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ABSTRACT

The aim  of th is  project has been to develop the assem bly language functions 
needed to allow easy im plem entation in  real-tim e of a  secure speech channel. The 
theory of security systems is introduced and developed. Encryption algorithm s are 
described. A lib rary  of multi-precision arithm etic routines has been w ritten  for use 
on the  TMS320C25 digital signed processor. These routines are  compatible w ith 
code produced by the  TMS320C25 C Compiler. M ulti-precision arithm etic  is used 
in  public key encryption which requires large num ber arithm etic  for security and 
which also has real-tim e operation requirem ents. An overview of DSP use in  this 
kind of application is given, the design, im plem entation and  tes t of these routines 
is described and some application examples and tim ings are  shown.
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1. INTRODUCTION

1.1 Introduction to Security Systems

The recent communications revolution has resulted in the proliferation of technological 
data transfer systems. There has been a large increase in the availibility of various
communication devices - television, radio, cellular telephones and computer data links -
with a corresponding decrease in the cost to the user. Previously information transfer 
using letters and telegrams had more clearly defined levels of security. If the letters 
were personally delivered or the telegraph operators were trustworthy only a physical 
interception of the letter or a wire-tap could compromise the security of the channel. 
The workings of modem communications systems are generally invisible to the user, 
so the security offered is also not readily apparent

The growth in the communication of information raises questions such as when does a
system require security and, following on from that, assuming that it does need to be 
made secure, just how much security is required? If infonnation is worth transmitting, 
it is because there is a value associated with it If access to this information by an 
unauthorised party can cause any loss in value, then making the system more secure 
will have cost benefits. While both the communication system and the security 
enhancement method used may be highly technical, these kinds of systems are often 
best understood by comparing them with ordinary mail.

If the infonnation is very valuable, it is possible that the usual delivery system is not 
adequate and a courier may have to be used at a much higher cost. Or it may be 
that a courier needs to be used just once to allow the transmission of some secret 
information which can be used in the future to make secure the transfer of 
information over an insecure channel i.e. the usual mailing system. Questions also 
arise concerning the possibility of not only passive eavesdropping, but active 
interference with the information being sent, by an unauthorised user of the system, so 
that the authentication of the origins and of the complete correctness of the message is 
also an issue. These topics must be considered in general conceptual terms before 

relating them to a specific application. The study of the theory of mathematical 

systems for solving these security problems is known as cryptography.
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Ordinary paper mail is an example of a possible application for cryptographic security 
methods. Other applications include electronic mail, automated teller machines, computer 
password systems, military friend-or-foe identification systems, nuclear test-ban treaty 
monitoring and voice communication. The electronic method of information transfer is 
closely analagous to the paper mailing method and thus uses all the standard 

encryption schemes which are outlined later. Automated Teller Machines (ATMs) and 

computer password systems have similar security problems : it can be dangerous to 
store Personal Identification Numbers (PINs) or passwords in a direct form because 
access to a table of these values would seriously compromise the security of the
system. The method used to overcome this threat is to store only the result of an 
encryption of the PINs or passwords, which is either impossible or infeasible to 
decrypt, so that access to the table is not useful to an intruder in the system. Military
identification friend-or-foe systems rely on a friendly aircraft being able to encrypt
correctly a message sent by the challenging aircraft. The message is never repeated so 
the recording of previous challenges does not allow the system to be compromised. 
Public-key cryptography with its digital signature capabilities facilitates the transmission 
of seismic observatory data for monitoring nuclear test bans. The method used allows 
the host nation to decrypt the transmitted message to ensure that the appropriate data 

and nothing else is being transmitted but the message cannot be altered without
detection by the monitoring country. Voice communication systems have seen fewer 
applications of cryptographic security methods but because of their widespread use it is 
logical that speech systems require at least as much security enhancement as text-based 

communication systems [1].
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1.2 Project Motivation and Aims

In spite of the proliferation of text-based communication and its improved quality both 
in terms of speed and ease of use, people in general still prefer to use direct verbal 
communication methods. Speech can be used to communicate a lot of information 
quickly and it does not require training for use. It is not surprising therefore that the 
telephone is a more favoured communication medium than the letter or electronic mail. 
Speech raises technical problems in its generation, storage, recognition and transmission 
but these problems are in the domain of scientists and engineers, while the ordinary 
user wants and expects high quality easy-to-use voice systems [2].

Low transmission bit rates are required for the Mobile SATellite communication 
(MSAT) applications which need speech coding in the range of 4 kbits/sec according 
to Jayant [3]. INtemational MARitime SATellite (INMARSAT) applications require 
transmission rates as low as 6.4 kbits/sec for speech communication which includes 
error protection coding. Another use of low bit rates is in speech storage : if speech
data can be reduced to 4 kbits/sec it will be possible to store an hour of speech on a
single 16 MegaByte memory chip [3]. Present digital speech technology allows 
"network quality" transmission - subjectively rated as high-quality or near-transparent 
coding - at transmission rates of 16 kbits/sec or more. "Communications quality" which 

allows natural telephone communication with easily detectable speech degradation is 
achievable at rates around 8 kbits/sec. Below this transmission rate the speech becomes 
"synthetic quality", still with high levels of intelligibility but with inadequate 
naturalness and speaker recognizability. It is at this lower transmission rate and level
of speech quality that encryption-based secure voice systems are availible [2]. This
kind of poor transmission quality is not generally acceptable and it is found in 
working systems only where security is at a very high premium, particularly in 
military applications. In this kind of environment the lack of clarity in transmitted 
message does not matter as much because users are usually trained individuals working 
with a limited message vocabulary.
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The development of secure speech systems at "communications quality" transmission 

rates, approximately 8 kbits/sec, will make such systems as cellular telephone networks 

secure. At present accidental "crossed-lines" or pick-up of a transmitted signal can 
compromise the integrity of a link Once the aim of practical encryption techniques at 
these medium range transmission rates is realised, any reduction in bit rate due to 
developments in speech coding technology will facilitate enhanced or at least equal
levels of security. Also speech quality at about 8 kbits/sec is likely to improve to
"communications quality", so secure communication can become achievable without 
unacceptable signal degradation [3].

At present there are two general classes of secure speech systems in use. One relies 
on scrambling the signal while the other is encryption-based. An example of a 
scrambling device is the DVS200 produced by Marconi which allows scrambling at 
rates up to 4.8 kbits/sec [4]. The use of scramblers to make transmitted speech more 
secure encounters severe limitations due to the nature of speech. Scrambling tries to 
separate a signal into small segments and to juggle these segments around before 
transmission, in a manner that will make the transmitted message unintelligible to an 
eavesdropper. The segments are then reassembled at the receiver. The scrambling is 
done in the analog domain and may involve time elements or frequency elements or
both. Even in its most complicated form scrambling is limited both by the inherent
redundancy of speech and by the requirements of a speech channel. The segments 
cannot be made arbitrarily small because this would result in a lack of intelligibility, 
caused by the smoothing sections between segments at the receiver being too 
significant compared to the actual signal. There is a small number of possible 
frequencies that can be scrambled within a speech bandwidth. Also a large proportion 
of speech is silent and one piece of silence will fit in a possible descrambled solution 

just as well as any other piece of silence. Finally the high level of redundancy 
inherent in speech means that the message can be made out if only a small number 

of segments have been correctly realigned. Scrambling is like a jig-saw puzzle with a 
limited number of pieces and observable continuity within the underlying picture, while 
a small proportion of correctly aligned pieces will let the solver in on the bigger 
picture. A computer can be used relatively easily for this puzzle solution, and the 

breaking of the security of a scrambling system in this jig-saw way is not even 
dependent on any lack of security in the key generation and distribution method [2].

4



f r e q u e n c y  

(  3  K H z  B W  )

2 , 1 4 , 1 1 , 4 2 , 4

3 , 4 1 . 1 2 , 2 3 , 3

1 , 3 3 , 2 2 , 3 4 , 3

3 , 1 4 , 4 4 , 2 1 , 2

Fig. 1.1: Speech scrambling : Each segment is modulated, to a different frequency
band and is moved up or delayed by a discrete multiple of a timing period [2].
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Encryption methods are not effected by the problems which limit the security of 
scrambling but they are effected by other problems. Encryption is carried out in the
digital domain, operating on a speech signal either in block or bit-stream format.
Scrambling offers limited security because it is unable to remove the underlying 
structure of a speech signal. Because encryption takes in and sends out data in a 

digital format, the underlying form is more easy to disguise. The outputted data should 

appear completely random and unintelligible, with no detectable structure, to the
eavesdropper [2]. The drawbacks of encryption methods are due to the difficulty in
carrying out this procedure at high enough bit rates. The problem of key distribution
is an important issue in scrambling and is even more significant in encryption as 
encryption offers higher levels of security. A secure method of key distribution is 
crucial to the maintenance of the security offered by the general workings of an 
encryption algorithm. While conventional secret-key cryptosystems offer good security, 
the key exchange problem is such that for an encryption scheme to work in a large 
computer or telephone network, it is likely that either a public-key system or a hybrid 
system, involving public key initialisation of a private key for a secret-key system, 
must be used. The security implications of using a secret-key cryptosystem are such 
that Diffie in his paper "The First Ten Years of Public-Key Cryptography" [1] can
cite two known cases in which key information was sold by workers in sensitive 
American installations to the Russians. If a hybrid system or a public-key system had 
been used the keys would have been for short term transmission periods and less 
information would have been jeopardised.

Over the last few years several technological developments have come together to 
make secure encryption-based speech systems possible at high enough bit rates. The 
whole area of encryption, particularly public key encryption, has seen innovations
which have moved number theory algorithms from being theoretical to commercial.
From being a challenging hypothesis in 1975, public key encryption has progressed to 
working systems. There are still limits : "The fastest RSA implementations run at only 
a few thousand bits per second, while the fastest DES implementations run at many 
million" [1] ( RSA is the Rivest, Shamir and Adleman algorithm which is the leading 

public-key system, while DES is the Data Encryption Standard which is the industry 

standard secret key-system ). It is true though, in spite of these limitations, that public 
key encryption has moved from being a new and fertile area for research to an area 

which has seen many commercial applications.
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In parallel with theoretical advancements, there has been an evolution of 
microprocessors which now have the capability to carry out numerically intensive 
number theory operations at high speed. A digital signal processor ( DSP ) is a chip 
on which the type of operation that occurs frequently in digital signal processing 
applications, such as correlations and fast fourier transforms, is implemented in a 

single instruction. Operations which are complex and slow on a general puipose 

microprocessor are made simple and fast on a digital signal processor by being 
implemented in hardware. In particular, digital signal processors have a hardware 
multiply, generally with parallel accumulate, data move and register manipulation 
operations.

All public key encryption techniques rely on observations from number theory and 

very large numbers must be used in these number theory operations for genuine 
security. In order to deal with numbers which are larger than the single-precision word 
length imposed by a microprocessor the numbers must be represented in a multi-word 
or multi-precision format Hardware devices which support multi-precision arithmetic 
are not yet availible so there is a need for the software development of multi-precision 
arithmetic routines.

The Multi-Precision Arithmetic C Library ( MIRACL ) developed by Dr. Michael 
Scott [5] is a library of nearly 100 routines written mostly in C which covers all 
aspects of multi-precision arithmetic. The package also allows the use of large rational 
numbers without rounding. The multi-precision integer routines in the library are based 
on Knuth’s classic algorithms for multi-precision arithmetic which are presented in 
Volume 2 of his work "The Art of Computer Programming" [6]. In MIRACL these 

routines are optimised for speed and efficiency in C code but with the time-critical 
numerically intensive sections written in assembly language for a wide range of 
machines. This library provides the basis for the development of cryptographic 
applications and includes two public-key cryptography systems : the Rivest Shamir and 
Adleman [7], and the Blum and Goldwasser systems [13]. Several routines are also 
provided for factoring large numbers which is necessary both in key generation for 

public-key encryption and in attempts at cryptanalysis. The encryption routines provided 
in the library can be used for secure data transmissioa
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The same classical algorithms by Knuth, upon which the integer routines in MIRACL 

are based, have been used as the basis for the multi-precision arithmetic routines 
written for the TMS320C25 digital signal processor. The aim of this project is to
provide similar encryption facilities to those in MIRACL which are for data
transmission, at a speed which is appropriate for speech. The DSP routines are
compatible with cross-compiled C code and the aim has been to make them as
compatible as possible with the MIRACL package. The encryption applications 
developed have been written in C code and the Texas Instruments C Compiler links in 
the DSP routines for the time-critical numerically intensive operations. The benefits of 
high level coding in C are apparent as applications are easy to write while the low 
level DSP routines ensure a fast implementation for real-time applications. The 
multi-precision arithmetic DSP routines have been written to be general purpose so, 
while the primary objective has been their use in the encryption schemes outlined in 
this thesis, they are flexible enough to be used in other cryptographic or number 
theoretical applications.
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1.3 Thesis Overview

Section 1.1 is concerned with giving a general overview of security systems including 
examples and some ideas about when security is necessary, without getting too 
specific. Following on from these ideas it is possible to outline the motivation and 
aims for this project. The importance of speech as a communication system is 
developed in Section 1.2. The state of the art in speech transmission is outlined and 
then a description is given of speech scrambling methods which shows the need for 
the more secure encryption-based approach. Next a brief introduction is given which 
describes the reasons why speech encryption has become possible, including hardware 
developments and theory improvements over the last sixteen years. The Multi-Precision 
Arithmetic C Library is described. This leads to the aim of the project which can be 
summed up as providing some of the functionality of the MIRACL package for the 
purposes of easy development of public-key encryption algorithms for real-time 
applications.

Cryptography is the area of study that deals with the solution of the security problems 
which have been outlined in the introduction. It is necessary to look at this theory 
before attempting to produce any solution to these kinds of problem, particularly when, 
as in this project, it is hoped to develop general-purpose tools for differing 
applications. Chapter 2 provides an introduction to cryptography which includes 
definitions and explanations. The leading secret-key system, the Data Encryption 
Standard, and its limitations are discussed. Public-key systems are introduced and 

examples are given. Issues such as the authentication problem and the evaluation of 
encryption schemes are discussed. Finally another algorithm is introduced : the Blum, 
Blum and Shub pseudo-random number generator, which has potential in public-key 
speech applications.
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The development of multi-precision arithmetic functions in TMS320C25 assembler has 
formed the bulk of the work in this project. These functions are described in Chapter
4. Along with a prototype and a brief outline of the use and peculiarities ( if any ) 
of each function, a low level description, a general explanation, a test procedure with 
results and a sub-section on timing is given for each functioa Before these results are 
given, the general design and test philosophies applied in library development are 
outlined in Chapter 3. The usual ideas about modularity and extensive documentation 
for high-level programming are both more difficult and more important to apply in 
assembler development. An introduction is also given to digital signal processors with 
multi-precision arithmetic applications in mind. The number representation method 
employed and function usage are explained in this chapter. A brief description is given 

of the tools used in the development of the library.

The next stage in the project was to look at using the library functions which had 
been developed for some specific applications. These include the general arithmetic 
operation of exponentiation, which is regularly used in public-key sytems, the Rivest, 
Shamir and Adleman algorithm [7] and the Blum, Blum and Shub generator [8]. Code 

is given for these applications, which uses the DSP functions, in Chapter 5, and 
timings are outlined including comparisons with some results available in research 
literature. This naturally leads to Section 6, the Conclusion. Here the benefits and 
limitations of the project are discussed and recommendations are given for improved 
methods of tackling the problem of speech security.

The appendices include the assembly language source code for all the library functions 
and an example of the division algorithm which was used in the early testing of that 
function. The code developed for a demonstration of a Rivest Shamir Adleman 

algorithm file encryption is given. This example illustrates an application which makes 
use of the assembly language library.
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2. INTRODUCTION TO CRYPTOGRAPHY

Fig. 2.1 Block diagram of secure speech communication system [2] 

2.1 Definitions and Explanations of Terms

Cryptography is the study of mathematical systems for solving the security problems of 
privacy and authentication. The sender enciphers the message or plaintext into 

ciphertext which should appear random and meaningless to anyone without full 
knowledge of the system. Decryption is the inverse operation to encryption and is 
carried out by the receiver who converts the ciphertext back to plaintext form. The 
difference between coding and encryption is that if the set of rules or algorithm used 

is public knowledge no further information is required in a coding scheme to decode a 
message. Knowledge of the key is required as well as knowledge of the algorithm in 

an encryption scheme in order to be able to decrypt a message. The algorithm is in 
fact assumed to be public knowledge in encryption schemes, with security dependent 
on the key and the ability of the algorithm to magnify apparent randomness. In 
conventional secret-key cryptosystems the additional information to allow both 
encryption and decryption is called the key. Therefore the key must be kept secret and 

must be transmitted over a private channel. The encryption scheme is used to enhance
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the security of the public channel over which the message is transmitted. These terms 
are use-dependent : a telephone or letter may be considered to be private channels for 
most people’s needs but public for sensitive or classified information transfer. In this 
case a courier is often used to transmit the key providing security at a cost

Most encryption algorithms are not absolutely secure. The major exception is the 
one-time pad which is a special type of mono-alphabetic cipher. A mono-alphabetic 
cipher is a system in which each letter of the alphabet of the message space is
mapped directly to a letter in the cipher space. The one-time pad requires different
offsets for each letter in the message so that the key is as long as the message.
While the encrypted message is provably secure, it remains necessary to securely
transmit the key.

Practical encryption requires if not unconditional security, computational security. This 
means that the message should not be determinable at any less expense in 
computational power and time than the value of the message [9]. Therefore the 
evaluation of a system should take into account the value of the message and likely 
theoretical or technical developments which could reduce the cryptanalyst’s or 
encryption system breaker’s costs.

2 2  The Data Encryption Standard [10 (pp.503-510),ll]

Because there are so many possible secret-key encryption schemes and because of the 
sensitivity of the security area, the National Bureau of Standards in the United States 
decided on one particular algorithm as the standard for the transfer of non-classified 

information. This standard is only binding on government agencies who must come up 

with a valid reason if they do not use it, but because of the large market these 

agencies constitute and the general acceptance of the algorithm for non-govemmental 
business applications, the Data Encryption Standard ( DES ) has become the de facto 

secret-key encryption industry standard [10 (pp.503-510),ll].
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The DES algorithm is a product cipher which works by performing a series of 
relatively simple permutations and substitutions on the message block based on a secret 
key. The strength of the algorithm is due to the non-linear increase in complexity 
which these steps produce. Shannon describes the use of permutations and substitutions 
in an encryption algorithm as resulting in diffusion and confusion of the message 

respectively [30 (p.92)].

Fig. 23. Block diagram of the Data Encryption Standard Algorithm [10 (pp.503-510)].

13



P-BOX

Fig. 2 3  Permutation Box

S-BOX

3 to a

decoder

8 to 3 

encoder

Fig. 2.4 Substitution Box



Product Cipher

SI S5 S9

PI
S2

P2
S6

P3
S10

P4
S3 S7 Sll

S4 SB S12

Fig. 2 3  Product Cipher

There has been controversy over the small size of key chosen for the DES algorithm. 
A 56 bit key size is used, following recommendations from the National Security 
Agency ( N.S.A. ), even though I.B.M., who designed the algorithm, originally wanted 
a 128 bit key. There have been suggestions that the N.S.A. wanted a key size which 
would allow them to cryptanalyse ciphertexts by exhaustive key search using thp.ir 
massive computational resources while keeping the key long enough to prevent others 
doing the same. This allegation should be taken into account when evaluating which 
encryption scheme should be used in any application. The cost of cryptanalysing a 
ciphertext should be greater than the value of the message. If the key is changed 
regularly, perhaps using a public system to set up the secret key, then the DES can 
still be an appropriate algorithm to use in some applications.
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2.3 Public Key Systems

The point which causes the most difficulty in the working of a conventional 
cryptosystem is that the key must be kept secret and thus transmitted over a secure 

channel. This gives rise to a key management scheme with an exponential overhead 
for secure operation : to increase a network from- size N to N+l requires the 
generation of N new keys.

Fig. 2.6 Conventional Cryptosytem [6]

$  : Estimated plaintext P ; Plaintext C : Ciphertext
D : Decryption function E : Encryption function K : Key

The most notable feature of conventional secret-key cryptosystems ( Fig. 2.6 ) is that 
the same key is used at the transmitter for encryption and at the receiver for 
decryption and as a result the key must be transmitted over a secure channel. In 
describing and designing cryptosystems, the cryptanalyst is assumed to have full access 
to any insecure channels and also to have knowledge of the encryption scheme being
used so that the security of the system is purely based on the security provide by the
key. The cryptanalyst tries to guess the message by exploiting any weakness in the 
encryption algorithm used or by using exhaustive key search. An analysis of the 

ciphertext is usually considered to be successful when a message which makes sense 
has been derived from the ciphertext
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Public key encryption is a new approach to the key distribution problem first 

expounded by Diffie and Heilman in their landmark paper : New Directions in 

Cryptography [12]. The idea is partly developed from the concept of one-way 
functions. One-way functions are easy to compute but difficult to invert. This 
characteristic has been used to protect computer password tables. Instead of storing 

passwords, the result of password mappings by a one-way function are stored. Thus 
unauthorized access to the table does not compromise security and the table can still 
establish the validity of a password [1].
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If the one-way function has a "trap-door", some secret information which makes
inversion computationally feasible, we have a public key cryptosystem. The forward 
mapping is encryption, while use of the trapdoor to invert this mapping is decryption.

These properties were outlined by Diffie and Heilman more formally, describing the
requirements on both the encryption and decryption functions :

Er2 : { P } -> { C }

Dr i  : { C } -> { P }

with constraints :

i) for every K in { K }, Ejq  is the inverse of Djq  .

ii) for every K in { K } and P in { P }, the algorithms E m  ^  Djq  are easy
to compute.

iii) for almost every K in { K }, each easily computed algorithm equivalent to 

°K1 is computationally infeasible to derive from Er 2 •

iv) for every K in { K }, it is feasible to compute inverse pairs Ejq  and D^i 
from K.

{ P } => plaintext space : set of all possible plaintext values.
{ K } => key space : set of all possible key values.
{ C } => cipthertext space : set of all possible ciphertext values.

This scheme is outlined in Diffie and Heilman’s New Directions in Cryptography [12].

18



Fig. 2.7 : Public-Key Cryptosystem [6]
P : Plaintext C : Ciphertext K : Key
£■£2 : Encryption function Dyi\ •' Decryption function

In a public-key cryptosystem the cryptanalyst has the same key information as the 
transmitter and access to the same ciphertext that is received by the receiver. The 
security of the system relies on the infeasibility of computing K2 from knowledge of 

Kl.

2.4 Examples

It is illustrative to look at examples of practical public key encryption schemes. The 
Rivest Shamir Adleman cryptosystem was among the first produced. It is also among 

the most resilient to cryptanalysis and there has been no refutation of the postulation 
that breaking the system is at least equivalent to the problem of factoring. Exponential 
key exchange relies on the comparative difficulty in taking logarithms compared to 
raising a number to a power.
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2.4.1 R.S.A. [1,7]

1) N is the product of 2 primes P and Q.

2) <D(x) Euler totient function
=> number of numbers less than x relatively prime to x.

3) Euler’s theorem x ^ O  mod N = 1 => x^CN) mod n  = 1

4) Observe <D(N) = ( P-l )( Q-l )

5) Pick e.

6) Calculate d such that ( e * d ) mod 4>(N) = 1
=> ( e * d ) = k 0(N) + 1

7) Publish e, N.

8) C = Me mod N

9) M = Cd mod N

= M«1 mod N 

= Mk i<N)+l mod N

= M mod N

eg P = 17 Q = 31

N = P * Q = 527 <S(N) = ( P-l )( Q-l ) = 480

Choose e = 7 Calculate d = 343

If M = 2, C = NF mod N = 2? mod 527 = 128

Decryption :

M = C 1 mod N = 128343 mod 527 

= 128256 * 12864 * 12816 * 12S4 * 1282 * 1281 mod 527 

= 2
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because 128 mod 527 = 128,
1282 mod 527 = 16384 mod 527 = 47,
1284 mod 527 = 472 mod 527 = 2209 mod 527 = 101
1288 mod 527 = 1012 mod 527 = 10201 mod 527 = 188
12816 mod 527 = 1882 mod 527 = 35344 mod 527 = 35
12832 mod 527 = 351 mod 527 = 1225 mod 527 = 171
12864 mod 527 = 1712 mod 527 = 29241 mod 527 = 256
128128 mod 527 = 2562 mod 527 = 65536 mod 527 = 188
128256 mod 527 = 1882 mod 527 = 35344 mod 527 = 35

and
35 * 256 * 35 * 101 * 47 * 128 mod 527 = 2

The primes chosen for use in an RSA application should be chosen according to the
desired encryption block size with full regarded for the latest factoring developments. 
Depending on the application the choice of primes may or may not be done in real 
time. Public-key encryption is the main proposed application of this project but the 
aim of the project is to produce a library of multi-precision arithmetic routines on a 
digital signal processor which are compatible with cross-compiled C code. The 
discussion of various encryption algorithms is therefore mainly for background theory 
and it has not been attempted to be exhaustive in dealing with these algorithms. For 
this reason such issues as the choice of suitable RSA primes are left to be dealt with 
when a specific application has been chosen by any user of the library developed in 
this project



2.4.1 Exponential Key Exchange [1]

1) XA randomly chosen over l,2,...,q-l

XA
Y a = a  mod q a  is a fixed primitive element of GF(q)

i.e known to all.

Alice publishes Y^.

XB
2) Bob publishes Yg = a  mod q

XA
3) Alice calculates K^b  = YB mod q

xAxB
= a  mod q

XB
4) Bob calculates K^b  = YA mod q

5) If Y^, y b  only known, not X^, Xq , must perform discrete logarithm on YA or

y b .
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2 5  Digital Signatures

If a public key cryptosystem has the commutative property :

e K2 ( Dk i(M) ) = M and Dr i  ( Ek2(m) ) = M

it can be used to solve the problem of authentication i.e. to provide a digital 
signature. The ciphertext space and plaintext space must also be equal. Authenication 
is an important application which can solve disputes over message validity and origin 

It is best illustrated by a diagram :

Channel
M - D K1(M )—  e K4(DK1(M)) = = t  y  y  DK1(M))) —  l y y M ) )  

A ' s  B ' s  B ' s  A s
s e c r e t p u b l i c  s e c r e t  p u b l i c
k e y  k e y  k e y k e y

Fig. 2.8 Using public-key encryption to produce a digital signature [9]

Note: ( Kl, K2 ) and ( K3, K4 ) are Alice’s and Bob’s ( private key, public key ) 
pairs respectively.

When M is calculated by Bob using Alice’s public key it is clear that Alice and only 
Alice could have produced the cryptogram, using her secret key, so in effect the 

whole message is signed by Alice [9].
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2.6 Evaluation of Encryption Schemes

Shannon outlined five criteria for the evaluation of cryptosystems in his 
"Communication Theory of Secrecy Systems" [9] :

(1) the amount of secrecy offered.

(2) the size of the key.

(3) the simplicity of the encryption and decryption operations.

(4) the propagation of errors.

(5) the extension of the message.

The level of security offered in public key schemes is always an important part of the 
number theory that is developed about each algorithm, even though it is possible to 
deal only in terms of computational security rather than absolute security with practical 
public-key encryption schemes. It is conjectured that the difficulty in cryptanalysing the 
RSA algorithm is equivalent to the factorisation of the product of the two primes
which is used. This is a conjecture and so has not been proved. However a large
amount of woik investigating other methods of cryptanalysing the RSA has been done, 
so it is a reliable conjecture and it is reasonable to assume that it is true. For secure 
speech communication the simplicity of the enciphering and deciphering operations 
should allow operation at about 8kbits/s for natural telephone communication. This is 
subject to the complexity of the algorithm, block size used and method of 
implementation chosen. For any given algorithm with adjustable number theory problem 
size ( like the factorisation problem ) there are trade-offs between speed, security and 
cost. As successful block encryption schemes produce a ciphertext block which appears
totally random, and a message which has just one single bit different to another

message should produce a completely different ciphertext for reasons of security, it is 
important that the ciphertext received is not corrupted by the channel. This can be 
ensured by using error checking coding methods and re-transmitting incorrectly received 

data. Of course it may be acceptable that an occasional block or an occasional bit in 
a bit-stream encryption scheme is wrong, provided the final decrypted result is fully 

intelligible. No error can be allowed if a feedback back mode is used in encryption 

because the apparent randomness amplification which normally enhances security would
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amplify the error and cause the message after it to be incorrectly decrypted. RSA does 
not extend the message. Some other schemes do. Message extension is obviously a 
drawback but it usually has security enhancement properties so again it should be 

evaluated as being a possibly worthwhile trade-off.

2.7 The Blum, Blum and Shub Generator [8]

A pseudo-random sequence is a sequence which appears random but is in fact
produced from a random starting point, termed the seed, by a deterministic process. A 
pseudo-random generator is crypto graphically strong if the sequence it produces from a
short seed is essentially as good as a random sequence for use as a one-time pad.
This means that it should not be computationally feasible to derive any probabalistic
information about the plaintext from the ciphertext which is the result of an
eXclusive-ORing of the plaintext and the pseudo-random bit stream.

The Blum, Blum and Shub generator is defined recursively :

xi+l = xi2 mod N

with N a Blum integer, i.e. the product of two primes P and Q both congruent to 3 
mod 4, and x q  a random quadratic residue. The sequence of least significant bits of 
Xj is crypto graphically secure and recent research suggests that up to log2 of the
number of bits in N bits of each xj may be secure [13]. The BBS generator can be 
used as a one-time pad with N public domain and exponential key exchange of x q .
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Another feature noted in "A Simple Unpredictable Pseudo-Random Number Generator" 
[8] allows a complete public key cryptosystem :

Knowledge of N leaves the sequence unpredictable to the left but knowledge of N’s 
factorization allows polynomial time calculation of the previous xj’s. Therefore N 
provides the encryption key, P and Q, the secret decryption key. In this scheme Alice 
publishes N, keeping P and Q secret Bob picks xq  at random and eXclusive-ORs the 
message with the resultant random bit stream, transmitting this cryptogram and the 
next xj in the sequence. Only Alice using her knowledge of P and Q can determine 
any term to the left of xj thus decrypting the cyphertext.

£ e y
I n f i n i t e  p s e u d o - r a n d o m  
b i t - s t r e a m

J g o r i t h m C i p h e r t e x t
M i x e r

P l a i n t e x t  d a t a

Fig. 2.9 A bit-stream encryption system
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3 INTRODUCTION TO FUNCTION DEVELOPMENT

3.1 Introduction to Library Development

Public key encryption algorithms involve large number arithmetic operations which are 
not yet supported in hardware in a general purpose form. One hundred digit numbers 
can now be factored and the RSA encryption algorithm must use between one hundred 
and fifty and two hundred digit numbers to stay ahead of the latest advances in 
factoring algorithms and machine technology. Most of the scientific and applied 
mathematical applications which require microprocessor-based systems are considerably 
more dependent on such features as input-output capability and on-chip memory size 
than on numerical processing power.

The main area of processor use which does require high speed number-crunching is 
digital signal processing. In such applications as digital filtering, correlations and FFTs, 
there is a very large proportion of processor time spent performing the fundamental 
arithmetic operations, particularly multiply and accumulates. This market demand has 
resulted in the development of digital signal processor chips (DSPs). These devices 

differ from general purpose microprocessors in their use of a Harvard architecture 
which allows a higher through-put as instructions are fetched and executed in parallel 
A Harvard architecture requires that program and data memory reside in separate 
address spaces. This is different to the Von Neumann architecture used in most 
general purpose microprocessors in which the only distinction between a program 
instruction and a data word is context. DSPs also provide a hardware multiply, and 
this operation in particular can be executed in parallel with such operations as 
accumulate and data move which is particularly useful in the implementation of digital 
filters.

Digital signal processors therefore offer some hardware support for applications like 
encryption which require fast multiplies. It is necessary in developing encryption 

functions to evaluate the available DSPs with particular emphasis on their instruction 

cycle time and how much the parallel capabilities of the chips can be used to 

improve system throughput Once a particular digital signal processor has been chosen,
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the next step is to develop the actual routines. General software design principles of 
modularity and simplicity of coding should be adhered to, except where there is a 
significant timing improvement to be gained by, for example, writing in-line code or 
making more use of the parallel capabilities of the DSP.

The final evaluation of multi-precision arithmetic routines for use in encryption 

applications must look not only at the speed of operation within real time constraints 
but also at the ease of use of these routines. The plan in developing these routines 
has been to try to allow a programmer with minimal understanding of the hardware 

and the language of the digital signal processor used, to develop applications in C 
which can call the routines. With this aim in mind, an effort has been made to make 

these routines compatible with the MIRA CL Package [5] with the exception of the 
input and output functions which naturally must be handled differently on a digital 
signal processor.

3.2 Digital Signal Processing Chips

The most important development in electronics during the 1970s was the single chip 
microprocessor. It lead to the development of the personal computer and the 
widespread possibility of intelligent control. With applications as diverse as washing 
machine programming and nuclear weapon systems control, the problem for engineers 
became one of discovering new uses for this new found processing power. Following 
on from this area of microelectronics development has been the advent of a new type 
of device designed to allow the more versatile digital algorithms to take over from 
analog signal processing. The first general-purpose, single-chip, 16-bit digital signal 
processor was introduced by NEC in 1980 [14]. Since then every major chip 

manufacturer has produced a digital signal processing chip.
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A digital signal processor is a form of microprocessor with three main features [15]:

1. Its architecture is optimised to process sampled data at a high rate.

2. In particular, it achieves this high rate of through-put by having fast multiply
and accumulates.

3. It exploits the repetitive nature of signal processing by pipelining data flow for
extra speed. This pipelining feature is usually achieved by having a Harvard
architecture in which the separateness of program and data memory allow the 
next instruction to be fetched while the present instruction is executing.

C l o c k

L o a d  I 
P C I  I I 
♦  F e t c h  1  I

E x e c u t e  1
r*  --
I I
I L o a d  I 
I P C 2  I 
♦  F e t c h  2

E x e c u t e  2I
i-*-
i L o a d

P C 3
F e t c h  3

E x e c u t e  3
M------------- ►

Fig. 3.1 Instruction pipelining involves instruction 'execute’s in parallel with instruction 

'load’s and 'fetch’es [15]
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While all digital signal processors have these features in common to some extent, each 
manufacturer emphasises particular features in their own device. NEC state that their 
basic philosophy in the design of the 7720 family of DSP’s has been "to integrate as 
many resources ( memories, periherals ) as possible into a DSP to obtain a device 
that is both powerful and compact. This is due to the fact that as input/output 
operations increase, the performance of a DSP decreases sharply" [14]. This design 

principle is one that is noted by all DSP manufacturers. One area of design where a 
different approach is taken by different manufacturers is the degree of parallel 
capability offered by their device. NEC uses a highly parallel "horizontal" instruction 
set This offers timing benefits for suitable applications in which register manipulation 
and arithmetic operations can occur simultaneously. Code taking one instruction cycle 

on the NEC77230 may resemble a page of code comprising of tens of operations, 
each requiring an instruction cycle, on another signal processor, as many operations are 
carried out in parallel. Along with the timing benefits these parallel operations produce, 
the NEC device is difficult to code and its lack of user-friendliness can be a 
drawback. It is also notable that the parallel programming capability of the NEC 
device is achieved with a considerably longer instruction cycle than that of the 
TMS320C25 : 250 nanoseconds as against 100 nanoseconds, so the NEC device is less 
suitable for applications which do not make full use of its parallel capabilities. Most 
multi-precision arithmetic operations make use of the parallel capabilities of a DSP 
primarily when using the basic single-precision add, subtract and multiply instructions, 
so the Texas Instruments processor provides the parallelism sought after, with a shorter 

instruction cycle than the NEC DSP.

The TMS320C25 produced by Texas Instruments can do a 16-by-16 bit multiplication 
in one instruction cycle of 100 nanoseconds. The Motorola MC68020 general purpose 
microprocessor, unlike digital signal processors, does not have a hardware multiply and 
as a result requires 25 instruction cycles or 1500 nanoseconds at 60 nanoseconds per 
instruction cycle to carry out this operation [16]. Texas Instruments have a "vertical" 
instruction set which is considerably easier to use than the NEC instruction set. T.I. 
reckon that the throughput of a DSP can be significantly improved by making only a 
few operations parallel [15].
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In summary : the TMS320C25 is easier to program, has a shorter instruction cycle 
and more on-chip memory than the NEC equivalent. Its main advantage over the 
DSP16 produced by AT&T Bell Laboratories is its larger on-chip memory size which 
can ease bottle-necks in input and output [16]. Certain features of the TMS320C25 
facilitate the implementation of multi-precision arithmetic. The device has an unsigned 
multiply instruction ( MPYU ) which produces the 32-bit product of two 16-bit 
unsigned numbers in one machine cycle. Extension beyond single precision is made 
easier by the absence of a sign bit as the 32-bit product value does not need to be 
split into 15-bit parts but instead can use its full range for a product result

The carry status bit is a hardware flag which is affected by all the arithmetic 
operations of the accumulator and by the rotate and shift accumulator instructions. The 
carry bit is set when an addition overflows the 32-bit accumulator and it is reset 
when a subtraction results in a borrow into the most significant bit of the 
accumulator. It may also be explicitly set or reset Multi-precision addition and
subtraction can use the carry status bit in a software implementation similar to a
hardware configuration involving half and full adders and subtractors which access the 
carry bit to determine if a previous operation resulted in a carry or a borrow.

While single-precision multiplication is implemented in hardware on the TMS320C25, 
single-precision division can be coded simply although with a higher timing overtiead. 
The DSP has a repeat instruction RPTK, which, used in conjunction with the special 
condition subtraction instruction SUBC, can divide a 16-bit dividend by a 16-bit
divisor placing the quotient in the 16 low-order bits of the accumulator and the
remainder in the 16 high-order bits, in 17 machine cycles. This entire operation is 
coded in two lines once the accumulator has been loaded with the dividend:

RPTK 15
SUBC DIVISOR

RPTK N results in the instrution which follows it being executed N+l times [17].



Digital signal processors have features which make the implementation of
multi-precision arithmetic routines possible in faster time than on general purpose
microprocessors. The TMS320C25 has comparatively large on-chip memory including
4K words of data ROM and a short instruction cycle time. In addition its software 
development tools including the Software Development System ( SWDS ) and the 
TMS320C25 C Compiler make it a suitable device for the development of these
routines.
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Fig. 32  TMS320C25 Hardware block diagram [17]
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3.3 Design Philosophy

Before looking at the specifics of the problems involved in the development of a real 
time assembly language library it is a good idea to stand back from the problem and 
to take a general overview of algorithms and software design which can be applied to 
the task at hand. According to Knuth [18] an algorithm is distinguished by having 
five important features :

1. Finiteness. An algorithm must always terminate after a finite number of steps.

2. Definiteness. Each step of an algorithm must be precisely defined.

3. Input. An algorithm has zero or more inputs.

4. Output. An algorithm has at least one output and possibly more.

5. Effectiveness. It should be possible to carry out the steps of an algorithm using
pencil and paper in a finite length of time.

If a multi-precision arithmetic algorithm is properly defined its inputs and outputs 
should be clear and the steps involved should be easily determined to result in the 
termination of the algorithm in a finite amount of time. These then are three important 
points which should be examined in the early stages of looking at the algorithm. The 
routines developed have been based on Knuth’s classical algorithms.

Full input/output specification not only shows very early in the design stage exactly 
what an algorithm will be able to do, but also, often more importantly, it shows what 
an algorithm will not be able to do. An example is Knuth’s "division of nonnegative 
integers" which requires a multi-precision divisor (i.e. at least double precision). This 
is not a mistake : the algorithm does precisely what it sets out that it will do in the 
input/output specification. However to make the algorithm work for all cases, it is 
necessary to explicitly cater for the single precision divisor case. This fact is readilyj
apparent only because of the use of an input/output specification



Definiteness will be imposed on the problem by the act of coding but it is important 
that the algorithmic description must be made up of precisely defined and understood 
steps so that no incorrect operations result from a misinterpretation or an inadequete 
specification. The final feature, effectiveness, is more of an empirical concept. It is a 
requirement that the algorithms used should be effective so that they can operate in 
real time.

A good way to approach the problem of algorithm effectiveness is to attempt to look 
at it in both the small and large scale. The small scale should ensure that as efficient 
use as possible is made of the processor’s hardware and instruction set, particularly in 
high iteration loops. The large scale should involve trying to minimise the use of high
iteration sections as much as is possible [19]. Looking at the problem in this way
means that on the small scale good assembly coding is important while on the large
scale it is important that an efficient algorithm is chosen.

It is difficult to adhere to some software design principles when programming in 
assembly language. High level software projects usually allow comprehensive testing of 
the algorithms used when the code has been written. This is because the code can be
made modular and clearly defined. Often complications and errors can be identified in
the algorithm as well as in the code because the code is relatively easy to understand. 
In comparison assembly language, even when written as clearly as possible, is more 
difficult to debug. The algorithm being implemented should be tested comprehensively 
first, preferably both by implementation in high level language and a complete
walk-through examination.

There appears to be very little literature availible on design principles for low-level 
language applications. The reason for this is that in general the same good
programming practices should be adhered to as for high level language applications, 
and even though these practices may be harder to apply in assembly language 

development, they are more necessary the lower the level of the language used. Some 

idea of the large increase in complexity due to implementation in assembly language is 
given by David Wong, the Director of Signal Processing at Digital Sound, when he 
states that a rough estimate at the size of a program written in DSP assembly can be 

made by multiplying the number of lines in a high-level simulation by ten [20]. It is 
no wonder therefore that simplification ideas which may seem superfluous in a small 
high-level application are vital in almost all low-level applications. One 

recommendation is that clear use should be made of symbols to represent "magic
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numbers". "Magic numbers" are constants and address values which make the program 
easier to read and to change if assigned a symbol at the start but which can appear
confusing if they are written within the program as their numerical value. Comments
are also more necessary the lower the language level used. High level languages 
should comment themselves as much as possible but assembly language cannot do this 
to the same extent If there is too much commenting of code, it can be easily ignored 

but under-commenting makes code very difficult to decipher [15].

Flexibility in the way a function can be called is a desirable characteristic to include 
in the design. If the general operation of the add function is to add x to y giving
result z after a call of the form : add(x,y,z), it would be an asset to allow the
programmer to call the function with forms : add(x,y,x) or add(x,y,y), thus facilitating 
update of a variable in one step. However this flexibility often requires an overhead 
both in memory within the function, as a temporary variable will have to be stored, 
and, more importantly, in the number of instructions used to copy to and from this 
temporary variable. It has therefore been decided that since the aim of the library is 
to allow fast multi-precision calculations, this type of additional functionality will only 
be provided where it fits in with the algorithm without a significant overhead.

The restrictions on the calling function are listed in each function description so it 
will be clear where :

add(x,y,z);
copy(z,y);

will have to be used instead of :

add(x,y,y);
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3.4 Test Philosophy

The starting point for these routines has been Knuth’s description of the classical 
algorithms for multi-precision arithmetic. In Seminumerical Algorithms [6] the 
algorithms are given in a form which is purposely not machine dependent. Their 
implementation is then worked through on a theoretical processor. In order to code 
these routines on the TMS320C25 a representation closer to the workings of that 
device is necessary. The design of this function therefore started with the initial 
algorithm in a step form with little attention payed to the hardware and the code that 
would be used. Next, an outline similar to the low level algorithmic description which 
is given for each function in the next chapter, was produced and the code was written 
according to this description.

The process of producing the final versions of the algorithm steps and then the code 

was not entirely sequential as would be implied in a completely top-down design 
procedure. An effort was made to produce optimal coding of some of the more crucial 
low level steps ( i.e. those in the loops with the highest number of iterations ) and 
then to incorporate these as efficiently as possible into the algorithm. The low level 
algorithmic descriptions should be close enough to the more general descriptions in 
Knuth’s work to be verifiable while they are also easy to relate to the actual code. 
Thus they facilitate full test of those features of the algorithm which must be clearly 
defined, while remaining close enough to the code to allow it to be tested in blocks 
corresponding to each step. This is about as close to modularity in design as is 
feasible in real time assembly language library development

Once the algorithm has been verified in this manner and the code has been written, it 
is necessary to test the code. Errors are easy to make in assembly language 
programming. Mistakes can be made in the coding procedure by selecting the wrong 
auxiliary register or failing to note which hardware flag gets set by particular 
instructions. The code has to be as modular as possible and attention should be payed 
to having correct and failsafe terminating conditions on all loops.



The procedure chosen for testing the routines has been to examine every case of each 

algorithm, as much as it is possible to do so. This means that each algorithm step, 
particularly if its execution is optional, should be tested at least once. The test cases 
can be derived from the low level algorithmic description. When this method results in 
more than three or four test cases being necessary, the testing procedure is made 

clearer by illustrating exacdy what steps each case tests, on a test case grid. This 
method should result in a degree of confidence in each finished routine. A less 
exhaustive but more realistic test of the routines can then be carried out. This involves 
checking the routines against each other with problems which are of a precision size 
that is likely to used in the encryption applications. For example division, 
multiplication and addition can be cross checked by comparing the results of 
multiplying the quotient result of a division by the divisor and adding the division 
remainder.

The use of test case grids to test software applications in which exhaustive test is not 
feasible was encountered by the student during work with the Quality Assurance Group 
of ROLM Systems. This group had responsibility for the development of test plans to 
be used in the testing of new releases of the PhoneMail voice messaging system.
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3.5 Number Representation

The method used to represent numbers in the assembly language library is based on 
the MIRACL package. Unlike MIRACL, functions are only provided to operate on 
positive integers which is all that is necessary for all the well known public-key
encryption algorithms. No use is made of a sign bit as it is not needed. Brent in his 
Fortran Multiple-Precision Package [21] uses the first word in an array to give the
sign of the number, the second word lists the exponent and the rest of the array
contains the number. Buell and Ward in their Multiprecision Integer Arithmetic 
Package [22] use the same system as MIRACL : the first array place contains the
number of multiprecision digits in the number and the sign of the first array place is 
the sign of the number. Zero is represented by a zero in the first array place which 
represents size and also a zero in the second place.

X = 10924

4

<M 9 0 1

t
X [l]

t
X[3] X[5]

X[2] X[4]
Fig. 3.3 An example of number representation method used. Base 65536  ̂ not decimal, 
is used in the library.

The above number, 10924, would be represented in this thesis and in programs which 
use the assembly language functions as : X[0]=5, X[l]=4, X[2]=2, X[3]=9, X[4]=0, 
X[5]=l or X={ 5,4,2,9,0,1 ], if a decimal base was used. This would be equivalent to 
saying : "There are 5 significant digits in the number in question. The number is 
4*1q0 + 2*10* + 9*102 + 0*103 + 1*10̂ -" In the assembly language package base 

1000016 ( 65536io ) is used so the first digit has the same meaning and following 
digits are weighted by (lOOOOiĝ P, (lOOOOjg)1’ (lOOOOig)2 and so on. For example 

the number { 2 , 0 , 1  } is 0 * ( 1 0 0 0 0 1 6 ) P  + l^lOOOOig)1 or 65536 in decimal
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3.6 Development Environment

The assembly language functions which form the multi-precision arithmetic library were 
developed using the TMS320C25 Software Development System ( SWDS ) [23]. The 
SWDS is a software development tool that provides both hardware and software 
support for application development on the TMS30C25. The system’s hardware consists 
of a board which plugs into the expansion bus of a personal computer and which 
contains a TMS320C25 digital signal processor and 24K words of program and data 
memory. Additional hardware facilities are provided for input/output from a target 
system. The software allows Tl-tagged object format files to be loaded and run. Debug 

facilities include single-step and breakpoint operation and the values of the registers 
and hardware flags of the DSP can be observed. The SWDS used was release version 
1.0.

The TMS320C25 C Compiler [24] and the TMS320Clx/TMS320C2x Assembly 
Language Tools [25] were also used in library development. The compiler converts C 

code into assembly language code. The assembly tools assemble, link and perform 
object format conversions on assembly files. An archiver is also availible for the 
production of function libraries. Therefore there are facilities to compile a C program 
which calls the low-level multi-precision arithmetic DSP functions and the linker will 
ensure that the program which is loaded onto the TMS320C25 system contains 
instructions derived from both the easy-to-write high level calling program and the 
efficient low-level routines.
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3.7 Function Useage

The multi-precision arithmetic functions are compatible with cross-compiled C code. 
The aim in developing these functions has been to allow calls from C code using the 

conventions of the MIRACL Package. This means that the operands should be declared 
as unsigned integer arrays, with the first array position containing the number of array 
places used to represent the multi-precision number. This is equivalent to the precision 
of the number while the maximum number representable in each array place plus one 
is the base. For example, the following C program could be used :

main()

{
unsigned int x[8]; y[8]; z[8];

x[0]=7; x[l]=6; x[2]=5; x[3]=4; 
x[4]=3; x[5]=2; x[6]=l; x[7]=9; 
y[0]=2; y[l]=8; y[2]=5;

add(x,y,z);

}

The number represented by the Z array would be fully defined as would X and Y 
after the call to add( ). The following command line instructions are used to produce 
code which can be run on the Texas Instruments Software Development System 
(SWDS) :

DSPA add.asm 
DSPC call

DSPLNK -C call.obj add.obj -O call.out 
DSPROM -T call.out
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These instructions result in the following actions being taken by the assembler, 
compiler, linker and object file format converter : the addition function assembly file 
is assembled and the C file is cross-compiled, producing two object files. These object 
files are then linked together to produce an output file. The call object file must be 
specified to the linker first because the linker produces an undefined reference to the 

add( ) function which must be resolved by the add object file. The -C option 
specifies a ROM autoinitialisation model. Finally an object format conversion is done, 
producing code which can be loaded by the SWDS.

In order to facilitate easy linking of programs which use several multi-precision 
functions, all of the assembly language object files have been archived, producing a 
library file call MP.LIB. The above linking command can be replaced by :

DSPLNK -C call.obj -L mp.lib -O call.out

This command successfully resolves undefined references to any number of the 
multi-precision arithmetic functions.

After the SWDS is invoked, the call.tag file is loaded and a debug session is started.
As described above, no entry point has been specified so the program starts from a
default position of 1000 Hex in program memory and the program counter should be 
set to this value. If the -E global symbol option is used when invoking the linker, the 
globed symbol will be the primary entry point for the output module so the program 
counter will be set to this value. Also before running, the Auxiliary Register Pointer 
must be set to ’1’ and both ARO and AR1 must be loaded to point to some
appropriately chosen value in data memory. ARO is the Frame Pointer which points to 
the beginning of the current frame. A new frame is created for each function at the
top of the stack and both local and temporary variables are stored there. AR1 is the
Stack Pointer which points to the current top of the stack or the word following the 

current top of stack [24], This value will be the start of stored variables used by the 

program and it should be high enough to avoid globally defined variables being
written over. Functions in the library select data page number six and thus store local 
temporary variables at 300 hex plus their EQU directive defined value. Therefore a 
value for the start of stacks must be chosen which is higher than the highest EQU 
defined local variable address plus 300 hex.
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An example of register settings and memory assignments follows

PC : 1000
ARP : 1

ARO : 31B
AR1 : 31B

( set after loading program into the Software Development System, SWDS )

Data Memory : Local/Temporary Variables => 300h 31Ah 
( assigned in assembly language functions )

: Function Variables => 31Bh + ...
( assigned by compiler ).

It is a convention with the TMS320C25 compiler to return return values in the 
accumulator. The compare function adheres to this convention allowing easy control of 
program flow based on comparing multi-precision number values. An example of the 
use of a return variable is shown in the function description for the compare function.

3.8 Dynamic Memory Allocation

Memory allocation functions such as mallocO, callocO and freeO are supposed to be 
fully supported by the TMS320C25 C Compiler. These are useful functions for the 
type of programming application in which large amounts of memory space are required 
for different variables for some of the program, as they facilitate run-time initialisation 
of memory and allow memory to be freed when it is no longer required. These 
functions have been observed to cross-compile successfully but the monitoring of a 

program containing a callocO showed that this function returned a pointer to availible 
memory starting at address zero even though memory from this value is not availible 

for program use as it is required by the monitor. This problem was not resolved by 
attempting to specify a valid start address for free memory by specifying a .bss 
section in a program link command file. Therefore the cross compiler does not appear 

to support the memory allocation functions and they have not been used with the 
assembly language functions from the library.
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4 ASSEMBLY FUNCTIONS

4.1.1 ADDITION FUNCTION

Function: void add(x,y,z)
unsigned int x[SIZE],y[SIZEl], 
z[SIZE+l];

Files:

Description:

Parameters:

add.asm, add.obj

Adds two multi-precision numbers.

Three unsigned integer arrays in big format. 
On exit z = x + y.

Return Value: 

Restrictions:

None

x >= y i.e. SIZE >= SIZE1. 
z must be distinct from y : 
add(x,y,x) allowed but add(x,y,y) not allowed, 
z must be one precision bigger than x 
to allow carry.

44



Fig. 4.1 Block diagram showing the main cases in the addition algorithm
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4.1.2  Low  Level Algorithm Description : AD D

1. Function initialisation.

2. Register and precision count iteration set up.
Register store. Copy : Z := X. Z[N+1] = 0 ( to facilitate carry propagation ). 
Double precision count = Y[0] div 2. Single precision count = Y[0] mod 2.
If no double precision additions, go to 4.

3. Double precision add loop.
If single precision add left, go to 5.
Else go to 7.

4. Set up for no double precision add.
If no single precision addition left, go to 9.
Zero carry.

5. Single precision add.
If carry, go to 6.
Else go to 9.

6. Single precision carry.
Propagate cany forward and go to 8.

7. Double precision carry.
Propagate cany forward.

8. Z[0] adjust.
Check if Z[0] should be incremented and increment if necessary.

9. Function termination.
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4.1.3 Explanation of Z[0] Adjust

Z[0] needs to be incremented after the single precision and double precision additions 
have been carried out only if the last addition ended in a carry. This occurs when 

the last addition operation results in a carry and there are the same number of places 
in X and Y or when a propagated carry results in the last Z teim equalling ’1’. This 
last case is when the carry propagation generates a new Z term because the previous 
X term was equal to the base minus one and propagated a previous borrow forward.

4.1.4 Implementation Notes

There are two points which should be noted resulting from the implementation method 
chosen. Firstly it is taken as convention that when add(x,y,z) operates on the two 
numbers X and Y, that X is greater than or equal to Y. This is necessary for correct 
carry propagation and Z[0] increment. Secondly if there are up to N places defined in 
X, there should be N+l places in Z so that a carry at the end of X can occur 
without error or overwriting of other data.
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4.1.5 Test Case Grid: ADD

In the following test case grid the major program/algorithm steps are listed as column 
labels. Any particular test case will result in some steps being used, represented by a
"one" being entered into the appropriate column, and other steps not being used,
represented by a "zero" in those columns. A case number is allotted to each case so 
that when a test case is being produced it is possible to look at the grid and to say,
for example : " Test case number 3 needs a single precision add with carry. This
should result in a sum which has more digits than either of the summed numbers (i.e. 
a Z[0] adjust). { 1,FF88 } +  { 1,78 } will involve all of these steps, so it is an an 
appropriate test example for this case number". The idea of the test case grid is to 

facilitate and to document the exhaustive test of all steps, taking into account the fact 
that if two steps have no interaction in the way that they have been implemented, 
they can be tested in parallel. This means that the testing of five major steps does 
not require thirty two test cases and it also allows the lack of interaction between 

some of the steps to be spotted more easily.

Double Single Single Double Z[0] inc. Case
prec. add prec. add prec. cany prec. cany

0 0 0 0 0 1
0 1 0 0 0 2
0 1 1 0 1 3
1 0 0 0 0 4
1 0 0 1 1 5
1 1 0 0 0 6
1 1 0 1 0 7
1 1 1 0 0 8
1 1 1 1 0 9

Fig. 4.2 Addition test case grid.
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4.1.6 Test Cases

U { 0,0 } + { 0,0 } = { 0,0 }

2. { 1,FF07 } + { 1,19 } = { 1,FF20 }

3. { 1.FF88 } + { 1,78 } = { 2,0,1 }

4. { 3,9,0,FF00 } + { 2.3JT00 } = { 3,CJTOO,FFOO }

5. { 4,4,3,2,1 } + { 4,4,3,FFFF,FFFE } = { 5,8,6,1,0,1 }

6. { 6,6,5,4,3,2,1 } + { 5,5,4,3,2,1 } = { 6,B,9,7,5,3,1 }

7. { 5,5,4,3,2,1 } + { 5,1,FFFF.2,FFFF,1 } = { 5,6,3,6,1,3 }

8. { 6,6,5,4,3,2,1 } + { 5,5,4,3,2,FFFF } = { 6,B,9,'7,5,1,2 }

9. { 4,1,2,3,4 } + { 3,8,FFFF,FFFC } = ( 4,9,1,0,5 }

These cases were tested during a SWDS debug session for add(x,y,z) and add(x,y,x).
The above results were obtained as expected.
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4.1.7 Tim ing

Knuth’s implementation of addition in his MIX language requires ION + 6 cycles 
where N is the precision of the numbers being added. In MIX the size of a word is 
not specified exactly : it is only stated that each word can represent at least 64 
distinct values and not more than 100 distinct values. The maximum base for 
multi-precision operations is therefore 100. The word length on the TMS320C25 is 16 
bits, giving a base of 65536. The timing advantage due to the larger word size alone 
of the routine implemented on the DSP is a factor of over 655.

The implementation of the addition algorithm requires : 7M + 3N + 47 instruction 
cycles where N is the precision of the larger number, X, and M is the precision of 
the smaller number, Y. The MIX machine has an instruction cycle of at best 1 
microsecond based on what Knuth estimated to be the cycle time of a relatively 
high-priced machine. The TMS320C25 has an instruction time of 100 nanoseconds. The 
timing value given above for the implementation of this function does not include a 
fixed overhead for function initialisation and termination. The above value is for 

comparison with Knuth’s MIX implementation which would also have additional 
instructions to make it a function which could be called. The overhead amounts to 12 
more instructions so calculations of timings involving the addition routine should use 
the value : 7M + 3N + 59.

Knuth’s MIX implementation : 10N + 6
TMS320C25 code : 7M + 3N + 47
TMS320C25 independent function : 7M + 3N + 59
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4.2.1 SUBTRACTION FUNCTION

Function:

Files:

Description:

Parameters:

Return Value:

void sub(x,y,z)
unsigned int x[SIZE],y[SIZEl],z[SIZE];

sub.asm, sub.obj

Subtracts two multi-precision numbers.

Three unsigned integer arrays in big format. 
On exit z = x - y.

None

Restrictions: x >= y
z must be distinct from y :
sub(x,y,x) allowed but sub(x,y,y) not allowed.



4.2.2 Low  Level Algorithm Description : SUB

1. Function initialisation.

2. Register and precision count iteration set up.
Register store. Copy : Z := X. Double precision count = Y[0] div 2. 
Single precision count = Y[0] mod 2.
If no double precision subtractions, go to 5.

3. Double precision subtraction with carry generation.
If more double precision subtractions left, go to 4.
If single precision subtraction left, go to 6.
If borrow to be taken care of, go to 7. Else go to 8.

4. Double precision subtraction loop.
If single precision subtraction left, go to 6.
If borrow to be taken care of, go to 7. Else go to 8.

5. Set up for no double precision subtraction
If no single precision subtraction left, go to 8.
Else register set up for single precision subtraction

6. Single precision subtraction.

7. If borrow, propagate borrow forward.

8. Function termination.
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4.2.3 Explanation:

The central operation used in the implementation of this function is a double precision 
subtraction with hardware generated borrow. The carry bit is set to *1’ if the result of 
an addition generates a carry, or reset to ’0’ if the result of a subtraction generates a 
boirow. Otherwise, it is reset after an addition or set after a subtraction, except if the 
instruction is an ADDH or a SUBH. ADDH can only set and SUBH only reset the 
carry bit but do not affect it otherwise [17]. The carry bit can therefore be ’O’ before 
an initial double precision add or subtract operation only if a multi-precision 
subtraction function ensures that this is not interpreted as a borrow. This can be done 
by having an ADDS as the first operation of the first double precision subtraction, as 
this instruction does not check for the carry bit being set, but sets or resets the carry
bit depending on whether a carry is generated. This means the initial ’O’ carry bit
value has no undesired effects. Also the first subtraction operation within this first
double precision subtraction uses the SUBS instruction which similarly does not check 
the carry bit for a borrow but does set or reset the carry bit appropriately. The next 
double precision subtraction sum(s) must interprete the carry bit as a possible borrow, 
so these should be implemented differently with a subtraction operation first which 
does check for a borrow ( SUBB ). The easiest way of describing the multi-precision 

implementation is that the first double precision subtraction is like that carried out by 
a half subtractor with no borrow-in, while succeeding operations are like full
subtractors.
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4.2.4 Test Case Grid: SUB

Double precision 
with carry 
generation

0
0
0

Double precision 
loop

Single
precision

Borrow Case

0 0 0 1
0 1 0 2
0 1 1 3
0 0 0 4
0 0 1 5
0 1 0 6
1 0 0 7
1 0 1 8
1 1 1 9

Fig. 4.3 Subtraction test case grid

4SL5 Test Cases

1. { 0,0 } - { 0,0 } = { 0,0 }

2. { 2,7,6 } - { 1,5 } = { 2,2,6 }

3. { 2,7,6 } - { 1,9 } = { 2,FFFE,5 }

4. { 3,7,6,5 } - { 2,6,5 } = { 3.1,1,5 }

5. { 5,7,6,5,4,3 } - { 2,8,6 } = { 5,FFFF,FFFF,4,4,3 }

6. { 4,6,3,7,2 } - { 3,5,4,3 } = { 4,1,FFFF,3,2 }

7. { 5,7,6,5,4,2 } - { 4,1,7,5,1 } = { 5,6,FFFF,FFFF,2,2 }
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8. { 7,7,6,5,4,0,0,2 } - { 4,8,6,5,4 } = { 7,FEFF,FFFF,FFFF,FFFF,FFFF,FFFF, 1}

9. { 7,7,6,5,4,3,2,1 } - { 5,1,2,3,4,5 } = { 7.6.4.2.0.FFFE. 1.1 ]

These cases were tested during a SWDS debug session and the expected results were 

obtained.

4.2.6 Timing

Knuth's MIX implementation : 12N + 3
TMS320C25 code : 7 i M/2 j + 3N + 36.75
TMS320C25 independent function : 7 i M/2 j + 3N + 48.75

Note ; L M/2 j means the integer part of M/2 i.e. the division result is truncated. 
This notation is used throughout the report.

Knuth’s N is the precision of the numbers being subtracted. The TMS320C25 N is the 
precision of the number from which an M precision number is being subtracted.
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4.3.1 MULTIPLICATION FUNCTION

Function:

Fa es:

Description:

Parameters:

Return Value:

Restrictions:

Example:

void mult(x,y,z)
unsigned int x[SIZEl],y[SIZE2], 

zfSIZEI + S1ZE2 - 1];

mult.asm, mult.obj

Multiplies two multi-precision numbers.

Three unsigned integer arrays in big format. 
On exit z = x * y.

None

. z must be distinct from both x and y 

mult(x,x,z); /* This squares x */
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4 .3 2  L ow  Level Algorithm Description : M ULT

1. Function initialisation.

2. Register set-up and partial product initialisation.
W[0] <- n + m. W[l]..W[n] <- 0. Store &U[n] and &V[m].
Zero carry. V[j] counter set to point to V[l],
W[ i+j ] counter set to point to W[ n+1 ].

3. Initialise i.
U[i] counter set to point to U [l] .

W[ i+j ] counter «- W[ i+j ] counter - n.
Comparison register ( ARO ) *- &U[n].

4. Multiply and Add.
t «- U[i] * V[j] + carry.
Wt i+j ] <- t mod BASE. ( BASE = 10000 (hex) = 65536 ).
Carry «- l t/BASE j. i ++, i+j ++.

5. Loop on i.
If i < n, go to 4, else W[ i+j ] <- carry.
Zero carry.

6. Loop on j.
j++. If j < m, go to 3.

7. W[0] adjust.
If W[ n+m ] = 0 decrement W[0] by one.

8. Function termination.



4.3.3 Explanation

This algorithm is similar to the conventional pencil-and-paper method in which the 

partial products U[l]...U[n] * V[j], 1 <j<m are calculated. Unlike the pencil-and-paper 

method in which all the partial products are summed at the end, it is more convenient 
for the processor to add each partial product within each V[j] ( l<j<m ) multiplication 
loop.

The n least significant places of the product result, W[l]...W[n], must be initialised to 
zero at the start. The required result of the multiplication is :

W[l]...W[n+m] <- ( U[l]...U[n] ) * ( V[l]...V[m] )

Without the zeroing step the calculation would result in :

W[l]...W[n+m] <- ( U[l]...U[n] ) * ( V[l]...V[m] ) + W[l]...W[n] [6]

4.3.4 Test Cases

1. { 3,13,1,21 } * { 2,F015,F243 } = { 5,D187,EB1F,E50A,3AC2,1F }
( 141,733,986,323 * 4,064,538,645 = 576,083,264,719,734,952,335 )

2. ( 0,0 } * { 2,F015,F243 } = ( 0,0 }

3. { 1,1 } * ( 2J015F243 ] = { 2,F015,F243 }

4. { 3,13,1,21 } * { 0,0 } = { 0,0 }

5 { 3,13,1,21 } * { 1,1 } = { 3,13,1,21 }

Multiply has no optional steps so one general test case and some additional test cases
involving zero and unity multipliers are judged to sufficiently examine its general

operation. A complete test of the function is best done using encryption sized

examples. This is documented both for multiply and division in the add back test
section of the division function.

58



4.3.5 Algorithm Steps in  Example

Multiplication of { 3,13,1,21 } by { 2,F015,F243 }

Step i j U[i] VQ] t W[l] W[2] W[3] W[4] W[[5]

5 1 1 13 F015 11D18F D18F 0 0 X X
5 2 1 1 F015 F026 D18F F026 0 X X
5 3 1 21 F015 1EF2B5 D18F F026 F2B5 X X
6 3 1 21 F015 1EF2B5 D18F F026 F2B5 IE X
5 1 2 13 F243 12EB1F D18F EB1F F2B5 IE X
5 2 2 1 F243 1E50A D18F EB1F E50A IE X
5 3 2 21 F243 1F3AC2 D18F EB1F E50A 3AC2 X
6 3 2 21 F243 1F3AC2 D18F EB1F E50A 3AC2 IF

Fig. 4.4 Multiplication Example

4.3.6 Timing

Knuth’s MIX implementation : 28NM + 7M + 4N + 3
TMS320C25 code : 9NM + 2M + 17N + 38
TMS320C25 independent function : 9NM + 2M + 17N + 49

Knuth’s implementation has M places in the multiplier and N places in the
multiplicand. The TMS320C25 version has M places in the multiplier which is the
first argument in the function call, and N places in the multiplicand. As would be
expected, this is the first routine to show a significant improvement over its MIX
implementation in terms of number of instructions to be executed, in addition to the
observed improvement due to word length and instruction cycle time.
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4.4.1 DIVISION FUNCTION

Function:

Ries:

Description:

Parameters:

Return Value: 

Restrictions:

void div(u,v,q,r)
unsigned int u[SIZEl],v[SIZE2], 

q[SIZEl] ,r[2 *S IZ E l+ l]

div.asm, div.obj

Divides one multi-precision number by another.

Three unsigned integer arrays in big foimat.
On exit q = i u/v J and r = u mod v.

None

u must be non-zero, 
q must be distinct from both u and v, 
r must be distinct from v i.e. 
div(u,v,q,u) allowed but div(u,v,u,r) not allowed
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4.4.2 Low  Level Algorithm Description : D IV

1. Function initialisation.

2. Special cases, register set-up, store and norm determination.

Copy : R := U.
If U[0] < V[0] go to 14 => zero Q and finished.
If V[0] = 1 go to 16 : single precision division case.
Calculate loop counter for entire function : main loop must execute m - n times.
Calculate norm : NORM = l BASE / ( V[n] + 1 ) j

3. Normalize V : V[l]..V[n] = NORM.( V[l]..V[n] )
The multiplication will not introduce an extra term in V because of the method
used to calculate it.

4. Normalize R : R[l]..R[m]( R[m+1] ? ) = NORM.( R[l]..R[m] )
There may be an extra term introduced in the normalised R.
R[0] is incremented anyway so that i u/v J < BASE even though this

sometimes produces a first quotient digit equal to zero.

Division : U div V = Q. U mod V = R. => R is what is left of U at the end
of the division after U has been successively reduced by the product of V and
quotient terms. The method employed uses R set equal to U at the start and R, 
not U, changes during the function

5. Register initialisation for loop.
U[j] => j = m.

6. Calculate quotient term, Qhat.
If U[j] = V[n], Qhat <- BASE - 1 ( = FFFF hex ),
else Qhat <- l ( U[j].BASE + U[j-1] ) /  V[n] j

7. Check if Qhat too big : Test if 
V[ n-1 ] * Qhat >
( U[j].BASE + U[j-1] - Qhat.V[n] ).BASE + U[ j-2 ]
If it is, decrease Qhat by one and repeat the test.
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8. Multiply and subtract.
R[ j-n ]..R[ j ] = R[ j-n ]..R[ j ] - Qhat. V[l].. Qhat. V[n]
Calculate Qhat.V[l]..Qhat.V[n], Carry out entire subtraction function.
If the subtraction ends in a borrow must add back. V[l]..V[n] and increment 
Qhat. Else go to 10.

9. Add back.
Note that if the subtraction ends in a borrow the last borrow is not propagated,
so here when a carry occurs at the end of the sum, it must also be ignored to
cancel with that borrow.

10. Test loop condition and loop if not finished.

11. Store Q correctly with calculated Q[0].
Q is calculated during the division by working out Qhat terms from the most 
significant down. The first Qhat is written to the location where the most
significant term of the largest possible Q for the division would be. Thus the
completed quotient will always run to the end of the memory space allotted to
the quotient but it may not start at the start of allotted quotient space, so in
addition to calculating the number of terms in Q and storing this at Q[0], the
computed quotient is copied to start from the start of its allotted space in
memory.

12. Strip leading zeros from R.

13. Unnormalisation.
The computed quotient is correct but the computed remainder must be 
unnormalised : R := R div NORM.
V must also be unnormalise : V := V div NORM.
Go to 15.

14. Zero Q.

15. Function termination.

16. Single precision division case.
Go to 15.
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4.4.3 Explanation

1 <= j <= m

Fig. 4.5 Block diagram showing the main cases of the division algorithm [4]

The division algorithm used is based on the standard pencil-and-paper method in much 
the same way as the multiplication algorithm. The significant difference between 
division and multiplication is that the multiplication process already involves a clearly 
laid-out procedure based on knowledge of the single-precision multiplication tables, 
while division involves a degree of guesswork to produce a trial partial quotient which 

can then be checked for correctness by doing a multiplication at each step. The 
procedure that is followed once the trial quotient has been determined is well defined 
and easy to specify in algorithm steps. The method used to determine the trial 
quotient must be resolved into an algorithmic description. Since this value may not 
necessarily be the correct result, it is necessary to investigate any theory which 

describes test conditions for its correctness, which can show how many adjustments to 
the first trial quotient produced may be needed and also which outlines whether this 
first test value could be either too big or too small.
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The general problem is one of finding the result of dividing an m-place nonnegative 
integer u = u[0]...u[m] by an n-place nonnegative integer v = v[0]...v[n]. The 
remainder can be easily calculated from u and the division result and is in fact 
produced as a by-product of the quotient calculation in Knuth’s algorithm. The normal 
pencil-and-paper approach to this problem would involve writing it in the following 
manner :

q[j]—q[l]

v[n]...v[l] ) u[m]......u[n]...u[l]
q£j] * ( v[n]...v[l] )

( Remainder 1 ) u[n+l]

Fig. 4.6 Pencil-and-paper division method

This method can be broken down into steps in which v[l]...v[n] is divided into 
u[i]...u[i+rH-l], starting with i+n+1 = m, with condition : u/v < BASE to ensure a 
single precision result The same operation can be tried first on u[i]...u[i+n] ( i+n 
initially = m ) to ensure that the condition is true. This step will then involve the 
division of an n+1 precision number by an n precision number giving a single 
precision result The method used in the pencil-and-paper method is to guess the trial 
quotient based on the most significant digits in the division, noting that the result 
cannot exceed the maximum single precision result value representable in the base 
being used, namely the value of the base minus one.

This suggests the following formula for Qhat :

Qhat = min ( l (u[j].b + u[j-l]) / v[n] j, BASE - 1 )
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Using this formula for Qhat, Knuth shows that it is a good approximation for the true 

quotient value by proving:

1. Qhat > Q
2. If v[l] > L BASE/2 j, then (Qhat - 2) < Q < Qhat

The condition necessary for the second theorem to hold is a normalization requirement 
which can easily be fulfilled by multiplying both dividend and divisor by an 
appropriate scaling factor : i BASE / (v[n]+l) j. Once this requirement has been met, 
the method used to determine the trial quotient can be ensured to give the true 
quotient or the true quotient plus one or the true quotient plus two.

A test can be carried out on the trial quotient which eliminates all cases of it being 
two too large and most cases of it being one too large. This involves determining 
whether

v[ n-1 ] * Qhat >
( u[j] * BASE + u[j-l] - Qhat * v[n] ) * BASE + u[j-2]

and if it is, decreasing Qhat by one and repeating this test The theory is therefore 
availible to ensure that steps D6 and D7 in the algorithm description result in the true 
quotient value in most cases, while all other cases can be handled by the using the 
add back step D9.
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4.4.4 Test Cases

There are a large number of permutations and combinations of sections of the division
function which can come into play in any given division problem. These include :

1. U[0] < V[0]. This is the case q = L u/v J = 0 and r = u mod v = u.

2. V[0] = 1. This is the single precision division case which is handled completely
separately to general multi-precision division. This is because the general 
multi-precision approach makes use of v[n] and v[n-l] and v[n-l] does not exist 
in the single precision case.

3. Qhat may be too big after the initial Qhat calculation.

4. Qhat may still be too big after it has been decreased by one, giving a borrow
after the multiply and subtract section, and thus requiring use of the add back
section.

5. Along with the different possible division cases, the optional parts of both the 
subtraction and addition sections will be accessed in much the same way as they 
are accessed in the subtraction and addition functions from which they are taken.

In addition to a relatively simple small division example for general test, it has been 
decided to test the cases where U[0] < V[0] and also where V is single precision. An 
initially too large Qhat is quite common and will be tested by any large division 
operation. The add back case occurs once in approximately every 32768 quotient 
calculations ( in the order of i 2/BASE j = i 2/65536 J times [6] ). Knuth suggests 
that test data should therefore be contrived for testing this section. It was decided that 
it would be better to make use of the breakpoint facilities offered by the Software 
Development System to detect where the add back section is entered and then check 

the result against a value calculated using the MIR ACL system [5]. This use of a real 
case would ensure that test data which requires add back would also be valid data 
that was generated by the multiply and subtract section. This test method for add back 
can be assumed to provide an adequate test for the last three of the above mentioned 

possibilities.
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1. Small general case division example.

u = { 5,D190,EB1F,3AC2,1F } 
v = { 3,13,1,21 } 
q = i u/v J = { 2F015.F243 } 
r = u mod v = { 1,1 }

2. V single precision test case.

u = { 5,D190,EB1F,3AC2,1F }

v = { 1,2 }
q = i u/v j = { 5,E8C8,758F,7285,9D61 ,F }
r = u mod v = { 0,0 }

3. U[0] < V[0] test case.

u = { 2,D190,EB1F }
v = { 3,13,1,21 }
q = l u/v i = { 0,0 }
r = u mod v = { 2,D190JEB1F }

4. Add back / large division general test case.

Enciph.c is a program which is part of the MIRACL Package. The program enciphers
a file using the Blum, Blum and Shub algorithm. It takes in a nine digit number 
from the user and uses this as a seed value for a pseudo-random number generator to 
produce a pseudo-random initialisation. The enciphering is then done by exclusive-oring 
the result of the :

xi+l = xi2 m°d ke

operation with the message, character by character. X is initally the pseudo-random 
value while ke is a set value chosen to fulfil the requirements of the BBS algorithm 
and which also serves to keep the calculation within a given precision length. The 

program uses the MIRACL function mad( ) thus : mad(x,x,x,ke,y,x), with inputs x and 
ke which gives results : y = i x.x / ke j and x = x.x mod ke. This program was
run and the initial x value and the value of ke produced by the C program after a

seed value equal to 123456789 had been specified, were used in a program to test the
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division function. This test program contained the x and ke initialisations followed by 

the loop :

for (;;)

{
mult(x,x,y);
div(y,ke,q,x);

}

The test program was cross-compiled and a breakpoint was inserted in the resulting 
assembly language program within the division function at the start of the add back 
section. As expected it took a large number of iterations before this breakpoint was 
reached : a counter variable indicated that the add back section was only encountered 

for the first time after 7444 iterations of this loop using the data generated by 
enciphx. Enciphx was then run with x values printed out after 7444 mad(x,x,xjce,y,x) 
operations. It was found that the resultant x corresponded with the value produced by 
the test program :

After 7444 iterations :
x[0] = 20, x[l] = 7772, x[2] = C6EF  x[20] = 2159.

This method was used for two more similar tests to show that the add back section 
works in more than just one test case. It was found that add back was required after 
7888 iterations and then again after 18683 iterations of the mult(x,x,y) and 
div(yke,q,x) functions using the same initial data. Again the results corresponded with 
the values produced by the MIRA CL enciphx program :

After 7888 iterations :
x[0] = 20, x[l] = 95C4, x[2] = A5DA  x[20] = 1E73.

After 18683 iterations :
x[0] = 20, x[l] = 7508, x[2] = 7EBF, ..., x[20] = A4.
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4.4.5 Tim ing

The division function is the largest and the most complicated of the multi-precision 

functions which have been developed. This can be observed in the timing calculation 

in which several approximations and assumptions must be made. A timing of 
individual steps is shown below, with notes of assumptions made.

Function initialisation : 5
Register set-up : 10
Register store : 5

Copy U t o R :  3 + 3 * ( M + l )
Check if U[0] < V[0] and if V[0] = 1 : 7
Calculate loop counter : 3
Noim calculation : 27
Scale V : 4 + 7N
Scale U : 11 + 7M
Register initialisation for loop : 6

The following loop is executed M times :

{
Calculate Qhat (i) :
Check if Qhat too big (ii) : 
Multiply and subtract (iii) : 
Add back (iv) :
End sub :

1

25
22 + .5 * ( 6 + 22 ) + 3 
16 + 7N + 41 + 7 L M/2 J 

Negligible 
6

Q adjust : 12 + 3N
Strip leading zeros form Q (v) : 9 + M
Strip leading zeros form R (v) : 9 + N
Unnoimalize R : 16.5 + 23M
Unnoimalize V : 14 + 23N
Zero Q (vi) : Negligible
Function Termination : 7

Single precision division (vi) : Negligible
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i. R[j] is assumed not to be equal to V[n] in working out this timing. This
assumption should be correct 65535 times out of 65536, on average.

ii. It is assumed here that the trial quotient, Qhat, must be reduced by one due to
the results of the test half the time. This has been observed in practice to be
more often than this possibility occurs.

iii. Since the aim in producing this timing is mainly to look at the large
multi-precision operations that the function will mainly be used for, it is assumed 
here that there is more than one double precision subtraction.

iv. Add back occurs of the order of once in every 32768 cases so it can be
neglected as having little effect on the timing.

v. Q and R are assumed to have the most significant half of their precisions equal
to zero.

vi. Timings can be worked out for the cases of U[0] < V[0] resulting in Q = 0,
and V single precision, but it is reasonable to assume that these types of
operations are not likely to occur often enough to impact on timing.

The total time summed from the time for all the sections is :

7NM + 7M lM/2j + 151M + 34N + 151.5 instruction cycles.

where M is the precision of U and N is the precision of V. In these calculations Q
is assumed to be the same precision as U, and R the same precision as V. This 
assumption may result in the calculated number of instructions being bigger than the 
number that will be executed in an average case, but it is appropriate to err on the 
side of calculating too large an estimate of the number of instruction cycles rather 
than too small.

Knuth’s MIX implementation takes 30NM + 97N + 326M + 115 instruction cycles 

where there are M+l words in the quotient and N words in the divisor. If this is
expressed in the same form as the TMS320C25 implementation i.e. with M words in
U and N words in the divisor, V, the result is the following timings :

Knuth’s MIX implementation : 30NM + 67N + 326M - 211
TMS320C25 code : 7NM + 7M lM/2j + 34N + 151M + 139.5

TMS320C25 independent function : 7NM + 7M lM/2j + 34N + 151M + 151.5
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43.1 SQUARING FUNCTION

Function:

Files:

Description:

Parameters:

Return Value: 

Restrictions:

void square(x.y)
unsigned int x[SIZE], y[2*SIZE - 1];

square.asm, squarc.obj

Squares a multi-precision number.

One unsigned integer array in big format 
On exit y = x * x.

None

• y must be distinct from x.
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4.5.2 Low  Level Algorithm Description : SQUARE

1. Function initialisation.

2. Register and counter set-up.
Initialise i «- 1, j i + 1.
Z[0] <- 2N.

3. Stait of i loop.
Zero carry.

4. Start of j loop.
If j > N branch to 6, end j loop.
Acc t- x[i] * x[j] + carry.
Carry <- AccH.
Z[i+j-l] <- Zti+j-1] + AccL
If last calculation resulted in a cany above one precision, carry ++.

5. Branch to start j loop.

6. End j loop.
Z[n+i] <- carry. If i < n, go to 3.

7. Double Z.
Z[2N] <- carry. If carry = 0, Z[0]—.

8. Square loop.
i counter = 1. Zero carry.
Acc «- x[i] * x[i] + carry.
Carry «- AccH. Z[2i-1] «- Z[2i-1] + AccL
If this sum causes a single precision carry, carry++.
Z[2i] <- ( Z[2i] + carry ) % BASE.
If Z[2i] + carry produces a single precision cany, carry = 1, else carry

9. End square loop.
If i <= n, go to 8.

10. Function termination.
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4.5.3 Explanation

Multiplication involves computing all the cross products of the multiprecision digits of 
the numbers being multiplied. When a number is being squared there is a considerable 
amount of repetition of cross product calculation. On a general purpose microprocessor 
which has a high overhead for each multiplication operation, a large time saving can 
be obtained by ensuring that those cross product results that are used more than once, 
are not calculated more than once. It is worth considering the benefit of implementing 
an assembly language squaring routine on a digital signal processor because public key 
encryption involves exponentiation which can be broken down into a number of 
squaring, multiplication and division operations. It is not immediately clear that there 
will be a timing benefit from a separate implementation to the standard multiplication 
function for squaring on a digital signal processor. Unlike the case with a general 
purpose microprocessor, the multiplication operation is comparatively cheap on the 
DSP, so the overhead involved in determining which cross product results can be used 
twice may be more than the saving from doing these multiplication operations only 
once.

The following examples illustrate where the savings can be obtained in a squaring 
operation:

a b
a b
  *

a.b b.b 

a.a aJi
  +

a.a

a
a

b.b

b
b

c
c

h£

c.c
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a b e d
a b e d

a.d b.d c.d d.d 
a.c h.c c.c c.d

a.b b.b b.c b.d
a.a a.h a.c a.d

+

Fig. 4.7 Illustration of repeated multiplications in squaring

Each letter represents a single precision of the number, so the product of two letters 
represents a double precision number. The formula for the square of a multiprecision 
number with n places is :

The second term involving single precision square terms requires a loop which 
executes n times. The easiest way to implement the first term is to calculate and sum 
all the cross product terms and then multiply the result by 2. It would be nice to be 
able to efficiently calculate the first term completely in just one loop but, because a 
cross product term multiplied by 2 can give a triple precision result, this result cannot 
be simply expressed as just a product and a carry, and it is therefore easier to break 

the calculation into two loops.

2
( X[n] ) = 2 * 2

i=n j=n

i=l j=i+l

i=n 2 
(X[i] * X[j]) + Z (X[i])

i=l
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An example of how the main loop for this term might look if implemented in high 
level is shown below :

for ( i=l; i<n; i++)

{
carry=0;

for ( j=i+l; j<=n; j++)

{
product=x[i]*x[j]+carry;
carry=product/BASE; /* implicit div operation */ 
z[i+j-l] = ( z[i+j-l] + product%BASE )%BASE ; 
if ( z[i+j-l]< (product%BASE) ) carry++;

}
z[n+i]=carry;

}

The important feature of this piece of code to be noted in the specification stage of 
the design of an assembly language routine for squaring is the loop structure. The
instructions in the inner loop are carried out N(N-l)/2 times. The highest order term
in the doubling and in the calculation of the second term is N so the dominant term 
in the timing of the squaring of a large multiprecision number is the N*N term from 
the above loop. This means that the efficient implementation of the above loop is
critical for the function to run quickly. Specifically it means that because the squaring 
operation using the general multiplication function takes : 9N*N + 19N + 35 
instruction cycles, the loop must be implemented in less than 18 instructions to
produce a timing benefit, because the N*N term is scaled by a factor of 1/2.
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4.5.4 Test Cases

It was decided that the squaring function could be effectively tested by looking at the 
zero case, the unity case, two single precision cases, a small multi-precision example 
and finally a large application type example. The following test cases worked as 
expected :

1. x = { 0,0 }, y = { 0,0 }.

2. x = { 1,1 }, y = { 1,1 }.

3. x = { 1,3 }, y = { 1,9 }.

4. x = { 1JTFF }, y = { 2,1,FFFE }.

5. x = { 3,FFFF,FFFF,FFFF }, y = { 6,1,0,0,FFFE,FFFF,FFFF }.

This test case was easy to check theoretically using the formula :

( BASE3 - 1 ) * ( BASE3 - 1 ) = BASE6 - 2 * BASE3 + 1

6. The large application example was the same as the one used to test the add back
section in the division function. Mult(x,x,y) was replaced by square(x,y) and the
result after 7444 iterations of the loop:

for(;;)

{
square(x.y);
div(y,ke,q,x);

}

corresponded with the result produced by the enciph.c program from the MIRACL 
package.
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4.5-5 Tim ing

Number of instructions executed once : 61.5
Zeroing Z : 2N
Instructions in i loop only : 11 => 11 N
Instuctions in j loop ( and i loop ) ; 16.5 => 16.5 * N(N-l)/2
Doubling Z : 5N
Square loop : 20N

Total : 8.25 N*N + 29.75 N + 61.5 instruction cycles.

The equivalent multiplication function takes : 9 N*N + 19 N + 
N, it can be shown that the squaring function gives a
multiplication for operands with 16 places of precision or more.

49 cycles. Solving for 
timing benefit over
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4.6 House-keeping Functions

The basic multi-precision arithmetic routines are addition, subtraction, multiplication and 
division. Squaring is a special case of multiplication which can show timing benefits 
over the general case multiplication function when implemented separately. These 
routines provide the tools necessary to allow the implementation of any multi-precision 
arithmetic application. They are also the primary number-crunching functions in any 
such application and, as a result, the fast operation of any application which uses 
them depends almost exclusively on their efficient implementation.

In addition to having routines which make the application program run fast, it is 
desirable to ensure that programs which use the multi-precision arithmetic assembly 
library are as easy to write as possible. The compatibility of the assembly functions 
with cross-compiled C code means that most of the coding facilities which a 
programmer can require are provided by the C programming language. However there 
are functions which allow simple manipulation and inspection of multi-precision 
numbers and which are practically essential for the house-keeping type operations 
which are likely to arise in a multi-precision application.

These house-keeping functions arc the zero, lzero, copy and compare functions. Zero 
sets a multi-precision number to zero. Lzero strips leading zeros from a multi-precision 
number. If a previous operation has resulted in a multi-precision number having one or 
more of its most significant digits equal to zero, lzero will ensure that the digit 
counter in the first array position is decremented until the most significant digit is no 
longer zero. Copy copies one multi-precision number to another. Compare compares 
two multi-precision numbers and returns a different value depending on whether the 
first number is less than, equal to or greater than the second number. Other useful 
functions could be written either in assembler or C to facilitate other simple 
operations, but it is felt that this small set of functions provides enough facilities for 
most multi-precision applications.
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4.6.1 ZERO FUNCTION

Function:

Files:

Description:

Parameters:

Return Value:

Restrictions:

Example:

void zcro(x) 
unsigned int x[SIZEl;

zero.asm, zero.obj

Sets a multi-prccision number to zero.

One unsigned integer array in big format. 
On exit x[0]=0, x[l]=0.

None

None

/* Before : x[0]=2; x[l]=3; x[2]=8; */ 

zero(x);

/* After : x[0]=0; x[l]=0; */
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4.62  LZERO FUNCTION

Function:

Hies:

Description:

Parameters:

Return Value:

Restrictions:

Example:

void lzero(x) 
unsigned int x[SIZE];

lzero.asm, lzero.obj

Strips the leading zeroes from a multi-precision number. If a 
big format number contains a most significant digit or digits 
which is/are equal to zero, the first digit is reduced until the 
most significant digit in the big format number is non-zero.

One unsigned integer array in big format On exit the most 
significant digit of the big number is non-zero.

None

None

/* Before : x[0]=3; x[l]=5; */
/* x[2]=x[3]=0; */

lzero(x);

I* After : x[0]=l; x[l]=5; */
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4.6.3 COM PARE FUNCTION

Function:

Files:

Description: 

Parameters: 

Return Value:

Restrictions:

Example:

int compare(x.y)
unsigned int x[SIZEl],y[SIZE2];

compare.asm, compare.obj

Compares two multi-precision numbers.

Two unsigned integer arrays in big format.

Returns 2 if x > y, returns 1 if x < y
and returns 0 if x = y. The value is returned in the 
accumulator. This is the convention for the TMS320C25 
compiler so control of program flow statements can be used as 

.in the example below.

None

mainO

{
int i,x[3],y[2],z[4]; 
x[0]=2; x[l]=8; x[2]=3; 

y[0]=l; y[l]=9;

i = compare(x,y); /* i gets set = 2 */

if ( i= 0  ) zero(z); 
else if ( i = l  ) add(x,y,z); 
else sub(x,y,z);

}
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4.6.4 C O P Y  FUNCTION

Function:

Files:

Description:

Parameters:

Return Value:

Restrictions:

Example:

void copy(x.y)
unsigned int x[SIZE], y[SIZE]; 

copy.asm, copy.obj

Copies a multi-precision number to another.

Two unsigned integer arrays in big format. 
On exit Y = X.

None

None

/* Before : x[0]=2; x[l]=3; x[2]=8; */
I* y[0]=l; y[l]=9; */

copy(x.y);

/* After : x[0]=2; x[l]=3; x[2]=8; */
I* y[0]=2; y[l]=3; y[2]=8; */
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5 APPLICATION S

S.l Exponentiation

Exponentiation is the central operation in most public-key encryption schemes. The 
RSA algorithm uses the formula :

C = mod N

for both the encryption and decryption operations. The message is raised to the power 
of the public-key K, modulus N, the product of two suitable primes, to produce the 
ciphertext At the receiving end the message is calculated to be equal to the ciphertext 
raised to the power of a secret key also modulus N. The operands are different at the 
transmitter and receiver but the operation is the same. The most obvious method to 
compute an exponent is to simply multiply repeatedly. This however is not necessarily
the cheapest method in terms of the number of instructions.

Looking at a simple example, X32 , the repeated multiplication method would require 
31 multiplies. Only 5 would be required if the result was calculated by taking 
repeated squares :

X2 , X4 , X8 , X 16 , X32.

This example is a special case in that it involves raising the number to a power of 2 
but the important point to note is that it illustrates that there may be a way to 
calculate an exponentiation which requires significantly fewer multiplication operations 
than might be thought if multiplication by the original X value was the only method 
availible.

Two exponentiation methods which can exhibit such savings as shown above are the 
binary methods, either operating on the exponent from left to right or from right to 

left These methods both involve looking at the exponent in binary format and 
deciding whether to square a partial result or multiply it by X, depending on whether
the bit under examination in the exponent is a zero or a one. While the left-to-right
method is fully practical, it is generally more convenient to look at a number from 

right to left because, in an implementation which makes use of the hardware, the 

number can be shifted right or divided by two until it equals zero and the parity bit 
can be observed in a hardware register.
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Knuth outlines an algorithm for the right-to-left binary method for exponentiation 
calculate Xn , where n is a positive number [6]:

1. Initialize :

2. Halve N :

3. Multiply Y by Z :

4. Check : N = 0 ?

5. Square Z :

N n, Y f  1, Z <- x.

Shift N right: N f- l N/2 i 

Check value of shifted bit.
If it is 0, go to 5.

Y <- Z * Y

If N = 0, algorithm finished.
Answer is Y.

Z <- Z * Z.
Go to 2.

R e m a i n d e r  =  1
I
t

Y e s  :  A n s w e r  Y

Fig. 5.1 The left-to-right scan exponentiation method for the calculation of AT1 [6].



An example showing values after steps 1 and 4 in the calculation of X^  follows

Step N Y Z

1 25 1 X

4 12 X X

4 6 X X 2

4 3 X X 4

4 1 X 9

ooX

4 0 X 25 X 16

Fig. 5.2 Exponentiation calculation example.

The result is the Y value when N has been reduced to zero. It can be seen from the 
example that the number of multiplications of Z times Y is given by the number of 
ones in the exponent, v(n), while the number of squarings is determined by the length
of the binary representation of the exponent : l lg2 n j.

Therefore the total time taken for an exponentiation is : v(n) + l lg2 n j.

A reasonable approximation is that half of the bits in n are equal to one and the 
other half are equal to zero giving an average of 3/2 * l lg2 n j multiplications. 
The maximum number of multiplies in an exponentiation for a given length exponent 
occurs when the binary representation of the exponent is all ones. This will result in 
2 * t lg2 n j multiplications. If the exponentiation is being carried out on a number 
which has 16 places of precision or more, then use of the squaring function offers 
timing benefits over the multiplication function and the timing for the exponentiation 
operation will be based on both the number of instructions executed in the
multiplication function and the number executed in the squaring function. There is also
an overhead due to the use of the copy function.
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An example of a high level code implementation of the above algorithm using the 
functions from the DSP assembly language multi-precision arithmetic library follows :

( The output function is not part of the library and would have to be developed for 

specific applications. )

expo(zoi,y)
unsigned int z[], y[]; int n;

{
int parity;
unsigned int temp[SIZE]
for (;;)

{
parity = n%2; 
n /= 2; 
if ( parity )

{
mult(y,z,temp); 
copy(temp,y); 
if ( n =  0 )

t
output(" answer = %u", y); 
break;

}
}

squarc(z,temp);
copy(temp,z);

}
}
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If the overhead due to the statements which control program flow is neglected, as an 
approximation, then the timing for this function can be calculated using the following 
formula :
i lg2 n j * ( squaring time + copy time ) +

v(n) * ( multiplication time + copy time )

multiplication time : 9NM + 2M + 17N + 49 
squaring time : 8.25N*N + 29.75 N + 61.5 
copy time : 3M + 17 
v(n) = 0.5 * l lg2 n j.

It is not possible to multiply out and to sum this timing for a general case because 
the sizes of both z and y increase after each iteration, so a timing would have to be 
worked out for each individual application. However in almost all applications 
exponentiation is done modulus a given number which keeps the calculation results 
smaller than that particular value. If the operation is done "mod value" the 
multi-precision number value is passed to the expo(z,n,y) function in a similar manner 

to z and y, and the copy functions is replaced by a division operation : 
copy(x,y) -> div(x,value,temp,y), copy(x,z) -> div(x,value,temp,z).

This would yield a timing sum of :

i lg2 n j * ( squaring time + division time ) +
v(n) * ( multiplication time + division time )

multiplication time : 9NM + 2M + 17N + 49, N = M.
squaring time : 8.25N*N + 29.75N + 61.5,
division time : 7NM + 7M lM/2j + 34N + 151M + 151.5, M = 2 * N

N * Y[0] s  Z[0]. 2 * Z[0] s  X[0].
i lg2 n j = 16N 

v(n) * 0.5 * t lg2 n j = 8N
16N * ( 9N*N + 19N + 49 + 14N*N + 34N + 302N + 151.5 ) +

8N * ( 8.25N*N + 29.75N + 61.5 + 14N*N + 34N + 302N + 151.5) =
882 N*N*N + 8606 N*N + 4912 N instruction cycles.

There is a cubic term in N in the timing result because of the second order term 
in N in both the multiplication and division functions, and the exponentiation involves 

a loop containing these functions which iterates of the order of N times. This means 
that exponentiation is a very expensive operation in timing terms.
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5.2 The Rivest, Shamir and Adleman Algorithm [7]

The RSA algorithm requires one exponentiation modulus the product of two primes for 
encryption and a similar operation for decryption at either end of a transmission 
channel. The C code described in the section on exponentiation and the resulting 
timing therefore show both the implementation and the timing of this public-key 
algorithm. The timing is done in the exponentiation section without working out 
complete results because these are dependent on the size of the numbers used in each 
application. It is useful to determine a rough value for the time taken by this 
algorithm, based on approximate sizes for the numbers used. In practical applications, 
these numbers are chosen as small as possible in order to enhance speed but they
must be large enough to provide whatever is considered to be adequate security.

The following results are taken from the output of a program written to calculate the 
time taken by R.S.A.. The program uses functions from the MERACL package to 
calculate the number of instructions in each routine that is called by the RSA
algorithm. The instructions which control the flow of the encryption algorithm 

including the loop conditions, are neglected in this calculation because their number 
has a very minor impact on the result in comparison to that of the numerical 
functions.

For calculation purposes and to allow for slightly worse than the average case, some 
of the formulae constants are rounded up in the expressions for the number of 
instructions in the arithmetic functions :

multiplication time : 9NM + 2M + 17N + 49
squaring time : 8.25N*N + 29.75N + 62
division time : 7NM + 7MtM/2j + 34N + 151M + 152

Number of digits in multiplication, squaring and division denominator : 33 
There are twice the number of digits in the division numerator.

Number of instructions in multiplication : 10477
Number of instructions in squaring : 10029

Number of instructions in division : 41732
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Number of instructions in multiplication and division : 52209 

Number of instructions in squaring and division : 51761

Total number of instructions in encryption : 984355
Encryption is based on an exponent equal to 216 + 1 ( 65537 ).

Total number of instructions in decryption : 41112984
Decryption is based on a 33 word exponent.

Therefore a block of 33 words or 528 bits would require 0.0984 seconds to encrypt 
and 4.111 seconds to decrypt, based on the 100 nanosecond instruction cycle of the
TMS320C25. This is an encryption rate of 5.36 kbits/second with decryption running
at 128 bits/second. The same method as that used in calculating these timing estimates 
was used for some other block lengths :

Modulus Length 

(words) (digits)

Enc. time 

(ms)

Dec. time 

(ms)

10 49 15 180

20 97 41 1,060

30 147 84 3,170

32 155 94 3,780

33 159 99 4,120

35 169 109 4,840

37 179 121 5,650

40 193 139 7,020

50 241 207 13,150

60 289 290 22,080

Fig. 5.3 RSA block encryption time
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Modulus Length 

(words) (digits)

Enc. rate 

(k b its /se co n d )

Dec. rate 

(b it s /s e c o n d s)

10 49 11.24 891

20 97 7.64 302

30 147 5.76 151

40 193 4.62 91

50 241 3.85 60

60 289 3.3 43

Fig. 5.4 RSA byte encryption time
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A block length of 160 digits ( 33 words ) could be considered to be a minimum 
requirement for security [19]. The timing results outlined above indicate that full public 
key speech encryption is not feasible at this block length. However the timings are 
within a suitable range for key exchange as would be required in a hybrid 
public-key/secret-key system. Therefore the use of the multiprecision arithmetic 
assembly language functions to implement the R.S.A. algorithm in its standard format 
has produced a viable program for real time data communication but the more 
stringent specifications of speech communication have not been met

There is an alteration which can be made to the decryption section of the R.S.A. 
algorithm to produce better timing values. Time savings result from pre-computing 
auxiliary numbers which make the exponents used in the general decryption operation 

smaller [19,26].

In this method the following numbers are computed prior to the decryption calculation: 

Ap = qP*l mod n, Aq = n + 1 - Ap, Dp = d mod(p-l), Dq = d mod(q-l)

Decryption then involves computing :

M = ( Ap * ( (C mod p)°P mod p) + Aq * ( (C mod q)0 *! mod q) ) mod n

The most time-intensive parts of the above formula are the exponentiations to the 
power of Dp and Dq. The two primes, p and q, which, when multiplied together, 
produce n, are approximately half the length of n. Dp and Dq are limited to being 
smaller than p-1 and q-1 respectively. This means that instead of performing one 
exponentiation to the power of a number that is approximately the same length as n, 
two exponentiations are performed to the power of numbers that are approximately half 
the length of n. Due to the non-linear increase in the time needed to perform an 
exponentiation to the power of a larger number, there are substantial timing benefits to 
be obtained from using this method. According to the availible literature [19,26], the 
resultant timing shows a reduction of approximately 70 percent. The decryption time 
for a 33 word block size could therefore be reduced from 4.111 seconds to 1.233 

seconds. This is an increase in decryption rate to about 384 bits/second which is a 

significant improvement but is still not adequete for real-time speech communication.
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5.3 The Blum , Blum and Shub Algorithm [8]

The BBS algorithm is a pseudo-random number generator with public-key encryption 

applications. It is based on the iterative sequence :

xi+l = xi2 mod ke 

This can be implemented using the following loop :

for(;;)

{
square(x.y);
div(yjce,q,x);
output(x);

1

The output function must be written for each separate application. If a block size of 
10 words ( 160 bits ) is used each iteration of the above loop takes approximately 
7497 instructions or 0.7497 milliseconds. If the parity bit only is considered to be 
cryptographically secure, this would give a pseudo-random bit stream producing 1.33 
kbits/second. However, as recent number theory suggests that up to log2l bits produced 
by each iteration ( where 1 is the number of bits in the modulus number n ) may be 

considered to be cryptographically secure [8], this generator can be used to produce up 
to 9.34 kbits/second which is suitable for eXclusive-ORing with the message stream. 
This algorithm can therefore be successfully implemented for a realtime speech 
application using the multi-precision arithmetic assembly language routines from the 
library.

Modulus Length 

(words) (digits)
[_Log ij

Cryptographically 
secure bits 
( kbits/second)

10 49 7 9.34

20 97 a 3.63

30 147 8 1.83

40 193 9 1.47

50 241 9 0.82

Fig. 5.5 BBS pseudo-random, number generator bit rates.
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6 CON CLUSION

In this project the motivation for the use of encryption schemes to enhance security 
has been discussed and several applications have been outlined. An assembly language 
multi-precision arithmetic library has been developed for use in encryption applications 
on the TMS320C25 digital signal processor. The main arithmetic functions have been 
written in assembly language with significant timing improvements over the classical 
algorithms by Knuth upon which they are based. Additionally several other useful 
functions have been coded to facilitate the writing of high-level code for 
multi-precision applications.

As outlined in the applications section of this report, the library allows easy high-level 
coding of encryption algorithms and examples have been given. The timing values 
calculated for these applications show that the library can be used successfully in 

real-time situations. Due to the high bit-rate required for speech channels it is 
necessary to use a hybrid encryption scheme involving public-key initialisation of a 
secret key for a fast secret-key system if use of the Rivest, Shamir and Adleman 
algorithm is required. The Blum, Blum and Shub pseudo-random number generator has 
been implemented for real-time speech rates, assuming a number theory fraction of 
cryptographically secure bits [8], as outlined in Section 5.3.

A complete evaluation of the library could therefore be summarised in the following
two points :

1. A reasonably user friendly package has been developed which allows encryption
applications to be written in a few lines of C code, resulting in an efficient assembly
language coding of the application in question.

2. Real-time constraints for such applications as speech encryption are difficult to meet 
and the library allows these constraints to be fulfilled only if a suitable algorithm is 
chosen.

Q1



There are three basic approaches which can be taken to tackle the problem of 
real-time speech encryption more successfully. The first method is to implement the 
chosen algorithm in hardware or at least to maximise the hardware support for the 
application. Hardware implementations are, in general, likely to be more expensive, 
faster and less flexible. Higher security levels can be achieved as a direct result of 
greater speed and for a specific commercial application flexibility is not the major 
concern. The trade-off is therefore the old one of cost against security.

An example of a hardware solution to the encryption problem is Rivest’s "A 
Description of a Single-Chip Implementation of the RSA Cipher" [27]. He claims that 
his device can perform the encrypt/decrypt operation at rates in excess of 1200 

bits/second with a maximum length ( 512-bit ) key. This is close to speech rates but 
not quite good enough for a speech encryption system comprised solely of the RSA 
algorithm. Another hardware implementation of the RSA algorithm has been proposed, 
using systolic arrays [28]. The timing claim for this approach is that a solution 
involving hardware complexity O(n) gives speed proportional to 1/n 2 .

Another way to tackle the encryption problem is to use a software-based approach 
which sacrifices at least one of the desirable characteristics of the assembly language 
multi-precision library : size of implementation, simplicity of use and flexibility. Many 

software approaches to efficient implementation of the RSA algorithm try to minimise 
the time for arithmetic computations by using look-up tables. This method is used in 

"Algorithms for Software Implementations of RSA" [29] in which modular reduction 
and modular multiplication algorithms are described. Both of these algorithms use 
look-up tables and it is claimed that the largest operation in the reduction is a ’long’ 
subtraction and in the multiplication it is a ’long’ addition. The timings for both these 
functions contain a constant multiplied by an r? term, so the benefits of this 
implementation method are dependent on keeping the constant as small as possible 
when coding.



Comba in his "Exponentiation Cryptosystems on the IBM PC" [19] relies mainly on 
the idea of reducing the number of instructions by re-writing loops as in-line code. 
His unraveled code for multiplication, for example, takes two thirds of the time that 
the normally looped code takes. Due to the absence of a hardware multiply on his 
processor, most of his timings fall short of the DSP assembly implementations : 
Comba’s multiplication of two 30 word numbers takes 4.52 milliseconds as against
0.872 milliseconds for the DSP function. His modular exponentiation method again 
involves pre-computation of a look-up table. As a result his encryption time for a 33 
word block-size is 35 milliseconds which is better than the DSP library result of 98.4 
milliseconds. Comba’s multiplication procedure alone consists of about 12K bytes of 
code.

The final suggested method of improvement for the performance of algorithms 
developed using the DSP library, is to try to improve on certain aspects of the library 
functions keeping encryption in mind, while still maintaining the size, user-friendliness 
and flexibility of the library. The normalisation procedure used in the division function 
involves multiplying both the numerator and the divisor by the same constant. The 

overhead for this procedure can be eliminated if the divisor is chosen as an 
appropriate value to fit in, without normalisation, with the workings of the division 
algorithm. However this idea will only save 43 + 7N + 7M instructions using the 

notation from the division timing section An effort has been made throughout to 

optimise in particular the high iteration loops which result in the largest timing 
expense so it is unlikely that significant improvements over the timings produced can 
be achieved without taking a radically different approach such as the two already 
mentioned. The library would also be improved by adding additional functions, 
including modular multiplication, modular squaring and functions which facilitate the 

initialisation of public-key encryption schemes, and also by changing the way that the 

functions have been implemented so that they have fewer calling restrictions.
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The following program is the source code for the addition 
function.
It is included as an illustration of the programing method.

* 22/1/91
.def add

*

*

*

*

Knuth’s add algorithm implemented on the TMS320C25.
Compatible with cross-compiled C code from the TMS320C25 C Compiler. 
Adds two multi-precision numbers x and y giving result z.

* Note x >=
*

y-

ONEPRC EQU 0 Will contain 1 if single precision add
* left after all 2 precision adds, else 0
TWOPRC EQU 1 Calculated number of 32-bit digits in
* smaller number to be added
AROSTR EQU 2 ARO stored here
AR1STR EQU 3 AR1 stored here
AR3STR EQU 4 AR3 stored here
AR4STR EQU 5 AR4 stored here
AR5STR EQU 6 AR5 stored here
TEMP EQU 7
J .  ^  J .  -J -  »1- ^  - I - J .  ^  .1. .f .  «1- «J, mlm « L  ^  tig  ^  « L  ^  ^  ^  ^  ^  ^  t L  »L  ^  si/ U# « L  5L. ^  ^  ^  « L  ^  ^  t L  ^  ^  « L  *X* 4* «1# ^  « L  L̂* «1  ̂«!■ *1* ^  « L  ^  *1/ *1* *1/^  4* n *  it '  ^  ^  ^  ^  ^  ^  n*  *T* -T* -T^ *v  *r* ' p  *p  t *  n*  n*  »p  *p  ^  *1* *t* t *  "T“ •t* ^  ■'T” *p  * p  T* ^  *•* “• *T* *p  m* ”T* *T“ h*  ' p  *1" "P

****
* FUNCTION INITIALISATION
*

add:
POPD
SAR
SAR
LARK
LAR

*+
AR0,*+
AR1 ,*
AR0,3
AR0,*0+,AR1

Pop return address 
Push on system stack 
Save old FP

FP = old SP, SP += SIZE

****
* REGISTER AND PRECISION COUNT ITERATION SET UP
*

LDPK 6 ; Data page 6 : data memory 300h
SBRK 6
LAR AR3,*- Load AR3 with &X[0]
LAR AR4,*- Load AR4 with &Y[0]
LAR AR5,*,AR2 Load AR5 with &Z[0]
SAR ARO,AROSTR Store ARO
SAR AR1,AR1STR Store AR1
SAR AR3,AR3STR Store AR3
SAR AR4,AR4STR Store AR4
SAR AR5,AR5STR Store AR5



LARP AR3 Select &X[] pointer
LAR AR6,*,AR3 Counter for copy operation : AR6 <- X[0]

COPY LAC *+,AR5
SACL *+,AR6 Z[N] = X[N], N++
BANZ COPY,*-,AR3

********

LARP AR5
ZAC
SACL *,AR3 Zero Z[N+1], select X[] pointer
SACL ONEPRC Zero single precision flag
LAR AR3,AR3STR Restore AR3,AR5 = X,Z pointers
LAR AR5,AR5STR
MAR *+,AR4 Point to X [l] initially
LAC *+,AR5 Acc <- no. of digits in Y,

* AR4 points to Y [l]
MAR *+,AR3 AR5 points to Z[l]
LARK ARO,3 Double precision addition loop

* offset = 3
RSXM => C <- l.s.b. , m.s.b. <- 0
SFR Double precision count = Y[0] div 2

* Single precision count = Y[0] mod 2
BZ NODBLP ACC = 0 => no double precision add
SACL TWOPRC
BNC NOSNGL C = 0 => no single precision add
LACK 1 Set single precision flag
SACL ONEPRC

NOSNGL
ale

ADDK 0 Ensure C = 0

******************************************************************************
* DOUBLE PRECISION ADD LOOP
*

MAR *+,ARl AR3 points to X[2]
LAR ARI,TWOPRC Double precision add iteration counter
MAR *-,AR3 Loop executes <AR1> + 1 times

LOOP1 ZALH *_ ACC = X[N+1] 00, AR3 <- N
ADDC *0+,AR4 = X[N+1] X[N]+C, AR3 <- N+3
ADDS *+ = X[N+1] X[N] + 00 Y[N]+C
ADDH *+,AR5 = X[N+1] X[N] + Y[N+1] Y[N]+C
SACL *+ => = Z[N+1] Z[N]
SACH *+,ARl

*
BANZ LOOP1 ,*-,AR3 N <- N - 1

MAR *. ; AR3 <- N+2
LAC ONEPRC ; ONEPRC = 1 if single precision add left
BZ CFLGCK ; Case: single precision: N, carry: ?
BNZ SPADD ; Single precision add

****** ************************************************************************ 

* SET UP FOR NO DOUBLE PRECISION ADD



NODBLP BNC FINISH ; No single precision add needed
ADDK 0 ; Zero carry before single precision add

*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* SINGLE PRECISION ADD ; Finished double precision adds =>
* ; here do single precision add, then
* ; carry at end (Y/N)?
SPADD LARP AR3 ; Case: single precision: Y, carry: ?

ZALS *,AR4 ; ACC = X[N]
ADDC *,AR5 ; ACC = X[N] + Y[N] + C : Add

* ; with carry
SACL TEMP ;
ANDK 1000h,4 ; Checking for single precision carry
BNZ SPADDC ; Case: single precision: Y, carry: Y
LAC TEMP ; Case: single precision: Y, carry: N
SACL * ; Store result of single precision add
B FINISH ; Finish

*
jfc j|( j|( » j . - j - ̂ ^ -j■ ̂  ̂  ^  i|^ ̂ ^  ̂ ^  ̂  ^ ?|c3|cs|c ¡jc ^ ^ ^ ^ ^ ^ ^ ^ ^ ^  ^ ^  ̂  ^ ^ *|^ ^ ) f c *  ffg

* SINGLE PRECISION CARRY
*

SPADDC LAC TEMP ; Case: single precision: Y, carry: Y
SACL *+ ; Z[N]
LAC * ;
ADDK 1 ; Aim : Z[N+1] <- Z[N+1] + 1

* ; but must allow for possible carry
* ; generated by this sum

SACL TEMP ;
ANDK 1000h,4 ;
BNZ SPADDC ; Carry generated so propagate forward
LAC TEMP ; No additional carry so just Z[N+1]++
SACL * ;
B ZOCKIN ; Have done carry, must check if Z[0]

* ; increment necessary
*

* DOUBLE PRECISION CARRY
*

CFLGCK BNC FINISH ; Case: single precision: N, carry flag: N
LARP AR5 ; Case: single precision: N, carry flag: Y
LAC * ;
ADDK 1 ; Aim : Z[N+1] <- Z[N+1] + 1

* ; but must allow for possible carry
* ; generated by this sum

B FRWARD
DPCPRP LAC TEMP ; Double precision carry propagation

SACL *+ ;
LAC *



FRWARD
ADDK
SACL
ANDK
BNZ
LAC
SACL

1
TEMP
1000h,4
DPCPRP
TEMP
*

*
*

Carry generated so propagate forward 
No additional carry so just Z[N+1]++ 
Have done carry, must check if Z[0] 
increment necessary

******************************************************************************
* Z[0] : CHECK & INCREMENT IF NECESSARY
*

ZOCKIN LAR AR3,AR3STR The function will only reach this point
LAR AR4,AR4STR if the additions ended with a carry.
LAR AR6,AR5STR If X[0] = Y[0] ,

* Z[0] ++ will be necessary.
LARP AR3
LAC *,AR4 Acc <- X[0]
SUB *,AR5 Acc <- Acc - Y[0]
BZ ZOINC Acc = 0 if X[0] - Y[0] = 0
LAC * Acc <- Z[n],

* If Z[n]=l, carry has resulted
SUBK 1 in additional place being generated
BNZ FINISH so Z[0]++ necessary.

ZOINC LARP AR6
LAC * Acc <- Z[0] 1
ADDK 1 Acc <- Acc + 1 - => Z[0] ++
SACL *

sle
Z[0] <- Acc 1

** ******** * ** ** ******* ** ***** * ** ***** * * **** * **** *************** ****** *
* FUNCTION TERMINATION
*
FINISH LAR AR0,AR0STR Restore ARO

LAR AR1,AR1STR Restore AR1
LARP AR1
ADRK 4 Deallocate frame
LAR ARO,*- Restore FP
PSHD * Put return address on internal stack
RET Return to caller
.end



Appendix II

Subtraction Source Code



* 15/1/91
.def sub

* Knuth’s subtract algorithm implemented on the TMS320C25.
* Subtracts two multi-precision numbers x,y giving result z.

*
ONEPRC EQU 0
*
*
TWOPRC EQU 1
*
AROSTR EQU 2
AR1STR EQU 3
AR3STR EQU 4
AR5STR EQU 5

Will contain 1 if single precision subtract 
left after all double precision subtractions 
else 0
Calculated number of 32-bit digits in 
subtraction sum

He*****************************************************************************
* FUNCTION INITIALISATION

_sub:
POPD *+ ; Pop return address
SAR AR0,*+ ; Push on system stack
SAR AR1,* ; Save old FP
LARK ARO,3
LAR AR0,*0+,AR1 ; FP = old SP, SP += SIZE

- i-  . i  -  . f .  - i . .  I f .  ir  j .  - 1 - .  i  -  - 1,  -I .  - i .  . f .  . r .  j .  j .  «1. j .  ■ I-  *f. »I -  ̂  « I . J .  J .  j .  ^  ‘i f  ^  J #  ^  ^  ^  «1» «1j d#  *J# ^  ^  «L U j «L «!•
^ ip ip ql Jp ip ip iJV #p qi ip r|l ̂  ip rp ip «JV ip fp #p q» *p «p ip “X* T n* T* *|* *p ■[■ <p rp T» *p »p *T" #p <p “I *P »p »p •P'M'T' *1* T* *|» v r I if* *T* <P 'I* ”i* ” I' “f “ “ i * * *i* “ I * ” I * V™ *J* “I ’

* REGISTER AND PRECISION COUNT ITERATION SET UP

COPY

LDPK
SBRK
LAR
LAR
LAR
SAR
SAR
SAR
SAR
ZAC
SACL

LARP
LAR
LAC
SACL
BANZ

LAR
LAR

6
6
AR3,*-
AR4,*-
AR5,*,AR2
AR0,AR0STR
AR1,AR1STR
AR3.AR3STR
AR5,AR5STR

ONEPRC

AR3
AR6,*,AR3
*+,AR5
*+,AR6
COPY,*-,AR3

AR3,AR3STR
AR5,AR5STR

Data memory 300h to 37Fh

Load AR3 with &X[0]
Load AR4 with &Y[0] 
Load AR5 with &Z[0]
Store ARO 
Store AR1 
Store AR3 
Store AR5
Zero single precision flag

Select &X[] pointer
Counter for copy operation: AR6 <- X[0]

Z[N] = X[N], N++

Restore AR3,AR5 = X,Z pointers



LARP AR4 Select Y[] pointer
LAC *+,AR5 ACC <- Y[0], AR4 -> &Y[1]
MAR *+ AR5 -> &Z[1]
RSXM so that SFR produces logical right shift
SFR ACC <- Y[0] div 2, C <- Y[0] mod 2
BZ NODBLE
SACL TWOPRC Number of double precision subtractions
BNC NOSNGL
LACK 1
SACL ONEPRC Set single precision subtraction

He*****************************************************************************
* DOUBLE PRECISION SUBTRACTION WITH CARRY GENERATION

NOSNGL
*

LARK ARO,2 Offset used for auxiliary reg. increment 
between double precision subtracts

LAR AR6,TWOPRC Double precision counter
LARP AR3 Select X pointer
MAR *0+ AR3 -> &X[2]
ZALH *_ ACC = X[2] 00
ADDS *0+,AR4 = X[2] X [l]
SUBS *+ = X[2] X [l] - 00 Y [l]
SUBH *+,AR5 = X[2] X [l] - Y[2] Y [l]
SACL *+ => = Z[2] Z [l]
SACH *+,AR6
MAR *_
BANZ TWDBLE AR6 is counter for number of double 

precision subtractions
LAC ONEPRC Case: One double precision 

subtraction only
BGZ SNGLPR Now: Single precision subtraction left?
BNC BORROW Finished except for borrow
BC FINISH

.  1 . J>  .N  -  V. J ,  -1 - .  ] r  , r .  -1 -  J ,  . f .  j .  J *  J .  J .  - I . j .  J .  ■ I -  ^  ^  «1« ^  4 / «1» 4«  \1> *i> ̂ j> ̂  ^  ̂  <L> >|> ̂  >1» *X* * i/ »ĵ  <1« ̂  4 ^  «!■ »X» *L U i *1/ 4>  *X* *L* ̂  sL> U j *1> ̂  U g *L> *1«q«  ̂  q> ^  ̂  qS  ^  ^  ■ p * p  ^  * p ^  q»  q*  ^  i p T »  ̂  ̂  T» ^  n*  T 1 *p  ̂  *T* ̂  o '  M ' -T'*T* * ^ T * * P - T "  q»  ̂  * P q l  q*  n »  ̂  T T T ^  *1* *!■ *T'*1* *7 'T * * T *  q*  * r  I  ^  T’ * p * l* #r , i P

* DOUBLE PRECISION SUBTRACTION LOOP
* This section is only entered if the sum involves at least two
* double precision subtractions

TWDBLE
DBLEPR

LARP AR3
ZALS *+,AR4 ; ACC = 00 X[N]
SUBB *+,AR3 ; = 00 X[N] - 00 Y[N] - C
ADDH *+,AR4 ; = X[N+1] X[N] - 00 Y[N] - C
SUBH *+,AR5 ; = X[N+1] X[N] - Y[N+1] Y[N] - C
SACL *+ ; => = Z[N+1] Z[N]
SACH *+,AR6
BANZ DBLEPR,*-,AR3 ; AR6 is counter for number of double

; precision subtractions
LAC ONEPRC ; Case: More than one double precision



BGZ
BNC
BC

SNGLPR
BORROW
FINISH

subtraction 
Now: Single precision subtraction left? 

Finished except for borrow

He******************************:!«*!!«**************:!«**********:!«*********:!«********
* SET UP FOR NO DOUBLE PRECISION CARRY

NODBLE BNC
LARP
MAR

FINISH
AR3
*+

; Carry = 1 here 
; Point to &X[1]

2jc * - j-  . j c ̂  ^  ^  *|- ̂ |c . -|̂  « j.  ^  ^  ^  j j j j j ç  ^  j jç  ̂  ̂  5̂ 6 )|c 3̂ 6 )j|c 2̂ 6 5̂ C j j c ^  )|C3f( j j f  )jc3fc 3|( s|̂  ^  ^  ^  ^  ̂  *i|̂  ^  ^  ̂  ^  5̂ 6 5̂ C ¡jc  ?j f  ̂  ^

* SINGLE PRECISION SUBTRACTION

SNGLPR

X[N] - Y[N] = Z[N]

LARP AR3
LAC *,AR4
SUBB *,AR5 
SACL *+
BC FINISH
LARP AR5
LAC *
SUBK 1 
SACL *+
BNC BORROW

BORROW

Propagate borrow forward

* FUNCTION TERMINATION
*
FINISH LAR

LARP
LAR
ADRK
LAR
PSHD
RET
.end

AR1,AR1STR
ARI
AR0,AR0STR
4
ARO,*-
*

; Restore AR1

; Restore ARO 
; Deallocate frame 
; Restore FP
; Put return address on internal stack 
; Return to caller



Appendix i n

Multiplication Source Code



* l l /6 / ’91
.def _mult

* Note : eiTor encountered in last version if U = 0 : catered for here.
* multiprecision multiplication : algorithm Knuth V2 p253
* ( U[l]..U[n] ) * ( V[l]..V[m] ) -> W[l]..W[n+m]
* This algorithm and the MIRACL differ from Knuth’s version
* in that here ’1’ indicates the least significant digit,
* n, m, n + m the most significant digits.
*
* (i) W[l]..W[n] <- 0
* j <- 1
*

* (ii) => product = 0 if multiplier = 0 so can skip iii,iv
* (ii) has been left out.
*

* (iii) i <- 1, i+j <- 1, k <- 0
*
* (iv) t <- U[ i ] * V[ j ] + W[ i+j ] + k
* W[ i+j ] <- t mod b => acc low
* k <- l_ t/b J  => acc high
*
* (v) i++ if i <= n go to (iv) else W[ j ] <- k
*
* (vi) j++ if j <= m go to (iii) else finish

* Indexing notes :
*

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

AR3 => Loaded with

AR4 => Loaded with
j

AR5 => Loaded with
i+j

ARO => Index used to find end of U,V

: &U[0] which contains n 
: index of multiplier U 
: &V[0] which contains m 
: index of multiplicand V 
: &W[0] which will contain n + m 
: index of product W

*
*
*

*
*
*
*
CARRY 
AROSTR 
AR3STR 
AR4STR 
AR5STR 
TEMPO 
U_N 
V_M
He*****************************************************************************
* FUNCTION INITIALISATION
*

0
1
2
3
4
5
6 
7

&U[0] stored here 
&V[0] stored here 
&W[0] stored here

&U[n] stored here 
&V[m] stored here

_mult:
POPD
SAR
SAR

*+
AR0,*+
A R I*

; Pop return address 
; Push on system stack 
; Save old FP



LARK
LAR

ARO,3
ARO,*0+,ARI FP = old SP, SP += SIZE

* ( i )

ZROWN

*
*

*(iii)
LOOP2

LDPK 6 ; Data memory 300h to 37Fh
SBRK 6
LAR AR3,*- ; AR3 -> &U[0]
LAR AR4,*- ; AR4 -> &V[0]
LAR AR5,*,AR3 ; AR5 -> &W[0]
SAR AR0,AR0STR ; Store ARO
ZAC
SACL CARRY ; Zero carry

A : W[0] <- n + m, W[l]..W[n] <- 0
SAR AR3,AR3STR Store &U[0]
SAR AR4,AR4STR Store &V[0]
SAR AR5,AR5STR Store &W[0]
LAC *,AR4 ACC <- n
ADD *,AR5 ACC <- n + m
SACL *+,AR3 W[0] <- n + m, AR5 -> &W[1]
LAC *,AR3 ACC <- n
BZ UZERO If n = 0, zero W and finish
LAR ARO,*,ARO ARO <- n
MAR *-,AR5 ARO <- n - 1 : Loop iteration counter
ZAC >
SACL *+,AR0
BANZ ZROWN,AR5 W[l]..W[n] <- 0

VI : Store &U[n] and &V[m]
: AR5 > W[n+1] so AR5 can be decremented by a constant offset
: inside the larger loop.

LARP AR3
LAC AR3STR ACC <- &U[0]
ADD *,AR4 ACC <- &U[n]
SACL U_N
LAC AR4STR ACC <- &V[0]
ADD *+,AR3 ACC <- &V[m] AR4 -> V[1
SACL V_M
LAC AR5STR ACC <- &W[0]
ADD *,AR5 ACC <- &W[0] + n
SACL TEMPO
LAR AR5,TEMPO AR5 -> W[n]
MAR *+,AR3 AR5 -> W[n+1] 

Step (i) over

LAR AR3,AR3STR AR3 -> U[0]
SAR AR5,TEMPO
LAC TEMPO
LARP AR3



*(iv)
*
LOOP1

*

*
*

*(v)

*

*

*

*(vi)

* If W[n+m] 

WZRODC

SUB * ; ACC <- AR5 - n
SACL TEMPO ;
LAR AR5,TEMPO ; AR5 <- AR5 - n
MAR *+,AR3 ; AR3 -> &U[1]
LAR AR0,U_N ; Set ARO for comparison with i counter

; Step (iii) over

; Note index values initially ’1’
LT *+,AR4 ; U[i] , i++
MPYU *,AR5 ; + V[j]
PAC ;
ADDS * ; + W[i+j]
ADDS CARRY ; + k

; k => ACC high, W[i+j] => ACC low  
SACL *+,AR3 ; At W[i+j], i+j ++
SACH CARRY ;

; Step (iv) over

CMPR 2 ; Check if AR3 > ARO
BBZ LOOP1,* ; If i <= n go to (iv)

LARP AR5 ; i = n so W[j] <- k
SACH *+,AR4 ; Carry goes into next product place

; i+j ++
LAR AR0,V_M ; Set ARO for comparison with j counter
ZAC ;
SACL CARRY ; Zero carry

; Step (v) over

MAR *+,AR4 ; j++
CMPR 2 ; Check if AR4 > ARO
BBZ LOOP2,ARO ; If j <= m go to (iii)

; Step (vi) over 
= 0 decrement W[0] by one.
LARP AR5 ;
MAR *- ; Point to last filled place
LAC *-,AR5
CMPR 0 ; Finish if AR5 points to W[0]
BBNZ FINISH,*,ARO ;
BNZ FINISH ; If W[n+m] <> 0 then finished
LAR AR0,AR5STR
LAC * ; Acc <- W[0]
SUBK 1 ; Acc <- W[0] - 1
SACL *,AR5 ; W[0] <- W[0] - 1
B WZRODC



******************************************************************************
* FUNCTION TERMINATION
*

UZERO

FINISH

ZAC
LARP AR5
SACL *_
SACL *
LAR AR0.AR0STR
LARP ARI
ADRK 4
LAR ARO,*-
PSHD *
RET
.end

Z[l] = 0 
Z[0] = 0 
Restore ARO

Deallocate frame 
Restore FP
Put return address on internal stack 
Return to caller



Appendix IV

Division Source Code



* 13/6/91 : Modifying LOOK AFTER ALL CARRIES section
* 2/8/91 : Making changes to \div\div2.asm version in LOOK AFTER
* ALL CARRIES section

.def _div
* Dara Murtagh
* Multi Precision Division Algorithm based on Knuth V.2 p.257
* div(u,v,q,r) : q = u div v, r = u mod v
* Notes :
* 1. In Knuth’s algorithm, there are initially n places in V and n+m
* in U. Here there are n in V and p in U, and m refers to the m
* in Knuth’s version.
* 2 . U and V are both scaled by a calculated NORM. V will not gain
* more places from this scaling but U may. It is therefore necessary
* that U is declared in the C calling function as having one more
* place than is used in that function.
* 3. Knuth’s algorithm is for multi-precision division only which implies
* V cannot be just one precision. This extra case is checked and catered
* for here to make the routine a general division algorithm.
*
* The following bugs from the last version of the div function have been
* rectified in this file:
* 1. V is now unnormalised at the end.
* 2. Q may have leading zeroes at the end: these are removed.
* 3. Even if norm scaling of U doesn’t produce an extra place, a
* zero extra place is still noted in U[0] for calculation
* purposes. ( i.e. U[0] incremented.)
* 4. Now check if U < V => can bypass div operation.
*
AROSTR EQU 0
AR1STR EQU 1
AR3STR EQU 3
AR4STR EQU 4
AR5STR EQU 5
AR6STR EQU 6
AR7STR EQU 7
TEMP EQU 8
ONEPRC EQU 9 ; Will contain 1 if single precision subtract
* ; left after all double precision subtractions
* ; else 0
TWOPRC EQU 10 ; Calculated number of 32-bit digits in
* ; subtraction sum
NORM EQU 12
CARRY EQU 13
QHAT EQU 14
TEMPLO EQU 15
TEMPHI EQU 16
VNQHLO EQU 17
VNQHHI EQU 18
TEMPI EQU 19



TEMP2 EQU 20
RJCMPR EQU 21
AR3T EQU 22
AR4T EQU 23
AR6T EQU 24
QHATV EQU 200h
*
He**************************************************************************
****
* FUNCTION INITIALISATION
*
div:

POPD *+ ; Pop return address
SAR AR0,*+ ; Push on system stack
SAR AR1,* ; Save old FP
LARK ARO,4
LAR AR0,*0+,AR1 ; FP = old SP, SP += SIZE

*

* REGISTER SET-UP,STORE AND NORM DETERMINATION
*

* Information on variable passing procedure : Call(u,v,q,r) stores u,v,q,r.
* The base addresses of these variables are stored on the user stack and
* accessed/recovered using AR1. After the recovery the following register
* variable groupings are valid : u (AR5),v (AR3), q (AR4) and r (AR6).
*(i)
********** REGISTER SET-UP

CNFD Configure optional area as data
LDPK 6 Data memory 300h to 3FFh
SAR AR1,AR1STR Store AR1 before it is modified in

recovery
* of pointers

SBRK 7
LAR AR5,*- AR5 -> &U[0]
LAR AR3,*- AR3 -> &V[0]
LAR AR4,*- AR4 -> &Q[0]
LAR AR6,*,AR5 AR6 -> &R[0]
RSXM Surpress sign extension
SPM 0 Zero P reg shift

********** REGISTER STORE
SAR AR0,AR0STR Store registers ARO,3,4,5,6
SAR AR3,AR3STR AR1 done above.
SAR AR4,AR4STR AR0,1 point to initial values on entering
SAR AR5,AR5STR function. AR3,4,5,6 point to

V[0],Q[0],U[0]
SAR AR6,AR6STR and R[0] respectively.

********** COPY U TO R
LAR AR7,*,AR5 AR7 <- p

COPYUR LAC *+,AR6 ACC <- U[k]



SACL *+,AR7
BANZ COPYUR,*-,AR5
LAR AR5,AR5STR Restore AR5,AR6
LAR AR6,AR6STR

********** Check if U[0] < V[0] and if V[0] = 1
LAC *,AR3 Acc <- U[0]
LAR AR3,AR3STR &V[0]
SUB *,AR3 Acc <- U[0] - V[0]
BLZ QZERO If U[0] < V[0] can immediately

* say Q= 0
LAC *,AR3 Check and branch on V[0] = 1, to one
XORK 1 precision division
BZ VZRONE

********** Calculate the loop counter for the entire function
LAC *,AR3 Loop should execute m+1 times =>

* p-n+1 times
ACC <- n

ADD AR6STR ACC <- &R[n]
SACL RJCMPR R(j] will be compared with this value

* at end
of each iteration to find end of main loop

********** NORM CALCULATION
LAC *,AR0 Acc <- n
ADD AR3STR Acc <- &V[0] + n
SACL TEMP
LAR ARO,TEMP ; ARO -> V[n]
LAC *,AR3 Acc <- V[n]
ADDK 1 Acc <- V[n] + 1
SACL TEMP
LACK 65535 Acc <- FFFFh = BASE - 1
ADDK 1 Acc <- 1 0000 h = BASE
RPTK 15 AccH <- Remainder AccL <- Quotient
SUBC TEMP NORM = l_ BASE /  ( V[n]+1 ) J
SACL NORM ; Norm determined by here.

*
*********** ****** ******** He****************************************************
* SCALE V

ZAC
SACL CARRY ; Carry initialised to zero
MAR *+ ; AR3 -> V [l], lsb of V
LT NORM

SCALEV MPYU *
PAC
ADDS CARRY
SACL *+ ; V[1]V[2]...V[N] <-

* ; (V[l]V[2]...V[N]).norm
SACH CARRY
CMPR 2 ; ARO -> V[n]
BBZ SCALEV ; branch back if end of V not



*
*
*
*
*

reached: A R 3oA R 0  
V scaled by norm here 
Don’t store final carry because norm 
calculated in such a way that final 
carry will equal zero.

SCALE U => SCALE R
LARP AR5
LAC *,AR6 ; Acc <- p
ADD AR6STR ; Acc <- &R[0] + p
SACL TEMP
LAR ARO,TEMP ARO -> R[p]
MAR *+ AR6 -> R[l]

SCALEU MPYU * T already contains NORM
PAC
ADDS CARRY
SACL *+ R[l]R[2]...R[p] <- (R[l]R[2]...R[p]).norm
SACH CARRY
CMPR 2
BBZ SCALEU
SACH *,AR1 Store final carry
LAR AR1,AR6STR Increment R[0] even if final carry was

* zero
LAC * so that Qhat
ADDK 1 = L( R[j].BASE + R[j-1] ) /  Y[n]_l
SACL *,AR3 < BASE even if only because R£j] = 0

* R scaled by NORM here
* End of D1
******************************************************************************

*(ii) REGISTER INITIALISATION FOR LOOP
RGINIT MAR *-,AR4 AR3 -> V[n], AR6 -> R[p]

LAC AR4STR ACC <- &Q[0]
LAR AR4,AR5STR
ADD *,AR6 ACC <- &Q[0] + p
SACL TEMP

*
LAR AR4,TEMP AR4 -> Q[p] i.e. point to msdigit of Q

******************************************************************************
*(iii) CALCULATE QHAT
* AR3 -> V[n]
* AR4 -> Q[j], j initially p
* AR6 -> R[j], ARP -> AR6
CALCQH LAC *,AR3 compare R[j] with V[n]

XOR *,AR6 ACC <- 0 only if  R[j] = V[n]
BZ RJEQVN if equal Qhat <- FFFFh ( BASE-1 )
ZALH *. else Qhat <- 1 (R[j].BASE
ADDS *+,AR3 +R[j-1])
RPTK 15
SUBC *,AR3 /  V[n] J



B RJNEVN
RJEQVN LACK 65535
*
RJNEVN LARP AR4

SACL * ; Qhat calc.ed here
********** NOW CHECK IF QHAT TOO BIG 
BACK1 LARP AR4

LT *,AR3 ; Qhat
MPYU *-,AR6 ; V[n]
PAC
SACL VNQHLO
SACH VNQHHI ; V[n] * Qhat
ZALH *- ; R[j].BASE +
ADDS *- ; R[j-1]
SUBS VNQHLO ; - V[n] * Qhat
SUBH VNQHHI

SACL TEMP
ANDK 8000h,l ; If R£j].BASE + R[j-1] -

* ; V[n] * Qhat > FFFFh
* ; multiplying it by 10000h will produce
* ; a 3 digit number ( base 65536)
* ; which is always > V[n-1] * Qhat so
* ; branch

BNZ NTGRTR
ZALH TEMP ; ( R[j].BASE + R[j-1] - V[n] * Qhat)

* * BASE
ADDS *,AR3 ; + R[j-2]
SACL TEMPLO
SACH TEMPHI ; Note that T already contains Qhat
MPYU *,AR4 ; V[n-1]
PAC ; Acc <- V[n-1] * Qhat
SUBS TEMPLO
SUBH TEMPHI
BNC NTGRTR ; Branch if V[n-l].Qhat not >

* ; (U[j].BASE + U[j-1] - QhatV[n]).
* ; BASE + U[j-2]

LAC * ; else Qhat— and repeat test
SUBK 1
SACL *,AR3 ; Qhat
MAR *+,AR6 ; V[j] => j must be incremented by 1
ADRK 2 ; R[j] => j must be incremented by 2
B BACK1

NTGRTR LARP AR6 ; AR6 points to R[j],R[j-l],R[j-2]
* ; next iteration, will have to point
* ; to R£j-l],R[j-2],R[j-3] so j -> j-2 -> j-1

MAR *+,AR3 ; R[j] => j must be incremented by 1
MAR *+,AR7 ; V[j] => j must be incremented by 1



****************************************************************************** 
*(iv) MULTIPLY AND SUBTRACT

QHATVN
*

*

*

*

*

*

*

*

*

ZAC
SACL CARRY ; clear carry
LALK QHATV
SACL TEMPI
LAR AR5,TEMPI ; AR5 points to Qhat.V[l]
LAR AR7,AR3STR
MAR *+,ARl ; AR7 -> V [l]
LAC AR3STR ; ACC <- &V[0]
LAR AR1,AR3STR ; AR1 -> V[0]
ADD *,AR7 ; ACC <- &V[0] + n
SACL TEMP
LAR AR0,TEMP ; ARO points to end of V i.e. V[n]
MPYU *+,AR5 ; Qhat * V[i], Note T already contains 

; Qhat
PAC
ADDS CARRY
SACL *+,AR7
SACH CARRY
CMPR 2
BBZ QHATVN
LARP AR5 ; Select Qhat.V[] pointer
SACH *+ ; Qhat.(V[l]....V[N]) calculated

BNZ
MAR

AR50K,AR5
*_

AR5 -> Qhat.V[N+2]. Qhat.V[l]..V[n] 
can have n or n+1 terms depending on 
if the last carry is zero : must adjust 
Qhat.VQ pointer back to point at the 
N+lth term so that its value 
can be used to calculate the two precision 
subtraction iteration counter and the one 
precision flag.

* Now do R[j-n]..R[j] = R[j-n]..R[j] - Qhat.V[l]..V[n]
* The REGISTER AND PRECISION COUNT ITERATION SET UP section in the sub
* function will be done here and the rest of the sub function is included
* without alteration except right at the end in the LOOK AFTER ALL CARRIES
* section.
* This is because Qhat.V[l..n] may be greater than R[j-n..j] which is not
* normally allowed for in the sub() function.
* Call to sub : sub(x,y,x) allowed so have integrated subO function without
* Z[n] = X[n] copy. Want to have registers AR6, AR5 and AR7 contain &X[0],
* &Y[1] and &X[1] respectively => R[j-n-l], Qhat.V[l] and R[j-n].

AR50K  ZAC
SACL ONEPRC ; Zero single precision flag



SAR AR6,TEMP2 ; AR6 -> R[j-1]
LAC TEMP2 ; ACC <- &R[j-l]
LAR AR6,AR3STR ; AR6 <- &V[0] , V[0] = n
LARP AR6
SUB *,AR7 ; ACC <- &R[j-l] - n
SACL TEMP
LAR AR6,TEMP ; AR6 -> R[j-n-l]
LAR AR7,TEMP
MAR *+,AR4 ; AR7 -> R[j-n]
SAR AR7,AR7STR ; AR7STR <- R[j-n]

SAR AR5,TEMP ; &QHAT.V[n+l] or &QHAT.V[n+2]
* ; depending on
* ; above multiplication result

LAR AR5,TEMPI ; AR5 -> Qhat.V[l]
* ; There are n or n+1 digits (base b) in the
* ; result QhatV[l]..QhatV[n] but must have
* ; pointer pointing to one past the end to
* ; get correct subtraction of pointers result.

LAC TEMP
SUB TEMPI ; ACC <- n or n+1
SFR
BZ NODBLE
SACL TWOPRC
BNC NOSNGL
LACK 1
SACL ONEPRC ; Appropriate one and two precision flags
ZAC ; should be calculated by here.

NOSNGL SAR AR6,AR6T ; AR6T <- &RM-n-l]
** ¡It********** ******** Ht************************************************* ¡ft******
*
*

DOUBLE PRECISION SUBTRACTION WITH CARRY GENERATION

LARK AR0,2 ; Offset used for auxiliary reg. increment
* ; between double precision subtracts

LAR AR1,TWOPRC ; Double precision counter
LARP AR6 ; Select X pointer
MAR *0+ ; AR6 -> &X[2]
ZALH *- ; ACC = X[2] 00
ADDS *0+,AR5 ; = X[2] X [l]
SUBS *+ ; = X[2] X [l] - 00 Y [l]
SUBH *+,AR7 ; = X[2] X [l] - Y[2] Y [l]
SACL *+ ; => = Z[2] Z[l]
SACH *+,ARl
MAR *_
BANZ TWDBLE ; AR1 is counter for number of double

* ; precision subtractions
LAC ONEPRC ; Case: One double precision subtraction

* ; only
BGZ SNGLPR ; Now: Single precision subtraction left ?



BNC
BC

BORROW
ENDSUB

Finished except for borrow

* DOUBLE PRECISION SUBTRACTION LOOP
* This section is only entered if the sum involves at least two
* double precision subtractions

TWDBLE LARP AR6
DBLEPR ZALS *+,AR5 ACC = 00 X[N]

SUBB *+,AR6 = 00 X[N] - 00 Y[N] - C
ADDH *+,AR5 = X[N+1] X[N] - 00 Y[N] - C
SUBH *+,AR7 = X[N+1] X[N] - Y[N+1] Y[N] - C
SACL *+ => = Z[N+1] Z[N]
SACH *+,ARl
BANZ DBLEPR,*-,AR6 AR1 is counter for number of double

* precision subtractions
LAC ONEPRC Case: More than one double precision

* subtraction
BGZ SNGLPR Now: Single precision subtraction left ?
BNC BORROW Finished except for borrow

*
BC ENDSUB

******************************************************************************
*
*

SET UP FOR NO DOUBLE PRECISION CARRY

NODBLE BNC ENDSUB
LARP AR6 Carry = 1 here

*
MAR *+ Point to &X[1]

******************************************************************************
*
*

SINGLE PRECISION SUBTRACTION

SNGLPR LARP AR6
LAC *,AR5
SUBB *,AR7 ; X[N] - Y[N] = Z[N]
SACL *+
BC ENDSUB

* LOOK AFTER ALL CARRIES

* The subtraction is R[j-n]..R[j] <- R[j-n]..R[j] - Qhat.(V[l]..V[n]).
* There are n+1 places in the part of R under consideration.

There are n or n+1 places in Qhat.(V[l]..V[n]). This determines the 
number of single and double precision subtractions. The last subtraction 
must be one of the following forms :
{.. (RU-1] ) 1 Rtfl or {(R[j-1] ) R[j] }
{.. (Qhat.V[n]) } - {(Qhat.V[n]) Qhat.V[n+l] } -



* If a borrow has occured in the second case, ADDBCK should be branched to
* immediately (i). If a borrow occurs in the first case, it should be
* propagated one place forward and if another borrow occurs then ADDBCK
* should be branched to (ii).
*
BORROW LARP ARO

LAR AR0,AR3STR ARO -> V[0]
LAC AR7STR ACC <- &R[j-n]
ADD *,AR7 ACC <- &R[j]
SACL TEMP AR7 -> R[j] or R[j+1] depending on

* number of places in Qhat.V[l..n]
LAR ARO,TEMP ARO -> R[j]
CMPR 2 Check if AR7 > ARO
BBNZ ADDBCK (i) Branch if trying to propagate carry

* at end of Z
LAC * R[j] <- R(j] - 1
SUBK 1 Propagate borrow forward
SACL *+
BNC ADDBCK (ii)
B ENDSUB

*(vi) ADD BACK
*

* R[j-n]..R[j] <- R[j-n]..R[j] + V[l]..V[n]
*  A  A  A

*
*
*

n+1 places n+1 places n places

* Qhat.(V[l]..V[n]) > U => don’t continue to propagate borrow forward,
* do add back (ignoring last carry)

Have included add function with alterations to REGISTER AND PRECISION COUNT 
SET UP and both SINGLE and DOUBLE PRECISION CARRY sections.
Final addition whether single or double precision looks like the following :

{ .. ( R[j-1] ) } R[j]
{ •• ( V[n] ) }

 +

* There will always be a carry out of R[j] which muct be ignored to cancel with
* ignored borrow. Sum always ends with a carry. Sum ends either double
* precision add, carry or double precision add, single precision add, carry.
* Therefore single precision add always followed by carry.
*
ADDBCK LARP AR4 ; Q <- Q - 1LARP

LAC
SUBK
SACL
LARK

AR4
*
1
*,AR6
AR0,3 ; Offset = 3



LAR AR6,AR6T AR6 -> R[j-n-l]
SAR AR3,AR3T AR3 -> V[n]
SAR AR4,AR4T AR4 -> QIj-1]

********** REGISTER AND PRECISION COUNT ITERATION SET UP
MAR *+,AR4 AR6 -> R[n-j-l], should -> R[n-j] here

* therefore AR6++ => Z[l]
LAR AR4,AR3STR AR4 -> V[0]
MAR *+,AR3 AR4 -> V [l] => Y [l]
ZAC
SACL ONEPRC Zero single precision flag
LAR AR3,AR3STR
LAC *,AR3 ACC <- n
LAR AR3,AR6T AR3 -> R[j-n-l]
MAR *+ AR3 -> R[j-n] => X [l]

* RSXM done already => C <- l.s.b.
* m.s.b. <- 0

SFR Double precision count = X[0] div 2
* Single precision count = X[0] mod 2

BZ NODBLP ACC = 0 => no double precision add
SACL TWOPRC
BNC NOSNL C = 0 => no single precision add
LACK 1 Set single precision flag
SACL ONEPRC

NOSNL ADDK 0 Ensure C = 0

Sfc djc ‘ f - *|- ^  ̂  ^  ^  ̂  ̂  ^  “|C ̂  ̂  ^  ̂  »1# «|̂  ^  ̂  ̂  ?|c 3|c ¡ĵ  ^  ̂  *|̂  «|̂  ̂  ̂  ^  ^  ̂  ̂  ^  s|̂  *|ji ̂  *|̂  *|<

*
*

DOUBLE PRECISION ADD LOOP

MAR *+,ARl AR3 points to X[2]
LAR AR1,TWOPRC Double precision add iteration counter
MAR *-,AR3 Loop executes <AR1> + 1 times

DPADD ZALH *_ ACC = X[N+1] 00, AR3<- N
ADDC *0+,AR4 = X[N+1] X[N] + C, AR3 <- N+3
ADDS *+ = X[N+1] X[N] + 00 Y[N] + C
ADDH *+,AR6 = X[N+1] X[N] + Y[N+1] Y[N] + C
SACL *+ => = Z[N+1] Z[N]
SACH *+,ARl

*
BANZ DPADD,*-,AR3 N <- N + 1

MAR *-,AR6 AR3 <- N+2
LAC ONEPRC ONEPRC = 1 if single precision add left
BZ CFLGCK Case: single precision: N, carry: ?
BNZ SPADD Single precision add

*

* SET UP FOR NO DOUBLE PRECISION ADD
*
NODBLP BNC ENDADD ; No single precision add needed

ADDK 0 ; Zero carry before single precision add



* SINGLE PRECISION ADD
* ; Finished double precision adds =>
* ; here do
* ; single precision add,then carry at end
SPADD LARP AR3 ; Case: single precision: Y, carry: Y

ZALS *,AR4 ; ACC = X[N]
ADDC *,AR6 ; ACC = X[N] + Y[N] + C : Add with

* ; carry
SACL *+ ; Z[N]
LAC * ; Z[N+1] = R[j]
ADDK 1 ; Aim : Z[N+1] <- Z[N+1] + 1
SACL * ; Do cany
B END ADD ; Ignore further carry, finished

*

* DOUBLE PRECISION CARRY
*
CFLGCK LAC * ; Case: single precision: N, carry flag: Y

ADDK 1 ; Z[N+1] <- Z[N+1] + 1
SACL * ;

ENDADD LAR AR3,AR3T ; Restore AR3 ( = V [n ])
LAR AR4,AR4T ; Restore AR4 ( = Q [j])

ENDSUB LARP AR4
MAR *-,AR6 ; AR4 -> Q[j-1]
LAR AR6,TEMP2 ; R(j]
LAR ARO,RJCMPR ; R[j]=R[p-n] => finished, else branch back
CMPR 00
BBZ CALCQH

* AR4 should point to correct Q[0], and Q should start at the originally
* alloted location

LARP AR1
LAC AR4STR ; ACC <- &Q[0]
LAR AR1,AR6STR ;
ADD *,AR5 ; ACC <- &Q[0] + p
SAR AR4,TEMP ; AR4 -> Q[0]
SUB TEMP ; &Q[p] - &Q[0]
LAR AR5,AR4STR ; AR5 -> Q[0]
SACL * ; Store number of places in Q at Q[0]
LAR AR1,*,AR5 ; AR1 <- number of places in Q
MAR *+,ARl ; AR5 -> new Q[l]
MAR *-,AR4 ; AR1 used as counter for copy,

* ; one too big initially
MAR *+ ; AR4 -> old Q[l]

STOREQ LAC *+,AR5 ; ACC <- Q[n]



SACL *+,ARl
BANZ ST0REQ,*-,AR4

******************************************************************************
* UNNORM ALIZE

* First strip leading zeros from Q
*

*

QLZRO

ARI will contain i
AR2 will point to Q[i]
LAR AR4,AR4STR ; ARP -> AR4
LAC AR4STR ; ACC <- &Q[0]
ADD * ; ACC <- &Q[p]
LAR AR1,*,AR2 ; ARI <- p
SACL TEMP ; TEMP <- &Q[p]
LAR AR2,TEMP ; AR2 -> Q[i], i=p
LAC *-,ARl ; ACC <- Q[i], i -
BZ QLZRO,*-,AR2 ; i - ,  Select Q[i] pointer and loop if Q[i]=0
LARP ARI
MAR *+,AR4 ; Compensate for decrementing n once too 

; often
SAR AR1,*,AR6 ; Store adjusted Q[0]

; Leading zeros stripped from Q
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

*

* Strip leading zeros from R
*

*

ARI will contain i 
AR2 will point to R[i]
LAR AR6,AR6STR ; ARP -> AR6
LAC AR6STR ACC <- &R[0]
ADD *

9 ACC <- &R[p]
LAR AR1,*,AR2 ARI <- p
SACL TEMP TEMP <- &R[p]
LAR AR2,TEMP AR2 -> R[i], i=p

RLZRO LAC *-,ARl ACC <- R[i], i—
BZ RLZRO,*-,AR2 i—, Select R[i] pointer and loop if R[i]=0
LARP ARI
MAR *+,AR6 ; Compensate for decrementing n once too

* often
SAR ARI,*,ARO Store adjusted R[0]

* Leading zeros stripped from R
**********
* Divide R by norm to get unnormalized R
* AR5 - >  R[0]

LAR AR0,AR6STR ARO - >  R[0]
LAC . AR6STR ACC <- &R[0]
ADD *,AR6 ACC <- &R[p]
SACL TEMP
LAR AR6,TEMP AR6 -> R[p]
CMPR 0 AR6 = ARO only if R=0 => finished
BBNZ NODECR,*,ARO



RDVD

LARP AR6
LAC * ACC <- R[i], i=p
RPTK 15
SUBC NORM AccH = Remainder, AccL = Quotient
SACL *. R[i] <- L R[i] /  norm J ,  i -
SACH TEMP
ZALH TEMP AccH = Remainder, AccL = 0
ADD * AccH = Remainder, AccL = R[i-1]
CMPR 0 Loop unless i = 0
BBZ RDVD R[p] may be zero after unnormalization 

in which case R[0] is one too big.
LAC AR6STR ACC <- &R[0]
ADD * ACC <- &R[p] as AR6 now -> R[0]
SACL TEMP
LAR AR6,TEMP AR6 -> R[p]
LAC *,AR0 ACC <- R[p]
BNZ NODECR Branch if no need to decrement R[0]
LAC *
SUBK 1 R[0]~
SACL *,AR0

* Divide V by norm to get unnormalized V
*
NODECR

VDVD

LAR AR0,AR3STR ; ARO -> V[0]
LAC AR3STR ; ACC <- &V[0]
ADD *,AR3 ; ACC <- &V[p]
SACL TEMP
LAR AR3,TEMP ; AR3 -> V[p]
LAC * ; ACC <- V[i], i=p
RPTK 15
SUBC NORM ; AccH = Remainder, AccL = Quotient
SACL *_ ; V[i] <- l_ V[i] /  norm J ,  i -
SACH TEMP
ZALH TEMP ; AccH = Remainder, AccL = 0
ADD * ; AccH = Remainder, AccL = V[i-1]
CMPR 0 ; Loop unless i = 0
BBZ VDVD ; V[p] may be zero after unnormalization 

; in which case V[0] is one too big.
LAC AR3STR ; ACC <- &V[0]
ADD * ; ACC <- &V[p] as AR3 now -> V[0]
SACL TEMP
LAR AR3,TEMP ; AR3 -> V[p]
LAC *,AR0
BNZ FINISH ; Branch if no need to decrement V[0]
LAC *
SUBK 1 ; V[0]~
SACL *,AR1
B FINISH



* If U[0] < V[0], Q = 0.
QZERO LAR

LARP
ZAC
SACL
SACL

AR4,AR4STR
AR4

*+
*

; Q[0] <- 0 
; Q[i] <- 0

* FUNCTION TERMINATION
* RESTORE REGISTERS
FINISH LAR

LAR
LARP
SBRK
LAR
PS HD
RET

AR0,AR0STR
AR1,AR1STR
ARI
5
ARO,*-
*

Restore ARO 
Restore AR1

Deallocate frame 
Restore FP
Put return address on internal stack 
Return to caller

* SINGLE PRECISION DIVISION CASE

* Register initialisation
*
VZRONE LARP 

LAC 
LAR 
ADD 
SACL 
LAR 
LAR 
LAC 
ADD 
SACL 
LAR

*
*
*
*

LAR
MAR
LAC
SACL
LAC

* Division loop
*
UDVD RPTK

SUBC
SACL
SACH

AR4
AR4STR
AR4,AR5STR
*,AR0
TEMP
AR4,TEMP
AR0,AR6STR
AR6STR
*,AR3
TEMP
AR6,TEMP

AR3,AR3STR
*+,AR3
*,AR6
TEMPI
*-,AR4

15
TEMPI
*-,AR6
TEMP

ACC <- &Q[0]

ACC <- &Q[0] + p

AR4 -> Q[p] i.e. point to msdigit of Q 
ARO -> R[0]
ACC <- &R[0]
ACC <- &R[p]

AR6 -> R[p]
Do not need to check here 
for AR6 = ARO which 
would imply R = 0 as this case is 
checked at start 
AR3 -> V[0]
AR3 -> V [l]
ACC <- V [l]
TEMPI <- V [l]
ACC <- R[i], i = p

; AccH = Remainder, AccL = Quotient 
; AR4 -> Q[p] initially



ZALH TEMP ; AccH = Remainder, AccL = 0
ADD *- ; AccH = Remainder, AccL = R[ i-1 ]
CMPR 1
BBZ UDVD,*,AR4

*********

LARP AR6
ADRK 2
SACH * ; R[l] = Remainder
LAC *.
BZ ZERO
LACK 1 ; R[0] = 1 as U mod V != 0
SACL *,AR5
B CNTUE

ZERO ZAC ; R[0] = 0 as U mod V = 0
SACL *,AR5

*********
* Strip leading zeroes from Q
*
CNTUE LAR AR5,AR5STR ; AR5 <- &U[0]

LAC *,AR4
SACL *,AR4 ; Q[0] <- p
LAR AR5,AR4STR ; ARP -> AR5
LAC AR4STR ; ACC <- &Q[0]
ADD * ; ACC <- &Q[p]
LAR ARI ,*,AR2 ; ARI <- p
SACL TEMP ; TEMP <- &Q[p]
LAR AR2,TEMP ; AR2 -> Q[i], i = p

QLZROl LAC *-,ARl ; ACC <- Q[i], i -
BZ QLZR01,*-,AR2 ; i—, Select Q[i] pointer and loop if Q[i]=0
LARP ARI
MAR *+,AR4 ; Compensate for decrementing n once

* ; to often
SAR ARI,*,ARI ; Store adjusted Q[0]

* ; Leading zeros stripped from Q
B
.end

FINISH



Appendix V

Square Source Code



* 14/8/91 SQR.ASM
* Dara Murtagh
* Modified sqrl.asm. Error in i loop :
*

.def „square
* C call : square(x,z)
* AR3 is loaded with &X[0].
* AR5 is loaded with &Z[0]

Last carry overwriting Z term.
Fixed by incrementing AR5 in i loop.

CARRY
TEMP
TEMPI
AR3STR
AR5STR

_square:

*

*

*
*

*
*

XNTZRO

EQU
EQU
EQU
EQU
EQU

POPD
SAR
SAR
LARK
LAR

RSXM
LDPK
SBRK

LAR
SAR
LAR

LAC
BNZ
LARP
ZAC
SACL
SACL
B
SAR
LAR
LAC
SACL

L A R

0
1
2
3
4

*+
AR0,*+
ARI,*
AR0,1
ARO,*0+,ARI

6
5

AR5,*+,AR1
AR5.AR5STR
AR3,*,AR3

Pop return address 
Push on system stack 
Save old FP

FP = old SP, SP += SIZE

Register usage 
ARO <- &X[n]
AR2 <- n - 1 , i loop counter 
AR3 <- &X[i]
AR4 <- &X[j]
AR5 <- &Z[i+j-l]
Disable sign extension 
Using data memory 300h to 3FFh 
Pop passed variable addresses off runtime 
stack.
AR5 <- &Z[0]
Store &Z[0]
AR3 <- &X[0]

if ( x[0]==0 ) { z[l]=z[0]=0; return; }

XNTZRO
AR5

*+
*
FINISH
AR3,AR3STR
AR2,*,AR3
*,1,AR5
*,AR5

; Acc <- X[0]
; If X[0] != 0 do squaring

Z[0]=0
Z[1]=0

Store &X[0] 
AR2 <- n

Z[0] = 2 * n
for ( i=l; i<=z[0]; i++ ) z[i]=0; 
AR6,*,AR6 ; AR6 <- Z[0]



MAR *-,AR5 ; Loop executes <AR6> + 1 times
MAR *+ ; AR5 -> Z[l]
ZAC

ZEROZ SACL *+,AR6
BANZ ZEROZ,*-,AR5

********
LAR AR5,AR5STR ; AR5 -> Z[l]
MAR *+,AR2
MAR *-,AR3 ; AR2 <- n-1
SAR AR3,TEMP
LAC TEMP
ADD *,AR3
SACL TEMP
LAR AR0,TEMP ; ARO <- &X[n]
MAR *+,AR3 ; AR3 -> X [l]

*
SAR AR5,TEMP

*
for (i=l; i<=n; i++)

ILOOP LT *+,AR5 ; T <- X[i]
MAR *+,AR4 ; Z[(i++)+j] so that Z[n+i] correcdy

* ; accessed
* ; after j loop.

SAR AR3,TEMPI
LAR AR4,TEMPI ; AR4 -> X[i+1]

******** carry = 0
ZAC

*
SACL CARRY ; Carry <- 0

*
for (j=i+l; j<=n; j++)

JLOOP CMPR 2 ; Branch out of loop if &X[j] > &X[n]
BBNZ ENDJLP,*,AR5 ; => if AR4 > ARO
LAR AR5.TEMP
MAR *+,AR4 ; Z[i+j-l] => i+j-1 ++ each time j++
SAR AR5,TEMP ; Temp <- Z[i + (++j) - 1]

******** product = X[i] *! X[j] + carry
MPYU *+,AR5 ; X[i] * X|j]
PAC
ADD CARRY ; + Carry

******** carry = product div base
SACH CARRY

******** Z[i+j-l] += product % base
ANDK 65535 ; Acc <- product % base
ADD *,AR5 ; Acc <- Acc + Z[i+j-l]
SACL *+,AR4 ; Z[i+j-l] <- Acc

******** if ( Z[i+j-l] < ( product % base ) ) carry ++
* i.e. if  sum of two sixteen bit numbers has produced a seventeen bit result

ANDK 2,15 ; only need to check single precision



*
9 carry bit

BZ JLP
LAC CARRY
ADDK 1
SACL CARRY

JLP
*

B JL00P,*,AR4

******************
*

Z[n+i] = carry

END JLP LAC CARRY
SACL *,AR2

!ie
BANZ IL00P,*-,AR3

•d*

carry = 0
1*

ZAC
SACL CARRY

******** for (i=l; i<= 2*n-l; i++)
LAR AR5,AR5STR ; AR5 -> Z[0] = 2*n
LARP AR5
LAR AR2,*+,AR2 AR2 <- 2*n, AR5 -
SBRK 2  ̂ ; AR2 <- (2*n) - 2
LARP AR5

******** temp = z[i] * 2 + carry
DBLZ LAC * i

9 Acc <- Z[i]*2
ADD CARRY

******** Z[i] = temp % base
SACL *+,AR2

******** carry = temp div base
SACH CARRY
BANZ DBLZ,*-,AR5
LAC CARRY

******** Z[2*n] = carry
SACL *,AR3

******** carry = 0
ZAC
SACL CARRY

******** for (i=l; i<=n; i++)
LAR AR3,AR3STR AR3 -> X[0]
LAR AR2,*,AR2 AR2 <- n
MAR *-,AR5 AR2 <- n - 1
LAR AR5,AR5STR AR5 -> Z[0]
MAR *+,AR3 AR5 -> Z[l]

*
MAR *+ AR3 -> X [l]

*
temp = x[i] * x[i] + carry

ISQRLP LT *
MPYU *+,AR5



CNTU

CRYZR

LOOP
*

*
*

FINISH

PAC
ADD CARRY

carry = temp div base 
SACH CARRY
ANDK 65535
ADD *

Z[2*i-1] += temp % base 
SACL *+

if ( Z[2*i - 1] < (temp%base)) carry++ 
ANDK 2,15
BZ CNTU 
LAC CARRY
ADDK 1
SACL CARRY

Z[2*i] = ( Z[2*i] + carry ) % base
LAC * ; Acc <- Z[2*i]
ADD CARRY
SACL *+,AR2

if ( Z[2*i] < carry ) carry = 1 
else carry = 0 

ANDK 2,15
BZ CRYZR
LACK 1
SACL CARRY ; Carry = 1
B LOOP
ZAC
SACL CARRY ; Carry = 0
BANZ ISQRLP,*-,AR3

if ( z[z[0]]==0 ) z[0]—
LAR AR5,AR5STR ; AR5 -> Z[0]
LARP AR5
LAC AR5STR
ADD *,AR2
SACL TEMP
LAR AR2,TEMP ; AR2 -> Z[Z[0]]
LAC *,AR5
BNZ FINISH
LAC *
SUBK 1
SACL *,AR1
LARP ARI
ADRK 2 ; Deallocate frame
LAR ARO,*- ; Restore FP
PS HD * ; Put return address on stack
RET
.end

; Return to caller



Appendix VI

Com parison Source Code



_compare

* 22/4/91
* Dara Murtagh

.def
* C call : compare(x,y)
* AR5 is loaded with &X[0].
* AR6 is loaded with &Y[0]
* On return the accumulator is loaded with 2 if x>y, 1 if x<y and 0 if x=y.
*
AROSTR

_compare:

LOOP

XGRTER

YGRTER

FINISH

EQU 0

POPD *+ Pop return address
SAR AR0,*+ Push on system stack
SAR ARI,* Save old FP
LARK AR0,1
LAR ARO,*0+,ARI FP = old SP, SP += SIZE

LDPK 6
SAR ARO,AROSTR
SBRK 5
LAR AR4,*+,AR1 AR4 <- &X[0]
LAR AR5,*,AR5 AR5 <- &Y[0]
LAC *,AR4 Acc <- X[0]
SUB *,AR4 Acc <- Y[0]
BGZ XGRTER
BLZ YGRTER
LAR AR0,*,AR4
MAR *0+,AR5 AR4 -> Y[n]
MAR *0+,AR5 AR4 -> X[n]
LAC *-,AR4 Acc <- X[n]
SUB *-,AR0 Acc <- X[n] - Y[n]
BGZ XGRTER
BLZ YGRTER
BANZ
ZAC

LOOP,*-,AR5

B FINISH
LACK 2
B FINISH
LACK 1

LAR ARO,AROSTR
LARP ARI
ADRK 2 ; Deallocate frame
LAR AR0,*- ; Restore FP
PS HD * ; Put return address on stack
RET
.end

; Return to caller



Appendix VII

C op y Source Code



* 6/5/91
* Dara Murtagh

.def _copy
* C call : copy(x,y)
* AR5 is loaded with &X[0].
* AR6 is loaded with &Y[0]
* y := x

_copy:

ARPSET
COPY

FINISH

POPD *+ Pop return address
SAR AR0,*+ Push on system stack
SAR AR1,* Save old FP
LARK AR0,1
LAR AR0,*0+,AR1 FP = old SP, SP += SIZE

SBRK 5
LAR AR5,*+,AR1 AR5 <- &Y[0]
LAR AR4,*,AR4 AR4 <- &X[0]
LAR AR6,*,AR4 AR6 <- n
LAC *+,AR5 Acc <- X[0]
SACL *+,AR6 Y[0] <- X[0]
BZ ARPSET,*,AR6 ; If X[0]=0, X[1]:=0 and finish
MAR *-,AR4 Else n -  and continue
B COPY
LARP AR4
LAC *+,AR5 ; Acc <- X[n]
SACL *+,AR6 ; Y[n] <- X[n]
BANZ COPY,*-,AR4

LARP AR1
ADRK 2 ; Deallocate frame
LAR ARO,*- ; Restore FP
PS HD * ; Put return address on stack
RET
.end

; Return to caller



Appendix Vin

Leading Zeroes Source Code



* 9/4/91
* Dara Murtagh

.def _lzero
* AR5 is loaded with &X[0]. AR7 is used to contain n.
* AR4 is used to point to X[n],
* If X = 0, X[0] is set equal to 0.

AR5STR
TEMP
AR1STR

lzero:

LOOP

EQU 0
EQU 1
EQU 2

POPD *+ Pop return address
SAR AR0,*+ Push on system stack
SAR ARI,* Save old FP
LARK AR0,1
LAR ARO,*0+,ARI FP = old SP, SP += SIZE

LDPK 6 Data memory 300h to 37Fh
SAR AR1,AR1STR
SBRK 4
LAR AR5,*,AR5 AR5 <- &X[0]
SAR AR5,AR5STR Store &X[0]
LAC AR5STR ACC <- &X[0]
ADD * ACC <- &X[n]
LAR AR7,*,AR4 AR7 <- n
SACL TEMP TEMP <- &X[n]
LAR AR4,TEMP AR4 -> X[j], j=n
LAC *-,AR7 ACC <- X[j], j -
BZ LOOP,*-,AR4 n—, Select X[j] pointer and loop if X[j]=0
LARP AR7
MAR *+,AR5 Compensate for decrementing n once too 

often
SAR AR7,*,AR1 Store X[0]

LAR AR1,AR1STR
SBRK 2 ; Deallocate frame
LAR ARO,*- ; Restore FP
PSHD * ; Put return address on stack
RET
.end

; Return to caller



A p p en d ix  IX

Zero Source Code



* 28/4/91
* Dara Murtagh

.def _zero
* C call : zero(x)
* AR5 is loaded with &X[0],
* X[0] is set equal to 0, X [l] set equal to 0.

zero:

He*** He***

POPD *+ ; Pop return address
SAR AR0,*+ ; Push on system stack
SAR ARI ,* ; Save old FP
LARK AR0,1
LAR ARO,*0+,ARI ; FP = old SP, SP += SIZE

SBRK 4
LAR AR5,*,AR5 ; AR5 <- &X[0]
ZAC
SACL *+,AR5 ; X[0] <- 0
SACL *,AR1 ; X [l] <- 0

ADRK 2 ; Deallocate frame
LAR ARO,*- ; Restore FP
PSHD * ; Put return address on stack
RET ; Return to caller
.end



Keys and Formulae used

ke =
2D5D076C3C27AFA45A0682F04F72EF8539C9A15BA46A4FD1CF175E39E1A8C599714 
41C6D6D60EB1CB545F2646733E5D6781B 18DED86 AC7315030741A 134BB4099 
kd =
1E3E04F2D2C51FC2E6AF01F58A4C9FAE26866B926D9C35368A0F9426967083BB7CB
D029954ABD656E63CD6AF1035692D042D7C470387A08C9F5B562259ACCE2C3

e = mA3 mod ke 
m = eAkd mod ke

Encryptbat Batch File

echo off
echo The file which is to be encrypted gets converted to a standard
echo hex input format for the TMS320C25.
echo The SWDS is then invoked and the encryption program is run.
echo The encrypted result is the file a:three.dat
echo on
hex
swds
type a:three.datlmore



Appendix X

Demonstration of the Multi-Precision Arithmetic Assembly 
Library using an RSA File Encryption Example on the SWDS



The aim of this demonstration example is to show how the 
digital signal processor assembly routines can be used in a 
file RSA encryption application. The Software Development 
System can be operated in a mode that allows IN and OUT 
instructions to read from and write to disk files 
respectively. Any legal MS/DOS filename can be associated with 
any of the 16 input and 16 output ports and these files will 
be read from and written to by the IN and OUT instructions 
provided that data logging has been enabled. The logging mode 
data files must be in the form of a list of 16 bit hexadecimal 
ASCII numbers :

0002
0004
0008
000C

eof

For the purposes of demonstration the example has been limited 
to encrypt up to 32 characters. The steps of the example are 
as follows :
1. The message text is written to a file.
2. This file is converted to 16 bit hexadecimal ASCII number 
format by the HEX program. The output file containing data 
ready for encryption is a:\test.dat.
3. The SWDS system is invoked. The following data logging 
files are assigned :

Input Port 1 : a:\dl.out ( ke )
Input Port 2 : a:\test.dat ( m )
Output Port 3 : a:\three.dat ( e )

Data logging mode is enabled. A debug session is enabled. The 
encryption program en.tag is loaded. The Program Counter is 
set to 1000, auxiliary registers 0 and 1 to 31B and auxiliary 
register pointer to 1. A GO to 1033 completes all the input. 
EXECUTE to BREAKPOINT 1075 results in the encryption being



carried out. A GO to 1078 completes the output.
The SWDS session is terminated by a QUIT.
4. The encrypted file containing : e = m3 mod ke is 
a:\three.dat. This is typed to the screen.
The above steps are carried out by the encrypt.bat batch file, 
although the data logging, program running and SWDS 
termination steps in Step 3 must be carried out manually using 
the keyboard.

Decryption is carried out as follows :
1. The SWDS system is invoked. The following data logging 
files are assigned :

Input Port 0 : a:\el.out ( kd )
Input Port 1 : a:\dl.out ( ke )
Input Port 2 : a:\three.dat ( e )
Output Port 4 : a:\out.dat ( m )

Data logging mode is enabled. A debug session is enabled. The 
encryption program en..tag is loaded. The Program Counter is 
set to 1000, auxiliary registers 0 and 1 to 31B and auxiliary 
register pointer to 1. A GO to 103A completes all the input. 
EXECUTE to BREAKPOINT 107C results in the encryption being 
carried out. A GO to 107F completes the output.
The SWDS session is terminated by a QUIT.
2. The decrypted file containing : m = ekd mod ke is 
a:\out.dat. This is converted to character format by the ASCII 
program before being typed to the screen.
The above steps are carried out by the decrypt.bat batch file, 
although the data logging, program running and SWDS 
termination steps in Step 3 must be carried out manually using 
the keyboard.



Hex.c File Format Conversion Program

/* Dara Murtagh 2/1/1992 
Demo program 
Input text from one file,
output hex formatted values to another. */

#include <stdio.h>

void strip(name) 
char name[];
{ /*  strip off filename extension */ 

int i;
for (i=0;name[i]!=’\0 ’;i++)
{

if (name[i]!=’.’) continue;
name[i]=’M)’;
break;

}
}

main()
{

FILE *ifile;
FILE *ofile;
char ifname[13];
char ofname[13]="a:tesLdat";
char ch[34];
int counta;

printf("File to be enciphered = ");
gets(ifname);
ifile=fopen(ifname,"r");
printf("\nConverting file from ascii format to hex format for input to\n"); 
printfC'the digital signal processing system encryption algorithmAn"); 
ofile=fopen(ofhame,"wb"); /* NOT standard C! */ 
count=0; 
do

{
ch[count]=fgetc(ifile);
count++;
}

while ( (ch[count]!=EOF) && (count<=32));
fprintf(ofile,"%04XNrSn",count+l);
for (i=0; i<=count; i++)

fjprintf(ofile,"%04XVyn",ch[i]);
fclose(ofile);
fclose(ifile);

}



/* Encryption: e = (m expo 3) mod ke */

main()
{
unsigned int ke[34],e[34],m[44],two[2],three[2]; 
unsigned int zero[2],parity[2],temp[67],templ[67];

rdl(ke);
rd2(m);

three[0]=l; three[l]=3; 
two[0]=l; two[l]=2;
zero[0]=0; zero[l]=0;
e[0]=l; e[l]=l;

for (;;)
{

div(three,two,temp,parity); 
copy(temp,three); 
if (parity[l]= l)
{

mult(e,m,temp);
div (temp Jce, temp 1 ,e);
if (compare(three,zero)=0)
{

out3(e); 
asm(" IDLE’’); 
break;

}
}
mult(m,m,temp); 
div(temp,ke,temp 1 ,m);

}
}

R S A E N .C  : E n cryp tio n  P ro g ra m  w h ich  uses th e  A ssem bly  L a n g u a g e  L ib r a r y

Decryption.bat Batch File

echo off
echo The SWDS is invoked and the decryption program is run,
echo taking as input the encypted file a:three.daL
echo The decrypted result is the file a:ouLdat
echo This is then converted back to standard ascii in the file a:ouLres.
echo on
swds
ascii
type a:three.datlmore



/* Decryption : d = (e expo kd) mod ke */

main()
{
unsigned int ke[34]>kd[34],e[67],d[67],two[2],three[2];
unsigned int zero[2],parity[2],temp[67],templ[67];

rdl(ke);
rd2(e);
rdO(kd);

three(0]=l; three[l]=3; 
two[0]=l; two[l]=2;
zero[0]=0; zero[l]=0;
d[0]=l; d[l]=l;

for (;;)
{

div(kd,two,temp,parity); 
copy(tempjcd); 
if (parity [l]= l)
{

mult(d,e,temp); 
div(temp,ke,temp 1 ,d); 
if (compare(kd,zero)=0)
{

out4(d); 
asm(" IDLE");

}
}
mult(e,e,temp); 
div(temp,ke, tempi,e);

}

R S A D E .C  : D ecry p tio n  P ro g ra m  w hich uses th e A ssem b ly  L a n g u a g e  L ib r a r y



A s c ii.c  F ile  F o rm at C on versio n  P ro g ra m

/* Dara Murtagh 2/1/1992 
Demo program
Input hex formatted values from file.
Output text to another file,

*/

#include <stdio.h>

void strip(name) 
char name[];
{ /* strip off filename extension */ 

int i;
for (i=0;name[i]!=’M),;i++)
{

if (name[i]!=’.’) continue;
name[i]=’NO’;
break;

}
}

main()
{

FILE *ifile;
FILE *ofile;
char /*ifname[13],*/ofname[13]; 
long ch; 
int count;
char ifname[13]="a:ouLdat"; 
strcpy(ofname,ifname); 
strip(ofname); 
strcat(ofname," .res"); 
ifile=fopen(ifname,"r");
printf("Converting file from hex to character formatW);
ofile=fopen(ofname,"wb"); /* NOT standard C! */
fscanf(ifile,"%04X’\&ch);
count=(int)ch;
do

{
count--;
fscanf(ifile,"%04X",&ch);
fprintf(ofile,"%c",ch);
}

while ( (ch!=65535)&&(count>0));
fclose(ofile);
fclose(ifile);


