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Paul P. Neary

Adaptive Space-Meshing Strategies for the Numerical 
Solution of Parabolic Partial Differential Equations in 

One Space Dimension.

Abstract

The effectiveness of adaptive space-m eshing in the solution of 
one-dim ensional parabolic partial differential equations (PD Es) 
is assessed.

Present day P D E  software typically involves discretisation in 
space (using Finite Differences or F inite Elem ents) to  produce a 
system  of ordinary differential equations (O DEs) which is then  
solved routinely using currently available high quality ODE in­
tegrators. Such approaches do not attem pt to  control the errors 
in the spatial discretisation and the task of ensuring an effec­
tive spatial approxim ation and numerical grid are left entirely to  
the user. Numerical experim ents w ith Burgers’ equation demon­
strate the inadequacies of this approach and suggest the need for 
adaptive spatial m eshing as the problem evolves. The currently 
used adaptive m eshing techniques for parabolic problems are re­
viewed and two effective strategies are selected for study. Nu­
merical experim ents dem onstrate their effectiveness in terms of 
reduced com putational overhead and increased accuracy. From 
these experiences possible future trends in adaptive meshing can 
be identified.

K e y w o r d s :  Partial Differential Equations, Parabolic prob­
lems, M ethod of Lines, Adaptive m eshing, F inite Difference M eth­
ods, F in ite Elem ent M ethods, M oving Finite Elem ents, Lagrangian 
schem es, Linearly im plicit O DE system s.



C hapter 1 

Introduction

Partial differential equations (PD Es) occur widely in Science and Engineer­
ing in the m odelling of continuum  problems. This thesis is concerned w ith  
the autom atic solution of parabolic P D E s in one space dimension and the 
effectiveness of incorporating adaptive space-m eshing algorithms into exist­
ing software.

Chapter 2 introduces scalar and vector system s of parabolic PD E s and out­
lines the general nature of parabolic problems. W ith reference to suitable 
exam ples the need for adaptive space-m eshing is established.

Historically the developm ent of P D E  software has been slow owing to the 
great diversity of such problems. This is in sharp contrast to the now  
highly developed software for ordinary differential equations (O DEs). Con­
sequently the m ost successful PD E  software, for exam ple PD E O N E  [46] 
and PDECO L [33], have involved the discretisation of the problem in the 
space dim ension (sem idiscretisation) and its reduction to a system  of ODEs 
which can be routinely solved using available high quality O DE integrators. 
W hen sem idiscretisation is performed using F inite Differences the procedure 
is known as the “m ethod of lines” . A lternatively Finite Element m ethods 
(Galerkin [18] and Collocation [38]) may also be used to perform the sem idis­
cretisation.

Chapter 3 begins by outlining the presently used m ethods of sem idiscreti­
sation. The nature of the resulting O DE system  is discussed and this leads 
to the notion of stiffness.  The sem idiscretisation of parabolic problems gen­
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erally results in system s of O DEs which are at least “m ildly” stiff. The 
presently used m ethods of integration for stiff system s of ODEs are outlined  
and the standard packages reviewed.

Current ODE software performs the tem poral integration more or less auto­
matically and the techniques for controlling the integration (some of which 
are heuristic) are outlined. The com bination of sem idiscretisation followed 
by ODE integration are the hallmarks of present day PD E  solvers. Two 
standard P D E  packages are reviewed. In these packages no error control 
for the spatial discretisation is attem pted and spatial errors are presumed 
to be negligible. Some numerical results for Burgers’ equation demonstrate 
the inadequacies of this approach for problems involving propagating shocks 
and/or boundary layers. In such cases the solutions are com putationally ex­
pensive to obtain and are often inaccurate. The need to adapt the mesh as 
the problem evolves becom es clear.

The inadequacy of uniform spatial grids in the solution of parabolic equa­
tions may be explained by analysing the typical m ethods of sem idiscretisa­
tion used for such problems. The use of non-uniform spatial meshes, how­
ever, offers the possibility of much improved results over the uniform mesh 
approach. This is analogous to the existing use of non-uniform grids in the 
tim e discretisation o f such equations, and in the solution of general ODEs. 
The ultim ate aim in both situations is to evenly distribute the numeri­
cal errors over the problem domain. The m ethods of determining suitable 
non-uniform grids for particular problems (numerical grid generation) are 
considered. Fixed non-uniform grids are, however, of lim ited use when solv­
ing parabolic type problems because the spatial structure of the solution  
typically alters w ith  tim e. In order to ensure adequate spatial resolution 
throughout the problem evolution, regeneration of the non-uniform grid is 
necessary. This is the principle underlying the adaptive mesh approach. 
Adaptive mesh strategies involve a particular grid generation m ethod and 
a dynam ic coupling between the grid and the evolving solution. Current 
trends in adaptive m eshing are discussed and the philosophies behind the 
various approaches are contrasted. Efficiency, robustness and versatility are 
the characteristic features of superior adaptive mesh strategies.

In Chapter 6 the algorithm s selected in the previous chapter are imple­
mented in conjunction w ith a standard O DE solver. Comparisons are made 
between uniform and adaptive mesh im plem entations for several example

2



problems.

Chapter 7 concludes with a summary of findings regarding the autom atic so­
lution of Parabolic PD E s. The relative merits of adaptive and non-adaptive 
strategies are discussed particularly in relation to com putational expense 
and efficiency. Finally areas for future research are identified.
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C hapter 2

Parabolic Partial 
Differential Equations

2 .1  C la ss ifica tio n  o f  p a r tia l d ifferen tia l eq u a tio n s

We are interested in the solution of linear and nonlinear parabolic equations 
and system s of equations. F irstly by considering the linear case of the second  
order partial differential equation and establishing w hat form of auxiliary 
conditions serve to determ ine a unique solution a three-way classification of 
such equations is possible.

The general form of a linear 2nd order PD E  in two independent variables 
x,t is

A ( x , t ) U xx +  2 B ( x , t ) U xt +  C ( x , t ) U tt +

D ( x , t ) U x +  E ( x , t ) U t +  F ( x , t ) U  +  G ( x , t )  =  0 (2.1)

Subscripts imply partial derivatives and the coefficient 2B is chosen for later 
convenience.

A solution of (2.1) in a region R of the (x,t) plane is a function U (x ,t) for 
which U and the partial derivatives Ux and Ut are defined at each point (x,t) 
in Z  and for which the equation reduces to an identity at each such point.
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To determ ine the form of auxiliary data required to guarantee a unique 
solution to (2.1) consider the specification of U along some interval of the 
y axis, U (0 ,t)= f(t) . This allows calculation of all partial derivatives of U 
w .r.t. t along the interval (0,t) presuming that f(t) is sufficiently differen­
tiable. No information about the partial derivatives w .r.t. x is known except 
th at (2.1) relates Uxx to Ux . Therefore prescribing Ux (0, t )  =  g(t )  (the nor­
mal derivative) along the chosen interval allows the calculation of Uxt and 
further derivatives w .r.t. Uxx can now be determined from (2.1).

It is now possible to  construct a Taylor series representation of U in the 
neighbourhood of (0 ,t). This suggests that a unique solution to (2.1) is pos­
sible given the function U and its normal derivative along one axis where 
both  the functions and coefficients appearing in (2.1) are sufficiently differ­
entiable.

The formal statem ent of the above procedure is the Cauchy-Kowalewski 
Theorem  which states that if f(t), g(t) and the set of coefficients

B ( x , t ) C ( x , t )  G ( x , t )
A ( x , t )  ’ A ( x , t )  A ( x , t )

are analytic in the neighbourhood of some point (0 ,fo) then the above pro­
cedure will generate a unique solution to  (2.1) which is also analytic in the 
neighbourhood of (0 ,to)- We call the data f(t) and g(t) the Cauchy data for 
the problem (2.1) and such a problem is called a Cauchy problem.

By a further generalisation one may seek the solution of (2.1) given Cauchy 
data specified along an arbitrary curve T in Z.  Some equations of the form
(2.1) possess solutions for all choices of T whereas others require a restriction  
on the choice of I \  The various cases allow the characterisation of partial 
differential equations into three distinct classes. Each type of equation has 
particular properties concerning the dependency of solutions upon the aux­
iliary data.

Consider again the Cauchy problem where the Cauchy data is specified along 
an arbitrary curve T. The I 3* order partial derivatives are known.

5



d U  , d UP=—  and ,= —

d2U d 2U . d 2U
t  =z — — , s =  — — and  u = --------

d x 2 d t 2 d x d t

Three relationships between r,s and t are known. These are given by equa­
tion (2.1) and the total derivatives o f p and q as follows.

T he 2nd o rd e r derivatives a re  also requ ired . They are  deno ted  by

Ar +  2 B s  +  Cu =  <t>(x,t,U,p,q)

. d p  , d p  ,
dp  =  T x dx +  T t dt 

=  r.dx 4- s.dy

. dq  , dq
d" =

=  s .dx  +  u.dt

or

A 2B C 
dx dt 0 
0 dx dt

r <t>
s = dp
u dq

(2 .2 )

A unique solution to this system  of equations is possible if its determinant 
is non-zero. Conversely if the determ inant is zero then the second order 
derivatives are indeterm inate and the original partial differential equation
(2.1) has no solution. The case o f zero determ inant yields the following 
equation.
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A .d t 2 +  2 B .d x .d t  +  C .d x 2 =  0 (2.3)

The solutions of this quadratic equation determine two families of curves 
along which the specification of Cauchy data is insufficient to  guarantee a 
unique solution to (2.1). These curves are called c h a r a c te r is t ic s .  The so­
lutions are

— B ± y / B 2 -  A C  
dy =     (2.4)

Equations of the form (2.1) are characterised as being h y p e r b o lic ,  p a r a b o lic  
or e ll ip t ic  depending on the sign of the discriminant B 2 — A C . 1

H y p e r b o lic  c a se  B 2 — A C  >  0 : Here there exists two real families of char­
acteristics. The prototype hyperbolic equation is the wave equation.

d 2U d 2U
d x 2 d t 2

Hyperbolic problems represent the propagation of signals w ith  finite 
speed. The trajectories of these signal fronts correspond to the char­
acteristic curves.

P a r a b o lic  c a se  B 2 — A C  =  0 : Here the twin fam ilies of characteristics 
have degenerated into one family. The prototype parabolic equation  
is the heat  equation.

d 2U d U
=  0

d x 2 d y

Parabolic problems represent the propagation of signals w ith infinite 
speed.

1These names arise due to the similarity of equation (2.1) with the quadratic form 
a s 2 +  2/5it +  7i2 +6x  +  et = const, which gives rise to the hyperbola, parabola and ellipse 
under the same conditions.
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E llip t ic  c a se  B 2 -  A C  <  0 : Here there are no real characteristics since 
the solutions of the quadratic are imaginary. Thus there is no re­
striction on the choice of curve T along which Cauchy data may be 
specified. The prototype elliptic equation is the Laplace  equation.

d 2U d 2U _  
d x 2 +  d t 2

A lthough the preceding classification would appear to assign a set type to  
every partial differential equation it does however depend on the region of 
the (x,t) plane under consideration. For exam ple the equation

d 2U d 2U 
X~ d ^  + ~ d F ~ °

is elliptic in the region x >  0, hyperbolic in the region x <  0 and parabolic 
for x  =  0. Subsequently, in section 2.2, it will be seen that solutions exhibit 
interesting features in regions where a transition between different types of 
equations occur.

2.2 The nature of parabolic problem s

Although the Cauchy-Kowalewski Theorem provides a convenient m ethod  
of characterising partial differential equations it does not however guarantee 
physically meaningful solutions. In order to guarantee meaningful solutions 
a problem m ust be w ell-posed . A  problem is well-posed if

•  The solution exists.

•  The solution is unique.

•  The solution depends continuously on the auxiliary data.

The last requirement is reasonable since w ithout it the comparison of the­
ory and experim ent would be im possible. Only the Cauchy problem for the
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hyperbolic equation is well-posed. For elliptic and parabolic equations al­
ternative auxiliary conditions lead to well posed problems.

Let us now focus attention on parabolic problems which are well-posed and 
exam ine their properties. Let us consider a general system  of M parabolic 
equations of the form

l i t  =  +

(2.5)

This includes a w ide variety of both  linear and nonlinear equations.

The m ost com m only posed problem involving one-dimensional parabolic 
partial differential equations is the solution of (2.5) in the semi-infinite strip 
a <  x <  b, t >  0 subject to  the initial and boundary conditions

Ui =  f i {x)  t  =  0
d U'

Pi{t)Ui +  q ^ t ) - ^ 1  =  r (U i , t )  x =  a ,b  t >  0 
o x

i =  1 ,2  . . .  M . (2.6)

The stated  boundary conditions are general but may degenerate to Dirichlet 
and Neumann conditions. The independent variables t and x typically rep­
resent tim e and space-like quantities. In m ost practical exam ples the order 

of the system  of equations does not exceed 3 or 4.

Below are som e exam ples of both  linear and nonlinear parabolic equations 
and system s of equations. These exam ples were chosen to dem onstrate the 
diversity of parabolic problems and serve as a suite of test problems for the  
num erical m ethods to  be discussed in subsequent chapters.

2 .2 .1  L in ea r  p r o b le m s

Consider the simple heat equations of problems 1 and 2. These equations

9



P ro b lem  1

au 1 d2U
dt 7T2  9x 2

17(0,i) =  17(1, t) =  0
17(1,0) =  sin(7ra:)
U(x,t) =  e- t sin(;rx)

Source: Davis and Flaherty. [14]

Problem 2

d U d2u
d t d x 2

—  _ 2  - i r2i=  TV e

U ( x , 0 ) =  sinf j rx)

U ( x , t ) =  e - ^ s i n

Source: Mitchell and Griffiths. [37]



constitu te the sim plest parabolic problems. Physically they often repre­
sent the diffusion of heat within a rod of constant cross-section which is 
insulated along its length. The coefficient m ultiplying is called the dif- 
fusivity. Both equations are easily solved using the m ethod of separation of 
variables.

Numerically the solution of these equations is fairly routine except in the 
case of Problem  2 where the presence of Neumann boundary conditions com­
plicates the solution procedure som ewhat. The accurate representation of 
boundary conditions is one of the main problems encountered in the numer­
ical solution of partial differential equations. In Chapter 3 it will be seen 
how the use of higher accuracy spatial discretisations is restricted by such 
difficulties.

Problem s 3 and 4 are slightly more com plex in that non-derivative terms 
appear. Such term s are called sources or sinks depending on whether their 
signs are positive or negative. In heat conduction problems they represent 
internal sources or losses of heat. Unlike the previous problems the steady  
state solution (U ( x , t  —► oo)) is not zero but some function of x. Problem  
3 has a sm all parameter e multiplying the tim e derivative. The m agnitude 
of this parameter determines how quickly the problem reaches steady state. 
For very small values of e the steady state is achieved quickly following an 
initial period of rapid transition. Problem  4 has a parameter a  m ultiplying  
the diffusive term  -§^r. Davis and Flaherty used this problem to  test the 
performance of an adaptive grid. The solution comprises a travelling wave 
whose speed depends on the values r\  and r2. For small cr one would expect 
the term  to have little  effect on the solution and for the wave to m ain­
tain its amplitude during its propagation.

The third and perhaps the m ost common type of parabolic equation is 
the c o n v e c t io n -d if fu s io n  equation. Problems 5 and 6 are exam ples of 
convection-diffusion equations. These equations represent the interplay be­
tween convection and diffusion. O f im portance here is the relative m agnitude 
of the convection and diffusion coefficients. For instance consider the steady  
state of problem 5. The tim e dependent term  vanishes leaving the equation



P ro b lem  3

d U  d 2U
e—  =  ~z—s’ + 1 - 3 ®  0 <  x <  1 

d t  d x 2

U {0 , t )  =  «7(1,*) =  0
x2

Ï7(x ,0) =  sin(n-x) + - —(x — 1)
£t

U ( x , t )  — e ~ ^  sin(7rx) +  -^-(x — 1)
it

Source: Philips and Rose. [44](e =  10 2).

Problem 4

du d2U „  .
aF =  £' ä ^  +  / W

¿7 (0, i) =  tanh(r2i — ri) Z7(l, t) =  tanh(r2i)

U(x,  0) =  tanh(r],(x -  1))

U ( x , t )  =  tanh(ri (x -  1) +  r2t)

f(x) is chosen so that the auxiliary data satisfy the equation. 
Source: Davis and Flaherty. [14] (ex =  10“ 2,r i  =  r2 =  5).
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P ro b lem  5

d U  d 2U , d U  n ^
eä r  = o s * s l

I7(0,i) = 0 17(1,0 = 1
U(x,  0) =  0

T T !  t \  e f c l / £  -  1  ^  ( — l ) n M 7 T  M i ^ Ü
u (x ’l> =  "jtÄ 7 L 7— T T T T e 3‘ sm(*™)«e -  1 (»*)* +  Te

Source: Evans and A bdullah .[17]

P rob lem  6

d U  . . d 2U . d u  n
e~dt =  +  -  1  -

£7(0,0 = e,+2 17(1,0 = e2(t+2
tf ( i,0 )  =  e2(z+1i
U ( x , t )  =  e<I+1)(t+2)

r a -  (a:+1) u  (I + 1 )
a ( l ’ } ~  2(i +  2)2 ( l , ) ~ 2 ( i  + 2)

Source: Cim ent et. a l.[9]

1
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Figure 2.1: Exact solution of the steady sta te convection-diffusion equation.

subject to  the boundary conditions i7(0) =  0 and E /(l) =  1. The exact 
solution to  this problem  is

e**/€ -  1
p  =  7 7 r r r  I2-7)

Figure 2.1 shows th e solution for successively larger values of k/e.  For large 
k / e  values the solution is alm ost unchanged until close to the downstream  
boundary at x = l .  A  rapid change in U occurs at x = l  in order to accom­
m odate the boundary condition. For most of the interval 0 <  x <  1 the 
problem is convection-dominated.  However, in th e thin layer adjacent to  
x = l  the slope of U is changing so rapidly that the diffusive term is no 
longer insignificant. This phenom enon is term ed a boundary layer. W ithin  
this layer the problem  is parabolic in nature whereas elsewhere it is very 
nearly hyperbolic. Problem  5 exhibits a boundary layer at x = l  for large

14



values of k/e.  Problem s involving boundary layers cause com putational dif­
ficulties which will be studied in Chapter 3 to follow.

Problem  6 is a convection-diffusion problem in which the coefficients are vari­
able. At t= 0  the coefficient b is twice the m agnitude of coefficient a and, as t 
increases, their relative m agnitudes becom e more disparate. Eventually the 
problem becom es convection-dom inated and a boundary layer forms at x = l .

2.2.2 N onlinear problem s

In the study of nonlinear parabolic equations the m ost popular and widely 
studied equation is Burgers’ equation.

Problem 7

au  a2u au
a i  =  ‘ t e ï - u d ï  ° - x - 1

This equation is one of the few authentically nonlinear equations for which 
exact solutions are available. Burgers’ equation is a very good m odel for the 
Navier-Stokes equations since it represents in the sim plest manner possible 
the balance between the nonlinear convective process { U 4 ^ ) and the dissi­
pative process Burgers’ equation is closely related to the kinematic
wave equation

d U  TTd U  n 
~ d t + u a ï ~ 0

This hyperbolic equation exhibits discontinuous solutions. For exam ple,
2

if the initial conditions are U  =  exp-1  then discontinuities appear for 
T  >  \ / e x p ¡2.  In the case of Burgers’ equation however, the term  

prevents the solution from becom ing multivalued and for small (e^ r )  a 
boundary layer develops. This type of behaviour is typical of “nearly” hy­
perbolic equations where the developing shocks are “smeared” out by the 
diffusive term.

Two solutions for Burgers’ equation are given in (a) and (b) below. For the

15



(a) propagating sine wave solution

17(0, i)  =  17(1, t) =  0  

U(x,  0) =  sin(jrx)

U ( x , t )

where

L ^ = i e x p ( - c n i jr2i)n J n( ^ ^ )  s in (n ffi)

* ( ^ )  +  2  S Ï . 1  e x p t - e ’ n V i ) « 2 ^

7o(^) =  / exp(2rcos(7r®))d®Jo
IJz) ~ / exp(zcos(7Tx)) cos(nwi)da Jo

(b) overtaking shocks solution

U (0 ,t)  = ue(0,t) U{  1

U (x , 0) = Ue(x,0)

Ue(x, t )  = 1 -  0 .9 ^  -  0.5 
R

R  = rx -h r2 -H r3
-(*-n.5+4.0Sf)

r\ = e 2o<
-(*-0.5+0.760

r2 = e 20t
-(*-0.37Sf)

r-3 = e  2i (2 .8)

16



sine wave initial condition in (a) the solution was determined by Cole [10]. 
The solution is a propagating sine wave. As the wave moves downstream  
(to the right) the nonlinear convective term causes the leading face of the 
wave to steepen and the diffusive term  causes the amplitude of the wave to  
dim inish.

Due to the downstream  condition U ( l , t )= 0  a boundary layer forms at x = l  
for small e. This is com pletely analogous to the convection-diffusion prob­
lems discussed earlier. After a tim e t of O (^) the distorted wave is diffused 
away. The second solution, (b), obtained from M adsen and Sincovec gives 
rise to  overtaking shocks when e is sm all. Again as t increases a boundary 
layer develops at x = l  which is of thickness 0 ( y / e )  and slope 0 ( | ) .  In Chap­
ter 6 Burgers’ equation will be used as a test problem for the numerical 
m ethods to  be discussed in Chapters 3 and 4.

Problems 8 and 9 are exam ples of nonlinear heat equations. In Problem 8 
the parameter U°  can be chosen to  control the steepness of the transient 
solution and k can be used to control the steepness of the steady state solu­
tion at x = 0 . In both  problems only analytic expressions for the steady state  
solutions are available. Problem  9 is nonlinear and also possesses a nonlinear 
boundary condition at x = l .  Problem s 10 and 11 consist of two sets of cou­
pled nonlinear parabolic equations. In Problem  10 the equations are coupled 
through source term s whereas in Problem  11 they are coupled through all 
spatial term s. In general the greater the coupling between the equations of 
a system  the more difficult is the numerical solution. Problem 12 is a prac­
tical problem  involving parabolic system s. This problem is taken from the 
field of sem iconductor process m odelling. This one-dimensional system  rep­
resents the diffusion of dopant m aterial in Silicon at high tem peratures. The 
equations are coupled through diffusive and convective terms. The convec­
tive terms arise due to electrical interaction of the impurity com plexes. The 
possibility for steep gradients in the solution arises when high concentrations 
of dopant m aterial are present, resulting in strong electrical interaction.

The diversity of parabolic problems as seen above is a challenge to any 
software for parabolic equations. In the next chapter we shall see that the 
m ethod of sem idiscretisation enables software to be general enough to cater 
for such a wide variety of problems.
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P ro b lem  8

d U
dt

U (0 , t )  

U{x,  0) 

U ( x , t  —► oo)

dU_
d x

0 < x  < 1

17(1,0 = Pb
U°x

ln{  1 +  (ekU° -  l )x )

Source: Braddock and Noye [4] (U ° , k  typically 0 (1 ) (7 )) .

P r o b le m  9

d U d U  <
d t d x

U (0 , t ) =  50

U(x,  0) =  100

U ( x , t  —> oo)

omII

o < * < 1

r =  y/ 2 c =  0.88055353224

Source: Madsen and Sincovec [33] and NAG D03PAF exam ple problem.
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P ro b lem  10

d u
dt

=  o . o s 4 0 - / ( t r - v )

d V
dt

1b
,ICO

ONT— <oII

Ux{0, t ) =  0 £7(1,4) =  0
V ( 0  , i) =  0 V * ( l ,i )  =  0

¡7 (1 ,0 ) =  l V (* ,0 )  =  0

Source: NAG D 03PB F exam ple problem.

Problem 11

dU_ 
d t  

d V  
d t

17,(0, t) =  1 /2  Ux( l , t )  — 1 /2  -  &m(UV)  

V ( 0 , Î )  =  7T Vx( l , t )  =  1 +  cos (UV)  

U ( x , 0 )  =  1 V ( x , 0 )  =  0

=  V 2
d2u
d x 2

+  2V
du dV
d x  d x

-  U V  -  U 2 +  10

rrn d 2V  n r td U d V  d 2U
d x 2 +  d x  d x  d x 2

+  U V - V

Source: Sincovec and Madsen [33],



dCk _  d  n  dCk  , Z kC k d s  
d t  d x  k d x  y / s 2 +  1 d x

Dk =  D l + D p - ^  + D Î ^ - ^

_  ST'' ZkCk 
S ~ ^  2 N-k= 1 ’

C(0,t) =  C0^ ( z > >  0,i) = 0  
o i

Problem 12

The initial condition for C is a Gaussian or Pearson distribution. 
Source: A. van Run, Philips Research Laboratories, Eindhoven.

2.3  T h e n eed  for a d a p tiv e  m esh in g

In the previous section the diverse nature of parabolic problems was demon­
strated. It was seen that frequently in such problems the solution included  
regions where the physical variable was rapidly varying. Such situations 
arose from the presence of boundary layers and/or propagating shocks. To 
bring to mind som e of these phenom ena Figure 2.2 (a) shows the solution  
to  Problem  5 for ^ =  10 and T = 0 ,1 . Figure 2.2 (b) shows the solutions of 
Burgers’ equation (problem 7) for the overtaking shocks case at t= 0 ,0 .5  and 
1.0 for e =  0.003.

Figures 2.2 (a) and (b) indicate that for parabolic problems regions of rapid 
variation in the solution may be fixed in time or transient and may not 
be confined to one particular location. This observation of course makes no 
difference if the problems can be solved analytically. However, if we now con­
sider the numerical solution of parabolic problems using currently available 
m ethods such features as shocks and boundary layers becom e problematic.

In the following chapter the present-day m ethods for the solution of problems 
of the form (2.5) will be outlined. A numerical m ethod for such a problem  
involves replacing the continuous equation with a discrete set of approxi­
m ations (discretisation) and using these approximations deriving a solution
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(a)

Figure 2.2: (a) Solution of Problem  5 for k / e  — 10 at t= Q ,l. (b) Solution of 
Burgers’ equation (Problem  7) for e= 0.003 at t= 0 , 0.5, 1.0.
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which is consistent with the original equation. The numerical m ethod should  
be sufficiently accurate in order to resolve the main features of the solution  
to the continuous problem.

The process of discretising equation (2.5) can be broken up into both spatial 
and tem poral discretisations. In both situations the continuous derivatives 
should be accurately resolved by the discrete approxim ation. Chapter 3 
deals w ith these approximations in detail. A ssociated with each approxima­
tion is an order o f  accuracy.  For instance Finite Differences m ight be used 
to  discretise equation (2.5) in space and tim e by im posing a com putational 
mesh on the region a <  x <  b, t >  0. As the overall number of mesh  
points are increased and the corresponding mesh spacings are decreased the  
numerical solution is required to approach the actual solution of the contin­
uous problem.

Finite Difference approximations result from the linear com bination of trun­
cated Taylor series and the associated discretisation errors are easily deter­
mined. Similarly expressions for the discretisation error of F in ite Element 
m ethods can also be obtained. The truncated term s involve higher deriva­
tives of the dependent variable. Generally the local discretisation error is 
proportional to these higher derivatives and some power of the m esh spac­
ing. Thus the accuracy of such approxim ations depends not only upon the  
mesh size but also on the form of the solution.

For instance if the problems of Figures 2.2 (a) and (b) were discretised  
uniformly over their entire domain then the error of the numerical m ethod  
would be greater in regions where the derivatives of the solution are large 
corresponding to  regions of rapid variation. Thus for such problems involv­
ing steep gradients the resolution of the solution must be m aintained by 
im posing a finer grid. If the grid is kept uniform and the mesh spacing re­
duced in order to  resolve a steep front in the solution then the number of grid 
points will increase enormously. O utside the region of rapid variation such 
a high concentration of grid points may be unnecessary since the derivatives 
of the solution are small in such regions. Thus employing a uniform but 
fine  grid in order to  minimise the m axim um  truncation error would appear 
to  be com putationally expensive in such cases. In the next chapter some 
numerical experim ents are performed using Burgers’ equation that bear this 
out.
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It would obviously be far superior to  impose a non-uniform com putational 
mesh in space and tim e in which the mesh could be concentrated in areas 
of rapid variation. This is the basic principle behind the variable-mesh ap­
proach which will be discussed further in Chapter 4. Such a mesh would  
tend to equidistribute the truncation error throughout the problem domain. 
In the tim e discretisation of parabolic partial differential equations this prin­
ciple has been used w ith much success for several years and the area of time- 
stepping is well developed. We will therefore concentrate on the question of 
spatial gridding. A ttem pting to  equidistribute the truncation error over the 
spatial domain using a fixed non-uniform grid might lead to problems since 
Figure 2.2 reminds us that regions of rapid variation in the solution might 
shift as the problem evolves. Thus to  resolve the evolving solution would  
require a variable mesh strategy. This would involve the periodic adaptation  
of the m esh as the problem evolves in the following way.

•  Determ ination of regions in the spatial grid where the solution is in a 
sta te of rapid variation.

•  Assigning a suitable non-uniform grid in an attem pt to equidistribute 
the truncation error.

Having observed the diversity of parabolic problems and identified the need 
for adaptive meshing we now have a notion of how such techniques might 
be im plem ented. Chapter 4 reviews som e of the currently popular adaptive 
space-m eshing strategies for parabolic problems.
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C hapter 3

Standard Numerical 
Solution Procedures

In this chapter standard numerical m ethods for the solution of equation
(2.5) are exam ined. These m ethods are similar in that firstly the continuous 
problem is discretised in space (sem idiscretisation) and then the resulting 
system  of O DEs is integrated in time.

Two main types o f sem idiscretisation m ethods prevail. These are the Finite 
Difference and Finite Element m ethods which are outlined in section (3.1). 
W hen F inite Differences are used the m ethod is termed the m ethod  o f  lines 
(MOL).  The suitability of these two classes of sem idiscretisation m ethods 
for the solution of the boundary layer and/or propagating shock problems 
of Chapter 2 are investigated.

The problem of solving the system  of ODEs resulting from the sem idiscreti­
sation of parabolic equations is treated in section 3.2. The nature of the 
ODE system  in such cases warrants the use of ODE integration m ethods 
which are suitable for so called “stiff” problems. A review of stiff ODE  
integration m ethods is presented.

Presently available P D E  software em bodies autom atic sem idiscretisation  
and O DE integration as described above. Two popular packages for P D E  
problems are reviewed in section 3.3. Such packages presume negligible spa­
tial errors and the user m ust ensure that the spatial approximation and grid 
are sufficient to  accurately represent the solution of the problem.
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Section 3.4 exam ines the results of applying one such package to the solution  
of Burgers’ equation (Problem  7, Chapter 2) on a uniform spatial grid. For 
solutions involving steep gradients, and especially those which are in mo­
tion, the results are inaccurate. To obtain reasonable accuracy the uniform  
grid must be smaller than is com putationally practical. It is obvious that 
the difficulties encountered in solving such problem s as Burgers’ equation  
stem  primarily from the ineffectiveness of the spatial grid and to a lesser 
extent on the spatial approxim ation. Even the use of non-uniform spatial 
grids which are fixed in tim e do not appreciably improve the results. The 
requirement for a spatial grid which adapts in tim e is clearly dem onstrated.

3.1  M e th o d s  o f S e m id isc r e t isa t io n

The m ethods of sem idiscretising equations of type (2.5) are now examined. 
For spatial discretisation the most general approach is to divide the spatial 
interval [a,b] into N contiguous mesh spacings thus forming a general non- 
uniform grid

IIjv \ a =  xo <  xi  <  X2 <  . . .  <  xjy =  b

Such a grid is shown in Figure 3.1

If the spatial term s of (2.5) are discretised using the grid 11^ then each PD E  
reduces to an O DE at each mesh point which evolves in the time direction. 
Each equation in (2.5) therefore reduces to  a system  of N + l  ODEs. This 
is why the m ethod of sem idiscretisation is often referred to as the m ethod  
of lines (M OL). The two main m ethods of sem idiscretisation are the Finite 
Difference and F inite Elem ent m ethods, which shall now be examined.

3.1.1 F in ite  D ifferences

Finite Difference approxim ations arise when continuous derivatives are ap­
proximated by truncated Taylor series. This involves the im position of a 
grid and the replacement of the continuous derivative at each grid point by
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X i - i  Xi x i+1

Figure 3.1: General non-uniform grid on the interval [a,b].

a linear com bination o f functional values at adjacent points.

For exam ple, in the F in ite Difference approxim ation of the spatial deriva­
tives in (2.5), assum e th at the spatial interval [a,b] has been discretised using 
the general non-uniform mesh IT tv above. The following replacement o f y[ 
is possible in terms of y values at adjacent mesh points.

y\ = <*yi+1 + PVi + 7V.-1

Using the notation

p =  A x i+1 =  x,-+ i  -  Xi q =  A  xi  =  Xi -  i

the values j/i±i may be expressed as Taylor series about ja  as follows.

2 6



or, more generally,

w - ' - E  * ,  a * *  an<i

Solving (3.1) and (3.2) for y | gives

yi =

y! =

i 4, w - i ; , w + . . )  (3.3) 

;  { * «  -  v. + fjy" -  £ r >  + g « r *  -  + ■ ■ ]  (3.4)

Adding p tim es (3.3) and q times (3.4) causes the second derivative terms 
to vanish as follows



/  , \ i  ? /  \ , P /  \  (tii)qp2 +  pq2 (iv)qp3 - p q s
(p + ?)y, = -{y.+1 - y«} + -{y. - y.-i} - yt- — ^ ----- y,- — ^ —

(v)qp4 - p q 4 
Vi 5!

y\ J T Ï  { | {î"+1 ”  w> + ? {l" _  *"-■>} “ f  ÿ'"") -  ||C p  -

- ^ ( p 2 - p ?  +  ?2)y iw) +  ---  (3.5)

Thus t/J- becomes

y\ = |^{yt+i -  y«} + ^{y. - y.-i} j + Ei (3.6)

where

*  -  - f  « T  - i< p -  .h i1” - il<p! - * + + . . .

P utting this in the standard form (3.1.1) gives

y{ - { / q \ }y.+i + {-— — }y. + {—r-̂  - % }y»-i + E\  
p[p + q) pq q(p + q)

In the case of a uniform grid (p = q = h ) this expression reduces to

where E\  becom es
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This is the familiar second order accurate, centered difference approximar 
tion of yi. In a similar fashion an approxim ation o f y" in the form (3.1.1) is 
possible.

Vi =  «JA+1 +  PVi +  ItVi-l

Again, solving equations (3.1) and (3 .2), this tim e for y ", gives 

n  2  f  , (t't'i) 9 *  (»«) . ? 5 (u) ,
Vi =  y.-i - y.- + m  +  - ^y* + ĵ-y»- + ■

II 2 J , p3 (¿ijj P4 (jy) P° (ti)
y.- = ^  j k+i - w - PVi -  3 | w ~ 7 7 y, - 5 7  w +

Adding q tim es (3.8) and p tim es (3.9) and solving for y" gives

(p + 9)y," = -  {yi-i -  y j + 2 |y] h— ^-------- ^— i— — i-

2 r i , i p2y,-m) psVitv] p4yfv)+  -  {y.+i -  y»} +  2 1 - y t-  - ------------- - ------------—

o  o  (***’) (,u )

{p +  q)y'i : -{y.-i-y.} + -{y.+i-y«} + ^g-(?2 -p2) + ^ 2 '

|  (3.8)

J (3.9)

{ - q5 - p S)



Thus y" becomes

y" =  {^{y«+i -  vi)  -  ^{yi - Vi-1 >} + e 2 (3.10)
P +  9 IP  9 )

where

„  _  p - g  un) _  p2 -  pq +  92 uv) _  p3 -  p 29 +  q2p  +  q3 h  , 
6 ‘ 12 ‘ 60 ‘

Putting this in the standard form (3.1.1) gives

y,; -  { w n r ) } y < + i+ { ~ ^ ) y i + { _  w ï 7 ) )Vi- ' + a

Again, in the case of a uniform grid (p = q = h ) th is expression reduces to

where becomes

E2 — yf*’) .2 12».

Tables 3.1 and 3.2 sum m arise the above Finite Difference approximations 
for both uniform and non-uniform grids.
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yi =  ay.’+ i  +  Pvi +  7 y « - i

uniform non-uniform

a l
2k

Q
p{p+q)

0 0 £ _ £
PI

7 P
?lP+?)

T .E . (leading term) - f y (i,ï) 6

Table 3.1: D iscretisation coefficients and leading term  of the truncation error 
VL.
dxfor approxim ation of ^  on both uniform and non-uniform grids.

The Finite Difference formulae treated up to now have been c e n te r e d  ap­
proximations. In practice, however, such centered approximations are not 
always useful.

Consider once again the steady state o f Problem 5 of Chapter 2.

d 2U , d U  ,
‘ = 0 ‘312>

subject to the boundary conditions U (0 )= 0  and U ( l ) = l .  The solution of 
this equation was seen to be

U  =
?fcz/ e -  1 
efc/£ -  1

(3.13)
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y" =  +  Pyi +  7 y» -i

uniform non-uniform

a l
F

2
PtP+«)

P
2 2

h2 PQ

7 1
T?

2
?(p+g)

T .E . (leading term) - à ï J " )12 ¡>i 6 »»

Table 3.2: D iscretisation coefficients and leading term  of the truncation error 
for approxim ation of on both uniform and non-uniform grids.

Let us now exam ine the effectiveness o f the centered approxim ations applied 
to  this equation. For sim plicity a uniform grid x» =  (i — l) / i ,  i = l ,  . . .  ,N +1
is presumed. A pplying the approxim ations (3.7) and (3.11) results in the
following algebraic equation at internal nodes.

e[Ui+1 -  2Ut +  Ut ^ }  k{Ui+1 -  Ui-x) n . n
1?  2h “ °

kh
Ui+i -  2Ui +  U i - \  — —  [Ui+ \  — i7t_i] =  0 i  =  2 , . . . , N  (3-14)

w ith  U (1 )= 0  and U (N + 1 )= 1  at the boundary points.
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This equation is a hom ogeneous linear difference equation of order two. This 
can be solved as follows.

Letting U{ =  r’ the equation becom es

,•'+! _  2r* +  r ‘~ '  -  j !  (r i+1 -  r*"1)  =  0 (3.15)

(r I - 2 r + 1 ) - t  (’■’ - > )  =  0

Denoting by /3 implies

(r2 -  2r +  l )  -  0  ( r 2 -  l )  =  0

r2(l - / 3 )  +  r { - 2 )  +  (1 +  /?) =  0

The solutions to  this quadratic are

2 ±  V4 -  4(1 - /?2) 
r ”  2(1 -  >9)

=  - * - ± - 2 -  1 - 0  1 - 0

The principle of superposition allows a general solution to (3.15) to  be con­
structed as follows.



Figure 3.2: Comparison of exact and centered difference solutions for k / e  =  
20 and h = 0 .05 , 0.1 and 0.2.

The exact solution of the continuous problem (3.13) and the exact solution  
of the difference equation (3.16) can be compared. Figure 3.2 compares the 
two solutions for k / e  =  20 and h = 0 .0 5 , 0.1 and 0.2.

For h = 0 .0 5  (corresponding to /? =  0.5) the solution of the difference equa­
tion agrees reasonably well w ith the exact solution of continuous problem. 
The solution corresponding to /? =  1 is accurate except in the boundary 
layer and for 0  =  2 the solution is both oscillatory and inaccurate.

By exam ining (3.16) it can be seen that in order to guarantee a non- 
oscillatory solution the term  in brackets m ust be positive. Thus for a non- 
oscillatory solution to the difference equation we require

P <  1 (3.17)

T his restriction is often referred to  as a cell Reynolds number  lim itation. In 
order to avoid oscillations the grid spacing m ust be restricted in size so that 
(3.17) is satisfied. This is equivalent to requiring that
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kh
—  < 2  

e

A  popular technique for avoiding oscillatory solutions is the m ethod of up- 
winding  [19]. This involves the approxim ation of the convective term  by 
a one sided  F inite Difference approxim ation which is first order accurate1. 
For exam ple in the above problem where the boundary layer is at x = l  the 
backward difference approxim ation of ^

may be used as follows.

kh
Ui+1 -  2Ui +  Ut_! -  —  [Ut -  Ui-i ]  =  0 (3.18)

This difference equation is solved in the same way as equation (3.14) to give

kh
Ui =  B 0 {1 +  /?)* +  A 0) /3 =  —  (3.19)

€

Figure 3.3 com pares the exact solution of the upwinded difference scheme 
(3.19) and the previously derived scheme (3.14) w ith  the exact solution of 
the continuous problem (3.13) for h = 0 .2  and k / e  =  20. The upwind scheme 
exhibits non-oscillatory behaviour but is also inaccurate. It is instructive 
to write the convective term  in the upwinded difference scheme (3.18) as 
follows.

1The reason why this technique is called upwinding is because only information upwind 
of node k is transmitted to node k by convection. This technique was first used in weather 
prediction models; hence the name.
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Figure 3.3: Comparison of upwind and centered difference solutions w ith  
the exact solution for k / e  =  20 and ft =  0.2

=  1[B i+1 -  £/,-,] -  A  \uw  -  2Vi +  £/,_,]

This corresponds to  the second order centered approxim ation of the convec­
tive term plus an additional diffusive term. Thus the upwinded scheme is 
equivalent to solving equation (3.12) w ith an effective diffusivity of

‘ [ i + f f l ,  (/? =  § )

This extra diffusive term, encurred by the use of upwinding, is known as 
numerical diffusion.  In the next section  an approxim ation of the convection- 
diffusion equation shall be derived, using F inite E lem ents, which allows up- 
w inding but also som e control over the resulting numerical diffusion.
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The sem idiscretisations discussed above when applied to the solution of the 
linear problems of Chapter 2 result in system s of coupled ODEs. If the 
number of original P D E s is M and the number of spatial grid intervals is 
N then the dim ension of the resulting ODE system  will be (N  +  1) * N . If 
the m ethods are applied to the nonlinear problems of Chapter 2 the result 
is still a system  of ( N  +  1) * M O DEs. Thus as far as sem idiscretisation is 
concerned the problem in question may ju st as easily be nonlinear as linear.

Before proceeding further w ith the m ethods of F inite Differences, considera­
tion is now given to the approxim ation of boundary conditions for problems 
of type (2.5). Consider the general boundary conditions

Ui = f i (x)  t = 0

d U‘
Pi(t)Ui +  q i { t ) - ^  =  r (U i , t )  x =  a ,b  t >  0

i =  1 , 2 . . .  JV.

Two m ain cases arise

D ir ic h le t  b o u n d a r y  c o n d it io n s :  Here q (t)= 0  at x = a ,b  and the solution  
value U\  is obtained directly using

U\ =

Note: if q (t)= 0  then r must be independent of U.

Since U\  is a known function of tim e it is not necessary to solve an 
O DE for the value of U\ as the problem evolves. Thus in the case of 
Dirichlet boundary data the system  of O DEs is reduced by 2 * M . For 
a single Parabolic equation (J i/= l) w ith Dirichlet data if the second  
order centered F inite Difference sem idiscretisation is chosen then the 
original P D E  reduces to

i W
p M
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Ux =

d U
d t

Un +i -

n ( t )

Pi{t )

f ( U i- 1,U u Ui+1) , i  =  2 , . . . , N

r2 (t)
P2(t)

G e n e r a l b o u n d a r y  c o n d it io n s :  Here q( t ) ±  0 at x = a ,b  and the solution  
value U\  is not explicitly available. The spatial operator can be evalu­
ated at the boundaries leading to  O DEs for the boundary values. The 
first order derivative at the boundary is available from the boundary 
condition as

( d U \  _  r (U , t) — p( t )U  
\ d x ) x=aib q(t)

However the second derivative at the boundary cannot be approxi­
m ated using central differences since values outside the boundaries 
are not available for the approxim ation. Forward differences at x = a  
and backward differences at x = b  m ust be used in such cases. The 
representation of the spatial operator at the boundaries is therefore 
only first order accurate. For a single Parabolic equation (,A/=l) w ith  
general boundary data the second order centered Finite Difference 
sem idiscretisation leads to the following system  of ODEs.

d- £  =  m - 1, u i , u i+l) i = i , . . . , N + 1

In the case of general boundary conditions, the order of accuracy of the fi­
nite difference schem e suffers som ewhat at the boundaries. This is one of the 
main difficulties encountered in the solution of parabolic PD E s. In Chapter 
4 the improvement of boundary representation by using non-uniform grids
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will be investigated. The main reason for the popularity of the centered and 
upwinded Finite Difference sem idiscretisations is because the Jacobian of 
the resulting O DE system  is always tridiagonal  for a single PD E  and block 
tridiagonal  for a system  of PDEs. This m eans that in the solution of the 
ODE system  using im plicit m ethods, only tridiagonal linear system s of al­
gebraic equations occur. Efficient algorithm s are available for the solution  
of such system s. See [47], [52] and [30].

For higher order Finite Difference approxim ations the problems of repre­
senting boundary conditions are even greater. For exam ple a centered fourth 
order approxim ation for based on a five point formula is

d 2U - U i - 2 +  16Di_! -  30Ui +  16Z7,+1 -  Ui+2
d x 2 12h2

(3.20)

This fourth order approximation is of little practical since fourth order ac­
curacy will not be possible at nodes adjacent to  the boundaries. This is 
because the com putational molecule for this sem idiscretisation spans five 
nodal values.

Due to these consequences, higher order Finite Difference schemes have been  
sought which m aintain the tridiagonal nature of the spatial operator. Ci- 
m ent et. al. [9] derived a fourth order sem idiscretisation of this kind for the 
convection-diffusion equation. Rather than approxim ate the spatial deriva­
tives independently to  fourth order the operator compact implicit  m ethod  
establishes a fourth order accurate relationship between the spatial operator

m  =  a ( x ) ^ + b ( x ) ^  (3 .21,

and the function U on three adjacent m esh points. This is similar to the ap­
proach used in the Galerkin Finite Elem ent m ethod which will be discussed  
in 3.1.2. This relationship is as follows
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i t  w o ) < + 1+ 5 ?  w n ) i + « r  w p )) i- t = r , t g m + r , ^ ' + r ' Cf<- 1(3 -22)

where

q? =  6o,a,_i +  h(5a,i-ibi — 2a,i>t_i) —

?,• =  6afO ,+i ft(5a,-|.i6i — 2fl,i>,-|_i) — /i 6t6t-(-i

9» =  4[15o,-+io,-_i h -j-i6»—i]

Tt  =  ( 2 a t+ i  +  3 /i& i+ i) +  qi{2di  +  hb{) +  q7  ( 2 a i _ i  -  M , - i ) ]

r,r  =  2  ^  (2 a , + i + + ?° (2a< - /i6«)+ «r  (2a*-i -  3/ifc«-i)]

n9 =  - ( r i  +  O

T his is w ritten as

where Q and R are tridiagonal displacement operators. A  Taylor series anal­
ysis of (3.22) allows the coefficients r,- and <?,- to  be determined.

For Dirichlet data fourth order accuracy is m aintained across the spatial in­
terval a <  x  <  b w ith  a com putational molecule spanning only three adjacent 
nodes. This is identical to  the second order F inite Difference replacement of 
(3.21). In the case of general boundary conditions, fourth order accurate ex­
pressions involving the boundary values can be obtained using the boundary
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nodes and the two adjacent nodes. This alters the tridiagonal nature of the 
ODE system  resulting from the sem idiscretisation but can easily be handled  
by preprocessing the linear system  prior to using a conventional tridiagonal 
solver.

3 .1 .2  F in ite  E le m e n ts

Finite Element m ethods result from an integral representation of the evolu­
tionary equation. These m ethods involve building an approximation of the 
exact solution using linear com binations of basis functions in each subregion 
(finite elem ent) of the com putational grid.

One of the m ost popular F in ite Element m ethods for the discretisation of 
elliptic problems and the spatial discretisation of parabolic problems is the 
Galerkin Finite Elem ent m ethod [18]. This m ethod is a special case of the 
more general class of weighted residual m ethods.

Consider the general parabolic partial differential equation

—  =  A (U )  { x e Z , t >  0) (3.23)

The function U (x ,t) which satisfies (3.23) is term ed a classical solution. 
Problems expressed in th is form may be solved using classical Finite El­
ement m ethods if the function U is also the solution to some variational 
problem. See [38], Chapter 2. It is however possible to  apply Finite Ele­
m ent m ethods to problems of the form (3.23), for which variational problems 
do not exist, by considering the w e a k  form of the problem

(iUt , w ) =  ( A ( U ) ,w )  (3.24)

where w is som e function and where the inner product (a, b) is defined as

(a,b)  =  / a(x)b(x)dx  
JR
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Solutions to  this problem are generally less continuous than their classical 
counterparts and may not even be distinct. However the use of the weak 
formulation greatly extends the use of Finite Elem ent m ethods.

The m ethod of w eighted residuals generates an approxim ate solution of 
(3.23) of the form

N
U ( x , t )  =  U0(x , t )  +  '5 2 a j (t)<t>j (x) (3.25)

3=1

where <j>j(x) form a linearly independent set o f known analytic functions. 
These are often called trial funct ions  and equation (3.25) the trial solution. 
The functional Uo is chosen to satisfy the boundary conditions. Equation  
(3.25) suggests that equation (3.24) reduces to a set of ordinary differential 
equations in t. T he coefficients a,j in (3.25) need to  be determined and one 
m ethod is to set the inner product of the weighted residual, R  =  4^  — A(U),  
to  zero

{R ,W j(x ) )  =  0 j  =  l , . . . , N  (3.26)

This is where the m ethod takes its name and Wj above is referred to as the 
weight  or test  function.

In the two sections to  follow, the Galerkin and Collocation Finite Ele­
m ent m ethods are exam ined. Both of these m ethods belong to the class 
of weighted residual m ethods.

Galerkin F in ite  E lem ent m eth od s.

In this m ethod the weight function is chosen from the sam e fam ily as the 
trial functions. The inner product of the weighted residual thus becom es
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(3.27)

Solving this system  allows the constants ay in equation (3.25) to be deter­
mined. It is essential that the functions 4>i(x)  be linearly independent since 
otherwise the system  of equations represented by (3.27) will become ill- 
conditioned. This occurs for large N in the traditional Galerkin method  
where the trial functions are defined over the entire spatial domain, as 
dem onstrated by Fletcher [18]. The use of piecewise trial spaces guarantees 
that each trial function w ill only have local support and thus the system
(3.27) will remain well conditioned, even for large N. The use of piecewise 
polynom ial trial spaces w ith  the Galerkin m ethod constitutes the Galerkin 
Finite Element  m ethod.

For exam ple, consider the piecewise linear trial functions shown in Figure 
3.4. Let us apply the Galerkin Finite Element m ethod w ith the linear trial 
functions of Figure 3.4 to  the solution of Problem 1, Chapter 2.

d U 1 d 2U_
d t 7r2 d x 2

U (0 , t )

oIIt—HII

U(x,  0) =  s i n ( ^ i )

U ( x , t ) =  e - t s in (7rx )

Introducing the approxim ate solution

N

U [ x , t )  =  5 3  <»,■(*)&(*) 
J=1
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( 1 ) - *

(2) —» <t>

(3) —* <j> 

(4 ) -+4>

-  x
Xi 1

X -  Xj-1 
X i -  I , _ 1

3t+ l ~  g

^t'+l ”  *1 
X -  Xi  

X i+ 1  -  X i

Figure 3.4: P iecew ise linear (hat) trial functions. 

The weak form of the problem is

( S M  -  ( S - * )  <  -

Substituting the trial solution into the weak form o f the problem followed 
by integration by parts gives

N  I T T  ,  N  j 2 t t

è  i f  _ è  ~ d ^<t>ì dx =  ° = i ’” - >Ni=i i=i

V '  ( a  a. A Q h  1 v " ' (  d<f>i d(pj ^ . N
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Now we introduce th e linear trial functions <j>i which, for convenience, we 
will presume are defined on a uniform m esh of size h. This allows the inner 
products to  be calculated.

For exam ple (<f>i,<f>j) can be determ ined as follows. Referring to  Figure 3.4

— f^i j  (* 2xxi~i ^ t - i )  dx +  J  (*t+i 2xi,+x +  x ^

=  ¿ 2  [(X* “  +  (X*'+l “  **')3]

J L  Jl1
3/i2 +  3/i2

2h 
3

Similarly the inner products [4>i,<f>i+i) and become

h
1) =  g =  (4>iAi-1)

and
/  d(f>{ d<t>i \  _  2

V dx ’ dx J h

Using these inner products the trial solution becom es
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1 dU{-i 2 dUi 1 dU{-|_i 

6  dt  +  3 ~dt +  6  dt
1 (Uj.x -  2Uj + Ui+1)

7T2 h2

The right hand side of the above F inite Element discretisation is identical to 
the centered second order Finite Difference replacement of previously 
derived in section 3.1.1. For this reason, Galerkin Finite Elem ent m ethods 
are often regarded as an alternative m ethod of deriving Finite Difference ap­
proxim ations. In the above formula, the tim e derivative is distributed over 
three adjacent nodes of the mesh. Thus the Galerkin m ethod establishes a 
linear relationship between U and L (U )(=  ^jr) on three adjacent grid points. 
The resemblance between the Galerkin m ethod and the operator com pact 
im plicit F inite Difference m ethod studied in section 3.1.1 is obvious. Swartz 
[49] exam ines some difference schemes which closely resemble Finite Element 
m ethods and Varah [52] dem onstrates the equivalence of the well known box 
scheme  of Keller [28] and the Galerkin Finite Element m ethod. As pointed  
out by Hopkins [27], the main difference between the m ethod of lines and 
Finite Element m ethods is that the former m ethod reduces equation (3.23) 
to  an O DE system  of the form

d U
d t

whereas the latter leads to

=  m

A s in the case of Finite Differences the Galerkin Finite Elem ent m ethod  
can be used to  sem idiscretise convection-diffusion equations. Consider once 
again the steady state of Problem  5, Chapter 2.

d 2U d U  ,
e-r-ir -  k —  =  0 (3.28)

d x 2 d x
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subject to  the boundary conditions U (0 )= 0  and U ( l ) = l .  Application of the 
Galerkin Finite Element m ethod w ith piecewise linear trial functions on a 
uniform mesh results in the following difference equation

kh
Ui+1 -  2Ui +  Ut-!  -  —  (Ui+1 -  U i- i )  =  0

This is identical to  the difference equation (3.14) produced by second order 
centered Finite Differences. Thus the two formula give equivalent approx­
im ation of the spatial terms in the convection-diffusion equation. A  cell 
Reynolds number lim itation therefore also exists for the Galerkin sem idis­
cretisation. Upwinding is also a common m ethod of improving the spatial 
resolution of Galerkin m ethods. Such a scheme is an example of the gen­
eralised or Petrov-Galerkin [18] formulation and, in contrast to  the case of 
Finite Difference, oscillations at high Reynolds number can be avoided with­
out  a reduction in accuracy.

The upwind Galerkin Finite Element scheme is derived by introducing the 
following modified trial function

ipi(x) =  ) +  a 7 ,(a:)

as shown in Figure 3.5.

The function 7  is an antisym m etric quadratic perturbation function and a  
is a parameter which controls its influence. Using this trial function in the 
Galerkin formulation gives the following algebraic equation at internal nodes.



7 ,- =  —3 r7( l  -  r?) in elem ent [i, i+ l ]
7 ,• =  3r?(l +  r?) in elem ent [i-1, i]

where rj is a local coordinate.

Figure 3.5: Trial function used in the upwind  Galerkin F inite Element 
m ethod.

W hen a  =  0 the schem e corresponds to the conventional Galerkin or Finite 
Difference sem idiscretisation whereas a  =  1 gives full upwinding. Unlike 
the Finite Difference upwinded schem e, the use of the parameter a  in the 
upwind Galerkin F inite Elem ent schem e allows the numerical diffusion to 
be controlled.

Collocation methods.

In this weighted residual F in ite Elem ent m ethod th e weight function, w: (x) 
is chosen as

U)k(x) =  6(x -  Xj)

where 6 is the Dirac Delta function.

Thus the residual Rj  =  0 and (3.24) is satisfied exactly at a number of 
points X j t R ( j  =  1 ,. . . ,  N )  called collocation points. This set m ust include 
the boundary points. This property is also shared by m ost Finite Difference 
schemes.

The solution to R ( x j )  =  0 ( j  =  1 , ,  N )  allows the coefficients ay of the 
trial solution (3.25) to be determ ined. The main advantages of collocation
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are

•  There are no inner products to integrate as in the Galerkin Finite  
Element m ethod.

•  The resultant sem idiscretisation has fewer terms than in the Galerkin 
m ethod.

The main disadvantages of the collocation m ethod are

•  The boundary and initial conditions m ust be consistent.

•  It is necessary to use trial functions of at least the same order as the 
original differential equation.

•  Collocation techniques are non-conservative and as such may be inap­
propriate for som e problems based on conservation laws.

In section 3.3 the popular collocation software package PDECOL of Madsen  
and Sincovec [32] w ill be reviewed.

3.2  T em p o ra l In teg ra tio n

Having outlined the common m ethods of sem idiscretisation for parabolic 
problems, consideration is now given to the solution of the resultant system  
of ordinary differential equations.

Section 3.2.1 exam ines the nature of the O DE system  and introduces the  
notion of stiffness. The need to use stiff integration m ethods when dealing 
w ith equations of parabolic type is dem onstrated.

The currently used m ethods for stiff  system s of O DEs are reviewed. Soft­
ware for ODEs is of a high quality and the integration of a problem is carried 
out in an autom atic and optimal fashion. Some of the basic techniques used  
in the autom atic integration of O DEs are outlined.
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3.2.1 The nature of the ODE system and the notion of stiff­
ness

In 3.1 various sem idiscretisations from the class of F inite Difference and Fi­
nite Elem ent m ethods were derived. Now let us consider the results of such  
sem idiscretisations.

Consider a single parabolic equation of the form of equation (2.5) discretised  
in space on the uniform mesh

¡ti =  ( ( - l ) f c  t =  l , . . . ,JV +  l  h =  -  ^

The result of such a sem idiscretisation is a system  of ODEs of the form

(3.29)

in the case of F inite Differences, and

(3.30)

in the case of F in ite Elem ents (with U (0) specified).

The sem idiscretisation reduces an initial boundary value problem (IB V P) 
for a P D E  to  an initial value problem (IVP) for a system  of ODEs. Based  
upon the grid given above these system s will be o f dimension N + l .  How­
ever, as m entioned in section 3.1.1, in  the case of Dirichlet data, the O DEs 
corresponding to  th e boundary points reduce to  the trivial cases

dUi _  dUx+i _  
dt dt
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Fox generality however let us assume th a t the O DE system  has dimension  
N + l .  Section 3.2.2 outlines the presently used numerical m ethods for the 
solution of such system s. Firstly however it  w ill be instructive to exam ine 
the properties of such system s resulting from the discretisation of parabolic 
problems. T his w ill lead us to the notion of stiffness.

As an exam ple consider the sem idiscretisation o f the sim ple heat equation  
(Problem  1, Chapter 2)

d U  1 d 2U  „
I t  =  V ' M  0 S l S 1

Semidiscretising this equation using conventional second order centered Fi­
nite Differences produces the following O DE system

dUj  1 

dt  n2

' - 2 1 .  . 0 0 ' U2  '
1 - 2  1 0

1 - 2  1

1 - 2  1

0 1 - 2 1

0 0 1 - 2 . U N  .

(3.31)

The eigenvalues of the above matrix are given by Seward [45] and are real 
and negative.

2 (  kir \
Xk = [ 1 +c o s i ^ j  k = 1>--->N

51



For large N the largest eigenvalue may be approxim ated by

4 N 2
Ai «  r-

and the smallest eigenvalue may be approximated by

Ajv ft* —1

The negative reciprocals of these eigenvalues correspond to  the tim e con­
stants of the O DE system . Thus for large N the system  will possess disparate 
time constants. This may often lead to  com putational difficulties and in such 
cases the ODE system  is term ed s t i f f .  The conditions for stiffness to occur 
depend on the range of integration. Small decay tim e constants correspond  
to  transient solution com ponents. If the range of integration of the ODE  
system  is restricted to the transient interval then the variation of the solu­
tion can be adequately represented using standard integration m ethods. If 
the range of integration is much larger than the transient interval, then the  
solution in this region is dom inated by the slow com ponents (corresponding 
to small eigenvalues). However small tim e steps m ust still be used in the  
integration in order to  resolve the transient com ponents in a stable manner, 
even though they hardly affect the solution.

Thus the stiffness of the system  depends both  upon the ratio of the m axi­
mum and m inim um  negative eigenvalues and the range of integration. An  
adequate measure of stiffness is the following index

S  =  or S  =
Train

where r is the tim e step.

2The name “stiff” was introduced by Curtiss and Hirschfelder [12] because the servo­
mechanism modelled by such an ODE system felt stiff.
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A  value of S «  100 would be regarded as stiff and S ss 1 0  as non-stiff. For 
the above problem the stiffness index would be

AN2
final

Thus for N = 100  and t f inai =  n 2 this problem would be stiff. For N = 1 0  and 
tfinal =  1 the problem would be mildly stiff.

From the numerical perspective stiffness arises when stability rather than  
accuracy dictates the time step. As pointed out by Seward et al. [45], and 
indicated by the above exam ple, stiffness is associated w ith parabolic prob­
lem s in which the diffusive process dom inates. In order to guarantee an 
accurate solution to (3.29) or (3.30) we must anticipate the need for numer­
ical m ethods suitable for stiff ODE system s. In the next section integration  
formulae suitable for stiff system s are examined.

3.2.2 Integration  form ulae for stiff O D E system s

Previously it was seen that stiffness depends on several factors including 
the type of problem and the numerical approach being used. It was also 
observed that stiffness may vary during the evolution of the solution. The 
measure of stiffness used above is primarily a qualitative one and precise 
measures are not in com m on use owing to the com putational expense of 
calculating eigenvalues for a system  of equations. A  more modern approach 
to  measuring stiffness is given in Bui et al. [5], The presently used robust 
m ethods for ODE integration rely on formulae that cater for varying de­
grees o f accuracy and stability requirements. By far the m ost popular of 
such m ethods are the linear m ultistep m ethods (LMM).

Linear m ultistep m ethods are formulae of the form  

K

'y " ]  a kun+l— k +  h y  ]  / 3 / j U n - | - i _ f c  =  0  

k= 0  k= 0

5 3



for solving the ODE system

x i = f ( u , t )  (3.32)

where h is the step size and the coefficients a* and 0k depend on h. By 
convention cco is chosen to be - 1 .

T wo notable fam ilies o f LMM exist, nam ely the Ada ms Moulton  (AM ) m eth­
ods and the backward differentiation formulae  (B D F ) popularised by Gear 
[22], The general form of the Adam s M oulton m ethod is

K - 1

wn+l =  u n +  h y  ' Pk^-n+l -k  
k=0

If 0k=O  in the above formula then ttn+ i  can be obtained explicitly. The first 
order explicit AM  m ethod is the well-known Euler m ethod

un+i =  un +  hùn+i  (0o =  O,0i  =  1 )

The second order AM  formula is the trapezoidal rule

h 1
un+l =  «n +  ~  (¿n+1 +  Un) (Po = 0 , 0 1  =  “ )

This m ethod corresponds to  the well known Crank Nicolson tim e discreti­
sation for partial differential equations. See M itchell and Griffiths [37].

T he BD formulae are im plicit m ultistep m ethods of the form
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K
~ P o h U n + 1  =  — un + l "I" y  0ik u n + l —k

Jt=l

The first order BD formula is the backward Euler scheme

" Un+1 — Un (A) =  1> =  1)

It was mentioned in the previous section that stiff problems require small 
tim e steps in order to m aintain stability. The stability properties of mul­
tistep m ethods are now considered. For each MSM a truncation error can 
be determined. Absolute  or A-stabili ty  prevails when all the eigenvalues 
of the system  (3.32) are negative. Thus the accum ulation of past errors is 
prevented. Absolutely stable formulae would be the best m ethods for the 
solution of stiff problems since the region of stability extends to — oo in the 
left h \  plane. Unfortunately however, as proven by Dahlquist [13], there are 
no explicit A -stable MSMs and the highest order im plicit A -stable method  
is the trapezoidal rule. Thus if one is restricted to  using only A -stable for­
mulae then only low order approxim ations are possible and small tim e steps 
are required for sufficient accuracy. Thus A -stability satisfies the stability  
requirement for stiff problems but an accuracy problem remains.

Gear [22] however relaxed the A -stability requirement so that stiff com­
ponents in the solution corresponding to large and negative h \  (region £ i )  
could be represented stably and non-stiff com ponents corresponding to  small 
and negative hX (region £ 2 ) could be represented accurately. See Figure 
3.2.2. M ethods possessing such properties are known as stiffly stable m eth­
ods.

The Adam s M oulton m ethods are not stiffly stable and hence are of no in­
terest to  us for the solution of ODE system s resulting from the sem idiscreti­
sation of parabolic problems. The BD formulae of orders 3-6 are however 
stiffly stable are suitable for our needs. Figure 3.2.2 shows the stability re­
gions for the BD formulae of orders 1-6. These formulae are the presently
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Figure 3.6: Regions o f absolute stability for stiffly stable methods.

accepted standards for solving stiff system s. The pioneering software pack­
age D IFSU B [21] was w ritten  by Gear and uses BD formulae for the stiff 
solver option and AM  m ethods for the non-stiff option.

Given a user specified tolerance r  the local truncation error at each step  
in  the integration is required to  satisfy || | |<  t . Using analytic error
expressions for each form ula the m axim um  possible steps which m ight have 
been used in the previous step are estim ated both for the present order and 
the nearest higher and lower formulae. The new order and step size for the 
next step are chosen from  these estim ates so that the step size is m axim ised. 
Gear in fact used a fixed step  size for several steps in order to guarantee 
accurate error estim ates. Several other heuristic approaches were also used  
in order to  produce a robust code.

O ther versions of the Gear package were later developed to take advantage 
of particular problem structures. For exam ple, G EARB was developed for 
system s having a banded Jacobian structure and GEARIB for correspond­
ing im plicit ODE system s. The next major improvem ent to the Gear type  
O DE integrator was the im plem entation of fully variable stepping in the  
code EPISO D E [26]. Presently, O DE integrators in popular use correspond
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Figure 3.7: Regions of absolute stab ility  for the BD formulae of orders 1-6.

to  LSO DE [24] or its  variants. LSO D E incorporates all the innovations to 
the basic Gear package outlined above. LSODI [25] is designed to solve lin­
early im plicit ODEs and LSO DIB is a variant of LSODI suitable for system s 
w ith  banded Jacobians. LO SDA  possesses an autom atic stiffness check so 
that sw itching between stiff and non-stiff formulae may be performed auto­
m atically. This technique is based on an algorithm of Petzold [42].

H aving now exam ined the sem idiscretisation of parabolic problems and the 
solution of the resultant O D E  system  we will now examine two popular 
packages which im plem ent these algorithm s.

3.3 P D E  Softw are

Presently used P D E  software for parabolic equations in one space dim ension  
incorporate the following techniques.

A u to m a t ic  s e m id is c r e t is a t io n  T he programs discretised the spatial in­
terval on a user specified grid according to some generally applicable 
discretisation rule. T he user has the responsibility of ensuring the

57



adequacy of the spatial grid and, where available, the choice of the 
discretisation.

A u to m a t ic  O D E  s o lu t io n  The system  of O DEs resulting from the dis­
cretisation above is solved by the program in an autom atic fashion  
using on of the available O DE integrators described in the last section.

D etails of two packages for solving parabolic type partial differential equa­
tions are now given.

3.3.1 N A G  Routine D 03PG F

This routine, based on the code of Sincovec and Madsen [46], is designed to  
solve a general system  of N parabolic equations of the form

dUi  ^  d (  d U A
Ci~ d r ~ ^ d i { 9ij~ d 7 J + f i;=i

subject to the general boundary conditions

in either Cartesian, polar or spherical polar coordinates.

The m ethod of lines approach is used in which the spatial terms are dis- 
cretised using second order centered Finite Differences. If the boundary 
conditions are such that q is non-zero then the order of accuracy at the 
boundaries is of order one. D iscontinuities are perm itted between the initial 
and boundary values and the user may choose from a lim ited number of 
fixed non-uniform grids. The O DE integrator for this package comprises the 
G EA RIB variable order/variable step code. The initial tim e step is auto­
m atically chosen by the program and subsequent steps are chosen so that
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a user specified accuracy in the tim e integration is m aintained. The code 
is robust and allows autom atic resetting of the integration in the case of 
rejected tim e steps.

3.3.2 PD E C O L

This routine by Madsen and Sincovec [32] solves the general system  of N 
partial differential equations

d U
— - 1 =  U ( t , x , U , U x, U xx) i  =  1 , 2 , . . . ,  N

Since the system  incorporates O DEs and the three standard types of PD Es  
then for each equation of the system  zero, one or two boundary conditions 
may be needed. They must be of the form

bi{U,Ux) =  Zi(t)

and m ust be consistent w ith the in itial conditions. The program semidiscre- 
tises in space using a Finite Elem ent collocation procedure w ith piecewise 
polynom ial test functions. The degree of these polynom ials is required to 
be higher than the degree of the PD E (s) being solved. The user specifies 
the numerical grid and the result of the autom atic sem idiscretisation is the 
O DE system

dU
A - & = s(t ' u )

The main restrictions in PD EC O L are the requirements for continuity be­
tween the initial and boundary conditions which lim its its applicability some­
w hat. A lso the nonconservative nature of collocation m ethods in general 
makes them  inappropriate for problems where a conservation law must be 
satisfied.
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F ig u re  3.8: E x a c t so lu tion  o f B urgers ’ eq uatio n  fo r e = 0 .003 a t T = 0 ( 0 . 1 ) l ,

3.4 U niform  grid im plem entations.

In  th is  section we exam ine  the  results o f a u n ifo rm  grid  solution to  B urgers ’ 
eq uatio n . T h e  N A G  ro u tin e  D 0 3 P G F  (release 13) was used to  solve th is  

equation  on th e  in te rv a l T  =  [0 ,1 ], x =  [0 ,1 ] fo r th e  overtaking  shocks solu­
tio n  (2 .8 ) w ith  e =  0 .003 .

T h e  exact so lu tion  o f th is  p ro b lem  is show n in  F ig u re  3.8. T h e  so lu tion  

exh ib its  b o th  o vertak ing  shocks and a b o u n d a ry  layer a t x = l  durin g  th e  

chosen tim e  in te rv a l and  thus presents a challenging test for any p ro gram .

T h e  so lu tion  was ca lcu la ted  fo r u n ifo rm  m esh sizes o f 21 , 41 , 81 and 161 
m esh points. F igures  3 .9 , 3 .10 and com pare th e  n um erica l and an a ly tic  so­
lu tions  a t the  fin a l tim e  T = l .  In  a ll b u t th e  fin a l p lo t oscillations arise in  

th e  ne ighbourhood  o f th e  bou n d ary  layer. These oscillations are ty p ic a l o f  

F in ite  D ifference solutions o f n e a rly -h yp erb o lic  equations. O n ly  in  th e  fina l 
exam ple , w here 161 m esh poin ts  w ere used, do th e  oscillations appear to  
disappear.
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(a)

(b)

F igure  3.9: (a ) C om parison  o f exact solution o f B urgers ’ equation  fo r e =  

0 .003  a t T = 1  w ith  the  num erica l solution calcu lated  on (a ) 21 mesh points  

and (b ) 41 mesh points.
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(a )

(b )

F ig u re  3.10: C om parison  o f exact so lu tion  o f B u rg ers ’ equation  for e =  0 .003  

a t T = 1  w ith  the n um erica l solution ca lcu la ted  on (a ) 81 mesh points and  

(b ) 161 mesh points.
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B o th  the  m a x im u m  absolute erro r a t t = l  and th e  C P U  tim e  were m easured  

fo r each o f th e  above im p lem en ta tio ns  in  o rder to  assess th e ir  accuracy and  

efficiency. F ig u re  3.11 (a ) shows th e  errors o b ta in ed  fo r the four g rid  sizes 

used. T h e  erro r decreases ra p id ly  as the  n u m b er o f grid  poin ts increases. 
H ow ever even fo r th e  finest g rid  the  m a x im u m  e rro r is s till q u ite  large and  

w ould  n o t be acceptab le fo r p ra c tic a l use. For sufficient accuracy therefore , 
grids o f th e  size o f 200  or m ore poin ts  w ou ld  ap pear to  suffice. T h e  effect 
o f th e  grid  size on th e  C P U  tim e  requ ired  to  solve the  p ro b lem  is displayed  
in  F ig u re  3.11 (b ) . T h e  C P U  tim e  consum ption  appears to  vary  approx i­
m a te ly  lin e a rly  w ith  th e  n um ber o f m esh poin ts  in  th is  p a rtic u la r range of 
in teg ra tio n . H ow ever, fo r th e  finest g rid , w h ich  is by no means acceptab ly  

accurate , the  tim e  is ap p ro x im a te ly  100 seconds. T h e  ac tu a l co m p uter used 

fo r these experim ents  was an A P O L L O  w o rks ta tio n .

T h e  results shown above d em o nstra te  c learly  th a t  fo r problem s w ith  ra p id ly  

pro pag atin g  shocks a n d /o r  b o u n d ary  layers th e  accuracy and efficiency of 
th e  s tandard  u n ifo rm  grid  approach suffers badly . Eng ineering  accuracy  

fo r these problem s m ay  on ly  be obta ined  a fte r considerable com puter over­
head and in  m an y  cases m ay prove to  be p ro h ib itiv e ly  expensive and tim e  

consum ing. C le a rly  m ore efficient m ethods are req u ired  for such problem s. 
In  C h a p te r 2 the  id ea  o f using ad ap tive  n o n -u n ifo rm  grids was in troduced . 
C h a p te r 4 investigates th is  id ea  fu rth e r  and develops th e  theory  o f ad ap tive  

m eshing. U sing  such m ethods the  efficient so lu tion  o f problem s like those 

above is rendered possible.
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(a)

(b )

F ig u re  3.11: N u m e ric a l so lu tion  to  B urgers ’ equation  fo r e =  0 .003 . (a) 
M a x im u m  absolute e rro r on T = [ 0 , l ]  X = [ 0 , l ]  versus n u m b er o f mesh points, 
(b ) C P U  tim e  ex p e n d itu re  versus num ber o f mesh points.
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C hapter 4

A d a p t i v e  M e s h  S t r a t e g i e s

In  C h a p te r 3 q u a n tita tiv e  evidence o f the  inadequacy o f u n ifo rm  sp a tia l grids 

in  th e  so lu tion  o f p a rab o lic  P D E s  was exam ined . Such poor perform ance o f 
u n ifo rm  grids m ay  be exp la ined  by analysing  the  sources o f error in  typ ica l 
s p a tia l d iscretisations. S im ila r d iscretisations m ay be id en tified , based on 

n o n -u n ifo rm  grids, w h ich  offer th e  possib ility  o f m o re  accurate and efficient 
ap p ro x im a tio n . G iv e n  a p a rtic u la r  so lu tion , general n o n -u n ifo rm  grids ap­
p ear to  offer superior reso lu tion  over th e ir  u n ifo rm  counterparts . H ow ever, 
th is  is s tr ic tly  tru e  on ly  i f  th e  n o n -u n ifo rm  grid  is care fu lly  chosen.

M e th o d s  for d e riv in g  su itab le  n on -u n ifo rm  grids fo r p a rtic u la r  problem s are 

know n co llectively  as grid  generation  m ethods. T w o  contrasting  approaches  

prevail; m ethods w here a p rio ri in fo rm a tio n  concerning the  sp a tia l s truc ture  

o f th e  so lu tion  is necessary and m ethods w here such in fo rm a tio n  is n o t re­
q u ired . N u m e ric a l g rid  generation  m ethods are effective in  the generation  o f 
grids fo r e llip tic  P D E s  (tim e -in d e p e n d e n t problem s) and in  th e  selection o f 
su itab le  in it ia l grids for parab o lic  P D E s . In  the la t te r  case, an in it ia l non- 
u n ifo rm  grid  w ill only resolve the  evolving  so lu tion  adequate ly , i f  th e  sp atia l 
n a tu re  o f the  so lu tion  changes li t t le  w ith  tim e . O th erw ise , an effective in i­
t ia l g rid  m ay prove to  be useless a t a la te r tim e  w hen  the  sp atia l n a tu re  

o f th e  so lu tion  has a lte red  sign ificantly . Evidence fro m  C h a p te r 2 suggests 
th a t  p arab o lic  equations w ith  solutions th a t  vary  considerably w ith  tim e  are 

th e  ru le  ra th e r th a n  th e  exception . For such equations th e  use o f a tim e - 
independent n o n -u n ifo rm  sp a tia l g rid , perhaps th e  p ro d u c t o f an effective  

grid  generation  scheme, m ay be less effective th a n  th e  conventional u n ifo rm  

grid  approach. A  single grid  generation  step is n o t sufficient to  guarantee
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an effective sp a tia l m esh fo r p a ra b o lic -ty p e  problem s. In s tead , regeneration  

o f th e  g rid  d u rin g  the  p ro b le m  evo lu tion  is requ ired , so th a t  the solution is 

ad equate ly  resolved a t a ll tim es . T h is  is the  basic approach behind  adaptive  

m eshing.

A ll  ad ap tive  mesh strateg ies are s im ila r in  th a t th ey  re ly  upon  the  repeated  

ap p lica tio n  o f p a r tic u la r  m esh generation  m ethods. T h u s , th ey  in h e rit the  

m erits  a n d /o r  deficiencies o f th e ir  und erly in g  mesh generation  a lgorithm s. 
A d a p tiv e  mesh strateg ies d iffe r considerably, how ever, in  the  w ay they  re late  

th e  s p a tia l mesh to  th e  evo lv ing  solution. O n  th e  basis o f th is  p ro perty  a 

tw o -w ay  classification o f a d ap tive  m esh a lgorithm s is possible, nam ely, lo c a l  
m e s h  r e f in e m e n t  m e t h o d s  and  m e s h  m o v in g  m e th o d s .

Im p o rta n t features o f ad ap tive  mesh a lgorithm s are th e ir  Tobustness and  

generality . These are d iff ic u lt to  achieve in  th e  case o f parab o lic  problem s  

since there  exists such a w id e  varie ty . Some a lg o rith m s m ay requ ire  “fine 

tu n in g ” to  th e  p ro b lem  at hand  b u t th is  is to  be avoided since i t  conflicts 

w ith  the  above tw o  req u irem ents . A  good ad ap tive  mesh a lg o rith m  w ill 
thus ten d  to  be a u to m a tic  and  consequently easy to  im p lem en t. A n  effective 

m e th o d  of ascerta in ing  th e  q u a lity  o f a p a rtic u la r ad ap tive  mesh strategy  

fo r th e  so lution  o f p a ra b o lic  P D E s  is to  couple i t  w ith  ex is ting  softw are for 

such problem s and m o n ito r  its  perform ance on a w ide  selection o f exam ple  

problem s.

4.1 The problem  w ith  uniform grids

In  C h a p te r 3 section 3 .4 , n u m erica l solutions to  B urgers ’ equation  were cal­
c u la ted , using th e  N A G  ro u tin e  D 0 3 P G F  [39], fo r a selection o f fixed u n ifo rm  

s p a tia l grids. N o t u nexpected ly , the  finer meshes requ ire  g reater C P U  over­
head b u t deliver m ore accurate  solutions. H ow ever, even a fte r a C P U  tim e  o f 
a p p ro x im a te ly  one hun d red  seconds fo r a so lution  on a fine grid  o f 161 mesh 

p oin ts , a s ign ificant n u m erica l erro r persists. T h is  exam p le  dem onstrates  

th e  ty p ic a l problem s associated w ith  solving p arab o lic  equations using un i­
fo rm  grids. Solutions m ay be erroneous or costly and freq u en tly  are both .

B y  exam in in g  ty p ic a l s p a tia l d iscretisations used in  the  so lution  of parabolic  
equations th e  reasons fo r such deficiencies m ay be d e term in ed . C onsider the  

s tan d ard  sp a tia l d iscretisations based on th e  u n ifo rm  mesh
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VN :$i =  i * h  i =  1 , 2 , . . . ,  N  +  1

w here

In  C h a p te r  3 th e  fo llow ing  F in ite  D ifference rep lacem ents o f y\ and  y" were  
derived .

»1 =  +E> (4 .1 )

#!' =  "■-f - 7 -̂ + »i - + g ;  (4 .2 )

T h e  lead ing  term s o f the  tru n c a tio n  errors E\  and  E% a re , respectively ,

Ex =  ~ y W  (4 .3 )

^  =  ~ ^ y M  (4 .4 )

In  b o th  cases a lthough  th e  tru n c a tio n  erro r is p ro p o rtio n a l to  h2 i t  is also 

p ro p o rtio n a l to  h ig h er derivatives o f th e  so lu tion . These h ig h er derivatives  

w ill be significant w here  th e  so lu tion  varies ra p id ly  in  space, resu lting  in  

re la tiv e ly  la rge  tru n c a tio n  errors in  such areas. T h is  is th e  reason w hy  

large errors w ere observed in  th e  n u m erica l experim ents  o f section 3 .4 . In
general, th e  use o f u n ifo rm  grids m eans th a t  th e  tru n c a tio n  erro r w ill  be
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n o n -u n ifo rm ly  d is tr ib u te d  over th e  sp a tia l dom ain .

T h e  s im plest w ay o f ensuring suffic ien tly  sm all tru n c a tio n  errors over the  

e n tire  s p a tia l dom ain  is to  use a u n ifo rm  b u t fine sp a tia l g rid . T h is  allows  

th e  m a x im u m  tru n c a tio n  e rro r (corresponding to  th e  region o f greatest spa­
t ia l v a r ia tio n ) to  be lim ite d , since th e  fa c to r o f h2 in  the  tru n c a tio n  errors 

(4 .3 ) and (4 .4 ) w ill be considerab ly reduced. In  doing th is , how ever, th e  grid  

spacing w ill also be reduced in  regions w here  the  tru n ca tio n  e rro r is a lready  
suffic ien tly  sm all. T h is  approach, there fore , over-com pensates in  th a t i t  re ­
duces th e  sp a tia l errors g lobally , ra th e r  th a n  locally , w here necessary. T h e  

overa ll resu lt is th a t  ca lcu la tio n  tim e  is unnecessarily increased as dem on­
s tra ted  by th e  exam ple  results in  section 3.4.

Since th e  tru n c a tio n  errors in  (4 .3 ) and (4 .4 ) are p ro p o rtio n a l to  b o th  h2 
and h igher solution derivatives , i t  is possible to  u n ifo rm ly  d is tr ib u te  these 

errors over th e  s p a tia l dom ain  by selecting re la tive ly  sm all grid  spacings 

w here the derivatives are large and re la tiv e ly  large g rid  spacings elsewhere. 
T h is  suggests the use o f tru ly  n o n -u n ifo rm  grids in  space.

In  o rder to  assess th e  v ia b ility  o f n o n -u n ifo rm  sp atia l grids, th e  s tandard  

discretisations based on such grids m ust be exam ined . C onsider th e  in te rva l 
[a,b] d iv id ed  in to  N  mesh spacings by th e  n o n -u n ifo rm  grid

I I j v  : a =  x q  <  x i  <  X2 <  . . .  <  =  b

C hoosing th e  n o ta tio n

p =  Az,-+i =  x i+ 1 -  Xi q =  A  Xi = Xi -  n - i

the  F in ite  D ifference rep lacem ents o f y\ and y" based on the  n o n -u n ifo rm  

grid  I I jv  m ay be w r it te n  as follows

Vi =  — ]—  { - ( y i + i  ~  Vi) +  - { V i  ~  V i - i )  1 +  E i  (4 .5 )
p +  q Ip q J
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y'i - z r r z  { ~ ( w + i  ~  w ) _  ” (»•■_  w - i )  1 +  ^ 2  (4 .6 )p +  ? Ip q )

w here

- f  n“10 -  § f(?  - ? ) # <" )

- p ?  +  9! ) ! iw + • • ■  (<  j )

- E ^ l y O U )  -  „  +  , V ’”)

-i(p$-p!? + p?2-Js)!/W  + ... (4.8)

These fo rm u lae  w ere derived  in  C h a p te r  3 and  degenerate to  those o f (4 .1 )  
and (4 .2 ) in  th e  case o f a u n ifo rm  g rid  (p  =  q =  h ).

F o r th e  a p p ro x im a tio n  o f y\ th e  lead ing  te rm  o f th e  tru n c a tio n  erro r is

6 *

T h u s , the e rro r rem ains second order in  term s o f p and q w hen a u n ifo rm  

g rid  is replaced by a n o n -u n ifo rm  grid . H ow ever, in  th e  case o f y" , the  tru n ­
cation  e rro r degenerates to  firs t o rder since its  leading te rm  becomes

p ~ q an)
3 y

Et =
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T h e  degeneration  o f th e  fo rm a l tru n c a tio n  e rro r, in  the ap p ro x im a tio n  o f  

y" , has im p o rta n t consequences fo r th e  n um erica l solution o f p a rab o lic  equa­
tions , since th e y  are characterised by th e  presence o f such a s p a tia l d eriva tive  

te rm . In  general, the  use o f n o n -u n ifo rm  sp atia l grids in  the  F in ite  D iffe r­
ence d iscretisa tion  o f parabo lic  p roblem s, leads to  a reduction  o f one in  the  

order o f accuracy o f the  m eth o d . T h is  w ould  appear to  severely l im it  the  

a p p lic a b ility  o f n o n -u n ifo rm  sp atia l grids to  such problem s. H ow ever, by 

an a p p ro p ria te  res tric tio n  on the choice o f n o n -u n ifo rm  grid , fo rm a l second 

o rd er accuracy m ay be restored. T h e  lead ing te rm  o f the  tru n c a tio n  error,
(4 .1 ) , can be m ade second order in  term s o f p and q i f  th e  fo llow ing  restric ­
t io n  on th e ir  re la tiv e  sizes is m a in ta in ed .

(p -  q) = kq2

p  =  g ( l  +  kç ) (4 .9 )

k = 0 ( 1 )  fo r i = l , 2 ,  . . .  ,N

I f  th e  n o n -u n ifo rm  m esh is chosen so th a t (4 .9 ) holds, second order accu­
racy  w ill  be possible in  the  ap p ro x im atio n  o f y[ and y". In  the  n e x t section, 
on m esh generation , a  m ethod  fo r generating  a n on -u n ifo rm  grid  using the  

re la tio n  (4 .9 ) (ca lled  th e  k  m eth o d  by Noye [40]), w ill be described.

In  C h a p te r  3 th e  n on -u n ifo rm  mesh in  x , n^v, was visualised as a transfor­
m a tio n  x ( f )  fro m  th e  u n ifo rm  grid  in  f , T tv- T h is  allows a s tra ig h tfo rw ard
m eans o f d e te rm in in g  tru n c a tio n  errors. For exam ple , the errors fo r the  

ap p ro x im atio n s  o f y\ in  (3 .6 ) and y" in  (3 .1 0 ) w ere

Ei = +0(11*) (4.10)

El  =  - ^ { 4 * „ l , i '“ ) + x ’si<’)} +  0 ( f l<) (4.11)
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w here  H  is th e  u n ifo rm  grid  size in  th e  ç coord in a te  and x ( , x (i are th e  local 
g rad ien t and cu rva tu re  o f the  mesh tra n s fo rm a tio n .

In  term s o f H  b o th  errors are o f the  sam e order. T h e  d ifficu lty  m entioned  in  

C h a p te r  3 concerning the accurate represen tation  o f y" is exp la ined  by the  

ra th e r  com plex term s appearing  in  E% above. M a in te n a n c e  of second order 

accuracy in  term s o f H 2 requires th a t

+ = 0 (1)

T h is  res tric tio n  is equivalen t to  th a t o f (4 .9 ) b u t shows m ore c learly  the  

in fluence o f th e  h igher y derivatives on the tru n c a tio n  error. Second order 

accuracy can be m a in ta in ed  by ensuring th a t  the  derivatives o f the  mesh  

tra n s fo rm a tio n  are sm all w hen  the  corresponding y derivatives are large. 
T h is  o f course relies on the  co ntin u ity  and boundedness o f the  y derivatives. 
A  fu rth e r  consequence o f the  use o f n o n -u n ifo rm  grids is th e ir  effect on the  

s ta b ility  o f th e  n um erica l m ethods used in  th e  tim e  in te g ra tio n . For exp lic it 
m ethods the  s ta b ility  depends on th e  sm allest m esh spacing. See M itc h e ll 
and G riff ith s  [37] fo r a s ta b ility  analysis o f some com m on F in ite  D ifference  

schemes. F or sm all m esh spacings, th e  tim e  step m ust be reduced so th a t  the  

m eth o d  rem ains  s tab le . In  such cases th e  considerations o f sp a tia l resolution  

and  s ta b ility  m ay conflic t and the superio r reso lu tion  gained by reducing  the  

mesh spacing m ay be m ore th a n  offset by th e  increased num ber o f tim e  steps 

needed in  order to  m a in ta in  s tab ility . T h e  use o f e x p lic it m ethods in  con­
ju n c tio n  w ith  n o n -u n ifo rm  grids is by no m eans in a p p ro p ria te  how ever, as 

long as some contro l over the m in im u m  mesh spacing is exercised. M adsen  

[32] addresses th is  p a rtic u la r  p ro b lem  in  his p resen tation  of a n o n -s tiff adap­
tiv e  m eshing techn ique, to  be discussed in  th e  fo llow ing  section.

A s d em o nstra ted  in  3 .2 , the  sem idiscretisation  o f parab o lic  problem s leads 

to  systems of O D E s  w hich  are s tiff. T h e  m ethods of in te g ra tio n  for such 

system s m ust be im p lic it  due to  the s trin gen t s ta b ility  requirem ents th a t  
p reva il. T here fo re  th e  effect o f variab le  grid  spacing1 on the  t im e  in teg ra tio n  

is n o t o f m a jo r im p o rta n c e  since availab le  O D E  in teg ra to rs  for s tiff  systems 

in c o rp o ra te  im p lic it  fo rm u lae . H ow ever in  th e  ad ap tive  m eshing techniques  

to  be discussed, excessive stiffness is lim ite d  by p reven ting  the  nodes fro m
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becoming too close.

W e w ill now consider the techniques fo r g enerating  im proved  meshes based  

on n on -u n ifo rm  grids. These techniques are co llec tive ly  know n as n um erica l 
grid  generation  m ethods.

4.2 N um erical grid generation

N u m e ric a l g rid  generation  concerns th e  selection o f a p p ro p ria te  n on -u n ifo rm  

grids fo r p a rtic u la r  p roblem s. T h e  choice o f g rid  is en tire ly  dependent on the  

n a tu re  o f the  p ro b lem  and some grid  g eneration  m ethods therefore requ ire  

specific a p rio ri know ledge o f th e  p ro b le m  be ing  solved. M e th o d s  w hich  

are less dependent on such in fo rm a tio n  are ro b ust and  thus m ore generally  

applicab le . A s a lready  p o in ted  o u t, th is  is im p o rta n t w hen dealing  w ith  

parabolic  P D E s . In  th e  fo llow ing  sections several com m on approaches to  

grid  generation  are described.

4 .2 .1  T h e  /c -m eth o d

In  4.1 the  effect o f n o n -u n ifo rm  grid  spacing on th e  F in ite  D ifference repre­
sentation  o f y" was investigated . I t  was seen th a t ,  fo r p arab o lic  problem s  

in  general, th e  order o f accuracy a tta in a b le  on a n o n -u n ifo rm  grid  tends to  

be o f order one less th a n  th a t  o b ta in a b le  on a  u n ifo rm  grid . H ow ever, a 
non -u n ifo rm  grid  denoted  by

I I  v  : a = xo < xi  < X2 < . . .  < x jv =  b

can be m ade to  re ta in  second order accuracy i f  th e  fo llow ing  res tric tio n  

holds.

p  =  q ( l  +  K q )  k  =  0 (1 )  i =  1 , 2 , . . . ,  iV

D iffe re n t values of k correspond to  d iffe ren t g rid  configurations th a t  are 

sm ooth ly  vary ing . For exam ple , a positive  value o f k produces a g rid  w hich  

starts  w ith  a sm all spacing and increases m o n oton ica lly  to  la rger values. I f  

k is negative th en  th e  reverse occurs. F ig u re  4 .1  shows exam ples o f grids 

generated in  th is  fash ion  for various values of k . G rid s  produced by the  k
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r - - - - Z- - - - r f l
■  3

» « k op po •  5

F ig u re  4.1: G rid s  generated by th e  re m e th o d  for re = l,3 ,5 .

m etho d  ten d  to  re ta in  th e ir  accuracy. H ow ever th e  m etho d  does n o t take  

in to  account th e  b ehav io ur o f the  so lu tion  w h ich , as was seen in  section 4 .1 , 
plays an im p o rta n t ro le  in  the  d e te rm in a tio n  o f th e  overa ll tru n c a tio n  e rror.

T h e  re m eth o d  is therefore  useful i f  th e  mesh configuration  (de term in ed  by 

the  value o f re) is know n  in  advance. T h is  m ig h t be th e  case, for instance, in  a 

p ro b lem  possessing a know n  b o u n d ary  layer a t x = 0 .  C hoosing re >  5 w ou ld  

generate a m esh su itab le  fo r resolving such a fea tu re  in  the  solution. T h e  

re m eth o d  therefore  relies com plete ly  on a p r io r i know ledge o f the p ro b lem  

being solved. N o t unexpected ly , th is  lim its  th e  a p p lic a b ility  o f th e  m etho d  

to  w ell know n problem s w ith  p red ic tab le  solutions. U n fo rtu n a te ly , th e  very  

problem s w h ich  w o u ld  benefit th e  m ost fro m  th e  use o f n o n -u n ifo rm  sp a tia l 
grids are those problem s w hich  e x h ib it u n p red ic tab le  solution structures  

such as shocks and  b o u n d ary  layers.

4 .2 .2  M a p p in g  fu n c t io n s

In  C h a p te r 3 th e  n o tio n  of a n o n -u n ifo rm  grid  as a tra n s fo rm a tio n  o f a  cor­
responding u n ifo rm  grid  was a useful one. G iven  a u n ifo rm  mesh on the
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spatial interval [0,1]

r jv  :?»• =  * *  h h = —  t =  0 , 1 ,2  

and  a corresponding n o n -u n ifo rm  mesh

UN : 0 = xq < x\ < X2 < ■ ■ ■ < ijv =  1

T h e  n o n -u n ifo rm  m esh m ay  be regarded  as th e  resu lt o f app ly ing  th e  m a p ­
p ing  fu n c tio n  x ( f )  to  the  u n ifo rm  m esh.

T h e  m ap p in g  fu n c tio n  approach uses an a p p ro p ria te  function  w hich serves 

to  generate such a n o n -u n ifo rm  mesh. Choosing th e  rig h t m apping fu n ctio n  

allows the  s tru c tu re  o f th e  n o n -u n ifo rm  grid  to  be contro lled. O bviously  
th e  fu n c tio n  w ill  have to  be m on oton ica lly  increasing/decreasing  so th a t  the  

resu ltan t n o n -u n ifo rm  grid  is contiguous. A n  exam ple o f such a function  is

x f o )  =  sin i = 0 , l , . . . , N

T h is  m aps a u n ifo rm  g rid  in  f ,  on th e  in te rv a l [0,1], onto a n on -u n ifo rm  

grid  in  x , on th e  sam e in te rva l. For o ther in terva ls , the  resu lting  grid can be 

scaled by m u lt ip ly in g  th e  m ap p in g  fu n ctio n  by an a p p ro p ria te  constant. T h e  

n o n -u n ifo rm  grid  is produced  by pro jection  fro m  a circle as shown in F ig u re  

4.2 . In  th is  g rid  m esh poin ts  are concentrated  a t x = l .  A s in  the  k m ethod  
a know ledge o f th e  so lu tion  is requ ired  for a successful g rid  generation to  be 

possible. A  ty p ic a l use o f the m eth o d  w ould  be the  so lu tion  o f a p rob lem  

possessing a b o u n d a ry  layer whose location  is know n .

4 .2 .3  S tr e tc h e d  c o o r d in a te s

In  th e  m ap p in g  fu n c tio n  approach discussed above, a u n ifo rm  mesh in some 

coord inate  f  was used to  generate a n o n -u n ifo rm  m esh in the spatia l coordi­
n a te  x . T h e  p ro b le m  being  solved was th en  discretised on the  n on -u n ifo rm
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F ig u re  4.2: N o n -lin e a r mesh generated by th e  m ap p in g  fu n c tio n  x ( f )  =

si„ ( f )

mesh in  x.

T h e  use o f stretched coordinates is effectively th e  converse o f th e  m ap p in g  

fu n ctio n  idea. Instead  o f discretising th e  p ro b le m  on a n o n -u n ifo rm  grid  in  x  

th e  o rig ina l d iffe re n tia l equation  is transform ed  (using a fu n c tio n ) to  a new  

coord inate  f . T h e  “s tre tch ing” fu n ctio n  is chosen so th a t  large gradients in  

th e  solution in  th e  x coordinate  are stretched o u t in  the new  coord inate . 
T h is  allows a u n ifo rm  mesh to  be used fo r th e  d iscretisation  o f th e  tra n s ­
form ed equation . C o o rd in a te  stretch ing  th ere fore  avoids th e  d e te rio ra tio n  

in  fo rm a l tru n c a tio n  erro r w hen an equation  is d iscretised on a n o n -u n ifo rm  

sp atia l mesh.

V in o k u r  [55] analyses several types o f one-d im ensional s tretch ing  functions  

fo r use in  F in ite  D ifference calcu lations. T h e  tw o  m a in  types o f functions  

considered are interior and two-sided s tre tch in g  functions. Functions o f 
these types are based respectively on th e  inverse h yperbo lic  sine and ta n ­
gent functions.

T h e  m ain  d isadvantage of stretch ing  functions is th a t  new  term s m ay appear 

in  th e  transform ed  eq uatio n  w hich  m ay need to  b e  considered w hen  choosing 

an a p p ro p ria te  sp a tia l ap p ro x im atio n . For exam p le , B rad do ck  and N oye [4]
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in trod u ce  a general s tre tch ing  fu n c tio n  for th e  so lu tion  o f th e  sim ple heat 
equation

dU  _  D d2jJ 
dt ~  d x 2

T h e  sp atia l co ord in a te  x  was rescaled by th e  tra n s fo rm a tio n  x =  - f f ( i )  such 

th a t  an equispaced m esh in  f  corresponded to  a n o n -u n ifo rm  mesh in x. 
W ith  th is  tra n s fo rm a tio n  th e  eq uatio n  transform s as follows.

dU
dx

d 2U 
d x 2

arr 3 audU dç _  s ì

dç dx Si
d x

dHd^Ud^ _ au a2H d<
d( d(2 dx dç d(2 dx 

dH2
as

(4 .12 )

N o te

T h u s , th e  eq uation  becomes

£ £  = D d ' U -  D (TT'( , \^dU 
dt  ( i î ' ( f ) )2 dç2 H » { ¡ y  { )1 d ç

T h is  is a convection-d iffusion  eq uatio n  w ith  variab le  coefficients. T h e  func­
tio n  H(ç)  is selected so th a t  H'(ç)  is sm all in  regions w here th e  solution  
changes rap id ly . In  solving (4 .2 .3 ) n um erica l d iffusion  m ay be in troduced  

by th e  d iscretisation  o f th e  convective te rm , as discussed in  3 .1 .1 . In  th is  

case th e  so lution  o f th e  transfo rm ed  equation  on a u n ifo rm  mesh m ay  present 
m ore d ifficu lties  th a n  th e  o rig in a l equation . H ow ever, th e  e x tra  w o rk  needed  

to  solve the transfo rm ed  eq uatio n  m ay be com pensated  fo r by th e  im proved
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resolution in the transformed coordinate.

T h e  s itu a tio n  above in vo lv in g  th e  a rb itra ry  tra n s fo rm a tio n  x  =  is
s im ila r to  th a t  o f th e  m ap p in g  fu n c tio n  approach in  th a t  an ap prop ria te  

tra n s fo rm a tio n  m ust be selected p rio r to  solving th e  p ro b lem . T h is  relies 
once again  on sufficient a p r io r i know ledge o f th e  so lu tion  behav iour.
W h ite  [57] considers a so lu tion -dependent coord inate  tran s fo rm atio n  for 

in it ia l/b o u n d a ry -v a lu e  problem s of th e  fo rm

x> *)y* + B (y> x> =  c { y , x , 0

based on th e  so lu tion  arc len g th .

F ro m  in te g ra l calculus th e  arc len g th  o f a fu n ctio n  y (x )  is

Thus

w here subscripts im p ly  p a r t ia l d iffe re n tia tio n . E q u a tio n  (4 .1 3 ) suggests th a t  

arc leng th  is a su itab le  choice fo r a coord inate  tra n s fo rm a tio n  since the  

derivatives x s and  ys are bounded  by 1 regardless o f how  large becomes. 
In  approaches based on arc len g th  the co n trib u tion s  of x  and y to  the  to ta l
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so lu tion  arc len g th  are presum ed to  be ab ou t th e  sam e.

W h ite  considers th e  tra n s fo rm a tio n  fro m  coordinates (x ,t )  to  new  coordi­
nates (s ,T ) w here s is an arc len g th  coord inate  given by

= r ( i + ( i )  T dp/i
w here

■l (  2\  2

-L H ® T *

and

T  = t

0 norm alises th e  th e  to ta l arc len g th  o f the so lu tion  over the sp a tia l in te rva l 
[0,1]. T h is  leads to  a s ligh tly  m ore  general fo rm  o f (4 .1 3 )

a2 _ _2 i „,20 -  x s + ys

T h e  use o f an arc len g th  tra n s fo rm a tio n  in troduces n on lin earities  in to  

th e  existing  equation  to  be solved and augm ents th is  w ith  an e x tra  d iffer­
en tia l equation  w hich  defines th e  arc leng th  tra n s fo rm a tio n  x (s ) back to  the  

o rig in a l coordinates (x ,t ) .  Since th e  solution in  arc len g th  coordinates y(s) 
no longer has large derivatives (as a consequence o f (4 .1 3 )) a u n ifo rm  mesh 

m ay be used to  discretise th e  p ro b lem  in  (s ,T ) coordinates. In  th e  o rig ina l 
(x ,t )  coordinates th e  effect o f th e  tra n s fo rm a tio n  is to  place nodes a t equal 
in tervals  o f arc len g th  along th e  so lu tion  curve and so clustering  nodes in  

regions o f large so lu tion  grad ients. T h e  tra n s fo rm a tio n  therefore  provides  

a u to m a tic  mesh selection. W h ite ’s m eth o d  is an im provem ent on th e  p rev i­
ously described s tre tch ing  fu n c tio n  approach o f N oye in  th a t  th e  choice of

78



fu n c tio n  is based solely on th e  cu rre n t solution values and not on o ther a 
p r io r i in fo rm a tio n  a b o u t the ch arac ter o f th e  so lu tion . T h is  makes W h ite ’s 

m eth o d  p o te n tia lly  very  robust.

O n e  possible d ifficu lty  w ith  th e  arc leng th  approach is th a t  the transfo rm a­
tio n  w ill be less re liab le  i f  a  large change in  th e  d irection  o f th e  solution  

curve occurs over a short d istance. A b lo w  and Schechter [2], in  th e ir  inves­
tig a tio n  o f s tretched coordinates in  the so lu tion  o f b ou n d ary -va lue  problem s  
in  o rd in a ry  d iffe ren tia l equations, a tte m p t to  rem edy th is  s itu a tio n  by in ­
c lud ing  a dependence on th e  an gu lar in c lin a tio n  o f the  so lution  curve in the  

tra n s fo rm a tio n . T h e y  use an a lte rn a tiv e  tra n s fo rm a tio n  t  w hich  is a linear  

co m b in ation  o f b o th  arc len g th  s and angu lar v a ria tio n  ui.

t = s + C

w here  u> is th e  angu lar in c lin a tio n  o f the  solution and C  is a constant length . 
T h e  resu lting  tra n s fo rm a tio n

(1 +  C  | w , |)2 (x f  +  j/t2) =  1 (4.14)

A b lo w  and Schechter show th a t  increasing the  co n trib u tion  o f the  curvatu re  

in  th e  d e fin itio n  o f th e  coord inate  tra n s fo rm a tio n  (by increasing C ) causes 

a re la tive  increase in  tru n c a tio n  erro r in  s tra ig h t regions of the  solution and  

a re la tiv e  decrease in  tru n c a tio n  error in  curved regions. A s in  the  case o f 
W h ite ’s arc len g th  tra n s fo rm a tio n  th is  tran s fo rm atio n  com plicates the  d if­
fe re n tia l system  to  be solved. T h e  choice o f C , how ever, is not obvious and  

m akes th e  im p le m e n ta tio n  less robust.

4 .2 .4  E q u id is tr ib u t io n

In  an eq u id is tr ib u tio n  s tra teg y  th e  grid  points are placed so th a t some pos­
it iv e  w eight fu n c tio n  is eq ually  d is tr ib u te d  over the sp a tia l in te rva l. T h is  

requires th a t  the  fo llow ing  c o n d itio n  holds a t each mesh in te rva l,

j \ d u
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f tu(x)dx =  C (4.15)

w here w (x )  is a chosen w eight fu n c tio n  and  C  is a constant. T h e  discrete  

fo rm  o f (4 .1 5 ) is

h{Wi = C

U sing th is  s tra teg y  th e  mesh spacings w il l  be sm a ll w here w (x ) is large and

vice versa.

T h e  n o n -u n ifo rm  g rid  d is tr ib u tio n  in  x  m a y  be in te rp re te d  as a  tran s fo rm a­
tio n  x ( f ) o f a u n ifo rm  grid  in  som e co o rd in a te  f . I f  successive in teger values 

o f f  are chosen to  define th e  u n ifo rm  grid  th e n  A f  =  1 and hi becomes  

A x / A f  =  x t . E q u a tio n  (4 .15 ) becomes

■ w = C (4 .16 )

T h e  grid  d is tr ib u tio n  resu lting  fro m  such an eq u id is tr ib u tio n  p rin c ip le  m ay  

be in te rp re ted  in  a v a ria tio n a l sense. T w o  possible in te rp re ta tio n s  o f (4 .16 ) 
arise depending on w h eth er w  is a  fu n c tio n  o f x  o r f . I f  w  is a fu n c tio n  o f f  

(th e  p o in ts  them selves) th en  (4 .1 6 ) becomes

X;U>{S)=C
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This is in fact the Euler equation 1 for the minimisation of the integral

f  w ( f )a *dç  (4 .17 )
jo

E q u a tio n  (4 .1 7 ) can b e  visualised as representing  th e  energy o f a system  of 
springs w ith  spring constants tt ;(f) . T h e  e q u id is tr ib u tio n  re la tio n  therefore  

corresponds to  th e  s ta te  o f m in im u m  energy (e q u ilib riu m ) o f th is  spring sys­
te m .

I f  th e  w e ig h t fu n c tio n  in  (4 .1 6 ) is taken  to  be a fu n c tio n  o f x  (th e  p o in t 
lo ca tio ns) th e n  th e  eq uatio n  becomes

x;tt>(x) =  C

T h is  is th e  E u le r eq u a tio n  corresponding to  th e  in teg ra l

f  M x ) x f ]2d f (4 .1 8 )
Jo

T h is  in te g ra l can be in te rp re ted  as th e  least squares m in im isa tio n  of the  

c u m u la tive  grid  spacings weighted by th e  function  w (x ) .  In  th is  case the  

e q u id is tr ib u tio n  p rin c ip le  leads to th e  sm oothest possible grid  d is tr ib u tio n .

'The function z(f) for which the integral f j  F($,x , x t )d;  is an extremum is given by 
the solution to Euler differential equation



B o th  th e  spring analogy and th e  sm oothness approach are va lid  for a p a rtic ­
u la r e q u id is tr ib u tio n  strategy. H ow ever th e  sm oothness approach (invo lv ing  

w (x ) )  is th e  m ost com m only  used since i t  is exp ed ien t to  associate th e  w eight 
fu n c tio n  w ith  some physical p ro p e rty  w hich  varies in  space.

T h e  w eight fu n c tio n  w (x )  is usually  a d irec t fu n c tio n  o f the  so lu tion , for 

exam p le  th e  firs t d e riva tive . T hom pson  [50] ind icates th a t i f  w (x )  is some 

m easure o f th e  so lu tion  error then  eq u id is tr ib u tin g  w (x )  is asym p to tica lly  

o p tim a l and th is  o p tim a l error is stable under p e rtu rb a tio n s  o f th e  grid  dis­
tr ib u tio n . For th is  reason he suggests th a t i t  is unnecessary to  locate  the  

poin ts  w ith  excessive accuracy. T h e  constant in  equation  (4 .15 ) can be de­
te rm in e d  by norm alis ing  the  w eight fu n ctio n  over th e  sp atia l in te rv a l [0 ,1]. 
I f  the sp a tia l in te rv a l is d iv ided  in to  N  m esh in terva ls  then  (4 .15 ) becomes

rzi+i i yi
/  w(x)dx = — I w(x)da
JXi N  Jo

(4 .1 9 )

V arious  choices o f w eight fu n ctio n  are possible. T h e  best choice, how ever, 
is the  tru n c a tio n  erro r its e lf since the  u ltim a te  a im  of the  grid generation  is 

to  e q u id is tr ib u te  th is q u a n tity  over the  sp a tia l d om ain . D avis and F la h e rty  

[14] e q u id is tr ib u te  a w e ig h t fu n ctio n  re la ted  to  the  tru n ca tio n  error o f the  

F in ite  E le m e n t m e th o d  they use. O ne o f the  m a in  disadvantages o f using  

a tru n c a tio n  e rro r es tim ate  as the w eight fu n c tio n  is the  necessity fo r es­
tim a tin g  h igher so lu tion  derivatives. For instance, in  the  m etho d  o f D avis  

and F la h e rty  above, estim ates o f th e  second so lu tion  d erivative  are requ ired  

i f  lin ea r t r ia l  functions are used. I f  cubic tr ia l  functions are used th en  esti­
m ates of th e  fo u rth  so lu tion  deriva tive  are necessary. U sua lly  such estim ates  
are subject to  considerable c o m p u ta tio n a l noise w h ich  renders th e ir  effec­
tiveness questionable.

T h e  a lte rn a tiv e  approach is to  derive w eight functions based on lower deriva ­
tives o f th e  so lu tion . T w o  com m on choices are

w = Ux (4 .2 0 )
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w = y / l  + Ui  (4.21)

T h e  second choice is based on the  arc len g th  o f the so lu tion  curve. W h ite ’s 

m eth o d , discussed in  4 .2 .3  makes use o f a co ord inate  tra n s fo rm atio n  o f the  

fo rm

s =  J  \J l  + yldx /6

w here

8 = L  ^ 1 + y *dx

T h is  tra n s fo rm a tio n  corresponds to  th e  e q u id is tr ib u tio n  re la tio n  (4 .1 9 ) above 

w here th e  w e ig h t fu n c tio n  is w(x)  =  \ / l  +  U%. T h e  approach o f W h ite  can  

therefore  be regarded  as eq u id is tr ib u tio n  o f so lu tion  arc len g th  by transfo r­
m atio n .

E q u id is tr ib u tin g  meshes generated by th e  c r ite r ia  (4 .20 ) and (4 .21 ) above 
are shown in  F igures 4.3 and 4 .4 , respectively.

For the firs t m esh fu n c tio n  the  mesh spacing becomes in fin ite  in  regions 

w here th e  so lu tion  becomes fla t (ux =  0 ) .  T h is  is because the  eq u id is tr i­
b u tio n  p ro b lem , eq uation  (4 .1 5 ), has no u n ique solution w hen  w(x)  —> 0. 
N u m e ric a l d ifficu lties  in  such cases can be overcom e by includ ing  a constant 
regu laris ing  te rm  in  th e  d efin itio n  o f th e  w e ig h t fu n ctio n . Such a te rm  ap­
pears in  the  second w e ig h t fu n c tio n  above. F ig u re  4 .4  shows th a t  as the  

slope o f th e  so lu tion  approaches zero th e  m esh spacing becomes u n ifo rm .

W eig h t fu nctions  such as (4 .2 0 ) and (4 .2 1 ) based solely on the firs t deriva­
tiv e  ten d  to  tre a t so lu tion  e x tre m a  (w here ux =  0 ) in  the  same m anner as
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F ig u re  4.3: E q u id is tr ib u tin g  mesh generated  using the  w eight function  w
U9.

F ig u re  4.4: E q u id is tr ib u tin g  mesh generated using the w eight function  w 
(1 +  ^ 2)1/2.



f la t regions. H ow ever th e  so lu tion  changes ra p id ly  a t such points and the  

re la tiv e ly  large value o f th e  cu rva tu re  w ill augm ent the  tru n c a tio n  error. 
E q u id is tr ib u tio n  based on th e  second d eriva tive  uxx m ay also be used. For  

instance, B lo m  et al. [3] present an ad ap tive  m oving grid  m eth o d  in  w hich  

th e  w e ig h t fu n ctio n  is

w c*+ I Ux (4 .22 )

w here a  (= 1  u sua lly ) regularises the w eight fu n ctio n  in  cases w here Uxx =  0. 
C oyle  e t a l. [ l l ]  also consider w eight functions o f th e  fo rm  (4 .2 2 ) in  w hich  

a  is 0 and 1 .

Just as in  th e  case o f firs t d e riva tive  eq u id is tr ib u tio n , mesh functions based 

solely on th e  second d e riv a tiv e  ten d  to  be biased tow ards concen tra ting  the  

m esh poin ts  a t so lu tion  e x tre m a . A  co m bination  o f th e  tw o types o f ap­
proach is possible i f  th e  fo llow ing  w eight fu n c tio n  is used.

w =  1 +  a
UT.

(1 +  17 *)*
(4 .23 )

T h is  fu n c tio n  causes poin ts  to  be concentrated  near solution ex trem a . R e ­
gions o f zero cu rva tu re  are assigned a u n ifo rm  m esh spacing.

R eca llin g  th e  eq u id is tr ib u tio n  equation  (4 .1 5 ) th e  “equals” could conceiv­
ab ly  be replaced by “less th a n  or equals” . A  m esh generated by th is equation  

w ould  co n s titu te  a sub-equidistributed mesh. T h e  w ork  required  to  ca lcu late  

a su b -equ id is trib u ted  m esh is usually  less th a n  th a t  required  fo r an equidis- 
tr ib u te d  mesh and is usually  as effective even th o ug h  i t  overkills som ew hat. 
F o r exam ple , Sm ooke and K oszykow ski [48] su b-equ id is trib u te  the  difference  

betw een  so lu tion  com ponents and  derivatives using th e  fo llow ing  rep lace­
m ents o f (4 .1 5 ).
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<  6 ' m a x  yi — m in  yt- |

.  i dy{ . dy{
<  7  | m a x  — m in  —— |

dx dx

w here 7  and 8 are sm all and less th a n  1. M ad sen  [32] describes a sub- 
eq u id is tr ib u tin g  m esh s tra teg y  w here th e  w eight fu n c tio n  is chosen to  be a 

w eighted  average o f five d ifferen t functions  o f th e  so lu tion .

4.3 A daptive m eshing

T h e  use o f a single n o n -u n ifo rm  grid  is a p p ro p ria te  only in  the solution of 
problem s w hich  are tim e -in d e p e n d e n t, fo r exam ple , e llip tic  problem s such 

as th e  Laplace eq uatio n , or tim e -d ep en d en t problem s, w here the  regions of 
sp atia l a c tiv ity  in  th e  so lu tion  re m a in  fixed  as tim e  evolves, fo r exam ple , 
P ro b le m  5 o f C h a p te r  2. For p a rab o lic  ty p e  problem s th e  tendency is for 

solutions whose n a tu re  varies strong ly  w ith  tim e . T h is  is ap paren t fro m  the  

exam ple  problem s described in  C h a p te r  2. O nce-o ff g rid  generation is there­
fore o f l i t t le  use and m ay, as in  th e  case o f the  so lu tion  to  P ro b lem  4 above, 
be less effective th a n  th e  u n ifo rm  mesh approach. T h e  need to  m a in ta in  

the  s u ita b ility  o f th e  m esh as th e  p ro b le m  evolves m ust be addressed. Th is  

is the  area o f a d a p tiv e  sp a tia l m eshing. In  p rin c ip le  th e  m ethods o f grid  

generation  o f the last section m ay be used re p ea ted ly  th ro u g h o u t the  tim e  
evo lu tion  o f th e  p ro b lem  ra th e r  th a n  ju s t a t th e  in it ia l stage. A t  any tim e  

in  th e  p ro b lem  evo lu tion  th e  cu rre n t solution m ay  be regarded as the  in it ia l  
conditions for th e  re m a in d e r o f th e  tim e  in teg ra tio n . H ow ever, once the  in te ­
g ra tion  has begun th e  ap p ro x im a te  so lu tion  m ay on ly  be availab le in  discrete  

fo rm  whereas th e  in it ia l  conditions m ay be availab le  in  an a ly tic  fo rm , free  
of errors. T h is  is o f l i t t le  im p o rta n c e  in  g rid  generation  m ethods w h ich  rely  

solely upon in fo rm a tio n  concerning th e  present discrete fo rm  o f th e  solution.

Once a grid  co n fig u ra tion  is a lte red , a need to  transfer in fo rm a tio n  from  
the  old to  th e  new  grids exists. A d a p tiv e  mesh a lgorithm s differ m a in ly  in

r * ' ^ dx
A ,  dx 

/•*.•+! <fy
Jx. dx2 X
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th e  w ay they  approach th is  p ro b lem . T h e  fo llow ing  tw o-w ay  classification o f 
a d ap tive  mesh strategies is possible on th e  basis o f how the  evo lving  solution  

and the  grid  are re la ted .

•  L o c a l  m e s h  r e f in e m e n t .  H ere the sp a tia l mesh adapts  w ith  the  

evolving so lution  in  response to  local so lution  characteristics. T y p i­
cally, the  sp atia l mesh rem ains fixed  fo r in tervals  o f tim e  a fte r w hich  

mesh regeneration  takes place a t d iscrete tim e  levels. T h e  num ber 
o f mesh points is variab le  and, in  p rin c ip le , local m esh refinem ent 
m ethods can resolve a rb itra r ily  sm all scale structures in  th e  evolving  
solution.

•  M e s h  m o v in g  m e th o d s . H ere  th e  sp a tia l mesh adapts  continuously  

w ith  the  evolving so lu tion  in  a m u tu a lly -d e p e n d e n t m an n er. U sually  

a fixed  num ber o f g rid  poin ts  are m oved s im ultaneously so th a t the  

solution is resolved as u n ifo rm ly  as possible over the  sp a tia l dom ain .

In  th e  fo llow ing  section a representative  selection o f b o th  types of adaptive  
mesh techniques are described.

4 .3 .1  L o c a l m e sh  re fin e m en t m e th o d s

In  th is  approach to  ad aptive  gridd ing , steep grad ients in  th e  so lution  are re­
solved by in s e rtin g /d e le tin g  s p a tia l grid  points th ro u g h o u t the  in teg ra tio n . 
T h e  so lution  o f the  p ro b lem  and th e  d e te rm in a tio n  o f the grid  are trea ted  

as separate tasks. T h e  so lution  is m o n ito red  th ro u g h o u t th e  in teg ra tio n  so 

th a t  m esh refinem ent can be im plem en ted  w hen ap prop ria te . W h e n  a re­
finem ent is perfo rm ed, a trans fer o f th e  so lu tion  fro m  th e  old grid  to  the  

new  is carried  out. In  the  case o f some F in ite  E lem en t m ethods w here the  

solution  a t each tim e  level is represented a n a ly tic a lly , fo r exam ple  colloca­
tio n , there  is no p ro b lem  expressing the  so lution  on th e  new  grid . For F in ite  

D ifference m ethods how ever, th e  solution at each tim e  step is only available  

in  discrete fo rm  and thus the  transfer o f in fo rm a tio n  fro m  th e  old grid  to  

the  new  requires in te rp o la tio n . In  such cases th e  in te rp o la tio n  m eth o d  m ust 
be as accurate as th e  sem idiscretisation  so th a t  th e  order of accuracy of the
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sem id iscretisation  tru n c a tio n  erro r is m a in ta in ed .

A  ty p ic a l local mesh re finem ent a lg o rith m  is th a t  o f C hong  [8 ]. T h e  idea  

here is to  locate  th e  position  o f the  shock and track  its m ovem ent ( i f  any) 
d u rin g  the  evo lu tion  o f th e  p ro b lem . B y  considering such stre tch ing  func­
tions C hong  [8], in  his ad ap tive  grid  scheme, chooses a m ap p in g  function  

solely fro m  analysis o f the so lu tion  g rad ien t. T h e  com plete re liance on spe­
cific a p r io r i know ledge o f th e  so lu tion  behaviour is thus avoided. C h o n g ’s 
m eth o d  is how ever res tric ted  to  a ce rta in  class o f problem s th e  solutions o f 
w h ich  satisfy th e  fo llow ing  conditions.

•  T h e re  exists a single b o u n d ary  layer in  th e  sp a tia l in te rv a l a < x < b 
of thickness O (e ).

•  Inside the  layer th e  firs t fo u r derivatives o f the  so lu tion  are

H  =  " - 1- * .........4

O u ts id e  th is  region th e  derivatives are

B y  e s tim atin g  the  position  and  thickness o f the b ou n d ary  layer in  the  so­
lu tio n  a n o n -u n ifo rm  grid  is generated by choosing a m ap p in g  fu n ctio n  ip 
w hich  gives a lin ear tra n s fo rm a tio n  w ith in  the layer

tp =  aex where a  =  0 ( 1 )

H ere  e is the  b o u n d a ry  layer thickness. In  th e  transform ed  coord inate  the  

b o u n d ary  layer is s tretched o u t by a fac to r o f ae. O u ts id e  th is  region the
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m esh is g rad ua lly  increased in  size according to  the fo llow ing  res tric tio n

h i  =  / i , _ i ( l  — K .h i) k  =  0 (1 )

T h is  is th e  id e n tic a l approach as used in  th e  k m etho d  o f th e  previous section  

and guarantees th e  m ain tenance o f second order accuracy fo r sm all values 

o f k . G iven  the res tric tions  im posed in  th e  above lis t, C hong  proves th a t  

a n o n -u n ifo rm  mesh can re ta in  second order accuracy w hen  conventional 
F in ite  D ifferences are used to  sem idiscretise th e  problem .

T h e  a d ap tive  a lg o rith m  begins w ith  e s tim atin g  the bou n d ary  layer position  

and  th ickness. T h is  is done by ite ra tiv e ly  scanning and refin ing  the  in it ia l  
g rid  so th a t  th e  p osition  o f th e  layer is found  accurately. A t  each refinem ent 
th e  so lu tion  is trans ferred  fro m  th e  o ld  g rid  to  th e  new by in te rp o la tio n . T h e  

centre o f th e  layer is taken  as th e  m esh p o in t/in te rv a l corresponding to  the  

m a x im u m  absolute value o f th e  so lu tion  firs t d erivative  Ux. T h e  reciprocal 
o f th is  value is in te rp re te d  as th e  shock thickness.

T h e  a d ap tive  g rid  s tra teg y  m o n ito rs  the  so lution  th ro u g h o u t its  evo lu tion  

in  tim e  so th a t  th e  p osition  and  th ickness o f the  shock are alw ays know n. 
Based on heuris tic  approaches th e  a p p ro p ria te  tim es a t w h ich  th e  mesh 

should be refined  are d e te rm in ed . U su a lly  th is  is done w hen  th e  shock po­
s ition  has a lte red  by a p re fixed  am o u n t. D e te rm in in g  a new  grid  is done in  

th e  same w ay as for th e  in it ia l conditions. Ite ra tio n  how ever, is not neces­
sary since th e  new  and  old grids w ill  n o t be very d ifferen t i f  th e  shock is 

n o t allow ed to  p ro pag ate  too  fa r  betw een successive refinem ents. Follow ing  

a grid  re fin em en t, the  transfer o f th e  so lution  to  th e  new  grid  is perform ed  

using in te rp o la tio n . C hong  finds cubic splines to  be q u ite  effective since 

th ey  are second order accurate  and  therefore  m atch  the  accuracy o f con­
ven tio n a l F in ite  D ifferences. H e  reports  th a t the  e x tra  C P U  tim e  necessary 

to  solve th e  tr id ia g o n a l lin ea r system , associated w ith  the  cubic spline cal­
cu la tio n , is n o t a s ign ificant p a r t  o f th e  overall C P U  usage for the a lg o rith m .

C h o n g ’s approach , how ever, appears to  dw ell very  m uch on heuristics. For 

ins tance , he suggests th a t th e  va riab le  m esh can be m ade less sensitive to  

sm all shifts in  th e  centre o f th e  shock by p lacing  50 mesh in tervals  o f m in i­
m u m  size (defined  by th e  m esh size a t th e  centre o f th e  shock) in  the regions

89



ad jacen t to  the  shock centre. For p roblem s w ith  m oving  shocks th is algo­
r i th m  m ig h t therefore  prove ineffic ien t. Indeed  C hong appears to  an tic ip a te  

such d ifficu lties  an d , for problem s in vo lv in g  ra p id ly  p ropagating  shocks over 

long tim e  in terva ls , he recom m ends a p re lim in a ry  tra n s fo rm atio n  o f the  

eq uatio n  to  a new  coord inate  w here th e  shock m o tion  is frozen  or slowed 

dow n. Such a tra n s fo rm a tio n  can o n ly  be effected w hen sufficient a p rio ri 
know ledge o f th e  shock tra je c to ry  is ava ilab le  (usually  fro m  an inviscid anal­
ysis). C hong  a tte m p ts  such a tra n s fo rm a tio n  fo r B urgers ’ equation  b u t only  

succeeds in  slow ing down the  shock in  th e  transform ed coordinate .

T h e  approaches o f W h ite  [57] and A b lo w  and Schechter [2] involve so lu tion- 
dependent coord inate  transfo rm ation s . T h e  tw o approaches are s im ila r in  

th a t  th ey  b o th  in trod u ce  n on lin earities  in to  o rig in a lly  linear equations. H ow ­
ever, a p rio ri know ledge o f the so lu tion  b ehav io ur is n o t needed and no re­
s tric tions  on th e  fo rm  o f th e  so lution  ap p ly  as in  the case o f C ho n g ’s m ap p in g  

fu n c tio n  approach. In  fa c t, W h ite  criticises C h o n g ’s m etho d  on th e  basis 

th a t  th e  restric tions  im posed on th e  so lu tion  by the  la t te r  are n o t generally  

satisfied by classical b ou n d ary  layers. W h ite ’s m etho d  is restric ted  to  firs t 
order P D E  systems and p arab o lic  equations m ust therefore  be expressed 

as an equivalen t firs t o rder system . E xpressing B urgers ’ equation  in  such 

a fo rm  and ap p ly in g  K e lle r ’s box scheme [28], W h ite  dem onstrates effec­
tiv e  results fo r p arab o lic  ty p e  problem s. T h e  m a in  d isadvantage o f W h ite ’s 

m eth o d  is th a t  a parab o lic  p ro b lem  is reduced (on sem idiscretisation) to  a 

system  o f d iffe re n tia l algebraic equations D A E s . T h is  class o f p ro b lem  is 

sign ifican tly  m ore d ifficu lt to  solve th a n  th e  O D E  problem s resu lting  fro m  

m ore conventional d iscretisations.

W h ite  [57] derives a m ore general a d ap tive  mesh s trategy using a tran s fo r­
m a tio n  w hich  eq u id is tribu tes  th e  arc leng th  o f the  solution. T h e  num ber o f 
grid  points  is constant and th e  so lu tion  is d e term ined  on a u n ifo rm  grid  in 

arc leng th  coordinates. Sm ooke and K oszykow ski [48] construct an ad aptive  

stra teg y  by s u b -eq u id is trib u tin g  a pos itive  w eight fu n ctio n  o f the fo rm

rx‘+1 dU
/  ——dx <  d max U{ — m in i/,- (4 .24 )J z; d,x
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w here 7  and d are sm all and less th a n  1 and th e  m a x im u m  and m in im u m  

values are obta in ed  by sorting the  cu rren t so lu tion . T h e  n um erica l solution  

is p erfo rm ed  on the  resulting  n o n -u n ifo rm  grid  in  x. One p ro b lem  w ith  th is  

e q u id is tr ib u tio n  s tra tegy  is th a t  i t  m ay lead to  non-sm ooth  mesh configura­
tions. T h is  is rem edied  by bound ing  th e  ra t io  o f ad jacent mesh spacings as 

follows

i = 1 ,2 , . . .  , N  (4 .26 )
A hi- 1

w here A  > 1.

T h e  m esh is refined  by req u irin g  th a t  (4 .2 4 ), (4 .25 ) and (4 .26 ) are satisfied. 
In  in terva ls  w here  these equations are n o t satisfied, a new  m esh p o in t is 

added. As in  th e  m etho d  o f C hong , in te rp o la tio n  is used to  generate the  

so lu tion  on th e  new  mesh. Sm ooke how ever, uses linear in te rp o la tio n  and  

notices a degeneration  in  th e  s p a tia l tru n c a tio n  e rror. A  novel approach  

used here how ever, is th a t th e  n um ber o f mesh points m ay be kep t constant 
d u rin g  a re fin em en t. In  such cases th e  new  grid  is obta ined  by e x tra p o la tin g  

th e  ex is tin g  grid  to  the  next tim e  step. T h is  has an advantage i f  im p lic it  

t im e  s tepping is used since a Jacobian  rééva lua tio n  m ay n o t be necessary 

a fte r such a step i f  th e  num ber o f mesh poin ts  rem ains the same. A  com m on  

p ro b lem  w ith  grid  e x tra p o la tio n  is th a t  th e  mesh m ay becom e entangled. 
In  th is  case Sm ooke sim ply reorders th e  new  grid  poin ts consecutively.
In  the approach used by D avis  and F la h e rty  [14], the mesh equation  and  
P D E  are n o t solved sim ultaneously. T h e y  feel th a t the  e x tra  co m plex ity  

invo lved  in  in tro d u c in g  a grid  equation  is not ju s tifie d . T h e y  use a G a le rk in  

F in ite  E le m e n t m eth o d  w ith  tra p e zo id a l space-tim e elem ents. F in ite  E le ­
m ents are used because in  general th ey  are m ore accurate th a n  F in ite  D if ­
ferences in  th e  case o f n o n -u n ifo rm  grids.

T h e  ad ap tive  mesh a lg o rith m  a tte m p ts  to  place points in  an o p tim a l loca­
tion  and keep th e ir  positions o p tim a l d urin g  the  in teg ra tio n . T h e  crite rion  

for choosing th e  g rid  is the m in im is a tio n  o f th e  L2 norm  o f the  tru n c a tio n



error of the Finite Element method. This corresponds to equidistributing

U:1+1 ^  * t  +  l (4 .2 7 )

w here I is the degree o f th e  p a rtic u la r  p o ly n o m ia l t r ia l  functions being used. 
U sing F in ite  D ifference estim ates o f th e  h igher so lu tion  derivatives th e  mesh  

is req u ired  to  satisfy several d iffe ren tia l re lations. T h e  associated equations  

are solved ite ra tiv e ly  since th ey  are n o n lin ear. T h e  resu lting  g rid  m ay  be 

e x tra p o la te d  to  fu tu re  tim e  steps and D av is  and F la h e rty  fin d  th a t zero- 
order e x tra p o la tio n  w orks w ell.

T h e  m a in  advantage o f th e ir  approach is th a t  th e  com m on problem s e x p e ri­
enced w ith  th e  M o v in g  F in ite  E lem en t m eth o d  (to  be discussed in  th e  next 
section) are a lle v ia te d , nam ely

•  C o m p u ta tio n  m ay proceed on a n o n -o p tim a l mesh.

•  T h e  g rid  d is tr ib u tio n  produced by th e  above equations does n o t suffer 

fro m  mesh en tang lem ent.

4.3.2 Mesh moving methods
In  these m ethods a fixed  num ber o f mesh points  are re d is trib u te d  in  order 

to  resolve and fo llow  evo lv ing  gradients in  the  so lution . T h e  d istingu ish ing  

fea tu re  o f q uas i-L ag ran g ian  m ethods is th e  tre a tm e n t o f the mesh locations  

as e x tra  unknow ns in  th e  problem .

C onsider the  sem id iscretisation  o f a p a ra b o lic /h y p e rb o lic  P D E  resu lting  in  

the  fo llow ing  system  o f O D E s .
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R egard ing  th e  m esh p o in ts  x , as tim e  dependent q uan tities  means th a t tem ­
p o ra l changes occur due to  th e  equations (4 .2 8 ) and also due to  th e  m ove­
m en t o f th e  g rid . W h e n  th e  la t te r  is taken  in to  account th e  governing  

equations becom e

(4 .2 9 )

w here the subscripts have been dropped .

T h e  second te rm  above involves th e  grid speed xt and th is  is p rovided by 

solving an a p p ro p ria te  equation  m o d e llin g  th e  g rid  m o tion . T h e  use o f an 

equation  fo r the  g rid , how ever, fu rth e r augm ents th e  o rig ina l P D E  system  

by one.

T h e  various m ethods o f m esh m oving a lgorithm s are distinguished p r im a r ily  

in  th e  w ay th e y  derive  th e  mesh equations. D o rfi and D ru ry  [16] describe a 

m oving mesh m eth o d  w h ich  alters the grid  d is tr ib u tio n  so th a t th e  so lution  

arc len g th  is eq u id is tr ib u te d  over the sp a tia l in te rv a l. T h e ir  g rid  equation  is

r] oc R (4.30)

w here Z  is some m easure o f th e  reso lution  of th e  solution and rj is th e  grid  

p o in t co ncen tra tion . T h e  solution arc length  is chosen as th e  m easure o f 
reso lu tion  giving

i «  f +  ( | ) !

To avoid excessive g rid  d is to rtio n  the  cond ition

dUi
- w  = f + u *x>
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a h,j 1 +  a
1  +  OL h i  — 1  Q !

is im posed w here a  is some constant w h ich  can be described as th e  grid  

rigidity. T h is  c o n d itio n  is in co rp o ra ted  in to  th e  grid  equation  by sp a tia lly  

sm ooth ing  th e  r ig h t h an d  side o f (4 .30 ) as follows

T h is  results even tu a lly  in  th e  grid  eq uatio n

m -1 _  m_ 
Hi- i  Hi

C oyle et a l. [11] analyse several m esh eq u id is tr ib u tio n  strategies fo r tim e -  

dependent P D E s . T h e  approach used here is to  construct a mesh m oving  

equation  w h ich , w hen  discretised , yields a system  o f O D E s  fo r the mesh 

velocities. T h e  m esh eq u a tio n  and P D E (s )  m ay  be solved sim ultaneously at 
each tim e  step or m esh configurations , generated  a t a previous tim e  level, 
m ay be e x tra p o la te d  to  a la te r  tim e . M ad sen  [32] derives a variab le  mesh  

stra tegy  su itab le  fo r e x p lic it t im e  in te g ra tio n  schemes. T h e  key p o in t here is 

th a t  a certa in  m in im u m  m esh spacing m ust be m a in ta in e d  since th e  s ta b ility  

in  tim e  depends on th is  q u a n tity . M ad sen  develops a grid  equation  based 
on a “mesh fu n c tio n ,” m .

dhi dxi+i dxi .*

—-— - —  -------------—  =  M  — m rdt dt dt

w here hi is th e  i th- m esh spacing and  M  =  m 3 / N  is th e  average value  

o f the  mesh fu n c tio n  over th e  en tire  mesh.
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V arious choices o f mesh fu n ctio n  are possible and  M ad sen  describes a sub- 
eq u id is tr ib u tin g  m esh s tra tegy  w here the  m esh fu n c tio n  is chosen to  be a 

w eighted  average o f five d ifferent functions.

m \  = | fh ~ fib. |t /T i

m ‘2 = | Ui+ 1 -  Ui 1 /T2

m ’3 = 1 (Ux)i+ 1 - [Ux)i | / T s

m \  = 1 K i+ 1 -  Ki 1 /T a

„ t  _m 5 — | ®t +  l  | / T b

H ere , fh  and  f ih  316 estim ates o f th e  P D E  rig h t hand  side fo r the  present 
m esh, and fo r one w h ich  is tw ice as coarse. T h e  Ki  are estim ates o f the  

so lu tion  cu rva tu re  and T \ ,T 2, etc. norm alise th e  in d iv id u a l m esh fu n ctio n  

values.
R a th e r th a n  im p le m e n t a fu ll eq u id is tr ib u tio n  stra tegy , M adsen  opts for 

su b-eq u id is trib u tin g  the  m esh fu n ctio n  on th e  grounds th a t m uch the  same 

effectiveness is achieved w ith  less expense. H e  presents an effective m ethod  

o f contro lling  th e  m in im u m  mesh separation  by a lte rin g  th e  value o f the  

m esh fu n ctio n  at those mesh points w hich  are in  danger o f becom ing c r it ­
ica lly  close so th a t  th ey  no longer have a tendency to  m ove. T h e  excess 

value of the  m esh fu n c tio n  thus rem oved is th en  re d is trib u te d  over the  other 

m esh poin ts  in  p ro p o rtio n  to  th e ir separation  in  excess o f th e  m in im u m . H e  

considers the  overa ll a lg o rith m  to  be robust and  n o n -s tiff in  n a tu re .

M oving F in ite  E lem ents

These m ethods are ac tu a lly  the  same as th e  m esh m oving  m ethods o f the  

las t section. H ow ever, the  notion  o f coupling  th e  grid  w ith  th e  equation  

being  solved is developed even fu rth e r .
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R a th e r th an  solving th e  p ro b lem  w ith  s tan d ard  m etho d s  o f d iscretisation  

and augm enting  the  P D E  system  w ith  th e  grid  e q u a tio n , th e  M o v in g  F in ite  

E lem en t (M F E )  m e th o d  utilises a m etho d  o f so lu tion  w h ich  tre a ts  the mesh 

locations, and also th e  solution a t these locations, as th e  unknow ns to  be 

d eterm ined . For th is  reason the M F E  m e th o d  does n o t share the p ro p er­
ties o f o th er m oving  g rid  m ethods and thus a separate  descrip tion  is ju s tifie d .

T h e  m etho d  was in trod u ced  by M ille r  and M il le r  [36] and  fu rth e r  im proved  

by M ille r  [35]. I t  was then  extended to  one-d im ensiona l P D E  systems by  

G elinas, Dos and M il le r  [23]. For the scalar ev o lu tio n a ry  P D E

Ut -  L(U) = 0

the  s tandard  approach is to  use the sem idiscrete G a le rk in  or o th er F in ite  

E lem en t m etho d  to  produce the  approx im ate  so lu tion

N + 1

V0M ) =  53 (4-31)
t=i

T h e  a, represent th e  am p litudes  of the tr ia l functions  a,- a t th e  fixed nodes 

o f the  grid . In  th e  M F E  m eth o d  the  nodal positions, denoted  for exam ple  

by Si, are allow ed to  be tim e  dependent in  th e  sam e w ay as th e  n odal am ­
p litudes , a,-. Thu s  (4 .3 1 ) becomes

N + 1

U(M ) =  5 3  (4-32)
t= l

T h e  m ethod  is u sually  associated w ith  piecewise lin ear tr ia l  functions since 

they  are th e  m ost basic fo rm  o f elem ents and are s im ple  to  im p lem en t. 
D e te rm in a tio n  of th e  2 ( N + l )  unknow ns (a ;, i =  1 , 2 , . . . ,  i V + l )  is achieved  

by m in im is in g  th e  L2 n o rm  o f the residual

96



Vt -  L{v) IIl 2

w ith  respect to  th e  tim e  d eriva tive  o f the  p aram eters  a , , s,-. Th is  gives tw o  

v a ria tio n a l equations fo r th e  a  and  /?.

< vt — L(y), a,- > =  0

<  vt -  L(v),/3i > =  0

T h is  corresponds to  2 ( N + l )  equations for th e  n od a l unknow ns and posi­
tions and they are called  the  M o v in g  F in ite  E le m e n t equations. W ritin g  

these equations in  O D E  fo rm  gives

M v)y  = 9(y) (4-33)

N o te  th e  difference betw een th e  fo rm  o f (4 .3 3 ) and  the corresponding O D E  

system  obta ined  by ap p ly in g  the  classical m etho d  o f lines. See section 3 .1 .1 . 
M ille r  and M ille r  [36] noticed  th a t th e  p a ram eterisa tio n  becam e degenerate  

in  some cases ie. th e  fa becam e dependent on th e  a,-. To  rem ove degener­
acy th ey  in trod u ced  in te rn o d a l viscosities in to  th e  p a ram eterisa tio n . M ille r  

[35] fu r th e r  in trod u ced  in te rn o d a l spring functions w hich  becam e in fin ite ly  

s tiff as th e  nodes ten d ed  tow ards a m in im u m  perm issib le  separation . T h is  

rem oved problem s associated w ith  grid  en tang lem ent w h ich  the  m ethod  had  
been know n to  possess. T h e  m e th o d  generally has been criticised for its stiff­
ness and its  fa ilu re  in  circum stances w here the  m esh becomes n on -o p tim a l. 
T h e  m eth o d  o f D av is  and F la h e rty  [14], discussed in  th e  last section, was 

m o tiv a te d  by such problem s w ith  the  M F E  m etho d . For an o utline  o f the  

various im provem ents possible over the  s tan d ard  approach see M ille r  [34],
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The basic characteristics of MFE methods axe

•  T h e  n um ber o f nodes is constant.

•  N odes are n o t connected  w ith  a  p a rtic u la r  so lu tion  p ro p e rty  as in  the  

o th er mesh m o vin g  m ethods.

•  T h e  new  g rid  coord inates  and th e  solution are ca lcu lated  s im ultane­
ously.

G iven  th e  e x tra  e ifo rt needed in  order to  regularise th e  p aram eterisa tio n  and  

p reven t m esh e n tan g lem en t, th e  M o v in g  F in ite  E lem en t m eth o d  succeeds in  

p lac ing  th e  nodes effectively . W a th e n  and B aines [56] have analysed the  

s tru c tu re  o f th e  M o v in g  F in ite  E le m e n t m a tr ix  A  in  (4 .3 3 ) and they  d e ta il 
effic ient m ethods fo r  c a lc u la tin g  its  inverse for various types o f problem s.
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C hapter 5

C h o i c e  o f  A l g o r i t h m s  a n d  

T h e i r  I m p l e m e n t a t i o n

In  th is chapter th ree  ad ap tive  m esh a lg o rith m s are stud ied  in  d e ta il w ith  

em phasis g iven to  th e ir  im p le m e n ta tio n  strategies. These a lgorithm s shall 
be fu lly  im p lem en ted  in  C h a p te r  6  (to  fo llo w ) w here th e ir  effectiveness in  

th e  so lu tion  o f p a rab o lic  p rob lem s w ill  be exam ined .

T h e  choice o f an effective a d ap tive  m esh a lg o rith m  is som ew hat com­
p lica ted  by th e  g reat d ive rs ity  o f approaches used in  such m ethods. In  the  

case o f p arab o lic  problem s, how ever, ad ap tive  sp a tia l m eshing strategies are 
like ly  to  be used in  co n junction  w ith  existing  te m p o ra l in teg ra tio n  m ethods. 
Thu s  i t  is n a tu ra l to  expect good a d ap tive  m eshing softw are to  possess the  

acknow ledged qualities  o f good O D E  in tegrators .

For p arab o lic  prob lem s in  p a rtic u la r , the  fo llow ing  c r ite r ia  are regarded  

as necessary s tandards fo r h igh  q u a lity  softw are.

1. V ersatility .

2. R obustness.

3. Efficiency.

T h e  firs t c rite rio n  is im p o rta n t because of th e  exis ting  va rie ty  o f p arab o lic - 
typ e  problem s. A  successful code w ill  have to  cope w ith  m any d ifferent

99



p ro b lem  situations. T h is  req u irem en t affects considerab ly th e  choice of su it­
able ad ap tive  mesh a lg o rith m s. In  th e  last ch apter i t  was seen th a t  m any  

such a lgorithm s requ ire  some fo rm  o f “tu n in g ” to  th e  p ro b lem  s itu a tio n  at 
h and . T h is  is c learly  in  conflict w ith  the  need fo r general ap p licab ility . A  

like ly  choice o f a lg o rith m  w ill there fore  requ ire  a m in im a l am o u nt o f such 

problem -specific  in fo rm atio n .

T h e  second c rite rio n  determ ines  to  a large degree how  p o p u la r the  code 

w ill be am ong users. N o  m a tte r  how  advanced a p a rtic u la r  a lg o rith m  m ay  

b e, i f  i t  is n o t im plem en ted  ro b ustly  then  i t  w ill not be w id e ly  accepted  
am ong the  user com m unity . In  p ro b lem atic  s ituations, therefore , th e  code 

m ust avert the possib ility  o f fa ilu re . U sua lly  robustness can be im proved  
by ap p ly in g  heuris tic  approaches. For instance, in  the o rig in a l B D F  code 

o f G ear [21,22], a lte ra tio n  o f th e  step size and order were d isab led  fo r sev­
era l steps fo llow ing th e  last a lte ra tio n , so th a t th e  possib ility  o f an error 

b u ild u p  was avoided. In  the  ad ap tive  mesh a lgorithm s o f C h a p te r 4 some 

w ere in h eren tly  robust w hereas others  requ ired  ad ju s tm en t. A g a in  th e  need 

fo r tu n in g  usually conflicts w ith  th e  req u irem ent for robustness. How ever, 
tu n in g  param eters  do arise w h ich  on ly  effect the efficiency o f th e  im plem en­
ta t io n .

T h e  th ird  c rite rio n , efficiency, is also o f im po rtan ce  to  th e  success o f an 

a lg o rith m . T h is  is especially tru e  in  the  case o f ad ap tive  mesh a lgorithm s  

since th e  w hole p o in t o f em ploying  such m ethods is to  im prove th e  accu­
racy of solutions and reduce th e  co m p uter tim e  requ ired  to  produce them . 
A n  ad ap tive  mesh a lg o rith m  should be m uch m ore efficient th a n  its non- 
ad ap tive  counterparts . I t  is n o t always obvious, how ever, i f  th is  is in  fact 
th e  case. For exam ple , C h o n g ’s approach [8 ] has been critic ised  fo r being  

very expensive to  im p lem en t. A lso  in some strategies based on tran s fo rm a­
tio n , fo r exam ple th e  tra n s fo rm a tio n  suggested by B raddock and N oye [4] 
in  C h a p te r 4 section 4 .2 .3 , the  transfo rm ed  equation  m ay be m ore costly to  

solve th a n  the o rig ina l p ro b lem .

C onsidering the  m an y  a lg o rith m s a t our disposal described in  C h a p te r 4, 
tw o  such a lgorithm s have been selected w h ich  represent effective approaches 

to w ard  adaptive  m eshing. T h e  selected a lgorithm s are also q u ite  d ifferent 
fro m  each other and thus a com parison betw een tw o  d is tin c t ad ap tive  mesh 

strategies is possible.
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T h e  s u ita b ility  o f each a lg o rith m  fo r in co rp o ra tio n  in to  ex isting  softw are  

fo r p arab o lic  problem s depends on how  w ell c r ite r ia  1, 2 and 3 are m e t. In  

th e  fo llow ing  chapter, the  re la tiv e  m erits  a n d /o r  deficiencies o f each algo­
r ith m , w ith  respect to  the above c rite r ia , w ill be exam ined.

T h e  chosen a lgorithm s are as follows.

•  M e t h o d  o f  V e r w e r  e t  a l .  [53] (based upon  an approach used by 

D o rfi and D ru ry  [16]).
T h is  is a conventional m oving  m esh approach w here an eq u a tio n  gov­
ern ing  the grid  m o tion  is coupled w ith  th e  orig ina l p a r t ia l d iffe re n tia l 
equation . T h e  “g rid” equation  is based on a sp atia l e q u id is tr ib u tio n  

princ ip le . In  a d d itio n , sp a tia l and te m p o ra l sm ooth ing  is ap p lied  to  

the  grid  m otion  w hich results in  b e tte r  contro l over th e  nodes and 

favourab le  consequences fo r th e  te m p o ra l in teg ra tio n . T h e  m etho d  

can be easily in co rp o ra ted  in to  a s tan d ard  “m etho d  of lines” approach .

•  T h e  M o v in g  F in i t e  E le m e n t  m e t h o d  o f  M i l l e r  [36,35],
T h is  is a version of the m oving mesh m eth o d  in w hich  th e  grid  po­
sitions and solution are unknow ns in  th e  F in ite  E lem en t fo rm u la tio n . 
T h e  mesh m ovem ent is guided so th a t sp a tia l reso lution  o f th e  so lu tion  

is m a in ta in e d . Thus the nodes are n o t connected w ith  a p a rtic u la r  so­
lu tio n  p ro p erty  as in  th e  o th er m oving  m esh m ethods. T h e  o rig inal 
m eth o d  has been critic ised for its  stiffness and its fa ilu re  in  c ircum ­
stances w here th e  grid  becomes n o n -o p tim a l. H ow ever, th e  use o f 
so-called “p e n a lty ” functions (M ille r  [34]) g reatly  enhances the  p erfo r­
m ance o f the  m etho d . As in  the last m e th o d  the M o v in g  F in ite  E le ­
m en t m etho d  is easily in co rp o ra ted  in to  a “m etho d  of lines” approach.

In  the  fo llow ing  sections each a lg o rith m  is derived fu lly  and th e ir  im p le ­
m e n ta tio n  deta ils  discussed in d e ta il.

5.1 M ethod of Verwer et al.

T h is  is a m esh m oving  approach w here  the orig ina l P D E  is expressed in  

L ag ran g ian  fo rm  and is fu rth e r  augm ented  by a “grid” equation .
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For the PDE

^  =  / ( u )  0 <  a; <  1 f >  0 (5 .1 )
at

C onsider a tra n s fo rm a tio n  fro m  coord inates (x ,t )  to  new  coordinates  

(s ,t) . T e m p o ra l changes in  u now  occur due to  th e  d iffe ren tia l o p e ra to r f(u )  

and the m o tion  o f the  grid.

du(s, t)  _  du(x , t)  du(x, t)  dx(t)
dt  dt dx  dt

=  /(u )  +  £ i M M )  ( 5 .2 )
dt ‘ dx  dt  v ’

T h e  te rm  d x ( t ) /d t  appearing  in  th e  L ag ran g ian  fo rm  (5 .2 ) is te rm ed  

th e  grid  speed. T h e  grid  and  so lu tion  evolves continuously w ith  th e  mesh  

m ovem ent being coupled to  th e  so lu tion  v ia  th e  grid  speed te rm  in  (5 .2 ). 
Furn ish in g  th is  te rm  is achieved by solving an  ap p ro p ria te  eq uatio n  fo r the  

grid  m o tio n . T h e  o rig ina l P D E  (5 .1 ) therefore  becomes m ore co m plicated  

itse lf and m ust also be solved to g eth er w ith  th e  equation  fo r th e  grid .

V erw er et al. [53] use a g rid  eq uatio n  derived  by D o rfi and D ru ry  [16], 
based on sp atia l e q u id is tr ib u tio n . T h e  fo rm  o f th e  equation  is due to  D orfi 
and D ru ry  [16]. B asically  th e  eq uatio n  consists o f a p ro p o rtio n a lity  betw een  

measures o f achieved and  desired reso lu tion  o f the  solution. A s a m easure  

o f achieved reso lu tion  the p o in t co ncen tra tio n  suffices. For a general non- 
u n ifo rm  grid

rijy- : 0 =  xo < xi <£2  < .. . < xn  =  1

on th e  s p a tia l in te rv a l x G [0 , 1] th e  p o in t concen tra tion  is defined as

rii = -------------------  0 <  i < N  — 1
®i+1 ®t

T h e  m easure o f reso lu tion , R , is chosen to  be th e  solution arc leng th  as 

in  W h ite ’s approach . T h is  is a p p ro x im a te d  by
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Ri =  \ / l +  ( " - j " ) 8 0 < t < iV — 1 (5.3)

Thu s  th e  basic grid  equation  becomes

n, a  i2, 0 <  i  <  N  — 1 (5 -4 )

E lim in a tin g  th e  p ro p o rtio n a lity  constant gives

! ± ±  =  j £ ± i  1 <  i  <  N  -  1 (5 .5 )
Ri-1 -Rt+i

A s was noted  in  section 4 .2 .4  in  C h a p te r  4, meshes generated using such
an e q u id is tr ib u tio n  equation  requ ire  rég u larisa tion  in  order to  be effective.
T h is  achieved in  th is  case by ap p ly in g  b o th  sp a tia l and tem p o ra l sm ooth ing  

to  th e  basic grid  eq uatio n  (5 .5 ).

5 .1 .1  S p a t ia l  s m o o th in g  te c h n iq u e

S p a tia l sm ooth ing  is achieved by res tric tin g  changes in  the local grid  spacing
req u irin g

a nv_i a +  1
<  - i - i  <  ---------  1 < i < N  — 1

a  +  1 n,- a

w here a  is a “g rid  r ig id ity ” p a ra m e ter. For instance, i f  a  =  1 then the rel­
a tive  increase/decrease in  g rid  p o in t concen tra tion  over two ad jacen t mesh 

in tervals  is a t  m ost a fac to r o f 2. T h is  res tric tio n  is s im ilar to  th a t derived  

in  section 4 .2 .1  in  o rder to  preserve second order accuracy using s tandard  

F in ite  D ifferences on a n o n -u n ifo rm  grid .

A t  p o in ts  o f th e  m esh successively d is ta n t fro m  the  p o in t Xi th e  p o in t 
concentrations are as follows

a  \ 2 /  a  \  / a + l \  / a + l x2
I -i / i -t I * J * ? \ I * ? Ia + 1  /  \ a  +  l /  V a /  \  ct

flj , I I , Mj , I I M, , I I n
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Thus in eq uatio n  (5 .4 ) , n , can be rep laced  by its  s p a tia lly  sm oothed  
value giving

Rj  (5-6)

T h is  sm ooth ing  “kern e l” is th e  G re e n ’s fu n c tio n  associated w ith  th e  cen­
t r a l difference o p era to r

1 — a (a  +  l)52

T h is  allows th e  le ft hand  side o f (5 .6 ) to  be rep laced  by cen tra l differences  
sis follows.

hi =  nt- -  a (a  +  l)(n ,+ i -  2«,• +  n,_i) oc Ri 1 < t < N  -  2 (5 .7 )

For th e  boundaries , “zero concen tra tion  g rad ien t” conditions are chosen,
nam ely

no =  n i  (5 .8 )

nj>r =  ripf-i (5 .9 )

and fo r th e  firs t and  last nodes, respectively, (5 .7 ) becomes

ho =  no — Oi(a + l)(ni — no) oc Rf 

ftN-i — k n  ~  “ (« +  l)(«Ar-2 — ” jv-i) oc Ri

U sing these s p a tia lly  sm oothed values o f the  p o in t concentrations means  

th a t  the  grid  eq uatio n  (5 .5 ) becomes

«<-1 fii
K - r i  <5 io >

Since n , - i  and  n t- ap pear s im ultaneously  in  (5 .1 0 ) th e n  its  corresponding  

difference rep lacem ent w il l  be  five -p o in t in  space.

T h e  m a tr ix  associated w ith  th e  above sm ooth ing  o f th e  p o in t concentra­
tio n  is given by

R n  =  n  (5 .11 )
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w here n =  [no, n i , . . .  , n /v - i ] T and n =  [no, n i , . . . ,  n jv - i ] r .

R  is sym m etric  and  positive  defin ite  and so th e  n,- are un iquely  d e te r­
m ined  by

n  =  R - 1 n  (5 .1 2 )

T h e  sp a tia l g rid  sm ooth ing  involves solving (5 .1 2 ) for th e  p o in t con­
centra tions  n,-. T h e  sm ooth ing  procedure given by (5 .7 ) is a second order 

nonhom ogeneous lin e a r difference equation . T h e  a u x ilia ry  equation  fo r th e  

associated hom ogeneous p rob lem  is (le ttin g  n t- =  r ‘)

r* -  a(a  +  l ) ( r ’+1 -  2r* +  r*'“ 1) =  0 

r -  a ( a  +  l ) ( r 2 — 2r +  1) =  0

r 2 ( —a ( a  +  1) )  +  r ( l  +  2a(a  +  1) )  — a ( a  +  1 ) =  0

Solving th is  q u a d ra tic  equation  fo r r  gives

- 1  -  2c c (a +  1) ±  2a  +  1
r  =

—2a(a  +  1)

a a +  1
r  =   ± -----------

a +  1 a
B y  th e  p rin c ip le  o f superposition  fo r lin ea r equations a general so lution  

to  th e  hom ogeneous p ro b lem  is given by

* h a m . =  M \ — l )  +  0 < i  < N  — 1 (5 .1 3 )

A  p a rtic u la r  so lution  o f the  homogeneous eq uatio n  is

1 a  \ M I „  .
n,- = -------------  V  ( -------------) n~ 0 < i < N

tpaT 1 +  2a  “  +  1 /j=i

T h e  general so lu tion  to  (5 .7 ) is therefore  th e  sum  o f the  general and  

p a rtic u la r  solutions (5 .1 3 ) and (5 .1 .1 ).

f  a  V  , f a  + I N ’" 1 ^  f  a  \  ^  _ n
rii = A i \ -------------- ) +  A i  I  ) = —  y ( -------- -- ) n,- 0 <  i < N  -

\ a  +  1 /  Â \  a J l  + 2a f ^ K a  + l J  2 ~ ~
(B.14)
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T h e  constants A i  and A 2 are d e term ined  by th e  bou n d ary  conditions  

given in  (5 .8 ) and (5 .9 ). N eg lec tin g  the boundaries (5 .1 4 ) becomes

1 i  a. \
rn = ------------ V    hi  0 <  i  < N  -  1

1 +  2 a  “  V < *+  1 /  J "
3 = 1

T h e  expression
a

, a  + 1
is the  “sm o o th in g  ke rn e l” and

a
0 <   < 1

a  +  1

Thu s  n,- alw ays rem ains positive. T h is  means th a t the sp a tia l grid  

sm oothing process can no t lead  to  node crossing and th a t the o rig ina l grid  

cond ition  (5 .1 .1 ) is indeed  desirable.

5 .1 .2  T e m p o r a l s m o o th in g  te c h n iq u e

T em p o ra l sm ooth ing  is in trod u ced  by rep lacing  the  algebraic system  (5 .10) 
by a system  o f d iffe re n tia l equations

hi- 1  +  r ~ ^ - )  /■ % - !  =  ( ”i +  ) /R i  (5 .15 )

T h e  presence o f th e  tim e  derivatives o f th e  p o in t concentrations means  

th a t  the  grid  w ill n o t ad ju s t im m e d ia te ly  to  th e  values of R  b u t w ill do so 

over a tim e  in te rv a l r .  Thu s  r is a p a ra m e ter w hich  causes a tim e  delay in  

the  e q u id is tr ib u tio n  eq uatio n  resu lting  in  a sm oother evo lu tion  of th e  grid  

in  tim e .

E q u a tio n  (5 .1 5 ) is derived  fro m  the  corresponding re la tio n

hi(t) +  r dn^  = c ( t ) R i ( t ) (5 .16 )
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T h is  a lin e a r firs t o rder nonhom ogeneotis o rd in a ry  d iffe ren tia l equation  

w hich  can be solved fo r « ¿ (i) as follows. F ro m  (5 .1 6 )

¿»«•(0 +  ftC*) =  c (* W 0  (517j
d t  T T

( M O  - C ( t ) f t ( . ) )  dt +  d. d t)  =  0

A ssum ing an in te g ra tin g  fa c to r F ( t )  exists fo r th is  equation  then

E qu atio n  (5 .1 8 ) is an exact d iffe ren tia l equation  1 i f

d _  dF(t)
d Wj \  7* /  dir

T h is  sim plifies to

n o 1  =  ^r

B y  separation  o f variables w e get

Udt -

-  =  /n I *■(*)!
T

Th u s  F ( t )  =  e x p ( i / r )  is the  required  in teg ra tin g  factor. M u lt ip ly in g  

(5 .1 7 ) by th is  in te g ra tin g  fac to r gives

‘The expression P(x,u)du +  Q(x,u)du is an exact differential, ie. the differential of a 
function F(x,u), if

d P  =  dQ 
O x l dx
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which sim plifies to

■ ^ { n , ( t ) e x p - }  =  — e x p - c ( t ) i 2,-(t)
a t  T T T

In te g ra tin g  b o th  sides gives

t  1 f* t
« ¿ (¿ )e x p (- )  =  -  exp(-)c(s)Ri(s)ds + C

t  t  Jo t

n ,( t )  =  e x p ( - )  [ c  +  -  [  e x p W  c(s)Ri(s)ds
r L T Jo

A t  t = 0  th is  reduces to  n<(0) =  C  and thus (5 .1 8 ) becomes

hi(t) =  e x p ( - )
T

(5 .1 8 )

n ,(0 )  + -  [  exp(-)c(s)Ri[s)ds  (5 .19 ) 
t  Jo r

w here th e  in it ia l sm oothed  p o in t densities, n,-, are  d e te rm in ed  fro m  (5 .7 ). 

L e t us now  exam ine  (5 .1 9 ) a t a t im e  t  fo llo w ing  a tim e  step o f At.

hi(t) =  e x p ^ ^
X ^

n ,( t  — A t )  +  -  /  e x p ( ~ )  c(s)Rf(s)d$ 
r Jt-At

(5 .2 0 )

fo r
t > At  0  <  » <  N

T h e  value o f n , ( t )  is th e  sum  o f exp( ^jr) and th e  w eighted  average of 
c(s)Ri(s)  over th e  in te rv a l [t — A t , t ] . T h e  w e ig h tin g  depends on th e  size o f r .  
A s t  —*• oo th en  n t- ( i )  —► n,- (f  — A t ) . Thu s  for large r  values th e  grid  rem ains  

s ta tio n ary . A s t  —► 0 th en  n , ( t )  —► c ( t ) i2 , ( t )  and th e  p o in t concen tra tion  

adjusts solely to  th e  present value o f c ( t ) i2, ( t )  an d  no  te m p o ra l sm ooth ing
occurs.
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5 .1 .3  I m p le m e n ta t io n

Taking the grid equation (5.15)

(n»-i +  (&i- 1 =  (" i +  fRi  1 < • < JV -  1

an d  s u b s titu tin g

H = a (a  + 1)

n0 =  -Aini +  (1 +  jw)«o i =  l  
n , =  -ju n ,'+ i  +  (1 +  2 ^ )n t- -  ¿ m ,- !  2 < i < N  -  2

f i jV —1 =  ~ fJ-TiN-2 +  ( 1 4 -  Ai ) n W - l  i  =  JV — 1

gives

[- /m i +  (1 +  /¿)n0 +  r(-jim i +  (1 +  M)«o)]/iio +
[ -^«2 +  (1 +  2//)nj -  /ino +  r (- /*»2 +  (1 +  2 y )n \ -  v ) \ / R i  =  0

[ - / M i  +  (1 +  2¿On,--! -  /m«_2 +  r ( - /m (  +  ( l  +  2/x)n|-_1 -  n n |_ 2) ] / i i l- i  -  

[—Mn«+i +  (1 + 2V-)ni ~  Mni - l  +
r ( - Mn'+1 +  (1 +  2m) n' -  M ^ - i ) ] /# . ’ =  0 2 < i < N - 2

[ - f i T l N - l  +  (1 +  2^)nAT_2 — Mn N - 3 4  J' ( - Ain V - l  +  (1 +  2M)n^_2 -  Hn N - 3 ) ] / R n - Z  

[—¿mjv_2 +  (1 +  ¿i)njv_i +  r ( - ^ nW-2 +  (1 +  M)n jv -i)]/ Rn - i

N e x t s u b s titu tin g

1 I f f ,
Ui ~ A ^ ] Ui ~ ~ (A^~j*5 *' “  * i+1 "  1,1

gives (a fte r  some s im p lifica tio n )
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1 +  ß +
Rc{AXo)2 Ri{AX0y \  

ß

XL -

\  + n t 1 +  2fi
I ■*”> / a -wr \ O I r'» / a -<rr \ 0 ”•I M ^ X i )2 ^o(AXo)2 iîi(A X i)2 R i{A X 0y x i +

ß
Lä!(A X 2)2 R i i A X t f  Äo(AXi)2J 

ß

A -

X'
Lä i (a x 2)2J

/t 1 +  ß
LAXi AXo J /  Ro +

p 1 +  2/i ß
AX2 AXi AXoJ /R i

ß
[ä,_x(AX,_2)2. 

* +

* i - 2  +

1 + 2 p
+[^•(A X ,-.!)2 ¿ ^ ( A X , - , ) 2 ¿ ^ ( A X ,- ^ ) 2]

fi 1 +  2/1 1 +  2/i
» a / a xr \  O H"

^ - 1 -

+ ß
[R i(A X i-i)2 R i(A X i)2 R i- r iA X i- tf  Ä .-^A X ,)2]

X ' +

1 +  2/i
H — —  7 1  +LÄ,(AXi+1)2 ^ (A X i)2 ¿ ^ (A X ,-)2]

AX,
+

t+i

*:-+2

1 +  2/í /X
AX,- ~ AX,_i /Ri -

X'i+i -

ß + 1 +  2M
AX¿ A X i-i AX_2,J /R i- 1

L ^ _ 3(a x w_3)2J
ß

*V -3 +

+
1 + 2 fi

. R n - i (  A X jv - 2)2 R n - 2 ( A X n s ) 2 R n - 2 ( A X n - 2)2 
ß , ß , ß+ +

/ X n -  1 -

1 +  2//
+Äjv-2(AXjv-i)2 Rn ~ i{AXn -2)2 Rn -i(AXn -i)2 R n -2(AXn -2)2 .

ß , 1 +  ß

X'*N - 3

+
, % - 2 ( A ^ - l ) 2 -RjV-l(AX^_i)2.

1 +  fl ß

X'fN

. A X n - i  A X m - 2.
/ X n -  1 +

ß 1 +  2 fi
+ ß

AXn -1  AJjv-2 AXjv-3 .
/ R n - 2

110



N ote  th a t  th e  above system  is five -p o in t coupled in  space (exclud ing  the  

firs t and las t equations). T h e  system  m ay be w r it te n  in  im p lic it O D E  fo rm

tB (X ,  U )X '  = G{X, U)

T h e  m a tr ix  B  is p en tad iag on a l and  o f d im ension  (N -1 ) (N -1 ) .  In  the
case o f zero te m p o ra l sm ooth ing  th e  system  (5 .1 .3 ) reduces to  th e  algebraic
system

G (X ,U )  = 0

T h e  orig ina l p ro b lem  d iffe re n tia l is coupled w ith  the  grid  equation  in  the  

fo llow ing  way. T a k in g  th e  L ag ran g ian  fo rm  o f th e  o rig in a l P D E  given by
(5 .2 )

U' -  X 'U x = F (X ,  U)

and com bin ing  th is  w ith  (5 .1 .3 ) gives th e  fo llow ing  system  o f 2 (N -1 )  

equations.

tB ( X , U ) X '  = G(X,  U)
U ' - X ' U x = F { X , U ) (5 .2 1 )

T h e  term s Ux and F  above are ap p ro x im a te d  by centered F in ite  D iffe r­
ences based on a n o n -u n ifo rm  grid  as derived  in  C h a p te r 3, subsection 3 .1 .1 . 
R eordering  the  above system  so th a t  th e  unknow ns appear as,

 + 1,X ,+1...........

m eans th a t  the  le ft hand  side m a tr ix  in  (5 .2 1 ) has a banded  fo rm  w ith  

b a n d -w id th  9. T h e  fo rm  o f th e  system  (5 .21 ) for N = 5  m esh spacings (pre­
sum ing a single parab o lic  eq uatio n  w ith  D ir ic h le t b o u n d ary  d a ta ) is shown 

in  F ig u re  5 .1 . In c o rp o ra tin g  th e  b o u n d ary  values o f U  and X  means th a t  

th e  system  (5 .2 1 ) is o f o rder 2 ( N + 1 ) .  T h e  equations corresponding to  X'Q 
and  X'N are t r iv ia l since these poin ts  are fixed a t a ll tim es. H ow ever, the  

equations corresponding to  U$ and  U'N depend on the b o u n d ary  conditions  

o f th e  P D E .

Solving the  system  (5 .21 ) requires an O D E  solver capable o f hand lin g  

lin e a rly  im p lic it  d iffe ren tia l a n d /o r  algebraic equations. In  the fo llow ing  

ch apter th e  above m eth o d  is im p lem en ted  using the L S O D I [25] based code 

o f the N A G  [39] ro u tin e  D 0 2 N H F .
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( u° } (*
X 0 *
Ul *
X ! *
u2 *
x 2 *
Us *
X s *
U4 *
*4 *
Us *

^ x 5 K *

(5.22)

F ig u re  5.1: S tru c tu re  o f th e  O D E  system  fo r V e rw e r’s m eth o d  in  th e  case 

of a  single p arab o lic  equation  (w ith  D ir ic h le t b o u n d ary  d a ta ).

5 .2  M oving F in ite  E lem ents.

In  C h a p te r  3, section 3 .1 .2 , th e  m e th o d  o f w eighted  residuals was ou tlined . 
F or an  equation  o f th e  fo rm

=  md t  K ’

th is  leads to  an  ap p ro x im ate  so lu tion  (or t r ia l  so lu tion) o f th e  fo rm

(5 .23 )

N

u ( x , t ) =  $ 3  ay (i) ay (a)
j=o

(5 .24 )

H ere , th e  ay fo rm  a lin e a rly  independent set o f know n a n a ly tic  functions , 
called  t r ia l  functions , and th e  ay represent th e  am p litudes  o f th e  ap prox im ate  

so lu tion , y (x , t ) ,  a t th e  nodes o f th e  sp a tia l mesh.

njy : 0 =  jco < xi < x2 < . . .  < x n  = 1

T h e  M o v in g  F in ite  E le m e n t (M F E )  m e th o d  adopts th e  sam e approach as 

above b u t th e  n odal positions are allow ed to  be tim e  dependent. E q u a tio n  
(5 .2 4 ) thus becom es
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N

U(M ) =  Y ,  °j (*)«/(*>«(*)) 
y=o

(5.25)

w here s is a vector o f tim e -d ep en d en t n od a l positions. P a rtia l d iffe ren tia tio n  

w ith  respect to  tim e  gives

du daj du  3s,-.
=  >    H---------- -

— ' daj dt  dsj dt3=0 J 1

=  +  (5-26)
j'=0

w here /9 (x , a ( t ) ,  s ( t ) )  =  j ± .

N o tice  th a t  th e  fo rm  of (5 .2 6 ) is s im ila r to  th e  L agrang ian  fo rm  o f (5 .23) 
given by (5 .2 ) w h ich  ind icates a possible Lagrang ian  in te rp re ta tio n  o f the  
M o v in g  F in ite  E le m e n t M e th o d .

T h e  tr ia l  functions a,- and th e  t r ia l  solution u belong to  the  same space 

o f functions  and th e  sim plest and  easiest fo rm  fo r use in  th e  M o v in g  F in ite  

E le m e n t m eth o d  is th e  piecewise linear (h a t) fu n ctio n  and solution shown  

in  F ig u re  5.2.

In  F ig u re  5 .2  the  piecewise lin e a r (h a t)  t r ia l  functions are given by

du
dt

du
dt

aj(x)  = '

0
1
E-Sf-lSj-Sj-1 
SJ+l~x
3)+l-‘j 
0

i f  X < Sj-I  
i f  X = Sj 
i f  Sj-I  < X < Sj 
i f  Sj <  X < Sj + 1 

i f  X > Sj+1

(5 .27 )

A n  equation  fo r th e  piecewise lin ear tr ia l  solution u on th e  in te rva l 
[s y _ i, Sy] is as follows.

u — aj -1  — m j(x  — S j - 1)
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Sj — 1 Sj sj+l

F ig u re  5.2: T h e  functions  aj,  Uj and ¡3j fo r the  M o v in g  F in ite  E lem en t  
m etho d .
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. (  aj ~ aj -1  I 
U =  Otj-I +

u =  Oy- 1  +  m y(x -  Sy_i)

(x -  Sj-i)
Sj -  Sj-1

There fo re  the  a u x ilia ry  tr ia l function  /?y can be expressed as follows.

B- = —-  =  I aj ~ aj+l 1 ( Z ~ Sj~1
3 3sj \ 8j -  Sy-i )  {Sj  -  «,•_!

=  — my c*y

L ikew ise on the in te rva l x €  [sy ,sy+i]

u -  a,- =

u  =

u = a,- +

m J+i ( x  -  s; ) 

a3- +  m y+ 1 (x  -  Sj)

aj +1 ~  aj  I 

~  s; /
(X  -  Sj)

ßj+i  —
du

ds:i+1
I fly+ i Qy 

V«j'+i “  sj ,

=  -rrijOij

T h u s  the  fo rm  o f th e  function  ßj(x)  is

x  — s.-
sj+i sj ,

ßi(*)  =

0 i f  x <  Sj- i
—m y a y (x ) i f  S j - 1 < x < Sj
-m,- i f  X  =  Sj

m j+iOtj(x) i f  Sj < x < Sj+i 
0 i f  x  >  Sy+i

(5 .28 )

w hich  is shown in  F ig u re  5.2.

T h e  pj m ay be regarded as secondary tr ia l functions s im ila r to  the ay 

and w ith  the  sam e local support.

T h e  coefficients o f th e  ap prox im ate  so lu tion  (5 .2 4 ) are d e term in ed  by the 

m eth o d  o f w eighted  residuals (see C h a p te r 6 ) . U sing the  G a le rk in  approach  

th e  1/2 n o rm  o f th e  residual
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du
T t -  i ( “ > ¿2

w ith  respect to  th e  t im e  derivatives o f th e  param eters  a3iSj is m in im ised . 
T h a t  is, th e  in n er p roducts  o f th e  w eighted  residuals are s im ultaneously  set 
to  zero.

S u b s titu tin g  %  fro m  (5 .2 6 ) gives

+  “  L (u)>“y) =  0
a=o
TV

3=0 dt d i

and fina lly

N

Y , ( a i>oci ) <̂ r  +  Y2 (a J ’ P à ^ ir  -  <“ *>£(«)) =  0
j —0

N

3=0
N

y=o 3=0

T h is  corresponds to  2 ( N + l )  equations for the  nodal unknow ns and po­
sitions and they are called the M o v in g  F in ite  E lem en t equations. W ritin g  

these equations in  O D E  fo rm  gives

A (u )u  =  g[u) (5 .2 9 )
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w here A  has th e  b lo c k -tr id ia g o n a l fo rm

( M
C2

Bi
A 2
Cz

b 2
A3 Bs

Cn  A n  B n
C n + 1 B n + 1 A n +i J 

and u is an ( N + l ) 2  vector o f the fo rm

(  “ 1 \
H 
a2 
s 2

fo rm

&N+1
\ s n +i J

A (y )  is a  s y m m etric  square m a tr ix  composed o f N-t-1 (2x2 ) blocks o f the  

n

_ ( < a i , a j >  < O L i , ß j >  \

V <  Ä  i a j  >  <  ß i , ß j  >  )

n    /  ^  Of ) Olj > < Oi{ , ß j  >  \
i ~ \ < ß i ) a j >  < ß i , ß j >  )

_  / <  Oi.ay >  < O t i , ß j  >  \
’ \ < ß i , a J >  < ß i , ß j >  )

(5 .30 )

(5 .31 )

(5 .32 )

T h e  vector g is composed o f inner p roducts  o f the spatia l opera to r L (u )  

as follows

$(u) =  (< a i,£ (u )  > ,<  ßi,L(u) > , ....... < otN+i,L(u) >,< ßN+i,L(u) >)
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5.2 .1  Im p lem en ta tio n

In  [23] the frequ en tly  used inner p roducts  are derived  fu lly . E xpan d in g  

equations (5 .2 ) gives the fo llow ing.

U[-1 

Ul 

X'i

v i+1

AX,-
6

+ x;_1
AX,- +  AX,-+i 

3
AC/,- +  A

At/,1

+

+

+

'A X ,>'+i + x; AC/.+x 1
+i =< ay, ¿ ( it)  > (5 .33 )

Ul

X'

Dj+i

AC/,-1
+ *<-i

miAUi'
6 +

AC/,- +  A i/j+ i

m,-AC/i +  m,-+ iAC/,-+ i

AC/,-i+i
3

+  X,-+1

+

mi+ iAC/,-+ i
6

= < / ? y , L ( u ) >  (5 .3 4 )

T h is  system  is a lin e a rly  im p lic it  O D E  system  and requires the use o f 
a su itab le O D E  package. In  the  fo llow ing  ch apter results fo r th is  adaptive  

mesh a lg o rith m  obta in ed  using the  N A G  ro u tin e  D 0 2 N H F  w ill be presented.

T h e  system  (5 .29 ) as i t  stands does not guarantee a reasonable ad ju s t­
m en t o f th e  sp atia l grid  un like  the  m etho d  o f th e  previous section. T h is  is 

fo r tw o reasons. F irs tly , th e  mass m a tr ix  A  m ay becom e n um erica lly  sin­
gu lar w henever the  slopes o f tw o m u tu a lly  ad jacen t elem ents becom e equal 
(ie . c o llin e a rity ). W h en  th is  happens m,- =  m ,-+ i and  by observing (5 .28 ) 
one can see th a t th e  /?y are now p ro p o rtio n a l to  th e  ay . T h is  how ever 

m eans th a t the corresponding d iagonal block o f A ,  A,-, w ill be zero m aking  

A  singular. T h is  phenom enon is term ed  “p ara lle lism ” . T h e  second d ifficu lty  
encountered w ith  the system  (5 .29 ) is the  p ro b lem  o f node tang ling  w hich  

can happen w hen  nodes d r if t  to o  close to gether.
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M ille r  [34] suggests th e  use o f “p e n a lty ” functions  in  order to  regularise  

th e  node m o tion . In s tead  o f m in im is in g

d u  t ( \
l i  ~  i (u )

we m in im ise

j=N
| j r - ■ & ( « ) + £

j=0

T h e  e-term s correspond to  an in te rn o d a l viscosity w hich  penalises re la ­
tiv e  g rid  m o tion . T h is  has th e  effect o f rendering  th e  mass m a tr ix  A  diago­
n a lly  d om in an t and thus in v e rtib le . T h e  S -term s represent in te rno d a l spring  

functions  w h ich  penalise th e  nodes fro m  com ing to o  close together.
T h e  fo rm  o f these p e n a lty  functions are, fo llow ing  M ille r  [34],

C  2 r 121 n 2
€‘j  =  {Axj  -  d) £j j  = ( A X j  -  d)2

T h e  constants C i , C 2 and  d are user contro lled  param eters . T h e  effect 
of these p en a lty  functions  is to  add  e x tra  term s to  th e  le ft and rig h t hand  

sides o f th e  system  (5 .2 9 ). T h e  a d d itio n a l term s are

e'AX'j -  e>.+1AX'j+1

and

CjSj —

w hich  are added to  th e  le ft and rig h t hand  sides o f th e  0  equation  (5.34) ,  
respectively . In  th e  fo llo w ing  ch apter th e  m erits  a n d /o r  problem s associated  

w ith  these param eters  w ill  be exam ined .

119



C hapter 6

N u m e r i c a l  I n v e s t i g a t i o n s

In  C h a p te r 5 th e  im p le m e n ta tio n  deta ils  o f tw o effective ad aptive  mesh 

strateg ies were described. B o th  strategies sha ll now be applied  to  the  so­
lu tio n  o f four exam p le  p a ra b o lic  problem s. These exam ples are a represen­
ta t iv e  sam ple o f th e  w id e  va rie ty  o f problem s occurring  in  p arabo lic  p a rtia l  
d iffe re n tia l equations.

6.1 A lgorithm s sum m ary

T h e  m a in  characteristics o f th e  chosen ad ap tive  mesh a lgorithm s are given 

in  Tables 6.2 and 6 .3  below . For com parison purposes the  characteristics o f 
th e  conventional fixed g rid  M O L  approach are also given in  T ab le  6 .1 . In  

these descriptions i t  is assumed th a t  each a lg o rith m  is applied  to  the solu­
tio n  o f a single p a rab o lic  eq uatio n , d iscretised on th e  sp a tia l in te rva l using  

N N  in te rn a l 1 g rid  poin ts .

Jby internal is meant “excluding the boundaries”
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Method I. The Standard Method of Lines

Type Conventional fixed grid approach

Spatial
discretisation

Finite Difference
(with second order, centered differencing)

Temporal
integrator

Explicit O DE system  solver 
(NAG [39] routine D02NCF)

Jacobian
structure

Tridiagonal matrix  
of order (NN -j-2)

Table 6.1: Characteristics of the Standard M ethod of Lines.
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Method II. The Method of Verwer et al. [53,16]

Type Adaptive mesh approach from the 
class of “mesh m oving” m ethods.

Im plem entation M ethod of Lines

Spatial
discretisation

Finite Difference
(with second order centered differencing, 
based on a non-uniform grid)

Adaptive grid 
control

Based on spatial equidistribution of 
an arc length monitor function.

Temporal
integrator

Linearly im plicit O D E /D A E  system  solver 
(NAG [39] routine D02NH F)

Jacobian
structure

Band m atrix of order 2 (N N + 2 )  
and band width 9

M ethod parameters a(= l) monitor function régularisation parameter 
/c (= 2 )  spatial grid sm oothing parameter 
t  tem poral grid sm oothing parameter

Table 6.2: Characteristics of the m ethod of Verwer et al.
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Method III. Moving Finite Elements [36,35]

Type A daptive mesh approach from the 
class of “mesh moving” m ethods.

Im plem entation M ethod o f Lines

Spatial
discretisation

Galerkin F inite Element 
(with linear trial functions)

Adaptive grid 
control

Based on m inim isation of PD E  
residuals.

Temporal
integrator

Linearly im plicit ODE system  solver 
(NAG [39] routine D02NHF)

J acobian  
structure

Block-tridiagonal m atrix of order 
2 (N N + 2 )  and band w idth 7

M ethod parameters d  m inimum node separation  
C l  inter-nodal viscosity parameter 
C 2 inter-nodal spring force parameter

Table 6.3: Characteristics of the M oving Finite Elem ent M ethod.

123



6 .2  E xam p le  problem s

Versatility has already been established as an im portant requirement for 
adaptive mesh strategies. In order to  test the versatility of each adaptive 
m esh algorithm a suitably varied selection of problems must be solved. The 
four exam ples given below, m ost of which have already been introduced in 
Chapter 2, represent such a selection. The problems present novel difficulties 
for the numerical m ethods and the solutions are widely different in nature.

P r o b le m  1

A “hot spot” problem from combustion theory.

d U  d 2U , , 6 ,
—  =  — r  +  Z )(l +  a -  u )e x p (  ) 0 < x <  1
at  o r  u

t >  0

where D is given by
_  H exp(g) 

a6
and the boundary and initial conditions are

=  o u ( i , t )  =  i

U(x,  0) =  1

An accurate numerical solution is used as a reference solution.

Source: Adjerid and Flaherty [1]

P r o b le m  2

Burgers’ equation: sine wave initial conditions. (Problem 7a, 
Chapter 2)

d U  d 2U TTd U
— —  =  6—— ;-------- U  — —  0 <  X  <  1
d t  d x 2 dx

t >  0
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U (x ,0 )  =  sin(27ra:) +  0.5sin(jra:) 

and boundary conditions

17(0, i) =  U ( l , t )  =  0 

An accurate numerical solution is used as a reference solution.

Source: Gelinas, Dos and Miller [23].

P r o b le m  3

Burgers’ equation: propagating shocks. (Problem 7b, Chapter 2)

d u  d 2 u  a u
at ~€dx2 dx ° ^ 1 ^ 1

t >  o

w ith in itial and boundary conditions

t/far.O) =  Ue{ x ,0) C/(0, t) =  Ue{0, t)

U ( l , t )  =  Ue( l , t )

The exact solution Ue(x , t )  is given by

with initial conditions

where

Ue{x , t )  =  1 -  0 .9 ^  -  0 .5 ^

R  =  rx -f  r2 +  r3

rj =  e x p ( - (x  — 0.5 +  4 .95i)/(20£))

r2 =  e x p ( - ( i  — 0.5 +  0 .75 i)/(20c))

r3 =  exp (-(a : — 0 .3 7 5 i)/(2 e))

Source: Sincovec and Madsen [32].
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P roblem  4
A model parabolic equation. (Problem 4, Chapter 2)

d U  d 2U r . ,
aT  = ' a ?  + ° S l S 1

t  >  0

with boundary and initial conditions

{7(0 ,i) =  tanh(r2t — rx) ¿ 7 (l,i)  =  tanh(r2f)

U (x,  0) =  ta n h (rx (i — 1))

and exact solution

U (x , t )  =  tanh(rx(x — 1) +  r2t)

The source term f(x) is given by

f ( x )  =  sech2(r i(x  -  1) +  r2t)[r2 +  2crtanh(rx(i -  1) +  r2t)

S o u rce: D avis and Flaherty [14].

6 .3  M ea su res o f  e ffectiv en ess

In the last chapter the three recognised characteristics of effective software 
for parabolic problems were introduced. These were versatility, robustness 
and efficiency. The selected adaptive mesh algorithms (M ethods II and III) 
will now be assessed in relation to these criteria. For comparison purposes 
the conventional fixed grid MOL approach (M ethod I) will also be included  
in  the assessm ent.

In the following experim ents effectiveness is measured in terms of ac­
curacy and efficiency. The accuracy of each algorithm is illustrated in two 
ways. Firstly, exact/reference solutions (denoted by solid lines) are plotted  
along w ith  the numerical solutions (plotted sym bols). Secondly, the m ax­
imum absolute error between the numerical and exact/reference solutions 
(over all the specified output tim es) is quoted in the tables. The efficiency
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of each algorithm may also be expressed in two ways. Firstly, the C PU  
tim e consum ption provides an excellent means of determining the relative 
efficiency of several algorithms, im plem ented on the same hardware. The 
actual com puter used was an APOLLO workstation (DN4500) and the CPU  
tim e consum ption, measured in seconds, was determined for each im plem en­
tation. A second means of expressing the efficiency of the algorithms is to  
determine operation counts. These statistics are particularly useful since 
they are characteristic of the particular algorithm s rather than the hard­
ware on which they are im plem ented. In the tables to follow, em phasis is 
placed on the use of high level operation counts such as Jacobian evalua­
tions, rather than on low level indicators such as m ultiplications or additions.

6 .4  T h e n u m er ica l t im e  in te g ra tio n

The two adaptive mesh strategies (M ethods II and III) are similar to M ethod  
I in that they are both M ethod of Lines (MOL) im plem entations. The spatial 
discretisation in each case gives rise to linearly im plicit ODE system s o f the 
form

A(i, y)y' =  g[t, y ) y (t0) =  yo (6.1)
t o  ^  t  t  f i n a l

Here, A  is a m atrix of order 2 (N N + 2 )  and y, g are vectors of dimension  
(N N + 2 ) ,  where N N  is the number of internal spatial mesh points used in 
the sem idiscretisation.

The system  (6.1) can be solved numerically using the BD formulae (see 
Chapter 3 section 3.2.2) where

K

-ftohy'n+i =  - y n+i +  Y 2  afci/rH-i-fc
fe=i

is the K th order BD  formula w ith coefficients /3q, a \ ,  a 2, ■ ■ ■, cx-k  and h is 
the tim e step size. This gives

K
2/n+l 'y  ̂CXkVn+l—k +  hfioyn+i

k =  1

=  an+1 ^A)yn+1
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Here, an+ i is a constant vector constructed from past values of y. Using 
this formula to approxim ate j/^+1 in (6.1) gives

-^(tn-t-l j J/n+l) (j/n+l a n-(-i) h@ 09(^n+1 > J/n+l) — 0

The user supplied residual

r (j/n+l) — 1) J/n+l — fl(tn + l>  y n + l)V n = i

is now introduced where J/^+iis the predicted value of y'n+i given by

(o)
»(0 ) _  V n + l a n + 1

Vn+1 ~  h p  0

Thus (6.2) can be rewritten as

A (tn+1> J/n+l)  ̂J/n+l — J/n+l) — /̂̂ Or (£ n + l) J/n+l) =  0  (®-3)

This nonlinear algebraic system  is solved using a modified Newton iter­
ation where the iteration m atrix

P  = A ( tn+i, -  / i /V ij / i+ i )  (6 -4)

approxim ates the Jacobian of the system  (6.3). Because the solution of 
this system  involves iteration, an im portant statistic is the total number of 
iterations used in a particular integration. This is denoted by N I T E R  in 
the results to  follow. The step size h is autom atically set by the BD F codes 
although an initial step size HO can be specified by the user. It is also useful 
to  know the tota l number of tim e steps taken in a particular im plem entation. 
This is denoted by S T E P S . The iteration of equation (6.3) differs from a 
true N ewton iteration in that the Jacobian is only evaluated periodically. 
This occurs after the prediction stage (when y„2i is given) and otherwise 
when necessary eg. if a convergence test fails. The calculation of the Jaco­
bian (performed num erically) is rather expensive and so a useful statistic to 
consider is the tota l number of Jacobian evaluations, denoted by N J A C S .  
The number of Jacobian evaluations also corresponds to  the number of LU 
decom positions of the iteration matrix in (6.3). A  Newton iteration process 
is term inated when a New ton correction is found which, in the chosen norm, 
is less than the user specified tolerance, T O L . The last statistic of interest
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Application of the conventional MOL approach of M ethod I gives rise 
to  a different ODE problem. Here sem idiscretisation results in a system  of 
explicit O DEs of the form

y = g(t,y)
This is equivalent to  the system  (6.1) where the m atrix A is replaced by 

the identity m atrix I and the iteration m atrix P in (6.4) becomes

P  =  I  -  t y W ( y i0+ i)  (6.5)

However in this case the orders of P and A  are now (N N  +  2) because 
in the conventional M ethod of Lines the extra N equations, corresponding 
to  the moving grid in the adaptive mesh algorithms, are not present. The 
statistics N I T E R , S T E P S , N J A C S  and N R E  still retain the same mean­
ing, however, except that N R E  now refers to g (t,y) evaluations rather than  
to  r(t,y) evaluations. In the case of M ethod I the m eaning of this parameter 
can therefore be interpreted as the “number of right hand side evaluations” .

In comparing im plem entation statistics for each of the three m ethods, 
care must be taken to  remember the differences between them . The most 
im portant difference is that the Jacobian band w idths for the three m ethods 
are 3,7 and 9, respectively, w ith the order of the Jacobian in each case being  
determined by N N . These differences will be reflected in the CPU statistics 
for each m ethod. The ODE integrators used in the three m ethods are im­
plemented in essentially the same way. For all im plem entations numerical 
differencing was used to  evaluate Jacobians. This was performed internally 
by the integrators (on request). A  subroutine was provided which performed 
the residual/function evaluations and the initial solution Y(0) and required 
output tim es were also specified. For the local error test in the Newton iter­
ation scalar relative and absolute error tolerances, R T O L  and A T O L , were 
chosen such that R T O L  =  A T O L  =  T O L . For the experim ents T O L  was 
set to a value of 10“ 3 unless otherwise stated and the chosen norm used in 
the tolerance test was the common “averaged L 2” norm. For all experiments 
the initial step size in the tim e integration, HO, was set to 10~5. Lastly, 
for all the experim ents, the start grid used in the adaptive mesh algorithms, 
was uniform.

is the number of evaluations of the residual r(y), denoted by N R E.

129



The following sections give the numerical results for the adaptive mesh 
strategies (M ethods II and III) applied to  the solution of the four exam ­
ple parabolic problems of section 6.2. For each problem the performance of 
the adaptive strategies are compared w ith the conventional fixed grid MOL 
approach of M ethod I. A  summary of the “figures of m erit” used in the 
tables to follow is now given.

6 .5  R esults

TOL The scalar relative and absolute error tolerance used in the tim e inte­
gration.

HO The initial time step size.

N N  The number of internal grid points in the spatial discretisation. 

S T E P S  The number of tim e steps used.

N J A C S  The number of Jacobian evaluations (= L U  decom positions).

N R E  The number of residual or right-hand-side evaluations.

N I T E R  The total number of New ton iterations.

CPU The C PU  tim e (in seconds) required for the solution. All experiments 
were carried out on an APOLLO DN4500 and while determining CPU  
time all inp u t/ou tp u t operations were disabled.

E R R  The m aximum absolute error on the spatial interval, over all the spec­
ified output tim es.

6.5.1 Problem  1

The solution to Problem  1 represents the tem perature of a reactant in a 
chemical system . For sm all values of tim e the tem perature at X = 0  in­
creases from unity causing a “hot sp ot” to develop at this point. A t a finite 
tim e ignition occurs causing the tem perature at X = 0  to rapidly increase to 
a value 1 +  a. This leads to  the formation of a flame front which rapidly 
propagates towards X = 1  at a speed proportional to exp(a<5)/2(l +  a)-

Following [1,53] the parameters of the equation are chosen as follows. 
[a = l,  d = 20 , R =5]. The problem reaches a steady state when the flame
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front reaches the right boundary. For the present choice of parameters this  
occurs at Tw 0.29. In the numerical solution two distinct phases can be  
identified, viz., the ignition phase (formation of the hot spot at X = 0 ) and 
the propagation phase (m ovement of the flame front towards X = l) .

Sim ulating the ignition phase is difficult because ignition occurs very 
rapidly. This small tim e-scale phenom enon causes considerable stiffness in 
the numerical solution, necessitating the use of variable tim e steps. The start 
of the ignition m ust be accurately determ ined w ithout overshoot in the lo­
cal error control m echanism  of the stiff ODE solver. This allows sufficiently 
small tim e steps to be used in order to  effectively simulate the ignition. Er­
rors at this stage result in considerably greater errors later on. Following 
[1,53] a tim e tolerance of approxim ately T O L = 1 0 -5  (with an initial time 
step size of H 0 = 1 0 - 5 ) was chosen in order to effectively capture the ignition  
phase. Such a small tolerance does not seriously affect the efficiency of the 
B D F codes since they are capable of stepping in tim e using higher order 
formulae.

The presence of the ignition stage in th is problem  makes the time step­
ping process much more difficult than the spatial discretisation. Indeed, the 
flame front is not particularly thin and can be satisfactorily resolved using 
a conventional fixed spatial grid w ith as little as 40 internal nodes. F ig­
ure 6.1 shows the the numerical solution of the problem (plotted symbols) 
com puted using the fixed grid MOL approach of M ethod I, for various val­
ues of N N . An accurate reference solution is also plotted (solid lines) for 
comparison purposes. The reference solution was generated using M ethod I 
w ith N N = 2 0 0 0 , T O L = 1 0 -8  and w ith H 0 = 1 0 - 5 . The integration statistics  
corresponding to these solutions are shown in Table 6.4. Note the char­
acteristic efficiency of the conventional MOL approach in that the number 
of Jacobian evaluations, N J A C S , is always a sm all fraction of the num­
ber of tim e steps, S T E P S . The operation counts for N N = 4 0  are a lot less 
than for N N = 1 0  but in fact the com putational cost is much higher since, 
in the former case, the order of the Jacobian is approxim ately four tim es as 
great. This is clearly revealed by the CPU statistics, which steadily increase 
w ith increasing N N .  The global error, E R E ., starts off relatively large for 
N N = 1 0  but decreases rapidly as N N  increases. For N N = 3 0 ,4 0  the value 
of E R R  appears to  stabilise at approximately 0.05. This is because of the 
large difference between the reference and numerical solutions at T = 0 .26 , 
X = 0 , visible in Figure 6.1. This discrepancy arises because the integrator
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has difficulty in determ ining the start of the ignition phase. A smaller value 
of T O L  would have improved the performance considerably. For the present 
value of T O L , however, the integration proceeds well at later tim es and, as 
can be seen from Figure 6.1, the reference and numerical solutions are al­
m ost indistinguishable at these times.

For the adaptive m esh strategies the present problem is of interest be­
cause the Lagrangian nature of these m ethods allow the grid to track the 
propagating flame front, thereby reducing the stiffness of the problem and 
allowing fewer tim e steps to  be used during the propagation phase. Figures
6.2 and 6.3 show the grid trajectories and solutions at four different output 
tim es using M ethod II (with N N = 4 0 ) ,  for various values of the m ethod pa­
rameter r. For the case r= 1 .0 , a uniform fixed grid im plem entation results, 
w ith the grid becom ing increasingly adaptive as r decreases. It should be 
remembered, however, that a fixed grid im plem entation of M ethod II with  
N N = 4 0  is not equivalent to  the corresponding im plem entation of M ethod  
I (also w ith  N N = 4 0 ) ,  since in the former case the order of the Jacobian is 
approxim ately twice as great.

Table 6.5 shows the integration statistics for the solutions obtained with  
M ethod II. For the sm allest r  value (=0.0001), corresponding to  the most 
adaptive grid, the number of tim e steps used, S T E P S , is almost half that 
used for the case r = 1 .0 , (uniform, fixed grid). This dem onstrates the de­
sired effect of the Lagrangian approach of M ethod II. As in the solutions 
obtained w ith M ethod I, the global error is exclusively dominated by the 
large discrepancy between the reference and numerical solutions at T = 0 .26 , 
X = 0 . A t later tim es, however, the numerical solutions are not quite as ac­
curate as those obtained w ith M ethod I. This is because M ethod II tends to  
overestim ate the speed of the flame front during the propagation phase. In 
Table 6.5, as t  decreases the various operation counts also decrease w ith the 
result that CPU reduces to  a value of 61 seconds for the smallest r value, 
compared w ith  a value of 122 seconds for the largest r  value. The greater 
efficiency of the variable grid im plem entation of M ethod II, over the fixed 
grid alternative, is obvious.

The present problem was also solved using M ethod III w ith the param­
eters C 2  and d set to  zero. Varying the value of C l  has the same effect as 
varying r in M ethod II. This parameter is associated with the “inter-nodal 
viscosities” discussed in the last chapter. Figure 6.4 shows the grid trajec­
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tories and solutions com puted using M ethod III for two values of C l .  The 
value C l= 1 0 .0  corresponds to a uniform fixed grid im plem entation. Table
6.5 lists the integration statistics for these im plem entations and also for two 
other im plem entations. For the moving grid situations the m ethod gives 
consistently better approxim ations of the flame speed (indicated by smaller 
E R R  values) compared w ith M ethod II. Notice in Figure 6.4 that the errors 
at T = 0 .2 6 , X = 0  are considerable less than those obtained using M ethods 
I and II. The higher accuracy of M ethod III over M ethod II comes at a 
considerably greater cost, however, as indicated by the consistently higher 
values of C P U  for M ethod III. Unlike M ethod II the operation counts do 
not continuously decrease w ith  a reduction in C l .  Indeed, for most imple­
m entations, too small a value of C l  may result in node overtaking. This 
suggests that the choice of C l  in M ethod III is som ewhat more difficult 
than the corresponding choice of r in M ethod II which is a disadvantage 
with respect to robustness and ease of im plem entation.

For this problem, the results suggest that the im plem entations of M eth­
ods II and III are more effective when used in “adaptive grid” mode rather 
than “fixed grid” mode. However the viability of these two m ethods can only 
be properly assessed when compared w ith the standard fixed grid MOL ap­
proach of M ethod I. The comparison of new adaptive mesh strategies with  
the conventional approaches is an exercise which has been overlooked in the 
literature on adaptive m eshing. Comparing the most accurate results of 
M ethod II and III w ith  the corresponding results of M ethod I (for N N = 4 0 )  
gives the following statistics.

S T E P S N J A C S N I T E R C P U E R R
M ethod I 376 39 500 18.5 0.06
M ethod II 204 39 348 61.0 0.07
M ethod III 350 195 1023 179.5 0.04

Obviously, the desired effect of the Lagrangian approaches of M ethods II 
and III have been realised in that S T E P S  is less for these methods. How­
ever, the values of C P U  reveal that M ethod I is between three and ten  
tim es more efficient than M ethods II and III. Clearly, for this problem, the 
conventional fixed grid MOL approach of M ethod I is far superior. On the 
whole, this problem is not a good demonstration of the superiority of adap­
tive meshing over the conventional approach but it does illustrate vividly
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Problem  1

a = l d  =  2 0 R  =  5

M eth o d  I

M ethod parameters
T O L HO
i o - b

A1O

Integratio □ statistics
N N  =  10 N N  =  20 N N  =  30 N N  =  40

S T E P S 431 451 428 376
N J A C S 68 53 44 39
N R E 852 806 712 619
N I T E R 646 645 578 500
C P U 7.3 12.7 16.0 18.5
E R R 0.54 0.17 0.05 0.06

Table 6.4: Integration statistics for Problem  1 solved using M ethod I. 

the Lagrangian nature of M ethods II and III.
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(a) (b)

(c) (d)

Figure 6.1: Solutions for Problem  1 generated using M ethod I for the output 
tim es T = 0 .2 6 , 0.27, 0.28, 0.29 using (a) N N = 1 0 , (b) N N = 2 0 , (c) N N = 3 0 ,  
(d) N N = 4 0
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Figure 6.2: Solutions and grid trajectories for Problem 1 generated using
Method II for the output times T=0.26 0.27 0.28 0.29 with N N =40 and (a)
t = 1.0, (b) r=0.01
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1.0

(a)

(b)

Figure 6.3: Solutions and grid trajectories for Problem 1 generated using
Method II for the output times T=0.26 0.27 0.28 0.29 with N N =40 and (a)
r=0.001, (b) r=0.0001
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1.0

(a)

(b)

Figure 6.4: Solutions and grid trajectories for Problem 1 generated using
Method III for the output times T=0.26, 0.27, 0.28, 0.29 with NN=40,
C2=d=0.0 and (a) C l=10.0, (b) C l=0.05
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Problem 1 

a = l d  =  2 0 R = 5

Method II

M ethod parameters
K a TOL HO NN
2 1 10"b 10~b 40

Integration statistics
T =  1 r  =  0.01 t  =  0.001 t  =  0.0001

STEPS 439 277 215 204
NJACS 79 50 42 39
NRE 1411 904 764 712
NITER 679 439 373 348
CPU 122.3 78.9 65.2 61.0
ERR 0.06 0.07 0.08 0.07

Method III

M ethod parameters
C2 d TOL HO NN
0 0 10"5 io-b 40

Integration statistics
C l =  10 C l =  0.1 C l =  0.05 C l =  0.025

STEPS 352 311 326 350
NJACS 51 141 165 195
NRE 1020 1911 2133 2435
NITER 604 889 937 1023
CPU 88.4 144.0 151.0 179.5
ERR 0.12 0.06 0.08 0.04

Table 6.5: Integration statistics for Problem  1 solved using M ethod II and 
III w ith N N = 4 0 . 10n



6 .5 .2  P rob lem  2

The initial conditions for this problem are quite sm ooth but the solution is 
a wave which steepens rapidly and then propagates towards X = l .  The pres­
ence of hom ogeneous Dirichlet boundary conditions means that the solution  
dampens towards an asym ptotic value of zero at later tim es. Conventional 
fixed grid MOL solutions, based on centered Finite Differences, give rise to  
spurious oscillations when the grid is too  coarse in the steep region of the 
solution. For the m oving mesh approaches the placement of mesh points in 
this region is critical, w ith slight deviations from the optimal grid causing 
oscillations. T he resulting non-sm oothness (wriggles), induced in the solu­
tion, can seriously affect the efficiency of the stiff O DE solver. The presence 
of a steep m oving front means that the spatial discretisation is more difficult 
than the tim e stepping process. For this reason the tolerance in the BD F  
codes (for all the m ethods) was set to T O L = 1 0 - 3 ; relatively large compared 
to the value chosen in the previous problem. In the numerical results to fol­
low the reference solution was calculated using M ethod I w ith N N = 2 0 0 0 ,  
T O L = 1 0 -8  and H O = H T 5.

Figure 6.5 shows the results obtained w ith M ethod I at the output tim es 
T = 0 .2 , 0.6, 1.0, 1.4, 2.0 for two choices of N N .  M ethod I failed repeatedly 
when N N  was less than about 500. This was because the steep wavefront 
could not be resolved. Even for N N = 5 0 0  there are hardly any nodes present 
within the steep front and some oscillations can be seen at the crest of the 
wave. For N N = 6 0 0  the solution is adequately resolved, w ith several nodes 
being present in the shock front. Table 6.6 shows the integration statistics  
for both im plem entations of M ethod I. The MOL approach does a good job  
at keeping N J A C S  a small fraction of S T E P S . B oth im plem entations give 
effective results w ith  an increase in N N  causing a sharp decrease in E R R .  
As indicated by the C PU  statistics, M ethod I behaves very inefficiently w ith  
the solution for N N = 6 0 0  requiring a C P U  value of nearly nine minutes. 
This is due to the large order Jacobian arising from the spatial discretisation.

Adaptive mesh solutions to this problem are shown in Figures 6.6 and
6.7 using M ethods II and III, respectively. In both cases N N = 4 0 . Notice 
the sharp m ovem ent of the grid trajectories at T  « 1 .3 . This is caused by 
a sudden change in the shape of the solution which must be adequately re­
solved by the m esh moving m ethods. Figure 6.6 shows inaccurate results 
for M ethod II for the tim es T = 1 .2 , 1.4, whereas both im plementations of
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M ethod III are much more accurate at all the specified output tim es. The 
surprisingly large E R R  values quoted for M ethod III in Table 6.7 arise due 
to  slight deviations between the numerical and reference shock positions. 
Because the shock is very steep these relatively small lateral deviations give 
rise to relatively large absolute errors. The solutions delivered by M ethod  
III remain effective w ith the numerical and reference solutions being almost 
indistinguishable in Figure 6.7. Table 6.7 indicates typical behaviour for 
M ethod II in that as r decreases the efficiency improves. As was the case in 
the previous problem the correct choice of parameters for M ethod III is not 
obvious and the costs for various values of C l, C2 and d fluctuate consid­
erably.

Cl and C2 are associated with the inter-nodal “viscosity” and “spring” 
functions of the Moving Finite Element m ethod, respectively.. C l is used  
to  avoid parallelism of the moving nodes while C2 avoids node overtaking. 
The parameter d is a prescribed m inimum node separation which should  
be smaller than the expected small-scale structure in the solution. Thus, 
for the present problem, d must be less than the value of the diffusion co­
efficient, e, since the w idth of the wave front is proportional to  this value. 
Unfortunately the use of such a minimum node separation ultim ately means 
that the optim al choice for d is essentially problem dependent. From the 
C PU  statistics given in Table 6.7, M ethod III is evidently a lot less efficient 
than M ethod II but even for such a wide choice of m ethod parameters the 
results are always accurate. M ethod III succeeds in remaining robust but at 
the expense of efficiency.

For this problem results for M ethod II were unsatisfactory as regards 
robustness and, for smaller values of r than those given in Table 6.7, fatal 
Newton errors were repeatedly encountered when the minimum mesh spac­
ing becam e very small. Similar problems were reported by Verwer et al. [53] 
although only for more difficult problems than the present example. The 
reason why they appear more often in the present experim ents is because the 
im plicit ODE solver used here is the NAG routine D02NH F [39] whereas the 
solver used by Verwer et al. is the more advanced DASSL code [43]. This 
package is especially superior in its treatm ent of D ifferential/A lgebraic sys­
tem s which occur in M ethod II when r is set to zero. In all experim ents very 
small r values were avoided in order to  avoid the possible shortcomings of 
the ODE solver being used.
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Comparing the results obtained with M ethod III in Figure 6.7(b) (N N = 4 0 )  
w ith those obtained using M ethod I in Figure 6.5(b) (N N = 6 0 0 ) gives the  
following statistics.

STEPS NJACS NITER CPU ERR
M ethod I 780 61 1023 534.0 0.08

M ethod III 208 163 652 121.0 0.41

Although not nearly as accurate as M ethod I, M ethod III performs the  
solution in one quarter of the tim e required by M ethod I. Also, as can be 
seen from Figures 6.7(b) and 6.5(b) the solutions are qualitatively not very 
different.

Overall, this problem illustrates the effectiveness of the adaptive mesh  
algorithms very well, especially for problems where the spatial resolution  
is paramount. M ethod III works robustly and accurately but the difficulty 
of choosing optim al values of the m ethod parameters C l, C2 and d still 
remains. This leads to im plem entations which are non-optim al. For a diffi­
cult problem, such as the present exam ple, where the standard approach of 
M ethod I fails repeatedly, M ethod III is very much a viable alternative.
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riM

(a) (b)

Figure 6.5: Solutions of Problem 2 generated using M ethod I for the output 
tim es T = 0 .2 , 0.6, 1.0, 1.2, 1.4, 2.0 (a) N N = 5 0 0 , (b) N N = 6 0 0
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e = 0.001

Problem 2

Method I

M ethod parameters
T O L HO
10“ a 10“ 0

Integration statistics
N N  - 500 N N  =  600

S T E P S 831 780
N J A C S 74 61
N R E 1299 1208
N I T E R 1075 1023
C P U 459.5 534.0
E R R 0.13 0.08

Table 6.6: Integration statistics for Problem  2 solved using M ethod I.
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(a)

(b)

Figure 6.6: Solutions and grid trajectories for Problem 2 generated using
Method II for the output times T=0.2, 0.6, 1.0, 1.2, 1.4, 2.0 with NN =40
and (a) 7-=0.01, (b) r=0.001
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(a)

(b)

Figure 6.7: Solutions and grid trajectories for Problem 2 generated using 
M ethod III for the output tim es T = 0 .2 , 0.6, 1.0, 1.2, 1.4, 2.0 with N N = 4 0  
and (a) C l= 0 .0 2 5 , C 2 = 0 .0 0 0 1 , d = 0 .0001  and (b) C l= 0 .0 1 , C 2=0 .0001 , 
d = 0.0005
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Problem 2 (e = o.ooi)

Method II

M ethod parameters
K a T O L HO N N
2 1 10“ s 10~b 40

Integration statistics
t  -- 0.01 t  = 0.001

S T E P S 192 157
N J A C S 74 63
N R E 1095 932
N I T E R 404 346
C P U 88.0 71.2
E R R 1.32 1.33

Method III

M ethod parameters
C 2 T O L HO N N
0.0001 10_a IO“ 0 40

Integration statistics
C l  = 0.025 
d = 0.0001

C l  = 0.025 
d = 0.0005

C l  =  0.01 
d =  0.0001

C l  =  0.01 
d =  0.0005

S T E P S 473 240 439 208
N J A C S 342 186 349 163
N R E 3735 2054 3763 1834
N I T E R 1260 705 1239 652
C P U 251.8 135.6 250.4 121.0
E R R 0.42 0.44 0.43 0.41

Table 6.7: Integration statistics for Problem  2 solved using M ethods II and 
III.

147



6 .5 .3  Problem  3

The solution to  this problem represents one shock wave overtaking another 
which then develops into an asym ptotic boundary layer at X = l .  Both shock 
structures are clearly visible in the initial solution which is rather non­
sm ooth. This non-sm oothness poses problems for both fixed and moving 
grid approaches. If a uniform start grid is used then a large number of 
nodes are required in order to  accurately resolve the initial solution.

Figure 6.8 shows the solutions obtained using M ethod I for various val­
ues of N N  w ith  the corresponding integration statistics shown in Table 6.8. 
The typical oscillations associated w ith the conventional fixed grid MOL 
approach occur for N N = 4 0 ,8 0  and even the solution for N N = 1 6 0  is inac­
curate at the tip  of the shock (E R R = 0 .0 3 ). Only for N N = 3 2 0  do we see a 
very accurate representation of the shocks and the eventual boundary layer. 
These results are similar to  those obtained in Chapter 3 in the section on 
“uniform mesh im plem entations” where this problem was solved using the 
NAG routine D 02PG F [39],

Figures 6.9 and 6.10 show the corresponding solutions obtained with  
M ethod II and III w ith N N = 4 0 . N otice the rapid movement of the grid 
in Figure 6.9 (b) at the start of the integration. This occurs because the 
smaller 7-=0.001 value used here, allows the initial grid to rapidly adapt to 
the form of the initial solution. However, the smoother grid movement ob­
tained w ith r= 0 .1  gives more accurate and efficient results, as seen in Table 
6.9. This nicely illustrates the beneficial effect of the tem poral grid sm ooth­
ing property of the m ethod. As in previous problems, however, M ethod II 
tends to  overestim ate the speed of the shocks giving large errors at later 
tim es (E R R = 0 .4 6 , 0.68).

As in the last exam ple M ethod III gives consistently more accurate re­
sults than M ethod II but still remains rather expensive. For the particular 
parameter choices C l= 0 .0 2 5  and C 2=0.0001, Table 6.9 shows the effect of 
varying the m inimum node separation, d. The larger value of d leads to  a 
significant reduction in cost. U ltim ately the optim al choice of d  is somewhat 
problem dependent and for this particular problem it must not exceed the 
approxim ate shock thickness (determined by the diffusion coefficient, e, in 
Problem  3). T his is a negative aspect of the m ethod w ith respect to robust­
ness. Generally, however, for sm all values of d the m ethod behaves very
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accurately and robustly, albeit at rather high costs. Comparing the m ost 
accurate results of M ethod III w ith  those of M ethod I (for N N = 3 2 0 )  gives 
the following statistics.

S T E P S N J A C S N I T E R C P U E R R
M ethod I 191 12 232 60.9 0.01

M ethod III 85 68 285 52.3 0.011

M ethod III performs the integration approxim ately twenty percent faster 
than M ethod I while yielding the same global error (E R R = 0 .0 1 ).

These results suggest that M ethod III is more efficient than M ethod I, al­
though not significantly so. M ethod II, on the other hand, is approxim ately  
twice as fast as M ethod I but unfortunately rather inaccurate.
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Problem  3

e =  0.003

M ethod parameters

Method I

T O L HO
10-3 HT®

Integration statistics
N N  =  40 N N  =  80 N N  =  160 N N  =  320

S T E P S 118 159 165 191
N J A C S 9 9 10 12
N R E 167 208 232 270
N I T E R 138 179 200 232
C P U 5.3 12.7 26.4 60.9
E R R 0.44 0.11 0.03 0.01

Table 6.8: Integration statistics for Problem  3 solved using M ethod I.
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(a) (b)

(c) (d)

Figure 6.8: Solutions for Problem  3 generated using M ethod I for the output 
tim es T = 0 .2 , 0.4, 0.7, 0.9, 1.1 w ith  (a) N N = 4 0 ,  (b) N N = 8 0 , (c) N N = 1 6 0 ,  
(d) N N = 3 2 0
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(a)

(b)

Figure 6.9: Solutions and grid trajectories for Problem 3 generated using
Method II for the output times T=0.2, 0.4, 0.7, 0.9, 1.1 with N N =40 and
(a) r=0.1, (b) r=0.001
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1.0

(a)

(b)

Figure 6.10: Solutions and grid trajectories for Problem 3 generated using
Method III for the output times T=0.2, 0.4, 0.7, 0.9, 1.1 with NN=40,
Cl=0.025, C2=0.0001 and (a) d=0.001, (b) d=0.003
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Problem 3 (e = 0 .0 0 3 )

Method II

M ethod parameters
K a T O L HO N N
2 1 10“3 IO"0 40

Integration statistics
T = 0.1 r --- 0.001

S T E P S 77 93
N.T A C S 26 30
N R E 404 469
N I T E R 161 188
C P U 34.5 39.8
E R R 0.46 0.68

Method III

M ethod parameters
C 2 T O L HO N N
0.0001 10"3 10"6 40

Integration statistics
C l  = 0.025 C l  -- 0.025
d = 0.001 d = 0.003

S T E P S 104 85
N J A C S 82 68
N R E 914 780
N I T E R 317 285
C P U 61.5 52.3
E R R 0.012 0.011

Table 6.9: Integration statistics for Problem 3 solved using M ethod II and 
III.



6 .5 .4  Problem  4

The solution of this problem is a wave which travels in the negative X- 
direction (when ri and r2 are positive). The steepness and propagation  
speed of the wave are determ ined by r\  and r2. Following [14] the param­
eters are chosen as follows [ r i= r 2= 100  and £ = 1 0 -2  ]. As in the case of 
Problem  3, the initial conditions here are quite non-sm ooth. This causes 
problems for both the fixed grid and the adaptive mesh implementations.

Figure 6.11 shows the solutions obtained using M ethod I (for several 
values of N N )  and Table 6.10 gives the corresponding integration statistics. 
For N N = 2 0 , 40 the results are clearly inadequate (E R R w 0 .2 ). For N N = 8 0  
there is a substantial improvement (E R R ssO .l), although the resolution of 
the solution at the left hand boundary (for T = 1 .0 ) is not good. Only for 
N N = 1 6 0  is the solution accurate over the whole domain (E R R = 0 .0 3 ). The 
solutions obtained w ith M ethods II and III are shown in Figures 6.12 and 
6.13 for the case N N = 4 0 . In Figure 6.12 (a) a large oscillation is present in 
the solution at T = 0 .2 5 , 0.5. This is a result of the inadequate node move­
ment allowed by the particular choice of r (= 0 .1 ) . For r=0.001 (Figure 6.12
(b)) the grid adapts quickly to the initial conditions and the overall result is 
more accurate. In this case E R R  is the sam e as that obtained w ith M ethod  
I for N N = 1 6 0 .

The results for M ethod III for two different choices of the parameter C l  
are shown in Figure 6.13. For the present problem, M ethod III behaves very 
poorly, giving wild oscillations and large E R R  values. This is probably be­
cause the inner product, associated with the nonlinear term, F (X ), of the 
problem, is inadequately resolved by the Finite Elem ent m ethod. The rather 
sim ple trapezoidal quadrature rule, used in the formulation, is clearly not 
accurate enough to handle the F(X ) term.

Comparing the m ost accurate results of M ethod I and M ethod II gives 
the following statistics.

S T E P S N J A C S N I T E R C P U E R R
M ethod I 644 34 711 113.8 0.03
M ethod II 194 79 388 61.6 0.03
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Clearly, for the same global error, M ethod II operates nearly twice as 
efficiently as M ethod I. M ethod III, on the other hand, performs twice as 
slowly but with very poor accuracy.
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a  =  IO"2 Äi =  R i  =  100

Problem  4

M ethod parameters

Method I

T O L HO
10~a 10"°

Integration statistics
N N  =  20 N N  =  40 N N  =  80 N N  =  160

S T E P S 708 909 875 644
N J A C S 155 167 86 34
N R E 1584 1882 1343 815
N IT E R . 1117 1379 1083 711
C P U 25.0 56.9 85.9 113.8
E R R 0.20 0.21 0.12 0.03

Table 6.10: Integration statistics for Problem 4 solved using M ethod I.
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(a) «

(c) (d)

Figure 6.11: Solutions of Problem  4 generated using M ethod I for the output 
tim es T = 0 .2 5 , 0.50, 0.75, 1.0 using (a) N N = 2 0 ,  (b) N N = 4 0 ,  (c) N N = 8 0 ,

(d) N N = 1 6 0
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Figure 6.12: Solutions and grid trajectories for Problem  4 generated using 
M ethod II for the output tim es T = 0 .2 , 0.4, 0.7, 0.9, 1.1 w ith N N = 4 0  and
(a) r= 0 .1 , (b) r= 0 .001



Figure 6.13: Solutions and grid trajectories for Problem 4 generated using 
M ethod III for the output tim es T = 0 .2 , 0.4, 0.7, 0.9, 1.1 with N N = 4 0 ,  
C 2 = d = 0 .0 0 1  and (a) C l= 2 .0 ,  (b) C l= 1 .0



Problem 4 

a =  IO-2  Ri =  R2 =  100

Method II

M ethod parameters
K a T O L HO N N
2 1 10"3 10“ ° 40

Integration statisticsi-HÖII T =  0.001
S T E P S 357 194
N J A C S 102 79
N R E 1597 1128
N I T E R 652 388
C P U 110.8 61.6
E R R 0.05 0.03

Method III

M ethod parameters
C 2 d T O L HO N N
0.001 0.001 10“ 3 10~° 40

Integration statistics
C l  =  2.0 C l  =  1.0

S T E P S 469 644
N J A C S 178 144
N R E 2412 2315
N I T E R 1123 1270
C P U 238.0 235.0
E R R 0.49 0.26

Table 6.11: Integration statistics for Problem 4 solved using M ethod II and



6 .6  O bservations

The four parabolic equations of the last section provide a varied set of 
problem situations which must be handled effectively by the adaptive mesh 
strategies.

Interestingly, the Finite Difference nature of M ethod II make it as easy 
to  im plem ent as the standard MOL approach whereas M ethod III, which  
is based on Finite Elem ents, requires som ewhat greater effort. Problem  4, 
which contained a non-linear source term , was solved routinely using M ethod  
II since the source term, F (X ), could be explicitly incorporated into the for­
m ulation. For M ethod III an inner product involving F(X ) had first to be 
approxim ated using a quadrature rule. In this case the use of the simple 
trapezoidal rule was apparently not accurate enough. Generally, F in ite Ele­
ment m ethods cannot be im plem ented as autom atically as Finite Difference 
m ethods owing to the occurrence of these problem-specific inner products.

Both adaptive mesh strategies are quite robust and although neither 
m ethods are free of so-called “tuning parameters,” a sensible default choice 
always succeeded in giving reasonable results. The parameter r in M ethod  
II has an obvious meaning in that it is directly associated w ith the tem po­
ral grid sm oothing property of the m ethod. Since it is virtually the only 
parameter required for the adaptive mesh strategy (the other two parame­
ters a  and re were simply set to  the values 1 and 2, respectively, in all the 
numerical experim ents) the im plem entation retains a high level of simplicity.

M ethod III requires the specification of three parameters C l ,  C 2  and d, 
all of which, except the m inimum node separation d , are rather indirectly  
associated with the properties of the mesh. Although the use of these param­
eters com plicates the im plem entation of M ethod III considerably, for almost 
all the choices made in the numerical experim ents the m ethod remained  
very accurate and robust. A favourable property of M ethod III is that these 
parameters appear to effect only the cost of the im plem entation. This is 
the preferred situation when dealing w ith tuning parameters; their values 
should only enhance the existing efficiency of the m ethod rather than criti­
cally effect its performance. Regrettably, for M ethod III very high efficiency 
was not achieved because of the difficulty in choosing optim al parameter 
values.
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For the im plem entation of M ethod II the choice of the parameter r 
proved to be som ewhat critical to the performance of the m ethod. In the 
case of Problem 2, for small r values failures were recorded as a result of 
the m inim um  mesh spacing becoming too small. This problem was also 
allured to  by Verwer et al. [53] in similar im plem entations. However they 
arose more frequently in the present experim ents because the particular 
D A E /O D E  solver used was the NAG [39] D 02N H F routine whereas Verwer 
et al. used the more sophisticated DASSL [43] code. It would be unwise, 
however, to dism iss M ethod II on the basis of the present results w ithout 
first testing its performance using a more sophisticated D A E /O D E  solver.

M ethod III avoids the difficulties encountered when the node spacing 
becom es too close, by incorporating the m inimum node spacing as a param­
eter in the m ethod. U ltim ately the choice of this parameter is som ewhat 
problem specific and is therefore contrary to the need for versatility but 
it does however succeed in preserving a high degree of robustness in the 
im plem entation. Present day O DE solvers, including those used in the nu­
merical experim ents, possess such a parameter for the time integration, so 
it is perhaps quite acceptable to have a similar parameter associated w ith  
the spatial discretisation.

The results obtained in the last section using M ethods I, II and III to 
solve Problem s 1, 2, 3 and 4 can be qualitatively summarised as follows.

Robustness Efficiency Accuracy
M ethod I 2 3 1
M ethod II 3 1 3
M ethod III 1 2 2

The three algorithms are numbered in order of m erit, 1 indicating the 
best performance and 3 indicating the worst performance. M ethod III was 
the m ost robust algorithm  because, for the default choice of parameters, the 
m ethod never failed. M ethods I and II, on the other hand, failed for a small 
number of im plem entations. M ethod II was the m ost efficient algorithm  
but unfortunately was also the most inaccurate. On the whole, M ethod III 
behaved reasonable efficiently and accurately compared to the other algo­
rithms.
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The com parisons made with the conventional fixed grid MOL approach 
(M ethod I) suggest that both the adaptive mesh strategies (M ethods II and 
III) are only really viable for quite difficult parabolic problems since the 
com puting overhead in the calculation of the grid is significant. For those 
problems which are only mildly difficult, such as Problem  1, the adaptive 
mesh strategies are a lot less effective than the conventional fixed grid ap­
proach. Their great advantage, however, is their ability to effectively solve 
difficult parabolic problems, such as Problem 2, and to  a lesser extent Prob­
lems 3 and 4, where the conventional approach performs poorly.
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C hapter 7 

Conclusions

The objective of all efficient numerical m ethods could be described as the 
discrete approximation of a problem with uniform accuracy over its entire 
domain. In the context of one-dimensional parabolic partial differential 
equations the domain of interest typically involves finite intervals of space 
and time. For these problems the above objective has not yet been fully 
realised.

The standard approach to the numerical solution of parabolic equations 
was described in Chapter 3. Here, spatial discretisation leads to a system  
of (usually stiff) ODEs which are then solved routinely using existing high 
quality ODE integrators. This constitutes the conventional M ethod of Lines 
(MOL) approach. The great popularity of the MOL approach stem s from its 
ability to reduce even the m ost diverse initial/boundary-value problems in 
parabolic partial differential equations to the familiar initial-value problem  
for a system  of ordinary differential equations. This ability has made the 
MOL approach the single m ost versatile m ethod for the numerical solution  
of parabolic equations. In this area versatility is hard to  achieve due to  the 
great diversity of problems yet the MOL approach stands out as an effective 
m ethod where few others exist.

Since the advent of autom atic tem poral integration m ethods (typified by 
the Gear codes [21,22]) the efficient solution of O DE system s has become 
more or less routine. Today, one could say th at the goal of “error equidistri- 
bution” has actually been achieved for the tem poral dimension of parabolic 
problems. W hat remains unrealised is the equidistribution of errors in the
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spatial domain of these problems. The fact is clearly illustrated by the uni­
form mesh im plem entations at the end of Chapter 3.

Chapter 4 dealt w ith the analysis of so-called adaptive mesh strategies. 
The aim of adaptive spatial m eshing is to provide efficiency in the spatial 
dimension hitherto only possible in the tem poral integration. The appar­
ent diversity of strategies in a sense mirrors the underlying com plexity of 
parabolic problems. A t a more fundam ental level, however, adaptive mesh  
strategies differ in only one way, namely, the manner in which they corre­
late the solution and the numerical grid. Characterisation of adaptive mesh 
strategies on the basis of this property yields two main classes: local mesh  
refinement m ethods and mesh moving m ethods. In the first class, the so­
lution and grid are loosely related with each being determined in different 
ways. This leads to  approaches which tend to  be heuristic in nature and 
are not very robust. M ethods belonging to the second class treat both cal­
culations in a very hom ogeneous way. The grid evolution is controlled in a 
more formal manner resulting in im plem entations which are robust and free 
of heuristics. A considerable effort, however, is devoted to  calculating the 
grid. Present research in this field suggests that the mesh moving m ethods 
provide a more viable approach towards adaptive meshing than the local 
mesh refinement m ethods.

Given the apparent superiority of the mesh moving approach it is not 
surprising that the two algorithms chosen for further study in Chapter 5 
belong to this class. The fact that both  algorithm s involve MOL type im­
plementations is an im portant factor because strategies such as these lend 
them selves easily to  incorporation into existing solution methods.

The first algorithm, from Verwer et al. [53], is particularly straight­
forward to im plem ent as it is based upon existing Finite Difference m eth­
ods. The m ethod possesses an interesting tem poral grid sm oothing property 
which retains efficiency in the time integration. Few other adaptive mesh 
strategies address the closely related problems of spatial and tem poral res­
olution in this way. Control of the adaptive meshing process is exercised  
via a single parameter which has a clear physical significance. This leads to  
straightforward im plem entations.

The second algorithm , Moving Finite elem ents [36,35], is a generalisation  
of the conventional (fixed grid) Galerkin F inite Element m ethod. This ap­
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proach is geared solely towards the goal of spatial resolution w ithout regard 
to  the tim e integration process. Three parameters determine the behaviour 
of the adaptive m eshing process but only one of these has any direct physical 
significance. Consequently, although highly accurate, im plem entations tend 
to  be non-optim al in term s of com putational expense.

In general, the first algorithm is com putationally inexpensive to imple­
m ent, but tends to be inaccurate, whereas the second m ethod is relatively 
expensive to  im plem ent, but retains a high level of accuracy and robustness. 
The robustness of the first m ethod was called into question when, in the 
case of Problem  2, fatal convergence errors occurred for small values of the 
tem poral grid sm oothing parameter. In such cases, the sem idiscretisation  
produces a system  of Differential-Algebraic equations (D A Es). However, 
these system s are very com plex and require more sophisticated tem poral 
integrators than those used in the present experim ents.

Comparisons w ith the conventional fixed grid MOL approach demon­
strated the effectiveness o f the adaptive mesh strategies in the solution of 
difficult parabolic problems. However, for problems of interm ediate dif­
ficulty, both m ethods were only marginally better than the conventional 
approach. One disadvantage of the moving m esh approach is that consider­
able effort is devoted to  calculating the grid. Clearly for difficult problems, 
where the solution is critically dependent on the spatial grid, this effort is 
very worthwhile. For less difficult problems, on the other hand, expensive 
calculation of a non-critical grid constitutes a waste of effort. The adap­
tive mesh strategies im plem ented here are therefore suited to the solution  
of d ifficu lt problems. For the easy to mildly-difficult problems the conven­
tional MOL approach is still the preferred m ethod. Current research is still 
mainly concerned w ith  the solution of difficult problems and the improve­
m ent of existing algorithms. The trend appears to  be moving towards the 
use of adaptive m esh strategies which combine the recognised advantages 
of both the local mesh refinement and mesh m oving approaches. See for 
exam ple Adjerid and Flaherty [1] and Verwer et al. [54].

Looking to the future, it is likely that adaptive mesh algorithms will soon 
be available as options w ithin  standard packages. Eventually, the autom atic 
choice between fixed or adaptive strategies will also becom e possible, in the 
sam e way that som e present-day ODE solvers autom atically select the stiff 
or non-stiff options in the tem poral integration. The ultim ate goal, however,
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would be the production of a single adaptive m esh algorithm which reduces 
to  the conventional fixed grid approach, whenever appropriate. Such a strat­
egy would then provide efficient solutions over the entire range of parabolic 
problems.

W hatever the outcom e of present research in the field of adaptive mesh­
ing there is little doubt that the adaptive integration of parabolic equations 
in the spatial dim ension, w ill soon be routinely possible. Thus, the objective 
of evenly distributing the numerical errors over the entire problem domain 
will have been realised. The analysis presented in this thesis clearly indi­
cates that the adaptive mesh strategies currently being developed, go a long  
way towards realising this objective.
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