of a
number of different technologies for a particular link. In either case, the result is a
choice between different links having different cost/capacity characteristics. The
specific enterprise network design problem discussed above does not support this: it
would need to be extended to accommodate this case. If it were extended in this way, a
way of incorporating the extension into the mapping function is described in Chapter 3.

223

The approach used to solve this problem could be improved by determining some less
conservative approach to allocating network resources. The AF traffic in particular
suffers from this very conservative approach and while this means that QoS assurances
can be made, it is probable that the same QoS assurances can be made if a less
conservative approach to choosing the effective bandwidth is used. An interesting
research problem would be to investigate different approaches to determining such an
effective bandwidth which result in less resources being allocated to the AF traffic, but
the required QoS being delivered.

Another direction in which the work could be extended is to permit some variation in
the characteristics of the EF traffic: customers could produce traffic which varies in
intensity with time but still require strict loss and delay bounds. This is in contrast to the
EF traffic considered in this model: there, the peak rate for the EF traffic is allocated in
the network. The variable EF traffic could be policed using dual leaky bucket policers
and non-conformant traffic could be dropped. As with the AF traffic, an effective
bandwidth could be determined for the EF traffic in this case which could be used in the
generic problem.

A third direction in which the work could be extended is to the case of more than two
drop precedences for the AF traffic. The problem described above assumes only two
drop precedences but the standards [RFC2597] specify that up to three drop precedences
are possible in each AF traffic class. The specific problem model described above
cannot cater for this case. Indeed, it is not clear what kind of assurances can be given
when all three drop precedences are used. This is an area which could warrant further
study.

Developing the diffserv/MPLS Network Configuration Problem

224

APPENDIX A Effective Bandwidth Determination For

A F Traffic

The problem of determining the effective bandwidth for the AF traffic is discussed
briefly in chapter 5. A high-level view of the approach is given there. A detailed
description of how this effective bandwidth is determined is given here.

A.1 Determining the Appropriate Effective Bandwidth

Many different approaches to effective bandwidth problems have been proposed (see
[Kel96] for an overview). Here, the objective was to use a simple approach which
performs better than the simplistic peak rate allocation strategy. The approach of
Courcoubetis and Weber described in [CFW94] was initially investigated, but proved
problematic because the model considered often resulted in large bandwidths - larger
than the peak bandwidth18. This approach was also somewhat limited because it
focussed on a single traffic flow. The approach described in Guerin et al [GAN91] was
then tried, since it extended the effective bandwidth concept to multiple traffic flows.
This was moderately successful and is described here.

It is important to note that the effective bandwidth work described here was carried out
in an ATM context in which the focus is on individual traffic flows - traffic flows
generated by a single application. Here, however, the objective is to determine an
effective bandwidth for an SLA in which many flows can be aggregated to together. In
both cases, the determination of the effective bandwidth is based purely on the declared
parameters and hence the same method can be used to determine an effective bandwidth
in each case. Here, the term flow is used to identify that for which it is necessary to
determine an effective bandwidth. In the ATM case, flow refers to the traffic generated
by an individual application, while in this case, flow refers to an aggregate.

18 This occurred because the expression they developed assumed that the buffer size was large. Here, to

ensure small delays, the buffer size is necessarily small in some cases. Hence, the expression that they

developed is not valid.

225

Guerin et al proposed an approach to determine the effective bandwidth of an aggregate
of a number of flows, but. it can also be used to determine the effective bandwidth of a
single flow. The emphasis in their work was on devising a means to obtain an effective
bandwidth quickly. The application that they envisaged was an ATM switch which
would be making many admission control decisions in a small amount of time: at that
time ATM was viewed as a successor to the telephone network and many believed that
ATM switches would have to handle requests for service in similar quantities to today’s
telephone networks. Consequently, admission control decisions had to be made quickly
and hence effective bandwidths had to be determined quickly.

They proposed an approach consisting of two methods of determining an effective
bandwidth. The resulting effective bandwidth is the lower of the two obtained using the
different methods. The first method is one in which buffered multiplexing is assumed
and the second is one in which bufferless multiplexing is assumed19. Buffered
multiplexing refers to a system in which traffic is buffered before it is allowed access to
the resource. Bufferless multiplexing refers to a system in which no such buffers exist
and if data requires access to a congested resource, it is lost. The latter are not realistic
systems, but are easier to model and can be used as some kind of approximation to
buffered systems.

In the buffered multiplexing method of determining an effective bandwidth, a Markov
model for the system is constructed and analysed. This is used to determine the capacity
required for the aggregate of flows. In the bufferless multiplexing method, the effective
bandwidth is determined by considering the stationary distribution of the number of
active flows in the system and choosing the effective bandwidth such that the
probability of the aggregate data rate of the flows exceeds the link rate is less than the
loss probability. Both of these methods of choosing an effective bandwidth are
conservative. Consequently, the smaller of the two can be chosen and it will still be a
conservative estimate of the effective bandwidth. Both of these methods are discussed
in more detail.

The first approach is largely based on the earlier work of Anick, Mitra and Sondhi
[AMS82]. They derived expressions for the overflow probability of a buffer which is
used to multiplex a number of on-off flows. The flows are assumed to be fluid sources

19 These are sometimes referred to as rate sharing and rate envelope multiplexing, respectively.

226

with exponentially distributed on and off times. The flow transmits at some fixed rate in
the ‘on’ state, and does not transmit any data in the ‘off state. The buffer is assumed
infinite.

The overflow expression developed by Anick, Mitra and Sondhi can be written as

P [x > B] = ' £ u l e ~ v,B
1=1

where x is the buffer occupancy, B is some fixed position in the buffer, K is the
number of multiplexed flows and u, and v,. are parameters that Anick, Mitra and
Sondhi show how to calculate. These parameters are difficult to calculate with the speed
required by Guerin et al, so they simplified this expression.

For larger buffers, i.e., B is large, the above expression is dominated by the term
containing the smallest v(, v,. = v0 so Guerin et al focus on this term. They also note
that for a significant part of the state space, the pre-multiplier u 0 is approximately 1.
Thus,

P [x > B) ~ e ~ v°B

and (from the workings of Anick, Mitra and Sondhi) v0 can be written as

K (S - K t ' r pesk)

V° ~ t on (I - t ') (K r pe3k - S) S

where S is the buffer service rate, t ' is the fraction of time the source is in the ‘on’
state, rpeakis the peak rate of the source and t°" is the mean duration of a burst, t ' can
be written as

t on + t os ■

The loss probability, P]oss{B) - the probability of loss in a finite buffer of size B - can
be approximated by the overflow probability, P[x > *]• <hen, can be written as

An approximation to the required buffer service rate, which is the effective bandwidth
for the aggregate set of sources, can be determined by choosing some loss probability,
P*QSS, rewriting the above equation with an equality and solving for S . This is

227

straightforward, since all of the other parameters are known. Thus, the aggregate
effective bandwidth of a number of homogeneous sources can be determined using the
buffered multiplexing model.

The effective bandwidth for an individual source is simply the aggregate effective
bandwidth divided by the number of sources, i.e.

where S ' is the effective bandwidth of an individual demand. This is then used in the
generic problem. However, some care must be taken when using this effective
bandwidth figure in the generic problem. As the number of multiplexed sources
increase, the size of the effective bandwidth decreases. Hence, if the effective
bandwidth is calculated based on the premise that a large number of sources will be
multiplexed but the actual number is quite small, then the effective bandwidth could be
underestimated. Since diffserv is designed for situations in which a large amount of
flows will be aggregated, it is assumed here that the amount of aggregation and the
number of demands will be substantial.

The effective bandwidth is obtained using the bufferless model in quite a different way.
The stationary behaviour of the flow aggregate is considered. The activity of the flows
can range from all flows being in the ‘on’ state to all flows being in the ‘off state. The
effective bandwidth is chosen as k rpaik, where k is chosen between 1 and K , such that
the loss is certain to be less than Ploss. This can be done by choosing k as the smallest
integer such that

where g , is the probability that i flows are simultaneously in the ‘on’ state. Noting that
the probability that i flows are on can be written as a binomial, the probability g i can
be written as

In [GAN91], Guerin et al chose to approximate this with a Guassian distribution - an
approximation that is valid if the number of flows is large. This was done for speed

K

K

i=k

2 2 8

reasons. Here, this approximation is not necessary, so the binomial expansion of g(. can
be used directly. Also, the number of flows in this case may be smaller and the
Gaussian distribution may not be a good approximation to the binomial. Thus, k can be
determined and the effective bandwidth, &rpeak, can easily be calculated.

Both approaches to obtaining an effective bandwidth are somewhat conservative: the
method based on the buffered multiplexing is conservative because the pre-multiplier,
u 0 can often be considerably less than 1. This is discussed in [GAN91] and in more
detail in [CLW94]; there is some discussion of this in [BCDM95]. Consequently,
working on the premise that this term is 1 will produce conservative results.

Similarly, the bufferless model is conservative. This is true because no buffering is
assumed when in fact there is some buffering. This buffering serves to reduce the
amount of loss and hence the amount of loss predicted by the bufferless model is an
overestimate. Since both methods result in conservative values for the effective
bandwidth, it is reasonable to choose the lower result as the effective bandwidth.

In Guerin’s approach, the only QoS measure is the loss probability. Here, the objective
is also to ensure that the delay remains below some specified threshold. This can be
done by permitting the queue size to be a design parameter; in Guerin’s approach, the
queue size was a fixed parameter. If the queue size is a design variable, there are two
degrees of freedom when choosing the parameters of the system - the queue size and
the effective bandwidth. This extra degree of freedom should permit both delay and loss
constraints to be satisfied in a substantial amount of cases.

If the queue size and the effective bandwidth are variable, then delay and loss
constraints can be satisfied. In general, small queue sizes are necessary to ensure small
delays for some fixed service rate. Similarly, small losses are usually only possible in
systems with larger queues. Hence, if both small losses and small delays are required, a
kind of tension arises and a compromise between these differing objectives may not be
possible for the given service rate. Increasing the queue service rate - the effective
bandwidth - can solve this problem. By doing this, some compromise queue size that
meets both the delay and the loss constraints can be used to meet the requirements.
Hence permitting the queue size and the effective bandwidth to vary enables both the
loss and delay constraints to be met.

229

Permitting queue sizes to be variable is not unreasonable in practice; existing routers are
very flexible and facilitate sophisticated configuration of their buffer memory. In
particular, it is not difficult to create a number of queues of specified size at an interface
and define some scheduler discipline to enable the queues to be served.

One realistic constraint that could be added here is that the queue size should not exceed
some pre-specified amount of buffer memory, i.e. the sum of all the queue sizes at an
interface should not exceed the available buffer memory at the interface. However, this
constraint is not incorporated into the problem here.

In the buffered multiplexing method used by Guerin some relationship between the
queue size and the required capacity is developed. If both of these are free variables,
then many queue size/capacity combinations exist that can satisfy the loss constraints.
Not all of the solutions satisfy both the loss and delay requirements - this immediately
rules out some of them. A trade-off exists in the remaining solution set: the trade-off
exists between queue size and effective bandwidth - larger queue sizes result in smaller
effective bandwidths and smaller queue sizes result in larger effective bandwidths. The
question is then which queue size/effective bandwidth combination should be chosen

Here, a policy of choosing the lowest effective bandwidth is used. Choosing the lowest
bandwidth is consistent with a bandwidth-constrained mindset, i.e. bandwidth is
somewhat limited in the system. If there is an abundance of bandwidth, then diffserv is
arguably not necessary (Kelly discusses this in [KelOO]) - it is implicitly assumed in this
discussion that such an abundance does not exist and that congestion will occur at least
sometimes.

To determine the appropriate effective bandwidth and buffer size, then, an additional
relation is required. This relation relates the delay to the queue size and the effective
bandwidth:

where B is the queue size and h is the effective bandwidth.

This can be used in conjunction with the Guerin’s buffered multiplexing model to
obtain a queue size and effective bandwidth that meets the loss and delay requirements.
Moreover, the resulting solution is the minimum effective bandwidth solution.

230

The two equations cannot be solved easily using analytical means. An iterative numeric
approach is used in which the buffer size is modified and the resulting effective
bandwidth determined. This is repeated until the effective bandwidth obtained is as
small as possible, but still meets the loss and delay constraints.

There is no queue in the bufferless multiplexing model used by Guerin and the
determination of the effective bandwidth in this method is not dependent on any buffer
size. In this case an effective bandwidth is determined first using the approach described
above and a queue size is then calculated using the equation relating delay, buffer size
and effective bandwidth above.

As before, the overall effective bandwidth/buffer size couplet is chosen by choosing the
minimum effective bandwidth obtained via the two approaches and the queue size is its
associated queue size.

This enables an effective bandwidth and buffer size to be obtained for an aggregation of
a set of homogeneous flows. It is assumed that the effective bandwidth of each
individual flow can be obtained by dividing the aggregate effective bandwidth by the
number of flows. Similarly, the queue size required for each flow can be obtained by
dividing the aggregate queue size by the number of flows.

Using this approach, the effective bandwidth for a demand can be determined if it is

multiplexed through a single buffer. If the flow traverses a number of buffers, then
some loss and delay can occur at each buffer and the overall loss and delay can be more
unpredictable.

Here, the emphasis is on end-to-end assurances: the objective is to be able to make end-
to-end delay and/or loss assurances to the customer. The single buffer results must be
applied in a way that enables end-to-end assurances to be made. This is done by
assuming that the end-to-end performance parameters can be divided equally between
the number of stages traversed by the demand. Since the number of multiplexing stages
a flow traverses is not known in advance, it is assumed - for the purposes of calculating
the effective bandwidth - that the flow traverses some maximum number of
multiplexing points.

If the maximum number of multiplexing points is ramax and the end-to-end loss and
delay are /end_t0.end and Jend.t0_end respectively, then the permitted loss and delay at each
queue can be written as

231

f = end-to-end
queue '

I

and

d, d,end-to-end
queue m,'max

The end-to-end delays, however, do not consist only of queueing delays - they also
consist of transmission and propagation delays. Hence these must be taken into account
when calculating the effective bandwidth. A conservative approach to doing this is to
assume the maximum route length, and assume some propagation and transmission
delays and subtract these from the delay budget to obtain the amount of delays that can
be incurred from queueing.

It is straightforward to calculate these values when the end-to-end performance
objectives are specified. These are then used as inputs - together with the flow
characteristics - to the procedure above to obtain a buffer size and bandwidth that can
deliver the required QoS.

Figure A -l: Topology used in simple scenario used to validate approach to

determine effective bandwidth.

A. 2 Testing the Effective Bandwidth Approach

A rudimentary test was performed to test the validity of this approach. In this test, a
number of traffic sources are multiplexed into a single buffer. The objective is to
demonstrate that the approach to determining the effective bandwidth and buffer size
described above meets the loss and delay constraints. The effective bandwidth and
buffer size for each of the flows is determined using the approach described above.
These are then added to obtain the overall effective bandwidth required to serve the

Sources IVfcflt
Node

232

queue. Similarly, the buffer sizes associated with each effective bandwidth are added to
obtain the total buffer size. The scenario was then simulated and the resulting loss and
delay measured.

The experiment contained 9 flows multiplexed in a single buffer. The topology is
illustrated in Figure A-l. All of the source were on-off sources with exponentially
distributed on and off times. Of the 9 flows, one was monitored and delay statistics for
the monitored source were obtained. The amount of loss occurring at the multiplexing
stage was also measured.

In this experiment, the access links from the source nodes to the multiplexing node have
a capacity of IMb/s. The link that all of the sources are being multiplexed onto has a
capacity equal to the aggregate effective bandwidth, as does the access link to the
destination nodes. The queue size at the multiplexing node is obtained as described
above.

The source parameters were chosen at random. These are shown, together with the
source effective bandwidth in Table A-l.

Source On-time Off-time Peak Rate Packet Effective Buffer

(s) (s) (b/s) Size Bandwidth Size (bits)

(bytes) (b/s)

1 0.575758 1.12453 515002 333 507090 5072.02

2 0.482431 1.17507 261687 375 209350 2093.5

3 0.291242 0.622087 768253 217 614603 6146.03

4 1.17983 0.379901 369304 359 366556 3665.77

5 0.824973 0.840969 452478 317 447618 4476.32

6 0.452081 1.01662 473894 222 379115 3791.15

7 0.585979 1.14312 956476 398 942031 9420.17

8 1.11577 0.203031 596784 359 592185 5921.63

9 1.04545 0.492173 987064 292 978739 9786.38

Table A-l: Source parameters used in experiment to validate approach to

determine effective bandwidth.

233

The effective bandwidths were chosen to satisfy a 2% loss requirement and a delay
requirement of no more than 50ms. As discussed above, the approach used to determine
effective bandwidths is somewhat conservative and the loss and delay obtained when
the system was simulated were considerably lower than the target loss and delay
parameters. The experiment was run once: 3000 seconds of simulation time were
simulated. The overall buffer loss was 0.052% in this experiment. Clearly, this is much
lower than the target loss rate of 2%.

The confidence interval on the loss rate is difficult to determine accurately. However,
other simulations were performed that produced similar results. This coupled with the
fact that the difference between the loss rates - target and simulated - is so substantial,
can be used to argue that the loss rate obtained in any real situation is indeed
substantially lower than the target loss rate20.

Observe that in a number of eases, the effective bandwidth is quite close to the peak
rate, but in other cases, the effective bandwidth is substantially lower. These lower
effective bandwidths, when aggregated, will result in a substantially lower resource
allocation than peak rate allocation. Consequently, even though the approach used here
is quite conservative, savings can still be made.

The end-to-end delay distribution as perceived by the foreground source is shown in
Figure A-2. Most (over 88%) of the packets are not subject to a delay longer than
5.4ms. The remainder are subject to varying delays with a maximum delay of 50ms.
The variation in the delays arises from differences in the queuing delay experienced by
the packets.

The minimum delay is comprised of transmission delays and propagation delays. The
propagation delays on each of the three links is 0.1ms, totalling 0.3ms overall. The
transmission delays are substantially greater. In this experiment, the packet size for the
foreground traffic is 333 bytes. The first link is a IMb/s link, resulting in a transmission
delay for a 333-byte packet of 2.664ms. The second link has the aggregate effective

20 Some initial investigations were performed to obtain confidence intervals on this result. The work of

[Raa95] was studied, but it differs slightly from the case here. His emphasis is on obtaining confidence

intervals for different parameters - specifically the queue occupancy parameters. His work is not entirely

unrelated to the problem of obtaining confidence intervals here. However, the measured loss and delay

are sufficiently far from the target loss and delay that it is highly unlikely that the simulation results

would not meet the loss and delay targets.

234

bandwidth capacity - 4.53Mb/s in this case - and incurs a transmission delay of
0.588ms. The third link in the connection also has this capacity and incurs the same
delay. The total propagation and transmission delays are then 4.14ms.

0.6

3 Occurrence of delay

H

^ ^ ^ ^ ^ ^ ^ ^
Tim e in terval (s)

Figure A-2: End-to-end delay distribution as perceived by foreground traffic

source in experiment.

In the results obtained many of the packets were delivered with a latency of 4.14ms.
These packets experienced no queuing: the link onto which all the traffic is being
multiplexed was free when these packets arrived at the multiplexer. Those packets
delivered with a latency of greater than 4.14ms experienced some queuing.

Both the loss and the delay are much smaller than the target rates: it is clear that the
approach used to determine the effective bandwidth is conservative. However, the
objective here is not to devise a highly efficient approach to determine an effective
bandwidth; rather it is to use some approach to determine an effective bandwidth in the
generic network design approach to enable some solution to this problem to be
obtained. Clearly, this works for sources multiplexed through a single stage.

Extending this to the case in which there are multiple multiplexing points is also
possible. The previous example was extended to five multiplexing points. In this case,
the foreground traffic was mixed with interfering traffic at a number of multiplexing
points. This interfering traffic was then routed off the path of the foreground traffic and

235

more background traffic was introduced to be multiplexed with the foreground traffic.
The scenario is illustrated in Figure A-3.

M U H te tt) r . DetnJ^MBW B
Node Node

Figure A-3: Abstract topology used in more complex scenario used to validate

approach to determine effective bandwidth. In this case there are more

multiplexing stages. Five multiplexing stages were used in the experiments.

Source On-time Off-time Peak Rate Packet Effective Buffer
(s) (s) (b/s) Size Bandwidth Size (bits)

(bytes) (b/s)

0 0.575758 1.12453 515002 333 507090 5072.02

1 0.482431 1.17507 261687 375 209350 2093.5

2 0.291242 0.622087 768253 217 614603 6146.03

3 1.17983 0.379901 369304 359 366556 3665.77

4 0.824973 0.840969 452478 317 447618 4476.32

5 0.452081 1.01662 473894 222 379115 3791.15

6 0.585979 1.14312 956476 398 942031 9420.17

7 1.11577 0.203031 596784 359 592185 5921.63

8 1.04545 0.492173 987064 292 978739 9786.38

9 0.821026 0.869587 409329 465 404908 4049.07

10 0.465589 0.367046 503246 316 493872 4937.74

11 0.872332 1.02891 702712 359 695555 6954.35

12 0.651232 0.917737 495386 483 488659 4886.47

236

13 0.541648 1.23828 255571 354 204457 2044.57

14 0.427325 0.226729 693966 261 680110 6800.54

15 1.15323 0.265306 445632 290 442275 4422.61

16 1.16979 0.748018 782519 285 776579 7764.89

17 1.13791 0.943095 593867 487 589224 5892.33

18 1.02961 0.614206 421479 306 417859 4178.47

19 0.460382 0.936742 789225 369 631380 6313.8

20 1.08936 0.629673 864075 453 857050 8570.56

21 0.316561 1.23774 568665 356 454932 4549.32

22 0.178773 1.20486 911938 428 547163 5471.63

23 0.578707 0.957083 821161 321 808623 8087.16

24 0.250301 0.733097 416847 461 333478 3334.78

25 0.734586 0.201555 895385 205 884945 8848.88

26 1.07787 0.467172 485929 489 481955 4820.56

27 1.22267 1.09037 619082 266 614568 6146.24

28 0.791624 0.517932 490800 278 485346 4852.29

29 0.308785 0.201999 283588 272 275851 2757.57

30 0.598541 0.971787 416384 351 410233 4102.78

31 0.180436 0.63237 609607 265 487686 4876.86

32 0.363414 1.20782 512666 257 410133 4101.33

33 0.353482 0.89705 290174 435 232139 2321.39

34 0.136809 0.688506 382310 479 229386 2293.86

35 1.19158 0.720129 903772 408 897038 8970.95

36 1.21623 0.7006 548925 467 544921 5448

37 0.932256 1.12261 804774 395 797093 7969.97

38 0.913785 0.834934 454839 480 450423 4503.17

237

39 0.894327 0.252154 529779 385 524650 5245.36

40 0.278354 0.615036 733444 207 586755 5867.55

Table A-2: Source parameters for multistage experiment.

Multiplexing Stage Loss Probability
1 0.076%
2 0.052%
3 0.016%
4 0.044%
5 0.060%

Table A-3: Loss probabilities at each multiplexing stage.

The parameters of all the sources and the effective bandwidths and buffer sizes are
shown in Table A-2. As before, the simulation was run for 3000 simulation seconds.
The amount of packet loss at each buffer was again very small. The packet losses per
buffer are shown in Table A-3. The aggregate packet loss for the flow was 0.39%
which, again, is very substantially less than the target value of 2%.

Delay Frequency

0 1 5

0 05

□ □ D O 0 .0 .a

CT <0 Cv .'V <0 Çv js3 c> cy <v c,* sy & cy» <y & j y çy'

«- csr <s .& $ 'S’ ^
v$>-

.O' O

Tim e In terval (s)

f f S

Figure A-4: Frequency of delays in multistage effective bandwidth experiment.

The end-to-end delay perceived by the end station is shown in Figure A-4. Over 87% of
the packets are delayed between 12-16ms, which is still substantially lower than the

238

target delay. However, it is worth noting that the delay is increasing and that ultimately,
the delays may be comparable to the target delays. The considerable increase in delay
over the single stage case can be accounted for by the increased number of transmission
delays and propagation delays: the queuing delays are still very small, although they are
greater than they were in the single stage case.

The above experiments illustrate that the effective bandwidth approach chosen can
deliver the required loss and delay in the case in which the source characteristics are
known. The AF traffic class, however, usually permits the customers to exceed their
traffic contract and will attempt to carry this excess traffic if the traffic class is not
congested21. Consequently, the total traffic in the network can, in extreme cases, greatly
exceed the contracted traffic. In this case, it is difficult to assure that the target operating
conditions are met.

The AF traffic class does permit differentiation of packets into different drop
precedences. A well configured diffserv network supporting AF traffic classes should
be able to carry traffic conforming to the traffic contract as higher priority than non-
conformant traffic. The lower priority traffic should then be dropped in case of
congestion. Thus, while the AF class may be congested, it can assure delivery of traffic
up to the traffic contract: traffic in excess of the contract receives no such assurances.
The delays can also be assured: the buffer sizes are chosen on the premise that there is
no differentiation of traffic. As such, the queue sizes are chosen such that even if the
queues are almost always full, the packets will be delivered in no more than the required
delay. If this traffic differentiation does exist, and the queues are configured such that
the low priority traffic is only delivered when queues are uncongested, then it should
have little impact on the high priority traffic and hence the delays can also be assured.

21 This is an AF configuration issue: it can be operated to work in a different fashion, but this is the most

likely mode of operation.

239

APPENDIX B S c h e d u l e r A l g o r i t h m Us e d in C h a p t e r 5

A particular scheduler is used in Chapter 5. There, the details of the scheduler are
omitted since they are not central to the discussion. However, the scheduler
implementation used is quite interesting and is included here for completeness.

This scheduler determines which of a number of queues should have access to a link. In
this case, the queues are the queues for the diffserv traffic: specifically, the scheduler
serves 4 queues - an EF queue, an AF1 queue, an AF2 queue and a BE queue. The
scheduler controls how much of the link resources are allocated to each of the above
queues.

The scheduler used is a variant of a W R R scheduler. Typically, this type of scheduler
operates on a round basis — in each round, it serves each queue a certain number of
times. The scheduler implemented here is slightly different: in each round, each queue
is allocated some amount of ‘credit’ which is proportional to its weight. As the queue is
served, the credit is used up. This is more flexible than the less adaptive system which
simply serves each queue a certain number of times.

The scheduler iterates through the queues in the system checking if they have packets
ready for transmission and credit available to transmit the packets. If queue i has just
been served, this iteration process starts at queue i + 1. This makes it unlikely that a
single queue will be served twice in succession. Using this approach, the intervals
between serving a particular queue are not very long.

The fraction of the link resources allocated to each queue is dependent on the weight
associated with the queue. The link resources are divided in proportion to the weights.
For example, if the weights were 1:2:3:5, then l/ll of the link resources would be
allocated to the first queue, 2/11 of the link resources to the second queue, etc.

The scheduler used here operates on a packet-by-packet basis: the scheduler chooses a
particular queue to serve, removes a packet from the queue, transmits it on the link and
then determines which queue to serve next. This is in contrast to the way most realistic
schedulers operate: each time they serve a queue, a number of packets are typically

240

removed. However, for the purposes of this work, the scheduler operating on a packet-
by-packet basis is reasonable.

The scheduler used here has some more interesting details. The next round is
automatically initiated once the aggregate credit - the sum of the credit available to all
the queues - drops below some limit. If only one queue has packets ready for
transmission and has no credit available, the next round is started early. This is to ensure
that the utilisation of the link remains high.

Starting rounds early in this fashion can cause credit to build up for queues that do not
use their available credit over some period of time. Ultimately, this can lead to large
accumulations of credit for particular queues. This is undesirable because it means that
the previously dormant queue can start generating traffic and dominate access to the
link for a prolonged period, during which time the other queues will not get access to
the resource.

The above undesirable situation is avoided by imposing a limit on the amount of credit
that can accumulate for a particular queue. This is done by testing the amount of credit
allocated to each queue when increasing the available credit because the next round is
starting. If the increase causes the available credit to exceed the limit, the available
credit is reduced to the limit.

Limiting the credit available to any queue in this fashion means that the scheduler may
not divide the available link capacity in exactly the proportions of the specified weights
over the long term. If a particular queue is not being used, then the credit will
accumulate up to the limit. Once the limit is reached, the queue starts to lose capacity
that it could have used. Consequently, the proportions specified by the weights no
longer reflect the usage of the link.

So, while the scheduler resources may not be divided according to the weights over the
long term, in periods of congestion, the scheduler resources are divided in the
appropriate proportions. This is a critical distinction. It is only in congested periods that
the operation of the scheduler really matters. In uncongested periods, the capacity of the
resource will exceed the demand, and the QoS perceived by all the users will be
excellent. Outside of these times, the difference in QoS delivered by each service class
can be observed.

The particular algorithm used for the scheduler in the simulations described in chapter 5
is listed in Algorithm 3.

241

Procedure StartNextRound:
AggregateBytes=AggregateBytes+BytesPerRound
For i=l to NumberOf Queues

Bytes(i)=Bytes(i)+Weights(i)*AggregateBytes
If (Bytes (i) >Threshold (i))

Bytes(i)=Threshold(i)
EndProcedure

Step 1: Initialisation
Set BytesPerRound,MinimumAggregateBytes,AggregateBytes
For i = l to NumberOfQueues

Set Threshold (i), Weights (i)
Set Bytes (i) = 0

Set CurrentQ=0
Call StartNextRound

Step 2: Find Q ueue to Service
Set QueueToServe= -1
For j =CurrentQ to CurrentQ+NumberOfQueues

Set PacketSize=SizeOfNextPacket(j)
If((PacketSize>0) and (Bytes(i) > PacketSize))

Set QueueToServe=j
Break

If (QueueToServe ! = -1)
Goto 3

Call StartNextRound
For j =CurrentQ to CurrentQ+NumberOfQueues

Set PacketSize=SizeOfNextPacket(j)
If((PacketSize>0) and (Bytes(i) > PacketSize))

Set QueueToServe=j
Break

If (QueueToServe=-l)
Goto 4

D e f in e P r o c e d u r e :

242

St e p 3: Se r v ic e Q u e u e , R e d u c e C o u n t e r s A p p r o p r ia t e l y

Set AggregateBytes=AggregatesBytes- Packet Size
Set Bytes(CurrentQ)=Bytes(CurrentQ)-PacketSize
If (AggregateBytes<MiniraumAggregateBytes)

Call StartNextRound
Goto 2

St e p 4: W a it f o r P a c k e t

Sleep

Algorithm 3: Scheduling algorithm used in the diffserv queue/scheduler systems

described in Chapter 5.

References

[ABGOl] D. Awduche, L. Berger, D.-H. Gan, T. Li, V. Srinivasan, G. Swallow,
“RSVP-TE: Extensions to RSVP for LSP Tunnels,” IETF Internet Draft, February
2001, Work in progress.

[AC00] G. Ahn and W. Chun, “Design and Implementation of MPLS Network
Simulator Supporting LDP and CR-LDP,” in P roceedings o f IE E E International

Conference on N etw orks 2000 (ICO N2000), IEEE, 2000.

[ACFH91] G. R. Ash, J.-S. Chen, A. E. Frey and B. D. Huang, “Real Time Network
Routing in a Dynamic Class-of-Service Network,” in Proceedings o f the 13th

In ternational Teletraffic C ongress, Elsevier, 1991.

[ACL94] G. R. Ash, K.K. Chan, J.-F. Labourdette, “Analysis and Design of Fully
Shared Networks,” In P roceedings o f the 14th In terna tiona l Teletraffic Congress,

Elsevier, 1994.

[ACM81] G. R. Ash, R. H. Cardwell and R. P. Murray, “Design and Optimisation of
Networks with Dynamic Routing,” B ell System Technical Journal, vol. 60, pp. 1787-
1820, 1981.

[AggRSVP] IETF Internet Draft draft-ietf-issll-rsvp-aggr-02.txt, “Aggregation of RSVP
for IPv4 and IPv6 Reservations,” March 2000.

[AH93] G. R. Ash and B. D. Huang, “An Analytic Model for Adaptive Routing
Networks,” IE E E Transactions on C om m unications, November 1993.

[AKK81] G. R. Ash, A. H. Kafker and K. R. Krishnan, “Servicing and Real-Time
Control of Networks with Dynamic Routing,” B ell System Technical Journa l, vol. 60,
no. 8, October 1981.

[AlmOO] K. C. Almeroth, “The Evolution of Multicast: From the MBone to Interdomain
Multicast to Intemet2 Deployment,” IE E E N etw ork, January/February 2000.

[AMS82] D. Anick, D. Mitra and M. M. Sondhi, “Stochastic Theory of a Data Handling
System with Multiple Sources,” B ell System Technical Journal, vol. 61, no. 8, pp 1871-
1894, 1982.

244

[ArmOO] G. Armitage, “MPLS: The Magic Behind the Myths,” IEEE Communications

Magazine, January 2000.

[Arv94a] A. Arvidsson, “Management o f Reconfigurable Virtual Path Networks,” in

Proceedings o f the 14th International Teletraffic Congress, Elsevier, 1994.

[Arv94b] A. Arvidsson, “Real Time Management o f Virtual Paths,” in Proceedings o f

Globecom '94, IEEE, 1994.

[AS90] G. Ash and S. D. Schwartz, “Traffic Control Architectures for Integrated

Broadband Networks,” International Journal o f Digital and Analog Communications

Systems, vol. 3, pp. 167-176, 1990.

[Ash85] G. R. Ash, “Use o f a Trunk Status Map for Real-Time DNHR,” in Proceedings

o f the 11th International Teletraffic Congress, Elsevier, 1985.

[Ash95] G. R. Ash, “Dynamic Network Evolution, with Examples from AT&T's

Evolving Dynamic Network,” IEEE Communications Magazine, July 1995.

[BBC01] J. C. R. Bennett, K. Benson, A. Chamy, W. F. Courtney and J.-Y. LeBoudec,

“Delay Jitter Bounds and Packet Scale Rate Guarantees for Expedited Forwarding,” in

Proceedings o f IEEE Infocom 2001, IEEE, 2001.

[BCDM95] D .D. Botvich, T. Curran, N. G. Duffield, S. Murphy, “Allocating

bandwidth from traffic descriptors,” in Proceedings o f the 3rd IFIP workshop on

Performance Modelling and Evaluation o f ATM Networks, Bradford, UK, July 1995.

[BCMM94] D. D. Botvich, T. Curran, A. MacFhearraigh and S. Murphy, “Hierarchical

Approach to Video Source Modelling,” in Proceedings o f the 15th UK Teletraffic

Symposium, Cambridge, UK, May 1994.

[BFC93] A. Ballardie, P. Francis, J. Crowcroft, “Core Based Trees (CBT): An

Architecture for Scalable Inter-Domain Multicast Routing,” in Proceedings o f ACM

SIGCOMM1993, San Francisco, August 1993.

[BG87] D. Bertsakas and R. Gallagher, Data Networks, Prentice-Hall, 1987.

[BGZ94] N. G. Bean, R. J. Gibbens and S. Zachary, “The Performance o f Single

Resource Loss Systems in Multiservice Networks,” in Proceedings o f the 14th

International Teletraffic Congress, Elsevier, 1994.

245

[BJSOO] L. Breslau, S. Jamin, S. Shenker, “Comments on the Performance of

Measurement-Based Admission Control Algorithms,”' in Proceedings o f IEEE Infocom

2000, IEEE, 2000.

[BMM98] A. Balakrishnan, T. L. Magnanti and P. Mirchandani, “Designing

Hierarchical Survivable Networks,” Operations Research, vol. 46, no. 1,

January/February 1998.

[CF98] D. D. Clark and W. Fang, “Explicit Allocation o f Best Effort Packet Delivery

Service,” IEEE/ACM Transactions on Networking, August 1998.

[CFW94] C. Courcoubetis, G. Fouskas and R. Weber, "On the Performance of an

Effective Bandwidth Formula," in Proceedings o f the 14th International Teletraffic

Congress, Elsevier, 1994.

[CFZ94] I. Chlamtac, A. Farago and T. Zhang, “Optimizing the System o f Virtual

Paths,” IEEE/ACM Transactions on Networking, December 1994.

[CGH81] F. R. K. Chung, R. L. Graham and F. K. Hwang, “Efficient Realization

Techniques for Network Flow Patterns,” Bell System Technical Journal, vol. 60, pp.

1771-1786, 1981.

[CL94] K.-T. Cheung and F. Y.-S. Lin, “On the Joint Virtual Path Assignment and

Virtual Circuit Routing Problem in ATM Networks,” in Proceedings o f IEEE Globecom

'94, 1994.

[CLW94] G. L. Choudhury, D. M. Lucantoni and W. Whitt, “On the Effectiveness of

Effective Bandwidths for Admission Control in ATM Networks,” in Proceedings o f the

14th International. Teletraffic Congress, Elsevier, 1994

[CMW89] R. H. Cardwell, C. L. Monma, T.-H. Wu, “Computer-Aided Design

Procedures for Survivable Fiber Optic Networks,” IEEE Journal on Selected Areas in

Communications, October 1989.

[CN98] S. Chen and K. Nahrstedt, “An Overview o f Quality o f Service Routing for

Next Generation High-Speed Networks: Problems and Solutions,” IEEE Network,

Novermber/December 1998.

[Dee91] S. Deering, “Multicast Routing in a Datagram Internetwork,” PhD Thesis,

Stanford University, 1991.

246

[DEF94] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Lue, L. Wei, “An

Architecture for Wide-Area Multicast Routing,” in Proceedings o f ACM SIGCOMM

1994, 1994.

[DGG99] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan and

J. E. van der Merwe, "A Flexible Model for Resource Management in Virtual Private

Networks," in Proceedings o f ACM SIGCOMM '99, 1999.

[DH98] B. Doshi and P. Havardshana, “Broadband Network Infrastructure of the

Future: Roles of Network Design Tools in Technology Deployment Strategies,” IEEE

Communications Magazine, May 1998.

[EM93] A. Elwalid and D. Mitra, “Effective Bandwidth o f General Markovian Traffic

Sources and Admission Control o f High Speed Networks,” IEEE/ACM Transactions on

Networking, June 1993.

[FJ93] S. Floyd and V. Jacobson, “Random Early Detection gateways for Congestion

Avoidance,” IEEE/ACM Transactions on Networking, August 1993.

[FKSS99] W.-c. Feng, D. Kandlur, D. Saha and K. Shin, “A Self-Configuring RED

Gateway,” in Proceedings o f IEEE Infocom ‘99, IEEE, 1999.

[FTOO] B. Fortz and M. Thorup, “Internet Traffic Engineering by Optimizing OSPF

Weights,” in Proceedings o f IEEE Infocom 2000, IEEE, 2000.

[FV01] K. Fall and K. Varadhan (eds.), “The ns Manual,” April 2001. Available from

<http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf>

[GAN91] R. Guerin, H. Ahmadi, M. Nagshindeh, “Equivalent Capacity and its

Application to Bandwidth Allocation in High-Speed Networks,” IEEE Journal on

Selected Areas in Communications, September 1991.

[GB89] A, Girard and M.-A. Bell, “Blocking Evaluation for Networks with Residual

Capacity Adaptive Routing,” IEEE Transactions on Communications, December 1989.

[Gir90] A. Girard, Routing and Dimensioning in Circuit-switched Networks, Addison-

Wesley, 1990.

[Gir93] A. Girard, “Revenue Optimization of Telecommunication Networks,” IEEE

Transactions on Communications, April 1993.

[GJ79] M. R. Garey and D. S. Johnson, Computers and Intractability : A Guide to the

Theory o f NP-Completeness, Freeman, 1979.

247

http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf

[GK77] M. Gerla and L. Kleinrock, “On the Topological Design of Distributed

Computer Networks,” IEEE Transactions on Communications, January 1977.

[GKW90] G. Gopal, C.-k. Kim and A. Weinrib, “Dynamic Network Configuration

Management,” in Proceedings o f IEEE ICC ‘90, IEEE, 1990.

[GKW91] G. Gopal, C.-k. Kim and A. Weinrib, “Algorithms for Reconfigurable

Networks,” in Proceedings o f the 13th International Teletraffic Congress, Elsevier,

1991.

[GL93] A. Girard and B. Liau, “Dimensioning of Adaptively Routed Networks,”

IEEE/ACM Transactions on Networking, August 1993.

[GM84] M. Gondran and M. Minoux, Graphs and Algorithms, Wiley Interscience

Series in Discrete Mathematics, Wiley, 1984.

[GMP89] M. Gerla, J. A. S. Monteiro and R. Pazos, “Topology Design and Bandwidth

Allocation in ATM Nets,” IEEE Journal on Selected Areas in Communications,

October 1989.

[GN89] B. Gavish and I. Neuman, “A System for Routing and Capacity Assignment in

Computer Communications Networks,” IEEE Transactions on Communications, April

1989.

[GW90] A. Gersht and R. Weihmayer, “Joint Optimization o f Data Network Design and

Facility Selection,” IEEE Journal on Selected Areas in Communications, December

1990.

[HB94] M. Herzberg and S. J. Bye, “An Optimal Spare-Capacity Assignment Model for

Survivable Networks with Hop Limits,” in Proceedings o f IEEE Globecom ’94, IEEE

Press, 1994.

[HBU95] M. Herzberg, S. J. Bye and A. Utano, “The Hop-Limit Approach for Spare-

Capacity Assignment in Survivable Networks,” IEEE/ACM Transactions on

Networking, December 1995.

[Hui88] J. Y. Hui, “Resource Allocation for Broadband Networks,” IEEE Journal on

Selected Areas in Communications, December 1988.

[Hui95] C. Huitema, Routing in the Internet, Prentice Hall, 1995.

248

[IMG98] R. R. Iraschko, M. H. MacGregor and W. D. Grover, “Optimal Capacity

Placement for Path Restoration in STM of ATM-Mesh Survivable Networks,”

IEEE/ACM Transactions on Networking, June 1998.

[JamOl] B. Jamoussi, (ed.) “Constraint-Based LSP Setup using LDP”, IETF Internet

Draft, February 2001, Work in Progress.

[KelOO] F. P. Kelly, “Models for a self-managed Internet,” Philosophical Transactions

o f the Royal Society A358, 2000.

[Kel96] F. P. Kelly, “Notes on effective bandwidths,” in: Stochastic Networks: Theory

and Applications, Eds. F. P. Kelly, S. Zachary and I. Ziedens, Royal Statistical Society

Lecture Note Series vol. 4, 1996.

[Ker93] A. Kershenbaum, Telecommunications Network Design Algorithms, McGraw-

Hill Series in Computer Science, McGraw-Hill, 1993.

[KGS96] S. Kheradpir, A Gersht and A. Shulman, “Dynamic Bandwidth Allocation and

Path Restoration in SONET Self-Healing Networks,” IEEE Transactions on Reliability,

June 1996.

[KGV83] S. Kirkpatrick, C. D. Gellat and M. P. Vecchi, “Optimization by Simulated

Annealing,” Science, 1983.

[KKG91] A. Kershenbaum, P. Kermani and G. A. Grover, “Mentor: An Algorithm for

Mesh Network Topological Optimization and Routing”, IEEE Transactions on

Communications, April 1991.

[Kle76] L. Kleinrock, Queueing Systems, Volume 2: Computer Applications, Wiley,

1976.

[KLT98] H. Kim, W. E. Leland, S. E. Thomson, "Evaluation o f Bandwidth Assuarance

Service using RED for Internet Service Differentiation," preprint, 1998.

[KS99] E. W. Knightly and N. B. Shroff, “Admission Control for Statistical QoS:

Theory and Practice,” IEEE Network, March/April 1999.

[Lin94] K. Lindberger, “Dimensioning and Design Methods for Integrated ATM

Networks,” in Proceedings o f the 14th International Teletraffic Congress, Elsevier,

1994.

[Llo96] R. Lloyd-Evans, Wide Area Network Performance and Optimization, Addison-

Wesley, 1996.

249

[LM97] D. Lin, R. Morris, “Dynamics o f random early detection,” in Proceedings o f

ACMSIGCOMM ’97, 1997.

[LWD01] F. LeFaucheur, L. Wu, B. Davie, S. Dhavari, P. Vaananen, R. Krishnan, P.

Chevai, J. Heinanen, “MPLS Support of Differentiated Services” IETF Internet Draft,

April 2001, Work in Progress.

[LY91] M.-J. Lee and J. R. Yee, “A Partial Branch and Bound Design Algorithm for

Reconfi gurable Networks,” in Proceedings o f ICC ’91, IEEE, 1991.

[LY95] M.-J. Lee and J. R. Yee, “A Logical Topology and Discrete Capacity

Assignment Algorithm for Reconfigurable Networks,” Operations Research,

January/February 1995.

[MBC00] S. Murphy, D. Botvich, T. Curran, “On design of diffserv/MPLS networks to

support VPNs,” in Proceedings o f the 16th UK Teletraffic Symposium, May 2000.

[MBC94] J. McGibney, D. D. Botvich and T. Curran, “Modern Global Optimization

Heuristics in the Long Term Planning of Networks,” in Proceedings o f ATNAC '94,

1994.

[MBC98] S. Murphy, D. D. Botvich and T. Curran, “Cost comparisons o f private voice

network solutions,” in Proceedings o f the 15th UK Teletraffic Symposium, Durham,

UK, March 1998.

[MBC99] S. Murphy, D. D. Botvich and T. Curran, “Traffic Partitioning using

Algorithmic Mechanisms for Cost Analysis,” in Proceedings o f the 16th International

Teletraffic Congress, July 1999.

[McG95] J. McGibney, Modern Global Optimization Heuristics in the Long Term

Planning o f Telecommunications Networks, Master’s Thesis, School o f Electronic

Engineering, Dublin City University, 1995.

[Med94] D. Medhi, “A Unified Approach to Network Survivability for Teletraffic

Networks: Models, Algorithms and Analysis,” IEEE Transactions on Communications,

February/March/April, 1994.

[Med95] D. Medhi, "Multi-Hour, Multi-Traffic Class Network Design for Virtual Path-

based Dynamically Reconfigurable Wide-Area ATM Networks," IEEE/ACM Trans, on

Networking, December 1995.

250

[Med97] D. Medhi, "Models for Network Design, Servicing and Monitoring o f ATM

Networks based on the Virtual Path Concept," Computer Networks and ISDN Systems,

Vol. 29, No. 3, 1997.

[MG97] D. Medhi and S. Guptan, “Network Dimensioning and Performance of Multi­

service, Multi-rate Loss Networks with Dynamic Routing,” IEEE/ACM Transactions on

Networking, December 1997.

[Min92] D. Minoli, Enterprise Networking: Fractional Tl to SONET, Frame Relay to

BISDN, Artech House, 1992.

[Min93] D. Minoli, Broadband Network Analysis and Design, Artech House, 1993.

[Obr98] K. Obraczka, “Multicast Transport Protocols: A Survey and Taxonomy,” IEEE

Communications Magazine, January 1998.

[OMP1D] IETF Internet Draft draft-ietf-ospf-omp-02.txt, “OSPF Optimized Multipath

(OSPF-OMP)”, February 1999.

[PF97] V. Paxson and S. Floyd, “Why We Don't Know How To Simulate The Internet,”

to appear in IEEE/ACM Transactions on NetM>orking.

[Raa95] K. Raatikainen, “Simulation-Based Estimation of Proportions,” Management

Science, July 1995.

[Ree95] C. R. Reeves (ed.), Modern Heuristic Techniques for Combinatorial Problems,

Advanced Topics in Computer Science Series, McGraw-Hill, 1995.

[RFC1142] IETF RFC 1142, “OSI IS-IS Intra-domain Routing Protocol,” February

1990.

[RFC 1584] IETF RFC 1584, “Multicast Extensions to OSPF,” March 1994.

[RFC1633] IETF RFC 1633, “Integrated Services in the Internet Architecture: an

Overview,” June 1994.

[RFC1633] IETF RFC 1633, Integrated Services in the Internet Architecture: an

Overview, June 1994.

[RFC 1771] IETF RFC 1771, “A Border Gateway Protocol 4 (BGP-4)”, March 1995.

[RFC2189] IETF RFC 2189, “Core Based Trees (CBT version 2) Multicast Routing,”

September 1997.

251

[RFC2205] IETF RFC 2205 “Resource ReSerVation Protocol (RSVP) — Version 1

Functional Specification,” September 1997.

[RFC2236] IETF RFC 2236, “Internet Group Management Protocol, Version 2,”

November 1997.

[RFC2328] IETF RFC 2328, “OSPF Version 2,” April 1998.

[RFC2362] IETF RFC 2362 “Protocol Independent Multicast-Sparse Mode (PIM-SM):

Protocol Specification,” June 1998.

[RFC2453] IETF RFC 2453, “RIP Version 2,” November 1998.

[RFC2474] IETF RFC 2474, “Definition o f the Differentiated Services Field (DS Field)

in the IPv4 and IPv6 Headers,” December 1998.

[RFC2475] IETF RFC 2475, “An Architecture for Differentiated Services,” December

1998.

[RFC2475] IETF RFC 2475, “An Architecture for Differentiated Services,” December

1998.

[RFC2597] IETF RFC 2597, “Assured Forwarding PHB Group,” June 1999.

[RFC2598] IETF RFC 2598, “An Expedited Forwarding PHB,” June 1999.

[RFC2638] IETF RFC 2638, “A Two-bit Differentiated Services Architecture for the

Internet,” July 1999.

[RFC2661] IETF RFC 2661, “Layer Two Tunneling Protocol ‘L2TP’,” August 1999.

[RFC2698] IETF RFC 2698, “A Two Rate Three Color Marker,” September 1999.

[RFC2859] IETF RFC 2859, “A Time Sliding Window Three Colour Marker

(TSWTCM),” June 2000.

[RFC3031] IETF RFC 3031, “Multiprotocol Label Switching Architecture,” January

2001.

[RFC3036] IETF RFC 3036, “LDP Specification,” January 2001.

[RFC3107] IETF RFC 3107, “Carrying Label Information in BGP-4,” May 2001.

[RFC793] IETF RFC 793, “Transmission Control Protocol,” September 1981.

[RJSV98] M. Rohne, T. Jensen, I. Svinnset and R. Venturin, “Designing VP Networks,”

in Proceedings o f the 14th Nordic Teletraffic Seminar, Copenhagen, Denmark, 1998.

252

[RKMKOO] R. Rabbat, K. Laberteaux, N. Modi, J. Kenney, "Traffic Engineering

Algorithms Using MPLS for Service Differentiation," in Proceedings o f ICC 2000,

IEEE, 2000.

[RMV96] J. Roberts, U. Mocci and J. Viriamo, (Eds.) Broadband Network Teletraffic:

Final Report o f Action COST 242, Springer, 1996.

[Ros95] K. Ross, Multiservice Loss Models for Broadband Telecommunications

Networks, Springer, 1995.

[Sie94] R. Siebcnhaar, “Optimized ATM Virtual Path Bandwidth Management under

Fairness Constraints,” in Proceedings o f IEEE Globecom ’94, IEEE, 1994.

[SRC84] J. H. Saltzer, D. P. Reed and D. D. Clark, “End-To-End Arguments in System

Design,” ACM Transactions in Computer Systems, November, 1984.

[Sys86] R. Syski, Introduction to congestion theory in telephone systems, North-

Holland, 1986.

[TL00] A. Tomaszewski and J. Lubacz, “A Network Planning Model,” First Polish-

German Teletraffic Symposium, Dresden, Sept. 2000.

[TMW97] K. Thompson, G. J. Miller, and R. Wilder, “Wide-Area Internet Traffic

Patterns and Characteristics,” IEEE Network, November/December 1997.

[VHS96] P. A. Veitch, I. Hawker and D. G. Smith, “Administration of Restorable

Virtual Path Mesh Networks,” IEEE Communications Magazine, December 1996.

[Wu92] T.-H. Wu, Fiber Network Service Survivability, Artech House, 1992.

[Whi97] Paul P. White , “RSVP and Integrated Services in the Internet: A Tutorial,”

IEEE Communications Magazine, May 1997.

[WY90] E. W. M. Wong and T.-S. Yum, “Maximum Free Circuit Routing in Circuit-

Switched Networks,” in Proceedings o f IEEE Infocom '90, IEEE, 1990.

[XN99] X. Xiao and L. M. Ni, “Internet QoS: the Big Picture,” IEEE Network,

March/April 1999.

[Yag71] B. Yaged, Jr., “Minimum Cost Routing for Static Network Models,” Networks,

vol. l ,p p . 139-172, 1971.

253

[YST99] H. Yoshimura, K.-I. Sato, and N. Takachio, “Future Photonic Transport

Networks Based on WDM Technologies,” IEEE Communications Magazine, February

1999.

254

P u b l ic a t io n s A r is in g F r o m T h is W o r k

[MBCOO] S. Murphy, D. Botvich, T. Curran, “On design of diffserv/MPLS networks to

support VPNs,” in Proceedings o f the 16th UK Teletraffic Symposium, May 2000.

[MBC99] S. Murphy, D. D. Botvich and T. Curran, “Traffic Partitioning using

Algorithmic Mechanisms for Cost Analysis,” in Proceedings o f the 16th International

Teletraffic Congress, July 1999.

[MBC98] S. Murphy, D. D. Botvich and T. Curran, “Cost comparisons o f private voice

network solutions,” in Proceedings o f the 15th UK Teletraffic Symposium, Durham,

UK, March 1998.

[BCDM95] D .D. Botvich, T. Curran, N. G. Duffield, S. Murphy, “Allocating

bandwidth from traffic descriptors,” in Proceedings o f the 3rd IFIP workshop on

Performance Modelling and Evaluation o f ATM Networks, Bradford, UK, July 1995.

[BCMM94] D. D. Botvich, T. Curran, A. MacFhearraigh and S. Murphy, “Hierarchical

Approach to Video Source Modelling,” in Proceedings o f the 15th UK Teletraffic

Symposium, Cambridge, UK, May 1994.

255

