
Level-based Indexing for Optimising XML Queries

Martin Francis O’Connor

Bachelor of Science in Computer Applications

A dissertation submitted in fulfilment of the

requirements for the award of

Masters of Science in Computer Applications

to the

Dublin City University

School of Computing

Supervisor: Dr. Mark Roantree

June, 2005

Declaration

I hereby certify that this material, which I now submit for assessment on the programme

of study leading to the award of Masters of Science in Computer Applications is entirely

my own work and has not been taken from the work of others save and to the extent that

such work has been cited and acknowledged within the text of my work.

Signed

Student ID 53129172

Date June, 2005

i

Acknowledgments

I would like to thank my family, and in particular, my parents for their endless love,

support and encouragement.

I would like to thank my supervisor, Mark Roantree, for giving me expert guidance and

advice in the preparation of this thesis.

I would like to thank Zohra Bellahsène for her guidance and encouragement throughout

the undertaking of my research.

I would like to thank all the members of ISG, including Dalen for instructing me in LATEX,

and my colleagues Noel, Seamus and Damir.

Last but most important of all, I want to thank God for His goodness and the many gifts

He has given me, including life, love, faith and this opportunity of education.

Ad Majorem Dei Gloriam

ii

Level-based Indexing for Optimising XML Queries Martin Francis O’Connor

Abstract

Many of the problems with native XML databases relate to query performance and sub-

sequently, it can be difficult to convince traditional database users of the benefits of using

semi- or unstructured databases. In particular, the ongoing development of the XQuery

language requires that performance related issues are resolved. Presently, there still lacks

an index structure providing efficient support for both navigational and structural queries

and the traditional data-centric and content queries. This thesis presents a new extended

index structure based on the preorder traversal rank and the level (or depth) rank of each

node in a document tree. The extended index fully supports the navigation of all XPath

axes while efficiently supporting data-centric queries. The ability to start path traversals

from arbitrary nodes in a document tree also enables the extended index to support the

evaluation of path traversals embedded in XQuery expressions. Furthermore, an encoding

technique for this extended index structure is presented, whereby properties of a level

ranking may be exploited to provide efficient and optimised path traversals and in certain

cases, optimal solutions to path traversals.

iii

Contents

Declaration i

Acknowledgments ii

Abstract iii

Contents iv

List of Figures viii

1 Introduction 1

1.1 The XML Data Model . 2

1.2 XML Databases . 4

1.3 Large-Scale XML Integration . 6

1.4 Motivation . 7

1.5 Contribution . 8

1.6 Conclusions . 8

2 Related Research 10

2.1 The ORDPATH Research Project . 11

2.1.1 ORDPATH Labelling Scheme . 11

2.1.2 ORDPATH Query Plans . 13

iv

Contents v

2.1.3 Limitations . 14

2.2 Indexing In The eXist Database . 14

2.2.1 Overview . 15

2.2.2 eXist Numbering Scheme . 17

2.2.3 eXist Query Plans . 18

2.2.4 Limitations . 18

2.3 XPath Accelerator Index Structure . 19

2.3.1 Overview . 19

2.3.2 Benefits and limitations of the XPath Accelerator 20

2.3.3 Modified XPath Accelerator Encoding 22

2.4 Conclusions . 23

3 PreLevel Encoding 26

3.1 The XPATH Language Specification . 27

3.2 Tree Traversal . 28

3.2.1 Overview . 28

3.2.2 Numbering Nodes . 29

3.3 The PreLevel Encoding Mechanism . 30

3.3.1 Navigating the Descendant Axis . 31

3.3.2 Navigating the Ancestor Axis . 34

3.3.3 Navigating the Following Axis . 35

3.3.4 Navigating the Preceding Axis . 37

3.4 Conclusions . 37

Contents vi

4 PreLevel Index Structure 39

4.1 Indexing Method . 40

4.1.1 Properties of Extended Preorder and Level Indexes 41

4.2 Descendant and Ancestor Axes Evaluation 43

4.2.1 Descendant Lookup Operations . 43

4.3 Following Axis Evaluation . 44

4.3.1 Constant Time Evaluation . 45

4.4 Remaining XPath Axes Evaluation . 46

4.5 Evaluating the size of a Subtree . 47

4.5.1 Computational Cost . 48

4.5.2 The SizeOfSubtree Algorithm . 48

4.5.3 Observations . 50

4.6 Conclusions . 50

5 XPath Query Optimisations 52

5.1 Primary XPath Axes Evaluation . 52

5.1.1 Descendant and Ancestor Axes Evaluations 53

5.1.2 Following Axis Evaluation . 54

5.1.3 Preceding Axis Evaluation . 55

5.2 Optimised Level-based Queries . 56

5.2.1 Level-based Queries Overview . 56

5.2.2 Computational Cost . 57

5.2.3 Evaluating All Members of the Child Axis 59

5.2.4 Following-Sibling and Preceding-Sibling Axes Evaluation 60

5.2.5 Evaluating the Size of a Level-based Result Set 61

Contents vii

5.2.6 Optimising Wildcard Evaluation . 62

5.2.7 Efficient Ancestor Evaluation . 64

5.3 Conclusions . 65

6 Conclusions 67

6.1 Thesis Summary . 67

6.2 Future Research . 71

6.2.1 RDBMS Compatibility . 71

6.2.2 Support for Updates . 72

Bibliography 73

List of Figures

2.1 XML tree for XML data of Example 2.1 . 12

2.2 XML Shredded into Relational “NODE” Table. 13

2.3 A sample XML document modelled as a complete 2-ary tree using level-

ordering. 16

2.4 A sample XML document with unique identifiers generated by eXist. 17

2.5 XPath axes α and their corresponding query windows window(α,v) (context

node v) . 20

3.1 A sample XML tree and the pre/post cartesian plane. 30

3.2 A sample XML document and the associated PreLevel encoded tree as used

in XLIM. 31

3.3 Example of navigating the descendant axis of a PreLevel encoded XML tree. 33

3.4 Example of navigating the following axis of a PreLevel encoded XML tree. . 36

4.1 A sample XML tree with corresponding PreLevel structure. 40

5.1 An illustrated level-based query to select all grandchildren of node g. 56

5.2 Employee Schema . 63

viii

Chapter 1

Introduction

The eXtensible Markup Language or XML [Wor04b] has been adopted as the new standard

for data exchange on the World Wide Web and increasingly so in industry as the standard

data interchange format for enterprise-wide application integration workflow systems. As

more and more organisations and systems employ XML within their information man-

agement and exchange strategies, classical data management issues pertaining to XML’s

efficient and effective storage, retrieval, querying, indexing and manipulation arise. At the

same time, previously uncharted information-modelling challenges appear [CRZ03].

XML first made its appearance on the international computing stage as a World Wide Web

Consortium (W3C) working draft in November 1996 and was finally adopted as a recom-

mendation in February 1998. It is a subset of the Standard Generalized Markup Language

(SGML). Its initial goal was to enable generic SGML to be received and processed on the

Web in a way that is now possible with HTML. For this reason, XML was designed for

ease of implementation and for interoperability with both SGML and HTML. However,

since 1998 the increasing importance and rate of adoption of XML within the wider com-

puting domain has been considerable. The functionality, expressiveness and simplicity of

XML have far exceeded its design goals, taking on a life and purpose of its own and thus,

replacing and largely relegating SGML to specialised application domains.

In this chapter, the XML data model is introduced and the reasons for its rapid adoption

are identified. An overview of the principle languages employed in the querying of XML

and their importance in promoting the interoperability of XML is provided. The growth

1

Chapter 1: Introduction 2

in the development of new XML repositories and extensions to existing DBMS to facilitate

the efficient storage, indexing and querying of XML data is examined in detail, with a view

to identifying the open challenges still to be resolved. A number of these open challenges

are then crystallised within a particular real-world context to provide a concrete motivation

for the work presented in this research thesis.

The remainder of this chapter is structured as follows: the basic structure or datatype

underlying the XML data model is presented in §1.1, in conjunction with the principle

languages used to query XML data. In §1.2, the various types of XML databases that have

evolved to date are outlined so as to identify the progress made in the XML repository

domain and the various issues that remain outstanding. In §1.3, the Bologna Declaration

is introduced so as to provide a context for the motivation of this research thesis. In §1.4,

the specific issues that form the motivation of this research thesis are detailed. In §1.5, the

contributions made in this research thesis are outlined and the conclusions are presented

in §1.6.

1.1 The XML Data Model

XML provides an application-independent, language-independent and platform indepen-

dent method to mark-up data. The primary purpose of mark-up data is to embed a

description of the data in the data itself - that is embedding meta-data with data to pro-

vide semantic or contextual meaning, allowing the data to be interpreted. Thus, XML can

be used to create abstractions of virtually all data structures and process states. Once

captured in XML format, these data structures and process states can be queried. In ad-

dition, XML is standards-based. The W3C is the governing body that acts as the source

for all specifications that govern the various XML initiatives. No major XML initiatives

are based on proprietary protocols. All of the major players - Microsoft, Sun, IBM, HP

and so on - adhere to the standards established by the W3C [MBC+04]. The universal

independence of XML in conjunction with its semantic richness has positioned XML as

the medium of choice for interoperability among distributed and heterogeneous computing

systems.

Chapter 1: Introduction 3

The key ingredient to the successful adoption of XML is the expressive and extensible

nature of XML. The basic structure underlying XML is the tree, which represents semi-

structured data. Semi-structured data is such that the structure is not necessarily known in

advance and is often self-describing as is the case with XML. Semi-structured data consists

of an irregular and non-uniform organisation; it may have data with missing attributes

and some attributes may be of different types within different data items. All of these

variations are acceptable in XML documents. Thus, it may be seen that XML provides

for an unlimited number for tree dialects, some of which have been formally described

(structured) by Document Type Definition (DTDs) documents [BBC+98] or XML Schemas

[Wor04c], while others are employed in an ad-hoc schema-less manner (semi-structured or

unstructured). The database community is well advanced in adapting its technology to

host large XML collections and to query these collections efficiently. It will be essential

that these new technologies support the XML query language specifications such as XPath

[Wor05b] and XQuery [Wor05a]. These specifications are key enablers in maintaining the

interoperability among XML repositories.

XPath The XPath language enables access to individual parts of data elements in an

XML document by the use of statements that express the path to the desired object

[Kay04]. XPath models an XML document as a tree of nodes. There are various types

of nodes, including element nodes, attribute nodes and text nodes. XPath operates on

the abstract, logical structure of an XML document rather than its surface syntax. The

primary purpose of XPath is to provide a means to enable the hierarchical addressing of

nodes in an XML document tree, using XPath location steps. XPath is an expression

language rather than a programming language. In its simplest form, an XPath expression

takes an XML document as input and outputs a sequence of selected nodes that satisfy the

expression. To navigate the tree of nodes in an XML document, XPath uses the concept

of axes. XPath axes describe relationships between nodes in the document. The most

commonly used axes are child, ancestor, descendant, following and preceding.

XQuery As XML has been adopted as the new standard for data exchange, it is natural

that queries among applications and between databases should be expressed against data

Chapter 1: Introduction 4

in XML format. The SQL language, although robust and well-proven in the relational

domain, is tree-unaware and not designed to exploit the hierarchical properties of XML

encoded data. Subsequently, the SQL language is unable to meet the demands of an

XML Query Language. The XQuery language specification is a response to this need.

XQuery or XML Query Language is a W3C specification [Wor05a] designed to provide a

flexible and standardised way of searching through (semi-structured) data that is either

physically stored as XML or viewed as XML. The XQuery language is an extension of

the XPath 2.0 language. XQuery can be used to query XML data that has no schema

at all, or that is governed by a W3C XML Schema [Wor04c] or by a Document Type

Definition (DTD) [BBC+98]. It is a functional language: instead of executing commands

as procedural languages do, every query is an expression to be evaluated, and expressions

can be combined quite flexibly with other expressions to form new expressions [CDF+04].

1.2 XML Databases

The rapid growth in the adoption of XML has highlighted the need for flexible and ro-

bust XML Database Management Systems (XML DBMS). Researchers from Industry and

Academia have not been slow in responding to this challenge. A good number of XML

DBMS are now available, each providing a range of functionality designed to address a par-

ticular requirement or application domain. The development of XML DBMS has evolved

in two broad streams: XML Enabled Databases and Native XML Databases. A listings of

over 30 Native XML Databases and 15 XML Enabled Databases is available at [Bou05]

XML Enabled Databases XML Enabled Databases are relational or object-relational

databases that have been extended to store and process XML documents. Historically,

their development sprung from the database community’s view that XML was yet another

data format to be catered for. XML Enabled Databases store XML using their own

internal representation and provide a mapping mechanism to transform the data back

into its original XML format. The XML documents are effectively shredded, decomposed

and stored in rows and columns or as object-relational types within the database. This

approach is suitable for highly structured data-centric applications that use XML data

Chapter 1: Introduction 5

primarily as a data interchange and transport format. An important consideration before

deploying an XML Enabled Database is Round Tripping. Round Tripping describes the

scenario whereby XML documents are stored in a database and then recreated through

XML publishing. The ideal round tripping is achieved when the original and recreated

XML documents are identical. This is not the case in many XML enabled systems due to

the loss of some information like order or white spaces. For example, in [Ora03] Oracle’s

native CLOB storage can round-trip XML documents exactly, but object-relational storage

can only round-trip at the level of the DOM [Wor04a].

Native XML Databases Native XML Databases are built from the ground up, with

the goal of outperforming XML Enabled Databases by taking advantage of the inherent

properties of the hierarchical structure of XML and implementing custom storage and

indexing mechanisms to exploit them. An ideal Native XML Database should be based

on the XML data model in which the XML document tree is the fundamental logical data

unit [SBKJ02].

XML documents are characterised by both their content and their structure and thus,

two major classes of queries are possible: query over content and query over structure. In

[NLB+02], an analysis of several XML-Enabled DBMS and Native XML Databases were

undertaken. The results confirmed that XML-Enabled relational and object-relational

databases taking the data-centric view of XML data, process more efficiently the queries

that manipulate data-centric documents, as opposed to document-centric data. On the

other hand, Native XML databases are designed to handle raw XML data and documents

and are more efficient in processing navigational or structural queries, showing poor per-

formance for data-centric queries. Currently, no XML DBMS appears to offer the much

sought-after balance between the data- and document-centric approaches. The choice of

an XML DBMS to be adopted will be determined by the type of data to be stored and

the class of queries to be performed.

To meet upcoming challenges, an XML DBMS will need to adopt the transaction manage-

ment, concurrency control, security and administration features of the traditionally solid

RDBMS, while performing both content and structural queries equally well.

Chapter 1: Introduction 6

1.3 Large-Scale XML Integration

On June 1999, twenty nine European governments signed the Bologna Declaration com-

mitting them to play their part in an action programme to create a European Higher

Education Area (EHEA) by the year 2010 [Eur99]. The declaration recognises the value

of coordinated reforms, compatible systems and common action while acknowledging the

diversity of European higher education and reaffirming the independence and autonomy

of individual universities. Ideally, when the Bologna Declaration has been implemented, a

student will potentially construct the degree of their choice by selecting modules with the

appropriate credits from various academic institutions spread throughout the European

Union. To achieve these aims, a European framework supporting large scale data and

resource integration is required to overcome the heterogeneous nature of countries and

academic institutions.

The module specifications from all universities and educational institutions in Europe

will constitute the basic units with which courses are constructed. A mediation service

will be required to form the potentially large clusters of module data to facilitate the

flexible course creation process. There has been much research in to the integration of

XML data sources and the development of mediator architectures to facilitate an efficient

query service [MP01] [ABFS02]. The result of the mediation process will be several large

repositories of course data.

The XQuery for Large Scale Integration (XLIM) project [KR05], designed to look at some

of the issues involved in the Bologna Declaration, extends the mediation architecture to

provide query and meta-data services. In particular, with the onset of web services, a

new class of XML documents have been created whereby some of the data is defined by

means of embedded calls to web services [MAA+03]. The research presented in this thesis

sets out to address the requirements of the query service. Such a query service should be

efficient, scalable and reliable in supporting not only data and resource integration but

also semantic interrogation. The universal nature and semantic richness of XML marks it

out as the data format of choice for data and meta-data representation.

Chapter 1: Introduction 7

1.4 Motivation

A important component in the provision of an efficient, scalable and reliable query service is

the underlying indexing service upon which it is built. As XML encoded data incorporates

not only content but structure, the indexing service needs to capture this information and

present it in a manner so as to be efficiently exploited. Moreover, unlike relational data, the

meta-data is not stored in separate tables, but embedded throughout the data itself. Thus,

it can be said that a query service operating on XML is reliant on a powerful indexing

technique due to the semi-structured nature of the documents and the large data stores.

This research thesis focuses on the provision of an indexing structure capable of supporting

the demanding requirements of a query service for large scale XML repositories.

The operations and path traversals required in the querying of tree structured data present

difficult challenges. There has been much activity on the specification and provision of ex-

tensions to the existing indexing mechanisms and processing models to enable the efficient

exploitation of the structural properties of XML. The goal of this activity is to support,

not only rapid navigational or structural queries but also efficient content-based queries

[FK99] [ZND+01] [MWA+98]. There have also been several proposals [CSF+01] [LM01]

[MS99] for new index structures to deal with these problems. However, virtually all of the

proposals focus on support for step evaluation on the child and descendant-or-self axes,

to the detriment of the remaining XPath axes. Many of the indexing structures often rely

on query processing algorithms which call for implementation techniques that lie outside

their natural domain. An example is the relational domain where such proposals incur as-

sociated drawbacks such as additional software layers and transactional and performance

issues. Indeed, as trees in their abstract form may be queried using path expressions, the

XPath language was defined to model and query an XML document as a tree of nodes.

The XQuery specification moreover, facilitates embedded path traversals that may com-

mence from any arbitrary node. Presently, there still lacks an index structure facilitating

embedded XPath traversals from arbitrary nodes while providing at the same time, effi-

cient XPath traversal evaluations incorporating both structural and navigational queries

and the traditional content and data-centric queries.

Chapter 1: Introduction 8

1.5 Contribution

The contributions provided in this thesis may be summarised as follows:

• A new tree encoding mechanism is presented based solely on the preorder traversal

rank and the level (or depth) rank of each node in the document tree. New con-

junctive range predicates are defined based on the new tree encoding to support the

evaluation of location steps on the principle XPath axes and proofs are provided to

validate them. The new tree encoding mechanism and conjunctive range predicates

combine to provide the foundation upon which the remaining benefits are based.

• An Extended Index structure (hereafter, referred to as the PreLevel structure) is

then presented based on the new tree encoding that fully supports the evaluation

of all XPath axes. Both the preorder traversal rank and level rank values may be

determined during the initial parsing of the XML document and thus, the PreLevel

structure has minimal computational overhead associated with its construction. The

ability to start traversals from arbitrary context nodes in an XML tree also enables

the PreLevel structure to support the evaluation of path traversals embedded in

XQuery expressions. The tabular encoding of the PreLevel structure, being tree-

aware, facilitates efficient structural and navigational queries in addition to content

and data-centric queries. Furthermore, using our PreLevel structure, the properties

of the level rank of a node may be exploited to provide optimised evaluations to

various classes of XPath traversals.

1.6 Conclusions

In this chapter, the rise of the XML data format was introduced, its underlying data model

outlined and the principle XML query languages presented. The evolution of XML data-

bases to facilitate the rapid adoption of XML was detailed and the issues still outstanding

in the provision of an adequate query service were explored. The Bologna Declaration was

then presented to provide a context for this research work. In particular, the practical

scenario and real world requirements motivating the XLIM query service were identified.

Chapter 1: Introduction 9

The significance and impact of the indexing service on an XML query service combined

with the lack of an existing indexing mechanism to satisfy the XLIM query requirements,

provided the impetus for this research work to develop a new indexing structure. The

contributions of the new indexing structure were outlined in §1.5.

The thesis is organised as follows: chapter 2 reviews the existing state of the art indexing

mechanisms for XML and identifies their strengths and weaknesses with respect to our

requirements. Chapter 3 introduces the new tree encoding mechanism in addition to the

new conjunctive range predicates that facilitate XPath axis navigation and the proofs

of their derivation. Chapter 4 presents our new index: the PreLevel structure. The

properties of the PreLevel structure are detailed and evaluations of a step location on

the ancestor, descendant, preceding and following axes using our index are demonstrated.

Chapter 5 outlines some of the classes of optimised XPath queries possible and specifically,

how efficient level-based queries are possible. The conclusions are presented in chapter 6

together with proposed areas for future research.

Chapter 2

Related Research

In the previous chapter, we presented a motivation for an indexing structure to meet the

requirements of the XLIM Query Service. In recent years and in line with the widespread

adoption of XML, there has been much activity in extending and adapting existing index-

ing mechanisms. Furthermore, there has been a growth in the development of new index

structures to fully exploit the structural and hierarchical properties of XML in addition to

facilitating traditional data-centric and content-based queries. These developments, have

focused on particular aspects of the indexing domain in an endeavour to overcome specific

challenges. In particular, there are been several proposals for new index structures for

XML [CSF+01] [LM01] [MS99]. With regard to their support for XPath, virtually all of

these proposals focus on support for step evaluation on the child and descendant-or-self

axes, with little or no focus on the remaining XPath axes.

In this chapter, several research projects covering existing state-of-the-art indexing struc-

tures and techniques are described. When examining these projects, the emphasis was on

their ability to support efficient structural and navigational queries in addition to compre-

hensive support for the W3C XPath/XQuery specifications. This chapter is structured is

follows: in §2.1 to §2.3 a discussion on a number of different research projects is provided;

and in §2.4 some conclusions are presented.

10

Chapter 2: Related Research 11

2.1 The ORDPATH Research Project

On a conceptual level, XML documents consist of an ordered hierarchy of properly nested

tagged elements. Elements can be labelled according to the structure of the document

to facilitate query processing. Many labelling schemes have been proposed and a good

overview of them is provided in [SHYY05]. Among the most popular and effective of them

is an order-based labelling scheme that assigns a pair of numeric labels to each element

based on the document order of its start and end tags. This labelling scheme lies at the

center of many fundamental XML operations such as containment joins [ZND+01] and

twig matching [BKS02], because it supports efficient evaluation of ancestor-descendant

relationships among elements.

In [OOP+04] a hierarchical labelling scheme is introduced called ORDPATH that is imple-

mented in the upcoming version of Microsoft R© SQL ServerTM. This work was performed

at Microsoft by the authors while on sabbatical from the University of Massachusetts at

Boston. ORDPATH labels nodes of an XML tree without requiring a schema. A com-

pressed binary representation of ORDPATH labels provide document order evaluation by

simple byte-by-byte comparison and facilitates ancestor-descendant evaluations in a simi-

lar manner. In addition, ORDPATH is a dynamic labelling scheme supporting insertion of

new nodes in arbitrary positions in the XML tree without the need to relabel any existing

nodes.

2.1.1 ORDPATH Labelling Scheme

The ORDPATH Labelling scheme is conceptually similar to the Dewey Order encoding

system described in [TVB+02]. Dewey Order is based on the Dewey Decimal Classification

system developed for general knowledge classification. With Dewey Order, each node is

assigned a vector that represents the path from the document’s root to the node. Dewey

order is “lossless” because each path uniquely identifies the absolute position of each node

within the document.

XML data and a tree representing the XML hierarchy are shown in Example 2.1 and

Figure 2.1 respectively, with a corresponding relational table containing the shredded

Chapter 2: Related Research 12

<BOOK ISBN="1-33463-812-3">
<AUTHOR>
<FIRST>Joe</FIRST>
<LAST>Murphy</LAST>

</AUTHOR>
<SECTION>

<TITLE>Rising Sun</TITLE>
The sun rises
<BOLD>every</BOLD> morning.

</SECTION>
</BOOK>

Example 2.1: Sample XML data

ISBNISBN

BOOKBOOK

AUTHORAUTHOR SECTIONSECTION

FIRSTFIRST LASTLAST TITLETITLE The …The … BOLDBOLD morning.morning.

1.1 1.3 1.5

1.3.1 1.3.3 1.5.1 1.5.3 1.5.5 1.5.7

1

Figure 2.1: XML tree for XML data of Example 2.1

XML node data shown in Figure 2.2. This relational table is referred to as the NODE

table. When the XML document is initially loaded and parsed, each node in the XML tree

is traversed in document order, the ORDPATH labels are generated and the NODE table

is populated. In the ORDPATH values of Figure 2.2 (such as “1.5.3”), each dot separated

component value (“1”, “5”, “3”) reflects a numbered tree edge as successive levels down the

path from the root (itself having a 0-length ORDPATH) to the node represented. Note

that only positive, odd integers are assigned during the initial load; even-numbered and

negative integer component values are reserved for later insertion into an existing tree.

ORDPATH values are not stored as a dotted-decimal string but rather in a compressed

binary representation. The NODE TYPE column of Figure 2.2 contains coded values for

various node types: 1 for an element, 2 for an attribute and so on. The TAG column

contains coded tags. The VALUE column contains variable-type data that is associated

with some nodes.

Chapter 2: Related Research 13

‘morning.’4 (Value)--1.5.7
‘every’1 (Element)8 (BOLD)1.5.5
‘The sun rises’4 (Value)--1.5.3
‘Rising Sun’1 (Element)7 (TITLE)1.5.1
null1 (Element)6 (SECTION)1.5
‘Murphy’1 (Element)5 (LAST)1.3.3
‘Joe’1 (Element)4 (FIRST)1.3.1
null1 (Element)3 (AUTHOR)1.3
‘1-33463-812-3’2 (Attribute)2 (ISBN)1.1
null1 (Element)1 (BOOK)1.
VALUENODE TYPETAGORDPATH

‘morning.’4 (Value)--1.5.7
‘every’1 (Element)8 (BOLD)1.5.5
‘The sun rises’4 (Value)--1.5.3
‘Rising Sun’1 (Element)7 (TITLE)1.5.1
null1 (Element)6 (SECTION)1.5
‘Murphy’1 (Element)5 (LAST)1.3.3
‘Joe’1 (Element)4 (FIRST)1.3.1
null1 (Element)3 (AUTHOR)1.3
‘1-33463-812-3’2 (Attribute)2 (ISBN)1.1
null1 (Element)1 (BOOK)1.
VALUENODE TYPETAGORDPATH

Figure 2.2: XML Shredded into Relational “NODE” Table.

Primary Index. An ORDPATH primary key (with a cluster index) on the NODE

table provides efficient query access to XML data. For example, a query that retrieves

all descendants of x will find them clustered on disk just after x, in document order, so

retrieval is optimal.

Secondary Indexes. There are two principle secondary indexes employed by the ORD-

PATH labelling scheme. The Element and Attribute TAG (with integer id) index supports

fast lookup of elements and attributes by name. The Element and Attribute VALUE index

supports lookup of the variable-type value data.

2.1.2 ORDPATH Query Plans

The following example is used to illustrate an XPath ancestor-descendant query:

1. //Book//Title[. = “Red Rose”]

In general, descendant connections between node sets that are independently described

may be treated as joins. If the Book node has many descendants (a valid assumption

for any indexing mechanism claiming to support scalability), the ORDPATH approach is

to separately locate the sequence of Book elements and the sequence of Title elements

that have “Red Rose” as a value (using the VALUE secondary index), then merge join the

two sequences. Both nodes sequences will be in increasing order of ORDPATH values,

Chapter 2: Related Research 14

since each of them is located by a single value in the primary index; furthermore, a merge

join of ancestor-descendant node sequences may be treated in much the same way as an

equal-match join as detailed in [ZND+01].

The principle features of ORDPATH are its support for dynamic updates and insertions for

both schema-based and schema-less XML documents. The compressed binary represen-

tation of ORDPATH labels, enable efficient evaluations of location steps on the ancestor-

descendant axis. Furthermore, the prefix-free property of ORDPATH labels (described in

[OOP+04]) enable the efficient evaluation of the exact nature of the ancestor-descendant

relationship (i.e. parent, grandparent, etc).

However, in order to facilitate querying on all XPath axes of hierarchy and precedence,

including axes such as siblings, a new secondary index based on the LEVEL (or node depth

in the document tree) is required. This LEVEL Index, in conjunction with the aforemen-

tioned primary and secondary indexes, enables ORDPATH to support the evaluation of

all XPath axes.

2.1.3 Limitations

Although the principle advantage of the ORDPATH labelling scheme over existing mech-

anisms is its support for updates and insertion of nodes, there are still some issues to be

addressed. ORDPATH’s support for full XPath axes evaluation necessitates the overhead

of a second merge join between the LEVEL Index and the ORDPATH primary Index.

The experiments performed in [ZND+01] demonstrated the significant impact of, not only

the number of joins, but the actual join algorithms employed, have on query performance.

The requirements of two merge joins make a significant impact on the query performance

over large document collections.

2.2 Indexing In The eXist Database

eXist is an open-source native XML database and provides for the schema-less storage of

XML documents in hierarchical collections [Mei02]. The database is completely written in

Java and may be deployed in several ways; running standalone, inside a servlet engine or

Chapter 2: Related Research 15

directly embedded in an application. Although a lightweight database, the eXist query en-

gine implements index-based XPath and XQuery processors, using indexes for all element,

text and attribute nodes. Based on path join algorithms, a wide range of path expression

queries is processed using only indexed information. eXist will not load the actual nodes

unless it is required to do so, for example, to display the results.

This section will introduce the indexing system implemented in eXist, detail the numbering

scheme used at the core of the database and lastly highlight some limitations that rule out

its suitability as an indexing mechanism for our XLIM query service.

2.2.1 Overview

The indexing scheme employed by eXist has been inspired by three contributions from

recent research [ZND+01] [LM01] [LYYB96]. eXist indexing system uses a numbering

scheme to identify XML nodes and determine relationships between nodes in the document

tree. A numbering scheme assigns a unique identifier to each node in the document tree

by traversing the tree in preorder or level order. The generated identifiers are then used

in indexes as a reference to the actual nodes. A numbering scheme should provide a

mechanism to quickly determine the structural relationships between a pair of nodes and

also all nodes in a document that satisfy a particular relationship.

In [ZND+01], a numbering scheme is proposed whereby each node in the document tree

may be identified by its document id, its position and its nesting depth within the doc-

ument. An element is identified by a 3-tuple identifier (document id, start:end, nesting

level). The position start:end can be generated by counting word numbers in the docu-

ment. Using the 3-tuple, ancestor-descendant relationships can be determined between a

pair of nodes by the proposition: A node x with 3-tuple identifier (D1, S1:E1, L1,) is a

descendant of a node y with the 3-tuple (D2, S2:E2, L2) if and only if D1 = D2; S1 < S2, and

E2 < E1. However, the 3-tuple identifiers generated by this numbering scheme consume a

lot space in the index and significantly impact on query performance when compared to

single tuple identifiers generated by preorder and level-order traversals.

In [LYYB96], a numbering scheme is proposed which models the document tree as a

complete k -ary tree, where k is equal to the maximum number of child nodes of an element

Chapter 2: Related Research 16

1
Contact

1
Contact

2
name
2

name
3

phone
3

phone

6
office
6

office
7

home
7

home
4

“Frank Duff”
4

“Frank Duff”

12
“147258”

12
“147258”

14
“842631”

14
“842631”

= virtual node

5

8 9 10 11 13 15

<contact>
<name>Frank Duff</name>
<phone>

<office>147258</office>
<home>842631</home>

</phone>
</contact>

Figure 2.3: A sample XML document modelled as a complete 2-ary tree using level-
ordering.

in the tree. Thus, every non-leaf node in the tree has the same number of children. A

unique identifier generated from a level-order traversal is assigned to each node in the

tree. A level-order traversal is such that when a tree is displayed, it is visited from top to

bottom going from left to right. For any node having less than k children, virtual child

nodes are inserted to fill the gaps. Figure 2.3 shows the level-order identifiers assigned to

the nodes of a simple XML document which is modelled as a complete 2-ary tree.

This numbering scheme has several important properties: from a given identifier, one may

easily determine the identifier of its parent, sibling and (possibly virtual) child nodes.

However, the existence of virtual nodes, required to balance the tree into a complete k -

ary tree means that some node identifiers are wasted. Furthermore, the completeness

constraint imposes a major restriction on the maximum size of a document to be indexed.

In practise, many documents contain more nodes in some distinct subtree of the document

that in others [CRZ03]. For example, a typical article will have a limited number of top-

level elements like chapters and sections, which the majority of nodes consists of paragraphs

and text nodes located below these top-level elements. In a worst case scenario, in which

a single node at an arbitrarily deep level of the document node hierarchy has the largest

number of child nodes, a large number of virtual children must be inserted at all tree

levels to satisfy the completeness constraint, so the assigned identifiers grow quickly even

for small documents.

Chapter 2: Related Research 17

1
Contact

1
Contact

2
name
2

name
3

phone
3

phone

6
office
6

office
7

home
7

home
4

“Frank Duff”
4

“Frank Duff”

10
“147258”

10
“147258”

11
“842631”

11
“842631”

= virtual node

5

8

<contact>
<name>Frank Duff</name>
<phone>

<office>147258</office>
<home>842631</home>

</phone>
</contact>

9

Figure 2.4: A sample XML document with unique identifiers generated by eXist.

2.2.2 eXist Numbering Scheme

The numbering scheme implemented in eXist overcomes the document size limitation by

partially dropping the completeness constraint in favour of an alternative scheme. The

document is no longer viewed as a complete k -ary tree. Instead the number of children

each node may have is recomputed for every level of the tree, such that: for two nodes

x and y of a document tree, size(x) = size(y) if level(x) = level(y), where size(n) is the

number of children of node n and level(m) is the length of the path from the root node

of the tree to node m. The additional information on the number of children a node may

have at each level of the document tree is stored with the document in a simple array.

Figure 2.4 shows the unique identifiers generated by eXist for the same document depicted

in Figure 2.3.

Benefits

eXist’s numbering scheme does not effect the general properties of the assigned level-order

identifiers. From a given unique identifier, one may still compute the parent, sibling and

child node identifiers using the additional information on the number of children each node

may have at every level of the tree. The advantage of eXist’s numbering scheme is that

it takes into account that typical XML documents will have a larger number of nodes at

some lower level of the document tree while there are fewer elements at the top level of

the hierarchy. Changing k at a deeper level of the document tree has no effect on nodes

Chapter 2: Related Research 18

at higher levels of the tree. The document size limit is raised considerably to enable the

indexing of much larger documents.

2.2.3 eXist Query Plans

In order to evaluate path expressions, the eXist query processor decomposes a given

path expression into its component steps. For example, to process the XPath expres-

sion, /play//speech, the query processor will load the root element play for all documents

in the input set. Secondly, the set of speech elements is retrieved for all input documents.

Now, we have two node sets containing potential ancestors and descendants for each of the

documents in question. Each node set consists of <document-id, node-id> pairs, ordered

initially by document identifier and then by unique node identifier.

To find all speech nodes that are a descendant of the play nodes, an ancestor-descendant

path-join algorithm is applied to the two sets. eXist’s path join algorithms are similar

to those presented in [LM01]. The ancestor-descendant path join algorithm recursively

replaces all node identifiers in the descendant set with their parent’s node id and loops

through the two sets to find equal pairs of nodes. If a matching pair is found, it is added

to the resulting node set. Thus, eXist does not need to access the DOM nodes in the

XML store to evaluate the expression /play//speech. The hierarchical structure of path

expressions is processed entirely using the numeric identifiers provided in the index.

2.2.4 Limitations

Although the eXist query processor can evaluate structural relationships between nodes

in the document tree using index-based processing alone, the path-join algorithms used

to determine structural relationships are based on level-order traversals and are thus,

inefficient in comparison to other numbering schemes such as preorder traversal. For

example, in the ancestor-descendant path-join algorithm described in §2.2.3, every node

(or its ancestors) in the descendant set must be compared with every node in the ancestor

set, possibly several times depending on the depth of the descendant in the document

tree, to determine the result set. This is effectively a worst case scenario. An indexing

Chapter 2: Related Research 19

structure is required that will reduce to a minimum the number of comparison required

when determining structural relationships between nodes.

2.3 XPath Accelerator Index Structure

In [Gru02], the author proposes a database index structure called the XPath Accelerator,

which has been specifically designed to support the evaluation of XPath queries. The index

structure uses the notion of document regions created by the XPath axes in conjunction

with preorder and postorder traversals to encode XML documents. XPath document

regions and the properties of tree traversal are discussed in more detail in chapter 3 as

part of a detailed discussion of tree traversals.

2.3.1 Overview

Evaluating a location step on a major XPath axis (ancestor, descendant, preceding and

following) amounts to a rectangular region query in the pre/post encoded plane. To

support the remaining XPath axes and nodes tests, extra information must be stored. For

a context node v, axes ancestor-or-self and descendant-or-self simply add v to the ancestor

or descendant regions respectively. To support the following-sibling and preceding-sibling

axes, the parent’s preorder rank par(v) of each node v is recorded because siblings shared

the same parent. par(v) characterises the child and parent axis also. To support the

attribute axis and in line with XPath semantics, to exclude the attribute nodes from all

other axes, a boolean attribute att(v) is maintained for each node v. Finally, name tests

are supported by attribute tag(v) which stores the element tag or attribute name for node

v.

This completes the encoding used by the XPath Accelerator. Each node v is represented

by its 5-dimensional description:

• desc(v) = {pre(v), post(v), par(v), att(v), tag(v)}

An XPath axis corresponds to a specific query window in the space of node descriptors.

Chapter 2: Related Research 20

*truepre(v)[0,post(v))(pre(v),∞)attribute
*falsepar(v)(0,post(v))(0,pre(v))preceding-sibling
*falsepar(v)(post(v),∞)(pre(v),∞)following-sibling
false(0,post(v))(0,pre(v))preceding
false(post(v),∞)(pre(v),∞)following
false[post(v),∞)[0,pre(v)]ancestor-or-self
false(post(v),∞)[0,pre(v))ancestor
false(post(v),∞)[par(v),par(v)]parent
false[0,post(v)][pre(v),∞)descendant-or-self
false[0,post(v))(pre(v),∞)descendant
*falsepre(v)[0,post(v))(pre(v),∞)child

*truepre(v)[0,post(v))(pre(v),∞)attribute
*falsepar(v)(0,post(v))(0,pre(v))preceding-sibling
*falsepar(v)(post(v),∞)(pre(v),∞)following-sibling
false(0,post(v))(0,pre(v))preceding
false(post(v),∞)(pre(v),∞)following
false[post(v),∞)[0,pre(v)]ancestor-or-self
false(post(v),∞)[0,pre(v))ancestor
false(post(v),∞)[par(v),par(v)]parent
false[0,post(v)][pre(v),∞)descendant-or-self
false[0,post(v))(pre(v),∞)descendant
*falsepre(v)[0,post(v))(pre(v),∞)child
tagattparpostpre

Query window window(α,v)Axis α
tagattparpostpre

Query window window(α,v)Axis α

Figure 2.5: XPath axes α and their corresponding query windows window(α,v) (context
node v)

Figure 2.5 summarises the windows together with the corresponding axes they implement.

A node v’ is inside the query window if its descriptor desc(v’) matches the query window

component by component (for the first two components, pre(v’) and post(v’) must lie

inside the respective ranges). A star entry (*) indicates a do not care match which always

succeeds. The query window for the name test α::n is window(α,v) with its tag entry set

to n.

2.3.2 Benefits and limitations of the XPath Accelerator

The XPath Accelerator is capable of supporting the evaluation of all XPath axes. The

index maintains document order among nodes and supports XPath traversals beginning for

arbitrary context nodes. Furthermore, the ability to start traversals from arbitrary context

nodes in the XML document enables the index to support XPath expressions embedded

in XQuery statements. The XPath Accelerator is a relational storage structure in that

the index can be constructed and queried using relational idioms only. Its implementation

can benefit from the advanced indexing technology currently available in RDBMSs.

Chapter 2: Related Research 21

A Stretched Pre/Post Plane

In [GVT04] several shortcomings of the XPath Accelerator are noted and enhancements

to overcome these shortcomings are proposed. These enhancements however, come with

various costs that impact on query performance. One such enhancement is the Stretched

pre/post plane.

All axes query windows in the two-dimensional pre/post plane depend on a range selection

in the pre as well as the post dimension. As nodes in these query windows are determined

using two independent range queries in both the pre and the post dimensions, the larger

the query window, the greater the number of false hits encountered. These nodes must

be filtered during a subsequent intersection. An enhancement proposed to the pre/post

encoding, namely the Stretched pre/post plane, requires a modification to the construction

of the pre/post plane to facilitate a location step on the descendant axis with a single range

scan over either the pre or the post ranks. The advantage of this enhancement is that the

query window used to evaluate a descendant step in the stretched pre/post plane never

encounters false hits. However, the modification to the construction of the pre/post plane,

results in a stretching of the plane whereby the preorder ranks are no longer consecutive

and therefore, the pre-column is no longer dense. Consequently, preorder ranks must be

indexed separately, requiring more bytes per node. This has immediate consequences on

query performance and on the volume of data to be accessed. Also, for any implementation

using a fixed-bit width representation for the coupled pre/post ranks, the stretching of the

pre/post plane implies the number of nodes that may be represented is effectively halved,

when compared with the non-stretched case.

Jungle Storage Manager Implementation Experience

In [VFS04], the experience of building Jungle, a secondary storage manager for Galax, an

open source implementation of the family of XQuery 1.0 specifications is presented. They

chose to implement the Jungle XML indexes using the XPath Accelerator. However, one

significant limitation they encountered was the evaluation of the child axis, which they

found to be as expensive as evaluating the descendant axis. They deemed this limitation

Chapter 2: Related Research 22

to be unacceptable and designed their own alternative indexes to support the child axis.

Furthermore, the Jungle implementation experience also highlighted the significant over-

head imposed at document loading time by a postorder traversal, a necessary component

in the construction of the XPath Accelerator.

2.3.3 Modified XPath Accelerator Encoding

In [GST04], the authors of the XPath Accelerator proposed a modified encoding for their

index structure where the postorder rank is no longer used. The tree encoding is extended

for a node v by:

1. v.size: the number of nodes in the subtree below v.

2. v.level : the length of the path from the root node of the document tree to node v.

The new pre/size/level encoding supports all XPath axes and provides the same func-

tionality as the original encoding. This is made possible by the fundamental property

describing the relationships between nodes in a tree, namely: for any node v in a tree t,

• pre(v) + size(v) - level(v) = post(v)

The modified encoding brings several advantages over the original encoding: the evalu-

ation of a location step on the child axis is more efficient, the document loading times

should decrease significantly now that postorder traversals are no longer required and the

stretched pre/post plane is no longer necessary as all queries are now performed in the

preorder dimension.

Nevertheless, several shortcomings may still be identified. The evaluation of all members

of several XPath axes, such as the child, following-sibling and preceding-sibling axes are

inefficient. The inefficiency lies in the fact that almost all descendants of the given context

node need to be processed in order to identify the members of the respective axis. For

documents with a small number of nodes at the higher levels and large numbers of nodes

at the lower level, a typical scenario as identified in [MBV03], a significant amount of

processing will be spent on examining nodes that are not members of the required axis.

Chapter 2: Related Research 23

2.4 Conclusions

In recent years there has been much research into the provision of indexing structures to

support the storage, retrieval and querying of XML documents in large XML repositories.

Many research projects extended existing indexing mechanisms taken from the relational

and object-relational domain to make them tree-aware. Other research projects developed

new indexing structures from the ground up, designed to harness the intrinsic properties

of tree-structured data. In this chapter we have examined a number of state-of-the-art

indexing structures from current research, provided an overview of their functionality and

highlighted their benefits and limitations.

In the ORDPATH project, a hierarchical labelling scheme derived from the Dewey Order

encoding system was presented. ORDPATH is a dynamic labelling scheme supporting

insertions of new nodes in arbitrary positions in a (schema-less) XML document without

the need to relabel existing nodes. A compressed binary representation of ORDPATH la-

bels provide document order evaluation by simple byte-by-byte comparison and facilitates

ancestor-descendant step evaluations in a similar manner. Yet, the support for dynamic

updates comes with the price of high computational costs in query performance. In par-

ticular, when evaluating a step location on a level-based axis, such as the following-sibling

and preceding-sibling axes, two merge joins are required. The evaluation of all members

of an XPath axis, likewise requires two merge joins.

In the eXist database project, the indexing mechanism for eXist, an open-source native

XML database was presented. Like ORDPATH, eXist supports the indexing of schema-

less documents. The index mechanism used in eXist has been derived from the properties

of three related research projects. In [ZND+01], a 3-tuple numbering scheme is proposed

that can determine ancestor-descendant relationships using simple evaluations. However,

the 3-tuple identifier is quite large and significantly impacts on the query performance

over large collections. In [LYYB96], a numbering scheme which models an XML tree as a

complete k -ary tree is presented. However, the completeness constraint of this encoding

mechanism severely limits the size of the documents that may be indexed. eXist adapts

this numbering scheme and extends it by partially relaxing the completeness constraint to

Chapter 2: Related Research 24

allow the number of children to be recomputed for each level in the document tree. The

advantage of eXist’s alternative numbering scheme is the support for the indexing of larger

document sizes. eXist indexing mechanism supports all XPath axes evaluations (exclud-

ing following-sibling and preceding-sibling axes) and maintains indexes on all elements,

text and attribute node and thus supports structural query evaluation using information

contained in the indexes alone. However, the path join algorithms, derived primarily from

[LM01], are necessarily based on the level-order traversal ranks and thus, are inefficient in

comparison to the preorder-based numbering schemes.

Lastly, the XPath Accelerator index structure was presented. This index structure is

based on a preorder numbering scheme and most closely meets the goals of the XLIM

Query Service. It has been specifically designed to support the evaluation of all XPath

axes. The index maintains document node order and supports XPath traversals beginning

from arbitrary context nodes and thus, supports evaluation of path expressions embed-

ded in XQuery statements. The original XPath Accelerator pre/post encoding had several

shortcomings as outlined in §2.3.2 and some of those have been overcome with the adoption

of the new pre/level/size encoding. Although the XPath Accelerator efficiently evaluates

all members of the major XPath axes, evaluations of all members on several of the remain-

ing XPath axes are inefficient. Furthermore, evaluations of several classes of queries that

are not XPath axes based, but nonetheless are common occurrences, are badly supported.

An example of such a query is the selection of all grandchildren of a context node.

In this chapter, several major research projects incorporating existing state-of-the-art in-

dexing structures were examined, their benefits appraised and their limitations identified.

During the study of these projects, some key characteristics emerged, which together with

our analysis in chapter 1, provide the functional requirements for a suitable XML indexing

structure for large XML repositories. These requirements may be enumerated as follows:

1. The index structure fully supports the XPath and XQuery data model.

2. The index structure provides comprehensive support for and efficient evaluations of

hierarchical and structural queries.

3. The index structure facilitates scalability, not only in terms of document size but

Chapter 2: Related Research 25

also in terms of the size of the XML data repositories that may be indexed.

4. The index structure will be generic in so far as it will not specify a specific stor-

age model for the documents nor an implementation model for its operation. This

requirement ensures the index structure may be deployed in various operating sce-

narios.

At this point, clear requirements for an new indexing structure have been identified. How-

ever, before the new index structure is introduced in chapter 4, it is necessary to introduce

the new encoding mechanism (in chapter 3) and its properties upon which the new index

structure is built.

Chapter 3

PreLevel Encoding

In chapter 1, the fundamental datatype or structure underlying the XML data model

was identified as a tree. Tree structures are well researched and understood in computing

research and have presented many challenges to researchers in the areas of query processing

and information retrieval. In this chapter, a review of the properties of tree traversal is

provided and its relationship to the XPath language specification is explored. A new tree

encoding mechanism based on the preorder traversal rank and level rank of a node is

then presented. The new tree encoding constitutes the cornerstone of the new indexing

structure to be presented in chapter 4 and addresses the requirements identified in chapter

2. For each of the principle XPath axes, new conjunctive range predicates for performing

a location step on the axis are defined and their corresponding proofs provided. The

new conjunctive range predicates have been derived from the intrinsic properties of the

preorder traversal ranks and level ranks alone.

The chapter is structured as follows: In §3.1, the XPath working draft and its associated

partition property is reviewed. In §3.2, the core properties of tree traversal are examined

and specifically, how they relate to XML document encoding, concluding with a numbering

scheme exploiting the properties of tree traversal. In §3.3, our new tree encoding mecha-

nism is introduced and the new conjunctive range predicates defining location steps on the

principle XPath axes together with proofs of their derivation are presented. Finally, §3.4

concludes the chapter.

26

Chapter 3: PreLevel Encoding 27

3.1 The XPATH Language Specification

The World Wide Web Consortium (W3C) standard for uniquely addressing a node in an

XML tree is the XPath Language 2.0 working draft recommendation [Wor05b] (hereafter

referred to as the XPath specification). XPath models an XML document as a tree of

nodes. There are various types of nodes including element nodes, attribute nodes and text

nodes. XPath provides a means of hierarchical addressing of nodes in an XML tree using

XPath location steps. An XPath location step consists of three parts: an optional axis

which selects a set of candidate nodes; a node test which specifies the node name and the

type of node to be selected, and finally zero or more predicates which further filter the

nodes according to arbitrary selection criteria.

A sample XPath location step is as follows: child::title[position()=1]. The child is the name

of the axis; the title is the node test and [position()=1] is the predicate. An abbreviated

syntax is described in the XPath specification whereby the axis may be omitted and a

shorthand notation be used instead.

The axis returns a set of nodes relative to a specific context node, for example, its ancestors

or descendants. According to the XPath specification, there are 11 axes available to de-

scribe the various unique relationships that may exist between nodes (ignoring namespace

and attribute nodes). However, there are four XPath axes that are of particular inter-

est: the descendant, ancestor, preceding and following axes. Hereafter, these axes

shall be referred to as the primary axes. The given context node constitutes the self

axis. The remaining XPath axes (parent, child, descendant-or-self, ancestor-or-self,

following-sibling and preceding-sibling) determine either supersets or subsets of one

of the primary axes and may be evaluated from them.

XPath Partition Property The XPath specification has been defined with the follow-

ing special property: the ancestor, descendant, preceding, following and self axes

partition an XML document as disjoint spaces and together they contain all nodes in the

XML document. Thus, as a given context node resides in the self axis, all other nodes in

the XML document fall into one of the four primary partitions. This special property is

significant and is the foundation upon which the XPath Accelerator proposed in [Gru02]

Chapter 3: PreLevel Encoding 28

is built. The PreLevel encoding, to be presented in §3.3, is an extension to the XPath

Accelerator and exploits the XPath partition property.

3.2 Tree Traversal

In this section, the core properties of tree traversal are reviewed and in particular, how they

relate to the processing of XML documents. The properties of tree traversal constitute

an essential component of the new indexing structures and algorithms presented in this

thesis. Finally, a node numbering mechanism using tree traversal is presented.

3.2.1 Overview

Tree traversal is the process of visiting each node in a tree data structure. Tree traversal

provides for sequential processing of each node in what is, by nature, a non-sequential data

structure (e.g., semi-structured data). Such traversals are characterised by the order in

which the nodes are visited. Thus, given a tree node structure which contains a node

value and references to its two children left and right, the recursive function illustrated in

Example 3.1 describes a preorder traversal.

Visit(node)
Print node.value
if node.left != null then Visit(node.left)
if node.right != null then Visit(node.right)

Example 3.1: A recursive Preorder Traversal function.

In preorder traversal, each node v is visited and assigned its preorder traversal rank pre(v)

before its children are recursively traversed left to right. It is worth observing at this point

that the act of parsing an XML document in document order, that is, processing each line

from left to right and from top to bottom, corresponds to a preorder traversal of the XML

document tree. Thus, a preorder traversal maintains the document node order of an XML

document, an important pre-requisite for any XPath evaluations.

In a postorder traversal, a node v is assigned its postorder traversal rank post(v) after

all its children have been traversed from left to right. If the print statement in the

Chapter 3: PreLevel Encoding 29

recursive function given in Example 3.1 was placed at the end, the function would describe

a postorder traversal.

In summary, a tree traversal encoding of an XML document has the following three prop-

erties:

1. Rooted: The XML document always has one and only one root node.

2. Ordered: The nodes in an XML document are ordered in a defined way.

3. Labelled: Each node is assigned a unique label or traversal rank.

3.2.2 Numbering Nodes

Dietz’s numbering scheme presented in [Die82] uses tree traversal order to determine the

ancestor-descendant relationship between any pair of nodes in a tree. His proposition is:

for two given nodes x and y of a tree T, x is an ancestor of y if and only if x occurs before

y in the preorder traversal of T and after y in the postorder traversal. Earlier in §3.1, the

special partition property of XPath semantics was introduced. This property is preserved

by the pre/post encoding and extends Dietz’s numbering scheme to incorporate all XPath

axes. If the encoded nodes are mapped to the pre/post cartesian plane, then for any given

context node c, the four primary XPath axes coincide with the disjoint rectangular regions

partitioning the plane, the point of intersection being the context node c (the self axis)

as illustrated in Figure 3.1(b).

The XPath specification defines a relative location path as consisting of a sequence of one

or more location steps separated by a “/” . In the cartesian plane, a location step on

the primary axes may be evaluated using the simple conjunctive range predicates given in

Example 3.2.

v ∈ c/descendant ⇔ pre(v) > pre(c) ∧ post(v) < post(c) (i)
v ∈ c/ancestor ⇔ pre(v) < pre(c) ∧ post(v) > post(c) (ii)
v ∈ c/following ⇔ pre(v) > pre(c) ∧ post(v) > post(c) (iii)
v ∈ c/preceding ⇔ pre(v) < pre(c) ∧ post(v) < post(c) (iv)

Example 3.2: Conjunctive range predicates defining location steps in the pre/post plane.

Chapter 3: PreLevel Encoding 30

a
b e

c

d
f

g h

i

j

0
1

2

3
4

5

6 7

8

9

0

1
2

3 4

5

6

7

8
9

(a) XML skeleton tree with pre/post
rank.

(0,0)

5

5

b
c d

a e

f

g
h

i
jancestor

preceding

descendant

following

pre

post

(b) pre/post carterian plane with
context node f.

Figure 3.1: A sample XML tree and the pre/post cartesian plane.

The first conjunctive range predicate states an arbitrary node v is a descendant of the

given context node c if and only if the preorder rank of v is greater than the preorder rank

of c and that the postorder rank of v is less than the postorder rank of c. The conjunctive

range predicates in Example 3.2 are the theoretical foundation of the XPath Accelerator.

The contribution of the pre/post encoding mechanism to the indexing of XML documents

in addition to its limitations have already been discussed in detail in chapter 2. In the

next section, an extension to the preorder traversal encoding mechanism is presented which

provides all of the significant benefits of the combined pre/post encoding. Furthermore,

the intrinsic properties of this new encoding may be exploited to facilitate efficient query

evaluations not available with any existing indexing structure to date. These optimisations

shall be treated in more depth in chapter 5.

3.3 The PreLevel Encoding Mechanism

The PreLevel encoding mechanism is an extension to the encoding mechanism used in the

XPath Accelerator. The PreLevel encoding is derived solely on the preorder traversal rank

and the level rank of each node, thus avoiding the need to precompute the size information

for every node at document loading time as in the encoding mechanism presented in

[GST04]. The level (or depth) function takes one parameter, a node, and returns the level

rank value of the node. Figure 3.2 depicts a sample XML document and the corresponding

XML document tree with illustrated preorder and level ranks.

Chapter 3: PreLevel Encoding 31

<a>
</c>
<d></d>
<e>

<f></g></h></f>
<i></j></i>

</e>

(a) Sample XML document

a
b e

c

d
f

g h

i

j

L0
L1

L2

L3

0
1

2

3
4

5

6 7

8

9
(b) pre/level encoded XML tree.

Figure 3.2: A sample XML document and the associated PreLevel encoded tree as used
in XLIM.

Thus, level(v) = m if the path from the root of the tree to the node v has length m, for

example, level(a) = 0 and level(f) = 2. The XPath partition property introduced in §3.1

is preserved by the combined preorder traversal and level rank encoding. The remaining

XPath axes (parent, child, descendant-or-self, ancestor-or-self, following-sibling

and preceding-sibling) determine either supersets or subsets of one of the primary axes

and may be evaluated from them (this will be demonstrated in §4.4). The following sub-

sections introduce the newly defined conjunctive range predicates based on the combined

preorder traversal and level rank encoding for location steps on the primary axes. These

conjunctive range predicates form the theoretical foundation upon which the new index

structures and algorithms presented in chapters 4 and 5 are built.

Interval Notation

In the interval notation adopted in this thesis, open intervals (a,b) are defined as {x : a

< x < b}, they do not contain their endpoints. Closed intervals [a,b] are defined as {x :

a ≤ x ≤ b}, they contain their endpoints. Open and closed intervals are also open and

closed sets respectively.

3.3.1 Navigating the Descendant Axis

The descendant axis selects all children of the given context node, and their children

recursively, with the resulting nodes in document order [Wor05b]. The new conjunctive

Chapter 3: PreLevel Encoding 32

range predicate defining a location step on the descendant axis, based on the PreLevel

encoding, is as follows:

Lemma 3.1

v ∈ c/descendant ⇔ pre(v) > pre(c) (i)

∧ level(v) > level(c) (ii)

∧ ∀x : pre(x) ∈ (pre(c) , pre(v)) (iii)

⇒ level(x) 6= level(c)

Lemma 3.1 states that an arbitrary node v is a descendant of a given context node c if

and only if:

(i) the preorder rank of v is greater than the preorder rank of c, and

(ii) the level rank of v is greater than the level rank of c, and

(iii) for all nodes (each individual element of this set is labelled x) having a preorder

rank greater than pre(c) and less than pre(v), that none of those nodes have a

level rank the same as level(c).

Proof: Condition (i) ensures that the preorder rank of node v is greater than the preorder

rank of the context node c. In essence, the first condition exploits the properties of preorder

traversal to ensure that the arbitrary node v appears, in document order after the given

context node c. Condition (ii) ensures the level rank of node v is greater than the level

rank of node c. Conditions (i) and (ii) are intuitive if node v is to be a descendant of

node c. The third condition ensures that node v does not have another ancestor at the

same level as the given context node c. If there is another ancestor at the same level

as the context node c, then the context node could not be the ancestor of node v. This

can be stated with certainty due to the properties of preorder traversal - namely that a

node is visited immediately before its children, and the children are visited from left to

right. So, if there is another node at the same level as node c, then that node must have

a higher preorder rank than node c but also a preorder rank less than node v (the range

requirement of condition (iii) ensures this). Thus, although the identity of the ancestor

at level(c) has not been definitely established, it has been definitively determined that the

ancestor of node v cannot be node c - by finding any other node at the same level and

Chapter 3: PreLevel Encoding 33

a

b
c

d
e

f

g h

i

j

0

1

2
3

4

5

6 7

8

9

0

1

2
1

1

2 2

3 3 3

Figure 3.3: Example of navigating the descendant axis of a PreLevel encoded XML tree.

within the range specified. Only if there is no node at the same level as the context node

c and within the range specified, can it be stated with certainty that the context node

c is an ancestor of node v, and conversely that node v is a descendant of the context

node c. Thus, conditions (i), (ii) and (iii) together ensure that an arbitrary node v is a

member of the descendant axis of a given context node c.

An illustration of Lemma 3.1 now follows. While referring to the conjunctive range pred-

icate in Lemma 3.1 and to the illustration in Figure 3.3; let v = node h; let c = node

e. To determine if node h is a descendant of the context node e, one must examine the

conditions:

(i) Is pre(h) > pre(e)...(7 > 4)...condition holds true.

(ii) Is level(h) > level(e)...(3 > 1)...condition holds true

(iii) For all nodes whose preorder rank is greater than pre(e) and less than pre(h),

these nodes are located within the shaded area in Figure 3.3, does this set

contain a node with a level rank the same as level(e), in this case 1? No, the

set does not contain any nodes with a level rank equal to level(e) and therefore,

the condition holds true.

Conditions (i), (ii) and (iii) are true. Thus, node h is a descendant of the context node

e.

Now, take an example whereby the conjunctive range predicate will return false. By

following the above example, but assigning node d to be the context node c, conditions

Chapter 3: PreLevel Encoding 34

(i) and (ii) hold true, but condition (iii) fails because node e has the same level rank as

node d.

3.3.2 Navigating the Ancestor Axis

The ancestor axis selects all nodes in the document that are ancestors of a given context

node. Thus, the conjunctive range predicate defining a location step on the ancestor axis

based on the PreLevel encoding is:

Lemma 3.2

v ∈ c/ancestor ⇔ pre(v) < pre(c) (i)

∧ level(v) < level(c) (ii)

∧ ∀x : pre(x) ∈ (pre(v) , pre(c)) (iii)

⇒ level(x) 6= level(v)

Lemma 3.2 states that an arbitrary node v is an ancestor of a given context node c if

and only if:

(i) the preorder rank of v is less than the preorder rank of c, and

(ii) the level rank of v is less than the level rank of c, and

(iii) for all nodes (each individual element of this set is labelled x) having a preorder

rank greater than pre(v) and less than pre(c), that none of those nodes have a

level rank the same as level(v).

Proof: Condition (i) exploits the properties of preorder traversal to ensure the arbitrary

node v appears in document order before the given context node c. Condition (ii) exploits

the level rank properties to ensure node v appears higher in the document tree than node

c . Condition (iii) ensures that the given context node c does not have another ancestor

at the same level as the node v. If there is any other node at the same level as node v, then

node v could not be the ancestor of the context node c. This can be stated with certainty

for the same reason as demonstrated in the proof to Lemma 3.1. The third condition does

not identify precisely which other node is the ancestor, but simply verifies if some other

node other than node v is the ancestor. Only if there is no node at the same level as

Chapter 3: PreLevel Encoding 35

node v and within the range specified, can it be stated with certainty that node v is an

ancestor of the context node c. Thus, conditions (i), (ii) and (iii) together ensure that

an arbitrary node v is a member of the ancestor axis of a given context node c.

An example to illustrate Lemma 3.2 is similar to the example provided for Lemma 3.1.

By switching the values assigned to nodes v and c, and referring to Lemma 3.2, walk-

ing through the example demonstrates when the conjunction range predicate defining a

location step on the ancestor axis returns both true and false.

3.3.3 Navigating the Following Axis

The following axis selects all nodes that appear after the given context node in docu-

ment order, excluding the descendants of the context node. The new conjunctive range

predicate defining a location step on the following axis based on the PreLevel encoding

is:

Lemma 3.3

v ∈ c/following ⇔ pre(v) > pre(c) (i)

∧ ∃x : pre(x) ∈ (pre(c) , pre(v)] (ii)

⇒ level(x) ∈ (0 , level(c)]

Lemma 3.3 states an arbitrary node v is member of the following axis of a given context

node c if and only if:

(i) The preorder rank of v is greater than the preorder rank of c, and

(ii) There exists a node whose preorder rank is greater than pre(c) and less than

or equal to pre(v) (each individual element of the set is labelled x), such that

the level rank of x is less than or equal to level(c).

Proof: Condition (i) exploits the properties of preorder traversal to ensure the arbitrary

node v appears in document order after the given context node c. Condition (ii) ensures

that node v is not a descendant of the context node c. The second condition is validated

by verifying that there is another node, with a preorder rank greater than pre(c) and less

than or equal to pre(v), and which has a level rank less than or equal to the level rank of

Chapter 3: PreLevel Encoding 36

a

b
c

d
e

f

g h

i

j

0

1

2
3

4

5

6 7

8

9

0

1

2
1

1

2 2

3 3 3

Figure 3.4: Example of navigating the following axis of a PreLevel encoded XML tree.

the context node c. If such a node exists, then due to the properties of preorder traversal,

the context node c cannot be the ancestor of node v, and conversely node v cannot be

the descendant of the context node c. Thus, conditions (i) and (ii) together ensure that

an arbitrary node v is a member of the following axis of given context node c.

An illustration of Lemma 3.3 now follows. While referring to the conjunctive range pred-

icate in Lemma 3.3 and to the illustration in Figure 3.4; let v = node h; let c = node c.

To determine if node h is a member of the following axis of the context node c, one must

examine the conditions:

(i) Is pre(h) > pre(c)...(7 > 2)...condition holds true.

(ii) For all nodes whose preorder rank is greater than pre(c) and less than or equal

to pre(h), these nodes are located within the shaded area in Figure 3.4, does

this set contain a node with a level rank less than or equal to level(c)? Yes,

the set contains several nodes with a level rank less than or equal to level(c)

(nodes d, e and f) and therefore, the condition holds true.

Since both conditions are true, node h is a member of the following axis of the given

context node c.

Finally, let us take an example whereby the conjunctive range predicate will return false.

By following the above example, but assigning node e to be the context node c, condition

(i) holds true, but condition (ii) fails because there is no node within the set that has a

level rank less than or equal to level(e). The fact that condition (i) held true but condition

(ii) failed indicates that node e must be an ancestor of node h.

Chapter 3: PreLevel Encoding 37

3.3.4 Navigating the Preceding Axis

The preceding axis selects all nodes in document order that appear before the given con-

text node, excluding all ancestors of the context node. The conjunctive range predicate,

based on the PreLevel encoding, defines a location step on the preceding axis as follows:

Lemma 3.4

v ∈ c/preceding ⇔ pre(v) < pre(c) (i)

∧ ∃x : pre(x) ∈ (pre(v) , pre(c)] (ii)

⇒ level(x) ∈ (0 , level(v)]

Lemma 3.4 states that an arbitrary node v is member of the preceding axis of a given

context node c if and only if:

(i) The preorder rank of v is less than the preorder rank of c, and

(ii) There exists a node whose preorder rank is greater than pre(v) and less than

or equal to pre(c) (each individual element of the set is labelled x), such that

the level rank of x is less than or equal to level(v).

Proof: Condition (i) exploits the properties of preorder traversal to ensure the arbitrary

node v appears, in document order, before the given context node c. Condition (ii) ensures

that node v is not an ancestor of the context node c. Due to the properties of preorder

traversal, the existence of any other node which has a preorder rank greater than pre(v)

and less than or equal to pre(c), and which has a level rank less than or equal to level(v),

rules out any possibility that node v is the ancestor of node c. Thus, conditions (i) and

(ii) ensure that an arbitrary node v is a member of the preceding axis of given context

node c.

3.4 Conclusions

This chapter began with an in-depth review of the XPath specification and its special par-

tition property, together with an overview of tree traversals as they relate to the encoding

of XML documents. The new tree encoding mechanism based solely on the combined pre-

order traversal and level ranks was then presented. The PreLevel encoding encapsulates

Chapter 3: PreLevel Encoding 38

the semantics of the XPath document regions, an important prerequisite to the evaluation

of XPath traversals. This was followed by the introduction of newly defined conjunctive

range predicates facilitating the evaluation of location steps on the primary XPath axes,

and the corresponding proofs of their derivation were presented. The conjunctive range

predicates and their proofs form the theoretical foundation upon which our new index

structure is built. This foundation provides a contribution in establishing the validity

and completeness of the PreLevel encoding to fully support the XPath data model and to

provide a sound basis on which to construct an XML index structure.

In the next chapter, our new index structure is presented and its core properties are

analysed. Furthermore, it will be demonstrated how the new index structure supports the

evaluation of location steps on all XPath axes in constant time.

Chapter 4

PreLevel Index Structure

In the previous chapter, the PreLevel encoding mechanism was introduced and the theo-

retical foundations underpinning its support for the XPath specification were presented.

In this chapter, a tabular representation is presented based on the PreLevel encoding that

facilitates the efficient evaluation of XPath expressions. The tabular encoding is adapted

from the XPath Accelerator originally proposed in [Gru02] and enhanced to incorporate

the Extended Preorder Index and Level Index now presented. The properties of this tab-

ular encoding are examined in detail. This is followed by the presentation of algorithms

facilitating the evaluation of location steps on the primary XPath axes in constant time.

Furthermore, demonstrations of the evaluation in constant time of the remaining XPath

axes (ignoring namespace and attribute) are provided. Finally, a key enabler to the imple-

mentation of efficient XPath queries based on the tabular encoding is presented - namely

the efficient evaluation of subtree sizes.

The chapter is structured as follows: in §4.1, the new tabular encoding is introduced

and its properties explored. In §4.2 and §4.3, the evaluation of location steps on the

descendant and following axes respectively are presented, followed by the demonstration

of evaluations on the remaining XPath axes in §4.4. In §4.5, an algorithm to efficiently

evaluate subtree sizes is presented and related issues are treated in depth. Finally, in §4.6

we conclude the chapter.

39

Chapter 4: PreLevel Index Structure 40

4.1 Indexing Method

The PreLevel tree encoding uses a tabular structure. Subsequently, the PreLevel tabular

encoding shall be referred to as the Extended Preorder Index. The primary column of the

Extended Preorder Index consists of the preorder ranks sorted in ascending order. The

second column contains the level ranks that correspond to the associated preorder ranks

of the primary column. Extra columns may be added to the Extended Preorder Index to

hold further node properties as defined by the XPath/XQuery data model, such as name,

node type (node, element, attribute, comment) and more. In particular, to support the

parent axis in the tabular encoding, a column containing the parent’s preorder rank of

each node, is added to the Extended Preorder Index . However, in order to efficiently

evaluate an XPath location step on all the XPath axes, a second index is required. This

second index is introduced (hereafter referred to as the Level Index) and consists of two

columns only, the level rank column and the preorder rank column. The first column in

the Level Index is the level rank column, sorted in ascending order, the second column

being the preorder rank column, again sorted in ascending order. The Extended Preorder

Index and Level Index combined may also be referred to as the PreLevel structure. A

sample PreLevel encoded tree and the corresponding PreLevel structure is illustrated in

Figure 4.1.

a

b
c

d
e

f

g h

i

j

0

1
2

3
4

5

6 7

8

9

0

1
2

1
1

2 2

3 3 3
(a) A pre/level encoded
XML tree.

6, 7, 93
2, 5, 82
1, 3, 41

00
PreLevel

6, 7, 93
2, 5, 82
1, 3, 41

00
PreLevel

(b) Level In-
dex.

8

4

5

5

4

0

0

1

0

Parent

3

3

2

1

2

3

2

1

1

1

Pos

IElem28

JElem39

HElem37

GElem36

FElem25

EElem14

DElem13

CElem22

BElem11

AElem00

…NameKindLevelPre

8

4

5

5

4

0

0

1

0

Parent

3

3

2

1

2

3

2

1

1

1

Pos

IElem28

JElem39

HElem37

GElem36

FElem25

EElem14

DElem13

CElem22

BElem11

AElem00

…NameKindLevelPre

(c) Extended Preorder Index

Figure 4.1: A sample XML tree with corresponding PreLevel structure.

Chapter 4: PreLevel Index Structure 41

4.1.1 Properties of Extended Preorder and Level Indexes

The PreLevel structure [OBR05] facilitates efficient XPath query processing and evalua-

tions. However, before these contributions may be presented in detail, it is necessary to

review the core properties of these indexes.

(i) We acknowledge the high computational costs of processing large XML docu-

ments. However, the read-only indexes are constructed once during document

parsing and thus, have no runtime construction costs. The support for index

updates is addressed as part of the future work in the conclusions to this thesis.

Also, the preorder traversal ranks and the level ranks of a node may be de-

termined during the initial parsing of the XML document tree. Given that all

document indexing methods necessarily require the document be first parsed

before an index is constructed, the availability of the preorder and level ranks

at parsing time ensure the construction overheads are kept to a minimum.

This is a important prerequisite in the provision of acceptable and efficient

document loading times for a large XML repository. The original XPath Ac-

celerator proposed in [Gru02] requires both a preorder and a postorder traversal

during index construction. The extra requirement of a postorder traversal im-

poses a significant overhead during document loading as outlined in [VFS04].

The updated XPath Accelerator presented in [GST04], uses a pre/level/size

encoding and requires an extra cost to compute the subtree size of each node

during the construction of the index.

(ii) Each node in the XML tree has a single preorder rank and a single level rank

associated with it. Thus, the Extended Preorder Index contains a one-to-

one mapping. However, as many nodes may reside at the same level, the

Level Index contains a one-to-many mapping - it is a inverted index. Each

level in the Level Index maps to an array of non-consecutive preorder ranks

sorted in ascending order. Thus, various structures may be employed in the

implementation of this index.

(iii) Both the Extended Preorder Index and the Level Index may be constructed

Chapter 4: PreLevel Index Structure 42

in parallel during the initial parsing of the XML document tree and these

indexes will be sorted in ascending order. The act of parsing of an XML

document (reading from top to bottom and left to right) corresponds to a

preorder traversal. Thus, the Extended Preorder Index is constructed in a

sorted list, sorted on the preorder rank in ascending order.

It may not be obvious that the Level Index is also constructed in a sorted

list. When the preorder traversal begins, the level information is recorded

also (level 0 for the root node). As the preorder traversal progresses, all new

levels and the associated preorder ranks are recorded. As the preorder traversal

encounters nodes on a level already recorded, the preorder ranks are simply

appended to the list of existing preorder ranks at that level. Thus, depending

on the structure used at implementation time, when the preorder traversal has

been completed, what remains is a column of unique level ranks, sorted in

ascending order with each level rank pointing to a linked list of preorder ranks

and each linked list also sorted in ascending order.

Thus, the very act of creating the Level Index results in a table with the

primary column (level ranks) sorted in ascending order, and the second column

(preorder ranks) also sorted in ascending order.

(iv) Lastly, in order to facilitate a lookup of the Level Index in constant time,

a position column is included in the Extended Preorder Index. During the

construction of the Level Index, before any preorder ranks have been inserted,

each level is assigned a counter initialised to zero. As a preorder rank is added

(or appended) to the Level Index, the counter at that level is incremented by

one and its value is written in the position column of the Extended Preorder

Index, in the row of the related preorder rank. Thus, the position column

is constructed in parallel with the other columns of the PreLevel structure

and therefore has minimal construction costs associated with it. The position

value, when obtained using a lookup of the Extended Preorder Index, facilitates

a direct jump to a given preorder rank within the Level Index in constant time.

The position column is the key to enabling the evaluation of location steps on

Chapter 4: PreLevel Index Structure 43

the primary XPath axes in constant time and to the optimised evaluations of

level-based queries (to be introduced in chapter 5).

The remaining issue to be clarified is the computation of the conjunctive range predicates

for each of the XPath primary axes in constant time. Before the PreLevel structure can

make a new meaningful contribution to the indexing and processing of XML data, it must

first demonstrate the ability to provide XPath evaluations that are, at the very least,

on par with the existing state-of-the-art preorder encoding schemes, such as the XPath

Accelerator reviewed in chapter 2.

4.2 Descendant and Ancestor Axes Evaluation

Due to the hierarchical structure of XML data, the efficient evaluation of ancestor-

descendant relationships between tree nodes has a significant impact on XPath query

performance. In this section, a high level algorithm detailing the steps to evaluate a

location step on the descendant axis in constant time is provided (in Algorithm 4.1).

This algorithm is then illustrated to show how constant time evaluation is possible.

4.2.1 Descendant Lookup Operations

The sample PreLevel encoded tree and the corresponding PreLevel structure are illustrated

in Figure 4.1. In order to demonstrate Algorithm 4.1, let v = node h; let c = node e. With

a simple lookup of the Extended Preorder Index, it can be verified that pre(h) is greater

than pre(e) (i.e. 7>4), and that level(h) is greater than level(e) (i.e. 3>1). The Level

Index is used to identify the next preorder rank greater than pre(e) at level(e) (i.e. null).

This information is obtained in constant time as the position column of the Extended

Preorder Index facilitates a direct jump to pre(e) within the level(e) index. Note, the next

preorder rank greater than pre(e) at level(e), should it exist, must appear immediately

after pre(e) because the index is sorted in ascending order. If the next preorder rank after

pre(e) at level(e) is greater than pre(h), the node being tested, then node h must be a

descendant of node e. This can be stated with certainty as the properties of preorder

traversal require a node’s children to be visited immediately after its parent.

Chapter 4: PreLevel Index Structure 44

1 /* The steps below to determine if an arbitrary node v is a

2 descendant of a given context node c is independent of the actual

3 number of descendants and may be evaluated in constant time . */

4 Name: IsNodeDescendant
5 Given: An arbitrary node v, a context node c.
6 Returns: Boolean (TRUE or FALSE)
7 begin
8 // Using the Extended Preorder Index

9 if (pre(v) <= pre(c)) or (level(v) <= level(c)) then
10 return FALSE;
11 endif
12 // Using the Level Index

13 next_pre := next preorder rank after pre(c) at level(c);
14 if (next_pre > pre(v)) or (next_pre == null) then
15 return TRUE;
16 else
17 return FALSE;
18 endif
19 end

Algorithm 4.1: To determine if an arbitrary node v is a descendant of a given context
node c.

Also, if there are no preorder ranks greater than pre(e) at level(e), indicated with null,

node h must be a descendant of node e. The fact that there may be no preorder ranks

greater than pre(e) at level(e) simply means that node e is the root node of the rightmost

subtree rooted at level(e).

This subsection has illustrated an evaluation on the descendant axis in constant time.

However, just as the conjunctive range predicates defining location steps on the descen-

dant and ancestor axes are similar, an evaluation of a step location on the ancestor

axis in constant time may be illustrated in a similar fashion by adapting the algorithm

appropriately.

4.3 Following Axis Evaluation

The conjunctive range predicates that define a location step on the following axis, pre-

sented in Lemma 3.3, contain two range-based predicates in condition (ii) that must be

satisfied. It may not be clear as to how they may be evaluated in constant time. However,

by exploiting the properties of the PreLevel structure, constant time evaluation may be

demonstrated.

Chapter 4: PreLevel Index Structure 45

The second condition of the conjunctive range predicate for a location step on the follow-

ing axis requires verification that an arbitrary node v, residing within a specific preorder

interval, has a level rank that resides within a specific level -based interval. This is quite

unlike the conjunctive range predicates for the ancestor and descendant axes, each of

which requires an equality test based on the level rank. However, according to the XPath

specification, the following axis selects all nodes that appear after the given context node

in document order, excluding the descendants of the context node. Thus, using the

PreLevel structure, it is sufficient to verify the preorder rank of node v is greater than

the preorder rank of the context node c and that node v is not a descendant of the

context node c. This can be evaluated in constant time using the PreLevel structure, as

demonstrated in §4.3.1.

4.3.1 Constant Time Evaluation

An algorithm demonstrating the steps to evaluate a location step on the following axis

is provided in Algorithm 4.2. Lines 10 -12 verify condition (i) of Lemma 3.3 and ensure

that node v appears in document order after the context node c. Lines 13 -14 determine

if node v lies within the level-based interval specified in condition (ii) of Lemma 3.3. If

node v lies within this level-based interval, then it can not be a descendant of the context

node c and therefore must be a member of the following axis of the context node c. Lines

15-23 are executed only if node v has a level rank greater than the context node c (i.e.,

is lower down the XML tree) and verify that node v is not a descendant of the context

node c.

As with the ancestor and descendant axes, an evaluation of a location step on the

preceding axis in constant time may be illustrated in a similar fashion to the evaluation of

the following axis. This is due to the mirror-like relationships between the ancestor and

descendant axes and the following and preceding axes which are a direct consequence

of the XPath partition property defined in the XPath specification, as introduced in §3.1.

Chapter 4: PreLevel Index Structure 46

1 /* The steps below to determine if an arbitrary node v is

2 a member of the following axis of a given context node c

3 is independent of the size of the subtree rooted at node

4 c and may be evaluated in constant time . */

5 Name: IsNodeFollowing
6 Given: A context node c, an arbitrary node v.
7 Returns: Boolean (TRUE or FALSE)
8 begin
9 // Using the Extended Preorder Index

10 if (pre(v) <= pre(c)) then
11 return FALSE;
12 endif
13 if (level(v) <= level(c)) then
14 return TRUE;
15 else
16 // Using the Level Index

17 next_pre := next preorder rank after pre(c) at level(c);
18 if (next_pre > pre(v)) or (next_pre == null) then
19 return FALSE;
20 else
21 return TRUE;
22 endif
23 endif
24 end

Algorithm 4.2: To determine if an arbitrary node v is a member of the following axis
of a given context node c.

4.4 Remaining XPath Axes Evaluation

Evaluations of location steps on the four primary XPath axes in constant time have been

demonstrated in the previous sections. In this section, evaluations in constant time of

location steps on the remaining XPath axes (namely parent, child, descendant-or-self,

ancestor-or-self, following-sibling and preceding-sibling) are demonstrated.

A location step can only be taken in reference to a context node. Thus, in order to evaluate

a location step on any axis, both an arbitrary node and a context node must be given. The

context node, according to the XPath specification, constitutes the self axis. Therefore,

it can easily be shown that the descendant-or-self and ancestor-or-self axes may be

evaluated in constant time by virtue of the evaluations of the descendant and ancestor

axes demonstrated in §4.2. The parent axis may be evaluated in constant time using a

lookup of the parent column in the Extended Preorder Index. The child axis may be

evaluated in constant time by verifying the arbitrary node is a descendant of the context

node and that the level rank of the arbitrary node is one greater than the level rank of

Chapter 4: PreLevel Index Structure 47

the context node. The level ranks may be identified in constant time using a lookup of

the Extended Preorder Index. The following-sibling and preceding-sibling axes may

be evaluated in constant time by verifying that the arbitrary node is a member of the

following and preceding axes respectively (presented in §4.3) and also that the level

rank of the arbitrary node equals that of the context node.

4.5 Evaluating the size of a Subtree

Although the evaluation of location steps on all XPath axes in constant time using the

PreLevel structure can be demonstrated, the real challenge for XPath and XQuery proces-

sors and query optimisers is to identify all members of an XPath axis as efficiently as

possible. For example, to identify all descendants of a given context node, or to identify

all members of the following-sibling axis of a context node. These are the type of queries

that form the backbone of many merge-join algorithms which have been identified as the

principle bottleneck to efficient query performance over XML data [ZND+01].

These and other such queries and the algorithms to efficiently implement them are pre-

sented in chapter 5. However, before proceeding to chapter 5, a key enabler for efficient

query evaluation based on the PreLevel structure must be presented - an algorithm to

efficiently evaluate the size of a subtree. In this section, the issues involved in the eval-

uation of a subtree size are explored and an efficient algorithm enabling its evaluation is

presented.

When employing the Extended Preorder Index on an XML document tree, the descen-

dants of an arbitrary node v in that tree, due to the properties of preorder traversal, may

be expressed as an interval of lower and upper preorder ranks. The lower bound of this

interval is the preorder rank (plus one) of the arbitrary node v. The upper bound of the

interval is the lower bound plus the size of the subtree rooted at node v. Thus, it may

be seen that where a preorder encoding scheme is employed, the evaluation of a node’s

descendants is equivalent to the evaluation of the size of a subtree rooted at that node.

Chapter 4: PreLevel Index Structure 48

4.5.1 Computational Cost

Using the PreLevel structure, the size of a subtree tree rooted at an arbitrary node v can

be determined efficiently. The evaluation of the subtree size is independent of the actual

size of the subtree rooted at node v (and indeed independent of the size of the entire

document tree) but rather dependent on the number of levels between the given node

v and the root node of the document tree. In [MBV03], a comprehensive study of over

190,000 XML trees was performed revealing that 99% of all documents had less than 8

levels. The vast majority of the remaining 1% of documents had less than 30 levels, with

only a tiny fraction having more than 30 levels. The document with the greatest depth

had 135 levels, and on further examination, it was determined that the file was computer-

generated and contained structural flaws. Thus, it may be seen that the number of levels

(or depth) in an XML tree is sufficiently small so as to be deemed to have a minimal

computational impact on the evaluation.

4.5.2 The SizeOfSubtree Algorithm

In this subsection, the algorithm for evaluating the size of a subtree rooted at an arbitrary

node v is presented. The size of the subtree evaluated with the algorithm is accurate and

no extra information beyond the preorder and level ranks are necessary to determine the

size of the subtree. An algorithm SizeOfSubtree demonstrating the evaluation of the size

of a subtree rooted at an arbitrary node v using the PreLevel structure is provided in

Algorithm 4.3.

Lines 14 -17 determine if node v is a leaf node in constant time using a lookup of the

Extended Preorder index. Line 20 identifies the next preorder rank after pre(v) at level(v)

in constant time by using the position column of the Extended Preorder index to jump

directly to pre(v) at level(v). For each level between the given node v and the root node of

the entire document tree, lines 33 -41 identify the first node with a preorder rank greater

than pre(v). The computational processing required at each level is constant. The parent

column contained in the Extended Preorder Index is used to identify the first node with

a preorder rank greater than pre(v) at any level, by identifying the first node with a

Chapter 4: PreLevel Index Structure 49

Algorithm 4.3: To determine the size of a subtree rooted at an arbitrary node v.
1

2 /* The steps below to evaluate the size of a subtree rooted at

3 an arbitrary node v is independent of the actual size of the

4 subtree itself (and indeed the size of the entire document tree),

5 but dependent on the number of levels between the given node v

6 and the root node of the document tree . */

7 Name: SizeOfSubtree
8 Given: An arbitrary node v,
9 The maximum preorder rank in document tree: max_pre.

10 Returns: subtree_size
11 begin
12 // Using the Extended Preorder Index ,

13 // determine if node v is a leaf node

14 if (level(pre(v) + 1) <= level (v)) then
15 subtree_size := 1;
16 return subtree_size;
17 endif
18

19 // Using the Level Index

20 next_pre := next preorder rank after pre(v) at level(v);
21

22 // limit will contain the maximum upper preorder rank of

23 // the preorder interval (non - inclusive) specifying

24 // the subtree nodes .

25 limit := next_pre;
26

27 // par (v) returns the preorder rank of the parent node of v

28 par_pre := par(v);
29

30 // For each level between level (v) and the root node ,

31 // find the first node with preorder rank > pre (v)

32 init_level := level(v) - 1;
33 for (count = init_level; count > 0; count --)
34 next_pre := next preorder rank after par_pre at level(par_pre);
35 if (limit != null) then
36 if (next_pre != null) and (next_pre < limit) then
37 limit := next_pre;
38 endif
39 else
40 limit := next_pre;
41 endif
42 par_pre := par(par_pre);
43 endfor
44

45 if (limit != null) then
46 subtree_size := limit - pre(v);
47 else
48 subtree_size := (max_pre - pre(v)) + 1;
49 endif
50 return subtree_size;
51 end

Chapter 4: PreLevel Index Structure 50

preorder rank greater than any of node v ancestors at the required level. After processing

all specified levels, the size of the subtree may be evaluated as the difference between the

first preorder rank greater than pre(v) and the preorder rank of node v itself.

Thus, the processing requirements of the algorithm is independent of:

1. the number of nodes at each level.

2. the size of the subtree rooted at node v.

3. the size of the entire document tree.

The only variable is the number of levels to be processed by the algorithm. However, the

comprehensive study in [MBV03] referenced earlier in this section revealed the substantial

majority of XML document trees have less than 30 levels, a number still significantly small

as to impose minimal computational overheads, except for unusual circumstances.

4.5.3 Observations

If there is no node greater than pre(v) at any of the levels specified (between the root node

and node v), then node v and its ancestors simply reside at the right-most branch of the

entire document tree at those levels. The term null is used to indicate that no greater

preorder rank was found. In the Algorithm SizeOfSubtree, the given node itself is included

in the size of the subtree and thus, the smallest value returned is 1. The algorithm can be

modified not to include the given node in the size of the subtree, should an implementation

require a return value of zero for leaf nodes.

4.6 Conclusions

In this chapter, a tabular representation for the PreLevel encoding was presented - namely

the PreLevel structure. The PreLevel structure was shown to have minimal computational

overhead associated with its construction as both preorder and level ranks are available

during document parsing. Its indexes may be constructed in parallel and are automati-

cally sorted in ascending order during the construction phase. Algorithms for evaluating

Chapter 4: PreLevel Index Structure 51

location steps on the descendant and following axes in constant time were presented

and illustrated, and from these, evaluations on the remaining XPath axes in constant time

were demonstrated. The ability of the PreLevel structure to support the evaluation of

location steps on all XPath axes in constant time is an important contribution in that

it demonstrates, thus far, that the PreLevel structure is on par with the best existing

indexing structures to date, such as the XPath Accelerator.

Furthermore, to unlock the real potential of efficient query evaluations based on the

PreLevel structure, an algorithm to efficiently evaluate the size of a subtree was presented.

In chapters 3 and 4, the theoretical and (index) structural foundations of the PreLevel

structure have been fully laid down. The next step is to demonstrate the various classes

of efficient queries possible, based on the PreLevel structure.

Chapter 5

XPath Query Optimisations

In chapter 4, the PreLevel structure was introduced and it was demonstrated how this

structure supported the evaluation of location steps on all XPath axes in constant time.

The purpose of this chapter is to detail the principle benefits of the PreLevel structure.

This is achieved by demonstrating the efficient evaluation of all members of the primary

XPath axes and then introducing the key contribution of the PreLevel structure: level-

based optimised queries. An overview of level-based queries is provided, followed by a

detailed explanation of their small computational costs. Several classes of XPath queries

that can be accommodated by level-based queries are introduced and their efficient evalua-

tions demonstrated. Lastly, three benefits made available to XPath and XQuery processors

through level-based optimised queries are described.

The chapter is structured as follows: In §5.1, the efficient evaluation of all members of the

primary XPath axes are demonstrated, together with their computational costs. In §5.2,

the optimised level-based queries are introduced, their computational costs discussed, the

various classes of optimised queries supported are detailed and the added benefits to XPath

and XQuery processors outlined. Finally, we offer our conclusions in §5.3.

5.1 Primary XPath Axes Evaluation

In chapter 4 it was shown that the PreLevel structure supports the evaluation of location

steps on all XPath Axes. However, XPath query processors often have to evaluate all

52

Chapter 5: XPath Query Optimisations 53

members of an XPath axis. This is especially true for XQuery processors which must

evaluate XPath expressions embedded in XQuery statements. The PreLevel structure

facilitates the efficient evaluation of all members commencing from an arbitrary context

node, without bias as to where the context node occurs in the XML document tree.

XPath Accelerator Comparison The XPath Accelerator facilitates the evaluation of

all members of the primary XPath axes in constant time. This is possible because the

XPath Accelerator precomputes the size of the subtree rooted at every node during index

construction. The size of a subtree is the key determinant in the evaluation of all members

of the primary XPath axes.

5.1.1 Descendant and Ancestor Axes Evaluations

Algorithm 5.1 illustrates the steps to evaluate all members of the descendant axis of

an arbitrary node v. The steps required to determine all descendants of node v is

independent of the size of the subtree rooted at node v, and is also independent of the

size of the entire document tree, but is dependent on the number of levels between the

arbitrary node v and the root node of the document tree.

Lines 14 -17 determine if the arbitrary node v is a leaf node (i.e. has no children) and

return the empty sequence if true. Leaf node status can be determined in constant time

using a lookup of the Extended Preorder Index. Line 20 uses the SizeOfSubtree algorithm

presented in §4.5 to determine the maximum preorder rank of the descendants of node v.

Lines 23 -24 identify (in constant time) the lower and upper preorder ranks of the interval

containing the descendants of node v. All steps in the algorithm AllDescendants may be

computed in constant time, with the exception of the SizeOfSubtree function. However, the

computational cost of the SizeOfSubtree algorithm has already been shown to be minimal

because the processing required at each level is constant. Thus, the PreLevel structure

facilitates an efficient evaluation of all members of the descendant axis of an arbitrary

node v.

In a similar manner, the computational costs to evaluate all members of the ancestor

axis of an arbitrary node v is solely dependent on the number of levels between the given

Chapter 5: XPath Query Optimisations 54

1 Name: AllDescendants
2 Given: An arbitrary node v,
3 The maximum preorder rank in document tree: max_pre.
4 Returns: A sequence of document nodes labelled descendants
5 or the empty sequence.
6 begin
7 // Using the Extended Preorder Index

8 if (level(pre(v)+1) <= level(v)) then
9 // There are no descendants

10 return empty;
11 endif
12

13 // Using algorithm to determine size of subtree

14 subtree_size := SizeOfSubtree(v);
15

16 // Now identify the interval containing the descendants

17 last_pre := pre(v) + (subtree_size - 1);
18 descendants := all nodes in interval (pre(v),last_pre];
19 return descendants;
20 end

Algorithm 5.1: To determine all descendants of an arbitrary node v.

node v and the root node of the entire document tree. In order to identify all ancestors

of an arbitrary node v, a single lookup of the parent column of the Extended Preorder

Index for each level between level(v) and the root node is required.

5.1.2 Following Axis Evaluation

The following axis selects all nodes that appear after the given context node in document

order, excluding the descendants of the context node. Algorithm 5.2 illustrates the steps

to evaluate all members of the following axis of an arbitrary node v.

Lines 18 -19 are executed if node v is a leaf node and identifies all members of the fol-

lowing axis as all nodes having a preorder rank greater than pre(v). Line 23 uses the

SizeOfSubtree function to determine the largest preorder rank of the descendants of node

v. Line 24 identifies all members of the following axis as all nodes having a preorder rank

greater than the largest preorder rank of node v ’s descendants. All steps in the AllFol-

lowing algorithm may be computed in constant with the exception of the SizeOfSubtree

function. Thus, the PreLevel structure facilitates an efficient evaluation of all members of

the following axis of an arbitrary node v.

Chapter 5: XPath Query Optimisations 55

1 Name: AllFollowing
2 Given: An arbitrary node v,
3 The maximum preorder rank in document tree: max_pre.
4 Returns: A sequence of document nodes labelled followingNodes
5 or the empty sequence.
6 begin
7 // Using algorithm to determine size of subtree

8 subtree_size := SizeOfSubtree(v);
9

10 // If leaf node

11 if (subtree_size == 1) then
12 followingNodes := all nodes in interval (pre(v),max_pre];
13 return followingNodes;
14 endif
15

16 // if not leaf node

17 Let maxSubPre := pre(v) + (subtree_size - 1);
18 followingNodes := all nodes in interval (maxSubPre,max_pre];
19 return followingNodes;
20 end

Algorithm 5.2: To determine all members of the following axis of an arbitrary node v.

5.1.3 Preceding Axis Evaluation

The preceding axis selects all nodes in document order that appear before the context

node, excluding all ancestors of the context node. Thus, the set of all members of the

preceding axis can be identified as the set of all nodes before the context node minus the

set of ancestors. In formal set theory notation, the set of all members of the preceding

axis is defined as the relative complement of the set of ancestors in the set of all nodes

before the context node. The set of all nodes before the context node can be determined

in constant time to be all nodes with a preorder rank less than the preorder rank of the

context node. The size of the set of ancestors is equal to the number of levels between

the root node and the context node. The comprehensive study performed in [MBV03]

(as discussed in §4.5.1) revealed that the number of levels in the vast majority of XML

documents will be below 30, a relatively small value. Thus, as the set of all nodes before the

context node will be a preorder defined interval, sorted in ascending order, the subtraction

of a (relatively) small number of ancestor preorder ranks from this set will add minimal

computation overhead to the overall evaluation. Thus, the PreLevel structure facilitates

an efficient evaluation of all members of the preceding axis of an arbitrary node v.

Chapter 5: XPath Query Optimisations 56

a0

b1

c2

d3 e4

f5

g6

h7

i8 j9

k10

l11 m12

n13

o14
p15

q16

L0
L1
L2

L3

(a) PreLevel encoded XML tree with grandchildren of
node g selected.

3

2

1

0

3

2

1

0

1361 1361

151410752 151410752

1612119843 1612119843

00

(b) Level index with grandchildren of
node g highlighted.

Figure 5.1: An illustrated level-based query to select all grandchildren of node g.

5.2 Optimised Level-based Queries

The intrinsic properties of the PreLevel structure may be exploited to provide optimised

level-based queries. A level-based query is such that the results of the query reside at a

particular level in the XML tree. In this section, an overview of level-based queries follow

and their computational costs are discussed and finally, the classes of queries they support

are highlighted.

5.2.1 Level-based Queries Overview

Taking the descendant axis as an example, all nodes that are a descendant of an

arbitrary node v will reside in a preorder-defined interval, delimited by lower and upper

preorder ranks. Thus using the Level Index, it is easy to identify a sequence of nodes

residing at a particular level that belong to a preorder-defined interval. For example,

given a query to select all grandchildren of an arbitrary node v ; the result of such a query

will be represented using the Level Index as an interval of lower and upper preorder bounds

residing at a specific level. Figure 5.1(a) depicts a sample PreLevel encoded XML tree with

the grandchildren of node g selected. Figure 5.1(b) illustrates the corresponding Level

Index with the highlighted preorder-defined interval containing node g ’s grandchildren.

The position column of the Extended Preorder Index facilitates a direct jump to the lower

and upper preorder bounds within the Level Index.

Chapter 5: XPath Query Optimisations 57

5.2.2 Computational Cost

The Level Index is sorted in ascending order and can be searched efficiently using a bi-

nary search algorithm with a time complexity of O(log n) [Sed88]. The lower bound of

the preorder interval containing node v ’s descendants at a given level l, is obtained by

performing a binary search at level l for the first preorder rank greater than pre(v). In

a similar fashion, the upper bound of the preorder interval containing node v ’s descen-

dants at level l, is obtained by performing a binary search at level l for the last preorder

rank preceding a container preorder rank of node v ’s descendants. A container preorder

rank is a preorder rank greater than the largest preorder rank in node v ’s descendants.

Due to the properties of preorder traversal, a valid container preorder rank for node v ’s

descendants is the next preorder rank greater than pre(v) at level(v). The container

rank can be obtained in constant time using a lookup of the Level Index and provides an

upper bound for node v ’s descendants at level l.

Given the preorder rank of a context node, the lower and upper bounds of the interval

encapsulating the set of all members of the context node’s descendants at an arbitrary

level l can be obtained using the Level index, requiring a total of two single binary search

operations of time complexity O(log n) each, at level l. The optimisation provided by level-

based queries is such that the processing of nodes at intermediary levels is unnecessary for

all levels between the context node and the level to be queried (exclusive). For clarity, a

single binary search operation of time complexity O(log n) shall be referred to as a search

operation.

The optimal time complexity for reading n values from an array of size n is linear, i.e. O(n).

The results of a level-based query is an array subset of the Level Index, which is always

sorted in document order. Thus, given that the position column facilitates a direct jump to

the lower and upper preorder bounds within the Level Index; when both lower and upper

bounds of the interval have been obtained, the actual results of the level-based queries

may be retrieved in optimal time. Once the interval is known, the solution is optimal for

retrieving all descendants of a given node v that reside at an arbitrary level l.

Algorithm 5.3 illustrates the steps to evaluate all descendants of a given node v residing

Chapter 5: XPath Query Optimisations 58

1 /* The steps below to determine all descendants of an arbitrary

2 node v at a given level L requires only two binary searches of

3 time complexity O(log n) each , at level L. */

4 Name: AllDescendantsAtLevelL
5 Given: An arbitrary node v,
6 The maximum preorder rank in document tree: max_pre,
7 A level L, where L is the path length from node v
8 to the level queried.
9 (e.g. to find all grandchildren of node v, let L = 2)

10 Returns: A sequence of document nodes labelled descendants
11 or the empty sequence.
12 begin
13 // Using the Extended Preorder Index

14 if (level(pre(v)+1) <= level(v)) then
15 // There are no descendants

16 return empty;
17 endif
18

19 // Using the Level Index

20 next_pre := next preorder rank after pre(v) at level(v);
21

22 // Convert relative level rank to absolute level rank of doc

23 queryLevel := level(v) + L;
24

25 // Identify the interval containing descendants at queryLevel

26 if (next_pre == null) then
27 descendants := all nodes in interval (pre(v),max_pre] at
28 queryLevel;
29 else
30 start_pre := next preorder value > pre(v) at queryLevel;
31 descendants := all nodes in interval [start_pre,next_pre)
32 at queryLevel;
33 endif
34 return descendants;
35 end

Algorithm 5.3: To determine all descendants of an arbitrary node v at a given level L.

at an arbitrary level l. Regardless of the value of next pre in line 26, both sections of code

belonging to the if statement require only two search operations on the Level Index. All

other lines in the algorithm may be processed in constant time.

XPath Accelerator Comparison Level-based optimisations are not provided by the

XPath Accelerator. These optimisations are made possible by the introduction of an

inverted index, the Level Index in our PreLevel structure. While referring to Figure 5.1(a)

and (b), an illustration now follows describing how the XPath Accelerator evaluates the

query: select all grandchildren of node g. The XPath Accelerator uses a pre/size/level

Chapter 5: XPath Query Optimisations 59

encoding for each node in the document tree and thus, has precomputed the size of the

subtree rooted at node g. Given the size of the subtree, the lower and upper bounds of the

preorder-defined interval encapsulating all members of the descendants of node g may be

determined in constant time. The lower bound is pre(v) plus one and the upper bound is

pre(v) plus subtree size. However, for each descendant of node g, the XPath Accelerator

must lookup its index to determine the level rank of the descendant. Thus, the evaluation

of a level-based query using the XPath Accelerator has a linear time complexity of O(n)

where n is the number of descendants of the context node.

5.2.3 Evaluating All Members of the Child Axis

The evaluation of all members of the child axis of an arbitrary node v, can be easily

accommodated by our level-based queries. Given that the descendants of an arbitrary

node v at a given level l reside in a preorder defined interval at level l, it follows that

all members of the child axis of node v reside in a preorder defined interval at level(v)

plus one in the Level Index. However, due to the properties of preorder traversal, the

lower bound of the preorder interval containing all members of the child axis is simply

pre(v) plus one (constant time evaluation). The identification of the upper bound of the

interval requires a single search operation. Once the lower and upper bounds are known,

the retrieval of all children is optimal (for reasons outlined in §5.2.2). Thus, the PreLevel

structure enables the efficient evaluation and retrieval of all members of the child axis of

an arbitrary node v.

For example, while referring to Figure 5.1 and given the context node b, the results of the

XPath expression child::* reside in the interval [2,5] at level 2.

XPath Accelerator Comparison The XPath Accelerator determines the lower bound

in the same way as the PreLevel structure. The upper bound of the children of node v

is evaluated by determining the largest preorder rank of its descendants (i.e. pre(v) plus

subtree size) and finding its ancestor at level(v) plus one. Subsequently, all children and

their descendants between these two bounds require a lookup of the XPath Accelerator

index to determine its level (or its parent). Either the level or parent value is needed

Chapter 5: XPath Query Optimisations 60

to determine if a descendant is a child of node v. In either case, the processing required

is just under linear time complexity. The actual optimisation provided by the XPath

Accelerator is the pruning of the subtree of the rightmost child of node v. All children

(except the rightmost child) of node v and their descendants must be processed. Thus,

the optimisation provided is minimal.

5.2.4 Following-Sibling and Preceding-Sibling Axes Evaluation

The evaluation of all members of the following-sibling and preceding-sibling axes of

an arbitrary node v can also be accommodated by our level-based queries. The lower

bound of the preorder interval encapsulating the set of all members of the following-

sibling axis is the next preorder rank greater than pre(v) at level(v). The lower bound

can be obtained in constant time using a lookup of the Level Index.

The upper bound of the preorder interval containing the following-sibling axis of an

arbitrary node v is the largest preorder rank at level(v). The Level Index maintains a

record of the total number of elements stored at each level (hereafter referred to as the

total number). The total number at each level will correspond to the position value of the

last element at each level, that is, the position value of the largest preorder rank at each

level (because the Level Index is sorted in ascending order). Therefore, the total number

at each level is equal to the position value of the upper bound preorder rank for each level.

Thus, the lower and upper bounds of the preorder interval encapsulating the set of all

members of the following-sibling axis of an arbitrary node v are obtained in constant

time. Furthermore, given that the results of level-based queries may be retrieved in optimal

time, as discussed in §5.2.2, the PreLevel structure supports the evaluation and retrieval

of all members of the following-sibling axis of an arbitrary node v in optimal time.

In a similar manner, it may be demonstrated that the evaluation and retrieval of all

members of the preceding-sibling axis of an arbitrary node v can be performed in

optimal time.

For example, while referring to Figure 5.1 and given the context node h, the results of the

XPath expression following-sibling::* reside in the interval [10,15] at level 2.

Chapter 5: XPath Query Optimisations 61

XPath Accelerator Comparison The optimisation provided by the XPath Accelera-

tor in evaluating all members of the following-sibling axis is minimal and is similar to

that outlined in §5.2.3.

The XPath Accelerator provides no optimisation for the evaluation of the preceding-

sibling axis. The processing requirements has a linear time complexity of O(n) where n

is the number of nodes preceding the context node.

5.2.5 Evaluating the Size of a Level-based Result Set

The intrinsic properties of the PreLevel structure allow for the accurate and efficient

evaluation of the size of the result set for all level-based queries, without requiring their

materialisation.

When the lower and upper preorder bounds defining an interval result set at any given

level are known, the position values of the lower and upper preorder bounds may be

obtained in constant time using a lookup of the Extended Preorder Index. By subtracting

the position value of the lower bound from the position value of the upper bound, we

are left with the exact number of elements in the result set. Thus, for all level-based

queries, the computational cost of determining the size of the result set is the same as the

computational cost of determining the lower and upper bounds of the interval defining the

result set, namely: two search operations.

The PreLevel structure enables the efficient evaluation of the exact size of the result set of a

level-based query without having to materialise the result set. This feature is of particular

benefit to the query planners and query optimisers of XQuery processors in their evaluation

of query plans for the execution of XPath expressions embedded in XQuery statements.

XPath Accelerator Comparison The XPath Accelerator cannot facilitate level-based

optimisations for reasons described in §5.2.2 and thus, the evaluation of the size of a level-

based result set has a linear time complexity O(n) where n is the number of descendants

of the context node.

Chapter 5: XPath Query Optimisations 62

5.2.6 Optimising Wildcard Evaluation

The size of an XPath query (in terms of the number of location steps) is a principle deter-

minant of its evaluation complexity, as demonstrated in [GKP02]. Several optimisations

have been proposed to minimise the size of an XPath query by eliminating redundant

steps [AYCLS01] [Ram02]. In particular, recent research has focused on the optimisa-

tion of XPath queries by reducing wildcard steps [CFZ04]. The level-based optimisations

provided by the PreLevel structure facilitate the reduction of wildcard steps.

Overview

A wildcard step refers to an XPath location step with the wildcard nodetest ; examples

include child::* and ancestor::*.. Wildcard steps are employed when the element names

are unknown or do not matter. Wildcard steps are also often used as shorthand nota-

tion to represent a set of element names. For example, if a publication has a journal

or a conference subelement, the query /publication/journal/title union /publication/con-

ference/title can be expressed more succinctly using the wildcard based path expression:

/publication/*/title .

Wildcard reduction

In Figure 5.2, an employee schema for a multi-national company is presented. Every

element in the schema is mandatory. The following query is used to illustrate wildcard step

reduction: select the names of all employees in England whose salary is greater than one

hundred thousand pounds. Given the context node England, this query may be expressed

in XPath using wildcard steps as:

• self::node()/*/*/salary[. > 100000]/parent::node()/child::name

This query may be expressed more succinctly using the abbreviated XPath syntax as:

• ./*/*/salary[. > 100000]../name

Chapter 5: XPath Query Optimisations 63

CompanyCompany

DepartmentDepartment

EmployeeEmployee

NameName AddressAddress SalarySalary GradeGrade

CountryCountry

Figure 5.2: Employee Schema

An XPath processor must perform three steps to successfully evaluate this expression.

1. First locate all salary elements that are great-grandchildren of the England element.

2. From all salary elements found, select only those whose value is greater than 100,000

pounds.

3. Identify the name of the employees associated with the selected salary elements.

In order to demonstrate the wildcard step reductions possible using level-based optimisa-

tions, we will focus on the evaluation of the first step. A conventional XPath processor

would first have to identify all children of England (departments), and then for every

department, identify all employees working in the departments, and then for every em-

ployee, identify its salary. Using our PreLevel structure and exploiting the level-based

optimisations; upon identifying the preorder rank of the England element, we can quickly

determine the lower and upper preorder bounds of all salary elements that are a descen-

dant of England at the level level(England) plus three. The PreLevel structure does not

need to process the department (elements) and the employees in order to locate the salary

elements. The PreLevel structure permits the rewrite of the query to search for salary

elements at the required level (using the Level Index), thus eliminating the wildcard steps

and negating the need for processing at intermediary levels. Furthermore, the lower and

upper bounds of the preorder-defined interval encapsulating the set of all salary elements

of all employees in England, may be determined with just two search operations.

Chapter 5: XPath Query Optimisations 64

The example provided illustrated wildcard step reduction using schema-based documents.

However, level-based optimised queries may be used to reduce wildcard steps over any

type of XML document. Furthermore, wildcard reduction may be used in conjunction

with the evaluation of the result set size to enhance an XPath processor during the query

planning and query optimisation stages in selecting the best query evaluation strategy.

XPath Accelerator Comparison In order to evaluate the first step of the query, the

XPath Accelerator would follow the path outlined for a conventional XPath processor

of recursively following the paths of all the descendants of the England element until it

arrived at the level sought and then begin searching for salary elements. The evaluation

of the first step has a linear time complexity O(n) where n is the number of descendants

of the England element between level(England) and level(England) plus three.

5.2.7 Efficient Ancestor Evaluation

The evaluation of a node’s ancestor at an arbitrary level may be efficiently performed

by recursively identifying the node’s parents using a lookup of the Extended Preorder

Index. Under unusual circumstances, the number of levels in an XML document may be

very large, and a node’s ancestor at any arbitrary level may be obtained using the Level

Index and requires a single search operation.

Due to the properties of preorder traversal, given an arbitrary node v, the ancestor of

node v at an arbitrary level l, must be the largest preorder rank, less than pre(v) at level

l. The preorder rank of the ancestor may be obtained by performing a search operation

at level l for the largest node less than pre(v).

XPath Accelerator Comparison The XPath Accelerator evaluates a node’s ancestor

at an arbitrary level by recursively identifying the node’s parents using a lookup of its

index. Thus, no optimisation is provided.

Chapter 5: XPath Query Optimisations 65

5.3 Conclusions

In this chapter, the contributions of the PreLevel structure to the efficient evaluation of

XPath expressions for XPath and XQuery processors have been presented. We began

with a demonstration of the efficient evaluation of all members of the primary XPath

axes, without bias towards the location of the context node within the XML document.

The evaluation of all members of the primary axes is dependent on the number of levels

between the context node and the root node (due to the SizeOfSubtree function) but is

unaffected by the number of nodes in the document tree. Thus, it follows that the runtime

computational costs of the PreLevel structure scale well for very large documents as the

number of nodes in the document tree have little impact on the processing requirements

of query evaluations.

We then introduced level-based queries and determined that the worst case computational

costs of level-based queries required just two binary search operations of time complexity

O(log n) each. The optimisation provided in the evaluation of level-based queries is such

that the processing of all nodes on all levels between the root node and the context node

(exclusive) is not required. The elimination of the large scale processing of nodes at

intermediary levels is a significant contribution of the PreLevel structure, in comparison

to the XPath Accelerator. Furthermore, once the interval containing the results of a level-

based query has been identified, the retrieval of the results (respecting document and node

order) may be performed in optimal time. The evaluation of all members of the child axis

can be accommodated by level-based queries and requires only one binary search operation

of time complexity O(log n) for its evaluation. Moreover, the evaluation and retrieval of

all members of the following-sibling and preceding-sibling axes may be performed in

optimal time.

Level-based query optimisations may be exploited to provide many other benefits to XPath

and XQuery processors. Three of these benefits are outlined in this chapter: efficient

evaluation of the size of the result set, optimised wildcard query evaluation, and the

efficient evaluation of a node’s ancestor at an arbitrary level.

The PreLevel structure, through the benefits provided by the efficient evaluation of all

Chapter 5: XPath Query Optimisations 66

members of the primary XPath axes in conjunction with optimised level-based queries,

provides an efficient structure for the indexing of large XML collections. Indeed, of all

classes of queries treated in this thesis (covering all XPath axes evaluations), none of their

computational costs are dependent on the number of nodes in the tree. Thus, all large

scale XML collections may be efficiently indexed and queried using our PreLevel structure.

In this chapter we have finalised our contribution to the indexing of XML data and have

presented an index structure that satisfies our requirements identified in chapter 2. In

the next chapter, a summary of the work presented in this thesis is provided and some

directions for future work are outlined.

Chapter 6

Conclusions

The aim of this research thesis was to design an indexing structure for large XML reposi-

tories that would serve as the core component in the provision of an efficient, scalable and

reliable query service. Unlike other research projects, this work focused on providing an

index structure that fully supports the XPath and XQuery data models while also provid-

ing support for efficient structural and navigational queries in addition to the traditional

data-centric and content-based queries. In particular, several classes of queries can benefit

from the novel level-based optimisations of our new index structure, optimisations not

available with any existing indexing structures to date. A second objective of our research

was to ensure our index structure did not specify an implementation model or special

storage requirements. In this chapter a review of the thesis is presented in §6.1 and areas

of future research are offered in §6.2.

6.1 Thesis Summary

In chapter 1, an introduction to the XML data model was presented and the tree struc-

ture underlying semi-structured data was described. The expressive and extensible nature

of XML resulted in its rapid adoption and consequently the need for flexible and robust

XML repositories and DBMS emerged. In response, the development of XML DBMS has

evolved in two broad streams: XML Enabled databases and Native XML databases. The

efficiency of the query services offered by these DBMS reflect their underlying data model.

67

Chapter 6: Conclusions 68

XML Enabled databases perform data-centric queries efficiently but perform poorly in the

processing of structural queries as the (object-)relational data model is not a hierarchical

model. In a similar manner, Native XML databases have an XML document as their

fundamental data unit and process structural queries efficiently while giving poor perfor-

mance for data-centric queries. The motivation for this thesis emerged from the absence

of an XML DBMS facilitating both efficient hierarchical and content-based queries. In

particular, the semantically rich nature of XML data whereby the structure, content and

description of the data is embedded in the XML file, highlighted the importance of the

indexing service in the provision of an efficient query service. Consequently, this research

focused on the provision of a new index structure for XML data to support an efficient,

scalable and reliable query service in a large XML repository.

In chapter 2, several research projects covering existing state-of-the-art indexing structures

and techniques were analysed and discussed. When examining these projects, the emphasis

was on their support for the XPath and XQuery specifications in addition to the efficient

evaluation of structural and navigational queries. The ORDPATH project focused on the

provision of a dynamic labelling scheme to the expense of an efficient query service. The

indexing mechanism used in the eXist database project drew from the strengths of several

research initiatives and provided full support for structural query evaluation from indexes

alone. However, the path join algorithms used in eXist operated on a level-order index

numbering scheme and resulted in inefficient evaluations when compared to preorder-based

index numbering schemes. Lastly, the XPath Accelerator index, which most closely adheres

to our indexing service requirements was presented. It has been specifically designed to

support the XPath and XQuery specifications. The original XPath Accelerator pre/post

encoding had several shortcomings, many of which were overcome by the more recent

pre/size/level encoding adopted by its authors. Nevertheless, the XPath Accelerator still

lacks an efficient evaluation mechanism for several classes of queries and thus, motivating

the goal of our PreLevel structure to provide several optimisation benefits not currently

available with existing indexing structures.

The PreLevel encoding underlying the PreLevel structure was presented in chapter 3. The

PreLevel encoding encapsulates the semantics of the XPath document regions, an impor-

Chapter 6: Conclusions 69

tant requisite for the evaluation of XPath traversals. For each of the primary XPath axes,

new conjunctive range predicates defining location steps on the axis were presented and

the corresponding proofs of their derivation provided. The conjunctive range predicates

have been derived from the intrinsic properties of the preorder traversal ranks and level

ranks alone.

It should be noted at this point that although the pre/size/level encoding of the XPath

Accelerator appears similar to the pre/level encoding of the PreLevel structure, the under-

lying mechanism used to evaluate location steps on XPath axes is fundamentally different.

The XPath Accelerator exploits the property describing the relationship between the pre-

order, postorder, size and level attributes of nodes in a tree, as presented in §2.3.3. The

PreLevel encoding, on the other hand, evaluates location steps on XPath axes using infor-

mation derived solely from the properties of the preorder and level attributes of the nodes.

Thus, although the XPath Accelerator and the PreLevel structure employ similar node

properties, the computational process underlying the evaluation mechanisms of each of

the index structures are fundamentally different. The conjunctive range predicates of the

PreLevel encoding and their proofs form the theoretical foundation upon which our index,

the PreLevel structure, is built. This platform provides a contribution in establishing the

validity and completeness of our PreLevel encoding to fully support the XPath data model

and to provide the sound basis on which to construct an XML indexing mechanism.

The PreLevel Index structure was presented in chapter 4. The tabular encoding of the

PreLevel structure is an extension to the XPath Accelerator and enhanced to incorporate

our Extended Preorder and Level indexes. The indexes are constructed in parallel and are

automatically sorted during the construction phase. The construction phase was shown to

have minimal computational overhead as both the preorder and level ranks are available

during document parsing. Algorithms for evaluating location steps on the descendant

and following axes in constant time were presented and illustrated, and from these,

evaluations on the remaining XPath axes in constant time were demonstrated. The ability

of the PreLevel structure to support the evaluation of location steps on all XPath axes

in constant time is an important contribution in that it demonstrates, thus far, that the

PreLevel structure is on par with the best existing indexing structures to date, such as

Chapter 6: Conclusions 70

the XPath Accelerator. Furthermore, a efficient algorithm to evaluate the size of a subtree

was presented. This algorithm, whose computational costs are a function of the number

of levels in the tree, contributes to the efficient query evaluations presented in chapter 5.

The principle benefits of the PreLevel structure were presented in chapter 5. An efficient

evaluation of all members of the primary XPath axes commencing from an arbitrary node

was demonstrated. The key contribution of the PreLevel structure was then introduced:

level-based optimised queries. A level-based query is such that the results of the query

reside at a particular level, for example, all grandchildren of a context node. The worst

case computational costs for the evaluation for a level-based query is two binary search

operations of time complexity O(log n) each. The level-based optimisation eliminates the

need for large scale processing of nodes at intermediate levels, regardless of how many

levels separate the context node and the level required. No XML index structure to

date offers such optimisation. This optimisation is made possible by the introduction

of an inverted index, the Level index in our PreLevel structure. The child axis can be

accommodated by our level-based optimisation and requires a single search operation of

time complexity O(log n). This is more efficient than the evaluation provided by the XPath

Accelerator, as outlined in chapter 5. It was further demonstrated that all members of

the following-sibling and preceding-sibling axes may be evaluated and retrieved in

optimal time, an optimisation not possible with the XPath Accelerator. The size of a

level-based result set without requiring its materialisation may be evaluated with just

two search operations. This feature is of particular benefit to the query planners and

query optimisers of XQuery processors in the evaluation of query plans for the execution

of XPath expressions embedded in XQuery statements. Another feature of the PreLevel

structure’s optimisation is the support for wildcard step reduction and query rewriting

and examples were provided in chapter 5. The PreLevel structure, through the benefits

provided by the efficient evaluation of all members of the XPath axes in conjunction with

the optimised level-based queries, provides a powerful indexing structure for a scalable,

reliable and effective query service for large scale XML repositories.

Chapter 6: Conclusions 71

6.2 Future Research

As native XML databases become more pervasive and industrial object-relational data-

bases incorporate XML support as a core component in their product range, more and

more organisations are employing XML within their information management and ex-

change strategies. However, the SQL data format still dominates the mainstream infor-

mation database technology domain and it is envisaged that it will continue to do so for

some time to come. The seamless co-existence of SQL and XML data side by side is

becoming ever more likely. In tandem with the heterogeneity of data formats deployed by

organisations, many applications have requirements that their underlying DBMS support

updates. A limitation of our PreLevel structure presented in this thesis is its read-only

nature. The ability to support data insertions and deletions is of critical concern to many

application domains. The final segment of this thesis focuses on future directions for

continuing this research.

6.2.1 RDBMS Compatibility

Due to the tabular representation of the PreLevel structure, it can reside inside a relational

database - it is effectively a relational index structure. Its implementation can benefit from

the well established indexing technology of the relational domain, notably the B+tree and

the R-tree. It should be noted at this point that the PreLevel structure was presented

as a theoretical model and the benefits of the PreLevel structure such as constant time

lookup were demonstrated with respect to this theoretical model. However, depending on

the techniques employed at implementation time, a hash table index will permit access in

constant time, whereas a B+tree index enables access time that is a logarithmic function

of the document size. Thus, the runtime performance benefits provided by the PreLevel

structure is determined in part by the implementation techniques employed at deployment.

When the PreLevel structure was introduced, it was presented as an extension to the XPath

Accelerator. The Extended Preorder index of the PreLevel structure has a similar tabular

encoding to the XPath Accelerator. In [GVT04], the author provides an in-depth analysis

of the relational aspects of the XPath Accelerator and outlines several experiments using

Chapter 6: Conclusions 72

various RDBMSs demonstrating its implementation. These analyses can be applied to the

Extended Preorder Index and could be extended to investigate the specific properties of

the PreLevel structure.

In [GST04], the authors describe a compiler that translates XQuery expressions into a

relational algebra which may be efficiently implemented on top of any RDBMS. The trans-

lation procedure is fully compositional and emits algebraic code that strictly adheres to

the XQuery language semantics of document and sequence order as well as node identity.

These mappings turn RDBMSs into relational XML processors. Such XPath relational

processors are the key to the seamless co-existence of SQL and XML data. The deploy-

ment of the PreLevel structure in the construction of a relational XPath and XQuery

processor offers interesting challenges and avenues of research.

6.2.2 Support for Updates

The PreLevel structure is presented as a read-only index in this research thesis. However,

the PreLevel structure may be adapted to incorporate insertions and deletions without a

significant impact on query performance. In [GVT04], the author details several index-

ing strategies, such as B+tree and R-trees that facilitate updates with acceptable query

performance. To facilitate the updating of the Level index, a relational storage structure

called the Relational Interval tree (RI-tree), presented in [KPS00], is tailored to respond

to updates and interval queries of the form [a,b]. The RI-tree may be investigated to

determine its suitability as an dynamic index structure for our Level index.

However, one significant problem remains: the update of the position column within the

Extended Preorder Index. Due to the properties of the position column and its intrinsic

mapping to the Level index, support for updates in this column would significantly impact

on the query performance of the PreLevel structure. To overcome this obstacle, the position

column may be removed altogether. The impact on the query performance of the PreLevel

structure by the removal of the position column to facilitate updates offers an interesting

avenue of research.

Bibliography

[ABFS02] Bernd Amann, Catriel Beeri, Irini Fundulaki, and Michel Scholl. Querying XML

Sources using an Ontology-based Mediator. In Proceedings of the Confederated

International Conferences DOA, CoopIS and ODBASE 2002, pages 429–448.

LNCS 2519, Springer, 2002.

[AYCLS01] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh Sri-

vastava. Minimization of Tree Pattern Queries. In Proceedings of the 2001 ACM

SIGMOD International Conference on the Management of Data, pages 497–508.

ACM Press, 2001.

[BBC+98] Jon Bosak, Tim Bray, Dan Connolly, Eve Maler, Gavin Nicol, Michael

Sperberg-McQueen, Lauren Wood, and James Clark. W3C XML Specifi-

cation DTD. Online Resource http://www.w3.org/XML/1998/06/xmlspec-

report.htm, 1998.

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic Twig Joins: Opti-

mal XML Pattern Matching. In Proceedings of the 2002 ACM SIGMOD Inter-

national Conference on the Management of Data, pages 310–321. ACM Press,

2002.

[Bou05] Ronald Bourret. XML and Databases. Online Resource

http://www.rpbourret.com/xml/XMLAndDatabases.htm, 2005.

[CDF+04] Don Chamberlin, Denise Draper, Mary Fernández, Michael Kay, Jonathan Ro-

bie, Michael Rys, Jérôme Siméon, Jim Tivy, and Philip Wadler. XQuery from

the Experts: A Guide to the W3C XML Query Language. Addison-Wesley, 2004.

73

Bibliography 74

[CFZ04] Chee Yong Chan, Wenfei Fan, and Yiming Zeng. Taming XPath Queries by

Minimizing Wildcard Steps. In Proceedings of the 30th International Conference

on Very Large Databases (VLDB), pages 156–167. Morgan Kaufmann, 2004.

[CRZ03] Akmal Chaudhri, Awais Rashid, and Roberto Zicari. XML Data Management:

Native XML and XML-Enabled Database Systems. Addison-Wesley, 2003.

[CSF+01] Brian Cooper, Neal Sample, Michael J. Franklin, Gı́sli R. Hjaltason, and Moshe

Shadmon. A Fast Index for Semistructured Data. In Proceedings of 27th Inter-

national Conference on Very Large Databases (VLDB), pages 341–350. Morgan

Kaufmann, 2001.

[Die82] Paul F Dietz. Maintaining Order in a Linked List. In Proceedings of the 14th

Annual ACM Symposium on Theory of Computing, pages 122–127. ACM Press,

1982.

[Eur99] European Commission. The Bologna Declaration. Online Resource

http://europa.eu.int/comm/education/policies/educ/bologna/bologna.pdf,

1999.

[FK99] Daniela Florescu and Donald Kossmann. Storing and Querying XML Data using

an RDMBS. IEEE Data Engineering Bulletin, 22(3):27–34, 1999.

[GKP02] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient Algorithms for

Processing XPath Queries. In Proceedings of the 28th International Conference

on Very Large Databases (VLDB), pages 95–106. Morgan Kaufmann, 2002.

[Gru02] Torsten Grust. Accelerating XPath Location Steps. In Proceedings of the 2002

ACM SIGMOD International Conference on the Management of Data, pages

109–120. ACM Press, 2002.

[GST04] Torsten Grust, Sherif Sakr, and Jens Teubner. XQuery on SQL Hosts. In Pro-

ceedings of the 30th International Conference on Very Large Databases (VLDB),

pages 252–263. Morgan Kaufmann, 2004.

Bibliography 75

[GVT04] Torsten Grust, Maurice Van Keulen, and Jens Teubner. Accelerating XPath

Evaluation in any RDBMS. ACM Transactions on Database Systems, 29(1):

91–131, 2004.

[Kay04] Michael Kay. XPath 2.0 Programmer’s Reference. Wiley Publishing, 2004.

[KPS00] Hans-Peter Kriegel, Marco Pötke, and Thomas Seidl. Managing Intervals Effi-

ciently in Object-Relational Databases. In Proceedings of the 26th International

Conference on Very Large DataBases (VLDB), pages 407–418. Morgan Kauf-

mann, 2000.

[KR05] Noel King and Mark Roantree. Process Composition Using a Semantic Registry.

In Proceedings of the CAISE’05 Workshops, pages 271–285. Springer, 2005.

[LM01] Quanzhong Li and Bongki Moon. Indexing and Querying XML Data for Regular

Path Expressions. In Proceedings of the 27th International Conference on Very

Large Databases (VLDB), pages 361–370. Morgan Kaufmann, 2001.

[LYYB96] Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon, and P. Bruce Berra. Index

Structures for Structured Documents. In Proceedings of the 1st ACM Interna-

tional Conference on Digital Libraries, pages 91–99. ACM Press, 1996.

[MAA+03] Tova Milo, Serge Abiteboul, Bernd Amann, Omar Benjelloun, and Fred-

eric Dang Ngoc. Exchanging Intensional XML Data. In Proceedings of the

2003 ACM SIGMOD International Conference on the Management of Data,

pages 289–300. ACM Press, 2003.

[MBC+04] James McGovern, Per Bothner, Kurt Cagle, James Linn, and Vaidyanathan

Nagarajan. XQuery Kick Start. Sams Publishing, 2004.

[MBV03] Laurent Mignet, Denilson Barbosa, and Pierangelo Veltri. The XML Web: A

First Study. In Proceedings of the 12th International World Wide Web Confer-

ence (WWW2003), pages 500–510. ACM Press, 2003.

[Mei02] Wolfgang Meier. eXist: An Open Source Native XML Database. In Web, Web-

Services, and Database Systems, NODe Web and Database-Related Workshops,

pages 169–183. LNCS 2593, Springer, 2002.

Bibliography 76

[MP01] Peter McBrien and Alexandra Poulovassilis. A Semantic Approach to Integrat-

ing XML and Structured Data Sources. In Proceedings of the 13th International

Conference, CAiSE 2001, Advanced Information Systems Engineering, pages

330–345. LNCS 2068, Springer, 2001.

[MS99] Tova Milo and Dan Suciu. Index Structures for Path Expressions. In Proceedings

of the 7th International Conference on Database Theory, pages 277–295. LNCS

1540, Springer, 1999.

[MWA+98] Jason McHugh, Jennifer Widom, Serge Abiteboul, Qingshan Luo, and

Anand Rajamaran. Indexing Semistructured Data. Technical Re-

port, Computer Science Department, Stanford University. Online Resource

http://citeseer.ist.psu.edu/mchugh98indexing.html, 1998.

[NLB+02] Ullas Nambiar, Zoé Lacroix, Stéphane Bressan, Mong-Li Lee, and Ying Guang

Li. Efficient XML Data Management: An Analysis. In Proceeding of the 3rd In-

ternational Conference on E-Commerce and Web Technologies (EC-Web), pages

87–98. LNCS 2455, Springer, 2002.

[OBR05] Martin F O’Connor, Zohra Bellashène, and Mark Roantree. An Extended Pre-

order Index for Optimising XPath Expressions. In Proceedings of the 3rd Inter-

national XML Database Symposium (XSym 2005), pages 114–128. LNCS 3671,

Springer, 2005.

[OOP+04] Patrick O’Neil, Elizabeth O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller,

and Nigel Westbury. ORDPATHs: Insert-Friendly XML Node Labels. In Pro-

ceedings of the 2004 ACM SIGMOD International Conference on the Manage-

ment of Data, pages 903–908. ACM Press, 2004.

[Ora03] Oracle XML DB Developer’s Guide 10g Release 1 (10.1). Online Resource

http://otn.oracle.com, 2003.

[Ram02] Prakash Ramanan. Efficient Algorithms for Minimizing Tree Pattern Queries. In

Proceedings of the 2002 ACM SIGMOD International Conference on the Man-

agement of Data, pages 299–309. ACM Press, 2002.

Bibliography 77

[SBKJ02] Marko Smiljani, Henk Blanken, Maurice Van Keulen, and Willem

Jonker. Distributed XML Database Systems. Technical Report, Data-

base group, Faculty of Informatics, Twente University. Online Resource

http://doc.utwente.nl/fid/1166, 2002.

[Sed88] Robert Sedgewick. Algorithms. Addison-Wesley, second edition, 1988.

[SHYY05] Adam Silberstein, Hao He, Ke Yi, and Jun Yang. BOXes: Efficient Mainte-

nance of Order-Based Labeling for Dynamic XML Data. In Proceedings of the

21th International Conference on Database Engineering, pages 285–296. IEEE

Computer Society, 2005.

[TVB+02] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram,

Eugene J. Shekita, and Chun Zhang. Storing and Querying Ordered XML

using a Relational Database System. In Proceedings of the 2002 ACM SIGMOD

International Conference on the Management of Data, pages 204–215. ACM

Press, 2002.

[VFS04] Avinash Vyas, Mary F. Fernández, and Jérôme Siméon. The Simplest XML

Storage Manager Ever. In Proceedings of the 1st International Workshop on

XQuery Implementation, Experience and Perspectives <XIME-P/> in cooper-

ation with ACM SIGMOD, pages 37–42, 2004.

[Wor04a] World Wide Web Consortium. Document Object Model (DOM) Level 3 Core

Specification, W3C Recommendation edition, April 2004.

[Wor04b] World Wide Web Consortium. eXtensible Markup Language (XML) 1.0 (Third

Edition), W3C Recommendation edition, February 2004.

[Wor04c] World Wide Web Consortium. XML Schema Parts 0-2 [Primer, Structures,

Datatypes] (Second Edition), W3C Recommendation edition, October 2004.

[Wor05a] World Wide Web Consortium. XQuery 1.0: An XML Query Language, W3C

Working Draft edition, April 2005.

[Wor05b] World Wide Web Consortium. XML Path Language (XPath) 2.0, W3C Working

Draft edition, February 2005.

Bibliography 78

[ZND+01] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.

Lohman. On Supporting Containment Queries in Relational Database Man-

agement Systems. In Proceedings of the 2001 ACM SIGMOD International

Conference on the Management of Data, pages 425–436. ACM Press, 2001.

	Declaration
	Acknowledgments
	Abstract
	Contents
	List of Figures
	Introduction
	The XML Data Model
	XML Databases
	Large-Scale XML Integration
	Motivation
	Contribution
	Conclusions

	Related Research
	The ORDPATH Research Project
	ORDPATH Labelling Scheme
	ORDPATH Query Plans
	Limitations

	Indexing In The eXist Database
	Overview
	eXist Numbering Scheme
	eXist Query Plans
	Limitations

	XPath Accelerator Index Structure
	Overview
	Benefits and limitations of the XPath Accelerator
	Modified XPath Accelerator Encoding

	Conclusions

	PreLevel Encoding
	The XPATH Language Specification
	Tree Traversal
	Overview
	Numbering Nodes

	The PreLevel Encoding Mechanism
	Navigating the Descendant Axis
	Navigating the Ancestor Axis
	Navigating the Following Axis
	Navigating the Preceding Axis

	Conclusions

	PreLevel Index Structure
	Indexing Method
	Properties of Extended Preorder and Level Indexes

	 Descendant and Ancestor Axes Evaluation
	Descendant Lookup Operations

	 Following Axis Evaluation
	Constant Time Evaluation

	Remaining XPath Axes Evaluation
	Evaluating the size of a Subtree
	Computational Cost
	The SizeOfSubtree Algorithm
	Observations

	Conclusions

	XPath Query Optimisations
	Primary XPath Axes Evaluation
	Descendant and Ancestor Axes Evaluations
	Following Axis Evaluation
	Preceding Axis Evaluation

	Optimised Level-based Queries
	Level-based Queries Overview
	Computational Cost
	Evaluating All Members of the Child Axis
	Following-Sibling and Preceding-Sibling Axes Evaluation
	Evaluating the Size of a Level-based Result Set
	Optimising Wildcard Evaluation
	Efficient Ancestor Evaluation

	Conclusions

	Conclusions
	Thesis Summary
	Future Research
	RDBMS Compatibility
	Support for Updates

	Bibliography

