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Abstract

There is much interest in the development of field emitters for a number of
applications, such as field emission displays and small x-ray sources. For
these applications robust, sharp field emitters, capable of delivering suffi-
cient current densities are needed. This thesis describes the development
of an apparatus to test the field emission properties of a variety of sam-
ples. This apparatus included a metal electrode to measure current-voltage
characteristics, and a phosphor electrode to determine distribution and uni-
formity of emission. Results are presented from a variety of zinc oxide (ZnO)
nanostructures (grown by vapour phase transport, chemical bath, and pulsed
laser deposition), and zirconium alloy films. The samples were analysed by a
variety of techniques such as scanning electron microscopy and x-ray diffrac-
tion, and their field emission properties determined using the field emission
apparatus developed. A new treatment for analysing field emission results
was developed and applied to the data. The results of these analyses were
evaluated in the context of the current literature. The suitability of the
aforementioned growth methods for growing ZnO nanostructures for field
emission applications was investigated. The effect of inter-rod spacing and
aluminium doping on the field emission properties of ZnO nanostructures
was also investigated.
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Chapter 1

Introduction

1.1 Current Developments in Field Emission

Field emission is the emission of electrons from the surface of a condensed

phase of matter, into another phase, under the action of electrostatic fields.

Field emission most frequently takes place from a solid into a vacuum. It

is a quantum effect, distinct from other kinds of emission such as Schottky

emission, in that electrons quantum tunnel through the potential barrier at

the material’s surface, rather than overcoming the barrier. [1]

There has been much interest in the development of field emission elec-

tron sources, for use in new technologies such as flexible displays [2] or small

x-ray sources [3, 4]. For these applications robust, sharp emitters of conduc-

tive, low work function materials, such as metals, are required.

Field emission was first reported in 1897 [5], by R.W. Wood, who was

attempting to produce intense x-rays. It was first described mathematically

by Ralph H. Fowler and Lothar W. Nordheim in 1928 [6]. They developed
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the Fowler-Nordheim (FN) theory, which still serves as the basis for modern

field emission analysis. They determined that the main factors affecting field

emission were the work function of the emitter, and the electric field strength.

Though emission was initially considered from planar emitters, single sharp

metallic tips became the focus of much research [1, 7, 8]. Microelectronics

devices composed of 2D-arrays of molybdenum emitting tips were also suc-

cessfully developed by Spindt et al [9]. These emitters are well suited to field

emission, as sharper, higher aspect ratio emitters will experience a greater

field at the point of emission than planar emitters.

With continuing research into nanomaterials, development of new fabri-

cation methods have led to an increased interest in the use of nanostructures

for field emission research [10]. Nanostructures can be grown with various

materials in a variety of morphologies, and importantly for field emission,

allow for very high aspect ratios.

The wide band gap material zinc oxide has received particular attention

for this application, due to its favourable properties.

2



1.2 Zinc Oxide Properties

In this section, we detail the general properties of zinc oxide, and specifically

the key properties which relate to field emission. We include our review of

the possible work function values for different configurations of ZnO.

Zinc oxide (ZnO) is a popular material for research in many fields due

to its versatility in chemical, physical, or engineering applications. It has

potential and current uses in many areas such as electronics [11], optoelec-

tronics [12], and spintronics [13]; and it is a good material for the fabrication

of nanostructures, including nanorods and nanowires [14].

Zinc oxide is a II-VI semiconductor [15] with a wide direct band gap

[16]. A wide band gap is generally considered to be one larger than three

electron volts. The accepted value for zinc oxide’s band gap is 3.37 electron

volts [17]. This wide direct band gap is one of the properties that make it

suitable for optoelectronics, particularly light emitting diodes (LEDs) and

laser diodes (LDs).

The band gap energy of 3.37 eV corresponds to a wavelength of 369 nm.

This is similar to other wide band gap semiconductors being slightly longer

wavelength than gallium nitride or zinc sulphide. 369 nm is just inside the

ultra violet (UV) area of the spectrum (known as UVA).

A direct band gap means that the maximum energy state in the va-

lence band and minimum energy state in the conduction band have the same

momentum. Thus in a direct band gap semiconductor its possible for an elec-

tron to transition between the valence band and the conduction band with

little or no momentum change (see Figure 1.1). This is what makes these

materials apt for use in optical devices, as photons have a very small amount
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of momentum; suitable for these kinds of direct band gap transitions, but

not indirect transitions, where a large momentum change is required. An

electron in the valence band can be promoted to the conduction band by

a photon, which is a single body absorption. Two body absorptions (for

example a photon and a phonon) are required for similar promotion in an

indirect gap semiconductor, as momentmum must be conserved, and these

absorptions are rare compared to single body absorptions.

Figure 1.1: Direct and Indirect Bandgaps

The advantages to zinc oxide over similar wide direct band gap semi-

conductors are its large exciton (a bound electron-hole pair) binding energy

of ∼60 meV, its availability in large high quality single crystals, and that it

can be grown and processed efficiently using both bottom up and top down

techniques. [18]

The exciton binding energy of 60 meV corresponds to an exciton dis-

sociation temperature of ∼464 K, well above room temperature (∼293 K or

∼37 meV). Radiative emission due to exciton recombination has a higher

transition probability than emission from an un-bound electron-hole tran-
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sition. There are other wide band gap semiconductors with potential for

UV optical devices, for example gallium nitride and zinc sulphide. However,

these have lower exciton binding energies, 21 meV and 39 meV respectively.

These correspond to temperatures of ∼162 K and ∼301 K, well below and

slightly above room temperature, respectively. This comparatively higher

chance of radiative emission at room temperature is one of the reasons for

interest in using zinc oxide in LEDs and LDs.

Under normal circumstances (unlike extremely high pressures, or crys-

tal seeding) zinc oxide has a hexagonal wurtzite structure [19] (see Fig-

ure 1.2), where each zinc atom is surrounded by four oxygen atoms, and

each oxygen atom is surrounded by 4 zinc atoms. The lattice parameters

are:

a = b = 0.32488 nm

c = 5.2059 nm

This forms a hexagonal layered structure, which can be thought of as

two hexagonal close packing lattices overlaid on each other (see Figure 1.3).

One interesting result of this structure is that when cleaved along the basal

planes polar faces (the (0001) and (0001) planes) - faces which terminate

with a single element, either oxygen or zinc can be obtained.

The most useful morphological property of zinc oxide for nanostruc-

ture growth is its tendency to align and grow preferentially along the c-axis

[17, 21]. This property is one that makes zinc oxide appropriate for epitaxial

growth (thin films/buffer layers), and nanostructures. Zinc oxide lends it-

self well to deposition methods such as Chemical Vapour Deposition (CVD),

Pulsed Laser Deposition (PLD), Molecular Beam Epitaxy (MBE) and sput-

tering [18]. The thin films created by these deposition methods will tend to
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Figure 1.2: Wurtzite Unit Cell

have a natural crystallographic texture due to the tendency to align along

the c axis. It is easy to produce thin films that are mosaic crystalline. This

means that while they are not perfect single crystals, but rather polycrys-

talline. However the individual crystallites in the polycrystal are all only

slightly misaligned. These thin films are ideal for nanorod growth because

the c-axis alignment provides the surface with nucleation points for aligned

nanorods to begin growth on [22].

ZnO is also radiation hard, significantly more so than silicon or gallium

nitride, making it appropriate for use in space applications such as low-orbit

satellites [23].

These properties make zinc oxide an appropriate candidate for fabricat-

ing field emitters, in particular its ease of nanostructure growth, providing
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Figure 1.3: Zinc oxide crystal structure [20]

sharp emitters, and it’s favourable electronic properties, such as its work

function and the ease of n-type doping.

There has been much work on the field emission of zinc oxide emitters,

typically disordered assemblies of vertically oriented nanowires [3, 4]. Works

generally analyse the field emission characteristics by use of the Fowler-

Nordheim theory, and report favourable results [24–28].

The work-function of the emitting material is a key factor in field

emission. The work-function value of 5.3 eV is very commonly used by au-

thors working in the ZnO nanowire FE field, obtained by Minami et al for

magnetron-sputtered ZnO thin films [29]. However there are a wide range of

potential values for ZnO structures. We have undertaken a review of these

values, and summarise the appropriate values from the literature, along with

the electron affinity (χ), and the band bending at the surface (BB), in Ta-

ble 1.1.
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Reference φ Zn (eV) φ O (eV) χ Zn (eV) χ O (eV) BB Zn (eV) BB O (eV)

Clean [30] 3.7 6.0 3.7 4.5 -0.2 1.3

annealed surfaces

Reconstructed, [30] 3.3 4.3 3.3 3.9 -0.2 0.15

adsorbed

[31] 3.15 4.85 3.35 5.05 -0.3

[32] 4.1

Polycrystalline [33] 5.3 5.3

thin film

Table 1.1: Work function (φ), electron affinity (χ), and band bending (BB) for the
hexagonal faces of ZnO

Jacobi et al have carried out detailed angle-resolved ultraviolet pho-

toelectron spectroscopy (UPS) measurements on clean, annealed ZnO polar

(0001) and (000-1) faces[30] and measured the corresponding values of the

work function, electron affinity, and band bending. The work function values

were found to rapidly change as a function of time due to surface reconstruc-

tion, defect creation, and gas adsorption effects and reach asymptotic values

of 3.3 eV and 4.3 eV, respectively. These asymptotic values would be more

appropriate for most ZnO samples, which have been exposed to ambient con-

ditions for extended periods. Marien [31] has measured the work function

of the polar faces of ZnO needles using a combination of FN characteristics

and low-field ionization characteristics, independently of any possible field

enhancement factors. The Fermi level is placed 0.2 eV below the conduction

band minimum in the bulk in these works. A value of 4.1 eV is quoted in

Reference [32] for the electron affinity of the (0001) face, based on Schottky

contact barrier measurements. Semet et al [34] accounted satisfactorily for

their experimental observations on 〈002〉 vertically aligned ZnO nanowires if

they assume an actual work function of the order of 1 eV due to severe modifi-

cation of the electronic and structural properties of the emitting surface after

prolonged field emission. On the basis of the above review, we believe that

work function values of between 3.3 eV and 4.3 eV, rather than 5.3 eV found
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by Minami et al, may be more appropriate values for ZnO polycrystalline

material or disordered nanowire assemblies.
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1.3 Growth of ZnO Nanostructures for Field

Emission

1.3.1 General Principles for ZnO Growth

There are a variety of methods used for the growth of ZnO films and nanos-

tructures, on a variety of substrates. In this section we will give a brief

outline of the methods relevant to this work, and their advantages and dis-

advantages. There are two types of epitaxial growth: homoepitaxy, where a

material is grown on a substrate composed of the same material, and het-

eroepitaxy, where a material is grown on a substrate composed of a different

material. For heteroepitaxial growth, the plane presented at the surface of

the substrate must have a reasonable match to a plane of zinc oxide. In epi-

taxial growth, the deposited material will attach to the atomic sites at the

substrate surface, causing the material to grow in a given orientation. This

type of growth ensures control of the crystal orientation, and good crystal

quality, which in the case of nanowire growth will ensure better alignment.

However good epitaxial substrates may have other properties that make their

use unfavourable, for example sapphire is an insulator, making it inappropri-

ate for field emission samples.

For non-epitaxial substrates, a seed layer is usually deposited. Due to

ZnO’s tendency to align along the c-axis as discussed in section 1.2, a thin film

of ZnO deposited on the substrate surface will present a surface of reasonable

crystal quality for epitaxial growth. This two-stage growth is widely used for

growing ZnO nanostructures, with various deposition techniques.

The substrate commonly used in this work is phosphorus doped, n-type,
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(100) Silicon, a non-epitaxial substrate that has many advantages. Silicon’s

high melting point makes it compatible with growth methods requiring high

temperatures, such as pulsed laser deposition and vapour phase transport.

Its electrical conductivity is advantageous for field emission, as it provides

a conductive path from any material grown on the surface to the back of

the sample. Finally it is readily available and relatively inexpensive. The

methods and techniques used in the fabrication of the samples used in this

work were vapour phase transport, pulsed laser deposition, chemical bath

deposition, and nanosphere lithography, which we detail below.

1.3.2 Vapour Phase Transport

Vapour phase transport (VPT) is a method of zinc oxide nanorod growth.

A typical VPT apparatus can be seen in Figure 1.4. In VPT a mixture of

zinc oxide powder and carbon, in the form of graphite powder, is heated and

evaporated. The resultant zinc vapour is introduced to the surface of a sub-

strate or thin film, where it condenses and oxidises. In the evaporation the

zinc oxide and the carbon react to form carbon monoxide and zinc vapour.

When this evaporated material meets with the surface it condenses at the

nucleation points, the zinc reacting with oxygen in the furnace, condensing

into zinc oxide at the nucleation points. These reactions are called carboth-

ermal reduction and are summed up in the chemical equations below [22]:

ZnO + C → Zn+ CO

Zn + 1
2

O2 → ZnO

Carbothermal reduction reduces the vaporisation temperature, com-

pared to using zinc oxide powder alone, allowing VPT growths to be per-
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formed at lower temperatures [35]. With careful control of the parameters,

the depositing zinc oxide can form nanostructures, notably nanowires [22],

on the substrate. Silicon is a typically used substrate, as discussed in the

previous section. As ZnO does not readily nucleate on the surface of a Si

substrate, a direct growth of wires on the surface is not possible. Silicon

coated with a metal catalyst layer can be used [36, 37], however due to poor

lattice matching between Si and ZnO, wires grown tend to be poorly aligned.

If a thin film of zinc oxide is deposited on the Si substrate, it can act as a

template layer for the nanowires to give better alignment. These template

layers are grown on directly [38], or with an Au catalyst coating [39]. The

presence of catalysts is undesirable for field emitters, as catalyst grown sam-

ples often exhibit pieces of the catalyst material at the tip of the nanowire,

where emission occurs [14, 37]. Rods grown by VPT typically present a single

crystal hexagonal prism, with typical heights and widths of a few microns

and a few hundred nanometres, respectively. An example of ZnO nanowires

grown by VPT on a catalyst-free ZnO thin film can be seen in a work by

Rajendra Kumar et al [22]. A SEM image of the ZnO nanowires shown in

the work is reproduced in Figure 1.5.

Figure 1.4: (a) A standard Vapour Phase Transport (VPT) growth chamber, (b)
arrangement of powders, substrate, and alumina sample boat

The variables in a VPT growth are the temperature, deposition time,

flow of gas through the furnace, amounts and composition of powders, the
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Figure 1.5: SEM image of VPT nanowires, grown with varied parameters by Ra-
jendra Kumar et al [22]

substrate used, and the position of the substrate relative to the powders

and flow of gas. Typical temperatures used in VPT zinc oxide nanowires

growths range from ∼500-850 ◦C, and growth times ranging of ten minutes

to one hour (not including temperature ramping times). A wide variety of

substrates can be used. VPT can be used in combination with lithographic

techniques, allowing for the growth of ordered, spaced arrays of nanowires

suitable for field emission [39, 40].
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1.3.3 Pulsed Laser Deposition

Plasma is a high energy phase of matter, where the matter is highly ionised

and exhibits collective behaviour. There are many methods for producing

plasmas, including through the use of laser ablation. When a laser irradiates

a solid target, light is partially absorbed by the target. If the absorbed energy

is high enough and concentrated enough, the bonds in the material will be

broken, creating a plasma. Low wavelength lasers, typically UV, are required

due to their low penetration depth. The minimum fluence (energy per unit

area) required to create a laser induced plasma is known as the ablation

threshold. For ZnO the ablation threshold is ∼0.44 Jcm−2 [41]. The plasma

created will expand outwards into the surrounding gas or vacuum; this jet of

plasma is referred to as a plume.

Figure 1.6: A typical PLD apparatus

Pulsed Laser Deposition (PLD) is a material deposition technique. In
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PLD a short-pulse, low-wavelength laser is focused on to a target with fluence

above the materials ablation threshold, such that a plasma plume is created

which will expand in to the vacuum, to impinge upon a substrate and de-

posit material. An example of a PLD set up can be seen in Figure 1.6. The

technique is well established as a method for depositing thin films [42]. The

use of increased background pressures during deposition has also been shown

as a viable method for the production of nanostructures, such as nanostruc-

tured columnar films [43], nanowalls [43] or nanowires [44]. An example of a

nanostructured ZnO grown by PLD can be seen in the work by Premkumar

et al [43]. SEM images presented in the work are shown in Figure 1.7. An

example of PLD grown ZnO nanowires from a work by Tien et al [44] can

be seen in Figure 1.8.

The deposition process can be varied by heating the substrate to differ-

ent temperatures, changing the fluence incident on the target, the distance

between the target and the substrate, and using different mixtures, pres-

sures, or flow rates of background gases. Temperatures typically range from

room temperature to ∼1000 ◦C, with typical fluences of between the abla-

tion threshold and ∼20 Jcm−2. Background pressures are typically 0.01 -

0.25 mbar for thin films, and 0.5 - 1.5 mbar for nanostructures. The ad-

vantages of PLD are that it can produce high quality thin films with thick-

nesses ranging from nanometres to microns, the possibility of stoichiometric

transfer of multi-component materials, and the possibility of producing het-

erostructures by depositing multilayer thin films of different materials. The

disadvantages of PLD are that it is difficult to achieve large scale unifor-

mity of both films and nanostructures, the deposition area is small, and the

turnaround time is quite long. PLD is useful in creating field emitters due

to the facility to produce nanostructures, and the ease of doping by the use
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Figure 1.7: SEM image of PLD nanowalls and nanocolumnar film grown on (a,d)
GaN, (b,e) Al2O3, and (c,f) Si , by Premkumar et al [43]

of doped targets [45].

1.3.4 Chemical Bath Deposition

Chemical Bath Deposition (CBD) is a method of depositing thin films [46]

and nanostructures [47], where material is deposited by immersing a sub-

strate in a chemical solution. A CBD apparatus typically consists of just a

beaker, and a hotplate to control the solution temperature. The variables in

CBD are the composition of the solution, the substrate used, temperature

of the solution, and deposition time. Temperatures needed are typically low

and a wide array of chemical configurations can be used, allowing for the
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Figure 1.8: SEM image of PLD nanowires, grown by Tien et al [44]

use of substrates that would not be suitable for high temperature growth

methods like VPT. Methods for deposition of zinc oxide are typical based

around the decomposition of zinc salts, such as zinc acetate, zinc nitrate,

zinc sulphate, zinc formate, and zinc chloride, either directly into zinc oxide

or into zinc which is then oxidised.

Figure 1.9: SEM image of CBD nanowires, grown by Greene et al [21], with scale
bars of 500 nm and 200 nm for (a) and (b), respectively

At typical example of 2-stage seed layer and nanowire CBD deposition is

presented in the work by Greene et al [21], where substrates were repeatedly
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drop coated and dried off, with a 0.005 M solution of zinc acetate dihydrate

in ethanol, to deposit a layer of zinc acetate crystallites. The substrate was

then annealed at 350 ◦C in air for 20 min, to decompose the zinc acetate

into c-axis aligned zinc oxide nanocolloids. Zinc oxide nanowires were grown

upon these seed layers by suspending the sample face down in an aqueous

solution of 0.025 M zinc nitrate hydrate and 0.025 M diethylenetriamine at

90 ◦C. A SEM image of the nanowires grown can be seen in Figure 1.9.

The benefits of CBD are that it does not need expensive equipment or

high temperatures, compatibility with lithographic techniques, and that it is

easily scalable to produce large uniform samples.

1.3.5 Nanosphere Lithography

Nanosphere Lithography (NSL) is a method of creating an ordered, nano-

scale pattern on a flat, solid surface. A hexagonally close-packed, self-

assembled array of nanospheres (see Figure 1.10) is deposited on to the sur-

face, forming a mask which can be deposited or etched through. Notable

methods for depositing these arrays are drop coating [48], spin coating [49],

or water transfer [50].

In drop coating, a fixed amount of liquid (e.g.: de-ionised water or a

solvent) containing nanospheres in suspension is dropped by a pipette onto

the surface of the substrate, and allowed to evaporate, at room temperature

or with heating. In spin coating, a suspension of nanospheres in liquid is

pipetted onto the surface of the substrate, which is then rotated at high

speed in plane with the surface of sample, around the samples centre, to

spread the mixture out, casting the liquid off the edges of the sample. In the

water transfer method, a suspension of nanospheres in liquid is pipetted on
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Figure 1.10: Hexagonal close-packed nanosphere monolayer, with black and gold
dots marking the two possible patterns

to the surface of a body of de-ionised water. The spheres will float on the

surface of the water, even if their density is greater, due to surface tension.

The spheres will bunch up with each other, self-assembling into a hexagonal

monolayer. The substrate can then be brought up from under the water,

picking up the nanosphere array as it through the surface of the water. The

substrate is then allowed to dry at room temperature or with heating. An

example of a hexagonally close-packed nanosphere monolayer can be seen in

Figure 1.11.

Once a nanosphere mask is present on the surface, material can be de-

posited through it leaving a nano-scale hexagonal array between the spheres.

There are two main methods, the first based around the deposition of a cat-

alyst material, such as gold [51], and the second based around the deposition

of an inert material such as silica [52]. The first method can be seen in

Figure 1.12 (a), where a hexagonally close-packed monolayer of nanospheres

is deposited on the surface, and gold is deposited through the nanosphere
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Figure 1.11: SEM image of a hexagonal close-packed nanosphere monolayer

mask. The spheres are removed, leaving a hexagonal array of gold catalyst,

in the pattern denoted by the gold dots in Figure 1.10. The sample is then

grown on with a method such as VPT or CBD. The zinc oxide will nucleate

at the catalyst points, thus preferentially depositing at these points, causing

the nanowires to grow in the same hexagonal array.

The second method can be seen in Figure 1.12 (b), where a hexagonally

close-packed monolayer of nanospheres is deposited onto a sample. An inert

layer of material, such as silica, is deposited through the nanosphere mask,

and the spheres then removed. This will leave a silica mask with gaps only

at the point of contact between a sphere and the underlying material, in

the pattern denoted by the black dots in Figure 1.10. The sample is then

grown on with a method such as VPT or CBD, with ZnO nanowires growing

at the gaps in the silica mask. Due to the lack of catalyst material, this

method requires a sample that can be directly grown on, such as a ZnO
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Figure 1.12: Example of two methods of producing ordered nanostructure arrays
with NSL; (a) Using a metal catalyst, such as gold, (b) Using a silica mask

thin film. However, catalyst free growth is preferable for field emitters, as

discussed previously. This inert method also has the advantage that gaps in

the nanosphere layer will be filled with inert silica, and thus cause areas of no

growth, whereas the catalyst method will fill gaps with catalyst material, and

thus cause areas of heavy growth which may interfere with field emission. An

example of a ZnO nanowire array grown using gold catalyst NSL patterning,

reproduced from a work by Fan et al [53], can be seen in Figure 1.13.
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Figure 1.13: SEM image of an NSL ordered ZnO nanowire array made by Fan et
al [53]

1.4 Motivation for and Aims of Present Work

As discussed in this chapter, there are a number of applications for reliable,

efficient field emitters. The properties of zinc oxide are favourable for field

emission. The motivation of this work is the investigation of the suitability

of zinc oxide nanostructures for field emission applications. As outlined,

the key parameters for field emission are the field enhancement due to the

sample morphology and the work function of the material. We develop a

new analytical treatment, which combines the general FN theory with new

developments in the literature, to interpret experimental data. In Section 3.1

we describe the design and building of an apparatus to investigate the field
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emission properties of the various zinc oxide nanostructures. In Section 4

we investigate the field emission properties of morphologically varied ordered

arrays of zinc oxide nanowires grown by VPT and CBD. In Section 5.1 we

investigate the effective of n-type doping on the field emission properties

of nanostructured columnar films grown by PLD. The motivation for these

experiments is to optimise these two parameters, with a view to maximising

the current densities achieved and minimising the voltage required to achieve

these current densities.
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Chapter 2

Theoretical Background on

Electron Emission

2.1 Classical Electron Emission

Electron emission is any process in which electrons within a material escape

from the material through the surface. In a metal, electrons are considered as

a Fermi gas, able to freely move inside the metal. They are contained within

the material’s volume by a potential barrier at the surface called the work

function. The work function is defined as the amount of energy required to

move an electron in the Fermi level of a solid to a point outside the solid.

For classical electron emission to occur electrons must be given sufficient

energy to exceed the work function (Figure 2.1). In thermionic emission,

this energy is provided by heat. In photoemission this energy is provided by

incident photons.

The value of the work function is dependent on both the bulk and
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Figure 2.1: Schematic of Electron Energy at the surface of a free electron gas at
0 K, where φ is the work function

surface properties of a material, and in crystalline materials may differ for

the various crystal planes [54]. A discussion of various work functions for

zinc oxide is provided in Section 1.2.

2.1.1 Thermionic Emission

Thermionic emission occurs due to the transfer of energy, greater than the

barrier height, from lattice vibrations to the electrons. At 0 K the distri-

bution of electrons is a step function, such that the probability of finding

an electron below the Fermi level is unity and the probability of finding an

electron above the Fermi level is zero (see Figure 2.1).

f(E) = 0 when E > Ef (2.1)

f(E) = 1 when E < Ef (2.2)
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where E is the energy and Ef is the Fermi level.

At above zero temperatures, electrons can be in energy levels above the

Fermi level. The probability of an electron occupying any given energy level

is determined by the equation:

f(E) =
1

exp
(
E−Ef

kT

)
+ 1

(2.3)

where k is Boltzmann’s constant and T is the temperature

An equation to derive current density due to thermionic emission was de-

veloped by Owen Richardson in 1928 [55]:

J = λr

[
4πmek

2e

h3

]
T 2 exp

(
−Φ

kT

)
(2.4)

where J is the current density, λr is a material dependant correction usually

∼0.5, me and e are the mass and charge of the electron respectively, h is

Planck’s constant, and Φ is the work function.

2.1.2 Schottky Emission

Schottky emission is the emission of electrons from a material over the surface

barrier, due to lowering of the barrier by an external electric field [56] (see

Figure 2.2). In the absence of an electric field the electrons experience a

barrier of height equal to the work function (Φ). Under the application of an

electric field the barrier will be reduced by ∆Φ, increasing the rate of electron

emission and thus the current density (J). Using the Richardson equation
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Figure 2.2: Electron Emission Processes, reproduced from a work by Charbonnier
et al [8]

(Equation 2.4), modified for the lowered barrier[57], J will be given by:

J = λr

[
4πmek

2e

h3

]
T 2 exp

(
−(Φ−∆Φ)

kT

)
(2.5)

where ∆Φ is given by:

∆Φ =

(
e3F

4πε0

) 1
2

(2.6)

where F is the electric field strength, and ε0 is the permittivity of free space.
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The above equation is valid for field strengths lower than ∼108 V/m [57].

For higher field strengths the equation becomes inaccurate due to quantum

effects, specifically the contribution of Fowler-Nordheim tunnelling through

the barrier.
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2.2 Field Emission

In field emission, electrons do not gain enough energy to exceed the work

function; the electrons are instead emitted by tunnelling through the poten-

tial barrier at the materials surface. The barrier is deformed by an applied

electric field into a triangular shape, to the point that electrons can tunnel

through the barrier (Figure 2.3). The barrier at the surface is not a sharp

step function, due to the image force, as can be seen in Figure 2.3. Electrons

at the surface of a solid can move a small distance outside the material. This

leaves a positive image charge in the material, attracting the electron back

to the material. This image potential is given by −e2/16πε0x [58]. Field

emission was first reported in 1897 [5], by R.W. Wood, who was attempting

to produce intense x-rays.

Field emission was first described theoretically by Ralph H. Fowler

and Lothar W. Nordheim in 1928 [6]. They developed the Fowler-Nordheim

theory, which still serves as the basis for modern field emission analysis.

2.2.1 Fowler Nordheim Theory

The Fowler-Nordheim model, which describes field electron emission from

metals into vacuum under high electric field, is based on four assumptions:

1. the temperature of the metal is 0 K

2. the electrons in the metal follow the free-electron approximation

3. the surface is smooth and planar

4. the potential barrier near the surface (on the vacuum side) consists of

the image force and the applied electric field (see Figure 2.3).
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Figure 2.3: Bending of potential barrier, a) Image potential effect, b) External
electric field, c) Sum of both effects, where e is the charge of the electron, x is
position and F is the field strength

The effect of the image force was not accounted for in the original work

by Fowler and Nordheim [6]. The theory was later modified by Nordheim

to correct for the image force [59]. As stated previously, the image force is

the force on the electron due to the positive image charge in the surface (see

Figure 2.4). The force (F ) is given by Coulombs law:

F =
1

4πε0

(
(q1)(q2)

r2

)
(2.7)
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Figure 2.4: An electron outside the surface and its corresponding image charge,
both a distance of x from the surface

where q1 and q2 are the charges and r is the distance between them. Solving

for the situation shown in Figure 2.4, where q1 = +e, q2 = −e and r = 2x,

we get:

F (x) =
1

4πε0

(
−e2

4x2

)
(2.8)

The electrostatic force (F (x)) is related to the electric potential (V (x))

by:

V (x) = −
∫ ∞
−∞

F (x)dx (2.9)

Thus the image potential will be given by:
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V (x) =
1

4πε0

(
−e2

4x

)
(2.10)

Thus, combining the image potential with the applied field, the poten-

tial near the surface on the vacuum side (x > 0), will be:

V (x) = − e2

16πε0x
− Fex (2.11)

where F is the electric field strength. We have plotted this potential for a

number of field strengths, as presented in Figure 2.5. These plots show the

effect of increasing field strength on the barrier, making it into a triangular

shape. The range of the significance of the image force is clearly very close

to the surface.

Figure 2.5: Potential barrier at the surface with no electric field (black), with
1011 Vm−1 (red), with 1012 Vm−1 (green), and 1013 Vm−1 (blue)

The following derivation is presented in cgs units, as these were the

units used in the original, and much of the subsequent work. The final
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equations are converted for SI units, and SI units are used here in all the

analyses. The energy of an electron under the surface energy potential V (x)

is given by:

U =
P 2
x

2me

+
P 2
y

2me

+
P 2
z

2me

+ V (x) (2.12)

where Px, Py, and Pz are the momentum in the x, y and z directions, and

me is the mass of the electron. The x-component of this energy is given by:

Ux =
P 2
x

2me

+ V (x) (2.13)

It is assumed that only the x-component, Ux, affects the probability of an

electron penetrating the barrier. A supply function N(Ux)dUx is defined

as the number of electrons incident on the surface within the range Ux to

Ux + dUx per unit area and time. The barrier penetration probability is

defined as D(Ux). The product of these two functions gives the number of

electrons in the range Ux to Ux + dUx tunnelling from the metal into the

vacuum per unit area and time:

P (Ux) = N(Ux)D(Ux)dUx (2.14)

and the current per unit area, or current density, is given by:

J = e

∫ ∞
−∞

P (Ux)dUx (2.15)
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The supply function is derived from the Fermi-Dirac energy distribution [6]:

N(Ux)dUx =
4πmekT

h3
ln(1 + exp

[
−Ux − Φ

kT

]
)dUx (2.16)

where h is Plancks constant.

The barrier penetration probability is calculated with a WKB approx-

imation [60], using V (x) from Equation (2.11) for the potential energy:

D(Ux) = exp

[
−c+

Ux − Φ

d

]
(2.17)

where

c =
4(2meΦ

3)
1
2

3h̄eE
f(y) (2.18)

d =
h̄eE

2(2meΦ)
1
2 t(y)

(2.19)

t(y) = f(y)− 1

2
y

[
df(y)

dy

]
(2.20)

f(y) = 2
1
2 [1 + (1− y2)

1
2 ]

1
2 [E(k2)− (1− (1− y2)

1
2 )K(k2)] (2.21)

k2 =
2(1− y2) 1

2

1 + (1− y2) 1
2

(2.22)

y =
(e3E)

1
2

Φ
(2.23)

K(k2) and E(k2) are the complete elliptical integrals of the first and second
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kinds [61], given by:

K(k2) =

∫ π/2

0

dθ

(1− k2 sin2 θ)
1
2

(2.24)

E(k2) =

∫ π/2

0

(1− k2 sin2 θ)
1
2 (2.25)

The Schottky barrier lowering parameter (y), sometimes referred to as

the Nordheim parameter, describes the lowering of the barrier due to the

electric field. Taking the barrier height as equal to the work function (Φ),

y = 0 will correspond to a barrier height of Φ, and y = 1 will correspond to

a barrier height of 0, relative to the Fermi level. The functions f(y) and t(y)

are factors that correct for the effect of the image force. We have plotted the

Schottky lowering parameter, y, and the barrier transmission probability, D,

as a function of the electric field strength, for a work function value of 3.7 eV,

which is presented in Figure 2.6.

Substituting from Equation (2.16) and Equation (2.17) into Equation (2.14)

gives

P (Ux)dUx =
4πme(Φ− Ux)

h3
exp

[
−c+

Ux − Φ

d

]
dUx (2.26)

This can be inserted into Equation (2.15), giving

J = e

∫ ∞
−∞

4πme(Φ− Ux)
h3

exp

[
−c+

Ux − Φ

d

]
dUx (2.27)
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Figure 2.6: The Schottky lowering parameter (y) in red and the barrier transmis-
sion probability (D) in black vs. voltage

and integrating over all Ux gives

J =
e3E2

8πhΦ(t(y))2
exp

[
−4(2me)

1
2 Φ

1
2

3h̄eE
f(y)

]
(2.28)

Finally, converting the equation for SI units, expressing J in Am−2, E in

Vm−1, and Φ in eV, and applying the relevant constants, a final equation is

obtained:

J = 1.54× 10−6
E2

Φ(t(y))2
exp

[
−6.834× 109Φ

3
2

E
f(y)

]
(2.29)
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The Schottky lowering parameter, y, must also be converted to SI units,

and is then given by:

y = 3.79× 10−5
(E)

1
2

Φ
(2.30)

In an experiment, the field emission is characterised by measuring the

current, I, as a function of the potential difference, V , between the emit-

ter/cathode and a flat anode, separated by a distance, d. The current and

potential difference are related to J and V by:

J =
I

A
(2.31)

E = βV (2.32)

where A is the emitting area in m2, and β is a geometrical factor relating

the potential difference to the local field at the emitter surface, expressed in

m−1. For a planar emitter and flat anode, the electric field is given by:

E =
V

d
(2.33)

Thus β is equal to 1/d for a planar emitter. A sharp emitter with a high

aspect ratio will experience a greater field than that of a planar emitter,

at the same potential difference and separation. In some works a factor, γ,

called the field enhancement factor that relates the macroscopic applied field,

FM , to the field at the emitter surface, FS, is used, such that:

FS = γFM (2.34)
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From this we can relate β and γ by:

γ = βd (2.35)

Expressing Equation (2.29) in terms of I and V gives us:

I = 1.54× 10−6
β2V 2A

Φ(t(y))2
exp

[
−6.834× 109 Φ

3
2

βV
f(y)

]
(2.36)

The current-voltage data taken in a typical field emission experiment is anal-

ysed by plotting ln(I/V 2) vs 1/V . This plot is called a Fowler-Nordheim plot,

and should be linear where field emission is the dominant emission process.

The slope (m) is given by:

m = −6.834× 109Φ
3
2

β
s(y) (2.37)

where

s(y) = f(y)− y

2

(
df(y)

dy

)
(2.38)

In a work by Charbonnier and Martin [62], they detail an approximation for

the current density. In this work a log10 plot is used for the Fowler-Nordheim

plot. In this the slope is given by:

m = −6.834× 109 Φ
3
2

2.3β
s(y) (2.39)

By assuming f(y) = 0.956 - 1.062y2, t(y) = 1.044, and s(y) = 0.956,

and substituting Equation (2.23) for y, and Equation (2.39) for β, the current
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density can be expressed in terms of m, V and Φ [62]:

J = 1.14× 1013G(Φ)
exp(−2.3m

V
)

(m
V

)2
(2.40)

where

G(Φ) = Φ2 exp

(
10.4

Φ
1
2

)
(2.41)

which is roughly constant.

In Charbonnier and Martin’s paper [62] where Equation (2.40) was first

derived, G(Φ) was taken as ∼2700, departing less than 7% for work functions

greater or equal to 4 eV. This was re-evaluated in a paper by Spindt et al [9],

who determined ∼2250 to be a more appropriate value, being accurate within

10% for work functions between 3.4 eV and 11.6 eV. This is a low enough

deviation to ensure sufficently accurate estimates of the current density using

Equation (2.40), and thus the emitting area using Equation (2.31).

The image force correction functions based on the Schottky lowering

parameter, f(y), t(y) & s(y), can be calculated from Equation (2.20), (2.21),

(2.22), (2.23), & (2.38). Calculation of these parameters is non-trivial, due

to the elliptic integrals, E and K. Frequently, their values are assumed

or very roughly approximated to simplify the analysis, as in Charbonnier’s

method [62] detailed above. In reference [7], Van Oostrom generates a table of

values for these functions for different current densities and work functions,

such that this table can be consulted to give a close value, without the

need for calculation. Modern advances have made these calculations easier.

The elliptic integrals can be solved using a MATLAB function ([K,E] =

ellipke(M)). They can also be expressed as arithmetic series:
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K(m) =
1

2
π

[
1 +

(
1

2

)2

m+

(
1

2
× 3

4

)2

m2 +

(
1

2
× 3

4
× 5

6

)2

m3 + ...

]
(2.42)

E(m) =
1

2
π

[
1−

(
1

2

)2

m−
(

1

2
× 3

4

)2
m2

3
−
(

1

2
× 3

4
× 5

6

)2
m3

5
− ...

]
(2.43)

Forbes has found analytical expressions for the Schottky lowering parameter

functions [63]. The following approximations are given for f(y), t(y) and

s(y):

f(y) = 1− y2 +

(
1

3

)
y2 ln(y) (2.44)

t(y) = 1 +

(
1

9

)
[y2 − y2 ln(y)] (2.45)

s(y) = 1−
(

1

6

)
y2 (2.46)

The approximation for f(y) is accurate to within 0.33% over 0 ≤ y ≤ 1.

The approximations for t(y) and s(y) are accurate to within 0.4% over

0 ≤ y ≤ 1. In Figure 2.7 we preset our calculation of f(y) as a function

of y by a number of methods, which illustrates the accuracy of these ap-

proximations compared to the use of MATLAB, or a simpler approximation

from the literature. These approximations allow for convenient and accurate

calculation of each of these functions for any given y value. However these

approximations have yet to see practical use in the literature.
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Figure 2.7: Plot of y vs. f(y) for calculated using the Forbes approximations
(black), MATLAB functions (red), the arithemetic series (green), and the approx-
imation used by Charbonnier [62] (blue)

The effect of the image force can be illustrated by plotting the current

density as a function of electric field strength at the emission point both

with, using these approximations, and without the image force correction,

presented in Figure 2.8. We can also plot universal plots of current density

as a function of electric field strength, for any given work function value. A

number of these plots are presented in Figure 2.9. We now detail our method

of combining these approximations with the FN equation in order to generate

values for β, J and A which take full account of these functions at each data

point.

If one fixes the value of the work function, then β can be evaluated using

successive approximations based on the above equations. Calculation of the β

factor is dependant on the function s(y). The slope taken from an FN plot of
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Figure 2.8: Plots of the FN current density vs. the electric field at the point of
emission, without image force correction (black) and with image force correction
(red) for a work function of 3.7 eV

experimental data can be used to calculate β using Equation (2.37), assuming

s(y) = 1. With a value for β, y can be calculated using Equation (2.30), which

in turn allows the calculation of s(y) using the approximation above. This

s(y) value can be used to recalculate a new β value, and this procedure can

be repeated until convergence, which typically takes ∼5 iterations.

This procedure can be used to calculate β, and the approximations to

estimate f(y) & t(y) at any given I-V data-point. The current density can

then be evaluated using Equation (2.29), and thus the emission area using

Equation (2.31), for each data-point.
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Figure 2.9: Plots of the FN current density vs. the electric field at the point of
emission, for a number of work function values

2.2.2 Temperature Effects

One of the assumptions of the Fowler-Nordheim Theory set out in the previ-

ous section, is that the temperature of the metal or semiconductor emitting

is 0 K, behaving as a degenerate electron gas. This greatly simplifies the

analysis by assuming that all electrons will be below the Fermi energy, and

by ruling out any contribution from thermionic emission. However in ex-

perimental situations the emitter will be at room temperature (∼300 K) or

greater. Field emission where temperature is considered a significant factor

is referred to as “thermal field emission” [64].

The current density for thermal field emission, JTFE, can be obtained

from a model reported in 1956 by Murphy and Good [65]:
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JTFE = JFN
πρ

sin(πρ)
(2.47)

ρ =
kT

eh

2(2meeΦ)
1
2

FS
(2.48)

Figure 2.10: SEM image of bulbous tipped ZnO nanowires observed after field
emission testing, in a work by Semet et al [34]

Field emission experiments are normally performed at room temper-

ature, making ∼300 K seem an appropriate temperature for these calcula-

tions. However, as current passes through the emitter Joule heating takes

place. Samples examined by scanning electron microscopy after field emis-
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sion testing often exhibit signs of deformation consistent with melting [9, 34].

A typical feature is nanowire tips deforming into a bulbous shape. In Fig-

ure 2.10 an example is reproduced from a work by Semet et al [34], where

bulbous tips were observed and attributed to surface diffusion. They also

observed 5-10 µm scale areas of complete melting, presented in Figure 2.11.

Similar areas of melting were observed by Spindt et al [9], which is reproduced

in Figure 2.12. This melting may be caused by Joule heating during field

emission, which would suggest performing calculations taking temperatures

at or above the melting point. However melting, particularly the areas of

complete melting, may be caused by electrical breakdown across the vacuum

gap. As an emitter’s temperature increases atoms or molecules adsorbed to

the surface may be released, and at near melting temperatures gas may be

released from the emitter itself. This localised pressure increase between the

electrode and the sample can lead to the initiation of a vacuum arc, where

high current is conducted through the gas. These high currents will give

rise to much higher temperatures than those present during field emission,

and thus may account for areas of significant melting. With these possible

temperatures in mind, we have estimated the thermal field emission current

density, using Equation (2.47), for a typical work function and electric field

strength of 3.7 eV and 1010 Vm-1, respectively. The results can be seen in Ta-

ble 2.1, for temperatures of 0 K, 300 K, 2248 K, and 3813 K, which are the FN

assumption, room temperature, the melting point of ZnO, and the melting

point of ZrC, respectively. We can see that, even for this large temperature

range, the current density does not vary significantly. This supports the use

of the 0 K assumption implicit in applying FN analysis to experimental data.

The heat energy produced by Joule heating is given by:
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Temperature (K) Current Density (Am-2)

0 4.09 × 1013

300 4.09 × 1013

2248 4.12 × 1013

3813 4.16 × 1013

Table 2.1: Current density for a work function of 3.7 eV and electric field of
1010 Vm-1, for a number of temperatures, estimated using Equation (2.47)

Q

t
= I2R (2.49)

where Q is the energy, I is the current, R is resistance, and t is time.

The energy lost by radiation is given by:

Q

t
= Aσε(T 4 − T 4

0 ) (2.50)

where Q is the energy, A is the surface area, σ is the Stefan-Boltzmann con-

stant, ε is the emissivity of the material, and T0 is the ambient temperature.

Another temperature factor is the Nottingham effect [66], which arises

from the energy difference between the emitted electrons and the electrons

replacing them. If the average energy of the electrons leaving the emitter is

greater than the average energy of the electrons replacing them, there will be

a net energy loss in the emitter, constituting a cooling effect. If the average

energy of the electrons leaving the emitter is lower than the average energy of

the electrons replacing them, this will cause a net gain in energy, constituting

a heating effect. Nottingham identified that for thermionic emission the effect
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Figure 2.11: SEM image of melted area observed on a ZnO nanowire sample after
field emission testing, in a work by Semet et al [34]

was cooling. An average energy ω is lost with each emitted electron, where

ω is given by:

ω = eΦ + 2kT (2.51)

In thermionic field emission, the effect can be either a heating or a

cooling one, depending on the emitter temperature. For an emitter temper-

ature below the “inversion” temperature, Ti, the effect will heat the emitter,

and above this temperature the effect will cool the emitter [67]. Hence the

Nottingham effect tends to stabilize the tip temperature at a value near the

inversion temperature [8]. This inversion temperature is given by:
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Figure 2.12: SEM image of melted area observed on an array of molybdenum cones
after field emission testing, in a work by Spindt et al [9]

Ti = 5.32× 10−7
F

Φ
1
2

(2.52)

A plot of the inversion temperature as a function of the electric field

strength, for a work function of 3.7 eV, can be seen in Figure 2.13.

The average energy of an emitted electron, εe, can be approximated by

the following expression [68]:

εe = −πkT cot

(
πT

2Ti

)
(2.53)
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Figure 2.13: A plot of inversion temperature vs. electric field

2.2.3 Semiconductor Effects

The Fowler-Nordheim theory assumes a free electron gas behaviour for the

emitter. This theory and analysis based on it are often applied to field emis-

sion from semiconducting materials. However, the specific band structure of

semiconductors may have a significant effect on their field emission.

In a crystalline solid, the atomic energy levels coalesce into bands, sepa-

rated by forbidden regions corresponding to the gaps between atomic levels,

with each band having fine structure corresponding to the original atomic

levels [1]. The conduction band is the higher energy band of energy levels

where electrons have enough energy to become non-localised. The valence

band is the lower energy band of energy levels that are occupied at 0 K. In

a metal, these bands overlap. As such, there are electrons in the conduction

band at any temperature. Electrons in the conduction band are delocalised,
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and thus metals are conductors.

In an insulator, these bands are distinct, separated by a large forbidden

region called the band gap. The valence band is mostly occupied, with very

few, if any, electrons in the conduction band, causing them to be insulating.

In cases where the band gap is sufficiently small, electrons from the filled

valence band can be thermally excited into the conduction band, allowing

for conduction at some temperatures. These materials are semiconductors.

A band diagram for these three types of material can be seen in Figure 2.14.

Figure 2.14: Band diagram for metal, semiconductor and insulator, with D and A
denoting the donor and acceptor levels, respectively

In an intrinsic semiconductor the Fermi level is found in the middle of

the band gap[1]. For an n-type semiconductor the Fermi level will be closer

to the conduction band, and in a p-type semiconductor it will be closer to the

valence band. FN theory considers emission exclusively from the Fermi level,
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which in the case of a pure semiconductor is not physically appropriate as

the Fermi level cannot be occupied if it is in the forbidden region. Thus field

emission from a semiconductor must be from either the conduction band, the

valence band, from donor or acceptor states due to doping, or from defect

states within the band gap caused by impurities.

In a free electron gas, emission comes from the top of the Fermi sea.

Thus, for 0 K, the emitted electrons will be from the Fermi level, where the

barrier encountered at the surface by electrons will equal the work function.

To evaluate these other scenarios we can replace the work function, Φ, in

the FN equations with the value of the barrier that will be experienced by

electrons in the other situations. Given the operating temperatures in field

emission experiments, discussed in Section 2.2.2, levels at the bottom of the

conduction band may be occupied. The energy between the bottom of the

conduction band and the vacuum level in a semiconductor is known as the

electron affinity (χ), and will be smaller than the work function, for example

in zinc oxide the difference is 0.2 eV [31]. However, Al-Tabbakh et al. [69, 70]

found that at high field values, there is sufficient lowering of the barrier for

emission to occur from the top of the valence band. The barrier encountered

by electrons at the top of the valence band will be the electron affinity plus

the band gap, which in the case of zinc oxide is 3.37 eV [17].

As they are conductors, there is no electric field penetration into met-

als. However electric fields can penetrate significantly into the surface of

semiconductors [71]. If a positively biased electrode is positioned near the

materials surface, as in standard field emission experiments, the field pene-

trating into the material will cause electrons to accumulate at the surface.

This has the effect of bending the bands downwards at the surface [72]. This

can be seen in Figure 2.15.
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Figure 2.15: Band diagram at emitter surface without and with field penetration
respectively

The diagram on the right of Figure 2.15 shows an n-type semiconduc-

tor with field penetration and subsequent band bending. As discussed, the

Fermi level, Ef , is close to the bottom of the conduction band in an n-type

semiconductor. If the band bending is sufficient, the bottom of the conduc-

tion band can dip below the Fermi level (as shown in the diagram). This will

cause a “pool” of electrons at the surface, with the highest filled level being

at the Fermi level, for a temperature of 0 K [1].

However, the field penetration into a semiconductor may be inhibited

due to screening by occupied surface states. Surface states are electronic

states that occur only at the surface, due to the sudden termination of the

periodic lattice. For a clean semiconductor, the bonds left open on atoms

at the surface will give rise to a narrow band of states, within the band gap

[72]. In doped semiconductors, surface states causes band bending within the

material, bending the bands down near the surface in n-type, and bending
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them upwards in p-type.

In experimental practice, the emitters used will not be fully clean, as

even short exposure to atmospheric conditions will lead to adsorption to

the surface. Adsorption is the process where atoms or molecules, present in

the surrounding medium, adhere to the surface of a material. For a typical

experimental pressure of 10−8 mbar it will only take ∼0.01 s for a monolayer

to adsorb to a clean surface. Atoms or molecules that bond with the surface

can act as donors or acceptors, with donors causing upward band bending

and acceptors causing downward band bending.

If the surface states are sufficiently densely populated, they will screen

the bulk of the material from the electric field, such that there is no field

penetration. This gives effectively metallic behaviour. The degree of band

bending due to surface states in various zinc oxide surfaces can be seen in

Table 1.1.

In cases where these semiconductor effects influence the current voltage

characteristics of a sample’s emission, logarithmic plots of I/V2 vs 1/V will

be non-linear, due to the deviation from traditional FN behaviour [71]. An

example of non-linear plots from various semiconductor samples can be seen

in Figure 2.16. If FN plots from a semiconductor sample are linear, while the

barrier height may be defined by the semiconductor nature of the sample, the

effect of semiconductor effects on the current voltage response can be con-

sidered negligible. Any deviation from linearity observed can be attributed

to the influence of these semiconductor effects. Such deviation from linear

behaviour has been observed in the field emission of ZnO nanostructures,

typically with a sharp change in slope between two linear regions at high and

low field. For example, as discussed in Section 1.1, Al-Tabbakh et al have
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Figure 2.16: Examples of non-linear behaviour from various semiconductors, re-
produced from Field Emission in Vacuum Microelectronics by Fursey [71]

obtained I-V data which produces these non-linear FN plots, for ZnO tetra-

pod nanostructures [69, 70]. They have interpreted this deviation as being

due to emission of valence band at high field values due to the saturation of

the conduction band current.
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Chapter 3

Experimental Details

3.1 Field Emission Apparatus

An apparatus was designed to test the field emission properties of various

samples. The general configuration for field emission characterisation is par-

allel plates (see circuit diagram in Figure 3.1), with the sample acting as the

cathode, and a flat metal electrode as the anode. The separation between

the cathode and anode, d, is typically on the order of a hundred microns and

the bias on the anode on the order of kilovolts to achieve the electric fields

necessary for field emission. When field emission occurs, electrons will be

emitted from the sample cathode, and attracted to the anode. The emission

is characterised by measuring the current as a function of the voltage. Due to

the small gap size and high voltage, ultra-high vacuum (UHV) is necessary

to minimise the chance of breakdown across the gap between the anode and

cathode.

Our main goals in designing this system were achieving the necessary
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Figure 3.1: Parallel plate configuration

high vacuum, the faculty to hold multiple samples at once to decrease the

overall turnaround time, the faculty to take I-V data with good control over

the spacing, d, and the ability to use a transparent phosphor electrode to

image the emission. In this section we describe how the system was de-

signed and built to achieve these goals. A schematic of the apparatus can be

seen in Figure 3.2. Photographs of the completed apparatus can be seen in

Figures 3.3 and 3.4.

3.1.1 Vacuum Setup

As discussed, a requirement for the field emission apparatus is a high or ultra-

high vacuum. The presence of background gases can lead to these gases being

ionised by the strong electric fields required in field emission experiments,

resulting in breakdown, or arcing, between anode and cathode. This could

potentially do damage to the samples, as well as making it difficult to obtain

results. Some arcing will always take place, as it is impossible to completely

eliminate the background gases in the chamber, as well as out-gassing from
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Figure 3.2: Field emission apparatus

the samples. However a high vacuum will minimise the amount of arcing.

A stainless steel CF vacuum chamber was used for the experiments (see

Figure 3.3 and 3.2). It was equipped with a ∼500 l/s Edwards EXT 555HE

turbomolecular pump, with an Edwards rotary RV12 backing pump. Under

normal operation, the turbomolecular pump was kept running constantly.

When opening the chamber was necessary, a gate valve between the pump

and chamber was closed, and the chamber was vented to the atmosphere. To

re-pump, the chamber was evacuated, or roughed, with an Edwards rotary
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Figure 3.3: Field emission apparatus exterior

E2M-18 pump connected to the chamber through a valve. When the chamber

reached a sufficiently low pressure (∼10-4 mbar) the valve to the rotary pump

was closed, and the valve to the turbo opened.

The vacuum in the chamber was monitored with an Edwards WRG-

S-NW35 combitron gauge, and between the turbomolecular pump and its

backing pump using a Leybold pirani gauge. This setup was capable of

reaching an ultimate base pressure of ∼1 x 10-8 mbar. The operating pressure

was taken to be < 10−7 mbar, which could be achieved in ∼24 hours. This

time to reach operating pressure gave rise to a slow turnaround time, which

provided motivation to allow loading of multiple samples at once.
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Figure 3.4: Field emission apparatus interior

3.1.2 Current Voltage Measurement

Once sufficient vacuum had been achieved, the next consideration was the

design of the internal set up of the chamber (see Figure 3.5). In order to allow

for multiple samples to be loaded into the chamber at once, a sample holder

with four stainless steel contacts in Teflon was designed. This holder sits at

roughly mid height in the chamber. One of the four contacts is left exposed,

and samples to be tested are affixed to the other three contacts using silver

paste (SPI Supplies, Silver Paste Plus). As the silver paste is conducting, this

ensured an electrical connection between the surface of the sample and the

stainless steel in the sample holder (for conductive substrates). This sample

holder could be moved horizontally with the y-translator (see Figure 3.2).
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A flat, polished, circular, stainless steel electrode, of radius 8 mm, sits in

a Teflon holder on a rod attached to a linear z-translator at the top of the

chamber (see Figure 3.5). Using this z-translator, the gap between the sam-

ples on the holder and the electrode could be controlled. The z-translator

has a digital scale with a step size of 0.01 mm.

Figure 3.5: Field emission chamber interior cross-section

By moving the sample holder so the unoccupied contact was directly

below the electrode, the electrode was slowly lowered until electrical contact

was made (determined using a multimeter), and zero the digital scale on the

linear translator to this point. The thickness of the (100) silicon wafers used

in this work is 0.5 mm. With the linear translator zeroed on the unoccupied

contact, the height of a sample’s surface should be the known thickness of the

sample, plus a number of other factors. The factors are the thickness of the

silver paste layer, the difference in height between the unoccupied contact

and the other contacts, and the error of the linear translator. Evaluating

these factors was vital to accurately controlling the separation, d.
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To investigate the height of the relative height contacts and the accu-

racy of the linear translator, the electrode was brought in to electrical contact

with the first sample holder contact, and the linear translator zeroed. The

electrode was then brought into contact with each of the other three con-

tacts, and the height taken from the linear translator. The measurements

were performed 20 times, to determine average heights and the reproducibil-

ity of those heights. The results are presented in Table 3.1. A typical plot of

the values for a contact can be seen in Figure 3.6, with a Gaussian curve fitted

to it, giving a full-width half maximum of ∼0.009 mm. The height differences

found were ∼10 - 20 µm, as was the standard deviation. This suggests that

the heights of the contacts were roughly equal, within the accuracy of the

linear translator.

Figure 3.6: Typical height measurement distribution, fitted with Gaussian curve

To investigate the thickness of the silver paste layer, the first contact

was left unoccupied, and 0.5 mm thick silicon samples were attached to the
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Contact Average Height (mm) Standard Deviation (mm)

2 0.01 0.01

3 -0.02 0.02

4 -0.02 0.02

Table 3.1: The 20 measurement average height of the three contacts, relative to
the first contact, and the standard deviation for these averages

other three contacts with silver paste. The electrode was brought into elec-

trical contact with the first contact, and the linear translator zeroed. The

electrode was then brought into contact with each of the silicon samples,

and the height take from the linear translator. The measurements were per-

formed three times to get an average value, then the samples changed and the

process repeated. This was done for 4 sets of silicon samples. The results are

presented in Table 3.2. We see heights ranging from 0.52 - 0.63 mm, with an

average of ∼0.56 mm and a standard deviation of ∼0.04 mm. This indicates

the thickness of the silver paste layer ranges from ∼20 - 130 µm, with an

average of ∼60 µm. This is a significant variance, that would appreciably

limit the controllability of the sample-anode separation, d.

Sample set C2 Height (mm) C3 Height (mm) C4 Height (mm)

1 0.53 0.52 0.54

2 0.57 0.61 0.52

3 0.63 0.56 0.53

4 0.54 0.60 0.52

Table 3.2: The 3 measurement average height of the Si samples at the three contacts
(C2, C3, C4), relative to the first contact, for 4 sets of Si samples affixed with Ag
paste

The silver paste is viscous and lumpy. It may be possible to achieve a

more controllable silver layer thickness, by dilution of the silver paste. To
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investigate this silver paste was diluted with an equal amount of acetone, and

used to affix 0.5 mm silicon samples to the last three sample holders, with

the first contact being unoccupied. The measurement process from above

was repeated, for 8 sets of samples. The results are presented in Table 3.3.

The heights range from 0.50 - 0.60 mm, with an average of ∼0.53 mm and a

standard deviation of ∼0.02 mm. This indicates the thickness of the dilute

silver paste layer ranges from within the error of the linear translator to

∼100 µm, with an average of ∼30 µm. While dilution has reduced the

average thickness, the variance is still significant.

Sample set C2 Height (mm) C3 Height (mm) C4 Height (mm)

1 0.52 0.52 0.50

2 0.57 0.51 0.50

3 0.55 0.52 0.55

4 0.54 0.60 0.52

5 0.55 0.53 0.51

6 0.56 0.55 0.52

7 0.55 0.53 0.51

8 0.55 0.53 0.50

Table 3.3: The 3 measurement average height of the Si samples at the three contacts
(C2, C3, C4), relative to the first contact, for 8 sets of Si samples affixed with Ag
paste diluted with acetone

This lack of reproducibility in the thickness of the silver paste layer

limits the control of the separation. We developed our procedure to eliminate

this uncertainty, by directly measuring the height. Before mounting the

sample holder in the chamber, the height of each sample relative to the

empty contact is measured using a micrometer. With the electrode zeroed

to the unoccupied contact and knowing the relative height of the surface

of the samples, the spacing between the electrode and the samples could
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be controlled to within the accuracy of the linear translator. Our standard

operating distance for obtaining I-V curves was 250 µm.

A circuit diagram for the apparatus can be seen in Figure 3.7. The

resistors and diodes make up a safety circuit, to protect the picoammeter

(Keithley 6485 picoammeter, 10 fA resolution) from high currents in the

case of arcing between the electrode and the sample. The resistors limit the

current, and the two opposite facing, low leakage, fast response time diodes

serve to bypass the picoammeter in the case of a sudden current surge.

Figure 3.7: Circuit design of the field emission apparatus

However the resistors between the sample and the earth means that

the sample is not grounded, but floating at a low voltage. The voltage can

be obtained by calculating the voltage drop over the resistors using Ohm’s

law, and thus the potential difference between the electrode and the sample

can be determined. The electrode was positive biased using a programmable

Stanford PS350 high voltage power source capable of up to 5 kV and 5 mA.

For example if the electrode was biased at 2 kV, and the picoammeter read

100 µA, taking into account the total resistance of the current limiting re-
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sistors being 231 kΩ, by taking V = IR, it can be seen that the potential

difference between the electrode and sample is 1976.9 V. Any I-V data pre-

sented in this work were adjusted as described.

Figure 3.8: Plot of an initial set of I-V data, exhibiting noise and hysteresis

The standard experimental procedure was as follows. Three samples

were affixed to the sample holder, leaving the first contact unoccupied for

zeroing. The heights of the samples were measured by making a measurement

at each corner and an average taken for each sample. The sample holder was

loaded into the chamber, and the chamber pumped down to the operating

pressure of < 10−7 mbar, which typically takes ∼24 hours. The electrode was

positioned over the empty contact, lowered until electrical contact was made,

and the z-translator was zeroed. The z and y translators were then adjusted
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to position the electrode 250 µm over a sample. As shown in Figure 3.2,

the high voltage power source and picoammetter are connected to a PC

through a GPIB interface. The data was taking using a LabVIEW program

to control the Stanford HVPS and the picoammeter through this interface.

The voltage was ramped to a set voltage and back down, the currents read by

the picoammeter, and the corresponding voltages, stored by the computer.

Thus I-V curves the samples were obtained. Initially a low max voltage was

used, with it slowly being increased until a reasonable current, of the order

of µA, was obtained.

Figure 3.9: Plot of a set of I-V data where an arc took place

Initially curves may be noisy or unstable (see Figure 3.8) due to ad-

sorbates on the surface of the sample, Joule heating of the sample, and the
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presences of defective nanostructures, which may be melted, or ionised in

what is known as field ionisation [1]. During initial testing the vacuum pres-

sure, which is stable outside of testing, was seen to spike at times, by up to

∼10−8 mbar. Vacuum breakdown arcs were also observed in initial testing.

The Stanford HVPS has a safety feature, which trips if the current exceeds

1 mA, turning off the voltage. When breakdown occured, the current rose

and the HVPS tripped quickly, such that the data showed no sign of the

arc current, instead appearing to quickly drop off due to the voltage turn-

ing off (see Figure 3.9). A bright blue flash from the sample-anode gap was

observed when these events occurred. Hysteresis (see example in Figure 3.8)

was also observed in the initial data, and has in the past been attributed to

adsorbates [73]. Samples were conditioned by continuously taking I-V curves

until a reproducible, clean curve, where the current for the voltage rise and

voltage fall roughly match, could be obtained (see example in Figure 3.10).

Typically 100 - 200 cycles of ramping the voltage up and down were required.
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Figure 3.10: Plot of a set of I-V data obtained after conditioning

3.1.3 Imaging

One of the goals outlined at the beginning of this section was the develop-

ment of a transparent phosphor electrode, to characterise the distribution

and uniformity of the emission across the sample. A transparent phosphor

electrode is composed of a transparent conductor, such as indium tin oxide

(ITO), coated with a phosphor layer. The conducting layer is used as the

anode in a parallel plate field emission experiment, as described above. The

field emitted electrons colliding with the phosphor layer will cause light emis-

sion. By imaging the phosphor layer, we can image the distribution of the

emission.
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Figure 3.11: Transparent phosphor electrode cross-section

A diagram of the transparent phosphor electrode designed and con-

structed in this work can be seen in Figures 3.11 and 3.12. The transparent

phosphor electrode was made up of a cylinder of BK7 glass, with a coating

of ITO on one face and on the sides. The ITO coated face was coated with

a layer of type P22G phosphor, which is composed of zinc sulphide, copper,

and aluminium. It has an emission peak at a wavelength of 530 nm, an

efficiency of 25% and decays to 10% intensity in 35 µs. The electrode was

held in a teflon cylinder mounted on a hollow stainless steel shaft. A 90◦

prism resting directly on the back of the glass redirected the light. Electrical

contact was made at the side of the electrode cylinder.

Due to a modular design, the stainless steel electrode seen in Figure 3.5

could be removed and replaced with the phosphor electrode without disrupt-

ing the rest of the apparatus. As with the stainless steel electrode, the phos-

phor electrode could be raised and lowered with the z-translator and used

to address each sample with the y-translator. The phosphor was imaged

through a chamber window using an Artcam 150p2 camera. The camera has
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Figure 3.12: Transparent phosphor electrode module cross-section

a resolution of 1360 × 1024 pixels, and when in place and focused, each pixel

corresponds to an area of ∼8 × 10−11 m2 on the phosphor. The phosphor

electrode was connected to the Stanford high voltage power source, as with

the stainless steel electrode, thus I-V data could be taken while imaging the

emission. However, this does not eliminate the need for the stainless steel

electrode. The arcing which takes place during conditioning could signifi-

cantly damage the phosphor. The stainless steel electrode was much more

robust, and could be re-polished if any damage does occur. All transparent

phosphor electrode testing was peformed after first conditioning the sample

with the stainless steel electrode. An example of an image of the phosphor

can be seen in Figure 3.13.
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Figure 3.13: An example of a phosphor image

3.2 Pulsed Laser Deposition

The pulsed laser deposition (PLD) experiments were performed using a vac-

uum system designed specifically for PLD. The system consisted of a ∼50 L

stainless-steel main chamber, with a 4 L stainless-steel ‘load lock’ chamber.

These chambers are connected through a gate valve suitable for a high pres-

sure difference, and can be pumped and vented independently. This allows

the loading and unloading of samples into the main chamber through the

load lock, without breaking vacuum on the main chamber.

The main chamber is pumped with a 500 L/s Pfeiffer TMU 521P tur-

bomolecular pump, with an oil-free, MVP 055 backing pump. This configu-

ration is capable of evacuating the chamber to 10−7 mbar in ∼12 hours, with
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Figure 3.14: PLD apparatus

an ultimate base pressure of ∼3 by 10−8 mbar in ∼24 hours. Pumping down

after depositions, where background gases up to 10−1 mbar may be used, the

system reaches 10−7 mbar in roughly 30 minutes, reaching base pressure in

∼2 hours. The load lock chamber is pumped with 60 L/s Pfeiffer TMU 071

turbomolecular pump, with an oil-free, MVP 015 backing pump. This set

up is capable of evacuating the load lock chamber from atmospheric pres-

sure (after venting with nitrogen to reduce contamination of the chamber)

to 10−7 mbar in ∼1 hour. The pressure in the main and load lock chamber

was measured with Pirani gauges, for high pressures (>10−4 mbar), and with

cold-cathode gauges, for low pressures (>10−10 mbar).

Substrates to be deposited on are attached to a substrate mount with
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Figure 3.15: PLD system

silver paste (SPI supplies, Silver Paste Plus). The substrate mount is heated

at 300 ◦C for ∼30 min after affixing the sample, to dry the silver paste.

This is necessary for good adhesion and also decreases pumping time, as the

silver paste will outgas less when dried. The substrate mount is attached to

an extendable arm in the loadlock chamber, which transfers the mount to a

holder in the main chamber.

The sample holder in the main chamber is equipped with a heating coil,

with a digital control unit, which allows it to be controlled by computer. The

coil is capable of a maximum temperature of 1050 ◦C. The sample holder is

positioned opposite to the deposition targets. The sample can be rotated

about the axis perpendicular to the surface of the substrate via a computer
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controlled motor. Rotating by a whole number multiple of 360◦ during de-

position ensures an even coverage over a substrate placed in the centre of the

sample mount, in the event of the plume being unsymmetrical or not fully

centred on the centre of the sample mount.

The targets are held on motorised carousels. The carousel has six

equally spaced poles on which one inch diameter cylindrical solid targets

can be mounted. The carousel can be rotated, allowing switching of which

target is in position to be fired on by the laser (this position being opposite

the centre of the sample mount). Thus, by mounting six different targets,

depositions can be performed using six different compositions, without need-

ing to break vacuum in the main chamber to change targets. In addition

to rotation of the carousels, the posts themselves can be rotated about the

axis of the post, thus rotating the targets. By rastering the rotation of the

carousel and rotating the targets, the laser spot will be move around the

surface in a spirograph pattern, maximising the surface area used. This will

minimise the cratering of the surface, and increase the lifetime of the target.

A shield can be lowered between the target and the substrate. This

allows the target to be irradiated during laser is set up, without any unwanted

deposition on the substrate.

The laser used in this experiment was a Continuum Powerlite Precision

II Laser. This laser has a fundamental wavelength of 1064 nm, which is

frequency quadrupled using harmonic crystals to a wavelength of 266 nm.

The energy output at this wavelength is approximately 150 mJ per shot, at

a maximum repetition rate of 10 Hz. The pulse duration is 6 ns, and the

spot size was adjusted to 0.05 mm to give a fluence of ∼2 J/cm. Movable

optics allow the laser to be directed into either system as needed. The laser
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is directed into the chamber by two mirrors, and focused by a 30 cm focal

length lens. All optics used are UV compatible.

The target used in the zinc oxide depositions was a sintered 99.999%

purity ZnO, cylindrical target of 2.54 cm diameter and 1 cm height. For

doped zinc oxide depositions, there were three targets of ZnO mixed with

0.02 wt%, 0.2 wt%, and 2 wt% Al2O3 respectively. The substrates used were

Si (100). Prior to deposition substrates were cleaned in an ultrasonic bath,

first for 15 min in acetone, then for 15 min in isopropyl alcohol, drying with

a gentle flow of dry nitrogen after both. Substrates were then affixed to the

sample mount using silver paste, and heated on a hotplate at 300 ◦C to dry

the silver paste. Pre-deposition, substrates were annealed in-situ using the

sample holders heater coil at 900 ◦C for 5 minutes to further clean the surface

of any contaminants.

The main chamber can be populated with background oxygen and/or

nitrogen. In our experiments only oxygen (99.999% purity) was used. The

gas enters the system through a stainless steel pipe, and the flow rate and

chamber pressure were controlled with a flow rate controller and by varying

the speed of the turbomolecular pump. Nitrogen was used to purge the

turbomolecular pump on the main chamber, and for venting the chambers

to atmospheric pressure.
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3.3 Characterisation

3.3.1 X-Ray Diffraction

X-ray diffraction is a characterisation technique which was used on samples

in this work to analyse their texture. A 4-circle diffractometer (D8 Advance

by Bruker AXS) was used with an emitting Cu Kα wavelength of 0.154 nm.

This apparatus allows for position in the circular ranges of motion, θ and φ

(see Figure 3.16), as well as positioning of the sample holder in the x, y, and

z directions.

Figure 3.16: X-ray diffractometer

X-ray diffraction is based on the principle of Bragg diffraction [74] (see

Figure 3.17). A single crystal is a solid made up of a regular, periodic array of

atoms. They can be thought of as being made up of a series of parallel planes

of atoms. Electromagnetic radiation incident on the crystal may be reflected

by these atoms. Waves which are reflected by atoms in different planes will
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have a path difference, and thus are phase-shifted and may interfere with

each other. Bragg determined the condition for constructive interference to

be given by:

mλ = 2d sin θ (3.1)

where n is the order, λ is the wavelength of the electromagnetic radiation, d

is the spacing of the atomic planes, and θ is the glancing angle.

Figure 3.17: X-rays incident on a crystal being Bragg diffracted by the atomic
planes

Thus by determining the angles at which constructive interference oc-

curs, for incident radiation of known wavelength, the spacing between the

planes can be determined and compared to literature values for the plane

spacings of various crystal orientations of various materials. Due to the pen-

etration of the x-rays into the surface this is a bulk characterisation. When

analysing deposited samples such as thin films or nanostructure growth sam-

ples, peaks from both the deposited material and substrate will be observed.

In a typical characterisation in this work, the x, y, z, and φ positions
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were optimised with the source, sample, and detector aligned for a known

constructive interference peak. In our case this peak was normally the peak

of our commonly used substrate, (100) orientated silicon, which has a 2θ

value of 69.132 ◦ [75]. Once the position has been optimised a θ-2θ scan can

be performed, in which the x-ray source was held fixed, the sample holder

was gradually rotated by an angle of θ while the x-ray detector was rotated

by an angle of 2θ. Any peaks found in the θ-2θ scan can be further analysed

by a rocking curve scan, where the x-ray source and detector were held static

while the sample holder was rotated around the θ value for the peak. For

a single crystalline material this peak should be extremely sharp, with any

misalignment in the crystallites causing a broader peak. The full width half

maxima of the same peak in different samples were compared for a qualitative

comparison of crystal quality. In the case of c-axis aligned ZnO nanorods,

each nanorod should be a single crystal, and as such any broadening of the

rocking curve will be due to a misalignment of the rods. Thus the rocking

curve full width half maxima can be used for a qualitative comparison of

nanorod alignment. However due to the penetration of the x-rays, samples

grown on c-axis ZnO seed layers will also have a contribution to the peak

from the underlying film, which can interfere with these comparisons.

A typical θ-2θ scan can be seen in Figure 3.18. The (100) silicon sub-

strate at 69.132◦ and the (002) zinc oxide peak at 34.3◦ can be seen. The

sharp peaks at∼62◦ and∼66◦ are the characteristic peaks of the x-ray source.

In some scans, a peak appeared at ∼33◦, a forbidden silicon peak which arose

due to double diffraction at certain φ angles [76].
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Figure 3.18: A typical θ-2θ scan of a zinc oxide sample

3.3.2 Scanning Electron Microscope

Scanning electron microscopy (SEM) was used to characterise the morphol-

ogy of samples in this work. In SEM, a beam of electrons, typically of energies

ranging from 0.2 keV to 40 keV, is focused on the surface of a sample under

vacuum, and rastered across the surface in lines. The electrons are emitted

from an electron gun by either thermionic emission, field emission, or com-

bined thermal field emission. The emitted electrons are accelerated towards

the sample and focused by an anode. The beam is further focused by mag-

netic lenses which bend the path of the electrons. An image of the sample’s

surface is constructed by detecting the secondary electrons, backscattered

electrons, and emitted light caused by the electron beam [77]. The image

of the surface morphology obtained is two dimensional, however the sample

holder can be tilted, allowing for height and depth of structures to be inves-

tigated. The observation angle is taken from perpendicular to the sample

79



surface, with 0◦ being the sample sitting flat, and 90◦ being a side view. An

example of an image taken using SEM can be seen in Figure 1.5.

Electrons may be ejected from the surface by collision with the incident

electrons. If electrons are ejected from low orbitals, an electron in a higher

orbital may drop into the vacancy left by the emitted electron, releasing its

energy as an x-ray photon. The energy of any x-rays emitted will be charac-

teristic of the transition taking place, and as such by measuring these x-rays

information can be gained about the material composition of the sample.

This technique is called energy dispersive x-ray spectroscopy (EDX).

In this work a Carl Zeiss EVO series Scanning Electron Microscope

(SEM) was used, as well as a Hitachi S5500 high resolution FE-SEM.

80



Chapter 4

Results and Analyses: Field

Emission of Zinc Oxide

Nanowires

4.1 Ordered Zinc Oxide Nanowire Array

As mentioned in Section 1.1, there is interest in the development of field

emission (FE) electron sources for use in new technologies. The wide band

gap material zinc oxide has received particular attention for this application,

due to its ease of nanostructure growth in a variety of possible morphologies,

and favourable electronic properties such as ease of n-type doping. These

properties are directly related to the key factors controlling the field-emitted

current, the applied electric field strength at the point of emission, FS, and

the work function, Φ, respectively; as they are the fundamental parameters

entering the theory developed by Fowler and Nordheim (FN) to interpret
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I-V data. The field emission behaviour of a single, sharp, metallic emitter

has been studied and analysed using FN theory for several decades, e.g.

References [1][7][8], to include a single carbon nanotube in recent work [78].

Microelectronics devices composed of 2D-arrays of molybdenum emitting tips

were also successfully developed by Spindt et al. [9]. Significantly, these

authors showed that the emission takes place in an effective, atomic-sized

area of the order of 10−19 m2 per tip.

The recent developments in nanotechnology fabrication methods have

driven an intensive effort in the use of high aspect ratio ZnO nanostructures

in field emission research due to advantageous physical and material prop-

erties [10]. Recent works typically study disordered assemblies of vertically

oriented, parallel nanowires or nanorods with typical occupation density of

107 cm−2, radii in the range 50-100 nm, heights in the range of 0.5-2 µm and

overall sample surface areas of up to several cm2 [4]. The authors generally

report close to linear plots obtained via standard FN analyses, assuming a

uniform field in the voltage gap (V/d). They report on the field enhance-

ment factor, the turn-on field, and the threshold field, with typical values

of several thousands, 1 V µm−1, and 10 V µm−1, respectively [24–28]. The

apparent reported scatter of field parameters and field enhancement values

out of these many studies indicate no clear trends for the understanding of

the effects of ZnO nanowire topology and individual morphology on the field

parameters. This may be a result in part of the lack of sample uniformity on

the substrate, resulting in non-uniform electric field and emission patterns,

respectively. Nanosphere lithography has proven to be an effective method

of creating ordered, spaced, arrays of nanowires, nanodots or nanotubes, for

a variety of materials including zinc oxide [79–81].

Peculiar emission behavior has also been reported recently by several
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authors. Xiao et al.[82] have observed an unstable oscillating behavior of

the I-V data from single, cone-shaped (“agavelike”) ZnO nanostructures,

which they attribute to the combined effect of surface charging and sur-

face atom diffusion on the nanostructure tip. Semet et al.[34] have reported

linear FN plots for vertically aligned ZnO nanowire planar cathodes, but

showed that the corresponding slopes could only be interpreted if an effec-

tive barrier height of about 1 eV was assumed, and attributed to structural

changes at the nanowire tip due to temperature effects. As discussed in Sec-

tion 1.2 most reports on the topic of FE assume the work function value

Φ = 5.3 eV for ZnO, irrespective of its morphology [29]. Al-Tabbakh et

al. have recorded I-V data leading to highly non-linear FN plots for ZnO

tetrapod nanostructures[69, 70], which they interpreted in terms of conduc-

tion band electrons or valence band currents at high field values due to the

saturation of the conduction band current. It is apparent that the authors

invoke differing electronic processes and work function values to explain the

different results observed.

In this section, the field emission behaviour of hexagonally patterned

arrays of vertically aligned ZnO nanowires is investigated. The control over

emitter morphology should allow the determination of more valid field pa-

rameters. The method of the FN plot is extended by using Forbes’ analytical

expressions [63] discussed in Section 2.2.1, together with the plausible values

of Φ discussed in Section 1.2. This provides for a general treatment of emis-

sion data within the physical framework of FN theory. The field enhancement

factors computed by this treatment are compared with theoretical or mod-

elling estimates, relating them to relevant geometrical parameters such as

aspect ratio and surface density [83–85]. Effective emission areas and cur-

rent densities are also calculated from the present treatment and compared
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with older approaches [9, 62, 86].

The ordered, spaced arrays of zinc oxide nanowires were produced by

Daragh Byrne and Séamus Garry of the Semiconductor Spectroscopy Labora-

tory at Dublin City University, according to the following prescription. First,

a zinc oxide seed layer was chemically deposited by dropping a 0.005 M so-

lution of zinc acetate in ethanol on to a silicon substrate. This was left for

20 s, then rinsed with pure ethanol and repeated five times. The substrate

was subsequently annealed at 350 ◦C for 20 min. Zinc acetate reacts with

water which has diffused into solution from the atmosphere. This reaction

creates zinc hydroxide which precipitates to the substrate surface (it takes

time for the hydroxide to precipitate from the bulk to the sample surface,

hence the 20 seconds before rinsing). Zinc hydroxide decomposes to ZnO

at the high temperatures during the anneal. The ZnO seed layer was then

grown, by chemical bath deposition (CBD) at 90 ◦C for 1 hour, in a solution

of 0.025 M zinc nitrate dissolved in hexamine. This growth was repeated

with fresh solution, giving a total growth time of 2 hour. This ZnO layer was

then coated with a self-assembled monolayer of 1 µm diameter polystyrene

nanospheres, using the water transfer method, and allowed to dry. The re-

sulting sample was annealed at 110 ◦C for 40 s. An acid catalyzed silica sol,

of 0.5 ml tetraethyl orthosilicate and 0.5 ml hydrochloric acid in 20 ml of

ethanol, was deposited into the interstitial spaces left exposed by the close

packed nanosphere pattern. The latter was then removed by ultra-sonication

in toluene first, followed by acetone. The remaining hexagonal silica surface

lattice was densified by annealing at 400 ◦C with a 10 ◦C min−1 ramp rate.

This was finally used as the substrate to deposit the ZnO nanowire arrays by

vapour phase transport (VPT), with carbothermal reduction of ZnO pow-

ders and graphite as the Zn vapour source, at 900 ◦C for 60 min, yielding
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the final sample to be used in the FE measurements. Full details of the

growth methods may be found in References [52, 87]. The finished samples

were characterised with scanning electron microscope, and x-ray diffraction,

as described in Section 3.3.

4.1.1 Current Voltage Characterisation

The field emission I-V data were taken with a sample-anode separation

d = 250 µm ± 10 µm using the apparatus and procedure described in Sec-

tion 3.1. The voltage was swept between 50 V and 2500 V in 1 V steps, at a

rate of 1 V s−1, until stable, reproducible, non-hysteretic data were obtained,

which took ∼150 cycles.

Figure 4.1: SEM and FE-SEM images of ZnO nanowire array, (a) SEM of sample
viewed normal to surface taken before FE testing, (b) FE-SEM of sample viewed
at 60◦ to the surface taken after FE testing, (c) FE-SEM of sample viewed at 50◦

to the surface taken after FE testing, with scale bars representing 2 µm, 1 µm, and
1 µm, respectively.
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SEM images of the ZnO nanostructures are presented in Figure 4.1.

Figures 4.1(a) was obtained before FE conditioning and measurements. Fig-

ures 4.1(b) and 4.1(c) were obtained with a higher resolution FE-SEM and

after FE conditioning and measurements. Figure 4.1(a) shows a clear pat-

tern of vertical ZnO nanowires, regularly spaced by a distance of 1 µm and

positioned at the nodes of a 2D hexagonal close packed lattice. It is apparent

that there are a number of void sites which are counted from the analyses of

many areas of the sample at about 10 sites per 100 µm2. Thus, the average

site surface density is of the order of 0.9 per µm2. As the electrode assembly

covers an area of 5 × 10−5 m2, a total of ∼4.5 × 107 nodes (nanowires) are

sampled in a FE measurement.

From Figures 4.1(b) and (c), we observe that the typical morphology of

a single nanowire is the familiar hexagonal prism oriented along the 〈002〉 di-

rection; of average height around 2 µm, with a standard deviation of 0.29 µm;

and average largest width/diameter of 0.2 µm, with a standard deviation of

58 nm (aspect ratio of 20). The ratio of inter-nanowire distance to nanowire

length is therefore equal to 0.5. The nanowire dimensions imply a cross-

sectional area of 2.6 × 10−2 µm2 (or 3.1 × 10−2 µm2 if a circular crosssection

is assumed). This is close to the values of this ratio suggested in the litera-

ture as suitable for optimized FE [88]. The tip shape of the majority of the

nanowires is curved outward rather than sharply pointed, and rarely seen

to be flat-ended. We note from Figures 4.1(b) and (c) that the processes of

conditioning and field emission do not appear to have a pronounced effect on

the observable nanowire morphology. In particular, the change to a bulbous

morphology at the tip, driven by temperature-dependent surface migration

as seen by Semet et al [34], was not observed in the areas examined by SEM.

Figure 4.2 and Figure 4.3 shows x-ray diffraction data for the sample.
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Figure 4.2: θ-2θ XRD scan of the sample

The θ-2θ scan in Figure 4.2 shows very intense diffraction peak at 34.3◦,

confirming the presence of crystalline zinc oxide in the (0002) orientation

[89]. However, we are unable to determine from experiment whether the

nanowires are either positively (0001) zinc- or negatively (000-1) oxygen-

terminated or if a mixture of the two possible terminations prevails. Many

other authors have reported, however, that the (0001) zinc terminated face

tends to appear more tapered and this is consistent with the morphology we

observe. The peak at ∼69.1◦ is the (100) peak from the substrate [75].

The rocking curve scan in Figure 4.3, taken around the (0002) ZnO

peak has a full width half maximum of 6.64◦, which indicates reasonable

alignment of the crystallites.

The final, reproducible I-V data set obtained after conditioning, and

containing both the voltage ramping up and ramping down, which comprises
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Figure 4.3: Rocking curve XRD scan of the sample

4900 data points is displayed in Figure 4.4. The full FN plot of log10(I/V2)

vs. 1/V is displayed in Figure 4.5. An FN plot should be linear when field

emission is the dominant process. This linear region can be seen on the left

of Figure 4.5, with a curved region on the right in the low voltage regime.

The turn-on voltage, the voltage at which detectable field emission begins,

is taken as the lowest voltage of the linear regime. We can see that this is

∼1000 V. The linear region can be seen plotted in Figure 4.6.

Two linear regions can be observed on Figure 4.6, above and below

2000 V respectively, with a significant difference in slope between the two

regions. The observed behaviour is typical of electron field emission with

the distinct change in slope in the high voltage region often attributed to

the buildup of a significant amount of space-charge at the tip[27, 90]. The
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Figure 4.4: Current vs. Voltage plot of voltage ramping up from 50 to 2500 V and
back down for the ZnO nanowire ordered array

deviations from linearity in the very low voltage region are not considered to

be physically significant, and are mostly like noise due to stray fields and/or

leakage currents.

The slope values of the low and high voltage linear regimes observed

are measured at -5745 V and -2702 V, respectively. The slope, m, can be

related to the field enhancement factor, β, and the work function, Φ, by

Equation (2.37). The β factor is determined by local and large scale geome-

try, such that FS = βV. This means that the β value obtained for an array

of emitters represents the single tip current weighted average taken over the

tip surface and the entire array [84]. The iterative approach outlined in Sec-

tion 2.2.1 was applied using the appropriate work function values listed in

Section 1.2, as well as the 1 eV estimated by Semet et al and a value for
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Figure 4.5: Full Fowler-Nordheim plot of the IV data, including ramp up and back
down, for the ZnO nanowire ordered array

valence band emission [69, 70], for a voltage of 1500 V. The results are given

in Table 4.1. Also provided are the Schottky lowering functions, which have

been calculated using the Forbes approximations previously discussed, the

current density (JFN), emission area (AFN), and the factor, γ, sometimes

used in the literature, which is given by:

γ =
FS
FM

= βd (4.1)

where d is the separation between anode and emitter, and FM is the macro-

scopic applied field such that:

FM =
V

d
(4.2)
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Figure 4.6: Linear region of Fowler-Nordheim plot for the ZnO nanowire ordered
array, showing two distinct linear segments with differing slope

In this table, we can see typical surface field and current densities of

∼109 Vm−1 and ∼1011 Am−2, respectively. These are compatible with the

results of similar types of FN analyses of sharp emitters [9]. We note that the

use of a work function of 1.0 eV corresponds to a case of almost complete low-

ering of the barrier (y ≈ 1), even at this moderate voltage. Thus, it would ap-

pear unsuitable for further interpretation of our data. For 3.3 ≤ Φ ≤ 4.5 eV,

corresponding to conduction band electrons in the flatband diagram, the low-

ering of the barrier is more moderate (y = ∼0.7) and does not exceed the

physical limit y = 1 at V = 2500 V, suggesting that the emission process

is compatible with FN field emission. In this work function range, the field
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φ (eV) y β (m−1) γ s(y) f(y) t(y) FS (Vm−1) JFN (Am−2) AFN (m−2)

1.0 0.97 0.4 × 106 109 0.84 0.05 1.11 7 × 108 3.2 × 1011 7.7 × 10−18

3.3 0.74 2.8 × 106 703 0.91 0.39 1.08 42 × 108 1.6 × 1011 1.5 × 10−17

3.7 0.73 3.4 × 106 839 0.91 0.42 1.08 50 × 108 1.6 × 1011 1.5 × 10−17

4.5 0.70 4.5 × 106 1135 0.92 0.46 1.08 60 × 108 1.7 × 1011 1.4 × 10−17

5.3 0.67 5.8 × 106 1460 0.93 0.49 1.07 88 × 108 1.8 × 1011 1.4 × 10−17

7.9 0.61 10.8 × 106 2693 0.94 0.57 1.06 162 × 108 3.2 × 1011 1.1 × 10−17

Table 4.1: Calculated Fowler-Nordheim parameters for various possible work function values



enhancement values (700-1100) are markedly lower than those reported in

References [24, 27, 28, 90] based on the 5.3 eV value. The choice of a work

function of Φ = 7.9 eV corresponding to electrons emitted from the top of

the ZnO valence band [69, 70] leads to even larger values of the enhancement

factor and the surface field strength.

Figure 4.7: Geometrical models: (a) Hemisphere on a post, and (b) prolate hemi-
ellipsoid

The β and γ factors are geometrical parameters, describing the field

enhancement at the emitter tip as compared to a planar emitter, due to its

sharp geometry. There are many models to estimate these factors for different

emitter shapes using the dimensions of the emitters, which can be obtained

using SEM. Forbes et al [85] have collected and summarized a number of

models and approximations for γ from the literature. As previously stated,

the average height and diameter of the nanowires was found by SEM to be

∼2 µm and ∼0.2 µm, respectively, giving an aspect ratio (ν) of ∼20. They

give several author’s different models for a hemisphere on a post emitter
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shape (see Figure 4.7 (a)), which are as follows:

γ = 2 + ν (4.3)

γ =
ν

2
1
2

(4.4)

γ = 0.72ν (4.5)

γ = 1.2(2.15 + ν)0.90 (4.6)

γ = 5.93 + 0.73ν − 0.0001ν2 (4.7)

Forbes et al also give two different models based on a prolate hemi-

ellipsoidal of revolution (see Figure 4.7 (b)). The key dimensions for this

shape are the base radius, r, the hemi-ellipsoid height, h, and the apex

radius of curvature, ra, which is given by:

ra =
r2

h
(4.8)

γ =
ζ3

[ν ln(ν + ζ)]− ζ
(4.9)

where

ζ = (ν2 − 1)
1
2 (4.10)
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and

γ = 2 +
h

ra
(4.11)

These models were applied to the dimensions previously stated, and

give γ values of 22, 14.14, 14.4, 19.50, 20.49, 148.17 and 402, for the models

in Equations (4.3) - (4.7), (4.9), and (4.11), respectively.

Kirkpatrick et al [83] give another hemi-ellipsoidal model given by:

γ =
2

[η(η2 − 1)][ln(η+1
η−1)− 2

η
]

(4.12)

where

η =
h

(h2 − r2) 1
2

(4.13)

Applying this model gave a value of γ = ∼145. Read and Bowring

[84] detail a model to account for electrostatic shielding due to the space

charge in the vacuum gap between emitter sample and anode. Most models

calculate the field enhancement for an individual emitter, however in an array

the field enhancement of any given emitter may be inhibited by electrostatic

shielding by neighbouring emitters. Read and Bowring’s model accounts for

this shielding, for a square array of emitters, and is given by:
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γ = γ0(1− 0.99 exp(−1.253(s/h)1.18)) (4.14)

where γ0 is the γ factor for an individual emitter, h is the emitter height,

and s is the separation between emitters.

The zinc oxide ordered array under analysis is a hexagonal close-packed

array, rather than a square array. However this model can be applied as

an approximation, and gives a shielding effect of 0.43γ0. Thus it can be

estimated that there is a shielding effect of ∼50% in an array of this spacing.

When comparing these modelled γ values with those of Table 4.1, we

observe a generally poor agreement, with discrepancies by factors of between

5 and 8. Similar disagreement levels between measurements and calculations

are also common in the current literature on the topic of ZnO nanowire FE

[28, 34, 90]. In order to obtain modelled values which would agree with the

values determined from analysis of the I-V data, a radius of ∼50 nm would

have to be assumed.

The hemi-ellipsoidal models provide the nearest agreement in γ factors,

however the exact tip shape cannot be clearly discerned from the SEM im-

ages, and as such it can’t be determined if this model shape is physically

accurate. However, similar zinc oxide nanowires investigated by tunnelling

electron microscopy in reference [27] appear to support this shape.

The two linear regimes observed in the FN plot of Figure 4.6 have

been briefly mentioned. The slope value in the high-field regime is measured

at -2702 V and is significantly reduced compared with its value in the low

field regime. We observe that the transition between these regimes occurs
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gradually around a voltage of 2 kV over a range of about 150 V. We note

that these two distinct regimes are also observed by Jeong et al [27] in the

case of ZnO nanowires and Al-Tabbakh et al [69, 70] in the ZnO tetrapods.

Such high-field deviations from the FN straight-line have been com-

monly observed in FE experiments and typically interpreted in terms of the

occurrence of space-charge effects, where the volume of electrons above the

sample due to emission screens the emitters inhibiting further emission, at

higher currents [91–93]. Stern et al [91] detail a numerical criterion in cgs

units, T, for judging the negligibility where T is given by:

T =

(
16π

3

)(me

2e

) 1
2 IV

1
2

AF 2
S

(4.15)

where me and e are the mass and charge of the electron respectively, and A is

the area of the sample covered by the anode. When T << 1 the space-charge

effects can be considered negligible. Calculating for this ZnO nanowire array

gives a value for T of ∼0.06 and ∼0.4 at 1500 V and 2000 V respectively,

showing that space-charge effects may contribute to observed behaviour in

the high voltage region.

Besides space-charge effects, the lower slope of the FN plots at high

field, within the framework of cold emission FN theory, can be due to two

effects: changes in the work function [94] or the field enhancement factor

[83]. As a larger surface area of the emitter will contribute to the emission at

higher fields, the assumption of a non-uniform work function over the probe

area is reasonable. Also, contributing tips having different crystallographic

terminations may have a contribution and we have shown previously in this

section that a small change in the value of the work function can significantly

alter the outcome of the FN analysis. The work functions of other faces of

97



ZnO have been measured: 5.05 eV for the prismatic faces [30] and 4.05 eV

for the (10-1-1) faces [31], and show sufficient variance to have an effect if

engaged in the field emission process. Kirkpatrick et al [83] have shown that

for an emitter with nanometric-sized tips of hemi-ellipsoidal shape the field

enhancement factor γ decreases and the effective emission area α increases

with increasing applied field, while a standard FN analysis would lead to the

opposite conclusion (see also References [92, 93]). This is seen in the high-

field region of the data, as an increased γ value of 1540 would be obtained

at 2000 V if a constant work function of 3.7 eV were assumed. Furthermore,

this analysis would yield a y > 1, indicating an inconsistency in the FN plot

analysis. However the departure from FN linearity at high field could be sat-

isfactorily accounted for by the field dependence of the work function and the

enhancement factor. Alternative explanations, based on the semiconductor

electronic structure of ZnO, have been put forward by other authors.

One such explanation, by Jeong et al [27], suggested that the emission

proceeds from deep-level defect states in the low field regime whereas the

high field regime consists of electrons emitted from near the Fermi level. Al-

Tabbakh et al [69, 70] suggested that low-field emission in the conduction

band ultimately saturates as the field is increased and leads to predominant

emission from the valence band in the high field regime with a related increase

in the work function value. However our results do not clearly support or

contradict these possibilities.

From an I-V measurement, one can estimate a value for the emission

area A when the current density J is obtained, via A = I/J . In the case

of a large-area electron source composed of many identical sharp emitters,

this area is an average over the tip surface weighted by the local value of

the current density and extended to the macroscopic area of the sample
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[27, 91, 95]. Such values for this emission area were extracted for the ordered

ZnO nanowire array, AFN , from the measured data using various approaches.

In Table 4.1, values for AFN can be seen, determined by solving the

FN equation using parameters calculated by the iterative method and Forbes

approximations, as previously discussed. The values of AFN are small com-

pared to the surface area of the tip of one nanowire that would be obtained

from its estimated dimensions and weakly dependent on the value of the work

function in the 3.0-8.0 eV range. In Section 2.2.1, specifically Equation (2.40)

and (2.41), a method outlined by Charbonnier [62] which utilises this weak

dependence, to create a work function independent approximation for the

current density, J . The variable in this approximation is m/V . A plot of

m/V against log10(J) should give a straight line. Such a plot can be seen in

Figure 4.8, and a plot of J vs. V for the iterative method and Charbonnier’s

method in Figure 4.9.

Figure 4.8: A log plot of current density, J, vs m/V
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Figure 4.9: Plot of current density, JFN , vs voltage, V, for the iterative method
(black) and Charbonnier’s method (red)

The two methods show good agreement at low voltage, with the differ-

ence becoming more pronounced at higher voltages. This discrepancy arises

because Charbonnier’s method is based on fixed values for s(y) and t(y),

which are accurate at low voltage, whereas in the iterative method these

values are calculated for each data point using the highly accurate Forbes

approximations. In Figure 4.10 a plot of the corresponding area values for

the current densities obtained by both methods is shown. The same discrep-

ancy at high voltage can be seen in the area values. Area values are on the

order of 10−17 m2 (10−13 cm2). In view of the number of nodes probed by the

anode in the present conditions (∼4.5 × 107), the effective emitting area per

nanowire can only be of dimensions of the order of a few atomic sites, even if

only 1% of the nanowires are actual emitters. Spindt et al [9] conclude iden-
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tically although there are significant differences in the morphology, nature

(metallic), and surface density of the molybdenum emitter cones used.

Figure 4.10: Plot of emitting area, AFN , vs voltage, V, for the iterative method
(black) and Charbonnier’s method (red)

From the viewpoint of field emission applications, such as electronic

display devices, we can compute the following figures of merit for this ZnO

nanowire array cathode. The onset voltage of field emission was around

1000 V at which the device emitted a current of 14 nA, corresponding to

a macroscopic current density of 2.7 × 10−3 Am−2 and an applied field of

4 × 106 Vm−1. To obtain a threshold current of 10 mAcm−2 (the value

required for field emission displays [2]) required a voltage of 1323 V, corre-

sponding to an applied field of 5.3 × 106 Vm−1 with an emitted current of

513 nA. At 2000 V, the macroscopic current density is 0.62 Am−2, corre-

sponding to a current per nanowire of 31 nA (assuming 50% efficiency).
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4.1.2 Imaging

Another ordered zinc oxide nanowire array, grown using the same techniques,

was examined using the phosphor electrode described in Section 3.1.3, and

high resolution FE-SEM. Transparent, phosphor coated electrodes are occa-

sionally used to determine the uniformity of emission across a sample [25, 96–

98]. However, these data are seldom analysed in depth. It is clear from the

previous analyses that the γ factors determined experimentally are higher

than modelled values, and that the emission areas determined by FN anal-

ysis are extremely small. By using the phosphor electrode data and the

emitter geometry obtained by FE-SEM, it should be possible to estimate

area and current density, independent of FN theory. FE-SEM images of the

ZnO nanowire array are presented in Figures 4.11 and 4.12. The dimensions

agree well with the sample in Part (a). However the higher resolution of

the FE-SEM allows for detailed imaging of the nanowire tip. The hexagonal

prism shape of the nanowire can be clearly observed. The tip shape appears

to be curved rather than sharply or flatly terminated. In examination after

field emission experiments, bulbous tips, similar to those observed by Semet

et al [34] and attributed to melting, can be seen.

The voltage on the phosphor anode was increased in 1 V increments at

a rate of 1 Vs−1, and images of the phosphor were taken at 1250 V, 1500 V

and 1750 V. These images can be seen in Figures 4.13, 4.14, and 4.15. These

images were analysed by summing the number of lit pixels to determine a

total lit area, and by summing the number of resolvable distinct dots. The

1750 V data exhibited significant saturation, and could not be accurately

analysed in this way. However for the 1250 V and 1500 V images, this analysis

allowed the determination of a maximum number of emitting rods, under the
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Figure 4.11: FE-SEM of a ZnO nanowire tip, taken before field emission testing

assumption that every nanowire covered by the lit area was emitting, and a

minimum number of emitting rods, under the assumption that each dot was

due to the emission of an individual nanowire. The maximum number of

emitters was estimated to be 1.28 × 106 for the image taken at 1250 V and

8.16 × 106 for the image taken at 1500 V. The minimum number of emitters

was estimated to be ∼150 for the image taken at 1250 V and ∼1300 for the

image taken at 1500 V.

If we apply the maximum and minimum number of emitters to the

small emission areas given by the FN treatments, we get values on the order

of 10−19 - 10−23 m2 per rod, suggesting emission at the tip coming from only a

few atomic sites, which as we have noted was the conclusion in Reference [9].

The area can be estimated, independent of FN theory, by calculating the

area of a tip based on the geometry observed by FE-SEM and applying the
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Figure 4.12: FE-SEM of a ZnO nanowire tip, taken after field emission testing

maximum and minimum number of emitters. These estimates can be seen

in Table 4.2, based on three possible emitter radii: the radius of one of the

typical hexagonal nanowires (pre-FE), the radius of one of the bulbed tips

observed after field emission testing (post-FE), and the radius of the small

bulbous protrusion on the tip (small bump).

The areas estimated by these methods are much larger than those de-

termined from FN analysis. These areas can be used to calculate values for

the current density using Equation (2.31). The results of these calculations

can be seen in Table 4.3. Using these current densities, the FN equation,

Equation (2.29), and the Forbes approximations, γ factor values can be esti-

mated for an assumed work function. Values for an assumed work function of

Φ = 3.7 eV can be seen in Table 4.4. Unlike the areas and current densities,

these γ factors are not independent of FN theory. We can see that they give
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Figure 4.13: Image of phosphor taken at 1250 V

Figure 4.14: Image of phosphor taken at 1500 V
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Figure 4.15: Image of phosphor taken at 1750 V
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Tip type Tip area (m2) A1250min (m2) A1250max (m2) A1500min (m2) A1500max (m2)

Pre-FE 6.53 × 10−14 9.80 × 10−12 8.36 × 10−8 8.49 × 10−11 5.33 × 10−7

Post-FE 8.53 × 10−14 1.28 × 10−11 1.09 × 10−7 1.11 × 10−10 6.96 × 10−7

Small bump 1.79 × 10−15 2.69 × 10−13 2.29 × 10−9 2.33 × 10−12 1.46 × 10−8

Table 4.2: Phosphor areas for maximum and minimum number of emitters at 1250 V and 1500 V, for three possible emitter
radii

Tip type J1250min (Am−2) J1250max (Am−2) J1500min (Am−2) J1500max (Am−2)

Pre-FE 4.90 × 105 5.74 × 101 3.88 × 105 6.19 × 101

Post-FE 3.75 × 105 4.40 × 101 2.98 × 105 4.74 × 101

Small bump 1.79 × 107 2.10 × 103 1.42 × 107 2.26 × 103

Table 4.3: Current densities for maximum and minimum number of emitters at 1250 V and 1500 V, for three possible emitter
radii



better agreement with the modelled values than those determined from FN

analysis of I-V data in Part (a).

Tip type γ1250min γ1250max γ1500min γ1500max

Pre-FE 452 322 373 269

Post-FE 447 319 369 267

Small bump 538 364 443 304

Table 4.4: γ factor for maximum and minimum number of emitters at 1250 V and
1500 V, for three possible emitter radii

From the average phosphor dot size and the tip radius as observed

by FE-SEM, assuming each dot represents emission from one nanowire, the

angle of the cone of emission from a nanowire can be estimated. All three

tip radii used previously give a cone angle of 9 - 11◦.

4.2 The Effect of Inter-wire Spacing on Field

Emission

It has been established that nanosphere lithography is a useful tool for

catalyst-free growth of ordered, spaced arrays of ZnO nanowires. An ad-

ditional benefit of nanosphere lithography is the faculty to vary the spacing

of the nanowires in the array, by use of different sphere sizes. In the previous

section, a model which takes account of shielding by neighbouring nanowires

on the field enhancement factor was discussed (Equation (4.14)). The further

spaced the nanowires, the less effect each nanowire has on its neighbouring

nanowires, and thus the greater the field enhancement factor. However, the

further spaced the nanowires are, the less nanowires in a given unit area, de-

creasing the overall current density. The authors of this model [84] suggest
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the optimum spacing will be a ratio of separation (s) to nanowire height (h)

of between 1 and 2.

To experimentally investigate the effect of inter-wire spacing, ordered

ZnO nanowire arrays were grown by Séamus Garry, of the Semiconduc-

tor Spectroscopy Laboratory at Dublin City University, using 3 sizes of

polystyrene nanospheres: 500 nm, 1 µm, and 1.5 µm diameter, respectively.

Samples were grown by two methods, one based on vapour phase transport

growth of the nanowires, the other based on chemical bath deposition of the

nanowires.

The VPT method used was similar to the method used in Section 4.1,

with some revisions. In brief, a seed layer was deposited on a (100) Silicon

substrate by drop coating with a 0.005 M zinc acetate in ethanol solution.

This was allowed to remain on the substrate for 20 seconds before rinsing

with ethanol and drying under a stream of nitrogen. This procedure was

repeated 5 times. The substrate was then annealed for ∼30 mins at 350 ◦C.

CBD deposition was then carried out on seeded substrate using an aqueous

solution of Zn acetate at 0.025 M concentration heated to ∼65 ◦C, for a

deposition time of ∼3 hours to produce thin film of ∼250 - 300 nm thickness.

Substrates are removed after 90 minutes and rinsed with de-ionised water to

remove any material which has precipitated in the solution and attached to

the surface and then growth was continued for the remaining 90 minutes in

a fresh solution. A self-assembled monolayer of the polystyrene nanospheres

was deposited on the surface by the water transfer method, and allowed to

dry. The nanosphere coated sample was annealed at 110 ◦C for ∼30 seconds.

A silica sol was prepared by mixing 1 ml of TEOS and 1 ml of the chosen

acid catalyst to 20 ml of absolute ethanol, and stirring for 3 hours. The acid

catalyst may be 0.05 M sulphuric acid (H2SO4) or 0.1 M hydrochloric acid
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(HCl). The choice of acid catalyst was not observed to affect the sol produced.

The silica sol was mixed with an equal volume of ethanol before being applied

to the surface and allowed to dry in air, to deposit silica in the interstitial

spaces left exposed by the close packed nanosphere pattern. The spheres

were removed by sonicating in toluene for 15 minutes, then rinsed with de-

ionised water and dried with a stream of nitrogen. The remaining hexagonal

silica surface lattice was densified by annealing at 450 ◦C with a 15 ◦C min−1

ramp rate. The sample was then grown on by a CBD deposition, using the

same solution concentration and temperature, for 30 minutes. This serves

two purposes, firstly it deposits a small nanostructure in the apertures in the

silica mask which aids uniform nucleation in VPT deposition, and secondly

due to the lateral growth exhibited by Zn acetate derived CBD deposition, it

may cap off any grain defect present in the buffer layer, significantly reducing

multi-wire nucleation in the VPT deposition. Finally, the sample was grown

on in the VPT deposition. 60 mg of both ZnO and graphite powders are

used and the samples are placed directly above the powders. The furnace

temperature was set to 800 ◦C and held for 11 minutes. It was then raised

at a rate of 10 ◦C min−1 until it reached 900 ◦C. This temperature was then

held for the remainder of the growth time (1 hour in total). The growth

was performed under a flow of 90 sccm argon. Unordered samples, with

uncontrolled spacing can be grown by depositing the thin film as described

above, then growing with VPT as described above, without any lithography.

Two sets of samples were grown by this method, VPT1 which consisted of

an unordered, 500 nm spaced, and 1 µm spaced sample, and VPT2 which

consisted of an unordered, 500 nm spaced, 1 µm spaced, and 1.5 µm spaced

sample.

The CBT method used the same steps as above in depositing the thin
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film and silica mask. The sample was then grown on by a CBD deposition,

using the same solution concentration and temperature for 180 minutes to

grow nanowires at the exposed points in the CBD mask. An unordered

sample with uncontrolled spacing could not be grown by CBD, as omitting

the silica mask and growing on the thin film with CBD simply causes further

film growth. The set of CBD samples consisted of a 500 nm, 1 µm, and

1.5 µm spaced sample.

The arrays produced by the VPT method were analysed by SEM, the

results of which can be seen in Figures 4.16 - 4.29. The lack of ordered and

uniform spacing can be seen in the non-lithographic samples (Figures 4.16,

4.17, 4.22, and 4.23). In the lithographic samples, the ordered pattern and

uniform spacing is evident, with defects in the pattern typically leading to

areas with no growth. However there is some anomalous growth, usually

in the form of thin, randomly oriented wires. The nanowires are vertically

oriented, and aligned to within a few degrees of perpendicular to the sub-

strate. For the ordered arrays the number of nanowires per unit area, or

nanowire density, can be estimated from the pattern. For 500 nm spaced

arrays there will be ∼4 × 1012 nanowires per m2, for 1 µm spaced ∼1 × 1012

nanowires per m2, and for 1.5 µm spaced ∼4.44 × 1011 nanowires per m2.

For unordered samples, the nanowire density can be estimated from the SEM

results. For the VPT1 unordered sample, this was ∼4.3 × 1012 nanowires

per m2, and for the VPT2 unordered sample it was ∼5.6 × 1012 nanowires

per m2. These nanowire densities are close to the density for 500 nm spaced

samples. Samples were analysed by XRD. A plot of θ-2θ scans for a typical

thin film, unordered, and ordered sample are shown in Figure 4.30. In the

θ-2θ we observe the (100) silicon peak at ∼69.1◦, and the (0002) zinc oxide

peak at ∼34.4◦. In Figure 4.31 we present a rocking curve scan taken around
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Figure 4.16: SEM image of VPT1 unordered sample at 0 ◦ observation angle

Figure 4.17: SEM image of VPT1 unordered sample at 60 ◦ observation angle
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Figure 4.18: SEM image of VPT1 500 nm sample at 0 ◦ observation angle

Figure 4.19: SEM image of VPT1 500 nm sample at 60 ◦ observation angle
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Figure 4.20: SEM image of VPT1 1 µm sample at 0 ◦ observation angle

Figure 4.21: SEM image of VPT1 1 µm sample at 60 ◦ observation angle
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Figure 4.22: SEM image of VPT2 unordered sample at 0 ◦ observation angle

Figure 4.23: SEM image of VPT2 unordered sample at 60 ◦ observation angle
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Figure 4.24: SEM image of VPT2 500 nm spaced sample at 0 ◦ observation angle

Figure 4.25: SEM image of VPT2 500 nm spaced sample at 60 ◦ observation angle

116



Figure 4.26: SEM image of VPT2 1 µm spaced sample at 0 ◦ observation angle

Figure 4.27: SEM image of VPT2 1 µm spaced sample at 45 ◦ observation angle
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Figure 4.28: SEM image of VPT2 1.5 µm spaced sample at 0 ◦ observation angle

Figure 4.29: SEM image of VPT2 1.5 µm spaced sample at 45 ◦ observation angle

118



the (0002) ZnO peak. As discussed in Section 3.3.1, the full width half maxi-

mum (FWHM) of a rocking curve peak is dependent on the alignment of the

crystallites, with a smaller FWHM indicating better alignment. The rock-

ing curve FWHM for thin films is ∼9◦. Nanowire samples exhibit smaller

FWHM than the buffer layer, indicating a better crystallographic alignment.

As the nanowires appear to be predominantly single crystals, this suggests

good alignment of the wires. There may also be an improvement in the align-

ment of the buffer layer, due to the high temperatures used in VPT growth

annealing the thin film and improving its crystal quality. Unordered sam-

ples have rocking curve FWHM of ∼2◦, and ordered samples have rocking

curve FWHM of ∼7◦. Ordered samples may exhibit worse alignment due to

growth being forced into specific locations by the silica mask, rather than

being allowed to nucleate at the optimal growth points. The dimensions of

the wires, determined by SEM, are shown in Table 4.5.

Sample Diameter (nm) Height (µm) Shielding

VPT1 Unordered 140 3

VPT1 500 nm 200 4 0.111γ0

VPT1 1 µm 200 3 0.297γ0

VPT2 Unordered 100 4

VPT2 500 nm 200 1.5 0.297γ0

VPT2 1 µm 300 2.5 0.353γ0

VPT2 1.5 µm 300 1.5 0.717γ0

Table 4.5: Dimensions of VPT samples as observed by SEM, and the shielding
factor

From the dimensions of the nanowires, γ can be calculated using the

models detailed in Section 4.1. The values obtained for these models, for the

various VPT grown samples, can be seen in Table 4.6.
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Figure 4.30: θ-2θ XRD scans for a typical (a) ordered ZnO nanowire array (b)
unordered ZnO nanowire array, and (c) ZnO thin film

120



Figure 4.31: Rocking curve XRD scans of the (0002) ZnO peak for a typical (a)
ordered ZnO nanowire array (b) unordered ZnO nanowire array, and (c) ZnO thin
film
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Sample Eq. 4.3 Eq. 4.4 Eq. 4.5 Eq. 4.6 Eq. 4.7 Eq. 4.9 Eq. 4.11 Eq. 4.12

VPT1 Unordered 42.0 28.3 28.8 34.8 35.0 472.6 1602.0 472.6

VPT1 500 nm 42.0 28.3 28.8 34.8 35.0 472.6 1602.0 472.6

VPT1 1 µm 32.0 21.2 21.6 27.3 27.7 290.3 902.0 290.3

VPT2 Unordered 82.0 56.6 57.6 63.4 64.7 1570.1 6402 1570.1

VPT2 500 nm 17.0 10.6 10.8 15.5 16.9 93.0 227.0 93.0

VPT2 1 µm 18.7 11.8 12.0 16.8 18.1 110.2 279.8 110.2

VPT2 1.5 µm 12.0 7.07 7.2 11.4 13.2 49.3 102.0 49.3

Table 4.6: Modelled γ factors for the various VPT grown samples



Using Equation 4.14 a modified value for γ taking account of shielding

from neighbouring nanowires can be calculated for each ordered sample. The

shielding factors for the ordered arrays are presented in Table 4.5.

The arrays produced by the CBD method were characterised with SEM,

the results of which can be seen in Figures 4.32 - 4.37. Ordered, spaced arrays

of vertically oriented nanowires are evident. There are some defects in the

pattern, where there is no zinc oxide growth. The nanowires produced by

CBD are much shorter than typical VPT wires, and thus will have lower

aspect ratios, which would be expected to give lower field enhancement. The

dimensions of the wires, as determined from the SEM data, are listed in

Table 4.7. The arrays were also characterised with XRD. We present a typical

θ-2θ and rocking curve scans, in Figures 4.38 and 4.39, respectively. Again

the θ-2θ shows the (100) Si peak at 69.1◦ and the (0002) ZnO peak at 34.3◦.

The FWHM of the (0002) ZnO rocking curve peak is ∼6.1◦, a slightly smaller

value than the ordered ZnO nanowire arrays grown by VPT, indicating that

the CBD wires may be more vertically aligned.

Sample Diameter (nm) Height (µm) Shielding

CBD 500 nm 300 1.5 0.297γ0

CBD 1 µm 500 1 0.717γ0

CBD 1.5 µm 450 1 0.869γ0

Table 4.7: Dimensions of CBD samples as observed by SEM, and the shielding
factor

Modelled values of γ have been calculated from the nanowire dimen-

sions, using the models detailed in Section 4.1. The values obtained for these

models, for the three spacings, can be seen in Table 4.8.

Using Equation 4.14, the shielding effect for each spacing can be esti-
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Figure 4.32: SEM image of CBD-grown 500 nm spaced sample at 0 ◦ observation
angle

Figure 4.33: SEM image of CBD-grown 500 nm spaced sample at 60 ◦ observation
angle
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Figure 4.34: SEM image of CBD-grown 1 µm spaced sample at 0 ◦ observation
angle

Figure 4.35: SEM image of CBD-grown 1 µm spaced sample at 60 ◦ observation
angle
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Figure 4.36: SEM image of CBD-grown 1.5 µm spaced sample at 0 ◦ observation
angle

Figure 4.37: SEM image of CBD-grown 1.5 µm spaced sample at 60 ◦ observation
angle

126



Figure 4.38: θ-2θ XRD scans for a typical CBD-grown ordered ZnO nanowire
array

Figure 4.39: A typical rocking curve XRD scan of the (0002) ZnO peak for a
CBD-grown ordered ZnO nanowire array
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Spacing Eq. 4.3 Eq. 4.4 Eq. 4.5 Eq. 4.6 Eq. 4.7 Eq. 4.9 Eq. 4.11 Eq. 4.12

500 nm 12.0 7.07 7.2 11.4 13.2 49.3 102.0 49.3

1 µm 6 2.8 2.9 6.2 8.9 13.3 18.0 13.3

1.5 µm 6.4 3.1 3.2 6.6 9.2 15.3 21.8 15.3

Table 4.8: Modelled γ factors for the 3 spaced CBD samples



mated. The shielding factors calculated are presented in Table 4.7. From

these results we can see that although the γ values modelled for each sample,

based on individual emitters, are roughly similar, the shielding should give

rise to significantly different values of γ, and subsequently to the current.

The Field emission characteristics of the samples were tested. I-V data

were taken with a sample-anode separation d = 250 µm using the apparatus

and procedure described in Section 3.1. The data was analysed using FN

analysis and the iterative method we have described, for an assumed work

function of 3.7 eV. Results are presented in the form of I-V curves, linear

region FN plots, plots of JFN vs. V , and plots of AFN vs. V . The results for

each sample set can be seen in Figures 4.40 - 4.43 for VPT1, Figures 4.44 -

4.47 for VPT2, and Figures 4.48 - 4.51 for the CBD samples.

The γ factors found by analysis of the FN plots are listed in Table 4.10,

along with a modelled value (using Equation (4.12)), with and without shield-

ing (using Equation (4.14)), for comparison. Turn-on voltages for the samples

are presented in Table 4.9. For the VPT1 500 nm spaced sample, the turn-

on was below the starting voltage, and thus could not be determined. The

current densities and emission areas given by the analyses were on the order

of 1012 Am−2 and 10−17 m2, respectively.

The experimental γ factors are significantly larger than the modelled

values, as commonly reported. The unordered samples show reasonable

agreement, however the modelled values for these samples do not account

for screening, as the model for shielding requires an ordered array with equal

spacings. The VPT1 samples appear to indicate proportionality between

the spacing and the experimental γ factor. The ordered VPT2 samples also

reflect this trend, with the exception of the unordered sample which has a
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Figure 4.40: Current vs. Voltage for the VPT1 samples unspaced (black), 500 nm
spacing (red), and 1 µm spacing (green)

Figure 4.41: FN plot for the VPT1 samples unspaced (black), 500 nm spacing
(red), and 1 µm spacing (green)
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Figure 4.42: Current Density vs. Voltage for the VPT1 samples unspaced (black),
500 nm spacing (red), and 1 µm spacing (green)

Figure 4.43: Emission area vs. Voltage for the VPT1 samples unspaced (black),
500 nm spacing (red), and 1 µm spacing (green)
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Figure 4.44: Current vs. Voltage for the VPT2 samples unspaced (black), 500 nm
spacing (red), 1 µm spacing (green), and 1.5 µm spacing (blue)

Figure 4.45: FN plot for the VPT2 samples unspaced (black), 500 nm spacing
(red), 1 µm spacing (green), and 1.5 µm spacing (blue)
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Figure 4.46: Current Density vs. Voltage for the VPT2 samples unspaced (black),
500 nm spacing (red), 1 µm spacing (green), and 1.5 µm spacing (blue)

Figure 4.47: Emission area vs. Voltage for the VPT2 samples unspaced (black),
500 nm spacing (red), 1 µm spacing (green), and 1.5 µm spacing (blue)
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Figure 4.48: Current vs. Voltage for the CBD samples 500 nm spacing (black),
1 µm spacing (red), and 1.5 µm spacing (green)

Figure 4.49: FN plot for the CBD samples 500 nm spacing (black), 1 µm spacing
(red), and 1.5 µm spacing (green)
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Figure 4.50: Current Density vs. Voltage for the CBD samples 500 nm spacing
(black), 1 µm spacing (red), and 1.5 µm spacing (green)

Figure 4.51: Emission area vs. Voltage for the CBD samples 500 nm spacing
(black), 1 µm spacing (red), and 1.5 µm spacing (green)
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Sample Turn-on Voltage (V)

VPT1 Unordered 1091

VPT1 500 nm <1000

VPT1 1 µm 489

VPT2 Unordered 671

VPT2 500 nm 1905

VPT2 1 µm 1680

VPT2 1.5 µm 1075

CBD 500 nm 724

CBD 1 µm 1360

CBD 1.5 µm 1830

Table 4.9: Turn-on voltages for the VPT and CBD samples

significantly higher experimental γ factor. However this may be due to the

unordered samples significantly higher aspect ratio. In the CBD samples

the trend appears to be reversed. The samples were re-examined by SEM

after field emission testing. There were a number of new features present on

the samples. SEM images showing these features observed are presented in

Figures 4.52 - 4.68.

Figures 4.52 and 4.53 show nanowires with bulbous tips, similar to

those observed by Semet et al [34]. This deformation of the tip suggests

surface diffusion or melting of the nanowire tip during emission. The change

in tip geometry will lead to a change to the field enhancement of the struc-

ture, which would have a corresponding effect on the field emission. One

factor in the I-V hysteresis exhibited by emitters before they have been fully

conditioned may be changing field enhancement due to tip melting. Not all

the nanowires exhibit bulbed tips, and those that do are distributed across
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Figure 4.52: Post-field emission characterisation SEM image of VPT1 1 µm sam-
ple at 0 ◦ observation angle

Figure 4.53: Post-field emission characterisation SEM image of VPT1 1 µm sam-
ple at 60 ◦ observation angle
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Figure 4.54: Post-field emission characterisation SEM image of VPT1 500 nm
sample at 60 ◦ observation angle

Figure 4.55: Post-field emission characterisation SEM image of VPT1 500 nm
sample at 60 ◦ observation angle
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Figure 4.56: Post-field emission characterisation SEM image of VPT2 500 nm
sample at 45 ◦ observation angle

Figure 4.57: Post-field emission characterisation SEM image of VPT2 500 nm
sample at 45 ◦ observation angle
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Figure 4.58: Post-field emission characterisation SEM image of VPT2 1 µm sam-
ple at 45 ◦ observation angle

Figure 4.59: Post-field emission characterisation SEM image of VPT2 1 µm sam-
ple at 45 ◦ observation angle
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Figure 4.60: Post-field emission characterisation SEM image of VPT2 1 µm sam-
ple at 45 ◦ observation angle

Figure 4.61: Post-field emission characterisation SEM image of VPT2 1 µm sam-
ple at 0 ◦ observation angle
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Figure 4.62: Post-field emission characterisation SEM image of VPT2 1.5 µm
sample at 45 ◦ observation angle

Figure 4.63: Post-field emission characterisation SEM image of CBD 500 nm
sample at 0 ◦ observation angle
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Figure 4.64: Post-field emission characterisation SEM image of CBD 1 µm sample
at 45 ◦ observation angle

Figure 4.65: Post-field emission characterisation SEM image of CBD 1 µm sample
at 80 ◦ observation angle
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Figure 4.66: Post-field emission characterisation SEM image of CBD 1 µm sample
at 80 ◦ observation angle

Figure 4.67: Post-field emission characterisation SEM image of CBD 1.5 µm sam-
ple at 0 ◦ observation angle
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Sample Experimental γ Modelled γ0 Shielding Modelled γ

factor with shielding

VPT1 Unordered 598 472.6

VPT1 500 nm 883 472.6 0.111γ0 52.5

VPT1 1 µm 1528 290.3 0.297γ0 86.3

VPT2 Unordered 1495 1570.1

VPT2 500 nm 385 93.0 0.297γ0 27.66

VPT2 1 µm 477 110.2 0.353γ0 38.9

VPT2 1.5 µm 682 49.3 0.717γ0 35.4

CBD 500 nm 1230 49.3 0.297γ0 14.7

CBD 1 µm 554 13.3 0.717γ0 9.5

CBD 1.5 µm 307 15.3 0.869γ0 13.3

Table 4.10: Experimental γ factors for the VPT and CBD samples

the sample. Large melted areas are also observed, as in Figure 4.54. Areas

like this were also observed by Semet et al [34], and by Spindt et al [9]. In

this area, the nanowires have been completely destroyed, and splattered ma-

terial is present around the edges of the destroyed zone. Such a disturbance

is most likely due to arcing between the sample and the anode. The loss

of the emitters may affect the emission characteristics, however due to the

small size of the melted area compared to the total area, the effect will be

negligible if the number of melted areas is low.

In Figures 4.57, 4.58, 4.61, and 4.63 - 4.68, large craters can be seen.

Again nanowires in the area have been destroyed, and the area is surrounded

by a splatter of material that appears to have been resolidified after melting.

However, in the craters there are signs of the silicon substrate having been

melted, forming conical protrusions. The cones have dimensions on the order

of microns, and have sharp tips. They bear some resemblance to Spindt

valves (see example in Figure 4.69). The composition of the melted zone
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Figure 4.68: Post-field emission characterisation SEM image of CBD 1.5 µm sam-
ple with 80◦ tilt

shown in Figure 4.58 was investigated by energy dispersive x-ray spectroscopy

(EDX), the results are presented in Table 4.11. The results indicate that the

splattered material at the edge of the feature is melted ZnO, and that the

feature in the centre of the melted region is composed of silicon. Silicon

has a melting point of ∼1700 K, giving an indication of the temperatures

that might be reached during field emission and arcing. In Figure 4.68,

the tip of the cone appears to be several micron higher than any of the

surrounding material. These cones will have a significant effect on a sample’s

observed field emission characteristics. Their geometry, in particular the

sharp termination, is well suited to field emission, and due to the cratered

area around each cone tip, shielding will be minimal.
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Figure 4.69: An example of Spindt valves from a work by Nagao et al [99]

Another feature is shown in Figures 4.59 and 4.60. This feature was

observed only on the VPT2 1 µm spaced sample. Here we see a large mass

of cracked material, in the case of Figure 4.59, and bulbous material, in the

case of Figure 4.60, in the centre, each with cracked and buckled thin film

surrounding it. EDX results for these features can be seen in Table 4.12. The

results show that the material in the centre is composed mainly of silicon.

It seems that material from the silicon substrate has pushed up through

the zinc oxide thin film, causing the cracking and buckling. This may be

due to heat expansion. The feature in Figure 4.60 in particular appears

bulbous, consistent with melting, though there is no splattered material that

has been seen with other large melts in either feature. The nanowires in this

region exhibit an altered morphology, becoming very narrow towards the

top, and terminating with a spherical tip. Like the conical features, these

protuberances appear to be taller than the nanowires. They may field emit,
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Area examined Si (% weight) Zn (% weight) O (% weight)

Outside 2.57 65.91 22.92

Splatter 5.53 74.17 14.75

Centre 95.82 4.18 0.00

Table 4.11: Composition of material given by EDX on the feature in Figure 4.58
for the area outside the melted area, the splattered material at the edges of the
melting, and the centre of the melted area

interfering with field emission characterisation of the wires, although their

morphology is not as suited to field emission as the sharp cone shapes.

Feature Area examined Si (% weight) Zn (% weight) O (% weight)

Figure 4.59 Outside 9.29 54.07 26.65

Centre 96.65 3.35 0.00

Figure 4.60 Centre 88.38 2.73 6.46

Table 4.12: Composition of material given by EDX on the feature in Figures 4.59
and 4.59 for an area outside the feature, and the material at the centre of each
feature

In Figure 4.62 we present a feature observed on the 1.5 µm spaced

VPT2 sample. The feature is a large, faceted piece of material on the surface

of the sample. EDX results for the feature are presented in Table 4.13.

These results show that the material is zinc oxide. The processes behind

the formation of this kind of feature are unclear. The size of the feature is

too large for it to be formed by melting rods coalescing together, and there

is no obvious removal of material in the surrounding area that could have

contributed to the feature. The feature is tall, and has faceted edges, and

thus may field emit and interfere with field emission characterisation.

The observed features can be classified into those which do not sig-

nificantly affect, and those which might significantly affect, field emission
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Si (% weight) Zn (% weight) O (% weight)

0.00 64.50 25.81

Table 4.13: Composition of material given by EDX on the centre of the feature in
Figure 4.62

characterisation. The samples from the VPT1 set and the unordered VPT2

sample exhibited only minor melting features. The samples from the CBD

set and the 500 nm and 1 µm spaced VPT2 samples exhibited the conical

features. The VPT2 1.5 µm sample did not have any of the conical fea-

tures, but exhibited large, faceted pieces of material on the surface. While

data from the latter samples may not represent emission from an ordered

nanowire due to emission from these large features, it is safe to presume

emission in the VPT1 set reasonably represents an ordered nanowire array,

even if some emitters has been deformed or destroyed by melting. The values

determined by experiment and FN analysis support the trend of γ increasing

with spacing. While the experimental values for the ordered samples are

much larger than the modelled values, as commonly reported, the ratios of

the 1 µm spaced γ factor to the 500 nm spaced γ factor for experimental and

modelled values are roughly equal, being 1.731 and 1.646, respectively.

The 1 µm sample, which had the highest enhancement factor and lowest

turn-on voltage, was analysed by phosphor electrode imaging. The results

were previously shown in Figures 4.13, 4.14, and 4.15. As the voltage in-

creases the number of sites emitting increases with it. The turn-on voltage

of this sample is <500 V, however, detectable light emission for the phosphor

was not perceived until ∼1250 V. In Figures 4.70 - 4.72, we present phosphor

electrode images for the 500 nm sample. These images exhibit a much lower

amount of bright spots, even at significantly higher voltages. This may be
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Figure 4.70: Image of phosphor electrode for the VPT2 500 nm spaced sample
taken at 2250 V

Figure 4.71: Image of phosphor electrode for the VPT2 500 nm spaced sample
taken at 2500 V
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Figure 4.72: Image of phosphor electrode for the VPT2 500 nm spaced sample
taken at 2750 V

Figure 4.73: Image of phosphor electrode for the CBD 1.5 µm spaced sample taken
at 2600 V
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an effect of the spacing. However for the 1 µm spaced sample, more spots

appeared at higher voltages. The emission levels saturate of the CCD array,

indicating a high current densities. It is possible that if higher voltages could

be stably achieved for the 500 nm spaced sample, the number of spots would

be comparable to the 1 µm spaced sample. However higher voltages will

increase the chance of arcing, which may damage the phosphor electrode.

The samples that exhibited significant melting effects showed only one or

two spots lighting. Again, this could be due to the lower turn-on and field

enhancement requiring greater voltages for more bright spots, or it may be

a sign that emission is primarily from melted features, such as the Si cones.

A typical phosphor electrode image for one of these samples can be seen in

Figure 4.73, showing just one bright spot.
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Chapter 5

Results and Analyses: Field

Emission of Nanostructured

and Non-Nanostructured Films

5.1 Field Emission of Doped Zinc Oxide

Doping is the addition of trace amounts of impurities into a semiconductor

to modify the electronic properties. While there are continuing difficulties

with p-type doping of zinc oxide, there has been wide success in n-type

doping. One method for doping in pulsed laser deposition growths is the

use of targets containing dopants [45, 100, 101]. The work function of a

material can be altered by using of doping, as discussed in Section 2.2.3.

N-type doping will decrease the value of the work function, which should

change the field emission characteristics. Improvements in field emission

results have been reported for ZnO films by doping with cobalt [102], for a
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single ZnO nanowire by doping with indium [103], and for disordered ZnO

nanowire arrays by doping with indium [104]. Aluminium has proven to be

an effective n-type dopant for zinc oxide [105].

The variables in the FN equation (Equation (2.36)) are the current

and voltage, which are acquired as data, and the work function and field

enhancement factor. The analyses we have described thus far have assumed

a value for the work function in order to obtain the field enhancement factor.

If the field enhancement factor was known, the work function for a given

sample could be calculated.

To experimentally investigate the effect of the work function on field

emission characteristics, we deposited a number of doped and undoped colum-

nar, nanostructured films using PLD. The targets used were pure zinc oxide,

zinc oxide with 0.02 wt% Al2O3, zinc oxide with 0.2 wt% Al2O3, and zinc

oxide with 2 wt% Al2O3. Samples were grown with each target, using the

same growth parameters, in order to grow morphologically similar samples.

If a work function is assumed for an undoped sample, a field enhancement

factor can be determined from its field emission characteristics. As the field

enhancement factor arises from geometry, it should be the same for morpho-

logically similar doped samples. Thus the work function of these samples,

relative to the assumed undoped work function, can be determined.

PLD is a widely established deposition technique for a variety of thin

film materials [106]. In recent years, it has also been applied in the grow-

ing of nanostructures. It has been established that PLD growth of thin

films with increasing background pressure during deposition, above about

∼0.1 mbar, shows a considerable increase in the surface roughness [107, 108].

By increasing the background pressures to on the order of 100 mbar, nanos-
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tructure growth can be achieved. Kawakami et al [109] attribute the growth

of nanostructures to the formation of nanoparticles in the plume, due to

the decreased mean free path for particles in the plume due to the higher

pressure. High background pressures have proved effective in nanostructure

growth for zinc oxide [44, 79, 109–111]. Tien et al present a study on the

effect of background pressure and substrate temperature, for a two stage

method in which a thin film of ZnO is deposited by low pressure PLD as a

template layer, then grown upon by high pressure PLD [44].

We grew a number of nanostructured zinc oxide films on (100) silicon

substrates by a two stage PLD method with a pure ZnO target. In the first

stage, a clean (100) Si substrate was heated to 950 ◦C at a rate of 30 ◦Cmin−1,

annealled for 5 min, and cooled to 300 ◦C at a rate of 20 ◦Cmin−1. This an-

neal is to clean the substrate of adsorbates. The substrate was deposited on

by PLD at 300 ◦C for 5,000 shots at a rate of 10 Hz, with a background gas

of O2 at 1.33 mbar. After deposition, the sample was heated to 750 ◦C at a

rate of 30 ◦Cmin−1, annealled for 5 min, and cooled to 150 ◦C at a rate of

10 ◦Cmin−1, in an oxygen background. Samples were allowed to cool from

150 ◦C to room temperature naturally. This first stage deposits a thin film,

to be used as a template for nanostructure growth. Using spectroscopic ellip-

sometry, the thickness of such a film was found to be ∼120 nm. Figures 5.1

and 5.2 show XRD results for such a film, presenting a θ-2θ scan and rocking

curve of the (0002) ZnO peak, respectively. The FWHM of the rocking curve

is ∼2◦, indicating good crystallite alignment.

In the second stage this thin film was grown upon by PLD, using various

shot counts, background pressures and deposition temperatures. The sample

was heated to its deposition temperature at a rate of 10 ◦Cmin−1, deposited

on for the desired number of shots with the desired background pressure,
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Figure 5.1: θ-2θ scans for a PLD-grown ZnO thin film

Figure 5.2: Rocking curve around the (0002) ZnO peak for a PLD-grown ZnO thin
film
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then cooled to 150 ◦C at a rate of 10 ◦Cmin−1.

Sample Temperature (◦C) Background Pressure (mbar) Number of Shots

S01 800 0.533 20,000

S02 800 0.667 20,000

S03 800 0.800 20,000

S04 800 0.533 40,000

S05 800 0.667 40,000

S06 800 0.800 40,000

S07 800 1.000 40,000

S08 800 1.267 40,000

S09 650 0.800 40,000

S10 950 0.800 40,000

S11 650 1.000 40,000

S12 950 1.000 40,000

Table 5.1: Deposition parameters for undoped ZnO nanostructured films

We grew a number of undoped ZnO samples by this two stage method,

using the parameters listed in Table 5.1 for the second stage. The samples

were investigated by SEM, the results of which can be seen in Figures 5.3 -

5.15. The samples all exhibit nanostructured growth in some form. Samples

S01 - S03, shown in Figures 5.3 - 5.5, show columnar film growth, with tips

typically ∼300 nm across, with less frequent ∼100 nm diameter tips also

present. Samples S04 - S06, shown in Figures 5.6 - 5.9, were grown with

the same temperature and background pressures, but with an increased shot

count. These samples also exhibit columnar growth, with tips of ∼100 -

300 nm. The sharp, hexagonal, faceted geometry of the tip can been seen

clearly in Figures 5.8 and 5.9.

Samples S07 and S08, shown in Figures 5.10 and 5.11, used higher

pressures than the previous 6 samples. Sample 07 shows similar growth to

the previous samples. However, Sample 08 presents a different morphology,

where the columns of the growth have coalesced giving a more uniform film.

It also exhibits cracks, which are usually typical of temperature expansion
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Figure 5.3: SEM image of sample S01 taken at 30 ◦ observation angle

Figure 5.4: SEM image of sample S02 taken at 30 ◦ observation angle
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Figure 5.5: SEM image of sample S03 taken at 30 ◦ observation angle

Figure 5.6: SEM image of sample S04 taken at 30 ◦ observation angle
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Figure 5.7: SEM image of sample S05 taken at 30 ◦ observation angle

Figure 5.8: SEM image of sample S06 taken at 30 ◦ observation angle
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Figure 5.9: SEM image of sample S06 taken at 70 ◦ observation angle

Figure 5.10: SEM image of sample S07 taken at 45 ◦ observation angle
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Figure 5.11: SEM image of sample S08 taken at 0 ◦ observation angle

Figure 5.12: SEM image of sample S09 taken at 0 ◦ observation angle
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Figure 5.13: SEM image of sample S10 taken at 0 ◦ observation angle

Figure 5.14: SEM image of sample S11 taken at 0 ◦ observation angle
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Figure 5.15: SEM image of sample S12 taken at 0 ◦ observation angle

effects, however it was deposited at the same temperature as the other PLD

samples discussed thus far. Samples S09 - S12, shown in Figures 5.12 - 5.15,

were grown at different temperature for two background pressures. The lower

temperature growths, S09 and S11, lead to a markedly different structure

to the samples previously discussed. The columnar growth terminating in

hexagonal tips is not evident here. Instead a web of connected growth is

seen across the surface. The higher temperature growths, S10 and S12, show

growth that is more similar to the typical columnar growth, but with some

coalescing of the columns and signs of cracking. Samples were analysed by

XRD, and found no significant differences between samples. A typical θ-2θ

scan and rocking curve around the (0002) ZnO peak are shown in Figures 5.16

and 5.17, respectively.

Based on the above results, the parameters of Sample S06 gives the best

results morphologically, for field emission purposes. It presents sharp, faceted
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Figure 5.16: θ-2θ scan for a 2-stage PLD-grown ZnO nanostructure film

tips, with the most uniformity. It shows minimal non-columnar growth or

coalescing/merging of columns, and no cracks. Aluminium doped zinc ox-

ide nanostructure films were grown by performing a two stage deposition,

as described above, using the same parameters as used for Sample S06,

with ZnO:Al2O3 targets. Using three such targets composed of ZnO, with

0.02 wt%, 0.2 wt% and 0.02 wt% Al2O3, respectively, 3 doped ZnO nanos-

tructure films were deposited. The sheet concentration and sheet resistance

of the samples was estimated using a 4-point Hall effect probe, which can be

used with the thickness of the deposited material (∼1 µm) the results can be

seen in Table 5.2. These measurements may be affected by possible disconti-

nuities in the structure of the deposited material. This may have caused the

p-type behaviour of the sample deposited with the pure ZnO target. How-
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Figure 5.17: Rocking curve around the (0002) ZnO peak for a 2-stage PLD-grown
ZnO nanostructure film

ever the behaviour may also be caused by the semi-insulating behaviour of

the material, or the low carrier concentration. The values obtained for the

samples grown with the ZnO:Al2O3 targets agree well with values reported in

the literature for Al-doped ZnO [112, 113]. These values indicate increasing

electron concentration with the amount of Al2O3, which is consistent with

n-type doping.

The presence of dopants did not have any significant effect on the sam-

ple morphology. Samples were analysed by XRD, and found no significant

differences between samples. A typical θ-2θ scan and rocking curve around

the (0002) ZnO peak are shown in Figures 5.16 and 5.17, respectively. Rock-

ing curves from these samples have FWHM of ∼3◦, slightly broader than the
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Sample Sheet Carrier Sheet Resistivity

concentration (cm−2) concentration (cm−3) resistance (Ω/square) (Ωcm)

Pure ZnO target 1.64 × 107 1.64 × 1015 3.48 × 107 3.48 × 10−1

0.02 wt% -5.15 × 1011 -5.15 × 1019 5.90 × 104 5.90 × 10−4

0.2 wt% -1.86 × 1013 -1.86 × 1021 7.89 × 104 7.89 × 10−4

2 wt% -1.41 × 1015 -1.41 × 1023 9.94 × 104 9.94 × 10−4

Table 5.2: Sheet concentrations for undoped and doped samples



template thin film. In Figure 5.18 we present representative SEM images

for samples grown with the pure ZnO, 0.02 wt%, 0.2 wt% and 0.02 wt%

targets. The field emission characteristics of these samples were tested with

the apparatus and method previously described. The results are present as

I-V curves in Figure 5.19, and linear FN plots in Figure 5.20.

Figure 5.18: SEM image of samples grown with (a) undoped, (b) 0.02 wt%, (c)
0.2 wt%, and (d) 2 wt% targets

From the I-V and FN plots, it appears that the field emission properties

from best to worst are the 2 wt%, undoped, 0.2 wt%, and the 0.02 wt%. This

goes against expectations, as the samples should be geometrically similar,

with higher doping leading to a smaller work function, and thus better field

emission. The γ factor determined for the undoped sample by our analysis

method is ∼496, for an assumed work function of ∼3.7 eV. Assuming that

the samples are geometrically similar enough to assume a roughly equal γ

factor, we can apply Equation (2.37) to determine a work function for each
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Figure 5.19: I-V curves for samples grown with undoped (black), 0.02 wt% (red),
0.2 wt% (green), and 2 wt% (blue) targets

Figure 5.20: FN plots for samples grown with undoped (black), 0.02 wt% (red),
0.2 wt% (green), and 2 wt% (blue) targets
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doped sample. This gave values of 5.51 eV, 5.35 eV, and 3.56 eV, for the

0.02 wt%, 0.2 wt% and 2 wt% target samples, respectively. These values seem

unrealistic, as n-type doping should decrease the work function, and the sheet

concentrations measured indicated increasing n-type doping with increasing

Al2O3 levels in the target. The current densities (JFN) and emission areas

(AFN) were calculated using these work function values, and are plotted in

Figures 5.21 and 5.22, respectively.

The samples were examined by SEM after field emission characterisa-

tion. The results can be seen in Figures 5.23 - 5.26. In Figures 5.23 and 5.24

we can see a crater similar to those seen on the VPT and CBD samples in

Section 4.2. Such craters were seen across all 4 samples. In Figures 5.25

and 5.26, a feature seen on the sample grown with the 2 wt% target is pre-

sented. In this area, the sharp tipped columns are no longer present, having

undergone a complete morphology change. The area appears to have melted

and cooled, allowing the material to re-form into this new morphology.

These craters and morphological changes will undermine analysis based

on assuming a roughly uniform geometry. This may have given rise to the

unexpected work functions determined by our analysis above.
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Figure 5.21: Plot of JFN vs. Voltage for samples grown with undoped (black),
0.02 wt% (red), 0.2 wt% (green), and 2 wt% (blue) targets

Figure 5.22: Plot of AFN vs. Voltage for samples grown with undoped (black),
0.02 wt% (red), 0.2 wt% (green), and 2 wt% (blue) targets
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Figure 5.23: SEM image of the sample grown by PLD with a ZnO with 2 wt%
Al2O3 target taken at 30 ◦ observation angle

Figure 5.24: SEM image of the sample grown by PLD with a ZnO with 0.02 wt%
Al2O3 target taken at 30 ◦ observation angle
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Figure 5.25: SEM image of the sample grown by PLD with a ZnO with 2 wt%
Al2O3 target taken at 30 ◦ observation angle

Figure 5.26: SEM image of the sample grown by PLD with a ZnO with 2 wt%
Al2O3 target taken at 30 ◦ observation angle
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5.2 Field Emission of ZrN and ZrC Films

There has been much research and development in transition metal carbide

and nitride coatings, such as zirconium nitride (ZrN) and zirconium carbide

(ZrC), in the last decades, due to their properties like high hardness [114],

biocompatibility [115], and high melting point (2982 ◦C for ZrN [116], 3540 ◦C

for ZrC [117]). These coatings have industrial applications such as hard

coatings [118], semiconductor devices [119], and optical applications in heat

mirrors [120].

Another potential use for these coatings is as a protective coating on

field emitters. The high hardness and stability is desirable for field emission

applications. As we have seen in the previous results, thermal destruction

of field emitters can be significant, making the high melting points of these

materials very suitable. In field emission, the work function at the surface

is a key factor, therefore any coatings would need to have a reasonably low

work function, in order to be viable. The work functions of ZrN and ZrC are

reported to be ∼2.9 eV [121] and ∼3.5 eV [122], respectively.

In this section we have characterised the field emission properties of a

ZrN thin film and a ZrC thin film, both on a (100) silicon substrate, which

were fabricated by Dr. Valentin Craciun of the Department of Material

Science and Engineering, at the University of Florida. In Figures 5.27 - 5.30

we present I-V curves and FN plots for the two samples.

The turn-on voltages for the ZrN and ZrC thin films are ∼1275 V and

∼1542 V, respectively. The emitters are thin films, and thus if they are

sufficiently flat, they can be considered approximately planar. In this case,

there will be no field enhancement due to geometry, meaning a γ factor of 1.

174



Figure 5.27: I-V curve for ZrN thin film

Figure 5.28: FN plot for ZrN thin film
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Figure 5.29: I-V curve for ZrC thin film

Figure 5.30: FN plot for ZrC thin film
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Having a known γ factor means that the work function can be determined

from Equation (2.37). Performing this analysis gives values of ∼0.09 eV for

both types of sample. This value seems unrealistic, and from this we can

conclude that the samples do not behave as planar emitters. If we assume

the work functions of 2.9 eV and 3.5 eV for ZrN and ZrC, respectively, we can

analyse the samples using our treatment, and determine γ factors, current

densities, and emission areas. The γ values determined by our iterative

method for the ZrN and ZrC thin films are ∼336 and ∼415, respectively.

Plots of the current densities and emission areas against the applied voltage

are seen in Figures 5.31 - 5.34. We see current densities on the order of

∼1011 Am−2, and emission areas on the order of ∼10−16 m2.

The samples were analysed by SEM after field emission characterisa-

tion. The results are presented in Figures 5.35 - 5.40. We see localised

areas of melting and delamination on both samples. The presence of melt-

ing on materials with such high melting points gives an indication of the

high temperatures reached during field emission testing. There is a large

amount of delamination compared to the zinc oxide samples tested, which

may indicate weaker bonding between the thin film and substrate, or higher

currents/temperatures resulting in more damage. These features disrupt the

flat surface, which leads to the deviation from planar emitter behaviour de-

scribed above.

177



Figure 5.31: Current density vs. voltage for the ZrN thin film

Figure 5.32: Emission area vs. voltage for the ZrN thin film
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Figure 5.33: Current density vs. voltage for the ZrC thin film

Figure 5.34: Emission area vs. voltage for the ZrC thin film
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Figure 5.35: SEM image of the ZrN thin film at 30 ◦ observation angle

Figure 5.36: SEM image of the ZrN thin film at 30 ◦ observation angle
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Figure 5.37: SEM image of the ZrN thin film at 30 ◦ observation angle

Figure 5.38: SEM image of the ZrC thin film at 30 ◦ observation angle
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Figure 5.39: SEM image of the ZrC thin film at 30 ◦ observation angle

Figure 5.40: SEM image of the ZrC thin film at 30 ◦ observation angle
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Chapter 6

Conclusions and Outlook

The work presented in this thesis is concerned with the field emission char-

acterisation of zinc oxide nanostructures, with a view to their potential use

in field emission applications, such as flexible displays or small x-ray sources.

A system was designed and built during the course of this study to ex-

perimentally characterise the field emission properties of various samples,

with either a stainless steel electrode or a transparent phosphor electrode,

to investigate I-V characteristics or distribution and uniformity of emission,

respectively. Results were presented from a number of ZnO nanostructures

grown by vapour phase transport, chemical bath deposition, and pulsed laser

deposition. A new treatment for analysing field emission results, based on

recently discovered analytical approximations, was developed and applied to

the data. Samples were also characterised with SEM and XRD.

A VPT and NSL grown ordered zinc oxide nanowire array was charac-

terised, and the I-V data analysed using the treatment we have developed.

A number of work function values were applied, based on a review of the

values commonly used for zinc oxide in the literature. The enhancement
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factors determined experimentally were compared with values for a num-

ber of geometry based models. The agreement between experimental and

modelled valuess was found to be poor, with hemi-ellipsoidal models giving

closest agreement. The effect of shielding from neighbouring nanowires was

estimated to be a reduction by ∼0.5 of the field enhancement factors. The

treatment used provided values of the current density and emission area,

which were on the order of 1011 Am−2 and 10−17 m2, respectively. These low

area values may support the physical model according to which field emis-

sion takes place from an area of atomic dimensions at the tip of the emitter.

Possible explanations for the 2-stage FN plot obtained, and frequently ob-

served in the literature, were explored. Images of the transparent phosphor

electrode at various voltages were presented and analysed, and the results

contrasted with the I-V analysis. Estimates for the maximum and minimum

number of emitters could be determined, and from this estimates of maxi-

mum and minimum values for the emission area and current density, ranging

from ∼10−13 - 10−6 m2 and ∼10 - 107 Am−2, respectively. These values were

then applied to the FN equation, to obtained estimates of the field enhance-

ment factor, γ, which gave greater agreement with the modelled values than

values determined from the I-V data.

The effect of inter-wire spacing of ordered zinc oxide nanowire arrays on

their field emission properties was investigated for a number of samples grown

by VPT and CBD, with NSL patterning. Our treatment was applied, giving

current densities and emission areas of ∼1010 - 1013 Am−2, and ∼10−19 -

10−16 m2, respectively. The field enhancement factors (γ) determined were

compared with the model of the effect of spacing on the field enhancement.

The samples were found to show signs of damage after field emission testing.

The distinct types of damage were investigated with SEM and discussed
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in the context of their potential to affect the field emission. The types of

damage were classified into those are likely or unlikely to significantly affect

the field emission. The samples which exhibited extensive melting damage

were found to generally fail to agree with the model. Reasonable agreement

with the model was found for samples that exhibited only minor melting

damage.

The effect of doping on field emission properties was investigated for

a number of PLD grown nanostructured columnar films. Depositions were

carried out using a pure ZnO target for a variety of growth parameters to

determine which gave the morphology most favourable for field emission test-

ing. The best parameters were then used to grow 4 samples using 4 different

targets: pure ZnO, ZnO with 0.02 wt% Al2O3, ZnO with 0.2 wt% Al2O3,

and ZnO with 2 wt% Al2O3. The morphology of the 4 samples was found

to be consistent using SEM. Increasing amounts of Al2O3 present in the

target was correlated with increased electron concentration by measurement

with a 4-point Hall effect probe, consistent with n-type doping. The field

emission properties of the samples were characterised. Work functions were

determined for the doped samples, on the assumption of a roughly equivalent

surface morphology and an undoped work function of 3.7 eV, and found to

be 5.51 eV, 5.35 eV, and 3.56 eV for the 0.02 wt%, 0.2 wt%, and 2 wt% sam-

ples, respectively. This did not agree with the expected trend of decreasing

work function with increasing doping. Our treatment was applied to the data

using these work function values to determine current densities and emission

areas, which were found to be within typical range. The samples were exam-

ined with SEM after field emission testing, and found to have extensive signs

of melting, which would disrupt the surface morphology, and may explain

the deviation from expected behaviour.
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The field emission properties of thin films of ZrN and ZrC were tested.

The data were analysed in the context of planar emitters, and which gave

unrealistic results. Work function values were assumed for the materials,

and the field enhancement factors (γ), current densities, and emission areas

determined. Despite the high melting points of both materials, they exhibited

signs of melting and delamination after field emission testing. This gives a

clear indication of the high temperatures reached during testing.

All samples tested exhibited melting to some degree after field emission

testing. Such melting has been reported in the literature, and is generally

considered to have negligible effect on the field emission. However, in our

experiments we see both significant and insignificant melting. The scale

of the largest disturbances, and their presence in materials of high melting

point, suggest that these features are created during arcs between the sample

and anode. Spindt [9] suggests these arcs proceed from a melting of tip

releasing vapour which allows the arc to take place. Arcing could also be

caused by the release of adsorbates from the emitter surface. In the most

striking feature, the deposited material is completely removed, and the silicon

substrate beneath melted, forming into a cone shape that resembles a Spindt

valve. This sharply terminated cone shape is well suited to field emission. In

cases where the cone is significantly lower than the surrounding material it is

unlikely that it will contribute significantly to the emission current. However,

in other cases the cone is approximately at the height of the nanowires or

above. In these cases the cone may contribute significantly, or even dominate,

the emission current.

Another consideration is the duration of conditioning a sample must

undergo, before hysteresis-free, reproducible I-V data can be obtained. As

previously stated, this is commonly attributed to adsorbates. Our results
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suggest that deformation of the emitters is also a factor. The number of ’cy-

cles’ of ramping up and down the voltage needed is on the order of hundreds,

in most cases taking between one and two weeks of constant cycling.

There are some key avenues for further work. One such avenue would

be to implement varied conditioning procedures on a number of similar sam-

ples, to investigate how best to minimise the time needed to obtain reliable

data, and minimise the amount of and severity of melting damage caused

during testing. Another possibility is the use of cleaning or treatment of

samples before testing. If hysteresis is caused by adsorbates, their removal

may reduce conditioning times, and also decrease the incidence of arcing.

If arcing due to vapour released from melting tips is the source of major

melting damage, annealing samples prior to testing may allow tips to melt

safely, without risk of arcing. The apparatus could be augmented to include

multiple electrodes, so that mulitple samples could be conditioned concur-

rently. Testing a reduced area could decrease conditioning time, for example

by masking samples which would also allow for a greater degree of selection

in choosing the area of the samples to test. Other avenues for future work in-

clude investigating the effect of surface treatments on field emission, plasma

etching of nanospheres before silica deposition to adjust nanowire diameters

for arrays of the same spacing, and investigation of larger spacings by use of

larger nanospheres.
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