
COMPUTER GRAPHICS -

AN OBJECT ORIENTED

APPROACH

A Thesis Presented
by

Paul O ’Connell B.Sc.

Submitted to the
Dublin City University
Computer Applications

for the degree of
MASTER OF SCIENCE

July 1989

A cknow ledgem ent

To my parents who gave me the opportunity to pursue these studies, pro
viding support and encouragement along the way.

Abstract

Paul O’Connell, B.Sc.
Supervisor: Dr. M. Scott PhD

More and more applications are being found for computer graphics ranging
from business graphics to scientific modelling. Packages can be purchased which
support these applications but sometimes users find these packages limit the
control they have over the final image and are forced to resort to programming
in order to overcome these limitations. COOGE is an attem pt to support these
users by providing a means to generate graphic applications using a set of graphic
objects specifically geared towards CAD users. It provides all the power of a
programming language while at the same time providing all the comfort of a
package. COOGE is device-independent and user extendable. It provides a wide
range of transformations and primitive graphic functions in both 2D and 3D. It
also allows a user to set up a library of images in a device-independent format
which can then in turn be incorporated into future images. This thesis outlines
the issues behind designing a graphics library and how object oriented methods
can be used to meet these objectives. Finally it attem pts to outline the impact
object-oriented development will have on the future of computer graphics.

Declaration

No portion of this work has been submitted in support of an application
for another degree or qualification in the Dublin City University or any other
University or Institute of Learning.

Contents

1 COM PUTER GRAPHICS - NOT A PR ETTY PIC TU R E 1

1.1 In troduction .. 2

1.2 Computer Graphics Packages .. 4

1.2.1 D isadvantages... 4

1.3 Graphic Function L ibraries.. 6

1.4 GKS - A Graphics S tan d a rd ... 9

1.5 The H y b r id .. 11

2 IN A CLASS OF ITS OW N 14

2.1 In troduction ... 15

2.2 Object Oriented vs. Functional Developm ent.................................... 15

2.3 C lasses.. 22

2.4 Member F u n c tio n s .. 23

2.5 Friend F u n c tio n s ... 25

2.6 Derived C la s se s .. 26

2.7 Constructors &: D e s tru c to rs ... 27

Ì

2.8 Operator Overloading ... 29

2.9 Memory M anagem ent.. 30

2.10 Separate Com pilation.. 32

2.11 Conclusion... 33

3 SO M E B A SIC G R A P H IC S 34

3.1 In troduction .. 35

3.2 Graphics F u n c tio n s ... 36

3.3 Primitive F unctions... 37

3.4 Co-ordinate S y s te m s .. 38

3.5 Windowing .. 39

3.6 Transformation F u n c t io n s .. 41

3.7 V iew p o rts .. 42

3.8 3-D To 2-D .. 42

3.9 S eg m en ta tio n ... 44

3.10 Graphics P ip e lin e .. 45

3.11 The Mathematics Behind The Picture ... 47

3.11.1 Viewing In 3 - D .. 49

3.11.2 Perspective P ro je c tio n ... 50

3.11.3 Parallel P ro jec tions... 54

3.11.4 O rth o g ra p h ic ... 55

3.11.5 Oblique Projections... 56

ii

4 T H E O B JE C T O F IT ALL 59

4.1 In troduction .. 60

4.2 The Design P rio ritie s .. 60

4.3 Meeting These P r io r itie s ... 61

4.4 The Objects R e q u ir e d 63

4.4.1 Service O b je c ts .. 64

4.4.2 The BASE Object ... 64

4.4.3 Saving O b je c t s .. 65

4.4.4 Loading Objects ... 67

4.4.5 B itm a p s ... 68

4.5 The Viewing O peration .. 69

4.5.1 The V IE W S E T .. 70

4.5.2 The S C R E E N ... 71

4.5.3 Sensitive O b je c ts ... 72

4.5.4 SH A PES... 73

4.5.5 SEGMENTS & SC EN ES... 75

4.5.6 W IN D O W S .. 76

4.5.7 F O N T S ... 77

4.5.8 Drawing T e x t ... 78

4.6 Conclusion.. 79

3.12 C o n c lu sio n .. 58

iii

5 IMPLEMENTATION 81

5.1 In troduction .. 82

5.2 The C o m p ile r ... 82

5.2.1 Implementation P ro b le m s .. 83

5.3 Which Graphics Library ? .. 84

5.4 M o d u lariza tio n ... 86

5.5 The System In A c t i o n .. 87

5.5.1 The Use Of Segm ents.. 91

5.6 Conclusion... 95

6 THE FUTURE 96

6.1 In troduction .. 97

6.2 Towards Object Oriented G ra p h ic s .. 97

6.3 COOGE Enhancements .. 98

6.3.1 The S h ap e .. 98

6.3.2 W indows... 98

6.3.3 Input O b je c ts ... 99

6.3.4 M ultitasking.. 99

6.4 Similar S y stem s... 100

6.5 The L anguage...102

6.6 Conclusion... 103

A SOURCE CODE 105

iv

List of Figures

3.1 Floor plan of o f f ic e ... 40

3.2 Viewport transfo rm ation ... 43

3.3 Orthographic projection of a c u b e ... 44

3.4 2D Graphics p ip e lin e .. 45

3.5 3D Graphics p ip e lin e .. 46

3.6 Rotation of a shape by 90° about the Z a x i s 48

3.7 The two basic types of p ro je c tio n ... 51

3.8 One point perspective projection of a c u b e .. 52

3.9 Two point perspective projection of a c u b e ... 53

3.10 Perspective projection ... 54

3.11 Isometric projection of unit cube ... 55

3.12 Cavalier and Cabinet projection of a cube 56

3.13 Construction of a parallel projection ... 57

4.1 System hierarchy of objects ... 80

5.1 Cube g e n e ra te d 89

v

5.2 Rotated cube generated .. 90

5.3 Generated image of cubes ... 93

5.4 Sample screen from demonstration p r o g r a m 94

vi

Chapter 1

COMPUTER GRAPHICS -

NOT A PRETTY PICTURE

CHAPTER 1. COMPUTER GRAPHICS - N O T A P R E T T Y PICTURE 2

1.1 In tro d u ctio n

“Computer graphics is the art or science of producing graphical images with

the aid of a computer” . No short definition of computer graphics, however, can

capture all of its applications. Computer graphics permits the vast quantities of

complex interrelations of information to be organized and manipulated in a way

that exploits the unique human ability to work with patterns. As it says in the

ancient Chinese proverb “A picture is worth a thousand words.”

Most people seem to think that there is something magical being worked

by people in computer graphics, as all they ever see is the final result such as

computer generated colour images of crystal balls and draught sets, or some

pictures of the mandelbrot set. However, the fundamentals of computer graphics

are really quite simple - all you need is some basic knowledge of computer software

and a fundamental understanding of geometry.

More and more applications have been found for computer graphics, such as

business graphics which illustrate the current state of the business in terms of bar

charts, pie charts and graphs or applications in a scientific research field to model

a section of DNA or used in the modelling of the workings of a human organ.

It is however, in the Computer Aided Design (CAD) field that this research has

been concentrated.

CAD systems are now capable of drawing all the traditional lines and shapes

of manual drawing systems. They usually operate under prompting and menu

control with a screen cursor being used to designate co-ordinate points and to

interact with the drawing. Most systems have some degree of ‘intelligence’ that

partially automates the drawing process, such as the generation of circles, arcs,

tangents and so on. CAD systems can, by generating and storing ‘standard’

shapes, also reduce the work load of the draughtsman.

For example a designer whose job it is to design the interiors of the rooms

in a building must show how the furniture will be laid out and how chairs will

be arranged. It would be a very time consuming job to draw each item in the

room by hand and for this reason most CAD systems allow the user to build up

a library of frequently drawn objects such as chairs and tables. The designer can

simply call up any of these shapes at any time and reproduce them in his/her

drawing with only a couple of commands.

The final drawings can be stored for later use or for transmission to other

systems that require them. Sophisticated and specialised CAD systems often

have the ability to check the correctness and integrity of the design using prepro

grammed knowledge of the subject and high accuracy calculations. CAD systems

can also be used in simulation to see how a piece of machinery will work without

ever having to build a prototype. For instance, you could draw an engine and

use modelling to see graphically how the engine will perform.

CHAPTER 1. COMPUTER GRAPHICS - NOT A P R E T T Y PICTURE 3

1.2 C om p u ter G raphics P ackages

CHAPTER 1. COMPUTER GRAPHICS - NOT A P R E T T Y PICTURE 4

A number of different CAD packages or systems are available at the moment,

each one geared towards a different type of user. For instance there is Auto-CAD

[ACAD] for architectural applications, Micro-CAD for electronic applications. In

general these packages are well designed allowing the user a wide range of control

over the image being produced. A lot of CAD packages now support 3-D with

the more advanced products supporting solid modelling and hidden line removal.

In order for any CAD package to be successful it must be capable of being

run on a number of different graphics cards and devices. In order words, the

package and the CAD images or pictures themselves must be device-independent.

Using a CAD package has a number of advantages for a user. For instance

most of the packages take advantage of pop-up and pull-down menus to provide a

user-friendly interface which means that the user is not required to learn a com

plete programming language in order to produce CAD images. This is especially

useful for inexperienced users.

1.2.1 Disadvantages

No CAD image will be of much use to the user unless a number of transformations

can be applied to it. For instance, the viewer might want to view the image from

a number of different angles or to scale the image up or down to suit a particular

requirement. The type of control the user has over the final image depends firstly

on how the image is stored. To apply these kind of transformations successfully

to the image, the individual elements that went to make up the picture must

be stored (the lines, circles, rectangles etc.) rather that just a copy of the final

screen. The way in which the image is stored also affects the usefulness of the

image. For instance, it is often necessary to transfer an image from one package

to another. Unfortunately, no standards currently exist for the transfer of CAD

images between products although most packages can im port/export using an

AutoCad display file format.

The transformation functions provided by the packages also determine the

control the user has over the final image and how it will look. If these functions

fall short of what the user actually requires then there is no easy solution. It is

usually impossible for the user to add new functions to the package or even to

enhance the existing ones. In fact the only type of changes that can be made are

usually some type of simple customization of the user interface.

3-D Images are relatively easy to represent on a 2-D computer screen once

drawn, but drawing a 3-D image on a 2-D screen in the first place is not as simple

as it seems. The reason for this is that each point on the physical screen can actu

ally represent an infinite number of points in the 3-D world. When a user draws a

line to a point on the screen how do you decide where the point actually is in the

3-D world ? This type of complication means that 3-D drawing of images is only

supported by a small number of packages and usually it is a fairly complex proce

dure to produce the image. One method of overcoming this problem is explained

CHAPTER 1. COMPUTER GRAPHICS - NOT A P R E T T Y PICTURE 5

by B. Ozell [BOZE85] in an article written on CAD applications. Other methods

of overcoming this problem are outlined by Timothy Johnson in an article on a

program for drawing in three dimensions called Sketchpad III [JOHN63].

As users require more and more complex transformations to be applied to

the image they generally find that it is the packages which limit them. The only

other choice is to move back down the graphical ladder to the basics and resort

to writing a program to produce the image.

1.3 G raphic F u n ction L ibraries

In the past, virtually every time a graphical display terminal or screen was a t

tached to a computer in a unique configuration, a fresh set of graphics functions

had to be written to support it. The design and implementation of this software

was an activity that absorbed large amounts of time and energy. Despite this

expenditure of human resources, the result was often unsatisfactory, with users

finding the system difficult to program or lacking in capability. For such reasons,

each fresh graphics hardware configuration tended to spawn not just one new set

of graphic functions but two or three in succession.

The more recently developed libraries tend to reverse the situation with

each set of functions supporting a variety of hardware configurations. These

so called device-independent graphics have become popular with the application

programmers who have used them. For instance MetaGraphics [META88] provide

CHAPTER 1. COMPUTER GRAPHICS - NOT A P R E T T Y PICTURE 6

a set of graphical routines that can be used with a wide number of graphic display

cards. These types of systems have been criticised for failing to cater for the user

who needs a high performance system. This is a legitimate criticism, pointing to

a need for graphics systems that are suited to both high- and low-performance

displays.

Graphics functions, however, need to be more than just device-independent

they also need to be sufficiently general purpose to support a wide variety of

applications. System designs often fall short in this area because the designers

believe that they know what the final applications will be, and that they can opti

mize the design in their favour. Typically, an unanticipated graphics application

will turn up that requires awkward modifications to the system. The designer

should always do his best to anticipate these requirements, by providing a general

set of functions.

Graphic functions should also be high-level . They should provide a simple

yet powerful means of writing graphics applications, and should hide from the

programmer the low-level features of the hardware. Ideally, they should make

graphic applications as easy to write and maintain as any other type of interactive

program.

Furthermore, these graphics libraries should provide a standard interface to

allow the user to switch from one set of library routines to another without having

to alter his/her program code. Most graphics libraries tend to provide the same

graphics functions but the interface to these functions vary considerably from

CHAPTER 1. COMPUTER GRAPHICS - NOT A P R E T T Y PICTURE 7

one set of library routines to another. For instance to draw a line from a point

10,10 to 100,100 might require one command in one library or two commands to

achieve the same effect in another library.

eg-
_line(10,10,100,100) as opposed to
_moveto(l0,10); _lineto(100,100)

W ith no standard interface to functions being provided, the user is forced

to reprogram when changing from one library to another.

A well designed Set of graphics functions allows the user full control over

how the final graphical image will look. The major disadvantage of this type of

system is that a reasonable knowledge of a programming language is required to

use such a system, and the final output might suffer because of shortcomings in

the user’s programming ability rather than shortcomings in the user’s graphical

abilities.

In the past, graphics system designers have often shown poor judgement in

choosing design criteria and establishing design priorities. They have frequently

fallen into the trap of making speed of response their overriding concern. Taken

to its logical conclusion, this approach leads them to abandon high-level general-

purpose features since these might cause “inefficiency”. Instead each system is

designed to make the most efficient possible use of the display hardware. Sys

tems of this sort, besides making programs difficult to write and maintain, are

inevitably highly device-dependent. This device-dependence means that these

CHAPTER 1. COMPUTER GRAPHICS - NO T A P R E T T Y PICTURE 8

systems also have a limited life span for as soon as the display hardware changes

the system itself must be reprogrammed to work with the new hardware.

Again, because of this overriding concern for efficiency most of these graphic

libraries do not support 3-D graphics because of the complexity of programming

and the effect that 3-D support has on the speed of the system. This forces the

users to supplement the system with their own set of 3-D transformations and

viewing routines.

1.4 G K S — A G raphics S tandard

In an attem pt to produce some standards for graphical functions, a 2-D Graphics

Kernel System (GKS) [DINF89] was designed by the International Standards

Organisation (ISO) and became a standard in 1983. GKS was an attem pt to

make graphical programs portable and device-independent. GKS can be used as

a base on which portable CAD systems can be designed and it can be accessed

from a number of computer languages, including both Pascal and Fortran.

GKS is a device-independent kernel system with all the graphics commands

being stored in a device-independent format in a metafile. GKS then uses device

drivers to convert the device-independent commands into device-specific com

mands for the input/output devices attached to the system. By changing the

device drivers one can change the input and output devices without having to

reprogram. This approach, while providing device-independent graphics, tends

CHAPTER 1. COMPUTER GRAPHICS - NOT A P R E T T Y PICTURE 9

CHAPTER 1. COMPUTER GRAPHICS - N O T A P R E T T Y PICTURE 10

to be quite slow.

The GKS design objectives were as follows :

• GKS has to include all the capabilities that are essential for the whole

spectrum of graphics, from simple passive output to highly interactive ap

plications.

• The whole range of graphic devices, including vector and raster devices, mi

crofilm recorders, storage tube displays, refresh displays and colour displays

must be controllable by GKS in a uniform way.

To meet these objectives a large system was required and because of this

GKS appears to be very top heavy, being slow to use and slow to respond. In a

CAD environment device-independence is a priority - but so too is a reasonable

speed of drawing.

GKS as it stands only operates in 2-D, with no support for drawing or

inputting 3-D images. A number of attempts are being made to extend GKS

to 3-D [HOPG86] to include such features as the definition and display of 3D

graphical primitives and mechanisms to control viewing transformations and as

sociated parameters. In fact, this move to 3D has resulted in the GKS standard

being extended in two different directions and two new graphics systems emerg

ing, namely, GKS-3D and PHIGS (Programmers Hierarchial Interactive Graphics

Standard).

1.5 T h e H yb rid

CHAPTER 1. COMPUTER GRAPHICS - NOT A P R E T T Y PICTURE 11

The SEILLAC I [GUED76] committee was made up of 25 experts from Northern

America and Europe, who met in Seillac France and participated in a workshop

on the subject of “Methodology In Computer Graphics”. They formulated some

principles to be kept in mind when designing Graphic systems. Among the main

principles outlined were :

• Portability of Application Programs

• Device Independency

• Portability of picture data

• Portability of Education

These principles were the underlying design criteria used in the formula

tion of the hybrid object oriented graphical environment called COOGE (CAD

Object Oriented Graphics Environment). The concept is simple - to provide a

set of graphical functions to a user that are device-independent, simple to use,

powerful enough for an experienced user and at the same time user expandable

and completely customizable. The COOGE system is geared more towards CAD

type users who need complete control over how the final image will appear and

who need to apply complex transformations to the images. COOGE hides the

underlying graphic routines from the user by object oriented techniques, and so

these routines can be replaced with routines for a specific machine or graphics

card without altering the user interface, thus eliminating the need to reprogram

to suit a particular graphics card or device.

A range of primitive shapes are provided, including points, lines, polygons,

circles and rectangles in 2 and 3 dimensions. The user can combine these shapes

to make more complex objects, or can invent a new shape and add it to the

system without affecting existing shapes. At the same time, it is guaranteed that

all routines that manipulate and draw shapes will also support this new shape.

Each shape type can be individually drawn, moved, scaled and rotated in any of

the three dimensions.

A wide range of image transformations are provided including scaling, trans

lating, viewport (clipping) support and rotation in any of the three dimensions.

These transformations work in both 2-D and 3-D. The user has full control of

the type of view to present of a 3-D object, ranging from one point perspective

to oblique, isometric and orthographic. Even non standard views are supported

with the user supplying the viewing angle and projection plane. The mathem at

ics of these operations are completely transparent to the user and if a number of

transformations are specified they are combined to insure no loss of speed when

drawing the final image.

Support for windowing and simultaneous views of the same object(s) are

also provided.

CHAPTER 1. COMPUTER GRAPHICS - NOT A P R E T T Y PICTURE 12

All of this is provided within the programming environment of C++. The

design of the COOGE system is such that the user has all the power of a pro

gramming language and a powerful set of graphic functions available in a simple

user-friendly way.

CHAPTER 1. COMPUTER GRAPHICS - NOT A P R E T T Y PICTURE 13

The COOGE system is fully outlined in the following chapters.

Chapter 2

IN A CLASS OF ITS OWN

14

C H APTER 2. IN A C LASS OF IT S O W N

2.1 Introduction

15

The following is a quick description and summary of the object oriented approach

to software design. It is included to give the user some insight into the design

philosophy behind the system and to give some idea as to why an object oriented

design m ethod and language were used rather th a t the norm al functional design

methods and standard languages.

Object oriented development is different to the normal software develop

ment approach. In object oriented development, the decomposition of a system

is based on the concept of a object. An object is an entity whose behaviour is

characterized by the actions it suffers and those it requires of other objects.

2.2 Object Oriented vs. Functional D evelop

ment

In normal program development, well developed systems tend to consist of m od

ules or collections of subprograms. This design m ethod works very well for normal

design methods which tend to concentrate on the algorithms and functions th a t

must be applied to data. However, this m ethod of design has some serious draw

backs associated with it, as pointed out by G uttag [GUTT78] “unfortunately,

the nature of the abstractions th a t may be conveniently achieved through the

use of subroutines is limited. Subroutines, while well suited to the description

of abstract events (operations), are not particularly suited to the description of

abstract objects. This is a serious drawback” .

CHAPTER 2. IN A CLASS OF ITS OWN 16

The functional development methods suffer from a num ber of fundam ental

limitations.

1. They do not effectively address data abstraction and inform ation hiding.

2. They are generally inadequate for problem domains w ith natu ra l concur

rency.

3. They are not responsive to changes in the problem space.

Object oriented development and languages are an a ttem pt to overcome

these problems.

In functional development we would examine a system to see w hat opera

tions were taking place and then would model these operations using procedures

and functions. In object oriented development, we look a t the system as a set

of objects rather th a t operations, and use these objects to generate the program

structure. Object oriented development is an a ttem pt to design programs that

closely resemble what happens in the real world, making a direct and natural

correspondence between the world and its model, rather than having to shape

the problem so th a t it fits nicely into a functional decomposition technique which

only concentrates on the actions of a system and fails to take account of the

underlying objects th a t suffer or create/perform these actions.

Furtherm ore in functional decomposition a lot of the required da ta tends

to be global, so any small change in the underlying d a ta structure could mean

reprogramming of a number of the subprograms. In object-oriented develop

ment the effect of changing an object’s representation tends to be more localised,

only affecting the immediate object - which means th a t objects can be added

or changed in this system without the side-effects normally associated with this

process.

The underlying principles and the foundation on which object oriented de

velopment is based are data abstraction and inform ation hiding.

Shaw’s definition of abstraction is “a simplified description, or specifica

tion, of a system th a t emphasies some of the system ’s details or properties while

suppressing others” [SHAWM]. Parnas [PARN72] suggests in relation to infor

mation hiding th a t we should decompose systems based upon the principle of

hiding design decisions about our abstractions. This concept of da ta abstraction

allows an object or class to be defined by a name, a set of proper values, and a set

of proper operations, rather than its storage structure, which should be hidden.

The object can only be accessed by the proper set of operations provided by tha t

object and the private data of an object can not be seen by any other objects.

Thus when we are designing any program we must first of all look at the

problem not as a collection of procedures and functions but as a set of interacting

objects. The steps involved in this process as set out by Booch are as follows

[BOOC86] :

CHAPTER 2. IN A CLASS OF ITS OWN 17

• Identify the objects and their attributes

• Identify the operations suffered and required of each object

• Establish the visibility of each object in relation to other objects

• Establish the interface of each object

• Finally, implement each object

1. Id e n tify T h e O b je c ts A n d T h e ir A t t r ib u te s

This involves the recognition of the m ajor objects or classes of objects in

the problem space, plus their role in our model of reality.

2. Id e n tify T h e O p e ra t io n s F o r E ach O b je c t

This step serves to characterize the behaviour of each object or class of

object. Here we establish the static semantics of the object by determining

the operations th a t may be performed meaningfully on the object or by

the object. Also at this time we must establish the dynamic behaviour of

each object by identifying the constraints upon tim e or space th a t m ust be

observed. For example, in a graphics based system with an object th a t acts

as a graphics window, you can only draw in a window after the window has

been opened.

3. E s ta b lish A n O b je c t ’s V is ib ility

We must now try to identify the static dependencies among objects and

classes of objects (in other words what objects see and how they are seen

CHAPTER 2. IN A CLASS OF ITS OWN 18

by a given object). The purpose of this step is to capture the topology of

objects from the model of reality.

4. E s ta b lis h T h e In te rfa c e

This step establishes the interface between the outside view of an object

(its clients) and the inside view of an object (its internal representation).

5. Im p le m e n t

Finally, you must choose a suitable representation for each object or class

of object and implement the interfaces from the previous step.

There are m ajor benefits to be derived from an object oriented approach to

system design. As pointed out by Buzzard [BUZZ85], “there are two m ajor goals

in developing object-based software. The first is to reduce the to ta l life-cycle

software cost by increasing programmer productivity and reducing m aintenance

costs. The second goal is to implement software systems th a t resist both ac

cidental and malicious corruption a ttem pts” . W ith regard to m aintaining such

programs, Meyers [MEYE81] reports th a t “apart from its elegance, such m odu

lar, object-oriented programming yields software products on which modifications

and extensions are much easier to perform than with programs structured in a

more conventional, procedure-oriented fashion”. The reasons for these benefits

are th a t understandability and m aintainability are enhanced due to the fact th a t

any changes th a t have to be m ade to a particular object are localised and should

not affect other objects in the system.

CHAPTER 2. IN A CLASS OF ITS OWN 19

The characteristics of an object are as follows:

CHAPTER 2. IN A CLASS OF ITS OWN 20

An object -

• has a state

• is characterized by the actions it suffers and th a t it requires of other objects.

• is an instance of some (possibly anonymous) class

• is denoted by a name.

• has restricted visibility of and by other objects

• may be viewed either by its specification or by its im plem entation

For each object we have constructors th a t create the object, destructors

th a t destroy the object and a number of operations th a t the object can perform.

Objects can interact with each other w ithout having to know how an object is

internally represented. This leaves us free to change the internal representation

of an object without affecting other objects in the system.

There is also the concept of hierarchial types which allow one to define

general interfaces th a t can be further refined by providing subordinate types.

The concept of information hiding also applies to the hierarchial structures, so

there can be hierarchies w ith /w ithout the base class hidden.

A num ber of different object oriented languages exist at present, such as

ADA, Smalltalk-80, C'++, Objective C. Having decided to implement the project

in an object oriented language the choice then has to be m ade as to which lan

guage is most suitable for the purpose. A number of languages, such as Smalltalk,

only allow a user to operate within th a t environment, so it is impossible to create

a standalone application w ithout carrying the full overhead of the environment.

In a graphics environment, the ability to num ber crunch was a very im portant

factor along with the overall speed of the system. C ++’s ability to use C code

directly was seen as a m ajor advantage because of C ’s ability to produce m a

chine efficient code for number crunching. Object oriented languages tha t relied

on message passing (such as Objective C) tended to be slower th an those which

relied on function or m ethod calls (such as C ++).

It seemed th a t C ++ bad a num ber of advantages:

• It could handle C code directly

• It was compiled ra ther than interpreted (faster execution)

• Once a program was compiled it required no further support from the C ++

environment.

• C ++ used function calls to invoke actions rather th an message passing which

tended to be slower.

After weighing up the ‘pros’ and ‘cons’ of the various languages available,

it was eventually decided to opt for C ++, an enhancement to the C language

developed a t Bell Laboratories in 1983 by Dr. Bjarne Stroustrup. The language

itself became commercially available in 1985.

CHAPTER 2. IN A CLASS OF ITS OWN 21

C ++ was developed to meet the following Goals [STR086]

CHAPTER 2. IN A CLASS OF ITS OWN 22

1. Retain the extremely high machine efficiency and portability for which C

is famous.

2. Retain compatibility between C ++ and C.

3. Repair long-standing flaws, particularly C’s lax treatm ent of types. C has

long been criticised for its weak type checking, even inside a given function,

and no type checking across functions, even inside the same file.

4. Upgrade C in line with m odern data-hiding principles.

A brief overview is given of the C++ programming language to give the

reader an idea of the underlying programming language and its capabilities

[BCOX86].

2.3 Classes

D ata abstraction is a programming technique in which the programmer can de

fine general-purpose and special types as the basis for applications. These user

defined types are convenient for application programmers since they provide lo

cal referencing and data hiding. The result is easier debugging, maintenance and

improved program organization. In C ++ these objects or new user-defined data

types are defined through the Class statem ent as shown in the example of class

ostream.

CHAPTER 2. IN A CLASS OF ITS OWN 23

c la s s ostream {

p u b l i c :
F ILE * f i l e ;
i n t n e x tc h a r ;
c h a r b u f [l2 8] ;

>;

The similarity between the class declaration and the C struct statem ent can

be seen. This statem ent declares a new class called ostream with three members

file, n e x tc h a r and buf. The keyword p u b lic : makes these names public and ac

cessible to any program th a t incorporates this declaration. In general the public

interface specifies how a user can create and m anipulate objects of a given class.

A class’s members are private by default, meaning they can only be accessed by

th a t class’s associated procedures and functions and thus hiding the actual im

plem entation details of the class from the user. This hiding of the representation

of an object is the key to m odularity and it allows the representation of an object

to be changed w ithout affecting the users of the object. The functions used to

access the Classes private da ta can be of two forms - m ember functions or friend

functions.

2.4 M em ber Functions

Member functions are similar to standard C functions except they go one step

further and are actually linked to the class in the same sense th a t the data

members are, and operate on some instance of the class. Member functions are

declared by mentioning their declaration inside the class declaration, alongside

the declarations of m em ber variables.

CHAPTER 2. IN A CLASS OF ITS OWN 24

c la s s d a te {
i n t d a y ,m o n th ,y e a r ; / / im p le m e n ta t io n f o r d a te s

p u b l ic :
v o id s e t (i n t , i n t , i n t) / / in t e r fa c e t o d a te s
v o id n e x t () ;
v o id p r i n t () ;

Member functions are called by a syntax th a t reflects their role as operations

performed by a specific object, and parallels the way structure members are

accessed.

m y B ir th d a y .p r in t () ;
t o d a y .n e x t () ;

To define a member function, the name of its class m ust also be provided.

v o id d a te : : n e x t ()
{

day = d ay+ 1 ;

>;

Such functions also receive an implicit argument, ‘t h i s ’, which identifies the

object performing the function. In this example, the day field can be referenced

as either d ay or th is —» day .

C H A P TE R 2. IN A CLASS OF IT S O W N

2.5 Friend Functions

25

Private da ta in C ++ means private and functions cannot access the private d a ta of

a class w ithout using some extremely devious type casting. Sometimes it is useful,

for reasons of speed or more elegant coding, to allow a function access to the

private data of a class. Friend functions provide a means whereby conventional

C functions, w ith no particular connection w ith the class, can access the private

da ta of a class.

c la s s d a te {
i n t d a y , m on th , y e a r ; / / P r iv a te by d e fa u l t

p u b l ic
f r ie n d v o id s e tD a te (d a te * , i n t , i n t , i n t) ; / / N o te th e argum ent
f r ie n d v o id n e x tD a te (d a te *) ; / / ty p e s a cce p te d by
f r ie n d v o id n e x tT o d a y O ; / / each f u n c t io n
f r ie n d v o id p r in t D a t e (d a te *) ; } ; / / m ust be d e c la re d !

The private members (day, month & year) are now accessible to the four

friend functions only. The class might then be used as follows:

d a te m y B ir th d a y , to d a y ;

s e tD a te (& m y B ir th d a y ,2 4 ,2 ,1966);
s e tD a te (& to d a y ,8 ,8 ,1 9 8 8);
p r in tD a te (& to d a y) ;
n e x tD a te (f t to d a y) ;

2.6 D erived Classes

The ability to define subclasses w ith inheritance by describing how a new (de

rived) subclass differs from some older (inherited) class is at the heart of every

object oriented language and is implemented in C ++ as follows. Consider, for

example, a graphics system th a t needs to support a num ber of shape types such

as circles, triangles, squares, lines, etc. For example, a class shape which specifies

the general properties of all shapes could be defined as follows:

c la s s shape {

p o in t c e n t re ;
i n t c o lo u r ;

p u b l i c :

v o id s c a l e (f l o a t , f l o a t , f l o a t) / / s c a le shape in x , y , z
v o id m o v e (v e c to r) ; / / r e p o s i t io n a shape
v o id r o t a t e (i n t) ; / / r o t a t e a shape
v i r t u a l v o id d r a w () ; / / D is p la y a shape

CHAPTER 2. IN A CLASS OF ITS OWN 26

V irtual functions are functions th a t could not be implemented without

knowing the specific shape, and th a t must therefore be overridden in each subclass

like this:

c la s s c i r c l e : p u b l ic shape {

i n t r a d iu s ;

p u b l ic :

CHAPTER 2. IN A CLASS OF ITS OWN 27

v o id r o t a t e (i n t) ; / / how t o r o t a t e a c i r c l e
v o id d r a w () ; / / how t o draw a c i r c l e

>;

The virtual keyword signals th a t these functions m ust be dynamically bound,

and triggers the compiler to add an invisible member to each instance th a t ex

plicitly indicates its class at runtime. It is now possible to define subclasses th a t

obey a common protocol, so th a t any instance can be drawn by:

a n y ln s ta n c e .d r a w () ;

Note th a t new shapes can be added to the system without modifying any

existing code so a n y ln s ta n c e .d ra w () will still work w ith shapes th a t were not

even thought of when the program was originally compiled.

2.7 C onstructors Sz D estructors

In C ++ you can specify a constructor function which defines how an instance of a

class should be initialized and a destructor function which defines how it should

be destroyed. The constructor function can be used to initialise an instance of

the class which appears in the initialization section of a program or on the stack

during a function call. A definition of a point class is given below which illustrates

the use of constructors.

c la s s p o in t {

CHAPTER 2. IN A CLASS OF ITS OWN 28

i n t x , y , z ;

p u b l ic :
p o in t () { x = 0 ; y = 0 ; z = 0 ; }
p o i n t (i n t x c , i n t y c , i n t zc)

{ x = x c ; y= yc ; z = z c ; }
p o i n t (i n t x c) { x = x c ; y =0; z = 0 ; }
p o in t (p o in t p) { x = p .x ; y = p .y ; z = p .z ; }
f r ie n d p o in t o p e r a to r + (p o in t , p o in t)
f r ie n d p o in t o p e r a to r + (p o in t , i n t)

This defines a point on a three dimensional integer co-ordinate plane. The

first four functions called ‘point’ are the constructors for the class. You can see

from the example th a t you can provide a num ber of different ways to initialize

an object. For instance:

p o in t p ;
p o in t p i (1 2 ,2 3 ,3 4) ;
p o in t p 2 (2) ;
p o in t p 3 (p l) ;

can all be used to initialise an instance of the point class.

These constructors/destructors provide guaranteed initialization/cleanup

for objects of a given class. Since the declaration also includes the implemen

tation of these operators, the implementation will be expanded inline, and no

function call overhead will be incurred to initialize vectors. The inline expansion

feature applies to any kind of operator th a t may be declared in a class, not just

constructors. These in-line functions are unlike the macros commonly used in

/ / c o n s t r u c to r

/ / C o n s tru c to r
/ / C o n s tru c to r
/ / C o n s tru c to r
/ / Add 2 p o in ts
/ / Add i n t t o p o in t

C in th a t they obey the usual type and scope rules. Using in-line functions can

lead to apparent run-tim e improvements over C. In-line substitution of functions

is especially im portant in the context of d a ta abstraction and object oriented

programming. W ith these styles of programming, very small functions are so

common th a t function-call overhead can become a performance bottleneck.

2.8 Operator Overloading

In C++ operators such as + ,- ,= are treated just like functions and you can define

a new implementation of an operator for any class. To do this, simply prefix the

operator token w ith the keyword ‘operator’ in the class definition. In the previous

example of the class p o in t the last pair of declarations define how the ‘+ ’ operator

should work for the class point when both sides are points or when the right side

is an integer.

These overloaded operators can then be used as if they were a composite

part of the language. For example

CHAPTER 2. IN A CLASS OF ITS OWN 29

p o in t p (1 0 ,1 0 ,2) , p l (2 0 ,3 0 ,4 0) ,p 3 ;

p3 = p l+ p 2 ; / / Add th e tw o p o in ts t o fo rm new p o in t

2.9 M em ory M anagem ent

CHAPTER 2. IN A CLASS OF ITS OWN 30

C ++ provides a number of methods for dealing with objects and memory m an

agement. A num ber of these methods are mentioned by Brad Cox [BCOX86] in

his book on object oriented programming and are outlined below.

In C ++ new objects can be allocated dynamically on the heap and then

referred to by address. Objects can also be allocated statically and referred to by

name, as for the four points shown in the previous example. At run-tim e, space

for objects known by name must be initialized whenever their name enters scope.

For example:

1. Objects passed as arguments to functions, and objects declared as local

(auto) variables, must be initialized when th a t function is called.

2. Objects returned from functions must be initialized as th a t function returns.

3. Objects in the function’s call stack (arguments and local variables) must

be destroyed when the function returns and the stack collapses.

C ++ provides a way for the class developer to specify what should happen

in these cases. The point example shows how constructor operators are speci

fied. The inverse is a destructor operation, whose name is the name of the class

preceded w ith a token. For example, a string class might be

c la s s s t r in g {

CHAPTER 2. IN A CLASS OF ITS OWN 31

i n t le n g th ;
c h a r * b y te s ;

p u b l i c :

s t r in g (c h a r *) ; / / S t r in g c o n s t r u c to r
~ s t r in g () { d e le te b y te s ; } / / S t r in g D e s t r u c to r
i n t le n g t h () { r e t u r n le n g t h ; }
c h a r * t e x t () { r e t u r n b y te s ; }

};

s t r i n g : : s t r in g (c h a r * s)
{

le n g th = s t r l e n (s) ;
b y te s = new c h a r [le n g th + 1] ;
s t r c p y (b y te s , s) ;

}

This guarantees th a t each string instance created when strings are passed to

and returned from functions is a unique copy. B ut it does not handle multiple ref

erences created when one string is explicitly assigned to another in an assignment

statem ent. This can be arranged by overriding the assignment operator.

Notice th a t although this does not replace autom atic garbage collection,

it can sometimes reduce the need for it. Autom atic garbage collection is still

desirable when objects are multiply-referenced via pointers. By copying objects

each tim e they are needed, multiple references do not occur, so objects can be

disposed of whenever they go out of scope. Of course, this is feasible only for very

small objects. For example, the string im plem entation shown involves allocating

and initializing a new copy every tim e the string is passed to a function, and

the overhead could easily become intolerable. C ++ does not provide autom atic

C H A P TE R 2. IN A CLASS OF IT S O W N

garbage collection.

32

2.10 Separate Com pilation

C ++ because of the way it is compiled retains no memory of past compilations.

This means th a t firstly no check for consistency of information across a number

of compilations can be made and secondly th a t all definitions about external C ++

classes and functions m ust be incorporated into the main source file using the

standard ^ include statem ent. This lack of a consistency check across compila

tions means th a t in practice two completely different definitions of the same class

might exist in different compilations w ithout the compiler ever being aware of

this.

In order to overcome some of these problems two files are usually prepared

for each class. The first file contains the class declarations and m ust be included

into any program th a t wants to use the class. The second file contains the defi

nitions of the m ethods/functions provided by the class and the compiled version

m ust be combined with the program to provide an executable image.

The first file contains the private and public definitions of a class. This file

is in fact public information and means th a t user has the ability to change the

public/private definitions of a class to make private information accessible. This

means th a t the private da ta of a class is not truly private as the user at any time

can change the class definition and actually make it public.

2.11 Conclusion

CHAPTER 2. IN A CLASS OF ITS OWN 33

In conclusion, object oriented design has a number of advantages over the normal

standard design methods and standard languages:

• The ability to hide the underlying da ta structure of an object from the user

means th a t objects structures can be changed without affecting the user.

• The localisation of the effects of changes in the program means th a t as

new concepts and ideas arrive they can easily be incorporated into existing

programs w ith the minimum of recoding.

C + + as an object oriented language has the following advantages over

standard procedural languages and other object oriented languages according

to Stroustrup who may be just a little biased about the merits of C++!

“C++ is distinguished among languages th a t support object-oriented pro

gramming such as Smalltalk, by a variety of factors: its emphasis on program

structure; the flexibility of encapsulation mechanisms; its smooth support of a

range of programming paradigms; the portability of C++ implementations; the

run-tim e efficiency (in both time and space) of C++ code; and its ability to run

w ithout a large run-tim e system.”

Chapter 3

SOME BASIC

CHAPTER 3. SOME BASIC GRAPHICS

3.1 In tro d u ctio n

35

Just as a painter requires canvas or paper on which to draw so a programmer

needs a medium to produce a graphics image. The COOGE users are provided

with a V.D.U. or graphics screen to display their image or picture. The screen

itself can be thought of as consisting of a m atrix of cells called pixels, where a

pixel is the smallest addressable point on the screen, w ith the origin (0,0) usually

in the bottom left-hand corner. Each of these pixels can be turned on/off to make

a point on the screen visible/invisible. By turning on a num ber of pixels on the

screen you can generate a picture or “image” as it is more generally called. In this

simplified system each pixel on the screen requires at least one bit of computer

memory to tell the computer whether the pixel is on/off.

Using a more complex display architecture you can associate a colour with

each pixel and produce a colour image on the screen. The more colours a display

has per pixel the more bits are required per pixel (to tell the com puter what

colour the pixel is) and hence the more memory required for the display. Also

the higher the resolution of the display (the greater the num ber of pixels) the

more memory you require. Because of these memory requirements a vast number

of different type of graphics cards have evolved offering very high resolution w ith

few colours or low resolution with many colours and various options in between.

3.2 Graphics Functions

CHAPTER 3. SOME BASIC GRAPHICS 36

Turning on/off individual pixels would be a very slow and complex way for a user

to generate an image. For this reason functions are required th a t can m anipulate

a number of pixels at a tim e e.g. to draw a line. These functions save the user

from worrying about individual pixels, for instance a user can just specify the

start and end points of a line and the function does the rest, working out the

best line between the two points and drawing it on the screen. These functions

then leave the user free to concentrate on the contents of the image.

The design of the actual graphics functions or language extensions plays a

vital part in determining the success or failure of the system. We should look on

these functions as a means of providing the programmer w ith controls over the

functions within the system ’s hardware and software. These controls should be

as simple and as powerful as possible, and should not be too numerous: too many

controls provide opportunities for meaningless or erroneous operations, against

which the user is usually never warned.

In effect, the designer of a set of graphics functions should aim to remove

most of the programmers opportunities to make logical mistakes w ithout causing

h im /her to feel too restricted. Thus it is not enough just to reduce the range of

functions, because if the remaining set of functions do not provide the power the

user needs, such as structuring or transforming capability, he/she will remedy

the problem by writing the missing functions himself/herself.

The provision of a small number of powerful graphics functions w ith sen

sibly chosen default values is an ideal way to reduce the likelihood of erroneous

combinations.

CHAPTER 3. SOME BASIC GRAPHICS 37

3.3 Prim itive Functions

COOGE not only supports lines but rectangles, squares, cubes, circles, spheres

and cylinders as well. In fact, because of the way COOGE was designed, it can

support any shape th a t the user may care to imagine or invent. The way it

manages this is discussed in the following chapter. Sometimes it is useful to be

able to write text on the screen, for example to label a part of the image. You

may want different styles and sizes of text (fonts) so any tex t functions should

support a number of different fonts. In the COOGE system there are a number

of pre-defined fonts but the user can design and add new fonts to the system

if required. As mentioned previously, colour is a very im portant part of any

image, so functions to change the current foreground and background colours

must also be provided. O ther general functions are provided to move and control

the position of the graphics cursor and to save and restore bitm apped images on

the screen. All of these prim itive functions in COOGE work in both 2 and 3

dimensions.

3.4 Co-ordinate System s

CHAPTER 3. SOME BASIC GRAPHICS 38

It is very im portant th a t an image is device-independent, i.e. it appears the same

on different graphics screens. For this reason the actual co-ordinate system used

to specify lines etc. is very im portant. Say, for instance you specify your drawings

in terms of the physical co-ordinates (pixel resolution) of the screen. This then

means tha t the resulting image is now device-dependent. If you change to a

screen with a different resolution the image will appear completely different and

it means you will have to re-define the entire drawing to take account of the new

screen’s resolution. It would be far better if you could define the drawings in

terms of a device-independent co-ordinate system which would mean the image

would appear the same no m atter what the physical resolution of the actual

screen actually was.

W hen you move onto a 3-D co-ordinate system as in COOGE you also have

to decide the direction of the Z-axis relative to the viewer. Two 3-D co-ordinate

systems are possible, a right-handed system (Z axis comes out of the page) or a

left-handed co-ordinate system (Z axis goes into the page) . Both systems work

equally well but COOGE was implemented using the right-handed co-ordinate

system.

COOGE allows device-independent drawings by allowing users to define

their drawing in terms of a world co-ordinate system. The user’s world is a

virtual 65,536 x 65,536 x 65,536 pixel screen.

3.5 W indowing

CHAPTER 3. SOME BASIC GRAPHICS 39

W hen drawing a graphics image it is possible to m ap the entire virtual screen to

the display to produce an image or to specify a ‘window’ which decides which

rectangular part of the world will appear on the screen as an image. The compu

tations involved in this operation, mapping the user’s window on to the screen, are

called windowing. The user can set the maximum and the minimum co-ordinates

(in world co-ordinates) of the window. Any part of the object th a t does not lie

inside the window is m ade invisible through a process know as ‘clipping’: any

object lying wholly outside the window boundary is not m apped onto the screen,

any object lying partially inside and partially outside is cut off (scissored) at the

window edge before being m apped onto the screen. The windowing function in

sures th a t the same amount of a picture will appear on the screen even if different

screens w ith different resolutions are used.

The window can take in the whole world or it might ju s t take in a particular

part of the drawing. For instance in Fig 3.1 we have a floor plan of an office.

The user might select a window that displays just one chair in the office (Fig

3.1a) or maybe a desk (Fig 3.1b) or even the entire office. The window is then

m apped onto the physical screen. Using this system all drawing processes are

device-independent and as such the image is independent of the actual physical

resolution of the device on which it is displayed.

By selecting different windows a user can zoom in on a particular object in

CHAPTER 3. SOME BASIC GRAPHICS 40

O O

O O

I
I
S3I1
I

1I oO o
O o °

Fig 3.1(a)

Figure 3.1: Floor plan of office

a picture so th a t the one object fills the entire screen or zoom out so th a t the

entire picture fits on the screen. Using a process called panning a user can also

move the window up/dow n, right/left to move around an image.

CHAPTER 3. SOME BASIC GRAPHICS

3.6 T ransform ation F u n ction s

41

Transformation functions are functions which allow the user to m anipulate the

graphical information generated by the output routines such as the prim itive

functions mentioned previously. The transform ation routines should be both

simple to use and efficient in execution. The norm al types of transform ation

routines required are to scale, ro tate and translate (move to a different position)

graphical images. It should be easy for the user to specify the type of trans

formation required. These transform ation routines should work not ju st in 2-D

but in 3-D as well. Extending the range of transform ation functions to handle

three-dimensional images adds little to the complexity of the system but will

significantly increase its usefulness.

The user should not be limited to a certain set of values for these trans

formations, such as only being allowed to scale an image by a factor of 2, or

only allowed ro tate the image by a multiple of 90 degrees. These sorts of lim

itations imposed on the user will soon force h im /her to supply h is/her own set

of transform ation functions. Also the co-ordinates used in these transform ations

should be in world co-ordinates to insure th a t the transform ations remain device

independent.

3.7 V iew ports

CHAPTER 3. SOME BASIC GRAPHICS 42

Just as a window is used to define how much of the picture should appear on the

screen, a rectangular viewport is used to specify where on the screen it should

appear. A viewport is a rectangular portion of the screen onto which the win

dow and therefore the window contents are m apped. The default value for the

viewport is usually the entire screen. The viewport cannot be defined in device

co-ordinates, because the resolution can vary from one screen to another. It is

instead defined in terms of normalised device co-ordinates (NDCs). The screen is

divided up into real numbers from 0 to 1 in the x and y direction w ith the origin

in the bottom left hand corner of the screen. The viewport is then specified as the

portion of the screen in which you want the image to appear. Setting a viewport

to (0.0,0.0,0.5,0.5) would make the image appear in the bottom left quadrant of

the screen. Drawing the image of the office using this viewport would result in

Figure 3.2.

3.8 3-D To 2-D

W hen drawing a 3-D image on the screen we are faced w ith the problem of how

to represent a 3-D object on a 2-D screen. To achieve this, some type of viewing

transform ation must be applied to the 3-D image to convert it to 2D so it can be

displayed. Firstly, you could just ignore or throw away the Z co-ordinate of each

point and draw the resulting image. The result is an orthographic projection

CHAPTER 3. SOME BASIC GRAPHICS 43

Figure 3.2: Viewport transform ation

which is easy to program but unfortunately does not look very realistic see - Fig

3.3. A num ber of other projections such as isometric, oblique and perspective

are normally used to produce a more realistic image. All of these projections are

supported by COOGE.

If one of these standard projections is not suitable COOGE allows you to

CHAPTER 3. SOME BASIC GRAPHICS 44

/
/

/
/ //

ORTHOGRAPHIC
PROJECTION

Figure 3.3: Orthographic projection of a cube

define your own by specifying details of the angle at which the viewer is looking

at the object (viewing angle) and details of the 2-D plane onto which the object

is to be projected.

3.9 Segm entation

Sometimes it is useful to partition a large image into a num ber of logically related

units called segments. Segmentation of an image has a number of advantages for

a user.

L o c a lisa tio n : If any part of an image changes then normally the whole image

would have to be redrawn. Using segm entation only the segment(s) th a t

contain the changes have to be redrawn.

R e -u sa b ility : It is possible to build up a library of commonly used segments

which can be included into any drawing. These segments might include

commands to draw an item of furniture or even to draw the company logo

CHAPTER 3. SOME BASIC GRAPHICS

on the page.

45

For example in the drawing of a room segmentation might be used so th a t,

for instance, one segment might contain a chair and another a table. W ithout

segmentation, if you wanted to delete the chair from the image you would have

to delete it line by line. Using segmentation it is possible to remove the chair

from the picture in one operation, tem porarily by making the segment invisible,

or perm anently by actually deleting the segment physically.

3.10 Graphics P ipeline

Each tim e you want to plot a point or a line on the screen it must pass through

a number of stages to convert it from its world co-ordinate system into actual

physical points on the screen. The stages through which it must pass for a 2

dimensional system are outlined in Fig 3.4.

contents of viewport to s c re e n —̂

World coordinate
output primitives
(from application

program)

Clip against
window

Map window contents
to viewport in normalized
device coordinates

Convert to
physical device
coordinates

V * Vi ewing operation

Figure 3.4: 2D Graphics pipeline

As you can see the pipeline is relatively simple in 2D. You simply specify a

window on the 2D world and a viewport on the 2D view surface. Conceptually,

objects in the world are clipped against the window and are then transform ed

into the viewport for display.

W hen we move to three dimensions we increase the complexity of the view

ing pipeline. For instance the viewport is no longer a rectangle as it is in 2-D,

it becomes a View Volume in 3-D which increases the complexity of the clipping

operation. You also have to incorporate a projection to transform the image

from 3D to a 2D projection plane so it can be displayed on the screen. The final

pipeline is shown below as Figure 3.5.

CHAPTER 3. SOME BASIC GRAPHICS 46

Clipped world
coordinates

SD world

output ■
primitives

Clip against
view volume

Project onto
projection plane

Normalized device
coordinates

transform
i n + Q n i a u p Q +

in normalized
device
coordinates

Transform
into physical

device
coordinates

Figure 3.5: 3D Graphics pipeline

Having passed though all these stages the image is finally ready to be dis

played on the screen.

3.11 The M athem atics B ehind The P icture

CHAPTER 3. SOME BASIC GRAPHICS 47

As you can see from the graphics pipeline there are a num ber of stages through

which a point must pass before it can actually be displayed on the screen. The

transform ations tha t must be performed, such as scaling, rotating, are generally

stored in a m atrix structure and the point to be transform ed must be prem ulti

plied by the m atrix. For example, to ro ta te the point (x,y,z) 90 degrees around

the Z-axis the following transform ation is performed :-

cos(90) sm (90) 0 X x1
—sm (90) co.s(90) 0 X Y = Vi

0 0 1 Z Zi

By applying this transform ation to a num ber of points it is possible to ro tate

a shape or entire image. Fig 3.6 shows the effect this transform ation has on a

simple shape.

If there are a number of transform ations to be applied to a point e.g. if it is

to be scaled, ro tated and translated, they must be applied one at a time, which

means th a t the speed a point can pass along the graphics pipeline depends on the

number of transform ations th a t must be applied to the point. It would be much

faster if the transform ations could somehow be combined to form some kind of

m aster transform ation th a t could be applied to the point ra ther than a number

of individual ones.

In order to combine transform ations the co-ordinates must be presented

in a particular format called homogeneous co-ordinates. Using homogeneous co-

CHAPTER 3. SOME BASIC GRAPHICS 48

Figure 3.6: R otation of a shape by 90° about the Z-axis

ordinates transform ations can be combined simply by multiplying them together.

The order in which they are multiplied determines the order in which the trans

formations will be applied to the point.

The translation from normal co-ordinates to homogeneous co-ordinates takes

place internally w ithin the COOGE system and hence is invisible to the user. For

example, the homogeneous version of the point (x,y,z) is (x,y,z,w) where W is the

scale factor (usually one for simplicity).

Using this kind of notation, most transform ations can be expressed in a

matrix. For instance if we want to scale a point by a scaling factor Sx, Sy, and

Sz in the X, Y and Z directions, respectively, then the m atrix for scaling in X,

Y, Z is :

CHAPTER 3. SOME BASIC GRAPHICS 49

S x 0 0 0
0 S y 0 0
0 0 S z 0
0 0 0 1

Any point x, y, z can now be scaled by multipying the point by the scaling

m atrix as shown.

S x 0 0 0 X
0 Sy 0 0 Y Yi

X
0 0 S z 0 Z z 1
0 0 0 1 1 1

As already mentioned, transform ations can be combined to form a new

transform ation. This means th a t if a number of transform ations have to be

applied to a point, rather than applying them one at a time, they can be combined

and only this combined transform ation need be applied to the point. This cuts

down on the number of m athem atical operations th a t m ust be performed each

time a point has to be processed and thus considerably speeds up the drawing

process.

3 .11 .1 V ie w in g In 3 -D

As mentioned previously, viewing an object in 3D is more complex than viewing

an object in 2D. In order to view a 3D object on a 2D surface, such as the

screen or V.D.U., we must introduce some sort of projection th a t maps the 3D

object onto a 2D projection plane. There are two main classes of projection tha t

can be applied - these are parallel and perspective projection. The difference

in these projections stems from the fact th a t these projections have a different

relationship between the centre of projection and the projection plane. Fig 3.7

shows the difference between the two types of projections. You can also see the

effect of perspective fore-shortening, which simply means th a t, all other things

being equal, objects further away from the centre of projection appear smaller.

This produces a very realistic effect as this is, in fact, what happens when looking

at objects w ith the hum an eye. The disadvantage of this realism is, however, tha t

you cannot take accurate measurements from the drawings because of the effect

of perspective fore-shortening.

3 .11 .2 P e r sp e c t iv e P r o je c t io n

The most im portant thing in a perspective projection is the centre of projection,

as this will determine how the final image will appear. In perspective projection,

parallel lines converge to a vanishing point unless they happen to be parallel

to the projection plane as well. If the set of lines is parallel to one of the the

three principal axes, the point is called a principal vanishing point. Therefore the

maximum num ber of principal vanishing points you can have is 3 - corresponding

to the three such principal axes being cut by the projection plane. The type

of projection th a t occurs depends on the number of principal axes cut by the

projection plane and hence the number of vanishing points. For this reason

you can get one, two or three point projections, depending on how many axes

CHAPTER 3. SOME BASIC GRAPHICS 50

CHAPTER 3. SOME BASIC GRAPHICS 51

A

' Projection
plane

Line AB and i t s p e r s p e c t iv e p r o je c t io n AB1

Figure 3.7: The two basic types of projection

the projection plane cuts. Fig 3.8 shows the eifect of a one point perspective

projection on a cube and Fig 3.9 shows the effect of a two point perspective

projection on a cube.

The m athem atics of the perspective projection are in fact quite complicated.

For simplicity’s sake we will take the projection plane as norm al to the Z-axis at

a distance d from the origin.

CHAPTER 3. SOME BASIC GRAPHICS 52

Vanishing point

Construction of
one point perspective
projection

y

¿ F 'y
s'

y
yy

y
y

//
/

/

Resulting Image

\
\

\

J

yS

//
//J

//
/

Figure 3.8: One point perspective projection of a cube

Fig 3.10 shows the projection plane at a distance d from the origin and a

point P to be projected. To calculate the new point P I we use similar triangles

to yield :

d Z ’ d z

M ultiplying each side by d yields :

d. X X d.Y _ Y
p~ Z ~ Z/d ’ p _ Z ~ Z/d

Looking at this equation you can see th a t a point is scaled by its distance from

the projection plane (Z /d). This causes the projection of more distant objects to

CHAPTER 3. SOME BASIC GRAPHICS 53

Ugni shin g point
for X axis

Construction of two point perspective
projection of a cubs

Vanishing point
for Y axis

Resulting Image

“ 1

Figure 3.9: Two point perspective projection of a cube

be smaller than th a t of closer objects.

Converting to m atrix format yields :

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 /d 0

Applying this to the point [x, y, z, 1] yields [x, y, z, z/d]. The point must

then be divided by the scale factor (z/d) before it can be drawn. This increases the

complexity of applying a perspective projection ra ther than a parallel projection

and is treated as a special case by the COOGE system. Also it is slightly slower

to apply a perspective projection than a parallel projection as you have to apply

an extra division to each point before it can be drawn.

CHAPTER 3. SOME BASIC GRAPHICS 54

Top Vieui
along y -a x is & F(x,y^5

Side Uiew y
along x-axie

PCx,ŷ z)

Projection plane

Figure 3.10: Perspective projection

3 .1 1 .3 P a ra lle l P r o je c t io n s

There are two main types of parallel projections - orthographic, where the di

rection of projection is normal to the projection plane, and oblique where it is

not.

CHAPTER 3. SOME BASIC GRAPHICS

3 .1 1 .4 O rth o g ra p h ic

55

The three most common cases of orthographic projection are when the projection

plane is parallel to one of the principal axes. These allow you to produce front,

top and side projection which are commonly used in engineering drawings, as

measurements can be taken directly from the projection. The problem as already

mentioned previously, is th a t only one face of the object is projected so no 3D

information can be deduced from the drawing as shown in Fig 3.3.

A nother common projection used is an isometric projection where the pro

jection plane makes equal angles with all three axes. This gives a more realistic

3D effect as shown in Fig 3.11.

Figure 3.11: Isometric projection of unit cube

CHAPTER 3. SOME BASIC GRAPHICS

3 .1 1 .5 O b liq u e P r o je c tio n s

56

In oblique projections the projection plane is norm al to a principal axis but not

however to the direction of projection.

ejection Plane Projection Plane

Cavalier
- y P ro ject io n

a s> '

a = 4 5 / 1 A

C a b in e t
P ro jec t io n

cï = Arccot(0.5)

y '

i
5) i

Figure 3.12: Cavalier and Cabinet projection of a cube

The two main projections are Cavalier & Cabinet. A Cavalier projection

is where the direction of projection makes a 45 degree angle with the projection

plane. Any line th a t is perpendicular to the projection plane is projected so tha t

the length of the line remains the same. Again, because perpendicular distance is

preserved and no fore-shortening takes place, it doesn’t look realistic. In order to

produce a more realistic image a Cabinet projection is generally used. Here the

direction of projection makes an angle of arccot(0.5) w ith the projection plane.

Using this projection any line norm al to the projection plane is halved when

projected. Fig 3.12 shows the effect of the two different oblique projections on a

CHAPTER 3. SOME BASIC GRAPHICS 57

unit cube.

Oblique paralis i projection
of unit cube

» Z

Icos CÍ

Projector lsinfl

Oblique Parallel p ro jec
of point P to

(Icosd i lsin Ö. 7 0)

Figure 3.13: Construction of a parallel projection

Fig 3.13 shows the effect of a parallel projection on a unit cube and on the

point (0,0,1). From Fig 3.13 we get the two equations

X p = X + Z { 1 . cosa) , Yp = Y + Z (l . s in a)

Converting this to m atrix form at :

1 0 0 0

0 1 0 0
/ . cosa I . s in a 0 0

0 0 0 1

The required projection can be determined by the value given to I. For the

standard projections the value given to I is as follows:

Cavalier projection I = 1,

Cabinet projection I = 1/2,

Orthographic projection / = 0.

CHAPTER 3. SOME BASIC GRAPHICS 58

3.12 Conclusion

This chapter has outlined some of the functions required from any graphics system

and the m athem atics required for these functions. It is not enough ju st to hide

the m athem atics of these operations from the user if in doing so you also hide

some of the power of these transformations. For this reason it is not just the range

and type of functions provided th a t are im portant but also the user interface to

these functions. It is no good providing a function th a t has an interface th a t

makes it difficult to use, such a function may as well not have been provided

in the first place. The following chapter discusses the user interface and how to

make these transformation functions as accessible and user friendly as possible.

Chapter 4

T H E O B JE C T OF IT ALL

59

4.1 Introduction

CHAPTER 4. THE OBJECT OF IT ALL 60

The next stage was to design an object oriented graphics library th a t would

be specifically geared towards CAD users. There are a num ber of issues which

m ust be tackled when designing any graphics packages, regardless of its object

oriented nature or its intended use. These issues were raised by Newman &

Sproull [WNEW79] in an article on the principle of interactive graphics. These

design principles, and how Object-oriented development was used to meet them,

are discussed in this chapter.

4.2 The D esign Priorities

The basic issues Newman & Sproull considered should be foremost in a designer’s

mind when designing a graphics system are :

S im p lic ity : Features th a t are too complex for the application program m er to

understand will not be used. The basic rule is th a t any feature th a t you

find difficult to explain will be difficult to use.

C o n s is te n c y : A consistent graphics system is one th a t behaves in a generally

predictable manner. Function names, calling sequences, error handling and

co-ordinate systems should all follow simple and consistent patterns (w ith

out exception). The user should be able to build up a conceptual model of

the graphics system and how it functions.

C o m p le te n e ss : There should be no irritating omissions in the set of functions

provided by the system; missing functions will have to be supplied by the

application programmer, who may not be in a position to write them . This

does not mean th a t the designer should provide every imaginable graphics

function th a t the user will ever require but ra ther should provide a reason

ably small set of functions th a t can conveniently handle a wide range of

applications.

R o b u s tn e s s : Application programmers are capable of extraordinary misuse of

graphics systems, usually because of a lack of understanding of the sys

tem. These errors should only cause term ination of execution in extreme

circumstances as this will generally cause the user to lose valuable results.

P e rfo rm a n c e : A system ’s reponse and performance should not rely on the use

of fast hardware or on a user having to resort to ‘special tricks’ to improve

the performance of the system.

E co n o m y : Graphics systems should be small and economical so th a t adding

graphics to an existing application program can always be considered.

4.3 M eeting These Priorities

The next stage in the design process was to design a set of objects th a t would

be used to implement the graphics system while at the same time being bound

by all these design principles. The design principles themselves were m et in the

CHAPTER 4. THE OBJECT OF IT ALL 61

CHAPTER 4. THE OBJECT OF IT ALL 62

following ways:

S im p lic ity : One of the main considerations when using a graphics system is

tha t each of the functions provided by the system m ust be easy and simple

to use. For instance some of the functions require a number of optional pa

rameters to provide full control. However, a user m ight only be interested in

a simplified version of the function. The user need supply only the required

param eters and COOGE will supply the default optional param eters.

C o n sisten cy : Consistency in the way functions are provided by the graphics

system is very im portant. For this reason COOGE uses inheritance to

ensure consistency in the treatm ent of functions. By using inheritance, one

object can inherit a complete set of functions from another. If any of the

underlying functions are changed, all objects in the system will inherit the

new functions, which ensures consistent use of functions throughout the

system.

C om p leten ess : COOGE in no way attem pts to supply every graphics function

th a t a user will ever require. Instead it supplies a small set of graphic

functions in line w ith what most users will need. The system is also designed

in such a way th a t it is easy for users to design and add their own functions

to the system w ithout affecting existing code.

R ob u stn ess : In order to improve the robustness of the system a num ber of

objects are designed to operate in the background w ithout the user ever

being aware of them. These objects are created as soon as the program is

run. For instance, a SCREEN object was designed which looks after the

screen informing other objects if the user changes the graphics mode etc.

W hen drawing on the screen, the COOGE system makes intelligent guesses,

if the user makes a mistake with a particular command, to try to ensure tha t

the drawing will actually appear on the screen. For instance if a window

is opened on the screen the COOGE system will direct all future graphic

operations to the window, autom atically scaling and translating images so

they appear in the window.

Perform ance : COOGE is designed in such a way th a t it does not rely on the

use of any particular hardware, either graphical or m athem atical, to run

but it will take advantage of any special hardware it finds.

E co n o m y : Despite the power of COOGE it is relatively compact in term s of

memory and disk requirements and adds little overhead compared to using

a standard library.

4.4 The O bjects Required

W ith these objectives in mind the graphics process was examined to determine

the objects th a t would be required in a graphics system. However, before any

the graphics objects are designed, there are a num ber of objects th a t m ust be

dealt with first. These are what I term ed service objects - objects th a t provide

functions th a t most of the higher objects will require.

CHAPTER 4. THE OBJECT OF IT ALL 63

C H AP TER 4. TH E O BJEC T OF IT A L L

4 .4 .1 S erv ice O b je c ts

64

A lot of the objects in the system require the use of lists to keep track of various

pieces of information, for instance, you might want to keep a list of shapes tha t

have to be drawn on the screen. For this reason a list object was designed th a t

provides a number of functions th a t you would use on any list, and th a t can be

included into any other object.

c la s s l i s t
{

p o in te r t o head o f l i s t
p o in te r t o c u r re n t p o s i t io n in l i s t

p u b l ic :
v o id in s e r t (b a s e *)
v o id a ppend (base*)
b ase * g e t ()
v o id c le a r ()
v o id r e s e t ()

b a se * n e x t ()
v o id rem o ve (ba se *)

The list object is further refined by the system to yield a static list object

which can be used to keep a static list of objects in the system.

4 .4 .2 T h e B A S E O b ject

There are a number of functions th a t every object in the system will be required

to perform. For instance you must be able to save and load an object to /from

/ add a t head o f l i s t
/ add t o end o f l i s t
/ remove o b je c t fro m l i s t
/ em pty th e l i s t
/ re s e t th e c u r r e n t p o s i t io n in th e
/ l i s t
/ r e t u r n p o in t e r to n e x t ite m in l i s t
/ d e le te an itm e fro m th e l i s t

CHAPTER 4. THE OBJECT OF IT ALL 65

disk. Because of the way C ++ is compiled, as explained in Chapter 2, no record is

kept of the internal structure of objects in the system once compiled. This means

th a t C ++ doesn’t inherently support loading/saving of objects. For this reason,

you need some m ethod for providing this function and ensuring th a t all other

objects can inherit it. It was decided to provide a BASE object which all other

objects will inherit. It is called BASE as it is the basis of all other objects in the

system. Another function required by most objects is the ability to draw itself

on the screen, and because this was such a widely used function it was decided

to also include this in the BASE object.

c la s s base {

p u b l ic :
v i r t u a l b ase * g e to b j(IM A G E *,

b a s e *) / /
v i r t u a l p u to b j(IM A G E *) / /
v i r t u a l v o id d ra w () / /

/ /

4 .4 .3 S av in g O b jects

The IMAGE referred to in the base class is an object which looks after the saving

and loading of other objects to and from disk. As each object is stored to disk

the IMAGE object labels the object ju st stored so th a t it can be reloaded in the

future. Sometimes when writing a list of objects to disk it is useful to write a

NULL object to disk to indicate th a t the list is finished. So the IMAGE object

supports a NULL object. To load an object from disk, simply tell the IMAGE

lo a d an o b je c t fro m d is k
save an image to d is k
f o r c e o b je c ts to s u p p o rt a
draw fu n c t io n

what object you want to load and it returns a pointer to the loaded object if it

can load it or a NULL pointer if not.

CHAPTER 4. THE OBJECT OF IT ALL 66

c la s s image {

f i l e * / / d is k f i l e t o s a v e / lo a d o b je c t t o / f r o m
file n a m e
la b e l / / o b je c t j u s t s a v e d /lo a d e d

p u b l ic :

v o id o p e n (c h a r*) / / open image f i l e
v o id r e w r i t e () / / r e w r i t e th e image f i l e
i n t m a tc h (c h a r*) / / check i f o b je c t t o be lo a d e d m atches n e x t

/ / one on d is k re tu n t r u e / f a l s e

base * lo a d o b je c t (o b je c t name) / / lo a d an o b je c t fro m d is k

v o id w r i t e (o b je c t a d d re ss) / / save o b je c t t o d is k
>

This loading and saving of objects appears relatively simple. This is de

ceptive. W hen saving an object to disk you must also save those parts of th a t

object th a t were inherited from other objects. This means th a t you must keep

track of all the ancestors of an object i.e. all the objects it inherited and they

inherited in tu rn etc. As already stated C ++ provides no support for keeping

track of the inheritance tree once compiled, so when an object is saved to disk

COOGE ensures th a t any of its inherited parts are also saved by calling the save

function for each inherited p a rt of the object.

COOGE allows any image to be saved as a collection of objects. This

provides a device-independent means of saving any image to disk and provides a

standard means for image transfer between programs. For instance

CHAPTER 4. THE OBJECT OF IT ALL 67

image im g;

im g . open(‘ t e s t . d a t ') ; / / save image t o f i l e t e s t . d a t
s c r .p u to b j(& im g) ; / / save th e s c re e n s c o n te n ts

will save to disk any objects appearing on the screen in object format.

This ability also allows you to build up a library of commonly used objects

which can then be included into any drawing. For instance you could build up

a library of commonly used components in electronic circuits and use them in

designing new circuits.

4 .4 .4 L oad in g O b jec ts

Loading a previously saved object from disk is a more complex operation. The

reason for this is th a t one object cannot access the private da ta of another object

except in the special case when it is declared as a friend. This means th a t if you

want to load a LINE, for example, from disk the only object th a t can check if it

is a line, and then load it, is another line object. The reason for this is th a t only

a LINE object has access to the internal representation and storage of its private

data. For this reason a static list is set up in the system which keeps a copy of

every type of object in the system. Any type of object can be added to the list

by using the activate command. For example

A c t iv a t e (c y l i n d e r) ;

will allow instances of the cylinder object to be loaded from disk. The

activate command works on a complete class ra ther th an an instance of a class

and need only be called once to ensure all instances of the class can be loaded

from disk. Activating an object means th a t the system has to set memory aside to

handle the loading and saving of instances of the object. For this reason the user

can activate only those objects he/she will require. Some objects in the system,

such as segments and windows, are autom atically activated by the system to

ensure th a t they can be loaded from disk at any time.

If an object is to be loaded from disk the image object asks each object

on the list in tu rn if it is an instance of the object stored on disk. If it is, then

the object is asked to load the object from disk and re tu rn a pointer to the new

object. If an object has inherited a number of other objects, COOGE will ask

each inherited part to also load itself from disk before returning a pointer to the

new object.

4 .4 .5 B itm a p s

Another object th a t is required by a number of the main graphical objects is a

BITM AP . This object takes a section on the screen specified by the user and

saves it so th a t it can be restored at some later tim e to its original position - or

even a different position on the screen.

CHAPTER 4. THE OBJECT OF IT ALL 68

c la s s b itm a p {

CHAPTER 4. THE OBJECT OF IT ALL 69

p o in te r t o saved image
c o -o rd s o f s to re d a re a

p u b l i c :

i n t sa ve (i n t , i n t , i n t , i n t) / / save a r e c ta n g u la r a re a o f sc re e n
i n t r e s to r e O / / r e s to r e i t t o i t s o r i g i n a l p o s i t io n
i n t r e s t o r e (i n t , i n t , i n t , i n t) / / r e s to r e i t t o a d i f f e r e n t pos .

>

4.5 The V iew ing Operation

The next task was to examine the graphics pipeline and to isolate the objects

required to provide the functions required. As stated above, an object is defined

by the actions it performs and requires of others. It would have been possible

in theory to assign an object to each stage of the graphics pipeline and pass

information from one object to another till the information was eventually drawn

on the screen, but it was decided to trea t the complete pipeline as one object

which accepted a point or a line in world co-ordinates, then clipped, transform ed

and projected the point or line onto the screen.

The name given to this object was the ‘V IEW SET’ as it contained the set

of transform ations and viewing operations to be performed on a point or line.

C H A P T E R 4. THE O B JE C T OF IT ALL

4 .5 .1 T h e V I E W S E T

70

The viewset contains information on the current rotation, scaling and translations

being applied, as well as the viewport and the current projection. The advantage

of this is th a t the complete viewing process was isolated in one object. This

firstly meant th a t the m athem atics and complications of the viewing operation

were concentrated in one place and the internal m athem atics themselves hidden

from the user who only has access to the object through its interface. This means

th a t new views can be added w ithout affecting the user’s own code. Secondly

because all the m athem atics are concentrated in the one object, the speed of

drawing is improved as you do not have functions calls between a num ber of

objects, as the VIEW SET processes the entire object.

A simplified version of the viewset is as follows

C la ss v ie w s e t : p u b l ic base {

V ie w p o rt c o -o rd s
Window c o -o rd s
V ie w in g m a t r ix
R o ta t io n m a t r ix / / c o n ta in s c u r r e n t p r o je c t io n
T r a n s la t io n and S c a lin g f a c t o r s
C u rre n t t r a n s fo r m a t io n m a t r ix / / m a t r ix o f com bined

/ / t r a n s fo rm a t io n s

p u b l ic :

v o id s c a le (s x , s y , s z) ; / / s e t s c a l in g f a c t o r s in x , y , z d i r
v o id r o ta te a b o u t (p o in t , / / r o t a te abou t a p o in t in th e Z d i r

a n g le)
v o id r o ta te a b o u tx (p o in t , / / " 11 " " " " X d i r

a n g le)
v o id r o ta te a b o u ty (p o in t , / / " " 11 " " 11 Y d i r

CHAPTER 4. THE OBJECT OF IT ALL 71

an g le)
v o id s e t v p o r t (f l o a t , f l o a t , / / S et th e v ie w p o r t c o -o rd in a te s

f l o a t , f l o a t) ; / / in NDCJs

v o id m o v e to (p o in t) / / m oveto a p o in t on th e sc re e n
v o id l i n e t o (p o in t) / / draw a l i n e t o th e p o in t
v o id d r a w p o in t (p o in t) / / draw a p o in t on th e sc re e n

v o id s e t o b l iq u e (f lo a t , f l o a t) ; / / s e t v ie w in g p r o je c t io n s e tc .
v o id s e t c a v a l i e r (f l o a t) ;
v o id s e t c a b in e t (f l o a t) ;
v o id s e to r th o O ;

h

As new transform ations are added, or as existing transform ations are changed,

the current transform ation m atrix is updated immediately. This ensures th a t

there is no loss of speed when applying a num ber of transform ations to a graph

ics object.

4 .5 .2 T h e S C R E E N

The VIEW SET object was not intended to be used by itself but ra ther to be

incorporated/inherited into other objects th a t require these graphical operations.

For example, it was decided to trea t the screen itself as a distinct object. An

instance of this object, called SCR, is created by the system before any of the user

objects. This means tha t the SCREEN object can take control of the graphics

system initialising all the param eters. For instance, one of the functions provided

by the SCREEN is the ability to change from one graphics mode to another. The

SCREEN can then inform other objects in the system th a t such a change has

taken place and make any adjustm ents th a t are necessary. For instance, the

function th a t maps the world co-ordinates to physical co-ordinates has to be

informed about the change in resolution. It keeps details of the actual physical

resolution of the screen so the viewset can m ap the world co-ordinates correctly

to the physical screen co-ordinates. In this system the user can assign graphics

objects to windows, segments etc. so it is drawn when the window opens or when

the segment is drawn. If an object is not assigned, it uses the default SCREEN

settings when being drawn.

c la s s sc re e n :
p u b l ic v ie w s e t { / / in c lu d e s a l l v ie w s e t fu n c t io n s

c u r re n t g ra p h ic s mode;
c o lo u r in fo r m a t io n ;

p u b l ic :
v o id in i t (d e v i c e m ode); / / s e t th e g ra p h ic s mode
v o id r e f r e s h O ; / / r e f r e s h th e s c re e n
v o id s e tb k c o lo r (c o lo r) / / s e t th e b a ckg ro u nd c o lo r

>;

4 .5 .3 S en s it iv e O b je c ts

As mentioned before, the screen must inform other objects in the system if the

user changes the current graphics mode. In order to meet this goal, it was decided

to set up a static list of objects in the system which m ust be informed when such

a change takes place. A sensitize function is provided by the system for this end.

CHAPTER 4. THE OBJECT OF IT ALL 72

For example

o b je c t . s e n s i t iz e Q

CHAPTER 4. THE OBJECT OF IT ALL 73

will make an object sensitive to any changes in the graphics environment

and it will be immediately informed when such changes take place. Some objects

in the system, because of the nature of their use, are autom atically sensitized

when created, such as segments and windows. You can remove an object from

this list by using the desensitize function.

For example

o b je c t . d e s e n s i t iz e ()

4 .5 .4 S H A P E S

The most obvious kinds of objects th a t are required in a graphics system are

fundam ental SHAPE objects such as lines, squares, boxes, circles and polygons.

Using these as a type of building block, more complex objects can be built. The

basic requirement of a shape is th a t you should be able to draw it on the screen,

but more advanced facilities are provided to allow you to rotate, scale and move

shapes. Another consideration is colour. Each shape m ust also be able to hold

the colour required if colour is supported by the system. The current SHAPE

objects do not provide any support for deciding the edges of a shape or its faces,

because hidden line removal is not supported. All shape objects are m ade from

the generic SHAPE object which provides support for initialising the shape da ta

structure (in this case an array of points) and for drawing the shape.

Lines, points and circles were implemented as distinct graphical objects, all

derived from a base class called SHAPE which outlined the operations required

for any graphical shape. Every shape in the system is capable of being scaled,

rotated, translated and you can set its colour. A num ber of predefined shapes in

2D and 3D exist within the system and the user is free to create new shapes of

h is/her own and add them to the system. W ith regard to the circle object there

are two choices available for drawing the circle - an adaptation of the standard

Bresenham’s algorithm [BRES77] which produces a very accurate result bu t takes

tim e to draw, or a polygon approximation of the circle which draws very quickly

bu t does not draw as accurately. In practice the polygon approxim ation would be

used when to provide fast response when drawing, such as when rotating a picture,

and the Bresenham algorithm can be used to provide the final output. The sphere

drawing routine also allows you to choose between the speed of drawing and the

accuracy required.

The default shape is

c la s s shape : p u b l ic base {

p u b l i c :
p o in ts / / C o -o rd s o f th e shape
c o lo r / / c o lo r o f th e shape

v o id d ra w () / / draw th e shape
v o id s c a le (s x ,s y ,s z) / / s c a le th e shape in X ,Y ,Z d i r e c t io n
v o id r o ta te a b o u t (p o in t , / / r o t a te abou t a p o in t in th e Z d i r

a n g le)
v o id r o ta te a b o u tx (p o in t , / / " 11 " " " " X d i r

a n g le)
v o id r o ta te a b o u ty (p o in t , / / " " " " " " Y d i r

a n g le)

CHAPTER 4. THE OBJECT OF IT ALL 74

CHAPTER 4. THE OBJECT OF IT ALL 75

v o id m o v e (in t , i n t , i n t) / / move shape r e la t i v e
v o id m o v e to (p o in t) ; / / move th e shape to a p a r t i c u la r p o in t
v o id s e tc o lo r (c o lo r) / / s e t th e s h a p e 's c o lo u r

>;

As mentioned this shape is then used to create usable shapes such as lines :

c la s s l i n e : p u b l ic shape {

p u b l ic :
v i r t u a l b ase * g e to b j(IM A G E *,

b a s e *) / / lo a d an o b je c t fro m d is k
v i r t u a l p u to b j(IM A G E *) / / save an image to d is k
v o id d ra w () / / draw th e l i n e
l i n e (p o in t . p o in t) / / i n i t i a l i z e th e l i n e
s e t (p o in t , p o in t) / / s e t th e l in e s c o -o rd s

>;

4 .5 .5 S E G M E N T S & S C E N E S

Sometimes it is useful to group a number of graphics objects into segments as

mentioned in Chapter 3. Any number of graphical objects can be grouped to

gether into a segment. It is possible to assign a nam e/id to a segment so th a t

you can for instance define a segment called ‘tab le’ which draws a table. The seg

ment also can be make invisible or visible on the screen by setting the segments

‘visibility’ setting.

c la s s segment : p u b l ic v ie w s e t {

v i s i b l e / / w h e th e r segment i s v i s i b l e / i n v i s i b l e
id / / name/ id o f th e segment

CHAPTER 4. THE OBJECT OF IT ALL 76

shape l i s t / / l i s t o f th e shapes added t o th e segment

p u b l i c :

v o id append(shape) / / add a shape in t o th e segment
v o id c le a r () / / c le a r a l l shapes fro m segement
v o id d ra w () / / draw th e segment c o n te n ts
v o id s e t v i s i b i l i t y (s w i t c h) ; / / s e t v i s i b i l i t y o n / o f f

>;

It is also possible to group a number of segments together into a SCENE.

You can then m anipulate the SCENE as if it were just one big segment, as any

operation you can apply to a segment can be applied to a SCENE.

4 .5 .6 W I N D O W S

The next object to be designed was a window object, which is an object to allow

the user to use part or all of the screen as a drawing surface. The window can

pop-up, saving what was currently on the screen and restore the previous contents

of the screen when it is closed. The screen can be divided into any num ber of

windows (depending on the memory capacity of the user’s machine) but you can

only draw in the most recently opened window. If a window is open on the screen

then all draw commands use this window for their output by default.

c la s s window : p u b l ic segment

id / / i d o f th e opened window
save a re a / / d a ta saved when th e w indow i s opened
b itm a p / / saved c o n te n ts o f th e sc re e n

CHAPTER 4. THE OBJECT OF IT ALL 77

public :
void append(shape) // add shapes/segments to the window
void append(segment)
void open() // open/pop-up the window
void closeO // close window + restore screen

>;

Each window is assigned an ID to insure th a t you cannot draw in a window

th a t was covered by a more recently opened window. W hen a window is opened

the SCREEN is informed so th a t all unassigned commands to draw shapes are

now assigned to be drawn in the current window.

4.5.7 FONTS

COOGE has a font object th a t is used to control the loading of fonts into the

system by the user. A predefined Roman stroke font was designed to test the

font object but the user can design his or her own fonts and add them into the

system.

class font {

font id
static list of fonts already loaded

public:

void load(font id) // load a font from disk
void draw(point,char*) // draw string at point
void setscale(sx,sy) // set scaling factors for the font

In order to prevent a font being loaded twice, a static list is set up by

COOGE th a t keeps track of all fonts as they are loaded by the user. W hen

loading a font, the font object checks this list to see th a t the font has not already

been loaded.

The font class itself uses another service class called FO NTREC to actually

load the font from disk.

4.5.8 Drawing Text

To actually draw a string on the screen you must use a TX T object which is

derived from the shape class.

class txt : public shape {

char* strng // text to be written
font id // font to be used

public :

void draw() // draw the text string
void settxt(font id,point,char*) // set the text to be drawn

Using this design for the text object m eant th a t the tex t is treated just like

any other shape in the system, which means it can be freely incorporated into

drawings, segments, windows, etc. , w ithout the need for any special commands

or instructions.

CHAPTER 4. THE OBJECT OF IT ALL 78

W hen drawing a TX T object, the font list is checked to find the font required

and the string to be w ritten is then passed to the required font object so th a t it

can be drawn on the screen.

The overall list of objects in the system and their hierarchy is as shown in

Figure 4.1.

4.6 Conclusion

This chapter outlined the design objectives th a t m ust be kept in mind when

designing any graphics system. COOGE was designed to meet these objectives

using object oriented techniques. All objects in the system can communicate to

inform each other if any changes take place in the graphics environment. A lot

of these objects are designed to operate in the background without the user ever

being aware of them. These objects are designed to help the user ra ther than

hinder h im /her and attem pt to protect the graphics environment from accidental

damage and loss of information. The main graphics objects themselves a ttem pt

to provide all the power of a CAD graphics library in an easy to use form at. The

actual im plem entation of the system itself is discussed in the following chapter.

CHAPTER 4. THE OBJECT OF IT ALL 79

WINDOW

SCREEN
/ VIEWSET

SEGMENT SCENE

LINE

CIRCLE)

SHAPE
SPHEREPOLYGON

POINT
TEXT

RECT

■ FONT
FONTREC

IMAGE

STATIC
LIST

CHAPTER 4. THE OBJECT OF IT ALL

BITMAP)

OBJECTSSERVICE

Figure 4.1: System hierarchy of objects

I

Chapter 5

IMPLEMENTATION

81

5.1 Introduction

CHAPTER 5. IMPLEMENTATION 82

Having designed the objects th a t were required by the graphics system and the

functions they were required to perform, the final task was to actually program

and implement the system. As stated, the system was implemented using C ++.

This chapter outlines some of the implementation problems associated w ith the

system and gives a few simple examples of the system in use.

5.2 The Compiler

The actual version of C ++ used was a version supplied by Glockenspiel and was

originally run on an 8086 based machine. It was then moved to an 80386 based

machine, an IBM PS2 system 80, to improve the speed of program compilation.

Even with this changeover, RAM disks had to be used to provide a reasonable

speed of compilation. The C ++ compiler is not actually a compiler as such, rather

it is a preprocessor. It takes the C ++ program code and converts it to Microsoft

C compatible code. This code m ust then in tu rn be processed by the Microsoft C

compiler before an executable version of the program can be produced. During

this implementation stage a num ber of problems occurred which required a re

design of some parts of the system.

CHAPTER 5. IMPLEMENTATION

5.2.1 Im plem entation Problem s

83

One of the main problems in using the C ++ compiler was its need for vast quan

tities of memory even to compile small programs. For instance, a lot of the

functions th a t the objects provide had been designed as inline functions in order

to improve the speed performance of the system. However, it soon became clear

th a t the compiler used up so much memory in compiling inline functions th a t it

would run out of memory if more than a handful of inline functions were included

in a program. Thus functions calls had to be substitu ted for inline functions and

in so doing slowed down the overall performance of the system. Even without

inline functions all memory resident programs including keyboard drivers had

to be removed from memory in order to give the compiler enough memory to

compile the program, even after it had been broken up into a num ber of small

individually compilable modules. Some of the code was in fact broken into small

modules for no logical reason except to ensure th a t the num ber of lines in each

module was small enough to be processed.

A nother problem was th a t the original design of the objects took advantage

of multiple inheritance in C ++ to create some of the objects but the version of

the compiler used did not support multiple inheritance. This m eant th a t some of

the objects had to be redesigned to simulate multiple inheritance so th a t the user

is presented w ith the original intended interface. The only disadvantage th a t the

user will notice is th a t it took a lot more code to simulate multiple inheritance

than if multiple inheritance had been used, and ended up w ith a less efficient

CHAPTER 5. IMPLEMENTATION 84

program.

Finally, the actual version of C++ used to produce the code was a beta test

version which meant th a t when an error occurred it took a while to figure out

w hether the preprocessor or the code itself was incorrect. Also a lot of the error

messages were obscure to say the least. For example during one compilation the

following error message appeared

‘ 'E r r o r i n to k e n 128 Ooops e r r o r i n t h e e r r o r h a n d le r ! ’ '

It took a while to get to the bottom of th a t particular problem, which was

in fact a missing semi-colon.

5.3 W hich Graphics Library ?

Having designed the objects required to perform the graphics functions, the next

stage was to find a graphics library th a t the objects could ‘sit on top of’ to provide

an object oriented graphics environment. A number of existing graphics libraries

were examined including Dr. Halo and M etagraphics. After some research I

decided to use the standard graphics library provided by Microsoft C w ith version

4.00 of the compiler.

The routines required by COOGE from the library and the objects tha t

require them are as follows :-

CHAPTER 5. IMPLEMENTATION 85

The V iew set

MoveTo(x,y) Move the cursor to a position x,y on the screen

LineTo(x,y) Draw a line from the graphics cursor to the position x,y

V iew port(xl,yl,x2,y2) - Set the viewport to the rectangle specified

SetColor(color) Set the current drawing colour

The Screen

InitDevice(device) — Set the graphics mode

SetBkColor(color) — Set the background colour

The Bitm ap

G etlm age(xl,yl,x2,y2) - Save a copy of part of the screen

P utlm age(xl,y l,x2,y2) - Restore an image to the screen

These routines are used internally by COOGE and are not used directly by

the user. This means th a t the underlying graphics library can be replaced a t any

tim e w ithout affecting the user’s own code, which in tu rn means it is relatively

simple to port COOGE from one machine to another.

As an example to illustrate this, COOGE was originally programmed using

a graphics library called M etaW INDOW supplied by M etaGraphics [META88].

Halfway through the im plem entation stage, is was decided to move to the s tan

dard Microsoft C graphics library. The change from one library to another took

a m atter of hours ra ther than days, w ith only three objects in the system being

affected. Also it was only the private implementation of this objects which had

to be changed with the public interface remaining the same and hence the user’s

code was unaffected.

CHAPTER 5. IMPLEMENTATION 86

5.4 M odularization

The program code itself is broken into two parts - the header files, which the

user requires to define the objects used in the system, and the private code which

contains the actual implementation of the objects. The COOGE system was

broken up into a number of smaller modules which means the user only has to

include those parts of the system he/she requires. The system is broken up into

the following modules:

STDINC.HXX - S tandard basic COOGE system (must be included)
such as SCREEN and service objects.

SEGLIST.HXX - Contains segment, scene and window definitions.

SHAPES.HXX - Standard graphics shapes defined by the system.

IMAGE.HXX - Provides support for loading/saving objects.

FONT.HXX - Supports loading and using of character fonts.

TEXT.HXX - Graphics text object definition.

CHAPTER 5. IMPLEMENTATION 87

5.5 The System In A ction

In order to give a clearer example of how the system works I will use an example

program th a t draws a box on the screen in 3D and then rotates the box by 90

degrees about the X, Y and Z axis, respectively, and then finally the ro ta ted box

is drawn on the screen. The program to accomplish this is as follows :

in c lu d e < s td in c .h x x > / / s ta n d a rd in c lu d e f i l e s
in c lu d e < s e g l i s t . h x x >
in c lu d e <shapes .hxx>

m a in O
{

box b x (p o i n t (3 0 0 ,5 0 0) ,
p o i n t (6 0 0 , 7 0 0) ,1 0 0) ; / / d e f in e box t o be drawn

scr . in i t (_H R E S B W); / / s e t th e s c re e n t o 640 x 200
/ / mode

s c r . se tw in d o w (0 ,0 ,8 0 0 ,8 0 0) ; / / s e t an 800 x800 window
s c r . s e t c a b i n e t O ; / / s e t a c a b in e t p r o j e c t i o n f o r

/ / t h e s c re e n

bx .d ra w O ; / / Draw th e box
getchO ; / / w a i t f o r key t o be p re s s e d

b x . r o t a t e a b o u t x (4 0 0 ,0 ,9 0) ; / / r o t a t e t h e box abou t th e X a x is
b x . r o t a t e a b o u t y (4 0 0 ,0 ,9 0) ; / / ii I. ii I. I. y a x is

b x . r o t a t e a b o u t (4 0 0 ,4 0 0 ,9 0) ; / / " Z a x is

scr.refreshO ; / / C le a r t h e sc reen

b x . d r a w () ; / / draw box i n new o r i e n t a t i o n

getchO ;
>

/ / w a i t f o r key t o be p re ssed

The first thing to notice is the fact th a t you can specify details of an object

including its co-ordinates at the time it is created, as in the box object.

As mentioned before in Chapter 4, there is a default screen object call SCR

created before all other objects in the system so th a t this object can take control

of the graphics system. The user can create another screen object to override the

system screen if desired. The first thing SCR does is to interrogate the com puter

to find out w hat mode the screen is currently in, the screen resolution and colour

information. It passes this information on to any other objects th a t then require

it. If the user then changes the screen mode, as in the example, then all objects

in the system are notified of the change and thus react accordingly.

In the screen object or any other object th a t uses a window, if no window

is specified by the user, then the resolution of the screen is used as the default

window. Similarly for the viewport, if no viewport is specified the complete

screen is used for the viewport by default. In this example we define a 800 x

800 window and we take a quarter of the screen centred on the middle as the

viewport. Graphics object such as segments, windows, etc., can each have their

own individual viewports and windows.

As you can see, specifying the 3D view required is relatively simple. In

the example program, a cabinet projection was specified bu t it is ju s t as easy to

specify an isometric or oblique projection or even a particular projection of the

user’s own making. All objects in the system th a t are now drawn on the screen

will be drawn using a cabinet projection unless they specify their own projection.

CHAPTER 5. IMPLEMENTATION 88

CHAPTER 5. IMPLEMENTATION 89

Figure 5.1: Cube generated

The box is now drawn on the screen using the draw command which works

w ith all shapes and graphical objects. See Fig 5.1

To ro ta te an object is relatively easy as shown in the examples. There are

two ways of rotating an object. You can ro tate the object relative to the previous

rotations as we do in our example. So the box is ro tated by 90 degrees in the x,

y and z plane. You can also specify an absolute rotation so th a t it is ro ta ted to

th a t absolute position. For example,

b x . r o t a t e a b o u t t o (4 0 0 , 4 0 0 , 9 0) ;

would ro ta te the box to 90 degrees off the horizontal in the Z direction. You

can also specify negative rotations. Alternatively, rather th an ro ta ting the box,

you could have specified a ro tation for the screen, and all objects drawn on the

screen would be drawn with the specified rotation.

CHAPTER 5. IMPLEMENTATION 90

Figure 5.2: R otated cube generated

The screen is refreshed to clear the first box from the screen and th e rotated

box is now drawn on the screen using the draw command. See Fig 5.2

It is possible to add the box to the screen so th a t every tim e the screen is

being refreshed the box will be drawn. Using the command

scr.append(&bx);

adds the box to the screen’s refresh cycle.

Another thing to note is th a t each object also has a destructor which looks

after the object when it is being deleted. The screen object which operates in the

background is one of the last objects destroyed as the program is term inating.

The screen object destructor restores the screen to its original mode and colour.

This means the user does not have to worry about restoring the screen to its

original mode as it is all done automatically.

CHAPTER 5. IMPLEMENTATION 91

5.5.1 The Use Of Segments

Sometimes, as mentioned before, it is useful to segment the display so a num ber of

objects can be displayed simultaneously. For instance, you might want to display

a number of different views of the one object. The following example displays a

box using two different views and two different rotations for each view.

in c lu d e < s td in c .h x x > / / s ta n d a rd in c lu d e f i l e s
in c lu d e < s e g l i s t . h x x > / / h ea d e r f i l e f o r segments
in c lu d e <shapes .hxx> / / h ea d e r f i l e f o r shapes

m a in ()

segment s e g l , s e g 2 , se g3 ,seg4 ; / / segments t o be used
scene sen;
box b x (p o i n t (2 0 0 ,1 2 0) ,

p o i n t (6 0 0 ,4 0 0) ,1 5 0) ; / / d e f in e box t o be drawn

s c r . in i t (_ H R E S B W); / / s e t t h e sc re e n t o 640 x 200
/ / mode

s e g l . s e t c a b in e t () ; / / Set f i r s t segment
s e g l . a p p e n d (& b x) ; / / add box t o segment
s e g l . s e t v p o r t (0 . 0 , 0 . 0 , 0 . 5 , 0 . 5) ; / / s e t th e v ie w p o r t

s e g 2 . s e t c a b in e t () ; / / use c a b in e t p r o j e c t i o n f o r
s e g 2 . a p p e n d (& b x) ; / / f i r s t two segments
s e g 2 . s e t v p o r t (0 . 0 , 0 . 5 , 0 . 5 , 1 . 0) ;
s e g 2 . r o t a t e a b o u t (3 2 0 ,1 0 0 ,4 5) ;

se g 3 . s e t c a v a l i e r O ; / / use c a v a l i e r p r o j e c t i o n f o r
s e g 3 .a p p e n d (& b x) ; / / l a s t two segm ents.
s e g 3 . s e t v p o r t (0 . 5 , 0 . 0 , 1 . 0 , 0 . 5) ;

s e g 4 . setcavalierO ;
s e g 4 .a p p e n d (& b x) ;

CHAPTER 5. IMPLEMENTATION 92

s e g 4 . s e t v p o r t (0 . 5 , 0 . 5 , 1 . 0 , 1 . 0) ;
s e g 4 . r o t a t e a b o u t (3 2 0 ,1 0 0 ,4 5) ;

s e n .a p p e n d (& s e g l) ; / / add segments t o t h e r e f r e s h c y c le
s e n .a p p e n d (& s e g 2) ;
s e n .a p p e n d (& s e g 3) ;
sen. append (icseg4) ;

scn.refresh(); // draw the segments

getchO ;
>

The program starts by defining the box to be drawn and initializing the

segments, their viewports, rotations and contents.

The segment has to be informed th a t the box is to be p art of the segment

and to be drawn each tim e the segment is refreshed. To add any object to a

segment, window or screen and put it on the object’s refresh list (the list of

objects th a t m ust be redrawn if the object is refreshed) you simply append it

as shown in the example. The object can be removed from the list by using

the delete command. For example seg.delete(&bx) will remove the box from the

segments refresh list.

We finally add the segments themselves to the scene’s refresh cycle so th a t

each tim e the scene is refreshed the segments will also be drawn.

Finally by refreshing the scene we get the segments and their contents to

appear on the screen as shown in Fig 5.3.

This example is a relatively trivial one with only one box in each segment.

CHAPTER 5. IMPLEMENTATION

Figure 5.3: G enerated image of cubes

CHAPTER 5. IMPLEMENTATION 94

Figure 5.4: Sample screen from dem onstration program

Each, segment could in fact contain a very complicated drawing such as a house

and you could use various segments to simultaneously view the house from a

number of different angles and viewpoints.

A num ber of example programs are included in the appendix to dem onstrate

the use of windows, fonts, loading and saving objects to and from disk, viewing

objects from different angles and how to use the various projections available.

Fig 5.4 shows an example screen from the dem onstration program w ritten using

the COOGE objects.

5.6 Conclusion

CHAPTER 5. IMPLEMENTATION 95

This chapter is designed to give some idea of how the actual objects in the

system can be used to create graphical images. These graphics objects and their

interfaces are intended to give the user the comfort of using a package while at

the same tim e providing the freedom of a programming language. Hopefully from

the two examples the reader can get some idea of how the system can actually

be used. The last chapter takes this one step further and examines the further

development of object oriented programming and future enhancements to the

COOGE system itself.

Chapter 6

THE FUTURE

96

6.1 Introduction

CHAPTER 6. THE FUTURE 97

COOGE provides a set of objects th a t provide prim itive graphic functions and

a range of transform ation functions th a t can be used to m anipulate a graphical

image. The image itself can be stored in device-independent object form at on

disk and finally the user can use the library support to build up a library of

commonly used images th a t can be incorporated into fu ture images. COOGE

was an a ttem pt to show th a t such a library of routines/objects was possible and

th a t it could in fact be used as the basis for a device-independent CAD system.

This chapter examines possible enhancements to the system and what im pact

current trends will have on object oriented graphics.

6.2 Towards Object Oriented Graphics

Object oriented development is being used more and more in the design of graph

ics libraries. Most graphics libraries in fact m ention in their advertising litera

tu re the fact th a t they used object oriented development in their design such as

M etagraphics MetaW INDOW S [META88]. This internal use of object oriented

m ethods within the library has yet however to be reflected in their use in an

object oriented way by the end users.

6.3 COOGE Enhancem ents

CHAPTER 6. THE FUTURE 98

COOGE in no way attem pts to supply the ultim ate graphics library. Instead it

a ttem pts to provide a small set of powerful functions th a t would be of use to any

user. There are a number of enhancements which could be m ade to the COOGE

system to improve it usability and flexibility, and they are outlined below.

6.3.1 The Shape

The shape object currently uses a set of points to define a given shape. The

shape object could be improved in a number of ways, firstly by providing hidden

line removal and secondly by supporting solid modelling. In order to meet these

goals it would be necessary to incorporate the idea of ‘faces’ and vertices into the

shape object. These changes would be internal to the shape object and would

not affect the user’s end code. The actual im plem entation of hidden line removal

would also affect the viewset object which is in charge of the graphics pipeline.

This in turn would require a closer relationship between the viewset and shape

objects.

6.3.2 Windows

Currently it is only possible to draw in the most recently opened window but a

more complex window system could be implemented which would allow a user

to draw in any uncovered p art of any window on the screen. Scroll bars and

pop-up menus could also be employed adding to the usability and flexibility of

the system.

6.3.3 Input Objects

As it stands COOGE provides no support for input into the system except for the

standard input routines provided by ‘C’ itself. It would be possible to design an

object th a t supports the keyboard and another object to support mouse input.

The usefulness and portability of the system would be improved by using these

device-independent input objects, w ith the system not having to rely on any

particular mouse or keyboard design for input.

CHAPTER 6. THE FUTURE 99

6.3.4 Multitasking

In the future as more m ultitasking hardware becomes available and concurrent

object oriented programming languages become more widespread it should be

possible to redesign COOGE to take advantage of this w ithout too much difficulty.

This would significantly increase the speed of the system. As it stands most of

the program ’s drawing tim e is used up not in actually drawing a point bu t in just

calculating where a point in the 3D space will actually appear on the screen. By

examining the drawing process you will discover th a t each point needs at least

21 m athem atical operations performed on it before it can actually be drawn,

which is extremely tim e consuming. If hidden line removal and solid modelling

were supported then the amount of m athem atical operations would increase still

further.

A concurrent version of C++ could be used to clear this bottleneck by re

designing the VIEW SET so it can process a num ber of points simultaneously and

then pass the transform ed points to the display hardw are so they can actually be

drawn. This would significantly increase the drawing speed of the system.

6.4 Similar System s

HOOPS [HOOP89] (Hierarchial Object-Oriented Picture System) is a library of

routines th a t provides support for three-dimensional imaging in bo th C and For

tran . HOOPS provides a set of routines th a t allows you to store three-dimensional

objects in a database. Objects in the database can then be displayed on the screen

(or printer) in one or more viewports, from any point of view, using orthographic

or perspective projection. HOOPS also allows you to display the object as a

wireframe or shaded solid.

HOOPS supports 4 basic graphics entities, polylines, polygons, pixel arrays,

and tex t strings. The user can build h is/her own shapes using these basic build

ing blocks. Segmentation is also supported w ith segments containing graphical

objects or further segments. All graphical information is organised in a hierar

chial form at w ith each child segment inheriting all the a ttributes of its parent

CHAPTER 6. THE FUTURE 100

C H A PTE R 6. TH E FU TU RE

such as colour, scale and orientation.

101

This product is being used as a base from which CAD system designers can

build three-dimensional, device and machine independent CAD packages.

A similar system to COOGE was developed for the Macintosh com puter in

America but for a rather different reason.

It was found th a t when designing graphics programs for the M acintosh th a t

a lot of the code was quite similar in these programs bu t it was not reusable so

the programs had to be coded from scratch each time. In order to improve this

situation an object oriented front end was designed for the M acintosh’s standard

graphics library. This met two goals, firstly providing a means of reusing existing

code, and secondly providing a simple and user friendly interface to the compli

cated world of M acintosh graphics. The resulting product was called M ACAPP

[MACA88], programmed in objective pascal, which was designed to help in the

production of M acintosh application programs. M ACAPP autom atically han

dles standard Macintosh user-interface features such a menus, desk accessories,

scrolling, resizing windows and printing. MacApp also includes a high level de

bugger to help the applications programmer.

This example only shows one area where object oriented development can

benefit a designer - namely in the reusability of code. More and more applications

for object oriented development are being found and people are beginning to tu rn

to these methods to find solutions to a num ber of programming problems.

CHAPTER 6. THE FUTURE 102

6.5 The Language

Object oriented languages are still in their infancy and as such are constantly

changing and improving. Only in recent years has the required support you

need for any language become available. These include symbolic debuggers and

program development aids.

For instance as already mentioned the C++ compiler actually preprocesses

the code and converts to Microsoft code. At present no debugger is available for

the C++ code and you actually have to debug the ‘C’ code itself. Just to give

you some idea of the enorm ity of this task the following example shows two lines

of C++ code and the resulting ‘C’ code.

C++ Code

V o id c h a r t a b : : c l e a r ()
{

f o r (i n t i= 0 ; i< 1 2 7 ; i++)
i f (e n t r y [i] != (fo n t re c *)N U L L) d e le te e n t r y [i] ;

>

R e s u l t i n g C Code

v o id p a s c a l _ c h a r t a b _ c le a r (s t r u c t c h a r ta b * _ a u 0 _ th is)
{ i n t _ a u l_ i ;
f o r (_ a u l_ i= 0 ; _ a u l_ i< 1 2 7 ;_ a u l_ i+ +)
i f ((_ a u O _ th is - > _ c h a r t a b _ e n t r y [_ a u l_ i]) ! = (((s t r u c t f o n t r e c *) 0 L)))
(((_ a u O _ t h is - > _ c h a r t a b _ e n t r y [_ a u l_ i]) ? ((((_ a u O _ th is ->
_ c h a r t a b _ e n t r y [_ a u l_ i]) - > _ f o n t r e c _ n e x t ! = (((s t r u c t f o n t r e c *) O L)))
? (_ f o n t r e c d t o r ((_ a u O _ t h is - > _ c h a r t a b _ e n t r y [_ a u l_ i]) - >
_ f o n t r e c _ n e x t , 1) , 0) : 0) , ((_ a u O _ t h is - > _ c h a r t a b _ e n t r y [_ a u l_ i]) ?
(. d e l e t e ((v o id *) (a u O _ t h i s - > _ c h a r t a b _ e n t r y [_ a u l_ i]))) : 0)) : 0)) ;

O ther compilers have attem pted to accelerate the speed of compilation by

compiling the C ++ code direct to an executable form at bu t these too are still

in their infancy and will require further improvements before they become more

widely accepted.

W hen using object oriented development techniques you can create or de

sign objects which could be potentially used by a num ber of different users. A

number of commercial companies have now been set up to produce libraries of

objects th a t can be sold to users. These objects provide support for intercom

puter communications, printers, the keyboard and m any more. For example, a

library of objects called PforCe+-f- [PFOR87] is available which supports commu

nications, text windows, databases and pop-up and pull-down menus along with

many others. The commercial availability of these objects means th a t firstly

users do not have to design their own, and secondly the development process is

speeded up as the user only has to concentrate on those objects th a t are specific

to the current system.

6.6 Conclusion

Object oriented languages are the programming languages of the future. COOGE

was an a ttem pt to show the im pact th a t these languages and development m eth

ods can have on a graphics environment. COOGE exploits all the power of C ++

to create a set of graphics objects which provide the user w ith a powerful graphics

CHAPTER 6. THE FUTURE 103

library of routines. This chapter discussed how this could be further enhanced

by improving the objects within the system and by improving the language and

its supporting components.

CHAPTER 6. THE FUTURE 104

Appendix A

SOURCE CODE

105

B L I S T . H X X
//*************
// BLIST.HXX
II
I I DEFIIES A STATIC LIST OBJECT
II
II ****************

class blist {
slink* laBt;
slink* vptr;

publ ic:
void remove(base*);
void i n i t O ;
void append(base* a) ;
void cl earO;
void r e s e t O { vptr = 0;}
base* n e x t O ;

>;

// last->next is head of list
I I current position in scanning list

I I remove element from list
// Init the list;
I I add at tail of list

// remove all links

11 ****************************
I I Prog : BLIST.cxx
//
I I Creates a static list object
//
// Provides functions to
//
I I add to the begining/ end of the list
// step through the list
// delete from the list
// initialise the list
I I set error handlers for the list
I I clear the list
//
11 *

class base;

void blist: :i n i t O

last = (slink*) HULL;
vptr = (slink*) HULL;

>
base* b l i s t ::next()
{
slink* 11;

if (vptr == (slink*) BULL)
11 = vptr =(last) ? last->next : (slink*) IULL;

else {
vptr = vptr->next;
11 - (vptr==last->next) ? (slink*) IULL : vptr;

>
return 11 ? (base*)ll->e : (base*) HULL;

>;
void blist:¡append(base* a)
{

if (la B t)
last = last->next = new slink(a,last->next);

else {
last = new slink(a,(slink*) IULL);

BUST.CXX 107
last->next = last;

>

void l l is t : :clear()
{

slink* 1 ■ last;
if (1 “ (slink*) IULL) return;
do {

slink* 11 • 1;
1 ■ l->next;
delate 11;

} while (1 !“last);
last * vptr = (slink*) IULL;

vo id b l i a t : ¡remove(base* fp)

s lin k * p .+ l l 3 la s t ;
in t found = 0;

i f (last)
{

p = la B t-> n e x t;
w hile ((p != (s l in k *) BULL) kk ('.found))
{

i f (p->e == fp)
{

i f (11 != p)

l l - > n ext = p ->next;
i f (p == l a s t)

l a s t = 11;
>
e ls e
{

l a s t = (s lin k *) IULL;
>
found = 1;
d e le t e p;

}
else
{

ii - p;
p - (p->noxt == last->next) ? ((slink») IULL) : p->next ;

}
>

}

CIRCLE.CXX
//************•***************
// Prog : circle.cxz
I I
I I Draws a circle on the screen
// using conny’s version on the Bresenham algorithm
I I
//**,♦*♦*♦*♦♦***********„*♦*

♦include "stdinc.hzx"

s t a t i c i n t ychange;
s t a t i c p o in t p t [8] ;
s t a t i c i n t o l d [8] [2] ;
s t a t i c i n t i ;

/ /•p ra g m a c h e c k _ s ta c k (o ff)

v o id c i r c le p o i n tO
{

if (ychange) {
pt[0].inc(l.-l);
pt[l].inc(l,l);
pt[2] .inc(-l,-l);
p t [3].inc(-l,l);
pt[4],inc(-l,l);
pt[5].inc(-l,-l);
p t [63.inc(l,l);
pt[7].inc(l,-l);

>
else

pt[0] . inc(l) ;
pt[l] .inc(l) ;
p t [2].inc(-l);
pt[3] .inc(-l);
pt [4].inc(0,l);
pt[5].inc(0,-l);
p t [6].inc(0,l);
pt[7].inc(0,-l);
}
lor (i=0; i<8; i ++)

_moveto(old[i] [0] ,old[i] [1]) ;
_lineto(old[i][0] = shape::viewptr->windowx(pt[i]),

old[i] [1] = -shape::viewptr->Bindowy(pt[i]));
}

>
//tpragma check.stack()

void circledranC point p ,int r)

int xl.ylj
register int d;
yl = r;

d = 3-(2*r)j
xl = 0;

pt[0],set(p.x-l,p y+yl,p.z);
pt[l].set(p.x-l,p y-yl,p.z);
p t [2].set(p.x+l,p.y+yl,p.z);
pt[3] .set (p .x+1 ,p y-yl ,p. z) ;

p t [4] . s e t (p . x+yl , p . y -1 , p . z) ;
p t [5] .B e t (p .x + y l ,p .y + l ,p .z) ;
p t [6] . s e t (p . x - y l , p . y - l , p . z) ;
p t [7] . s e t Cp. x - y l , p , y + 1 ,p . z) ;

f o r (i= 0 ; i< 8 ; i++)
{old[i] [0] = shape: :viewptr->HindoBx(pt[i]) ;

CIRCLE. CXX
old[i][l] = -Bhape::viewptr->windowy(pt [i])

109

ychange =0;
while (xl<yl) {

c i rc le po in t O;
ii (d < 0) {

d+«(4*xl)+6;
ychange - 0;

>
else {

d+= (4*(xl-yl))+10;
yl— ;
ychange =1;

>
xl++;

}
ychange =1;
c i r c l e p o i n t O ;

>

•pragma check_stack(off)

void circlezpointO
{

if (ychange) { // z change in this case
pt[0] .inc(l,0,-l);
pt[l] .inc(l,0,l);
pt[2].inc(-l,0,-l);
pt[3] .inc(-1,0,1);
pt[4].inc(-1,0,1);
p t [6].inc(-l,0,-1);
pt[6].inc(l,0,l);
pt[7] .inc(l,0,-l);

>
else

pt[0] . inc(l) ;
pt[l] .inc(l);
p t [2].inc(-l);
pt[3] .inc(-l);
pt[4] .inc(0,0,l);
pt[B] .inc(0,0,-l);
pt[6] .inc(0,0,l);
pt[7].inc(0,0,-l);
>
for (i=0; i<8; i++)

_moveto(old[i] [0] ,old[i] [1]) ;
.lineto(old[i] [0] = shape::viewptr->windowx(pt [i]) ,

old[i] [1] = -shape: :viewptr->windowy(pt[i])) ;
}

>

•pragma check_stack()

void circlezdran(point p ,int r)
{
int xl,yl;
register int d;
yl = r;

d = 3-(2*r);
xl = 0;

pt[0].set(p.x-l,p.y,p.z+yl);
pt[l] .set(p.x-l,p.y,p.z-yl);
pt[2].set(p,x+l,p.y , p .z+yl);
pt[3].set(p.x+1,p.y , p .z-yl);

pt[4] .set(p.x+yl,p.y,p.z-l);
pt[5] .set(p.x+yl,p.y,p.z+l) ;

CIRCLEl.CXX
p t [6] . s e t (p . x - y l , p . y , p . z - l) ;
p t [7] . s e t (p . x - y l , p . y , p . z + l) ;

110

f o r (i= 0 ; i< 8 ; i++)
{ o ld [i] [0] = s h a p e : :v ie s p tr - > B in d o B x (p t [i]) ;

o l d [i] [l] = - s h a p e : : v iew ptr-> w indow y(p t [i]) ;}

ychange =0;
s h i l e (x l< y l) {

c i r c l e z p o in t () ;
i f (d < 0) {

d+ =(4*xl)+6;
ychange = 0;

>
e ls e {

d+= (4 * (x l-y l))+ 1 0 ;
y l — ;
ychange =1;

>
xl++ ;

ychange =1;
c i r c l e z p o i n t O ;

>

//****************************
/ / P rog : CIRCLEl.cxx
/ /
/ / Draws a c i r c l e u s in g a 40 s id e d po lygon
/ / a s an ap p ro x im atio n
//******+*+******************

in c lu d e ,,s td in c .hxx"

•define sides 40
•define iter (sides/2+1)

void circledraw(point cen , int r)

p o in t p i;
in t i ;
int old[2][2]; // stored co-ordinates
float p;

int x,y; // general temp variables

pi.set(r+cen.x,cen.y,cen.z);
old[0] [0]=old[l] [0] -shape: : viewptr->BindoBx(pl) ;
old[0] [l]=old[l] [1] = -shape:: viesptr->BindoBy(pi);

for (i=0,p=0; i<iter; i++,p+=3.1415926*2/sides)

pi.set(x=((int)(cos(p)*r)+cen.x),(y=(int)(sin(p)*r))+cen.y,cen.z); // set up circle array
_moveto(old[0] [0] ,old[0] [1]) ;
_lineto(old[0][0]=shape::viesptr->BindoBx(pl),old[0][l]= -sh a p e ::v ie w p tr -> B in d o B y (p l));
pi.set(x,cen.y-y,cen.z); // set up circle array

_moveto(old[l] [0] ,old[l] [1]) ;
_ l in e t o (o l d [l] [0]=shape::v ie B p tr -> w in d o w x (p l) ,o ld [l] [l]= -sh a p e ::vieBptr->Bindowy(pl));

CIRCLEl.CXX

DEMO.CXX
//*,********«*♦*♦*♦♦***♦*****,
// Prog : DEMO.cxx
//
// This program provides a demonstration of some
// of the objects in COOQE. It most be linked with
// dem, deal t dem2 to provided an exe version
/ /

•include "stdinc.hxx"
•include "seglist.hxx"
•include “shapes.hxx"
•include "image.hxx"
•include "text.hxx"
sindoB a ;

extern void shovtextO;
extern void textcubeO;
extern void sh oo polyO ;
extern void s h o w c i r d e s O ;
extern void savefileO;
extern void sho«HÌndoBs() ;

void shoHsphereO

sphere s;
float p;
segment seg;
int i;

s.set(point(320,240),200);
seg. set cabinet () ;
seg.append(fts);
se g.sens it ize();
H. o p e n O ;
seg.refreshO ;
g e t c h O ;
seg.setvport(0.75,0.5,0.98,0.75);
seg.setframe(on);

w.refreshO ;
w. closeO ;
seg.refresh();
seg.desensitizeO ;

go t c hO ;

void l oadingO

{
image img;
scene* scp,*scpl= IULL;
windoo ol;
txt t m p ,tm pl,tm p2;
segment sg;
tmp.setscale(4,8);
tmpl.setscale(4,8);
tmp2.setscale(4,8);
tmp.settxtdtOH&I,point(200,650) ,"LOADIBG") ;
tm p2.settxt(ROHAI,po int(250,400),"IMAGES");
tm pl.settxt(ROMAI.point(150,200),"FROM DISK");

sg.setcabinetO ;
sg.setvport(0.75,0.02,0.98,0.25);
ag.setHindou(0,0,800,800);
sg.setframe(on);
sg.append(ttmp);

DEMO.CXX
sg.append (Ittmpl);
sg.append(»tmp2);
s g . r e f r e s h O ;

»1.setvport(0.25,0.25,0.76,0.76);
b 1.setframe(on);
■1.setautosave(off) ;
Bl.o pe nO;

img. openO'test”) ;
scp = (scene*) img.loadobject("SCEIE")
Bhile (scp != (scene*) IULL)

scp->refresh();
if (scpl !* (scene*) IULL)

scpl->Hipe();
delete Bcpl;

>
scpl ■ scp;
scp = (scene*) img.loadobject("scene"

>
getc hO ;
b 1 . r e f r e s h O ;
s i .close0 ;
b 1 .setvport(0.75,0.02,0.98,0.25) ;
s i . o p e n O ;
b 1 .refreshO;
scpl->refresh();
scpl->Bipe();
delete scpl;
wl.close();
g e t c h O ;

«include "font.hxx"
font ft;

m a i n O
{

txt tmp;
ft ,load();
rect rb;
s c r .init(.ERESH0C0L0R); //_VRES16C0L0R);
H.setvport(0.25,0.25,0,75,0.75);
«. setfranie (on) ;
v .aetautosavo(off);
shontextO;
t e x t c u b e O ;
s h o w p o l y O ;
s h o B c i r c l e s O ;
sliowspheroO;
savefi le O ;
l o a d i n g O ;
sliOHWindowsO ;

ge t c h O ;
}

DEM.CXX
•include "stdinc.hxx"
•include "aeglist.hxx"
•include "shapes.hxx"
•include "font.hxx1'
•include "text.hxx"

extern window w;
extern font ft ;

void shontextO

int i;
segment sg;
txt top;
float r=0;

tmp.setscale(6,4);
s g . setcabinet() ;
sg.setvport(0.0,0.75,0.26,1.0) ;
sg.setframe(on);
sg.setBÌndov(0,0,639,199);
tmp.setscale(4,8);
to p .settxt(ROHAI.point(200,100),"TEXT");
sg.append(»tmp);
sg.refreshO ;
s g .setframe(off);
tmp. set scale(4,4);
sg.setvport(0,0,0.0,l.0,1.0);
t m p .settxt(ROHAI.point(100,100,0),"2D TEXT");

// sg.sensitizeO ;
8g.setwindoo(0,0,639,199);
u . o p e n O ;
for (r»0;r<4; r+=0.1)
{
tmp.setscale(r,r);
sg.refreshO;
y
for (i*=180;i>=0;i-=4)
{
sg.rotateaboutxto(100,0,i);
sg.refreshO ;
>

for (i=60;i>=0;i-=2)
{
sg.rotateaboutto(250,100,1);
sg.refreshO ;

>
ft .set3d();
t m p .settxt(ROHAI.point(100,100,0),"3D TEXT");

for (i=180;i>=O;i-=2)
<
sg.rotatoaboutyto(150,0,i);
sg.refreshO ;
>

getchO ;

sg.setvport(0.0,0.76,0.25,1.0);
sg.setframe(on);

B.refreshO ;
B. cl oBeO ;
sg.refreshO;
sg.desensitizeO ;
ft .set3d(off);
g e t c h O ;

void textcubeO

DEM.CXX 115
{

int x t ;
box* r l ;
txt t;
segment seg;

rl * new box;

rl->set(point(200,300),point(600,500),100);
t .settxt(ROHAI.point(260,350),"FROIT");
t .setscale (4 ,8);
seg.setcabinet();
seg.append(rl);
seg.append(tt);
Beg.setwindow(0,0,800,800);

// seg.sensitize();
B . o p e n O ;
se g . r e f r e s h O ;

for (xt=4; xt<360; xt+=4)
{

seg.rotateaboutxto(400,50,xt);
seg.refreshO ;

>
seg.rotateaboutxto(400,50,0);
seg.refreshO ;
for (xt=4; xt<360; xt+=4)
{

seg.rotateaboutyto(400,50,xt);
seg.refreshO ;

>
seg.rotateaboutyto(400,50,0);
se g . r e f r e s h O ;
for (xt=4; xt<360; xt+=4)
{

seg.rotateabontto(400,400,xt);
seg.refreshO ;

>
seg.rotateaboutto(400,50,0);
seg.refreshO ;
g e t c h O ;

seg.setvport(0.25,0.75,0.5,1.0);
seg.setframe(on) ;

H.refreshO ;
v.close O ;
se g . re fr es hO ;
seg.desensitizeO ;

g e t c h O ;

void showpolyO
{

polygon* py;
flo a t p;
segment seg;

int i ;

py = neu polygon(lOO);
for (i=0,p=0; i<100; i++,p+=3.1415926*2/ 10)
{

py->append(point((int)(cos(p)*(100- i * 4))+500, (in t) (s in (p)* (100- i * 4))+500, i)) ; / / set up
}

seg.setcabinet() ;
seg.append(py);

/ / se g .se n sitiz e O ;
B.openO ;
fo r (i= l ; i<450; i+=4)

DEM.CXX 116
{

seg.rotateab<ratyto(600,60,i);
seg.refreshO;

>
aeg.setvpoxt(0.6,0.76,0.75,1.0);
seg.setframe(on);

a . r e f r e s h O ;
h . c l o s e O ;
s e g. re fr es h O;
seg.desensitize 0 ;

g e t c h O ;

void shoucirclesQ
{

float p;
circle* c;
int 1;
polygon py;
point pt;
segment seg;

fox (i*0,p=0; i<6; i++,p+=3.1416926*2/6)

c = new circle;
c->set(pt * point(320,(int)(Bin(p)*(100-i*2))+240,(int)(cos(p)*(100-i*2))),30);
py.append(pt);
seg.append(c);

}
seg. append(*py);
py. set closed (oil) ;

seg. set cabinet () ;
seg.set«indov(0,0,639,479);

// seg.sensitizeO;
s. o p e n O ;

se g. re f r e s h O;
for (i-0; K 3 6 0 ; i+=4)
{

seg. rotateaboutyto(320,0,i) ;
s e g. re fr es h O;

>
for (i=*)j i<360; i+=4)
{

seg.rotateaboutxto(240,0,i);
se g. re f r e s h O;

>
for (i=0; i<360; i+=4)
{

Beg.rotateaboutto(320,240,1);
seg.refreshO;

>
se g.setvport(0.76,0.75,0.98,1.0);
seg.setframe(on);

n -rofreshO;
o.closeO;
seg.refreshO;
seg.dosensitizeO;

g e t c h O ;

// set

>

DEMl.CXX
♦include "stdinc.hxx"
♦include "seglist.hxx"
♦include "shapes.hxx"
♦include "image.hxx"
♦include "text.hxx"
extern Dindon w;

void savefileO
{

int xt;
image iœg;
box* rl;
window wl ;
scene sc;
segment seg,seg2,seg3,seg4,sg;
txt tmp,tmpl,tmp2;
t m p .setacale(4,8);
tmpl.setscale(4,8);
tmp2.setscale(4,8);
t m p .settxt(ROHAI,point(150,650),"CREATIIG");
tmp2.settxt(ROHAH.point(250,400),"IMAGES");
tmpl.settxt(ROHAI.point(200,200),"ON DISK");

sg.setcabinetO ;
sg.setvport(0.75,0.25,0.98,0.5);
sg.setwindow(0,0,800,800);
sg.setframe(on);
sg.append(ttmp);
s g .append(ttmpl);
sg.append(ttmp2);
sg.refreshO ;

rl = new box;
rl->set(point(800,800),point(1200,1200),400);
rl->setcolor(l);
seg.append(rl);
s e g .setcabinet();
seg.setwindow(0,0,2000,2000);
seg.setvport(0.0,0.0,0.5,0.5);
s e g .sensitize();
s c .append(kseg);

// rl = new box;
I I rl->set(point(800,800),point(1200,1200),400);
I I rl->setcolor(2);

seg2.append(rl);
seg2.setcabinet();
seg2,setwindow(0,0,2000,2000);
seg2.setvport(0.0,0.6,0.5,1.0);
seg2. s e n s i t i z e O ;

s c .append(iseg2) ;
I I rl = new box;
// rl->set(point(800,800),point(1200,1200),400);
I I rl->setcolor(3);

seg3.append(rl);
seg3.setcabinet();
seg3.setwindow(0,0,2000,2000);
seg3.setvport(0.5,0.5,1.0,1.0);
seg3 .s en s i ti z e O;

s c . append(Jtseg3) ;
I I rl = new box;
// rl->set(point(800,800),point(1200,1200),400);
// rl->setcolor(4);

seg4.append(rl);
seg4.setcabinet 0 ;
seg4.setwindow(0,0,2000,2000);
seg4.setvport(0.5,0.0,1.0,0.5);
seg4 .s en si ti ze O;

DEMl.CXX
sc.append(Jtseg4);

rl->set(point(800,800).point(1200,1200),400);

»1.setvport(0.26,0.26,0.76,0.76) ;
»1.setframe(on);

H i .setautosaveioff);

Hi . o p e n O ;
sc.rafreshO ;

img. openC'test");
i m g . re n r it e O;
for (xt = 0; xt<46; ++xt) •{

sc.rotateabout(900,1000,4);
sc.pntobj(*img);

}
for (xt = 0; xt<46; ++xt) {

sc.rotateabontx(900,200,4);
sc.pntobj(timg);

>

for (xt = 0; xt<46; ++xt) {
sc.rotateabouty(1000,200,4);
sc.putobj(ting);

>
img.close();
Hl.refreshO ;

Hi.close();
wl .setvport(0.75,0.25,0.98,0.5);
Hi,open();
Hi.refresh();
sc.refresh0;
Hi.close();
getchO;

DEM2.CXX
♦ include "stdinc.hX x"
♦include "aeglist.hzz"
♦include "shapes.hxx"
♦include "image.hxz"
♦include "text.hxz"
extern BindoB b ;

void opennindos(float x,float y .float xl.float yl)
{
sindoB b 2;
txt tmp;
tmp.setscale(4,8);
tmp.settxt(R0HAI,point(200,100),"WIÏD0¥");

b2 .setcabinet();
B2.setvport(x,y,xl,yl);
// b2,setBindos(0,0,800,800);

« 2 .setframe(on);
b2.append(itmp) ;
B2.setautosave(off);
B 2 .o p en ();
B2.refresh();
getchO ;
tmp.drawO ;
getchO ;

b2.close();
getchO ;

}
vo id shoBBindoBsO
{

int xt;
_m oveto(0 ,0);
_lineto(400,-150);
getchO j
oponwindoo(0.10,0.10,0.400,0.5);

FONT.HXX 120
// *****************
11 FOIT HEADER FILE
//
// DEFIIES THE FOIT OBJECT AID A IUHBER OF SERVICE
// OBJECTS THAT ARE USED II THE DRAVIIG OF TEXT 01
// THE SCREE!
//
//**************
enum fonttype { m v e ,d r w ,chaxdef,chardraw }; // Font rec types

class font;
class fontrec;

class chartab {
friend class fontrec;

fontrec* entry[127]; // Chartable of pointers to routine to
// draw characters

public:
char t a bO { init();}
"chartabO {clearO;}

void i n it O ;
void cl ea r O ;
void load(FILE*);
void draw(char, font*);

};

class fontrec {
// char width = 125 pixels with proportional spacing

II

// Scale factor for font
// Starting position
I I Current Offset from start pos
I I old x k y positions
// Type of record
I I Record data

I I pointer to next record

public :
fontrec() {next = SULL;}
"fontrec() { if (next != (fontrec*) HULL)

delete next;}
int read(FILE*);
void write(FILE*);
void setrec(fonttype,char,char);
void draw(font*);
void draw3d(font*)j

// void operator=(fontreck);
void setscale(float,float);
void setstartpoint(point);
void set3dstartpoint(point);
void notrelativeO ;
void 1oadtable(chartab*, FILE*);

// char height = 76 pixels with

static float sx,syj
static int cx,cy,cz;
static int tx,ty;
Btatic int ol d[2][2];
char typ;
union { char x; char fc; char fd;
char y;
fontrec* next;

class font {
friend class fontrec;
friend void wrcharCint,point,char*,float,float);

chartab* table;
float sx, sy;
int fontid;
int d3;
static blist fontlist;
void reset();

// Current Scaling factors
// lumber of the font
// whether font is 3d or not
// list of fonts
// Clear font record

FONT.CXX
public :

fontO { table = new chartab; d3 = off;
fontlist.append((base*) this); >

"fontO { delete table; // leed to dealocate table store
fontlist.remove((base*) this);}

void load(char* = "FOIT");
void draw(char,int«0);
void draw(point,char*);
void draw(point,char);

void setscale(float =1, float =1); // Set scaling factors
void set3d(int = on); // set 3d on/off

include "stdinc.hxx"
(include "font.hxx"
(define depth 10 // default z value for 3d font

/***•**********************/
/* */
/* CLASS FOITREC PROCEDURES AID FUICTIOBS */
/* */
/♦♦♦♦♦♦♦♦♦*♦*♦♦♦♦♦♦♦*♦*******♦♦♦*♦♦♦♦***♦*****♦♦*♦**♦+♦*♦♦♦♦*♦+♦++**+/

v o id f o n t r e c : :s e tr e c (fo n tty p e t , char x l , char y l)
{
typ = (char) t; x = xl; y = yl;

};
int fontrec::read(FILE* f)
{
if (!fread((char*)fttyp,sizeof(char),l,f))

{
retu rn f a l s e ;

}
e ls e

fread((char*)tx.sizeof(char),l,f);
fread((char*)fcy(sizeof(char),l,f);
return true;

}
};
void fontrec: :write(FILE* f) /// REM PUT II SOMETHING FOR BAD FILE
i

fwrite((char*)fttyp,sizeof(char),l,f);
fwrite((char*)tx,sizeof(char),l,f);
fwrite((char*)ty,sizeof(char),l,f);

void fontrec::draw3d(font* ft)
{

fontrec* tmp;
int dx,dy;
point p;
tmp = this;
while (tmp != (fontrec*) IULL)
{
switch ((fonttype)tmp->typ) {
case mve : tx+=int(tmp->x);ty+=int(tmp->y);

FONT.CXX 122
p. set((cx+int(tx*sx)),(cy+int(ty*sy)).depth);
old[l][0]=shape::viesptr->sindoBx(p);old[l][1] =-shape::vienptr->windowy(p);
p.inc(0,0,-depth);
old[0] [0]=shape: : v i e B p t r ->BindoBx(p);old[0] [l]=-shape: :v i e s p t r - > B i n d o B y (p) ;
break;

case d rv : tx+=int(tmp->x);ty+=int(tmp->y);
p. set((cx+int(tx*sx)),(cy+int(ty*sy)),0);
_ m o v e t o (dx=old[0] [0] ,dy=old[0] [1]) ;
_ l i n e t o (o l d [0] [0] = s h a p e : : v i e B p t r - > B i n d o s x (p) , o l d [0] [1] = - s h a p e : : v i e s p t r - > B i n d o s y (p)) ;

_ m o y e t o (d x , d y) ;

_lineto(old[l] [0] ,old[l] [1]) ;
p .inc(0,0,depth);

_ l i n e t o(old[l][0] = e h a p e ::v i e B p t r - > B i n d o H x (p) , o l d [l] [1] = - s h a p e ::v i e » p t r - > B i n d o H y (p));

break;
case c h a r d r a s : it->draB(tnp->fd,relative)¡break;
case chardei ; break;

}
tmp = tmp->next;

>;

void fontrec::dras(font* ft)
{

fontrec* tmp;
tmp = this;
if (ft->d3)

draa3d(ft);
else

Bhile (tmp != (fontrec*) DULL)
{

SBitch ((fonttype)tmp->typ) {
case mve : tx+=int(tmp->x);ty+=int(trap->y);

s h a p e :: v i e B p t r - >moveto(point((cx+int(tx*sx)) , (c y + i n t (t y * s y)))) ;
break;

case drs : tx+=int(tmp->x) ;ty+=int(tnip->y) ;
s h a p e ::vieBptr->lineto(po i n t ((c x + i n t (t x * s x)) ,(c y + i n t (t y * s y)))) ;
break;

case chardraB: ft->draB(tmp->fd,relative);break;
case chardef : break;

>
tmp = tmp->next;

// void fontrec::operator=(fontrecfc ft)
// {
// typ = ft.typ; x = ft.x; y = ft.y;
/ / >

void fontrec::loadtable(chartab* tb, FILE* fp)
{

fontrec* last = (fontrec*) BULL;
fontrec* tmp;

tmp = nes fontrec;
tmp->next = IULL;
Bhile (tmp->read(fp))

ssi t c h (tmp->typ) {
case chardef:

tb->entry[tmp->fc] = tmp;
if (last != (fontrec*) BULL)

last->next = BULL;
last = BULL;
break;

case mve:
case drs:
case chardras:

if (last != (fontrec*)BULL)
last->next = tmp;

FONT.CXX
last = tmp;
tmp = new fontrec;
tmp->next = HULL;
break;

>

>
delete tmp;

>

inline void fontrec::setscale(float sex, float sc;)

sx * sex; s; = scy;
>
inline void fontrec::Betstartpoint(point p)
{
cx ■ p.x; cy = p.y; cz = p.z; tx=ty=0;

inline void fontrec::eet3dstartpoint(point p)

cx = p.x; cy = p.y; cz = p.z; ti=ty=0;

ol d[0][0] = shape::vievptr->nindoBx(p);
old[0] [1] == -shape: :vienptr->BindoBy(p) ;
p.inc(0,0,depth);
old[l][0] = shape: :viewptr->windowr(p) ;
old[l][1] = -shape::vieHptr->windowy(p);

>

inline void fontrec::notrelative()
{

tx = ty =0;
>
y**/
/* */
/* CLASS CHARTAB PROCEDURES AID FUICTIOIS */
/* */
/**/

void chartab: :init()
i
for (int i=0; i<127; i++)

entry[i] = (fontrec*) IULL;
>
void chartab:: clear()
{
for (int i=0; i<127; i++)

if (entry[i] !=(fontrec*)IULL)
delete entry[i] ;

}

inline void chartab::load(FILE* fp)

fontrec fr;
fr.loadtable(this,fp);

}

inline void chartab:¡draw(char ch, font* fp)
{

if (entry[ch] != (fontrec*)IULL)
entry [ch] ->draw (f p) ;

>
/**/
/* */
/* CLASS FOIT PROCEDURES AID FUICTIOIS */
/* */
/**/

FONT.CXX
inline void font::setscale(float sex, float scy)
{

fontrec fr ;
sx “ 640.0*scx/(6080.0); // 6060 = (80 chars across * 76 char width)
sy “ 200.0+acy/(3125.0); // 3125 = (25 rose * 125 char height)
fr .setscale(sx,sjr);

}

void font::set3d(int d=on)
{
d3 » d;

>
▼oid font::reset()
{

table->clear()j
setscale(l,l);

>

void font::load(char* fname)

FILE* stream;
stream = fopen(fname,"r+b");
if (stream!=0)
{
reset();
fread(fcfontid,sizeof(int),1,stream) ;
table->load(stream);

fclose(stream);
>;
void font::dras(char a,int relat)
{
fontrec fr;
if (¡relat)

fr .notrelativeO;
table->draw(a,this);

};

void f o n t ::dran(point p,char* txt)

int i=0;
fontrec fr;

if (d3)
{
fr.set3dstartpoint(p);

>
else

fr.setstartpoint(p);
shape::vieHptr->moveto(p);

}
while (txt[i])
{ table->draw(txt [i] ,this) ;

i++;
>

};
void f o n t ::draw (point p.char c)
{
fontrec fr;
if (d3)
{
fr,set3dstartpoint(p);

>
else
{
fr.setstartpoint(p);
shape : :vievptr->moveto(p);

}

F O N T . C X X 125

f o n t ::dran(c,relative);
};

void vrcharCint id, point p, char* txt, float asx, float ssy)
{

font* fp;
int found =falae;

f o n t ::fontlist.reset();
while C(fp=(font*) f o n t :rfontlist.next0) kk (¡found))

if (fp->fontid==id)
{
fp->setscale(ssx,ssy);
fp->draw(p,txt);
found = true;

>
>

IMAGE.HXX
/ / **********
// IMAGE HEADER FILE
II
// DEFIIES THE IMAGE OBJECT THAT STORE AID LOADS
// OTHER OBJECTS TO/FRDM DISK
//
//*****************

126

»define HAIOBJS 30
»define OBJIAME 15
«define IDIICREASE 10

// max number of unique objects to store
// max length of the object’s name
// Amount to increas table when full

clasB imageids {
char** tab;
int top;
int sz;

// table of names;
// highest entry in the table;
// current size of the table;

public:
void i n it O;
void de st r o yO ;

image ids () {i n i t O ; }
'imageids() { dest ro y O ;}
unsigned char add(char*);
char* find(int);
void save(char*);
void load(char*);

};

// set up the table;
I I destroy the table;

I I Set up the table
I I destroy the table
// add name if doesn’t exist
// find name -> 0 = doesn’t exist
// save the table ids to file;
// load the table ids from file.

class image {
FILE* stream;
char* fname;
char lbl[OBJIAME];
imageids* id;

// pointer to file
// file name;
// lame of the current object;
I I Pointer to Id table

void readlabelO ;
public :

image0 {id = new imageids;
id->init();}

image(char* n) { open(n);}
*image() •£ close(); delete id;}

// read the label of the next object

};

void label(char[OBJIAME]);
void write (void *,long);
void writenullO;
int nullobj e ct O ;
void readnullO;
void read(void *, long);
void open(char*);
void rewrite O ;
void close();
void objectreadO ;
int match(char*);
base* loadobject(char*);

// label record with details;
I I put to file address, size;
I I writes a IULL class to the file
I I returns true if object is IULL object
I I clears the IULL object from input;
// read in from file - address,size
I I open image file;
// rewrite the file;
// close the file;
I I called if object is successfully loaded
// check if object matches label
// load next object on disk

//****************************
// Prog : IMAGE.cxx
II
I I Creates a image object which looks after the
// storing and retrieving of objects to/from disk.
//

I M A G E . C X X

•include "stdinc.hxx"
«include "image.hxx"

«define FilelameLength 100 // max length of a file name

/********************* ********************** ******
/*
/* CLASS IHAGEIDS
/*
/* This class contains a lookup table for each class of object
/* Britten to a file and returns an index to that class name
/* in the table.
/*
/**•*******************„,*„*
void imageids: :initO
{
tab - nes char* [HAXOBJS];
for (int i=0; i<HAX0BJS; i++)

tab[i] = (char*) HULL;
top = 0;
sz = HAXOBJS;

>
void imageids::destroy()
{

for(int i =0 ; i<top; i++)
delete tab[i];

top =0;
}

unsigned char imageids::add(char* name)
{
int i=0;
char tmp[OBJBAHE] ;
char** tmptab;

strcpy(tmp,name);
tmp[OBJBAHE-1] = ’\0 ’ ; // limit string to OBJBAHE characters
Bhile ((i <top) kk (!(stricmp(tab[i],tmp)==0))) i++;
if (i == top)
{

if (top >= sz) {
tmptab = new char* [sz+IDIHCREASE];
memcpy(tmptab,tab,sizeof(char*)*sz);
delete tab;
tab = tmptab;
sz += IDIBCREASE;
for (int x=top; x<top+IDIBCREASE; x++)

tab[x] = (char*) BULL; // initialize extra bit of table
}
tab[top]= strdup(tmp); // set up copy of key
top++;

>
return (unsigned char) i;

>

char* imageids::find(int i)
{

return tab[i];
}

void imageids::save(char* fname)
{

FILE* stream;
char temp[OBJBAHE] ;
char* filename;

filename = nes char[FileHameLength] ;
strcpy(filename,fname);
stream = fo pe n(st r c at (f il en a me . i d") , "B + b ");

I I set up nes table
I I Copy old table to neB table
// remove old table

I I Set the lookup table to blank
I I Set the top of table to 1st
I I Set the size of the table

I I Clear the table

I I reset the top

IMAGE.CXX
deleta filename;
if (fsrite(ttop,sizeof(int),1,stream))
{

for (int i =0; i<top; i++)
{

etrncpy(temp,tal>[i] .OBJIAHE);
temp[OBJIAHE-l] « ‘ \ 0 ’;
fsrite(temp,sizeof(char),OBJIAHE,stream);

>
>
fclose(stream);

}
void imageids::load(char* fname)
{

FILE* stream;
char* filename;
de s t ro yO ;
filename = nes char[FilelameLength] ;

strcpy(filename,fname);
stream “ fopen(strcat (filename,11 .id") ,"rb") ;
delete filename;
if (Btzeam != (FILE*) IULL)
{

if (fread(fttop,sizeof(int),1,stream))

for (int i =0; i<top; i++)
{
tab[i] = nes char [OBJIAHE] ;
fread(tab[i],sizeof(char),OBJIAHE,stream);

>
>
else
{

top =0;
}

>
fclose(stream);

/•
/* CLASS IMAGE
/•

int image::match(char*p)
{

return (stricmp(lbl,p)==0) ? (true) : (false);
>;

void image::readlabel()
{
unsigned char i;
if (!fread(ti,sizeof(char),1,stream))
{

lbl[0] = >\0>;
}
else
{
strncpy(lbl,id->f ind(i) .OBJIAHE);

>

void image::objectread()

readlabelO;

void image;:label(char lb[OBJIAHE])

unsigned char i;
i=id->add(lb);
fwrite(ti,sizeof (char) ,1 ,streain) ;

M A G E . C X X

Void image:¡write(void * addr,long size)

fsrite(addr.size,!,Btream);

void image: :sritenull()

labelO'IULL") ;

int image ::nullobject()

return match("HULL");

void image:;readnull()

readlabelO ;

void image::read(void* addr, long size)

fzead(addr,size>l lstream);

void image:: open(char* namo)

char* p;
fname = strdup(name);
p = new char[FileHameLength];

strcpy(p.name);
stream * fopen(strcat(p,".img"),"rb");
delete p;
id->load(fname);
re ad la be lO ;

>;
void image::resrite()

chare p;

fclose(stream);
p = nes char[FilelameLength];
strcpy(p,fname);
stream = fopen(strcat(p,".img"),"s+b");
delete p;
lbl[0] = >\0>;
id->destroy();

>;
void image::close()

id->save(fnamo);
fclose(stream);

>;

base* image ::loadobject(char* name)

base* t = (base*) TOLL;
base* obj ~ (base*) BULL;
if ((match(name)) II (nullobjectO) 11 (stricmp(nameJ""):ssO))
{

base ::objectlist.reset();
while ((t = ba se ::objectlist.next()) k k (obj == (base*) BULL))

IMAGE.CXX
{

obj = t->getobj(this,obj);
>

}

// if (obj == (base*) IULL)
// {
// printf("Failed to load from C/,s)
// getchO;
// exit(l);
// >
return o b j ;

>;

130

label -> */,s obj -> \n name, lbl, name) ;

POINT.H X X
// ****************
11 POUT. HXX
//
// DEPIIES THE POIIT OBJECT TO BE USED BY THE SYSTEH
//
// ********************************

struct point { // Definition of a point
int x.y.z;
p o i n t O {>
pointC int a, int b, int c =0)

{ x=a;y=b;z=c;>
▼oid set(int a=0, int b=0, int c=0)

{ x=a; y = b; z = c;>
void inc(int a=0,int b=0,int c=0) // increment the point

{ x+=a;y+=b;z+=c;}

SEGLIST.HXX 132
Il ***********
I l SEGLIST.HXX
II
I l COITAIIS THE DEFIIITIOIS OF THE SCREES, SEGHEIT, SCEIE
I l AID VIIDOW OBJECTS
II
I l * * * * * * * * * * * *

y**/
/* CLASS SCREEI */
 ************************„****„*/

class screen : public viewset {
friend class segment;
friend class viewset;

public

slist scr.list;
int devmode;
long color;

I I pointer to list of associated segments
// device mode of the screen
I I Screen background color

screenO { shape ::viewptr = this;
devmode = _DEFAULTHODE;
color = .BLACK;

I I Screen Creator
I I Set video node to default mode
// Set background color to black

// " screenO ■{ _setvideomode(_DEFAULTHODE);}
base* getobj(image*, base*);
void putobj(image*);

I I Reset the screen
I I load an screen from disk;
I I save a screen to disk;

void init(int dev= _HRESBW); // init the screen
void reviewO { viewset : :cur_screen = this; // reset the viewport etc.

shape ::viewptr = this;
setvportO; }

void refreshO;
void saveO ;
void restoreO;
void setbkcolor(long c=_BLACX);

I I refresh the screen
I I save the current screen
I I restore the saved screen
I I Set the background color

/**/
/* CLASS SCEIE * /

class scene : public base {
friend class screen;
friend class segment ;

slist scnJList;

public :

base* getobj(image*, base*);
void putobj(image*);

// pointer to list of associated seg

I I load an scene from disk;
// save a scene to disk;

I I add segment* at head of list

I I add segment* at tail of list

void insert(segment* p)
{scn_list.insert((base*) p);}

void append(segment* p)
{scn_list.append((base*) p);}

segment* g e t O
{ return (segment*) scn_list.get(); } // return and remove segment* at head of list

void clear() {scn_list. c l e a r O ;} // remove all links
void re f reshO; // redraw the segment
void w i p e O ; // delete all segments
void scale(float,float.float); // Main scaling

void scalex(float fx)
{ scale(fx,l.0,1.0); }

void scale;(float fy)

I I Scale up/down x Values

I I Scale up/down y values

SEGLIST.HXX
{ s c a l e d .0,fy,l .0) ; }

void scalez(float fz) // Scale
{ s c a l e d . 0 , 1 .0,fz) ; }

void rotateabout(int, int, int, int =relat ive) ;
void rotateaboutto(int a,int b,int c)

{ rotateabout(a,b,c,¡relative); >
void rotate(int a)

{ rotateabout(0,0,a) ;}
void rotatetodnt a)

{ rotateabout(0,0,a,¡relative); }
void rotateaboutx(int,int,int,int = relative)
void rotateaboutxto(int a,int b, int c)

{ rotateaboutx(a,b,c,¡relative); }
void rot a te x d nt a)

{ rotateaboutx(0,0,a);}
void rotatexto(int a)

{ rotateaboutx(0,0,a,¡relative); }
void rotateabouty(int,int,int,int = relative)
void rotateaboutyto(int a,int b,int c)

{ rotateabouty(a,b,c,¡relative); }
void rotatey(int a)

{ rotateabouty(0,0,a);}
void rotateyto(int a)

{ rotateabouty(0,0,a,¡relative); }

void movevport(iloat,float); // move
void movewindow(int,int);

/////// maybe put in set viens etc eg perspecti'

up/down z values

// Rotate about point in Z Dir
// Rotate absolute about
// point in Z dir
! I Rotate about origin
// in Z Dir
// Rotate absolute about
// Origin in Z dir

; // Rotate about point in X Dir
// Rotate absolute about
// point in X dir
// Rotate about origin
// in X dir
// Rotate Àbsolute about
// origin in X direction

; I I Rotate about point in Y Dir
I I Rotate absolute about
I I point in Y dir
// Rotate about origin
// in Y dir
// Rotate absolute about
// origin in Y dir

scene relative

133

, oblique-> <-

/*************************^**/

/* CLASS SEGMENT */
/i***/

class segment : public viewset{
friend class screen;
friend class window;

static blist segelist;
int visible;
int autoclear;
int frame;
int copy;
int locked;

slist shapelist;
char* id;

// list of all the segments created
// boolean - whether segment is visible or not
// boolean - whether to clear viewport on refresh
// boolean - Whether segment is to be framed
// boolean - whether a copy or not
// boolean - whether segment is locked

// list of shapes in the segment
// Id name of the segment

public :
se gmentO visible=autoclear=on;

frame=off; id=(char*)HULL;
// segment creator

// segment creator for a screen
segment(screen * p)

{ p->scr_list.append(this);
segmentO; }

segment(scene * p) { p->scn_list.append(this); // segment creator for a screen
segmentO; }

“segment() { shapelist.clear(); } // segment destructor;

base* getobj(image*, base*);
void putobj(image*);

void insert(shape* p) {shapelist.insert(p);}
void append(shape* p) {shapelist.append(p)
shape* get() { return (shape*) shapelist.get(); }

// load a segment from disk;
// save a segment to disk;

// add shape* at head of list
// add shape* at tail of list

// return and remove shape* at head of list

S E G L I S T . C X X
void c l e a r O {shapelist .clear() ;}
void r e f r es hO ;
void d r a w O ;
void setvisibility(int a) { visible = a; >
void setautoclear(int a) { autoclear 9 a;}
void setframe(int a) { frame = a;}

void s a v e O ;
void r e s t or e O ;
void setlock(int);
void setid(char*);

// remove all links
// redraw the segment
// draw the segment

// set seg visibility on/off
// set auto clear on/off
// Set frame on/off

// save the current segment
// restore the saved segment
// set segment lock on/off
// set the id name of the segment

134

/**
/*
/**

CLASS VIIDDV
**/
*/

**/

class window : public segment {
int autosave;
int id;
viewset* sav;
bitmap imptr;

// whether to save underneath;
// Id number of the window
// Save old viewset pointer
// Saved screen

int tscrxmax,tscrymax,tscrxmin,tscrymin; // saved screen co-ords

public :
windowO id =0;

setvisibility(on);
setautoclear(on);
autosave= on;

// window creator

'windowO { if (id!=0) // Vindow Destructor
close();

}
void append(segment* p) {shapelist.append(p);} // insert segment
void append(ahape+p) {shapelist.append(p);}
void r e f r e s h O ;
void o p e n O ;
void close();
void setautosave(int);
void setvport(float.float.float,float);
void movevport(float,float);
void movevportto(float,float);

// Pop-Up window
// Close the window;
// set autosave on/off
// Hake sure none of the vport
// procedures are used when the
// window is open

/***+***+**/
/* GEIERAL VARIABLE DEFIIITIOIS */
/*************************************+*******♦**+*******************/

extern screen scr;

(include "stdinc.hxx"
(include "seglist.hxx"
(include "image.hxx"

/***/
/ * Degree to radian conversion function */
/***+*****♦♦**********/

float radian(float a)

SEGLIST.CXX 135
{
return (a*0.0174532925199432957692);

>
/**************•**/
/* BITMAP CLASS FUICTIOIS AID PROCEDURES */
/*****♦♦*********.******************************♦**♦****************♦*/

ACTIVATE(bitmap); // add bitmap to list of storeable objects

int bitmap::save(int xl,int yl, int x2, int y2)
{

if (sav == (char far*) IULL) {
xmin = xl; ymin=yl; // legate the y co-ords for HSC V5 Graphs
m a x = x2; ymax=y2; // Package (origin top left !)

sav = (char far*) new unsigned int[sizes_imagesize(xmin,-ymin,xmax,-ymax)];
if (sav != (char far*) IULL) {

_getimage(xmin,-ymin,xmax,-ymax,sav) ;
>
else
{

size =0;
>

>
return (sav != (char far *) IULL);

>

void bitmap: :restore()

if (sav != (char far*) I U L L H
_putimage(xmin,-ymax,sav,_GPSET); // Dodgey line !!!
size =0;
delete sav;
sav = (char far*) IULL;

}

void bitmap:¡restore(int x l ,int yl,int x2,int y2)

xmin = x l ; ymin= y l ; xmax = x 2 ; ymax = y 2 ;
restore();

>

void bitmap :¡putobj(image* ip)
{

ip->label("BITMAP");
ip->Brite(txmin,sizeof(int)*4);
ip->Hrite(ftsize,sizeof(long));
if (size !=0)

ip->srite((void*) sav,sizeof(int)*size);
>;
base* bitmap ::getobj(image* ip, base* obj)

if (ip->match("BIT!IAP"))
{
if (obj == (base*) IULL)

obj = (base*) new bitmap;
ip->read(K(bitmap*) obj)->xmin,sizeof (int)*4) ;
ip->read(k((bitmap*) obj)->size,sizeof(long));
if (((bitmap*) obj)->size !=0)

{
((bitmap*) obj)->sav = (char far*) new unsigned int[((bitmap*) obj)->size];
ip->read((void*)((bitmap*) obj)->aav,sizeof(int)»((bitmap*) obj)->size);

>
ip->objectread();

return obj;

S E G L I S T . C X X 136

/* VIEWSET CLASS FUICTIOIS AID PROCEDURES */
/***/

ACTIVATE(viewset);

void viewset::putobj(image* ip)
i

ip->label("VIElfSET");
ip->write(tvxmin,sizeof(float)*4);
ip->write(twxmin,sizeof(int)*4);
ip->write(tmat[0][0].sizeof(float)*12);
ip->write(tvmat[0][0].sizeof(float)*12);
ip->write(trmat[0][0],aizeof(float)*12);
ip->write(txfac,sizeof(float)*3);
ip->write(ttx,sizeof(float)*3);
ip->write(tsstx,sizeof(float)*3);
ip->write(td3,sizeof(int));
ip->write(fcpz,sizaof(int));
ip->write(»sensitized, sizeof(char));

>;

base* viewset::getobj(image* ip, base* obj)
{

if (ip->match("VIEWSET"))

if (obj == (base*) IULL)
obj = (base*) new viewset;

ip->read(K(viewset*)obj)->vxmin,sizeof (float) *4) ;
ip->read(4((viewset*)obj)->wxmin,sizeof(int)*4);
ip->read(»((viewset*)obj)->mat[0][0].sizeof(float)*12);
ip->read(t((viewset*)obj)->vmat[0] [0] .sizeof (float)*12) ;
ip->read(t((viewset*)obj)->rmat[0] [0] .sizeof (float)*12) ;
ip->read(k((viewset*)obj)->xfac,sizeof(float)*3);
ip->read(K(viewset*)obj)->tx, sizeof (float) *3) ;
ip->r ead (K (viewset*) obj)->sstx, sizeof (float) *3) ;
ip->read(t((viewset*)obj)->d3,sizeof(int));
ip->read(4((viewset*)obj)->pz,sizeof(int));
ip->read(Jt ((viewset*) obj)->sensitized, sizeof (char)) ;

((viewset*)obj)->initfactors(); // reset factors in case
// screen mode changed

if (((viewset*)obj)->sensitized)
((viewset*)obj)->sensitize();

ip->objectread();
>

return obj;

/**/
/* SETBAT */
I* */
/ * This function sets the contents of matl to the contents of mat2. */
/* */
/**/

inline void viewset: :setmat(float matl [4] [3], float mat2[4][3])

memcpy((void *) matl,(void *) mat2, sizeof(float)*12); // size of float * 12 members
I I in array

>

/******************+*********************************+******************
/* SETIHAT
/*
/* This function sets the contents of matl to the Identity Matrix
/*
/***************♦***

SEGLIST.CXX
void viewset: :setimat(lloat matl[4][3])
{

static float imat[4] [3] = {
{ 1 , 0 , 0 } ,
i 0 , 1 , 0 >,
{ 0 , 0 , 1 >,

// last row init to 0 by default
memcpy((void *) matl,(void *) imat, sizeof(float)*12); // Size of float * 12

/* MATMULTI
/*
/* This function multiplies matrix 1 by matrix 2 leaving the result in
/* matrix 1.
/***

void viewset: :matmulti(float matl[4][3], float m a t 2 [4] [3])
{

float mat3 [4] [3] ;
int x;
int y;

for (x=0; x<3; x++)
fo r(y=0; y<3; y++)

mat3[x][y] = matl[x] [0]*mat2[0] [y] + matl [x] [1] *mat2 [1] [y] +
matl [x] [2] *mat2 [2] [y] ;

for(y=0; y<3; y++)
mat3[3][y] = matl [3] [0]*mat2[0] [y] + matl [3] [1] *mat2 [1] [y] +

matl [3] [2] *mat2 [2] [y] + mat2 [3] [y] ;

setmat(matl,mat3);
}
/******************»**********************************»******************
/ * PREMULTI *
/* *
/ * This function premultiplies matrix 1 by matrix 2 leaving the result *
/ * in matrix 1. *
/**

void viewset: :premulti(float matl [4] [3], float mat2 [4] [3])
{

float mat3[4][3];
int x;
int y;

for (x=0; x<3; x++)
for(y=0; y<3; y++)

mat3[x][y] = mat2[x] [0]*matl[0] [y] + mat2 [x] [1] *matl [1] [y] +
mat 2 [x] [2] *matl [2] [y] ;

for(y=0; y<3; y++)
mat3[3][y] = mat2 [3] [0]*matl[0] [y] + mat2 [3] [1] *matl [1] [y] +

mat2 [3] [2] *matl [2] [y] + matl [3] [y] ;

setmat(matl,mat3);
}

void viewset: :viewsetinitO
{

setimat(rmat);
setimat(vmat);
setimat(mat);

SEGLIST.CXX
vxmax=vymax=xfac=yfac=zfac = 1 . 0 ;
BStx=8Sty=SBtz=tx=ty=tz = 0.0;
Txmin=»ymin=Hxmin=wymin=tvxniin=tTyinin=
wxmax=wymax=1000;

0;

If (cur_screen== (screen*) MULL) {
scrxmax=tvxmax=639; scrymaxstvymax=199;

}
else
{

tvxmax= absscrxmax;
tvymax= absscrymax;

}

// Init Viewport + window Mins
// set window to 1000 x 1000

// Set viewport and window
I I prevent Div by Zero

I I Set viewport and window
I I co-ord to default Screen Values

d3 = off;
sensitized = false;
sensitizeO ; // sensitize the viewset to changes

// in the graphics environment

void viewset::setfactors(int txx=0,int txy=0, int txz=0)

float sxfac,syfac,szfac;
float stx,sty,stz;
int i;

tvxmin = int(vxmin*(scrxmax-scrxmin))+scrxmin;
tvymin = int(vymin*(scrymax-scrymin))+scrymin;
tvxmax = int(vxmax*(scrxmax-scrxmin))+scrxmin;
tvymax = int(vymax*(scrymax-scrymin))+scrymin;

sxfac = xfac; // Save old values in temp variables
syfac = yfac;
szfac = zfac;
stx = sstx;
sty = ssty;
stz - sstz;
xfac = ((tvxmax-tvxmin)*l.0)/(wxmax-wxmin); // set z factors in future
yfac = ((tvymax-tvymin)*1.0)/(wymax-wymin);
zfac = 1.0;
tx += txx;
sstx = tx+(-xfac*wxmin) + tvxmin;
ty += txy;
ssty =ty+(-yfac*wymin) + tvymin;
tz += txz;

sxfac = (xfac / sxfac);
syfac = (yfac / syfac);
szfac = (zfac / szfac);

// Calculate change in scale

for(i = 0; i<3; i++) { I I Fix new matrices
vmat [i] LO] += sxfacj
mat [i] [0] *= sxfac;

vmat [i] [1] *= syfac;
mat [i] £l] *= syfac;

vmat [i] E2] *= szfac;
mat [i] C2]

i
*= szfac;

j
vmat [3] [0] = (vmat[3][0] -stx) ♦sxfac + sstx
mat [3] [0] = (mat [3] [0] -stx) ♦sxfac + sstx

vmat [3] [1] = (vmat[3][1] -sty) ♦syfac + ssty
mat [3] [1] = (m a t [3][1] -sty) ♦syfac + ssty

vmat [3] [2] = (vmat[3][2] -stz) ♦szfac + sstz
mat [3] [2] = (mat [3] [2] -stz) ♦szfac + sstz

void viewset initfactorsO

tvxmin - int(vxm in*(scrxm ax-scrxm in))+scrxm in;

SEGLIST.CXX 139
t vymin = int(vymin*(scrymax-scrymin))+scrymin;
t vxmax = int(vxmax*(scrxmax-scrxmin))+scrxmin;
tvymax 3 int(vymax*(scrymax-scrymin))+Bcrymin;

ifa c = ((tvxmax-tvxmin) *1 .0)/(Bxmax-Bxmin); / / sot z factors in fu ture
yfac » ((tvymax-tvymin)* 1 .0) / (symax-Bymin);
zfac ■ 1.0;
s a tx = tx+(-xfac*Bxmin) + tvxmin;
oety “ ty+(-yfac*aymin) + tvymin;

s o t i m a t (v m a t) ;
vmat [0] [0] = xf a c ;
vmat[l][l] = yfac;
vmat [2] [2] = zfac;
vmat [3] [0] = s s t x ;
vmat [3] [1] = ssty ;
v m a t [3][2] = sstz;

}

void vievset: :sensitize()
{

i f (! sensitized)

viesa.append(this);
sensitized“ true;

>

void v iesset: : desensitizeO
I

i f (sensitized)
viess.rem ove(this);

>
void v iesset: ¡checkvportO / / checks viesport co-ords to prevent il le g a l co-ords
{

vxmax «■ (vxmax >1.0) ? (1 .0) : (vxmax) ; / / prevent division by 0
vymax “ (vymax >1.0) ? (1 .0) : (vymax);
vxmin = (vxmin <0) ? (0) : (vxmin); / / prevent division by 0
vymin = (vymin <0) ? (0) : (vymin);

}
void v iesset: : checkBindos() / / check windoB co-ords to prevent /0 ;

Bxmax = (vxmax - wxmin) ? (sxmax) : (Bxmax+1);
symax * (Bymax - symin) ? (symax) : (symax+l);

>
void viewset: : setvport(float a ,floa t b, floa t c , flo a t d)

vxmin " a;
vymin = b;
vxmax = c;
vymax = d;

checkvportO;
setfactors() ;
setvportO ;

>
void v iesset: :movevportto(float x ,floa t y)

vxmax += x - vxmin;
vxmin = x;

vymax += y -vymax;
vymin = y;
checkvportO;
setfa ctorsO ;

SEGLIST.CXX 140
setvportO ;

>

void viewset: imovevport(float x ,floa t y)

i
vxmax +» x;
vxmin += x;

vymax += y;
vymin += y;

c h e c k v p o r tO ;
s e t f a c to r s O ;
s e t v p o r t O ;

}

void viewset: :updatevportaO
{
viewset* p;
views.reset() ;
while (p= (viewset*) views.nextO) p->setfactorsO ;

>
void viewset: : setvportO
{

.setcliprgnitvxmin.absscrymax-tvymin.tvxmax.absscrymax-tvymax); / / HSC V5 inverted co-ord system
>
void viewset: :framevportO

_rectangle(_6B0RDER(tvxminl-tvymiii,tvx]iiax,-tvymax) ; / / MSC V5
>
void viewset::erasevport()

_clearscreen(_GVIEWPORT);
y
void viewset: :setwindow(int a ,int b ,in t c, int d)
{

wxmin = a; wymin=b; wxmax=c; wymax=d;

checkwindow() ;
se tfa ctorsO ;

>
void viewset: :movewindowto(int a,int b)

wxmax += (a-wxmin);
wxmin = a;
wymax +=(b-wymin);
wymin = b;
checkwindow() ;
s e t f a c t o r s O ;

y
void viewset: : sca le(floa t fx ,f lo a t fy = l.0 ,floa t fz=1.0)
{

wxmax = (fx) ? (in t) ((nxmax/fx)) : (wxmax);
wymax *= (fy) ? (in t) ((wymax/fy)) : (wymax);
checkwindow0 ;
setfactorsO ;

>
/***/
/* RDTATEABOUT * /
/* */
/* This function sets a rotation matrix mat f o r a rotation o f */
/* d degrees about the point (x l,y l) and Z axis */
/* */

SEGLIST.CXX
/* (cosD, sinO, 0, 0) Matrix For Rotation about a point */
/* (--sinO, cosO, 0, 0) in the Z direction *1
/* (0, 0, 1, 0) xfac = (xl*(l-cosO)) + yl*sinO */
/* (xfac, yfac, 0, 1) yfac = (yl*(l-cosO)) - xl*sinO * /

void, v ievset: :rotateabout(int x l.in t y l , int d ,in t re l)
{

floa t dg;
floa t cosdg,sindg;
floa t x fa c ,;fa c ;
int y;

dg = radian(d); / / Calculations fo r Matrix
cosdg - floa t(cos (d g));
sindg - f lo a t (s in (d g));
xfac = (x l* (l-cosdg)) + yl*sindg;
yfac = (y l* (l-cosdg)) - il*sindg;

i f (!re l) {
setmat(mat, vmat) ;
setimat(rmat);

rmat[0][0] = rm at[l][l] = cosdg; / / Set rotation Matrix
rm at[0][l] = sindg;
rmat[1][0] = -sindg;
mat [3] [0] = x fac;
m at[3] [1] = yfac;

fo r (y=0; y<3; y++) {
mat[0][y] = vmat [0] [y]*cosdg + vmat[l][y] * sindg;
m at[l][y] = vmat[0] [y]*-sindg + vmat[l][y] * cosdg;
mat [3] [y] = vmat [0] [y] *xfac + vmat [1] [y] * yfac + vmat [3] [y] ;

>
>
else
{

floa t tmat [4] [3] ;
floa t tmatl [4] [3] ;

setmat(tmat, rmat);
setmat(tmatl ,mat);

fo r (y=0; y<3; y++) {
rmat[0][y] = tmat [0] [y] »cosdg + tm at[l][y] * sindg;
rm at[l][y] = tmat [0] [y]»-sindg + tm at[l][y] * cosdg;
rmat [3] [y] = tmat [0] [y] »xfac + tmat [1] [y] * yfac + tmat [3] [y] ;
mat[0][y] = tmatl[0] [y]»cosdg + tmatl [1] [y] * sindg;
m at[l][y] = tmatl [0] [y]»-sindg + tmatl [1] [y] » cosdg;
mat[3][y] = tmatl [0] [y] »xfac + tmatl [1] [y] * yfac + tmatl [3] [y] ;

>
>

/ / Relative rotation
I I Relative rotation

I I copy matrices

I I I f its not a relative rotation
/ / reset the rotation matrix

»»»»»»»»»*******»»»»»»»»»»»»»»»»»»»»»»»*»*»**»»»»»*»»»»»»»»»»»
* R0TATEAB0UTX

» This function sets a rotation matrix mat fo r a rotation of
» d degrees about the point (y l ,z l) and X axis
»
* (1, 0, 0, 0) Matrix For Rotation about a point
* (0, cosO, sinO, 0) in the X direction
» (0 ,-sin0 , cosO, 0) yfac = (y l* (l-co s0)) + zl*sinO
* (0, yfac, z fac, 1) zfac = (z l* (l-co s0)) - yl*sin0
»»»»»»»»»»»t*»»»*****»»*******»*******»******»*»»»**»*********

void vienset: :rotateaboutx(int y l,in t z l .in t d ,in t re l)

SEGLIST.CXX 142

floa t dg;
floa t cosdg,sindg;
floa t y fa c ,z fa c ;
int y;

dg - radian(d);
cosdg - f lo a t (cob(dg)) ;
sindg = floa t(s in (d g)) ;

yfac = (y l* (l-cosdg)) + zl»sindg;
zfac = (z l* (l-cosd g)) - yl*sindg;

i f (! re i) {
setmat(mat, vmat) ;
setimat(rmat);

rm at[l][l] = rmat[2][2] = cosdg; / / Set rotation Matrix
rmat[1][2] = sindg;
rm at[2][l] = -sindg;
rmat[3][1] = y fa c ;
rmat[3][2] = z fa c ;

fo r (y=0; y<3; y++) {
m at[l][y] = vmat [1] [y] *cosdg + vmat [2] [y] * sindg;
mat [2] [y] = vmat [1] [y]»-sindg + vmat [2] [y] * cosdg;
mat [3] [y] = vmat [1] [y] *yfac + vmat [2] [y] * zfac + vmat [3] [y] ;

>
>
else
{

floa t tmat [4] [3] ;
floa t tmatl [4] [3] ;

setmat(tmat, rmat);
setmat(tmatl,mat);

fo r (y=0; y<3; y++) {
rmat [1] [y] = tmat [1] [y] »cosdg + tmat [2] [y] * sindg;
rmat [2] [y] = tmat [1] [y]»-sindg + tmat [2] [y] * cosdg;
rmat [3] [y] = tmat [1] [y] »yfac + tmat [2] [y] * zfac + tmat [3] [y] ;
mat[1] [y] = tmatl[1] [y]»cosdg + tmatl[2][y] * sindg;
mat[2][y] = tmatl[1] [y]»-sindg + tm atl[2][y] * cosdg;
mat[3][y] = tmatl [1] [y] »yfac + tmatl [2] [y] * zfac + tmatl [3] [y] ;

>
>

>

**
* ROTATEABOUTY

* This function sets a rotation matrix mat fo r a rotation of
» d degrees about the point (x l ,z l) and Y axis
*

* (cosO, 0 ,-sin 0 , 0) Matrix For Rotation about a point
* (0, 1, 0, 0) in the Y Direction
» (sinO, 0, cosO, 0) xfac = (xl*(l-cosO)) - zl»sinO
* (xfac, 0, yfac, 1) yfac = (zl*(l-cosO)) + xl*sinQ
* *

void vienset: :rotateabouty(int x l,in t z l ,in t d,int re l)
{

floa t dg;
floa t cosdg,sindg;
floa t x fac,zfac;
int y;

dg = r a d i a n (d) ;
cosdg = f l o a t (c o s (d g));
sindg = f l o a t (s i n (d g));

xfac = (x l* (l-cosdg)) - zl»sindg;
zfac = (z l* (l-cosd g)) + xl*sindg;

i f (i r e i) {

setmat(mat,vmat);
setimat(rmat);

rmat[0][0] = rmat[2][2] = cosdg; / / Set rotation matrix
rmat [2] [0] = sindg;
rmat [1] [2] = -sindg;
rmat[3] [0] = xfac;
rmat[3] [2] = zfac;

fo r (y=0; y<3; y++) {
mat[0][y] = vmat [0] [y]«cosdg + vmat [2] [y] * -sindg;
mat [2] [y] = vmat [0] [y]«sindg + vmat [2] [y] * cosdg;
mat [3D [y] = vmat [0] [y] »xfac + vmat [2] [y] * zfac + vmat [3] [y] ;

}
>
else
{

floa t tmat [4] [3] ;
floa t tmatl [4] [3] ;

setmat(tmat,rmat);
setmat(tmatl,mat) ;

fo r (y=0; y<3; y++) {
rmat[0][y] = tmat [0] [y]»cosdg + tmat[2][y] * -sindg;
rmat [2] [y] = tmat [0] [y]*sindg + tmat [2] [y] * cosdg;
rmat [3] [y] = tmat [0] [y] *xfac + tmat [2] [y] * zfac + tmat [3] [y] ;
mat[0][y] = tmatl[0] [y]»cosdg + tmatl[2] [y] * -sindg;
mat[2][y] = tmatl[0] [y]»sindg + tmatl[2] [y] * cosdg;
mat[3][y] = tmatl [0] [y] »xfac + tmatl [2] [y] * zfac + tmatl [3] [y] ;

>

(pragma check_stack(off) / / TUM OFF STACK CHECKIBG

point v iesset: : setpoint(point p)
{
return point (int (p . x*mat [0] [0] +p. y+mat [1] [0] +mat [2] [0] »p . z + mat [3] [0]) ,

int (p . x»mat [0] [1] +p. y*mat [1] [1] +mat [2] [1] *p. z + mat [3] [1]) ,
int (p . x*mat [0] [2] +p. y*mat [1] [2] +mat [2] [2] *p. z + mat [3] [2])) ;

>
inline int vienset: :sindx(point p)
{

return int (p . x*mat [0] [0] +p. y»mat [1] [0] +mat [2] [0] *p. z +mat [3] [0]) ;
}

inline int vienset: :nindy(point p)
{

return int (p .x*mat [0] [l]+p .y*mat [1] [l]+mat [2] [1] »p .z+mat [3] [1]) ;
>

SEGLIST.CXX

int vieHset: :nindoBx(point p)
{

return (d3) ?
(int (p . x*mat [0] [0] +p. y»mat [1] [0] +mat [2] [0] *p. z +mat [3] [0]))
(int (p . x*mat [0] [0] +p. y»mat [1] [0] +mat [3] [0])) ;

>
int vienset: :windony(point p)
{

return (d3) ?
(int(p.x*mat [0] [l]+p.y»mat [1] [l]+mat [2] [l]*p.z+mat [3] [1])) :
(int(p.x»mat [0] [l]+p.y»mat [1] [l]+mat [3] [1])) ;

SEGLIST.CXX
>

144

double vienset: :absolutex(int a) / / THIS IEEDS A BIT OF WORK ! ! ! ! ! ! ! !

return ((a-vzmin)*((tvzniaz-tYzmin)*l. 0/ (sxmax-Bxmin))) ;
}

void vienset::moveto(point p)
{

_ m o v a t o (w i n d r (p) ,-w i n d y (p));
}
void vienset::lineto(point p)
{

_lineto(sindx(p),-uindy(p));
>

/ / MSC V5 - graphics

/ / HSC V5 - graphics

void vienset::dranpoint(point p)
{
_setpixel(nindx(p),-n indy(p)); / / HSC V5 - Graphics

•pragma check_stackO / / TURK STACK CHECKIIG BACK DI

/Mi**
I* SETQBLIQUE
/* This procedure allons you to set an oblique projection fo r
/* an ob ject.
/*
/* (1, 0, 0, 0)
/* (0, 1, 0, 0)
/* (lcosb .ls in b , 0, 0)
/* (0, 0, 0, 1)
/««I***

void vienset: : setoblique(float 1 ,floa t b)
i

floa t dg;

in itfactorsO ; I I reset viewing matrix
dg = radian(b);

I I lcosdg = l* f lo a t (cob(dg)) ;
I I lsindg = l* floa t(s in (d g)) ;

vmat [2] [0] = l* float(cos(dg))*x fac; / /+ lsindg*smat [1] [0] ;
vmat[2][1] = l*floa t(sin (dg))*y fac; I I lcosdg*smat[0][1] +
I I vmat [2] [2] = lcosdg*smat [0] [2] + lsindg*smat [1] [2] ;

s e t m a t (m a t ,v m a t) ; // set ctm to vmat
p r e m u l t i (m a t , n n a t) ; II

d3 = on;
>
/**/
/*
/* This procedure allows

SETPERSPECTIVE *1
you to set a one point perspective */

/* projection for an ob ject. * /
* /

/* (i , o, 0, 0) Conny’ s Algorthim * /
/* (0, 1, 0, 0) */
/* (-Xc/Zc, -Yc/Zc, 0, 1/Zc) */
1* (0, 0, 0. 1) */
Zi***/

void vienset::setperspective(int d)
{

floa t tmat [4] [3] ;

SEG LIST.CXX

aetimat(vmat); / / Reset viewing matrix
vmat [0] [0] ■ xfac;
vmat [1] [1] = yfac;
vmat [2] [2] ” zfac;
vmat [3] CO] * t z ;
vmat [3] [1] * ty;
vmat [3] [2] = t z ;

/*
setimat (tna t);

tmat[0][0] ■ ta a t[2][2]* -l;

preraulti(vmat,tmat);
*/

sot:;'.at (mat,vrr.at) ;
preraultiiraat,rmat);
pz = d;
d3 = on;

>
void viewset: ¡positionatiint x ,in t y)
{

setfactorsCx.y);
>
void segment: :draw()
{

base* p;
floa t smat[4][3];
shapelxst.re se tO ;
setmat(smat.shape: :viowptr~>mat); / / save current viewing matrix
premultitshape: : viewptr->mat,mat); / / add in segments matrix
while (p = shapelist .nextO) p->draw() ; / / draw the shapes
setmat(shape: :viewptr->mat, smat); / / reset the viewing matrix

>

/ / set eta to vmat
//

SEGS.CXX
«include "stdinc.hxx"
«include "seglist.hxx"
«include "image .hxx"'

A*******************.******.,,*******,,**,****************.********./
/* SCREEI SCEIE PROCEDURES AID FUICTIOIS * /
/**/

ACTIVATE(scene);

▼old scene::putobj(image* ip)
{

segment* p;

ip->label("SCEIE");
s cn _ lis t .re se t () ;
while(p“ (segment*) scn_liBt .nextO) p->putobj(ip) ;
ip->B ritenullO ;

base* scene: : getobjCimage* ip , base* obj)
{

i f (ip->match("SCEBE"))
{
i f (obj = (base*) BULL)

obj = (base*) new scene;
ip->objectread();

while(!ip ->nullobject())
i

((scene*)obj)->scn_list. append((segment*) ip->loadobject("SEGHEHT")) ;
>
ip->readirall();
1

return obj;
>;

void scene: : sca le(float fx ,f lo a t fy , floa t fz)
{

segment* p;

s cn .lis t .re se t() ;
Bhile (p = (segment*) scn_list.next()) p -> S ca le (fx ,fy ,fz);

void scene::wipe()
{
segment* p;

scn _ list.reset() ;
B h ile (p = (segment*) scn_list.nextO) { p->desensitize(); delete p; }

void scene::rotateabout(int xa,int ya,int d ,int re l)
i

segment* p;

scn _ list.reset() ;
While (p “ (segment*) scn_list.next()) p->rotateabout(xa,ya,d,rel);

void scene::rotateaboutx(int ya,int za ,in t d .int re l)
{
segment* p;

SEGS.CXX 147

scn _ list.reset() ;
while (p = (segment*) scn .lis t.n ex t()) p->rotateaboutx(ya,za,d,rel);

void scene::rotateabouty(int xa.int za.int d,int re l)
{
segment* p;

scn .lis t .rese t 0 ;
vhile (p = (segment*) scn_list.next()) p->rotateabouty(xa,za,d,rel);

void scene::movevport(float dz, floa t dy)
{
segment* p;

s cn .lis t .re se t () ;
while (p = (segment*) scn_list.next()) p->movevport(dx,dy);

void scene::movewindow(int dx,int dy)

segment* p;

scn _ list.reset() ;
while (p = (segment*) scn_list .nextO) p->movewindow(dx,dy) ;

void scene::refreshO

segment* p;

s cn .lis t .re se t() ;
while(p = (segment*) s cn .lis t .nextO) p->refresh() ;

ACTIVATE(segment);

void segment: : putobj(image* ip)

shape* p;
int idlen;
ip->label("SEGHEIT");
idlen =strlen(id)+l;
ip -> sr ite (k id len ,s izeo f(in t));
i f (idlen !=1) {

ip ->nrite(id ,sizeof(char)*id len);
}

/ / Length of the ID fo r the segment

ip -> w rite (tv is ib le ,s izeo f(in t)) ;
ip->writ e (tautoclear, s iz e o f(in t));
ip->write(& fram e,sizeof(int));
shapelist.reset() ;
Bhile(p= (shape*) shapelist .nextO) p->putobj (ip) ;
ip->w ritenull();
vienset: :pu tob j(ip);

};
base* segment::getobj(image* ip , base* obj)
{

int idlen;
i f (ip->match("SEGHElIT"))

{

S E G S.C X X
i f (obj == (base*) IULL)

obj = (base*) nei segment;
ip -> read(tid len ,sizeo f(in t));
i f (idlen !=0)
{
((Begment*)obj)->id = new char[idlen];
ip->read(((segm ent*)obj)->id,sizeof(char)»idlen); / / check it reads into right place

}
ip->read(k((segment*)obj) -> v is ib le , s iz e o f(in t)) ;
ip->read(k((segm ent*)obj)->autoclear,sizeof(int));
ip->read(k((segment*)obj)->frame,s iz e o f (in t)) ;
ip->objectread();

while(!ip ->nullobject())

((segment*)obj)->shapelist.append((shape*) ip->loadobject(" ")) ;
>
ip->readnull();
viewset: .-getobj (ip ,ob j) ;
>

return obj;
>;
void segment :: refreshO
{

shape* p;

i f (v isib le)

shape::viewptr = th is;
shapelist.reset() ;
viewset: : setvport() ;

i f (autoclear)
view set::erasevport();

i f (frame)
viewset: :framevport() ;

while (p =(shape*) shapelist .nextO) p->draw();

viewset::cur_screen->review();

>

void segment : :setid(char* st)
{

i f (id == (char*) IULL)
{
delete id;
}
id = strdup(st);

}
/*****************•**/
/* SCREEI CLASS PROCEDURES AID FUICTIOIS */

ACTIVATE(screen);
screen scr; / / default screen object

void screen::putobj(image* ip)
{

segment* p;
ip->label("SCREEI");
ip->write(tdevm ode,sizeof(int));
ip ->w rite(kcolor,sizeof(long));
s c r .l is t .r e s e t () ;
while(p=(segment*)scr_list .nextO) p->putobj(ip) ;

SEGS.CXX
ip->w ritenull();
viewset: : pu tob j(ip);

base* screen::getobj(image* ip , base* obj)

i f (ip->match("SCREEI"))

i f (obj » (base*) IULL)
obj ■ (base*) new screen;

ip ->read(ft((screen*)obj) ->devmode, s iz e o f (in t)) ;
ip -> read (*((screen *)ob j) -> co lo r , s iz e o f(lo n g)) ;
ip->ob je c tre a d O ;

while(!ip ->nullobject())

((screen*)ob j)->scr_list. append((segment*) ip->loadobject("SEGHEBT")) ;
>
ip->readnull();
viewset: : g e to b j(ip ,o b j);
>

return ob j;
>;

void screen ::in it(in t dev)
{

segment* p;
struct videoconfig config;
i f (! windowopen)

desensitizeO ;
viewset: : cur_screen = th is ; / / Set
shape: : viewptr = th is; / / Set
_setvideomode(devmode-dev); / / set
setbkcolor(color); / / set
_getvideoconfig(fcconfig);
absacrxmax=scrxmai= config.numxpixels;
absscrymax=scrymax= config.numypixels;
3 c :rx m in 'sc ry m in = 0 ;
_setlogorg(0,scrymax);

s e tw in d o w (O .O .s c r im a x .s c ry m a x) ;

setvport(0.0 ,0 .0 ,1 .0 ,1 .0);
updatevportsO; / / inform other objects o f change

/ / in screen resolution
}

>
void screen::refresh()
i

segment* pt;
i f (! windowopen)

review O ;
view set: : erasevport() ;
s c r . l i s t .r e s e t () ;
while (pt = (segment*) s c r .l is t .nextO) pt->refresh ();

}

void screen: .‘ setbkcolor(long c)
{

color = c;
setbackcolor(color);

>

screen Pointer
Viewing Pointer
and save the device mode
the background color

SHAPES.HXX 150
/ / * * * * * * * * * * * * * *

/ / SHAPES HEADER FILE
//
/ / DEFIIES A LIST OF SHAPES THAT GAI BE USED
II

class dot : public shape {

public :
void dravO;
dotO

{ initshape(1);
se t(0 ,0 ,0);>

/ / dot(int x , int y, int z=0)
/ / { s e t (x ,y ,z) ;}

void set(in t x ,in t y ,in t z =0)
{ p [0].x = x; p [0].y = y; p [0].z = z;>

>;

class line : public shape {
«

public :

base* getobj(image*.base*);
void pùtobj(image*);
void draff() ;

/ / line (int a, int b, int c ,in t d)
/ / { lin eO ;
I I set(poin t(a ,b),po in t(c ,d)) ; }

lineO
{ initshape(2) ;>

line(point p i, point p2)
{ initshape(2);

p [0]=pl;p [l]= p2; >
void set(in t x l,in t y l,in t x2,int y2)

i p [0]=poiat(x l,y l) ; p[l]=point(x2,y2) ; }
void set(point a, point b)

{ p[0] = a; p [l] = b;>
>;

class polygon : public shape {
int curpos;
int closed;

public :

I I Current pos in polygon
/ / Whether closed or not;

};

base* getobj(image*,base*);
void putobj(image*);
void draw() ;
polygonO

{ initshape(10);
curpos s 0; closed = o f f ; }

polygon(int i)
{ in itshape(i);

curpos = 0; closed = o f f ; }
void append(point); / / Add a point to the polygon;
void setcloseddnt a=on) { closed = a ;} / / set closed on /o ff

I I delfault size

/***************************4**
/* CLASS HECTAIGLE *
/* *
/* p[0] = min; p [l] = max; p[2] = Ih l; p[3] = rh l; *
/* *
/* p [2]-------------p [l] Point Diagram of rectangle *
/ ♦ I I *
/* I I
/* I I
/* p[0]------------p[3] *

SH A PES. HXX
y**/

class rect : public shape {

public :
base* getobj(image*,base*);
void putobj(image*);

void drawO;
rectCint a, int b ,in t c ,in t d)

{ rectO ;
se t(p o in t(a ,b),p o in t(c ,d)); }

rectO
{ initshape(4) ; }

void set(poin t,point);
void set(in t a ,in t b ,in t c ,in t d)

{ se t(p o in t(a ,b).p o in t(c ,d)); }

/* CLASS BOX */
/* */
/* p[0] = mini; p[l] = maxi; p [2] = lhl; p[3] = rhl ; */
/* p[4] = mini; p[6] = maxi ; p [6] = lh2; p[7] = rh2; */
/* */
/* p [6] ----- ----- p[S] */
/* /I / 1 */
/* p[2]---------- -p [l] 1 Point Diagram of Box */
/* 1 1 I 1 */
/* |p[4]------ ----Ip [7] */
/* 1 / 1 / */
/* p [0] ---------- -p[3] */

class box : pub l i c shape {

public :
base* g e t o b j (i m a g e * , b a s e *) ;
void p u t o b j (i m a g e *) ;

void d r a n O ;
box(point a,point b, int d) {

b o x O ;
set(a,b,d); }

b o x O
{ initshape(8)

v o i d set(point a ,point b , int d);

>;

/**/
/* CLASS CIRCLE */
/* */
/* / \ ♦/
/* / r \ * /
/* |<— p[0] I Point Diagram of Circle */
/* \ / */
/* \ / */
/* */
/************+*+****+**+*****+***************+*+************+********/

class c irc le : public shape {

int r ;

public :
base* getobj(image*,base*);
void putobj(image*);

SHAPES. HXX

void dranO ;
c ir c le d n t a,int b ,in t c)

{ in i tB h a p e (l) ;
se t(p o in t(a ,b),c); }

c ir c le () { in itsh ape(l);
>

void set(int a, int b ,in t c)
{ se t(p o in t(a ,b),c); >

void set(point a ,in t c)
{ p[0] = a; r= c;}

void acalez(float fz)
{ s ca le (fz ,1 .0 ,1 .0); }

void »ca ley(iloat fy)
{ s ca le d .0 ,fy , l .0) ; }

void sca lez(float fz)
{ s ca le d .0 ,1 .0 ,fz) ; >

/ / Scale up/down z Values

/ / Scale up/down y values

/ / Scale up/down z values

void sca le (floa t ,floa t = 1 .0, floa t = 1 .0);
};

class cyclinder : public shape {

int r;
int h;

public :
base* getobj(image*,base*);
void putobj(image*);

void draw() ;
cyclinderO

{ in itsh ape(l);
r = h =0;>

void set(point a, int r l , int hi)
{ p[0] = a; r= rl; h = h i ; }

void sca lez(float fz)
{ s c a le (fz ,l .0 ,1 .0); }

void scaley(float fy)
{ s ca le d .0 ,fy ,l .0) ; }

void scalez(float fz)
{ s c a le (l .0 ,1 .0 , f z) ; }

/ / Scale up/doun z Values

/ / Scale up/donn y values

/ / Scale up/down z values

void s ca le (flo a t ,floa t = 1 .0, floa t = 1 .0);

};

class sphere : public shape {

int r ;

public :
base* getobj(image*,base*);
void putobj(image*);

void dranO;
sphered

{ initshape(1);
r =0; }

void set(point a, int r l)
{ p[0] = a; r=rl; }

void sca lez(float fz)
{ s c a le (fz ,l .0 ,1 .0); }

void scaley(float fy)

/ / Scale up/doun z Values

/ / Scale up/donn y values

SH A PES. CXX 153
{ scale(1.0,fy,1.0); >

▼old scalez(float fz) // Scale up/down z values
{ scaled.0,1.0,fz); }

void sca le (floa t .floa t * 1 .0, floa t = 1 .0);

/ / • *

/ / Prog : SHAPES.cxx
/ /
/ / Creates a numer o f shape objects
/ / and their supporting functions
/ /
//***************************

«include "stdine.hxx" / / Include Definitions
«include "shapes.hxx"
«include "image .hxx"

extern void circledraw(point, int) ;

/**/
/* CLASS SHAPE FUKCTIQIS AID PROCEDURES * /
/**/

ACTIVATE(shape);

void shape::initshape(int s = 0)

p = new point [s] ;
sz = s;
color = 1;

>

void shape::expandshape(int nsz)
i

point* p i;
i f (nsz > sz) {

pi = new point[nsz];
m em cpy(pl,p,sizeof(point)*sz);
delete p;
P = Pi!
sz = nsz;

>

void shape: : sca le (float fx ,f lo a t fy , floa t fz)
{

fo r (int i = 1; i<sz; i++)
p [i] = point (p [i] . x+int ((p [i] . x-p [0] . x) *f x) ,

p[i] .y+int((p[i] .y-p[0] .y)*fy) ,
p[i] .z+int((p[i] .z-p[0] .z)*fz)) ;

>

void shape::rotateahout(int xa,int ya,int d)
{

viewset v;
v.rotateabout(xa,ya,d);
fo r (int i = 0; i<sz; i++)

p [i] = v .se tp o in t(p [i]);

>

S H A P E S . C X X

void shape::rotateabontx(int ya.int za,int d)

viesset v;

y .rotateaboutiCya,za, d) ;
fo r (int i » 0; K sz; i++)

p [i] = » .aatpoint (p [i]) ;

void shape;:rotateabouty(int xa,int za,int d)
{

viesset v j

y.rotateabouty(xa,za,d);
fo r (int i ■ 0; K sz; i++)

p [i] = v . setpoint (p [i]) ;

void shape: :move(int dx,int dy, int dz)
{

fo r (int i = 0; K sz; i++)
p [i] m p o in t(p [i] ,x+dx,p[i] .y+dy ,p [i] .z+dz) ;

>

void shape::moveto(int x ,in t y, int z)
{

int dx,dy, dz;
dx » x -p [0].x ;
dy * y -p [0].y ;
dz = z-p[0] .z ;

p[0] = p o in t(x ,y ,z);
fo r (int i * 1; K sz; i++)

p [i] = poin t(p [i] .x+dx,p[i] ,y+dy,p[i] .z+dz) ;
>
/**/
/* CLASS DOT PROCEDURES AID FUICTIOIS * /
/**/

ACTIVATE(dot); //Make dot active

void dot::drav()
{

shape: :viewptr - > d r avpoint(p[0]);
>
void shape : : putobj(image* ip)

ip-MabelC'SHAPE") ;
ip->write(Itsz, sizeof(ch ar));
ip->irrite(Acolor, s izeof (in t)) ;
i f (sz != 0)

ip ->w rite(p ,sizeof(poin t)*sz);
}
base* shape::getobj(image* ip , base* obj)
{

i f (ip-taatchC'SBAPE1'))
{

i f (obj — (base*) IULL)
obj = (base*) new shape;

ip->read(t((shape*) ob j)-> sz ,s izeo f(ch ar));
ip->read(4((shape*) o b j) -> co lo r ,s iz e o f(in t));
i f (((shape*) obj)->sz !=0)
<

((shape*) obj)->p = new point[((shape*) ob j)-> sz];
ip->read(((shape*) obj)->p,sizeof(point)*((ahape*) obj)->sz)

SH A PES.CX X
}
ip->objectread();

>
return obj;

>
/**************** .
/* CLASS LUE FUICTIOIS AID PROCEDURES * /
/*******.**.*****.,******/

ACTIVATE(lino);

void line : :putobj(image* ip)
{

ip->label("LIIE">;
shape : :pu tob j(ip);

>
base* l in o : :gotobj(image* ip , base* obj)

-£
i f (ip->match("LIIE"))
i

i f (obj == (basé*) IULL)
obj - (base*) new lin e ;

ip->objectread();
shape : :g etob j(ip ,ob j) ;

}
return ob j;

void line::draw ()
{
setlin eco lor(co lor);
viewptr->movoto(p[0]);
v ie »p tr -> lin eto (p [l]);

}
/****************,***************** ***********************************/
/* CUSS RECTAIGLE FUICTIOIS AID PROCEDURES * /
/**/

ACTIVATE(rect);

void r e c t : : putobj(image* ip)
{

ip->label("RECT");
shape: : pu tob j(ip);

y
base* r e c t : :getobj(image* ip , base* obj)

i f (ip->match("RECT"))

i f (obj == (base*) IULL)
obj = (base*) new rect;

ip->objectread();
shape : :getob j(ip , obj) ;

>
return obj;

void rect::draw()
{
point pt;

setlin eco lor(co lor);
viewptr->movet o(p [0]) ;

SH A PES. CXX 156
v i e w p t r - > l i n e t o (p [2]);
v i e w p t r - > l i n e t o (p [1]);
vi e u p t r - > l i n e t o (p [3]) ;
vi e o p t r - > l i n e t o (p [0]) ;

>
void re c t : : set(point min,point max)

p[0]= min; p [l]= max; p [2].x = p [0].x ;
p [3].x = p [l] .x ; p [3].z = p [0].z ;
p [2].y = p [l] .y ; p [3].y = p [0].y ; p[2] .z = p [l] .z ;

>
/**/
/* CLASS BOX FUICTIOIS AID PROCEDURES * /
 .

ACTIVATE(box);

void b ox ::putobj(image* ip)

ip->label("BOX");
shape::putobj(ip);

base* box: :getobj(image* ip, base* obj)

{
i f (ip->match("BOX"))

i f (obj == (base*) IULL)
obj - (base*) new box;

ip->objectread();
shape::getob j(ip ,ob j);

>
return o b j;

>

void box::draw()
{
se tlin eco lor (co lor);
viewptr->moveto(p[0]);
view ptr->lineto(p[2]);
v ieu p tr-> lin eto (p [l]);
viewptr->lineto(p[3]) ;
viewptr->lineto(p[0]) ;

Tiew ptr->lineto(p[4]);
viewptr->lineto(p[6]) ;
vieBptr->lineto(p[5]) ;
vienptr->lineto(p[7]) ;
vieHptr->lineto(p[4]) ;

v iesptr->moyet o (p [3]);
v ieBptr->linet o (p [7]);
vienptr->movet o (p [2]);
v i e u p t r - > l i n e t o (p [6]) ;

yieHptr->moveto(p[l]);
vienptr->lineto(p[5]) ;

void b ox :: set(point a ,point b ,in t d)

p[0] = a; p [l] = b;
p[4] = p[0] ; p [4].z = p[0].z+d;
p[5] = p [l] j p[B].z = p [l] .z + d;
p[2] .x = p[0] .x; p[3] .x = p [l] .x; p[3] .z = p [l] .z;
p[2] .y = p [l] .y; p[3] .y = p[0] .y; p[2] .z = p[0] .z ;
p[6] = p[2] ; p [6].z = p [2].z +d;

SH A PES.CX X
p[7] * p [3]; p [7].z =p[3].z + d;

>

/**.„***„*,********,„***,*******,*,*,*„*„***********************/
/* GLASS CIRCLE FUICTIOIS AID PROCEDURES * /
/*,****,**,***.****„******,*,*******,****.,*****************♦*******/

ACTIVATE(circle);

void c ir c le ; :putobj(image* ip)
{

ip->label("CIRCLE");
ip -> n r lte (tr ,s ize o f(in t));
shape: : pu tob j(ip);

>

base* circle::getobj(im age* ip , base* obj)

{
i f dp->match("CIRCLE"))
{

i f (obj » (base*) IULL)
obj = (base*) new c irc le ;

ip ->read(t((circle*) o b j) -> r ,s iz e o f(in t)) ;
ip->objectread();
shape: .-get obj (ip , o b j) ;

>
return obj;

>

void c irc le : :drav()
{

circledraw (p[0],r);
>
void c ir c le ::s ca le (f lo a t fx ,flo a t fy , floa t fz)
{

i f (fx !» 1.0)
r = r + in t(r* fx);

else
i f (fy != 1.0)

r = r + in t(r* fy);
else

i f (fz != 1.0)
r = r + in t(r* fz);

>
/**/
/* CLASS POLVeOI FUICTIOIS AID PROCEDURES * /
/**/

ACTIVATE (polygon) ;

▼old polygon::append(point p i)

i f (curpos >-sz)
expandshape(8z+10);

p [curpos] « p i;
curpos++;

>

void polygon::putobj(image* ip)
{

ip->label("POLYGOI");
ip->w rite(fccurpos,sizeof(int));
ip ->w rito(A closed ,sizeof(int));
shape::putobj(ip);

>

base* polygon::getobj(image* ip , base* obj)

S H A P E S . C X X

I f (ip->match("POLYGOI"))
{

I f (obj = (base*) IULL)
obj ■ (base*) new polygon;

ip->read(t((polygon*) ob j)->cnrpoB ,sizeof(in t));
ip->read(t((polygon*) ob j)-> c lo sed ,s izeo f(in t));
ip->objectread();
shape::g e tob j(ip ,ob j);

>
return obj;

▼old polygon::dran()

i f (curpos > 0)
{

setlin eco lor (co lor);
viewptr->moveto(p[0]);
fo r (int i =1; i<curpos; i++)

v iew ptr->lineto(p[i]) ;
i f (closed) {

viewptr->lineto(p[0]);
>
>

y**/
/* CLASS CYCLIIDER FUICTIOIS AID PROCEDURES */
/**/

ACTIVATE(cyclinder);

void cyclinder: :putobj(image* ip)
{

ip -> label("CYCLIIDER") ;
ip ->w rite(fcr,sizeof(in t));
ip ->w rite(fch ,sizeof(int));
shape : :pu toh j(ip);

base* cyclinder::getobj(image* ip , base* obj)

if (i p - > m a t c h (11 CYCLIIDER11))
{

i f (obj » (base*) IULL)
obj = (base*) nev cyclinder;

ip->read(fc((cyclinder*) o b j) -> r ,s iz e o f(in t)) ;
ip->read(t((cyclinder*) o b j)-> h ,s ize o f(in t));
ip->objectread();
sh ape::getob j(ip ,ob j);

>
return o b j;

void cyclinder: : draw()

circledraw (p[0],r);
circledraw(point(p[0] . i ,p [0] .y,p[0] .z+h) ,r) ;
viesptr->moveto(pointCpLO] .x+r,p[0] .y ,p [0] .z)) ;
view ptr->lineto(point(p[0]. x+r ,p [0].y ,p [0].z+ h));
viewptr->moveto(point(p[0] .x-r,p [0] .y,p[0] .z)) ;
viewptr->lineto(point(p[0] .x-r,p [0] .y,p[0] .z+h)) ;
viewptr->moveto(point(p[0] .x,p[0] .y+r,p[0] .z)) ;
viewptr->lineto(pointCp[0] .x ,p [0] ,y+r,p[0] .z+h));
viewptr->moveto(point(p[0] .x ,p[0] .y -r,p [0] .z)) ;

SH A PES.CX X 159
viewptr->lineto(point(p[0] .x,p[0] .y-r,p [0] .z+h));

void cyclinder: : sca le(float fx ,flo a t fy , floa t fz)
{

i f (fx != 1.0)
r = r + in t(r* fx);

else
i f (fy != 1.0)

r = r + in t(r* fy);
else

i f (fz != 1.0)
h = h + in t(h*fz);

>

/*********************»*»***************»**********************+*****/
/* CLASS SPHERE FUICTIOIS AID PROCEDURES * /
/**/

ACTIVATE(sphere);

void sphere::putobj(image* ip)
{

ip^labelO'SPHERE") ;
ip -> w rite(ftr,sizeof(in t));
shape : :pu tob j(ip);

}

base* sphere::getobj(image* ip, base* obj)

{
i f (ip->match("SPHERE"))
{

i f (obj == (base*) IULL)
obj = (base*) new sphere;

ip->read(fc((sphere*) o b j) -> r ,s iz e o f(in t)) ;
ip->objectread();
shape::getob j(ip ,ob j);

}
return obj;

>

extern spheredraw(point,int);

void sphere: : draw()
{
spheredraw(p[0] , r) ;

}

void sphere: : sca le (float fx ,f lo a t fy , floa t fz)
{

i f (fx != 1.0)
r = r + in t(r* fx);

else
i f (fy != 1.0)

r * r + in t(r* fy);
else

i f (fz != 1.0)
r = r + in t (r * fz);

>

SLIST.HXX
/ / *********
/ / SLIST HEADER FILE
III
I I HEADER FILE FOR THE LIST OBJECT
II
/ / * * * * * * * * * * * * * * * * * *

class s l i s t ;
class base;

class slink {
friend class s l is t ;
friend class b lis t ;

slink* next;
base* e;
slinkCbase* a, slink* p) { e=a; next =p; }

>;

class s lis t {
slink* last;
slink* vptr;

public:

void insert(base* a);
void appendfbase* a) ;
base* getO ;
void clear() ;
void remove(base*);
void i n i t () ;
void reset() { vptr = 0;
base* nextO;
s l i s t () { last=0; }
slist(base* a) { last=ne
" s lis tO ■{ clearO ;

>;

typedef void (*PFC)(char*); / / pointer to function type
extern PFC slist_handler;
extern PFC set_slist_handler(PFC);
extern void default_error(char*);

//****************************
I I Prog : SLIST.cxx
II
I I Creates a l i s t object
II
I I Provides functions to
I I
I I add to the begining/ end of the l is t
I I step through the l i s t
/ / delete from the l i s t
/ / in it ia lise the l i s t
/ / set error handlers fo r the l i s t
/ / clear the l i s t
/ /
//***************************

I I last->next is head of l i s t
I I current position in scanning l i s t ;

/ / add at head of l i s t
/ / add at ta i l o f l i s t

I I return and remove head o f l i s t
I I remove a ll links
/ / remove an item from the l i s t
I I in itia lises pointers

ih slin k (a ,0); last->next=last ; }
>

void default_error(char* s)

SLIST .CXX
>

PFC slist_handler = default.error;

PFC Bet_Blist_handler(PFC handler)
{

PFC rr ■ slist.handler;
elist.handler ■ handler;
return rr;

>

void s l i s t : : in i t ()
{

la st = (slink*) 1 U ;
vptr = (slink*) TOIL;

>

base* s l i s t : :next() {
slink* 11;
i f (vptr == (slink*) TOLL)

11 = vptr =(last) ? last->nert : (slink*) HULL;
else {

vptr = vptr->next;
11 = (vptr==last->next) ? (slink*) TOLL ; vptr;

>
return 11 ? ll-> e : (base*) HULL;

} ;

void s l i s t : : insert(base* a)

i f (last)
last->next = new slink(a ,last->next);

else {
last = new slink(a, (slink*) HULL) ;
last->next = la st;

>

void s l i s t : :append(base* a)

i f (last)
last " laut->no)£t = now slink(a ,last->noxt);

else {
last = new slink(a ,(slink*) HULL);
last->next = la s t ;

>
>

base* s l is t : :g e t ()

i f (last == (slink*) HULL) (*slist„handler)("get from empty s l i s t ") ; //HOTE
/ / Contrary to BS p. 206, function ptr MUST be dereferenced

slink* f ■ last->next;
base* r = f-> e ;
last = (f==last) ? (slink*) HULL : f->next;
delete f ;
return r ;

void s l i s t : : d e a r ()
{

slink* 1 * la s t ;
i f (1 = (slink*) HULL) return;
do {

slink* 1 1 - 1 ;
1 » l->noxt;
delete 11;

} while (1 !=last) ;

void slist::removo(base* fp)

SLIST.CX X 162
{
slink* p ,* ll= last;
int found = 0;

i f (last)

p = last->next;
shile ((p!=(slink*) IULL) U (¡found))
{

i f (p->o == fp)

i f (11 != p)
{

l l -> next = p->next;
i f (p == last)

last = 11;
>
else
{

last = (slink*) IULL;
}
found = 1;
delete p;

>
else
{

11 = p;
p = (p->next = last->next) ? ((slink*) HULL) : p->next;

>
>

SPH ER E.C X X 163
//***♦******************,„***
/ / Prog : Sphere.cxx
/ /
/ / Draws a sphere on the screen
/ /
/ / Setting the sides and iterations allows you
I I to determine the accuracy or speed o f the drawing process
II
//*****♦*********************

(include "stdinc.hxx"

(define sides 40 / / number o f sides in approximating polygon
(define iter (aides/2+1) / / number o f iterations

▼oid spheredraw(point cen , int r)
{
point p i;
floa t v [iter] [2] ,p;
int i,o ld z ,z fa c ;
floa t inc=1.0;
floa t fa c , oldfac;

int o ld [4][2]; / / save screen co-ords
int x ,y ,x l ,y l ; / / general temp variables

fo r (i=0,p=0; i< iter; i++,p+=3.1415926*2/sides)
{

v [i] [0] = cos(p); / / set up c ir c le array
v [i] [1] = sin(p) ;

}

oldfac=fac = r;
oldz=zfac= 0;

while (inc >0.0)
{

p l.s e t ((in t) (v[0] [0]*fac)+cen.x,y=(int) (v[0] [l]*fac)+cen.y,zfac+cen.z) ; / / set starting points

o ld [l] [0]=old[0] [0] = shape::viewptr->windowx(pi); / / front c irc le start x,y
o ld [l] [l]=old[0] [1] = -shape: :viewptr->windowy(pl) ;

p i.s e t (p i.x ,p l.y ,ce n .z -z fa c); / / back c ir c le start x,y
old[3] [0]=old[2] [0] = shape: :viewptr->windowx(pi) ;
old[3] tl]=old[2] [1] = -shape: :viewptr->windowy(pi) ; / / Draw front circ les

fo r (i= l; i< iter; i++)
{

I I Front c irc le top
_moveto(o ld [0] [0] ,o ld [0] [1]) ; / / Draw front c irc le
pi .se t(x= (in t)(v [i][0]* fa c)+ cen .x ,(y= (in t)(v [i] [l]* fac))+ cen .y ,cen .z+zfac);
_lineto(old[0][0]=shape::viewptr->windowx(pl),old[0] [l]= -shape::viewptr->windowy(pi)) ;
p i.set(x l= ((in t)(v [i][0]*o ld fa c))+ cen .x ,(y l= (in t)(v [i3 [l]*o ld fa c))+ cen .y ,cen .z+ o ld z);
shape: : view ptr->lineto(pl); / / vertex

I I front c irc le bottom
_moveto(o ld [l] [0] ,o ld [l] [1]); / / Draw front circ les
p l.se t(x ,cen .y-y ,cen .z+zfac);
_ lineto(old [l][0]=shape::viewptr->windowx(pl),old[l][l]=-shape::viewptr->windowy(pl));
p i.set(x l,cen .y -y l,cen .z+ o ld z); / / vertex
shape: : view ptr->lineto(pl);

I I back face top
_moveto(old[2] [0] ,old[2] [1]) ; / / back face
p l.set(x ,cen .y+ y ,cen .z-zfac);
_lineto(old[2][0]=shape: : viewptr->windowx(pl),old[2][l]=-shape: : viewptr->windowy(pi)) ;
p i.set(x l,cen .y+ y l,cen .z -o ld z); / / vertex
shape: : view ptr->lineto(pl);

/ / back face bottom

jnovetoC oldCâ][03 ,o ld [3][1]) ; / / Ora» back c irc le s
p i.s e t (x ,cen .y -y ,cen .z -z fa c);
.l in o to (o ld [3][0]=8hape: :wig«ptr->ujndoux(pl),oldC3][1]«-shape::viesptr->windo»y(pi))
p i .s e t (x l,een.y -y l,cen .z-o ldz); / / vertex
shape : :vieoptr->linet o(p i) {

I
tac-» 0.05;
Oldfac» fa c ;
lac * ir* ine;
oldz * zfac;
zfac= (tut) (s q r t (l . 0-(iiie*ine)) *r) ;

SPHERE.CXX

STDINC.HXX
/ / **************
/ / STDIIC.HXI
/ /
/ / DEFIIES THE STAIDARD OBJECTS AID MACHOS USED BY THE SYSTEM
II
/ / ***************

«define ACTIVATE(bp) basel zzz««bp**((base*) new bp) j

(define true 1
«define fa lse 0
«define on 1
«define o f f 0
«define ADD 1
«define relative 1

extern floa t rad ian (float);
extern double cos(double);
extern double sin(double);
extern double sqrt(double);

class segment;
class screen;
class viesset;
class base;

«include "stdinc.h"
«include "slist.hxx" / / List Of Include FILES !!
«include "blist.hxx" / / static l i s t f i l e
«include "point.hxx"

class image;
class base;
/**/
/* * /
/* CLASS BASE * /
/* ♦/
/**/

class base {
friend image;
friend class basel;

static b lis t o b je ct lis t ; / / l i s t o f a l l objects created

public :

virtual base* getobj(image*, base*)
{ re tu rn (base*) IULL;

v ir tu a l void putobj(image*) {}
v ir tu a l void drawO { >
void append(base* bp)

{ objectlist.append(bp); }

c lass basel : pub lic base

public :
basel(base* bp) { o b je c t l i s t . append(bp); > / / append c lasses to l i s t
baselO { base: ¡o b je c tlis t . in i tO ;} / / i n i t the object l i s t
'b a se lO { base : : o b je c t l i s t . c lea r O ;} / / d e le te the l i s t

>;

/ / static basel tyhghdsucsjhja; / / Set up object management l i s t
II in memory

} / / load an object from disk;
I I save an object to disk;
I I Dras an object on the screen

/ / append an object to the l i s t

/**/
/* * /

S T D IN C .H X X
/* CLASS BITMAP * /
/* */
/****+***+***********************************++*+*****+******************/

/ / Bitmap Class to store image
/ / Pointer to storage area
/ / Stored rectangle area
/ / size in bytes of area;

public :
bitmap() { sav = (char far*) IULL;

size = 0;
xmin=ymin=xmax=ymax=0; }

'bitmap() { i f (sav != (char far*) IULL)
delete sav; }

base* getobj(image* ,base*);
void putobj(image*);
int save(int, in t ,in t , in t) ;
void restore(in t , in t , in t , in t) ;
void restoreQ ;

class bitmap : public base {
char far * sav;
int xmin.ymin ,xmax ,ymax;
unsigned long size ;

/* CLASS VIEWSET * /
/************************+*****+***/

11 NOTE : The viewing matix VMAT is stored multiplied by the scaling
/ / matrix to save multiplication time in rotations.

class viewset: public base {

friend class screen;
friend class segment;
friend class window;

i n t tv x m in ^ tv y m in jtv x m a x jtv y m a x ;
i n t wxmin>wymin,wxmax,wymeix;
f l o a t v x m in ^ y m in , vxm ax, vymax;
f l o a t m a t [4] [3] ;
f l o a t v m a t[4] [3] ;
f l o a t r m a t [4] [3] ;

floa t x fa c ,y fa c ,z fa c ;
floa t tx ,ty ,tz ;
floa t ss tx ,ssty ,sstz ;

int d3;
int pz;
char sensitized;
static screen* cur_screen;
sta tic int windowopen;
sta tic int scrxmax, scrymax;
static int scrxmin,scrymin;
static int absscrxmax,absscrymax;
static b lis t views;

v o id s e t i m a t (f l o a t a [4] [3]) ;
v o id m a t m u l t i (f l o a t a [4] [3] , f l o a t b
v o id p r e m u l t i (f l o a t a [4] [3] , f l o a t b
v o id s e t m a t (f l o a t a £ 4] [3] , f l o a t b [4
v o id s e t f a c t o r s (i n t = 0 , i n t = 0 , i n t = 0) ;
vo i d i n i t f a c t o r s () ;
v o id c h e c k v p o r tO ;
v o id checkw indow O ;
i n t w in d x (p o in t) ;
i n t w in d y (p o in t) ;

/ Viewport Co-ords
/ window co-ords
/ viewport in ndc}s
/ general clipping matrix
/ Contains viewing matrix
/ Contains rotation matrix

/ Scaling factors
/ Scaling translations
/ Temporary translation values.

/ whether 3-d is on /off
/ z centre of perspective p ro j;
/ whether viewset is sensitive to change
/ Pointer to current screen
/ lumber of open windows
/ log ica l max x k y co-ords of screen
/ log ica l min x k y co-ords of screen
/ physical max screen co-ords
/ l i s t of viewsets created

/ / Set a = Identity matrix
4][3]) ; I I Multiply matrix a by b
4][3]) ; / / Pre-Multi matrix a by b
[3]); / / Set matrix a = b

I I calculate scaling factors
I I in it the scaling k viewing matrix
11 check the viewport co-ords
I I check the window co-ords
/ / returns clipped k scaled xcord
/ / returns clipped k scaled ycord

public
void v iew se tin itO ;
void updatevports();
void se n s itiz e O ;

/ / Init default values
/ / update any vports
/ / make viewset sensitive

S T D IN C .H X X
void desensitized ; / / desensitize viewset

viewsetO { viewsetinit() ; }
"viewsetO { i f (sensitized) / / remove viewset from l i s t

desensitizeO ; }
base* getobj(image*,base*); / / load viewset from disk
void putobj(image*); / / save viewset to disk

int windowx(point); / / returns clipped k scaled xcord
int windowy(point) ; / / returns clipped k scaled ycord

float* savematsO; / / save the current matrix
void retm ats(float*); / / restore current matrices

double absolute*(int) ; / / returns absloute scaled value
void positionat(in t, in t) ; / / position viewport at point
int windowx(int a,int b ,int c=0)

{ return windowx(point(a,b,c))
int windowy(int a,int b ,int c=0)

{ return windowy(point(a,b,c)) ; }

void s c a le (f lo a t ,f lo a t ,f lo a t) ; / / Main scaling

void scalex(float fx) / / Scale up/down x Values
{ s c a le (fx ,l .0 ,1 .0); }

void scaley(float fy) / / Scale up/down y values
{ s ca led .0 ,fy ,l .0) ; }

void sca lez(float fz) / / Scale up/down z values
{ s ca led .0 ,1 .0 ,fz) ; }

void framevport () ; / / frame the current viewport
void erasevport() ; / / clear the current viewport
void setvport(float,f lo a t ,f lo a t ,f l o a t) ; / / Set viewport co-ords

void movevport(float, floa t) ; / / Move viewport relative
void movevportto(float,f l o a t) ; / / Move viewport Absolute

void setvportO ; / / set viewport to viewsets cci-ords
void setwindow(int ,int ,int ,in t) ; / / set window co-ords

void movewindowtodnt, int) ; / / Hove window to co-ords
void movewindow(int x,int y)

{ movewindowtodnt (wxmin+x) ,int(wymin+y)) ; } / / move window by offsets

void rotateabout(int, in t , in t , in t=relative); / / Rotate about point in Z Dir
void rotateaboutto(int a,int b ,in t c) / / Rotate absolute about

{ rotateabout(a ,b ,c,¡relative); } / / point in Z dir
void rotate(int a) / / Rotate about origin

{ rotateabout(0 ,0 ,a) ; } / / in Z Dir
void rotatetodnt a) / / Rotate absolute about

{ rotateabout(0 ,0 ,a ,Jre la tive); } / / Origin in Z dir
void rotateaboutx(int,int,int,int = re la tive); / / Rotate about point in. X Dir
void rotateaboutxtodnt a,int b, int c) / / Rotate absolute about

{ rotateaboutx(a,b,c, Irelative) ; }• / / point in X dir
void rotatexdnt a) / / Rotate about origin

{ rotateaboutx(0,0,a) / / in X dir
void rotatexto(int a) / / Rotate Absolute about

{ rotateaboutx(0,0,a,Irelative); } / / origin in X direction
void rotateabouty(int,int,int,int = re la tive); / / Rotate about point in Y Dir
void rotateaboutytodnt a,int b ,in t c) / / Rotate absolute about

{ rotateabouty(a ,b ,c,¡relative); } / / point in Y dir
void rotateydnt a) / / Rotate about origin

{ rotateabouty(0,0, a);} / / in Y dir
void rotateyto(int a) / / Rotate absolute about

{ rotateabouty(0,0 ,a ,irelative); } / / origin in Y dir

void set3d() { d3 = on; }
point setpoint(point);

void moveto(point);
void lin eto (p o in t);
void drawpoint(point);

/ / Move to a point
/ / line
/ / draw a point

ST D IN C .H X X
void setperspective(int); II Set Perspective
void setoblique(f lo a t ,f lo a t) ; / / set oblique l ,b projection
void setcavalier(float c = 30) II Cavalier projection

{ setobliqued ,c) ; }
void setcabinet(float c = 30) II Cabinet Projection

{ setoblique(0 .5 ,c) ; >
void setorthoO { setoblique(0,90) ; II Orthographic Projection

> II to be worked OH ! ! ! ! ! !

CLASS SHAPE

DRAW command allready included in base object.

**/
* /
* /
* /
* /

**/

class shape : public base {

public :
unsigned char sz;

sta tic viesset* vienptr;
point* p;
int color;

shape()
{ p = (point*) HULL;

sz = 0; >
*shape() {delete p ;}
void initshape(int=0);
void expandshape(in t);
void setcolordnt c) ■{ color = c ; }
base* getobj(image*,base*);
void putobj(image*);

/ / general shape structure

/ / contains Ho. of points

/ / pointer to current viewset
/ / array of points
I I color of the shape

/ / shape creator

/ / shape in itia lizer
/ / expand the shape;
/ / set the shapes color
/ / load shape from disk
I I save shape to disk

void s ca le (flo a t ,flo a t= l.0 ,f lo a t= l.0); / / Main scaling

void scalex(float fx)
{ s ca le (fx ,1 .0 ,1 .0); }

void scaley(float fy)
{ s ca led ,0 ,fy ,l .0) ; }

void scalez(float fz)
{ s ca le d .0 ,1 ,0 ,fz) ; }

void rotateabout(in t,in t,in t);
void rotate(int a)

{ rotateabout(0,0,a); }
void rotateaboutxdnt ,int ,in t) ;
void rotatex(int a)

{ rotateaboutx(0,0,a); }
void rotateabouty(int,int, in t) ;
void rotatey(int a)

{ rotateabouty(0 ,0 ,a) ;}
void m ove(int,int,int=0);
void m oveto(int,int,int=0);

/ / Scale up/doun x Values

/ / Scale up/down y values

I I Scale up/dosn z values

I I Rotate about point in Z Dir
/ / Rotate about origin
/ / in Z Dir
I I Rotate about point in X Dir
I I Rotate about origin
I l in X dir
/ / Rotate about point in Y Dir
/ / Rotate about origin
/ / in Y dir
/ / move shape relative
/ / move absolute

} ;

TEXT.HXX
/ / **********
/ / TEXT.HXX
/ /
/ / DEFIIES THE TEXT OBJECT USED BY THE USER TO DRAW
/ / TEXT 01 THE SCREE!
II
/ / ************

¿include "te x t. def "
/***
/*
/*
/*
/•**

TEXT CLASS

**/
* /
* /
* /

**/

class txt : public shape {
char* strng;
int fontid ;
floa t sx,sy;

public :
vo id dr aw () ;

txtO
{ in itshape(l);

p [0].8 e t(0 ,0 ,0);
strng “ (char*) MULI.;
sx=sy=l.0;
fontid =0;}

/* tx t (in t x=0 ,in t y=0 , in t z=0)
{ in its h a p e (i) ;

p [0] ,s e t(x ,y , z) ;
strng = (char*) MULL;
sx=sy=l.0 ;
fo n tid = 0 ;}

I I text string to b« writtc
/ / font to bo usod
I I scaling factors

*1

>;

txt() { i f (! (stmg=(char)HULL)) delete strng;}
void settxt(in t.point , chsu:*) ;
void se ts ca le (flo a t ,f lo a t);

»include "stdinc.hxx" / / Include Definitions
•include "text.hxx"

extern void wrchar(int.point,ch a r* .flo a t.flo a t);

void tx t : : settxt(in t fname,point pt, char* str)

p[0] = pt;
i f (! (strng==(char*)HULL))

delete strng;
stmg= strdup(str) ;
fontid= fname;

>

void tx t : :8etscale(float ssx, floa t ssy)
{
sx= ssx; sy= ssy;

>

void txt::draw ()
{

wrchar(fontid,p[0],strng,sx.sy);
>

w .cxx
♦include "stdinc.hxx"
«include "seglist.hxx"
«include "image.hxx"

float* vieuset: :savemats()
{
float* p l,*p;
pl= p = new floa t [36] ;
memcpyC(void *) p i,(vo id *) mat, 48);
p i+=12;
memcpy((void *) p i,(vo id *) rmat, 48);
p i+=12;
memcpy((void *) p i,(vo id *) vmat, 48);
return p;

>

void viewset: :retmats(float* p)

float* p i;
Pl= P !
memcpy((void *) mat,(void *) p i, 48);
pl+=12;
memcpy((void *) rmat,(void *) p i, 48);
pl+=12;
memcpy((void *) vmat,(void *) p i, 48);
delete p;

>

/ / size o f floa t * 12 members

/ / size of flo a t * 12 members

/ / size of flo a t * 12 members

/ / size of floa t * 12 members

I I size of floa t * 12 members

I I size of floa t * 12 members

/**/
/* UIIDDtf CLASS PROCEDURES AID FUICTIOIS * /
/**/

ACTIVATE(window);

void window::setautosave(int o)
{

autosave = o;
>
void window::open()
{

i f (id == 0) {

i f ((autosave == o f f) I I (imptr.save(tvxmin,tvymin,tvxmax,tvymax))) {
desensitize 0 ;
tscrxmax=scrxmax;
tscrymax=scrymax;
tscrxmin=scrxmin;
tscrymin=scrymin;
scrxmax=tvxmax-l;
scrymax=tvymax-l;
scrymin=tvymin+l;
scrxmin=tvxmin+l;

I I reduce by one in case the
/ / viewport is framed

I I Save old pointer
I I A ll shape operations directed to window
I I update any vports necessary
/ / Draw anything in the window

sensitize() ;
>

void window::c lose ()
{

i f (id ==windowopen A t id !=0) {
scrxmax=tscrxmax;
scrymax=t scrymax;
scrxmin=tscrxmui;
scrymin=tscrymin;

windowopen ++;
id = windowopen;
sav = shape: :viewptr;
shape: : viewptr = th is ;
updatevportsO;
refreshO ;

w.cxx 171

view set: ¡se t»p o rt() ;
i f (autosave *» on)

im ptr.restore() ;
windowopen— ;
shape: : viewptr ■ sav;
id ■ 0;
updatevportaO ;

>
}

void window:¡refresh()
{

window * t ;

t = th is ;

i f (v is ib le A t (vindowopen == id) t t (id != 0)) {
shape:: viewptr *= t h i s ;
sh a p e lis t , r e s e t ();
v iew set: :s e tv p o rtO ;
i f (au toclear)

view set: : erasevport() ;
i f (frame)

view set: ¡framevport() ;

v iew set: ; cur_screen->review ();
>

}

void w indow :¡setvport(float a ,f lo a t b , f lo a t c , f lo a t d)
{
i f (id ==0) {

viewset: : setvp ort(a ,b ,c ,d);
>

void window: :movevport(float a ,f lo a t b)
{

i f (id ==0) {
view aet::m ovevport(a,b);

>
>
void window::movevportto(float a ,f lo a t b)
{

i f (id ==0) {
viewaet: :m ovevportto(a,b);

}
>

Bibliography

172

BIBLIOGRAPHY 173

[ACAD] AutoCAD — a computer aided design package
A u t o d e s k I n c o r p o r a t e d , 2 3 2 0 M a r in s h ip W a y , S a u s a l i t o ,
CA 94965

[BCOX86] Object oriented programming - An evolutionary Approach
B r a d J . C o x
A d d i s o n - W e s l e y , 1 9 8 6

[BOOC86] Object Orientated Development
G. B ooch
IE E E T r a n s a c t io n s o n s o f t w a r e e n g in e e r in g ,
V o l . SE-12, N o . 2, F e b r u a r y 1986

[BOZE85] A Geometric Modeller for Turbomachinery Applications
B. O z e l l & R . C a m a r e r o
CAD c e n t e r , E c o l e P o l y t e c h n i q u e , C .P . 6 0 7 9 , S u c c u r s a l e
A, M o n t r e a l , H3C 3A7, C a n a d a .

[BR0086] No silver bullet - essence and accidents of software engineering
F .P . B r o o k s

In f o r m a t io n p r o c e s s in g 86 , E l s e v ie r S c ie n c e P u b l is h e r s

B .V . (N o r t h -H o l l a n d) ,1986

[BUZZ85] Object-based computing and the Ada programming language
G. B u z z a r d a n d T . M u d g e
C o m p u t e r , V o l 1 8 ,N o . 3 ,p g 1 2 ,1 9 8 5

[DINF79] Proposal of Standard DIN 66 252 Information Processing Graphical
Kernel System (GKS), Function Description (1979)
Deutsches Instuit Fur Normung

[FOLE84] Fundamentals of interactive computer graphics
J .D . F o l e y , A . V a n D am
A d d i s o n - W e l s e y P u b l i s h i n g C o m p a n y ,1986

[GUED76] Methodology in Computer Graphics
R.A. G u e d j , H.A. T u c k e r s (EDS.)
P r o c I F I P WG 5.2 W o r k s h o p S e i l l a c I, M a y 1976, N o r t h -
H o l l a n d , A m s t e r d a m (1979).

[GUTT78] The Design of Data Type Specification (Current Trends in Program
ming Methodology. Vol. 4)
J. G u t t a g , E . H o r o w i t z a n d D . M u s s e r
E n g l e w o o d C l i f f s , NJ: P r e n t i c e H a l l , 1 9 7 8 , p g . 200

BIBLIOGRAPHY 174

[HOOP89] HOOP 2.03 (Hierarchial Object-Oriented Picture Systems)
It h a c a S o f t w a r e

9 0 2 W e s t S e n e c a S t ., It h a c a , N e w Y o r k 14 8 5 0

[HOPG86] Geometric Modelling and Computer Graphics (techniques and appli
cations)
F .R .A H o p g o o d

R u t h e r f o r d A p p le t o n L a b o r a t o r y , U n ic o m T e c h n i c a l
P r e s s , 1986

[JOHN63] T .E . J o h n s o n ,M a s s a c h u s e t t s I n s t i t u t e o f T e c h n o l o g y
Sketchpad III, A Computer Program For Drawing In Three Dimensions
Interactive Computer Graphics, IEEE Computer Society

[META88] M etaW INDOW - Graphics Functions Library
MetaGraphics Software Corporation, Scotts Valley, CA, 1986

[MACA88] Object-Oriented Programming for the Macintosh
K . SCHUMUCKER
H a y d e n B o o k s , 1 9 8 8

[MEYE81] Towards a two-dimensional programming environment
B . M e y e r
R e a d in g s in A r t i f i c i a l I n t e l l i g e n c e . P a l o A l t o , C A : T i o g a ,
1981 , PG. 178

[MYERSW] Interactive Computer Graphics
W . M y e r s

[NEWM79] Principles of interactive computer graphics
W .N . N e w m a n , R.F. S p r o u l l
M c G r a w - H i l l B o o k C o m p a n y ,1 9 7 9

[PARN72] On the criteria to be used in decomposing systems into modules
D .L . P a r n s a
C o m m u n ic a t io n s ACM, D e c e m b e r 1972

[PFOR87] PforC e++ - libraries for C + +
N o v u m . O r g a n u m In c .
P h o e n ix T e c h n o l o g ie s Lt d ., 1 9 8 7

[SHAW84] Abstraction techniques in modern programming languages
M .S h a w
I E E E S o f t w a r e , V o l . l . , N o . 4 , p g 10 , O c t 1984

BIBLIOGRAPHY

[SPROUL] An Approach to graphics system design
W .M . N e w m a n & R.F. S p r o u l l

[STRa86] A better C ?
B ja r n e St r o u s t r u p

B y t e A u g u s t 1 9 8 8 , M c G r a w -H i l l , p g . 2 1 5 -2 1 6

[STR086] The C + + reference manual
B j a r n e S t r o u s t r u p
A d d i s o n - W e l s e y 1986

[SUTHER] Computer Displays
I.E . S u t h e r l a n d

[WNEW79] Principles Of Interactive Computer Graphics
W .M . N e w m a n , R . F . S p r o u l l
M c G r a w - H i l l B o o k C o m p a n y , 1979 ,p g 80

