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ABSTRACT

Data Fusion of Nonlinear Measurement Data iIn the
Presence of Correlated Sensor-to-Sensor Errors.

By

MANSOUR MOHAMAD AL-SAMARA

Data fusion of nonlinear measurement data 1iIn the
presence of correlated sensor-to-sensor errors 1Is
examined. The scenario involves three spatially-
distributed sensors making three noisy angle-of-
arrival measurements on a signal emitted by a source
whose position Is to be estimated. The noisy angle-
of-arrival measurements from two of the sensors are
triangulated to form a noisy position measurement in
two dimensions. A second pair of sensor noisy angle-
of-arrival measurements are also triangulated to form
a second noisy position measurement. Both of these
noisy position measurements are nonlinear functions
of the noisy angle-of-arrival measurements.

Since there are three sensors SlI, S2, and S3, sensor
S2 1s common to both triangulation process, causing
a non-zero cross-correlation across both noisy
nonlinear position measurements. Since the position
measurements are nonlinear functions of the angle-of-
arrival measurements, we must use a Tirst-order
approximation to the covariance matrix for each
measurement vector.

The statistics governing the errors on these angle
measurements come from a variety of distributions,

X



namely the uniform, sawtooth, and triangular
distributions.

The optimum  fusion algorithm applied to the
distributed measurements forms a linear operation on
the measurement vectors. Since the measurements are
nonlinear functions of the parameters, an exact
calculation of the covariance matrix iIn closed form
iIs not possible because of the iIntractable nature of
the mathematics involved. Consequently, these
conditions give sub-optimum conditions for the
algorithm. However it is found that the trace of the
error covariance matrix of the fused measurement is
less than the trace of the error covariance matrix
associated with each individual measurement vector.
Finally, a mathematical high-order approximation to
the covariance matrix is performed. The impact of
these high-order terms iIs examined through
simulations.



CHAPTER 1

CENTRALIZED VERSUS DECENTRALIZED DATA FUSION

1.1 Introduction

Traditional surveillance and communication systems use
a single sensor such as radar or sonar for estimating
the position of an object. In these systems, complete
sensor observations are made at a central location and
classical testing procedures are employed for signal
processing. There 1is an iIncreasing interest now 1iIn
distributed sensor systems where several sensing
techniques, such as sonic, microwave, iInfrared, X-ray
sensors, and radar etc, generate data for subsequent
fusion.

The basic goal of multiple sensor systems 1iIs to
improve system performance, fTor example, reliability
and speed. This can be achieved by properly combining
the information obtained from the various sensors and
sending them to the fusion centre which processes the
measurements formed by each sensor. The object iIs to
extract from these measurements an estimate which is
statistically superior to the individual measurements
themselves.

There are two major options for signal processing with
multiple sensors. There are generally described as
centralized and decentralized fusion. We discuss each

one separately.



1.2 Centralized Data Fusion
In centralized data fusion measurements  from
distributed sensors are transmitted to the fusion
centre. This requires transmission of sensor
information without delay and with large communication
bandwidth. The structure of a centralized fusion

system is illustrated in Fig(1l.1).

Figure(1.1l) Centralized data fusion.

1.3 Distributed Data Fusion
The second option for data fusion iIs to have signal
processing carried out at the local sensor level. The
results are available locally and partial results are
transmitted to the fusion centre for further
processing. Global results are then available at the

data fusion centre. This type of system is called



decentralized data fusion.

Many benefits may be derived from the use of multiple
sensors In a target surveillance systems, such as
accurate angular position and range rate information
for radar systems to provide improved tracking. The
major purpose of multi-sensor fusion is to complement
the data from one sensor with that from another
sensor. In this way 1t iIs possible to obtain better
information and to make a more accurate estimate than

i1s possible with a single sensor system.

The Tfusion algorithm analyzed here 1is based on the

centralized fusion approach.

Chapter 11 discuses the natureof the data fusion
problem to be solved. It i1s shown there that the
measurements are nonlinear functions of the parameters
to be estimated. Consequently first-order
approximations to the covariance matrix Tfor each
measurement vector mustbe computed. There are

developed in chapter Il1l.

Chapter 1V discuses the optimum fusion algorithm to be
applied to the distributed measurements. It iIs shown
there that the algorithm 1is optimum only for
measurements which are Jlinear functions of the

parameter vector to be estimated. As noted previously,



since the measurements are nonlinear functions of the
parameters, we must use a First-order approximation to
the covariance matrix of the measurement vectors. An
exact calculation of the covariance matrix in closed
form is not possible because of the iIntractable nature
of the mathematics involved. Consequently, these
conditions provide an interesting test of the optimal
fusion algorithm when applied under sub-optimum

conditions.

Chapter V discusses simulation results for scenario
number 1, and scenario number 2, in low-noise case,

and high-noise case.

Chapter VI i1nvestigates the impact of high-order terms
in the approximation to the error covariance matrix
and discusses simulation results for the covariance

matrices using second-order terms.

Chapter VII discusses conclusions based on the

results.



CHAPTER 11
DESCRIPTION OF DATA FUSION PROBLEM

2.1 Introduction

The scenario defining the data fusion problem to be
analyzed i1s shown in figure (2.1). SI, S2, and S3 are
three sensors located at known coordinates (x7yj ,
c22) and (03,y3), respectively. The object at point
P which has coordinates (X,y) emits a signal whose
angle-of-arrival O i1s measured by each sensor. The
location of the object (X,y) 1Is to be estimated from
these angle-of-arrival measurements.

Each sensor makes a measurement of the angle-of-
arrival with respect to the horizontal axis X as shown
in TFfigure (2.1). OB represents the measurement made
by sensor 1, 1 = 1,2,3. The object coordinates are
determined by triangulation on two angle-of-arrival

measurements as shown iIn the next section.

2.2 Triangulation Using True Angle-Of-Arrival Measurements
In figure (2.1) the object at point P (y) 1is
observed by three spatially distributed sensors.

The angle-of-arrival measurements from two of the
sensors are triangulated to form a position
measurement of the source. A second pair of sensor
angle-of-arrival measurements iIs also triangulated to
form a second position measurement. Since, there are
only three sensors, one sensor 1iIs common to both

triangulation processes. Define the  following



Fi%ure (2.1) Geometrical configuration of object and
sefisors "in “two dimensions.



quantities:

(X,y): coordinates of the object to be estimated.
(xx,ya) - locationof sensor Sl, (known)

(2,y2): locationof sensor S2, (known)

(03,y3): locationof sensor S3, (known)

The angle 0! made by sensor Sl 1is such that:

Pl) 2.1)

JcX

ana, - (

A similar equation holds for the measurement from

sensor S2:

a2 = () 2.2
X~Xy

Therefore,

3
and

V-Y2) - X=X tan02 Q.9
From (2.3), y = (X-xjtan®! + yx 2.5
From (2.4), y = (x-x2)tan02 + y2 (2.6)

Since equation (2.5 = @2.6) (& =VY)



gcjo) tan0j+yx = (x-xj) tan02+y2

X tan0j™ > tcini+y! = x tan02-x2tan02+y2

Jgtan0l-x2tan02+ya-y1l N
tan0l1l-tan02

Equation (2.7) gives the x coordinate of the object iIn
terms of the known quantities xw x2, 01,02, yx, and y2.
Knowing X, the y coordinate of the object i1s obtained

from equation (2.5)

y - (X-x1)tanOi+yi (2.8)

Let x12,yP? denote the measured object position by
triangulation between sensor SI and sensor S2.

Therefore

tanOt tan02+y2-yt
tan0l1-tan02

and

y12 - (M-xj tanOi+y! G 10)

We define the position vector zI2 for the sensor pair

S1/52 as follows:



z - [xa2,yi2]T

A similar set of equations holds for triangulation
between sensor S2, and sensor S3. Using these two

sensors, the measurements x23, and yZ are given by:

_ X2tan02-x3tan03+y3-y2
3 tan0,-tan0.

and

n23 = K23~Xx2)tan02+y2 (2.12)

We define the position vector zZB for the sensor pailr

S2/53 as follows:

723 = CX23 Y23"T

We have assumed up to now that the angle-of-arrival
measurements O0X, 02 and 03 are perfect (have no
errors). OF course this is never true iIn practice and
consequently the errors 1iIn the angle-of-arrival
measurements feed forward Into errors iIn the measured
position vectors z12, and z23. These errors in the
measured position vectors zI2 and zZ must iIn turn be
quantified iIn the form of a measurement error
covariance matrix associated with each of the vectors
z12, and z23. This 1is pursued further in chapter 1l1I.

The fusion algorithm applied to the noisy measurement

vectors must reduce the errors 1iIn the iIndividual



sensor measurements and In the process produce a fused
measurement which is statistically superior to the
individual input measurements themselves. The
criterion of optimality is minimum trace of the
covariance matrix associated with thefused
measurement. The results presented later show that
even under sub-optimum conditions of nonlinear
measurements and TfTirst-order approximations to the
measurement covariance matrices, the trace of the
fused covariance matrix iIs less than the trace of the
individual measurement error covariance matrices.

We observe that the measured angle 02 appears in
equation (2.9) in connection with xI2 measurement and
also i1n equation (2.11) in connection with x3
measurement. Therefore non zero cross-covariance
matrix exists between measurement vectors zI2 and z23.
Equations (2.9), (2.10), (2-11), and (2-12) show that
calculation of closed form expression for the
elements in the covariance matrix 1is 1mpossible
because of the iIntractable nature of the mathematics

involved.

In the next chapter we derive the Tirst-order
approximation to the covariance matrices for the

measurement vectors z12 and z23.



CHAPTER 111

DERIVATION OF MEASUREMENT COVARIANCE MATRIX AND
CROSS-COVARIANCE MATRIX

3.1 Errors In Sensor Measurements
Equations (2.9), and (2.10) give the triangulated
coordinates of the object P iIn terms of the known
quantities x¥ y®, x2, y2, O and 02, where
(Xpyd = location of sensor SlI
(02,y2) = location of sensor S2
0:

angle-of-arrival measurement at Sl
02 = angle-of-arrival measurement at S2

= x1tandlc,tan02+y2-ya
tan01-tan02

yPR2 = (Xi2 - xtan0O! + vi 2 .10)

These equations are exact provided there are no errors
in the measured values Olmh and 02n Let

01C = the true value of OX

02 = the true value of 02

AOX = the error iIn O*

AO2 = the error i1n 02
Then the noisy measured angles OIn, and O3a are given
by:

0lm = @It +

®2n = @Rt +

The errors iIn the angle-of-arrival measurements feed

n



forward into errors in the measured positions x and y
of the object. Denote the relationship between x12 and
the parameters 0!, 02, xt, x2 yk and y2 as follows:
xP2 * £1(0J /701/X2 £Xj #y2 rYD) i
Likewise
yR2 * fj(Op> 0i/X2FXifyj»yi)»
We now derive how, to a TFirst-order approximation,
errors in O and 02map 1Into errors in x12, and y12. To
accomplished this, we take the TfTollowing partial

derivatives:

= | ~(01,02)A01 + |~ (0 If02)A02 G.1D

Ay12 =N ( d ItBZ)Adt* IA(O 110 )AOz (3-2)

Ax2 and AyXR represent the errors in the object
triangulated position using sensors SI and S2.

From (3.1) and (3.2) we see that

where Az12 represents the error vector iIn the object

triangulated position measured by sensors SI and S2.

Let



r~i2 dxip ~
~2 30i 302

G-4)
a2l azJn2t  &l2 ovi2
and
G-5)
From (3.3), and (3.4),
Az axX AOR (3.6)

We now formulate each of the elements iIn the matrix

3.2 Calculation OFf Elements iIn Matrix
3.2.1 Calculation of ax

From the equation (2.9)

312 = 3 rxltandl-x2tand2+y2-yl.
atl 30x 30! tan0!-tan0:.

Jgsec0! (tun.01-tan02)-sec20! (XitanOi-~tan02+y2-yl)
(tanOi1-tan02)2

-x1sec201tan02 + x2secD!tan02 + seco! (y!-y2)
(tan0!~tan02)2



dx2  sec201[(x2-x1D)tan02+(yi-y2)]
211 ddi (tanOi-tan0j)2

3.2.2 Calculation of al3

From the equation (2.9)

dxe _ 3 XltanOl-jc2tan02+y2-yl
312 302 302 tan01-tan02

G.ND

-"secD2 (tan01-tan02)+sec2 (xI1tan01-x2tan02+y2-y1)

(tan01-tan02)2

secNtan®! (Oo-x2)+sec202 (y2-yi)
(tan01-tan02)2

dx12 _ sec22[ (Xi—J™) tanOx+ (y2-yi) |
302 (tan0! -1an02)2

3.2.3 Calculation of an

From the equation (2.10)

33l = = aell tan9i*n)

14

G-8)



=-3r [x12tan01-x1tan0l+y1]

= tan01l+x12secD1-x1secD1

a2l = a™tan®! + sec2! (x*-Xj G-9

3.2.4 Calculation of a,,

From the equation (2.10)

22 = g0 = b [&k_XxD tanOl+yl]

< tanSl
a2 = s™tanOj (3-10)
3.3 Calculation of Elements In matrix

A similar equation (3.3) holds to calculate the error
vector (AzZ3) in the object triangulated position

measured by sensors S2 and S3.



“p do. 303 A

Ay 2. 3y.s dyZB AO3
302 303
Let
3% 3X23
i 302 e
"oz = ail atb (3_12)
M. & -23 ayas nN23
302 303
and
AO2
AQ.: = (3'13)
AO,

From (3.12) and (3.13),
AzZ3 — AlJ Aozs

It is not necessary to rederive the expressions for
matrix A23. The equations derived for matrix AR2 may be
used to FTill iIn the entries of matrix A23. This 1is
accomplished by replacing O!,x¥#02/x2,yl/y2, and xX12 In
equations (3.7), (3.9), (3.9, and (3.10) with
02,x2,03,x3,y2/y3, and x2ZB respectively. The resulting
equations are as follows;

= d.s = gec.0a[tan0: g™-") + (ya-y3)3 G 14)

an 302 (tan, j-tano:) 2

16



3.4

0%23 sec23[tan02 + (3-y2d)]

(3.15)
312 603 (tan02-tan03)2
__dy i
a2i = = antan02+sec202 (jc23-2) .16
and
dy 3.17
a22 = = al2tan02 G.17)

In the next section we give a brief review of the
covariance matrix and it"s properties.

Then we derive the covariance matrix associated with
the error 1In the measured position. The covariance
matrix will be a function of the variance of the

measured angles.

Definition and Properties of a General Covariance
Matrix P

We define the error % iIn the estimate of a state
vector X to be the difference between the estimated

value ft and the actual value X:

J? = X-X

The covariance matrix P associated with X is defined

as

17



P m E[XXt] (3.18)
The covariance matrix provides a statistical measure
of the uncertainty in the estimate of the elements 1in
vector X.

Suppose vector X has two components as follows:

If the mean value of X is

E(X}=X-=

then the covariance matrix of X 1is:

tFUA-Xj) B Eil (X1-X1) ({j-X°) ¥
EUX—N) 0xD } E{Xi-xM)2}

Note the covariance matrix of an n-state vector Is an
nxn symmetric matrix whose diagonal entries are the
variance of the estimates of the corresponding
elements. The off-diagonal terms of P are indicators
of the cross-correlation between the elements of X.

They are related to the linear correlation coefficient



p(Xj, x2) between xx and x2 by

P(X1,X2) = —-—=—== i (3.19)

where C iIndicates the standard deviation.
A covariance matrix is at least positive semi-definite
and is usually positive definite.
P 1s positive semi-definite 1If for all vectors z * O
zTP z”"™ O
or
E{ETX) X} >0
or
E{XTz)T(XTz)} £ O
Therefore P i1s at least positive semi-definite.
We now derive the Tirst-order approximation to

covariance matrix Pz

3.5 First-0Order Approximation to Covariance Matrix Plia for
Measurement Vector zI2
In our scenario for the measurement noise associated
with the object position measurements there are two
covariance matrices PzI2, PzZ3B. and cross-covariance
matrix PnZ3.
P22 i1s the covariance matrix for the errors in
the measurement vector z? obtained by
triangulation between sensor SI and sensor S2.
Pza3 i1s the covariance matrix for the errors 1iIn

the measurement vector zZB obtained by



triangulation between sensor S2 and sensor S3.
Pzr:s 1S the cross-covariance matrix between the
errors In the measurement vectors zI2 and zZ and
IS not zero because sensor S2 1i1s the common
sensor between measurements zI2 and sensor zZ3
From the equation (3.6)
AziZz= A2 AOR
where Az12 is the error vector in the measured object

position using sensors Sl and S2 and

d A012 AOX

Since we assume AOi = E(AOE) = O 1.e the sensor makes
an unbiased measurement, G = 1, 2, 3, ..) (sensor
errors are zero mean)

AzR2 = E[Az17] = E [AR2 A017]
AR E[A017]
AIA02 = O

Therefore the error covariance matrix for the error in

measurement vector z22 is:
P = E{ [Az12 Az1]}
= E {[AIAOR2 AOI2A12L] }

(1A CAOL A2 JAI2 }

Since the angle errors have zero mean,

20



<(A0D2 A 6 i

[a020, (o022l 2% >

= N2 E{

@2 = E(A6D)2
ag? = e (A02)2
where ad , and c® are the standard deviation of the

errors in Ot and 02 respectively. Therefore

o6l E{ (R0iA0)) }
2272 ey (a01a02) } o9 el

Since AOX¥ and AO02 are assumed to be statistically
independent,
E [AOJA0Z] = E(AODE{A02) = O

Therefore

2 AR R (3-20)

PA2 the error covariance matrix TfTor triangulation
between sensor SI, and sensor S2 is equal to:

72 = ALPelA LT (3.21)
where A2 is the derivative matrix given by the
equations (3.7), ((3.8), 3.9, (@B.10), and P2 1is

equal to:



fail al2 ‘v o - ail a2l (3_23)

[a21 a22. 1» g .ai2 a22 1o
(] [
an 2°e12+ai22aea? a2ian °el2+ai2a22aea?
a2lall°e i2+al2a220e32 a2i20012 + a22200a2
ax2 [Py] 12°xEylj (3.24)

[Py] 12°xbyia Vij2

where

il = @iz OB)2 + @iD:2 (@ed)

Cym= (@i):: (Ca): + (@:2)i12 @r:>: and
i aiaiia(R+R2a2200P
[ e 00

where p is the correlation coefficient and has a

value: -I11 p il

3.6 First-Order Approximation to Covariance Matrix P@ for
Measurement Vector z,,

PZB is the covariance matrix for the errors iIn the

2



measurement vector zZB and i1t IS not necessary to
rederive separately the equations for that because
they are similar to PzZR equations. The equations
(3.19), (3.20), (3-21), (3.22), (3-23), and (3.24) may
be used to calculate PzZ3. This 1is accoirplished by
replacing AzR2 in equation (3.6) with AzZ23; replacing
A2 In equation (3.20) with AZ¥ where the entries for
the matrix AZB are given by the equations (3.14),
(3.15), (3.16), and (3.17) and replace a92, and a2 iIn
equation (3.20)0 with a2 and aX® respectively.
Therefore the equations defining the matrix PZ3B are as
follows:

Pa2s — [AzB Az23t]} (3-25)
where AzZ the error vector in the object triangulated

position measured by sensor S2 and S3.

02 0
iy (3-26)
’3 0 ap
G3.27)
ol2 0 (3.28)
0 aw
(3.29)



ail2RR2+ai20e3 a2lan®82+a i2a220e3
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where p 1is the correlation coefficient and has a

value: -1* p *1

3.7 The Cross-Covariance Matrix PsiZ3
The cross-covariance matrix between the measurements
z12, and zZ 1s not zero because sensor S2 iIs the common
sensor. By definition

PA3 = E{ [Az2 Az 2]} (3.31)

24



E {[A:A012] :s A023]T}

FaoJ
=E{ [AuUao ]] ["23 ﬁgzg)]T}

= A,2 29{ [A02 A03]A23 }

AO02

"(A0.A02) (AO:A03)
=kx s{ @02y {A0:A03) %

£7(A0IA02) ~(AOIAOR)

=N2
£(A0.,. £<A0.A03)

AO¥ AO. are statistically iIndependent, therefore
EFAO* A02) = EfAOi) E(A02) = O
Also AO0: and AO: are statistically 1independent,
therefore
E(AO. A03) = E(A02) E(A03) = 0
0c2: = E (AD:) .

Therefore the cross-covariance matrix is equal to:
71223 [< 3”‘2 (3'32)

From the equation (3.31) we see the cross-covariance

matrix iIs equal to:



X2 X12)
r~1223 ~ & i [(xN=-x™) (y23-y23)] }

(X12-X12) (X23 X~") X 128 (y22~-23)

I2-7) IXBXN)  (y12-yE) (y23-yid)

P X1223 ~ & ~

PRB2YNIE  PIARR2IS

APBEDE  Fiikeywyja

where

Px2g " P*2XB " Pyias " Pyiiiyn

represent the correlation coefficient elements of the

cross-covariance matrix. By definition

0213

Px1223 (1# 1) (3.33)

y/P*12 (1 *1) </Pz23 (1 »1)

» 9L (x12-x12) (y23-y23)]
Ox 5 x3

"*12/22



A XI3— -~ === (3.39)
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yl2 yin X22°NJ

pyY2i OnP a3
P.c» (*.1) (3.35)
Px12 (2,2) (@V4))
and
o _ GBKD]
Prey’ -
Pxi3332>2) (3-36)

yJPxia (2,2)yjP312/2)

This completes the derivation of the covariance

matrices.

Chapter 1V discusses the optimum fusion algorithm to

be applied to the correlated, distributed

measurements.
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CHAPTER 1V

SUMMARY OF OPTIMAL DATA FUSION ALGORITHM FOR N
DISTRIBUTED SENSORS IN THE PRESENCE OF
ARBITRARILY CORRELATED SENSOR-TO-SENSOR ERRORS

4.1 Introduction

The optimal data fusion algorithm used here was
originally presented in reference [8]. Consequently,
only a summary of the derivation is presented in this
chapter.

The fusion algorithm 1is designed to optimally fuse
measurements from N distributed sensors. The
measurement vector from each sensor is assumed to be
full-state and unbiased (zero mean error). The errors
in each measurement vector are assumed to be
arbitrarily correlated with the errors from the other
(N-1) measurement vectors. It is assumed that all
measurements and covariance matrices have been
coordinate transformed to a common frame of reference.
The optimization criterion is minimum trace of the
error covariance matrix of the fused measurement. This
means that the trace of the error covariance matrix of
the fused measurement must be less than the trace of
the error covariance matrix associated with each of
the N measurement vectors. Gradient matrix techniques

are employed to derive the necessary and sufficient
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conditions for minimization of the trace the optimum

covariance matrix.

4.2 Summary of Derivation of Optimal Fusion Algorithm
Suppose we have N distributed sensors each making an
unbrased full-state measurement on some evolving
process. The process is characterized by a vector X of
length M. All measurements are full-state
contemporaneous and transformed to a common frame of
reference. The error In the measurement from the i-th
sensor 1s characterized by an MxM error covariance
matrix Pti. In addition, the errors from measurement i
have an arbitrary correlation with the errors from the
other (N-1) measurements. Therefore, each measurement
X 1s characterized by a covariance matrix Pu and (N-1)
cross-covariance matrices Plf 1 = 1,2,...N, J =
1,2,...N, 1*jJ. No specific assumptions are made
concerning the probability density function governing
these errors. However i1t iIs assumed that the errors
are zero mean.

The fused measurement X is defined to be a linear
weighted sum of the individual measurement vectors Xt,

as TfTollows:

“.D

We require the fused measurement X to be unbiased.

Therefore



>
|
[

This provides the fTirst constraint on the coefficient

matrices At. Solving for A, and substituting back into
“4.1)

I N

The error in the estimate is

& =g Ax(X-X) + (I-A1] (9

This shows that the error iIs a weighted sum of the
error in each measurement vector.
The error covariance matrix P, associated with ft is

P = E{XX)



P=E{ Al Xr D+ -jglA,] s+ Ix

[g Xr DA/+ A r[J-g Alln }

N-1J-1 T H =l =
f=9g E a,~/ . [i-g*4r Jv/+g -~"tx-9g -y r+

[X-VALPMrEX-y Az]r 4.2)

The criterion of the optimal algorithm Is minimization
of the trace of the optimal covariance matrix P. Using

gradient matrix identities derived iIn [8], 1t Is shown

that

n-i ] L] N
£T(P) - 29 APiIK*2Pa-27 As(PAPN) -2 1x g AP,

iFl
— 272 A {Pik Pm~PHk+PSN +2Pst 2Pm “-3

By setting this gradient equation to zero



N-1
{P~~Pm PUKPici~= (Par-PNQ) “.9

where
k =1,2,3,...,(\-D
Equation (4.4) represents (N-1) equations involving
the (N-1) unknown matrices At, A}, ..., A,.l
Define
P*ix = Pix “ Pin* PPK +Pm >
1 = 1,2,3, _ (N-D
k

1,2,3,-- (\-D
and

PTiis (h - P - k =1,2,3,..., (D
Then the (N-1) equations (4.4) can be written in the

following matrix form

P*11 P\2 P12 R 1-N—I*1
*"21 P\ 2 P"23 P 2" N-1
[M/2<em- Ry P'2 R g e«e== B"3,I1

R a1 2 nen2 BOnr,3 mee BUNoEN-Im

= [~A>HL PIM2 P ,N3 ee-. P /HN-I]

The solution for the gain matrices is



[Ax A2 A3

P N-1, N-1

4.5
Equation (4.5 i1s the necessary condition for
minimization of the trace of the fused covariance
matrix P. However it is not the sufficient condition

for minimization of the trace.

We now summarize the sufficent condition for
minimization. Further details are available 1In

reference [8]

4.3 Sufficient Conditions for Minimization of Trace



i~

Q2{Tx(P)\ - TrdAldho. . 4 A 1«

dA/
12 1N I,N dA/
.21 22 2 W1 °2,N
A1 pn-i,: PN-1,N-1 PN-1,N _r
PN, I N2 PNN-L - PmH_ _vdA,,

=Tr{FV I) =Tr{ * S°T } >0
Therefore da2{tr(P)} > 0 1t and only if the
partitioned error covariance matrix IP is positive
definite. Under this condition, therefore, the gain
matrices (4.5) establish a minimum of the cost
functional Tr(P).
We now present the final Tform for the optimum

covariance matrix P.

4.4 Optimum Error Covariance Matrix P

It 1s shown In [8] that the optimum covariance matrix

P 1s given by:



@ HT
P-PN [PHP weu-sP HH P12 7T (4
(P" HHy

Equation (4.6) gives the (symmetric) error covariance
matrix corresponding to the fused measurement (4.1).
The diagonal elements of P are less than the
corresponding diagonal elements ofeach of the
individual error covariance matrices Pu, 1 =
1,2,3,...,N. Consequently, the trace of the optimum
covariance matrix P must be less than the trace of
each measurement covariance matrix Pu, 1 =
1,2,3, ...\

The second term on the right in (4.6) represents the
net reduction 1In uncertainty brought about by the
fusion process.

This completes summary of optimal Tfusion algorithm.
Since it will be applied to the special case N = 2
distributed measurements, we now look at the special

form of the algorithm inthis case.

4.5 Optimum Fusion Algorithmfor Special Case of N m 2
Measurements
In our scenario there are three sensors generating
uncorrelated angle-of-arrival measurements 0!, 1 =
1,2,3. These three angle-of-arrival measurements are

used to form two separate distributed measurement
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vectors z12, and zZ of the position of an object 1iIn
two-dimensional space as shown 1In chapter 111,
Measurement zP has a covariance matrix Pzi2*
Measurement zZB has a covariance matrix PZ23.
Measurements z12,and zZ have a non zero Cross-
covariance matrix PZAZ3- This 1is because S2 1is the
common sensor to both measurements.
Therefore, iIn terms of the matrices iIn the optimum
fusion algorithm, we have:

Pu Pzl2

P22 = Pz23

P12 ~ Pzl223

P21 ~  (Pzl223

From the definition
P"k = Pi* ~ Pin ~ Fre + Pm
we get
P/l = PzZI2 ~ P23 - (PA2ZB)T + PZ3 @.7n
From equation (4.5), we get
P* = P'u
From the definition
PN = PEN ~ Fiit
we get

P*2

PZ3 “ (PZ1ZB"T
From equation (4.5) we see the gain matrix Ax given by
Aa = P"JxtP"u) .
= 23 “ (PAXI)TL [P ~ PAZB ~ EAZB)T + PZ3]
and

A2 =1 - Aj



The optimum error covariance matrix PO is obtained

from equation (4.6) as follows

Po

In

= P2 - P2 [PT1J-1 (P 2DT
= Pz23 - [Pz23 “ P z1223T] tPz12 * Pzl223 *“ Pz1223T + Pz23] 1 X
[P23T “ PzIZB1 (4.8)

the next chapter we discuss simulation results for

the scenario given iIn figure (2.1).

37



CHAPTER V

SIMULATION RESULTS

5.1 Introduction
In this chapter we describe two simulation examples
(scenario nol, and scenario no2) iIn two-dimensions.
Two cases are examined for each scenario a low-noise
case and a high-noise <case to 1illustrate the
improvement 1in the estimation in the fusion centre
by using the fusion algorithm and for demonstrating

the basic principles presented previously.

5.2 Basic Concept of the Simulation Flow Diagram

Figure (56.1) shows the simulation flow diagram of the
data generation and fusion algorithm.

As we see Tfrom Tfigure (6.1) the algorithm 1is
simulated for three spatially distributed sensors S,
S2, and S3 with known locations &Hyl) , (,y2), and
(x3,y3) respectively and we specify the coordinates of
(xX,y) of the object"s position.

Knowing the position of the three sensors and of the
object we compute the true angle-of-arrival values
Olt, 02t, and 03X respectively. The next step iIs to
generate errors in the angle-of-arrival measurements.
The statistics governing the errors on these angle
measurements come from a variety of distributions,

namely the uniform, sawtooth, and triangular
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Figure (5.1) Simulation Flow Diagram
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distributions. These several different distributions
are used to test the fusion algorithm in a rigorous

manner.

5.2.1 Errors on sensor Sl:

We assume sensor Sl errors have a uniform pdf as
shown in figure (5G.2) on page 46. A random number y
with pdf U(0,1) 1is generated. That number 1is
substituted into the right side of the equation (A-6)
in appendix A. That produces the random number with
pdf U(-8U,8U). Equation ((A-6) 1is used to generate
random angle-of-arrival errors 1In Sl measurement
(A0J . This value i1s added to the true angle Okt to
produce the measured angle OIm.

Ol = Ok + AO:

5.2.2 Errors on Sensor S2:

We assume sensor S2 errors have a sawtooth pdf as
shown in figure (G.2) . A random number y with pdf
U(0,1) 1s generated. That number is substituted iInto
the right side of the equation @B-8), or (B9
depending on whether 0 <y < 0.5, or 0.5 <y < 1 (see
appendix B). That produces the random number with a
sawtooth pdf (-8S5,85). Equations (B-8), and (B-9) are
used to generate random angle-of-arrival errors in S2
measurement data (A02). This value is added to the
true angle Q2 to produce 02m.

®m = ®C + "0O2
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5.2.3 Errors on Sensor S3

We assume sensor S3 errors have a triangle pdf as
shown i1n figure G.2) - A random number y with pdf
U(0,1) 1s generated. That number iIs substituted into
the right side of the equations (C8) or @©€-9
depending on whether 0 <y < 0.5, or 0.5 <y < 1 (see
appendix C) . That produces a random number with a
triangle pdf (-8c,8t). Equation (C-8), and (C-9) are
used to generate random angle-of-arrival errors 1iIn
sensor S3 measurement data (AO03) . This value is added
to the true angle O0X to produce 03n.

®m = ®C + "03

From the noisy angle measurements OkhY 02n, and O3n we
compute the noisy position measurements x12, y12),
and (23,y23) using equations 2.9 ,(2.10, (2.11), and
(2,12). We now have two noisy triangulated position

vectors z12, and zZ as defined iIn chapter Il.

5.2.4 First-Order Approximation Covariance Matrix

The next step 1is to compute the Firstorder-

approximation to the covariance matrices of thetwo
position vectors zI2 and z23. We do this by first
computing the matrix of partialderivatives AR
defined by the equation (3.4) . The elementsof AR are
defined by the equations @G,7), G,8, (3,9, and
(3,10). The matrix of partial derivatives AR is
define by equation (3.12). Theelements of AZare
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defined by the equations (3.14), (3,15), (3,16), and
(3,17) . As we see from these equations we need the
noisy angle-of-arrival measurements to compute the
partial derivative matrices A12, and A23. From these
equations we see that O¥ and 02 appear directly in
matrix A12, and 02, 03 appear directly in the matrix
A23. We use the noisy angle-of-arrival measurements
because we do not have the true angles Ok, 02t, and
03t. Therefore the partial derivative matrices are at
best only noisy approximations to the true values. We
also need the noisy position measurements as we see
Iin equations (3.9 and (3.16) to compute the partial
derivative matrices. These noisy position
measurements are not accurate and also iIncrease the
error iIn the partial derivative matrices. For these
reasons the covariance matrix IS an approximation to
the true covariance matrix. The covariance matrix of
the noisy angle measurement PQR2 is calculated by the
equation (3.22) . The variance of the angle errors for
sensor Sl, <P2, is given by the equation (A-3) . The
variance of the angle errors for sensor S2, a2, is
given by equation (B-3) . When the matrix of partial
derivatives A12, has been computed, the covariance
matrix PZ2 is computed using equation (3.21). The
covariance matrix PZB3 i1s computed in a like manner
using equation (3.27), where the covariance matrix of
the noisy angle measurement P23 1i1s given by the

equation (3.28) . The variance of the angle errors for
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sensor S3, (@2 is given by the equation (C3) -

When the covariance matrices have been computed we
next check that these are symmetric and that the
correlation coefficients have a magnitude less than

one.

5.2.5 Cross-Covariance Matrix
When this 1is complete, we then compute the cross-
covariance matrix P:i22z by using the equation (3.32).
When P:i22s @s computed, we check the correlation
coefficient elements of the cross-covariance matrix.
These correlation coefficients also should have a

magnitude less than unity.

At this point we have two noisy measurement vectors
z12, and z23. We have the covariance matrices
associated with these vectors, namely PA2 , and PzZ2.
We also have the cross-covariance matrix between
these two vectors, namely P:i22s - The data is now ready
to be fused using the optimal Tfusion algorithm
discussion in chapter IV.

We compute the optimum covariance matrix PO using
equation (4.8) . When PO is computed we then check the
trace of the optimum matrix PQ and compare it with the
trace of the individual covariance matrices P2 and
PzZ23. The fusion algorithm attempts to produce an
optimum covariance matrix Pc with a trace which 1is

less than that of PR and of PZB individually. The
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optimum fusion algorithm assumes that the covariance
matrix 1s correct for each of the iInput measurement
vectors. We have seen that the covariance matrix 1is
only a first-order approximation to the true
covariance matrix. In addition, the pdf"s governing
the errors on the sensors are quite different from
each other. These conditions provide an iInteresting
test for the optimum Tfusion algorithm under sub-

optimum conditions.

5.2.6 Solution of Nonlinear Estimation Problem Using Linear
Estimation Techniques
It should also be pointed out here that what 1is
basically a nonlinear estimation problem 1is being
addressed using linear estimation techniques.
Our measurement data consists of noisy angles-of-
arrival. We are interested iIn the position of the
object. From equation (2.9) and (2.10) we see that
the position of the object is a nonlinear function of
the data. Normally we would resort to nonlinear
estimation techniques to estimate the object"s
position from the data. However we are not doing that
here. Instead, we invert the measurements and use the
first-order approximation to the covariance matrices
of the noisy position measurments. We then use a
linear fusion technique to estimate the object
location from the noisy inverted data. The

distribution governing the noisy position data is
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unknown. However, the fusion algorithm dose not need
this 1i1nformation. AlIl i1t needs 1iIs the covariance
matrix of the position measurements TfTor which we
provide a first-order approximation. One of the aims

of this research is to see how well this works.

The next section discusses simulation example for
scenario nol, low-noise case.

The simulations were carried using MATLAB on a 386 PC

5.3 Scenario Number 1 (nol), Low-Noise Case.
Figure (5.2) shows the configuration of the object
and sensors for scenario nol in two dimensions.
represents the noisy angle-of-arrival
measurements data.
represents the true angle value.
As we see from figure (56.2) sensor SI has a uniform
pdf U(-5W/ 5U), sensor S2 has a sawtooth pdf and
sensor S3 has a triangle pdf.
The values used In the low noise simulation are:

Object true position p (x= 6, y =7)

51 location xt= 2, y: =3),
52 location (2= 5, y2=4),
53 location (&3 9, y3=3),

Each sensor calculates the true object angle-of-
arrival. These are:

olt = 45°

0.7854 radians
ox = 71°

1.25 radians
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for scenario nol



03 = 126.87° = 2.2143 radians

Noise pdf iIn the three sensors SI, S2, and S3 are:

50 = 2 degrees = 0.0349 radians
du = 1.15 degrees = 0.0202 radians
S3 = 2 degrees = 0.0349 radians
g = 1.41 degrees = 0.0247 radians
8t = 2 degrees = 0.0349 radians

Oc = 0.8193 degrees = 0.0143 radians

From the equation (A-3) we compute the noisy standard
deviation for a uniform random variable Gu

From the equation (B-3) we compute the noisy standard
deviation for a sawtooth random variable as

From the equation (C-3) we compute the noisy standard
deviation for a triangle random variable at.

As we see the standard deviation of the errors are
small compared to the true values of the angles.
Therefore, this i1s a low-noise case. The covariance
matrix should be very close to the true covariance

matrix.

As mentioned earlier it iIs impossible to determine
the pdf governing the measurement vectors z12, and zZX3
because of the nonlinear function of the angles OIf
02, and 03. However the fusion algorithm can be
applied because it does not need to know the pdf,

just the covariance matrices.
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5.3.1 Discussion of Simulation Results, Scenario nol, Low-
Noise Case
The computer simulation was run 50 times and the
results are plotted and discussed In the next several
pages.
Figure (5.3) shows the actual error 1iIn the noisy
measured position xI2 obtained by triangulation
between sensors SI, and S2. The dotted line
represents the actual errors in the noisy
measurements x12, and the solid line represents the
square root of PzI2(1,1). The solid 1line 1s the
theoretical standard deviation of the errors
according to the covariance matrix. The numeric mean
value of the errors In noisy measurement x12 in figure
(B.3) 1s MxI2_err = (0.0039). The numeric standard
deviation 1i1s Sx12_err = (0.1484). This compares
favourably with the theoretical standard deviation

given by the solid line in the figure.

Figure (6.4) shows the actual errors iIn the noisy
measurements position xZB obtained by triangulation
between sensors S2, and S3. The dotted line
represents the actual errors iIn noisy measurements
xZ¥ and the solid line represents the square root of
PzZ3(1,1). The solid line i1s the theoretical standard
deviation of the errors according to the covariance
matrix. The numeric mean value of the errors iIn x3

noisy measurements iIn Tfigure (G.4) iIs Mx23 err=
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(0.0067). The numeric standard deviation iIs Sx23 err
= 0.0594. This also compares TfTavourably with the
theoretical standard deviation given by the solid

line iIn the Tigure.

Figure (6.6) shows the errors iIn the fused estimate
in X position obtained by fusion of the noisy
measurements x12, and x23. The dotted line represents
the errors iIn the fused estimate and the solid line
represents the square root of PO(l,I). The numeric
mean value of the errors iIn the fused estimate In
figure (6.6) iIn x dimension is Xfuse err = (0.0037).
The numeric standard deviation of the errors in the

fused estimate iIs Sxfuse err = (0.0654).

Figure (6.7) shows the actual errors in the measured
noisy position yP obtained by triangulation between
sensors SI, and S2. The dotted line represents the
actual errors iIn the noisy measurements y12, and the
solid line represents the square root of Pzl2(2,2) . The
numeric mean value of the errors iIn the Tfigure is
Myl2 err = (-0.0048). The numeric standard deviation
iIs Syl2_err = (0.2707).

Figure (5.8) shows the actual errors in the measured
noisy position yZ obtained by triangulation between
sensors S2, and S3. The dotted line represents the

actual errors in the noisy measurements y23, and the
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solid line represents the square root of Pz23(2,2) . The
numeric mean value of the errors in the figure 1is
My23 err = (0.0198). The numeric standard deviation
iIs Sy23 err = (0.1168).

Figure (5.10) shows the errors in the fused estimate
in y position obtained by fusion the noisy
measurements y12, and y23. The dotted line represents
the errors iIn the fused estimate iIn y position and
the solid line represents the square root of Pc(2,2).
The numeric mean value of the errors 1in the fused
estimate in figure (5.10) 1i1s Yfuse err = (0.0094).
The numeric standard deviation of the errors iIn the

fused estimate iIs Syfuse_err = (0.1008).

Figure (6.3) shows the actual errors 1In the noisy
measurements xI and the theoretical standard
deviation of the errors in low-noise case In scenario
nol iIn x postion.

We can see from figure (56.3) that the errors change
between negative and positive values. Also we see the
theoretical standard deviation increasing and
decreasing 1In according with the magnitude of the
errors. The statistics are changing with time.
Between n = 5 and n = 6 we see the magnitude of the
error iIncreases from 0.12 to 0.275. We also note the
theoretical standard deviation increase from 0.12 to

0.18 (the same value of 0.12 here is coincidence). We
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also see the same thing between n = 10 and n = 11 the
magnitude of the error increases from 0.11 to 0.185.
We also note that the theoretical standard deviation
increases from 0.15 to 0.185. Between n = 30 and n =
33 , we see the magnitude of the error iIncreases from
0.17 to 0.32. The theoretical standard deviation
increases from 0.15 to 0.2. Between n = 34 and n =
37, as the magnitude of the error 1iIncreases and
decreases, the theoretical standard deviation
increases and decreases in a like manner.

In general, the standard deviation tracks the

magnitude of the errors.
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Errors in x12 measurements versus standard deviation (scenario nol)

Figure (6.3)

....X012_err represents the actual errors 1in the noisy
measurements X2 in low-noise case iIn X position.
stdev represents the square root of PIH2(1,1), the
theoretical standard deviation of the errors
according to the Tfirst-order approximation to the

covariance matrix.
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Figure (6.4) shows the actual errors iIn the noisy
measurements xZB and the theoretical standard
deviation of the errors in low-noise case In scenario
nol iIn X position.

We can see from Tfigure (6.4) that xZB noisy
measurements are higher quality measurements than the
X2 noisy measurements because the standard deviation
of xZB measurements 1is smaller than the standard
deviation of xI measurements. Also we can see from
this figure most of the errors are less than 0.1, and
are smaller than the errors in the noisy measurements
x12. The theoretical standard deviation of 0.06 1is
close to the numeric one. We see from figure (6.4
the standard deviation is approximately constant for

all values of n.
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Errors in x23 measurements versus standard deviation (scenario nol)

Figure (6.4)

... X23_err represents the actual errors 1iIn the noisy
measurements X2 in low-noise case In scenario nol.
stdev represents the square root of Pz23(l1,1), the
theoretical standard deviation of the errors
according to the Tfirst-order approximation to the

covariance matrix.



Figure (6.5) shows the percentage errors in the fused
estimate in low-noise case 1In scenario nol iIn X
position.

We immediately observe that the fused estimate (solid
line) clips the peak errors in the measurements. Also
in this figure we can see the improved performance
that i1s obtained by fusion of the error iIn the two
measurements x12 and x23. For example at n = 6 we see
the fused measurement clips the large error in x12,
and remains close to the higher accuracy measurement
x23. We also observe the same effect at n = 27. The
error In x12 and xB are both positive, and the fused
estimate error is closer to that of x23. Under these
conditions (where both measurement errors are of like
sign), the fusion algorithm cannot i1n general produce
an error which is less than the smaller one. In order
to reduce errors, the fusion algorithm relies on
opposite sign errors to cancel each other out. With
errors of the same sign, this cancellation is not
generally possible. We see the same effect at n = 22,
32, and between n = 37 and 50. But when the errors in
the x12, and xZB are of opposite algebraic signs, the
fusion algorithm produces a smaller error than the
smallest measurement error. For example at n = 16
where the error iIn xI2 measurements 1Is negative and
the error In x2ZB measurements iIs positive we see the
error in the fused estimate iIs less than the smaller

error individually. We see the same effect at n = 23,
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% Errors in measurments x!12 and x23 versus percentage fusion error (scenario nol)

Fig (5.5)

L2) represents the percentage error in the noisy
measurements X2 in low-noise case iIn scenario nol 1iIn
X position.

(PEX23) represents the percentage error iIn the noisy
measurements xZB 1n low-noise case In scenario nol 1In
X position.

(pEx_T) represents the percentage error iIn the fused
estimate for Ilow-noise case iIn scenario nol 1In X

position.
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Errors in xfuse versus standard deviation (scenario nol)

Figure (56.6)

xfuse_err_f represents the errors 1in the fused
estimate in low-noise case 1In scenario nol iIn X
position.

stdev represents the square root of PO(L,I), the
theoretical standard deviation of the errors iIn the
fused estimate iIn low-noise case in scenario nol 1iIn

X position.
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25, and n = 34.

Figure (5.7) shows the actual errors iIn the noisy
measurements y» and the theoretical standard
deviation of the errors iIn low-noise case In scenario
nol iIn y position.

We see from figure (5.7) between n = 5 and n = 6, the
magnitude of the error increases from 0.18 to 0.5. We
also note the standard deviation increases from 0.29
to 0.36.

In general, we can see from this Tfigure the
theoretical standard deviation tracks the magnitude
of the errors with a few exception at n = 18, for

example.



Errors in y!2 measurements versus standard deviation (scenario nol)

Figure (G.7)

----yl2_err represents the actual errors iIn the noisy

measurements y»R in low-noise case 1In scenario no.

stdev represents square root of Pzl2(2,2), the
theoretical standard deviation of the errors
according to that first-order approximation to the

covariance matrix.
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Figure (56.8) shows the actual errors iIn the noisy
measurements y2ZB and the theoretical standard
deviation of the errors i1n low-noise case In scenario
nol In y postion.

We can see from Ffigure (6.8) that yZ noisy
measurements are more accurate than yP noisy
measurements. AIso we can see that most of the errors
are less than 0.11 and the standard deviation of 0.11
is close to the numeric one. We see from figure (5.8)
the standard deviation is approximately constant for

all values of n.
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Errors in y23 measurements versus standard deviation in (scenario nol)

Figure (56.8)

---- Y23 err represents the actual errors iIn the noisy

measurements yZB In low-noise case in scenario nol in
y position.

stdev represents the square root of P223(2,2), the
theoretical standard deviation of the errors
according to that Tfirst-order approximation to the
covariance matrix In low-noise case In scenario nol

in y position.
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Figure (5.9) shows the percentage errors in the fused
estimate in low-noise case iIn scenario nol in the y
position.

We can see that the noisy measurements yZ are more
accurate than the y»R noisy measurements. The
improvement offered by the fusion algorithm 1is
obvious from the figure. The fused estimate clips the
peak errors in both y12, and y23. For example at n =
28 the error in yR is positive and in yZB is negative.
We see the error iIn the fused estimate is smaller
than the smallest magnitude error which is the error
in y23. At n = 29 the same effect 1is obvious. The
error In yI2 iIs negative and the error iIn y23 is
positive. We see the error iIn the fused estimate 1is
smaller than the smallest magnitude error which 1is
the error In y23. We observe the same effect at n =
18, 21, 22, 23, and between n = 42 to n = 50 (the
errors i1n y12, and y2B are of opposite algebric signs) .
The +fusion algorithm produces an error which is
smaller than the smallest one. But we see when the
errors in the measurements y12, and y2B are of the same
algebraic sign, the error in the fused estimate 1is
not less than the smallest measurement error but
clips the peak error and remains close to the smaller
one. We see that at n = 6, both the errors in y12, and
y B are positive, and the fused estimate clips the big
error in yR and is close to y23. We observe the same

effect at n = 12, 13, 20, and n = 41.
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Overall, the figure shows that the fused estimate is

generally better than the individual measurements.

% Errors in measurments y 12 and y23 versus percentage fusion error (scenario nol)

Figure (5.9

pEyl2 represents the percentage error 1iIn the
noisy measurement yI2 in low-noise case In scenario
nol iIn y position.

PEy23 represents the percentage error iIn the noisy
measurement yZ in low-noise case iIn scenario nol 1iIn
y position.

pEy T represents the percentage error in the fused
estimate i1n low-noise case 1In scenario nol iIn vy

position.
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Errors in yfuse versus standard deviation (scenario nol)

03

- % 5 10 15 20 5 30 b 40 45 0

Figure (5.10)

.... yFuse_err represents the errors in the fused estiamte
in low-noise case iIn scenario nol 1In y position.
stdev represents the square root of P0(2,2), the
theoretical standard deviation of the errors in the
fused estimate In y noisy position in low-noise case

in scenario nol.



5.3.1.1 Trace of Covariance Matrices
The fusion algorithm is not designed to minimize the
error iIn the fused measurements, although It achieves
this many times.
It is the criterion of the fusion algorithm to
produce the optimum covariance matrix having a trace
which i1s less than the trace of the individual error
covariance matrices.
Figure (5.11) shows the trace of the error covariance
matrices In low-noise case iIn scenario nol.
From figure (56.11) we can see that the trace of the
optimum error covariance matrix 1is less than the
trace of the iIndividual error covariance matrices pzi2,

and PzZX3.
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Trace of covariance matrices (scenario nol)

Figure (56.11)

tpzl2 represents the trace of the error covariance
matrix between sensor Sl, and sensor S2 in low-noise
case in scenario nol.

tpz23 represents the trace of the error covariance
matrix between sensors S2, and S3 in low-noise case
in scenario nol.

tf represents the trace of the optimum error

covariance matrix in low-noise case iIn scenario nol.
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Figure (6.12) shows the correlation coefficient elements
for the cross-covariance matrix P:i22z which are calculated
by the equations:
Pxizxs = rhollis calculated by theequation (3.33),
P>kys = rhol2is calculated by theequation (3.34),
Pyizxs = rho2lis calculated by the equation (3.35),
and
Pyky2s = rho22 i1s calculated by the equation (3.36).
From figure (5.12) we see all the correlation
coefficients have magnitude less than one. The figure
also shows that there i1s a strong correlation between

the components of the two vectors zIR2 and z23.
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Correlation coefficent of cross-covariance matrix (scenarion nol)

Figure (56.12)
rholl = Pxikkxs represents the correlation between the
noisy measurements x12, and the noisy measurement X2
in low-noise case iIn scenario nol.
rhol2 = pdAZ3 represents the correlation between the
noisy measurements x12, and the noisy measurements yZ
in low-noise case in scenario nol.
rho21 = pyi23 represents the correlation between the
noisy measurements y12, and the noisy measurements X2
in low-noise case in scenario nol.
rho22 = pylR32Z3 represents the correlation between the
noisy measurements y12, and the noisy measurements yZ3

in low-noise case in scenario nol.
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The next section discussion the simulation results for

high-noise case in scenario nol.

5.4 Scenario nol, High-Noise Case

In this section we describe some simulation results
for high-noise case.

The high-noise case has the same geometrical
configuration as the low-noise case. The sensors have
the same pdfs as the low-noise case. The differnce
between the low-noise case and the high-noise case is
in the measurement noilse variances.

Each sensor calculates the true object angle-of-

arrival. These are:

Okt = 45° 0.7854 radians

ox = 71°

1.25 radians

O& = 126.87° = 2.2143 radians
Noise pdfs in the three sensors SI, S2, and S3 are as
follows:

8U = 5 degrees = 0.0873 radians

Cu = 2.88 degrees = 0.0504 radians

8S= 4 degrees = 0.0698 radians

cs

2.83 degrees = 0.0494 radians
8t

6 degrees = 0.1047 radians
at = 2.45 degrees = 0.0428 radians
The same equations as used in the low-noise case are
used to compute the standard deviations above.
As we see the standard deviation of the errors are

larger than in the low-noise case.
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5.4.1 Discussion of Simulation Results, Scenario nol, High-
Noise Case
The computer simulation was run 50 times and the
results are plotted and discussed in the next several
pages.
Figure (5.13) shows the actual errors in the noisy
measurements x12 from triangulation between sensors SI,
and S2. The dotted line represents the actual error in
the noisy measurements x12, and the solid line
represents the square root of PzI2(1,I) in high-noise
case 1In scenario nol iIn x position. The solid line is
the theoretical standard deviation of the errors
according to the first-order approximation to the
covariance matrix. The numeric mean value of the
errors iIn the noisy measurements x22 in figure (5.13)
iIs MxI2_err = - 0.0010. The numeric standard deviation
iIs Sx12_err = 0.3505. This compares Tavourably with
the theoretical standard deviation by the solid line
in the figure. Comparing this Tfigure with Tfigure

(5.3), we see that the errors are now much larger.

Figure (5.14) shows the actual errors in the noisy
measurements xZB obtained by triangulation between
sensors S2, and S3. The dotted line represents the
actual errors in noisy measurements x23, and the solid
line represent the square root of Pz23(l1,I) in high-
noise case in scenario nol. The solid line 1is the

theoretical standard deviation of the errors according
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to the covariance matrix. The numeric mean value of
the errors in the noisy measurements xZ in Tfigure
(5-14) is Mx23_err = -0.0170. The numeric standard
deviation 1is Sx23 _err = 0.1378. This also compares
favourably with the theoretical standard deviation

given by the solid line in the figure.

Figure (5.16) shows the errors in the fused estimate
obtained by fusion of the noisy measurements x12, and
x23. The dotted line represents the errors in the fused
estimate, and solid line represents the square root of
PQ(1,1). The numeric mean value of the errors in the
fused estimate in figure (5.16) 1In x dimension is
xfuse_err = -0.0343. The numeric standard deviation of
the errors in the fused estimate 1is Sxfuse err =

0.1583.

Figure (5.17) shows the actual errors in the noisy
measurements y12 obtained by triangulation between
sensors SI, and S2. The dotted line represents the
actual errors in the noisy measurements y12, and the
solid line represents the square root of PzI2(2,2) , the
theoretical standard deviation of the errors according
to the first-order approximation to the covariance
matrix. The numeric mean value of the errors iIn the
figure 1is Myl2_err = 0.0188. The numeric standard

deviation is Syl2_err = 0.7153.
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Figure (56.18) shows the actual errors in the noisy
measurements y23 from triangulation between sensors S2,
and S3. The dotted line represents the actual errors
in the noisy measurements y23, and the solid line
represents the square root of Pz23(2,2), the
theoretical standard deviation for the errors
according to the first-order approximation to the
covariance matrix. The mean value of the errors in the
figure 1is My23 err = 0.0480. The numeric standard

deviation is Sy23 err = 0.2682.

Figure (5.20) shows the errors in the fused estimate
obtained by fusing the noisy measurements y12, and y23.
The dotted line represents the errors in the fused
estimate in y position, and the solid line reprsenents
the square root of P0(2,2). The numeric mean value of
the errors in the fused estimate in figure (56.20) 1is
yfuse_err = -0.0186. The numeric standard deviation of
the errors 1iIn the fused estimate is sxfuse err =

0.2303 .

The results of the simulations of scenario nol for

high-noise case are discussed in the next several

pages.
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Figure (5.13) shows the actual errors in the noisy
measurements xI2 (Mx12_err) and the numeric standard
deviation of the errors in high-noise case In scenario
nol iIn x position.

We can see from figure (56.13) that the errors in the
noisy measurements x12 have a magnitude bigger than the
magnitude of the errors in the XX noisy measurements
in low-noise case figure (56.3). From figure (6.13) we
see the errors change between negative and positive
values and 1increase and decrease. Also we see the
theoretical standard deviation increases and decreases
in according with the magnitude of the errors. For
example between n = 21, and n = 22 we see the
magnitude of the errors increases from 0.6 to 0.8. We
also note the theoretical standard deviation increases
from 0.5 to 0.65. We also see the same thing between
n = 33 and n = 34 the magnitude of the error decreases
from 0.8 to 0.2. We also note the theoretical standard
deviation decreases from 0.62 to 0.3. Between n = 37,
and n = 43, we see the magnitude of the error
increases and decreases, the theoretical standard
deviation increases and decreases in a like manner. In
general, the standard deviation tracks the magnitude

of the errors.



Errors in x12 measurements versus standard deviation (scenario nol)

Figure (5.13)

....x12_err represents the actual errors iIn the noisy
measurements xX2 in scenario nol high-noise case.
stdev represents the square root of PzI2(1,1), the
theoratical standard deviation of the errors according
to that first-order approximation to the covariance

matrix.
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Figure (56.14) shows the actual errors in the noisy
measurements x2Z and the the theoretical standard
deviation of the errors in high-noise case In scenario
nol iIn X position.

We can see from the figure that x2ZB noisy measurements
are higher quality measurements than the xI2 noisy
measurements because the standard deviation of the
errors in xXZB noisy measurements is smaller than the
stndard deviation of the errors iIn Xx12 noisy
measurements also, the actual errors seen to be
smaller too. Also we cansee from this figure the
theoretical standard deviation tracks the magnitude of
the errors and is close to the numeric one. We see
from figure (.14 the standard deviation 1is

approximately constant for all values of n.
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Errors in x23 measurements versus standard deviation (scenario nol)

Figure (56.14)

X23_err represents the actual errors in the noisy
measurements x2B in a high-noise case iIn scenario nol
in X position.

stdev represents the square root of Pz23 (1.1), the
theoretical standard deviation of that the errors
according to the first-order approximation to the
covariance matrix In a high-noise case iIn scenario nol

in X position.
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Figure (6.15) shows the percentage errors in the fused
estimate iIn high-noise case 1In scenario nol 1iIn X
postion.

From the figure we can see the improvement offered by
the fusion algorithm. It is, immediatly seen that the
fused estimate (the solid line) clips the peak errors
in the noisy measurements. For example at n = 21, we
see the fused measurement clips the large error in the
noisy measurement x12 and remains close to the higher
accuracy noisy measurement x23. We also observe the
same effect at n = 32, 36, 37, 38 and 42 and several
other places. As we noted before when the errors are
of like sign, the fusion algorithm cannot in general
produce an error which is less than the smaller one.
In order to reduce the errors, the fusion algorithm
relies on opposite sign errors to cancel each other
out. With errors of the same sign, this cancellation
iIs not generally possible. For example at n = 38 where
the both of the errors in the noisy measurements x12,
and xB are positive we see the fused measurement clips
the large error which is in the noisy measurement x12,
and and remains close to the higher accuracy noisy
measurement x23. We see the same effect several times
between n=35ton=50.

But when the error in the x12, and x2B are of opposite
algebraic sign, the fusion algorithm produces a
smaller error than the smallest measurement error. For

example at n = 40 where the error iIn the xI2 noisy



Peoentage enror

measurement 1is positive and the error in the noisy
measurement X2 is negative, we see the error iIn the
fused estimate 1is less than the smaller error
individually. We also see the same effect at n = 33,

and at n = 34.

% Errors in measurments x12 and x23 versus percentag fusion error (scenario nol)

Fig (6.15)
(pExI2) represents the percentage error in the noisy
measurements XxI2 in high-noise case in scenario nol in

X position.

---- (PEX23) represents the error iIn the noisy measurements

X2 in high-noise case in scenario nol In x position.

PEx_f represents the percentage error 1in the fused

esimate in high-noise case i1n scenario nol in x position.
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Errors in xfuse versus standard deviation (scenario nol)

Figure (56.16)

xfuse_err represents the errors in fused estimate 1in
high-noise case iIn scenario nol In X position.

stdev represents the square root of PQ (1,1), the
standard deviation of the errors in the fused estimate

in high-noise case in scenario nol iIn x position.
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Figure (56.17) shows the actual errors 1in the noisy
measurements y12, and the theoretical standard
deviation of the errors in high-noise case in scenario
nol in y position.

We see from figure (6.17) between n = 20 and n = 21,
the magnitude of the error increases from 0.5 to 1.45.
We also note the theoretical standard deviation
increases from 0.6 to 1.2.

In general we can see from figure (6.17) the
theoretical standard deviation tracks the magnitude of

the errors.

Figure (5.18) shows the actual errors in the noisy
measurements y2B and the theoretical standard deviation
of the errors in high-noise case in scenario nol iIny
position.

We can see from figure (5.18) that yZB measurements are
more accurate than yI? measurements. The standard
deviation in figure (56.18) is approximately one-half
that of figure (56.17) and the actual errors in both

figures also show this trend.



Errors in yI2 measurements versus standard deviation (scenario nol)

Figure (G.17)
---- yl2_err represents the actual errors 1in the noisy
measurements y12 in high-noise case in scenario nol 1in
y position.
stdev represents the square root of PA2 (2,2), the
theoretical standard deviation of the errors according
to that first-order approximation to the covarince

matrix.



Errors in y23 measurements versus standard deviation in (scenario nol)

Figure (56.18)

y23_err represents the actual errors iIn the noisy
measurements y2ZB in high-noise case in scenario nol 1in
y position.

stdev represent the square root of Pz23(2,2), the
theoretical standard deviation of the errors according
to the first-order approximation to the covariance
matrix @n high-noise case iIn scenario nol iIn vy

position.

82



Figure (56.19) shows the percentage errors in the fused
estimate iIn y position in high-noise case in scenario
nol.

From figure (5.19) we can see the improvement offered
by the fusion algorithm. The fused estimate clips the
peak error in both noisy measurements y12, and y23. For
example at n = 21, the error in the noisy measurements
y12 is positive and large and iIn y2Z is negative and
small, we see that the error in the fused estimate is
smaller than the smallest magnitude error which is in
y23. We see the same effect at n = 32. The error in yR
iIs positive and the error in yZB is negative. We see
the error in the fused estimate is smaller than the
smallest magnitude error which is the error in y23. We
observe the same effect at n = 3, 7, 9, 12, 17, 18,
19, and between n = 39 to n = 46. In there cases the
errors in y12, and y2ZB are of opposite algebraic signs
and the fusion algorithm produces an error which 1is
smaller than the smallest one. But we see when the
errors in the noisy measurements y12, and y2 are of the
same algebraic sign, the fused error is not less than
the smallest measurement error. Instead, it clips the
peak error and remains close to the smaller one. For
example at n = 38, both the errors in y12, and y23 are
positive; we see the fused estimate is close to y23. We

observe the same effect at n = 47, and n = 48.
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% Errors in measurments y12 and y23 versus fusion error (scenario nol)

Fig (5.19)

(pEyl2) represents the percentage error in the noisy
measurement y12 in high-noise case in scenario nol in
y position.

(pEy23) represents the percentage error in the noisy
measurement y2 In high-noise case in scenario nol in
y position.

(pEy_f) represents the percentage error in the fused
estimate in high-noise case iIn scenario nol 1iIn vy

position.
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Errors in yfu.se versus standard deviation (scenario nol)

Figure (56.20)
yfuse _err_f represents the errors in the fused
estimate iIn high-noise case in scenario nol 1iIn y
position.
stdev reprents the square root of P0(2,2), the
theoretical standard deviation of the errors in the
fused estimate iIn high-noise case in scenario nol in

y position.
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5.4.1.1 Trace of Covariance Matrices

Figure (56.21) shows the trace of the error covariance
matrices in high-noise case In scenario nol.

From figure (6.21) we can see that the trace of the
optimum error covariance matrix Is less than the trace
of the individual error covariance matrices PzI2, and
},23. This 1s the criterion of the fusion algorithm to
produce the optimum covariance matrix having a trace
which is less than the trace of the individual error

covariance matrices.



Trace of covariance matrices (scenario nol)

Figure (56.21)

tpzIl2 represents the trace of the error covariance
matrix between sensor SI, and sensor S2 in high-noise
case iIn scenario nol.
tpz23 represents the trace of the error covariance
matrix between sensor S2, and sensor S3 in high-noise
case in scenario nol.

tf represents the trace of the optimum error

covariance matrix in high-noise case in scenario nol.



Figure (6.22) shows the correlation coefficent
elements for the cross-covariance matrix pzizz; e

From figure ((.22) we see all the correlation
coefficents have magnitude less than one. The Tfigure
also shows that there i1s a strong correlation between

the components of the two vectors z12, and zZ3
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Correlation coefficent of cross-covariance matrix (scenarion nol)

Correlation coefficients

Figure (5.22)
rholl = pxi223 represents the correlation between the
noisy measurements x12 and the noisy measurements x23
in high-noise case iIn scenario nol.
... rhol2 = Pxkys represents the correlation between the
noisy measurements x12 and the noisy measurements yZ2

in high-noise case in scenario nol.

rho21 = pyl2x23 represents the correlation between the
noisy measurements y12, and the noisy measurements x2
in high-noise case In scenario nol.

+ + rho22 = pyl2y23 represents the correlation between the
noisy measurements y12, and the noisy measurements y23

in high-noise case iIn scenario nol.
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The next section discusses scenario no2 which is less
favourable for triangulation.
5.5 Scenario Number 2 (no2), Low-Noise Case

Figure (56.23) shows the configuration of the object

and sensors for scenario no2 i1n two dimensions.
represents the noisy angle-of-arrival

measurements data.

represents the true angle value.

Scenario no2 was chosen to give very slant angles for

Oie» 02t1 and O03t. This tests the fusion algorithm in

a situation when even small errors 1iIn angle-of-

arrival measurements can cause large measurement

errors iIn the object position.

As we see from figure (6.23) the sensors have the

same pdfs as in scenario nol. The values used 1iIn

scenario no2 in the low-noise simulation are:

object true position p (x= 8y = 7)

51 location &= 2, yx=14%)
52 location (2= 4, y2=3) and
53 location 3= 5, y3=23)

Each sensor calculates the true object angle-of-
arrival. These are:

Ol =26.56°= 0.4636 radians

o2 =44.99°= 0.7854 radians

03 =53.12°= 0.9273 radians
Noise pdfs 1In three sensors SI, S2, and S3 iIn
scenario no2 low-noise case are the same as iIn the

scenario nol low-noise case these are:
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Figure (5.23) Geometrical configuration of object and sensors
for scemario” no2.



5U = 2 degrees = 0.0349 radians

QU = 1.15 degrees = 0.0202 radians

Sa = 2 degrees = 0.0349 radians

Oa = 1.41 degrees = 0.0247 radians

5t = 2 degrees = 0.0349 radians

as = 0.8193 degrees = 0.0143 radians
The same equations as used In scenario nol are used
to compute the standard deviations above.
As we see, 8S, and 5t are individually one quarter of
the difference iIn the slant angles between sensors S2

and S3.

5.5_.1 Discussion of Simulation Results, Scenario no2, Low-
Noise Case
The computer simulation was run 50 times and the

results are plotted and discussed in the next pages.

Figure (56.24) shows the actual errors iIn the noisy
measurements x12 from triangulation between sensors
SI, and S2. The dotted line represents the actual
error iIn the noisy measurements x12, and the solid
line represents the square root of Pzi2(,I) in
scenario no2 low-noise case In x position. The solid
line iIs the theoretical standard deviation of the
errors according to the first-order approximation to
the covariance matrix. The numeric mean value of the
errors In the noisy measurements xX2 in figure (5.24)

in X dimensional is MxI2_err = 0.0284. The numeric
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standard deviation is SxI12_err = 0.4581.

Figure (5.25) shows the actual errors iIn the noisy
measurements x2ZB obtained by triangulation between
sensors S2, and S3. The dotted line represents the
actual errors iIn the noisy measurements x23, and the
solid line represents the square root of PZ3(l1,1) . The
solid line i1s the theoretical standard deviation of
the errors according to the first-order approximation
to the covariance matrix. The numeric mean value of
the errors in the noisy measurements xZ iIn figure
(5.25) 1i1s Mx23_err = 0.1791. The numeric standard
deviation Sx23 err = 0.7075.

Figure (56.27) shows the errors in the fused estimate
obtained by fusion of the noisy measurements x12, and
x23. The dotted Hline represents the errors in the
fused, and the solid line represents the square root
of PO(L,I) . The numeric mean value of the errors 1iIn
the fused estimate in figure (5.27) i1n x dimension is
Mxfuse _err = -0.1230. The numeric standard deviation

of the errors i1s Sxfuse err = 0.2589.

Figure (6.28) shows the actual errors in the noisy
measurements yPR obtained by triangulation between
sensors Sl, and S2. The dotted line represents the
actual errors iIn the noisy measurements y12, and the

solid line represents the square root of PzI2(2,2), the
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theoretical standard deviation of the errors
according to the covariance matrix. Thenumeric mean

value of the errors 1iIn the figure is Myl2 err =

0.0263. The numeric standard deviation is Syl2 err

0.3334.

Figure (56.29) shows the actual errors iIn the noisy
measurements yZB obtained by triangulation between
sensors S2, and S3. The dotted line represents the
actual errors in the noisy measurements yZ3, and the
solid line represents the square root of P2 (¢ ,2 ), the
theoretical standard deviation of the errors
according to the covariance matrix. Themean value of
the errors in the figure 1iIs My23 err = 0.2220. The

numeric standard deviation is Sy23 err = 0.8934.

Figure (5.31) shows the errors in the fused estimate
obtained by the fusion of the noisy measurements y1/
and y23. The dotted line represents the errors iIn the
fused estimate, and the solid line represents the
square root of P0(2,2) . The numeric mean value of the
errors iIn the fused estimate in the Tfigure 1is
Myfuse_err = 0.1093. The numeric standard deviation

of the errors is Syfuse err = 0.3198.

The results of the simulations of scenario no2 for
low-noise case are discussed In the next several

pages.



Figure (6.24 ) shows the actual errors in the noisy
measurements xI (Mxl2_err) and the theoretical
standard deviation of the errors iIn scenario no2 1in
low-noise case In X position.

We can see from the figure that the errors in the
noisy measurements xI2 in scenario no2 are larger
than the errors iIn the noisy measurements X2 1in
scenario nol. In general we see the theoretical
standard deviation tracks the magnitude of the

errors.

Figure (56.25) shows the actual errors iIn the noisy
measurements x23, and the theoretical standard
deviation of the errors in low-noise case In scenario
no2 1n X position.

We can see from the figure that the noisy
measurements xZBare less accuracte than the noisy
measurements xIPbecause the errors and that the
standard deviation of the xZ noisy measurements are
bigger than the errors and the standard deviation of
the noisy measurements x12. We see from the figure

that the standard deviation tracks the magnitude of

the errors.
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Errorsin x!2 measurements versus standard deviation (scenario no2)

Figure (5.24)

x12_err represents the actual errors iIn the noisy
measurements x12 in low-noise case In scenario no2 in
X position.

stdev represents the square root of PzI2(1,1), the
theoretical standard deviation of the errors
according to the Tfirst-order approximation to the

covariance.
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Errors in x23 measurements versus standard deviation (scenario no2)

Figure (56.25)

---. X23 err represents the actual errors iIn the noisy

measurements x2 in low-noise case In scenario no2.
stdev represents the square root of PzlI2(2,2), the
theoretical standard deviation of the errors
according to the Tfirst-order approximation to the

covariance matrix.
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Figure (6.26) shows the percentage errors 1iIn the
fused estimate in low-noise case In scenario no2 1in
X position.

We observe from the figure that the fused estimate
(solid line) clips the peak errors in the
measurements. We see the fused estimate clips the
large errors 1iIn the noisy measurements x23, and
remains close to the higher accuracy noisy
measurements X2 when the errors in the two noisy
measurements x12 and xZB are the of same algebraic
sign. For example at n = 18, both the errors in the
noisy measurements x12, and X2 are positive; we see
the fused estimate is close to x12. We observe the
same effect at n = 21, 43, and n = 46. But when the
errors in the noisy measurements x12, and xZB are of
opposite algebraic signs, the fusion algorithm
produces a smaller error than the smallest
measurement error. For example at n = 3 , the error
in the noisy measurements x12 is negative and small
and iIn the noisy measurements xZ2ZB 1iIs positive and
large, we see that the error iIn the fused estimate is
smaller than the smallest magnitude error which is iIn
x12. We see the same effect at n = 4, 6, 10, 12, 24,

25, and many cases between n = 27, and n = 50.
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Errors in measunnents x12 and x23 versus percentage fusion error (scenario no2)

percentage error

Figure (56.26)

pEx12 represents the percentage error 1i1n the noisy
measurements x12 in low-nolise case In scenario no2 1in
X position.

-.-- PEX23 represents the percentage error 1in the noisy
measurements x2Z In low-noise case 1In scenario no2 1in
X position.

pExX_f represent the percentageerror in  the fused

estimate i1n low-noise case 1In scenario no2 in X

position.
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Errors in xfuse versus standard deviation (scenario no2
1 1 1 1 1 1 e

Figure (5.27)

xfuse _err_T represents theerrors 1In the fused
estimate i1n low-noise case iIn scenario no2in X
position.

represents the square root of PO(l,l), the theoretical
standard deviation of theerrors in the fused
estimate in low-noise case In scenario no2in X

position.
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Figure (5.28) shows the actual errors iIn the noisy
measurements yI» and the theoretical standard
deviation of the errors in low-noise case In scenario
no2 .

In general, we see from the figure the theoretical
standard deviation tracks the magnitude of the

errors.

Figure (5.29) shows the actual errors in the noisy
measurements y2Z and the theoretical standard
deviation of the errors in low-noise case iIn scenario
no2 .

We can see from the figure the noisy measurements y23
are less accurate than the noisy measurements yZP
because the errors In the noisy measurements yR are
less than the errors iIn the noisy measurements yZ23,
also the standard deviation of the errors in y2» is
less than the standard deviation of the errors in yZ3.
We see the standard deviation in the figure tracks

the magnitude of the errors.
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Errors in y12 measurments versus standard deviation (scenario no2)

Figure (56.28)

.--- yl2 err represents the actual errors in the noisy

measurements y22 in low-noise case iIn scenario no2 in
y position.

stdev represent the square root of P212(2,2), the
theoretical standard deviation of the errors
according to the Tfirst-order approximation to the

covariance matrix.
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Errors in y23 measurements versus standard deviation (scenario no2)

Figure (56.29)

---.- y23 err represents the actual errors in the noisy
measurements Yy:s In low-noise case 1In scenario no: .
stdev represents the square root of Pz3;(2,2), the
theoretical standard deviation of the errors
according to the Tfirst-order approximation to the

covariance matrix.
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Figure (6.30) shows the percentage errors 1iIn the
fused estimate in y position in low-noise case 1In
scenario no: iIn y position.

From the figure we see when the errors iIn the noisy
measurements y12, and y.s are of opposite algebraic
signs the fused estimate clips the peak error in both
noisy measurements y12, and yzs and the fused error is
smaller than the smallest one. For example at n = 3,
the error In the noisy measurements Yy IS positive
and large and In y» 1iIs negative and small, we see
that the error iIn the fused estimate is smaller than
the smallest magnitude error which is In y12. We see
the same effect at n = 4, 5, 10, 12, 14, 17, 24, and
In many cases between n = 27 and n = 50. But we see
when the errors iIn the noisy measurements y12, and yzs
are of the same algebraic sign, the error in the
fused estimate 1i1s not less than the smallest
measurement error. Instead, 1t clips the peak error
and remains close to the smaller one. For example at
n = 33, both the errors in the noisy measurements y1/
and y2s are positive; we see the fused estimate is
close to y12. We see the same effect at n = 34 and n

= 46.
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Errors in measurments y 12 and y23 versus percentage fusion error (scenario no2)

Figure (5.30)

- pEyl2 represents the percentage error in the noisy
measurements yiz in low-noise case In scenario no: in
y position.

. PEy23 represents the percentage error in the noisy
measurements yz; In low-noise case In scenario no: 1iIn
y position.
pEy_ T represents the percentage error iIn the fused
estimate in Qlow-noise case 1In scenario no: 1In Yy

position.
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Errors in yfuse versus standard deviation (scenario no2)

... yfuse_err

stdev

Figure (56.31)

. ... xFfuse_err represents the errors in the fused estimate
in low-noise case 1n scenario no: 1In y position.
stdev represents the square root of Po(2,2), the
theoretical standard deviation of the errors 1iIn the
fused estimate iIn low-noise case In scenario no: iIn

y position.
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5.5.1.1 Trace of Covariance Matrices
Figure (5.32) shows the trace of the error covariance
matrices iIn low-noise case In scenario no: .
From the figure we see that the trace of the optimum
error covariance matrix iIs less than the trace of the

individual error covariance matrices Pz, and PzZX.
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Trace of covariance matrices (scenario no2)
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Figure (56.32)

tpzl: represents the trace of the error covariance
matrix between sensor Sl, and sensor S2 in low-noise
case In scenario no: .

tpz23 represents the trace of the error covariance
matrix between sensor S2, and sensor S3 iIn low-noise
case 1In scenario no: .

tf represents thetrace of the optimum error

covariance matrix in low-noise case In scenario no: .
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Figure (5.33 ) shows the correlation coefficient
elements for the cross-covariance matrix pze:s In low-
noise iIn scenario no: .

From the figure we see all the correlation
coefficients have magnitude less than one. The figure
also shows that there is a strong correlation between

the components of the two vectors zI2, and z23.



correlation coefficients

++++

Correlation coefficent of cross-covariance matrix (scenario no2)

Figure (56.33)
rholl = pxkxs represents the correlation between the
noisy measurements x12, and the noisy measurements Xos
in low-noise case In scenario no:z .
rhol: = Px13s: represents the correlation between
noisy measurements x12, and the noisy measurements Yz
in low-noise case In scenario no: .
rho.: = Pykx: represents the correlation between the
noisy measurements y1»” and the noisy measurements Xas
in low-noise case In scenario no:z .
rho.. = pykys represents the correlation between the
noisy measurements y1”Z and the noisy measurements Yy

in low-noise case In scenario no: .
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The next section discusses the simulation results for
high-noise case iIn scenario no: .
5.6 Scenario no2, High-Noise case

In this section we describe some simulation results
for high-noise case, scenario no: .
The high-noise case has the same (geometrical
configuration as the low-noise case. The difference
between the high-noise case and the low-noise case 1is
in the measurement noise variances.
Each sensor calculates the true object angle-of-
arrival . These are:

Olt =26.56° =0.4636 radians

0Zx =44.99° =0.7854 radians

0x =53.12° =0.9273 radians
Noise pdfs iIn the three sensors S1,S52, and S3 are as
follows:

50 = 5 degrees = 0.0873 radians

QU = 2.88 degrees = 0.0504 radians

8S = 4 degrees = 0.0698 radians

as = 2.83 degrees = 0.0494 radians

st

1
(2]

degrees = 0.1047 radians

Ct = 2.45 degrees = 0.0428 radians
The same equations as used iIn the low-noise case are
used to compute the standard deviation above. The
difference between 02t and 03t Is s degrees. But with
8S = 4 degrees and st = s degrees, this represents a
very large noise component. Indeed, the errors could

well exceed the magnitude of the difference (3 - o020
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resulting iIn very large errors iIn the triangulation
process between S2 and S3. In addition, the Tfirst-
order approximation to the covariance matrix Pzs for
the noisy position vector z: will also have large
errors because we see from figure (5.1) and section
5.2.4 that we need the noisy position measurements iIn
equation (3.16) to compute the partial derivative
matrix AZ23. These noisy position measurements are not
accurate and have large errors. Therefore the partial
derivative matrix Az will not be accurate. For these
reasons the covariance matrix of the noisy position

vector Pz»:; will not be accurate too.

5.6.1 Discussion of Simulation results. Scenario no2, high-
Noise Case
The computer simulation was run 50 times and the
results are plotted and discussed in the next several

pages.

Figure (56.34) shows the actual errors in the noisy
measurements xiz from triangulation between sensors
SI, and S2. The dotted line represents the actual
errors iIn the noisy measurements x12, and the solid
line represents the square root of Pz (1,1) iIn high-
noise case 1In scenario no2 in X position. The solid
line i1s the theoretical standard deviation of the
errors according to the first-order approximation to

the covariance matrix. The numeric mean value of the
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errors iIn the noisy measurements Xz In Ffigure (6.34)

-0.1310. The numeric standard deviation

iIs MxI12_err

is Sx12_err 0.7364. This value 1s slightly off with
respect to the theoretical standard deviation given
by the solid line in the figure. This 1iIs due to the
high noise situation and slant triangulation lines.
Comparing this figure with figure (5.24), we see that
the errors and the standard deviation are now much

larger.

Figure (6.35) shows the actual errors in the noisy
measurements x2 TFfrom triangulation between sensors
S2, and S3. The dotted line represents the actual
errors 1In the noisy measurements x23, and the solid
line represents the square root of Pzs;(l,l) . The solid
line is the theoretical standard deviation of the
errors according to the first-order approximation to
the covariance matrix. The numeric mean value of the
errors in the noisy measurements Xz In the Ffigure 1is
Mx23_err = 0.1565. The numeric standard deviation is
Sx23 _err = 3.713. Clearly there is a very significant
difference Dbetween the actual errors and the
theoretical standard deviation given by the solid
line. This is due to the high noise situation because
of the Hlarge noise 1In the triangulation process
between sensors S2, and S3. The difference between
02t, and O&X 1s s degrees, but sS = 4 degrees and st =

¢ degrees which represent a very large noise



component.

Figure (56.37) shows the errors iIn the fused estimate
iIn X position obtained by fusion of the noisy
measurements x12, and x23. The dotted line represents
the errors iIn the fused estimate, and the solid line
represents the square root of Po(1,1). The numeric
mean value of the errors in the fused estimate 1In
figure (5.37) iIn x dimension iIs Mxfuse_err = -0.5153.
The numeric standard deviation of the errors in the
fused estimate i1s Sxfuse _err = 0.5385. Compared with
low-noise mean value of the error in the fused
estimate in low-noise case which is equals o .2 , we
see the numeric mean value iIn high-noise equals fTive
times the numeric mean value of the errors iIn low-
noise case. This 1is quite large. But it is a small
percentage (6.25%) compared with the true value of
the object position In x position which i1s equals to
s . Also we see the theoretical standard deviation is
varying around the numeric value of 0.5385. Although
the mean value 1is slightly biased the standard

deviation is reasonably accurate.

Figure (56.38) shows the actual errors iIn the noisy
measurements y:2 from triangulation between sensors
SI, and S2. The dotted line represents the actual
errors in the noisy measurements y12, and the solid

line represents the square root of Pz (2,2) . The solid
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line 1s the theoretical standard deviation of the
errors according to the first-order approximation to
the covariance matrix. The numeric mean value of the
errors in the noisy measurements yi. iIn the figure 1is
Myl2_err = -0.123s . The numeric standard deviation is
Syl2 err = 0.5667. From the figure we see no single
value for the theoretical standard deviation-it has
a large variation. The numeric standard deviation 1is

at the bottom of the theoretical values.

Figure (5.39) shows the actual errors in the noisy
measurements Yy Tfrom triangulation between sensors
S2, and S3. The dotted line represents the actual
errors iIn the noisy measurements y23, and the solid
line represents the square root of Pz:(2,2) . The solid
line i1s the theoretical standard deviation of the
errors according to the first-order approximation to
the covariance matrix. The numeric mean value of the
errors in the noisy measurements yz In the figure 1Iis
My23_err = 0.2896. The numeric standard deviation 1is
Sy23 err = 4.2797. Clearly there 1i1s a very
significant difference between the actual errors
(dotted line) and the theoretical standard deviation
(solid line). This is obvious in the figure (5.39) at
n = 4 for example. We see the theoretical standard
deviation 1is greater than the actual error by about
3 times. We see the same thing at n = 29, 36, and n

= 37. This is due to the high noise situation because
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of the large noise iIn the triangulation process
between sensors S2, and S3. The slant angles iIn the
triangulation process make the situation worse.
Referring to the y: noisy measurements iIn low-noise
case 1In scenario no2 figure (5.29) we see that the
theoretical standard deviation varies around the
numeric standard deviation of 0.8934. Compared with
the y2 noisy measurements in high-noise case iIn the
same scenario Tigure (6.39), the numeric standard
deviation i1s 4.279 which is approximately four times
bigger than the actual standard deviation of the
measurements iIn low-noise case In the same scenario.
This means that the covariance matrix IS Inaccurate

in the high-noise case.

Figure (6.41) shows the errors i1n the fused estimate
in y position obtained by fusing the noisy
measurements y12, and y23. The dotted line represents
the errors iIn the fused estimate in y position, and
the solid line represents the square root of Po (2,2).
The numeric mean value of the errors iIn the fused
estimate i1n figure (5.41) 1s Myfuse err = -0.4673.
The numeric standard deviation of the errors in the
fused estimate is Syfuse err = 0.6220. Compared with
the mean value of the error iIn low-noise which 1is
equal to 0.1093, we see i1t is about four times bigger

in high-noise case. This is a quite large. But 1t is

a small percentage (8.87%) compared with the true
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value of the object y position which is equal to 7.
Also we see from the figure the theoretical standard

deviation varies around the numeric value.

The results of the simulations of scenario no2 for
high-noise case are discussed iIn the next several

pages.

Figure (6.34) shows the actual errors in the noisy
measurements xiz (MxI2_err) and the numeric standard
deviation of the errors 1iIn high-noise case 1In
scenario no: 1In X position.

We can see from figure (5.34) the errors in the noisy
measurements Xxiz have a magnitude bigger than the
magnitude of the errors iIn the Xz noisy measurements
in low-noise case fTigure (5.24). In general we see
the theoretical standard deviation tracks the

magnitude of the errors.

Figure (5.35) shows the actual errors iIn the noisy
measurements Xz and the theoretical standard
deviation of the errors iIn high-noise case 1In
scenario no: 1In X position.

We can see from the figure that the errors in the X
noisy measurements have a magnitude much bigger than
the magnitude of the errors iIn the noisy measurements
X2s In low-noise case iIn figure (6.25). Also we see

from the figure that X noisy measurements are less
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accurate than xiz noisy measurements in figure (56.34)
because the errors and the standard deviation of the
errors In Xz NOoiIsSy measurements are much bigger than
the errors and the standard deviation of the errors
Iin X2 noisy measurements. We see from figure (56.35)
there is a very significant difference between the
actual errors and the theoretical standard deviation.
As we mentioned earlier the large errors in the
triangulation process between sensors S2, and S3
makes the measured position vector z: very noisy.
Therefore the covariance matrix of the noisy position

vector zzz (PZs) will not be accurate.
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Errors in x12 measurements versus standard deviation (scenario no2)

Figure (56.34)

---- xlz_err represents the actual errors 1iIn the noisy
measurements xiz In high-noise case iIn scenario no: 1In
X position.
stdev represents the square root of Pz (1,1), the
theoretical standard deviation of the errors
according to the Tfirst-order approximation to the
covariance matrix iIn high-noise case iIn scenario no:

In X position.
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Errors in x23 measurements versus standard deviation (scenario no2)

Figure (56.35)

.- .. X23_err represents the actual errors iIn the noisy
measurements Xzz In high-noise case In scenario no: in
X position.
stdev represents the square root of Pzs(l,l), the
theoretical standard deviation of the errors
according to the Tfirst-order approximation to the
covariance matrix In high-noise case iIn scenario no:

In X position.
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Figure (6.36) shows the percentage errors 1iIn the
fused estimate,in high-noise case In scenario no: 1in
X position.

From the figure we see that the fused estimate (the
solid [line) clips the large errors in the noisy
measurements x23, and remains close to the higher
accuracy noisy measurements xiz when the errors in the
two noisy measurements x12, and X2 are of the same
algebraic sign. For example at n = 3 where the both
of the errors iIn the noisy measurements x12, and X
are positive we see the fused estimate measurements
clips the large error iIn the noisy measurement Xx23,
and remains close to the higher accuracy measurement
x12. We see the same effect at n = 37, 47, and n = 48.
But when the error in the noisy measurements x12, and
X2 are of opposite algebraic sign, the Tfusion
algorithm produces a smaller error than the smallest
measurement error. For example at n = 11 where the
error in the noisy measurement Xz IS negative and the
error in the noisy measurement Xz: IS positive , we
see the fused error iIn the fused estimate 1is less
than the smaller error individually. We also see the
same effect at n = 19, 21, 31, 32 39, and n = 43.

In general we see from figure (56.36) that the fused
estimate is superior to the individual measurements.
This 1s surprising since the measurements are
relatively noisy and the covariance matrix Is quite

inaccurate.
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Errors in measurroents x12 and x23 versus percentage fusion error (scenario no2)

Figure (56.36)

pEx12 represents the percentage error iIn the noisy
measurements Xiz In high-noise case In scenario no: 1iIn
X position.

pPEx23 represents the percentage error in the noisy
measurements Xz in high-noise case In scenario no: in
X position.

pEx_F represents the percentage error in the fused
estimate 1i1n high-nose case 1In scenario no: 1In X

position.
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Errors in xfuse versus standard deviation (scenario no2)
1 1 ) 1 1 1 ! 1 r

Figure (G.37)

--.. XFus_err represents the errors iIn the fused estimate

in high-noise case iIn scenario no: 1In X position.

stdev represents the square root of Po(l,I), the
theoretical standard deviation of the errors in the
fused estimate in high-noise case In scenario no: in

X position.
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Figure (5.38) shows the actual errors iIn the noisy
measurements y12, and the theoretical standard
deviation of the errors iIn high-noise case in
scenario no: iIny position.

We see from the figure the actual errors iIn the noisy
measurements y:» In high-noise case are bigger than
the actual errors iIn the noisy measurements yi 1In
low-noise case 1In scenario no2 Tfigure (6.28). Also
the theoretical standard deviation 1iIs seen to be
bigger too.

In general we can see from the figure the theoretical
standard deviation tracks the magnitude of the

errors.

Figure (5.-39) shows the actual errors iIn the noisy
measurements y23, and the theoretical standard
deviation of the errors 1In high-noise case iIn
scenario no: 1In y position.

We can see from the figure that the noisy
measurements Yy are less accurate than the noisy
measurements yi In Ffigure (5.38). We see from figure
(5.39) there i1s a very significant difference between
the actual errors and the theoretical standard
deviation because of the very large errors in the
triangulation process between sensors S2, and S3. The
noisy position vector zs makes a very large error in
the Tirst-order approximation to the covariance

matrix PZ23.
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Errors in yl2 measurments versus standard deviation (scenario no2)

Figure (5.38)

---. yl2_err represents the actual errors in the noisy
measurements y:i2 In high-noise case iIn scenario no: 1In
y position.
stdev represents the square root of Pz (2,2), the
theoretical standard deviation of the errors
according to the Tfirst-order approximation to the

covariance matrix.
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Errors in y23 measurements versus standard deviation (scenario no2)

Figure (5.39)

-.--. y23 err represents the actual errors 1iIn the noisy
measurements Yy In high-noise case In scenario no: 1iIn
y position.
stdev represents the square root of Pz @,2)/ the
theoretical standard deviation of the error according
to the fTirst-order approximation to the covariance
matrix 1In high-noise case 1In scenario no: 1In Yy

position.
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Figure (5.40) shows the percentage errors in the
fused estimate In y position iIn high-noise case 1In
scenario no:z .

From figure (6.40) we can see the fusion algorithm
clips the peak error in both noisy measurements y12,
and y23. For example at n = 19, the error in the noisy
measurement y:> 1S negative and small and iIn the noisy
measurement y: IS positive and large, we see that the
fused error is smaller than the smallest magnitude
error which iIs iIn y12. We see the same effect at n =
28, 43, and n = 44. But we see when the errors iIn the
noisy measurements y12, and vy are of the same
algebraic sign, the fused error is not less than the
smallest measurement error. Instead, 1t clips the
peak error and remains close to the smaller one. For
example at n = 5, both the errors 1iIn the noisy
measurements y12, and y. are positive; we see the
fused estimate is close to y12. We see the same effect
at n = 10, 17, and n = 40. The fusion algorithm
occasionally gives a poorer estimate than the best
measurement. For example at n = 25 we see the error
in the fused estimate 1s not smaller than the
smallest errors In the noisy measurements y12, and yZ23.
We see the same thing at n = 26, 42, 46, and n = 47.
This i1s not a fault iIn the algorithm, but a fault in
the high noise measurements themselves. On average,
however, we see that the fused estimate clips the

peak errors iIn the noisy measurements In most cases
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and is often superior to the best measurements. This
IS surprising since figure (.39 shows the
covariance matrix Pz23 iIs a very inaccurate
representation of the actual errors. Because of the
presence of noise, even under optimal conditions all
algorithms will sometimes yield poorer results than
the measurements themselves. The iImportant thing is

that on average the algorithm gives better results

than the raw data.
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Errors in measurments y 12 and y23 versus percentage fusion error (scenario no2)

peroentage  ervor

Figure (56.40)

PEyl2 represents the percentage error in the noisy
measurement y: In high-noise case 1In scenario no: 1In
y position.

--- PEy23 represents the percentage error in the noisy
measurements yz3 In high-noise case In scenario no: 1iIn
y position.
pEy_f represent the percentage error in the fused
estimate 1In high-noise case 1In scenario no: iIn y

position.
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Errors in yfuse versus standard deviation (scenario no2)

Figure (5.41)

. Yfuse_err represents the errors in the fused estimate
in high-noise case iIn scenario no: 1In y position.
stdev represents the square root of Po(2,2), the
theoretical standard deviation of the errors in the
fused estimate in high-noise case In scenario no: 1In

y position.



5.6 .1.1 Trace of Covariance Matrices

Figure (56.42) shows the trace of the error covariance
matrices in high-noise case in scenario no: .

From the figure we see the trace of the optimum error
covariance matrix is always less than the trace of
the individual error covariance matrices Pzl2, and PZX.
Clearly the trace of P2 is much smaller than the
trace of PzZ23. Nevertheless, the trace of the optimum
covariance matrix 1iIs always less than the trace of
PzI2. From figure (56.42) we see the trace of the
optimum covariance matrix (the solid line) 1is quite
close to the trace of the covariance matrix Pz (the
dashed line) and some times is nearly the same. For
example at n = 28, 29, the optimum covariance matrix
has a trace which i1s almost the same as (but slightly
less than) the trace of PzI2. The reason for this that
since Pzs; has much a larger trace compared to the high
accuracy Pzl2, the algorithm ignores P and simply
uses Pz alone. At n = 21, the trace of P.z2 and Pus
are about the same. Therefore the trace of the
optimum covariance matrix is now much smaller than
either of the covariance matrices. We see when both
covariance matrices have a trace which IS
approximately the same, the trace of the optimum
covariance matrix is then much smaller that either.
But when the trace of one covariance matrix IS much
larger than the other the trace of the optimum

covariance matrix is close to the smaller trace.
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Trace of covariance matrices (scenario no2)
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Figure (5.42)

- tpzl: represents thetrace of the error covariance
matrix between sensor SI and sensor S2 iIn high-noise
case 1In scenario no: case.

. tpz23 represents thetrace of the error covariance

matrix between sensor S2, and sensor S3 inhigh-noise

case 1In scenario no: .
tf represents the trace of the optimum error

covariance matrix in high-noise case In scenario no: .

case.
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Regardless of the size of the trace of P.: and PZX
the trace of the optimum covariance matrix is always
less than the trace of either of them. The fusion
algorithm i1s designed to produce an optimum
covariance matrix which has a trace less than the
trace of the individual error covariance matrices.The
algorithm does not know that in the high noise case
In scenario no: , the covariance matrices are not
accurate. The optimum covariance matrix may not
accurately represent the statistics of the fused
estimate. This is not the fault of the algorithm. It
is the fault of the high-noise case and the first-
order approximation. Also the algorithm does not know
the pdf which 1i1s governing the errors iIn the data.
The only things known by the algorithm are the
covariance matrices and the noisy triangulation

position measurements.

Figure (56.43) shows the correlation coefficient
elements of the cross-covariance matrix pze:s .

From the figure we see all the correlation
coefficients have magnitude less than one. The figure
also shows that there is a strong correlation between

the components of the two vectors z12, and z23.
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++++

Correlation coefficent of cross-covariance matrix (scenario no2)

Figure (56.43)
rholl = p«2x2s represents the correlation between the
noisy measurements x12, and Xz In high-nois case 1iIn
scenario no: .
rhol: = px22s represents the correlation between the
noisy measurements x12, and y:s iIn high-noise case in
scenario no: .
rhoz: = pykxzs represents the correlation between the
noisy measurements y12, and Xz iIn high-noise case in
scenario no: .
rhoz: = pyiey2s represents the correlation between the
noisy measurements y12, and y: iIn high-noise case 1iIn

scenario no: .
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In the next chapter we investigate the 1impact of
high-order terms 1iIn the approximation to the error

covariance matrix.
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CHAPTER VI
HIGH-ORDER TERMS IN COVARIANCE MATRIX

In this chapter, we invesitgate the impact of using
higher-order terms iIn the approximation to the error
covariance matrix.

We see what i1mprovement results by including the
second-order terms in the Taylor expansion of the

covariance matrix.

6.1 The Second-Order Terms of TAYLOR®"S Expansion FORMULA
From the equation (2) chapter VI in reference [12] we
see the second-order terms iIn the expansion of T(X,y)

in 2-dimensional space for TAYLOR®"S FORMULA are:

T(x,y) = f{x0,y0)+DIf{x,y)bx + D2F(X,y) Ay +

-1 [D?F(X,y) Lx2+D%F{x,y) Ay 2 + 2DID2F[X,y) Ax Ay] 6-1)

where:

AX = (X - X0)

Ay = (Y - VY]

DtF(x,y) = 5F(x,y)/9x
D2F(x,y) = 3Ff(x,y)/dy

Dxf (X,y) = 9F(x,y)/dx.

D22 F(X,y) = 3:F(x,y)/dy: and

DX02F (X,y) = 32fF (X,y)/3x3y

In our approach there are two noisy measurements
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vectors z12, and z23:

*12 =

and

23

yZ3

These are expanded to include the second-order terms

as fTollows:

* w2 2™ +ai1”™"®1+ai127e2+ "0ai3x"®l + Saigjt''2+a15x®1"\k2

Where:

au = Djf = dx12/901 and is given by the equation (3.7)

aPl = D2F = dx12/902 and is given by the equation (3.8)

ajg -D2F - 32X12 = d \"™XI2* = 9 fa 1
1 "aef A r["AT] S0T[ Il

o eX12 g rrw2is o
aidx ~ "2. £ ~ dgel 6%2 [%——3 Eﬁj [a124 and
- -pp ., &X12 9 rd 2 9 r_
) ae/\e; -5 L-&Z—J *~ -33- lai2d

From equation (6.1) we compute the second-order

derivatives for the noisy measurement yi: as follows:



y]2 » Y12 (Olt,OZ t)+a.2 1AO: +a:. A0, +— a13yA0i+— a14yA02 +a15yA01A02

Where:
ai

az?2

13y’

14y

5y~

N2
“aef

Y2
00,002

S5yi2/d91 and given by the equation (3.9),
Oy1>”302 and given by the equation (3.10),

d rdyl2 d r ,
aer[_ae7 ] ool [ 21
_a OY£2] _0
00, 00 00,
o rai1 _ o r, i
00,Loo2Jd ooX: 2]

A similar set of equations hold to compute the second

derivatives terms for the noisy measurements x23, and

y2s as fTollow:

*23 = *12(02t"03t) +ailA02+ai2A 03+~ ai3XAO0i+-]aiddA 03+ai5xA 02A 03

and is given by the equation (3.14)
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3
ab = R and ks Sfiven by the equation (3 .15)

00

, _N%_d'dx22 ar_l

13x" del ~ de2l m2] ~ tt2 Laild
_N23 3 ,dxB dr , d

MX 1isr "ssri*sr: a"L

= d r™*231 Nora 1l

La I2-1

®15x — Y !-m Jz Wﬁ

From the equation (6.1) we compute the noisy

measurements Y. Includes the high-order terms as

follows:

~23 43 (BRBRBE) +a21/\@2+a22/\R3+ "aidy ®i + 5ai4>AR3+S: 5yA02A03

where:

al = 52 s given by the equation (3 .16)

&

and. Is given by the equation (3.17)

139

(65)



Of course we use Om iInstead of Ot since we only

measure o Im.

6.2 The Second-Order Terms for the Noisy Measurements Xia,
and ym

6.2.1 Calculation of al¥ for the Noisy Measurement XxI2

r
al3x 2ft |_
0

where
dx12 sec201 [(2-xDtan02 + (yi-y2)]
3N 001 (tcirn1 -tan02) 2
Therefore

s ,Sec01[ tan02+(yx-y2)1~
ai3x 00, (tanOj"-tan0j)2



After some algebra, we get

[ tan02+ {yx-y2)]sec”~tanGi (tar™-tan0J?
313x 2 (tanOj~-tan0j)4

X=X tan. . + (y1-y2)] [(tane”~tanej sec:o.J
(tanOj™-tan0j)4

(6-6)

6.2.2 Calculation of al for the Noisy Measurement X

| CA12 s _ o
e - ae| s Laerd = ef2

where
&Q. _ SecC:s> [(Xl —)(2)tanflz + (y: -y
312 502 (tanOj™-tan0-,)2
Therefore
= 3 ,S€eC2o02 [[XA—Xj tanO” (yz "'yi) ]}
34X o002 (tano: -tano2) 2
[ tan, 1+(y: -y1)] (tano: —-tan. 2). seco.tano: +
34r (tano: -tano 2 4
Jg-x™) tano x+ (y: -yi tan. . -tan. 2)sec.o:
[Gax") EDRKE ) ©7
(tanO™tanOj)4
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€.2.3 Calcualation of alx for the Noisy Measurement x12

s e I T AR

a "seczo2 [{xx-xj tan0,* (yz-yx) 1"
b x (tano: -tano2):

[D&2-xxX)seczo:seca 2] (tano: —tano2) 2
{tano: -tano2) 4

[ tan02+ (yx-y2)1lsec:Q: sec:s a (tan0. -tan02)
(tano: —tano 2)*

6.2.4 Calculation of aldy for the Noisy Measurement yrn

v A1 3 r*Mai - 3 r- i

y @ ~ ada: 30'J 30J 1O2

where ax 1Is given by:
a2t = ad tanO! + seczo: (X2 - X,)

Therefore

aldy = [a.: tano: +s€Czo: (X™N=-X] ]

ajsy = aisxtan0! + 2ansec:0: + 2 (xz2-x:)sec:0:tan0l  (6.9)
where x12, an, and al¥ are given by equations (2.9),
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(3.7), and (6.6) respectively.

6.2.5 Calculation of aldy for the Noisy Measurement yi3
, , .oa ,ayi2i _ a :
Mx aei 1 w3i1”"’

Where equation (3.10)
&2 = aijtanGj

Therefore

aky - gg- [a2tan0l] = ~ [t = *-{[~JIhanfTl!

= a~tanO! G -10)

where aMx is given by equation (6.7)

6.2.6 Calculation of alsy for the Noisy Measurement yl2

__d rdyi2: dr
By  dd1 doz ¢ 60014

where:

az = aiz tanSj and

0X12

12 " "967
Therefore
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aisy~ Wjd/\cgfnej I

= AT/S~tan6i + “{psec20i

Therefore
aky= akxtano i + aizseczo: G .11)
where al2, and alskaregiven by equations (3.8) and

(G -s ) respectively.

6.3 The Second-Order Terms for the Noisy Measurements Xx,,,
and y,,
It 1s not necessary to rederive the expressions for
ae amnx» aexX asy’ any* and asy for the noisy
measurements x2Z¥ y23. The equations derived for the
noisy measurements x12, and y» may be used for the
noisy measurements x23, and y23. This is accomplished
by replacing o ¥ xX, 02, X2, y¥# y2 and x:2 with o2 x2,
O:F XX y y¥ and xz respectively. The resulting

equations are as Tollow:

a _nx23 _2 f(X2—)0) tano 3+ ()/Z —y3)]SeC2 o2 €ano 2 (tano » =tanos) 2
Slgjf CQZ (tano :—taNos) 4
[X, -Xz)tan. s + (2 -y3 )] (tan. . —tan. 3)sec:o . 12
(tano :—tanos) «
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Pz 2 [ tan0:. +(y: ~y2)3 (tan0. -tan03). sec, : tans :
314x 3023 (tano » =taNos) s

+ [(Xj—)(\) tano: + (ya —y2)1 (tano : —tano 3)SeC40 3

(tano > =taNos) 4
0 r3xisi _ [{R-x2)seczo25€eC203 (tanoz —tanos) 2
ajr "' ae; laer J= (tanoz -tanos) 4

[ PX=X)) tan, 3+ (y: -y3)sec:. : Secz0: (tan . —tan. 3)
(tano :—tanos) 4

aidy = ai- = a.s xtan0: +2a.: sec.02+2 (" -Xj) sec:0: tan0:
Wo (@Jo u
any = akXan 2 (6.16) and
alsy = al¢ane2 + aksec:0: 6.17)

where an , al”Z al¥, aldx, and al5< are given by equations
(3.14), (3.15), (6.12), (6.13), and (6.14)

respectively.

We now have expressions for all the high-order terms

in the covariance matrices. We now Tormulate the

(6-15)



expected values of these high-order terms.

6.4 The Error Covariance Matrices Psia# and Ps3,
In our scenario as we said previously there are two
noisy position vectors z12, and zs which are given as
follow:
zk = [x12,y22]T and

Z23 = tX23fy231T

The error in the noisy xi2 measurements (exl2) is given
by

Ex2 = x12 “ x12
From equation (6.2) we compute the expected value for
the noisy measurements x12, (xi2)

X1z = E(X12)

= E{x12) * xi2 (OIt,020) +a: £(A0D) +a2E(AQ2) +xaxE{MI) +

1 a¥ci?(a0i) + al5xE{A0.A02)

Since EfA0j] = 0 (the sensor makes an unbiased
measurement/ sensor errors are zero mean)

E(A02) = azo

E (A02) = 0202
Also AOi, and AOX are assumed to be statistically
independent,

E[AOXA02]

E(AOX)E(A02) = 0

Therefore
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a2~ +_2 MIIFRI+ ZaibO (6.18)

From equations (6.2) and (6.18) we get

(XX2~X12) ~ M2 ®2t) +ail"® |+ai2”®2+"2 aiJr*'®l +"2 aHI'®2 +

Q@It™ @ ©* ~—~2a13x°91~-2 ai’te

Clz = (\2-"™M2) = ail™i+ak~e2 + 2abjr(e1~%0) +

| 214X (AOI-02B) +* A 6A0* (6.19)

The error in the yiz noisy measurements (eyl2) is given
by:

Bk =yl ~ Yyi
From the equation (6.3) we compute the expected value

712

W2 = E{ +az 1Ao0 1+&22A0 2+ abYAo?+ 1 Ao I+ausyAo Aoz }

=S[y:: (OIt™0; ©) 1+a i*(As 1) +a22E{AQ2)+-|a:: yFF(AO?) +-]a.. yE(AOI)

+1?(@syAo1Ao2)
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where:

E[vi2 (®It'®2t) ] = YI2 (®It» ®2t) 1

E(AOi) = 0,
E(AO0:A02) = 0 (statistically independent)

ECAo 2) = &2, and
E (A0O2) = o922

Therefore

W2 =y (Git72 ) +-]| 33 x0g +-|asyol: G .20

From (6.3), and (6.20) we get e

eyl2 = Yi2i2 = a217®1+a2202 + 2 a3y tACi-OFIl] +

— aldy (AO:: . 262y + -AlSy AO:AO: (6.21)

The error iIn the estimate of a state vector z: Iis

eziz and 1S given by:

-x12
zI2

6.4.1 The Error Covariance matrix Plia

The error covariance matrix of the error £zI2, is PzZI2,

and 1s then given by

Pzk = E [EZbEZDT]
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-x12

[eas eyi2 ] >

yl2
- E X2  ~XI2YI2
eyizxi2 B2
—E w2 "2 Ui 2-x12) (y12-y12)
(yi2-yi2) &X12-,X12) (yi2—X12 )2
(G2 2 ) {2 NN Gl2yin N
Ny D) (r2 <) 12 =5N);

6.4.1.1 Calculation of P,13(l1,D
From the equation (6.20) we compute the first element
of the error covariance matrix P12, [Pz (1,D], as

follows:

p i1 1*D =k 1 n 2xaza= £{[alIA0L+alA02+ ia 13x(Ae2-0i1) +

-lal4x(A0l1-082) +aigfAei A02]2 }

= E [ax A0?+a:2A01 +jr ar: X (A0?-0]1): + ﬂai4x(AOl—oi2) 2 +
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ais»A8iA0I*allAelatMU0j+allA01 (i) al3,(A0?-0])) +

a:1Ao: (—A) a\ix (Ao 2 —OﬂZ) +a:1 AO: als_-ﬂ(:)lAOz +

arLAM-8)ak*( s 1-oel) +taa AO: (-]) a:« Jr(AOl-0g2) +

Ao a15jAe iAo +Aa13X(A0 ?-0o0 1)—Ia14jr(AOI—O»2) +

i 3x~ 01 -a6l) ai5xBIAB2 + R 4x @20 &) ai5xB1®2

a”B(ADI) +a= J2(A0N) +4 a= JE[ (A0N-0")2]+4ai "t (Aol-°€: )1

ajAff(AOjAOI) +a11ale(A01A02) +—Ia.11a13_j1;f[A01 (AOA—aA) ] +

(AOi-0#a) 1+a.: al5tF(A0?A02) +

— al2al3F[A02 (AOi-Oei) ] +'2'al2al4jri?[A02 (A02-Oq) ] +



ANCAONON) +0 aiBraid™[ (AOF-0~ (AQ\-al2)] +

1auAwS 1 (AOF-olJ AOJAOZ] +-ais gais XS (As \-a\2)A0"™0J

From appendix D, equation (D-1) i1s follows that
E(AOJ: = O
also we know E(Ao D) = o

Therefore

= all<)01+212002+-J 312xE (AOj “2A OFORi+0$1) +

52 I (A02-2A02002+082) +3ISGMAIER +

e i§Ri4j reIAR2_A01062~0 51AR2-+R01862)

= aiiOei+tai2®2+'j ,aixxM("®i)4 ~ -MaiJjoii° 0i +-£-aidx(®ii)2 +

a”™ (ozys-Aan"oea+-ia” (02)2+as*agiOs2 +

a i3jfa 14J1°01°02 “ -J a iFBca 14x°01°02 " ai3jca i4x°ei®02+ ai3*ai4x°01°02
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From equations (A-7), and (B-10)

E(AQD) =

Therefore

-1 oS- A - i a3x(O]D)

44—ai4x(v 6 2 )2 +ais Deille (6-23)

6 .4.1.2 Calculation of Psk(l,2)
From the equations (6.19), and (6.-20) we compute the
second element of the covariance matrix Pzl2,
[Pz ¢ ,2 )], as fTollows:
Pzl (1» ) = ¢Xzori2 = E[(¢: _ X12) (y:: - Yi2)]

= { [a11A01 +a:. AO: +—Ia13X(AO?—Oil)+—Ia14jr(AOA—O|2)+3 N o N o 2]*

[&1A01 +a..A0: +—’\a13y(AOi—Ogl)+—|a“y(AOi—082)+3 N s N o 3] }
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— E [alla2iAO0l+aila22A01A02+— aiiai3y4el ("®1 efl) +

an Ao - aldy Ao -OM2)+anaisyAoi Aoz tauz @ 1Ao2Aot tauz &2A02 +

-la”a”0jtAOf-o0ii1) +a:. A0, -1ai.y (AOI-012)+a; ais yAO. AO| +

iai:x(A01-08i) (a”A0J +-]asjB.2(A0i-Oei) A, +

7 aizaidy(Ao i_ei) (Ao i-oei) +—"as Jausy (Ao i-0el) (Ao 1-082) +

Aoi1Aocz+—|as e i(Ao 1-0s2)A0 t +

Slaiara22 (402-002) ¢« 02+ aA4Xasy A.. -Ofk (AOi-oei) +

J awxaisy (A0i1-0e2) (A0F-0g: )+-jai. xal5y (AOi-oea)A0: AD: +

aiba2i140iA0; +ais .. A0 A0 +— ais f|a:sYAO: AO. (Ao F-o el) +
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5 aks .)aiAyAAiA@ 2 (A®z ""<j® )+a15ja15yA01A02]

Where
ECAoD =0,
ECAOI3) = O,
E(AOjJ2) = c92, and
E (A02) = aecz
Therefore

(1,2) = alla2lael+al2a2g2+.ia 13 13E[AOI-A0iOei-ag1A0?+0$1]

-jarta®y"ANAN-AOfote-oeilAOi+oeilez] +

NawuxasyE[Ao 1A ?-Aczae o @eAo™Moeloe ] +

\ ai4jtaidyE [A0L-AO]oe -OesA 01+0j2 ] +alS@lISE (A 0*AQ\)

= aiiaiXei+aia20Eer-jaidiaidySEol) - | agialdy(ogi)2 +

\ ai3xaily (aei)2+ - J a i3*a idy<JddioL "



mjau A aiZalnapol2+ialdaxyalal™ -

\ MMNM2yoew b\ asxanyacaalk + 1asxaUyE (A0*) -

\"WWoea) :+-|aid .y )N isNMisyOaiON

From equations (A-7), and (B-10) we see

E(A0*)=-2

~(Ao D

Therefore

= £ [{N2-X2) N2 N3

aiia2l08l+ai2a22°62 + *20"ai3«ai3y”u~J,ai3xaily (°0l) 2 +

N2 a id*a idy®* aidxaidy (002)2+ai5ca i5y°61°62 (6.24)

6 .4.1.3 Calculation of Psk (2,D)

From the equation (6.22) we see:
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PzI2 (2,1) - E[(y12 y12) (X12 X12)]
= Pz2:(,2)

Therefore

pXI2G ,: ) =e {L (Y2~y?) (i2-*«) 3 >

= a1 182108 +ak a22°02+" 13 1I3al3yku "Jaldal3y (%o +

-s55 akxaky®s a 1daUly (0\2)2+ais s yo| ol (6.25)

6 -4.1.4 Calculation Psia(2,2)
From the equation (6.21) we compute the Tfourth
element for the error covariance matrix PzI2,

[Pz: (2,2)]» as TfTollows:
Pn2 (2,2) = E{[(y:2-y12)2Z]}

=Ei [a21A01+a22A02+-|al3y (Ae™-0|1)+-|A14y(Aei-0g2) +

alby Ae.Ae,] 2}

[a2A0"aZ2Ae+AaBy(A0?-ail) 2+-|aidy (Aei-092) 2 +

azson 1Ac:+a: a2 A0t Ac a2 i a13yA01 (AOf—Oii) +
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i Aai4y*Qi (Ao . -0e2) +a.:a:s YAO?AO: +a.. -|a:s yAO. (A0?-081) +

a:.-]a.yAO. (AOI-0e2)+a:.aisYAO: AO. + 1 asya. y{A0?-a31) (A0™-0e2) +

-las yalsy (A0™-0] 1) AO: AO: +-]aldy (AOf-012)a:syAO. AO2] }

Where:
E(AOi) = O,
E(ACi2) = aoi:
E(AOTA02) = E (A0:)E (A02) = 0 and
E (A0D)3 = O

Therefore

&zi127>,; ) = 3]: oe +a]. oex +—"alsyE(AO]-Oel) 2 +—1ai:yE (Ao 1-0e2). +

ai:yCei<,e +Makyaky”™  (AOI~Oei) (AO0:-0e2)] }

= @ 1001 +a:: 062 +— aAl3yE {[Ac t—: Ao 10el+ (0]1)2] } +

Na*AE {[A0]-2A0]o02+ (0]2)2] y+aisyOo: Qo> +
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" jaus yalaf {[Afl iAel-Ae"oes-OeiAel+Oeioia] }

= & 1®1+azze»2 +-NA3YR(OI) -al3y(Oen) .+ al3y Cil): +

+a? HNECAQP) - | a4y(062): +-"aey (0 )2 +awsyol: 0i2 +

"jai3dyaidy001°82 ai3ya idy°ei°02 aidya i3y°0lae2+-Jai3ya idya0l°e2

= a:10e1+a220e2+-"ai3y™("er) "waildy(®o1). +

a 14yfi" (A 02) aidy (OFI2)2+a15y°ila02

From equations (A-7), and (B-10)

1(A9)) ="

i7(A0%)

Therefore
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PzI2(2,2) = a2loll+aiol2+-+a?FFu-+a?3y(all)2 +

~n2 ald4y”S  aldy (°62)2+al5y0 Fll%e2 (6.26)

6.4.2 The Error Covariance Matrix P,Z3

It 1s not necessary to recompute the expressions for
the elements of PzZ3. The equations computed the
elements of PA2 may be used to compute the elements of
PZ23. This 1s accomplished by replacing 0X, 02, J01, a2,
Xe* yi2< i and &k with 02, 03, o2, o038, X% Y/
exs/ and ey respectively, and using equation (C-10)
to computes E(A03)4.

From equation (C-10) we see

The resulting equations are as follow:

= aLZJ 0@ + a122<§3 +

(6.27)
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Pes(1,2) =E {(B-~3) (YB-yD)l

avUcZ A “- W W (6728:

mPajI1) _ ®N(Y23 723 (x23 23 “ ~2j(1/2)

an a. Bt + ai2a..°es + ai™® 3JBA - -lasxasy (0. +

AIABQAYS " T “iaear (°83)2+ aisaisee0s3 (6.29)

ms(2f2) - E{(yByR)2

aliol, * «&<* *

-jai4y(®03)2 + al5y®82°03 6 .30)
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The next section discusses simulation results for the
covariance matrices PzIl2, and PZB using second-order

terms.

6.5 Discussion of Simulation Results, Scenario nol, Low-
Noise Case, and High-Noise Case Using Second-Order
Terms
The computer simulation was run 50 times and the
results are plotted and discussed in the next several
pages.

Figure (6.1) shows the actual errors iIn the noisy
measurements xI2 from triangulation between sensors
SI, and S2, where (scenario nol hoil) means scenario
nol high-order terms, low-noise case, and (scenario
nol hoh) means scenario nol high-order terms, high-
noise case. The dotted line represents the actual
errors in the noisy measurements x12, and the solid
line represents the square root of PzI2(1,1) in low-
noise case 1In scenario nol using second-order terms
in the covariance matrix. The solid line 1is the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix.

We are interested 1iIn comparing the change in the
standard deviation using the second-order terms with
the standard deviation using the Tfirst-order
approximation. Comparing the theoretical standard

deviation using the second-order terms 1iIn TFfigure
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(6.1) with the theoretical standard deviation using
first-order approximation in low-noise case in
scenario nol i1n figure (6.3) we see the theoretical
standard deviation In the two cases are almost equal.
The second-order terms do not give any large change.
This 1Is because iIn the low-noise case in scenario nol
using the TfTirst-order approximation the theoretical
standard deviation was found to be close to the
actual numeric standard deviation of the errors. So
we would not expect any changes by 1including the

second-order terms.

Figure (6.2) shows the actual errors in the noisy
measurements xZB from triangulation between sensors
S2, and S3. The dotted line represents the actual
errors i1n the noisy measurements x23, and the solid
line represents the square root of P2 (I,1) iIn low-
noise case 1In scenario nol using second-order terms
in the covariance matrix. The solid line 1is the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix.

Comparing the theoretical standard deviation using
the second-order terms i1n Tfigure (6.2) with the
theoretical standard deviation using Tfirst-order
approximation in low-noise case 1In scenario nol 1iIn
figure (G4 we see the theoretical standard

deviation In the two cases are almost equal. We see
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that the second-order terms do not make any large
difference. This 1Is because 1In the low-noise case
first-order approximation iIn scenario nol the
theoretical standard deviation was found to be close
to the actual numeric standard deviation of the
errors. So we would not expect any changes by
including the second-order terms.

Figure (6.3) shows the actual errors in the noisy
measurements yI2 from triangulation between sensors
SI, and S2, and figure (6.4) shows the actual errors
in the noisy measurements y2Z from triangulation
between sensors S2, and S3.

Likewise in figures (6.3), and (6.4) there was no
difference iIn the theoretical standard deviation of
the errors using second-order terms, when compared

with those in figures (6.7), and (5.8).

In scenario nol, high-noise case, the second-order
terms did not produce any noticeable difference
either. Figures (6.5, (6.6), (6.7), and (6.8) are
almost identical to the corresponding figures (56.13),
(.14), G.17), and (5.18) which used only the first-
order approximation.

Again, the first-order approximation to the
covariance matrix was found to be close to the

numerical variances.
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Errors in x12 measurements versus standard deviation (scenario nol hoi)

Figure (6.1)

---. xX12_err represents the actual errors iIn the noisy
measurements xI2 in low-noise case iIn scenario nol in
X position.
stdev represents the square root of PzI2(1,1), the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix in low-noise case iIn scenario nol

in X position.
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Errors in *23 measurements versus standard deviation (scenario nol hoi)

Figure (6.2)

---- X23_err represents the actual errors iIn the noisy
measurements x2Z In low-noise case In scenario nol 1in
X position.
stdev represents the square root of Pz23(1,1), the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix In low-noise case In scenario nol.
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Errors in y12 measurements versus standard deviation (scenario nol hoi)

.8 i1 - i 1 . S [ I N

-.yl2_err

Figure (6.3)

y12 err represents the actual errors 1iIn the noisy
measurements yI2 in low-noise case iIn scenario nol 1iIn
y position.

stdev represents the square root of PzlI2(2,2), the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix In low-noise case in scenario nol.
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Errors in y23 measurements versus standard deviation in (scenario nol hoi)

Figure (6.4)

- ... represents the actual errors in the noisy measurements
yZB in low-noise case in scenario nol iIn y position.
stdev represents the square root of PzZ3(2,2), the
theoretical standard deviation of the errors
according to the covariance matrix in low-noise case

In scenario nol 1In y position using second-order

terms.
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Errors in x12 measurements versus standard deviation (scenario nol hoh)

Figure (6.5)

---- x12_err represents the actual errors iIn the noisy
measurements X In high-noise case iIn scenario nol in
X position.
stdev represents the square root of PzI2(1,1), the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix iIn high-noise case iIn scenario nol

in X position.
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Errors in x23 measurements versus standard deviation (scenario nol hoh)

Figure (6.6)

.... X233 _err represents the actual errors in the noisy
measurements X2 1n high-noise case 1n scenario nol iIn
X position.
stdev represents the square root of PzZ3(l,1), the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix In high-noise case iIn scenario nol

in X position.
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Errors in y!2 measurements versus standard deviation (scenario nol hoh)

Figure (6.7)

---- yl2_err represents the actual errors in the noisy
measurements y»2 in high-noise case iIn scenario nol iIn
y position.
stdev represents the square root of Pzl2(2,2), the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix iIn high-noise case i1n scenario nol

in y position.
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Errors in y23 measurements versus standard deviation in (scenario nol hoh)

Figure (6.8)

---. y23 err represents the actual errors 1iIn the noisy

measurements y2Z3 in high-noise case in scenario nol in
y position.

stdev represents the square of PZB (2,2), the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix In high-noise case in scenario nol

in y position.
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The next section discusses the simulation results for
the covariance matrices Pz2, and PZ3 for low-noise

case In scenario no2 using the high-order terms.

6.6 Discussion of Simulation Results, Scenario no2, Low-
Noise Case Using Second-Order Terms
In this section we describe some simulation results
for low-noise case, scenario no2 using second-order
terms .
The computer simulation was run 50 times and the
results are plotted and discussed in the next several
pages.
Figure (6.9) shows the actual errors iIn the noisy
measurements xI2 from triangulation between sensors
SI, and S2, where (scenario noZhol) means scenario
number two high-order terms Ilow-noise case. The
dotted line represents the actual errors in the noisy
measurements x12, and the solid line represents the
square root of PzI2(1,I) in low-noise case in scenario
no2 using the second-order terms in the covariance
matrix. The solid 1line 1s theoretical standard
deviation of the errors according to the second-order
approximation to the covariance matrix.
We are interested in comparing the changes in the
standard deviation using the second-order terms with
the standard deviation using the first-order
approximation.

Comparing the theoretical standard deviation in low-
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noise case 1In scenario no2 using the second-order
terms i1n figure (6.9) with the theoretical standard
deviation in low-noise case In scenario no2 using the
first-order approximation in Ffigure (6.24), the
theoretical standard deviation including the second-
order terms 1is slightly greater than the theoretical
standard deviation including the first-order
approximation. This is not obvious from the graph
because of the resolution. For example at n= 5, the

theoretical standard deviationin figure (6.9) 1is
equal to 0.77598, but 1i1n figure(5.24) i1t i1sequal to
0.76883. It i1s the same thing at n = 27 where the
theoretical standard deviationin Tfigure (6.9) 1is
0.69536, but 1n figure (6.24) i1t i1s equal to 0.68959.
The theoretical standard deviation in figure (6.9) 1is
greater than the theoretical standard deviation 1in

figure (6.24) at the most cases.

Figure (6.10) shows the actual errors iIn the noisy
measurements xZB from triangulation between sensors
S2, and S3. The dotted line represents the actual
errors in the noisy measurements x23, and the solid
line represents the square root of PZ3(I,I) in low-
noise case 1In scenario no2 using the second-order
terms 1n the covariance matrix. The solid line iIs the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix.
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Comparing the theoretical standard deviation iIn low-
noise case iIn scenario no2 using the second-order
terms i1In figure (6.10) with the theoretical standard
deviation in low-noise case In scenario no2 using the
first-order approximation in Tfigure (6.25), the
theoretical standard deviation including the second-
order terms most of the times 1is slightly greater
than the theoretical standard deviation including the
first-order approximation. This it 1is not obvious
from the graph because of the resolution. For example
at n = 3, the theoretical standard deviation In
figure (6.10) 1i1s equal to 2.0553, but 1i1n Tfigure
(5.25) 1t is equal to 1.9442. It is the same thing at
n = 29 where the theoretical standard deviation IiIn
figure (6.9) i1s 0.8743, but in figure (5.25) 1s equal
to 0.8521. The theoretical standard deviation In
figure (6.10) 1i1s greater than the theoretical
standard deviation in figure (6.25) 1In most cases.
The 1Increase 1In variances 1iIs to be expected as
scenario no2 is a noisier triangulation process than

scenario nol between sensors S2, and S3.

Figure (6.11) shows the actual errors iIn the noisy
measurements yI2 from triangulation between sensors
SI, and S2. The dotted line represents the actual
errors in the noisy measurements y12, and the solid
line represents the square root of PzI2(2,2) in low-

noise case 1In scenario no2 using the second-order
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terms In the covariance matrix. The solid line 1is
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix.

Again we see an 1increase 1In variances 1in Tfigure
(6.11) and figure (6.12) comparing with Figure (56.28)
and figure (5.29) for y12, and y23, respectively which
used First-order approximation. For example at n = 5,
the theoretical standard deviation in figure (6.11)
is equal to 0.5546, but in figure (56.28) is equal to
0.5497. We see the theoretical standard deviation in
figure (6.11) 1is greater than the theoretical
standard deviation in figure (56.28) in most cases.
Also at n = 3 the theoretical standard deviation in
figure (6.12) 1i1s equal to 2.4873, but in Tfigure
(5.29) 1is equal to 2.3623. It iIs same thing at n = 30
where the theoretical standard deviation in the
figure (6.12) 1i1s 1.5568, but in fTigure (G.29) 1i1s
equal to 1.5076. We see the theoretical standard
deviation 1in Tfigure (6.12) 1is greater than the
theoretical standard deviation in figure (5G.29) In

most cases.
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Errors inx12 measurements versus standard deviation (scenario no2hol)

Figure (6.9)

---- xX02_err represents the actual errors 1iIn the noisy

measurements xI2 in low-noise case In scenario no2 1in
X position.

stdev represents the square root of PzI2(1,1), the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix in low-noise case In scenario no2.
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Errors inx23 measurements versus standard deviation (scenario no2hol)

Figure (6.10)

-... X23_err represents the actual errors iIn the noisy

measurements x2ZB in low-noise case In scenario no2 in
X position.

stdev represents the square root of Pz3(l,1), the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix in low-noise case iIn scenario no2.
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Errors in y12 measurements versus standard deviation (scenario no2hol)

Figure (6.11)

.--. yl2 err represents the actual errors 1iIn the noisy

measurements yI2 in low-noise case In scenario no2 1in
y position.

stdev represents the square root of PzlI2(2,2), the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix in low-noise case In scenario no2.
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Errors in y23 measurements versus standard deviation in (scenario no2hol)

Figure (6.12)

----. Y23 err represents the actual errors 1iIn the noisy

measurements yZB In low-noise case In scenario no2 in
y position.

stdev represents the square root of Pz23(2,2), the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix in low-noise case In scenario no2.
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The next section discusses the simulation results for
high-noise case In scenario no2 using second-order
terms.

6.7 Discussion of Simulation Results, Scenario no2, High-
Noise Case Using Second-Order Terms
In this section we describe some simulation results
for high-noise case, scenario no2 using second-order
terms, and comparing the changes 1iIn the standard
deviation using the second-order terms with the
standard deviation using Ffirst-order approximation.
The computer simulation was run 50 times and the
results are plotted and discussed in the next several
pages. The only difference between high-noise case
and Qlow-noise <case 1In scenario no2 1is iIn the
measurement noise variances.
Figure (6.13) shows the actual errors in the noisy
measurements xX from triangulation between sensors
SI, and S2, where (scenario no2hoh) means scenario
number two using high-order terms iIn high-noise case.
The dotted line represents the actual errors in the
noisy measurements XxP2 in high-noise case, and the
solid line represents the square root of PzI2(1,1) in
high-noise case 1In scenario no2 using second-order
terms In Xx position. Comparing the theoretical
standard deviation in high-noise case In scenario no2
using the second-order terms iIn x position iIn figure
(6.13) with the theoretical standard deviation in

high-noise case iIn scenario no2 using the first-order
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approximation in x position iIn figure (5.34), we see
the theoretical standard deviation using the second-
order terms is slightly larger than the theoretical
standard deviation using FfTirst-order approximation.
Again the difference is to be expected.

Clearly, the triangulation process between sensors

51, and S2 1is still relatively accurate in this case.

Figure (6.14) shows the actual errors iIn the noisy
measurements x2Z from triangulation between sensors
52, and S3. The dotted line represents the actual
errors i1n the noisy measurements xZ 1n high-noise
case, and the solid line represents the square root
of Pz223(1,1) 1n high-noise case 1In scenario no2 using
second-order terms in x position. The solid line is
the theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix. Comparing the theoretical standard
deviation iIn high-noise case In scenario no2 using
the second-order terms iIn x position in figure (6.14)
with the theoretical standard deviation in high-noise
case in scenario no2 using the  first-order
approximation in x position iIn figure (6.35), we see
the theoretical standard deviation using the second-
order terms is much Jlarger than the theoretical
standard deviation with using first-order
approximation. For example at n = 5, we see the

theoretical standard deviation including the second-
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order terms 1is twice as large as the theoretical
standard deviation including the first-order
approximation. We see the same thing at n = 36, and
at several other places. In both figures, the
standard deviation itself does not accurately model
the statistics of the errors. This iIs due to the high
noise distortion in the triangulation process between
sensors S2, and S3. The angle-of-arrival errors
exceed the magnitude of the difference OX - 020
resulting in very large errors in the triangulation
process between sensors S2, and S3. Since the
covariance matrix 1Is expanded about the noisy

triangulated position, this causes the distortion of

the covariance matrix which we see iIn the figures.

Figure (6.15) shows the actual errors 1iIn the noisy
measurements yI» from triangulation between sensors
SI, and S2. The dotted line represents the actual
errors in the noisy measurements yX2 in high-noise
case, and the solid line represents the square root
of Pz12(2,2) in high-noise case in scenario no2 using
second-order terms i1n y position. The solid line 1is
the theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix. Comparing the theoretical standard
deviation iIn high-noise case In scenario no2 using
the second-order terms 1iIn y position 1iIn Tfigure

(6.15)with the theoretical standard deviation in
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high-noise case in scenario no2 using the first-order
approximation in y position in figure (5.38), we see
the theoretical standard deviation using the second-
order terms almost equals the theoretical standard
deviation using first-order approximation. We see the
second-order terms in this case do not make any
change, because of the low noise component 1in the

triangulation process between sensors SI, and S2.

Figure (6.16) shows the actual errors iIn the noisy
measurements yZ from triangulation between sensors
S2, and S3. The dotted line represents the actual
errors iIn the noisy measurements yZ iIn high-noise
case, and the solid line represents the square root
of Pz23(2,2) in high-noise case 1In scenario no2 using
second-order terms iIn y position. The solid line 1is
the theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix. Comparing the theoretical standard
deviation in high-noise case In scenario no2 using
the second-order terms iIn x position in figure (6.16)
with the theoretical standard deviation 1iIn high-
noise case In scenario no2 using the Tirst-order
approximation in y position in figure (5.39), we see
the theoretical standard deviation using the second-
order terms 1is much larger than the theoretical
standard deviation using Tfirst-order approximation.

For example at n = 5 we see the theoretical standard
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deviation including the second-order terms is bigger
than the theoretical standard deviation including the
first-order approximation two times. We see the same
thing at n = 36, and at the most cases. This 1Is due
to the high noise situation because of the large
noise iIn the triangulation process between sensors
S2, and S3, where the errors at theses sensors
exceed the magnitude of the difference O& - 020
resulting iIn very large errors in the triangulation
process between sensors S2, and S3. As mentioned
earlier, there 1i1s a large distortion of the
covariance matrix iIn this case.

We see in the high-noise case iIn scenario no2, the
second-order terms still are not accurate because of
the large errors at the sensors. It is not clear how
many high-order terms are needed to get an accurate
covariance matrix iIn high-noise case iIn scenario no2 .
Looking at chapter VI we see that a considerable
amount of difficult mathematics was necessary to get
the second-order terms. To determine the third and
fourth-order terms 1in the approximation would be
impossible. The only solution 1Is to use another
sensor to get a better slant angle for the

triangulation process.

184



Errors in x12 measurements versus standard deviation (scenario no2hoh)

Figure (6.13)

--- . Xx02_err represents the actual errors in the noisy
measurements X122 1n high-noise case In scenario no2 in
X position.
stdev represents the square root of PzI2(1,1), the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix in high-noise case iIn scenario noZ2.

185



Errors inx23 measurements versus standard deviation (scenario no2hoh)

Figure (6.14)

--.. X23 _err represents the actual errors 1iIn the noisy

measurements X2 in high-noise case In scenario no2 in
X position.

stdev represents the square root of PzZ3(l,l1), the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix iIn high-noise case In scenario no2.
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Errors in y12 measurements versus standard deviation (scenario no2hoh)

Figure (6.15)

.---Yl2 err represents the actual errors iIn the noisy
measurements yPR iIn high-noise case iIn scenario no2 in
y position.
stdev represents the square root of PzI2(2,2)< the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix iIn high-noise case In scenario no2.
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Errors in y23 measurements versus standard deviation in (scenario no2hoh)

Figure (6.16)

y23_err represents the actual errors iIn the noisy
measurements y23 in high-noise case In scenario no2 1in
y position.

stdev represents the square root of Pz23(2,2)/ the
theoretical standard deviation of the errors
according to the second-order approximation to the

covariance matrix iIn high-noise case In scenario no2 .
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CHAPTER VI1I
CONCLUSIONS

In this thesis we analyzed data fusion iIn the
presence of non-linear measurements data. Several
different areas related to the problem have been
examined 1n this work and we now look at several

conclusions from the results presented.

We have shown that the Jlinear fusion algorithm
successfully fused nonlinear data using only a first-
order approximation to the covariance matrices. The
fused estimate 1i1s generally better than the
individual measurements themselves when the errors in
the noisy measurements are of opposite sign. When the
measurement errors are of like sign the fused
estimate 1is usually close to the higher accuracy
measurement.

We have shown that the fusion algorithm works when we
do not know the p.d.f,s governing the errors 1iIn the
noisy position measurement vectors. In fact by
selecting different p.d.f,s for the angle-of-arrival
measurements, we have shown that the fusion algorithm
IS Insensitive to p.d.f,s themselves and only needs
to know the covariance matrices governing the errors
in the noisy position measurement vectors.

A Tirst-order approximation was found to be accurate
enough for data fusion except iIn the high-noise case

Iin scenario no2. In scenario no2, high-noise case we
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found that the covariance matrices were very
inaccurate for triangulation between sensors S2 and
S3. There are several reasons for this. The angle-of-
arrival errors are very large compared to the
difference in the slant angles (O3n - 02n) used for
triangulation. This causes Jlarge errors 1iIn the
triangulation process. The covariance matrices are
expanded about these errors resulting In the effect
we have seen iIn figures (56.35) and (5.-39). In spite
of the 1naccuracy of the covariance matrices, the
fusion algorithm still was effective in fusing the
data 1n many cases. However, there were a few cases
where the fused estimate was poorer than the best
measurement. In a high-noise situation this iIs to be
expected.

In an attempt to improve the accuracy of the
covariance matrices, the impact of the second-order
terms In the expansion was analyzed. We found in
scenario nol iIn both the low-noise and high-noise
cases that the Tfirst-order approximation to the
covariance matrices was close to the statistics of
the actual errors themselves. Therefore we found that
the second-order terms did not make any difference.
In scenario no2 low-noise case we Tfound the
theoretical standard deviation of the errors using
second-order terms i1s slightly bigger than the
theoretical standard deviation of the errors using

first-order approximation for both triangulation
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between sensors Sl and S2 and also between sensors S2
and S3. This 1s because scenario no2 1i1s a noisier
triangulation process than scenario nol and therefore
the second-order terms did make a small change. In
scenario no2 high-noise case for triangulation
between sensors SI and S2, we found that the second-
order terms caused a small increase In the
theoretical standard deviation of the errors. The
triangulation process between sensors SI and S2 is
still relatively accurate iIn this case and only a
small change is caused by the second-order terms. But
the theoretical standard deviation of the errors
according to the noisier triangulation process due to
the slant angle between sensors S2 and S3 was found
to be much Hlarger than the theoretical standard
deviation of the errors using the Tfirst-order
approximation. The covariance matrix IS very
inaccurate iIn modelling the errors 1iIn this case
(between sensors S2, and S3) because of the poor
triangulation accuracy. As stated before, this 1is
caused by the noisy angle measurement errors being
greater than the difference between the slant angles
02 and 03. Clearly the second-order terms do not
improve the situation. The covariance matrix is still
inaccurate when compared to the actual errors 1In
figures (6.14) and (6.16). Many additional terms in
the expansion are needed. From chapter VI we see that

the mathematics for the second-order terms 1iIs quite
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difficult. The mathematics for third and higher terms
is simply impossible. Another better placed sensor is
needed for triangulation.

In spite of the iInaccurate covariance matrices, the
fusion algorithm does a good job at fusing the data,
and produces an optimum covariance matrix which has
a trace less than the trace of the individual error

covariance matrices in all cases.
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APPENDIX A

UNITFORM PROBABILITY DENSITY FUNCTION
A-1 The Mean Value of X
Figure (A.1) shows the probability density function

(pdf) and cumulative distribution function (cdf) of

a uniformly distributed random variable Xx.

@ ff(x)
17284 pdf

X
—fu O =R

cdf

Figure (A.D: (@ probability density function (pdf) ()
cumulative distribution function (cdf).
From figure (A.I) the pdf is given by:
Q)

1/28u when -8U "™ x £ +8U and A-D
™ =0 elsewhere. (A-2)

The mean value of X i1s given by

Al



N =E[x] =x = Txfx{) dx

1
28,

Therefore the expected value of X, X) = x =0

A-2 The Variance of X

The variance of x iIs given by:

#

aR - Jx2fx§odx
-a
25u 318

(A-3)
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The square root of the variance of X, or ax 1iIs the

standard deviation of the random variable Xx.

A-3 Cumulative Distribution Function (cdf)
For x < -8U The cdf 1s given by:
FX(X = 0 A-D
For -Su < x < 8U the cdf is given by:

X X
FXQ) =Pr{X *x3}= f&X()dx=F 1 dc = -i- X
-aJ u u
+
FAX) = )(256| when -8U< x < 8u (A-5)
=0 when x < -8U
=1 when x > 8U

A-4 Use of Probability Integral Transform to Generate
Random Draw from U(-8W 8U)
Suppose a random variable x has a pdf ™) and a
corresponding cdf Fx(X) . From the probability integral
transform i1t Is shown in reference [Z] that if y =
Fx() then y has a pdf U(0,1). It is also shown that
X = FJ”Cy) has pdf &) .

From equation (A-5), we have

y =X = If -8U< x < 8

A3



1 I X > Su
0 If x £ -8U
Solving for X, we get
X =8uy-l) if -Su<x ™ 8U (A-6)
Therefore by generating a random draw from y which is
uniform U(0,1), then X = 8u(2y-1) has a uniform pdf
u(-8U,8V) .

This technique 1is used to generate random angle-of-

arrival errors in SI measurement data.

A-5 The Expected Value of X4
We need the E{x4}, when we discuss high-order terms Iin

the covariance matrices in chapter (I)

Therefore

E{X4) (A-7)
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APPENDIX B

SAWTOOTH PROBABILITY DENSITY FUNCTION

B-1. The Mean Value of X
Figure (B.1) shows the probability density function
(pdf) and cumulative distribution function (cdf) of

a sawtooth distributed random variable x.

pdf

cdf

Figure (B.1): (@ Probability density function, (b)
Cumulative distribution function.

From the figure (B.1) the pdf 1s given by:

when 0 ™~ x < 55 (B-D)

and

Bl



7 x) = TOF_ whej3 -85< x < 0 (B-2)

The mean value of x (X) is given by:

o] S
E(X) =x = fx ™~)-dx + fx-"-dx
oV
35 35

Therefore x =0

B-2 The Variance of X

The variance of x is given by:

ak = Jx2fx (X)) dx

AS® 45/ @ 2

Therefore

B2



- 38 (B-3)
0 2

B-3 Cumulative Distribution Function (cdf)
For -5a < x < O the pdf is given by:
X)) = -x/8
Then the cdf is given By:

FxP) =Pr{X 4 x) = jF=ifc

T
2 =<4
, Y% 6]-*2 . s N
Fjw’ = %172 i S x <0 @
2f12
=0 X < —8g
= 0.5 X =0

For O < x < 5S the pdf is given by:

Then the cdf i1s given by:
X

y =) =PAX *x }=FfF"dx + 01
o]

B3



X 2 52
y =" "p; 0Sx €8  (B-5)

26

>T

In summary,

Fx(X) = 5a f2 if -8S£ x £ 0 (B-6)

il
=0 X < -8g
=0.5 X =0
and
y2+7*2
FX) = ——-2 0 £ x <8S ®e-7)
28|
=0.5 x =0
=1 X > 8S

Equations (B-6) and (B-7) summarize the cdf function

for the sawtooth.

B-4 use of Probability Integral Transform to Generate

Random Draw of a sawtooth, pdf.
As discussed iIn section (A-4) of appendix A 1Ty a

random number y is U(0,1), then a random draw for X

is obtained from X = Fx"1(y) where Fx(X) = cdf of X.
IT O <y < 0.5 then from equation (B-6) we get
X2 = 8&(1-2y)

Solving for X we get two roots for X, XX and X2

XX =-ayrT=zyr



and

Xz =6fVIT=2yJ

The second root X2 is refused because when y = 0, X2
must be -8 and therefore the Tfirst root 1is the

correct one. Therefore

X = -5WU-2y) for O <y €£0.5 (BB

From equation (B-7), the random draw must be iInverse
mapped through the cdf function onto the X axis. This
is accomplished as follows: If 0.5 "y < 1 and from
the equation (B-7) we get

X2 = 82y - 1

Solving for X we get two roots for X, Xx, and X2

Xx = tal{2y-1)

and

X2 = =57 (2y-1)

X2 1s refused because when y = 1, X must be 8a.

Therefore

X

12y-1iy 1f 0.5 ~y ~ 1 (B-9)

Therefore there are two equations (B-8), and (B-9)
needed to generate random angle-of-arrival errors in

S2 measurement data. For a give draw of y from

BS



uc.1) ,

X = -57(1-2y) if OEfy £ 0.5

and

X = (y-iJ if 05<y<1

This technique is used to generate random angle-of-

arrival errors iIn S2 measurement data.

B-5 The Expected value x4
We need the E{x4}, when we discuss high-order
approximation terms 1iIn the covariance matrices in

chapter (I)

E(x4)= J [X-X] t&x{x)dx

B6
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APPENDIX C
TRIANGLE PROBABILITY DENSITY FUNCTION

C-1 The Mean value of X
Figure (C.1) shows the probability density function
(pdf) and cumulative distribution function (cdf) of

a triangle distributed random variable x.

L&Y

Figure (C.1): (@ probability density function (pdf), (@)
cumulative distribution function (cdf) .

From figure (C.1) The pdf is given by:

*x{) =A(i+~L) —8cEX£0 (C-D

X k L-(-£)  0£x £8t (C-2)

Cl



The mean value of x is given by:

0
EpO =x= (@+"-) 1dx+Ix[y-(1-y-) ]

@ ®

0
i r X2 1 rx2
=t / xdx +t t_/jett* + T-t!)XdX - t{’!Ott *

= S, OB . 6B _g

28t 36 2St 36

Therefore E(x) =x =0

C-2 The Variance of x

The variance of x 1s given by:

o] *t
OX — Fx2[x(1+-£)]dx + Ix2[ £ {I--£) ]Jdx
-ae t t o Tt Tt
:A-|f|3 _ asd as ~ gt4
6t 3 5t 45t 35t ~ 451p

(C-3)

ON
I
|
-
-
-

L.
o
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C-3 Cumulative Distribution Function (cdf)
For -8t X < 0 the pdf i1s given by:
XX = a+#)
Therefore the cdf is

Yy =X =Pr{Xix} = f-1- (I+-r-) dx

1

X2+ 6 TXx+ 5* (*+592
252 25]

= if St£x £ 0 C-4
y o\ C4)

For 0 < x < 8t the pdf is given by;

SRR

Therefore the cdf is

C3



T21 X

1 rMfix- 1 + 0.5
N2 5f o
Therefore
251 X-X2+2
y =02 S {c-5)

282

In summary, the cdf for a triangle pdf is given by:

{X+bH2 ,
y = if -St£Ex £0 (C-6)
20t
=0 X N -8t
=0.5 X =0
—_ B N
y = 2EX-X281 G S~y 2 8B e
282
=0.5 X =0
=1 X £ 8t

Equation (C-6) and (C-7) summarize the cdf function
for a sawtooth. To generate a random draw from the

pdf a number y is generate with a U(0,1) pdf.

C-4 Use of Probability Integral Transform to Generate
Random Draw of Triangle pdf.
As discussed iIn section (A-4) of appendix A ify a

random number y i1s U{0,1), then a random draw for X

c4



is obtained from X = FxX1(y) where Fx(X) = cdf of X.
if 0O~y N0.5 and from the equation (C-6) we get

X + 82 = 28t/
Solving for x we get two roots for X, the Tfirst one

XX 1S given by:

Xx = -5&8ty2y = fit(V2y-1)

the second root X2 is given by:

X2 = -8t - 5tfly = -8t(1+vY)

The second root X2 is refused because when y = 0.5, X2
must be O, and therefore the TFfirst root 1is the

correct one.

X= 8t@2y-1) if 0~y < 0.5 (C-8)

From the equation (C-7) the random draw y must be
inverse mapped through the cdf function onto the X
axis, this i1s accomplished as follows: If 0.5 "y ~

1 the cdf is given by:

26, X - X2 + 6l

............................... E

X2 2 S - 82+ 2 88y =0
X -S2 -2 82+ 28Ry =0
X 892 =2 82 (1)

Solving for X, weget two roots for X ,X¥ and X2.
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The first root Xt is given by:

i = fit + 842"l -y)

and the second root X2 is given by:

A = 5E5W2Ti-y) = 6t[1-JTCT-yTT

The Tfirst root X, is refused because wheny = 0.5 X

must be O

Therefore, the second root is the correct one.

x2 = 55W2C1-y) = CII-v"SI"1-yTT C-9)

if 057y <1
Therefore, for a given draw for y there are two
equations needed (C-8), and (c-9) to generate random
angle-of-arrival errors iIn S3 measurement data.
This technique is used to generate random angle-of-

arrival errors in S3 measurement data.

C-5 The Expected Value of x4

We need the E{x4}, when we discus high-order terms Iin
the covariance matrices in chapter (I)

For -8t < x < 0 the pdf i1s given by:

For 0 < x < 8C the pdf 1s given by:



fjx) » -a~rqa 1Y)

«©
E(x4) = T {x-X)*F{x) dx
I

Therefor the expected value of x4 is given by:

o]
E(x4) = IXA[A(1+-]-)]dx + Ix4[£{1--*)]dx
-A T £ n T T
0 0
-i1- fx4dx + X 5dX + J#_ix*dx - - fxwx
h °t-«e
1 [x5k 4 1 [*61° + 1 [x5ke_ ! [x6l
6t ° 6 SI 8 1 6

55t 5fit 65|

Therefore

2?2U4) = Cc-10

Cc7



APPENDIX D

If f(xX) = fX) then E(x3) = 0

The proof

E(x2at) = Jx2aH1f(X) dx = jx 2nH1f (X) dx+Ix2+1F(X) dx
-5 0

lety = -

6
E{x2a]) = ;6 (NDAHF(-y) (dy) + fyzaHif{y)dy

y-6 6
-/ (VAR (y)dy + jyza-if(y) dy

-0
Therefore

E(x:n+1) = 0 for all integers n o-n

D1



