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ABSTRACT

Since the initial isolation of pyroglutamyl aminopeptidase (PAP) from a strain of Pseudomonas 

fluorescens by Doolittle and Armentrout in 1968, similar enzyme activities have been isolated and 

characterised from a multitude of prokaryotic and eukaryotic sources Studies on eukaryotic PAPs have 

been done mainly m mammals, typically with a view to elucidating the potential role of this class of 

enzymes in the catabolism of various pGlu-terminating peptides, including neuropeptides, in vivo The 

central aim of this study was to undertake the complete purification and characterisation of a PAP 

activity observed within the soluble or cytosolic fraction of bovine whole brain Several workers have 

previously desenbed the purification and characterisation of soluble PAP activities from different 

mammalian tissues including guinea-pig and human brain However, other than some minor details 

furnished by earlier studies, little was previously known of the bovine brain activity

A combination of different chromatographic methodologies subsequently generated a soluble PAP 

activity with a total active yield of 6  6% which had been purified to near homogeneity, as judged by 

SDS PAGE and silver staining techniques The unstable nature of the purified enzyme in dilute 

solution was very apparent, prompting the usage of 0 5%w/v BSA to stabilise PAP activity dunng both 

assay and storage Characterisation of this enzyme activity subsequently revealed a number of 

interesting results, many of which compared well with findings previously reported for soluble PAP 

activities examined m other sources In addition to a predominantly cytosolic subcellular location, this 

enzyme was found to exhibit a low relative molecular mass Gel-filtration chromatography revealed a 

native molecular mass of approximately 23,700 dal tons, a value which compares well with that 

obtained for the enzyme under denatunng conditions via SDS PAGE (22,450 daltons), supporting the 

likelihood that the soluble bovine brain PAP exists as a monomer A pH optimum of 8 5-9 0, as 

determined with pGlu-MCA at 37°C, was also demonstrated for this enzyme, whilst the expression of 

PAP activity exhibited an absolute requirement for the presence of a disulphide bond-reducmg agent 

such as DTT, suggesting the participation of active site thiol groups in enzyme activity (i e a thiol 

protease) Strong inhibition of punfied PAP activity was observed with a number of different agents 

which included the transition metal ions Hg2+, Cu2+, Zn2+ and Cd2+, the sulphydryl-blocking agents 

lodoacetate, 2-iodoacetamide, PCMB and N-ethylmaleimide and the reversible inhibitor 2-pyrrolidone 

Senne protease inhibitors and metal chelating agents (with the exception of 1,10-phenanthroline) as 

well as the compounds bacitracin puromycin and bestatin had no effect on enzyme activity 

The cleavage of the N-terminal pGlu residue from a wide range of pyroglutamyl substrates including 

TRH, acid TRH, pGIu-His-Pro-MCA (a TRH analog), bombesin and neurotensin was clearly 

demonstrated for the soluble bovine brain PAP activity N-termmal pGlu cleavage of eledoisin and 

LHRH could not be detected however Whereas this was expected for eledoisin, a substrate which 

commences with the sequence pGlu-Pro, such a finding for LHRH was quite unexpected Subsequent 

kinetic analysis also revealed that (he punfied PAP activity displays Km and K, values withm the
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lower micromolar range for a number of these substrates (TRH, acid TRH, LHRH, pGlu-MCA, pGlu- 

BNA and pGIu-His-Pro-MCA) indicative of a strong enzyme-substrate interaction In addition, all of 

the pGlu-peptides for which Kj values were estimated proved to be competitive inhibitors

Based on a comparison of these findings with those reported for soluble PAP activities in other 

mammalian tissues, the soluble PAP enzyme activity observed in bovine whole bram can tentatively 

be classified as a pyroglutamyl ammopeptidase type-1 or PAP-I (EC 3 4 19 3)
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1. INTRODUCTION



PREFACE

The experimental body of work outlined in this report concerns the purification and characterisation of 

the cytosolic neuropeptidase, pyroglutamyl ammopeptidase or PAP, from bovine brain This en/yme 

has previously been shown to have a relatively broad pyroglutamy 1-substrate specificity in vitro, which 

includes the hypothalamic releasing factor, thyrotropin releasing hormone (TRH), among other 

neuropeptides Following a bnef introductory segment which examines the physiological relevance of 

neuropeptides (section 1 1), the ensuing section (section 1 2 ) will subsequently endeavour to review 

and condense the extensive volume of literature currently available on this neuropeptidase and to report 

on aspects of its genetic characterisation, biochemical and enzymatic properties, potential 

physiological functions and its distribution both among different species and between different 

mammalian tissues

Since its isolation from porcine and ovine hypothalamic tissue in 1969, TRH has been the focus of 

intense investigation, and has been proposed as a potential substrate for a number of soluble and 

particulate enzyme activities, including pvroglutamvl ammopeptidase. in vivo In view of the 

physiological and pharmacological significance ascribed to this neuropeptide, a short review of TRH 

will also be undertaken (section 1 3) Aspects of its structure and its functional capacities as a 

neuroendocrine and neuroregulatory factor, as well as its inactivation by neuropeptidases will be 

examined In addition, some of the more recent and interesting aspects of TRH research will receive 

some attention These include TRH receptor signalling, the genetic characterisation and processing of 

the TRH prohormone and the regulation of TRH at the biosynthetic and secretory level
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Neuropeptides form an ever expanding and interesting family of potent chemical messengers The 

previous three decades have seen the identification of well over 1 0 0  neuroactive peptides in 

mammalian tissues, each having either a clearly defined or proposed neurobiological function 

Application of the techniques of immunohistochemistry and radioimmunoassay coupled with vanous 

other techniques in biochemistry and molecular biology have greatly facilitated the initial identification 

and charactensation of a host of these peptides within the vertebrate bram Many of these peptides 

however, were previously known to exist m vertebrate tissues beyond the confines of the central 

nervous system, as well as in lower species (Le Roith et a l , 1980, 1981, 1982, Schwabe et a l , 1983, 

Maruo et a l , 1979), in which they may serve as primitive elements of intercellular communication 

pnor to the development of neuronal or endoenne systems Table 1 1 highlights the categones into 

which mammalian bram peptides can be grouped

Structurally, these compounds consist of polypepude chains of up to 40 amino acid residues in length, 

with very specific modifications to individual residues, which govern the distinctive biological activity 

of each particular neuropeptide Common ammo acid residue modifications include modificauon of the 

amino-terminus (e g by acetylation or by the cyclisation of glutamine to pyroglutamic acid) and the 

carboxy-termmus (e g by amidation) These structural modifications determine the highly specific 

biological activities of neuropeptides. This includes their ability to recognise and bind to receptors and 

their relative stability towards inactivation bv peptidase enzvmes (neuropcptidases) which are present 

in all mammalian cells, both cvtosolicallv and at the membrane level with the specific purpose of 

degrading pentides or proteins to their constituent amino acids, enabling their return ultimately to the 

cellular amino acid pool.

I l l  Role of neuropeptides

Before neuropeptides were studied thoroughly m the central nervous system, they were simply thought 

of as a new category of neurotransmitters With time however it became clear that a given 

neuropeptide could be involved in a vanety of biological functions and that neurotransmitter-like 

actions alone were not enough to account for these functions This view was further substantiated by 

the observation that similar neuropeptides can occur in different tissues and organisms, suggesting 

therefore that the same peptide can act via different modes of intercellular communication, depending 

on the tissue in which it is present It is now known that neuropeptides can follow at least three 

different routes of action In some instances a given neuropeptide can act as (1) a local factor via 

autoenne or paraenne secretion, (2 ) a neuroendocrine substance (neurohormone or hormone) and (3 ) a 

neuroregulatory substance (neurotransmitter or neuromodulator)

1.1 Neuropeptides
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Table 11  Categories o f mammalian brain peptides

Hypothalamic-Releasing Hormones
ITiyrotropm-Releasing Hormone 
Luteinizing Hormone-Releasing Hormone 
Somatostatin
Corticotropin-Releasing Hormone 
Growth Hormone-Releasing Hormone

Neurohypophyseal Hormones
Vasopressin
Oxytocin
Neurohypophysin (s)

Pituitary Peptides
Adrenocorticotropic Hormone 
G-Endorphm
alpha-Melanocyte-StimuIating Hormone 
Prolactin
Luteinizing Hormone 
Growth Hormone 
Thyrotropin

Invertebrate Peptides
FMRF Amide *
Hydra Head Activator

Gastrointestinal Peptides
Vasoactive Intestinal Polypeptide
Cholecystokimn
Gastrin
Substance P
Neurotensin
Methionine-Enkephalin
Leucine-Enkephalin
Insulin
Glucagon
Bombesin
Secretin
Somatostatin
Moulin

Others
Angiotensin II 
Bradykimn 
Camosine 
Sleep Peptides 
Calcitonin 
NeuropepUde Yy

(Borrowed from Kneger (1983))

* Phe-Ala-Met-Arg-Phe-Ala-NHj
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1.1 2 N euro transmitters and neuromodulators

The latter capability of neuropeptides, that of neuroregulation, is of particular interest This refers to 

the processing of information in the bram and largely involves chemical communication among 

neurons through ncuroregulatory substances (pepudes, classical aminergic transmitters etc ) In this 

respect, there has been considerable debate as to whether brain peptides should be properly classified 

as neurotransmitters or "neuromodulators"

A neurotransmitter has previously been described as a substance liberated at presynaptic terminals 

which, after diffusing across the narrow synaptic gap, acted on the post-synaptic membrane Its action 

is highly localised to the synaptic region, with a duration of milliseconds Termination of its action is 

accomplished by removal of the neurotransmitter, either by enzymatic degradation or via a reuptake 

mechanism into the presynaptic terminal The reader is directed to Bowman and Rand (1980) for a 

more in depth examination of the criteria that should be satisfied for positive identification of a 

substance as a neurotransmitter

The observation that many peptide actions have a slow time course (Bloom, 1979, Iverson, 1984, 

Lundberg and Tatemoto, 1982), that there were mismatches between locations of peptides and their 

receptors in the brain (Herkenham and McLean, 1986) and that many neuropeptides coexisted with 

other transmitter agents in individual neurons (Lundberg and Hokfelt, 1983, Hokfelt et a l , 1986) 

prompted researchers to define the term "neuromodulator" to descnbe the nonclassical transmitter 

actions displayed by several neuropeptides This term has been used to define peptide actions when 

they (1) modify the known actions of the so-called "classical" neurotransmitters, (2 ) act to block the 

release of a given neurotransmitter via their release at presynaptic endings on the terminals releasing 

that transmitter and (3) alter the turnover of other neurotransmitters The net effect of neuromodulation 

therefore, amounts to the amplification or dampening of neuronal signalling processes 

Indeed the presence in the same cell of two or more putative neurotransmitters appears to be the rule 

rather than the exception (Crawley, 1990) Hokfelt et al (1980) have, for example, demonstrated the 

coexistence of serotonin with substance P and TRH in neurons of the medulla oblongata, vasoactive 

intestinal peptide (VIP) and acetylcholine within autonomic ganglia and corticotropin-releasmg factor 

(CRF) and vasopressin within cells of the paraventricular nucleus It is widely believed therefore that 

together with the small-molecule amines largely responsible for synaptic transmission, coexisting 

peptides, although present at concentrations several orders of magnitude less than those of the classic 

neurotransmitters such as acetylcholine (Kneger, 1983), may act as modulators and/or have alternative 

functions The coexistence of multiple transmitters and modulators within the same synapse therefore, 

enhances the versatility of the chemical message transmitted by neurons by providing the mechanism 

for more complex patterns of postsynaptic response

The vast scope of peptide neuromodulation within the brain, together with the fact that 

neuromodulation is an "indirect" process in the sense of requiring another agent, does raise questions
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of specificity Therefore, most investigators dealing with peptide modulation have made at least some 

effort to assess the specificity of the neuromodulation in question by testing whether neuromodulation 

by a particular peptide can be duplicated with other, unrelated peptides With rare exception, 

neuropeptide-specificity has been demonstrated For example, Pan et al (1988) have tested preoptic 

neurons whose responses to norepinephrine (NE) were modulated by LHRH, with TRH as well They 

found that none of the neurons modulated by LHRH were also modulated by TRH This specificity 

was demonstrated in spite of the fact that TRH itself could modulate NE-responses in the ventromedial 

hypothalamus (Kow and Pfaff, 1987) For a more complete overview of neuromodulation, Kow and 

Pfaff (1988) is highly recommended

1.2 Pyroglutamyl aminopeptidase

Pyroglutamyl ammopeptidase or PAP (EC 3 4 19 3, formerly EC 3 4 11 8 ) can be classified as an 

exopeptidase, or more correctly, an omega peptidase (McDonald and Barrett, 1986), which 

hydrolytically removes the pyroglutamic acid (pGlu) residue from the ammo terminus of pGIu-peptides 

and pGlu-protems (Fig 1 1) This enzyme is apparently specific for L-pGlu-L-ammo acid optical 

isomers (Uliana and Doolittle, 1969)

Fig 11  Hydiolysis o f pGlu from the N-terminus o f pGIu-peptides by 
pyroglutamyl ammopeptidase (PAP)

PAP

H ,0

R
H2N -C H -C

II
o

Pyroglutamyl peptide Pyroglutamic acid n -1 peptide

This enzyme activity was first described in a strain of Pseudomonas fluorescens by Doolittle and 

Armentrout (1968) who found that a crude extract taken from this soil microorganism could hydrolyse 

the pyroglutamyl dipeptide, L-pGlu-L-Ala to yield free pGlu and alanine They subsequendy suggested 

the name pvrrohdonvl peptidase PAP has since been observed m the tissues of mammals, birds, fish, 

plants and bacteria and has been referred to by several other names (pyrrohdonecarboxylate peptidase, 

pyrrohdonecarboxylyl peptidase, pyroglutamate ammopeptidase, 5-oxoprolyl-peptidase, pyroglutamyl 

peptide hydrolase, PYRase and pyroglutamyl ammopeptidase)

To date, two distinct classes of PAP have been characterised The first class includes the bacterial 

PAPs and animal type-1 (PAP-I) PAPs These are typically sulphydryl-dependent enzymes which 

display a cytosolic location, broad pyroglutamyl-substrate specificity and low relative molecular mass 

Though similar in many respects however, bacterial PAPs are generally oligomeric whilst PAP-I
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observed in different animal systems appears to be monomenc The second class is comprised of the 

animal type-2 (PAP-II) and serum PAPs PAP-II has been shown to be a membrane-bound 

metalloenzyme of high relative molecular mass with a very narrow substrate specificity centering 

around TRH or very closely related peptides A PAP activity observed in the serum of different animal 

species displays biochemical characteristics remarkably similar to those of tissue PAP-II such as a high 

relative molecular mass, sensitivity to metal chelating agents, insensitivity to sulphydryl agents and a 

narrow substrate specificity restricted to TRH or closely related peptides (Awade et al (1994) is 

recommended for review)

1 2 1  Pyroglutamic acid Occurrence in bioactive peptides

Pyroglutamic acid, also known as 5-oxo-L-prolme or pyrrolidone carboxylic acid, was first described 

by Haitinger as a glutamic acid derivative that lacked a molecule of water (HaiUnger, L , 1882) 

Although much evidence exists for the non-enzymatic formation of pGlu from glutamic acid (Glu), 

glutamine and vanous esters and diesters of glutamic acid (Sanger et a l , 1955, Smyth et a l , 1962, 

Winstead and Wold, 1962), the enzymatic formation of this compound is well established Meister et 

al (1963) partially punfied and charactensed an animal tissue enzyme capable of converting D-Glu to 

D-pGlu via an acylation process They subsequently termed this enzyme D-glutamic acid 

cyclotransferase Similarly, Akita et al (1959) desenbed an L-glutamic acid cyclotransferase activity in 

Pseudomonas cruciviae Studies have also reported the ability of glutamine synthetase (Meister, 1968) 

and gamma-glutamylcysteine synthetase (Orlowski and Meister, 1971) to convert Glu to pGlu

The enzymatic synthesis of pGlu suggests that this residue may have important physiological 

functions Consistent with this is the observation that the ammo terminus of many proteins and 

bioactive peptides terminates m pGlu (Table 1 2) and that this residue is frequently a determinant of 

the overall peptide activity For example, Hmkle and Tashyian (1973) have demonstrated that any 

structural substitution in the pGlu lactam nng of the hypothalamic releasing factor, TRH (pGlu-His- 

Pro-NH2, section 1 3), sigmficandy decreases both hormone potency and receptor-binding ability 

More recently, Perlman et al (1994) have demonstrated that TRH binds to its receptor via an 

interaction between the nng carbonyl of the TRH pGlu moiety with Tyr106 of the TRH receptor The 

mechanisms by which pGlu is inserted onto the amino terminus of such proteins and peptides are still 

largely unknown However, most current evidence would seem to mdicate that, in mammalian tissues, 

the ansal of an N-termmal pGlu moiety results from the post-translational modification of glutamine 

via a cyclase-type enzyme activity (Busby et a l , 1987, Fischer and Speiss, 1987) Pyroglutamyl 

peptides can also anse as an artefact of protein or peptide hydrolysis, following the liberation of 

gluLamine-terminaling peptides (Sanger and Thompson, 1953, Smyth et a l , 1962, Sullivan and Jago, 

1970)

The functions of pGlu as a free acid are less clear It has been observed in the tissues of patients with 

Hawkinsinuria disease (Borden et a l , 1992), whilst elevated levels of free pGlu have been shown in
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patients suffering from Huntington’s disease The pharmacological properties of pGlu have also been 

described pGlu has been shown to prevent scopolamine-induced amnesia in the rat (Spignoh et a l ,

1987) and to improve learning and age-associated memory loss (Gnoli et a l , 1990)

Table 1 2 Some proteins/peptides with an N-termmal pGlu residue

Peptide/protein Sequence

TRH pGlu-His-ProNH2

TRH-like peptide (prostate) pGlu-Glu-ProNH2
LHRH pGlu-His-Trp-Ser-Tyr-
Neurotensin pGlu-Leu-Tyr-Glu-Asn-
Bombesin pGlu-Gln-Arg-Leu-Gly-
Eledoisin pGlu-Pro-Ser-Lys-
Fastigiatine pGlu-Glu-GlnOH
Gastrin

Human pGlu-Gly-Pro-Trp-Leu-
Hog pGlu-Gly-Pro-Trp-Met-

Fibnnopeptides B
Human pGlu-Gly-Val-AspNH>-
Ox pGlu-Phe-Pro-Thr-Asp-
Reindeer pGIu-Leu-Ala-Asp-
Cow pGIu-Phe-Pro-Thr-Asp-

Physalaemin pGlu*Ala-AspOH-Pro-
Peptides from snake venoms pGlu*AspNH2-Tip-

pGlu-GluNH2-Trp-
Heavy chains of rabbit IgG pGIu-Ser-Val-Glu-Glu-

pGlu-Ser-Leu-Glu
pGlu-GluNH2

Eisemne pGlu-Glu-AlaOH
Vasoactive polypeptide pGlu-Val-Pro-GIn-Trp-
Heavy chain of human pathological IgG pGlu-Val-Thr-
Heavy chain of human gamma G immunoglobulin pGlu-Val-Gln-Leu-
Mouse lambda chains pGlu-Ala-Val-Val-
alpha 2-CB1 of rat skin collagen pGlu-Tyr-Ser-Asp-Lys-
Human apoLp-Gln-II pGlu-Ala-Lys-Glu-Pro-
Thymic factor from pig serum pGlu-Ala-Lys-Ser-Gln-
Hypertrehalosaemic neuropeptide pGlu-Val-Asn-Phe-Ser-
Peptide inhibiting epidermal mitosis pGlu-Glu-Asp-Cys-LysOH
Colon mitosis inhibitory peptide pGlu-Glu-His-GlyOH
Caerulein pGlu-Gln-Asp-TyrSCfeH-
Levitide pGlu-Gly-Met-Ile-GIy-Thr
Anorexigenic peptide pGlu-His-Gly
Porcine pancreatic spasmolytic polypeptide pGlu-Lys-Pro-Ala-Ala-
Heavy chains of rabbit anti-hapten antibodies pGlu-Ser-Leu-Glu-Glu-

pGlu-Ser-Val-Glu-Glu-
Human monocyte chemoattractant pGIu-Pro-Asp-Ala-Ile-

(Borrowed from Awade et al (1994) and subsequently modified)
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1.2 2 Class !• Mammalian PAP-I and microbial PAPs

1.2,2 1 Mammalian PAP-I

Studies on eukaryotic PAP-I have been done mainly m mammals Many studies have documented the 

isolation and characterisation of PAP-I from different mammalian tissues with a particular view to 

elucidating its potential role m the catabolism of vanous pGlu-termmating peptides, including 

neuropeptides Authors have descnbed the punfication (partial or otherwise) of PAP-I from human 

cerebral cortex, kidney and skeletal muscle (Lauffart et a l , 1989, Mantle et a l , 1990, 1991), rat liver 

(Armentrout, 1969, Scharfmann and Aratan-Spire, 1991), bovine pituitary (Mudge and Fellows, 1973), 

guinea-pig brain (Browne and O'Cuinn, 1983a) and rat bram (Busby et a l , 1982) PAP-I activity has 

also been reported in hamster hypothalamus (Prasad and Peterkofsky, 1976), mouse bram (Faivre- 

Bauman et a l , 1981), cat brain cortex (de Gandanas et a l , 1992), rat retina and hypothalamus 

(Ramirez et a l , 1991), rat adenohypophysis (Bauer and Klemkauf, 1980), rat pancreas (Aratan-Spire et 

a l , 1986) and vanous rat systemic organs (Fuse et a l , 1990) Non-mammalian animal sources such as 

avian, fish and amphibian tissues, have also been reported to display PAP-I activity (Albert and 

Szewczuk, 1972, Tsuru et a l , 1982, Prasad et a l , 1982a, Szewczuk and Kwiatkowska, 1970)

Studies have shown that mammalian PAP-I is a monomenc enzyme with a low relative molecular 

mass, a soluble or cytosolic location and an optimum pH range between pH 6  5 and 8 5 (Mudge and 

Fellows, 1973, Lauffart et a l , 1989) Molecular mass estimates range from 22,000 (human kidney and 

skeletal muscle), 23,000 (human bram) and 24,000 (guinea-pig brain) to 60,000 (rat brain) (Mantle et 

a l , 1990, 1991, Lauffart et a l , 1989, Browne and O'Cuinn, 1983a, Busby et a l , 1982) In addition, a 

stnct requirement for a thiol-reducmg agent such as DTT or 2-mercaptoethanoI has been shown, 

almost-umversally, for this particular enzyme activity Consequently, several reports have 

demonstrated the extremely inhibitory nature of sulphydryl-blocking reagents such as N- 

ethylmaleimide, lodoacetate, PCMB and 2-iodoacetamide towards PAP-I (Browne and O'Cuinn, 

1983a, Bauer and Klemkauf, 1980) Senne protease inhibitors such as benzamidine and PMSF usually 

have no effect on PAP-I (the reader is directed to section 12  4 for a closer examination of inhibitors of 

mammalian PAPs)

A distinctive biochemical feature of PAP-I is its broad pyroglutamyl-substrate specificity This enzyme 

is capable of liberating the N-terminal pGlu residue from a range of biologically active peptides which 

include TRH, acid TRH, LHRH, neurotensin, bombesin and anorexigenic peptide (Browne and 

O’Cuinn, 1983a) Synthetic substrates such as pGlu-MCA, pGlu-pNA, pGlu-BNA and isotopic TRH 

are also readily hydrolysed by PAP-I, as are synthetic dipeptides such as pGlu-Ala and pGlu-Val 

(Browne and O'Cuinn, 1983a, Bauer and Klemkauf, 1980, Albert and Szewczuk 1972) However, 

pGlu-Pro bonds are not normally hydrolysed by mammalian PAP-I (Mudge and Fellows, 1973, 

Browne and O'Cuinn, 1983a) although a microbial PAP isolated from Klebsiella cloacae has been 

shown to be capable of splitting pGlu-proline (Kwiatkowska et al 1974) As mentioned earlier, this 

enzyme is apparently specific for L-pGlu-L-amino acid optical isomers (Uliana and Doolittle, 1969) In



addition, the rate of hydrolysis of a given substrate generally depends on the nature of the amino acid 

(or other group) immediately adjacent to the pGlu residue

Despite its broad substrate specificity, PAP-I is highly specific for N-tcrminal pGlu residues A study 

by Capecchi and Loudon (1985) reports that minor alterations to the pGlu moiety of a given substrate, 

such as the introduction of a second ureido nitrogen into the pyroglutamyl nng or increasing the ring 

size from 5 to 6  members, has very deleterious effects on the ability of PAP-I to cleave this ammo 

terminal group More recently, Bundgaard and Moss have exploited this pGlu specificity as a means of 

developing potentially useful "prodrugs" which are resistant to PAP-I attack This research group have 

clearly demonstrated that by changing the N-H group on the pGlu ring to an N-X group where X is an 

acyl group (N-CO-Rj), Manmch base (N-CH2N-R2-R3), glyoxyhc acid adduct (N-CH(OH)-COO-R4) 

or one of several other derivatives also investigated, the resultant pGlu moiety is completely resistant 

to cleavage by PAP-I (Moss and Bundgaard, 1989, 1992, Bundgaard and Moss, 1989)

The physiological role o f PAP-I currently remains unclear On the basis of its relatively ubiquitous 

distribution m such functionally dissimilar tissues as skeletal muscle, brain and kidney, and through 

comparison to other soluble aminopeptidases, it has been proposed that PAP-I may contribute to the 

intracellular catabolism of peptides to free amino acids, which are then released to the cellular pool 

(Mantle et a l , 1990, 1991, Lauffart and Mantle, 1988, Lauffart et a l , 1989) Thus this enzyme may, at 

least m part, be involved in the regulation of the cellular pool of free pGlu It is noteworthy that free 

pGlu is known to have pharmacological properties (see section 12  1 above) Thus a specific pathway 

for pGlu production, e g , through PAP-I acUvity, may exist to generate this molecule An earlier study 

by Albert and Szewczuk (1972) also suggests that mammalian PAP-I may participate in the absorption 

of peptides and protems from the alimentary tract This view is supported by the occurrence of the 

enzyme in the small intestine (Pierro and Orsatti, 1970) as well as in the intestinal mucous membrane 

and the duodenum and the comparatively low specificity of the intestinal enzyme (Albert and 

Szewczuk, 1972)

The potential role of PAP-I m the metabolism of physiologically important neuropeptides such as TRH 

and LHRH, has been the focus of intense investigation (and speculation) for several years Although 

this enzyme has demonstrated an abihty to hydrolyse a range of pGlu-terminating neuropeptides in 

vitro , no definitive evidence linking neuropeptide inactivation in vivo, with PAP-I has yet been 

presented A particularly interesting case study is the potential role of PAP-I m the inactivation of 

TRH, a hypothalamic releasing factor which regulates TSH secretion from the anterior pituitary This 

case study is examined more thoroughly m secuon 13 5

12  2 2 Microbial PAPs

Following its initial discovery by Doolittle and Aimentrout (1968) PAP has since been purified and 

characterised from a number of bacterial sources such as Pseudomonas fluorescens (Armentrout and 

Doolittle, 1969), Klebsiella cloacae (Kwiatkowska et a l , 1974), Bacillus subtihs (Szewczuk and 

Mulczyk, 1969, Fellows and Mudge, 1971a), Bacillus amylohquifaciens (Tsuru et a l , 1978, 1984,
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Fujiwara et a l , 1979) and Enterococcus faecium  (Sullivan et a l , 1977) Bacterial PAPs display many 

of the biochemical characteristics common to mammalian PAP-I With the exception of the K cloacae 

enzyme which is associated with a particulate fraction, all of the bacterial PAPs examined to date have 

been shown to be soluble proteins located in the cell cytosol (Awade et a l , 1992a, 1992b, Tsuru et a l , 

1978) Bacterial PAPs also display a broad pyroglutamyl-substrate specificity as well as a strict 

requirement for a highly reduced environment (DTT or 2-mercaptoethanol) (Tsuru et a l , 1984, 

Fujiwara et a l , 1979, Gonzales and Robert-Baudouy, 1994)

In contrast to the monomenc nature of native mammalian PAP-I however, bacterial PAPs invariably 

exist as oligomeric enzymes Molecular mass determinations for the bacterial enzyme under denaturing 

conditions indicate an average subunit mass of 25,000 daltons, which is almost identical to the relative 

molecular mass of the undenatured mammalian PAP-I examined in different species Native 

determinations on the other hand indicate more variability in size and show an average molecular mass 

from 40,000 to 90,000 daltons Tsuru et al (1978, 1984) have proposed that the B amylohquifaciens 

PAP, with a native molecular mass of 72,000 and a subunit molecular mass of 24,000, probably 

functions as a tnmer More recently however, Yoshimoto et al (1993) have cloned the gene for the B 

amylohquifaciens enzyme (below) and, following its over-expression in E coh, have shown that the 

recombinant enzyme appears to exist as a dimer, suggesting that the recombinant form of the enzyme 

differs from the natural form (possibly due to different post-translauonal processing patterns in the host 

cell) Other studies indicate that the recombinant PAPs from B subtihs (Gonzales et a l , 1992, Awade 

et a l , 1992b) and S pyogenes (Awade et al, 1992a) are probably tetramers, whilst the recombinant 

PAP from P fluorescens (Gonzales and Robert-Baudouy, 1994) probably functions as a dimer

The question of the physiological role of PAP in bacteria currently remains unanswered Generally 

speaking, the bacterial aminopeptidases are thought-to-be involved in protein maturation, protein 

degradation and the utilisation of peptides as nutrients (Lazdunski, 1989) Therefore, one might expect 

that bacterial PAPs are involved in intracellular protein metabolism Awade et al (1994) have also 

suggested that PAP may be involved in detoxification, since the accumulation of peptides with a pGlu 

N-terminus may abnormally acidify the bacterial cell cytoplasm Such proposed roles for bacterial 

PAPs are weakened however, by the observation that this enzyme is noticeably absent from numerous 

bacterial strains Moreover, the distinctive substrate specificity of this enzyme suggests a more specific 

role in bacteria

12  2 3 Genetic characterisation of microbial PAPs

The molecular characterisation of PAP genes is a necessary step in order to develop our understanding 

of this particular class of enzymes Nucleotide sequence analysis and comparisons would improve 

prediction of conserved protein patterns involved in substrate recognition and hydrolysis and would 

enable researchers to examine in greater detail the factors which regulate PAP gene expression (and 

subsequently enzyme action) To this end, researchers have recently focused on bacterial sources to 

isolate and characterise the structural genes which encode for PAP activity To date, four bacterial PAP
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genes have been characterised and expressed in host cells These genes have been cloned from 

Streptococcus pyogenes (Cleuziat et a l , 1992a), Bacillus amylohquifaciens (Yoshimoto et a l , 1993), 

Pseudomonas fluorescens (Gonzales and Robert-Baudouy, 1994) and Bacillus subtihs (Awade et a l , 

1992b) The overexpressed B amylohquifaciens enzyme has also been crystallised (Yoshimoto et a l , 

1993) and therefore a knowledge of PAP structure is imminent The strategy used for isolating these 

genes was to screen bacterial gene libraries for PAP activity in E coh This was possible because the 

host does not exhibit PAP activity Clones were selected using a procedure developed by Mulczyk and 

Szewczuk (1970) which relies on the enzymatic liberation of BN A from pGlu-BNA by "PAP-positive" 

colonies, with the subsequent conversion of BNA into a coloured compound (Fig 1 2)

Fig 1 2  Screening for "PAP-positive " clones

„Oy»H/YS „ A
NH o \JkJ ° ^N H  '

L-pGlu-B-naphthylamide

NH COOH 

L-pGlu B-naphthylamide

Tetraazotized
o-dianisidme

B-naphthylamide

"Red substance"

Characterisation of the aforementioned PAP genes reveals that they have a common structure The size 

of their open reading frame (ORF) is similar and relatively small The PAP genes from S pyogenes, B 

subtihs and B amylohquifaciens are all 645 nucleotides long, while the gene from P fluorescens is 

639 nucleotides long These genes encode polypeptides of 215 or 213 amino acids long with deduced 

molecular masses of 23,135, 23,777, 23,286 and 22,441 daltons respectively The PAP gene also 

appears to be present as a single copy gene in the bacterial genome (this has been confirmed for S 

pyogenes, B subtihs and P fluorescens)

The bacterial PAP genes examined thus far do not show any significant similarity to other known 

nucleotide sequences, nor do the deduced amino acid sequences compare favourably with protein 

sequences from other prokaryotic or eukaryotic sources This lack of homology with other proteins, 

including other proteases, suggests that bacterial PAPs belong to a new and unique class of peptidases 

Conversely, a comparison of the deduced amino acid sequences of the four cloned bacterial PAPs 

indicates striking similarities (Gonzales and Robert-Baudouy 1994, Cleuziat et a l , 1992a, Awade et
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a l , 1994) A multiple alignment of the four ammo acid sequences reveals that the primary structure of 

these enzymes is highly conserved, suggesting that these genes derive from a single common ancestor 

The two best conserved segments, in which at least 75% of the residues are identical, lie between 

amino acids 81-100 and 133-145 (numbering is for P fluorescens PAP) The second domain contains a 

uniquely conserved cysteine residue (Cys-144) m the alignment, suggesting that this residue is directly 

involved in the catalytic site of these thiol-dependent enzymes This hypothesis has subsequently been 

confirmed by site-directed mutagenesis of the PAP from B amylohquifaciens Changing Cys-144 to 

Ser resulted in total loss of enzyme activity (Yoshimoto et a l , 1993) Further sequence analysis has 

also revealed that His* 166 is also perfectly conserved in the four sequences, indicating that this residue 

may also be essential for enzyme activity or substrate binding (Gonzales and Robert-Baudouy, 1994) 

An examination of the hydrophobic character of the four sequences, according to the method of Kyte 

and Doolittle (1982), has also revealed that the charge of these four enzymes is uniformly distributed 

along the polypeptide chain, with a distinct absence of a long hydrophobic stretch This is consistent 

with the observation that these enzymes are soluble and are not therefore delected in culture medium 

(Awade et a l , 1992b, Cleuziat et a l , 1992a) This would also suggest that these enzymes lack a post- 

translational processed signal sequence (Kreil, 1981)

12 2 4 Current uses of mammalian PAP-I and microbial PAPs

The absence of an alpha-amino group in pGIu-peptides and proteins was, for many years, a major 

handicap in the characterisation of these materials, since amino terminal analyses, including stepwise 

degradation methods (Edman, 1950), could not be earned out Consequently, the initial impetus behmd 

the discovery of PAP (Doolittle and Armentrout, 1968) was to isolate an enzyme activity that would 

render terminal ammo groups accessible in pGlu-terminating peptides In this regard, PAP (typically 

commercial calf liver PAP-I or a bactenal PAP preparation) has been extremely successful (Podell and 

Abraham, 1978) Indeed, despite the availability of enzymatic and chemical methods to open pGlu 

nngs (Miyatake et a l , 1993, Van Der Werf, 1975), and physical methods such as mass spectrometry, 

which are available to overcome sequencing difficulties due the N-termmal pGlu block (Khandke et 

a l , 1989), PAP still remains the de-blockmg method of choice for many sequencers (Bieber et a l , 

1990, Lu et a l , 1991)

The functional usefulness of PAP has been elevated by its application in bactenal diagnosis Although 

present in some bactenal strains, this enzyme activity is absent in others (Doolittle and Armentrout,

1968) Several bactenal diagnostic techniques have been developed based on the use of chromogenic 

and fluorogemc substrates which can be specifically hydrolysed by this enzyme such as pGlu-BNA, 

pGlu-MCA and pGlu-pNA For example, initial applications of the "PLP" test developed by Mulczyk 

and Szewczuk (1970, 1972) included differentiation of the enterobacteriacea and staphylococci 

species whilst more recently, PAP activity has been exploited m diagnostic tests for the identification 

of streptococcal species (Wellslood, 1987, Panosian and Edberg, 1989, Dealler et a l , 1989) The 

recent charactensation of bactenal PAP genes (section 1 2 2 3) may also lead to promising applications 

in this area Group A streptococci for example have already been identified using DNA probes to the
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PAP gene (Cleuziat et a l , 1992b) Using this approach, it may be possible to replace the PAP activity 

tests with molecular probe tests for a more definitive identification of bactenal species

12 3 Class 2 Serum "thyrohberinase" and Mammalian PAP-II 

12  31  Serum f,thyrolibermase'
In the late 1970s, an enzyme that cleaved the pGlu-His bond of TRH was partially punfied from rat 

(Taylor and Dixon, 1978) and porcine (Bauer and Nowak, 1979) scrum Unlike the previously 

characterised cytosolic PAP-I activity (see section 1 2 2  1), this enzyme was not inhibited by 

sulphydryl-blocking reagents such as 2-iodoacetamide and N-ethylmaleimide but could be inhibited by 

metal chelators such as EDTA and 1,10-phenanthrohne This enzyme, optimally active at neutral pH, 

was reported to have a relative molecular mass of 260,000 daltons, one order of magnitude greater than 

the molecular mass of mammalian tissue PAP-I In a subsequent study probmg the substrate specificity 

of the serum enzyme, Bauer et al (1981) demonstrated that the selectivity of this enzyme was directed 

towards TRH or closely related peptides Other pGlu substrates such as pGlu-BNA, LHRH and 

neurotensin were not cleaved As a consequence of this narrow substrate specificity, the name 

"thyrohbennase" was subsequently proposed by these researchers

Studies have shown that the activity of this TRH-degrading serum PAP is under the influence of 

thyroid hormones (Bauer, 1976, White et a l , 1976, Dupont et a l , 1976, Emerson and Wu, 1987) and 

drastically alters with developmental changes (Oliver et a l , 1974c, Neary et a l , 1976) This enzyme 

might therefore be involved withm regulatory mechanisms The enzymatic degradation of TRH dunng 

its transport by hypophyseal portal blood, from the hypothalamus to the anterior pituitary, might 

represent a functional control element withm the mechanisms regulating the availability of this 

neuropeptide to the trophic cells o f  the adenohypophysis This hypothesis is supported by the high 

degree of substrate specificity exhibited by the enzyme For a more detailed review of the mode of 

action and regulation of TRH within the hypothalamic-pituitary-thyroid axis, the reader is directed to 

section 13 2

12 3 2 Mammalian PAP-II

The earliest indications that a proportion of total mammalian brain PAP activity might possibly be 

associated with the particulate fraction, stemmed from the work of several researchers (Greaney et a l , 

1980, Hayes et a l , 1979, Joseph-Bravo et a l , 1979, Griffiths et a l , 1979,1980) Browne et al (1981) 

subsequently proposed that there were iM> distinct PAP activities in mammalian brain This research 

group observed, in gumea-pig brain, the previously charactensed soluble enzyme (PAP-I, EC 3 4 19 3) 

which required DTT and EDTA for the expression of optimal activity, as well as a membrane-bound 

enzyme activity (PAP-II, EC 3 4 19 - )  which was inhibited by these reagents These observations were 

later confirmed by the findmgs of O Connor and O'Cuinn (1984) who localised this particulate activity 

to the synaptosomal membrane preparations of guinea-pig brain from which it could be solubilised by 

papain treatment Soluble and paniculate PAP activities have also been demonstrated in rat (Garat et
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a l , 1985, Friedman and Wilk, 1986), rabbit (Wilk and Wilk, 1989) and, quite recently, bovine brain 

(O'Leary and O'Connor, 1995a), as well as in primary cultures of fetal mouse bram (Cruz et a l , 1991)

In marked contrast to the thiol-dependent, cytosolic nature of tissue PAP-I, PAP-II has been found to 

exhibit a large relative molecular mass (approx 230,000 daltons) as well as a sensitivity to inhibition 

by chelating agents such as 1,10-phenanthroline, 8 -hydroxyquinoline and EDTA (O'Connor and 

O'Cuinn, 1984, Bauer, 1994, Wilk and Wilk, 1989) No sensitivity to sulphydryl-blocking reagents 

(O'Connor and O'Cuinn, 1984) or to the specific PAP-I inhibitor, pGlu-diazomethyl ketone (Friedman 

and Wilk, 1986), could be observed Bauer (1994) has also recently demonstrated using SDS PAGE 

analysis, that PAP-II punfied to homogeneity from rat and porcine brain is comprised of two identical 

subunits of 116,000 daltons each, this dimeric feature being a general property of many cell-surface 

peptidases The ussue distribution of PAP-II strongly suggests that it is located primarily in the central 

nervous system with significantly smaller levels of membrane-bound PAP activity observed m other 

mammalian tissues (Friedman and Wilk, 1986, Vargas et a l , 1992a) Within the central nervous 

system, PAP-II appears to have a neuronal, as opposed to a glial, location (Cruz, 1991, Bauer et a l , 

1990) m addition to a relatively unhomogeneous distribution (Vargas et a l , 1987)

More significant was the fmding that PAP-II, like the previously observed serum "thyroliberinase” 

enzyme activity, has a substrate specificity restricted to TRH or very closely related peptides 

(O’Connor and O'Cuinn, 1985, Elmore et a l , 1990, Wilk and Wilk, 1989) O'Connor and O ’Cuinn 

(1985) have demonstrated a Km of 40(xM for PAP-II isolated from the synaptosomal membranes of 

gumea-pig brain when TRH was used as the substrate LHRH, although not hydrolysed by this 

enzyme, was found to inhibit the hydrolysis of TRH competitively with a Kx value of 20|iM Indeed, 

PAP-II isolated from this source has been shown to have a substrate specificity restricted to tnpeptides, 

tnpeptide amides and tetrapeptides commencing with the sequence pGlu-His (Elmore et a l , 1990) (it is 

worth noting however, that Bauer (1994) has recently demonstrated the ability of PAP-II, punfied from 

rat and porcine brain membrane preparations, to hydrolyse pGlu-BNA, a substrate typically used to 

assay for PAP-I)

This unprecedented degree of specificity for a particular peptide configuration, combined with the 

knowledge that (1) the active site of PAP-II appears to be exposed extracellularly (Charli et a l , 1988), 

(2 ) it is primarily located within neuronal elements of the central nervous system, (3 ) it has a 

differential distnbution within the central nervous system and (4) the inhibition of PAP-II specifically 

increases recovery of TRH released from rat brain tissue (Charli et a l , 1989), would serve to indicate 

that the particulate PAP activity is responsible for "specifically" inactivating neuronally released TRH 

within the extracellular vicinity of target cells Several studies reporting on the influence of thyroid 

hormones on PAP-II activity support this observation Suen and Wilk (1989) and Bauer (1987a, 1988) 

have clearly demonstrated the significantly increased TRH-degrading action of PAP-II in the antenor 

pituitary following acute treatment with tiiiodothyronme (T3) whilst Emerson and Wu (1987) and 

Bauer (1987a) were unable to detect any elfect of thyroid hormones on whole brain PAP-II activity 

Such tissue-specific regulation of adenohypophyseal PAP-II by thyroid hormones suggests that it may
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serve an integrative function in modulating the response of adenohypophyseal target cells to TRH by 

terminating the biological activity of the tripepude at this location, the increased TRH-degrading 

activity subsequently contributing to the negative feedback effect of thyroid hormones on the 

hypothalamic production of TRH (see section 13 2) Wilk (1986) has subsequently proposed that the 

membrane-bound PAP-II be considered the first characterised neuropeptide-specific peptidase

Schauder et al (1994) have recently cloned a cDNA encoding for the TRH-degrading PAP-II activity 

Fragments of this enzyme isolated from rat or pig bram were generated by enzymatic digestion or 

cyanogen bromide cleavage, purified by reverse-phase HPLC and sequenced Subsequent PCR 

amplification and screening of cDNA libraries from rat brain and pituitary led to the identification and 

isolation of a cDNA that encodes a protein of 1025 ammo acids Analysis of the deduced amino acid 

sequence was consistent with the identification of the enzyme as a glycosylated, membrane-anchored 

Zn metallopeptidase Furthermore, using Northern blot analysis, these researchers demonstrated that 

mRNA transcript levels in pituitary tissue increased rapidly when the animals were treated with 

triiodothyronine, confirming the earlier findings of Bauer (1987a) Transient transfection of COS-7 

cells with this cDNA led to the expression of an active ectopeptidase that displayed the characteristics 

of the TRH-degrading ectoenzyme

12  4 PAP inhibitors

The rational design of potent and specific peptidase inhibitors (including PAP inhibitors) generally 

proceeds from a knowledge of the enzymes mechanism of action and from detailed mapping of its 

substrate specificity This enables structural features to be incorporated mto the inhibitor, facilitating 

its interaction with substrate-bmding subsites on the enzyme Such inhibitors may be of potential value 

m a number of studies For example, (1) they may increase the half-life of-endogenous neuropeptides 

such as TRH and therefore be of value in exploring the physiological effects of these neuropeptides,

(2) they may potentiate the effects of exogenous neuropeptides, (3) they can be used to prevent the 

degradation of neuropeptides such as TRH in radioligand binding assays and radioimmunoassays and 

finally (4) they are excellent tools for probing the physiological significance of the targeted enzyme, in 

this case, PAP

Active site-directed PAP inhibitors were first synthesised by Fujiwara et al (1981a, 1981b, 1982) for 

the B amylohquifaciens PAP These were pGlu-chloromethyl ketone (pGCK), Z-pGlu-chloromethyl 

ketone (Z-pGCK) and Z-pGlu-diazomethyl ketone (Z-pGDK) The chloromethyl ketone derivatives 

were found to be highly specific, potent and irreversible inhibitors of this PAP In addition, the rate of 

PAP inactivation by pGCK was found to be over 10-fold greater than that of Z-pGCK (the lower 

potency of Z-pGCK can be accounted for by the presence of the Z group on the pGlu ring) Fujiwara el 

al (1981a) have also achieved complete and rapid inactivation of PAP-I from rat liver and kidney in 

vitro with pGCK (more recently, Svoboda and Currie (1992) have reported the irreversible inhibition 

of calf liver PAP-I by chloromethyl ketone analogues of TRH) Unfortunately, thiol-reducing agents
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such as DTT and 2-mercaptoethanol had to be excluded from the assay mixture to avoid their reactivity 

with these inhibitors, subsequently making accurate kinetic analysis of the inactivation reaction very 

difficult The diazomethyl ketone derivative was also found to be a specific and irreversible PAP 

inhibitor, although far less potent than pGCK or Z-pGCK (Fujiwara et a l , 1982) However, Z-pGDK 

was found to be relatively inert toward -SH reagents rhc in vivo effects of these inhibitors have yet to 

be ascertained

Wilk et al (1985) have synthesised the active site-directed inhibitor pGlu-diazomethyl ketone (pGDK 

or PDMK) PDMK was found to be significantly more inhibitory than its Z-denvativc described above 

Preincubation of partially purified bovine brain or calf liver PAP-I with nanomolar quantities of this 

compound led to rapid and irreversible inactivation of the enzyme in a time and concentration- 

dependent manner In addition, inhibitor concentrations five orders of magnitude higher did not 

inactivate other endo- or exopeptidases tested, including PAP-II (Wilk, 1989), indicating that this 

inhibitor is highly specific for PAP-I in vitro This inhibitor was also found to be extremely effective 

and long-lasting in vivo When administered intrapentoneally to mice, it totally inactivated PAP-I in all 

tissues studied (bram, heart, muscle, lung, spleen, liver and kidney) at doses as low as 0  1 mg/kg with 

as much as 50% inhibition still observed in most tissues 24 hours after administration Significant 

inhibition was also observed when the inhibitor dose was decreased to lOjig/kg The chemical 

structures of the aforementioned chloromethyl ketone and diazomethyl ketone derivatives as well as 

their Z-counterparts are illustrated in Fig 13

Fig 1 3 Chemical structures o f active site-directed PAP inhibitors 
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Peptide aldehyde analogues of the acyl portion of protease substrates have been reported to be potent 

competitive inhibitors of thiol and senne proteases (Westenk and Wolfenden, 1972, Thompson, 1973) 

To this end, Friedman et al (1985) have synthesised 5-oxoprohnal (Fig 1 4), the aldehyde analogue of 

pGlu, as an active site-directed transition-state inhibitor of PAP-I This inhibitor was shown to be a 

potent and specific competitive inhibitor of calf liver PAP-I in vitro (K  ̂ = 26nM) 5-oxoprolinal 

however, is far less effective in vivo Intrapentoneal injection mto mice at a dose of 50mg/kg resulted 

in greater than 60% inhibition of enzymatic activity in all organs tested 10  minutes after inhibitor 

injection After 30 minutes however, the degree of inhibition had significantly decreased This 

relatively weak and transient action in vivo contrasts with PDMK examined above, and may possibly 

be accounted for by the reversible nature of enzyme-inhibitor binding and/or metabolic inactivation of 

the inhibitor

PAP-II has been classified as a TRH-specific metalloenzyme (see section 12  3) This suggests that an 

inhibitor should incorporate the structural features of TRH together with a group capable of chelating 

the active site metal ion Reductive animation of peptides with an alpha-keto acid has proved to be a 

fruitful approach to the synthesis of active site-directed inhibitors of metalloenzymes The most 

prominent of such compounds is enalpnl, the inhibitor of angiotensin-converting enzyme (Patehett et 

a l , 1980) Charli et al (1989) have recently synthesised such an inhibitor via the reductive animation 

of His(Nimbenzyl)-NA with phenylpyruvate to yield N-[l(R,S)-carboxy-2-phenylethyl]-N-imidazole 

benzyl-histidyl 6 -naphthylamide or CPHNA (Fig 1 5) A pyroglutamyl-contammg keto acid would 

obviously have presented more optimal binding features Unfortunately, the aforementioned research 

group were unable to synthesise this intermediate Irrespective of this, CPHNA has proved to be a 

potent, reversible inhibitor of punfied PAP-II with a Kj of 8 (iM

Other specific PAP inhibitors worthy of mention include benarthm, pynzmostatin and 2-pyrrolidone 

(Fig 1 6 ) The former two inhibitors, benarthm and pynzmostatin, have only recently been isolated 

from culture filtrates of the genus Streptomyces and represent a new structural class of PAP inhibitors 

(Aoyagi et a l , 1992a, 1992b, Hatsu et a l , 1992a, 1992b) More recently, pynzmostatin has been 

synthesised from the antibiotic, 2-methylfervenulone (Tatsuta and Kitagawa, 1994) The latter 

compound, 2 -pyrrolidone, is a pyroglutamyl substrate analogue which acts as a reversible, non­

competitive inhibitor of mammalian PAP-I and microbial PAPs Despite being a specific and potent 

inhibitor of PAP activity however, 100% inhibition of PAP activity has never been obtained with this

Fig 1 4  Chemical structure o f 5-oxoprolmal
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inhibitor, even at concentrations as high as 0 1M In addition, several studies have reported on the use 

of 2-pyrrolidone to stabilise PAP activity in solution dunng punfication and storage (Mudge and 

Fellows, 1973, Armentrout and Doolittle, 1969, Armentrout, 1969)

Fig 1 5 Chemical structure o f CPHNA

N- [1 (R,S)-carboxy-2-phenylethyl]-N-imidazole 
benzyl-histidyl G-naphthylamide

Fig 1 6 The chemical structures o f benarthm, pynzmostatin
and 2-pyrrohdone
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1.3 Thyrotropin Releasing Hormone

The modern era of neuroendocnnology was ushered in just over 25 years ago with the isolation and 

charactensauon from more than 100,000 porcine (Boler et a l , 1969) and ovine (Burgus et a l , 1969) 

hypothalamic tissue fragments, of a tnpeptide amide (pyroglutamyl-histidyl-proline-amidc) which was 

designated thyrotropin-releasing hormone (TRH, TRT, thyroliberin) by virtue of its capacity to 

stimulate the release of thyroid-stimulating hormone (TSII, thyrotropin) from the mammalian anterior 

pituitary Indeed the existence of this neuropeptide was first demonstrated several years prior to this 

(Guillemin et a l , 1962) and since this time, the importance of this hypothalamic releasing factor in the 

regulation of the hypothalamic-pituitary-thyroid axis in human beings and other mammals has been 

well established (Reichlin et a l , 1978)

13 1 Structure of TRH
Following the exhaustive purification of TRH from porcine hypothalami by Schally et al (1966, 1968,

1969), degradation of the hormone by acid hydrolysis yielded three amino acids, histidine, glutamic 

acid and proline, present in essentially equimolar amounts, suggesting a tnpeptide structure Studies 

with synthetic Glu-His-Pro, as well as several alternative sequences of the three ammo acids showed 

no hormonal activity of TRH (Schally et a l , 1968) Since it was known that TRH did not have a free 

amino or carboxyl group, synthetic experiments were earned out on Glu-His-Pro, the most probable 

moiety of TRH (Schally et a l , 1969), to modify both the ammo and carboxyl groups It was discovered 

by Folkers et al (1969) that a synthetic preparation, presumably pGlu-His-Pro-NH2, resulting from the 

methylation and ammonation of the Glu-His-Pro tnpeptide, exhibited hormonal activities, at 

nanogram-dose levels in vivo and at picogram levels in vitro , which were qualitatively 

indistinguishable from those of TRH This structure was subsequently venfied by nuclear magnetic 

resonance and a range of chromatographic techniques (Boler et a l , 1969) and can be seen in Fig 17

Fig 1 7 The chemical structure o f TRH

(pGlu - His - ProNH2)
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A separate research group, reported the purification and characterisation of hypothalamic TRH of 

ovine ongin (Burgus et a l , 1969) and also subsequently reported its molecular structure as being 

established as pGlu-His-Pro-NH2 (Burgus et al 1970) Indeed this structural interpretation of TRH has 

since been found to be applicable to all mammalian species studied to date This research group have 

also reported on the strict conformational requirements of TRH for biological activity and that almost 

any departure from the native structure of TRH results in substantial if not complete loss of biological 

activity (Guillemm and Burgus, 1972)

13 2 Neuroendocrine role of TRH

The nervous and endocrine systems constitute the two mam communication systems of the body, 

functioning in a closely co-ordinated manner such that each is dependent on the other for its proper 

operation The total behaviour of an organism is therefore integrated by a constant traffic of neural and 

hormonal signals which are received and responded to by appropriate tissues Moreover, the activities 

of the CNS and endocrine glands are themselves dependent on feedback control through neural and 

hormonal stimuli The ensuing sections will attempt to illustrate the significance of TRH within this 

neural and hormonal framework

13  21  The hypothalamic-pituitary-thyroid axis A neuroendocrine pathway for 
TRH

The central regulation of hormonal release from the anterior pituitary (adenohypophysis) is mediated
*

by the hypothalamus The lack of nerve fibres connecting the hypothalamus to the secretory cells of the 

adenohypophysis meant however that, until the early 1970s, the means whereby the hypothalamus 

influenced the secretory cells remained a mystery It is now known that communication between the 

two is through a specialised vascular system called the hypophyseal portal system -This blood supply 

runs from the median eminence of the ventral hypothalamus down the pituitary stalk to the capillaries 

of the adenohypophysis Hypophysiotrophic peptide hormones (releasing and release-inhibiting 

factors) are secreted into this portal system by hypothalamic neurons present in the arcuate and other 

nuclei of the median eminence (ME) m response to hormonal and neural stimuli These hormones are 

then earned m the blood stream of the portal system to the cells of the adenohypophysis where they act 

on their target cells to stimulate or inhibit the release of adenohypophyseal hormones This 

neuroendocrine route is referred to as the hvpothalamic-pituitarv axis and is one of many pathways 

which interface endocrine and neural events Table 1 3 lists the hypothalamic "releasing" hormones 

and their corresponding effects on the anterior pituitary (TRH and its effects are highlighted in bold 

face)
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Table 1 3 Hypothalamic releasing hormones

Hypothalamic 
regulatory hormone

Released 
pituitary hormone

Mam functions

T h y ro tro p in  
releasing horm one 

(TR H )

T h y ro tro p in
(T SH )

P ro lac tin  *

M aintains the thyro id  gland and 
s tim u la te s  th e  sy n th esis  an d  
release of thyro id  horm ones

Prom otes m am m ary developm ent 
and lactation

Corticotrophm 
releasing hormone 

(CRH)

Corticotrophm
(ACTH)

M aintains the adrenal cortex and 
stimulates the synthesis and release of 
adrenocortical hormones, especially 
hydrocortisone

Follicle stimulating 
hormone-releasing 

hormone (FSH-RH)

Follicle 
stimulating 

hormone (FSH)

Stimulates the growth of the ovum in 
the female and the sperm in the male, 
acts with LH to stimulate the release of 
oestrogen

Luteinizing hormone 
releasmg hormone 

(LHRH)

Luteinizing 
hormone (LH)

Stimulates the development of the 
corpus luteum, and acts with FSH to 
cause the release of progesterone, 
stimulates the release of testosterone in 
the male

Growth hormone 
releasmg hormone 

(GHRH)

Growth 
hormone (GH)

Increases rate of growth of young 
animals, increases protem synthesis, 
increases blood glucose concentration, 
mobilizes free fatty acids from adipose 
tissue

Melanocyte stimulating 
hormone-releasing 

hormone (MSH-RH)

Melanocyte 
stimulating 

honnone (MSH)

Stimulates melanin synthesis by 
melanocytes

* At the hypothalamic level, the secretion of prolactin in mammals is also controlled by 
prolactin release-inhibiting hormone (PR-IH) Other release-inhibiting hormones not 
mentioned in the above table are growth hormone release-inhibiting hormone (GHR-IH 
or somatostatin) and melanocyte stimulating hormone release-inhibiting hormone 
(MSHR-Ift)
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TRH released into the hypophyseal portal system acts on the thyrotroph cells of the adenohypophysis 

causing the secretion of TSH (thyrotropin) In turn, TSH acts on the thyroid gland to stimulate the 

release of thyroid hormones (Fig 1 8 - the hypothalamic-pituitary-thyroid axis) Only TRH synthesised 

m the hypothalamic paraventricular nuclcus (PVN) and transported to the median eminence can 

regulate adenohypophyseal secretion of TSH (Nikodemova and Strbak, 1995) At the level of the 

thyroid gland itself, it has been shown that TRH can directly stimulate the release of T4 

(tetraiodothyronine or thyroxine) from perfused rat thyroid gland fragments in vitro (Attali et a l , 1984) 

adding another complexity to the control of thyroid hormone secretion

A parallel neuroendocrine role for TRH in the release of prolactin from anterior pituitary lactotrophs 

has also been convincingly demonstrated The TRH-induced release of prolactin has been observed 

both in vivo and in vitro in mammals including man (Hall, 1984) Roles for tyrosine kinase (Kanda et 

a l , 1994), Ca2+ ions (Guenneau et a l , 1995) and gonadal steroid hormones (Hu and Lawson, 1995) 

have also been implicated in tins TRH-related process It is widely believed however, that the overall 

role of TRH in the regulation of prolactin secretion is a minor one (Gautvik et a l , 1974, Hams et a l , 

1978)

13 2 2 TRH receptors

The action of TRH on target cells, such as those of the anterior pituitary, is mediated through its 

interaction with highly specific membrane-bound receptors Recent cloning and sequencing of the 

TRH receptor (TRH-R) from anterior pituitary cells of different species has revealed that it is a 

member of the seven-transmembrane-spanmng, GTP-binding protein-coupled family of receptors or 

GPCRs The mouse pituitary TRH-R mRNA encodes for a 393 ammo acid GPCR (Straub et a l , 1990) 

which bears significant homology with sequences observed for the cloned TRH-R from humans 

(Duthie et a l , 1993, Matre et a l , 1993, 398 ammo acids) and rats (de la Pena et a l , 1992a and 1992b, 

412 and 387 amino acids - two lsoforms of this receptor, generated by alternative splicing, have been 

cloned and sequenced) The major sequence variation between species and isoforms was seen to occur 

within the intracellular carboxy-termmal tail of the TRH-R (Momson et a l , 1994), a portion of the 

receptor sequence known to contain several serrne and threonine residues which are potential sites for 

regulatory phosphorylation by kinase enzymes, including protein kinase C (Kikkawa et a l , 1989)

By activating a phosphohpase C/inositol-l,4,5-tnphosphate/Ca2+/l,2-diacylglycerol signal transduction 

pathway, the TRH/TRH-R binding event is transduced into an intracellular chemical signal 

(Gershengom, 1986, Drummond, 1986) The TRH-R is, in turn, coupled to phosphohpase C via a 

guanine nucleotide-binding (G) protein (Oron et a l , 1987a, 1987b, de la Pena et a l , 1995) The 

binding of TRH to the TRH-R results in the G-protein-mediated activation of phosphohpase C The 

"activated" enzyme subsequently hydrolyses phosphatidylinositol 4,5-biphosphate to yield 1 ,2 - 

diatylglycerol (DG) and inositoltnphosphate (InsP3), both DG and lnsP3 serving as second messengers 

which transduce and amplify the binding signal, leading to stimulation of the physiological response 

(i e the release of TSH and prolactin)
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Fig 1 8 The hypothakwuc-pitmtai y-thyroid (HPT) axis
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1.3 2 3 Regulation of TRH synthesis, secretion and actions

Hypothalamic neurons that secrete pituitary releasing or release-inhibiting hormones are m turn 

regulated by a combination of "classic" monoamine neurotransmitters (Wurtman, 1971) and other 

hormonal factors, a situation which applies to the regulation of TRH synthesis secretion and actions 

Norepinephnne (Gnmm-Jorgensen and Reichhn, 1973, Hirooka et a l , 1978), dopamme (Maeda and 

Frohman, 1980) and histamine (Joseph-Bravo et a l , 1979) have each been reported to stimulate TRH 

release from hypothalamic tissues m vmo w h i l s t  M annisto  (1 9 8 3 ) also reports that gam m a-
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ammobutync acid (GABA) and serotonin (5-HT) may potentially influence the hypothalamic release 

of TRH Hormonal factors such as somatostatin (GHR-IH, see Table 1 3), growth hormone (GH), 

gonadal steroids and adrenocortical hormones have also been implicated in modulating TSII response 

to TRH (Edwardson and Bennett, 1977, Jackson, 1982, Manmsto, 1983, Huang et a l , 1995, 

Vanhaasteren, G A C et a l , 1995, Wang et a l , 1994)

Thyroid hormones play a pivotal role in the maintenance of homeostatic mechanisms such as the 

hypothalamic-pituitary-thyroid axis It is well known that TSH synthesis by anterior pituitary 

thyrotrophs is directly regulated by thyroid hormones m a negative fashion (Hershman and Pekary, 

1985, Motley, 1981) Using a mouse thyrotrophic tumour model in vivo and in vitro, Shupnik et al 

(1983, 1985) have demonstrated that thyroid hormone administration markedly and rapidly down- 

regulates TSH subunit gene expression at the transcriptional level

In contrast, the effect of thyroid hormones on the synthesis and secretion of hypothalamic TRH has 

been the subject of much controversy, with many conflicting reports as to whether or not they exert 

feedback inhibition at the hypothalamic level However, the advent of molecular approaches enabling 

researchers to assess gene activity, and the development of more sensitive techniques for direct 

monitoring of hypothalamic neurosecretory substances m hypophyseal portal blood (the portal blood 

collection technique - Caraty et a l , 1994, Dahl et a l , 1994, Thomas et a l , 1988), subsequently 

enabled researchers to demonstrate convincingly that thyroid hormones exert negative feedback control 

on hypothalamic TRH neurons with respect to the biosynthesis and secretion of TRH and TRH 

precursor forms More recently, Hollenberg et a l , 1995 have demonstrated that thyroid hormone, T3, 

can directly down-regulate TRH synthesis m the paraventricular nucleus of the human hypothalamus at 

the transcriptional level in a manner virtually identical to the down-regulation seen earlier for the TSH 

subunit genes in anterior pituitary thyrotrophs (Shupnik et a l , 1986) Interestingly, this regulatory 

effect is specific for TRH-producing neurons located in the medial division of the paraventricular 

nucleus (PVN), whereas TRH neurons elsewhere in the hypothalamus or in extrahypothalamic 

locations are not affected by changes of thyroid status (Segerson et a l , 1987, Dyess et a l , 1988, 

Kakucska et a l , 1992, Bruhn et aly 1991, Liao et a l , 1989) This raises the possibility that thyroid 

hormones may differentially regulate TRH gene expression in vanous anatomical locations (Jackson et 

a l ,1990)

Researchers have also examined the ability of thyroid hormones to regulate the TSH-releasing capacity 

of hypothalamic TRH in ways other than a change in its rate of secretion and/or synthesis Numerous 

reports have indicated that thyroid hormones can down-regulate the number of pituitary receptors for 

TRH (Hinkle et a l , 1981, Gershengom, 1978) and enhance its rate of enzvmatic degradation in portal 

blood (Jackson et a l , 1979) (see section 12  3 1)
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1.3.3 Neuroregulatory role of TRH

TRH was originally classified as a hormone through its hypophysiotropic effects on the anterior 

pitu itary  This neuropeptide is however, widely distributed throughout the mammalian 

extrahvpothalamic brain Indeed, over 70% of total brain TRH is located outside the hypothalamic- 

pituitary region, although concentrations are lower than those within the hypothalamus (Jackson and 

Reichhn, 1979) TRH has been observed in the brain stem and spinal cord (Johansson and Hokfelt, 

1980), medulla oblongata (Hokfelt et a l , 1980), cerebellum (Winters et a l , 1974), thalamus and 

cerebral cortex (Koch and Okon, 1979) as well as in cerebrospinal fluid (Oliver et a l , 1974a) 

Numerous studies have also reported the presence of TRH (or TRH-like immunoreactivity) in non- 

neural tissues such as retina (Martino et a l , 1980), blood plasma and urine (Oliver et a l , 1974b), 

pancreas (Engler et a l , 1981), gastrointestinal tract (Furukawa et a l , 1980) placenta (Shambaugh et 

a l , 1979) and amniotic fluid (Morley et a l , 1979)

As a consequence of this and other factors, many researchers now feel that TRH qualifies for serious 

consideration as a neurotransmitter/neuromodulator Its extrahypo thalamic distribution in the brain 

combined with its localisation at the synaptic level, release at synaptic terminals, attachment to high- 

affinity receptors which show a remarkable degree of anatomical localisation, specific effects on 

neuronal activity, its stimulation of a wide range of centrally-mediated behavioural effects and the 

existence of brain peptidases capable of inactivating the tnpeptide provide a formidable list of criteria 

consistent with such a neuroregulatory function (Jackson, 1982, Griffiths and Bennett, 1983)

The direct application of TRH to the brain has revealed many of its behavioural effects For example, 

the tnpeptide can (1) stimulate locomotor activity in rats (Heal et a l , 1983), (2) induce shaking 

behaviour, sometimes referred to as "wet dog shaking1’ seen in opiate withdrawal (Griffiths et a l ,

1982), (3) reverse narcotic-induced sedation via neuronal activation (Kalivas and Honta, 1983) and (4) 

antagonise muscular relaxation caused by neurotensin, suggesting a role in the control of skeletal 

muscle tone (Griffiths et a l , 1983a) The central administration of TRH has been shown to have 

profound effects on the cardiovascular and respiratory systems such as increased blood pressure 

(Nemeroff et a l , 1984) and respiratory rate (Hedner et a l , 1983) TRH administered centrally will 

induce gastrointestinal motility and increase gastric secretion (Nemeroff et a l , 1984) TRH has also 

been shown to potentiate the excitatory actions of acetylcholine on cerebral cortical neurones 

(Yarborough, 1976) and to enhance cerebral noradrenaline turnover (Keller et a l , 1974) A role as a 

possible mediator of thermoregulation has also been implicated for this neuropeptide by a number of 

researchers (Metcalf, 1974, Prasad et a l , 1980) In all of these actions, there is an apparent interaction 

with a variety of classical neurotransmitters and other neuropeptides The complexity of these 

interactions however, makes the definition of the exact physiological significance of TRH in the 

extrahypothalamic brain more difficult For a more complete review of this topic, the reader is directed 

to Griffiths (1985) and Morley (1979)
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13 4 Biosynthesis of TRH
The mechanism of releasing hormone biosynthesis is of fundamental importance, since knowledge of 

this process must underlie any approach to rational studies on the regulation of synthesis An earlier 

review of hypothalamic peptide biosynthesis by McKelvy (1977) suggested three possible mechanisms 

for peptide bond formation for the hypophysiotrophic hormones (1) Ribosomal synthesis, either of the 

biologically active peptides themselves or of precursor polypeptides which are processed to yield the 

biologically active forms, (2) Synthesis via an RNA-independent protein template mechanism, a 

reasonably attractive possibility for TRH biosynthesis but, much less so for the larger peptide 

hormones such as LHRH and (3) Enzymatic synthesis by an RNA-dependent, nbosome-independcnt 

mechanism in which amino acid activation occurs via aminoacyl RNA species

Early studies of TRH biosynthesis focused on the possible existence of a non-nbosomal biosynthetic 

mechanism (Mitnick and Reichlin, 1971, 1972, Guillemin, 1971, McKelvy et a / ,  1975, Bauer and 

Lipmann, 1976) However, no conclusive evidence was found to verify this possibility It was not until 

1979 that Rupnow et al confirmed that TRH arises from the post-translational cleavage of a large 

precursor protein and not by soluble, non-nbosomal enzymatic mechanisms (Rupnow et al 1979a) 

Indeed studies of peptide hormone biogenesis in higher animals have demonstrated that most peptide 

hormones are formed in this manner Notable examples include vasopressin (Sachs, 1969), angiotensin 

(Page and Bumpus, 1961), insulin (Steiner et a l , 1969), gastnn (Yalow and Berson, 1971) and the 

hypothalamic hypophysiotrophic hormone LHRH (Seeburg and Adelman, 1984)

Molecular biological studies of the gene encoding the TRH prohormone were initiated by Richter et al 

(1984) This research group isolated messenger RNA from the skin of the frog Xenopus laevis (a tissue 

known to contain a great deal of TRH) and subsequently obtained a cDNA clone with an insert of 478 

nucleotides coding for a portion of the preprohormone precursor of TRH (prepro-TRI I) The deduced 

TRH precursor of 123 ammo acids contained three copies of the sequence Lys-Arg-Gln-His-Pro-Gly- 

Lys/Arg-Arg and a fourth incomplete copy The paired basic ammo acid residues flanking the TRH 

progenitor sequence, Gln-His-Pro-Gly, are potential cleavage sites in peptide biosynthesis (Docherty 

and Steiner, 1982) Subsequent studies (Kuchler et a l , 1990) revealed that the entire prepro-TRH gene 

from this source encodes for a precursor polypeptide (prepro-TRH) containing seven TRH progenitor 

sequences (pro-TRH sequences) flanked by paired basic residues which act as prohormone processing 

signals The mature TRH tnpeptide, pGlu-His-Pro-NH2, is formed by excising the progenitor sequence 

at the paired basic residues (Griffiths et a l , 1983b), trimming the basic residues with a 

carboxypeptidase B-like enzyme (Gainer et a l , 1985), cvclizinp the ammo-terminal glutamine residue 

to pvroglutamic acid with a glutamine cyclase-like enzvme (Busby et a l , 1987, Fischer and Speiss,

1987) and amidating the carboxy terminal proline residue (Bradbury et a l , 1982, Eipper and Mains

1988) This final step utilises the glycine residue as an amide donor and is catalysed by the enzyme 

pepudylglycine alpha-amidating monooxygenase or PAM (Eipper and Mains, 1988)
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The cloned cDNA of a TRH precursor has more recently been isolated from the brain of Xenopus 

laevis which differs from the skin prepro-TRH by approximately 16% (Bulant et a l , 1992a) The 

cDNAs encoding the prcpro-TRH precursors from the hypothalamus of rats (Lechan et a l , 1986), 

humans (Yamada et a l , 1990) and mice (Satoh et a l , 1992) have also been sequenced and have 

demonstrated a significant degree of homology Fig 1 9 desenbes the predicted structure of the TRH 

preprohormone precursor from rat hypothalamus (approximately 30,000 daltons)

Fig 1 9 Structure o f prepro-TRH from rat hypothalamus
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13 41 TRH precursor processing and secretion

TRH is expressed at early postmitotic stages of hypothalamic neuron development m the mouse and 

rat, as revealed by the presence of the mature tnpeptide, of prepro-TRH mRNAs, and of pro-TRH 

precursor forms (Tixier-Vidal and Faivre-Bauman, 1992) This indicates a co-ordinate expression of 

several genes encoding, respectively, prepro-TRH, its processing enzymes, and the cell machinery 

necessary for intracellular transport, sorting and release of mature TRH Considerable effort has been 

devoted to elucidating the post-translational processing pattern of the TRH precursor molecule in 

vanous regions of the bram (and in penpheral tissues) Mams et al (1990) have suggested that the 

maturation of prepro-TRH (i e prepro-TRH to pro-TRH to mature TRH) consists of a cascade of 

chemical and enzymatic modifications that occur sequentially dunng transit of the precursor molecule, 

following cleavage of the signal sequence, from the rough endoplasmic reticulum to mature secretory 

granules via the golgi apparatus Fig 110, proposed by the aforementioned research group, desenbes a 

tentative model of prepro-TRH maturation m hypothalamic neurons in which large dense core vesicles 

(that is, secretory granules) are the site of terminal maturation of precursor forms to TRH The 

subsequent co-release of mature TRH and prohormone related peptides at the synapse has been shown

Connecting peptides

Psla (25-50)
Pslb (53 74)
Ps2 (83-106)
Ps3 (115-151) 
Ps4 (160-169) 
Ps5 (178 199) 
Ps6 (208-255)
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to involve the activation of voltage-sensitive Ca2+ channels and protein kinase C (Loudes et al, 1988, 

Ladram et al, 1994)

Fig 110  Processing o f the prepro-TRH gene product to mature TRH

Signal peptide cleavage 
Protein folding

Phosphorylation
Oglycosylation
Endoproteolysis
Exoproteolysis
Sulphation
Amidation

Endoproteolysis 
Exoproteolysis 
Amidation 
Pyroglutamate formation

The above diagram describes the steps involved in prepro-TRH processing in the successive 
compartments of the secretory pathway in hypothalamic neurons (borrowed from Tixier-Vidal and 
Faivre-Bauman (1992) and inspired by Mams et a I (1990)) The maturation of TRH is a sequential 
phenomenon starting in the rough endoplasmic reticulum (RER) after cleavage of the signal 
sequence Then, pro-TRH travels vectonally in the successive compartments (Cis, Medial, and 
Trans) of the Golgi complex, where it undergoes enzymatic modifications such as those listed in 
the above schematic The terminal step, that is, amidation, is believed to begin in the Trans Golgi 
compartment upon sorting of secretory granules (i e large dense-core vesicles or LDCVs) At the 
exit from this compartment, partially or completely processed pro-TRH would become associated 
with secrotogrannin II m the dense matrix of the LDCV In embryonic neurons the final 
maturation continues during anterograde transport of LDCVs in neuntes In mature neurons, the 
maturation is completed at the exit from perikaryon of LDCV-containing mature TRH
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The most complete studies of prepro-TRH processing have, to date, been carried out on rat 

hypothalamus From Fig 1 9, proteolytic processing of rat prepro-TRH would be expected to produce 

both TRH and several other non-TRH peptides These peptides should correspond to pro-TRI I peptide 

sequences, to connecting sequences (Psl-6 ) and to various C-tcrminally and/or N-terminally extended 

forms of TRH produced by incomplete processing of the precursor molecule Antibodies have been 

raised against synthetic peptides corresponding to the connecting sequences of the rat precursor 

molecule and used to obtain a more precise picture of prepro-TRII processing m different neural 

tissues The extraction and chromatographic separation of immunoreactive material has demonstrated 

the presence of prepro-TRH25 50 (Psla), prepro-TRHII5152 (Ps3), prepro-TRHI60 169 (Ps4), prepro- 

TRH i78 199 (Ps5) and prepro-TRH2os 255 ( P s 6 )  (Wuc/flZ, 1987, Wu and Jackson, 1988, Bulant et a l , 

1988, Gkonos et a l , 1989) These data provide convincing evidence that the major pathway of prepro- 

TRH processing in the hypothalamus involves nearly complete proteolytic cleavage at all the pairs of 

basic residues which flank the TRH progenitor sequences However some studies have shown the 

presence of incompletely processed portions of the prepro-TRH molecule in the hypothalamus 

Peptides extended at the N- and C-terminal of the TRH progenitor sequence were seen to occur in 

bovine hypothalamus (Cockle and Smyth, 1986) whilst in rat hypothalamus, only the C-termmally 

extended forms of the TRH progenitor sequence were observed (Cockle and Smyth, 1987) Bulant et 

al (1988) have also detected two of the connecting sequences, Ps4 and Ps5 m spinal cord extracts m 

equimolar amounts and have suggested that, in addition to TRH, they are the mam storage forms of 

TRH precursor-related peptides in this tissue

The biological significance of these connecting peptides and TRH-extended peptides is currently a 

subject of intense investigation Recently, one of the connecting peptides produced in vivo has been 

chemically characterised -T h is  peptide was purified from bovine hypothalamus using a 

radioimmunoassay directed against Ps4 The amino acid sequence obtained for the decapeptide was 

Ser-Phe-Pro-Trp-Met-Glu-Ser-Asp-Val-Thr This represents the first direct chemical evidence for non- 

TRH peptides originating from the TRH precursor in vivo (Bulant et a l , 1992b) Studies indicate that 

this connecting peptide can potentiate the neuroendocrine action of TRH on thyrotroph cells of the 

anterior pituitary, in vitro and in vivo. to cause the release of TSH (Bulant et a l . 1990. Carr et a l . 

1992) Ps4, like TRH, interacts with specific pituitary cell receptors (distinct from TRH receptors), 

coupled to a Ca2+ channel mechanism (Roussel et a l , 1991), causmg dose-dependent increases in the 

steady-state levels of mRNAs of TSH and prolactin through stimulation of the respective promoter 

activities However, unlike TRH, Ps4 alone has no significant effect on TSH or prolactin secretion On 

the basis of this evidence, it would appear that TRH and Ps4, two peptides which originate from a 

single multifunctional biosynthetic precursor, can function on the same target tissue (the anterior 

pituitary) in a synergistic manner to promote hormonal secretion, suggesting that differential 

processing of the TRH precursor molecule may have the potential to modulate the biological activities 

of TRH
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1 3,5 Inactivation of TRH
The controlled inactivation of neuropeptides almost certainly represents an important regulatory 

mechanism withm homeostatic adaptaUon processes Degradative enzymes are believed to play a very 

important role in controlling neuropeptide action, initially by regulating the amount of neuropeptide 

available for release at its site of production or the amount actually reaching its site of action, then by 

controlling the duration of action through neuropeptide inactivation at the receptor sites in a particular 

target tissue, and finally, by removal of the neuropeptide from the general circulation so that an 

excessive response to this compound is prevented The neuropeptide can be transformed from its acUve 

form to either another bioactive compound or to inactive metabolites When applied to TRH these 

concepts suggest several potential locations for the enzymic inactivation of this tripeptide 

(hypothalamic, extra-hypothalamic, extra-CNS and blood) TRH-degrading peptidases would also be 

expected to show some degree of specificity, this specificity also being inferred from the unique 

structural features of TRH such as the blocked N- and C-termini combined with an internal proline 

residue

The rapid inactivation of TRH by blood and tissue enzymes was first observed prior to the elucidation 

of its chemical structure (Bowers et a l , 1966, Guillemin, 1967, Redding and Schally, 1969) Much 

effort has since been devoted to developing a more complete understanding of these enzymic 

inactivation mechanisms TRH inactivation by the hypothalamus (its principle site of biosynthesis and 

release) was first observed by Bauer et al (1973) Several workers have since examined the 

degradation of TRH by hypothalamic and adenohypophyseal tissue extracts derived from different 

mammalian species (Griffiths et a l , 1980, Bauer and Klemkauf, 1980, Faivre-Bauman et a l , 1981, 

Prasad and Peterkofsky, 1976, Fellows and Mudge, 1971b, Vargas et a l , 1992b, Aratan-Spire et a l ,

1983) with a view to delineating the enzymic mechanisms responsible for modulating TRH 

neuroendocrine activity within the confines of the hypothalamic-pituitary-thyroid axis 

The observation of TRH m extrahypothalamic bram as well as other mammalian organs suggests a 

potential neuroregulatory capacity for this tnpeptide (see section 13 3) which one would expect to be 

coupled to specific peptidase inactivation mechanisms TRH-degrading enzymes have subsequently 

been reported in numerous tissues including whole brain (Hayes et a l , 1979, Browne and O'Cuinn, 

1983a, Garat et a l , 1985, Prasad et al 1982a, Koivusalo, 1980), pancreas (Aratan-Spire et a l , 1986, 

Koivusalo, 1980), liver (Scharfmann and Aratan-Spire, 1991, Aratan-Spire et a l , 1983), cerebrospinal 

fluid (Prasad and Jayarman, 1986) and serum (Bauer and Nowak, 1979, Bauer et a l , 1979, Aratan- 

Spire et a l , 1983)

Based on the identification of its metabolic end products and by the demonstration that the individual 

enzymatic reactions can be preferentially blocked by specific enzyme inhibitors, workers have 

demonstrated that the fragmentation of TRH to free ammo acids by neural and non-neural tissue 

extracts involves the participation of several different enzyme activities (Browne and O'Cumn, 1983a, 

Bauer and Klemkauf 1980, Aratan-Spire et al 1986) TRH inactivation is known to occur in two
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stages, primary catabolism in which neuropeptide breakdown is initiated by one of two different 

enzymes which are capable of hydrolysing the N- and C-terminal bonds of the tnpeptide respectively, 

and secondary catabolism which involves the catabolism of peptide fragments resulting from the

pnmary step by a number of different enzymic activities Fig 112 examines the different catabolic 

pathways which have been elucidated for TRH in both soluble and particulate tissue extracts, whilst the 

reader is directed to O'Cuinn et al (1990) and Bauer (1987b) for a more thorough review of this topic

13  51  Pnmary and secondary catabolism of TRH by soluble enzymes

Two soluble enzymes have been described which introduce pnmary cleavages into the TRH molecule, 

pyroglutamyl aminopeptidase type-1 (EC 3 4 19 3) and prolyl endopeptidase (EC 3 4 21 26) The 

former enzyme has been desenbed in detail elsewhere in this report (section 1 2 ) and has been shown 

to hydrolytically remove the pGlu residue from the amino terminus of TRH in vitro, thereby generating 

free pGlu and His-Pro-NH2 The latter enzyme, prolyl endopeptidase (PE), also frequently referred to 

as TRH-deamidase and post proline cleaving enzyme (PPCE), deamidates TRH to form acid TRII or 

pGlu-His-Pro This enzyme is a broad-specificity neuropeptidase capable of cleaving other 

neuropeptides (3-30 ammo acids) at the Pro-X bond of a sequence of the form Y-Pro-X (where Y = 

peptide and X = peptide, aminoacylamide or amide other than proline) (Koida and Walter, 1976) In 

addition to TRH therefore, PE has been shown to cleave LHRH, angiotensin, neurotensin, bradykinin, 

substance P and insulin B chain on the carboxy side of the proline residue(s) in each of these peptides 

(Taylor and Dixon, 1980, Wilk and Orlowski, 1982, Wilk, 1983)

PE was onginally discovered m human uterus as the activity which cleaved the Pro7-Leu8 bond of 

oxytocin (Walter et a l , 1971) Similar activities (approx 65-75,000 daltons) have since been identified 

in lamb kidney (Yoshimoto et a l , 1981), rat brain (Rupnow et a l , 1979b), rabbit brain (Oliveira et a l , 

1976, Orlowski et a l , 1979) and bovine brain (Hersh, 1981, Tate, 1981,-Yoshimoto et a l , 1983) This 

enzyme was identified as a senne protease by Yoshimoto et al (1977), although its sensitivity to 

sulphydryl-reactive agents indicates the necessity of an -SH group for the expression of enzyme 

activity (Browne and O'Cuinn, 1983a, Wilk, 1983) PE typically displays a sensitivity to bacitracin 

(Browne and O'Cuinn, 1983a) and is potently inhibited by Z-Pro-Prolinal (Fig 1 11), a transition state 

aldehyde inhibitor (Wilk and Orlowski, 1983, Fnedman et a l , 1984)

Fig 111 The chemical structure o f Z-Pro-Prohnal
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Fig 112 The enzymatic degradation o f TRH

(A) Soluble (TRH) 
pGlu-His-Pro-NH 2

/  \
pGlu + His-Pro-NH 2 pGlu-His-Pro + NH 3

Spontaneous 
cyclisation

aneous /  I 
sation f  j (

/  I
cyclo(His-Pro) His-Pro + NH 3 pGlu + His-Pro

Li. JI ^  His + Pro <  ^

(B) Particulate (TRH)
pGlu-His-Pro-NH2

/  x
pGlu + His-ProNH2 pGlu-His-Pro + NH 3

cyclo(His-Pro) His + ProNH 2 His-Pro + NH 3

A = Pyroglutamyl aminopeptidase I 
B = Prolyl endopeptidase
C = Post prolrne dipeptidyl aminopeptidase/DAP-II 

(puromycin-sensiUve)
D = Proline dipeptidase 
E = Pyroglutamyl aminopeptidase II 
F = Imidopeptidase
G = Post proline dipeptidyl aminopeptidase/DAP-IV 

(bacitracin-sensitive)
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The conversion of TRH to acid TRH by PE represents an example of peptide biotransformation, as 

acid 1RH is reported to produce a "wet dog shaking" effect following mtraventncular injection (Boschi 

et a l , 1980) Acid TRH may be further metabolised (secondary catabolism) to free pGlu and His-Pro 

by PAP-I, whereas His-Pro may be further hydrolysed to histidine and proline by a proline dipeptidase 

(EC 3 4 13 9) (Browne and O’Cuinn, 1983b)

As indicated earlier, the primary inactivation of TRH by PAP-I generates His-ProNH2, a metabolite 

which has been reported to cyclise spontaneously and nonenzymatically, at neutral and alkaline pH, to 

produce cyclo(His-Pro) (Peterkofsky et a l , 1982, Prasad et a l , 1982b) cyclo(His-Pro), which does not 

appear to be further degraded by any enzymatic mechanism, is itself reported to possess endocrine 

activity (Brabant et a l , 1981, Melmed, et a l , 1982) as well as numerous central nervous actions 

(Peterkofsky et a l , 1982, Prasad et a l , 1982b) As such, the conversion of TRH to cyclo(His-Pro) 

represents another instance of the biotransformation of a peptide (Griffiths and McDermott, 1984) 

Workers have also demonstrated that His-ProNH2 is also susceptible to hydrolytic cleavage by a 

soluble post proline dipeptidyl ammopeptidase or PPDA (Bauer and Klemkauf, 1980, Browne and 

O'Cuinn, 1983a) which is capable of converting this metabolite to His-Pro This enzyme activity 

(approx 2 0 0 ,0 0 0  daltons) displays a sensitivity to puromycin, suggesting that it should properly be 

classified as a dipeptidyl ammopeptidase II (EC 3 4 14 2) activity (McDonald and Barrett, 1986), an 

activity normally associated with lysosomes Noteworthy is the fact that by converting His-ProNH2 to 

a compound other than cyclo(His-Pro), PPDA is competing with the biotransformation process and 

therefore should be considered a regulator of cyclo(His-Pro) formation (the chemical structures of acid 

TRH, His-ProNH2 and cycIo(His-Pro) are illustrated in Fig 113)

13 5 2 The role of soluble peptidase activities in TRH metabolism in vivo

Despite the ability of the aforementioned soluble enzyme activities to hydrolyse TRH to its constituent 

ammo acids in vitro, much doubt has been cast on their respective roles m this regard in vivo Two 

possible modes for the enzymic inactivation of TRH (and other neuropeptides) in vivo have been 

considered, (1) extracellular hydrolysis by surface ectoenzymes and (2 ) lysosomal hydrolysis after 

endocytosis Neither of these models support a role for cytosolic peptidase activities Indeed, several 

studies have suggested that the contribution of soluble enzymes to TRH metabolism in vivo is 

relatively insignificant (Bauer, 1987, Charli et a l , 1987, Torres et a l , 1986, Salers et a l , 1991, 1992, 

Mendez et a l , 1990) Conversely, some researchers have provided evidence in support of the notion 

that cytosolic enzymes may have some role, direct or otherwise, in regulating intracellular levels of 

TRH Faivre-Bauman et al (1986) have reported that the addition of specific inhibitors of PAP-I and 

PE to TRH-synthesismg hypothalamic cells in primary culture results in a significant increase m their 

TRH content and especially a pronounced increase in the amount of TRH being released from these 

cells under basal or potassium-stimulated conditions Ramirez et al (1991) have also demonstrated that 

PAP-I activity m rat hypothalamus, intermediate-posterior pituitary and retina are subject to circadian 

variation and asymmetrical distribution, a finding which has also been reported for its potential 

endogenous substrate, TRH (Schaeffer et a l , 1977, Kerdlehue et al 1981)

33



Workers have hypothesised that cytosolic enzymes mav represent a mechanism for returning 

neuropeptides released from damaged or ageing vesicles to the cellular amino acid pool (O'Cuinn et 

a l , 1990), or, in cases where secretion from neuropeptide-synthesising cells is suppressed, cytosolic 

degradation of neuropeptides might conceivably represent a security device system to ensure the 

degradation of neuropeptides which are produced in excess (Bauer, 1987) More recently, evidence has 

been put forward suggesting that following the interaction and subsequent internalisation of the TRH 

receptor and its ligand, both receptor and ligand are recycled dissociated from one another (Petrou and 

Tashjian, 1995, Ashworth et a l , 1995) Since this recycling event proceeds intracellularly, it is 

tempting therefore to speculate that cytoplasmic pepudases may participate in modulating this process 

in some manner

F ig  113 Chemical structures o f TRH metabolites 

acid TRH

His-Pro-NH2

13 5 3 Pnmary and secondary catabolism of TRH by particulate enzymes

The primary inactivation of TRH at the external cell surface level is known to be initiated by the 

apparently TRH-specific PAP-II (EC 3 4 19 -) This enzyme has been dealt with in detail elsewhere in 

this report (section 1 2 3 2) As in the case of soluble PAP-I, the products of action of PAP-II on TRH 

are free pGlu and His-ProNH2 In the absence of further enzyme activity, the latter metabolite will 

cyclise spontaneously and non-enzymatically to yield cyclo(His-Pro) A bacitracin-sensitive PPDA 

however, has been demonstrated in synaptosomal membrane preparations of rat (Torres et a l , 1986)
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and guinea-pig (O’Connor and O'Cuinn, 1986) brain, which, because of its synaptosomal location, can 

directly compete with the biotransformation of His-ProNH2 arising as a result of PAP-II action on 

TRH The bacitracin sensitivity of this particulate PPDA distinguishes it from the soluble puromycin- 

sensitive PPDA examined earlier, suggesting that it should properly be classified as a dipeptidyl 

aminopeptidase IV (EC 3 414  5) activity (McDonald and Barrett, 1986)

Torres et al (1986) have also demonstrated the production of ProNH2 from His-ProNH2 in rat brain 

membrane preparations incubated with TRH, presumably through the action of an lmidopeptidase, as 

originally reported by Matsui et al (1979) Unfortunately these researchers were unable to localise this 

enzyme activity to any specific subcellular fraction Also worthy of mention is the possible existence 

of a membrane-bound PE activity The importance of such a particulate enzyme resides m the fact that 

it is a primary inactivator of TRH and, as such, would be expected to function in a coordinate fashion 

with PAP-II at the membrane level to regulate the physiological actions of this tnpepude Noteworthy 

in this respect is the recent localisation of a broad-specificity PE activity within a synaptosomal 

membrane preparation from bovine brain (O'Leary and O'Connor, 1995b)
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2. MATERIALS AND METHODS



2.1 Materials

Sipma Chemical Company (Poole. Dorset. England)

AG-25 Silver Stain Kit

7-Amm(>4-MethylCoumann (MCA) 

Ammonium Persulphate 

Bacitracin

Benzamidme 

Bestatm 

Blue Dextran

Bovine Serum Albumin (BSA) 

Coomassie Brilliant Blue G 

Dimethylfoimamide (DMF) 

2,2‘-Dithiopyndine 

Dithiothreitol (DTT)

E-64

EDTA

Eledoisin

N-Ethylmaleimide

Glycine

p-Hydroxymercunbenzoate (PHMB)

8 -Hydroxyquinoline 

2 -Iodoacetamide 

Iodoacetate

Lauryl Sulphate (SDS)

Lulibenn (LHRH)

Lithium Chloride 

Lys-AIa-MCA 

2 -Morcaptoethanol 

MES

N,N'-Methylene'Bisacrylamide

MW-GF-200 Marker Kit

MW-SDS-200 Marker Kit

Neurotensin

pGlu-BNA

pGlu-HiS'Gly

pGlu-His-GIy-NH2

pGlu-His-Pro

pGlu-pNA

1 ,10 -Phenanthroline

PhenylmethylsuIphonylfluonde(PMSF)

Potassium Phosphate (Monobasic)

Potassium Phosphate (Dibasic)

Puromycin

Pyroglutamic Acid

Sodium Acetate (NaCH3C 0 2)

Sodium Chlonde (NaCl)

Tnzma Base 

TEMED

Bachem Feinchemikalem AG (Bubendorf. Switzerland)

Bombesin pGlu-MCA

Cyclo(His-Pro) pGlu-Val

Gly-Pro-MCA Thyroliberin (TRH)

pGlu-Ala Z-Gly-Pro-MCA

pGlu-His-Pro-MCA
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BDH Chemicals Ltd (Poole. Dorset England).

Acetic Acid 

Acrylamide 

Biuret Reagent 

Bromophenol Blue

Cadmium Acetate (Cd(CH3C0 2>2 2H20) 

Calcium Chloride (CaCl2)

Citric Acid

Cobalt (II) Chloride (CoCl2 6H20 )

Dunethylsulphoxidc (DMSO) 

Glacial Acetic Acid 

Glycerol

Hydrochloric Acid

Iron (III) Chloride (FeCl3 6H20 )

Magnesium Chloride (MgCl2 6H20 )

Methanol

Zinc Sulphate (ZnS04)

Copper Sulphate (CuS04)

Merck Chemical Company (Frankfurt, Germany)

Iron (II) Sulphate (FeS04 7H20 )

Manganese Sulphate (M nS04)

Polyethylene Glycol (PEG)

Sodium Hydroxide

Aldrich Chemical Company (Poole. Dorset England):

Mercury (II) Chloride (IIgCL2)

1,7-Phenanthrohne 

4,7 -Phenanthrohne 

2-Pyrrolidone 

Tnfluoroacetic Acid (TFA)

Pharmacia Fine Chemical Company (Uppsala. Sweden):

Activated Thiol Sepharose 4B 

DEAE Sepharose Fast Row 

Sephacryl S-200 HR
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BCA Reagent

Riedel de Haen AG (Germany)

Potassium Chloride (KC1)

Silver Nitrate (AgN03)

Romil Chemicals (Loughborough. Leicestershire, England)

Acetomtnle (Super High Punty grade)

Calbiochem-Novabiochem (UK) Ltd (Nottingham. England)

pGIu-Pro-NH2

Penmnsula Laboratories (Belmont. CA . USA) 

pGlu-His

Mount Sinai School of Medicine (New York - Courtesy of Dr. S Wilk)

Fmoc-Pro-Pro-Nitnle

Z-Pro-Prolinal

Pierce Chemical Company (Illinois. USA):
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2.2 Determination of enzyme activities

2 2 1 Cytosolic pyroglutamyl ammopeptidase

Cytosolic pyroglutamyl ammopeptidase (PAP) activity was determined according to the method of 

Fujiwara and Tsuru (1978) as modified by Browne and 0'Cumn (1983a) (see Tig 2 1 below) 0 ImM 

pGlu-MCA was prepared in 50mM potassium phosphate buffer at pH 7 4 containing 2mM DTT, 2mM 

EDTA and 2%v/v DMSO 100|±L of sample was incubated with 400|iL of substrate at 37 C for 60 

minutes after which the reaction was terminated by the addiuon of 1ml of 1 5M acetic acid A suitable 

negative control was also included in each assay by adding acetic acid to the enzyme prior to the 

substrate Liberated MCA was determined using a Perkin-Elmer LS-50 fluorescence 

spectrophotometer with excitation and emission wavelengths set at 370 and 440nm respectively 

Excitation and emission slit widths were adjusted for different sample types Fluorescence readings 

could be converted into nanomoles of MCA released by using a standard curve prepared with the latter 

compound under corresponding assay conditions and read at the corresponding slit widths Any 

samples containing particulate material (crude homogenates, pellets etc ) were centrifuged at 

1 0 ,0 0 0 rpm for 10  minutes in a microfuge prior to fluorescence reading

Fig 2 1 Assay o f cytosolic PAP activity using the specific substrate pGlu-MCA

Assay mechanism

1 100(iL of sample + 400(iL of 0 ImM pGlu-MCA
2 React at 37 C for 60 minutes
3 Stop reaction with 1ml of 1 5M acetic acid
4 Read fluorescence at Ex 370nmandEm 440nm

Schematic

pGlu-MCA

Pyroglutamyl ammopeptidase 
37 C, 60 minutes

pGlu MCA “Liberated1

Fluorescence 
(Ex 370nm, Em 440nm)
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In addition to the above assay, a non-quantitative microplate assay technique was devised in this 

laboratory to monitor cytosolic PAP activity within eluted post column fractions generated by column 

chromatography 50fiL of sample was incubated with IOOjjL of substrate (0 ImM pGIu-MCA + 2mM 

DTT + 2mM EDTA as above) at 37 C for 30 minutes after which the reaction was terminated by the 

addition of lOOjil of 1 5M accUc acid A suitable negative control was also included on each plate by 

replacing the enzyme sample with buffer Liberated MCA was detected m the same manner as the 

above assay using a Ptrkin-Elmer LS-50 fluorescence spectrophotometer Fitted with a microplate 

reader Excitation and emission slit widths varied with each chromatographic column used

2 2 2 Prolyl endopeptidase

Prolyl endopeptidase (PE) activity was determined according to a modification of the original 

procedure of Yoshimoto et al (1979) using the specific substrate, Z-Gly-Pro-MCA This substrate was 

prepared at a concentration of 0 ImM in 50mM potassium phosphate buffer at pH 7 4 containing 2mM 

DTT, 2mM EDTA and 4%v/v DMSO lOO^L of sample was incubated with 400|iL of substrate at 

37 C for 60 minutes after which the reaction was terminated by the addition of 1ml of 1 5M acetic 

acid A suitable negative control was also included in each assay by adding acetic acid to the enzyme 

prior to the substrate Liberated MCA was determined as described in section 2 2 1 above Excitation 

and emission slit widths were adjusted for different sample types

Using the microplate assay technique (as described in section 2 2 1), PE activity within eluted post 

column fractions generated by column chromatography could also be monitored using the specific 

substrate, Z-Gly-Pro-MCA (0 ImM Z-Gly-Pro-MCA + 2mM DTT + 2mM EDTA) Excitation and 

emission slit widths were set at 10 and 5nm respectively

_  2 2 3 Dipeptidyl ammopeptidase type-II

Dipeptidyl ammopeptidase type-II (DAP-II) activity was determined using the dipeptide substrate, 

Lys-Ala-MCA 0 ImM Lys-Ala-MCA was prepared in 50mM potassium phosphate buffer at pH 7 4 

100}jL of sample was incubated with 400fiL of substrate for 60 minutes at 37°C after which the assay 

was terminated by the addition of 1ml of 1 5M acetic acid A suitable negative control was also 

included m each assay by adding acetic acid to the enzyme prior to the substrate Liberated MCA was 

determined as described m section 2 2 1 Excitation and emission slit widths were set at 10 and 5nm 

respectively

Using the microplate assay technique (as described in section 2 2 1), DAP-II activity within eluted post 

column fractions generated by column chromatography could also be monitored using the substrate 

Lys-Ala-MCA (0 ImM) Excitation and emission slit widths were set at 10 and 5nm respectively
j

2 2 4 Dipeptidyl ammopeptidase type-IV

Dipeptidyl ammopeptidase type-IV (DAP-IV) activity was determined according to a modification of 

the original procedure of Kato et a I (1978) using the dipeptide substrate, Gly-Pro-MCA 0 ImM Gly- 

Pro-MCA was prepared in 50mM potassium phosphate buffer at pH 7 4 100|xL of sample was
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incubated with 400|iL of substrate for 60 minutes at 37°C after which the assay was terminated by the 

addition of 1ml of 1 5M acetic acid A suitable negative control was also included m each assay by 

adding acetic acid to the enzyme prior to the substrate Liberated MCA was determined as described in 

scction 2 21 Excitation and emission slit widths were set at 10 and 5nm respectively 

Using the microplate assay technique (as described m section 2 2 1), DAP-IV activity within eluted 

post column fractions generated by column chromatography could also be monitored using the 

substrate Gly-Pro-MCA (0 ImM) Excitation and emission slit widths were set at 10 and 5nm 

respectively

2.3 Protein Determination

Three methods were employed for the determination of protein concentration in samples as no single 

method was suitable for all samples

2 3 1 Biuret protein assay
The Biuret assay was used for the determination of protein concentration m crude homogenate, 

supernatant (S2) and pooled post anion-exchange samples Pnor to assay, each of these samples was 

dialysed for over 12 hours against 2L of distilled water at 4 C in order to remove interfering substances 

such as tns buffer, DTT and EDTA 50pL of sample was incubated with 2 0 0 p.L of Biuret reagent at 

room temperature for 30 minutes after which, the absorbance at 540nm was read on a TitreTek 

TwinReader Plus spectrophotometnc plate reader In the case of the crude homogenate, this assay was 

scaled up 4 fold m a test tube and, after 30 minutes, the reaction mixture was centrifuged @ 10,000rpm 

for 10  minutes in a microfuge to remove particulate material prior to measuring the absorbance at 

540nm A 0-1 Omg/ml BSA standard curve was prepared m parallel with the assay each time it was 

performed

2 3.2 Enhanced BCA protein assay

The Enhanced BCA protein assay, based on the method of Smith et al (1985), was used to determine 

protein concentraUon in pooled post gel-filtration samples Pnor to assay, samples were dialysed for 

over 12 hours against 2L of distilled water at 4 C in order to remove interfering substances, 

particularly thiol based compounds such as DTT IOjiL of sample was incubated with 200|iL of BCA 

working reagent at 60 C for 30 mmutes after which, the absorbance at 540nm was read on a TitreTek 

TwinReader Plus spectrophotometnc plate reader A 0-250|ig/ml BSA standard curve was prepared in 

parallel with the assay each time it was performed

2 3 3 Biorad protein assay

The Biorad protein assay, based on the method of Bradford (1976), was used to determine protein 

concentration m punfied PAP preparations (pooled post affinity chromatography) Pnor to assay, 

samples were dialysed for 3-4 hours against 500mL of distilled water at 4 C in order to remove

41



interfering substances, particularly thiol based compounds such as DTT and 2-thiopyndone which is 

released from the Activated Thiol Sepharose 4B column dunng protein binding and elution 0 8 mL of 

sample was incubated with 0 2mL of Biorad working reagent at room temperature for 5 minutes after 

which, the absorbance at 595nm was read on a Shimadzu UV 160-A absorbance spectrophotmeter A 

0-8jig/ml BSA standard curve was prepared in parallel with the assay each time it was performed

2.4 Subcellular localisation of PAP in bovine brain

2 41  Examination of pGlu-MCA hydrolysing PAP activity in the soluble and 
particulate fractions of bovine brain

25g of bovine brain was homogenised, using a Sorvall Omni Mixer, in lOOmL of 50mM tris/IICI 

buffer at pH 8 0 containing 2mM DTT and 2mM EDTA Tissue was disrupted by three 5 second pulses 

at speed setting four lOmL of the crude homogenate was then centrifuged for 30 minutes at 27,000g in 

a Sorvall RC-5B refrigerated superspeed centnfuge The supernatant (S^ was retained, whilst the 

pellet (Pj) was gently redissolved in lOmL of the homogenisation buffer and re-spun as above The 

new supernatant was combined with to form S2 whilst the new pellet (P2) was redissolved m 10ml 

of homogenisation buffer All operations proceeded at 4 C

The crude homogenate, S2 and P2 fractions were then assayed for cytosolic PAP activity as outlined in 

section 2  2 1

2 4 2 Effect of salt washing on the release of pGlu-MCA hydrolysing PAP 
activity from the particulate fraction of bovine brain

The homogenisation and centnfugation procedures were performed exactly as above (section 2 4 1) 

However, four 20mL aliquots of crude homogenate were centnfuged, the supernatants (Sj ^"^) were 

retained and the pellets (Pi ^ )  gently redissolved in lOmL of the homogenisation buffer (section 

2 4 1 )  containing 0 ,1 ,2  and 3M NaCl respectively The redissolved pellets were then re-spun as above 

The new supernatants were combined with the corresponding Si supernatants to form the S2 ^"^ 

supernatants Pellets were discarded All operations proceeded at 4°C

The crude homogenate and S2 ^  supernatants were then assayed for cytosolic PAP activity as 

outlined in section 2  2 1

t

2.5 Purification of PAP from bovine brain cytosol 

2 5 1 Tissue preparation and centrifugation

25g of bovine bram was homogenised, using a Sorvall Omni Mixer, in lOOmL of 50mM tns/HCl 

buffer at pH 8  0 containing 2mM DTT and 2mM EDTA Tissue was disrupted by three 5 second pulses 

at speed setting four 80mL of the crude homogenate was then centnfuged for 30 minutes at 27 OOOg in 

a Sorvall RC-5B refrigerated superspeed centnfuge The supernatant (Sj) was retained whilst the pellet 

(P ^  was gently redissolved m 40mL of the homogenisation buffer and re-spun as above The new
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supernatant was combined with Sj to form S2 whilst the new pellet (P2) was discarded All operations 

proceeded at 4 C

2 5 2 DEAE Sepharose Fast Flow anion-exchange chromatography

A 15ml DEAE Sepharose Fast Flow amon-exchange column (2 5cm x 3 1cm) was equilibrated with 

lOOmL of 50mM tris/IICl buffer at pH 8 0 containing 2mM DTT and 2mM EDTA 40mL of 

supernatant (S2) was applied to the column after which, the column was washed with 40mL of 

equilibration buffer The column was then eluted with a linear NaCl gradient (0-0 75M NaCl, 60mL 

total volume) in equilibration buffer 3mL fractions were collected from the point of sample 

application through to gradient elution A flow rate of lmL/min was maintained throughout this 

procedure All operations proceeded at 4 C

The fractions were assayed for cytosolic PAP activity using the microplate assay technique outlined m 

section 2 21 Fractions were also monitored for protem by measuring the absorbance of the samples at 

280nm in a quartz cuvette usmg a Shimadzu UV 160-A absorbance spectrophotometer Those fractions 

with the highest PAP activities were pooled and stored on ice

2 5 3 Sephacryl S-200 HR gel-filtration chromatography 

2 5 31  Void volume determination

A 230mL Sephacryl S-200 HR gel-filtration column (2 5cm x 46 4cm) was equilibrated with 350mL of 

distilled water 5mL of a 2mg/mL solution of blue dextran was applied to the column The column was 

then eluted with 120mL of distilled water during which time 3mL fractions were collected The 

absorbance of these fractions at 620nm was monitored on a Titretek TwinReader Plus 

spectrophotometnc plate reader m order to calculate the void volume of the column A flow rate of 

lmL/min was maintained throughout this procedure All operations proceeded at 4°C

2 5 3 2 Gel-filtration

The 230mL gel-filtration column outlined above was equilibrated with 350mL of 50mM tris/HCl 

buffer at pH 8 0 containing 2mM DTT, 2mM EDTA and 0 15M KC1 5mL of the pooled post amon- 

exchange PAP was apphed to the column immediately after which, the column was eluted with 220mL 

of equilibration buffer After 75mL of equilibration buffer had been run through the column, 3mL 

fractions were collected for the remaining 145mL of buffer A flow rate of lmL/min was maintained 

throughout this procedure All operations proceeded at 4 C

The fractions were assayed for cytosolic PAP activity using the microplate assay technique outlined in 

section 2 21  Fractions were also monitored for protem by measuring the absorbance of the samples at 

280nm in a quartz cuvette usmg a Shimadzu UV 160-A absorbance spectrophotometer Those fractions 

with the highest PAP activities were pooled and stored on ice
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2 5 4 Activated Thiol Sepharose 4B affinity chromatography
A 7mL Activated Thiol-Stpharose 4B column (1 5cm x 3 8cm) was equilibrated with lOOmL of 50mM 

tris/IICl buffer at pi I 8 0 containing 2mM EDTA and 0 3M NaCl The pooled post gel-filtration PAP 

(14-16mL approx ) was dialysed for 3 hours against 1L of 50mM tns/HCl buffer at pH 8  0 containing 

2mM EDTA in order to remove DTT (prevents binding ol thiol enzymes to the column), before being 

applied to the column The column was washed with 40inL of equilibration buffer and then eluted with 

a single step-up concentration of DTT (0-5mM DTT, 45mL total volume) in equilibration buffer 3mL 

fractions were collected from the point of sample application through to gradient elution A flow rate 

of 0 5mL/mw  was maintained during the equilibration and elution stages In order to facilitate 

complete binding of PAP however, a slower flow rate of 0 25mL/min was employed during the sample 

application and wash stages All operations proceeded at 4 C

The fractions were assayed for cytosolic PAP activity using the microplate assay technique outlined in 

section 2 21 Due to extremely low levels of protein eluting from this column however, fractions were 

monitored for protein using the Enhanced BCA protein assay Tor this purpose, 200\iL of each fraction 

was dialysed, pnor to the BCA assay, against 3L of distilled water at room temperature for 6  hours to 

remove interfenng substances, particularly thiol based compounds such as DTT and 2-thiopyndone 

which is released from the Activated Thiol Sepharose 4B column dunng protein binding and elution 

Using a Shimadzu UV 160-A absorbance spectrophotometer, the release of 2-thiopyndone from the 

column could be monitored at 343nm

Those fractions with the highest PAP activities were pooled The protein content of the pooled enzyme 

was brought to 0 5%w/v (5mg/mL) with BSA, the enzyme subsequently being stored at -80°C Unless 

otherwise specifically indicated, post affinity PAP (+0.5%w/v BSA) was the form o f purified enzyme 

used for the majority o f characterisation studies (see section 2 7)

2.6 Polyacrylamide gel electrophoresis

SDS PAGE was performed on vanous fractions generated throughout the punfication procedure, from 

crude cytosol (S2) to purified PAP (post affinity chromatography), both to assess the efficiency of 

punfication at each individual stage and, to estimate the molecular mass of the purified enzyme under 

non-native or denatunng conditions A non-native discontinuous system based on the method of 

Laemmli (1970) was used

2 6 1  Sample preparation

A suitable sample solubilisation buffer was prepared which consisted of 0 0625M tns/HCl buffer at pH 

6  8 , 20%v/v glycerol, 8 %w/v SDS, 10%v/v 2-mercaptoethanol and 0 01%w/v bromophenol blue

Small aliquots of crude cytosol (S2) post anion-exchange PAP, post gel-filtration PAP and punfied 

PAP (post affinity chromatography) were dialysed extensively over a 24 hour period at room 

temperature against 2L of 0 0625M tns/HCl buffer at pH 6  8  The dialysis buffer was changed after 1
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3, 6  and 22 hours Dialysed samples were then mixed with an equal volume of sample solubilisation 

buffer Protein concentrations within the final samples ranged from approximately 3mg/mL (crude 

cytosol) to 5|ig/mL (punfied PAP)

Six known molecular mass markers, provided by a Sigma MW-SDS-200 marker kit, were prepared 

individually by dissolution in 0 0625M tns/HCl buffer at pH 6  8 and subsequently combined to form a 

molecular mass marker cocktail The marker cocktail was mixed with an equal volume of sample 

solubilisation buffer The marker concentrations withm the final cocktail can be seen in Table 2 1

All prepared samples and markers were placed in a boiling water bath for 2 minutes and then allowed 

to cool to room temperature before being applied to the gel In addition, it should also be noted that 

pnor to performing SDS PAGE with silver staining, the molecular mass marker cocktail and all of the 

above samples, with the exception of the purifed PAP preparation were significantly diluted in 

0 0625M tns/HCl buffer at pH 6  8 before being mixed with an equal volume of sample solubilisation 

buffer

2 6 2 SDS PAGE

A range of stock solutions were made up with distilled/deiomzed water and used to prepare both the 

resolving gel and stacking gel These include (1) Resolving gel buffer [3M tns/HCl, pH 8 8 ], (2) 

Stacking gel buffer [0 5M tns/HCl, pH 6  8 ], (3) Bisacryl stock [30%w/v acrylamide, 0 8 %w/v 

bisacrylamide], (4) 1 5 %w/v ammonium persulphate and (5) 10%w/v SDS

Table 2 2 highlights the volumes required for the preparation of a 10% resolving gel overlayed with a

3 75% stacking gel Gels were prepared m an Atto vertical electrophoresis system (Midi, 16cm x 16cm 

x 1mm) 2 0 pL of sample and 10}aL of marker cocktail were loaded onto the gels which were then 

electrophoresed in a suitable electrode buffer (0 025M tns, 0 192M glycine, 0 l%w/v SDS, pH 8 3) at 

25mA per gel for approximately 3 hours

45



T ab le  2 1 Composition o f the molecular mass marker cocktail for SDS PAGE

Molecular mass marker Molecular mass 
(daltons)

Concentration
(mg/mL)

Carbonic anhydrase 29,000 0 17

Ovalbumin 45,000 0 25

Bovine Serum Albumin 6 6 ,0 0 0 0 25

Phosphorylase B 97,400 0  08

B-Galactosidase 116,000 017

Myosin 205,000 014

T a b le  2 2 Volumes required for SDS PAGE resolving/stacking gels

Solution 10% Resolving gel 
(mL)

3 75% Stacking gel 
(mL)

Bisacryl stock 10 25

0 5M tns/HCl, pH 6  8 - 5

3M tns/HCl, pH 8 8 3 75 -

10%w/v SDS 0 3 0 2

Water 14 45 113

1 5 %w/v ammonium persulphate 1 5 1

TEMED 0015 0015
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2 6 3 Staining with Coomassie Brilliant Blue G
Immediately following electrophoresis, gels were fixed for approximately 45 minutes in a solution of 

40% methanol/7% glacial acetic acid Gels were then stained for 45 minutes in a solution of Coomassie 

Brilliant Blue G (0 l%w/v Coomassie Brilliant Blue G, 25%v/v methanol and 5%v/v acetic acid) after 

which, they were destained for over 12 hours in a solution of 25% methanol/10% glacial acetic acid

2 6.4 Silver staining

A Sigma AG-25 silver stain kit was employed to perform the silver staining of SDS PAGE gels 

according to the method of Heukeshoven and Demick (1985) Unlike the Coomassie Brilliant Blue G 

staining procedure outlined above, silver staining is a much more sensitive and labour-intensive 

technique Table 2 3 highlights the steps involved in the silver staining process

T ab le  2  3 Silver staining procedure for SDS PAGE

Silver stain step Solvent/Reagent Duration

1 Fixing 30%v/v Ethanol/10%v/v Glacial Acetic Acid 60 minutes

2 Rinsing Distdled/Deiomsed Water 30 minutes

3 Silver staining Silver Nitrate 30 minutes

4 Rinsing Distilled/Deionised Water 2 0  seconds

5 Developing Sodium Carbonate/Formaldehyde 30 minutes

6  Development stop l%v/v Glacial Acetic Acid 5 minutes

7 Rinsing Distilled/Deionised Water 30 minutes

8 Reducing Sodium Thiosulphate/Sodium Carbonate 30 seconds

9 Rinsing Distilled/Deionised Water 24 hours

2.7 Characterisation of cytosolic PAP 

2 7 1 Relative molecular mass determination

The relative molecular mass of cytosolic PAP was estimated under both native, non-denaturmg 

conditions (gel-flltration chromatography) and under non-native, denaturing conditions (SDS PAGE) 

This not only provides a value for the molecular mass of the enzyme, but also whether or not the 

enzyme has a subumt structure
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2.7.1 1 Determination of relative molecular mass under native, non-denaturing 
conditions via gel-filtration chromatography

Five known molecular mass markers, provided by a Sigma MW-GF-200 marker kit, were prepared 

individually by dissolution in 50mM potassium phosphate buffer at pH 7 4 containing 0 15M KCl The 

marker concentrations prepared can be seen in Tabic 2 4 The Sephacryl S-200 HR gel-filtration 

column outlined in section 2 5 3 was equilibrated with 250mL of the above buffer The molecular mass 

markers were then applied separately to the column in a 2mL volume immediately after which, the 

column was eluted with approximately 200mL of equilibration buffer A flow rate of 2mL/min was 

maintained throughout this procedure All operations proceeded at 4°C

Fractions were monitored for absorbance at 280nm using a Phillips UV/VIS spectrophotometer and a 

plot of Log10 of molecular mass versus elution volume/void volume (Ve/Vo) was subsequently 

prepared Using this graph, it is possible to estimate the molecular mass of cytosolic PAP since the 

elution volume (Ve) of the enzyme from this column is already known (from section 2  5 3 2 )

T ab le  2  4  Gel-filtration molecular mass markers

Molecular mass marker Molecular mass 
(daltons)

Concentration
(mg/mL)

Cytochrome C 12,400 2

Carbonic Anhydrase 29,000 3

Bovine Serum Albumin 6 6 ,0 0 0 10

Alcohol Dehydrogenase 150,000 5

6 -Amylase 2 0 0 ,0 0 0 4

2 7 1 2  Determination of relative molecular mass under non-native, denaturing 
conditions via SDS PAGE

The molecular mass markers used for this procedure are highlighted in Table 2 1 (section 2 61), whilst 

the procedure itself is outlined in section 2  6  2  A plot of Logio of molecular mass versus band 

migration distance/dye front migration distance (Rf, relative mobility) was subsequently prepared 

Using this graph, it is possible to estimate the molecular mass of cytosolic PAP which was also run on 

the same SDS gel

2 7 2 Linearity studies with the pGlu-MCA - based assay

The linearity of the PAP assay, using pGlu-MCA as substrate (section 2 2 1), was examined with 

respect to assay time and enzyme concentration using both crude (S2) and pure (post affinity 

chromatography) preparations of cytosolic PAP These studies were essential m order to ensure that the 

assay could be used in a quantitative manner
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2 7.2 1 Lineanty with respect to time
Crude cytosol (S2) and purified PAP (stored in both the presence and absence of 0 5%w/v BSA) were 

assayed as outlined in section 2 2 1 Reactions however, were stopped with 1 5M acetic acid after 15, 

30, 45, 60, 75 and 90 minutes The progress curves (nanomoles of MCA formed versus time) were

plotted for each sample to enable Initial Rate determination 

2 7 2 2 Linearity with respect to enzyme concentration
A range of dilutions (2x, 4x, 6 x, 8 x and lOx) of crude cytosol (S2) and purified PAP were prepared 

using a suitable diluant for each sample (in the case of the purified PAP, the diluant contained 0 5%w/v 

BSA) These sample dilutions were then assayed for cytosolic PAP activity as outlined in section 2 2 1 

Plots of Initial Rate versus enzyme concentration were then prepared for each sample

2 7 2 3 Effect of BSA concentration on the stability of a purified preparation of 
cytosolic PAP during assay 

The protein concentration of a purified preparation of cytosolic PAP (stored in the absence of BSA) 

was adjusted to a range of concentrations (0 0 ,0  05,0 1,0 25, 0 5, 1 0, 2 5 and 5 Omg/mL) using BSA 

This range of samples was then assayed for PAP activity as outlined in section 2 21 A plot of enzyme 

activity versus BSA concentration was then prepared

2 7 3 Storage of cytosolic PAP under different conditions
Purified PAP was stored in both the presence and absence of 0 5%w/v BSA at room temperature, 4°C 

and -80 C One aliquot of enzyme (+/-BSA) at each storage temperature was removed and assayed for 

cytosolic PAP activity after 6 , 14, 22 and 28 days as outlined in section 2 21  Purified PAP (+/-BS A) 

was also assayed, as normal, prior to being stored at any of the above temperatures Plots of enzyme 

activity versus time were then prepared for each sample storage condition

2 7.4 Effects of DTT and EDTA

For this study, 6 mL of purified PAP was dialysed at 4°C for 3 hours against 1L of 50mM potassium 

phosphate buffer at pH 7  4 This ensured the removal of any DTT or EDTA present in the purified 

enzyme sample which would interfere with the study

2 7 41  Effect of DTT on cytosolic PAP activity

50jlxJL of the above enzyme was preincubated, for 10 minutes at 37 C, with an equal volume of 50mM 

potassium phosphate buffer at pH 7 4 containing 0, 2 ,4 , 8 , 12, 16 and 20mM DTT The final volume 

of sample premcubatmg in each test tube was therefore 100|iL After 10 minutes, the preincubating 

samples were assayed for cytosolic PAP activity as outlined m section 2 2 1 It should be noted that the 

samples were assayed with substrate containing the corresponding concentrations of DTT (O-lOmM) 

EDTA was absent from the substrate A plot of enzyme activity versus DTT concentration was then 

prepared
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2 7 4 2 Effect of EDTA on cytosolic PAP activity

50|jL of the above enzyme was preincubated, for 10 minutes at 37 C, with an equal volume of 50mM 

potassium phosphate buffer at pH 7 4 containing 2mM DTT and 0, 2, 4, 8 , 12, 16 and 20mM ED IA 

The final volume of sample preincubating in each test tube was therefore 100|xL After 10 minutes, the 

preincubating samples were assayed for cytosolic PAP activity as outlined m section 2 2 1 It should be 

noted that the samples were assayed with substrate containing the corresponding concentrations of 

EDTA (0-1 OmM) DTT was present in the substrate at a concentration of 2mM A plot of enzyme 

activity versus EDTA concentration was then prepared

2 7.5 Effect of pH on cytosolic PAP activity
5mL of purified PAP was dialysed at 4°C for 3 hours against 500mL of distilled water containing 2mM 

DTT 50pL of the dialysed enzyme was preincubated, for 10 minutes at 37 C, with an equal volume of 

0 2M buffer at different pH units The buffers used were citnc acid/NaOH (pH 4 5-5 5), MES/NaOII 

(pH 5 5-6 5), potassium phosphate (pH 6  5-8 0), tns/HCl (pH 7 0-9 0) and glycine/NaOH (pH 9 0- 

10 5) The final volume of sample preincubating in each test tube was therefore lOOpiL After 10 

minutes, the preincubating samples were assayed for cytosolic PAP activity as outlined in section 

2 2 1 It should also be noted that the samples were assayed with substrate prepared in the 

corresponding buffers (at the corresponding pH values) A plot of enzyme activity versus pH was then

prepared

2 7.6 Thermostability studies

2.7.6 1 Effect of preincubating cytosolic PAP for various times at different 
temperatures

A 1 5mL aliquot of purified PAP was preincubated at 37,40, 50 and 60°C Samples were subsequently 

removed from each temperature after 15, 30 and 45 minutes and assayed for cytosolic PAP activity as 

outlined in section 2 2 1 A sample of the purified PAP was also assayed, as normal, pnor to being 

incubated at any of the above temperatures A plot of enzyme activity versus preincubation time was 

subsequently prepared for each preincubation temperature

2 7 6 2 Effect of performing the assay for cytosolic PAP activity at different 
temperatures

A 0 5mL aliquot of purified PAP was preincubated for 10 minutes at 30, 37,40,45, 50 and 60°C Each 

aliquot was then assayed for cytosolic PAP activity, as outlined in section 2 2 1, at the corresponding 

temperature of preincubation A plot of enzyme activity versus assay temperature was subsequently 

prepared
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2 7 7 Metal ion studies
4mL of punfied PAP was dialysed at 4 C for 3 hours against 500mL of 50mM potassium phosphate 

buffer at pH 7 4 containing 2mM DTT 50jjL of dialysed enzyme was then preincubated, at 37"C for 

10  minutes, with an equal volume of metal ion (prepared from the corresponding metal salt in either 

50mM potassium phosphate at pH 7 4 or distilled water) to give a final metal ion concentration of 

ImM The final volume of sample premcubating in each test tube was therefore IOOjuL After 10 

minutes, the prcmcubating samples were assayed for cytosolic PAP activity as outlined in section 

2 2 1 It should also be noted that the samples were assayed with substrate prepared in the absence of 

2mM EDTA in order to avoid chelating of the metal ions under study A suitable positive control in 

which m eul ions were absent was also prepared and then preincubated and assayed as above Results 

were tabulated

In the case of three of the metal ions tested above, Hg2+, Cu2+ and Zn2+, this experiment was repeated 

This time however, the samples were assayed for cytosolic PAP activity, as normal, with substrate 

containing 2mM EDTA, in an attempt to determine if the inhibitory effect of these metal ions could be 

reversed by the presence of a chelating agent in the substrate Results were tabulated

In addition, a separate control was prepared for each metal ion, under assay conditions, in which the 

substrate was replaced with a standard dilution of MCA and the enzyme replaced with 50mM 

potassium phosphate buffer at pH 7 4 in order to determine if the metal ion under investigation has any 

effect on MCA fluorescence

2.7 8 Inhibitor studies

For these studies, a small aliquot of punfied PAP was dialysed at 4°C for 3 hours against 500mL of a 

suitable buffer The buffer used in the dialysis was determined by the inhibitor to be tested For 

sulphydryl-blocking reagents, the enzyme was dialysed against 5GmM potassium phosphate buffer at 

pH 7 4 containing 20|iM DTT, whilst for EDTA, this buffer contained 2mM DTT For all other 

inhibitors tested, 50mM potassium phosphate buffer at pH 7 4 containing 2mM DTT and 2mM EDTA 

was used to dialyse the enzyme

2 7 81  Effects of vanous functional reagents on the activity of cytosolic PAP

50jliL of dialysed enzyme was preincubated, at 37 C for 10 minutes, with an equal volume of inhibitor 

(prepared at two concentrations in 50mM potassium phosphate, pH 7 4) The final volume of sample 

premcubating in each test tube was therefore 100|iL After 10 minutes, the premcubating samples were 

assayed for cytosolic PAP activity as outlined in section 2 2 1 It should also be noted that the samples 

were assayed with substrate containing the corresponding concentration of DTT and ED TA used to 

initially dialyse the enzyme Suitable positive controls m which inhibitors were absent were also 

prepared and then preincubated and assayed as above Results were tabulated
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In addition a separate control was prepared for each inhibitor (highest test concentration), under assay 

conditions, in which the substrate was replaced with a standard dilution of MCA and the enzyme 

replaced with 50mM potassium phosphate buffer at pH 7 4 in order to determine if the inhibitor under 

investigation has any effect on MCA fluorescence

2 7 8 2 Demonstration of the reversible nature of 2-pyrrohdone inhibition

4mL of purified PAP was dialysed at 4 C for 3 hours against 500mL of 50mM tns/HCl buffer at pH 

8 0 containing 2mM DTT and 2mM EDTA A 3 5mL aliquot of the dialysed enzyme was treated with 

2-pyrrohdone to give a final concentration of 0 1M The dialysed enzyme (+/- 0 1M 2-pyrrohdone) 

was then assayed for cytosolic PAP activity as outlined in section 2 2 1

In an attempt to reverse the observed inhibition, a 3mL aliquot of the "inhibited" enzyme was then re- 

dialysed at 4 C for 7 hours against 500mL of the above buffer The dialysis buffer was changed after 1, 

2 and 4 hours and a sample of the dialysing enzyme was taken after 4 hours and finally after 7 hours 

The re-dialysed enzyme samples were then assayed for cytosolic PAP activity as above A plot of 

enzyme activity versus dialysis time was subsequently prepared

2 7 8 3 Timecourse inhibition studies

In an attempt to examine the rapidity with which certain inhibitors of cytosolic PAP act on the enzyme, 

a continuous, real-time fluonmetnc assay, usmg pGlu-MCA as the substrate, was devised

2mL of purified PAP was dialysed at 4°C for 3 hours against 500mL of 50mM potassium phosphate 

buffer at pH 7 4 containing 2mM DTT and 2mM EDTA 250^tL of the dialysed enzyme was then 

ahquoted into a cuvette preincubated at 37 C within the heated cuvette block of the Perkin-Elmer LS- 

50 fluorescence spectrophotometer The reaction was initiated by the addition of 25 5|xL of inhibitor 

and lmL of 0 ImM pGlu-MCA, prepared as described in section 2 21  The contents of the cuvette 

were mixed and the release of MCA was monitored continuously over a 30 mmute period at excitation 

and emission wavelengths of 370 and 440nm respectively Excitation and emission slit widths were 

both set at lOnm The final inhibitor concentrations tested were lOmM and 0 5mM 2-pyrrohdone and 

ImM and 0 2mM 1,10-phenanthrolme A suitable positive control in which inhibitors were absent and 

a suitable negative control in which both enzyme and inhibitors were absent were also prepared and 

assayed continuously as above Plots of fluorescence intensity versus time were subsequently prepared

2,7 9 Kinetic studies

2 7 91  Km determination for pGlu-MCA and pGlu-BNA

The Michaelis-Menten Constant (Km ) values of purified PAP for the fluonmetnc substrates pGlu- 

MCA and pGlu-BNA were determined Both substrates were prepared at a stock concentration of 

0 5mM in 50mM potassium phosphate buffer at pH 7 4 containing 2mM DTT, 2mM EDTA and 2%v/v 

DMSO Both substrates were diluted in the above buffer (-DMSO) to give a range of concentrations
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from 0 005-0 5mM Purified PAP was then assayed with both substrate concentration ranges, as 

outlined in section 2 2 1 In the case of the pGlu-BNA substrate, the excitation and emission 

wavelengths used were 315 and 425nm respectively (ruse et a l , 1990) and the reaction was terminated 

by the addition of 1M sodium acetate buffer at pH 4 2 It should also be noted that for tins particular 

substrate, a BN A standard was not available Using various kinetic models, the data for both substrates 

was subsequently plotted and the Km values calculated

2.7 9 2 Km determination for pGlu-His-Pro-MCA
The Michaehs-Menten Constant (Km) of purified PAP for the TRH analog, pGlu-His-Pro-MCA, was 

determined The substrate was prepared at a stock concentration of 0 25mM m 50mM potassium 

phosphate buffer at pH 7 4 containing 2mM DTT and 2mM EDTA The substrate was diluted in the 

above buffer to give a range of concentrations from 0 005-0 25mM Purified PAP was then assayed 

across this substrate concentration range The assay used is based on a modification of the normal 

assay outlined in section 2 21 and is described m Fig 2 2 overleaf Using various kinetic models, the 

data for this substrate was subsequently plotted and the Km value calculated

2 7 9 3 Kj determination for pyroglutamyl peptides

The inhibitor Constant (Kj) values of purified PAP for a range of pyroglutamyl peptides was 

determined using pGlu-MCA as a substrate A 0 2mM pGlu-MCA stock solution was prepared in 

50mM potassium phosphate buffer at pH 7 4 containing 4mM DTT, 4mM EDTA and 2%v/v DMSO 

The substrate was then diluted out in the above buffer (-DMSO) to give a concentration range from 

0 02-0 2mM lmL of each substrate dilution was subsequently added to an equal volume of 

pyroglutamyl peptide inhibitor (prepared to a specific concentration in 5GmM potassium phosphate, pH 

7 4) to give a final pGlu-MCA concentration range of 0 01 -0 lmM" containing a constant inhibitor 

concentration across this range Purified PAP was then assayed across this substrate concentration 

range as outlined m section 2 2 1 Using various kinetic models, the data obtained was subsequendy 

plotted and the K, values calculated for each inhibitor This type of analysis also enabled the nature of 

the inhibition (competitive or non-competitive) of each inhibitor to be determined
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Fig 2 2 Assay o f cytosolic PAP activity using the TRH analog, 
pGlu-His-Pro-MCA

Assay mechanism

1 IOOjjL of sample + 20pL of 0 026mM I ’moc-Pro-Pro-Nitnle or 0 ImM Z-Pro-Prolmal *
2 Premcubate at 37 C for 10 minutes
3 + 380|iL of 0 01-0 25mM pGlu-His-Pro-MCA
4 React at 37 C for 60 minutes
5 Stop reaction with 1ml of 1 5M acetic acid
6  Heat samples at 80 C for 25 minutes
7 Read fluorescence at Ex 370nm and Em 440nm

Schematic

pGlu-His-Pro-MCA

Pyroglutamyl ammopeptidase 
37 C, 60 minutes

pGlu His-Pro-MCA

80 C, 25 mmutes

cycIo(His-Pro) MCA “Liberated’

Fluorescence 
(Ex 370nm, Em 440nm)

* Fmoc-Pro-Pro-Nitnle and Z-Pro-Prohnal are highly 
specific inhibitors of PE which can hydrolyse this 
substrate at the Pro-MCA bond
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2 7 10 Investigation of the substrate specificity of cytosolic PAP by HPLC

The substrate specificity of post amon-exchange PAP was examined using a number of synthetic 

pyroglutamyl substrates A HPLC system was used to examine the cleavage products resulting from 

the incubation of cytosolic PAP with these substrates

2 7 10 1 Sample preparation

5mL of the partially purified enzyme was dialysed at 4°C for 3 hours against 500mL of 50mM 

potassium phosphate buffer at pH 7 4 containing 4mM DTT and 4mM EDTA To a mixture of 150}iL 

of the potenual substrate (prepared to a specific concentration in 50mM potassium phosphate, pH 7 4), 

20[iL of ImM bestatin (a general ammopeptidase inhibitor) and 20^L of 0 ImM Z-Pro-Prolinal (a 

highly specific PE inhibitor) was added 150|iL of the dialysed enzyme The enzyme reaction was 

allowed to proceed lor 24 hours after which, 20|iL of 40mM DTT was added to each reaction After a 

further 16 hours at 37 C, reactions were terminated by the addition of 100(jL of 0 2%v/v TFA at pH 

1 4 Suitable negative controls were also prepared for each substrate in which the enzyme was omitted 

from the reaction until after the 40 hour incubation at 37°C

2.7 10 2 HPLC

The HPLC system used consisted of a Beckman System Gold™ Programmable Solvent Module 126 

(dual pump), Diode Array Detector Module 168 and Autosampler 507 A Beckman Ultrasphere™ C -8  

(octyl) reverse phase HPLC column (4 6mm x 25cm) was used with the above system The system was 

operated at a flow rate of lmL/min All solvents were filtered and degassed before use Solvent A 

0.2%v/v TFA, Solvent B 0 2%  v/v TFA + 70%v/v Acetomtrile

Prior to sample application, the column was equilibrated in Solvent-A-Following sample application, 

the elution procedure adopted depended on the substrate/metabolite under investigation With weakly 

hydrophobic substrates (TRH, acid TRH, pGlu-Ala, pGlu-His, pGlu-Val, pGlu-His-Gly and pGlu-His- 

Gly-NH2) and metabolites (cyclo(His-Pro) and pyroglutamic acid), the column was eluted with Solvent 

A for 5 minutes followed by a linear gradient from 0-50% of Solvent B in Solvent A over a 10 minute 

period (0-35% acetomtrile) The absorbance was monitored at 207nm (the observed absorbance 

maxima for pyroglutamic acid, the cleavage product of cytosolic PAP) With more strongly 

hydrophobic substrates (LHRH, Bombesin Neurotensin, Eledoisin and pGIu-Pro-NH2), more 

hydrophobic elution conditions were required The column was eluted with Solvent A for 5 minutes 

followed by a linear gradient from 0-85% of Solvent B m Solvent A over a 12  minute period (0-60% 

acetomtrile) At the end of this gradient, elution was continued m 85% B for a further 3 minutes The 

absorbance was monitored at 207nm

It should be noted that standard preparations of all of the above substrates/metabolites were run under 

the above elution conditions beforehand, thus enabling the elution times of each of the standards to be 

recorded Pyroglutamic acid was run under both sets of elution conditions These elution tunes
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facilitated peak identification when examining the metabolites resulting from the cleavage of the 

substrates by cytosohc PAP (section 2 7 10 1)

56



3. RESULTS



3.1 Preparation of MCA standard curves

As outlined in section 2 2 1, the specific fluonmetnc substrate, pGlu-MCA was used to assay for 

cytosolic PAP activity The enzymatic release of MCA was monitored fluorimctncally at excitation 

and emission wavelengths of 370 and 440nm respectively MCA release could then be quantitated by 

using a standard curve prepared with the latter compound under corresponding assay conditions and 

read at the corresponding slit widths

Two sets of MCA standard curves were prepared for quantitative purposes One set was prepared m the 

absence of enzyme, whilst one set mcoporated crude enzyme samples (i e a standard curve 

incorporating crude homogenate and a standard curve incorporating crude cytosol) in order to correct 

for the fluonmetnc "quenching" effect observed with crude samples Quenching, or to be more precise, 

the "mner-filter effect", results from the absorbance of electromagnetic radiation, at both the excitation 

and emission wavelengths, by proteins and other contaminants present in crude samples, the net effect 

of which is the lowering of the fluorescent signal Unless corrected for, this quenching phenomenon 

can result in falsely low cytosolic PAP activity levels following the assay of crude enzyme samples

3 1 1  MCA standard curve preparation in the absence of crude enzyme samples

Four MCA standard curves were prepared under standard assay conditions in the absence of enzyme 

(0 5mL of MCA standard dilution + lmL of 1 5M acetic acid)

T a b le  3 1 MCA standard curves

MCA concentration 
range (jiM)

Excitation slit 
width (nm)

Emission slit 
width (nm)

0-45 10 25

0 -6 10 5

0-14 10 10

0-0 5 10 15

The 0-45}jM and 0-6pM standard curves can be seen in Fig 3 1 whilst the 0-1 4)iM and 0-0 5|iM 

standard curves can be seen in Fig 3 2 These standard curves were used for the quantitation of 

enzymatically released MCA during the assay of cytosolic PAP activity in pooled post column 

fractions, including punfied cytosolic PAP activity

3 12  MCA standard curve preparation in the presence of crude enzyme samples 
(demonstration of the quenching effect on MCA fluorescence)

0-48}jM MCA standard curves, which incorporated either crude homogenate or crude cytosol (see 

section 2  2  1) were prepared under standard assay conditions These curves were both read at
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excitation and emission slit widths of 10 and 2 5nm respectively and, can be seen in Fig 3 3 where 

they are compared to the corresponding 0-45|iM MCA standard curve prepared above From this plot 

it can be seen that in the presence of crude homogenate, the MCA standard curve is quenched by up to 

17 2%, whilst, in the presence of crude cytosol, this figure is as high as 27 5%

3.2 Preparation of BSA standard curves

A BSA standard curve was prepared for each of the protein assays used For the Biuret protein assay, a 

O-lOmg/mL BSA standard curve was constructed whilst, for the more sensitive Enhanced BCA 

method, a 0-250}ig/mL BSA standard curve was constructed A 0-8fig/mL BSA standard curve was 

constructed for the Biorad protein assay It was noted that above a BSA concentration of 8 |ig/mL, the 

Biorad standard curve rapidly became non-linear Figs 3 4 and 3 5 illustrate the standard curves 

obtained for the two more sensitive assays, the Enhanced BCA method and the Biorad method, 

respectively
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Fig 3 1 MCA standard curves (Ex lOnm, Em 2 5 and 5nm)

MCA (nM)

Fig  3 2 MCA standard curves (Ex lOnm, Em 10 and 15nm)

MCA ()iM)
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°  No sample
•  Homogenate (17.2% quenching)
•  S2 (27.5% quenching)

Excitation slit width = lOnm 
Emission slit width = 2.5nm
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Fig 3 4 BSA standard curve (Enhanced BCA method)

BSA Concentration (jigtoL)

Fig 3 5 BSA standard curve (Biorad method)

BSA Concentration (jig/mL)
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3.3 Subcellular localisation of the pGlu-MCA hydrolysing PAP 
activity in bovine brain

The subcellular localisation of the pGlu-MCA hydrolysing PAP activity in bovine brain was 

investigated as described in sections 2.4.1 and 2.4.2. From Fig. 3.6 it can be seen that over 85% of the 

pGlu-MCA hydrolysing PAP activity was found to be located in the soluble fraction of bovine brain. A 

significantly smaller proportion of PAP activity (13%) was found to be associated with the particulate 

fraction. 1.9% of the total PAP activity initially observed in the crude homogenate remained 

unaccounted for following the centrifugation process.

When the particulate fraction was subjected to salt washes of up to 3M NaCl, little or no pGlu-MCA 

hydrolysing PAP activity was found to be released from the membranes.

Fig. 3.6 Subcellular Localisation of pGlu-MCA hydrolysing PAP

18

16

0

H S P

Subcellular Location

Homogenate (H) = 100% 

27,000g Supernatant (S) = 85.1% 
Pellet (P) = 13%
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3.4 Purification of PAP from the cytosolic fraction of bovine brain

3 4 1 Partial punfication of cytosolic PAP by anion-exchange chromatography

As outlined in section 2 5 2, a DEAE Sepharose Tast How anion-exchange column was equilibrated 

with 6-7 column volumes of running buffer Under these conditions, cytosolic PAP bound to the 

column whilst unbound contaminants were washed through the column with approximately 3 column 

volumes of running buffer Following the application of a linear NaCl gradient (0-0 75M), bound PAP 

activity eluted at approximately 0 3M NaCl, separating away from the bulk of protein and emerging 

between fractions 39-43 to give a final volume of 14mL when pooled The active recovery of applied 

PAP activity was approximately 85 8 % A wash m 3 column volumes of 2M NaCl was sufficient to 

regenerate the anion-exchanger The elution of cytosolic PAP from this column is illustrated in Fig 

37

3 4 2 Further purification of cytosolic PAP by gel-flltration chromatography

Following application of a 5mL aliquot of post anion-exchange cytosolic PAP to an equilibrated 

Sephacryl S-200 HR column, as outlined m section 2 5 3 2, the PAP activity eluted well after the void 

volume (VePAP = 147 8mL) and well away from the two mam protein peaks observed PAP activity 

eluted between fractions 23-29 to give a final volume of 19 6 mL The active recovery of applied PAP 

activity was approximately 17 7% The elution profile can be seen m Fig 3 8
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Fig. 3.7 Elution profile of cytosolic PAP from DEAE Sepharose
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Fig. 3.8 Elution profile of cytosolic PAP from Sephacryl S-200 HR
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3 4 3 Affinity chromatography of cytosolic PAP on Activated Thiol Sepharose 4B

An Activated Thiol Sepharose 4B column was equilibrated with approximately 15 column volumes of 

running buffer, as outlined in section 2 5 4 All of the pooled post gel-filtration PAP activity was 

subsequently applied to this column at a flow rate of 0 25mL/min Tlowrates in excess of this 

prevented a significant proportion of the enzyme activity from binding PAP bound to this column 

under the conditions of equilibration and was subsequently eluted by the inclusion of 5mM DTT in the 

running buffer, emerging between fractions 23-28 to give a final volume of 16 8mL when pooled The 

active recovery of applied PAP activity was approximately 54% Following elution, the column could 

be regenerated with a wash in 4 column volumes of distilled water followed by 4 column volumes of 

1 5mM 2,2-dithiopyndine

The release of 2-thiopyndone from the column was also monitored by absorbance spectrophotometry 

at 343nm Two distinct peaks of 2-thiopyndone were observed withm the elution profile The first peak 

(the smaller of the two peaks) emerged from the column prior to elution, and results from the binding 

of thiol enzymes to the column functional groups (step (A) in Fig 3 9) A second peak (significantly 

larger than the first) emerged immediately after elution commenced

The exact mechanism of affinity chromatography using Activated Thiol Sepharose 4B is briefly 

illustrated in Fig 3 9 For a more in-depth review of this technique, see Brocklehurst et al (1974) The 

elution profile obtained can be seen in Fig 3 10

Table 3 2 summarises the overall purification scheme
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F ig  3  9  Mechanism of operation for Activated Thiol Sepharose 4B

Activated Thiol 
(A ) Sepharose 4B

Thiol
enzyme

E-S H

S— S— E +

Covalently bound 
enzyme

2-Thiopyndone

(B)

Excess RSH 
‘S — S — E ------------------ ► 'A/w 'SH + E -S H

+  R— S— S— R

RSH = DTT, 2-mercaptoethanoI, cysteine 

'A /w ' = Glutathione spacer arm
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Fig. 3.10 Elution profile of cytosolic PAP from Activated Thiol Sepharose 4B
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Table 3 2 Purification o f pyroglutamyl ammopeptidase from bovine brain cytosol

Purification stage Total protein 
(mg)

Total activity 
(units*)

Specific activity 
(units/mg)

Purification
factor

Recovery
(%)

Homogenate 1993 6 103 2 0 052 1 100

27,000g Supernatant (S2) 538 47 82 77 0 154 2 96 80 2

DEAE Sepharose 122 45 70 99 0 58 11 15 6 8  8

Sephacryl S-200 HR 6  805 12 52 1 84 35 39 yl2  15

Activated Thiol Sepharose 4B 1 42 6  72 4 73 91 01 6  56

* 1 unit of enzyme activity can be defined as that amount of enzyme which releases 1 nanomole of MCA per minute at 37 C



3.5 Monitoring of other TRH-degrading enzymes during the 
purification of PAP from bovine brain cytosol

In addition to cytosolic PAP, at least two other soluble enzymes known to participate m the 

degradation of TRII, in vitro, were observed within bovine brain cytosol Using specific fluonmetnc 

substrates, prolyl endopeptidase (PC), an enzyme responsible for the deamidation of TRII (a "primary" 

TRH-degrading step) and dipeptidyl aminopeptidase (DAP), an enzyme which converts His-Pro-NII2, 

a TRH metabolite, to cyclo(His-Pro) (a ’'secondary" TRH-degrading step), were both detected in 

bovine brain cytosol (the reader is referred to section 1 3 for a more detailed review of these enzymes)

3 5 1 Identification of Gly-Pro-MCA and Lys-Ala-MCA hydrolysing DAP 
activity(s) in the soluble fraction of bovine brain

Whilst assaying for cytosolic PAP activity in the post gel-filtration fractions (section 2 5 3 2), specific 

fluonmetnc assays for DAP-II and DAP-IV enzyme activities were also performed on these fractions 

as outlined in sections 2 2 3 and 2 2 4 respectively Both substrates were hydrolysed by a high 

molecular mass enzyme activity(s) (190,600 daltons) which eluted near the void volume of the 

Sephacryl S-200 HR column Fractions compnsing the highest enzyme activity(s) were pooled for 

further analyses (below) The elution profile obtained can be seen in Fig 3 11

As described by Smyth and O'Cumn (1994a, 1994b), the pooled sample was assayed with both 

substrates m the presence and absence of 0 ImM bestatin in order to determine if sequential release of 

amino acids from the dipeptidyl methyl coumann substrates by cytosolic aminopeptidases was 

occumng Results indicated however, that levels of Gly-Pro-MCA andLys-Ala-MCA hydrolysing 

activities withm the sample were completely unaffected by the inclusion of bestatin in the assays It 

was also observed that the Gly-Pro-MCA substrate was hydrolysed approximately 2 4 tunes more 

rapidly than the Lys-Ala-MCA substrate

The pooled sample was also assayed with both substrates m the presence and absence of 0 ImM 

bacitracin and 0 ImM puromycin Results indicated that the hydrolysis of both substrates was very 

strongly inhibited by puromycin whilst the hydrolysis of Gly-Pro-MCA was mildly inhibited by 

bacitracin (approximately 2 0 % inhibition)
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3.5.2 Separation of TRH-degrading enzymes by gel-filtration chromatography

Using the microplate assay technique, the post gel-filtration fractions (from section 2.5.3.2) were 

assayed for cytosolic PAP and PE, as well as the high molecular mass Gly-Pro-MCA hydrolysing DAP 

activity, as outlined in sections 2.2.1, 2.2.2 and 2.2.4 respectively. Fig. 3.12 illustrates the separation of 

these enzyme activities on the basis of differences in their relative molecular masses, reported in 

section 3.7.1.

Fig. 3.12 Elution profile of cytosolic PAP, PE and DAP from Sephacryl S-200 HR 
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3.6 SDS PAGE - Assessing the efficiency of the cytosolic PAP 
purification scheme

3.6.1 Staining with Coomassie Brilliant Blue G
The efficiency of each purification step on the separation of PAP from other cytosolic proteins can be 

clearly seen from the photographic evidence presented in Fig. 3.13. The gel-filtration and affinity 

chromatography steps in particular, had a significant effect on the removal of contaminating protein. 

Due to the extremely low levels of protein in the purified PAP preparation, no protein bands were 

observed in these lanes (2 and 3) using this staining procedure.

Fig. 3.13 SDS PAGE study using Coomassie Brilliant Blue stain 

1 2 3 4 5  6 7 8  9 10

Ovalbumin (45,000)

BSA (66,000)

Carbonic anhydrase (29,000)

Lanes
1/10 - Molecular mass markers 
2/3 - Post affinity chromatography 
4/5 - Post gel-filtration 
6/7 - Post anion-exchange 
8/9 - Crude supernatant (S 2 )

B-galactosidase (116,000) 
Phosphorylase B (97,400)

3.6.2 Silver staining

Fig. 3.14a displays an SDS gel which has been electrophoresed, as outlined in section 2.6, with 

molecular mass markers and a sample taken from each stage of the purification scheme. Fig. 3.14b 

displays an SDS mini-gel which has been prepared and electrophoresed, as outlined in section 2.6, with 

a 3.6 fold concentrate of purified PAP (concentrated using PEG 6000). In both cases, protein bands 

were subsequently visualized by silver staining (section 2 .6 .3 ).
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F ig . 3 .1 4 a  SDS PAGE study using Silver stain 

1 2 3 4 5

Pyroglutamyl
ammopeptidase

(22,450)

Myosin (205,000)

8-galactosidase (116,000) 
Phosphorylase B (97,400)

BSA (66,000)

Ovalbumin (45,000)

Carbonic anhydrase (29,000)

Lanes
1 - Post affinity chromatography
2 - Post gel-filtration
3 - Post anion-exchange
4 - Crude supernatant (S2 )
5 - Molecular mass markers

F ig . 3 .1 4 b  SDS PAGE study using Silver stain

Pyroglutamyl
aminopeptidase

(22,450)
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3.7 Characterisation studies performed on cytosolic PAP

3.7 1 Relative molecular mass determination via gel-filtration chromatography

As outlined in section 2 7 1 I, a range of standard proteins of known relative molecular mass were 

eluted from a Sephacryl S-200 HR gel-filtration column, and a molecular mass calibration curve (Fig 

3 15) was subsequently constructed (Logi0 of molecular mass versus Ve/Vo) From this curve, the 

native molecular mass of cytosolic PAP was found to be approximately 23,700 daltons

Fig 3 15 Molecular mass calibration curve (gel-filtration)

Ve/Vo
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3 7 2 Linearity studies performed on the standard pGlu-MCA assay

3 7 21  Linearity with respect to time

Crude cytosol and purified PAP (stored in the presence and absence of 0 5%w/v BSA) were assayed 

for various times ranging from 0-90 minutes, as outlined in section 2 7 2 1 Tigs 3 16 and 3 17 show 

the "progress curvcs" (nanomoles of MCA released versus time) obtained for each sample type Trom 

these curvcs it can be seen that both the crudc cytosolic PAP and the purified PAP preparation, stored 

in the presence of 0 5%w/v BSA, react with pGlu-MCA in a perfectly linear fashion, over a 90 minute 

period, under standard assay conditions Conversely, the purified PAP preparation stored in the 

absence of 0 5%w/v BSA, reacted with the substrate in a linear manner for up to 10 minutes, after 

which the enzyme behaved in a completely non-linear fashion Maximum substrate hydrolysis was 

found to be 19 8 % for the crude cytosolic PAP and 1 75% for purified PAP (+0 5%w/v BSA) after 90 

minutes of reaction time

The Initial Rate, or steady-state reaction rate, for each sample type was obtained from the slope of the 

respective progress curve (in the case of the non-linear curve, the slope of the tangent to the linear 

portion of the curve) Crude cytosolic PAP demonstrated an Initial Rate of 0 09 nmoles/mm whilst 

purified cytosolic PAP (+/- BSA) demonstrated an Initial Rate of 0 0078 nmoles/min These rates can 

also be expressed as specific values (Initial Rate/mg protem) For the crude cytosolic PAP, this value 

was 0 16 nmoles/min/mg, whilst for purified PAP, it was found to be 12 0 nmoles/mm/mg

3 7 2 2 Linearity with respect to enzyme concentration

The effect of enzyme concentration on the linearity of the standard assay was investigated usmg crude 

cytosolic and purified PAP preparations, as outlined m section 2 7 2 2 Figs -3 18 and-3-19 (Initial Rate 

versus enzyme concentration) demonstrate the relatively linear rate of pGlu-MCA hydrolysis by both 

sample types with respect to PAP concentration

3.7 2 3 Effect of BSA concentration on the stability of a purified preparation of 
cytosolic PAP dunng assay

The effect of storing purified PAP in different concentrations of BSA (0-5mg/mL) was examined, as 

described in section 2 7 2 3 Fig 3 20 clearly illustrates the stabilising effect of BSA on purified PAP 

reactivity dunng the enzyme assay From this plot it can be seen that a minimum protein concentration 

of approximately lmg/mL was required for optimum pGlu-MCA hydrolysis dunng the standard assay 

A negative control was used to eliminate the possibility of any direct effect of BSA on the pGlu-MCA 

substrate
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Fig 3 16 Assay linearity w r t time when assaying with crude cytosol
(27,000g supernatant, S2)

Time (minutes)

Fig 3 17 Linearity w r t time when assaying purified PAP 
(post affinity chromatography)

T im e  (minutes)
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Fig 3 18 Assay linearity w r t enzyme concentration when assaying
crude cytosol (27,000g supernatant, S2)

PAP Concentration (umtsAnL)

\

Fig 3 19 Assay linearity w r t enzyme concentration when assaying 
purified PAP (post affinity chromatography)

PAP Concentration (umts/mL)
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Fig. 3.20 Effect of BSA concentration on the stability ofpurified PAP 
during the standard assay
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3 7 3 Storage of cytosolic PAP under different conditions

The effect of storing purified PAP at different temperatures over a four week period in the presence 

and absence of 0 5 %w/v BSA was investigated, as outlined in section 2 7 3 Fig 3 21 describes the 

subsequent effect of each storage temperature (room temperature, 4 C and -80 C) on the stability of 

purified PAP stored in the presence of 0 5%w/v BSA over this time period The enzyme displays 

significant stability at both 4 C and room temperature, retaining a good deal of its original activity after 

4 weeks of storage (65% and 81% respectively) Overall however, the rate of activity loss was slower 

at -80°C, particularly during the first 2 weeks, with the loss of 17% overall PAP activity after 4 weeks 

storage

Fig 3 22 describes the effect of each of the above temperatures on the stability of purified PAP stored 

over a period of 4 weeks in the absence of 0 5%w/v BSA In contrast to the above results, storage of 

the purified enzyme m the absence of BSA at either 4 C or room temperature for a period of 1 week 

results in a decrease of cytosolic PAP activity to 4% and 31% respectively No apparent decrease in 

cytosolic PAP activity was observed however, when samples were stored at -80°C over the 4 week 

period Indeed it would appear that cytosolic PAP activity increases over time when stored at this 

temperature



Fig. 3.21 Storage o f purified PAP at different temperatures (+0.5%w/v BSA)
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3 7 4 Effects of DTT and EDTA on cytosolic PAP activity

3 7 4 1 Effect of different DTT concentrations on cytosolic PAP activity

as outlined in section 2 7 4 1 the effcct of preincubating and assaying purified PAP in the presence of 

a range of different concentrations (O-lOmM) of DTT, a disulphide bond-reducing agent, was 

investigated From Fig 3 23 it can be seen that DTT enhances PAP activity, with stimulation of 

activity continuing up to 8mM DTT (up to 30% more activity than at the standard assay concentration 

of 2mM DTT) In the absence of D IT, cytosolic PAP activity was almost totally abolished but could 

be completely restored by the re-introduction of DTT (approximately 2mM for most studies) to the 

purified enzyme

3 7.4.2 Effect of different EDTA concentrations in the presence of 2mM DTT on 
cytosolic PAP activity

The effect of preincubatmg and assaying purified PAP in the presence of a range of different 

concentrations (O-lOmM) of EDTA combined with a single concentration of DTT (2mM) was 

investigated, as described m section 2 7 4 2 As can be seen from Fig 3 24 EDTA has a relatively 

negligible effect on purified PAP activity over this concentration range

3 7.5 Effect of pH on cytosolic PAP activity

Using a selection of five different buffers, the activity of cytosolic PAP over the pH range 4 5-10 5 was 

examined (section 2 7 5) The purified enzyme displays optimum activity between pH 8 5-9 0 with the 

maximum activity observed in glycine/NaOH buffer at pH 9 0 (approximately 1 5 fold more PAP 

activity than that observed in potassium phosphate buffer at pH 7 4) cytosolic PAP activity declined 

rapidly below pH 6  5 and above pH 9 0 It was also noted that cytosolic PAP activity varied as a 

function of the buffer "type" used, with different levels of PAP activity observed in different buffers at 

similar pH values Fig 3 25 describes the results of this study
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Fig. 3.23 Effect of DTT on purified PAP activity
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Fig. 3.24 Effect o f EDTA on purified PAP activity
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Fig. 3.25 Effect o f pH  on purified PAP activity
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3.7.6 Thermostability studies

As outlined in section 2 7 6  1, the effect of incubating purified PAP for various times at different 

temperatures was investigated m order to assess the thermal stability of the purified enzyme 

Incubating purified PAP for up to 45 minutes at 37 C, pnor to assay, had virtually no effect on enzyme 

activity, whilst at 40°C approximately 17% of activity was lost after the same period of incubation At 

50*C, the enzyme activity is reduced by 29% after just 15 minutes of incubation and 65% after 45 

minutes of incubation, whilst at 60 C 100% of the cytosolic PAP activity is lost after just 15 minutes of 

incubation The results obtained are highlighted in Fig 3 26

An investigation to examine the effect of varying the standard assay temperature was performed, as 

described in section 2 7 6  2, to determine if this assay proceeds more optimally at a temperature other 

than 37 C Purified PAP was assayed at various temperatures ranging from 30-60°C, as outlined m 

section 2 2 1 As seen in Fig 3 27, the highest PAP activity was observed after a 60 minute assay al 

45°C (1 07 fold more activity than at 37°C)
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Fig. 3.26 Effect o f preincubating purified PAP at different temperatures
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Fig 3.27 Effect o f  performing the cytosolic PAP assay at different temperatures
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3.7 7 Effect of metal ions on cytosolic PAP activity

In section 2 7 7, the effects of a range of monovalent and divalent metal ions on the activity of punfied 

PAP were investigated From Table 3 3 it can be seen that Hg2+, Cu2+, Zn2+ and Cd2+ were all found 

to be very strong inhibitors (over 80% inhibition) of cytosolic PAP activity at a concentration of ImM 

(during preincubation), whilst Ag2+and Li+ were found to be mildly inhibitory (11% and 9% 

inhibition respectively) Of the other metal ions tested (Mg2+, Na+, Fe2+, Fe3+ and Mn2+), negligible 

levels of cytosolic PAP inhibition were observed None of the metal ions tested stimulated cytosolic 

PAP activity above control levels, nor did any have a direct or indirect effect on MCA fluorescence

In addition, three of the most inhibitory heavy metal ions, Hg2+, Cu2+ and Zn2+, were re-tested and 

assayed in the presence of 2mM EDTA (excluded from the above study), to determine if the inclusion 

of a metal chelating agent in the enzyme assay would reverse the inhibitory effect of the metal ion The 

inhibitory effects of Hg2+ and Cu2+ were unaffected by the presence of EDTA In contrast to this result, 

the inhibitory effect of Zn2+ was almost completely reversed (from 96% inhibition in the absence of 

EDTA to 7% inhibition in the presence of EDTA)
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Table 3 3 Effect o f metal ions on the activity o f purified PAP

Metal Concentration (mM) ^Relative activity (%)

Li+ 1 92 +/- 1 3

Hg2+ 1 18 +/- 0 6 (22 +/- 2 3)*

Mg2+ 1 96 +/- 1 3

Na+ 1 99 +/- 5 7

Cu2+ 1 19 +/- 4 9 (11 +/- 0 9)*

Fe2+ 1 100 +/- 0 7

Fe3+ 1 95 +/- 4 1

Zn2+ 1 5 +/- 0 (93 +/- 2 7)*

Ca2+ 1 95 +/- 0 8

Mn2+ 1 98 +/- 2 9

Ag2+ 1 89 +/- 4 5

Cd2+ 1 27 +/- 0 7

The enzyme was dialysed against 5GmM potassium phosphate (pH 7 4) 
containing 2mM DTT and then preincubated at 37 C with the ImM 
metal ions (above) After 10 minutes, residual PAP activities were 
assayed m the presence (*) and absence of 2mM EDTA

^ Activities are the mean values of three individual determinations 
(+/- SD) and are expressed as a % of the control activity (100%)
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3.7.8 Inhibitor studies

3 7 81  Effects of various functional reagents on the activity of cytosolic PAP

The effects of a wide range of functional reagents on purified PAP activity were examined in section 

2 7 8  1 Compounds tested ranged from sulphydry 1-blocking agents and senne pro tease inhibitors to 

metal chelators and general, non-specific protease inhibitors

Sulphvdrvl-blocking agents had a very profound effect on cytosolic PAP activity (Table 3 4) 

Iodoacetate (0 ImM), 2-iodoacetamide (0 ImM), N-ethylmaleimide (1 OmM) and PHMB (1 OmM) 

completely inhibited the enzymes activity At lower concentrations, N-ethylmaleimide (0 ImM) and 

PHMB (0 ImM) were less effective (60% and 48% inhibition respectively) E-64 (0 25mM and 

0 05mM) had a significantly milder inhibitory effect (18% and 11% respectively)

Senne protease inhibitors, PMSF and benzamidine (Table 3 5), had negligible inhibitory effects on 

cytosolic PAP activity at the highest concentrations (ImM) tested

Of the metal chelating agents tested (8 -hydroxyquinoline, 1,10-phenanthroline, 1,7-phenanthrolme, 

4,7-phenanthrohne and EDTA), only 1,10-phenanthroline (ImM) had any inhibitory effect on cytosolic 

PAP activity (28% inhibition) (see Table 3 5)

Other inhibitors tested for inhibitory effects on punfied PAP activity include bacitracin and puromycin 

(microbial protease inhibitors), N-acetylimidazoIe, bestatin and 2-pyrrohdone (Table 3 5) Of these 

inhibitors, only 2-pyrrolidone (lOOmM and lOmM) had any significant inhibitory effect (95% 

inhibition and 67% inhibition respectively) Puromycin (lOmM and ImM) had a slightly stimulatory 

effect

With the exception of 8 -hydroxyqumoline, none of the functional reagents investigated had any effect 

on MCA fluorescence ImM 8 -hydroxyquinolme, under the conditions of assay, "quenched" MCA 

fluorescence by 8  5%
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Table 3 4 Effect o f sulphydryl-blocking reagents on the activity o f purified PAP

Inhibitor Concentration (mM) tRelative activity (%)

2 -Iodoacetamide 1 0 0
0  1 0

Iodoacetate 1 0 0
0  1 0

N-Etliylmaleimide 1 0 0
0  1 40 +/- 4 5

E-64 0 25 82 +/- 6  9
0 05 89 +/- 2 6

PHMB 1 0 5 +/- 4 8
0  1 52 +/- 13 9

The enzyme was dialysed against 50mM potassium phosphate (pH 7 4) 
containing 20|iM DTT and then preincubated at 37°C with the 
sulphydryl reagents indicated above After 10 minutes, residual PAP 
activities were assayed m the presence of 20|iM DTT

^ Activities are the mean values of three individual determinations 
(+/- SD) and are expressed as a % of the control activity (100%)
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Table 3 5 Effect o f inhibitors on the activity o f purified PAP

Inhibitor Concentration (mM) ^Relative activity (%)

2-Pyrrolidonea 1 0 0  0 5 + /-0
10  0 23 +/- 0

Bestatin3 1 0 99 +/- 1 8
0  1 106 +/- 1 5

8 -Hydroxyquinolinea 1 0 96 +/- 1 7

EDTAb 1 0 0 94 +/- 2 1
1 0 98 +/- 2 8

1, 10-Phenanthrohnea 1 0 72 +/- 3 1
0 1 97 +/- 1 7

1,7-Phenanthrolinea 1 0 94 +/- 1 5
0 1 94 +/- 1 5

4,7-Phenanthrolinea 1 0 94 +/- 1 5
0 1 100 +/- 3 7

Benzamidinea 1 0 102 +/- 2 3
0 1 103 +/- 1 7

PMSFa 1 0 95 +/- 4 1

0 1 9 8 + / - 2 9

N-Acetylimidazolea 1 0 100 +/- 1 7
0 1 104 +/- 2 3

Bacitracin3 1 0 94 +/- 1 5
0 1 101 +/- 4 5

Puromycin3 1 0 0 106 +/- 2 3
1 0 108 +/- 0 9

The enzyme was dialysed against 5QmM potassium phosphate (pH 7 4) 
containing DTT and EDTA (concentrations in a and b below) and then 
premcubated at 37°C with the inhibitors (above) After 10 minutes, 
residual PAP activities were assayed

a Assayed in the presence of 2mM DTT and 2mM EDTA 
b Assayed in the presence of 2mM DTT

t  Activities are the mean values of three individual determinations 
(+/- SD) and are expressed as a % of the control activity (100%)



,3 7.8 2 Demonstration of the reversible nature of 2-pyrrohdone inhibition

As can be seen from Table 3 5, bovine brain cytosolic PAP activity is almost completely inhibited by 

10 1M 2-pyrrolidone (95% inhibition) In an attempt to determine if this inhibition could be completely 

reversed, the enzyme was incubated with 0 1M 2-pyrrolidone and then dialysed for up to 7 hours with 

buffer changes after 1, 2 and 4 hours, as outlined in section 2 7 8 2 As seen m Fig 3 28, after 4 hours 

dialysis, 60% of the inhibited PAP activity was recovered After a further 3 hours dialysis, cytosolic 

PAP activity was completely restored to normal control levels

3 7 8 3 Use of a continuous, real-time assay to examine the nature of cytosolic 
PAP inhibition by 2-pyrrohdone and 1,10-phenanthrohne

As outlined m section 2 7 8 3, a continuous, real-time fluonmetnc assay, using pGlu-MCA as the 

substrate, was devised in an attempt to examine the rapidity with which certain inhibitors of cytosolic 

PAP act on the enzyme Fig 3 29 desenbes the continuous assay of punfied cytosolic PAP, over a 30 

minute penod, in the presence of lOmM and 0 5mM 2-pyrrolidone Suitable positive and negative 

controls can also be seen on this plot Fig 3 30 desenbes the continuous assay of punfied cytosolic 

PAP, over a 30 mmute penod, in the presence of ImM and 0 2mM 1,10-phenanthrohne with suitable 

positive and negative controls also included In both cases, the enzyme hydrolysed the substrate in a

perfectly linear fashion, both in the absence and presence of inhibitor, regardless of inhibitor
I
concentration
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Fig. 3.28 Reversibility o f PAP inhibition by 2-pyrrolidone
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Fig. 3.29 PAP inhibition by 2-Pyrrolidone (real-time)

Time (seconds)

*Enzyme activities in Fluorescence Units 
Excitation slit width = lOnm 
Emission slit width = lOnm

Positive control (substrate + enzyme + buffer)
  0.5mM 2-Pyrrolidone
  lOmM 2-Pyrrolidone

Negative control (substrate + buffer)
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Fig. 3.30 PAP inhibition by 1,10-Phenanthroline (real-time)

Time (seconds)

* Enzyme activities in Fluorescence Units 
Excitation slit width = lOnm 
Emission slit width = lOnm

Positive control (substrate + enzyme + buffer)
  0.2mM 1,10-Phenanthroline

ImM 1,10-Phenanthroline 
Negative control (substrate + buffer)
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The reader is directed to the short appendix at the end of this report for an overview of the equations 

, describing the kinetic models used in this study

3 7 9 1  Validation of the cytosolic PAP assay using pGlu-His-Pro-MCA as a 
substrate

i
j As outlined in section 2 7 9 2, a modification of the standard assay outlined in section 2 2 1 was used 

when assaying cytosolic PAP activity with the fluonmetnc TRH analog, pGlu-His-Pro-MCA (required 

[for Km determination below) This assay, descnbed in Fig 2 2, focuses upon the release of MCA from 

the His-Pro-MCA fragment generated by the action of cytosolic PAP on the substrate The rapid and 

complete release of MCA from all of the His-Pro-MCA produced during the assay therefore, is 

essenual if the assay is to have a sound quantitative basis To facilitate MCA release after termination 

of the assay, heating of samples at 80 C to increase the cyclization rate of His-Pro-MCA was employed 

(Prasad et a l , 1983, Prasad and Jayaraman, 1986, Prasad, 1987) Fig 3 31 descnbes the effect of 

heating crude (S2) cytosolic PAP samples, stopped with 1 5M acetic acid after a 1 hour assay with
i
pGlu-His-Pro-MCA, for up to 25 minutes at 80 C in order to examine the rate of MCA release From 

|this graph it can be seen that MCA release is virtually complete after 25 minutes

3 7 9 Kinetic studies

Fig 3 31 The cychsation o f  His-Pro-MCA at 80°C

Time at 80°C (minutes)
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3.7 9 2 Km determinations for various fluorimetric substrates

The hydrolysis of the synthetic pyroglutamyl substrates pGlu-MCA, pGlu-His-Pro-MCA (TRH 

analog) and pGlu-BNA by cytosolic PAP, as outlined in sections 2 7 9 1 and 2 7 9 2, were found to 

obey Michaelis-Menten kinetics (Michaelis and Mcntcn, 1913) The data obtained for each of the 

jsubstrates was plotted using five different kinetic models, all of which are based upon the steadv-state 

assumption made by the Michaelis-Menten model These kinetic models include, (1) Michaelis- 

Menten, (2) Lineweaver-Burk, (3) Eadie-Hofstee, (4) Hanes-Woolf and (5) Direct Linear plots The 

Lineweaver-Burk, Eadie-Hofstee and Hanes-Woolf plots are all based upon reciprocal transformations
i
of the Michaelis-Menten equation (Lineweaver and Burk, 1934, Hofstee et a l , 1959, Hanes, 1932),
t
whilst the Direct Linear plot (Eisenthal and Comish-Bowden, 1974), widely regarded as the most 

accurate kinetic model for the evaluation of kinetic constants, is a graphical method which does not 

rely upon any such transformation

From each plot, the Michaelis-Menten constant or Km of punfied PAP for the substrate was evaluated 

It was observed that for each of the substrates, the Km obtained from all five plots was almost 

identical Figs 3 32-35 and Figs 3 36-39 display the first four of the above plots for the substrates 

pGlu-MCA and pGlu-His-Pro-MCA respectively, whilst Table 3 6  displays the Km values obtained via
i
the Direct Linear plot method

Table 3 6 Hydrolysis o f fluorimetric and chromogemc substrates by purified PAP

I

Substrate Hydrolysis of 
substrate

Km(MM)

pGlu-MCA + 15 36

pGlu-His-Pro-MCA + 13 64

pGlu-BNA + 20 76

pGIu-pNA + N D

Km values were determined by the Direct Linear plot 
method of Eisenthal and Comish-Bowden (1974)

+ Indicates hydrolysis N D  Not determined
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Fig 3 33 Determination of cytosolic PAP Km for pGlu-MC A 
(Lineweaver-Burk)
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Fig 3 34 Determination of cytosolic PAP Kmfor pGlu-MCA
(Eadie-Hofstee)

Rate (nmolesAmnAnL)

F ig  3 35 Determination o f cytosolic PAP Km fo r  pGlu-M CA  

(Hanes-Woolf)

Substrate (mM)
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Fig 3 36 Determination of cytosolic PAP Km for pGlu-His-Pro-MCA
(Michaelis-Menten)
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Fig 3 37  Determination o f  cytosolic PAP Kmfo r  pGlu-His-Pro-MCA  

(Lineweaver-Burk)

1/Substrate (1/mM)

103



Ra
te 

(n
m

ol
s/m

m
/m

L)
/S

ub
str

at
e 

(m
M

)

Fig 3 38 Determination of cytosolic PAP Km for pGlu-His-Pro-MCA
(Eadie-Hofstee)
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Fig 3 39 Determination of cytosolic PAP Km for pGlu-His-Pro-MCA 
(Hanes-Woolf)

Substrate (mM)
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, 3 7 9.3 K| determinations for various pyroglutamyl peptides
The inhibitor Constant or of purified PAP for a range of pyroglutamyl peptides was investigated 

using pGlu-MCA as a substrate (section 2 7 9 3) The data obtained for each of the peptides was 

plotted using three of the aforemenuoned kinetic models, namely the (1) Lmeweaver-Burk, (2) Eadie- 

Hofstee and (3) Hanes-Woolf models figs 3 40-42 display the Lmeweaver-Burk plots obtained for 

purified cytosolic PAP assayed in the absence and presence of some of the peptides tested, whilst 

Table 3 7 lists the K, values obtained for all of the peptides tested using all three of the above models 

1 All three kinetic models generated a similar for any given peptide In addition, all of the peptides 

tested were found to be competitive inhibitors The physiological peptides LHRH, TRH, acid TRH, 

bombesin and pGlu-His-Gly (anorexogenic peptide) all proved to be very effective competitive 

inhibitors of the punfied enzyme Conversely, the synthetic peptides pGlu-Ala, pGlu-His and, in 

particular, pGlu-Val and pGlu-Pro-NH2 were far less effective as competitive inhibitors of the enzyme

Table 3 7 Cytosolic PAP Kt values for a range o f pyroglutamyl peptides

Peptide Inhibition type l Ki ftiM) 2 K!(hM) 3 Ki (mM)

LHRH Competitive 20  6 24 2 25 1

Acid TRH Competitive 23 1 17 8 18 2

TRH Competitive 24 9 23 9 25 4

pGlu-His-Gly Competitive 58 8 38 7 42 8

Bombesin Competitive 642 69 8 73 4

pGlu-Ala Competitive 1018 85 3 94 5

pGlu-His Competitive 255 4 277 5 296 7

pGlu-Val Competitive 820 8 643 5 895 3

pGlu-Pro-NH2 Competitive 827 6 898 8 977 3

1 Lmeweaver-Burk method 
^ Hanes-Woolf method 

I ^Eadie-Hofstee methodf
i
i

i
i

i

ii
i
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Fig 3 40 Determination of cytosolic PAP Kt for TRH

1/Substrate (1/mM)

Fig 3 41 Determination of cytosolic PAP Kv for acid TRH

1/Substrate (1/mM)
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Fig 3 42 Determination o f cytosolic PAP K J o r  pGlu-Ala and LH-RH

1/Substrate (1/mM)
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3 7.10 The substrate specificity of cytosolic PAP as examined by HPLC

Section 2 7 10 1 describes the incubation of post amon-exchange PAP with a range of synthetic 

pyroglutamyl substrates Enzyme/substrate incubations were allowed to proceed for up to 40 hours in 

parallel with negative control incubations in which enzyme was excluded until after the 40 hour 

incubation period The peptidase inhibitors, bestatin and Z-pro-prolinal, were also included in all 

incubations Samples and negative controls were subsequently analysed using a C -8  (octyl) reversed 

phase HPLC column as described in section 2 7 10 2

Scanning spectrophotometry using a Beckman photo-diode array detector (Diode Array Detector 

Module 168) revealed a single absorbance maxima at approximately 207nm for pyroglutamic acid 

Due to its relatively hydrophilic properties, pyroglutamic acid elutes quite rapidly (6  3 minutes) from 

the reversed phase C -8  column, well away from virtually all of the other substrates and metabolites 

under investigation in this study

3 7 10 1 The degradation of TRH and acid TRH by cytosolic PAP
Following incubation of post amon-exchange PAP with TRH (pGlu-His-Pro-NH2), subsequent HPLC 

analysis of the enzyme digest revealed two mam cleavage products, namely, pyroglutamic acid and 

cyclo(His-Pro) (see Figs 3 43a/b) Similarly, incubation of cytosolic PAP with acid TRH (pGIu-His- 

Pro), a primary TRH metabolite, generated pyroglutamic acid and His-Pro as the main cleavage 

products (see Figs 3 44a/b) Both substrates were hydrolysed almost completely over the 40 hour 

incubation Both chromatograms are overlayed with the corresponding negative control chromatogram 

From the control chromatograms, one can observe the presence of small amounts of the cleavage 

products pyroglutamic acid, His-Pro and cyclo(His-Pro)
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Fig. 3.43a Degradation o f TRH by cytosolic PAP (HPLC analysis)
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Fig. 3.44 a Degradation of acid TRH by cytosolic PAP (HPLC analysis)
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Table 3 8 highlights the complete range of synthetic pyroglutamyl substrates which were used to 

examine the substrate specificity of cytosolic PAP, as outlined in section 2 7 10 All of the substrates 

investigated, with the exception of LHRH (pGlu-His-Trp- ) and eledoisin (pGlu-Pro-Ser- ) were 

hydrolysed at this bond by post anion-cxchange PAP

3 7 10 2 Ability of cytosolic PAP to degrade various pyroglutamyl substrates

T able 3 8 Hydrolysis o f pyroglutamyl peptides by purified PAP

Substrate Position of 
cleavage

Substrate concentration 
during assay (mM)

Hydrolysis of 
substrate

1 TRH pGlu-His 0 55 +

2 Acid TRH pGlu-His 0 55 +

3 pGlu-His-Gly pGlu-His 0 55 +
4 pGlu-His-Gly-NH2 pGlu-His 0 55 +

5 pGlu-Ala pGIu-AIa 0 55 +

6  pGlu-His pGlu-His 0 55 +

7 pGlu-Val pGlu-Val 0 55 +

8 LH-RH - 0  28 -

9 Neurotensin pGlu-Leu 016 +

10 Bombesin pGlu-Gln 0 1 +

11 Eledoisin - 013 -

+ Indicates hydrolysis - Indicates no hydrolysis
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4. DISCUSSION



PREFACE

Cytosolic pyroglutamyl ammopeptidase (EC 3 4 19 3) can be classified as an omega peptidase 

(McDonald and Barrett, 1986) which hydrolytically removes the pyroglutamyl residue from the amino 

terminus of pGIu-peptides and proteins (Fig 1 1) This enzyme (referred to as PAP-I in animals) has 

been shown to display a specificity for L-pGlu-L-ammo acid optical isomers (Uliana and Doolittle, 

1969) Several studies have previously described the purification and charactcnsation of soluble PAP 

activities from different mammalian tissues including guinea-pig bram (Browne and O’Cuinn, 1983a) 

and human cerebral cortex, kidney and skeletal muscle (Lauffart et al 1989, Mantle et a l , 1990, 

1991) However, despite earlier work by Wilk et al (1985) and Mudge and Fellows (1973) detailing 

the partial purification of a soluble PAP activity from bovine whole brain and pituitary respectively, 

with a brief examination of some of the enzymes main properties, the full purification and 

characterisation of this soluble enzyme activity from bovine bram has never been reported This 

research proiect subsequently desenbes the complete purification of a PAP activity from the soluble 

fraction of bovine whole bram. A detailed examination of the biochemical properties of the purified 

enzyme is also presented.

The ensuing sections will endeavour to examine some of the more mterestmg aspects of this work in 

closer detail and will include a companson of the current findings with those previously reported for 

this enzyme by other workers
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4.1 MCA standard curve preparation: The effect of "quenching"

As outlined in section 2 2 1 , the specific fluonmetnc substrate, pGlu-MCA, was used to assay for 

cytosolic PAP activity in bovine brain, the enzymatic release of MCA subsequently being monitored 

fluonmetncaJly at excitation and emission wavelengths of 370 and 440nm respectively MCA release 

could then be quantitated by using a standard curve prepared with the latter compound under 

corresponding assay conditions and read at the corresponding slit widths Tor quantitative purposes, 

one set of MCA standard curves was prepared in the absence of enzyme, whilst one set incorporated 

crude enzyme samples (l e a standard curve incorporating crude homogenate and a standard curve 

incorporating crude cytosol) m order to correct for the fluonmetnc "quenching" effect observed with 

crude samples (section 3 1) Quenching, unless corrected for, can result in falsely low measurements of 

enzyme activity in crude enzyme samples, and results from the absorbance of electromagnetic 

radiation, at both the excitation and emission wavelengths, by protems and other contaminants present 

in crude samples

Fig 3 3 compares an MCA standard curve prepared normally (i e m the absence of crude sample) to 

MCA standard curves prepared under identical conditions m the presence of crude homogenate and 

crude cytosol respectively From this plot it can be seen that in the presence of crude homogenate the 

MCA standard curve is quenched by up to 17 2%, whilst in the presence of crude cytosol, this figure is 

as high as 27 5% The apparently lower degree of quenchmg observed with crude homogenate (17 2%) 

can be explained thus, Pnor to reading the fluorescence of any given MCA standard (or sample) 

prepared with crude homogenate, this standard must be spun down at 1 0 ,0 0 0 rpm for 10  mmutes in a 

microfuge to remove particulate matenal present in the homogenate The fluorescence of the 

supernatant is then determined as previously desenbed in sections 2 2 1 and 3 1 2 If one can assume 

that MCA is excluded from the pellet, then this compound will be present at a slightly higher 

concentration in the supernatant than it would be in a corresponding MCA standard simply prepared 

with crude cytosol Consequently, an MCA standard prepared with crude homogenate will give a 

slightly higher fluorescence reading than the same MCA standard prepared with crude cytosol, and 

subsequently, an apparently lower degree of quenching

Overall therefore, these results would appear to justify the decision to prepare separate MCA standard 

curves for crude samples derived from this tissue when determining enzyme activity within these 

samples This quenching phenomenon was not observed with any of the partially punfied (post 

column) enzyme samples

4.2 Subcellular localisation studies

High speed centnfugation and salt washing procedures, as outlined in section 2 4 were employed m 

order to identify the subcellular location of the pGlu-MCA hydrolysing PAP activity observed in
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bovine brain homogenates From Fig 3 6  it can be seen that over 85% of the pGlu-MCA hydrolysing 

PAP activity was found to be located in the soluble fraction of bovine brain, a significantly smaller 

proportion of this enzyme activity (13%) was found to be associated with the particulate fraction, 

whilst 1 9% of the total PAP activity initially observed in the crude homogenate remained unaccounted 

for following the centrifugation process (Fig 3 6 ) The possibility that weak, non-specific interacuons 

between the enzyme molecule and membrane components might be responsible for the observation of 

this enzyme activity within the particulate fraction was also investigated, as outlined in section 2 4 2 

Salt washing of the particulate fraction with up to 3M NaCl had no effect on the release of pGlu-MCA 

hydrolysing PAP activity from the membranes Based on previous findings that the high molecular 

mass, membrane-bound PAP activity (PAP-II) observed in mammalian brain membrane preparations 

displays an extremely high degree of substrate specificity restricted to TRH or closely related peptides 

(O'Connor and O’Cuinn, 1984, O'Leary and O’Connor, 1995a), it was concluded that the pGlu-MCA 

hydrolysing PAP activity observed in the particulate fraction was, most likely, soluble PAP activity 

which had become "occluded" within vesicles that are formed under the vigorous homogenisation 

conditions Van Amsterdam et al (1983) have previously claimed that protems loosely adsorbed to 

membrane structures can be mistaken for membrane-bound activities, due to insufficient washing of 

the membranes These researchers have also suggested the use of an osmotic shock technique which 

entails washmg the membranes in distilled water m order to lyse entrapped vesicles formed dunng the 

homogenisation procedure which may be harbouring occluded soluble enzyme activity This technique 

was not performed m this instance

These results are consistent with previous findings that the pGlu-MCA hydrolysing PAP activity 

observed m different mammalian tissues typically has a cytosolic location (Browne and O'Cuinn, 

1983a, Mantle et a l , 1990,1991, Lauffart et a l , 1989, O'Connor and O’Cuinn, 1984) Indeed, Mudge 

and Fellows (1973) have previously demonstrated that a pGlu-Ala hydrolysing PAP activity observed 

m bovine pituitary homogenates could be completely localised to the soluble fraction following an 

ultracentnfugation procedure (100,000g) Noteworthy also is the finding that bacterial PAP activities, 

with the exception of the K cloacae PAP (Kwiatkowska et a l , 1974), have all been shown to be 

soluble proteins located in the cell cytosol (Awade et a l , 1992a, 1992b, Tsuru et a l , 1978, Cleuziat et 

a l , 1992a) More recently, the characterisation of a number of bacterial PAP genes has revealed that 

these enzymes lack a post-translational processed signal sequence, a finding consistent with a cytosolic 

location (Gonzales et a l , 1992, Awade et a l , 1992b)

4.3 Purification of PAP activity from bovine brain cytosol 

4 3 1  Column chromatography

Amon-exchange chromatography using DEAE Sepharose Fast Flow proved to be an ideal first step in 

the purification of PAP from bovine brain cytosol Ease of use, high loading capacity, relatively good 

separation of cytosolic PAP activity away from the bulk of contaminating protems (Fig 3 7) and

114



excellent active recovery (85 8 % of total applied activity) characterised the use of this technique I he 

majority of cytosolic components did not bind to the exchanger matrix under running buffer 

conditions, described in section 2  5 2 , and simply ran through the column

Gel-filtration chromatography of post anion-exchange PAP activity on a Sephacryl S-200 HR column 

enabled excellent separation of PAP from other cytosolic components to be achieved (Fig 3 8 ) 

Unfortunately, the recovery of active enzyme from this column was quite poor (17 7 % of total applied 

activity) In an earlier attempt to partially purify cytosolic PAP activity from bovine pituitary using a 

Sephadex G-200 gel-filtration column, Mudge and Tellows (1973) have reported a similarly low active 

recovery (21 8 % of total applied activity), whilst Wilk et al (1985) also report such a finding 

following the partial purification of cytosolic PAP activity, by gel-filtration, from bovine whole brain 

The exact cause(s) of such poor active recovery have yet to be definitively identified, although 

proteolytic hydrolysis of the enzyme, the instability of the enzyme m dilute solution and/or the 

separation of the enzyme from low molecular mass modulatory peptides (stabilising or inhibiting) 

remain distinct possibilities Initial attempts to partially purify soluble PAP activities from pigeon and 

rabbit liver (Szewczuk and Kwiatkowska, 1970), rat liver (Armentrout, 1969) and bacteria (Doolittle 

and Armentrout, 1968, Armentrout and Doolittle, 1969) clearly highlight the extreme instability of this 

enzyme in dilute solution The recent findings of Ohmon et al (1994) however, lend credence to the 

latter possibility These researchers have demonstrated the existence of endogenous low molecular 

mass peptides m bovine brain cytosol which display specific inhibitory activity towards prolyl 

endopeptidase isolated from this source and from bacteria

Affinity chromatography of post gel-filtration PAP activity exploited the sulphydryl nature of this

 enzyme and subsequently proved to be an efficient final "clean-up" step Using an Activated Thiol

Sepharose 4B column, PAP activity could be specifically bound to the column through the formation 

of disulphide linkages between the matrix functional groups and intact thiol groups located withm the 

active site of the enzyme (Figs 3 9 and 3 10) The recovery of cytosolic PAP activity from this column 

was moderately good (54% of total applied activity)

The overall recovery o f cytosolic PAP activity was approximately 6 6% This result can be attributed 

to the very poor recovery o f  active enzyme from the gel-filtration step As a consequence o f  this, a 

purification factor o f  91 01 (lower than initially expected) was obtained

4 3 2 SDS PAGE analysis

The photographic evidence presented in Figs 3 13 and 3 1 4 ^  demonstrate that the gel-filtration and 

affinity chromatography steps in particular, have a very significant effect on the separation of soluble 

PAP activity away from other cytosolic components Noteworthy also is the difference in band staining 

efficiency observed when using both Coomassie Brilliant Blue G and silver stam For example, the 

post gel-filtration PAP in lanes 4 and 5 of Fig 3 13, as visualised by Coomassie staining appears to be

115



present as a single band Subsequent staining of either of these lanes with silver stain however reveals 

the presence of several minor bands (Fig 3 14a, Lane 2)

The silver stained protein band corresponding to purified cvtosolic PAP activity is displayed m Lane 1 

of Fig 3 14a Towards the top of tins lane, two additional bands can also be seen In order to 

demonstrate the "artefactual" nature of these two bands, a 3 6  fold concentrate of the purified enzyme 

(prepared by reverse osmosis using PCG 6000) was re-analysed by SDS PAGE to yield the result 

shown in Fig 3 14b (Lane 1) One clearly notes the absence of these bands Indeed, Bauer (1994) has 

suggested that artefactual bands can arise during silver staining when 2 -mercaptoethanol is used in the 

sample buffer (as in this case) From Fig 3 14b it would also appear that the enzyme has been purified 

to homogeneity However, at least two additional faint minor bands were observed, in the vicinity of 

the PAP band, which subsequently faded following reduction of the gel to remove background staining 

(Table 2 3) Consequently, one can only conclude that the enzyme has apparently been purified to near 

homogeneity using tins punfication scheme

From these gels, the purified (and partially punfied) cytosolic PAP can be seen to migrate slightly 

further than the carbonic anhydrase marker (29,000 daltons) to a position representing a relative 

molecular mass of approximately 22,450 daltons (non-native, denaturing conditions)

4 3 3 Monitoring of other TRH-inactivating enzyme activities throughout the 
PAP purification scheme

In addition to PAP, two other soluble enzyme activities known to participate in TRH inactivation, in 

vitro, were observed m bovine bram cytosol Using specific fluonmetnc substrates (see section 2 2) 

dipeptidyl aminopeptidase (DAP) and prolyl endopepudase (PE) were both detected in bovine brain 

cytosol (the reader is directed to section 1 3 5 for a more detailed review of these enzyme activities in 

regard to TRH catabolism) Sephacryl S-200 HR gel-filtration chromatography was sufficient to 

resolve soluble PAP activity from both of these enzymes (Fig 3 12)

DAP activity, detected using the dipeptidyl substrates Lys-Ala-MCA and Gly-Pro-MCA, appears to 

correspond to a single, high molecular mass enzyme (Fig 3 11 - 190,600 daltons) displaying a 

sensitivity to puromycin In addition, this enzyme was seen to hydrolyse the Gly-Pro-MCA substrate 

approximately 2 4 times more rapidly than the Lys-Ala-MCA substrate, indicative of a preference for 

N-terminal dipeptide moieties containing a prohne residue The puromycin-sensitivity of this enzyme 

suggests that it could possibly be classified as a dipeptidyl aminopeptidase II (EC 3 4 14 2) (McDonald 

and Barrett, 1986), an activity normally associated with lysosomes McDonald et al (1968a, 1968b) 

however, have previously described the punfication and charactensation of a puromycin-sensitive 

lysosomal DAP activity from bovine pituitary (dipeptidyl arylamidase II) which preferentially 

hydrolyses Lys-Ala-BNA at pH 5 5 (approximately 23 tunes more rapidly than Gly-Pro-BNA) and 

which exhibits a molecular mass of 130,000 daltons The reported properties of this enzyme therefore 

appear to be quite different from those of the DAP activity observed here Moreover, the DAP activity
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descnbed in this study is very similar to post proline dipeptidyl ammopeptidase (PPDA) described by 

Browne and O’Cuinn (1983a) in guinea-pig brain Guinea-pig brain PPDA, like bovine brain DAP, 

exhibits a cytosolic location, high molecular mass (2 0 0 ,0 0 0  daltons) and sensitivity to puromycin as 

well as an ability to hydrolyse Gly-Pro-MCA at neutral pH These observations suggest therefore, that 

the cytosolic DAP activity of this study should probably be classified as a PPDA which displays 

properties distinct from those one would normally expect for a classical DAP-II

PE, detected using the substrate Z-Gly-Pro-MCA, was shown to exhibit a molecular mass of 74,500 

daltons which is consistent with previous estimates of 75,000 (Hersh, 1981), and 76,000 daltons 

(Yoshimoto et a l , 1983, Knisatschek and Bauer, 1979) observed for this enzyme from the soluble 

fraction of bovine brain tissue

4.4 Characterisation studies 

4 41  Molecular mass determination

The relative molecular mass of cytosolic PAP as determined by gel-filtration chromatography under 

native, non-denatunng conditions (section 2 7 11) was found to be approximately 23,700 daltons This 

molecular mass estimate compares well with the value of 22,450 daltons estimated for this enzyme via 

SDS PAGE under non-native, denaturing conditions (section 2 7 1 2 )  On the basis of the relatively 

small size of the native enzyme and the similarity of these estimates under both native and non-native 

conditions, this enzyme would appear to exist as a monomer Several workers have previously reported 

that PAP activity observed in the soluble fraction of other mammalian tissues exhibits a similar native 

molecular mass Mantle et al (1990, 1991) have reported a native molecular mass of 22,000 daltons 

for soluble PAP activity isolated from human kidney and skeletal muscle Estimates of 23,000 and 

24,000 daltons for the native enzyme from human brain (Lauffart et a l , 1989) and guinea-pig brain 

(Browne and O’Cuinn, 1983a) respectively have also been reported

4 4 2 Assay linearity with respect to assay time and enzyme concentration
The importance of assay linearity was addressed in this study (see section 2 7 2) For an enzyme assay 

to be used in a reproducible and quantitative manner, the rate of substrate hydrolysis should be linear 

with respect to both assay time and enzvme concentration Only under such circumstances can one 

conclude that an enzyme assay proceeds in an optimal steady-state fashion, free from the influence of 

limiting factors such as substrate depletion, enzyme denaturation and product inhibition, all of which 

can affect the assay outcome The results of this study, as outlined m section 3 7 2, clearly demonstrate 

that dunng the assay of soluble PAP activity m crude cytosol and in punfied PAP preparations 

containing 0 5%w/v BSA, using the substrate pGlu-MCA as outlined in section 2 2 1, substrate 

hydrolysis proceeds linearly with respect to both assay time and enzyme concentration (Figs 3 16 - 

3 19) Interestingly, when punfied PAP was assayed under standard assay conditions in the absence of 

0 5%w/v BSA, the assay was seen to proceed linearly for up to 10 minutes after which the enzyme
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behaved in a completely non-linear fashion (Fig 3 17) From this latter result it would appear that BSA 

has a stabilising effect on purified cytosolic PAP activity in dilute solution Moreover, further 

experimentation revealed that a minimum protein concentration of lmg/ml (0 l%w/v BSA) was 

necessary to maintain the stability of the punfied enzyme dunng the standard assay (Fig 3 20)

The use of BSA to stabilise dilute enzyme solutions dunng assay and storage (see below) is widely 

practised, though not well understood BSA is a very hydrophobic protein (Bigelow, 1967), therefore 

hydrophobic interactions with exposed hydrophobic groups may possibly lead to increased stability 

Browne and O’Cuinn (1983a) have previously used BSA (0 5%w/v) to store soluble PAP punfied from 

guinea-pig brain, whilst Bauer (1994) reports that dunng the radiochemical assay of PAP-II isolated 

from rat and pig bram, 2 %w/v BSA is incorporated into the assay to minimise adsorption of the 

punfied enzyme to glass Noteworthy also is a recent report by Kita et al (1989) which indicates that 

following the isolation of Fok I restriction endonuclease overproduced m an E coh system, the 

quantitative and reproducible assay of the punfied enzyme depended on the inclusion of 0  0 1 %w/v 

BSA, a requirement which apparently pertains to the punfied soluble PAP activity of this study

4 4 3 Storage stability of purified cytosolic PAP

As desenbed in section 3 7 3, the inclusion of 0 5%w/v BSA in punfied PAP preparations significantly 

improves the storage stability of this enzyme, with 65% and 81% of the onginal activity still present 

after 4 weeks storage at 4 C and room temperature respectively In the absence of BSA, the enzyme 

activity at these temperatures decreased to 4% and 31% of the onginal activity respectively after only 1 

week of storage, indicative o f enzyme instability in dilute solution It is noted that earlier attempts to 

partially punfy soluble PAP activities from mammalian and avian liver (Armentrout, 1969, Szewczuk 

and Kwiatkowska, 1970) and bactena (Doolittle and Armentrout, 1968, Armentrout and Doolittle,

1969) have focused on the extreme instability of this enzyme m dilute solution Mudge and Fellows 

(1973) have also reported the destabilisation of partially purified PAP from bovine pituitary cytosol, 

stored for more than 24 hours at 4 C in potassium phosphate buffer (pH 7 3) containing ImM EDTA 

and 30mM 2-mercaptoethanol, with less than 20% of the onginal activity remaining after 6  days 

storage Interestingly, many of these researchers have demonstrated the ability of 2-pyrrolidone, a 

reversible non-competitive inhibitor of soluble PAP activity, to stabilise purified preparations of this 

enzyme dunng storage at 4 C

Freezing of punfied PAP activity at >80 C in either the absence or presence of BSA was also seen to 

prolong the storage life of the enzyme In addition, it was noted that punfied enzyme acuvity stored at 

-80‘C in the absence of BSA appeared to increase over the four week storage penod This trend 

however, can probably be attributed to the lower reproducibility (between consecutive assays) 

observed when assaying punfied samples which contain no BSA (i e [protein] < 10}ig/mL)
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4 4 4 Effect of DTT and EDTA
As reported in section 3 7 4 1, the expression of soluble PAP activity purified from bovine brain was 

found to be dependent on the presence of a disulphidc bond-reducing agent such as DTT, suggesting 

the participation of active site thiol groups in enzyme activity (Fig 3 23) Indeed, numerous reports 

have cited the sulphydryl-dependent nature of cytosolic PAP from various sources including bovine 

pituitary (Mudge and Tellows, 1973), guinea-pig brain (Browne and O'Cuinn, 1983a), human brain 

(Lauffart et a l , 1989) and rat adenohypophysis (Bauer and Kleinkauf, 1980)

EDTA was included in all purification and assay buffers at a concentration of 2mM The reasons for 

this were threefold (1) The inhibition of metalloproteases which could potentially reduce the active 

recovery of cytosolic PAP during purification, (2) to chelate free metal cations which can speed up the 

oxidative breakdown of DTT by facilitating the formation of free radicals and (3) to inhibit PAP-II, a 

particulate form of pyroglutamyl aminopeptidase which is reportedly inhibited by metal chelating 

agents (Browne et a l , 1981, O'Connor and O'Cuinn, 1984) Consequently, the effect of different 

EDTA concentrations on the expression of soluble PAP activity was examined, as outlined in section

2 7 4 2 DTT was also included in this study at a concentration of 2mM since its removal would simply 

abolish enzyme activity As can be seen from Fig 3 24, O-lOmM EDTA has a relatively negligible 

effect on purified PAP activity

4 4 5 pH and thermostability profiles

Using a selection of 5 different buffers, soluble PAP activity was assessed over the pH range 4 5-10 5 

The purified enzyme was subsequently found to display an optimum activity between pH 8 5-9 0 (Fig

3 25) In contrast, Mudge and Fellows (1973) have previously reported a pH optimum of 7 3 for 

soluble PAP activity partially purified from bovine pituitary One can suggest a number of reasons to 

account for this difference Unlike whole brain, the pituitary is a site of hormonal biosynthesis, release 

and catabolism, a highly efficient and well balanced process which may possibly exhibit a neutral pH 

dependency Enzymes present in the soluble fraction of this tissue would therefore be expected to 

function optimally at such a pH The use of a different substrate (pGlu-Ala) and assay temperature 

(40 C) might also account for the observed difference in pH optimum

The pH optimum obtained for the enzyme in tins study does however compare well with pH optima 

previously reported for soluble PAP activities examined m other mammalian tissues pH optimum 

values ranging from pH 8 0-8 5 have been reported for this enzyme from rat liver (Busby et a l , 1982) 

as well as human whole brain , kidney and skeletal muscle (Lauffart et a l , 1989 Mantle et a l , 1990, 

1991) Soluble PAP activity from human skeletal muscle was also reported to possess up to 50% of 

optimum activity at pH 9 5 (Mantle et a l , 1990), a finding reasonably consistent with the bovine brain 

activity in this study (75% of optimal activity at pH 9 5)

1 he thermal stability of punfied PAP was investigated, as outlined m section 2 7 6  1 Incubating the 

enzyme at 37 C for up to 45 minutes had no apparent effect on enzyme activity By simply increasmg
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the incubation temperature a mere 3 C however, PAP activity decreases by up to 17% after a similar 

incubation period, indicative of a narrow thermal sensitivity range Incubation of the enzyme at higher 

temperatures had significantly greater destabilising effects on enzyme activity after shorter incubation 

periods (Fig 3 26) Unlike the soluble bovine brain PAP activity of this study however, soluble PAP 

activities isolated from pigeon liver (Szewczuk and Kwiatkowska, 1970) and chicken liver (Tsuru et 

a l , 1982) have been shown to be quite stable at 50 C for up to 15-30 minutes Such an apparent 

difference in thermal stability may possibly derive from the functionally dissimilar nature of whole 

brain and liver tissue Finally, it should be noted that these thermostability studies were initially 

performed with a view to developing techniques aimed at stabilising soluble bovine brain PAP activity 

at high temperatures (in conjunction with another research group at Dublin City University) 

Unfortunately, this particular study was not pursued

4 4 6 Effect of metal ions

Table 3 3 describes the effects of a range of metal ions, at a concentration of ImM, on soluble PAP 

activity Whilst none of the metal ions tested were found to stimulate PAP activity above control 

levels, only the transition metal ions Hg2+, Cu2+, Zn2+ and Cd2+ were found to be significantly 

inhibitory (over 80% inhibition) In parallel assays for PAP activity in the presence of Hg2+, Zn2+ and 

Cu2+ ions, the inclusion of 2mM EDTA was found to completely reverse the inhibitory effect of Zn2+ 

ions The inhibitory effects of Hg2+ and Cu2+ ions were unaffected by the presence of EDTA however, 

suggesting that either these ions inhibit the enzyme in an irreversible manner or that they are not 

chelated m significant quantities by EDTA These findings compare well with those reported for 

soluble PAP activities in other species Strong inhibition by metal ions such as Hg2+, Zn2\  Cu2+, Co2+ 

and Cd2+ have been reported for this enzyme m pigeon and rabbit liver (Szewczuk and Kwiatkowska,

1970), chicken liver (Tsuru et a l , 1982), hamster hypothalamus (Prasad and Peterkofsky, 1976) and 

human skeletal muscle (Mantle et a l , 1991) The inhibitory effects of these metal ions have also been 

reported for soluble PAP activities observed in S pyogenes (Awade et a l , 1992a), B subtihs 

(Szewczuk and Mulczyk, 1969) and B amylohquifaciens (Tsuru et a l , 1978) It is also noted th a t, m 

contrast to the findings of this study, the latter research group (Tsuru et al 1978) were able to partially 

reverse the inhibitory effects of Hg2+ and Cu2+ ions on PAP activity by the inclusion of 5mM EDTA in 

the enzyme assay

4 4 7 Effect of various functional reagents

Tables 3 4 and 3 5 detail the effects of a range of functional reagents on punfied PAP activity In Table

3 4, one notes the strong inhibitory influence of sulphydryl-blocking agents such as 2-iodoacetamide,

lodoacetate, N-ethylmaleimide and PCMB on this activity at concentrations ranging from 0 ImM to

ImM E-64, a novel thiol protease inhibitor onginally isolated from a culture extract of Aspergillus
>

japonicus TPR-64 (Hanada et a l , 1978) had a significantly milder inhibitory effect than expected, 

although this could be attributed to the low concentrations of inhibitor used In contrast, the serine 

protease inhibitors PMSF and benzamidme, at a concentration of ImM, had a negligible effect on the
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activity of this enzyme 1  hcse findings are consistent with the thiol-dependent nature of tins bovine 

bram enzyme reported earlier (see sections 3 7 4 1 and 4 4 4) The inhibitory effects of sulphydryl- 

blocking agents on soluble PAP activities have also been reported for many other animal tissues 

including guinea-pig brain (Browne and O’Cuinn, 1983a), hamster hypothalamus (Prasad and 

Peterkofsky, 1976), chicken liver (Tsuru et a l , 1982) and rat adenohypophysis (Bauer and Klemkauf, 

1980) in addition to numerous microbial sources of the enzyme (Tsuru et a l , 1978, Szewczuk and 

Mulczyk, 1969, Awade et a l , 1992a)

Metal chelating agents, with the exception of 1,10-phenanthrohne (28% inhibition at ImM) had no 

inhibitory effect on soluble bovine whole brain PAP activity (Table 3 5), suggesting the lack of a metal 

requirement for the expression of enzyme activity Of the other inhibitors tested, only 2-pyrrolidone 

displayed any significant inhibitory activity towards this enzyme (95% inhibition at 0 1M), consistent 

with previous observations that this compound specifically inhibits soluble PAP activity, in a reversible 

and non-compctitive manner, from both microbial (Armentrout and Doolittle, 1969) and mammalian 

sources including bovine pituitary (Mudge and Fellows, 1973, Armentrout, 1969) Indeed, the 

reversibility of 2 -pyrrolidone inhibition on the bovine brain activity was subsequently demonstrated, as 

outlined in section 3 7 8 2 (Tig 3 28)

The speed with which certain inhibitors act on punfied cytosolic PAP was also investigated using a 

continuous real-time fluonmetnc assay, as outlined in section 2 7 8 3 This assay enabled one to 

continuously monitor the enzymatic hydrolysis of the substrate pGlu-MCA, by punfied PAP in the 

presence or absence of an inhibitory compound Figs 3 29 And 3 30 clearly demonstrate that when the 

punfied enzyme is assayed continuously in the presence or absence of either 2-pyrrolidone (lOmM and 

0 5mM) or 1,10-phenanthrohne (ImM and 0 2mM), pGlu-MCA hydrolysis proceeds linearly with 

respect to assay time Based on the assumption that a "slow acting" inhibitor would cause the enzyme 

to behave in a non-lmear fashion over this penod of time, one might therefore conclude that both 2 - 

pyrrohdone and 1,10-phenanthrohne act on cytosolic PAP m an extremely rapid, if not instantaneous 

manner, with complete inhibition achieved within a matter of seconds or less Consistent with these 

observations are the previous findings outlined in section 3 7 2 1 of this report m which the linear rate 

of pGlu-MCA hydrolysis with respect to assay time was demonstrated with punfied cytosolic PAP 

using a discontinuous approach which involved assaying for PAP activity at discrete tune intervals

4 4 8 Kinetic analyses
Using an extensive range of pyroglutamyl substrates, the catalytic properties of punfied bovine bram 

PAP were examined, as outlined m section 2 7 9 Studies revealed that hydrolysis of the synthetic 

substrates pGlu-MCA, pGlu-BNA and pGlu-His-Pro-MCA (a TRH analog) by the punfied enzyme was 

found to obey Michaelis-Menten steady-state kinetics (Michaehs and Menten, 1913) Using a number 

of different kinetic models (see section 3 7 9 2), all of which are based upon manipulations of the 

Michaelis-Menten equation, the Michaelis-Menten constant or Km of the punfied enzyme for each of 

the above substrates was evaluated Using the same kineuc models, the inhibition constant or Kt value
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of the purified enzyme was ascertained for substrates which could not be assayed for directly, based on 

their ability to inhibit the hydrolysis of pGlu-MCA, as described m section 2 7 9 3 Analyses 

subsequently revealed that the Km or Kj obtained for any given substrate from each of the kinetic 

models was very similar (see sections 3 7 9 2 and 3 7 9 3)

It should be noted that the use of a number of different kinetic models to analyse the data obtained for 

each substrate enabled one to minimise the influence of inherent inaccuracies present in any single 

kinetic model Henderson (1992) for example, is highly critical of the Lmeweaver-Burk model as a 

method for the determination of kinetic constants because it relies upon a double reciprocal 

transformation of the Michaelis-Menlen equation Consequently, this plot groups data points close to 

the origin and ignores the increased margin of error associated with using lower substrate 

concentrations (the reader is directed to Figs 3 33 and 3 37 - lowering substrate concentration clearly 

has the effect of increasing the size of error bars) This author also suggests that the Hanes-Woolf and 

Eadie-Hofstee models are more accurate because they only rely upon a single reciprocal transformation 

of the Michaelis Menten equation The Direct-Linear plot (Eisenthal and Comish-Bowden, 1974) is 

widely regarded as the most accurate model for the evaluation of kinetic constants With this model, 

observations are plotted as lines in parameter space, instead of points in observation space Kinetic 

constants can subsequently be read directly off the plot without the necessity for calculations

Table 3 6  displays the Km values obtained for the aforementioned substrates pGlu-MCA, pGlu-GNA 

and pGlu-His-Pro-MCA using the Direct-Linear plot method The Km values obtained for these 

substrates are significantly lower than those previously obtained (Table 3 6 ) with values observed 

within the lower micromolar range, suggestive of strong enzyme/substrate affinity Hydrolysis of pGlu- 

pNA, a chromogemc substrate, by the purified enzyme was also clearly demonstrated However, an 

accurate Km for this substrate could not be obtained with pure enzyme due to a combination of low 

Vmax and poor instrument sensitivity (the spectrophotometer, a Shimadzu UV 160-A, was observed to 

be several orders of magnitude less sensitive than the fluonmeter, a Perkin-Elmer LS-50) The Kx 

values obtained for a range of pyroglutamyl substrates (LHRH, acid TRH, TRH, pGlu-His-Gly, 

bombesin, pGlu-Ala, pGlu-His, pGlu-Val and pGlu-Pro-NH2) are displayed m Table 3 7 All of the 

substrates tested were found to be competitive inhibitors Indeed, LHRH, acid TRH and TRH were 

found to be particularly effective in this regard Unfortunately, Kx values for either eledoisin or 

neurotensin could not be ascertained due to insufficient quantities of substrate

A comparison with published values, of the kinetic constants (Km or Kx) evaluated for purified 

cytosolic PAP with different substrates reveals a number of interesting observations The bovine brain 

enzyme has been shown to exhibit a Km of 15 36pM and 20 76|iM for the fluorimetnc substrates 

pGlu-MCA and pGlu-BNA respectively These would appear to be among the lowest Km values ever 

determined for a soluble PAP activity with either of these substrates as seen from Table 4 1 Equally 

low was the Km value of 13 64|iM obtained with the TRH analog, pGlu-His-Pro-MCA This value is 

very similar to the Kj value of 24 9|iM obtained with synthetic TRH (pGlu-Ihs-Pro-NH2), suggesting
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that replacement of the amide group of TRH with MCA has a relatively small effect on enzyme- 

substrate binding A similar observation with PAP-II isolated from a rabbit brain membrane 

preparation has also previously been reported by Wilk and Wilk (1989) Km values of 44(xM and 

70^M were obtained for this enzyme with pGlu-His-Pro-BNA and TRH respectively, indicating that 

the substitution of BN A for NH2 in TRH has very little effect on PAP-II activity 

The extremely low Kj values obtained for the bovine brain enzyme with the neuropeptide substrates 

TRH, acid TRH and LHRH are also noteworthy Workers have previously reported Km values of 

420jiM and 727|iM with TRH as substrate for soluble PAP activities isolated from human (Lauffart et 

a l , 1989) and guinea-pig (Browne and O’Cumn, 1983a) brain respectively The bovine brain enzyme 

of this study however, has demonstrated a significantly lower Kj value of 24 9|iM for this substrate, a 

value which actually compares well with Km values of 40p.M, *50p.M and 25|iM which have 

previously been obtained with TRH for the TRH-specific PAP-II activities isolated from guinea-pig 

(O'Connor and O’Cumn, 1985), bovine (*Kj value - O'Leary and O'Connor, 1995) and rat/porcine 

(Bauer, 1994) brain membrane preparations respectively The observation of similarly low Kx values 

for the bovine brain enzyme with LHRH (20 6 (iM) and acid TRH (23 ljiM) may possibly signify an 

important role for this enzyme in vivo, m the intracellular catabolism of these three neuropeptides, 

although the existence of such a role has yet to be verified Only the findings of Busby et al (1982) 

have demonstrated consistency with current observations in this regard As with the punfied bovme 

brain PAP activity, these researchers have reported very low Km/Kj values for a soluble PAP activity 

isolated from rat brain with TRH (Km = 40|iM) and LHRH (Kj = 22 2|±M)

Table 4 1  Reported Km values for soluble PAP activities as determined 
with the substrates pGlu-MCA andpGlu-fiNA

Substrate ^m  (|iM) Enzyme source Reference

pGlu-MCA 80 Human skeletal muscle MantIQetal (1991)
80 Human bram Lauffart# al (1989)

2 1 0 Human kidney Mantle e ta l  (1990)
150 Guinea-pig bram Browne and O’Cuinn (1983a)
40 Chicken liver Tsuru et al (1982)

330 Bacillus amylohquifaciens Fujiwara and Tsuru (1978)

pGlu-BNA 700 Chicken liver T s u ru # al (1982)

130 Bacillus amylohquifaciens T s u ru # al (1978)
1700 Bacillus subtihs Szewczuk and Mulczyk (1969)
1790 Streptococcus pyogenes Awade# al (1992a)
2 2 0 Pigeon kidney Albert and Szewczuk (1972)
500 Pigeon liver Albert and S/ewczuk (1972)
77 pigeon intestine Albert and Szewczuk (1972)
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A closcr examination of the values obtained for the punfied enzyme with different pyroglutamyl 

substrates (Table 3 7) also enables one to make a number of comparisons One notes that, of the 

substrates tested, dipeptides (including pGlu-His) gave the highest ^  values, whilst substrates 

consisting of three peptides or more gave significantly lower K2 values for this enzyme This would 

serve to indicate that the affinity of the enzyme for a pGIu-X bond may depend on the length of the X 

moiety Also of interest were the Kj values obtained with the tnpeptides pGlu-His-Pro (acid TRH) and 

pGlu-His*Gly (anorcxigemc peptide) The latter tnpeptide gave a Kj (58 8 joM) over twice the 

magnitude of the K, (23 ljiM ) obtained with the former tnpeptide, indicating that the moiety 

immediately following the N-terminal pGlu dipepude would appear to have an affect on the affinity of 

the enzyme for the pGlu-X bond

4 4 9 Substrate specificity studies

As descnbed m section 2 7 10, bovine bram cytosolic PAP was incubated with a range of synthetic 

pyroglutamyl substrates for a penod of up to 40 hours at 37 C The resultant digests and corresponding 

negative controls prepared under identical assay conditions were subsequently analysed by HPLC 

using a C-8  reversed phase column Digestion products were detected by scanning at 207nm, the 

absorbance maxima determined for pyroglutamic acid Initial studies using a pyroglutamic acid 

standard revealed that, even at millimolar concentrations, this compound absorbs very poorly at 

207nm A consequence of this was the inability to detect the extremely low concentrations of 

pyroglutamic acid generated by the action of the punfied bovine brain enzyme on the pyroglutamyl 

substrates However, the use of partially punfied cvtosolic PAP (post anion-exchange) consisting of a 

much more active and concentrated PAP component enabled one to circumvent this problem, although 

it necessitated the inclusion of Z-Pro-Prolinal (PE inhibitor) and bestatm (ammopeptidase inhibitor) in 

the enzyme/substrate incubation mixture in order to minimise unwanted substrate hydrolysis by other" 

cytosolic peptidases also present in the test sample

Table 3 8  displays the findings of this study With the exception of eledoisin and LHRH, all of the 

substrates tested were found to be cleaved by the bovine bram activity at the pGlu-X bond (where X =

1 or more amino acids) This would serve to indicate a broad pyroglutamyl substrate specificity for this 

enzyme Particularly noteworthy is the ability of this enzyme to cleave TRH to yield pGlu and 

cyclo(His-Pro) which is in agreement with the reported ability of soluble PAP activities from other 

sources, including bovine pituitary, to cleave TRH at the pGlu-His bond in vitro (Table 4 2) From 

Figs 3 43a/b and 3 44a/b, one also notes the presence of small quantities of the cleavage products 

pGlu, cyclo(His-Pro) and His-Pro in the control chromatograms This would seem to suggest the

spontaneous release of N-termmal pyroglutamic acid from these substrates (1 e TRH and acid TRH) in 

aqueous solution at 37°C over the 40 hour reaction penod In the case of TRH, this process would yield 

the TRH metabolite His Pro-NH2* which would spontaneously cyclise under assay conditions (Bauer 

and Nowak, 1979, Bauer and Klemkauf, 1980) to yield cyclo(His-Pro) Consistent with this hypothesis
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was the observed spontaneous release of MCA from the substrates pGlu-MC A and pGlu-His-Pro-MCA 

when stored in aqueous solution at 4 C for an extended period of lime

The inability of bovine brain PAP to cleave eledoisin (pGlu-Pro-X) is also consistent with published 

findings Numerous studies have reported the inability of this enzyme activity to cleave the pGlu-Pro 

bond of natural and synthetic substrates in various mammalian (Browne and O'Cuinn 1983a, Tsuru et 

a l , 1982) and microbial (Fujiwara et a l , 1979, Uliana and Doolittle, 1969) sources It is worth noting 

however, that this bond is hydrolysed by a particulate pyroglutamyl aminopeptidase activity isolated 

from Klebsiella cloacae (Kwiatkowska, 1974)

The inability to detect the release of any pyroglutamic acid following incubation of partially purified 

enzyme with LHRH is an exceptionally surprising result as numerous studies have reported on the 

ability of cytosolic PAP activities from various sources to cleave this neuropeptide at the pGlul-His2 

bond (Uie reader is directed to Table 4 2) This observation is also in contrast with the low competitive 

Kj value determined for the bovme brain enzyme with tins substrate (see Table 3 7) which is indicative 

of a strong enzyme-substrate interaction One can simply speculate therefore, as to the reasons which 

may account for this apparently anomalous result Very low levels of peptide hydrolysis coupled to 

insufficient instrument sensitivity may represent one possibility

T ab le  4  2  Hydrolysis o f TRH and LHRH at the pG lu1 -His2 bond by
soluble PAP activities from different sources

Substrate Enzyme source Reference

TRH Human skeletal muscle Mantle e ta l (1991)
Human brain Lauffart^ al (1989)

Human kidney Mantle e ta l  (1990)
Guinea-pig brain Browne and O’Cuinn (1983a)
Chicken liver Tsuru et al (1982)

Rat adenohypophysis Bauer and Kleinkauf (1980)
Rat brain Busby etal (1982)
Bovme pituitary Mudge and Fellows (1973)
Hamster hypothalamus Prasad and Peterkofsky (1976)
Bacillus amylohquifaciens Fujiwara etal (1979)

LHRH Human brain Lauffart e ta l (1989)
Human kidney Mantle e ta l (1990)
Human skeletal muscle Mantle e ta l (1991)

Chicken liver Tsuru et al (1982)
Guinea-pig brain Browne and O’Cuinn (1983a)
Bacillus amylohquifaciens Fujiwara eta l (1979)
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Conversely, the inability to delect clcavage of the pGlu'-His2 bond of LHRH may denve from the use 

of partially punfied PAP dunng the enzyme/substrate incubation O'Cuinn et al (1990) in a recent 

review on the degradation of TRH and LHRH by enzymes of brain tissue reports that, in addition to 

PAP and PE, at least two other soluble enzyme activities have been isolated which are capable of 

hydrolysing LHRH These are neutral endopeptidases, both of which have the ability to cleave LHRH 

at the Tyrs-Gly6 bond but which can be differentiated by their abilities to introduce secondary 

cleavages between His2-Trp3 (Camargo et a l , 1973, Horsthemke and Bauer, 1980) and Trp3-Ser4 

(Wilk and Orlowski, 1980, Dresdner et a l , 1982) respectively One might expect therefore that the 

action of either of these enzymes on LHRH, if present in the partially punfied PAP sample, would tend 

to limit the availability of this substrate to other enzymes including PAP Consistent with this 

hypothesis is the finding that much of the LHRH onginally incubated with partially punfied PAP was 

found to be degraded to a number of pepude fragments, although the size and ammo acid composition 

of these fragments remains undetermined In addiuon, soluble PAP activity may exhibit poor binding 

charactenstics for pGlu-containmg peptide fragments generated from the metabolism of LHRII by 

neutral endopeptidases

In view of the inconsistent nature of this result with respect to previously published findings, the noted 

insensitivity of the pGlu detection method used in this instance (i e absorbance at 207nm) and the use 

of a partially purified source of PAP, one is prompted to view this result with some degree of caution 

until more definitive confirmation is available

4.5 Summary

Since the initial isolation of pyroglutamyl ammopeptidase (PAP) from a strain of Pseudomonas 

fluorescens by Doolittle and Armentrout m 1968, similar enzyme activities have been isolated and 

characterised from a multitude of prokaryotic and eukaryotic sources Studies on eukaryotic PAPs have 

been done mainly in mammals, typically with a view to elucidating the potential role of this class of 

enzymes m the catabolism of vanous pGlu-teraunatmg pepudes, including neuropeptides, in vivo The 

central aim of this study was to undertake the complete purification and charactensation of a PAP 

activity observed within the soluble or cytosolic fraction of bovme whole brain Several workers have 

previously descnbed the purification and charactensation of soluble PAP activities from different 

mammalian tissues including guinea-pig brain (Browne and O'Cuinn, 1983a) and human bram 

(Lauffart et a l , 1989) However, other than some minor details furnished by the earlier studies of Wilk 

et al (1985) and Mudge and Fellows (1973), little was known of the bovme brain activity

From a practical viewpoint, the relatively large size (approx 300g wet weight) and easy availability 

(local abattoir) of this tissue source greatly facilitated this study A combination of different 

chromatographic methodologies subsequently generated a soluble PAP activity with a total active yield 

of 6  6% which had been punfied to near homogeneity, as judged by SDS PAGE and silver staining 

techniques The unstable nature of the purified enzyme in dilute soluuon was very apparent, prompting
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the usage of 0 5%w/v BSA to stabilise PAP activity dunng both assay and storage Charactensation of 

this enzyme activity subsequently revealed a number of interesting results, many of which compared 

well with findings previously reported for soluble PAP activities examined in other sources In addition 

to a predominantly cytosolic subcellular location, this enzyme was found to exhibit a low relative 

molecular mass Gel-filtration chromatography revealed a native molecular mass of approximately 

23,700 daltons, a value which compares well with that obtained for the enzyme under denaturing 

conditions via SDS PAGE (22,450 daltons), supporting the likelihood that the soluble bovine brain 

PAP exists as a monomer A pH optimum of 8 5-9 0, as determined with pGlu-MCA at 37 C, was also 

demonstrated for this enzyme, whilst the expression of PAP activity exhibited an absolute requirement 

for the presence of a disulphide bond-reducing agent such as DTT, suggesting the participation of 

active site thiol groups m enzyme activity (i e a thiol protease) Strong inhibition of purified PAP 

activity was observed with a number of different agents which included the transition metal ions Hg2+, 

Cu2+, Zn2+ and Cd2+, the sulphydryl-blocking agents lodoacetate, 2-iodoacetamide, N-ethylinaleimide 

and PCMB and the reversible inhibitor 2-pyrrolidone Serine protease inhibitors and metal chelating 

agents (with the exception of 1,1 0 -phenanthrohne) as well as the compounds bacitracin, puromycin 

and bestatm had no effect on enzyme activity

The cleavage of the N-terminal pGlu residue from a wide range of pyroglutamyl substrates including 

TRH, acid TRH, pGlu-His-Pro-MCA (a TRH analog), bombesin and neurotensin was clearly 

demonstrated for the soluble bovine brain PAP activity N-terminal pGlu cleavage of eledoisin and 

LHRH could not be detected however Whereas this was expected for eledoisin, a substrate which 

commences with the sequence pGlu-Pro, such a finding for LHRH was quite unexpected Subsequent 

kinetic analysis also revealed that the punfied PAP activity displays Km and values withm the 

lower micromolar range for a number of these substrates (TRH, acid TRH, LHRH, pGlu-MCA, pGlu- 

BNA and pGlu-His-Pro-MCA) indicative of a strong enzyme-substrate interaction--In addition, all of 

the pGIu-peptides for which Kj values were estimated proved to be competitive inhibitors

Based on a comparison of these findings with those reported for soluble PAP activities in other 

mammalian tissues, the soluble PAP enzvme activity observed in bovine whole bram can tentatively 

be classified as a pyroglutamyl ammopeptidase tvpe-1 or PAP-I (EC 3.4 19.3)

A definitive physiological role for PAP-I has yet to be identified The relatively ubiquitous distnbution 

of PAP-I m such functionally dissimilar mammalian tissues as bram, liver and kidney (Mantle et a l , 

1990, 1991, Lauffart et a l , 1989) would appear to support a role for this enzyme in the intracellular 

catabolism of peptides to free amino acids Thus PAP-I may, at least in part, be involved in the 

regulation of the cellular pool of free pyroglutamic acid Indeed, workers have hypothesised that 

cytosolic enzymes may represent a mechanism for returning neuropeptides released from damaged or 

ageing vesicles to the cellular amino acid pool (O Cuinn et a l , 1990), or, in cases where secretion from 

neuropeptide-synthesising cells is suppressed, cytosolic degradation of neuropeptides might 

conceivably represent a secunty device system to ensure the degradation of neuropeptides which are
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produced in excess (Bauer, 1987b) In this regard, the potential role of PAP-I in the intracellular 

metabolism of physiologically important neuropeptides such as TRH has received much attention 

However, despite the ability of tins enzyme from different mammalian tissues, including the 

aforementioned bovme brain PAP activity, to degrade putative neuropeptide substrates such as TRH 

and acid TRH in vitro, several studies have cast doubt on a similar role for PAP-I in vivo (Bauer, 

1987b, Charli et a l , 1987, Torres et a l , 1986, Salers et a l , 1991, 1992, Mendez et a l , 1990) 

Conversely, some researchers have provided evidence in support of the notion that cytosohc enzymes 

may have some role, direct or otherwise, in regulating intracellular levels of TRH Faivre-Bauman et 

al (1986) for example, have reported that addition of specific inhibitors of PAP-I and PE to TRH- 

synthesismg hypothalamic cells in primary culture results in a significant mcrease m their TRH content 

and especially a pronounced mcrease in the amount of TRH bemg released from these cells under basal 

or potassium-stimulated conditions In view of these findings, and by virtue of its unique catalytic 

properties, it would therefore be of great interest to identify mechanisms which may possibly exist to 

bring neuropeptides into contact with PAP-I, and indeed other cytosolic peptidases, as neuropeptides 

do not normally have access to the cytosolic compartment

On a final note therefore, it is hoped that the work outlined in this report will ultimately serve to 

compliment other studies currently m progress m this laboratory, which concern the punfication and 

characterisation of various neuropeptide-degrading enzyme activities m different bovme tissues
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APPENDICES



Al. Kinetic analysis

Kev
[S] = Substrate concentration 

[I] = Inhibitor concentration 

Ki = Rate constant (inhibition)

V0  = Initial velocity

Vmax = Maximal velocity

Km = Rate constant (Michaelis-Menten)

1 Michaelis-Menten equation
This is the rate equation for a one-substrate enzyme-catalysed reaction

Vmax [S]
V 0 = -------------

K m  +  [S]

2 Lineweaver-Burk equation
This mvolves a double reciprocal transformation of the Michaelis-Menten model 

( le  [S] and V0)

1 __ K m 1

V o Vmax [S] V max

Plottmg 1/V0  vs 1/[S] yields a straight lme

Km 1 -1
Slope = ---------- y-axis intercept    x-axis mtercept ---------

Vmax Vmax Km

In the presence of a competitive inhibitor, the x-axis mtercept becomes

-1

Kmfl +
V Ki)
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3 . Hanes-Woolf equation
This equation is derived from the Michaelis-Menten model and only involves 

plotting one reciprocal value (1 e V0)

[S] K m [S]

V 0 Vmax Vmax

Plotting [SJ/V o vs [S] yields a straight line

1 Km
Slope  -----------  y-axis intercept  ---------- x-axis intercept =-Km

Vmax ^max

In the presence of a competitive inhibitor, the x-axis intercept becomes

4 . Eadie-Hofstee equation
This equation is derived from the Michaehs-Menten model and only involves 

plotting one reciprocal value (i e [S])

V0 Vmax V 0

[S] Km Km

Plotting V o/[S] vs VG yields a straight line

O l  ’  L L it lA  .  JSlope = — — y-axis intercept  -----------  x-axis intercept = v max
Km Km

In the presence of a competitive inhibitor, the slope becomes

-1
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A2. Statistical analysis

K e x

S D = Standard deviation
a,b,c = Individual determinations or replicates

For statistical purposes, most results (where relevant) are expressed 
as the mean of three individual determinations +/- S D

a + b + c Mean — _

Variance = a2 + + °2 - (Mean)2

SD  = \ f  Variance
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