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ABSTRACT

Data Fusion of Nonlinear Measurement Data in the 
Presence of Correlated Sensor-to-Sensor Errors. 

By 

MANSOUR MOHAMAD AL-SAMARA

Data fusion of nonlinear measurement data in the 
presence of correlated sensor-to-sensor errors is 
examined. The scenario involves three spatially- 
distributed sensors making three noisy angle-of- 
arrival measurements on a signal emitted by a source 
whose position is to be estimated. The noisy angle- 
of-arrival measurements from two of the sensors are 
triangulated to form a noisy position measurement in 
two dimensions. A second pair of sensor noisy angle- 
of-arrival measurements are also triangulated to form 
a second noisy position measurement. Both of these 
noisy position measurements are nonlinear functions 
of the noisy angle-of-arrival measurements.
Since there are three sensors SI, S2, and S3, sensor 
S2 is common to both triangulation process, causing 
a non-zero cross-correlation across both noisy 
nonlinear position measurements. Since the position 
measurements are nonlinear functions of the angle-of- 
arrival measurements, we must use a first-order 
approximation to the covariance matrix for each 
measurement vector.
The statistics governing the errors on these angle 
measurements come from a variety of distributions,
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namely the uniform, sawtooth, and triangular 
distributions.
The optimum fusion algorithm applied to the 
distributed measurements forms a linear operation on 
the measurement vectors. Since the measurements are 
nonlinear functions of the parameters, an exact 
calculation of the covariance matrix in closed form 
is not possible because of the intractable nature of 
the mathematics involved. Consequently, these 
conditions give sub-optimum conditions for the 
algorithm. However it is found that the trace of the 
error covariance matrix of the fused measurement is 
less than the trace of the error covariance matrix 
associated with each individual measurement vector. 
Finally, a mathematical high-order approximation to 
the covariance matrix is performed. The impact of 
these high-order terms is examined through 
simulations.
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CENTRALIZED VERSUS DECENTRALIZED DATA FUSION
1.1 Introduction

Traditional surveillance and communication systems use 
a single sensor such as radar or sonar for estimating 
the position of an object. In these systems, complete 
sensor observations are made at a central location and 
classical testing procedures are employed for signal 
processing. There is an increasing interest now in 
distributed sensor systems where several sensing 
techniques, such as sonic, microwave, infrared, x-ray 
sensors, and radar etc, generate data for subsequent 
fusion.
The basic goal of multiple sensor systems is to 
improve system performance, for example, reliability 
and speed. This can be achieved by properly combining 
the information obtained from the various sensors and 
sending them to the fusion centre which processes the 
measurements formed by each sensor. The object is to 
extract from these measurements an estimate which is 
statistically superior to the individual measurements 
themselves.
There are two major options for signal processing with 
multiple sensors. There are generally described as 
centralized and decentralized fusion. We discuss each 
one separately.

CHAPTER I
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In centralized data fusion measurements from 
distributed sensors are transmitted to the fusion 
centre. This requires transmission of sensor 
information without delay and with large communication 
bandwidth. The structure of a centralized fusion 
system is illustrated in Fig(1.1).

1.2 Centralized Data Fusion

Figure(1.1) Centralized data fusion.

1.3 Distributed Data Fusion
The second option for data fusion is to have signal 
processing carried out at the local sensor level. The 
results are available locally and partial results are 
transmitted to the fusion centre for further 
processing. Global results are then available at the 
data fusion centre. This type of system is called
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decentralized data fusion.

Many benefits may be derived from the use of multiple 
sensors in a target surveillance systems, such as 
accurate angular position and range rate information 
for radar systems to provide improved tracking. The 
major purpose of multi-sensor fusion is to complement 
the data from one sensor with that from another 
sensor. In this way it is possible to obtain better 
information and to make a more accurate estimate than 
is possible with a single sensor system.

The fusion algorithm analyzed here is based on the 
centralized fusion approach.

Chapter II discuses the nature of the data fusion
problem to be solved. It is shown there that the 
measurements are nonlinear functions of the parameters 
to be estimated. Consequently first-order 
approximations to the covariance matrix for each 
measurement vector must be computed. There are
developed in chapter III.

Chapter IV discuses the optimum fusion algorithm to be 
applied to the distributed measurements. It is shown 
there that the algorithm is optimum only for
measurements which are linear functions of the
parameter vector to be estimated. As noted previously,
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since the measurements are nonlinear functions of the 
parameters, we must use a first-order approximation to 
the covariance matrix of the measurement vectors. An 
exact calculation of the covariance matrix in closed 
form is not possible because of the intractable nature 
of the mathematics involved. Consequently, these 
conditions provide an interesting test of the optimal 
fusion algorithm when applied under sub-optimum 
conditions.

Chapter V discusses simulation results for scenario 
number 1, and scenario number 2, in low-noise case, 
and high-noise case.

Chapter VI investigates the impact of high-order terms 
in the approximation to the error covariance matrix 
and discusses simulation results for the covariance 
matrices using second-order terms.

Chapter VII discusses conclusions based on the 
results.

4



CHAPTER II 
DESCRIPTION OF DATA FUSION PROBLEM

2.1 Introduction
The scenario defining the data fusion problem to be 
analyzed is shown in figure (2.1). SI, S2, and S3 are 
three sensors located at known coordinates (x^yj , 
(x2/y2) and (x3,y3), respectively. The object at point 
P which has coordinates (x,y) emits a signal whose 
angle-of-arrival 0 is measured by each sensor. The 
location of the object (x,y) is to be estimated from 
these angle-of-arrival measurements.
Each sensor makes a measurement of the angle-of- 
arrival with respect to the horizontal axis X as shown 
in figure (2.1). 0lB represents the measurement made 
by sensor i, i = 1,2,3. The object coordinates are 
determined by triangulation on two angle-of-arrival 
measurements as shown in the next section.

2.2 Triangulation Using True Angle-Of-Arrival Measurements
In figure (2.1) the object at point P (x,y) is 
observed by three spatially distributed sensors.
The angle-of-arrival measurements from two of the 
sensors are triangulated to form a position 
measurement of the source. A second pair of sensor 
angle-of-arrival measurements is also triangulated to 
form a second position measurement. Since, there are 
only three sensors, one sensor is common to both 
triangulation processes. Define the following



F ig u r e  ( 2 . 1 )  G e o m e t r i c a l  c o n f i g u r a t i o n  o f  o b j e c t  and  
s e n s o r s  in  tw o  d i m e n s i o n s .



quantities:
(x,y): coordinates of the object to be estimated. 
(xx,ya) : location of sensor SI, (known)
(x2,y2) : location of sensor S2, (known)
(x3,y3) : location of sensor S3, (known)
The angle 0! made by sensor SI is such that:

A similar equation holds for the measurement from 
sensor S2:

ana, -  ( P i )
jc-x

(2. 1)

tan62 = ( ^ )  
X~Xy

(2.2)

Therefore,

(2.3)

and

(y-y2) - ix-x̂ ) tan02 (2.4)

From (2.3), y = (x-xjtan©! + yx 
From (2.4), y = (x-x2)tan02 + y2 
Since equation (2.5) = (2.6) (y = y)

(2.5)
( 2 . 6 )
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(jc-jq) tan0j+yx = (x-xj) tan02 +y2

x tanOĵ -x̂ tcinOi+y! = x tan02-x2tan02+y2

Jqtan01-x2tan02+ya-y1 ^
tan01-tan02

Equation (2.7) gives the x coordinate of the object in 
terms of the known quantities xw x2, 01,02, yx, and y2. 
Knowing x, the y coordinate of the object is obtained 
from equation (2.5)

y - (x-x1) tanOi+yi (2.8)

Let x12,y12 denote the measured object position by 
triangulation between sensor SI and sensor S2. 
Therefore

tan0t tan02 +y2 -yt 
tan01-tan02

and

y12 - (^-xj tanOi+y! (2 .1 0 )

We define the position vector z12 for the sensor pair 
S1/S2 as follows:

8



zi2 - [xi2,yi2]T

A similar set of equations holds for triangulation 
between sensor S2, and sensor S3. Using these two 
sensors, the measurements x23, and y23 are given by:

_ x2tan02-x3tan03+y3-y2 
3 tan0,-tan0.

and

^ 2 3 = (x23~x2) tan02+y2 (2.12)

We define the position vector z23 for the sensor pair 
S2/S3 as follows:

Z 23 =  CX 23 Y 2 3 ^ T

We have assumed up to now that the angle-of-arrival 
measurements 0X, 02 and 03 are perfect (have no
errors). Of course this is never true in practice and 
consequently the errors in the angle-of-arrival 
measurements feed forward into errors in the measured 
position vectors z12, and z23. These errors in the 
measured position vectors z12 and z23 must in turn be 
quantified in the form of a measurement error 
covariance matrix associated with each of the vectors 
z12, and z23. This is pursued further in chapter III. 
The fusion algorithm applied to the noisy measurement 
vectors must reduce the errors in the individual

9



sensor measurements and in the process produce a fused 
measurement which is statistically superior to the
individual input measurements themselves. The
criterion of optimality is minimum trace of the 
covariance matrix associated with the fused
measurement. The results presented later show that 
even under sub-optimum conditions of nonlinear 
measurements and first-order approximations to the 
measurement covariance matrices, the trace of the
fused covariance matrix is less than the trace of the 
individual measurement error covariance matrices.
We observe that the measured angle 02 appears in 
equation (2.9) in connection with x12 measurement and 
also in equation (2.11) in connection with x23 
measurement. Therefore non zero cross-covariance 
matrix exists between measurement vectors z12 and z23. 
Equations (2.9), (2.10), (2.11), and (2.12) show that 
calculation of closed form expression for the 
elements in the covariance matrix is impossible 
because of the intractable nature of the mathematics 
involved.

In the next chapter we derive the first-order 
approximation to the covariance matrices for the 
measurement vectors z12 and z23.

10



CHAPTER III

DERIVATION OF MEASUREMENT COVARIANCE MATRIX AND 
CROSS-COVARIANCE MATRIX
3.1 Errors In Sensor Measurements

Equations (2.9), and (2.10) give the triangulated
coordinates of the object P in terms of the known
quantities x1# ŷ , x2, y2, 0lf and 02, where
(XpyJ = location of sensor SI
(x2,y2) = location of sensor S2
0: = angle-of-arrival measurement at SI
02 = angle-of-arrival measurement at S2

= x1tand1 -jc, tan02+y2 -ya 
tan01-tan02

y12 = (Xi2 - x^tan©! + yi (2 .1 0 )
These equations are exact provided there are no errors 
in the measured values 0lm and 02in. Let

01C = the true value of 0X 
02t = the true value of 02 
A0X = the error in 0*
A02 = the error in 02 

Then the noisy measured angles 0lin, and 02ra are given 
by:

01m = ®lt +

®2m = ®2t +
The errors in the angle-of-arrival measurements feed

11



forward into errors in the measured positions x and y 
of the object. Denote the relationship between x12 and 
the parameters 0!, 02, xt, x2/ ylt and y2 as follows:

x12 * f 1 (0J /01/X2 f Xj #y2 rYl) i
Likewise

y12 * fj(0j» 0i/X2fXifyj»yi)»
We now derive how, to a first-order approximation, 
errors in 01# and 02 map into errors in x12, and y12. To 
accomplished this, we take the following partial 
derivatives:

= |^(01,02)A01 + |^(0lf02)A02 (3.1)

Ay 1 2  = ^ ( d lte2)Adt * | ^ ( 0 lf02 )A0 2 (3.2)

Ax 12 and Ay12 represent the errors in the object 
triangulated position using sensors SI and S2.
From (3.1) and (3.2) we see that

where Az12 represents the error vector in the object
triangulated position measured by sensors SI and S2. 
Let

12



r ^ 1 2  dxi2 ~
1̂2 30i 302

.a21 a22J12' &12 dVl2
(3.4)

and

(3.5)

From (3.3), and (3.4),
Az12 _ a X2 A012 (3.6)

We now formulate each of the elements in the matrix

3.2 Calculation Of Elements in Matrix
3.2.1 Calculation of axi

From the equation (2.9)

3*12 = 3 r x1tand1-x2tand2+y2-y1.
a±1 30x 30! tan0!-tan02

jqsec2©! (t«m.01-tan02) -sec2©! (Xitan0i-^tan02+y2-y1)
(tan0i-tan02)2

-x1sec201tan02 + x2sec20!tan02 + sec2©! (y!-y2) 
(tan0!~tan02)2

13



dx12 _ sec201[(x2-x1) tan02+(yi-y2) ] 
2l1 ddi (tanOi-tanOj)2

(3.7)

3.2.2 Calculation of a13
From the equation (2.9)

dxi2 _ 3 X1tan01-jc2tan02+y2-y1 
3l2 302 302 tan01-tan02

-^sec202 (tan01-tan02) +sec202 (x1tan01-x2tan02+y2-y1)
(tan01-tan02) 2

sec^tan©! (xx-x2) +sec202 (y2-yi) 
(tan01-tan02) 2

dx12 _ sec202 [ (Xi-ĵ ) tan0x+ (y2-yi) ] 
302 (t an0! -1 an02)2

(3.8)

3.2.3 Calculation of a^
From the equation (2.10)

331 = = ae11 tan9i*n)

14



= -3r [x12tan01-x1tan01+y1]

= tan01+x12sec201-x1sec201

a21 = a^tan©! + sec2©! (x^-xj (3.9)

3.2.4 Calculation of a„
From the equation (2.10)

* 2 2 = = ~£r [ (xi2_xi) tan©1+y1] oo2 oo2

■ < tanSl

a22 = s^tanOj (3.10)

3.3 Calculation of Elements In matrix
A similar equation (3.3) holds to calculate the error 
vector (Az23) in the object triangulated position 
measured by sensors S2 and S3.

15



’A**,' d02 303 A 02
.Ay23. 3y2 3 dy23 A03

302 303

Let

^23 =

' 3X2 3 3X23
ail ai2 302 ^ 6 3

m a 2 1  a2 2 .23 ay 2 3 ^23
302 303

(3.12)

and

A0 2 3  = A02
A0,

(3.13)

From (3.12) and (3.13),
Az23 — Ajj A0 2 3

It is not necessary to rederive the expressions for 
matrix A23. The equations derived for matrix A12 may be 
used to fill in the entries of matrix A23. This is 
accomplished by replacing 0!,x1# 02/x2,y1/y2, and x12 in 
equations (3.7), (3.8), (3.9), and (3.10) with
02,x2, 03,x3,y2/y3, and x23 respectively. The resulting 
equations are as follows;

an = d* 2 3  = gec2 0a[tan03 (j^-^) + (ya-y3) 3 (3 .1 4 )
302 (tan0 j-tan0 3 ) 2

16



0 * 2 3 sec203 [tan02 + (y3-y2) ] 
3l2 603 (tan02-tan03)2

(3.15)

dya2i = = antan02+sec202(jc23-x2) (3.16)

and

dy
a 22 = = a12tan02 (3.17)

In the next section we give a brief review of the 
covariance matrix and it's properties.
Then we derive the covariance matrix associated with 
the error in the measured position. The covariance 
matrix will be a function of the variance of the 
measured angles.

3.4 Definition and Properties of a General Covariance 
Matrix P
We define the error % in the estimate of a state 
vector X to be the difference between the estimated 
value ft and the actual value X:

J? = X-x

The covariance matrix P associated with X is defined 
as

17



P m E[XXt] (3.18)
The covariance matrix provides a statistical measure 
of the uncertainty in the estimate of the elements in 
vector X.
Suppose vector X has two components as follows:

Note the covariance matrix of an n-state vector is an 
nxn symmetric matrix whose diagonal entries are the 
variance of the estimates of the corresponding 
elements. The off-diagonal terms of P are indicators 
of the cross-correlation between the elements of X. 
They are related to the linear correlation coefficient

If the mean value of X is

E ( X } = X =

then the covariance matrix of X is:

tfU^-Xj)2} Ei(x1-x1) (Xj-X̂ ) }' 
.EUxj-j^) (x̂ -xl) } E{(Xi-x^)2 }

18



p(Xj, x2) between xx and x2 by

E{ [ {x̂ -xl) (X2~X̂ ) ] } 
p(x1,x2) = ------ — f  (3.19)

°xiax2

where C indicates the standard deviation.
A covariance matrix is at least positive semi-definite 
and is usually positive definite.
P is positive semi-definite if for all vectors z * 0 

zT P z ^ 0
or

E{ (zT x) (xTz) } > 0
or

E { (xTz)T (xTz) } £ 0 
Therefore P is at least positive semi-definite.
We now derive the first-order approximation to 
covariance matrix Pzl2

3.5 First-Order Approximation to Covariance Matrix Plia for 
Measurement Vector z12
In our scenario for the measurement noise associated 
with the object position measurements there are two 
covariance matrices Pzl2, Pz23. and cross-covariance 
matrix Pn223 .

P2l2 is the covariance matrix for the errors in
the measurement vector z12 obtained by
triangulation between sensor SI and sensor S2.
Pzi3 is the covariance matrix for the errors in
the measurement vector z23 obtained by



triangulation between sensor S2 and sensor S3. 
Pzi223 is the cross-covariance matrix between the 
errors in the measurement vectors z12 and z23 and 
is not zero because sensor S2 is the common 
sensor between measurements z12 and sensor z23 

From the equation (3.6)
Azi2= A12 A012

where Az12 is the error vector in the measured object 
position using sensors SI and S2 and

A*12 = Ayi2 and A012 =
A0X
A0,

Since we assume A0i = E(A0t) = 0 i.e the sensor makes 
an unbiased measurement, (i = 1, 2, 3, ..) (sensor
errors are zero mean)

Az12 = E [Az12] = E [A12 A012]
= A12 E[A012]
= A12A012 = 0

Therefore the error covariance matrix for the error in 
measurement vector z12 is:

Pzl2 = E{ [Az12 Az12t] }
= E { [A12A012 A012tA12t] }

= (I A02 IC A01 A02 ]Al2 }

Since the angle errors have zero mean,

20



= J^2 E{ r*(A0t)2 A 6 i
[a02A0, (A02) 2 J a Z >

<y912 = E(A61)2
a822 = e (A02)2

where aei , and c92 are the standard deviation of the 
errors in 0t and 02 respectively. Therefore

Ẑl2 1̂2
o6l2 E{ (AOiAOj) }

Ei (A01A02) } o9j2 A T ■"12

Since A01# and A02 are assumed to be statistically 
independent,

E [A01A02] = E(A01)E{A02) = 0
Therefore

^H2 A12
0 a

a t/i12 (3.20)
ea

Pzl2 the error covariance matrix for triangulation 
between sensor SI, and sensor S2 is equal to:

ẑi2 = A12Pei2A12T (3.21)
where A12 is the derivative matrix given by the 
equations (3.7), (3.8), (3.9), (3.10), and P912 is
equal to:
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f"a il a l2 ‘V  0  ' a il a21 (3.23)
[a21 a22. 12 1

n
CD*
OO

■ , a i2 a22 12

a n 2 ° e 12+ a i22 a ea2 a 2 i a n  ° e 12+ a i2 a 22 a ea2

a 2 la l l ° e i2 + a l2 a 220 e32 a 2 i2O012 + a 222Ooa2

ax122 [Pxy] 12°xlaylj
[Pxy] 12°xlayla °yij2

(3.24)

where

o\ii = (aii) 1 2 (Oet)2 + (ai2) 1 2 (®ea)

Cyia = (aa2i) 1 2  (°et ) 2 + (a2 2 ) 1 2  (®0 2 > 2  and

[pj
a2iaiia012 + l312a22O0J2

JQrJ 12 0 0

where p is the correlation coefficient and has a 
value: -li p il

3.6 First-Order Approximation to Covariance Matrix P(33 for 
Measurement Vector z„
Pz23 is the covariance matrix for the errors in the
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measurement vector z23 and it is not necessary to 
rederive separately the equations for that because 
they are similar to Pzl2 equations. The equations 
(3.19), (3.20), (3.21), (3.22), (3.23), and (3.24) may 
be used to calculate Pz23. This is accoirplished by 
replacing Az12 in equation (3.6) with Az23; replacing 
A12 in equation (3.20) with A23/ where the entries for 
the matrix A23 are given by the equations (3.14), 
(3.15), (3.16), and (3.17) and replace a912, and a922 in 
equation (3.20) with a922 and a932 respectively. 
Therefore the equations defining the matrix Pz23 are as 
follows:

where Az23 the error vector in the object triangulated 
position measured by sensor S2 and S3.

P223 — [Az23 Az23t] } (3.25)

~ -̂23
Oe2 0
0 Og3

(3.26)

(3.27)

ol 2 0
0 a\2

(3.28)

(3.29)
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ail2®#2 +ai22Oe3 a2lan®82+ai2a220e3
2 2 2 2 2 2 

. a2la il°82+al2a 22®93 a21 °62 + a 22 °83

°*M IPjcjJ 23aĵ ya,
[ Pxy] 23 <Jxiiy23

2
(3.30)

where

0̂ , = (aii) 2 3 (oBa)2 + (a^JastOe,)2

°y„ = (a22i) 23 (°ea) 2 + <a22) a3 (««,)2 and

r „  i _ a21a11o|2+a12a22ol3lP̂ J23
u*m .I'm

where p is the correlation coefficient and has a 
value: -1* p *1

3.7 The Cross-Covariance Matrix Psl223
The cross-covariance matrix between the measurements 
z12, and z23 is not zero because sensor S2 is the common 
sensor. By definition

Pzl223 = E{ [Az12 Az23t] } (3.31)
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E { [A1 2 A012] £ ^ 3 3  A023] T }

= E { [Au Fa o J A02
U j ] [•̂ 23 A03

]T}

= A,2 2?{ A0X
A02 [A02 A03] A 2 3 }

= K x  s {
' (A01 A02) (A01 A03) 

(A02) 2 {A0 2 A03) A r } a 2 2 ‘

= ̂ 2
£'(A01A02) ^(AOiAOa)
£(A0 2 ) 2 £<A0 2 A03)

A0t/ A0 2 are statistically independent, therefore 
EfAO* A02) = EfAOi) E(A02) = 0 

Also A0 2 and A03 are statistically independent, 
therefore

E(A0 2 A03) = E(A02) E(A03) = 0 
oe 2 2 = E (A02 ) 2  

Therefore the cross-covariance matrix is equal to:

Z1223 [< 3A T“23 (3.32)

From the equation (3.31) we see the cross-covariance 
matrix is equal to:
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*̂1223 ~ & i
(X12 X12)

[ (x^-x^) (y23-y23) ] }

P Xl223 ~ &  ^
(X12-X 12) (X23 X ^ )  X 12^ (y22~-̂ 23)
(yl2- ^ )  ix23-x̂ ) (y12-y£) (y23-yiJ)

P*12*23 ̂*12̂ *23 P*12y23̂ *12̂ J,2S
Pj,i2*23̂>''i2£*J’c23 P/iiKaâ yû yja

where

Pxi2*2j ' P*12X23 ' Pyiâ s ' Pyiiyn

represent the correlation coefficient elements of the 
cross-covariance matrix. By definition

X12X23 0 2̂°*I3

Pxl223 (1# 1)
*12*23

y/P*12 (1 * 1) </Pz23 (1 » 1 )
(3.33)

. , g[ (x12-x12) (y23-y23) ]
'*12/22 (J a*1 2 X13
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 ^x1322---.----  (3.34)
Vp ^7TT7TTVp^7T2727

_ iy12 y 12  ̂ x22  ̂J
pŷ 2i o 0 „Y\2 *13

P. « » ( * . ! )  ( 3 . 3 5 )
P̂xl2 (2,2) (1/1)

and

0 _ (y23-Kr)]
Pr“y” '

P xj333(2>2)____  (3.36)
yJPxia ( 2 , 2 ) yjPS23 12/2)

This completes the derivation of the covariance 
matrices.

Chapter IV discusses the optimum fusion algorithm to 
be applied to the correlated, distributed 
measurements.
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CHAPTER IV

SUMMARY OF OPTIMAL DATA FUSION ALGORITHM FOR N 
DISTRIBUTED SENSORS IN THE PRESENCE OF 
ARBITRARILY CORRELATED SENSOR-TO-SENSOR ERRORS

4.1 Introduction
The optimal data fusion algorithm used here was 
originally presented in reference [8]. Consequently, 
only a summary of the derivation is presented in this 
chapter.
The fusion algorithm is designed to optimally fuse 
measurements from N distributed sensors. The 
measurement vector from each sensor is assumed to be 
full-state and unbiased (zero mean error). The errors 
in each measurement vector are assumed to be 
arbitrarily correlated with the errors from the other 
(N-l) measurement vectors. It is assumed that all 
measurements and covariance matrices have been 
coordinate transformed to a common frame of reference. 
The optimization criterion is minimum trace of the 
error covariance matrix of the fused measurement. This 
means that the trace of the error covariance matrix of 
the fused measurement must be less than the trace of 
the error covariance matrix associated with each of 
the N measurement vectors. Gradient matrix techniques 
are employed to derive the necessary and sufficient
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conditions for minimization of the trace the optimum 
covariance matrix.

4.2 Summary of Derivation of Optimal Fusion Algorithm
Suppose we have N distributed sensors each making an 
unbiased full-state measurement on some evolving 
process. The process is characterized by a vector X of 
length M. All measurements are full-state 
contemporaneous and transformed to a common frame of 
reference. The error in the measurement from the i-th 
sensor is characterized by an MxM error covariance 
matrix Pti. In addition, the errors from measurement i 
have an arbitrary correlation with the errors from the 
other (N-l) measurements. Therefore, each measurement 
X is characterized by a covariance matrix Pu and (N-l) 
cross-covariance matrices Pljf i = 1,2,...N, j =
1,2,...N, i*j. No specific assumptions are made 
concerning the probability density function governing 
these errors. However it is assumed that the errors 
are zero mean.
The fused measurement X is defined to be a linear 
weighted sum of the individual measurement vectors Xt, 
as follows:

(4.1)

We require the fused measurement X to be unbiased. 
Therefore
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H N

i ^ - 1

This provides the first constraint on the coefficient 
matrices At. Solving for A„ and substituting back into
(4.1)

lf-1 N-l

The error in the estimate is

& = g  A± (X-X) + (I-Aj] (Jt-X)

This shows that the error is a weighted sum of the 
error in each measurement vector.
The error covariance matrix P, associated with ft is 

P = E{XX)
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P = E { [ V  Ai [Xr lt) + [I-T A,] {Xs-H) ] xj5l

[ g  {Xr TL) rA/+ (A*-*) r[J-g Aj] n }

N-1 JT-1 tf-1 Jf-1 tf-1 tf-1
f  = g E  a , ^ / .  [ i - g  * 4] r  J v / +g  - ^ t x - g  - y  r+

[X-VA1JPMrtX-y'A;.]r (4.2)

The criterion of the optimal algorithm is minimization 
of the trace of the optimal covariance matrix P. Using 
gradient matrix identities derived in [8], it is shown 
that

_ n- i tr-i Jr-i
-£ -T ' i (P) -  2 g  A ,Pik*2Pa - 2 ^  AJ ( P ^ P n )  - 2  [ X - g  A ,i P „

if-1
(4.3)- 2^2 Ai { Pik Pm~PHk+PSN ̂+2Pst 2Pm

By setting this gradient equation to zero
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N-1
{ P^~Pm Ptfk'Pioi ̂ = (Par~PNk) (4.4)

where
k = 1,2,3,...,(N-l)

Equation (4.4) represents (N-l) equations involving
the (N-l) unknown matrices At, Aj, ..., A,,.!
Define

P' ix = Pix “ Pin “ Pf»k + Pnn >
i = 1,2,3, _  (N-l)
k = 1,2,3,.. (N-l)

and
P'jjijS (Pnh - Pnk) • k = 1,2,3,..., (N—1)

Then the (N-l) equations (4.4) can be written in the 
following matrix form

[̂ 1̂ 2 < • ■ •

P '  11 P \ 2 P 112
p ' *1
*  1 • N-l

*'21 P \  2 P '  23 p  '
*  2' N-l

p  '
*  31 P '  r  32 P '*  33 P  '• « • • c 3, lf.1
• • ■ ■

P '*  tf-1,1 p  '
*  N-l,2 P'*  N-l, 3 P'■ • • *  N-l,N-lm

= [ ^ >H1 P 1 M2 P ,N3 .... P /H,N-l]

The solution for the gain matrices is
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[Ax A2 A3

-l

P N-l, N-l

(4.5)
Equation (4.5) is the necessary condition for 
minimization of the trace of the fused covariance 
matrix P. However it is not the sufficient condition 
for minimization of the trace.
We now summarize the sufficent condition for 
minimization. Further details are available in 
reference [8]

4.3 Sufficient Conditions for Minimization of Trace

33



d 2 { Tx(P) \ -  Tr  { [ dA1 dA2 . . . d A ] x
ir-x

■ 21

12

22

l.N-l
32,W-1

l,N
° 2 , N

dA/
dA/

• tf-1,1 
PN,l

p n - i,:
■ N, 2

PN-l,N-l PN-1,N 
PN,N-1 Pm,H _

N-l
-YdA„

= Tr{F V I) = Tr{ * S’ T } > 0  
Therefore d2{Tr(P)} > 0 if and only if the
partitioned error covariance matrix IP is positive 
definite. Under this condition, therefore, the gain 
matrices (4.5) establish a minimum of the cost 
functional Tr(P).
We now present the final form for the optimum 
covariance matrix P.

4.4 Optimum Error Covariance Matrix P
It is shown in [8] that the optimum covariance matrix 
P is given by:
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P -  PnN [P HI P W2 ■ • ■ P H, H-l J [P' ] -1
(P'»1)THI*
IP'*,)1’ (4.6)

(P" H,H-1)

Equation (4.6) gives the (symmetric) error covariance 
matrix corresponding to the fused measurement (4.1). 
The diagonal elements of P are less than the
corresponding diagonal elements of each of the
individual error covariance matrices Pu , i =
1,2,3,...,N. Consequently, the trace of the optimum 
covariance matrix P must be less than the trace of 
each measurement covariance matrix Pu , i = 
1, 2, 3 , . . . , N.
The second term on the right in (4.6) represents the 
net reduction in uncertainty brought about by the 
fusion process.
This completes summary of optimal fusion algorithm. 
Since it will be applied to the special case N = 2 
distributed measurements, we now look at the special 
form of the algorithm in this case.

4.5 Optimum Fusion Algorithm for Special Case of N ■ 2
Measurements
In our scenario there are three sensors generating 
uncorrelated angle-of-arrival measurements 0!, i =
1,2,3. These three angle-of-arrival measurements are 
used to form two separate distributed measurement
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vectors z12, and z23 of the position of an object in 
two-dimensional space as shown in chapter III. 
Measurement z12 has a covariance matrix Pzi2*
Measurement z23 has a covariance matrix Pz23.
Measurements z12, and z23 have a non zero cross­
covariance matrix Pzl223 - This is because S2 is the
common sensor to both measurements.
Therefore, in terms of the matrices in the optimum 
fusion algorithm, we have:

P u Pzl2

P 22 = Pz23

P 12 - Pzl223

P 21 — ( P zl223

From the definition

P ' ik = Pi* ~ Pin ~ Pine + Pnn 
we get

P/ll = Pzl2 ~ Pzl223 - (Pz1223 )T + Pz23 (4.7)
From equation (4.5), we get 

P' = P'u 
From the definition

P ' NX = PfJN ~ Pfflc 
we get

P * 21 = Pz23 “ (Pz1223 ̂T
From equation (4.5) we see the gain matrix Ax given by 

Aa = P'jxtP'u) ' 1

= tPz23 “ (Pz1223)T1 [Pz12 ~ Pzl223 ~ ( Pzl223 ) T + Pz23 ]
and

A2 = I - Aj
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The optimum error covariance matrix P0 is obtained 
from equation (4.6) as follows 

Po = P22 - P ' 2 1 [P'lJ-1 (P'2l)T
=  Pz23 -  [P z 2 3  “  P z l 223T ] t P z 12 “  P z l2 23 “  P z l2 23T +  P z23 ]  1 X

[Pz23T “ Pzl2231 (4.8)

In the next chapter we discuss simulation results for 
the scenario given in figure (2.1).
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CHAPTER V

SIMULATION RESULTS 

5.1 Introduction
In this chapter we describe two simulation examples 
(scenario nol, and scenario no2) in two-dimensions. 
Two cases are examined for each scenario a low-noise 
case and a high-noise case to illustrate the 
improvement in the estimation in the fusion centre 
by using the fusion algorithm and for demonstrating 
the basic principles presented previously.

5.2 Basic Concept of the Simulation Flow Diagram
Figure (5.1) shows the simulation flow diagram of the 
data generation and fusion algorithm.
As we see from figure (5.1) the algorithm is 
simulated for three spatially distributed sensors SI, 
S2, and S3 with known locations (xlfyl) , (x2,y2) , and
(x3,y3) respectively and we specify the coordinates of 
(x,y) of the object's position.
Knowing the position of the three sensors and of the 
object we compute the true angle-of-arrival values 
0lt, 02t, and 03t respectively. The next step is to 
generate errors in the angle-of-arrival measurements.
The statistics governing the errors on these angle 
measurements come from a variety of distributions, 
namely the uniform, sawtooth, and triangular
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distributions. These several different distributions 
are used to test the fusion algorithm in a rigorous 
manner.

5.2.1 Errors on sensor SI:
We assume sensor SI errors have a uniform pdf as 
shown in figure (5.2) on page 46. A random number y 
with pdf U(0,1) is generated. That number is 
substituted into the right side of the equation (A-6) 
in appendix A. That produces the random number with 
pdf U(-8U,8U). Equation (A-6) is used to generate 
random angle-of-arrival errors in SI measurement 
(A0J . This value is added to the true angle 0lt to 
produce the measured angle 0lm.

0lm = 0lt + A0:

5.2.2 Errors on Sensor S2:
We assume sensor S2 errors have a sawtooth pdf as 
shown in figure (5.2) . A random number y with pdf 
U(0,1) is generated. That number is substituted into 
the right side of the equation (B-8) , or (B-9) 
depending on whether 0 < y < 0.5, or 0.5 < y < 1 (see 
appendix B). That produces the random number with a 
sawtooth pdf (-8S,8S). Equations (B-8), and (B-9) are 
used to generate random angle-of-arrival errors in S2 
measurement data (A02) . This value is added to the 
true angle Q2t to produce 02m.

®2m =  ®2C +  ^ © 2
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5.2.3 Errors on Sensor S3
We assume sensor S3 errors have a triangle pdf as 
shown in figure (5.2) . A random number y with pdf 
U(0,1) is generated. That number is substituted into 
the right side of the equations (C-8) or (C—9) 
depending on whether 0 < y < 0.5, or 0.5 < y < 1 (see 
appendix C) . That produces a random number with a 
triangle pdf (-8c,8t). Equation (C-8), and (C-9) are 
used to generate random angle-of-arrival errors in 
sensor S3 measurement data (A03) . This value is added 
to the true angle 03t to produce 03m.

®3m =  ®3C +  ^ 0 3

From the noisy angle measurements 0lm/ 02m, and 03m we 
compute the noisy position measurements (x12, y12) , 
and (x23,y23) using equations (2 . 9) , (2 .10) , (2.11), and
(2,12). We now have two noisy triangulated position 
vectors z12, and z23 as defined in chapter II.

5.2.4 First-Order Approximation Covariance Matrix
The next step is to compute the first order-
approximation to the covariance matrices of the two
position vectors z12 and z23. We do this by first 
computing the matrix of partial derivatives A12
defined by the equation (3.4) . The elements of A12 are
defined by the equations (3,7), (3,8), (3,9), and
(3,10). The matrix of partial derivatives A23 is
define by equation (3.12). The elements of A23 are
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defined by the equations (3.14), (3,15), (3,16), and
(3,17) . As we see from these equations we need the 
noisy angle-of-arrival measurements to compute the 
partial derivative matrices A12, and A23. From these 
equations we see that 01# and 02 appear directly in 
matrix A12, and 02, 03 appear directly in the matrix 
A23. We use the noisy angle-of-arrival measurements 
because we do not have the true angles 0lt, 02t, and 
03t. Therefore the partial derivative matrices are at 
best only noisy approximations to the true values. We 
also need the noisy position measurements as we see 
in equations (3.9) and (3.16) to compute the partial 
derivative matrices. These noisy position 
measurements are not accurate and also increase the 
error in the partial derivative matrices. For these 
reasons the covariance matrix is an approximation to 
the true covariance matrix. The covariance matrix of 
the noisy angle measurement P012 is calculated by the 
equation (3.22) . The variance of the angle errors for 
sensor SI, <J912, is given by the equation (A-3) . The 
variance of the angle errors for sensor S2, a922, is 
given by equation (B-3) . When the matrix of partial 
derivatives A12, has been computed, the covariance 
matrix Pzl2 is computed using equation (3.21). The 
covariance matrix Pz23 is computed in a like manner 
using equation (3.27), where the covariance matrix of 
the noisy angle measurement P923 is given by the 
equation (3.28) . The variance of the angle errors for
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sensor S3, (?e32/ i s  given by the equation (C—3) - 
When the covariance matrices have been computed we 
next check that these are symmetric and that the 
correlation coefficients have a magnitude less than 
one.

5.2.5 Cross-Covariance Matrix
When this is complete, we then compute the cross- 
covariance matrix Pz l 2 23 by using the equation (3.32). 
When Pz 1 2 23 is computed, we check the correlation 
coefficient elements of the cross-covariance matrix. 
These correlation coefficients also should have a 
magnitude less than unity.

At this point we have two noisy measurement vectors 
z12, and z23. We have the covariance matrices 
associated with these vectors, namely Pzl2 , and Pz23. 
We also have the cross-covariance matrix between 
these two vectors, namely Pz l 2 23 - The data is now ready 
to be fused using the optimal fusion algorithm 
discussion in chapter IV.
We compute the optimum covariance matrix P0 using 
equation (4.8) . When P0 is computed we then check the 
trace of the optimum matrix PQ and compare it with the 
trace of the individual covariance matrices P2l2 and 
Pz23. The fusion algorithm attempts to produce an 
optimum covariance matrix Pc with a trace which is 
less than that of Pzl2 and of Pz23 individually. The
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optimum fusion algorithm assumes that the covariance 
matrix is correct for each of the input measurement 
vectors. We have seen that the covariance matrix is 
only a first-order approximation to the true 
covariance matrix. In addition, the pdf's governing 
the errors on the sensors are quite different from 
each other. These conditions provide an interesting 
test for the optimum fusion algorithm under sub­
optimum conditions.

5.2.6 Solution of Nonlinear Estimation Problem Using Linear 
Estimation Techniques
It should also be pointed out here that what is 
basically a nonlinear estimation problem is being 
addressed using linear estimation techniques.
Our measurement data consists of noisy angles-of- 
arrival. We are interested in the position of the 
object. From equation (2.9) and (2.10) we see that 
the position of the object is a nonlinear function of 
the data. Normally we would resort to nonlinear 
estimation techniques to estimate the object's 
position from the data. However we are not doing that 
here. Instead, we invert the measurements and use the 
first-order approximation to the covariance matrices 
of the noisy position measurments. We then use a 
linear fusion technique to estimate the object 
location from the noisy inverted data. The 
distribution governing the noisy position data is
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unknown. However, the fusion algorithm dose not need 
this information. All it needs is the covariance 
matrix of the position measurements for which we 
provide a first-order approximation. One of the aims 
of this research is to see how well this works.

The next section discusses simulation example for 
scenario nol, low-noise case.
The simulations were carried using MATLAB on a 386 PC

5.3 Scenario Number 1 (nol), Low-Noise Case.
Figure (5.2) shows the configuration of the object 
and sensors for scenario nol in two dimensions.
  represents the noisy angle-of-arrival
measurements data.
  represents the true angle value.
As we see from figure (5.2) sensor SI has a uniform 
pdf U(-5U/ 5U) , sensor S2 has a sawtooth pdf and
sensor S3 has a triangle pdf.
The values used in the low noise simulation are: 
Object true position p (x = 6, y = 7)

51 location (xt = 2, y: = 3),
52 location (x2 = 5, y2 = 4),
53 location (x3 = 9, y3 = 3),

Each sensor calculates the true object angle-of- 
arrival. These are:

9lt = 45° = 0.7854 radians 
02t = 71° = 1.25 radians
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03c = 126.87° = 2.2143 radians 
Noise pdf in the three sensors SI, S2, and S3 are:

5U = 2 degrees = 0.0349 radians 
ctu = 1.15 degrees = 0.0202 radians 
S3 = 2 degrees = 0.0349 radians 
<jg = 1.41 degrees = 0.0247 radians 
8t = 2 degrees = 0.0349 radians 
Oc = 0.8193 degrees = 0.0143 radians 

From the equation (A-3) we compute the noisy standard 
deviation for a uniform random variable Gu 
From the equation (B-3) we compute the noisy standard 
deviation for a sawtooth random variable as 
From the equation (C-3) we compute the noisy standard 
deviation for a triangle random variable at.
As we see the standard deviation of the errors are 
small compared to the true values of the angles. 
Therefore, this is a low-noise case. The covariance 
matrix should be very close to the true covariance 
matrix.

As mentioned earlier it is impossible to determine 
the pdf governing the measurement vectors z12, and z23 
because of the nonlinear function of the angles 0lf 
02, and 03. However the fusion algorithm can be 
applied because it does not need to know the pdf, 
just the covariance matrices.
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5.3.1 Discussion of Simulation Results, Scenario nol, Low- 
Noise Case
The computer simulation was run 50 times and the 
results are plotted and discussed in the next several 
pages.
Figure (5.3) shows the actual error in the noisy 
measured position x12 obtained by triangulation 
between sensors SI, and S2. The dotted line 
represents the actual errors in the noisy 
measurements x12, and the solid line represents the 
square root of Pzl2(l,l). The solid line is the 
theoretical standard deviation of the errors 
according to the covariance matrix. The numeric mean 
value of the errors in noisy measurement x12 in figure
(5.3) is Mxl2_err = (0.0039). The numeric standard
deviation is Sxl2_err = (0.1484). This compares
favourably with the theoretical standard deviation 
given by the solid line in the figure.

Figure (5.4) shows the actual errors in the noisy 
measurements position x23 obtained by triangulation 
between sensors S2, and S3. The dotted line 
represents the actual errors in noisy measurements 
x23/ and the solid line represents the square root of 
Pz23(l,l). The solid line is the theoretical standard 
deviation of the errors according to the covariance 
matrix. The numeric mean value of the errors in x23 
noisy measurements in figure (5.4) is Mx23_err=
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(0.0067). The numeric standard deviation is Sx23_err 
= 0.0594. This also compares favourably with the
theoretical standard deviation given by the solid 
line in the figure.

Figure (5.6) shows the errors in the fused estimate 
in x position obtained by fusion of the noisy 
measurements x12, and x23. The dotted line represents 
the errors in the fused estimate and the solid line 
represents the square root of P0(l,l). The numeric 
mean value of the errors in the fused estimate in 
figure (5.6) in x dimension is Xfuse_err = (0.0037). 
The numeric standard deviation of the errors in the 
fused estimate is Sxfuse_err = (0.0654).

Figure (5.7) shows the actual errors in the measured 
noisy position y12 obtained by triangulation between 
sensors SI, and S2. The dotted line represents the 
actual errors in the noisy measurements y12, and the 
solid line represents the square root of Pzl2(2,2) . The 
numeric mean value of the errors in the figure is 
Myl2_err = (-0.0048). The numeric standard deviation 
is Syl2_err = (0.2707).

Figure (5.8) shows the actual errors in the measured
noisy position y23 obtained by triangulation between 
sensors S2, and S3. The dotted line represents the 
actual errors in the noisy measurements y23, and the
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solid line represents the square root of Pz23(2,2) . The 
numeric mean value of the errors in the figure is 
My23_err = (0.0198). The numeric standard deviation 
is Sy23_err = (0.1168).

Figure (5.10) shows the errors in the fused estimate 
in y position obtained by fusion the noisy 
measurements y12, and y23. The dotted line represents 
the errors in the fused estimate in y position and 
the solid line represents the square root of Pc(2,2). 
The numeric mean value of the errors in the fused 
estimate in figure (5.10) is Yfuse_err = (0.0094).
The numeric standard deviation of the errors in the 
fused estimate is Syfuse_err = (0.1008).

Figure (5.3) shows the actual errors in the noisy 
measurements x12 and the theoretical standard 
deviation of the errors in low-noise case in scenario 
nol in x postion.
We can see from figure (5.3) that the errors change 
between negative and positive values. Also we see the 
theoretical standard deviation increasing and 
decreasing in according with the magnitude of the 
errors. The statistics are changing with time. 
Between n = 5 and n = 6 we see the magnitude of the 
error increases from 0.12 to 0.275. We also note the 
theoretical standard deviation increase from 0.12 to 
0.18 (the same value of 0.12 here is coincidence). We
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also see the same thing between n = 10 and n = 11 the 
magnitude of the error increases from 0.11 to 0.185. 
We also note that the theoretical standard deviation 
increases from 0.15 to 0.185. Between n = 30 and n = 
33 , we see the magnitude of the error increases from 
0.17 to 0.32. The theoretical standard deviation 
increases from 0.15 to 0.2. Between n = 34 and n = 
37, as the magnitude of the error increases and 
decreases, the theoretical standard deviation 
increases and decreases in a like manner.
In general, the standard deviation tracks the 
magnitude of the errors.
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Errors in x l2 measurements versus standard deviation (scenario nol)

Figure (5.3)

....xl2_err represents the actual errors in the noisy 
measurements x12 in low-noise case in x position.

  stdev represents the square root of Pll2(l,l), the
theoretical standard deviation of the errors 
according to the first-order approximation to the 
covariance matrix.
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Figure (5.4) shows the actual errors in the noisy 
measurements x23 and the theoretical standard 
deviation of the errors in low-noise case in scenario 
nol in x position.
We can see from figure (5.4) that x23 noisy 
measurements are higher quality measurements than the 
x12 noisy measurements because the standard deviation 
of x23 measurements is smaller than the standard 
deviation of x12 measurements. Also we can see from 
this figure most of the errors are less than 0.1, and 
are smaller than the errors in the noisy measurements 
x12. The theoretical standard deviation of 0.06 is 
close to the numeric one. We see from figure (5.4) 
the standard deviation is approximately constant for 
all values of n.
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Errors in x23 measurements versus standard deviation (scenario nol)

Figure (5.4)

. .. x23_err represents the actual errors in the noisy 
measurements x23 in low-noise case in scenario nol.

  stdev represents the square root of Pz23(l,l), the
theoretical standard deviation of the errors 
according to the first-order approximation to the 
covariance matrix.
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Figure (5.5) shows the percentage errors in the fused 
estimate in low-noise case in scenario nol in x 
position.
We immediately observe that the fused estimate (solid 
line) clips the peak errors in the measurements. Also 
in this figure we can see the improved performance 
that is obtained by fusion of the error in the two 
measurements x12 and x23. For example at n = 6 we see 
the fused measurement clips the large error in x12, 
and remains close to the higher accuracy measurement 
x23. We also observe the same effect at n = 27. The 
error in x12/ and x23 are both positive, and the fused 
estimate error is closer to that of x23. Under these 
conditions (where both measurement errors are of like 
sign), the fusion algorithm cannot in general produce 
an error which is less than the smaller one. In order 
to reduce errors, the fusion algorithm relies on 
opposite sign errors to cancel each other out. With 
errors of the same sign, this cancellation is not 
generally possible. We see the same effect at n = 22, 
32, and between n = 37 and 50. But when the errors in 
the x12, and x23 are of opposite algebraic signs, the 
fusion algorithm produces a smaller error than the 
smallest measurement error. For example at n = 16 
where the error in x12 measurements is negative and 
the error in x23 measurements is positive we see the 
error in the fused estimate is less than the smaller 
error individually. We see the same effect at n = 23,
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% Errors in measurments x!2 and x23 versus percentage fusion error (scenario nol)

I

Fig (5.5)

L2) represents the percentage error in the noisy 
measurements x12 in low-noise case in scenario nol in 
x position.
(pEx23) represents the percentage error in the noisy 
measurements x23 in low-noise case in scenario nol in 
x position.
(pEx_f) represents the percentage error in the fused 
estimate for low-noise case in scenario nol in x 
position.
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Errors in xfuse versus standard deviation (scenario nol)

Figure (5.6)

.... xfuse_err_f represents the errors in the fused 
estimate in low-noise case in scenario nol in x 
position.

  stdev represents the square root of P0(l,l), the
theoretical standard deviation of the errors in the 
fused estimate in low-noise case in scenario nol in 
x position.
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25, and n = 34 .

Figure (5.7) shows the actual errors in the noisy 
measurements y12 and the theoretical standard 
deviation of the errors in low-noise case in scenario 
nol in y position.
We see from figure (5.7) between n = 5 and n = 6, the 
magnitude of the error increases from 0.18 to 0.5. We 
also note the standard deviation increases from 0.29 
to 0.36.
In general, we can see from this figure the 
theoretical standard deviation tracks the magnitude 
of the errors with a few exception at n = 18, for 
example.

I
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Errors in y!2 measurements versus standard deviation (scenario nol)

Figure (5.7)

. . . . yl2_err represents the actual errors in the noisy 
measurements y12 in low-noise case in scenario no.

  stdev represents square root of Pzl2(2,2), the
theoretical standard deviation of the errors 
according to that first-order approximation to the 
covariance matrix.
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Figure (5.8) shows the actual errors in the noisy 
measurements y23 and the theoretical standard 
deviation of the errors in low-noise case in scenario 
nol in y postion.
We can see from figure (5.8) that y23 noisy 
measurements are more accurate than y12 noisy 
measurements. Also we can see that most of the errors 
are less than 0.11 and the standard deviation of 0.11 
is close to the numeric one. We see from figure (5.8) 
the standard deviation is approximately constant for 
all values of n.
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Errors in y23 measurements versus standard deviation in (scenario nol)

Figure (5.8)

. . . . y23_err represents the actual errors in the noisy 
measurements y23 in low-noise case in scenario nol in 
y position.

  stdev represents the square root of P223(2,2), the
theoretical standard deviation of the errors 
according to that first-order approximation to the 
covariance matrix in low-noise case in scenario nol 
in y position.
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Figure (5.9) shows the percentage errors in the fused 
estimate in low-noise case in scenario nol in the y 
position.
We can see that the noisy measurements y23 are more 
accurate than the y12 noisy measurements. The 
improvement offered by the fusion algorithm is 
obvious from the figure. The fused estimate clips the 
peak errors in both y12, and y23. For example at n = 
28 the error in y12 is positive and in y23 is negative. 
We see the error in the fused estimate is smaller 
than the smallest magnitude error which is the error 
in y23. At n = 29 the same effect is obvious. The 
error in y12 is negative and the error in y23 is 
positive. We see the error in the fused estimate is 
smaller than the smallest magnitude error which is 
the error in y23. We observe the same effect at n = 
18, 21, 22, 23, and between n = 42 to n = 50 (the
errors in y12, and y23 are of opposite algebric signs) . 
The fusion algorithm produces an error which is 
smaller than the smallest one. But we see when the 
errors in the measurements y12, and y23 are of the same 
algebraic sign, the error in the fused estimate is 
not less than the smallest measurement error but 
clips the peak error and remains close to the smaller 
one. We see that at n = 6, both the errors in y12, and 
y23 are positive, and the fused estimate clips the big 
error in y12 and is close to y23. We observe the same 
effect at n = 12, 13, 20, and n = 41.
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Overall, the figure shows that the fused estimate is 
generally better than the individual measurements.

% Errors in measurments y 12 and y23 versus percentage fusion error (scenario nol)

Figure (5.9)

  pEyl2 represents the percentage error in the
noisy measurement y12 in low-noise case in scenario 
nol in y position.

.. . . pEy23 represents the percentage error in the noisy 
measurement y23 in low-noise case in scenario nol in 
y position.

  pEy_f represents the percentage error in the fused
estimate in low-noise case in scenario nol in y 
position.
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0.3
Errors in yfuse versus standard deviation (scenario nol)

- %  5 10 15 20 25 30 35 40 45 50
n

Figure (5.10)

.... yfuse_err represents the errors in the fused estiamte 
in low-noise case in scenario nol in y position.

  stdev represents the square root of P0(2,2), the
theoretical standard deviation of the errors in the 
fused estimate in y noisy position in low-noise case 
in scenario nol.
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5.3.1.1 Trace of Covariance Matrices
The fusion algorithm is not designed to minimize the 
error in the fused measurements, although it achieves 
this many times.
It is the criterion of the fusion algorithm to 
produce the optimum covariance matrix having a trace 
which is less than the trace of the individual error 
covariance matrices.
Figure (5.11) shows the trace of the error covariance 
matrices in low-noise case in scenario nol.
From figure (5.11) we can see that the trace of the 
optimum error covariance matrix is less than the 
trace of the individual error covariance matrices pzl2, 
and Pz23.
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Trace of covariance matrices (scenario nol)

n

Figure (5.11)

  tpzl2 represents the trace of the error covariance
matrix between sensor SI, and sensor S2 in low-noise 
case in scenario nol.

. . .. tpz23 represents the trace of the error covariance 
matrix between sensors S2, and S3 in low-noise case 
in scenario nol.

  tf represents the trace of the optimum error
covariance matrix in low-noise case in scenario nol.
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Figure (5.12) shows the correlation coefficient elements 
for the cross-covariance matrix Pz l 2 23 which are calculated 
by the equations:

Pxi2x23 = rholl is calculated by the equation (3.33),
P»i2y23 = rhol2 is calculated by the equation (3.34),
Pyi2x2 3 = rho21 is calculated by the equation (3.35),
and
Pyi2y 23 = rho22 is calculated by the equation (3.36). 
From figure (5.12) we see all the correlation
coefficients have magnitude less than one. The figure 
also shows that there is a strong correlation between 
the components of the two vectors z12 and z23.
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Correlation coefficent of cross-covariance matrix (scenarion nol)

Figure (5.12)
 rholl = Pxi2x23 represents the correlation between the

noisy measurements x12, and the noisy measurement x23 
in low-noise case in scenario nol.

. . . . rhol2 = pxl2y23 represents the correlation between the 
noisy measurements x12, and the noisy measurements y23 
in low-noise case in scenario nol.

  rho21 = pyi2x23 represents the correlation between the
noisy measurements y12, and the noisy measurements x23 
in low-noise case in scenario nol.

++++ rho22 = pyi2y23 represents the correlation between the 
noisy measurements y12, and the noisy measurements y23 
in low-noise case in scenario nol.
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The next section discussion the simulation results for 
high-noise case in scenario nol.

5.4 Scenario nol, High-Noise Case
In this section we describe some simulation results 
for high-noise case.
The high-noise case has the same geometrical 
configuration as the low-noise case. The sensors have 
the same pdfs as the low-noise case. The differnce 
between the low-noise case and the high-noise case is 
in the measurement noise variances.
Each sensor calculates the true object angle-of- 
arrival. These are:

0lt = 45° = 0.7854 radians 
02t = 71° = 1.25 radians 
03t = 126.87° = 2.2143 radians 

Noise pdfs in the three sensors SI, S2, and S3 are as 
follows:

8U = 5 degrees = 0.0873 radians 
Cu = 2.88 degrees = 0.0504 radians 
8S= 4 degrees = 0.0698 radians 
CTS = 2.83 degrees = 0.0494 radians 
8t = 6 degrees = 0.1047 radians 
at = 2.45 degrees = 0.0428 radians 

The same equations as used in the low-noise case are 
used to compute the standard deviations above.
As we see the standard deviation of the errors are 
larger than in the low-noise case.
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5.4.1 Discussion of Simulation Results, Scenario nol, High- 
Noise Case

The computer simulation was run 5 0 times and the 
results are plotted and discussed in the next several 
pages.
Figure (5.13) shows the actual errors in the noisy 
measurements x12 from triangulation between sensors SI, 
and S2. The dotted line represents the actual error in 
the noisy measurements x12, and the solid line 
represents the square root of Pzl2(l,l) in high-noise 
case in scenario nol in x position. The solid line is 
the theoretical standard deviation of the errors 
according to the first-order approximation to the 
covariance matrix. The numeric mean value of the 
errors in the noisy measurements x12 in figure (5.13) 
is Mxl2_err = - 0.0010. The numeric standard deviation 
is Sxl2_err = 0.3505. This compares favourably with 
the theoretical standard deviation by the solid line 
in the figure. Comparing this figure with figure
(5.3), we see that the errors are now much larger.

Figure (5.14) shows the actual errors in the noisy 
measurements x23 obtained by triangulation between 
sensors S2, and S3. The dotted line represents the 
actual errors in noisy measurements x23, and the solid 
line represent the square root of Pz23(l,l) in high- 
noise case in scenario nol. The solid line is the 
theoretical standard deviation of the errors according
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to the covariance matrix. The numeric mean value of 
the errors in the noisy measurements x23 in figure 
(5.14) is Mx23_err = -0.0170. The numeric standard 
deviation is Sx23_err = 0.1378. This also compares 
favourably with the theoretical standard deviation 
given by the solid line in the figure.

Figure (5.16) shows the errors in the fused estimate 
obtained by fusion of the noisy measurements x12, and 
x23. The dotted line represents the errors in the fused 
estimate, and solid line represents the square root of 
PQ(1,1). The numeric mean value of the errors in the 
fused estimate in figure (5.16) in x dimension is 
xfuse_err = -0.0343. The numeric standard deviation of 
the errors in the fused estimate is Sxfuse_err = 
0.1583.

Figure (5.17) shows the actual errors in the noisy 
measurements y12 obtained by triangulation between 
sensors SI, and S2. The dotted line represents the 
actual errors in the noisy measurements y12, and the 
solid line represents the square root of Pzl2(2,2) , the 
theoretical standard deviation of the errors according 
to the first-order approximation to the covariance 
matrix. The numeric mean value of the errors in the 
figure is Myl2_err = 0.0188. The numeric standard
deviation is Syl2_err = 0.7153.
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Figure (5.18) shows the actual errors in the noisy 
measurements y23 from triangulation between sensors S2, 
and S3. The dotted line represents the actual errors 
in the noisy measurements y23, and the solid line 
represents the square root of Pz23(2,2), the 
theoretical standard deviation for the errors 
according to the first-order approximation to the 
covariance matrix. The mean value of the errors in the 
figure is My23_err = 0.0480. The numeric standard
deviation is Sy23_err = 0.2682.

Figure (5.2 0) shows the errors in the fused estimate 
obtained by fusing the noisy measurements y12, and y23. 
The dotted line represents the errors in the fused 
estimate in y position, and the solid line reprsenents 
the square root of P0(2,2). The numeric mean value of 
the errors in the fused estimate in figure (5.20) is 
yfuse_err = -0.0186. The numeric standard deviation of 
the errors in the fused estimate is sxfuse_err = 
0.2303 .

The results of the simulations of scenario nol for 
high-noise case are discussed in the next several 
pages.
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Figure (5.13) shows the actual errors in the noisy 
measurements x12 (Mxl2_err) and the numeric standard 
deviation of the errors in high-noise case in scenario 
nol in x position.
We can see from figure (5.13) that the errors in the 
noisy measurements x12 have a magnitude bigger than the 
magnitude of the errors in the x12 noisy measurements 
in low-noise case figure (5.3). From figure (5.13) we 
see the errors change between negative and positive 
values and increase and decrease. Also we see the 
theoretical standard deviation increases and decreases 
in according with the magnitude of the errors. For 
example between n = 21, and n = 22 we see the
magnitude of the errors increases from 0.6 to 0.8. We 
also note the theoretical standard deviation increases 
from 0.5 to 0.65. We also see the same thing between 
n = 33 and n = 34 the magnitude of the error decreases 
from 0.8 to 0.2. We also note the theoretical standard 
deviation decreases from 0.62 to 0.3. Between n = 37, 
and n = 43, we see the magnitude of the error
increases and decreases, the theoretical standard 
deviation increases and decreases in a like manner. In 
general, the standard deviation tracks the magnitude 
of the errors.
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Errors in x l2 measurements versus standard deviation (scenario nol)

Figure (5.13)

....xl2_err represents the actual errors in the noisy 
measurements x12 in scenario nol high-noise case.

  stdev represents the square root of Pzl2(l,l), the
theoratical standard deviation of the errors according 
to that first-order approximation to the covariance 
matrix.
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Figure (5.14) shows the actual errors in the noisy 
measurements x23 and the the theoretical standard
deviation of the errors in high-noise case in scenario 
nol in x position.
We can see from the figure that x23 noisy measurements 
are higher quality measurements than the x12 noisy 
measurements because the standard deviation of the
errors in x23 noisy measurements is smaller than the
stndard deviation of the errors in x12 noisy 
measurements also, the actual errors seen to be 
smaller too. Also we can see from this figure the
theoretical standard deviation tracks the magnitude of 
the errors and is close to the numeric one. We see 
from figure (5.14) the standard deviation is 
approximately constant for all values of n.
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Errors in x23 measurements versus standard deviation (scenario nol)

n

Figure (5.14)
x23_err represents the actual errors in the noisy 

measurements x.23 in a high-noise case in scenario nol 
in x position.
stdev represents the square root of Pz23 (1.1), the 

theoretical standard deviation of that the errors 
according to the first-order approximation to the 
covariance matrix in a high-noise case in scenario nol 
in x position.
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Figure (5.15) shows the percentage errors in the fused 
estimate in high-noise case in scenario nol in x 
postion.
From the figure we can see the improvement offered by 
the fusion algorithm. It is, immediatly seen that the 
fused estimate (the solid line) clips the peak errors 
in the noisy measurements. For example at n = 21, we 
see the fused measurement clips the large error in the 
noisy measurement x12 and remains close to the higher 
accuracy noisy measurement x23. We also observe the 
same effect at n = 32, 36, 37, 38 and 42 and several 
other places. As we noted before when the errors are 
of like sign, the fusion algorithm cannot in general 
produce an error which is less than the smaller one. 
In order to reduce the errors, the fusion algorithm 
relies on opposite sign errors to cancel each other 
out. With errors of the same sign, this cancellation 
is not generally possible. For example at n = 3 8 where 
the both of the errors in the noisy measurements x12, 
and x23 are positive we see the fused measurement clips 
the large error which is in the noisy measurement x12, 
and and remains close to the higher accuracy noisy 
measurement x23. We see the same effect several times 
between n = 3 5 t o n = 5 0 .
But when the error in the x12, and x23 are of opposite 
algebraic sign, the fusion algorithm produces a 
smaller error than the smallest measurement error. For 
example at n = 40 where the error in the x12 noisy
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measurement is positive and the error in the noisy 
measurement x23 is negative, we see the error in the 
fused estimate is less than the smaller error 
individually. We also see the same effect at n = 33, 
and at n = 34.

% Errors in measurments xl2 and x23 versus percentag fusion error (scenario nol)

Fig (5.15)
  (pExl2) represents the percentage error in the noisy

measurements x12 in high-noise case in scenario nol in 
x position.

. . . . (pEx23) represents the error in the noisy measurements 
x23 in high-noise case in scenario nol in x position.

  pEx_f represents the percentage error in the fused
esimate in high-noise case in scenario nol in x position.
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Errors in xfuse versus standard deviation (scenario nol)

11

Figure (5.16)

xfuse_err represents the errors in fused estimate in 
high-noise case in scenario nol in x position.
stdev represents the square root of PQ (1,1), the 

standard deviation of the errors in the fused estimate 
in high-noise case in scenario nol in x position.
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Figure (5.17) shows the actual errors in the noisy 
measurements y12, and the theoretical standard 
deviation of the errors in high-noise case in scenario 
nol in y position.
We see from figure (5.17) between n = 20 and n = 21, 
the magnitude of the error increases from 0.5 to 1.45. 
We also note the theoretical standard deviation 
increases from 0.6 to 1.2.
In general we can see from figure (5.17) the 
theoretical standard deviation tracks the magnitude of 
the errors.

Figure (5.18) shows the actual errors in the noisy 
measurements y23 and the theoretical standard deviation 
of the errors in high-noise case in scenario nol in y 
position.
We can see from figure (5.18) that y23 measurements are 
more accurate than y12 measurements. The standard 
deviation in figure (5.18) is approximately one-half 
that of figure (5.17) and the actual errors in both 
figures also show this trend.
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Errors in yl2 measurements versus standard deviation (scenario nol)

n

Figure (5.17)
. . . . yl2_err represents the actual errors in the noisy 

measurements y12 in high-noise case in scenario nol in 
y position.

  stdev represents the square root of Pzl2 (2,2), the
theoretical standard deviation of the errors according 
to that first-order approximation to the covarince 
matrix.
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Errors in y23 measurements versus standard deviation in (scenario nol)

n

Figure (5.18)

y23_err represents the actual errors in the noisy 
measurements y23 in high-noise case in scenario nol in 
y position.
stdev represent the square root of Pz23(2,2), the 

theoretical standard deviation of the errors according 
to the first-order approximation to the covariance 
matrix in high-noise case in scenario nol in y 
position.
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Figure (5.19) shows the percentage errors in the fused 
estimate in y position in high-noise case in scenario 
nol.
From figure (5.19) we can see the improvement offered 
by the fusion algorithm. The fused estimate clips the 
peak error in both noisy measurements y12, and y23. For 
example at n = 21, the error in the noisy measurements 
y12 is positive and large and in y23 is negative and 
small, we see that the error in the fused estimate is 
smaller than the smallest magnitude error which is in 
y23. We see the same effect at n = 32. The error in y12 
is positive and the error in y23 is negative. We see 
the error in the fused estimate is smaller than the 
smallest magnitude error which is the error in y23. We 
observe the same effect at n = 3, 7, 9, 12, 17, 18, 
19, and between n = 39 to n = 46. In there cases the 
errors in y12, and y23 are of opposite algebraic signs 
and the fusion algorithm produces an error which is 
smaller than the smallest one. But we see when the 
errors in the noisy measurements y12, and y23 are of the 
same algebraic sign, the fused error is not less than 
the smallest measurement error. Instead, it clips the 
peak error and remains close to the smaller one. For 
example at n = 38, both the errors in y12, and y23 are 
positive; we see the fused estimate is close to y23. We 
observe the same effect at n = 47, and n = 48.

83



Pe
ce

nt
ag

e 
er

ro
r

% Errors in measurments y l2  and y23 versus fusion error (scenario nol)

Fig (5.19)

(pEyl2) represents the percentage error in the noisy 
measurement y12 in high-noise case in scenario nol in 
y position.
(pEy23) represents the percentage error in the noisy 

measurement y23 in high-noise case in scenario nol in 
y position.
(pEy_f) represents the percentage error in the fused 
estimate in high-noise case in scenario nol in y 
position.
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Errors in yfu.se versus standard deviation (scenario nol)

n

Figure (5.20)
yfuse_err_f represents the errors in the fused 
estimate in high-noise case in scenario nol in y 
position.

  stdev reprents the square root of P0(2,2), the
theoretical standard deviation of the errors in the 
fused estimate in high-noise case in scenario nol in 
y position.
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5.4.1.1 Trace of Covariance Matrices
Figure (5.21) shows the trace of the error covariance 
matrices in high-noise case in scenario nol.
From figure (5.21) we can see that the trace of the 
optimum error covariance matrix is less than the trace 
of the individual error covariance matrices Pzl2, and 
Pj,23. This is the criterion of the fusion algorithm to 
produce the optimum covariance matrix having a trace 
which is less than the trace of the individual error 
covariance matrices.
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Trace of covariance matrices (scenario nol)

n

Figure (5.21)
  tpzl2 represents the trace of the error covariance

matrix between sensor SI, and sensor S2 in high-noise 
case in scenario nol.

.... tpz23 represents the trace of the error covariance
matrix between sensor S2, and sensor S3 in high-noise 
case in scenario nol.

  tf represents the trace of the optimum error
covariance matrix in high-noise case in scenario nol.
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Figure (5.22) shows the correlation coefficent 
elements for the cross-covariance matrix pz l 2 23 •
From figure (5.22) we see all the correlation 
coefficents have magnitude less than one. The figure 
also shows that there is a strong correlation between 
the components of the two vectors z12, and z23

8 8
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Correlation coefficent of cross-covariance matrix (scenarion nol)
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Figure (5.22)
 rholl = pxl223 represents the correlation between the

noisy measurements x12 and the noisy measurements x23 
in high-noise case in scenario nol.

. . . rhol2 = Pxi2y23 represents the correlation between the 
noisy measurements x12/ and the noisy measurements y23 
in high-noise case in scenario nol.

  rho21 = pyl2x23 represents the correlation between the
noisy measurements y12, and the noisy measurements x23 
in high-noise case in scenario nol.

+ + rho22 = pyl2y23 represents the correlation between the 
noisy measurements y12, and the noisy measurements y23 
in high-noise case in scenario nol.
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The next section discusses scenario no2 which is less 
favourable for triangulation.

5.5 Scenario Number 2 (no2), Low-Noise Case
Figure (5.23) shows the configuration of the object 
and sensors for scenario no2 in two dimensions.
  represents the noisy angle-of-arrival
measurements data.
  represents the true angle value.
Scenario no2 was chosen to give very slant angles for 
0ie» 02ti and 03t. This tests the fusion algorithm in 
a situation when even small errors in angle-of- 
arrival measurements can cause large measurement 
errors in the object position.
As we see from figure (5.23) the sensors have the 
same pdfs as in scenario nol. The values used in 
scenario no2 in the low-noise simulation are: 
object true position p (x = 8, y = 7)

51 location (x: = 2, yx = 4)
52 location (x2 = 4, y2 = 3) and
53 location (x3 = 5, y3 = 3)

Each sensor calculates the true object angle-of- 
arrival. These are:

0lt = 26.56° = 0.4636 radians
02t = 44.99° = 0.7854 radians
03t = 53.12° = 0.9273 radians

Noise pdfs in three sensors SI, S2, and S3 in
scenario no2 low-noise case are the same as in the 
scenario nol low-noise case these are:
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5U = 2 degrees = 0.0349 radians
CTU = 1.15 degrees = 0.02 02 radians 
Sa = 2 degrees = 0.0349 radians 
Oa = 1.41 degrees = 0.0247 radians 
5t = 2 degrees = 0.0349 radians 
as = 0.8193 degrees = 0.0143 radians 

The same equations as used in scenario nol are used 
to compute the standard deviations above.
As we see, 8S, and 5t are individually one quarter of 
the difference in the slant angles between sensors S2 
and S3.

5.5.1 Discussion of Simulation Results, Scenario no2, Low- 
Noise Case
The computer simulation was run 50 times and the 
results are plotted and discussed in the next pages.

Figure (5.24) shows the actual errors in the noisy 
measurements x12 from triangulation between sensors 
SI, and S2. The dotted line represents the actual 
error in the noisy measurements x12, and the solid 
line represents the square root of Pzl2(l,l) in 
scenario no2 low-noise case in x position. The solid 
line is the theoretical standard deviation of the 
errors according to the first-order approximation to 
the covariance matrix. The numeric mean value of the 
errors in the noisy measurements x12 in figure (5.24) 
in x dimensional is Mxl2__err = 0.0284. The numeric
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Figure (5.25) shows the actual errors in the noisy 
measurements x23 obtained by triangulation between 
sensors S2, and S3. The dotted line represents the 
actual errors in the noisy measurements x23, and the 
solid line represents the square root of Pz23(l,l) . The 
solid line is the theoretical standard deviation of 
the errors according to the first-order approximation 
to the covariance matrix. The numeric mean value of 
the errors in the noisy measurements x23 in figure 
(5.25) is Mx23_err = 0.1791. The numeric standard 
deviation Sx23_err = 0.7075.

Figure (5.27) shows the errors in the fused estimate 
obtained by fusion of the noisy measurements x12, and 
x23. The dotted line represents the errors in the 
fused, and the solid line represents the square root 
of P0(l,l) . The numeric mean value of the errors in 
the fused estimate in figure (5.27) in x dimension is 
Mxfuse_err = -0.1230. The numeric standard deviation 
of the errors is Sxfuse_err = 0.2589.

Figure (5.28) shows the actual errors in the noisy 
measurements y12 obtained by triangulation between 
sensors SI, and S2. The dotted line represents the 
actual errors in the noisy measurements y12, and the 
solid line represents the square root of Pzl2(2,2), the

standard deviation is Sxl2_err = 0.4581.
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according to the covariance matrix. The numeric mean
value of the errors in the figure is Myl2_err = 
0.0263. The numeric standard deviation is Syl2_err = 
0.3334.

Figure (5.29) shows the actual errors in the noisy 
measurements y23 obtained by triangulation between 
sensors S2, and S3. The dotted line represents the 
actual errors in the noisy measurements y23, and the 
solid line represents the square root of Pz23 (2 ,2 ), the 
theoretical standard deviation of the errors
according to the covariance matrix. The mean value of
the errors in the figure is My23_err = 0.2220. The 
numeric standard deviation is Sy23_err = 0.8934.

Figure (5.31) shows the errors in the fused estimate 
obtained by the fusion of the noisy measurements y12/ 
and y23. The dotted line represents the errors in the 
fused estimate, and the solid line represents the 
square root of P0(2,2) . The numeric mean value of the 
errors in the fused estimate in the figure is 
Myfuse_err = 0.1093. The numeric standard deviation 
of the errors is Syfuse_err = 0.3198.

The results of the simulations of scenario no2 for 
low-noise case are discussed in the next several 
pages.

theoretical standard deviation of the errors
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Figure (5.24 ) shows the actual errors in the noisy
measurements x12 (Mxl2_err) and the theoretical
standard deviation of the errors in scenario no2 in 
low-noise case in x position.
We can see from the figure that the errors in the 
noisy measurements xl2 in scenario no2 are larger 
than the errors in the noisy measurements x12 in 
scenario nol. In general we see the theoretical 
standard deviation tracks the magnitude of the 
errors.

Figure (5.25) shows the actual errors in the noisy 
measurements x23, and the theoretical standard
deviation of the errors in low-noise case in scenario 
no2 in x position.
We can see from the figure that the noisy 
measurements x23 are less accuracte than the noisy
measurements x12 because the errors and that the
standard deviation of the x23 noisy measurements are 
bigger than the errors and the standard deviation of 
the noisy measurements x12. We see from the figure 
that the standard deviation tracks the magnitude of 
the errors.
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Errors in x!2 measurements versus standard deviation (scenario no2)

Figure (5.24)

. . .. xl2_err represents the actual errors in the noisy 
measurements xl2 in low-noise case in scenario no2 in 
x position.

  stdev represents the square root of Pzl2(l,l), the
theoretical standard deviation of the errors 
according to the first-order approximation to the 
covariance.
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Errors in x23 measurements versus standard deviation (scenario no2)

Figure (5.25)

. . . . x23_err represents the actual errors in the noisy 
measurements x23 in low-noise case in scenario no2.

  stdev represents the square root of Pzl2(2,2), the
theoretical standard deviation of the errors 
according to the first-order approximation to the 
covariance matrix.
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Figure (5.26) shows the percentage errors in the 
fused estimate in low-noise case in scenario no2 in 
x position.
We observe from the figure that the fused estimate 
(solid line) clips the peak errors in the 
measurements. We see the fused estimate clips the 
large errors in the noisy measurements x23, and 
remains close to the higher accuracy noisy 
measurements x12 when the errors in the two noisy 
measurements x12/ and x23 are the of same algebraic 
sign. For example at n = 18, both the errors in the 
noisy measurements x12, and x23 are positive; we see 
the fused estimate is close to x12. We observe the 
same effect at n = 21, 43, and n = 46. But when the 
errors in the noisy measurements x12, and x23 are of 
opposite algebraic signs, the fusion algorithm 
produces a smaller error than the smallest 
measurement error. For example at n = 3 , the error 
in the noisy measurements x12 is negative and small 
and in the noisy measurements x23 is positive and 
large, we see that the error in the fused estimate is 
smaller than the smallest magnitude error which is in 
x12. We see the same effect at n = 4, 6, 10, 12, 24, 
25, and many cases between n = 27, and n = 50.
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Errors in measunnents x l2  and x23 versus percentage fusion error (scenario no2)

Figure (5.26)

  pExl2 represents the percentage error in the noisy
measurements x12 in low-noise case in scenario no2 in 
x position.

. . .. pEx23 represents the percentage error in the noisy
measurements x23 in low-noise case in scenario no2 in 
x position.

  pEx_f represent the percentage error in the fused
estimate in low-noise case in scenario no2 in x
position.
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Errors in xfuse versus standard deviation (scenario no2)
 1 1 1 1 1 1 1-----

Figure (5.27)

. . . . xfuse_err_f represents the errors in the fused
estimate in low-noise case in scenario no2 in x
position.

  represents the square root of P0(l,l), the theoretical
standard deviation of the errors in the fused
estimate in low-noise case in scenario no2 in x
position.
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Figure (5.28) shows the actual errors in the noisy 
measurements y12 and the theoretical standard 
deviation of the errors in low-noise case in scenario 
no2 .
In general, we see from the figure the theoretical 
standard deviation tracks the magnitude of the 
errors.

Figure (5.29) shows the actual errors in the noisy 
measurements y23 and the theoretical standard 
deviation of the errors in low-noise case in scenario 
no2 .
We can see from the figure the noisy measurements y23 
are less accurate than the noisy measurements y12 
because the errors in the noisy measurements y12 are 
less than the errors in the noisy measurements y23, 
also the standard deviation of the errors in y12 is 
less than the standard deviation of the errors in y23. 
We see the standard deviation in the figure tracks 
the magnitude of the errors.
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Errors in y l2  measurments versus standard deviation (scenario no2)

Figure (5.28)

. . . . yl2_err represents the actual errors in the noisy 
measurements y12 in low-noise case in scenario no2 in 
y position.

  stdev represent the square root of P2l2(2,2), the
theoretical standard deviation of the errors 
according to the first-order approximation to the 
covariance matrix.
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Errors in y23 measurements versus standard deviation (scenario no2)

n

Figure (5.29)

. . . . y23_err represents the actual errors in the noisy 
measurements y23 in low-noise case in scenario no2 .

  stdev represents the square root of Pz2 3 (2,2), the
theoretical standard deviation of the errors 
according to the first-order approximation to the 
covariance matrix.
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Figure (5.3 0) shows the percentage errors in the 
fused estimate in y position in low-noise case in 
scenario no2 in y position.
From the figure we see when the errors in the noisy 
measurements y12, and y23 are of opposite algebraic 
signs the fused estimate clips the peak error in both 
noisy measurements y12, and y23 and the fused error is 
smaller than the smallest one. For example at n = 3, 
the error in the noisy measurements y23 is positive 
and large and in y 12 is negative and small, we see 
that the error in the fused estimate is smaller than 
the smallest magnitude error which is in y12. We see 
the same effect at n = 4, 5, 10, 12, 14, 17, 24, and 
in many cases between n = 27 and n = 50. But we see 
when the errors in the noisy measurements y12, and y23 

are of the same algebraic sign, the error in the 
fused estimate is not less than the smallest 
measurement error. Instead, it clips the peak error 
and remains close to the smaller one. For example at 
n = 33, both the errors in the noisy measurements y12/ 
and y23 are positive; we see the fused estimate is 
close to y12. We see the same effect at n = 34 and n 
= 46.
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Errors in measurments y 12 and y23 versus percentage fusion error (scenario no2)

n

Figure (5.30)

- pEyl2 represents the percentage error in the noisy 
measurements y 1 2 in low-noise case in scenario no2 in 
y position.

. pEy23 represents the percentage error in the noisy 
measurements y23 in low-noise case in scenario no2  in 
y position.
pEy_f represents the percentage error in the fused 
estimate in low-noise case in scenario no2 in y 
position.
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Errors in yfuse versus standard deviation (scenario no2)

.... yfuse_err 
stdev

Figure (5.31)

. . . . xfuse_err represents the errors in the fused estimate 
in low-noise case in scenario no2 in y position.

  stdev represents the square root of P0 (2,2), the
theoretical standard deviation of the errors in the 
fused estimate in low-noise case in scenario no2 in 
y position.
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5.5.1.1 Trace of Covariance Matrices
Figure (5.32) shows the trace of the error covariance 
matrices in low-noise case in scenario no2 .
From the figure we see that the trace of the optimum 
error covariance matrix is less than the trace of the 
individual error covariance matrices Pzl2 , and Pz23.
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Trace of covariance matrices (scenario no2)
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Figure (5.32)
  tpzl2 represents the trace of the error covariance

matrix between sensor SI, and sensor S2 in low-noise 
case in scenario no2 .

. ... tpz23 represents the trace of the error covariance 
matrix between sensor S2, and sensor S3 in low-noise 
case in scenario no2 .

  tf represents the trace of the optimum error
covariance matrix in low-noise case in scenario no2 .

  1——---r 1   t---- ”i-- - " !----- 1--——r

- 1i.

—  tpzl2 
.... tpz23
 tf
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elements for the cross-covariance matrix pzi2 2 3 in low- 
noise in scenario no2 .
From the figure we see all the correlation 
coefficients have magnitude less than one. The figure 
also shows that there is a strong correlation between 
the components of the two vectors zl2, and z23.

Figure (5.33 ) shows the correlation coefficient
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Correlation coefficent of cross-covariance matrix (scenario no2)

Figure (5.33)
 rholl = pxi2x23 represents the correlation between the

noisy measurements x12, and the noisy measurements x23 

in low-noise case in scenario no2 .
. . . . rhol2 = Px12y23 represents the correlation between

noisy measurements x12, and the noisy measurements y23 

in low-noise case in scenario no2 .
  rho2 1  = Pyi2x23 represents the correlation between the

noisy measurements y12/ and the noisy measurements x23 

in low-noise case in scenario no2 .
++++ rho2 2  = pyi2y23 represents the correlation between the 

noisy measurements y12/ and the noisy measurements y23 

in low-noise case in scenario no2 .

1 1 0



The next section discusses the simulation results for 
high-noise case in scenario no2 .

5.6 Scenario no2, High-Noise case
In this section we describe some simulation results 
for high-noise case, scenario no2 .
The high-noise case has the same geometrical 
configuration as the low-noise case. The difference 
between the high-noise case and the low-noise case is 
in the measurement noise variances.
Each sensor calculates the true object angle-of- 
arrival. These are:

0lt = 26.56° = 0.4636 radians
02t = 44.99° = 0.7854 radians
03t = 53.12° = 0.9273 radians

Noise pdfs in the three sensors S1,S2, and S3 are as
follows:

5U = 5 degrees = 0.0873 radians 
CTU = 2.88 degrees = 0.0504 radians 
8 S = 4 degrees = 0.0698 radians 
as = 2.83 degrees = 0.0494 radians 
8 t = 6 degrees = 0.1047 radians 
Ct = 2.45 degrees = 0.0428 radians 

The same equations as used in the low-noise case are 
used to compute the standard deviation above. The 
difference between 02t and 03t is 8 degrees. But with 
8 S = 4 degrees and 8 t = 6 degrees, this represents a 
very large noise component. Indeed, the errors could 
well exceed the magnitude of the difference (0 3t - 0 2t)

1 1 1



resulting in very large errors in the triangulation 
process between S2 and S3. In addition, the first- 
order approximation to the covariance matrix Pz23 for 
the noisy position vector z23 will also have large 
errors because we see from figure (5.1) and section
5.2.4 that we need the noisy position measurements in 
equation (3.16) to compute the partial derivative 
matrix A23. These noisy position measurements are not 
accurate and have large errors. Therefore the partial 
derivative matrix A23 will not be accurate. For these 
reasons the covariance matrix of the noisy position 
vector Pz23 will not be accurate too.

5.6.1 Discussion of Simulation results. Scenario no2, high- 
Noise Case
The computer simulation was run 50 times and the 
results are plotted and discussed in the next several 
pages.

Figure (5.34) shows the actual errors in the noisy 
measurements x 1 2 from triangulation between sensors 
SI, and S2. The dotted line represents the actual 
errors in the noisy measurements x12, and the solid 
line represents the square root of Pzl2 (l,l) in high- 
noise case in scenario no2 in x position. The solid 
line is the theoretical standard deviation of the 
errors according to the first-order approximation to 
the covariance matrix. The numeric mean value of the
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errors in the noisy measurements x 1 2 in figure (5.34) 
is Mxl2_err = -0.1310. The numeric standard deviation 
is Sxl2_err = 0.73 64. This value is slightly off with 
respect to the theoretical standard deviation given 
by the solid line in the figure. This is due to the 
high noise situation and slant triangulation lines. 
Comparing this figure with figure (5.24), we see that 
the errors and the standard deviation are now much 
larger.

Figure (5.35) shows the actual errors in the noisy 
measurements x23 from triangulation between sensors 
S2, and S3. The dotted line represents the actual 
errors in the noisy measurements x23, and the solid 
line represents the square root of Pz2 3 (l,l) . The solid 
line is the theoretical standard deviation of the 
errors according to the first-order approximation to 
the covariance matrix. The numeric mean value of the 
errors in the noisy measurements x23 in the figure is 
Mx23_err = 0.1565. The numeric standard deviation is 
Sx23_err = 3.713. Clearly there is a very significant 
difference between the actual errors and the 
theoretical standard deviation given by the solid 
line. This is due to the high noise situation because 
of the large noise in the triangulation process 
between sensors S2, and S3. The difference between 
02t, and 03t is 8 degrees, but 8 S = 4 degrees and 8 t = 
6 degrees which represent a very large noise



component.

Figure (5.37) shows the errors in the fused estimate 
in x position obtained by fusion of the noisy 
measurements x12, and x23. The dotted line represents 
the errors in the fused estimate, and the solid line 
represents the square root of P0 (l,l). The numeric 
mean value of the errors in the fused estimate in 
figure (5.37) in x dimension is Mxfuse_err = -0.5153. 
The numeric standard deviation of the errors in the 
fused estimate is Sxfuse_err = 0.5385. Compared with 
low-noise mean value of the error in the fused 
estimate in low-noise case which is equals 0 .1 2 , we 
see the numeric mean value in high-noise equals five 
times the numeric mean value of the errors in low- 
noise case. This is quite large. But it is a small 
percentage (6.25%) compared with the true value of 
the object position in x position which is equals to 
8 . Also we see the theoretical standard deviation is 
varying around the numeric value of 0.53 85. Although 
the mean value is slightly biased the standard 
deviation is reasonably accurate.

Figure (5.38) shows the actual errors in the noisy 
measurements y 1 2 from triangulation between sensors 
SI, and S2. The dotted line represents the actual 
errors in the noisy measurements y12, and the solid 
line represents the square root of Pzl2 (2,2) . The solid
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line is the theoretical standard deviation of the 
errors according to the first-order approximation to 
the covariance matrix. The numeric mean value of the 
errors in the noisy measurements y 1 2 in the figure is 
Myl2_err = -0.123 8 . The numeric standard deviation is 
Syl2_err = 0.5667. From the figure we see no single 
value for the theoretical standard deviation-it has 
a large variation. The numeric standard deviation is 
at the bottom of the theoretical values.

Figure (5.39) shows the actual errors in the noisy 
measurements y23 from triangulation between sensors 
S2, and S3. The dotted line represents the actual 
errors in the noisy measurements y23, and the solid 
line represents the square root of Pz2 3 (2,2) . The solid 
line is the theoretical standard deviation of the 
errors according to the first-order approximation to 
the covariance matrix. The numeric mean value of the 
errors in the noisy measurements y 23 in the figure is 
My23_err = 0.2 896. The numeric standard deviation is 
Sy23_err = 4.2797. Clearly there is a very
significant difference between the actual errors 
(dotted line) and the theoretical standard deviation 
(solid line). This is obvious in the figure (5.39) at 
n = 4 for example. We see the theoretical standard 
deviation is greater than the actual error by about 
3 times. We see the same thing at n = 29, 36, and n 
= 37. This is due to the high noise situation because
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of the large noise in the triangulation process 
between sensors S2, and S3. The slant angles in the 
triangulation process make the situation worse. 
Referring to the y23 noisy measurements in low-noise 
case in scenario no2 figure (5.29) we see that the 
theoretical standard deviation varies around the 
numeric standard deviation of 0.8934. Compared with 
the y23 noisy measurements in high-noise case in the 
same scenario figure (5.39), the numeric standard 
deviation is 4.27 9 which is approximately four times 
bigger than the actual standard deviation of the 
measurements in low-noise case in the same scenario. 
This means that the covariance matrix is inaccurate 
in the high-noise case.

Figure (5.41) shows the errors in the fused estimate 
in y position obtained by fusing the noisy 
measurements y12, and y23. The dotted line represents 
the errors in the fused estimate in y position, and 
the solid line represents the square root of P0 (2,2). 
The numeric mean value of the errors in the fused 
estimate in figure (5.41) is Myfuse_err = -0.4673. 
The numeric standard deviation of the errors in the 
fused estimate is Syfuse_err = 0.6220. Compared with 
the mean value of the error in low-noise which is 
equal to 0.1093, we see it is about four times bigger 
in high-noise case. This is a quite large. But it is 
a small percentage (8.87%) compared with the true
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value of the object y position which is equal to 7. 
Also we see from the figure the theoretical standard 
deviation varies around the numeric value.

The results of the simulations of scenario no2 for 
high-noise case are discussed in the next several 
pages.

Figure (5.34) shows the actual errors in the noisy 
measurements x1 2 (Mxl2_err) and the numeric standard 
deviation of the errors in high-noise case in 
scenario no2 in x position.
We can see from figure (5.34) the errors in the noisy 
measurements x 1 2 have a magnitude bigger than the 
magnitude of the errors in the x 1 2 noisy measurements 
in low-noise case figure (5.24). In general we see 
the theoretical standard deviation tracks the 
magnitude of the errors.

Figure (5.35) shows the actual errors in the noisy 
measurements x23 and the theoretical standard 
deviation of the errors in high-noise case in 
scenario no2 in x position.
We can see from the figure that the errors in the x23 

noisy measurements have a magnitude much bigger than 
the magnitude of the errors in the noisy measurements
x2 3 in low-noise case in figure (5.25). Also we see 
from the figure that x23 noisy measurements are less

1 1 7



accurate than x 1 2 noisy measurements in figure (5.34) 
because the errors and the standard deviation of the 
errors in x23 noisy measurements are much bigger than 
the errors and the standard deviation of the errors 
in x1 2 noisy measurements. We see from figure (5.35) 
there is a very significant difference between the 
actual errors and the theoretical standard deviation. 
As we mentioned earlier the large errors in the 
triangulation process between sensors S2, and S3 
makes the measured position vector z23 very noisy. 
Therefore the covariance matrix of the noisy position 
vector z23 (PZ2 3) will not be accurate.
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Errors in xl2 measurements versus standard deviation (scenario no2)

Figure (5.34)

. . . . xl2 _err represents the actual errors in the noisy 
measurements x 12 in high-noise case in scenario no2 in 
x position.

  stdev represents the square root of Pzl2 (l,l), the
theoretical standard deviation of the errors 
according to the first-order approximation to the 
covariance matrix in high-noise case in scenario no2  

in x position.
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Errors in x23 measurements versus standard deviation (scenario no2)

n

Figure (5.35)

.. . . x23_err represents the actual errors in the noisy 
measurements x23 in high-noise case in scenario no2 in 
x position.

  stdev represents the square root of Pz2 3 (l,l), the
theoretical standard deviation of the errors 
according to the first-order approximation to the 
covariance matrix in high-noise case in scenario no2  

in x position.
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Figure (5.36) shows the percentage errors in the 
fused estimate,in high-noise case in scenario no2 in 
x position.
From the figure we see that the fused estimate (the 
solid line) clips the large errors in the noisy 
measurements x23, and remains close to the higher 
accuracy noisy measurements x 1 2 when the errors in the 
two noisy measurements x12, and x23 are of the same 
algebraic sign. For example at n = 3 where the both 
of the errors in the noisy measurements x12, and x23 

are positive we see the fused estimate measurements 
clips the large error in the noisy measurement x23, 
and remains close to the higher accuracy measurement 
x12. We see the same effect at n = 37, 47, and n = 48. 
But when the error in the noisy measurements x12, and 
x23 are of opposite algebraic sign, the fusion 
algorithm produces a smaller error than the smallest 
measurement error. For example at n = 11 where the 
error in the noisy measurement x 1 2 is negative and the 
error in the noisy measurement x23 is positive , we 
see the fused error in the fused estimate is less 
than the smaller error individually. We also see the 
same effect at n = 19, 21, 31, 32 39, and n = 43.
In general we see from figure (5.36) that the fused 
estimate is superior to the individual measurements. 
This is surprising since the measurements are 
relatively noisy and the covariance matrix is quite 
inaccurate.
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Errors in measurroents x l2  and x23 versus percentage fusion error (scenario no2)

Figure (5.36)

pExl2 represents the percentage error in the noisy 
measurements x 1 2 in high-noise case in scenario no2  in 
x position.

. pEx23 represents the percentage error in the noisy 
measurements x 23 in high-noise case in scenario no2 in 
x position.
pEx_f represents the percentage error in the fused 
estimate in high-nose case in scenario no2 in x 
position.
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Errors in xfuse versus standard deviation (scenario no2)
1 ---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- r

Figure (5.37)

.... xfus_err represents the errors in the fused estimate 
in high-noise case in scenario no2  in x position.

  stdev represents the square root of P0 (l,l), the
theoretical standard deviation of the errors in the 
fused estimate in high-noise case in scenario no2 in 
x position.
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Figure (5.38) shows the actual errors in the noisy 
measurements y12, and the theoretical standard 
deviation of the errors in high-noise case in 
scenario no2  in y position.
We see from the figure the actual errors in the noisy 
measurements y 12 in high-noise case are bigger than 
the actual errors in the noisy measurements y 1 2 in 
low-noise case in scenario no2 figure (5.28). Also 
the theoretical standard deviation is seen to be 
bigger too.
In general we can see from the figure the theoretical 
standard deviation tracks the magnitude of the 
errors.

Figure (5.39) shows the actual errors in the noisy 
measurements y23, and the theoretical standard 
deviation of the errors in high-noise case in 
scenario no2  in y position.
We can see from the figure that the noisy 
measurements y 23 are less accurate than the noisy 
measurements y 1 2 in figure (5.38). We see from figure 
(5.39) there is a very significant difference between 
the actual errors and the theoretical standard 
deviation because of the very large errors in the 
triangulation process between sensors S2, and S3. The 
noisy position vector z23 makes a very large error in 
the first-order approximation to the covariance 
matrix Pz23.

1 2 4



Errors in yl2 measurments versus standard deviation (scenario no2)

n

Figure (5.38)

. . . . yl2 _err represents the actual errors in the noisy 
measurements y 1 2 in high-noise case in scenario no2 in 
y position.

  stdev represents the square root of Pzl2 (2,2), the
theoretical standard deviation of the errors 
according to the first-order approximation to the 
covariance matrix.
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Errors in y23 measurements versus standard deviation (scenario no2)

Figure (5.39)

. . . . y23_err represents the actual errors in the noisy 
measurements y 23 in high-noise case in scenario no2 in 
y position.

  stdev represents the square root of P223 ( 2 , 2)/ the
theoretical standard deviation of the error according 
to the first-order approximation to the covariance 
matrix in high-noise case in scenario no2 in y 
position.
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Figure (5.40) shows the percentage errors in the 
fused estimate in y position in high-noise case in 
scenario no2 .
From figure (5.40) we can see the fusion algorithm 
clips the peak error in both noisy measurements y12, 
and y23. For example at n = 19, the error in the noisy 
measurement y 1 2 is negative and small and in the noisy 
measurement y 23 is positive and large, we see that the 
fused error is smaller than the smallest magnitude 
error which is in y12. We see the same effect at n = 
28, 43, and n = 44. But we see when the errors in the 
noisy measurements y12, and y23 are of the same 
algebraic sign, the fused error is not less than the 
smallest measurement error. Instead, it clips the 
peak error and remains close to the smaller one. For 
example at n = 5, both the errors in the noisy
measurements y12, and y23 are positive; we see the 
fused estimate is close to y12. We see the same effect 
at n = 10, 17, and n = 40. The fusion algorithm
occasionally gives a poorer estimate than the best 
measurement. For example at n = 25 we see the error 
in the fused estimate is not smaller than the 
smallest errors in the noisy measurements y12, and y23. 
We see the same thing at n = 26, 42, 46, and n = 47. 
This is not a fault in the algorithm, but a fault in 
the high noise measurements themselves. On average, 
however, we see that the fused estimate clips the 
peak errors in the noisy measurements in most cases
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and is often superior to the best measurements. This 
is surprising since figure (5.39) shows the 
covariance matrix Pz23 is a very inaccurate 
representation of the actual errors. Because of the 
presence of noise, even under optimal conditions all 
algorithms will sometimes yield poorer results than 
the measurements themselves. The important thing is 
that on average the algorithm gives better results 
than the raw data.
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Errors in measurments y 12 and y23 versus percentage fusion error (scenario no2)

Figure (5.40)

  pEyl2 represents the percentage error in the noisy
measurement y 1 2 in high-noise case in scenario no2 in 
y position.

. . . pEy23 represents the percentage error in the noisy
measurements y 23 in high-noise case in scenario no2 in 
y position.

  pEy_f represent the percentage error in the fused
estimate in high-noise case in scenario no2 in y
position.
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Errors in yfuse versus standard deviation (scenario no2)

n

Figure (5.41)

. yfuse_err represents the errors in the fused estimate 
in high-noise case in scenario no2 in y position.

_ stdev represents the square root of P0 (2,2), the 
theoretical standard deviation of the errors in the 
fused estimate in high-noise case in scenario no2 in 
y position.



5.6 .1.1 Trace of Covariance Matrices
Figure (5.42) shows the trace of the error covariance 
matrices in high-noise case in scenario no2 .
From the figure we see the trace of the optimum error 
covariance matrix is always less than the trace of 
the individual error covariance matrices Pzl2, and Pz23. 
Clearly the trace of Pz l 2 is much smaller than the 
trace of Pz23. Nevertheless, the trace of the optimum 
covariance matrix is always less than the trace of 
Pzl2. From figure (5.42) we see the trace of the 
optimum covariance matrix (the solid line) is quite 
close to the trace of the covariance matrix Pz l 2 (the 
dashed line) and some times is nearly the same. For 
example at n = 28, 29, the optimum covariance matrix 
has a trace which is almost the same as (but slightly 
less than) the trace of Pzl2. The reason for this that 
since Pz23 has much a larger trace compared to the high 
accuracy Pzl2, the algorithm ignores Pz23 and simply 
uses Pz l 2 alone. At n = 21, the trace of Pz l 2 and Pz23 

are about the same. Therefore the trace of the 
optimum covariance matrix is now much smaller than 
either of the covariance matrices. We see when both 
covariance matrices have a trace which is 
approximately the same, the trace of the optimum 
covariance matrix is then much smaller that either. 
But when the trace of one covariance matrix is much 
larger than the other the trace of the optimum 
covariance matrix is close to the smaller trace.
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Trace of covariance matrices (scenario no2)
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Figure (5.42)

- tpzl2 represents the trace of the error covariance
matrix between sensor SI and sensor S2 in high-noise
case in scenario no2 case.

. tpz23 represents the trace of the error covariance
matrix between sensor S2, and sensor S3 in high-noise
case in scenario no2 .

_ tf represents the trace of the optimum error
covariance matrix in high-noise case in scenario no2  . 
case.
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Regardless of the size of the trace of Pz l 2 and Pz23< 
the trace of the optimum covariance matrix is always 
less than the trace of either of them. The fusion 
algorithm is designed to produce an optimum 
covariance matrix which has a trace less than the 
trace of the individual error covariance matrices.The 
algorithm does not know that in the high noise case 
in scenario no2 , the covariance matrices are not 
accurate. The optimum covariance matrix may not 
accurately represent the statistics of the fused 
estimate. This is not the fault of the algorithm. It 
is the fault of the high-noise case and the first- 
order approximation. Also the algorithm does not know 
the pdf which is governing the errors in the data. 
The only things known by the algorithm are the 
covariance matrices and the noisy triangulation 
position measurements.

Figure (5.43) shows the correlation coefficient 
elements of the cross-covariance matrix pzi223 .
From the figure we see all the correlation 
coefficients have magnitude less than one. The figure 
also shows that there is a strong correlation between 
the components of the two vectors z12, and z23.
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Figure (5.43)
 rholl = px l 2 X 23 represents the correlation between the

noisy measurements x12, and x23 in high-nois case in 
scenario no2 .

. . . . rhol2 = px l 2 y 2 3 represents the correlation between the 
noisy measurements x12, and y23 in high-noise case in 
scenario no2 .

  rho2 1  = pyi2x23 represents the correlation between the
noisy measurements y12, and x23 in high-noise case in 
scenario no2 .

++++ rho2 2  = py l 2 y 23 represents the correlation between the
noisy measurements y12, and y23 in high-noise case in 
scenario no2 .
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In the next chapter we investigate the impact of 
high-order terms in the approximation to the error 
covariance matrix.
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CHAPTER VI 
HIGH-ORDER TERMS IN  COVARIANCE MATRIX

In this chapter, we invesitgate the impact of using 
higher-order terms in the approximation to the error 
covariance matrix.
We see what improvement results by including the 
second-order terms in the Taylor expansion of the 
covariance matrix.

6.1 The Second-Order Terms of TAYLOR'S Expansion FORMULA
From the equation (2) chapter VI in reference [12] we 
see the second-order terms in the expansion of f(x,y) 
in 2-dimensional space for TAYLOR'S FORMULA are:

f(x,y) = f{x0,y0) +D1f{x,y)bx + D2f(x,y) Ay +

-i [D?f(x,y) Lx2+D%f{x,y) A y 2 + 2D1D2f[x,y) A x  Ay] (6.1)

where:
Ax = (x - Xo)
Ay = (y - yj 
Dtf(x,y) = 5f(x,y)/9x 
D2f(x,y) = 3f(x,y)/dy 
Dx2f (x,y) = 92f(x,y)/dx2 

D2 2f(x,y) = 32f(x,y)/dy2 and 
DxD2f (x,y) = 32f (x,y)/3x3y 

In our approach there are two noisy measurements
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vectors z12, and z23:

* 1 2  =
X12

yiz

and

*23 =
23

y23

These are expanded to include the second-order terms
as follows:

* ■*12 ®2t̂  +ail^®l+ai2^®2+'o ai3x̂ ®l + '5’ai4jt̂ ®2+ai5x̂ ®l^®2

Where:
au = Djf = dx12/90i and is given by the equation (3.7) 
a12 = D2f = dx12/902 and is given by the equation (3.8)

a13x - D2f - 32X12 = d \^Xl2  ̂ = 9 fa 1
1 " a e f  ^ r [ " ^ T ] 50T [ l l ]

a i4x ~ 2̂. £ ~
&X12 _
del

& r x̂y 2 1 =  9 r ,
"35”  L “3 5 — J nn La l2 J  vt/2 Wj Caj j and

- - p p „ &*X12
i 2 ae^e;

9 r d* ! 2 1 _ 9 r_ 1
-5 5 -  L - 5 5 — J *  -3 3 -  l a i 2 J OO2

From equation (6.1) we compute the second-order 
derivatives for the noisy measurement y 1 2 as follows:



y12 » y 1 2 (0lt, 02 t)+a2 1 A0 1 +a2 2 A0 2 +— a 1 3 yA0i+— a1 4 yA0 2 +a1 5 yA0 1 A0 2 (6-3)

Where:
a2 1 = 5yi2/d9i and given by the equation (3.9), 
a22 = 0y12/302 and given by the equation (3.10),

. _ ^12 _ d rdy12 d r ,
1 3 y ' “ a e f  a e r [_ae7 ] 00l [ 2lJ

3Py.
14y nn2CA72

_a_
00,

0y:12
00-

] =_ _0_ 
00,

. _ ^yi2 _ 0  râ i2 i _ 0  r, 1

15y 0 0 , 0 0 2  0 0 , L 0 0 2 J 0 0 x 1 22J

A similar set of equations hold to compute the second 
derivatives terms for the noisy measurements x23, and 
y 23 as follow:

*23 = *12(02t'03t) + a ilA 02+ a i2A 03+ ^ a i3JcA 0 i + -|a i4JrA 03+ ai5xA 02A 03 (6-4)

where:

0 V
a±1 = and is given by the equation (3.14)oo2

1 3 8



ai2 = “5^  and i-s Sfiven by the equation (3 .15)
0 0

3jc

,  _ *̂23 _ d ' d x 22 a r _ 1
1 3 x "  del ~ de2 l m 2 ] ~ t t 2 LailJ

_ ^23 _ 3 ,dx23 d r , d
i4x i s r  'ssrÎ sr 1 a ^ L i2j

= _ _ d r ̂ *23i „  ̂ r =■ i
®15x afl ao !• aa J ~ ao La l2-I

2 3 OO2 Wj Wj

From the equation (6.1) we compute the noisy 
measurements y23 includes the high-order terms as 
follows:

2̂3 “ -̂23 (®2t»®3t) +a21^®2+a22^®3+'̂ ai3ŷ ®i + ‘5'ai4>A®3+S1 5yA02A03

where:

By
a2i = “3 ^  -*s given by the equation (3 .16)<7u2

and. is given by the equation (3.17)

(65)
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Of course we use 0im instead of 0it since we only 
measure 0 im.

6.2 The Second-Order Terms for the Noisy Measurements xia, 
and yia

6.2.1 Calculation of a13z for the Noisy Measurement x12

_ & x\2 d r dx121 _ 0 r i
a l3 x  2ft L afl J a ft L“ n J

0 0 2 0 0 1 0 0 ! 0 0 !

where

dx12 sec20i [ (x2-xl) tan02 + (yi-y2) ]
3 l 1 00i (tcin01-tan02) 2

Therefore

3  , sec201 [ tan02+(yx-y2) ] ̂
ai3x 00, (ta n O j^ -tan O j)2



After some algebra, we get

[ tan02+ {yx-y2) ] sec^tanGi (tar^-tanOJ 2

3l3x  2 (ta n O j^ -ta n O j)4

[x^-x  ̂tan0 2 + (y!-y2) ] [ (tane^tanej sec4 0 J 
(tanOj^-tanOj)4

6.2.2 Calculation of a14z for the Noisy Measurement xi;

a [ ^ 1 ] = °[a12],  _  ^ 1 2  _  a  r 3 x 1 2
14x  -  “  O f t  L  a o  J  a f t  L “ 1 2 Jae| ae2 ae2 ae2

where

& q 2 _ sec2 8 2 [ (x1 -x2) tanfl2 + (y2 -yi) 1  

3l2 502 (tanOj^-tanO-,)2

Therefore

= 3  , sec2 0 2 [ [x^-xj tanO^ (y2 ~yi) ] }
3l4x 0 0 2 (tan0 1 -tan0 2 ) 2

[ tan0 !+(y2 -y1) ] (tan0 1 -tan0 2) 2 sec0 2 tan0 2

3l4jr 2  (tan0 1 -tan0 2 ) 4

[ (jq-x^) tan0 x+ (y2 -yi) ] (tan0 1 -tan0 2) sec4 0 2  

(tanO^tanOj)4

( 6 - 6 )

+

(6*7)
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€.2.3 Calcualation of a15z for the Noisy Measurement x12

a . J L  rif&Jl = -Ata 1  ,s*  ae,1 36, a e , 1 “ J

a  ̂sec2 0 2 [ {xx-xj tanO,* (y2 -yx) ] ̂ 
d0 x (tan0 1 -tan0 2 ) 2

[ [x2-xx) sec2 0 1 secz0 2] (tan0 1 -tan0 2 ) 2 

{tan0 1 -tan0 2 ) 4

[ tan02+ (yx-y2) 1 sec2 Q 1 sec 2 8 a (tan01 -tan02)
(tan0 1 -tan0 2) *

6.2.4 Calculation of a13y for the Noisy Measurement yia

„ _ ^ 1 2  _ 3 r^iai - 3 r- i
y QQl a©a 1 30! J 30J L®2lJ

where a2 1 is given by:
a2i = axl tan©! + sec2 0 1 (x1 2 - x,)

Therefore

a13y = [a1 1 tan0 1 +sec2 0 1  (x^-xj ]

aj3y = a1 3xtan0! + 2ansec201 + 2  (x1 2 -x:) sec201 tan0l (6.9) 
where x12, an , and a13x are given by equations (2.9),
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(3.7), and (6.6) respectively.

6.2.5 Calculation o£ a14y for the Noisy Measurement y13

.  .  .  a , ay i 2 i _ a ,
Mx aei 1 W 3 1 ” ‘

Where equation (3.10)
&22 = aijtanGj

Therefore

ai4y - gg- [a12tan01] =  ̂ [a12] tanOĵ  = ^-{[^Jhanfl!

= a^tan©! (6 .1 0 )
where a14x is given by equation (6.7)

6.2.6 Calculation of a15y for the Noisy Measurement y12

_ _ d r dy1 2 1 _ d r ,
15y  dd1 dQ2 “ 60! 1 2aJ

where:
a22 = a1 2 tanSj and

-  -  0 X 1 2  

1 2 ' "967

Therefore
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a i 5  y ~ J - d ^ t a n e j lWj OsJj

= AT^S~tan6i + ' ^ isec20i1 2  0\J2

Therefore
ai5y = ai5xtan0 i + a1 2 sec2 0 1 (6 .1 1 )

where a12, and a15x are given by equations (3.8) and
(6 .8 ) respectively.

6.3 The Second-Order Terms for the Noisy Measurements x„, 
and y„
It is not necessary to rederive the expressions for 
ai3x» anx» ai5x' ai3y' any* and â sy for the noisy 
measurements x23/ y23. The equations derived for the 
noisy measurements x12, and y 12 may be used for the
noisy measurements x23, and y23. This is accomplished
by replacing 0 1# xx, 0 2, x2, y1# y2/ and x 1 2 with 0 2/ x2, 
03 f x3< y2/ y3/ and x23 respectively. The resulting
equations are as follow:

a _ ̂ * 2 3  _ 2  f (x2-x?) tan0 3+ (y2 -y3) ] sec2 0 2 tan0 2 (tan0 2 -tan0 3 ) 2  

Sl3jf dQ22 (tan0 2 -tan0 3 ) 4

[x, -Xz) tan0 3 + (y2 -y3 ) ] (tan0 2 -tan0 3) sec4 0 2  

(tan0 2 -tan0 3 ) 4

• 1 2 )
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_ dPxzj _ 2 [ (xz-x̂ ) tan02 +(y3 ~y2) 3 (tan02 -tan03) 2 sec0 3 tan8 3  

3l4x 3023 (tan0 2 -tan0 3 ) 4

+ [ (xj-x̂ ) tan0 2 + (y3 -y2) 1 (tan0 2 -tan0 3) sec4 0 3

(tan0 2 -tan0 3 ) 4

o r 3x2 3 1 _ [ {x2-x2) sec2 0 2sec2 0 3 (tan0 2 -tan0 3 ) 2

ai5jr " ae; l_ae7 J = (tan0 2 -tan0 3 ) 4

[ [x̂ -xj) tan0 3+ (y2 -y3) sec2 0 2 sec2 0 3 (tan0 2 -tan0 3) 
(tan0 2 -tan0 3 ) 4

ai3y = ai- = a1 3 xtan02 +2a1 1 sec 2 02+2 (^ 3 -Xj) sec2 02 tan02 (6-15)
W o (a Jo u

any = ai4xt a n ® 2  (6.16) and

a lSy = aisxt a n ® 2  + ai2sec202 (6.17)
where an , a12/ a13x, a14x, and a15x are given by equations 
(3.14), (3.15), (6.12), (6.13), and (6.14)
respectively.
We now have expressions for all the high-order terms 
in the covariance matrices. We now formulate the



expected values of these high-order terms.

6.4 The Error Covariance Matrices Psia# and Ps3,
In our scenario as we said previously there are two 
noisy position vectors z12, and z23 which are given as 
follow:

zi2 = [x12,y12]T and
Z 23 =  t X 23 f y 2 3  1 T

The error in the noisy x 1 2 measurements (exl2) is given 
by

£x1 2 = X 12 “ X 12

From equation (6.2) we compute the expected value for 
the noisy measurements x12, (xi2)

x 1 2 = E (x12)

= E{x12) * x 1 2 (0lt,02t) +a1 1 £(A01) +a1 2E(AQ2) +±a 13xE{Ml) +

1  a14jc i?(A0i) + a15x E{A0 1 A02)

Since EfAOj = 0 (the sensor makes an unbiased
measurement/ sensor errors are zero mean)

E(A0:2) = a2 9 1  

E (A022) = O2 02

Also A0i, and A0X are assumed to be statistically 
independent,

E[A0XA02] = E(A0x)E(A02) = 0
Therefore
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■ ^ 12 ~ + _ 2  ̂13Jf°®l + '2'ai4x082 (6.18)

From equations (6.2) and (6.18) we get

(X X2~ X 12) ~ -̂ 12 ®2t) + a i l ^ ® l +a i 2^®2 + "2 a i 3jr^®l + "2 aHJf^®2 +

(®lt' ®2 t̂ ~~2ai3x°9l~’2 ai4Jt°te

CX2 2 = (̂ 1 2 - 1̂ 2 ) = ail 0̂ 1 +ai2 ^ ® 2  + ~2 ai3jr(̂ ®l~°6l) +

|a 1 4x(A0l-o20a) + * ^ 6 ^ 0 *  (6.19)

The error in the y 1 2 noisy measurements (eyl2) is given 
by:

Eyl2 = yi2 ~ y i 2

From the equation (6.3) we compute the expected value 

7 12

y\2 = E{ +a2iA0 i+a2 2A 0 2 +^ ai3yA 0 ?+iA 0 i+a1 5yA 0 A0 2 }

=S[y 1 2  (Olt'02 t) 1 +a2 i^(A0 1) +a22E{AQ2) +-|a1 3 yff(A0?) +-|a1 4 yE(A0l)

+i?(a1 5yA0 1 A 0 2)
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where:
E  [ Y l 2  ( ® l t  '  ® 2 t )  ] =  Y l 2  ( ® l t »  ® 2 t )  I 

E ( A 0 i )  =  0 ,

E(A01A02) = 0 (statistically independent) 
E(A0 !2) = (J812, and 
E (A022) = 0 922

Therefore

y\2 = yi2 (Git'0 2 t) +-|31 3 xog1 +-|a1 4yol2 (6 . 2 0

From (6.3), and (6.20) we get ey l 2

eyl2 = yi2~yi2 = a2l^®l+a22^02 + _2 al3y tAOi-Ofll] +

—  a14y (A02 2 o 2 6 2 )  + -A15y A0 1 A0 2 (6 . 21)

The error in the estimate of a state vector z1 2 is 
ez l 2 and is given by:

•zl2
-xl2

ayl2

6.4.1 The Error Covariance matrix Plia
The error covariance matrix of the error £zl2, is Pzl2, 
and is then given by

Pzi2 = E [ Ezl2Ezl2T]
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-x12

yl2
[ ex.12 €yl2 ] >

= E <?X12

eyl2*xl2

x̂l2̂ yl2 
- 2tyl2

= E %X2 '"■12/ U i 2-x12) (y12-y12) 
( y i2- y i 2) (•X12-,X12) ( y i2—X l2 ) 2

£̂ (jC1 2 Xj.2 ) 2 {•Xi2 ~-̂ 1 2  ̂(3,12—yi2̂  ̂
^ [ (yi2 -^I) ( * 1 2  -*il) 1 * ^ 1 2  -5^)2

6 .4.1.1 Calculation of P,13(l,l)
From the equation (6.20) we compute the first element 
of the error covariance matrix P12, [Pzl2 (l,l)], as
follows:

P .i* l  1*D  = E l ^ 2-x^2) ^ =  £ { [ a 11A01+a12A02+ i a 13x(Ae?-oi1) +

-|a14x(A0l-o§2) +ai5jfAeiA02]2 }

= E [a12 1 A0?+a122A0i+ia 12 3 x(A0?-o|i)2 + 4 ai4x(A0l-oi2) 2 +4 4
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ais»A8iA0l*a11Ae1atJ40j+a11A01(i)a13,(A0?-o|j) + 

a 1 iA 0 1  (-̂ ) a \ix (A0 2 -Ofl2) +a1 1 A0 1 a1 5 jtA0 1 A0 2 +

ai2 A M - § ) ai3 *(4 6 i-oei) +aa2 A0 2 (-|) a1 4 jr(A0l-og2) + 

a1 2 A 0 2 a1 5 jcAeiA 0 2 + ^ a 1 3 x(A0 ?-O0 1) -|a1 4 jr(A0l-o»2) +

■̂■ai3x^®l-a6l) ai5x̂ ®lA®2 + ̂ ’ai4x^®2-0 e2) ai5x̂ ®l^®2

a^B(AOi) +a122 J?(A0l) + +  a123 jeE[ (AO^-o^)2] + 4 ai ^ t  (A ©l-°e2 ) 14 4

aj^ff (AOjAOl) +a1 1 a1 2 S(A0 1 A02) +-|a1 1 a1 3 jrff[A01  (AO^-a^) ] +

(A0i-o#a) 1 +a1 1 a15jttf (A0?A02) +

—  a 12 a 1 3JrF [ A 0 2 (A O i-O e i) ] + ‘2 ‘ a 1 2 a 14jri ? [ A 0 2 ( A 0 2 -O q2 ) ] +



^ ^ ( A O ^ O ^ )  +^ ai3*ai4**[ (AOf-o^ (AQ\-al2) ] +

i a u A w S l  (AOf-olJ A0jA02] +-|a1 4jra1 5xS[ (A6 \-a\2) AO^OJ

From appendix D, equation (D-l) is follows that 
E (A0J3 = 0 

also we know E(A0 i) = 0  

Therefore

= all<J01 +212002 + - J 3 l 2 x E  ( A0j “2 A 0f Ofli +0$!) +

■T'al4jt,̂(A02-2A02002+082) +3l5x®fll®82 +4

■̂■ai3jcai4jr^^®lA®2_A01®62~O,6lA®2+®01®62)

= a i iO e i+a i2®e2+ ' j ,ai 3x ^ ( ^ ® i ) 4 ~ -^,ai 3jro i i ° 0i + -£-a i 3x ( ® i i ) 2 +

a ^  (A 0 2 ) 4 - A  a^^oea+-i a ^  (o| 2 ) 2 +a125*agiO§2 +

a i3jfa i4jf°01°02 “ -J a i33ca i4x°01°02 " a i3jca i4x°ei°02 + a i3*a i4x°01°02
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From equations (A-7), and (B-10)

5

E(AQt) =

Therefore

■ a122 oS2 + - ^ - i ai23x(0|1)_  2  _  2

4- ai4x (° 6 2 ) 2 +ai5JtOeiOe2 (6.23)4

6 .4.1.2 Calculation of Psl2(l,2)
From the equations (6.19), and (6.20) we compute the 
second element of the covariance matrix Pzl2, 
[ Pzi2 (1 ,2 )], as follows:
Pzl2 (l»2 ) = 6 x1 2 ^ / 1 2  = E [ (x1 2 _ X 12) (y1 2  - Yi2) ]

= { [a1 1 A0 1 +a1 2 A0 2 +-|a1 3 x(A0?-oi1) +-|a1 4 jr(A0^-o|2) +3 ^ 0 ^ 0 2 ] *

[a2 1 A0 1 +a2 2 A0 2 +-^a1 3 y (A0i-og1) +-|a1 4 y(A0i-oe2) +3 ^ 6 ^ 0 3 ] }
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— E  [alla2iA01 + a ila 22A 0 1A 0 2 + —  a iia i3y4®l (^®1 ®fll) + 

an  A 0 !— a14y (A 0 2 -Ofl2) +ana 1 5yA 0 1 A 0 2 +a1 2 a2 1 A 0 2A 0 1 +a1 2 a2 2A 0 2 + 

-la^a^OjtAOf-oii) +a1 2 A0 2 -ia1 4 y(A0i-o!2) +a1 2 a 1 5 yA0 1 A0| + 

iai 3 x(A0!-o§i) (a^AOJ +-|a1 3 jfa 2 2(A0i-Oei) A0 2 +

7 ai3*ai3y(A 0 i_°ei) (A0 i-oei) +-^a1 3jca1 4y(A0 i-oe1) (A0 l-o§2) +

A 0 1 A 0 2 +-|a1 4jea2i(A 0 i-O6 2) A 0 t +

- | a i 4 * a 2 2  ( 4 0 2 - 0 0 2 )  4  02+-̂  a14xa13 y (A 0 2  -Ofl2 (A0i-oei) + 

ja 14xa14y(AOi-oe2) (A0f-og2 )+-ja1 4 xa15y (A0i-oea) A0 1 A0 2 + 

ai5xa2i40iA 02 +a1 5 jta2 2  A0 1 A0|+— a1 5 jta 1 3 yA0 1 A0 2  (A0 f-0 ei) +
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‘2 ’ai5 .xai4yA^iA® 2  (A®2 ~<j®2 ) +a1 5 jra 1 5 yA0 1 A02]

Where
E(A0 i) = 0 ,
E(A0i3) = 0,
E(A0j2) = c912, and 
E (A022) = ae 2 2

Therefore

(1,2) = a11a21ae1+a12a22og2+ .ia13jra13>rE[A0l-A0iOei-ag1A0?+o$1] 

-jaia^y^fA^A^-AOfote-oeiAOi+oeiOez] +

^ a 1 4xa1 3yE[A0 iA0 ?-A0 2ae1 -0 e2A 0 +̂oei0 e2 ] +

\  ai4jtai4y£ [ A 01 - A 0|oe2 -Oes A 01 +o| 2 ] + a1Sxa1SyE (A 0*A Q\)

= aiiai2Oei+ai2a22Ote+-jai3Jrai3yS(A0l) -|a13jlca13y(ogi)2 +

\ a i3xa i3y ( a ei) 2+ - J a i3*a i4y<JdlOL "



■j au  '+A  a1Zxaliyajxol2+-i alAxaX2yal2al̂  -

\  ̂ I^i2y0 2ei0 l2+■\ a14xa12ya2eial2+la14xaUyE (A0*) -

\  ̂ W W o e a )  2 + -|ai4^i4y(Ofl2) ̂ is^isyOaiO^

From equations (A-7), and (B-10) we see

E( A0*)=-5̂

^(A0 |)

Therefore

= £ [ {x̂ 2~Xx2) ^ 1 2  ̂3

a iia210 8l+ a i2a 22°62 + *2o'a i3«a i3y^u~‘J,ai3xa i3y (°0l) 2 +

■^2 a i4-*a i4y® * a i4xa i4y ( o 02 ) 2 +ai5jca i5y°6l°62 (6.24)

6 .4.1.3 Calculation of Psl2 (2,l)
From the equation (6.22) we see:
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P zl2 (2,1) - E [ (y12 y  1 2) (X 12 X 12) ]
= Pz1 2 (1,2)

Therefore

pxl2 (2 ,1 ) = e  {[ (y12~y^) (*i2-*«) 3 >

= a1 ia21o81 +al2a22°02+^^ 1,3 i3xa13y®u_'Jal3xa13y (°0l) 2 +

- 5 5  ai4xai4y® s a 14xaUy (o\2 ) 2 + a1 5jta1 5yo|ioi2 (6.25)

6 .4.1.4 Calculation Psia(2,2)
From the equation (6.21) we compute the fourth 
element for the error covariance matrix Pzl2, 
[Pz1 2 (2,2)]» as follows:

Pn2 (2,2) = E{[(y1 2 -y12)2]}

= E i  [a21A01+a22A02+ - |a 13y (A e^-o|1)+ -|A 14y(A ei-og2) +

a15y Ae.Ae,] 2 }

= [a221A 0^a222Ae^+Aa123y(A0?-ai1) 2+-|ai2ly(Aei-og2) 2 +

a 2 5 yA0 iA0 2 +a2 1 a2 2 A 0 1 A 0 2 +a2 1 i a 1 3 yA 0 1  (AOf-oii) +
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a2i^ai4y*Qi (A0 2 -Oe2) +a2 1 a 1 5 yA0?A0 2 +a2 2 -|a1 3 yA0 2 (A0?-o§i) + 

a2 2 -|a1 4 yA0 2 (A0l-Oe2) +a2 2 a1 5 yA0 1 A0 2 + i a 1 3 ya 1 4 y{A0?-a31) (A0^-oe2) +

-|a1 3 ya15y (A0^-o|i) A0 1 A0 2 +-|a14y (A0f-oi2) a 1 5 yA0 1 A02] }

Where:
E(A0i) = 0,
E(A0i2) = a9 i 2

E(A0!A02) = E (A0:) E (A02) = 0 and 
E (A0t)3 = 0 

Therefore

&zi2^> 2 ) = 3|1 oe1 +a|2 oe2 +-̂ ai3yE(A0|-Oei) 2 +-iai4yE(A0 l-Oe2)2 + 

ai5 yOei<,e2 +-̂-ai3yai4y^ (A0i~Oei) (A02 -oe2) ] }

= a2 1 O0 1 +a2 2 O8 2 +— ai3yE {[A0 t-2 A 0 iOe1+ (o|i)2] } +

^a*4yE {[A0|-2A0|oo2+ (o|2) 2] )'+ai5 yO0 1 O0 2 +
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'ja1 3ya14ytf {[AfliAel-Aê oes-OeiAel+Oeioia] }

= a2 1®0 1+a2 2 ® » 2 + -̂,<al3y®(̂ 0l) --̂-a13y(0ei) 2 + "̂ a13y (°il) 2 +

±a?iyE(AQ$) -|a 24y(o62)2 +-^a124y(og2 )2 +a125yol1 oi2 +

"ja i3ya i4yO 01°82 a i3ya i4y°ei°02 a i4ya i3y°01a e2 + -Ja i3ya i4ya 01°e2

= a 2i0ei+a 220e2+-^ai3ŷ (̂ ®i) "■^ai3y(®9i)2 + 

a 14yfi' (A 02) a i4y ( Ofl2 ) 2 + a 15y°ila 02

From equations (A-7), and (B-10)

i(A9j) = ^D

i?(A0‘) =

Therefore
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Pzl2( 2,2) = a21ol1+ai3ol2+-±a?3jfi*u-±a?3y(al1)2 +

~^2 a 14y^S a 14y ( °62 ) 2 + a 15y0 fll°e2 ( 6 . 2 6 )

6.4.2 The Error Covariance Matrix P,23
It is not necessary to recompute the expressions for 
the elements of Pz23. The equations computed the 
elements of Pzl2 may be used to compute the elements of 
Pz23. This is accomplished by replacing 0X, 02, <T01, a92, 
xi2 * y 1 2 < x̂i2 f and £yi2 with 02, 03, o02, o03, x23/ y23/ 
ex2 3 / and ey23 respectively, and using equation (C-10) 
to computes E(A03)4.
From equation (C-10) we see

The resulting equations are as follow:

_ _ 2 2 . _ 2 _ 2  . - au o92 + a1 2 <J® 3 +

( 6 . 2 7 )
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Pg2S (1,2) = E {(x23 - ^ 3 ) (y23 -y23) I

=  a i i a 2 i ° 6 2  +  < a 1 2 a 2 2 a e 3  +  ~  " 4 ^ a * 3 * 3 ^ 0 ® 2 ^  *  +

avUcZ’A ‘‘- W W  (6'28:

■P*aj(2|l) _ -®̂ (y23 2̂3̂  (X 23 -*23̂  “ ^«2j(l/2)

an a2 i®fl2  + ai2a2 2 °e3 + ai^ 3y5fl - -|a1 3 xa1 3 y(og2 ) 2  +

ai4A6Q4y5“" T “i4*®*4*(°83}2+ ai5*ai5y®e20e3 (6.29)

■PZ23(2 #2 ) -  .E { (y23 y 23) 2}

aliol, * «&<* *

-jai4y(®03)2 + a 15y®82°03 (6 .30)
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The next section discusses simulation results for the 
covariance matrices Pzl2, and Pz23 using second-order 
terms.

6.5 Discussion of Simulation Results, Scenario nol, Low- 
Noise Case, and High-Noise Case Using Second-Order 
Terms
The computer simulation was run 50 times and the 
results are plotted and discussed in the next several 
pages.
Figure (6.1) shows the actual errors in the noisy 
measurements x12 from triangulation between sensors 
SI, and S2, where (scenario nol hoi) means scenario 
nol high-order terms, low-noise case, and (scenario 
nol hoh) means scenario nol high-order terms, high- 
noise case. The dotted line represents the actual 
errors in the noisy measurements x12, and the solid 
line represents the square root of Pzl2(l,l) in low- 
noise case in scenario nol using second-order terms 
in the covariance matrix. The solid line is the 
theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix.
We are interested in comparing the change in the 
standard deviation using the second-order terms with 
the standard deviation using the first-order 
approximation. Comparing the theoretical standard 
deviation using the second-order terms in figure
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(6.1) with the theoretical standard deviation using 
first-order approximation in low-noise case in 
scenario nol in figure (5.3) we see the theoretical 
standard deviation in the two cases are almost equal. 
The second-order terms do not give any large change. 
This is because in the low-noise case in scenario nol 
using the first-order approximation the theoretical 
standard deviation was found to be close to the 
actual numeric standard deviation of the errors. So 
we would not expect any changes by including the 
second-order terms.

Figure (6.2) shows the actual errors in the noisy 
measurements x23 from triangulation between sensors 
S2, and S3. The dotted line represents the actual 
errors in the noisy measurements x23, and the solid 
line represents the square root of Pz23 (l,l) in low- 
noise case in scenario nol using second-order terms 
in the covariance matrix. The solid line is the 
theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix.
Comparing the theoretical standard deviation using 
the second-order terms in figure (6.2) with the 
theoretical standard deviation using first-order 
approximation in low-noise case in scenario nol in 
figure (5.4) we see the theoretical standard 
deviation in the two cases are almost equal. We see
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that the second-order terms do not make any large 
difference. This is because in the low-noise case 
first-order approximation in scenario nol the 
theoretical standard deviation was found to be close 
to the actual numeric standard deviation of the 
errors. So we would not expect any changes by 
including the second-order terms.
Figure (6.3) shows the actual errors in the noisy 
measurements y12 from triangulation between sensors 
SI, and S2, and figure (6.4) shows the actual errors 
in the noisy measurements y23 from triangulation 
between sensors S2, and S3.
Likewise in figures (6.3), and (6.4) there was no 
difference in the theoretical standard deviation of 
the errors using second-order terms, when compared 
with those in figures (5.7), and (5.8).

In scenario nol, high-noise case, the second-order 
terms did not produce any noticeable difference 
either. Figures (6.5), (6.6), (6.7), and (6.8) are
almost identical to the corresponding figures (5.13),
(5.14), (5.17), and (5.18) which used only the first- 
order approximation.
Again, the first-order approximation to the 
covariance matrix was found to be close to the 
numerical variances.
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Errors in x l2  measurements versus standard deviation (scenario nol hoi)

Figure (6.1)

. . . . xl2_err represents the actual errors in the noisy 
measurements x12 in low-noise case in scenario nol in 
x position.

  stdev represents the square root of Pzl2(l,l), the
theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix in low-noise case in scenario nol 
in x position.
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Errors in *23 measurements versus standard deviation (scenario nol hoi)

Figure (6.2)

.... x23_err represents the actual errors in the noisy 
measurements x23 in low-noise case in scenario nol in 
x position.

  stdev represents the square root of Pz23(l,l), the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix in low-noise case in scenario nol.
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.... yl2_err

Errors in y l2  measurements versus standard deviation (scenario nol hoi)
0 . 8 ---------1-----— i--------- '-------- <-------- 1-------- 1---------1---------1-------- 1—

Figure (6.3)

. ... y!2_err represents the actual errors in the noisy 
measurements y12 in low-noise case in scenario nol in 
y position.

  stdev represents the square root of Pzl2(2,2), the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix in low-noise case in scenario nol.
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Errors in y23 measurements versus standard deviation in (scenario nol hoi)

Figure (6.4)

. . .. represents the actual errors in the noisy measurements 
y23 in low-noise case in scenario nol in y position.

  stdev represents the square root of Pz23(2,2), the
theoretical standard deviation of the errors 
according to the covariance matrix in low-noise case 
in scenario nol in y position using second-order 
terms.
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Errors in x l2  measurements versus standard deviation (scenario nol hoh)

□

Figure (6.5)

.... xl2_err represents the actual errors in the noisy 
measurements x12 in high-noise case in scenario nol in 
x position.

  stdev represents the square root of Pzl2(l,l), the
theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix in high-noise case in scenario nol 
in x position.
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Errors in x23 measurements versus standard deviation (scenario nol hoh)

Figure (6.6)

. . . . x23_err represents the actual errors in the noisy 
measurements x23 in high-noise case in scenario nol in 
x position.

  stdev represents the square root of Pz23(l,l), the
theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix in high-noise case in scenario nol 
in x position.
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Errors in y!2 measurements versus standard deviation (scenario nol hoh)

Figure (6.7)

. . . . yl2_err represents the actual errors in the noisy 
measurements y12 in high-noise case in scenario nol in 
y position.

  stdev represents the square root of Pzl2(2,2), the
theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix in high-noise case in scenario nol 
in y position.
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Errors in y23 measurements versus standard deviation in (scenario nol hoh)

Figure (6.8)

. . . . y23_err represents the actual errors in the noisy 
measurements y23 in high-noise case in scenario nol in 
y position.

  stdev represents the square of Pz23 (2,2), the
theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix in high-noise case in scenario nol 
in y position.
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The next section discusses the simulation results for 
the covariance matrices Pzi2, and Pz23 for low-noise 
case in scenario no2 using the high-order terms.

6.6 Discussion of Simulation Results, Scenario no2, Low- 
Noise Case Using Second-Order Terms
In this section we describe some simulation results 
for low-noise case, scenario no2 using second-order 
terms .
The computer simulation was run 50 times and the 
results are plotted and discussed in the next several 
pages.
Figure (6.9) shows the actual errors in the noisy 
measurements x12 from triangulation between sensors 
SI, and S2, where (scenario no2hol) means scenario 
number two high-order terms low-noise case. The 
dotted line represents the actual errors in the noisy 
measurements x12, and the solid line represents the 
square root of Pzl2(l,l) in low-noise case in scenario 
no2 using the second-order terms in the covariance 
matrix. The solid line is theoretical standard 
deviation of the errors according to the second-order 
approximation to the covariance matrix.
We are interested in comparing the changes in the 
standard deviation using the second-order terms with 
the standard deviation using the first-order 
approximation.
Comparing the theoretical standard deviation in low-
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noise case in scenario no2 using the second-order 
terms in figure (6.9) with the theoretical standard 
deviation in low-noise case in scenario no2 using the 
first-order approximation in figure (5.24), the 
theoretical standard deviation including the second- 
order terms is slightly greater than the theoretical 
standard deviation including the first-order 
approximation. This is not obvious from the graph 
because of the resolution. For example at n = 5, the
theoretical standard deviation in figure (6.9) is
equal to 0.77598, but in figure (5.24) it is equal to
0.7 6883. It is the same thing at n = 27 where the 
theoretical standard deviation in figure (6.9) is
0.69536, but in figure (5.24) it is equal to 0.68959. 
The theoretical standard deviation in figure (6.9) is 
greater than the theoretical standard deviation in 
figure (5.24) at the most cases.

Figure (6.10) shows the actual errors in the noisy 
measurements x23 from triangulation between sensors 
S2, and S3. The dotted line represents the actual 
errors in the noisy measurements x23, and the solid 
line represents the square root of Pz23(l,l) in low- 
noise case in scenario no2 using the second-order 
terms in the covariance matrix. The solid line is the 
theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix.
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Comparing the theoretical standard deviation in low- 
noise case in scenario no2 using the second-order 
terms in figure (6.10) with the theoretical standard 
deviation in low-noise case in scenario no2 using the 
first-order approximation in figure (5.25), the 
theoretical standard deviation including the second- 
order terms most of the times is slightly greater 
than the theoretical standard deviation including the 
first-order approximation. This it is not obvious 
from the graph because of the resolution. For example 
at n = 3, the theoretical standard deviation in
figure (6.10) is equal to 2.0553, but in figure 
(5.25) it is equal to 1.9442. It is the same thing at 
n = 29 where the theoretical standard deviation in 
figure (6.9) is 0.8743, but in figure (5.25) is equal 
to 0.8521. The theoretical standard deviation in 
figure (6.10) is greater than the theoretical 
standard deviation in figure (5.25) in most cases. 
The increase in variances is to be expected as 
scenario no2 is a noisier triangulation process than 
scenario nol between sensors S2, and S3.

Figure (6.11) shows the actual errors in the noisy 
measurements y12 from triangulation between sensors 
SI, and S2. The dotted line represents the actual 
errors in the noisy measurements y12, and the solid 
line represents the square root of Pzl2(2,2) in low- 
noise case in scenario no2 using the second-order
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terms in the covariance matrix. The solid line is 
theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix.
Again we see an increase in variances in figure 
(6.11) and figure (6.12) comparing with Figure (5.28) 
and figure (5.29) for y12, and y23, respectively which 
used first-order approximation. For example at n = 5, 
the theoretical standard deviation in figure (6.11) 
is equal to 0.5546, but in figure (5.28) is equal to 
0.5497. We see the theoretical standard deviation in 
figure (6.11) is greater than the theoretical 
standard deviation in figure (5.28) in most cases. 
Also at n = 3 the theoretical standard deviation in 
figure (6.12) is equal to 2.4873, but in figure 
(5.29) is equal to 2.3623. It is same thing at n = 30 
where the theoretical standard deviation in the 
figure (6.12) is 1.5568, but in figure (5.29) is 
equal to 1.507 6. We see the theoretical standard 
deviation in figure (6.12) is greater than the 
theoretical standard deviation in figure (5.29) in 
most cases.
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Errors in x l2  measurements versus standard deviation (scenario no2hol)

n

Figure (6.9)

. . . . xl2_err represents the actual errors in the noisy 
measurements x12 in low-noise case in scenario no2 in 
x position.

  stdev represents the square root of Pzl2(l,l), the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix in low-noise case in scenario no2.
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Errors inx23 measurements versus standard deviation (scenario no2hol)

Figure (6.10)

. . . . x23_err represents the actual errors in the noisy 
measurements x23 in low-noise case in scenario no2 in 
x position.

  stdev represents the square root of Pz23(l,l), the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix in low-noise case in scenario no2.
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Errors in y l2  measurements versus standard deviation (scenario no2hol)

n

Figure (6.11)

. . . . yl2_err represents the actual errors in the noisy 
measurements y12 in low-noise case in scenario no2 in 
y position.

  stdev represents the square root of Pzl2(2,2), the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix in low-noise case in scenario no2.
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Errors in y23 measurements versus standard deviation in (scenario no2hol)

n

Figure (6.12)

. . . . y23_err represents the actual errors in the noisy 
measurements y23 in low-noise case in scenario no2 in 
y position.

  stdev represents the square root of Pz23(2,2), the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix in low-noise case in scenario no2.
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The next section discusses the simulation results for 
high-noise case in scenario no2 using second-order 
terms.

6.7 Discussion of Simulation Results, Scenario no2, High- 
Noise Case Using Second-Order Terms
In this section we describe some simulation results 
for high-noise case, scenario no2 using second-order 
terms, and comparing the changes in the standard 
deviation using the second-order terms with the 
standard deviation using first-order approximation. 
The computer simulation was run 50 times and the 
results are plotted and discussed in the next several 
pages. The only difference between high-noise case 
and low-noise case in scenario no2 is in the 
measurement noise variances.
Figure (6.13) shows the actual errors in the noisy 
measurements x12 from triangulation between sensors 
SI, and S2, where (scenario no2hoh) means scenario 
number two using high-order terms in high-noise case. 
The dotted line represents the actual errors in the 
noisy measurements x12 in high-noise case, and the 
solid line represents the square root of Pzl2(l,l) in 
high-noise case in scenario no2 using second-order 
terms in x position. Comparing the theoretical 
standard deviation in high-noise case in scenario no2 
using the second-order terms in x position in figure 
(6.13) with the theoretical standard deviation in 
high-noise case in scenario no2 using the first-order
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approximation in x position in figure (5.34), we see 
the theoretical standard deviation using the second- 
order terms is slightly larger than the theoretical 
standard deviation using first-order approximation. 
Again the difference is to be expected.
Clearly, the triangulation process between sensors
51, and S2 is still relatively accurate in this case.

Figure (6.14) shows the actual errors in the noisy 
measurements x23 from triangulation between sensors
52, and S3. The dotted line represents the actual 
errors in the noisy measurements x23 in high-noise 
case, and the solid line represents the square root 
of Pz23(1,1) in high-noise case in scenario no2 using 
second-order terms in x position. The solid line is 
the theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix. Comparing the theoretical standard 
deviation in high-noise case in scenario no2 using 
the second-order terms in x position in figure (6.14) 
with the theoretical standard deviation in high-noise 
case in scenario no2 using the first-order 
approximation in x position in figure (5.35), we see 
the theoretical standard deviation using the second- 
order terms is much larger than the theoretical 
standard deviation with using first-order 
approximation. For example at n = 5, we see the 
theoretical standard deviation including the second-
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order terms is twice as large as the theoretical 
standard deviation including the first-order 
approximation. We see the same thing at n = 36, and 
at several other places. In both figures, the 
standard deviation itself does not accurately model 
the statistics of the errors. This is due to the high 
noise distortion in the triangulation process between 
sensors S2, and S3. The angle-of-arrival errors 
exceed the magnitude of the difference (03t - 02t) 
resulting in very large errors in the triangulation 
process between sensors S2, and S3. Since the 
covariance matrix is expanded about the noisy 
triangulated position, this causes the distortion of 
the covariance matrix which we see in the figures.

Figure (6.15) shows the actual errors in the noisy 
measurements y12 from triangulation between sensors 
SI, and S2. The dotted line represents the actual 
errors in the noisy measurements y12 in high-noise 
case, and the solid line represents the square root 
of Pz12(2,2) in high-noise case in scenario no2 using 
second-order terms in y position. The solid line is 
the theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix. Comparing the theoretical standard 
deviation in high-noise case in scenario no2 using 
the second-order terms in y position in figure
(6.15)with the theoretical standard deviation in
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high-noise case in scenario no2 using the first-order 
approximation in y position in figure (5.38), we see 
the theoretical standard deviation using the second- 
order terms almost equals the theoretical standard 
deviation using first-order approximation. We see the 
second-order terms in this case do not make any 
change, because of the low noise component in the 
triangulation process between sensors SI, and S2.

Figure (6.16) shows the actual errors in the noisy 
measurements y23 from triangulation between sensors 
S2, and S3. The dotted line represents the actual 
errors in the noisy measurements y23 in high-noise 
case, and the solid line represents the square root 
of Pz23(2,2) in high-noise case in scenario no2 using 
second-order terms in y position. The solid line is 
the theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix. Comparing the theoretical standard 
deviation in high-noise case in scenario no2 using 
the second-order terms in x position in figure (6.16) 
with the theoretical standard deviation in high- 
noise case in scenario no2 using the first-order 
approximation in y position in figure (5.39), we see 
the theoretical standard deviation using the second- 
order terms is much larger than the theoretical 
standard deviation using first-order approximation. 
For example at n = 5 we see the theoretical standard
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deviation including the second-order terms is bigger 
than the theoretical standard deviation including the 
first-order approximation two times. We see the same 
thing at n = 3 6, and at the most cases. This is due 
to the high noise situation because of the large 
noise in the triangulation process between sensors 
S2, and S3, where the errors at theses sensors 
exceed the magnitude of the difference (03t - 02t) 
resulting in very large errors in the triangulation 
process between sensors S2, and S3. As mentioned 
earlier, there is a large distortion of the 
covariance matrix in this case.
We see in the high-noise case in scenario no2, the 
second-order terms still are not accurate because of 
the large errors at the sensors. It is not clear how 
many high-order terms are needed to get an accurate 
covariance matrix in high-noise case in scenario no2 . 
Looking at chapter VI we see that a considerable 
amount of difficult mathematics was necessary to get 
the second-order terms. To determine the third and 
fourth-order terms in the approximation would be 
impossible. The only solution is to use another 
sensor to get a better slant angle for the 
triangulation process.
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Errors in x l2  measurements versus standard deviation (scenario no2hoh)

n

Figure (6.13)

... . xl2_err represents the actual errors in the noisy 
measurements x12 in high-noise case in scenario no2 in 
x position.

  stdev represents the square root of Pzl2(l,l), the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix in high-noise case in scenario no2.
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Errors inx23 measurements versus standard deviation (scenario no2hoh)

Figure (6.14)

. . . . x23_err represents the actual errors in the noisy 
measurements x23 in high-noise case in scenario no2 in 
x position.

  stdev represents the square root of Pz23(l,l), the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix in high-noise case in scenario no2.
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Errors in y l2  measurements versus standard deviation (scenario no2hoh)

n

Figure (6.15)

. . . . yl2_err represents the actual errors in the noisy 
measurements y12 in high-noise case in scenario no2 in 
y position.

  stdev represents the square root of Pzl2(2,2)< the
theoretical standard deviation of the errors
according to the second-order approximation to the
covariance matrix in high-noise case in scenario no2.
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Errors in y23 measurements versus standard deviation in (scenario no2hoh)

Figure (6.16)

y23_err represents the actual errors in the noisy 
measurements y23 in high-noise case in scenario no2 in 
y position.
stdev represents the square root of Pz23(2,2)/ the 
theoretical standard deviation of the errors 
according to the second-order approximation to the 
covariance matrix in high-noise case in scenario no2 .
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CHAPTER VII 
CONCLUSIONS

In this thesis we analyzed data fusion in the 
presence of non-linear measurements data. Several 
different areas related to the problem have been 
examined in this work and we now look at several 
conclusions from the results presented.

We have shown that the linear fusion algorithm 
successfully fused nonlinear data using only a first- 
order approximation to the covariance matrices. The 
fused estimate is generally better than the 
individual measurements themselves when the errors in 
the noisy measurements are of opposite sign. When the 
measurement errors are of like sign the fused 
estimate is usually close to the higher accuracy 
measurement.
We have shown that the fusion algorithm works when we 
do not know the p .d .f,s governing the errors in the 
noisy position measurement vectors. In fact by 
selecting different p.d.f,s for the angle-of-arrival 
measurements, we have shown that the fusion algorithm 
is insensitive to p.d.f,s themselves and only needs 
to know the covariance matrices governing the errors 
in the noisy position measurement vectors.
A first-order approximation was found to be accurate 
enough for data fusion except in the high-noise case 
in scenario no2. In scenario no2, high-noise case we
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found that the covariance matrices were very 
inaccurate for triangulation between sensors S2 and 
S3. There are several reasons for this. The angle-of- 
arrival errors are very large compared to the 
difference in the slant angles (03m - 02m) used for 
triangulation. This causes large errors in the 
triangulation process. The covariance matrices are 
expanded about these errors resulting in the effect 
we have seen in figures (5.35) and (5.39). In spite 
of the inaccuracy of the covariance matrices, the 
fusion algorithm still was effective in fusing the 
data in many cases. However, there were a few cases 
where the fused estimate was poorer than the best 
measurement. In a high-noise situation this is to be 
expected.
In an attempt to improve the accuracy of the 
covariance matrices, the impact of the second-order 
terms in the expansion was analyzed. We found in 
scenario nol in both the low-noise and high-noise 
cases that the first-order approximation to the 
covariance matrices was close to the statistics of 
the actual errors themselves. Therefore we found that 
the second-order terms did not make any difference. 
In scenario no2 low-noise case we found the 
theoretical standard deviation of the errors using 
second-order terms is slightly bigger than the 
theoretical standard deviation of the errors using 
first-order approximation for both triangulation
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between sensors SI and S2 and also between sensors S2 
and S3. This is because scenario no2 is a noisier 
triangulation process than scenario nol and therefore 
the second-order terms did make a small change. In 
scenario no2 high-noise case for triangulation 
between sensors SI and S2, we found that the second- 
order terms caused a small increase in the 
theoretical standard deviation of the errors. The 
triangulation process between sensors SI and S2 is 
still relatively accurate in this case and only a 
small change is caused by the second-order terms. But 
the theoretical standard deviation of the errors 
according to the noisier triangulation process due to 
the slant angle between sensors S2 and S3 was found 
to be much larger than the theoretical standard 
deviation of the errors using the first-order 
approximation. The covariance matrix is very 
inaccurate in modelling the errors in this case 
(between sensors S2, and S3) because of the poor 
triangulation accuracy. As stated before, this is 
caused by the noisy angle measurement errors being 
greater than the difference between the slant angles 
02 and 03. Clearly the second-order terms do not 
improve the situation. The covariance matrix is still 
inaccurate when compared to the actual errors in 
figures (6.14) and (6.16). Many additional terms in 
the expansion are needed. From chapter VI we see that 
the mathematics for the second-order terms is quite
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difficult. The mathematics for third and higher terms 
is simply impossible. Another better placed sensor is 
needed for triangulation.
In spite of the inaccurate covariance matrices, the 
fusion algorithm does a good job at fusing the data, 
and produces an optimum covariance matrix which has 
a trace less than the trace of the individual error 
covariance matrices in all cases.
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APPENDIX A 
UNIFORM PROBABILITY DENSITY FUNCTION

A-l The Mean Value of X
Figure (A.l) shows the probability density function 
(pdf) and cumulative distribution function (cdf) of 
a uniformly distributed random variable x.

(a) f f (x)
_______1/28g

— ft u 0 ■•'Ru

pdf

-»x

cdf

Figure (A.l): (a) probability density function (pdf) (b) 
cumulative distribution function (cdf).

From figure (A.l) the pdf is given by:
fx(x) = l/28u when -8U ^ x £ +8U and (A-l)
fx(x) = 0 elsewhere. (A-2)

The mean value of X is given by

Al



+4U\i = E[x] = x = f xfx{x) dx

1
28u

Therefore the expected value of x, (x) = |i,x = 0

A-2 The Variance of X
The variance of x is given by:

#»
a2x - J x 2fx{x) dx

-a

2 5 u 3 J_8

( A - 3 )

A2



The square root of the variance of x, or ax< is the 
standard deviation of the random variable x.

A-3 Cumulative Distribution Function (cdf)
For x < -8U The cdf is given by:

Fx(x) = 0 (A-4)
For -Su < x < 8U the cdf is given by:

x x
Fx(x) = Pr { X * x } = f fx(x)dx = f 1 dc = -i- [x]56u

-6U u u

when -8U < x < 8u (A-5)

when x < - 8U 
when x > 8U

A-4 Use of Probability Integral Transform to Generate 
Random Draw from U(-8U/ 8U)
Suppose a random variable x has a pdf fx(x) and a 
corresponding cdf Fx(x) . From the probability integral 
transform it is shown in reference [2] that if y = 
Fx(x) then y has a pdf U(0,1). It is also shown that 
x = Fj^Cy) has pdf fx(x) .
From equation (A-5), we have

y = Fx(x) = If -8U < x < 8U

FAX) =
x+6l
25„

= 0 
= 1
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1

0
If X  >  S u 

If x £ -8U
Solving for X, we get

X = 8u(2y-l) if -Su < x ^ 8U (A-6) 
Therefore by generating a random draw from y which is 
uniform U(0,1), then X = 8u(2y-l) has a uniform pdf 
U(-8U, 8U) .

This technique is used to generate random angle-of- 
arrival errors in SI measurement data.

A-5 The Expected Value of X4
We need the E{x4}, when we discuss high-order terms in 
the covariance matrices in chapter (VI)

Therefore

E{X4) 3 (A-7)
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APPENDIX B

SAWTOOTH PROBABILITY DENSITY FUNCTION

B-l. The Mean Value of X
Figure (B.l) shows the probability density function 
(pdf) and cumulative distribution function (cdf) of 
a sawtooth distributed random variable x.

pdf

cdf

Figure (B.l): (a) Probability density function, (b)
Cumulative distribution function.

From the figure (B.l) the pdf is given by:

when 0 ^ x < 5S (B-l)o„

and
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f^ x) = TF whej3 -8S < x < 0 (B-2) o =

The mean value of x (x) is given by:

o s«
E(x) = x = f x  ̂ ~x)-dx + fx-^-dx

o V

35fl2 35e2

Therefore x = 0

B-2 The Variance of X
The variance of x is given by:

a2x = J x 2fx(x) dx

45fl2 45/
- 2

Therefore
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3 2s
2O'# =

B-3 Cumulative Distribution Function (cdf)
For -5a < x < 0 the pdf is given by: 

fx(x) = -x/8g2 
Then the cdf is given By:

Fx{x) = Pr { X 4 x) = jf -=Jcfc

T
2 -«u

, % 6|-*2 s ^ F j W  = -—  if -8U <2fi2

= 0 
= 0.5

For 0 < x < 5S the pdf is given by:

= f 2

Then the cdf is given by:

x
y = Fx{x) = Pz{ X * x } = f~^dx + 0 .!

o

( B - 3 )

x <0 (B-4)

x < -8g 
x = 0
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In summary,

X 2  +  5 2
y =   p. 0 <S x <S 8U (B-5)

2 6 ^

Fx(X) = 5a f2 if -8S £ x £ 0 (B-6)
2fi|

= 0 x < -8g
=0.5 x = 0

and

y2+*2
Fx(x) = ----2 0 £ x <8S (B—7)

28|

=0.5 x = 0
= 1 x > 8S

Equations (B-6) and (B-7) summarize the cdf function 
for the sawtooth.

B-4 use of Probability Integral Transform to Generate 
Random Draw of a sawtooth, pdf.
As discussed in section (A-4) of appendix A if y a 
random number y is U(0,1), then a random draw for X 
is obtained from X = Fx'1(y) where Fx(x) = cdf of X. 
If 0 < y < 0.5 then from equation (B-6) we get

X2 = 8a2 (l-2y)
Solving for X we get two roots for X, X1# and X2

x x = - a y r T = z y r
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and

Xz = 6flVTT=2yJ

The second root X2 is refused because when y = 0, X2 
must be -8S/ and therefore the first root is the 
correct one. Therefore

X = -5flV/U-2y) for 0 < y <£ 0.5 (B-8)

From equation (B-7), the random draw must be inverse 
mapped through the cdf function onto the X axis. This 
is accomplished as follows: If 0.5 ^ y < 1 and from 
the equation (B-7) we get

X2 = 8a2 (2y - 1)
Solving for X we get two roots for X, Xx, and X2

Xx = taJ{2y-i)

and

X2 = -5^(2y-l)

X2 is refused because when y = 1, X must be 8a. 
Therefore

X  = I2y-iy if 0.5 ^ y ^ 1 (B-9)

Therefore there are two equations (B-8), and (B-9) 
needed to generate random angle-of-arrival errors in 
S2 measurement data. For a give draw of y from
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U(0,1) ,

X = -5^(1-2y) if 0 £ y £ 0.5

and

X = (2y-iJ if 0.5 < y < 1

This technique is used to generate random angle-of- 
arrival errors in S2 measurement data.

B-5 The Expected value x4
We need the E{x4}, when we discuss high-order 
approximation terms in the covariance matrices in 
chapter (VI)

E(x 4)= j [x-x] fx{x)dx

Zi[— 1° + 1  x6+ _
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APPENDIX C 
TRIANGLE PROBABILITY DENSITY FUNCTION 

C-l The Mean value of X
Figure (C.l) shows the probability density function 
(pdf) and cumulative distribution function (cdf) of 
a triangle distributed random variable x.

f (x)

Figure (C.l): (a) probability density function (pdf), (b) 
cumulative distribution function (cdf) .

From figure (C.l) The pdf is given by:

fx{x) =A(i+^L) -8c£ x £ 0  (C-l)

fx(x) k  -r-(l--£-) 0 £ x £ 8t (C-2)°t
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The mean value of x is given by:

0
E{x) = x =  (1+-̂ -) ] dx+Jx[y-(1-y-) ]

0 ®e *ei r X2 i r x2
= t / x d x  + t  / t *  + T;lxdx - t J t *t_je t t o t o t

-St2 5t3 6t2 6t3=  E_ + — E_ + — L_ - — E_ = 0
28t 36t2 2St 36t2

Therefore E(x) = x = 0

C-2 The Variance of x
The variance of x is given by:

o *t
Ox — f x 2[±(l+-±)]dx + Jx2[ ±  {!--£) ]dx

-ae t t o t t

■ifi3 1 a 4 a 3 a 4= A  - -A. _ _£t6t 3 5t 45t 35t 4512

2 = -iii (C-3)- _
0jc 6
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C-3 Cumulative Distribution Function (cdf)
For -8t ^ x < 0 the pdf is given by:

fx(x) = (1+# )

Therefore the cdf is

y = Fx(x) = P r { X i x }  = f -i- (l+-r-) dx

p2 1

X 2 +2 6 t -X- + 5* (*+5t)2
252 25|

y = if -8t £ x £ 0 (C-4)
2b\

For 0 < x <> 8t the pdf is given by;

fx(x) = 4 - (I'#)fit 6t

Therefore the cdf is
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1 rflx - 1 
^  [1° 5f

T 2 1 X

o
+ 0.5

Therefore

251 X-X2+t>2t ,y = — -— ;---- (c-5)282

In summary, the cdf for a triangle pdf is given by:

{X+bt)2 ,
y =  if -St £ x £ 0 (C-6)2ot

= 0 x ^ -8t
=0.5 x = 0

2flt X-X2+8| Ijr A . ^ sy = --£---    iJf 0 ^ x £ 8t (C-7)
282t

=0.5 x = 0
= 1 x £ 8t

Equation (C-6) and (C-7) summarize the cdf function 
for a sawtooth. To generate a random draw from the 
pdf a number y is generate with a U(0,1) pdf.

C-4 Use of Probability Integral Transform to Generate 
Random Draw of Triangle pdf.
As discussed in section (A-4) of appendix A if y a 
random number y is U{0,1), then a random draw for X
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is obtained from X = Fx_1(y) where Fx(x) = cdf of X. 
if 0 ^ y ^0.5 and from the equation (C-6) we get

(X + 8t)2 = 28tV  
Solving for x we get two roots for X, the first one 
Xx is given by:

Xx = -5t+8ty2y = fit(V2y-l)

the second root X2 is given by:

X2 = -8t - 5t fly = -8t(l+v^y)

The second root X2 is refused because when y = 0.5, X2 
must be 0, and therefore the first root is the 
correct one.

X =  8t(v/2y-l) if 0 ^ y < 0.5 (C-8)

From the equation (C-7) the random draw y must be 
inverse mapped through the cdf function onto the x 
axis, this is accomplished as follows: If 0.5 ^ y ^ 
1 the cdf is given by:

26, X - X 2 + 6l
y  =   i -------------------------------E

25|

X2 - 2 StX - 8t2 + 2 8t2 y = 0
(X - St)2 - 2 8t2 + 28t2y = 0
(X - 8t)2 = 2 8t2 (1-y)

Solving for X, we get two roots for X , X1# and X2.
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The first root Xt is given by:

*i = fit + 8tV2"(i -y)

and the second root X2 is given by:

^  = 5t-5tV2T i-y) = 6t[l-JTCT-yTT

The first root X, is refused because when y = 0.5 X 
must be 0

Therefore, the second root is the correct one.

x2 = 5t-5tV/2Cl -y) = CJl-v'Sl'l-yTT (C-9)

if 0.5 ^ y < 1 
Therefore, for a given draw for y there are two 
equations needed (C-8), and (c-9) to generate random 
angle-of-arrival errors in S3 measurement data.
This technique is used to generate random angle-of- 
arrival errors in S3 measurement data.

C-5 The Expected Value of x4
We need the E{x4}, when we discus high-order terms in 
the covariance matrices in chapter (VI)
For -8t < x < 0 the pdf is given by:

For 0 < x < 8C the pdf is given by:



f j x )  » -J^(1 f-')

«e
E(x4) = f {x-x) *f{x) dx

I

Therefor the expected value of x4 is given by: 

o
E(x4) = J x 4[A(l+-|-)]dx + Jx4[±{l--*)]dx

-A t £ n t t

0 0
-i- f x4dx + f x5dx + JL [x*dx - —  fx5dxfiJ X2jt-fi °t-«e t o o t0

1 [x5l° + 1 [*61° + 1 [x5]«e _ ! [x6l
6t 5 6 5 o 8 1 6

56*=  +  _
55t 5fit 65|

Therefore

2?U4) = (C

C7
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APPENDIX D

If f(-x) = f (x) then E(x3) = 0
The proof 

E(x2a+1) =

let y = -: 

E{x2a+1)

Therefore 
E (x:

Jx2a+1f(x) dx = jx2n+1f (x) dx+Jx2n+1f(x) dx
—5 0

6
= f (-y)2fl+1f(-y) (-dy) + fy2a+1f{y)dy
y=6

y-6 6
-/ (y)2fl+1f(y)dy + jy2a*if (y) dy

-- 0

n+1) = 0 for all integers n (D-l)
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