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Paul P. Neary

Adaptive Space-Meshing Strategies for the Numerical
Solution of Parabolic Partial Differential Equations in
One Space Dimension.

Abstract

The effectiveness of adaptive space-meshing in the solution of
one-dimensional parabolic partial differential equations (PDEs)
is assessed.

Present day PDE software typically involves discretisation in
space (using Finite Differences or Finite Elements) to produce a
system of ordinary differential equations (ODEs) which is then
solved routinely using currently available high quality ODE in-
tegrators. Such approaches do not attempt to control the errors
in the spatial discretisation and the task of ensuring an effec-
tive spatial approximation and numerical grid are left entirely to
the user. Numerical experiments with Burgers’ equation demon-
strate the inadequacies of this approach and suggest the need for
adaptive spatial meshing as the problem evolves. The currently
used adaptive meshing techniques for parabolic problems are re-
viewed and two effective strategies are selected for study. Nu-
merical experiments demonstrate their effectiveness in terms of
reduced computational overhead and increased accuracy. From

these experiences possible future trends in adaptive meshing can
be identified.

Keywords: Partial Differential Equations, Parabolic prob-
lems, Method of Lines, Adaptive meshing, Finite Difference Meth-
ods, Finite Element Methods, Moving Finite Elements, Lagrangian
schemes, Linearly implicit ODE systems.



Chapter 1

Introduction

Partial differential equations (PDEs) occur widely in Science and Engineer-
ing in the modelling of continuum problems. This thesis is concerned with
the automatic solution of parabolic PDEs in one space dimension and the
effectiveness of incorporating adaptive space-meshing algorithms into exist-
ing software.

Chapter 2 introduces scalar and vector systems of parabolic PDEs and out-
lines the general nature of parabolic problems. With reference to suitable
examples the need for adaptive space-meshing is established.

Historically the development of PDE software has been slow owing to the
great diversity of such problems. This is in sharp contrast to the now
highly developed software for ordinary differential equations (ODEs). Con-
sequently the most successful PDE software, for example PDEONE [46]
and PDECOL [33), have involved the discretisation of the problem in the
space dimension (semidiscretisation) and its reduction to a system of ODEs
which can be routinely solved using available high quality ODE integrators.
When semidiscretisation is performed using Finite Differences the procedure
is known as the “method of lines”. Alternatively Finite Element methods
(Galerkin [18] and Collocation [38]) may also be used to perform the semidis-
cretisation.

Chapter 3 begins by outlining the presently used methods of semidiscreti-
sation. The nature of the resulting ODE system is discussed and this leads
to the notion of stiffness. The semidiscretisation of parabolic problems gen-



erally results in systems of ODEs which are at least “mildly” stiff. The
presently used methods of integration for stiff systems of ODEs are outlined
and the standard packages reviewed.

Current ODE software performs the temporal integration more or less auto-
matically and the techniques for controlling the integration (some of which
are heuristic) are outlined. The combination of semidiscretisation followed
by ODE integration are the hallmarks of present day PDE solvers. Two
standard PDE packages are reviewed. In these packages no error control
for the spatial discretisation is attempted and spatial errors are presumed
to be negligible. Some numerical results for Burgers’ equation demonstrate
the inadequacies of this approach for problems involving propagating shocks
and/or boundary layers. In such cases the solutions are computationally ex-
pensive to obtain and are often inaccurate. The need to adapt the mesh as
the problem evolves becomes clear.

The inadequacy of uniform spatial grids in the solution of parabolic equa-
tions may be explained by analysing the typical methods of semidiscretisa-
tion used for such problems. The use of non-uniform spatial meshes, how-
ever, offers the possibility of much improved results over the uniform mesh
approach. This is analogous to the existing use of non-uniform grids in the
time discretisation of such equations, and in the solution of general ODEs.
The ultimate aim in both situations is to evenly distribute the numeri-
cal errors over the problem domain. The methods of determining suitable
non-uniform grids for particular problems (numerical grid generation) are
considered. Fixed non-uniform grids are, however, of limited use when solv-
ing parabolic type problems because the spatial structure of the solution
typically alters with time. In order to ensure adequate spatial resolution
throughout the problem evolution, regeneration of the non-uniform grid is
necessary. This is the principle underlying the adaptive mesh approach.
Adaptive mesh strategies involve a particular grid generation method and
a dynamic coupling between the grid and the evolving solution. Current
trends in adaptive meshing are discussed and the philosophies behind the
various approaches are contrasted. Efficiency, robustness and versatility are
the characteristic features of superior adaptive mesh strategies.

In Chapter 6 the algorithms selected in the previous chapter are imple-
mented in conjunction with a standard ODE solver. Comparisons are made
between uniform and adaptive mesh implementations for several example



problems.

Chapter 7 concludes with a summary of findings regarding the automatic so-
lution of Parabolic PDEs. The relative merits of adaptive and non-adaptive
strategies are discussed particularly in relation to computational expense
and efficiency. Finally areas for future research are identified.



Chapter 2

Parabolic Partial
Differential Equations

2.1 Classification of partial differential equations

We are interested in the solution of linear and nonlinear parabolic equations
and systems of equations. Firstly by considering the linear case of the second
order partial differential equation and establishing what form of auxiliary
conditions serve to determine a unique solution a three-way classification of
such equations is possible.

The general form of a linear 2"¢ order PDE in two independent variables
x,t is

A(m,t)Uzz +2.B(I,t)Uzt+C(I,t)Utt —+

D(z,t)U; + E(z,t)U; + F(z,t)U + G(z,t) =0 (2.1)

Subscripts imply partial derivatives and the coefficient 2B is chosen for later
convenience.

A solution of (2.1) in a region R of the (x,t) plane is a function U(x,t) for
which U and the partial derivatives U, and U, are defined at each point (x,t)
in R and for which the equation reduces to an identity at each such point.



To determine the form of auxiliary data required to guarantee a unique
solution to (2.1) consider the specification of U along some interval of the
y axis, U(0,t)=f(t). This allows calculation of all partial derivatives of U
w.r.t. t along the interval (0,t) presuming that f(t) is sufficiently differen-
tiable. No information about the partial derivatives w.r.t. x is known except
that (2.1) relates Uzz to U. Therefore prescribing U,(0,t) = g(t) (the nor-
mal derivative) along the chosen interval allows the calculation of Uz and
further derivatives w.r.t. Uz, can now be determined from (2.1).

It is now possible to construct a Taylor series representation of U in the
neighbourhood of (0,t). This suggests that a unique solution to (2.1) is pos-
sible given the function U and its normal derivative along one axis where
both the functions and coefficients appearing in (2.1) are sufficiently differ-
entiable.

The formal statement of the above procedure is the Cauchy-Kowalewski
Theorem which states that if f(t), g(t) and the set of coefficients

B(z,t) C(z,t) G(z,t)
A(z,1) A(z,t) Az, t)

are analytic in the neighbourhood of some point (0, o) then the above pro-
cedure will generate a unique solution to (2.1) which is also analytic in the
neighbourhood of (0,t). We call the data f(t) and g(t) the Cauchy data for
the problem (2.1) and such a problem is called a Cauchy problem.

By a further generalisation one may seek the solution of (2.1) given Cauchy
data specified along an arbitrary curve I' in R. Some equations of the form
(2.1) possess solutions for all choices of ' whereas others require a restriction
on the choice of I'. The various cases allow the characterisation of partial
differential equations into three distinct classes. Each type of equation has
particular properties concerning the dependency of solutions upon the aux-
iliary data.

Consider again the Cauchy problem where the Cauchy data is specified along
an arbitrary curve I'. The 1% order partial derivatives are known.
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The 2"¢ order derivatives are also required. They are denoted by

otU g U
and u=

"= °T o 9201

Three relationships between r,s and t are known. These are given by equa-
tion (2.1) and the total derivatives of p and q as follows.

Ar+2Bs+Cu = ¢($,t,U,p,Q)

_ dp ap
dp = - d:l:-["-a‘?di

dzx
= r.dz+ s.dy
_ 9q 9q
dg = amdm+ Btdt

= s.dr+udt

or
A 2B C r ¢
dz dt O s|=1|dp (2.2)
0 dz dt u dq

A unique solution to this system of equations is possible if its determinant
is non-zero. Conversely if the determinant is zero then the second order
derivatives are indeterminate and the original partial differential equation
(2.1) has no solution. The case of zero determinant yields the following
equation.



A.dt® +2B.dr.dt+ C.dzt =0 (2.3)

The solutions of this quadratic equation determine two families of curves
along which the specification of Cauchy data is insufficient to guarantee a
unique solution to (2.1). These curves are called characteristics. The so-
lutions are

dy (2.4)

_ —-B++BT-AC
- A

Equations of the form (2.1) are characterised as being hyperbolic, parabolic
or elliptic depending on the sign of the discriminant B? — AC.1

Hyperbolic case B2 — AC > 0 : Here there exists two real families of char-
acteristics. The prototype hyperbolic equation is the wave equation.

3T 8

dx2  Ot? £

Hyperbolic problems represent the propagation of signals with finite
speed. The trajectories of these signal fronts correspond to the char-
acteristic curves.

Parabolic case B? — AC =0 : Here the twin families of characteristics
have degenerated into one family. The prototype parabolic equation
is the heat equation.

'y o _ .
8z Ay

Parabolic problems represent the propagation of signals with infinite
speed.

!These names arise due to the similarity of equation (2.1) with the quadratic form
az?®+ 20zt +t2 + 62 + et = const. which gives rise to the hyperbola, parabola and ellipse
under the same conditions.



Elliptic case B?Z — AC < 0 : Here there are no real characteristics since
the solutions of the quadratic are imaginary. Thus there is no re-
striction on the choice of curve I' along which Cauchy data may be
specified. The prototype elliptic equation is the Laplace equation.

o U _
0z? at:

Although the preceding classification would appear to assign a set type to
every partial differential equation it does however depend on the region of
the (x,t) plane under consideration. For example the equation

U oW

3 @

is elliptic in the region z > 0, hyperbolic in the region z < 0 and parabolic
for £ = 0. Subsequently, in section 2.2, it will be seen that solutions exhibit
interesting features in regions where a transition between different types of
equations occur.

2.2 The nature of parabolic problems

Although the Cauchy-Kowalewski Theorem provides a convenient method
of characterising partial differential equations it does not however guarantee
physically meaningful solutions. In order to guarantee meaningful solutions
a problem must be well-posed. A problem is well-posed if

e The solution exists.
e The solution is unique.
e The solution depends continuously on the auxiliary data.

The last requirement is reasonable since without it the comparison of the-
ory and experiment would be impossible. Only the Cauchy problem for the



hyperbolic equation is well-posed. For elliptic and parabolic equations al-
ternative auxiliary conditions lead to well posed problems.

Let us now focus attention on parabolic problems which are well-posed and
examine their properties. Let us consider a general system of N parabolic
equations of the form

du; 8 aU; = AU;
a9t - ax{gi(x7t’Ui)_a?} + fl{xataUaE-}
U = [U,0s,..]T i=1,2...N. (2.5)

This includes a wide variety of both linear and nonlinear equations.

The most commonly posed problem involving one-dimensional parabolic
partial differential equations is the solution of (2.5) in the semi-infinite strip
a <z<b, t2>0subject to the initial and boundary conditions

U,' = f,-(m) =0
oU;
pi(t)Ui + qg(t)a- = r(l;t) z=ab >0
1=1,2...N. (2.6)

The stated boundary conditions are general but may degenerate to Dirichlet
and Neumann conditions. The independent variables t and x typically rep-
resent time and space-like quantities. In most practical examples the order
N of the system of equations does not exceed 3 or 4.

Below are some exarnples of both linear and nonlinear parabolic equations
and systems of equations. These examples were chosen to demonstrate the
diversity of parabolic problems and serve as a suite of test problems for the
numerical methods to be discussed in subsequent chapters.

2.2.1 Linear problems

Consider the simple heat equations of problems 1 and 2. These equations



Problem 1
ou _ 18w
at
v(,t) = U(1,t)=0
U(z,0) = sin(nz)
U(z,t) = e "sin(rz)

Source: Davis and Flaherty. [14]

Problem 2
oU 8%

Bt~ 92 0s=sl

ou _ 27 OU — 2,7
P (0,t) = =% e (1,t) = —n’e
U(z,0) = sin(7rz)

Ulzt) = e~ ™"t sin(rz)

Source: Mitchell and Griffiths. [37]

10



constitute the simplest parabolic problems. Physically they often repre-
sent the diffusion of heat within a rod of constant cross-section which is
insulated along its length. The coefficient multiplying %[é is called the dif-
fusivity. Both equations are easily solved using the method of separation of
variables.

Numerically the solution of these equations is fairly routine except in the
case of Problem 2 where the presence of Neumann boundary conditions com-
plicates the solution procedure somewhat. The accurate representation of
boundary conditions is one of the main problems encountered in the numer-
ical solution of partial differential equations. In Chapter 3 it will be seen
how the use of higher accuracy spatial discretisations is restricted by such
difficulties.

Problems 3 and 4 are slightly more complex in that non-derivative terms
appear. Such terms are called sources or sinks depending on whether their
signs are positive or negative. In heat conduction problems they represent
internal sources or losses of heat. Unlike the previous problems the steady
state solution (U(z,t — o0)) is not zero but some function of x. Problem
3 has a small parameter ¢ multiplying the time derivative. The magnitude
of this parameter determines how quickly the problem reaches steady state.
For very small values of ¢ the steady state is achieved quickly following an
initial period of rapid transition. Problem 4 has a parameter o multiplying
the diffusive term %’é. Davis and Flaherty used this problem to test the
performance of an adaptive grid. The solution comprises a travelling wave
whose speed depends on the values r; and r3. For small ¢ one would expect
the term ﬁ% to have little effect on the solution and for the wave to main-

oz
tain its amplitude during its propagation.

The third and perhaps the most common type of parabolic equation is
the convection-diffusion equation. Problems 5 and 6 are examples of
convection-diffusion equations. These equations represent the interplay be-
tween convection and diffusion. Of importance here is the relative magnitude
of the convection and diffusion coefficients. For instance consider the steady
state of problem 5. The time dependent term vanishes leaving the equation

02U oU
et Rg =0

11



Problem 3

aUu 8*U
—_— = — o <z<
eat aa.-%“ 3z 02l

U(0,t) = U(1,t)=0

U(z,0) = sin(7rz)+ %2(93 -1)

2 2
Ufz,t) = e " sin(rz) + %—(a: - 1)

Source: Philips and Rose. [44](¢ = 1072).

Problem 4
ou U
P — —_— fz<
= 06z2+f(x) 0<z<1
U(0,t) = tanh(rgt—ry) U(1,t) = tanh(rst)
U(z,0) = tanh(ri(z—1))
U(z,t) = tanh(ri(z — 1)+ rat)

f(x) is chosen so that the auxiliary data satisfy the equation.
Source: Davis and Flaherty. [14] (¢ = 1072,r; = rp = 5).

12



Problem 5

au BzU au
_ = — <z <
a1 ' = dx Osz<1
uo,t) = 0 U(L,t)=1
U(z,0) = 0
ekz/e _ (-1)"n=x Hz—l} 2, k2
U )b = < 1 : =[(n=) E-I-z]t
(z,1) 7 Z ()t E T3¢ sin(nwz)e
Source: Evans and Abdullah.[17]
Problem 6
aUu o*U oU

ey = a(x,t)wﬂ‘b(m,t)g 0<z<1

U@©,t) = et? U(Lt) = 2
U(a:,O) = E::2(9:+1)

U(z,t) = e(z-i-l)(H—z]
(z+1) _ (=z+1)
‘e = vy 0Ty

Source: Ciment et. al.[9]

13
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Figure 2.1: Exact solution of the steady state convection-diffusion equation.

subject to the boundary conditions U(0) = 0 and U(1) = 1. The exact
solution to this problem is

ekz/e _ 1
e 2.7)

Figure 2.1 shows the solution for successively larger values of k/e. For large
k/e values the solution is almost unchanged until close to the downstream
boundary at x=1. A rapid change in U occurs at x=1 in order to accom-
modate the boundary condition. For most of the interval 0 < z < 1 the
problem is convection-dominated. However, in the thin layer adjacent to
x=1 the slope of U is changing so rapidly that the diffusive term is no
longer insignificant. This phenomenon is termed a boundary layer. Within
this layer the problem is parabolic in nature whereas elsewhere it is very
nearly hyperbolic. Problem 5 exhibits a boundary layer at x=1 for large

U=

14



values of k/e. Problems involving boundary layers cause computational dif-
ficulties which will be studied in Chapter 3 to follow.

Problem 6 is a convection-diffusion problem in which the coefficients are vari-
able. At t=0 the coefficient b is twice the magnitude of coefficient a and, as t
increases, their relative magnitudes become more disparate. Eventually the
problem becomes convection-dominated and a boundary layer forms at x=1.

2.2.2 Nonlinear problems

In the study of nonlinear parabolic equations the most popular and widely
studied equation is Burgers’ equation.

Problem 7
2
U aLlr UBU

& o dm =

This equation is one of the few authentically nonlinear equations for which
exact solutions are available. Burgers’ equation is a very good model for the
Navier-Stokes equations since it represents in the simplest manner possible
the balance between the nonlinear convective process (U3Z) and the dissi-
pative process (6%%). Burgers’ equation is closely related to the kinematic
wave equalion

aUu oU

—+U—=0

ot i Oz
This hyperbolic equation exhibits discontinuous solutions. For example,
if the initial conditions are U = exp~*  then discontinuities appear for

T > +/exp /2. In the case of Burgers’ equation however, the term (e%g-

prevents the solution from becoming multivalued and for small (e%g-) a
boundary layer develops. This type of behaviour is typical of “nearly” hy-
perbolic equations where the developing shocks are “smeared” out by the
diffusive term.

Two solutions for Burgers’ equation are given in (a) and (b) below. For the

15



(a) propagating sine wave solution

U©,t) = U(L,t)=0
U(z,0) = sin(rz)
dem 3 02, ?xp(wenzﬂzt)nfn(gz—pl) sin(nmz)

U(m,t) = s = — hei{!:o
Io(=5% D) + 2552, exp(—e2ntr2t) [, (HZN)cos(nnz)
where
1
I(z) = [exp(zcos(vrz))d:c
0

1
Tul#) = / exp(z cos(mz)) cos(nrz)dz
0
(b) overtaking shocks solution

U(0,t) = U[0,8) U(1,t)=U.(L,%)
U(z,0) Ue(z,0)

Udz,t) = 1- 0.9%?1 = 0.5%

R = ri+rotrs
—[.t—",-"l"‘&.osl!

[l

1 — € 20¢
—(2=0.640.75¢)
re = &€ Z0¢
—(2—0.375t)
- (2.8)

16



sine wave initial condition in (a) the solution was determined by Cole [10].
The solution is a propagating sine wave. As the wave moves downstream
(to the right) the nonlinear convective term causes the leading face of the
wave to steepen and the diffusive term causes the amplitude of the wave to
diminish.

Due to the downstream condition U(1,t)=0 a boundary layer forms at x=1
for small €. This i1s completely analogous to the convection-diffusion prob-
lems discussed earlier. After a time t of O(L) the distorted wave is diffused
away. The second solution, (b), obtained from Madsen and Sincovec gives
rise to overtaking shocks when ¢ is small. Again as t increases a boundary
layer develops at x=1 which is of thickness O(y/€) and slope O(%). In Chap-
ter 6 Burgers’ equation will be used as a test problem for the numerical
methods to be discussed in Chapters 3 and 4.

Problems 8 and 9 are examples of nonlinear heat equations. In Problem 8
the parameter U° can be chosen to control the steepness of the transient
solution and k can be used to control the steepness of the steady state solu-
tion at x=0. In both problems only analytic expressions for the steady state
solutions are available. Problem 9 is nonlinear and also possesses a nonlinear
boundary condition at x=1. Problems 10 and 11 consist of two sets of cou-
pled nonlinear parabolic equations. In Problem 10 the equations are coupled
through source terms whereas in Problem 11 they are coupled through all
spatial terms. In general the greater the coupling between the equations of
a system the more difficult is the numerical solution. Problem 12 is a prac-
tical problem involving parabolic systems. This problem is taken from the
field of semiconductor process modelling. This one-dimensional system rep-
resents the diffusion of dopant material in Silicon at high temperatures. The
equations are coupled through diffusive and convective terms. The convec-
tive terms arise due to electrical interaction of the impurity complexes. The
possibility for steep gradients in the solution arises when high concentrations
of dopant material are present, resulting in strong electrical interaction.

The diversity of parabolic problems as seen above is a challenge to any
software for parabolic equations. In the next chapter we shall see that the
method of semidiscretisation enables software to be general enough to cater
for such a wide variety of problems.

17



Problem 8

o I (a2
at dz

uo,t) = U(1,1)=UTp

U(z,0) = U%
U(z,t = 00) = In(1+ (F?° —1)2)

Source: Braddock and Noye [4] (U?, k typically O(1)(7)).

Problem 9

U _ 9U {aU ~

St MR 2 <z<
at dz | Oz U} Oszs<l

) = 50 U(1,t)=1-sin(V)
U(z,0) = 100
)

= 504/cosh(rz) — sinh(rz)ec
= V2 ¢=0.88055353224

Source: Madsen and Sincovec [33] and NAG DO3PAF example problem.

18



Problem 10

au U

—_— = 0.024—— — = <z<
= 0024‘%2 fU-V) 0<z<1
av v

> = 0.170w ~- f(U-V)

U(0,t) = 0 U(L,t)=0
V(O,t) = 0 V,(1,t)=0
U(z,0) = 1 V(z,0)=0

Source: NAG DO3PBF example problem.

Problem 11
1Y L/ aU 8V ;
av 3%V U8V 8% g
- Pt wE T Y
U,0,t) = 1/2 Uy(1,t)=1/2 - sin(UV)

I

Vv (0,t) r  Vz(1,t) =1+ cos(UV)
U(z,00) = 1 V(z,00=0

Source: Sincovec and Madsen [33].

19



Problem 12

BC,, . i 8Ck+ chlc ds
9t 0z ¥ oz  J/2x1i0z
- Ny +-1-/——Nlc2
s D* +/ =l i
Dk k+Dk N'+Dk N‘-
N
_ chk
5T kZ::l 2N,

c(0,t) = Co‘z—i(z 5> 0,¢) =0

The initial condition for C is a Gaussian or Pearson distribution.
Source: A. van Run, Philips Research Laboratories, Eindhoven.

2.3 The need for adaptive meshing

In the previous section the diverse nature of parabolic problems was demon-
strated. It was seen that frequently in such problems the solution included
regions where the physical variable was rapidly varying. Such situations
arose from the presence of boundary layers and/or propagating shocks. To
bring to mind some of these phenomena Figure 2.2 (a) shows the solution
to Problem 5 for £ = 10 and T=0,1. Figure 2.2 (b) shows the solutions of
Burgers’ equation (problem 7) for the overtaking shocks case at t=0,0.5 and
1.0 for € = 0.003.

Figures 2.2 (a) and (b) indicate that for parabolic problems regions of rapid
variation in the solution may be fixed in time or transient and may not
be confined to one particular location. This observation of course makes no
difference if the problems can be solved analytically. However, if we now con-
sider the numerical solution of parabolic problems using currently available
methods such features as shocks and boundary layers become problematic.

In the following chapter the present-day methods for the solution of problems
of the form (2.5) will be outlined. A numerical method for such a problem
involves replacing the continuous equation with a discrete set of approxi-
mations (discretisation) and using these approximations deriving a solution
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Figure 2.2: (a) Solution of Problem 5 for k/e = 10 at t=0,1. (b) Solution of
Burgers’ equation (Problem 7) for ¢=0.003 at t=0, 0.5, 1.0.
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which is consistent with the original equation. The numerical method should
be sufficiently accurate in order to resolve the main features of the solution
to the continuous problem.

The process of discretising equation (2.5) can be broken up into both spatial
and temporal discretisations. In both situations the continuous derivatives
should be accurately resolved by the discrete approximation. Chapter 3
deals with these approximations in detail. Associated with each approxima-
tion is an order of accuracy. For instance Finite Differences might be used
to discretise equation (2.5) in space and time by imposing a computational
mesh on the region a < z < b, t > 0. As the overall number of mesh
points are increased and the corresponding mesh spacings are decreased the
numerical solution is required to approach the actual solution of the contin-
uous problem.

Finite Difference approximations result from the linear combination of trun-
cated Taylor series and the associated discretisation errors are easily deter-
mined. Similarly expressions for the discretisation error of Finite Element
methods can also be obtained. The truncated terms involve higher deriva-
tives of the dependent variable. Generally the local discretisation error is
proportional to these higher derivatives and some power of the mesh spac-
ing. Thus the accuracy of such approximations depends not only upon the
mesh size but also on the form of the solution.

For instance if the problems of Figures 2.2 (a) and (b) were discretised
uniformly over their entire domain then the error of the numerical method
would be greater in regions where the derivatives of the solution are large
corresponding to regions of rapid variation. Thus for such problems involv-
ing steep gradients the resolution of the solution must be maintained by
imposing a finer grid. If the grid is kept uniform and the mesh spacing re-
duced in order to resolve a steep front in the solution then the number of grid
points will increase enormously. Outside the region of rapid variation such
a high concentration of grid points may be unnecessary since the derivatives
of the solution are small in such regions. Thus employing a uniform but
fine grid in order to minimise the maximum truncation error would appear
to be computationally expensive in such cases. In the next chapter some
numerical experiments are performed using Burgers’ equation that bear this
out.
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It would obviously be far superior to impose a non-uniform computational
mesh in space and time in which the mesh could be concentrated in areas
of rapid variation. This is the basic principle behind the variable-mesh ap-
proach which will be discussed further in Chapter 4. Such a mesh would
tend to equidistribute the truncation error throughout the problem domain.
In the time discretisation of parabolic partial differential equations this prin-
ciple has been used with much success for several years and the area of time-
stepping is well developed. We will therefore concentrate on the question of
spatial gridding. Attempting to equidistribute the truncation error over the
spatial domain using a fixed non-uniform grid might lead to problems since
Figure 2.2 reminds us that regions of rapid variation in the solution might
shift as the problem evolves. Thus to resolve the evolving solution would
require a vartable mesh strategy. This would involve the periodic adaptation
of the mesh as the problem evolves in the following way.

e Determination of regions in the spatial grid where the solution is in a
state of rapid variation.

e Assigning a suitable non-uniform grid in an attempt to equidistribute
the truncation error.

Having observed the diversity of parabolic problems and identified the need
for adaptive meshing we now have a notion of how such techniques might
be implemented. Chapter 4 reviews some of the currently popular adaptive
space-meshing strategies for parabolic problems.
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Chapter 3

Standard Numerical
Solution Procedures

In this chapter standard numerical methods for the solution of equation
(2.5) are examined. These methods are similar in that firstly the continuous
problem is discretised in space (semidiscretisation) and then the resulting
system of ODEs is integrated in time.

Two main types of semidiscretisation methods prevail. These are the Finite
Difference and Finite Element methods which are outlined in section (3.1).
When Finite Differences are used the method is termed the method of lines
(MOL). The suitability of these two classes of semidiscretisation methods
for the solution of the boundary layer and/or propagating shock problems
of Chapter 2 are investigated.

The problem of solving the system of ODEs resulting from the semidiscreti-
sation of parabolic equations is treated in section 3.2. The nature of the
ODE system in such cases warrants the use of ODE integration methods
which are suitable for so called “stiff” problems. A review of stiff ODE
integration methods is presented.

Presently available PDE software embodies automatic semidiscretisation
and ODE integration as described above. Two popular packages for PDE
problems are reviewed in section 3.3. Such packages presume negligible spa-
tial errors and the user must ensure that the spatial approximation and grid
are sufficient to accurately represent the solution of the problem.

24



Section 3.4 examines the results of applying one such package to the solution
of Burgers’ equation (Problem 7, Chapter 2) on a uniform spatial grid. For
solutions involving steep gradients, and especially those which are in mo-
tion, the results are inaccurate. To obtain reasonable accuracy the uniform
grid must be smaller than is computationally practical. It is obvious that
the difficulties encountered in solving such problems as Burgers’ equation
stem primarily from the ineffectiveness of the spatial grid and to a lesser
extent on the spatial approximation. Even the use of non-uniform spatial
grids which are fixed in time do not appreciably improve the results. The
requirement for a spatial grid which adapts in time is clearly demonstrated.

3.1 Methods of Semidiscretisation

The methods of semidiscretising equations of type (2.5) are now examined.
For spatial discretisation the most general approach is to divide the spatial
interval [a,b] into N contiguous mesh spacings thus forming a general non-
uniform grid

lMIy:a=z0<z1<29<...<2N=0b

Such a grid is shown in Figure 3.1

If the spatial terms of (2.5) are discretised using the grid IIy then each PDE
reduces to an ODE at each mesh point which evolves in the time direction.
Each equation in (2.5) therefore reduces to a system of N+1 ODEs. This
is why the method of semidiscretisation is often referred to as the method
of lines (MOL). The two main methods of semidiscretisation are the Finite
Difference and Finite Element methods, which shall now be examined.

3.1.1 Finite Differences

Finite Difference approximations arise when continuous derivatives are ap-
proximated by truncated Taylor series. This involves the imposition of a
grid and the replacement of the continuous derivative at each grid point by
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Figure 3.1: General non-uniform grid on the interval [a,b].

a linear combination of functional values at adjacent points.
For example, in the Finite Difference approximation of the spatial deriva-
tives in (2.5), assume that the spatial interval [a,b] has been discretised using

the general non-uniform mesh IIy above. The following replacement of y!
is possible in terms of y values at adjacent mesh points.

Vi = ayit1 + Byi + VY1

Using the notation

P=Azi1 =Tiy1 — T q=Az; =x; — i1

the values y;1; may be expressed as Taylor series about y; as follows.
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5
Yol = Y- QY+ 2,9. 3 (m]+ (w) 5,y§u]+... (3.1)

Wr = Gitpyi+ ”y,+§f“‘]+4|y,'°’+ Pt (2)

or, more generally,

1)k gk gk ; Xk gk ;
Yi-1 = Z - )! : y and yiy1 = % ‘ajc
k=0
Solving (3.1) and (3.2) for y! gives

1 q2 1§ W qﬁ v
o= E{y Vi1 + 04 Iy( ’+4|”-—g?y§’+... (3.3)

v 1 Pz [u:) (w) P (v)
o= v b g - Su 4+ BBl 8 69

Adding p times (3.3) and q times (3.4) causes the second derivative terms
to vanish as follows

P? y! Pq (m)+Pq (iv) PG’ {v]

P
py; = {y.—ya i)+ Y Y

qy; = %{yi-i-l"yi} gy{' 1.0 (m}+qp ()

{U)-L..;

3l Th -
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2 2 3 8
q P - : -
P+ )y = L{yepr—w}+ 2w — g}~y EPL I PT
p q 3! 4!
1 4
_, e — P
u St
E = l{q._.P..}PQ(M}Pq (iv)
¥ = Pty p{yﬂ—l v} + q{yl yl‘]}‘ 6 Y; 24 (p q)y'.
. S T 2y,,(v)
o0 P —PaT )Y+ (3.5)
Thus y! becomes
1
v = Ptq {i‘{ym — 4} + -E{yi = ys—1}} + Ey (8.6)

where

(fv) _ P9

- 24 (i) P
By = £\ Bl Yol
1 Y, 24(2’ 9y 120

g Vi (* — pg+ )y + ...
Putting this in the standard form (3.1.1) gives

2 2
! q P —q P
¥ = {(———ai +{E—Y A+ {~——}p1 + B

¢ {p(p+q) S S LA Q(p+r1)}‘ te

In the case of a uniform grid (p=q=h) this expression reduces to

1 1
v = {55 in + {~ 57} (8.7)

where Fy becomes
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G Ji0)
Bi=-g¥% '120 A

This is the familiar second order accurate, centered diﬁ'erence approxima-
tion of y}. In a similar fashion an approximation of y in the form (3.1.1) is

possible.

% = ayir1 + By + 1¥i-1
Again, solving equations (3.1) and (3.2), this time for y/', gives

"

4|

yi o= 2{y:+z - pyi - B,y,("’) 4,yf'”) s,y.(")

2
¢
2

b~}

Adding q times (3.8) and p times (3.9) and solving for y' gives

2,(#) 8 (iv) 4 (v)

{yg- —yi+ gy + 3,y,("') ("’) + u+ .

qy1 qyl +qyl

h = “ _
(P+Q)yi — {yi 1 y1}+2{ ; + 3] 4! 51

} (3.8)

} (3.9)

=+

2, (%) 3 () 4 (v)

2 ) _ I p yg p y| p yq,

(tzz)
2 2
(p+q)y! = E{y<-1~y.~}+;{yi+1 y¢}+———(q 2)+

(v
(q p') +

29

(W)

)

5 (—¢° - p°)



Thus y!' becomes

2
r+gq

i -=
Y =

{%{yi-f-l ~ %} - %{yi - y;_l}} + By (3.10)

where

By =P80 P -pitd e P -platd’ptd’

(v)
6 % 12 Y 60 <

Putting this in the standard form (3.1.1) gives

n __ 2 " _i g o 2 5
Ys _{p(p+q)}yl+1+{ pq}y'+{ q(p+q)}yt—1+E2

Again, in the case of a uniform grid (p=q=h) this expression reduces to

1 2 1
v = {Fhm+{-zhu + {ﬁ}y;_l + E2 (3.11)

where Ey becomes

h2 (iv)
Fy = ——y: + ...
4 ].2yi

Tables 3.1 and 3.2 summarise the above Finite Difference approximations
for both uniform and non-uniform grids.
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Yi = ayit1 + BYi + V¥i-1

uniform | non-uniform

T.E. (leading term) —i'éiy("'“) L

Table 3.1: Discretisation coefficients and leading term of the truncation error
for approximation of %%i on both uniform and non-uniform grids.

The Finite Difference formulae treated up to now have been centered ap-
proximations. In practice, however, such centered approximations are not
always useful.

Consider once again the steady state of Problem 5 of Chapter 2.

o*U ou
6-872' i k—a—; =0 (3.12)

subject to the boundary conditions U(0)=0 and U(1)=1. The solution of
this equation was seen to be

ekzle _ 1
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v = ayiy1 + By + Yyi-1
uniform | non-uniform
- 1 2
hZ plp+q)
2 2
8 % | -3
1 2
v X 2(p+q)
) - e
T.E. (leading term) —%yf“’) _Lsiy‘(‘")

Table 3.2: Discretisatiozn coefficients and leading term of the truncation error
for approximation of %;gi on both uniform and non-uniform grids.

Let us now examine the effectiveness of the centered approximations applied
to this equation. For simplicity a uniform grid z; = ({ — 1)h, i=1, ... N+1
is presumed. Applying the approximations (3.7) and (3.11) results in the
following algebraic equation at internal nodes.

€Uirs —2Us + Uica]  k(Uig1 — Ui-1) s
h? 2h

i=2,...,N

or

kh
Uiy1 —2U; + U;—q — E[Uﬂ.l—U{_l] =0 i=2,...,N (3.14)

with U(1)=0 and U(N+1)=1 at the boundary points.
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This equation is a homogeneous linear difference equation of order two. This
can be solved as follows.

Letting U; = r* the equation becomes

. S ki ¢ - .
i+l _ o8 =1 L e L | =
r 2r' +r = (r r ) = 0 (3.15)

(r2—2r+1)—-§—}:(r2—1) = 0

Denoting k?f' by £ implies

(P-2r+1)-p(*-1)

Il
o

I
o

r?(1-8)+r(-2)+(1+8)

The solutions to this quadratic are

2+ /42— 4(1-p?)
2(1-p)

1 4

TSP

1-8 " 1-8

The principle of superposition allows a general solution to (3.15) to be con-
structed as follows.

e ko) om iy )

=8 TP -5
= A3 Gfg)'wo (3.16)
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Figure 3.2: Comparison of exact and centered difference solutions for k/e =
20 and h=0.05, 0.1 and 0.2.

The exact solution of the continuous problem (3.13) and the exact solution
of the difference equation (3.16) can be compared. Figure 3.2 compares the
two solutions for k/e = 20 and h=0.05, 0.1 and 0.2.

For h=0.05 (corresponding to 8 = 0.5) the solution of the difference equa-
tion agrees reasonably well with the exact solution of continuous problem.
The solution corresponding to # = 1 is accurate except in the boundary
layer and for # = 2 the solution is both oscillatory and inaccurate.

By examining (3.16) it can be seen that in order to guarantee a non-
oscillatory solution the term in brackets must be positive. Thus for a non-
oscillatory solution to the difference equation we require

B<1 (3.17)

This restriction is often referred to as a cell Reynolds number limitation. In
order to avoid oscillations the grid spacing must be restricted in size so that
(3.17) is satisfied. This is equivalent to requiring that
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A popular technique for avoiding oscillatory solutions is the method of up-
winding [19]. This involves the approximation of the convective term % by
a one sided Finite Difference approximation which is first order accurate’.
For example in the above problem where the boundary layer is at x=1 the
backward difference approximation of %%

Ui—= U 3
(—h—‘“)

may be used as follows.

kh
Ugpy —~ 205 +-Upq — - [Ui — Ui-4] =0 (3.18)

This difference equation is solved in the same way as equation (3.14) to give

Ui=Bo(1+f) + 4o, B=2 (3.19)

€

Figure 3.3 compares the exact solution of the upwinded difference scheme
(3.19) and the previously derived scheme (3.14) with the exact solution of
the continuous problem (3.13) for h=0.2 and k/¢ = 20. The upwind scheme
exhibits non-oscillatory behaviour but is also inaccurate. It is instructive
to write the convective term in the upwinded difference scheme (3.18) as
follows.

! The reason why this technique is called upwinding is because only information upwind
of node k is transmitted to node k by convection. This technique was first used in weather
prediction models; hence the name.
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Figure 3.3: Comparison of upwind and centered difference solutions with
the exact solution for k/e = 20 and h = 0.2

au k
ke = % [Uisr = U3

k k
= 3 [Uiga = Us-1] = ETA [Uis1 — 2U; + Uiy]

This corresponds to the second order centered approximation of the convec-
tive term plus an additional diffusive term. Thus the upwinded scheme is
equivalent to solving equation (3.12) with an effective diffusivity of

_ kh

E[1+ﬂ]! ()B“E)

This extra diffusive term, encurred by the use of upwinding, is known as
numerical diffusion. In the next section an approximation of the convection-
diffusion equation shall be derived, using Finite Elements, which allows up-
winding but also some control over the resulting numerical diffusion.



The semidiscretisations discussed above when applied to the solution of the
linear problems of Chapter 2 result in systems of coupled ODEs. If the
number of original PDEs is N and the number of spatial grid intervals is
N then the dimension of the resulting ODE system will be (N + 1) * N. If
the methods are applied to the nonlinear problems of Chapter 2 the result
is still a system of (N 4+ 1) * N ODEs. Thus as far as semidiscretisation is
concerned the problem in question may just as easily be nonlinear as linear.

Before proceeding further with the methods of Finite Differences, considera-
tion is now given to the approximation of boundary conditions for problems
of type (2.5). Consider the general boundary conditions

U; = f;(z) t=0

oU;
Ui+ a(t)5— = r(Uit) z=ab t>0

Two main cases arise

Dirichlet boundary conditions: Here q(t)=0 at x=a,b and the solution
value U is obtained directly using

_r)
S p(t)

Note: if q(t)=0 then r must be independent of U.

Since U; is a known function of time it is not necessary tc solve an
ODE for the value of U; as the problem evolves. Thus in the case of
Dirichlet boundary data the system of ODEs is reduced by 2 = N. For
a single Parabolic equation (N=1) with Dirichlet data if the second
order centered Finite Difference semidiscretisation is chosen then the
original PDE reduces to
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U1 r1 (t)

p1(t)
oU .
'5— — f(Ui—liUf)Ui-i-l) 72227-~'3N
t
ro(t
UnNt1 = 2()

General boundary conditions: Here ¢(t) # 0 at x=a,b and the solution
value U is not explicitly available. The spatial operator can be evalu-
ated at the boundaries leading to ODEs for the boundary values. The
first order derivative at the boundary is available from the boundary
condition as

However the second derivative at the boundary cannot be approxi-
mated using central differences since values outside the boundaries
are not available for the approximation. Forward differences at x=a
and backward differences at x=b must be used in such cases. The
representation of the spatial operator at the boundaries is therefore
only first order accurate. For a single Parabolic equation (N=1) with
general boundary data the second order centered Finite Difference
semidiscretisation leads to the following system of ODEs.

oU :
E':f(Ui—lanan-l—l) t=1,...,N+1

In the case of general boundary conditions, the order of accuracy of the fi-
nite difference scheme suffers somewhat at the boundaries. This is one of the
main difficulties encountered in the solution of parabolic PDEs. In Chapter
4 the improvement of boundary representation by using non-uniform grids
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will be investigated. The main reason for the popularity of the centered and
upwinded Finite Difference semidiscretisations is because the Jacobian of
the resulting ODE system is always tridiagonal for a single PDE and block
tridiagonal for a system of PDEs. This means that in the solution of the
ODE system using implicit methods, only tridiagonal linear systems of al-
gebraic equations occur. Efficient algorithms are available for the solution
of such systems. See [47], [52] and [30].

For higher order Finite Difference approximations the problems of repre-

senting boundary conditions are even greater. For example a centered fourth
. . 2 . .

order approximation for %—z% based on a five point formula is

02U  —Ui_y + 16U;_y — 30U; + 16U;41 — Uiys

aut 12h2 i#20)

This fourth order approximation is of little practical since fourth order ac-
curacy will not be possible at nodes adjacent to the boundaries. This is
because the computational molecule for this semidiscretisation spans five
nodal values.

Due to these consequences, higher order Finite Difference schemes have been
sought which maintain the tridiagonal nature of the spatial operator. Ci-
ment et. al. [9] derived a fourth order semidiscretisation of this kind for the
convection-diffusion equation. Rather than approximate the spatial deriva-
tives independently to fourth order the operator compact implicit method
establishes a fourth order accurate relationship between the spatial operator

L) = a(z)%—m% (@) (3.21)

and the function U on three adjacent mesh points. This is similar to the ap-
proach used in the Galerkin Finite Element method which will be discussed
in 3.1.2. This relationship is as follows
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_ r;*'Ui “+ r?U- + r; Ui
g (L0)iyr + & (LU)); + 47 (L(0));y = =——5 {3.22)

where

g7 = 6a;a;_1 + h(5a;_1b; — 2a;5;_;) — R¥b;b;_y

g = 6a;8i41 — h(5a;+1b; — 2a;biy1) — A2bibigg

g0 = 4[15ai110i-1 — 4h(Gis1bic1 — bit1ai—1) — R2bip1bi—1]

i = %[qf’ (20i41 + 3hbi+1) + ¢ (20 + hb;) + ¢ (2ai—1 — hbi1)]
;7= e (e + hbiy) + (205 — b)) + g7 (2ai-y — 3h )]

o= =(rf+r)

This is written as

.Q_.;_:EU(Q:;) = L(U;) + O(h*)

where Q and R are tridiagonal displacement operators. A Taylor series anal-
ysis of (3.22) allows the coefficients r; and g; to be determined.

For Dirichlet data fourth order accuracy is maintained across the spatial in-
terval a < z < b with a computational molecule spanning only three adjacent
nodes. This is identical to the second order Finite Difference replacement of
(3.21). In the case of general boundary conditions, fourth order accurate ex-
pressions involving the boundary values can be obtained using the boundary
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nodes and the two adjacent nodes. This alters the tridiagonal nature of the
ODE system resulting from the semidiscretisation but can easily be handled
by preprocessing the linear system prior to using a conventional tridiagonal
solver.

3.1.2 Finite Elements

Finite Element methods result from an integral representation of the evolu-
tionary equation. These methods involve building an approximation of the
exact solution using linear combinations of basis functions in each subregion
(finite element) of the computational grid.

One of the most popular Finite Element methods for the discretisation of
elliptic problems and the spatial discretisation of parabolic problems is the
Galerkin Finite Element method [18]. This method is a special case of the
more general class of weighted residual methods.

Consider the general parabolic partial differential equation

U
-7 =AU)  (zeR,t>0) (3.23)

The function U(x,t) which satisfies (3.23) is termed a classical solution.
Problems expressed in this form may be solved using classical Finite El-
ement methods if the function U is also the solution to some variational
problem. See [38], Chapter 2. It is however possible to apply Finite Ele-
ment methods to problems of the form (3.23), for which variational problems
do not exist, by considering the weak form of the problem

(U, w) = (AD),w) (3.24)

where w is some function and where the inner product (a, b) is defined as
(a,b) :/ a(z)b(z)dz
R
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Solutions to this problem are generally less continuous than their classical
counterparts and may not even be distinct. However the use of the weak
formulation greatly extends the use of Finite Element methods.

The method of weighted residuals generates an approximate solution of
(3.23) of the form

N
U(z,t) = Uo(z,t) + Y a;(t)$;(z) (3.25)

i=1

where ¢;(z) form a linearly independent set of known analytic functions.
These are often called trial functions and equation (3.25) the trial solution.
The functional Up is chosen to satisfy the boundary conditions. Equation
(3.25) suggests that equation (3.24) reduces to a set of ordinary differential
equations in t. The coefficients a; in (3.25) need to be determined and one
method is to set the inner product of the weighted residual, R = %Ltl - A(U),
to zero

(R,wj(z)) =0 j=1,...,N (3.26)

This is where the method takes its name and w; above is referred to as the
weight or test function.

In the two sections to follow, the Galerkin and Collocation Finite Ele-
ment methods are examined. Both of these methods belong to the class
of weighted residual methods.

Galerkin Finite Element methods.

In this method the weight function is chosen from the same family as the
trial functions. The inner product of the weighted residual thus becomes
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(Ry$;(e)) =0 7=1,....8N axz<h (3.27)

Solving this system allows the constants a; in equation (3.25) to be deter-
mined. It is essential that the functions ¢;(z) be linearly independent since
otherwise the system of equations represented by (3.27) will become ill-
conditioned. This occurs for large N in the traditional Galerkin method
where the trial functions are defined over the entire spatial domain, as
demonstrated by Fletcher [18]. The use of piecewise trial spaces guarantees
that each trial function will only have local support and thus the system
(3.27) will remain well conditioned, even for large N. The use of piecewise
polynomial trial spaces with the Galerkin method constitutes the Galerkin
Finite Element method.

For example, consider the piecewise linear trial functions shown in Figure
3.4. Let us apply the Galerkin Finite Element method with the linear trial
functions of Figure 3.4 to the solution of Problem 1, Chapter 2.

U  18'U 5% ma I
ot w9zl = ®
v,t) = U(@,t)=0
U(z,0) = sin(nz)
U(z,t) = e tsin(nz)
Introducing the approximate solution
N
Ulz,t) = D aj(t)$;(z)
i=1
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Figure 3.4: Piecewise linear (hat) trial functions.

The weak form of the problerh is

(av’%) (ifzf,%) I

Substituting the trial solution into the weak form of the problem followed
by integration by parts gives

N.d d*U
Z U (6ird5) — 22 —¢idz = 0 j=1,...,N
dz

i=1

& dav; 1 Xodgi d _
Z¢-,¢J -—52(¢ ¢’) =0 j=1,..,N
=1 =1
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Now we introduce the linear trial functions ¢; which, for convenience, we
will presume are defined on a uniform mesh of size h. This allows the inner
products to be calculated.

For example (¢;,#;) can be determined as follows. Referring to Figure 3.4

=i I‘Zi—l)z ["H (xm—x)z
i ®i) = — ] dz + ——— ) dz
(4:,9:) .[z (:r; =y z; Tiy1 — i

i—1

1 *i 1 Zit]
= Ef,/; (;‘t:2 — 2z + I?_l) de + ﬁ/ (I?+1 — 2zziyy + 3:2) dz
=1 T

= $ [(37:' ~%5-1)> 4 (Zi x‘)s]

h® h®
eV T

h
.2..}1
3

Similarly the inner products (¢;, ¢;.1) and (&;, ¢i-1) become

h
(i, dig1) = 3= (&i, 0i-1)

and

(%)

Using these inner products the trial solution becomes
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1dU;_; 2 dU; ldUl'+1 . i (U,'_l -2U; + U,'+1)

6 dt 3 dt 6 dt w2 h?

The right hand side of the above Finite Element discretisation is identical to
the centered second order Finite Difference replacement of %‘é previously
derived in section 3.1.1. For this reason, Galerkin Finite Element methods
are often regarded as an alternative method of deriving Finite Difference ap-
proximations. In the above formula, the time derivative is distributed over
three adjacent nodes of the mesh. Thus the Galerkin method establishes a
linear relationship between U and L(U)(= 4%) on three adjacent grid points.
The resemblance between the Galerkin method and the operator compact
implicit Finite Difference method studied in section 3.1.1 is obvious. Swartz
[49] examines some difference schemes which closely resemble Finite Element
methods and Varah [52] demonstrates the equivalence of the well known boz
scheme of Keller [28] and the Galerkin Finite Element method. As pointed
out by Hopkins [27], the main difference between the method of lines and
Finite Element methods is that the former method reduces equation (3.23)
to an ODE system of the form

oU
— U
7 - )
whereas the latter leads to
oU
B— = f(U
= ()

As in the case of Finite Differences the Galerkin Finite Element method
can be used to semidiscretise convection-diffusion equations. Consider once
again the steady state of Problem 5, Chapter 2.

92U aUu
g2 Y _

g k=0 (3.28)
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subject to the boundary conditions U(0)=0 and U(1)=1. Application of the
Galerkin Finite Element method with piecewise linear trial functions on a
uniform mesh results in the following difference equation

kh
Uiy1 — 2Us + Us—g — e (Ui1 = Uiz1) =0

This is identical to the difference equation (3.14) produced by second order
centered Finite Differences. Thus the two formula give equivalent approx-
imation of the spatial terms in the convection-diffusion equation. A cell
Reynolds number limitation therefore also exists for the Galerkin semidis-
cretisation. Upwinding is also a common method of improving the spatial
resolution of Galerkin methods. Such a scheme is an example of the gen-
eralised or Petrov-Galerkin [18] formulation and, in contrast to the case of
Finite Difference, oscillations at high Reynolds number can be avoided with-
out a reduction in accuracy.

The upwind Galerkin Finite Element scheme is derived by introducing the
following modified trial function

Yi(z) = ¢i(z) + avi(z)

as shown in Figure 3.5.
The function v is an antisymmetric quadratic perturbation function and o

is a parameter which controls its influence. Using this trial function in the
Galerkin formulation gives the following algebraic equation at internal nodes.

kh
(14 0) [Uiy = 2U; + Uigq] - - (Ui —U;i—1) =0
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Xi-y Xi Xi+i

v = —3n(1 — n) in element [i, i+1]
v = 3n(1 + n) in element [i-1, i

where 1 is a local coordinate.

Figure 3.5: Trial function used in the upwind Galerkin Finite Element
method.

When a = 0 the scheme corresponds to the conventional Galerkin or Finite
Difference semidiscretisation whereas o = 1 gives full upwinding. Unlike
the Finite Difference upwinded scheme, the use of the parameter « in the
upwind Galerkin Finite Element scheme allows the numerical diffusion to
be controlled.

Collocation methods.

In this weighted residual Finite Element method the weight function, w;(z)
is chosen as

wi(z) = &(z — ;)

where § is the Dirac Delta function.

Thus the residual R; = 0 and (3.24) is satisfied exactly at a number of
points zjeR(j = 1,...,N) called collocation points. This set must include
the boundary points. This property is also shared by most Finite Difference
schemes.

The solution to R(z;) =0 (j = 1,...,N) allows the coefficients a; of the
trial solution (3.25) to be determined. The main advantages of collocation
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are

e There are no inner products to integrate as in the Galerkin Finite
Element method.

e The resultant semidiscretisation has fewer terms than in the Galerkin
method.

The main disadvantages of the collocation method are
e The boundary and initial conditions must be consistent.

e It is necessary to use trial functions of at least the same order as the
original differential equation.

e Collocation techniques are non-conservative and as such may be inap-
propriate for some problems based on conservation laws.

In section 3.3 the popular collocation software package PDECOL of Madsen
and Sincovec [32] will be reviewed.

3.2 Temporal Integration

Having outlined the common methods of semidiscretisation for parabolic
problems, consideration is now given to the solution of the resultant system
of ordinary differential equations.

Section 3.2.1 examines the nature of the ODE system and introduces the
notion of stiffness. The need to use stiff integration methods when dealing
with equations of parabolic type is demonstrated.

The currently used methods for stiff systems of ODEs are reviewed. Soft-
ware for ODEs is of a high quality and the integration of a problem is carried
out in an automatic and optimal fashion. Some of the basic techniques used
in the automatic integration of ODEs are outlined.
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3.2.1 The nature of the ODE system and the notion of stiff-
ness

In 3.1 various semidiscretisations from the class of Finite Difference and Fi-
nite Element methods were derived. Now let us consider the results of such
semidiscretisations.

Consider a single parabolic equation of the form of equation (2.5) discretised
in space on the uniform mesh

e i _(b—a)
z; = (1 —1)h =Y, sN 41 k= N

The result of such a semidiscretisation is a system of ODEs of the form

U
= =1 (3.29)

in the case of Finite Differences, and

aUu

in the case of Finite Elements (with U(0) specified).

The semidiscretisation reduces an initial boundary value problem (IBVP)
for a PDE to an initial value problem (IVP) for a system of ODEs. Based
upon the grid given above these systems will be of dimension N+1. How-
ever, as mentioned in section 3.1.1, in the case of Dirichlet data, the ODEs
corresponding to the boundary points reduce to the trivial cases

f_U_l_zo dUN+1=0

dt dt
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For generality however let us assume that the ODE system has dimension
N+1. Section 3.2.2 outlines the presently used numerical methods for the
solution of such systems. Firstly however it will be instructive to examine
the properties of such systems resulting from the discretisation of parabolic
problems. This will lead us to the notion of stiffness.

As an example consider the semidiscretisation of the simple heat equation
(Problem 1, Chapter 2)

U 1 9*U

_— = e 0 L&

at 2 9z -
Semidiscretising this equation using conventional second order centered Ii-
nite Differences produces the following ODE system

[ -2 1 0 0 17 U2 7
1 -2 1 0
1 -2 1
al; 1
'E—'Zp’ (3.31)
1 -2 1
0 1 -2 1
| 0 0 1 -2 JLUN ]

The eigenvalues of the above matrix are given by Seward [45] and are real
and negative.
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For large N the largest eigenvalue may be approximated by

and the smallest eigenvalue may be approximated by

/\N%—l

The negative reciprocals of these eigenvalues correspond to the time con-
stants of the ODE system. Thus for large N the system will possess disparate
time constants. This may often lead to computational difficulties and in such
cases the ODE system is termed stiff?. The conditions for stiffness to occur
depend on the range of integration. Small decay time constants correspond
to transient solution components. If the range of integration of the ODE
system is restricted to the transient interval then the variation of the solu-
tion can be adequately represented using standard integration methods. If
the range of integration is much larger than the transient interval, then the
solution in this region is dominated by the slow components (corresponding
to small eigenvalues). However small time steps must still be used in the
integration in order to resolve the transient components in a stable manner,
even though they hardly affect the solution.

Thus the stiffness of the system depends both upon the ratio of the maxi-
mum and minimum negative eigenvalues and the range of integration. An
adequate measure of stiffness is the following index

tes
S = kL or S = tfinal/\maz

Tmin
where 7 is the time step.

2The name “stiff” was introduced by Curtiss and Hirschfelder [12] because the servo-
mechanism modelled by such an ODE system felt stiff.
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A value of S &~ 100 would be regarded as stiff and S ~ 10 as non-stiff. For
the above problem the stiffness index would be

4N?
‘ﬂ__2tfinal

Thus for N=100 and tipe = 7% this problem would be stiff. For N=10 and
tfinat = 1 the problem would be mildly stiff.

From the numerical perspective stiffness arises when stability rather than
accuracy dictates the time step. As pointed out by Seward et al. [45], and
indicated by the above example, stiffness is associated with parabolic prob-
lems in which the diffusive process dominates. In order to guarantee an
accurate solution to (3.29) or (3.30) we must anticipate the need for numer-
ical methods suitable for stiff ODE systems. In the next section integration
formulae suitable for stiff systems are examined.

3.2.2 Integration formulae for stiff ODE systems

Previously it was seen that stiffness depends on several factors including
the type of problem and the numerical approach being used. It was also
observed that stiffness may vary during the evolution of the solution. The
measure of stiffness used above is primarily a qualitative one and precise
measures are not in common use owing to the computational expense of
calculating eigenvalues for a system of equations. A more modern approach
to measuring stiffness is given in Bui et al. [5]. The presently used robust
methods for ODE integration rely on formulae that cater for varying de-
grees of accuracy and stability requirements. By far the most popular of
such methods are the linear multistep methods (LMM).

Linear multistep methods are formulae of the form

K
> cktntr—k +h D Brtint1-k =0
k=0 k=0
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for solving the ODE system
= f(u,t) (3.32)

where h is the step size and the coefficients o and S depend on h. By
convention g is chosen to be -1.

Two notable families of LMM exist, namely the Adams Moulton (AM) meth-
ods and the backward differentiation formulae (BDF) popularised by Gear
[22]. The general form of the Adams Moulton method is

K-1

Untl = Up + h ; Brtint+1-k
k=0

If B,=0 in the above formula then uy,; can be obtained explicitly. The first
order explicit AM method is the well-known Euler method

Upy1 = Up + htln-{-l (ﬁﬂ = Oyﬁl = 1)

The second order AM formula is the trapezoidal rule

. . |
Unt1 = Up + 3 (1 + %) (Bo=0,01= 5)

This method corresponds to the well known Crank Nicolson time discreti-
sation for partial differential equations. See Mitchell and Griffiths {37].

The BD formulae are implicit multistep methods of the form
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K

—Bohtnt1 = —Unt1 + Z QpUpt1-k
k=1

The first order BD formula is the backward Fuler scheme

htupi1 = upt1 — up (,BO =l = 1)

It was mentioned in the previous section that stiff problems require small
time steps in order to maintain stability. The stability properties of mul-
tistep methods are now considered. For each MSM a truncation error can
be determined. Absolute or A-stability prevails when all the eigenvalues
of the system (3.32) are negative. Thus the accumulation of past errors is
prevented. Absolutely stable formulae would be the best methods for the
solution of stiff problems since the region of stability extends to —oo in the
left A plane. Unfortunately however, as proven by Dahlquist [13], there are
no explicit A-stable MSMs and the highest order implicit A-stable method
is the trapezoidal rule. Thus if one is restricted to using only A-stable for-
mulae then only low order approximations are possible and small time steps
are required for sufficient accuracy. Thus A-stability satisfies the stability
requirement for stiff problems but an accuracy problem remains.

Gear [22] however relaxed the A-stability requirement so that stiff com-
ponents in the solution corresponding to large and negative hA (region R;)
could be represented stably and non-stiff components corresponding to small
and negative hA (region Rj3) could be represented accurately. See Figure

3.2.2. Methods possessing such properties are known as stiffly stable meth-
ods.

The Adams Moulton methods are not stiffly stable and hence are of no in-
terest to us for the solution of ODE systems resulting from the semidiscreti-
sation of parabolic problems. The BD formulae of orders 3-6 are however
stiffly stable are suitable for our needs. Figure 3.2.2 shows the stability re-
gions for the BD formulae of orders 1-6. These formulae are the presently
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Figure 3.6: Regions of absolute stability for stiffly stable methods.

accepted standards for solving stiff systems. The pioneering software pack-
age DIFSUB [21] was written by Gear and uses BD formulae for the stiff
solver option and AM methods for the non-stiff option.

Given a user specified tolerance r the local truncation error at each step
in the integration is required to satisfy || EX ||< r. Using analytic error
expressions for each formula the maximum possible steps which might have
been used in the previous step are estimated both for the present order and
the nearest higher and lower formulae. The new order and step size for the
next step are chosen from these estimates so that the step size is maximised.
Gear in fact used a fixed step size for several steps in order to guarantee
accurate error estimates. Several other heuristic approaches were also used
in order to produce a robust code.

Other versions of the Gear package were later developed to take advantage
of particular problem structures. For example, GEARB was developed for
systems having a banded Jacobian structure and GEARIB for correspond-
ing implicit ODE systems. The next major improvement to the Gear type
ODE integrator was the implementation of fully variable stepping in the
code EPISODE [26]. Presently, ODE integrators in popular use correspond
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Figure 3.7: Regions of absolute stability for the BD formulae of orders 1-6.

to LSODE [24] or its variants. LSODE incorporates all the innovations to
the basic Gear package outlined above. LSODI [25] is designed to solve lin-
early implicit ODEs and LSODIB is a variant of LSODI suitable for systems
with banded Jacobians. LOSDA possesses an automatic stiffness check so
that switching between stiff and non-stiff formulae may be performed auto-
matically. This technique is based on an algorithm of Petzold [42].

Having now examined the semidiscretisation of parabolic problems and the
solution of the resultant ODE system we will now examine two popular
packages which implement these algorithms.

3.3 PDE Software

Presently used PDE software for parabolic equations in one space dimension
incorporate the following techniques.

Automatic semidiscretisation The programs discretised the spatial in-
terval on a user specified grid according to some generally applicable
discretisation rule. The user has the responsibility of ensuring the
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adequacy of the spatial grid and, where available, the choice of the
discretisation.

Automatic ODE solution The system of ODEs resulting from the dis-
cretisation above is solved by the program in an automatic fashion
using on of the available ODE integrators described in the last section.

Details of two packages for solving parabolic type partial differential equa-
tions are now given.

3.3.1 NAG Routine DO3PGF

This routine, based on the code of Sincovec and Madsen [46], is designed to
solve a general system of N parabolic equations of the form

subject to the general boundary conditions

oU; .
pi()U; -|-q,(t) —r(U,,t) i=12,...;N

in either Cartesian, polar or spherical polar coordinates.

The method of lines approach is used in which the spatial terms are dis-
cretised using second order centered Finite Differences. If the boundary
conditions are such that q is non-zero then the order of accuracy at the
boundaries is of order one. Discontinuities are permitted between the initial
and boundary values and the user may choose from a limited number of
fixed non-uniform grids. The ODE integrator for this package comprises the
GEARIB variable order/variable step code. The initial time step is auto-
matically chosen by the program and subsequent steps are chosen so that
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a user specified accuracy in the time integration is maintained. The code
is robust and allows automatic resetting of the integration in the case of
rejected time steps.

3.3.2 PDECOL

This routine by Madsen and Sincovec [32] solves the general system of N
partial differential equations

oU;

W:fi(tyzaUaUmUzz) 2'21,2,...,N

Since the system incorporates ODEs and the three standard types of PDEs
then for each equation of the system zero, one or two boundary conditions
may be needed. They must be of the form

b,'(U, Uz) = z,-(t)

and must be consistent with the initial conditions. The program semidiscre-
tises in space using a Finite Element collocation procedure with piecewise
polynomial test functions. The degree of these polynomials is required to
be higher than the degree of the PDE(s) being solved. The user specifies
the numerical grid and the result of the automatic semidiscretisation is the
ODE system

av
AE - g(t> U)

The main restrictions in PDECOL are the requirements for continuity be-
tween the initial and boundary conditions which limits its applicability some-
what. Also the nonconservative nature of collocation methods in general
makes them inappropriate for problems where a conservation law must be
satisfied.
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Figure 3.8: Exact solution of Burgers’ equation for ¢ = 0.003 at T=0(0.1)1.

3.4 Uniform grid implementations.

In this section we examine the results of a uniform grid solution to Burgers’
equation. The NAG routine DOBPGF (release 13) was used to solve this
equation on the interval T' = [0,1], z = [0, 1] for the overtaking shocks solu-
tion (2.8) with ¢ = 0.003.

The exact solution of this problem is shown in Figure 3.8. The solution
exhibits both overtaking shocks and a boundary layer at x=1 during the
chosen time interval and thus presents a challenging test for any program.

The solution was calculated for uniform mesh sizes of 21, 41, 81 and 161
mesh points. Figures 3.9, 3.10 and compare the numerical and analytic so-
lutions at the final time T=1. In all but the final plot oscillations arise in
the neighbourhood of the boundary layer. These oscillations are typical of
Finite Difference solutions of nearly-hyperbolic equations. Only in the final
example, where 161 mesh points were used, do the oscillations appear to
disappear.
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Figure 3.9: (a) Comparison of exact solution of Burgers’ equation for ¢ =
0.003 at T=1 with the numerical solution calculated on (a) 21 mesh points
and (b) 41 mesh points.
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Figure 3.10: Comparison of exact solution of Burgers’ equation for ¢ = 0.003
at T=1 with the numerical solution calculated on (a) 81 mesh points and
(b) 161 mesh points.

62



Both the maximum absolute error at t=1 and the CPU time were measured
for each of the above implementations in order to assess their accuracy and
efficiency. Figure 3.11 (a) shows the errors obtained for the four grid sizes
used. The error decreases rapidly as the number of grid points increases.
However even for the finest grid the maximum error is still quite large and
would not be acceptable for practical use. For sufficient accuracy therefore,
grids of the size of 200 or more points would appear to suffice. The effect
of the grid size on the CPU time required to solve the problem is displayed
in Figure 3.11 (b). The CPU time consumption appears to vary approxi-
mately linearly with the number of mesh points in this particular range of
integration. However, for the finest grid, which is by no means acceptably
accurate, the time is approximately 100 seconds. The actual computer used
for these experiments was an APOLLO workstation.

The results shown above demonstrate clearly that for problems with rapidly
propagating shocks and/or boundary layers the accuracy and efficiency of
the standard uniform grid approach suffers badly. Engineering accuracy
for these problems may only be obtained after considerable computer over-
head and in many cases may prove to be prohibitively expensive and time
consuming. Clearly more efficient methods are required for such problems.
In Chapter 2 the idea of using adaptive non-uniform grids was introduced.
Chapter 4 investigates this idea further and develops the theory of adaptive
meshing. Using such methods the efficient solution of problems like those
above is rendered possible.
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Figure 3.11: Numerical solution to Burgers' equation for ¢ = 0.003. (a)
Maximum absolute error on T=[0,1] X=(0,1] versus number of mesh points.
(b) CPU time expenditure versus number of mesh points.
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Chapter 4

Adaptive Mesh Strategies

In Chapter 3 quantitative evidence of the inadequacy of uniform spatial grids
in the solution of parabolic PDEs was examined. Such poor performance of
uniform grids may be explained by analysing the sources of error in typical
spatial discretisations. Similar discretisations may be identified, based on
non-uniform grids, which offer the possibility of more accurate and efficient
approximation. Given a particular solution, general non-uniform grids ap-
pear to offer superior resolution over their uniform counterparts. However,
this is strictly true only if the non-uniform grid is carefully chosen.

Methods for deriving suitable non-uniform grids for particular problems are
known collectively as grid generation methods. Two contrasting approaches
prevail; methods where & priori information concerning the spatial structure
of the solution is necessary and methods where such information is not re-
quired. Numerical grid generation methods are effective in the generation of
grids for elliptic PDEs (time-independent problems) and in the selection of
suitable initial grids for parabolic PDEs. In the latter case, an initial non-
uniform grid will only resolve the evolving solution adequately, if the spatial
nature of the solution changes little with time. Otherwise, an effective ini-
tial grid may prove to be useless at a later time when the spatial nature
of the solution has altered significantly. Evidence from Chapter 2 suggests
that parabolic equations with solutions that vary considerably with time are
the rule rather than the exception. For such equations the use of a time-
independent non-uniform spatial grid, perhaps the product of an effective
grid generation scheme, may be less effective than the conventional uniform
grid approach. A single grid generation step is not sufficient to guarantee
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an effective spatial mesh for parabolic-type problems. Instead, regeneration
of the grid during the problem evolution is required, so that the solution is
adequately resolved at all times. This is the basic approach behind adaptive
meshing.

All adaptive mesh strategies are similar in that they rely upon the repeated
application of particular mesh generation methods. Thus, they inherit the
merits and/or deficiencies of their underlying mesh generation algorithms.
Adaptive mesh strategies differ considerably, however, in the way they relate
the spatial mesh to the evolving solution. On the basis of this property a
two-way classification of adaptive mesh algorithms is possible, namely, local
mesh refinement methods and mesh moving methods.

Important features of adaptive mesh algorithms are their robustness and
generality. These are difficult to achieve in the case of parabolic problems
since there exists such a wide variety. Some algorithms may require “fine
tuning” to the problem at hand but this is to be avoided since it conflicts
with the above two requirements. A good adaptive mesh algorithm will
thus tend to be automatic and consequently easy to implement. An effective
method of ascertaining the quality of a particular adaptive mesh strategy
for the solution of parabolic PDEs is to couple it with existing software for
such problems and monitor its performance on a wide selection of example
problems.

4.1 The problem with uniform grids

In Chapter 3 section 3.4, numerical solutions to Burgers’ equation were cal-
culated, using the NAG routine DO3PGF [39], for a selection of fixed uniform
spatial grids. Not unexpectedly, the finer meshes require greater CPU over-
head but deliver more accurate solutions. However, even after a CPU time of
approximately one hundred seconds for a solution on a fine grid of 161 mesh
points, a significant numerical error persists. This example demonstrates
the typical problems associated with solving parabolic equations using uni-
form grids. Solutions may be erroneous or costly and frequently are both.

By examining typical spatial discretisations used in the solution of parabolic

equations the reasons for such deficiencies may be determined. Consider the
standard spatial discretisations based on the uniform mesh
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Py:¢=t*xh 1=12,...,N+1

where

_(b—a)
N

In Chapter 3 the following Finite Difference replacements of y} and y!' were
derived.

y:' - yi+12—hyi—1 + B (4.1)
st — Sy b
y:]' £ Yi+1 hl;: T Yi—1 i, E2 (4.2)
The leading terms of the truncation errors F; and Ej are, respectively,
Y -
B, = —-g-y('") (4.3)
B
By, = -—lez-y(w} (4.4)

In both cases although the truncation error is proportional to A? it is also
proportional to higher derivatives of the solution: These higher derivatives
will be significant where the solution varies rapidly in space, resulting in
relatively large truncation errors in such areas. This is the reason why
large errors were observed in the numerical experiments of section 3.4. In
general, the use of uniform grids means that the truncation error will be
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non-uniformly distributed over the spatial domain.

The simplest way of ensuring sufficiently small truncation errors over the
entire spatial domain is to use a uniform but fine spatial grid. This allows
the maximum truncation error (corresponding to the region of greatest spa-
tial variation) to be limited, since the factor of h? in the truncation errors
(4.3) and (4.4) will be considerably reduced. In doing this, however, the grid
spacing will also be reduced in regions where the truncation error is already
sufficiently small. This approach, therefore, over-compensates in that it re-
duces the spatial errors globally, rather than locally, where necessary. The
overall result is that calculation time is unnecessarily increased as demon-
strated by the example results in section 3.4.

Since the truncation errors in (4.3) and (4.4) are proportional to both h?
and higher solution derivatives, it is possible to uniformly distribute these
errors over the spatial domain by selecting relatively small grid spacings
where the derivatives are large and relatively large grid spacings elsewhere.
This suggests the use of truly non-uniform grids in space.

In order to assess the viability of non-uniform spatial grids, the standard

discretisations based on such grids must be examined. Consider the interval
[a,b] divided into N mesh spacings by the non-uniform grid

IIy:a=zp <z <32<...<zZN=0b

Choosing the notation

P=ATi41 =Tip1 ~ T = Az; =3 — Ty

the Finite Difference replacements of y; and y! based on the non-uniform
grid Il may be written as follows

' 1 {q P }
; = —— <=y — Y + =(y; — i +E 4.5
7} Ptq p(y+1 y) q(yz Y 1) 1 ( )

68



2 1 1
w o= s {;(%‘4—1 — %) — ;(y,- — '.%‘—1)} + Ey

where

o = P9 () P (i)
By 5 Y 24(P q)y
_Pq 2 2y,,(v)
_ P4 iy _ 1,2 2y, (iv)
By 5 12(p Pq+q°)y

1,4
—w @ —Petrd - )+

(4.6)

(4.7)

(4.8)

These formulae were derived in Chapter 3 and degenerate to those of (4.1)

and (4.2) in the case of a uniform grid (p = q = h).

For the approximation of y} the leading term of the truncation error is

pq, (i)
6 Y

Thus, the error remains second order in terms of p and q when a uniform
grid is replaced by a non-uniform grid. However, in the case of y!', the trun-

cation error degenerates to first order since its leading term becomes

_P— 9 ()
3 Y
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The degeneration of the formal truncation error, in the approximation of
y!', has important consequences for the numerical solution of parabolic equa-
tions, since they are characterised by the presence of such a spatial derivative
term. In general, the use of non-uniform spatial grids in the Finite Differ-
ence discretisation of parabolic problems, leads to a reduction of one in the
order of accuracy of the method. This would appear to severely limit the
applicability of non-uniform spatial grids to such problems. However, by
an appropriate restriction on the choice of non-uniform grid, formal second
order accuracy may be restored. The leading term of the truncation error,
(4.1), can be made second order in terms of p and q if the following restric-
tion on their relative sizes is maintained.

(p—q) =rg

P =q(l+kq) (4.9)

k = O(1) For i=1,2, .« ;N

If the non-uniform mesh is chosen so that (4.9) holds, second order accu-
racy will be possible in the approximation of y} and y!'. In the next section,
on mesh generation, a method for generating a non-uniform grid using the

relation (4.9) (called the x method by Noye [40]), will be described.

In Chapter 3 the non-uniform mesh in x, I, was visualised as a transfor-
mation z(¢) from the uniform grid in ¢, I'y. This allows a straightforward
means of determining truncation errors. For example, the errors for the
approximations of y} in (3.6) and ! in (3.10) were

1 jid

B = _€H2x§y§' )+ o(HY) (4.10)
H* i ;

By = —7p{tmal™ +fuf} + o) (4.11)
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where H is the uniform grid size in the ¢ coordinate and z;, z;, are the local
gradient and curvature of the mesh transformation.

In terms of H both errors are of the same order. The difficulty mentioned in
Chapter 3 concerning the accurate representation of y,' is explained by the
rather complex terms appearing in Fy above. Maintenance of second order
accuracy in terms of H? requires that

sz + 22y = 0(1)

)

This restriction is equivalent to that of (4.9) but shows more clearly the
influence of the higher y derivatives on the truncation error. Second order
accuracy can be maintained by ensuring that the derivatives of the mesh
transformation are small when the corresponding y derivatives are large.
This of course relies on the continuity and boundedness of the y derivatives.
A further consequence of the use of non-uniform grids is their effect on the
stability of the numerical methods used in the time integration. For explicit
methods the stability depends on the smallest mesh spacing. See Mitchell
and Griffiths [37] for a stability analysis of some common Finite Difference
schemes. For small mesh spacings, the time step must be reduced so that the
method remains stable. In such cases the considerations of spatial resolution
and stability may conflict and the superior resolution gained by reducing the
mesh spacing may be more than offset by the increased number of time steps
needed in order to maintain stability. The use of explicit methods in con-
junction with non-uniform grids is by no means inappropriate however, as
long as some control over the minimum mesh spacing is exercised. Madsen
[32] addresses this particular problem in his presentation of a non-stiff adap-
tive meshing technique, to be discussed in the following section.

As demonstrated in 3.2, the semidiscretisation of parabolic problems leads
to systems of ODEs which are stiff. The methods of integration for such
systems must be implicit due to the stringent stability requirements that
prevail. Therefore the effect of variable grid spacing on the time integration
is not of major importance since available ODE integrators for stiff systems
incorporate implicit formulae. However in the adaptive meshing techniques
to be discussed, excessive stiffness is limited by preventing the nodes from
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becoming too close.

We will now consider the techniques for generating improved meshes based
on non-uniform grids. These techniques are collectively known as numerical
grid generation methods.

4.2 Numerical grid generation

Numerical grid generation concerns the selection of appropriate non-uniform
grids for particular problems. The choice of grid is entirely dependent on the
nature of the problem and some grid generation methods therefore require
specific & priori knowledge of the problem being solved. Methods which
are less dependent on such information are robust and thus more generally
applicable. As already pointed out, this is important when dealing with
parabolic PDEs. In the following sections several common approaches to
grid generation are described.

4.2.1 The x-method

In 4.1 the effect of non-uniform grid spacing on the Finite Difference repre-
sentation of y/ was investigated. It was seen that, for parabolic problems
in general, the order of accuracy attainable on a non-uniform grid tends to
be of order one less than that obtainable on a uniform grid. However, a
non-uniform grid denoted by

IIyia=zo<z1<29< ... <IN =0b

can be made to retain second order accuracy if the following restriction
holds.

r=¢q(l+xrg) x=0(1) i=12,...,N

Different values of & correspond to different grid configurations that are
smoothly varying. For example, a positive value of k¥ produces a grid which
starts with a small spacing and increases monotonically to larger values. If
K is negative then the reverse occurs. Figure 4.1 shows examples of grids
generated in this fashion for various values of k. Grids produced by the &

72



[1]
i

Figure 4.1: Grids generated by the x method for k=1,3,5.

method tend to retain their accuracy. However the method does not take
into account the behaviour of the solution which, as was seen in section 4.1,
plays an important role in the determination of the overall truncation error.

The x method is therefore useful if the mesh configuration (determined by
the value of k) is known in advance. This might be the case, for instance, in a
problem possessing a known boundary layer at x=0. Choosing k > 5 would
generate a mesh suitable for resolving such a feature in the solution. The
& method therefore relies completely on a priori knowledge of the problem
being solved. Not unexpectedly, this limits the applicability of the method
to well known problems with predictable solutions. Unfortunately, the very
problems which would benefit the most from the use of non-uniform spatial
grids are those problems which exhibit unpredictable solution structures
such as shocks and boundary layers.

4.2.2 Mapping functions

In Chapter 3 the notion of a non-uniform grid as a transformation of a cor-
responding uniform grid was a useful one. Given a uniform mesh on the
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spatial interval [0,1]

Pn:ig=1%h h=— §i=0,1,2,...,N

and a corresponding non-uniform mesh

My:0=zp<3<23< ... <2y =1

The non-uniform mesh may be regarded as the result of applying the map-
ping function z(¢) to the uniform mesh.

The mapping function approach uses an appropriate function which serves
to generate such a non-uniform mesh. Choosing the right mapping function
allows the structure of the non-uniform grid to be controlled. Obviously
the function will have to be monotonically increasing/decreasing so that the
resultant non-uniform grid is contiguous. An example of such a function is

z(¢;) = sin (%r_) 0 =0,1,.0:5 N

This maps a uniform grid in ¢, on the interval [0,1], onto a non-uniform
grid in x, on the same interval. For other intervals, the resulting grid can be
scaled by multiplying the mapping function by an appropriate constant. The
non-uniform grid is produced by projection from a circle as shown in Figure
4.2. In this grid mesh points are concentrated at x=1. As in the x method
a knowledge of the solution is required for a successful grid generation to be
possible. A typical use of the method would be the solution of a problem
possessing a boundary layer whose location is known.

4.2.3 Stretched coordinates

In the mapping function approach discussed above, a uniform mesh in some
coordinate ¢ was used to generate a non-uniform mesh in the spatial coordi-
nate x. The problem being solved was then discretised on the non-uniform
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Figure 4.2: Non-linear mesh generated by the mapping function z(¢) =
sin (%1)

mesh in x.

The use of stretched coordinates is effectively the converse of the mapping
function idea. Instead of discretising the problem on a non-uniform grid in x
the original differential equation is transformed (using a function) to a new
coordinate ¢. The “stretching” function is chosen so that large gradients in
the solution in the x coordinate are stretched out in the new coordinate.
This allows a uniform mesh to be used for the discretisation of the trans-
formed equation. Coordinate stretching therefore avoids the deterioration
in formal truncation error when an equation is discretised on a non-uniform
spatial mesh.

Vinokur [55] analyses several types of one-dimensional stretching functions
for use in Finite Difference calculations. The two main types of functions
considered are interior and two-sided stretching functions. Functions of
these types are based respectively on the inverse hyperbolic sine and tan-
gent functions.

The main disadvantage of stretching functions is that new terms may appear

in the transformed equation which may need to be considered when choosing
an appropriate spatial approximation. For example, Braddock and Noye [4]
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introduce a general stretching function for the solution of the simple heat
equation

oU 92U

8t T 9zx?

The spatial coordinate x was rescaled by the transformation z = H(¢) such
that an equispaced mesh in ¢ corresponded to a non-uniform mesh in x.
With this transformation the equation transforms as follows.

U U 5
— = ==
oz d¢ Oz £
dH 32U 3 U 32H 8
O _ i Grm b o s Ve
dr: 2H? )
a¢
Note
d¢ OH _,
Thus, the equation becomes

oU D 8w D

ot~ (H'()2 9T H'(S)

LU
(H (s‘))3—a?

This is a convection-diffusion equation with variable coefficients. The func-
tion H(¢) is selected so that H'(¢) is small in regions where the solution
changes rapidly. In solving (4.2.3) numerical diffusion may be introduced
by the discretisation of the convective term, as discussed in 3.1.1. In this
case the solution of the transformed equation on a uniform mesh may present
more difficulties than the original equation. However, the extra work needed
to solve the transformed equation may be compensated for by the improved
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resolution in the transformed coordinate.

The situation above involving the arbitrary transformation z = H(¢) is
similar to that of the mapping function approach in that an appropriate
transformation must be selected prior to solving the problem. This relies
once again on sufficient & priori knowledge of the solution behaviour.

White [57] considers a solution-dependent coordinate transformation for
initial/boundary-value problems of the form

A(y,z,t)ys + By, z,t)y: = C(y, z, 1)

based on the solution arc length.

From integral calculus the arc length of a function y(x) is

2
ds =14/1+ (id—y> dz
dz

Thus
ds\? dy\?
&) - @
dz dz
d 2 2
O
ds ds
1 = 22442 (4.13)
where subscripts imply partial differentiation. Equation (4.13) suggests that
arc length is a suitable choice for a coordinate transformation since the

derivatives z, and y, are bounded by 1 regardless of how large % becomes.
In approaches based on arc length the contributions of x and y to the total
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solution arc length are presumed to be about the same.

White considers the transformation from coordinates (x,t) to new coordi-
nates (s,T) where s is an arc length coordinate given by

s=/:c (1—|— (%)2)%@)/0

where

and

6 normalises the the total arc length of the solution over the spatial interval
[0,1]. This leads to a slightly more general form of (4.13)

0% =25 +y;

The use of an arc length transformation introduces nonlinearities into
the existing equation to be solved and augments this with an extra differ-
ential equation which defines the arc length transformation x(s) back to the
original coordinates (x,t). Since the solution in arc length coordinates y(s)
no longer has large derivatives (as a consequence of (4.13)) a uniform mesh
may be used to discretise the problem in (s,T) coordinates. In the original
(x,t) coordinates the effect of the transformation is to place nodes at equal
intervals of arc length along the solution curve and so clustering nodes in
regions of large solution gradients. The transformation therefore provides
automatic mesh selection. White’s method is an improvement on the previ-
ously described stretching function approach of Noye in that the choice of
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function is based solely on the current solution values and not on other a
priori information about the character of the solution. This makes White’s
method potentially very robust.

One possible difficulty with the arc length approach is that the transforma-
tion will be less reliable if a large change in the direction of the solution
curve occurs over a short distance. Ablow and Schechter [2], in their inves-
tigation of stretched coordinates in the solution of boundary-value problems
in ordinary differential equations, attempt to remedy this situation by in-
cluding a dependence on the angular inclination of the solution curve in the
transformation. They use an alternative transformation t which is a linear
combination of both arc length s and angular variation w.

t=s+C/]dw]

where w is the angular inclination of the solution and C is a constant length.
The resulting transformation

(1+C | )? (F+4F) =1 (4.14)

Ablow and Schechter show that increasing the contribution of the curvature
in the definition of the coordinate transformation (by increasing C) causes
a relative increase in truncation error in straight regions of the solution and
a relative decrease in truncation error in curved regions. As in the case of
White’s arc length transformation this transformation complicates the dif-
ferential system to be solved. The choice of C, however, is not obvious and
makes the implementation less robust.

4.2.4 Equidistribution

In an equidistribution strategy the grid points are placed so that some pos-
itive weight function is equally distributed over the spatial interval. This
requires that the following condition holds at each mesh interval,
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/zm w(z)dz =C (4.15)

where w(x) is a chosen weight function and C is a constant. The discrete
form of (4.15) is

h,»w.- =

Using this strategy the mesh spacings will be small where w(x) is large and
vice versa.

The non-uniform grid distribution in x may be interpreted as a transforma-
tion z(¢) of a uniform grid in some coordinate ¢. If successive integer values
of ¢ are chosen to define the uniform grid then A¢ = 1 and h; becomes
Az/A¢ = z,. Equation (4.15) becomes

zow=C (4.16)

The grid distribution resulting from such an equidistribution principle may
be interpreted in a variational sense. Two possible interpretations of (4.16)
arise depending on whether w is a function of x or ¢. If w is a function of ¢
(the points themselves) then (4.16) becomes

z,w(¢) =C
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This is in fact the Euler equation ! for the minimisation of the integral

/01 w(¢)zlds (4.17)

Equation (4.17) can be visualised as representing the energy of a system of
springs with spring constants w(¢). The equidistribution relation therefore
corresponds to the state of minimum energy (equilibrium) of this spring sys-
tem.

If the weight function in (4.16) is taken to be a function of x (the point
locations) then the equation becomes

zow(z) =C
This is the Euler equation corresponding to the integral

[tz (4.18)

This integral can be interpreted as the least squares minimisation of the
cumulative grid spacings weighted by the function w(x). In this case the
equidistribution principle leads to the smoothest possible grid distribution.

'The function z(¢) for which the integral fﬂl F(¢,z,z)d¢ is an extremum is given by
the solution to Euler differential equation

4 (3F\ _2F _g
d¢ \ Oz, oz
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Both the spring analogy and the smoothness approach are valid for a partic-
ular equidistribution strategy. However the smoothness approach (involving
w(x)) is the most commonly used since it is expedient to associate the weight
function with some physical property which varies in space.

The weight function w(x) is usually a direct function of the solution, for
example the first derivative. Thompson [50] indicates that if w(x) is some
measure of the solution error then equidistributing w(x) is asymptotically
optimal and this optimal error is stable under perturbations of the grid dis-
tribution. For this reason he suggests that it is unnecessary to locate the
points with excessive accuracy. The constant in equation (4.15) can be de-
termined by normalising the weight function over the spatial interval [0,1].
If the spatial interval is divided into N mesh intervals then (4.15) becomes

/:H-l w(z)dz = %/01 w(z)dz (4.19)

Various choices of weight function are possible. The best choice, however,
is the truncation error itself since the ultimate aim of the grid generation is
to equidistribute this quantity over the spatial domain. Davis and Flaherty
[14] equidistribute a weight function related to the truncation error of the
Finite Element method they use. One of the main disadvantages of using
a truncation error estimate as the weight function is the necessity for es-
timating higher solution derivatives. For instance, in the method of Davis
and Flaherty above, estimates of the second solution derivative are required
if linear trial functions are used. If cubic trial functions are used then esti-
mates of the fourth solution derivative are necessary. Usually such estimates
are subject to considerable computational noise which renders their effec-
tiveness questionable.

The alternative approach is to derive weight functions based on lower deriva-
tives of the solution. Two common choices are

w = U, (4.20)



w = \/14+U2 (4.21)

The second choice is based on the arc length of the solution curve. White’s
method, discussed in 4.2.3 makes use of a coordinate transformation of the
form

= z\/1+ 2dz /0
s /(; yidz/

where
1
6= /0 V14 yidz

This transformation corresponds to the equidistribution relation (4.19) above
where the weight function is w(z) = \/1+ UZ. The approach of White can
therefore be regarded as equidistribution of solution arc length by transfor-
mation.

Equidistributing meshes generated by the criteria (4.20) and (4.21) above
are shown in Figures 4.3 and 4.4, respectively.

For the first mesh function the mesh spacing becomes infinite in regions
where the solution becomes flat (u; = 0). This is because the equidistri-
bution problem, equation (4.15), has no unique solution when w(z) — 0.
Numerical difficulties in such cases can be overcome by including a constant
regularising term in the definition of the weight function. Such a term ap-
pears in the second weight function above. Figure 4.4 shows that as the
slope of the solution approaches zero the mesh spacing becomes uniform.

Weight functions such as (4.20) and (4.21) based solely on the first deriva-
tive tend to treat solution extrema (where u; = 0) in the same manner as
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Figure 4.3: Equidistributing mesh generated using the weight function w =
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Figure 4.4: Equidistributing mesh generated using the weight function w =
(1+ U,
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flat regions. However the solution changes rapidly at such points and the
relatively large value of the curvature will augment the truncation error.
Equidistribution based on the second derivative u,; may also be used. For
instance, Blom et al. [3] present an adaptive moving grid method in which
the weight function is

w=\/a+t+ | Uz | (4.22)

where o (=1 usually) regularises the weight function in cases where Uz = 0.
Coyle et al. [11] also consider weight functions of the form (4.22) in which
a is 0 and 1.

Just as in the case of first derivative equidistribution, mesh functions based
solely on the second derivative tend to be biased towards concentrating the
mesh points at solution extrema. A combination of the two types of ap-
proach is possible if the following weight function is used.

U:cx

w=1+a? e
(1+U2)a

(4.23)

This function causes points to be concentrated near solution extrema. Re-
glons of zero curvature are assigned a uniform mesh spacing.

Recalling the equidistribution equation (4.15) the “equals” could conceiv-
ably be replaced by “less than or equals”. A mesh generated by this equation
would constitute a sub-equidistributed mesh. The work required to calculate
a sub-equidistributed mesh is usually less than that required for an equidis-
tributed mesh and is usually as effective even though it overkills somewhat.
For example, Smooke and Koszykowski [48] sub-equidistribute the difference
between solution components and derivatives using the following replace-
ments of (4.15).
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Zit+1 dy .
/ —dz < §&|maxy; —miny; |

2, dz

zi+1 dy dy; . dy;
/z'.- d—xz-d:c < 7|maxa—mlnd—x|

where v and 6 are small and less than 1. Madsen [32] describes a sub-
equidistributing mesh strategy where the weight function is chosen to be a
weighted average of five different functions of the solution.

4.3 Adaptive meshing

The use of a single non-uniform grid is appropriate only in the solution of
problems which are time-independent, for example, elliptic problems such
as the Laplace equation, or time-dependent problems, where the regions of
spatial activity in the solution remain fixed as time evolves, for example,
Problem 5 of Chapter 2. For parabolic type problems the tendency is for
solutions whose nature varies strongly with time. This is apparent from the
example problems described in Chapter 2. Once-off grid generation is there-
fore of little use and may, as in the case of the solution to Problem 4 above,
be less effective than the uniform mesh approach. The need to maintain
the suitability of the mesh as the problem evolves must be addressed. This
is the area of adaptive spatial meshing. In principle the methods of grid
generation of the last section may be used repeatedly throughout the time
evolution of the problem rather than just at the initial stage. At any time
in the problem evolution the current solution may be regarded as the initial
conditions for the remainder of the time integration. However, once the inte-
gration has begun the approximate solution may only be available ir: discrete
form whereas the initial conditions may be available in analytic form, free
of errors. This is of little importance in grid generation methods which rely
solely upon information concerning the present discrete form of the solution.

Once a grid configuration is altered, a need to transfer information from
the old to the new grids exists. Adaptive mesh algorithms differ mainly in
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the way they approach this problem. The following two-way classification of
adaptive mesh strategies is possible on the basis of how the evolving solution
and the grid are related.

e Local mesh refinement. Here the spatial mesh adapts with the
evolving solution in response to local solution characteristics. Typi-
cally, the spatial mesh remains fixed for intervals of time after which
mesh regeneration takes place at discrete time levels. The number
of mesh points is variable and, in principle, local mesh refinement
methods can resolve arbitrarily small scale structures in the evolving
solution.

e Mesh moving methods. Here the spatial mesh adapts continuously
with the evolving solution in a mutually-dependent manner. Usually
a fixed number of grid points are moved simultaneously so that the
solution is resolved as uniformly as possible over the spatial domain.

In the following section a representative selection of both types of adaptive
mesh techniques are described.

4.3.1 Local mesh refinement methods

In this approach to adaptive gridding, steep gradients in the solution are re-
solved by inserting/deleting spatial grid points throughout the integration.
The solution of the problem and the determination of the grid are treated
as separate tasks. The solution is monitored throughout the integration so
that mesh refinement can be implemented when appropriate. When a re-
finement is performed, a transfer of the solution from the old grid to the
new is carried out. In the case of some Finite Element methods where the
solution at each time level is represented analytically, for example colloca-
tion, there is no problem expressing the solution on the new grid. For Finite
Difference methods however, the solution at each time step is only available
in discrete form and thus the transfer of information from the old grid to
the new requires interpolation. In such cases the interpolation method must
be as accurate as the semidiscretisation so that the order of accuracy of the
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semidiscretisation truncation error is maintained.

A typical local mesh refinement algorithm is that of Chong [8]. The idea
here is to locate the position of the shock and track its movement (if any)
during the evolution of the problem. By considering such stretching func-
tions Chong [8], in his adaptive grid scheme, chooses a mapping function
solely from analysis of the solution gradient. The complete reliance on spe-
cific & priori knowledge of the solution behaviour is thus avoided. Chong’s
method is however restricted to a certain class of problems the solutions of
which satisfy the following conditions.

e There exists a single boundary layer in the spatial interval a < z < b
of thickness O(¢).

e Inside the layer the first four derivatives of the solution are

U _
T =0(™) n=12,...4

e Outside this region the derivatives are

au
da:"zo(l) n=12,...,4

By estimating the position and thickness of the boundary layer in the so-
lution a non-uniform grid is generated by choosing a mapping function %
which gives a linear transformation within the layer

Y = aex where a=O0(1)

Here ¢ is the boundary layer thickness. In the transformed coordinate the
boundary layer is stretched out by a factor of ae. Outside this region the
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mesh is gradually increased in size according to the following restriction

hy = h,'_l(l - KZh,’) K= O(l)

This is the identical approach as used in the k¥ method of the previous section
and guarantees the maintenance of second order accuracy for small values
of k. Given the restrictions imposed in the above list, Chong proves that
a non-uniform mesh can retain second order accuracy when conventional
Finite Differences are used to semidiscretise the problem.

The adaptive algorithm begins with estimating the boundary layer position
and thickness. This is done by iteratively scanning and refining the initial
grid so that the position of the layer is found accurately. At each refinement
the solution is transferred from the old grid to the new by interpolation. The
centre of the layer is taken as the mesh point/interval corresponding to the
maximum absolute value of the solution first derivative U,. The reciprocal
of this value is interpreted as the shock thickness.

The adaptive grid strategy monitors the solution throughout its evolution
in time so that the position and thickness of the shock are always known.
Based on heuristic approaches the appropriate times at which the mesh
should be refined are determined. Usually this is done when the shock po-
sition has altered by a prefixed amount. Determining a new grid is done in
the same way as for the initial conditions. Iteration however, is not neces-
sary since the new and old grids will not be very different if the shock is
not allowed to propagate too far between successive refinements. Following
a grid refinement, the transfer of the solution to the new grid is performed
using interpolation. Chong finds cubic splines to be quite effective since
they are second order accurate and therefore match the accuracy of con-
ventional Finite Differences. He reports that the extra CPU time necessary
to solve the tridiagonal linear system, associated with the cubic spline cal-
culation, is not a significant part of the overall CPU usage for the algorithm.

Chong’s approach, however, appears to dwell very much on heuristics. For
instance, he suggests that the variable mesh can be made less sensitive to
small shifts in the centre of the shock by placing 50 mesh intervals of mini-
mum size (defined by the mesh size at the centre of the shock) in the regions
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adjacent to the shock centre. For problems with moving shocks this algo-
rithm might therefore prove inefficient. Indeed Chong appears to anticipate
such difficulties and, for problems involving rapidly propagating shocks over
long time intervals, he recommends a preliminary transformation of the
equation to a new coordinate where the shock motion is frozen or slowed
down. Such a transformation can only be effected when sufficient a priori
knowledge of the shock trajectory is available (usually from an inviscid anal-
ysis). Chong attempts such a transformation for Burgers’ equation but only
succeeds in slowing down the shock in the transformed coordinate.

The approaches of White [57] and Ablow and Schechter [2] involve solution-
dependent coordinate transformations. The two approaches are similar in
that they both introduce nonlinearities into originally linear equations. How-
ever, a priori knowledge of the solution behaviour is not needed and no re-
strictions on the form of the solution apply as in the case of Chong’s mapping
function approach. In fact, White criticises Chong’s method on the basis
that the restrictions imposed on the solution by the latter are not generally
satisfied by classical boundary layers. White’s method is restricted to first
order PDE systems and parabolic equations must therefore be expressed
as an equivalent first order system. Expressing Burgers’ equation in such
a form and applying Keller’s box scheme [28], White demonstrates effec-
tive results for parabolic type problems. The main disadvantage of White’s
method is that a parabolic problem is reduced (on semidiscretisation) to a
system of differential algebraic equations DAEs. This class of problem is
significantly more difficult to solve than the ODE problems resulting from
more conventional discretisations.

White [57] derives a more general adaptive mesh strategy using a transfor-
mation which equidistributes the arc length of the solution. The number of
grid points is constant and the solution is determined on a uniform grid in
arc length coordinates. Smooke and Koszykowski [48] construct an adaptive
strategy by sub-equidistributing a positive weight function of the form

zi+1 dU
/ o E;dm < 0| maxU; —minU; | (4.24)
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zir1 @20 du; . dU;
e < e a2 .
/z Tz dz < v |max -, min — (4.25)

where v and 9 are small and less than 1 and the maximum and minimum
values are obtained by sorting the current solution. The numerical solution
is performed on the resulting non-uniform grid in x. One problem with this
equidistribution strategy is that it may lead to non-smooth mesh configura-
tions. This is remedied by bounding the ratio of adjacent mesh spacings as
follows

<A i=1,2,...,N (4.26)
where A > 1.

The mesh is refined by requiring that (4.24), (4.25) and (4.26) are satisfied.
In intervals where these equations are not satisfied, a new mesh point is
added. As in the method of Chong, interpolation is used to generate the
solution on the new mesh. Smooke however, uses linear interpolation and
notices a degeneration in the spatial truncation error. A novel approach
used here however, is that the number of mesh points may be kept constant
during a refinement. In such cases the new grid is obtained by extrapolating
the existing grid to the next time step. This has an advantage if implicit
time stepping is used since a Jacobian reevaluation may not be necessary
after such a step if the number of mesh points remains the same. A common
problem with grid extrapolation is that the mesh may become entangled.
In this case Smooke simply reorders the new grid points consecutively.

In the approach used by Davis and Flaherty [14], the mesh equation and
PDE are not solved simultaneously. They feel that the extra complexity
involved in introducing a grid equation is not justified. They use a Galerkin
Finite Element method with trapezoidal space-time elements. Finite Ele-
ments are used because in general they are more accurate than Finite Dif-
ferences in the case of non-uniform grids.

The adaptive mesh algorithm attempts to place points in an optimal loca-

tion and keep their positions optimal during the integration. The criterion
for choosing the grid is the minimisation of the Lg norm of the truncation
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error of the Finite Element method. This corresponds to equidistributing

R U:;H | =22y (4.27)

where [ is the degree of the particular polynomial trial functions being used.
Using Finite Difference estimates of the higher solution derivatives the mesh
is required to satisfy several differential relations. The associated equations
are solved iteratively since they are nonlinear. The resulting grid may be
extrapolated to future time steps and Davis and Flaherty find that zero-
order extrapolation works well.

The main advantage of their approach is that the common problems experi-
enced with the Moving Finite Element method (to be discussed in the next
section) are alleviated, namely

e Computation may proceed on a non-optimal mesh.

e The grid distribution produced by the above equations does not suffer
from mesh entanglement.

4.3.2 Mesh moving methods

In these methods a fixed number of mesh points are redistributed in order
to resolve and follow evolving gradients in the solution. The distinguishing
feature of quasi-Lagrangian methods is the treatment of the mesh locations
as extra unknowns in the problem.

Consider the semidiscretisation of a parabolic/hyperbolic PDE resulting in
the following system of ODEs.

du; .
d—; = fi(ti, U1, Ug, ... Uns1) 1=1,...,N+1 (4.28)



Regarding the mesh points z; as time dependent quantities means that tem-
poral changes occur due to the equations (4.28) and also due to the move-
ment of the grid. When the latter is taken into account the governing
equations become

aUu;
d_t‘ =f+ Uga; (429)

where the subscripts have been dropped.

The second term above involves the grid speed z; and this is provided by
solving an appropriate equation modelling the grid motion. The use of an
equation for the grid, however, further augments the original PDE system
by one.

The various methods of mesh moving algorithms are distinguished primarily
in the way they derive the mesh equations. Dorfi and Drury [16] describe a

moving mesh method which alters the grid distribution so that the solution
arc length is equidistributed over the spatial interval. Their grid equation is

n« R (4.30)

where R is some measure of the resolution of the solution and 5 is the grid
point concentration. The solution arc length is chosen as the measure of

resolution giving
dy
1 22
n o y/1+(57)

To avoid excessive grid distortion the condition
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o« . h; <l-f-a
l1+a ™ hi1 - «

is imposed where « is some constant which can be described as the grid
rigidity. This condition is incorporated into the grid equation by spatially
smoothing the right hand side of (4.30) as follows

a \'7
i “ZR (1—+—a>
)

This results eventually in the grid equation

Coyle et al. [11] analyse several mesh equidistribution strategies for time-
dependent PDEs. The approach used here is to construct a mesh moving
equation which, when discretised, yields a system of ODEs for the mesh
velocities. The mesh equation and PDE(s) may be solved simultaneously at
each time step or mesh configurations, generated at a previous time level,
may be extrapolated to a later time. Madsen [32] derives a variable mesh
strategy suitable for explicit time integration schemes. The key point here is
that a certain minimum mesh spacing must be maintained since the stability
in time depends on this quantity. Madsen develops a grid equation based
on a “mesh function,” m.

dil,' _ dxi+1 d:c,' _ i
& d @ Mmm

where h; is the ¢*# mesh spacing and M = Ef\;l m? /N is the average value
of the mesh function over the entire mesh.
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Various choices of mesh function are possible and Madsen describes a sub-
equidistributing mesh strategy where the mesh function is chosen to be a
weighted average of five different functions.

mi = |fa—fanli /T

my = |Uip1~Us| /T

my = | (Us)ir1— (Ua)i | /Ts
my = |Kip— K| /Ty

mf;, = | Tit1l — I | /T5

Here, f;, and f,), are estimates of the PDE right hand side for the present

mesh, and for one which is twice as coarse. The K; are estimates of the
solution curvature and T7,Ts, etc. normalise the individual mesh function
values.
Rather than implement a full equidistribution strategy, Madsen opts for
sub-equidistributing the mesh function on the grounds that much the same
effectiveness is achieved with less expense. He presents an effective method
of controlling the minimum mesh separation by altering the value of the
mesh function at those mesh points which are in danger of becoming crit-
ically close so that they no longer have a tendency to move. The excess
value of the mesh function thus removed is then redistributed over the other
mesh points in proportion to their separation in excess of the minimum. He
considers the overall algorithm to be robust and non-stiff in nature.

Moving Finite Elements

These methods are actually the same as the mesh moving methods of the
last section. However, the notion of coupling the grid with the equation
being solved is developed even further.
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Rather than solving the problem with standard methods of discretisation
and augmenting the PDE system with the grid equation, the Moving Finite
Element (MFE) method utilises a method of solution which treats the mesh
locations, and also the solution at these locations, as the unknowns to be
determined. For this reason the MFE method does not share the proper-
ties of other moving grid methods and thus a separate description is justified.

The method was introduced by Miller and Miller [36] and further improved
by Miller [35]. It was then extended to one-dimensional PDE systems by
Gelinas, Dos and Miller [23]. For the scalar evolutionary PDE

Uy — L(U) =0

the standard approach is to use the semidiscrete Galerkin or other Finite
Element method to produce the approximate solution

N+1

v(z,t) = Y ai(t)ai(z) (4.31)

t=1

The a; represent the amplitudes of the trial functions o; at the fixed nodes
of the grid. In the MFE method the nodal positions, denoted for example
by s;, are allowed to be time dependent in the same way as the nodal am-
plitudes, a;. Thus (4.31) becomes

N+1

v(z,t) = z a;(t)oy(z, s(t)) (4.32)

1=1

The method is usually associated with piecewise linear trial functions since
they are the most basic form of elements and are simple to implement.
Determination of the 2(N+1) unknowns (a;, s;,7 = 1,2,..., N+1) is achieved
by minimising the Ls norm of the residual
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[l oe = L(v) [z,

with respect to the time derivative of the parameters a;, s;. This gives two
variational equations for the o and £.

<Ug-L(U),C¥,‘> = 0

<v—L(v),Bi> = 0

This corresponds to 2(N+1) equations for the nodal unknowns and posi-
tions and they are called the Moving Finite Element equations. Writing
these equations in ODE form gives

A(y)y = g(y) (4.33)

Note the difference between the form of (4.33) and the corresponding ODE
system obtained by applying the classical method of lines. See section 3.1.1.
Miller and Miller [36] noticed that the parameterisation became degenerate
in some cases ie. the f; became dependent on the a;. To remove degener-
acy they introduced internodal viscosities into the parameterisation. Miller
[35] further introduced internodal spring functions which became infinitely
stiff as the nodes tended towards a minimum permissible separation. This
removed problems associated with grid entanglement which the method had
been known to possess. The method generally has been criticised for its stiff-
ness and its failure in circumstances where the mesh becomes non-optimal.
The method of Davis and Flaherty [14], discussed in the last section, was
motivated by such problems with the MFE method. For an outline of the
various improvements possible over the standard approach see Miller [34].
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The basic characteristics of MFE methods are

e The number of nodes is constant.

e Nodes are not connected with a particular solution property as in the
other mesh moving methods.

e The new grid coordinates and the solution are calculated simultane-
ously.

Given the extra effort needed in order to regularise the parameterisation and
prevent mesh entanglement, the Moving Finite Element method succeeds in
placing the nodes effectively. Wathen and Baines [56] have analysed the
structure of the Moving Finite Element matrix A in (4.33) and they detail
efficient methods for calculating its inverse for various types of problems.
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Chapter 5

Choice of Algorithms and
Their Implementation

In this chapter three adaptive mesh algorithms are studied in detail with
emphasis given to their implementation strategies. These algorithms shall
be fully implemented in Chapter 6 (to follow) where their effectiveness in
the solution of parabolic problems will be examined.

The choice of an effective adaptive mesh algorithm is somewhat com-
plicated by the great diversity of approaches used in such methods. In the
case of parabolic problems, however, adaptive spatial meshing strategies are
likely to be used in conjunction with existing temporal integration methods.
Thus it is natural to expect good adaptive meshing software to possess the
acknowledged qualities of good ODE integrators.

For parabolic problems in particular, the following criteria are regarded
as necessary standards for high quality software.

1. Versatility.
2. Robustness.

3. Efficiency.

The first criterion is important because of the existing variety of parabolic-
type problems. A successful code will have to cope with many different
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problem situations. This requirement affects considerably the choice of suit-
able adaptive mesh algorithms. In the last chapter it was seen that many
such algorithms require some form of “tuning” to the problem situation at
hand. This is clearly in conflict with the need for general applicability. A
likely choice of algorithm will therefore require a minimal amount of such
problem-specific information.

The second criterion determines to a large degree how popular the code
will be among users. No matter how advanced a particular algorithm may
be, if it is not implemented robustly then it will not be widely accepted
among the user community. In problematic situations, therefore, the code
must avert the possibility of failure. Usually robustness can be improved
by applying heuristic approaches. For instance, in the original BDF code
of Gear [21,22], alteration of the step size and order were disabled for sev-
eral steps following the last alteration, so that the possibility of an error
buildup was avoided. In the adaptive mesh algorithms of Chapter 4 some
were inherently robust whereas others required adjustment. Again the need
for tuning usually conflicts with the requirement for robustness. However,
tuning parameters do arise which only effect the efficiency of the implemen-
tation.

The third criterion, efficiency, is also of importance to the success of an
algorithm. This is especially true in the case of adaptive mesh algorithms
since the whole point of employing such methods is to improve the accu-
racy of solutions and reduce the computer time required to produce them.
An adaptive mesh algorithm should be much more efficient than its non-
adaptive counterparts. It is not always obvious, however, if this is in fact
the case. For example, Chong’s approach [8] has been criticised for being
very expensive to implement. Also in some strategies based on transforma-
tion, for example the transformation suggested by Braddock and Noye [4]
in Chapter 4 section 4.2.3, the transformed equation may be more costly to
solve than the original problem.

Considering the many algorithms at our disposal described in Chapter 4,
two such algorithms have been selected which represent effective approaches
toward adaptive meshing. The selected algorithms are also quite different
from each other and thus a comparison between two distinct adaptive mesh
strategies is possible.
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The suitability of each algorithm for incorporation into existing software
for parabolic problems depends on how well criteria 1, 2 and 3 are met. In
the following chapter, the relative merits and/or deficiencies of each algo-
rithm, with respect to the above criteria, will be examined.

The chosen algorithms are as follows.

e Method of Verwer et al. [53] (based upon an approach used by
Dorfi and Drury [16]).
This is a conventional moving mesh approach where an equation gov-
erning the grid motion is coupled with the original partial differential
equation. The “grid” equation is based on a spatial equidistribution
principle. In addition, spatial and temporal smoothing is applied to
the grid motion which results in better control over the nodes and
favourable consequences for the temporal integration. The method
can be easily incorporated into a standard “method of lines” approach.

e The Moving Finite Element method of Miller [36,35].
This is a version of the moving mesh method in which the grid po-
sitions and solution are unknowns in the Finite Element formulation.
The mesh movement is guided so that spatial resolution of the solution
is maintained. Thus the nodes are not connected with a particular so-
lution property as in the other moving mesh methods. The original
method has been criticised for its stiffness and its failure in circum-
stances where the grid becomes non-optimal. However, the use of
so-called “penalty” functions (Miller [34]) greatly enhances the perfor-
mance of the method. As in the last method the Moving Finite Ele-
ment method is easily incorporated into a “method of lines” approach.

In the following sections each algorithm is derived fully and their imple-
mentation details discussed in detail.

5.1 Method of Verwer et al.

This 1s a mesh moving approach where the original PDE is expressed in
Lagrangian form and is further augmented by a “grid” equation.
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For the PDE

Ju

a:f(u) 0<z<1 t2>0 (5.1)
Consider a transformation from coordinates (x,t) to new coordinates

(s,t). Temporal changes in u now occur due to the differential operator f(u)
and the motion of the grid.

du(s,t) _ du(z,t) . du(z,t) dz(t)
ot at oz at
du(s,t) du(z,t) 0z(t)
TR AC R P T (5-2)

The term dz(t)/dt appearing in the Lagrangian form (5.2) is termed
the grid speed. The grid and solution evolves continuously with the mesh
movement being coupled to the solution via the grid speed term in (5.2).
Furnishing this term is achieved by solving an appropriate equation for the
grid motion. The original PDE (5.1) therefore becomes more complicated
itself and must also be solved together with the equation for the grid.

Verwer et al. [53] use a grid equation derived by Dorfi and Drury [16],
based on spatial equidistribution. The form of the equation is due to Dorfi
and Drury [16]. Basically the equation consists of a proportionality between
measures of achieved and desired resolution of the solution. As a measure
of achieved resolution the point concentration suffices. For a general non-
uniform grid

Iy : 0=z <1 <22<...<zny=1

on the spatial interval z € [0, 1] the point concentration is defined as

1
n=—— 0<1<N-1
Ti+1 — T

The measure of resolution, R, is chosen to be the solution arc length as
in White’s approach. This is approximated by
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5 o AN, 2
E:Wﬂ+<&ﬁ”ﬂ) 0<i<N-1 (5.3)

Tig1 — T4

Thus the basic grid equation becomes

nx R 0<i<N-1 (5.4)

Eliminating the proportionality constant gives

ni—1 _ Ni41

B1 R

As was noted in section 4.2.4 in Chapter 4, meshes generated using such

an equidistribution equation require regularisation in order to be effective.

This achieved in this case by applying both spatial and temporal smoothing
to the basic grid equation (5.5).

1<i<N-1 (5.5)

5.1.1 Spatial smoothing technique

Spatial smoothing is achieved by restricting changes in the local grid spacing
requiring

a Sni_lgoz-}-l 1<i<N-1
a+1 ng o -~

where « is a “grid rigidity” parameter. For instance, if & = 1 then the rel-
ative increase/decrease in grid point concentration over two adjacent mesh
intervals is at most a factor of 2. This restriction is similar to that derived
in section 4.2.1 in order to preserve second order accuracy using standard
Finite Differences on a non-uniform grid.

At points of the mesh successively distant from the point z; the point
concentrations are as follows

a \? o a+1 a+1\?2
g+ 1 ng, a——i—l ng, Ny, T ng, o g
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Thus in equation (5.4), n; can be replaced by its spatially smoothed
value giving

ni i (ai 1) 7 R; (5.6)

=0

This smoothing “kernel” is the Green’s function associated with the cen-
tral difference operator

1- ofa+ 1)8%

This allows the left hand side of (5.6) to be replaced by central differences
as follows.

iy = n; — a(a -+ 1)(n,-+1 — 2n+ ni—l) xR 1<i<N-2 (57)

For the boundaries, “zero concentration gradient” conditions are chosen,
namely

ng = n; (58)
nNy = nN-1 (5.9]

and for the first and last nodes, respectively, (5.7) becomes

fis. = ng—a(a+ 1)(n; — ng) x R;
fin-i = ny—ofa+1)(ny-2—ny-1) x B;

Using these spatially smoothed values of the point concentrations means
that the grid equation (5.5) becomes
fliy 7y :
Riox R (5.10)

Since n;_; and n; appear simultaneously in (5.10) then its corresponding
difference replacement will be five-point in space.

The matrix associated with the above smoothing of the point concentra-
tion is given by

Rn=i (5.11)
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where n = [ng,n1,...,nny-1]7 and & = [fig, i1, ..., in-1]7.
R is symmetric and positive definite and so the 7i; are uniquely deter-
mined by
n=R7 4 (5.12)

The spatial grid smoothing involves solving (5.12) for the point con-
centrations #i;. The smoothing procedure given by (5.7) is a second order
nonhomogeneous linear difference equation. The auxiliary equation for the
associated homogeneous problem is (letting n; = r*)

r—ala+ 1) -2+ = 0
r—ala+1)(r?-2r+1) = 0

rl(—a(a+ 1) +r(1+20(e+1)) —afa+1) = 0
Solving this quadratic equation for r gives

-1-2a(a+1)+£2a+1

—2a(a+1) )
_ o ia-l—l
a+1 o

By the principle of superposition for linear equations a general solution
to the homogeneous problem is given by

o Al(aj—l) +A2<a: ) 0<i<N-1 (513)

A particular solution of the homogeneous equation is

N-1 i
1 o
. — - < y <
Mipar 1+2aJZ=1 (a+1) Rj  Osis N

The general solution to (5.7) is therefore the sum of the general and
particular solutions (5.13) and (5.1.1).

P AT CE S AR S T L P
= 1(a+1> * 2( a )1+2az(a+1> Rj 0<i<N-—(5.14)

j=1

105



The constants A; and As are determined by the boundary conditions
given in (5.8) and (5.9). Neglecting the boundaries (5.14) becomes

1 N-1 o |"_-7'| 0 N
o = 7y <i< -1
" 1+2aj§l<a+1) " ===

( & )Ii—:fl
a+1

is the “smoothing kernel” and

The expression

o

0<
~a+1

<1

Thus n; always remains positive. This means that the spatial grid
smoothing process cannot lead to node crossing and that the original grid
condition (5.1.1) is indeed desirable.

5.1.2 Temporal smoothing technique

Temporal smoothing is introduced by replacing the algebraic system (5.10)
by a system of differential equations

(ﬁ,-_1+r ' )/&_1=<ﬁ;+raa—1~:i>/R; 1<i<N-1 (5.15)

The presence of the time derivatives of the point concentrations means
that the grid will not adjust immediately to the values of R but will do so
over a time interval 7. Thus 7 is a parameter which causes a time delay in
the equidistribution equation resulting in a smoother evolution of the grid
in time.

Equation (5.15) is derived from the corresponding relation

di(t)
dt

ni(t)+ 7 c(t)Ri(t) (5.16)
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This a linear first order nonhomogeneous ordinary differential equation
which can be solved for 7i;(t) as follows. From (5.16)

dig(t) | Ait) _ c(t)Ri(t)
dt i T N T

(ﬁf(t)-:(”)R"(t)) dt + diis(t) = 0

Assuming an integrating factor F(t) exists for this equation then

(5.17)

Fi2) (;“(t) - :(‘)R‘(t)) dt + P(t)dri(t) = ©

Equation (5.18) is an exact differential equation ! if

8 Ra(t) - R\, _ dF(Y)
sx (Pl (R=UEL), 470

This simplifies to

By separation of variables we get

%f‘ﬁ:/ﬁ”
t

In| F(t) |

=
Thus F(t) = exp(t/r) is the required integrating factor. Multiplying
(5.17) by this integrating factor gives

'The expression P(x,u)du + Q(x,u)du is an exact differential, ie. the differential of a
function F(x,u), if
0P _ 09

du dz
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which simplifies to

d . i, 1t
-‘E{n,(t) exp -;} = —exp Tc(t)[ﬁ(t)
Integrating both sides gives
. t 1t t ,
Ait)exp(2) = = [ exp(L)e(s)Ri(s)ds +C
T TJo T

flt) = exp(;t_-) [C’ + % /: exp(?) c(s)R;(s)ds] (5.18)

At t=0 this reduces to #i;(0) = C and thus (5.18) becomes

. t. [, ) t
fi(t) = exp(-;) [n.,-(O) + ;./0 exp(-;)c(s)R‘-(s)ds] (5.19)
where the initial smoothed point densities, #i;, are determined from (5.7).

Let us now examine (5.19) at a time t following a time step of At.

t
fis(t) = exp(5) [ﬁ,-(t — At) + %/
t

Al exp(*7) c(s)R;(s)ds] (5.20)

for

The value of #;(t) is the sum of exp! A%) and the weighted average of
c(s)Ri(s) over the interval [t — At,t]. The weighting depends on the size of 7.
As 7 — oo then #i;(t) — #i;(t — At). Thus for large r values the grid remains
stationary. As r — O then fi;(t) — c¢(t)R:(t) and the point concentration
adjusts solely to the present value of ¢(t) R;(t) and no temporal smoothing
occurs.
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5.1.3 Implementation
Taking the grid equation (5.15)

Ini_;
at

(Fis 47 252) Ry = (b r o) /R 18N -1

and substituting

p = ala+1)

ng = —png+ (1 ot p)no 1=1
fis = —pnggr+(A+2)ng—pni—y 2<{SN-2
fin-i = —pny-_g+(1+pny-y i=N-1

[—pny + (1 + p)no + r(—pny + (1 + p)ng)]/Ro +
[—pna + (1 + 2p)ny — pno + 7(—pny + (1 + 2p)n) — p)]/R1 =0

[—pni + (14 20)ni-y — pniog + r(—pni+ (1 + 2p)nj_; — nni_y)]/Ri-y —
[—unipr + (1 +2p)n; — pnioy +
r(—pnlyy + (14 2p)n; — uN;_;)]/Ri=0 2<i<N-2

[—unn—1+ (L4 2p)nN-g — pry-3 + 7(=pnjy_y + (L + 2pu)ny_y — priy_s)]/Br—2 —
[—unn -2+ (14 p)ny-1 + 7(=pny 5 + (L+ p)ni-1)l/ By
Next substituting

i

Az’

| e | !
n; Az; =i —

gives (after some simplification)
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T [Rot;_;o)z K R1(:Xo)2] Xo -

J [RO(A”Xl)z i RotZ;Z,)z R:(Z}2(l:)2 Rl(AuXo)z] 1t

; [ p© 1+ 2p 2 ]X, B

Ri(AX2)? | Ri(AX1)? ' Ro(AX1)?]7?

T {Rl(:){z)z] X

= [3%5—1 B IA}:] [Bos [— Al-;fz * lA-Jr_X?lp B A,-;(o] /B
. .R’(_;X_)_] X!y +
r .R:'(Af;{'-—l)z i Ri—ll(Z‘ZX,:—l)z " Ri—l(:Xf~2)2] Xio1 =
A iy Rj(Z;’j)z R,-_:(Z?:.l)% M &_1(ZX¢)2] Xi+
T [R,-(A;m)z ¥ R‘-l(zﬁzr’:)z * R;_I(ZX;)Z] Xi1 =
4o R

[k 1+2p  p ] ,_[_# 1420 ] ,
‘[ aixo T ax, axa) /BT Tax tax.,  axl /B

’ .Rn-a(:XN_s)z} Xi-s+
- 2
it oan A e o s el
fErcs A oy A s e Arma ) s~
' 1
’ LRN—2(A“XN—1)2 - RN—1(Z;;N—1)2] Xy
- [Ala;-Nl_: - A;N_z} /X1 + [A)({LN_,I B Al;;i + AX’jv_s] /RNn-2
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Note that the above system is five-point coupled in space (excluding the
first and last equations). The system may be written in implicit ODE form

rB(X,U)X' = G(X,U)

The matrix B is pentadiagonal and of dimension (N-1)(N-1). In the
case of zero temporal smoothing the system (5.1.3) reduces to the algebraic
system

G(X,U) =0

The original problem differential is coupled with the grid equation in the
following way. Taking the Lagrangian form of the original PDE given by
(5.2)

U' - X'U, = F(X,U)

and combining this with (5.1.3) gives the following system of 2(N-1)
equations.

rB(X,U)X' = G(X,U)
U'-X'U, = F(X,U) (5.21)

The terms U, and F above are approximated by centered Finite Differ-
ences based on a non-uniform grid as derived in Chapter 3, subsection 3.1.1.
Reordering the above system so that the unknowns appear as,

means that the left hand side matrix in (5.21) has a'banded form with
band-width 9. The form of the system (5.21) for N=5 mesh spacings (pre-
suming a single parabolic equation with Dirichlet boundary data) is shown
in Figure 5.1. Incorporating the boundary values of U and X means that
the system (5.21) is of order 2(N+1). The equations corresponding to X}
and X are trivial since these points are fixed at all times. However, the

equations corresponding to Uj) and U), depend on the boundary conditions
of the PDE.

Solving the system (5.21) requires an ODE solver capable of handling
linearly implicit differential and/or algebraic equations. In the following
chapter the above method is implemented using the LSODI [25] based code
of the NAG [39] routine DO2NHF.
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Figure 5.1: Structure of the ODE system for Verwer’s method in the case
of a single parabolic equation (with Dirichlet boundary data).

5.2 Moving Finite Elements.

In Chapter 3, section 3.1.2, the method of weighted residuals was outlined.
For an equation of the form

ou
o = L(u) (5.23)

this leads to an approximate solution (or trial solution) of the form

N
u(z,t) = D e;(t)a;(z) (5.24)
5=0

Here, the a; form a linearly independent set of known analytic functions,
called trial functions, and the a; represent the amplitudes of the approximate
solution, y(x,t), at the nodes of the spatial mesh.

My:0=2p< 1 <23<...<zy=1

The Moving Finite Element (MFE) method adopts the same approach as
above but the nodal positions are allowed to be time dependent. Equation
(5.24) thus becomes
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N
u(z,t) = 3 aj(t)e(z, (1)) (5.25)
7=0

where s is a vector of time-dependent nodal positions. Partial differentiation
with respect to time gives

Ju Ju 80,_., du Js;
En Z[an 5t 55 01

j=N ; S
T Tl oG o005

] (5.26)

where 8(z,a(t), s(t)) = g—;;.

Notice that the form of (5.26) is similar to the Lagrangian form of (5.23)
given by (5.2) which indicates a possible Lagrangian interpretation of the
Moving Finite Element Method.

The trial functions o; and the trial solution u belong to the same space
of functions and the simplest and easiest form for use in the Moving Finite
Element method is the piecewise linear (hat) function and solution shown
in Figure 5.2.

In Figure 5.2 the piecewise linear (hat) trial functions are given by

0 if z < Sj—-1
1 if z = Sy
_ T—8j-1 o .
aj(:z:) = ZJ._SJ.__; if 8j-1 Lz < 55 (5.27)
+17 1 . ;
S—J?_H—_s—; if 8; < 2 < 8511
if z > Sj41

An equation for the piecewise linear trial solution u on the interval
[8;-1, ;] is as follows.

u—a1 = mj(z—s;j-1)
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Figure 5.2: The functions o;, u; and 8; for the Moving Finite Element
method.
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v = aj-1+mj(z - s5-1)

Ay — Ay

85 — 851

Therefore the auxiliary trial function f; can be expressed as follows.

ﬁ'_ du e (aj—-a,-+1) (:z:—s,'_1>
/A " e G
ds; 8; — 81 8j — 8j-1

= -mjo;

Likewise on the interval z € [s;, s;41]

w6y = miaa—e)
u = aj+mjp(e—s;)
Q541 — Q4
v = oj+ |T—2| (z-s)
s- — su
J+1 TS
B = ow _ _(%+1—0 =85
98j+1 $j+1 = 85 ) \Sj+1—8j
= —-mja;

Thus the form of the function g;(z) is

0 if z < ;-1
—-mjaj(z) if sj-1 <2< s

ﬂj(a:) = -m; ifz= &, (5.28)

mjai(z) if 85 < z < 84
0 if 22> 8541

which is shown in Figure 5.2.

The B; may be regarded as secondary trial functions similar to the o;

and with the same local support.

The coefficients of the approximate solution (5.24) are determined by the
method of weighted residuals (see Chapter 6). Using the Galerkin approach

the Lo norm of the residual
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ou

57~ L(v)

Lo

with respect to the time derivatives of the parameters a;,s; is minimised.
That is, the inner products of the weighted residuals are simultaneously set
to zero.

Bu

at L("‘)’aj) = 0
(G - pw)) = 0

Substituting & Q— from (5.26) gives

<Z[a, + B2 - Iu), ) = 0

N

(Z[O‘J e +By—= ds]] L(u),8;) = 0
and finally
N d N
Z(&j,&j) dt Z( Jaﬁ)) (Otj,L(u)) = 0
J=0 7=0

da;
Zﬂ:,a» ’+Z(ﬂ,,ﬂ, L — (B, L(u)) = O
J:

This corresponds to 2(N+1) equations for the nodal unknowns and po-
sitions and they are called the Moving Finite Element equations. Writing
these equations in ODE form gives

Au)i = g(u) (5.29)
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where A has the block-tridiagonal form

(Al B, \
Cy Ay By
Cs As Bs
Cn An By
\ Cn+1 Bn+1 Ansi)
and u is an (N+1)2 vector of the form
[ a1 )
S1
az
82
AN+1
kSN+1)
A(y) is a symmetric square matrix composed of N+1 (2x2) blocks of the
form
<a,',0£j> <a,-,ﬂj> )
P = 5.30
te={Zons hds )
<op o> <o, fi >
B; = ( ey 34 ) 5.31
<ﬁl')aj> <ﬁi)ﬁj> ( )
< o,0 > < a,f; >
Ci = ( i i ) 5.32
' < Pioj > < BBy > (%:32)

The vector g is composed of inner products of the spatial operator L(u)

as follows

9(uw) = (< a1, L(u) >,< B1,L(u) >,......
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5.2.1 Implementation

In [23] the frequently used inner products are derived fully. Expanding
equations (5.2) gives the following.

AX; AU;
[ ]ema5

! AX; +3AX.-+1] :
FAU; + AU;
X: ._.%}4_
rAX; AU;
Uit A);’_H]-‘r 1 [— 6“]:<a,,L(u)> (5.33)

o[22,

6 i 5
o '*AU,-+AU,~+1] .
L 3
X‘, 'm,-AU,- + ;ni+1AUi+1:| +
" AU oo AT
Ul [F25 ] [P0 e g L) > (5.34)

This system is a linearly implicit ODE system and requires the use of
a suitable ODE package. In the following chapter results for this adaptive
mesh algorithm obtained using the NAG routine DO2NHF will be presented.

The system (5.29) as it stands does not guarantee a reasonable adjust-
ment of the spatial grid unlike the method of the previous section. This is
for two reasons. Firstly, the mass matrix A may become numerically sin-
gular whenever the slopes of two mutually adjacent elements become equal
(ie. collinearity). When this happens m; = m;;; and by observing (5.28)
one can see that the f; are now proportional to the a;. This however
means that the corresponding diagonal block of A, A;, will be zero making
A singular. This phenomenon is termed “parallelism”. The second difficulty
encountered with the system (5.29) is the problem of node tangling which
can happen when nodes drift too close together.

118



Miller [34] suggests the use of “penalty” functions in order to regularise
the node motion. Instead of minimising

du

— L
5~ L)
we minimise
du =N 2
= — LW+ E) (0% - 5;)

The e-terms correspond to an internodal viscosity which penalises rela-
tive grid motion. This has the effect of rendering the mass matrix A diago-
nally dominant and thus invertible. The S-terms represent internodal spring
functions which penalise the nodes from coming too close together.

The form of these penalty functions are, following Miller [34],

2 Cct

€.

_ __ <
i~ aa—a 99

~(AX; - d)?

The constants Cy,Cy and d are user controlled parameters. The effect
of these penalty functions is to add extra terms to the left and right hand
sides of the system (5.29). The additional terms are

GAX] — 114K
and
€5 5; — €j+15j+1
which are added to the left and right hand sides of the 8 equation (5.34),

respectively. In the following chapter the merits and/or problems associated
with these parameters will be examined.
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Chapter 6

Numerical Investigations

In Chapter 5 the implementation details of two effective adaptive mesh
strategies were described. Both strategies shall now be applied to the so-
lution of four example parabolic problems. These examples are a represen-
tative sample of the wide variety of problems occurring in parabolic partial
differential equations.

6.1 Algorithms summary

The main characteristics of the chosen adaptive mesh algorithms are given
in Tables 6.2 and 6.3 below. For comparison purposes the characteristics of
the conventional fixed grid MOL approach are also given in Table 6.1. In
these descriptions it is assumed that each algorithm is applied to the solu-
tion of a single parabolic equation, discretised on the spatial interval using
NN internal ! grid points.

by internal is meant “excluding the boundaries”
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Method I. The Standard Method of Lines

Type Conventional fixed grid approach

Spatial Finite Difference
discretisation | (with second order, centered differencing)

Temporal Explicit ODE system solver
integrator (NAG [39] routine DO2NCF)

Jacobian Tridiagonal matrix
structure of order (NN+2)

Table 6.1: Characteristics of the Standard Method of Lines.
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Method II. The Method of Verwer et al. [53,16]

Type Adaptive mesh approach from the
class of “mesh moving” methods.

Implementation Method of Lines
Spatial Finite Difference
discretisation (with second order centered differencing,

based on a non-uniform grid)

Adaptive grid Based on spatial equidistribution of
control an arc length monitor function.

Temporal Linearly implicit ODE/DAE system solver
integrator (NAG [39] routine DO2NHF)

Jacobian Band matrix of order 2(INN+2)

structure and band width 9

Method parameters | a(=1) monitor function regularisation parameter
k(=2) spatial grid smoothing parameter
T temporal grid smoothing parameter

Table 6.2: Characteristics of the method of Verwer et al.
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Method III. Moving Finite Elements [36,35]

Type Adaptive mesh approach from the
class of “mesh moving” methods.

Implementation Method of Lines

Spatial Galerkin Finite Element
discretisation (with linear trial functions)
Adaptive grid Based on minimisation of PDE
control residuals.

Temporal Linearly implicit ODE system solver
integrator (NAG [39] routine DO2NHF)
Jacobian Block-tridiagonal matrix of order
structure 2(NN+2) and band width 7

Method parameters | d minimum node separation
C1 inter-nodal viscosity parameter
C2 inter-nodal spring force parameter

Table 6.3: Characteristics of the Moving Finite Element Method.
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6.2 Example problems

Versatility has already been established as an important requirement for
adaptive mesh strategies. In order to test the versatility of each adaptive
mesh algorithm a suitably varied selection of problems must be solved. The
four examples given below, most of which have already been introduced in
Chapter 2, represent such a selection. The problems present novel difficulties
for the numerical methods and the solutions are widely different in nature.

Problem 1

A “hot spot” problem from combustion theory.

aU  d*U 6
— i — —_—— <z <
T 3z2+D(1+a u) exp( u) 0£2<1
t>0
where D is given by
D= Rexp(6)
ab
and the boundary and initial conditions are
oU
E(O’t) = 0 U(l,t)=1
U(z,0) = 1

An accurate numerical solution is used as a reference solution.

Source: Adjerid and Flaherty [1]

Problem 2

Burgers’ equation: sine wave initial conditions. (Problem 7a,
Chapter 2)

ou a2U oU

E T
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with initial conditions
U(z,0) = sin(27z) + 0.5sin(rz)
and boundary conditions
U(o,t)=U(1,t) =0
An accurate numerical solution is used as a reference solution.

Source: Gelinas, Dos and Miller [23].

Problem 3

Burgers’ equation: propagating shocks. (Problem 7b, Chapter 2)

2
oUu 3U_U6U

e —_ 0<z<1
at 9z’ oz = s

t>0

with initial and boundary conditions

U(z,0) = Us=,0) U(0,t)=U,(0,t)
U{i,t) = Uy(lt)

The exact solution U,(z,t) is given by

Up(z,t) =1~ 0.9’—}; — Dis=2

R
where
R = ri+ra+rs
r1 = exp(—(z— 0.5+ 4.95t)/(20¢))
rg = exp(—(z — 0.5+ 0.75t)/(20¢))
rs = exp(—(z— 0.375t)/(2¢))

Source: Sincovec and Madsen [32].
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Problem 4
A model parabolic equation. (Problem 4, Chapter 2)

ou a2U
—_ = LTX
= =05 +f(z) 0<z<1

with boundary and initial conditions

U(0,t) = tanh(rgt —ry) U(1,t) = tanh(ret)
U(z,0) = tanh(ri(z — 1))

and exact solution
U(z,t) = tanh(ri(z — 1) + rat)
The source term f(x) is given by
f(z) = sech®(ri(z — 1) + rat)[ry + 20 tanh(ry(z — 1) + rat)

Source: Davis and Flaherty [14].

6.3 Measures of effectiveness

In the last chapter the three recognised characteristics of effective software
for parabolic problems were introduced. These were versatility, robustness
and efficiency. The selected adaptive mesh algorithms (Methods II and III)
will now be assessed in relation to these criteria. For comparison purposes
the conventional fixed grid MOL approach (Method I) will also be included
in the assessment.

In the following experiments effectiveness is measured in terms of ac-
curacy and efficiency. The accuracy of each algorithm is illustrated in two
ways. Firstly, exact/reference solutions (denoted by solid lines) are plotted
along with the numerical solutions (plotted symbols). Secondly, the max-
imum absolute error between the numerical and exact/reference solutions
(over all the specified output times) is quoted in the tables. The efficiency
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of each algorithm may also be expressed in two ways. Firstly, the CPU
time consumption provides an excellent means of determining the relative
efficiency of several algorithms, implemented on the same hardware. The
actual computer used was an APOLLO workstation (DN4500) and the CPU
time consumption, measured in seconds, was determined for each implemen-
tation. A second means of expressing the efficiency of the algorithms is to
determine operation counts. These statistics are particularly useful since
they are characteristic of the particular algorithms rather than the hard-
ware on which they are implemented. In the tables to follow, emphasis is
placed on the use of high level operation counts such as Jacobian evalua-
tions, rather than on low level indicators such as multiplications or additions.

6.4 The numerical time integration

The two adaptive mesh strategies (Methods II and III) are similar to Method
Iin that they are both Method of Lines (MOL) implementations. The spatial
discretisation in each case gives rise to linearly implicit ODE systems of the
form

At y)y' = g(t,y) y(to) = yo (6.1)
to <t < tsina
Here, A is a matrix of order 2(ININ+2) and y, g are vectors of dimension

(NN+2), where NN is the number of internal spatial mesh points used in
the semidiscretisation.

The system (6.1) can be solved numerically using the BD formulae (see
Chapter 3 section 3.2.2) where

K
—BohYpi1 = —Unt1+ ) OkYnt1-k
k=1
is the K** order BD formula with coefficients 8y, a1, a3, ...,k and h is
the time step size. This gives
K
Ynt+1 = Z CkYnt1—k T hﬁoy:;ﬂ
k=1

= apt1+ hBoynit
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Here, ay,+1 1s a constant vector constructed from past values of y. Using
this formula to approximate y;, ., in (6.1) gives

A(tn+1,Yn+1) (Yns1 — @ns1) — RBog(tni1,Ynt1) =0 (6.2)

The user supplied residual

0
"(yn+1) = g(tn+1, Yn+1 — a(tn+1: yn+1)y:;(=)1

1(0)

is now introduced where y,, " is the predicted value of y},,; given by

© _
(0) _ Ynt1 7 Gnt1
n+1 hﬁO

Thus (6.2) can be rewritten as

A(tn+1,Ynt1) (yn+1 - y,(z%) = hBor(tn+1,Yn+1) =0 (6.3)
This nonlinear algebraic system is solved using a modified Newton iter-
ation where the iteration matrix
P = Altns1, ¥1) = hbor' (i) (6.4)
approximates the Jacobian of the system (6.3). Because the solution of
this system involves iteration, an important statistic is the total number of
iterations used in a particular integration. This is denoted by NITER in
the results to follow. The step size h is automatically set by the BDF codes
although an initial step size HO can be specified by the user. It is also useful
to know the total number of time steps taken in a particular implementation.
This is denoted by STEPS. The iteration of equation (6.3) differs from a
true Newton iteration in that the Jacobian is only evaluated periodically.
This occurs after the prediction stage (when ygoz)l is given) and otherwise
when necessary eg. if a convergence test fails. The calculation of the Jaco-
bian (performed numerically) is rather expensive and so a useful statistic to
consider is the total number of Jacobian evaluations, denoted by NJACS.
The number of Jacobian evaluations also corresponds to the number of LU
decompositions of the iteration matrix in (6.3). A Newton iteration process
is terminated when a Newton correction is found which, in the chosen norm,
is less than the user specified tolerance, TOL. The last statistic of interest
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is the number of evaluations of the residual r(y), denoted by NRE.

Application of the conventional MOL approach of Method I gives rise
to a different ODE problem. Here semidiscretisation results in a system of
explicit ODEs of the form

¥ =g(t,vy)

This is equivalent to the system (6.1) where the matrix A is replaced by
the identity matrix I and the iteration matrix P in (6.4) becomes

P=1I- hﬂo!]'(yr(ﬂl (6.5)

However in this case the orders of P and A are now (NN + 2) because
in the conventional Method of Lines the extra N equations, corresponding
to the moving grid in the adaptive mesh algorithms, are not present. The
statistics NITER, STEPS, NJACS and NRE still retain the same mean-
ing, however, except that NRE now refers to g(t,y) evaluations rather than
to r(t,y) evaluations. In the case of Method I the meaning of this parameter
can therefore be interpreted as the “number of right hand side evaluations”.

In comparing implementation statistics for each of the three methods,
care must be taken to remember the differences between them. The most
important difference is that the Jacobian band widths for the three methods
are 3,7 and 9, respectively, with the order of the Jacobian in each case being
determined by ININ. These differences will be reflected in the CPU statistics
for each method. The ODE integrators used in the three methods are im-
plemented in essentially the same way. For all implementations numerical
differencing was used to evaluate Jacobians. This was performed internally
by the integrators (on request). A subroutine was provided which performed
the residual/function evaluations and the initial solution Y(0) and required
output times were also specified. For the local error test in the Newton iter-
ation scalar relative and absolute error tolerances, RTOL and ATOL, were
chosen such that RTOL = ATOL = TOL. For the experiments TOL was
set to a value of 1073 unless otherwise stated and the chosen norm used in
the tolerance test was the common “averaged Ls” norm. For all experiments
the initial step size in the time integration, HO, was set to 107°. Lastly,
for all the experiments, the start grid used in the adaptive mesh algorithms,
was uniform.
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6.5 Results

The following sections give the numerical results for the adaptive mesh
strategies (Methods II and III) applied to the solution of the four exam-
ple parabolic problems of section 6.2. For each problem the performance of
the adaptive strategies are compared with the conventional fixed grid MOL
approach of Method I. A summary of the “figures of merit” used in the
tables to follow is now given.

TOL The scalar relative and absolute error tolerance used in the time inte-
gration.

HO The initial time step size.
NN The number of internal grid points in the spatial discretisation.
STEPS The number of time steps used.
NJACS The number of Jacobian evaluations (=LU decompositions).
NRE The number of residual or right-hand-side evaluations.
NITER The total number of Newton iterations.

CPU The CPU time (in seconds) required for the solution. All experiments
were carried out on an APOLLO DN4500 and while determining CPU
time all input/output operations were disabled.

ERR The maximum absolute error on the spatial interval, over all the spec-
ified output times.

6.5.1 Problem 1

The solution to Problem 1 represents the temperature of a reactant in a
chemical system. For small values of time the temperature at X=0 in-
creases from unity causing a “hot spot” to develop at this point. At a finite
time ignition occurs causing the temperature at X=0 to rapidly increase to
a value 1 + a. This leads to the formation of a flame front which rapidly
propagates towards X=1 at a speed proportional to exp(ad)/2(1 + «).

Following [1,53] the parameters of the equation are chosen as follows.
[a=1, d=20, R=5]. The problem reaches a steady state when the flame

130



front reaches the right boundary. For the present choice of parameters this
occurs at T~0.29. In the numerical solution two distinct phases can be
identified, viz., the ignition phase (formation of the hot spot at X=0) and
the propagation phase (movement of the flame front towards X=1).

Simulating the ignition phase is difficult because ignition occurs very
rapidly. This small time-scale phenomenon causes considerable stiffness in
the numerical solution, necessitating the use of variable time steps. The start
of the ignition must be accurately determined without overshoot in the lo-
cal error control mechanism of the stiff ODE solver. This allows sufficiently
small time steps to be used in order to effectively simulate the ignition. Er-
rors at this stage result in considerably greater errors later on. Following
[1,53] a time tolerance of approximately TOL=10"° (with an initial time
step size of HO=10"%) was chosen in order to effectively capture the ignition
phase. Such a small tolerance does not seriously affect the efficiency of the
BDF codes since they are capable of stepping in time using higher order
formulae.

The presence of the ignition stage in this problem makes the time step-
ping process much more difficult than the spatial discretisation. Indeed, the
flame front is not particularly thin and can be satisfactorily resolved using
a conventional fixed spatial grid with as little as 40 internal nodes. Fig-
ure 6.1 shows the the numerical solution of the problem (plotted symbols)
computed using the fixed grid MOL approach of Method I, for various val-
ues of NN. An accurate reference solution is also plotted (solid lines) for
comparison purposes. The reference solution was generated using Method I
with NN=2000, TOL=10"% and with H0=10"5%. The integration statistics
corresponding to these solutions are shown in Table 6.4. Note the char-
acteristic efficiency of the conventional MOL approach in that the number
of Jacobian evaluations, NJACS, is always a small fraction of the num-
ber of time steps, STEPS. The operation counts for NIN=40 are a lot less
than for NN=10 but in fact the computational cost is much higher since,
in the former case, the order of the Jacobian is approximately four times as
great. This is clearly revealed by the CPU statistics, which steadily increase
with increasing NIN. The global error, ERR, starts off relatively large for
NN=10 but decreases rapidly as NN increases. For NIN=30,40 the value
of ERR appears to stabilise at approximately 0.05. This is because of the
large difference between the reference and numerical solutions at T=0.26,
X=0, visible in Figure 6.1. This discrepancy arises because the integrator
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has difficulty in determining the start of the ignition phase. A smaller value
of TOL would have improved the performance considerably. For the present
value of TOL, however, the integration proceeds well at later times and, as
can be seen from Figure 6.1, the reference and numerical solutions are al-
most indistinguishable at these times.

For the adaptive mesh strategies the present problem is of interest be-
cause the Lagrangian nature of these methods allow the grid to track the
propagating flame front, thereby reducing the stiffness of the problem and
allowing fewer time steps to be used during the propagation phase. Figures
6.2 and 6.3 show the grid trajectories and solutions at four different output
times using Method II (with NIN=40), for various values of the method pa-
rameter 7. For the case r=1.0, a uniform fixed grid implementation results,
with the grid becoming increasingly adaptive as r decreases. It should be
remembered, however, that a fixed grid implementation of Method II with
NN=40 is not equivalent to the corresponding implementation of Method
I (also with NIN=40), since in the former case the order of the Jacobian is
approximately twice as great.

Table 6.5 shows the integration statistics for the solutions obtained with
Method II. For the smallest 7 value (=0.0001), corresponding to the most
adaptive grid, the number of time steps used, STEPS, is almost half that
used for the case r=1.0, (uniform, fixed grid). This demonstrates the de-
sired effect of the Lagrangian approach of Method II. As in the solutions
obtained with Method I, the global error is exclusively dominated by the
large discrepancy between the reference and numerical solutions at T=0.26,
X=0. At later times, however, the numerical solutions are not quite as ac-
curate as those obtained with Method 1. This is because Method II tends to
overestimate the speed of the flame front during the propagation phase. In
Table 6.5, as 7 decreases the various operation counts also decrease with the
result that CPU reduces to a value of 61 seconds for the smallest r value,
compared with a value of 122 seconds for the largest r value. The greater
efficiency of the variable grid implementation of Method II, over the fixed
grid alternative, is obvious.

The present problem was also solved using Method III with the param-
eters C2 and d set to zero. Varying the value of C1 has the same effect as
varying 7 in Method II. This parameter is associated with the “inter-nodal
viscosities” discussed in the last chapter. Figure 6.4 shows the grid trajec-
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tories and solutions computed using Method III for two values of C1. The
value C1=10.0 corresponds to a uniform fixed grid implementation. Table
6.5 lists the integration statistics for these implementations and also for two
other implementations. For the moving grid situations the method gives
consistently better approximations of the flame speed (indicated by smaller
ERR values) compared with Method II. Notice in Figure 6.4 that the errors
at T=0.26, X=0 are considerable less than those obtained using Methods
I and II. The higher accuracy of Method III over Method II comes at a
considerably greater cost, however, as indicated by the consistently higher
values of CPU for Method III. Unlike Method II the operation counts do
not continuously decrease with a reduction in C1. Indeed, for most imple-
mentations, too small a value of C1 may result in node overtaking. This
suggests that the choice of C1l in Method III is somewhat more difficult
than the corresponding choice of 7 in Method II which is a disadvantage
with respect to robustness and ease of implementation.

For this problem, the results suggest that the implementations of Meth-
ods IT and III are more effective when used in “adaptive grid” mode rather
than “fixed grid” mode. However the viability of these two methods can only
be properly assessed when compared with the standard fixed grid MOL ap-
proach of Method I. The comparison of new adaptive mesh strategies with
the conventional approaches is an exercise which has been overlooked in the
literature on adaptive meshing. Comparing the most accurate results of
Method II and III with the corresponding results of Method I (for NIN=40)
gives the following statistics.

STEPS | NJACS | NITER | CPU | ERR
Method 1 376 39 500 18.5 0.06
Method II 204 39 348 61.0 | 0.07
Method III 350 195 1023 179.5 | 0.04

Obviously, the desired effect of the Lagrangian approaches of Methods II
and III have been realised in that STEPS is less for these methods. How-
ever, the values of CPU reveal that Method I is between three and ten
times more efficient than Methods II and III. Clearly, for this problem, the
conventional fixed grid MOL approach of Method I is far superior. On the
whole, this problem is not a good demonstration of the superiority of adap-
tive meshing over the conventional approach but it does illustrate vividly
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Problem 1

a=1d=20R=5

Method I
Method parameters
TOL HO
10~° g

Integration statistics

NN =10 NN =20 | NN =30 | NN =40
STEPS 431 451 428 376
NJACS 68 53 44 39
NRE 852 806 712 619
NITER 646 645 578 500
CPU 7.3 12.7 16.0 18.5
ERR 0.54 0.17 0.05 0.06

Table 6.4: Integration statistics for Problem 1 solved using Method I.

the Lagrangian nature of Methods II and III.
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2.0

Figure 6.1: Solutions for Problem 1 generated using Method I for the output
times T=0.26, 0.27, 0.28, 0.29 using (a) NN=10, (b) NIN=20, (¢) NN=30,
(d) NN=40
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Figure 6.2: Solutions and grid trajectories for Problem 1 generated using
Method II for the output times T=0.26 0.27 0.28 0.29 with NN=40 and (a)
r=1.0, (b} v=0.01
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Figure 6.3: Solutions and grid trajectories for Problem 1 generated using
Method II for the output times T=0.26 0.27 0.28 0.29 with NIN=40 and (a)
r=0.001, (b) r=0.0001
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Figure 6.4: Solutions and grid trajectories for Problem 1 generated using
Method III for the output times T=0.26, 0.27, 0.28, 0.29 with NIN=40,
C2=d=0.0 and (a) C1=10.0, (b) C1=0.05
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Problem 1

a=1d=20R=5

Method II
Method parameters
K a TOL HO NN
2 1 107 10~° 40

Integration statistics
r=1 r=0.01 | 7=0.001 | 7= 0.0001

STEPS 439 277 215 204
NJACS 79 50 42 39
NRE 1411 904 764 712
NITER 679 439 373 348
CPU 122.3 78.9 65.2 61.0
ERR 0.06 0.07 0.08 0.07
Method III

Method parameters

C2 d TOL HoO NN
0 0 16— 10~ 40

Integration statistics
Cl1=10|C1=01|C1=0.05|C1=0.025

STEPS 352 311 326 350
NJACS 51 141 165 195
NRE 1020 1911 2133 2435
NITER 604 889 937 1023
CPU 88.4 144.0 151.0 179.5
ERR 0.12 0.06 0.08 0.04

Table 6.5: Integration statistics for Problem 1 solved using Method II and
III with INN=40. 139



6.5.2 Problem 2

The initial conditions for this problem are quite smooth but the solution is
a wave which steepens rapidly and then propagates towards X=1. The pres-
ence of homogeneous Dirichlet boundary conditions means that the solution
dampens towards an asymptotic value of zero at later times. Conventional
fixed grid MOL solutions, based on centered Finite Differences, give rise to
spurious oscillations when the grid is too coarse in the steep region of the
solution. For the moving mesh approaches the placement of mesh points in
this region is critical, with slight deviations from the optimal grid causing
oscillations. The resulting non-smoothness (wriggles), induced in the solu-
tion, can seriously affect the efficiency of the stiff ODE solver. The presence
of a steep moving front means that the spatial discretisation is more difficult
than the time stepping process. For this reason the tolerance in the BDF
codes (for all the methods) was set to TOL=10"3; relatively large compared
to the value chosen in the previous problem. In the numerical results to fol-
low the reference solution was calculated using Method I with ININ=2000,
TOL=10"8 and HO=10"°.

Figure 6.5 shows the results obtained with Method I at the output times
T=0.2, 0.6, 1.0, 1.4, 2.0 for two choices of NIN. Method I failed repeatedly
when NN was less than about 500. This was because the steep wavefront
could not be resolved. Even for NIN=500 there are hardly any nodes present
within the steep front and some oscillations can be seen at the crest of the
wave. For NIN=600 the solution is adequately resolved, with several nodes
being present in the shock front. Table 6.6 shows the integration statistics
for both implementations of Method I. The MOL approach does a good job
at keeping NJACS a small fraction of STEPS. Both implementations give
effective results with an increase in NN causing a sharp decrease in ERR.
As indicated by the CPU statistics, Method I behaves very inefficiently with
the solution for NIN=600 requiring a CPU value of nearly nine minutes.
This is due to the large order Jacobian arising from the spatial discretisation.

Adaptive mesh solutions to this problem are shown in Figures 6.6 and
6.7 using Methods II and III, respectively. In both cases NIN=40. Notice
the sharp movement of the grid trajectories at T ~1.3. This is caused by
a sudden change in the shape of the solution which must be adequately re-
solved by the mesh moving methods. Figure 6.6 shows inaccurate results
for Method II for the times T=1.2, 1.4, whereas both implementations of
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Method III are much more accurate at all the specified output times. The
surprisingly large ERR values quoted for Method III in Table 6.7 arise due
to slight deviations between the numerical and reference shock positions.
Because the shock is very steep these relatively small lateral deviations give
rise to relatively large absolute errors. The solutions delivered by Method
ITI remain effective with the numerical and reference solutions being almost
indistinguishable in Figure 6.7. Table 6.7 indicates typical behaviour for
Method II in that as 7 decreases the efficiency improves. As was the case in
the previous problem the correct choice of parameters for Method III is not
obvious and the costs for various values of C1, C2 and d fluctuate consid-
erably.

C1 and C2 are associated with the inter-nodal “viscosity” and “spring”
functions of the Moving Finite Element method, respectively.. C1 is used
to avoid parallelism of the moving nodes while C2 avoids node overtaking.
The parameter d is a prescribed minimum node separation which should
be smaller than the expected small-scale structure in the solution. Thus,
for the present problem, d must be less than the value of the diffusion co-
efficient, €, since the width of the wave front is proportional to this value.
Unfortunately the use of such a minimum node separation ultimately means
that the optimal choice for d is essentially problem dependent. From the
CPU statistics given in Table 6.7, Method III is evidently a lot less efficient
than Method II but even for such a wide choice of method parameters the
results are always accurate. Method III succeeds in remaining robust but at
the expense of efficiency.

For this problem results for Method II were unsatisfactory as regards
robustness and, for smaller values of 7 than those given in Table 6.7, fatal
Newton errors were repeatedly encountered when the minimum mesh spac-
ing became very small. Similar problems were reported by Verwer et al. [53]
although only for more difficult problems than the present example. The
reason why they appear more often in the present experiments is because the
implicit ODE solver used here is the NAG routine DO2NHF [39] whereas the
solver used by Verwer et al. is the more advanced DASSL code [43]. This
package is especially superior in its treatment of Differential /Algebraic sys-
tems which occur in Method II when 7 is set to zero. In all experiments very
small 7 values were avoided in order to avoid the possible shortcomings of
the ODE solver being used.
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Comparing the results obtained with Method III in Figure 6.7(b) (ININ=40)
with those obtained using Method I in Figure 6.5(b) (ININ=600) gives the
following statistics.

STEPS | NJACS | NITER | CPU | ERR
Method I 780 61 1023 534.0 | 0.08
Method III 208 163 652 121.0 | 0.41

Although not nearly as accurate as Method I, Method III performs the
solution in one quarter of the time required by Method 1. Also, as can be
seen from Figures 6.7(b) and 6.5(b) the solutions are qualitatively not very
different.

Overall, this problem illustrates the effectiveness of the adaptive mesh
algorithms very well, especially for problems where the spatial resolution
is paramount. Method III works robustly and accurately but the difficulty
of choosing optimal values of the method parameters C1, C2 and d still
remains. This leads to implementations which are non-optimal. For a diffi-
cult problem, such as the present example, where the standard approach of
Method I fails repeatedly, Method III is very much a viable alternative.
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Figure 6.5: Solutions of Problem 2 generated using Method I for the output
times T=0.2, 0.6, 1.0, 1.2, 1.4, 2.0 (a) NN=500, (b) NN=600
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Problem 2

¢ = 0.001
Method 1
Method parameters
TOL HO
10~° I

Integration statistics

NN = 500 | NN = 600
STEPS 831 780
NIJACS 74 61
NRE 1299 1208
NITER 1075 1023
CPU 459.5 534.0
ERR 0.13 0.08

Table 6.6: Integration statistics for Problem 2 solved using Method L.
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Figure 6.6: Solutions and grid trajectories for Problem 2 generated using
Method II for the output times T=0.2, 0.6, 1.0, 1.2, 1.4, 2.0 with NN=40

and (a) 7=0.01, (b) r=0.001
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Figure 6.7: Solutions and grid trajectories for Problem 2 generated using
Method III for the output times T=0.2, 0.6, 1.0, 1.2, 1.4, 2.0 with NIN=40
and (a) C1=0.025, C2=0.0001, d=0.0001 and (b) C1=0.01, C2=0.0001,
d=0.0005
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Problem 2 (¢ = 0.001)

Method II
Method parameters
K @ TOL HO NN
2 1 107° 10~ 40

Integration statistics
' r=0.01 7 = 0.001

STEPS 192 157

NJACS 74 63

NRE 1095 932

NITER 404 346
| CPU 88.0 71.2
'ERR 1.32 133 -

Method III

Method parameters

C2 TOL HO NN

0.0001 107+ 1 40

Integration statistics
C1=0025|C1=002| C1=0.01| C1=0.01
d = 0.0001 | d = 0.0005 | d = 0.0001 | d = 0.0005

STEPS 473 240 439 208
NJACS 342 186 349 163
NRE 3735 2054 3763 1834
NITER | 1260 | 1705 1239 652
CPU 251.8 135.6 250.4 121.0
ERR 0.42 0.44 0.43 0.41

Table 6.7: Integration statistics for Problem 2 solved using Methods II and
111
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6.5.3 Problem 3

The solution to this problem represents one shock wave overtaking another
which then develops into an asymptotic boundary layer at X=1. Both shock
structures are clearly visible in the initial solution which is rather non-
smooth. This non-smoothness poses problems for both fixed and moving
grid approaches. If a uniform start grid is used then a large number of
nodes are required in order to accurately resolve the initial solution.

Figure 6.8 shows the solutions obtained using Method I for various val-
ues of NN with the corresponding integration statistics shown in Table 6.8.
The typical oscillations associated with the conventional fixed grid MOL
approach occur for NIN=40,80 and even the solution for NIN=160 is inac-
curate at the tip of the shock (ERR=0.03). Only for NN=320 do we see a
very accurate representation of the shocks and the eventual boundary layer.
These results are similar to those obtained in Chapter 3 in the section on
“uniform mesh implementations” where this problem was solved using the
NAG routine DO2PGF [39].

Figures 6.9 and 6.10 show the corresponding solutions obtained with
Method II and III with NIN=40. Notice the rapid movement of the grid
in Figure 6.9 (b) at the start of the integration. This occurs because the
smaller 7=0.001 value used here, allows the initial grid to rapidly adapt to
the form of the initial solution. However, the smoother grid movement ob-
tained with 7=0.1 gives more accurate and efficient results, as seen in Table
6.9. This nicely illustrates the beneficial effect of the temporal grid smooth-
ing property of the method. As in previous problems, however, Method II
tends to overestimate the speed of the shocks giving large errors at later
times (ERR=0.46, 0.68).

As in the last example Method III gives consistently more accurate re-
sults than Method II but still remains rather expensive. For the particular
parameter choices C1=0.025 and C2=0.0001, Table 6.9 shows the effect of
varying the minimum node separation, d. The larger value of d leads to a
significant reduction in cost. Ultimately the optimal choice of d is somewhat
problem dependent and for this particular problem it must not exceed the
approximate shock thickness (determined by the diffusion coefficient, ¢, in
Problem 3). This is a negative aspect of the method with respect to robust-
ness. Generally, however, for small values of d the method behaves very
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accurately and robustly, albeit at rather high costs. Comparing the most
accurate results of Method III with those of Method I (for NIN=320) gives
the following statistics.

STEPS | NJACS | NITER | CPU | ERR
Method 1 191 12 232 60.9 0.01
Method Il | 85 68 285 52.3 | 0.011

Method III performs the integration approximately twenty percent faster
than Method I while yielding the same global error (ERR=0.01).

These results suggest that Method III is more efficient than Method I, al-

though not significantly so. Method II, on the other hand, is approximately
twice as fast as Method I but unfortunately rather inaccurate.
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Problem 3

¢ = 0.003
Method I
Method parameters
TOL HO
1072 10~°

Integration statistics

NN =40 | NN = 80 | NN = 160 | NN = 320
STEPS 118 159 165 191
NJACS 9 9 10 12
NRE 167 208 232 270
NITER 138 179 200 232
CPU 5.3 12.7 26.4 60.9
ERR 0.44 0.11 0.03 0.01

Table 6.8: Integration statistics for Problem 3 solved using Method I.
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Figure 6.8: Solutions for Problem 3 generated using Method I for the output

times T=0.2, 0.4, 0.7, 0.9, 1.1 with (a) NIN=40, (b) NN=80, (¢) NN=160,
(d) NN=320
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Figure 6.9: Solutions and grid trajectories for Problem 3 generated using
Method 1I for the output times T=0.2, 0.4, 0.7, 0.9, 1.1 with NIN=40 and
(a) 7=0.1, (b) 7=0.001
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Figure 6.10: Solutions and grid trajectories for Problem 3 generated using
Method III for the output times T=0.2, 0.4, 0.7, 0.9, 1.1 with ININ=40,
C1=0.025, C2=0.0001 and (a) d=0.001, (b) d=0.003
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Table 6.9: Integration statistics for Problem 3 solved using Method II and
III.

Problem 3 (e = 0.003)

Method II
Method parameters
K o TOL HO | NN
2 1 i T 10 | 40
Integration statistics

7=0.1 7 = 0.001

STEPS 77 93
NJACS 26 30
NRE 404 469
NITER 161 188
CPU 345 39.8
ERR 0.46 0.68

Method III
Method parameters
C2 TOL Ho NN
0.0001 10 107° 40
Integration statistics

) 'C1 = 0.025 | C1 = 0.025
d = 0.001 d = 0.003

STEPS 104 85
NJACS 82 68
NRE 914 780
NITER _B17 285
CPU 61.5 52.3
ERR 0.012 0.011
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6.5.4 Problem 4

The solution of this problem is a wave which travels in the negative X-
direction (when r; and ry are positive). The steepness and propagation
speed of the wave are determined by r; and rp. Following [14] the param-
eters are chosen as follows [ r1=r;=100 and §=10"2 ]. As in the case of
Problem 3, the initial conditions here are quite non-smooth. This causes
problems for both the fixed grid and the adaptive mesh implementations.

Figure 6.11 shows the solutions obtained using Method I (for several
values of NIN) and Table 6.10 gives the corresponding integration statistics.
For NIN=20, 40 the results are clearly inadequate (ERR~0.2). For NN=80
there is a substantial improvement (ERR=20.1), although the resolution of
the solution at the left hand boundary (for T=1.0) is not good. Only for
NN=160 is the solution accurate over the whole domain (ERR=0.03). The
solutions obtained with Methods II and III are shown in Figures 6.12 and
6.13 for the case NN=40. In Figure 6.12 (a) a large oscillation is present in
the solution at T=0.25, 0.5. This is a result of the inadequate node move-
ment allowed by the particular choice of 7(=0.1). For 7=0.001 (Figure 6.12
(b)) the grid adapts quickly to the initial conditions and the overall result is
more accurate. In this case ERR is the same as that obtained with Method
I for NN=160.

The results for Method III for two different choices of the parameter C1
are shown in Figure 6.13. For the present problem, Method III behaves very
poorly, giving wild oscillations and large ERR values. This is probably be-
cause the inner product, associated with the nonlinear term, F(X), of the
problem, is inadequately resolved by the Finite Element method. The rather
simple trapezoidal quadrature rule, used in the formulation, is clearly not
accurate enough to handle the F(X) term.

Comparing the most accurate results of Method I and Method II gives
the following statistics.

STEPS | NJACS | NITER | CPU | ERR
Method I 644 34 711 113.8 | 0.03
Method II 194 79 388 61.6 | 0.03
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Clearly, for the same global error, Method II operates nearly twice as
efficiently as Method I. Method III, on the other hand, performs twice as
slowly but with very poor accuracy.
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Problem 4

c=10"2 Ry = R; = 100

Method 1
Method parameters
TOL HO
10~° 10~°

Integration statistics

NN =20 | NN =40 | NN =80 | NN = 160
STEPS 708 909 875 644
NJACS 155 167 86 34
NRE 1584 1882 1343 815
NITER 1117 1379 1083 711
CPU 25.0 56.9 85.9 113.8
ERR 0.20 0.21 0.12 0.03

Table 6.10: Integration statistics for Problem 4 solved using Method I.
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Figure 6.11: Solutions of Problem 4 generated using Method I for the output
times T=0.25, 0.50, 0.75, 1.0 using (a) NN=20, (b) NN=40, (c) NN=80,

(d) NN=160
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Figure 6.12: Solutions and grid trajectories for Problem 4 generated using
Method TI for the output times T=0.2, 0.4, 0.7, 0.9, 1.1 with NN=40 and
(a) r=0.1, (b) 7=0.001
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Figure 6.13: Solutions and grid trajectories for Problem 4 generated using
Method III for the output times T=0.2, 0.4, 0.7, 0.9, 1.1 with INN=40,
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Table 6.11: Integration statistics for Problem 4 solved using Method II and
111

Problem 4
c=10"2 R = R, = 100

Method II
Method parameters
K a TOL HO | NN
2 1 10~° 107° [ 40
Integration statistics

r=01 || r=0001

STEPS 357 194
NJACS 102 79
NRE 1597 1128
NITER 652 388
CrPU 110.8 61.6
ERR 0.05 0.03

Method III
Method parameters
C2 d TOL HO | NN
0.001 0.001 10 107° | 40
Integration statistics

Cil=20|€1=1.0

STEPS 469 644
NJACS 178 144
NRE 2412 2315
NITER 1123 1270
CPU 238.0 235.0
ERR 0.49 0.26
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6.6 Observations

The four parabolic equations of the last section provide a varied set of
problem situations which must be handled effectively by the adaptive mesh
strategies.

Interestingly, the Finite Difference nature of Method II make it as easy
to implement as the standard MOL approach whereas Method III, which
is based on Finite Elements, requires somewhat greater effort. Problem 4,
which contained a non-linear source term, was solved routinely using Method
II since the source term, F(X), could be explicitly incorporated into the for-
mulation. For Method III an inner product involving F(X) had first to be
approximated using a quadrature rule. In this case the use of the simple
trapezoidal rule was apparently not accurate enough. Generally, Finite Ele-
ment methods cannot be implemented as automatically as Finite Difference
methods owing to the occurrence of these problem-specific inner products.

Both adaptive mesh strategies are quite robust and although neither
methods are free of so-called “tuning parameters,” a sensible default choice
always succeeded in giving reasonable results. The parameter r in Method
IT has an obvious meaning in that it is directly associated with the tempo-
ral grid smoothing property of the method. Since it is virtually the only
parameter required for the adaptive mesh strategy (the other two parame-
ters & and k were simply set to the values 1 and 2, respectively, in all the
numerical experiments) the implementation retains a high level of simplicity.

Method III requires the specification of three parameters C1, C2 and d,
all of which, except the minimum node separation d, are rather indirectly
associated with the properties of the mesh. Although the use of these param-
eters complicates the implementation of Method III considerably, for almost
all the choices made in the numerical experiments the method remained
very accurate and robust. A favourable property of Method III is that these
parameters appear to effect only the cost of the implementation. This is
the preferred situation when dealing with tuning parameters; their values
should only enhance the existing efficiency of the method rather than criti-
cally effect its performance. Regrettably, for Method III very high efficiency
was not achieved because of the difficulty in choosing optimal parameter
values.
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For the implementation of Method II the choice of the parameter r
proved to be somewhat critical to the performance of the method. In the
case of Problem 2, for small 7 values failures were recorded as a result of
the minimum mesh spacing becoming too small. This problem was also
allured to by Verwer et al. [53] in similar implementations. However they
arose more frequently in the present experiments because the particular
DAE/ODE solver used was the NAG [39] DO2NHF routine whereas Verwer
et al. used the more sophisticated DASSL [43] code. It would be unwise,
however, to dismiss Method II on the basis of the present results without
first testing its performance using a more sophisticated DAE/ODE solver.

Method III avoids the difficulties encountered when the node spacing
becomes too close, by incorporating the minimum node spacing as a param-
eter in the method. Ultimately the choice of this parameter is somewhat
problem specific and is therefore contrary to the need for versatility but
it does however succeed in preserving a high degree of robustness in the
implementation. Present day ODE solvers, including those used in the nu-
merical experiments, possess such a parameter for the time integration, so
it is perhaps quite acceptable to have a similar parameter associated with
the spatial discretisation.

The results obtained in the last section using Methods I, II and III to
solve Problems 1, 2, 3 and 4 can be qualitatively summarised as follows.

Robustness | Efficiency | Accuracy
Method I 2 3 1
Method II 3 1 3
Method III 1 2 2

The three algorithms are numbered in order of merit, 1 indicating the
best performance and 3 indicating the worst performance. Method III was
the most robust algorithm because, for the default choice of parameters, the
method never failed. Methods I and II, on the other hand, failed for a small
number of implementations. Method II was the most efficient algorithm
but unfortunately was also the most inaccurate. On the whole, Method III
behaved reasonable efficiently and accurately compared to the other algo-
rithms.
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The comparisons made with the conventional fixed grid MOL approach
(Method I) suggest that both the adaptive mesh strategies (Methods II and
III) are only really viable for quite difficult parabolic problems since the
computing overhead in the calculation of the grid is significant. For those
problems which are only mildly difficult, such as Problem 1, the adaptive
mesh strategies are a lot less effective than the conventional fixed grid ap-
proach. Their great advantage, however, is their ability to effectively solve
difficult parabolic problems, such as Problem 2, and to a lesser extent Prob-
lems 3 and 4, where the conventional approach performs poorly.
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Chapter 7

Conclusions

The objective of all efficient numerical methods could be described as the
discrete approximation of a problem with uniform accuracy over its entire
domain. In the context of one-dimensional parabolic partial differential
equations the domain of interest typically involves finite intervals of space
and time. For these problems the above objective has not yet been fully
realised.

The standard approach to the numerical solution of parabolic equations
was described in Chapter 3. Here, spatial discretisation leads to a system
of (usually stiff) ODEs which are then solved routinely using existing high
quality ODE integrators. This constitutes the conventional Method of Lines
(MOL) approach. The great popularity of the MOL approach stems from its
ability to reduce even the most diverse initial/boundary-value problems in
parabolic partial differential equations to the familiar initial-value problem
for a system of ordinary differential equations. This ability has made the
MOL approach the single most versatile method for the numerical solution
of parabolic equations. In this area versatility is hard to achieve due to the
great diversity of problems yet the MOL approach stands out as an effective
method where few others exist.

Since the advent of automatic temporal integration methods (typified by
the Gear codes [21,22]) the efficient solution of ODE systems has become
more or less routine. Today, one could say that the goal of “error equidistri-
bution” has actually been achieved for the temporal dimension of parabolic
problems. What remains unrealised is the equidistribution of errors in the
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spatial domain of these problems. The fact is clearly illustrated by the uni-
form mesh implementations at the end of Chapter 3.

Chapter 4 dealt with the analysis of so-called adaptive mesh strategies.
The aim of adaptive spatial meshing is to provide efficiency in the spatial
dimension hitherto only possible in the ternporal integration. The appar-
ent diversity of strategies in a sense mirrors the underlying complexity of
parabolic problems. At a more fundamental level, however, adaptive mesh
strategies differ in only one way, namely, the manner in which they corre-
late the solution and the numerical grid. Characterisation of adaptive mesh
strategies on the basis of this property yields two main classes: local mesh
refinement methods and mesh moving methods. In the first class, the so-
lution and grid are loosely related with each being determined in different
ways. This leads to approaches which tend to be heuristic in nature and
are not very robust. Methods belonging to the second class treat both cal-
culations in a very homogeneous way. The grid evolution is controlled in a
more formal manner resulting in implementations which are robust and free
of heuristics. A considerable effort, however, is devoted to calculating the
grid. Present research in this field suggests that the mesh moving methods
provide a more viable approach towards adaptive meshing than the local
mesh refinement methods.

Given the apparent superiority of the mesh moving approach it is not
surprising that the two algorithms chosen for further study in Chapter 5
belong to this class. The fact that both algorithms involve MOL type im-
plementations is an important factor because strategies such as these lend
themselves easily to incorporation into existing solution methods.

The first algorithm, from Verwer et al. [53], is particularly straight-
forward to implement as it is based upon existing Finite Difference meth-
ods. The method possesses an interesting temporal grid smoothing property
which retains efficiency in the time integration. Few other adaptive mesh
strategies address the closely related problems of spatial and temporal res-
olution in this way. Control of the adaptive meshing process is exercised
via a single parameter which has a clear physical significance. This leads to
straightforward implementations.

The second algorithm, Moving Finite elements [36,35), is a generalisation
of the conventional (fixed grid) Galerkin Finite Element method. This ap-
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proach is geared solely towards the goal of spatial resolution without regard
to the time integration process. Three parameters determine the behaviour
of the adaptive meshing process but only one of these has any direct physical
significance. Consequently, although highly accurate, implementations tend
to be non-optimal in terms of computational expense.

In general, the first algorithm is computationally inexpensive to imple-
ment, but tends to be inaccurate, whereas the second method is relatively
expensive to implement, but retains a high level of accuracy and robustness.
The robustness of the first method was called into question when, in the
case of Problem 2, fatal convergence errors occurred for small values of the
temporal grid smoothing parameter. In such cases, the semidiscretisation
produces a system of Differential-Algebraic equations (DAEs). However,
these systems are very complex and require more sophisticated temporal
integrators than those used in the present experiments.

Comparisons with the conventional fixed grid MOL approach demon-
strated the effectiveness of the adaptive mesh strategies in the solution of
difficult parabolic problems. However, for problems of intermediate dif-
ficulty, both methods were only marginally better than the conventional
approach. One disadvantage of the moving mesh approach is that consider-
able effort is devoted to calculating the grid. Clearly for difficult problems,
where the solution is critically dependent on the spatial grid, this effort is
very worthwhile. For less difficult problems, on the other hand, expensive
calculation of a non-critical grid constitutes a waste of effort. The adap-
tive mesh strategies implemented here are therefore suited to the solution
of difficult problems. For the easy to mildly-difficult problems the conven-
tional MOL approach is still the preferred method. Current research is still
mainly concerned with the solution of difficult problems and the improve-
ment of existing algorithms. The trend appears to be moving towards the
use of adaptive mesh strategies which combine the recognised advantages
of both the local mesh refinement and mesh moving approaches. See for
example Adjerid and Flaherty [1] and Verwer et al. [54].

Looking to the future, it is likely that adaptive mesh algorithms will soon
be available as options within standard packages. Eventually, the automatic
choice between fixed or adaptive strategies will also become possible, in the
same way that some present-day ODE solvers automatically select the stiff
or non-stiff options in the temporal integration. The ultimate goal, however,
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would be the production of a single adaptive mesh algorithm which reduces
to the conventional fixed grid approach, whenever appropriate. Such a strat-
egy would then provide efficient solutions over the entire range of parabolic
problems.

Whatever the outcome of present research in the field of adaptive mesh-
ing there is little doubt that the adaptive integration of parabolic equations
in the spatial dimension, will soon be routinely possible. Thus, the objective
of evenly distributing the numerical errors over the entire problem domain
will have been realised. The analysis presented in this thesis clearly indi-
cates that the adaptive mesh strategies currently being developed, go a long
way towards realising this objective.
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