ADDENDI.'

NOTES ON TUE COLLECTION OF IRISI DATA

 readily available Also in andy instances tne access to records whichrecordedtheageofthepopulationandthenugorof deaths wfthin each age groug of tae ropalation althoastavailable were recorded 1 n different reports. "ore details of the specific difficulties encountered are descirbed in chaptex 4 One must also point out that often the cencus figures were recorded at lryegular intervals (usually every 5 years but thas was not almays thecase) and that themostrecentfigures available on the numbers in each age group were to be foundin the 1981 census reports

The collection of data on the proportions imanised in each age
 to re, novever $工$ fas very fortunate to have received inforgation and assistance from Cominuity Care irea 8. Tinis area tept details on the numbers of children vacinated, the age of eachehild vaccinated and the total number of children in each age group.
 1986 Community Care Area 8 had all the above data commputerised for thosechildren inthe General medical Service (G.M.S.) It remained for me to computerise the remaining cases of non G. M.S.
data Ehis was achieved by coding, for usewitinthestatistical pačage SPSSX, all mmunisations forns returned by doctors in tín area In order to be paid for adolitsteging the vaccine all doctors na. to coaplete ala retazi treseforas (A coyy of one
 transcravi onto a coapater data eqtry suet (sze attacaed) \quad ata
 4ay

As the total numbers of children in eact age group was available I then estimated the proportions vaceinatedineachof theage
 it not for the excellent records kept withan Comminity Care Area 8.

I was very fortunate that \quad could estimate the exact proportions susceptible to measles infection prior to mass mmanisation. This Was die to the fact that unvaccinated blood samples were availablein the Departineat of lledical Macrobiology in University College Dublin From the records made available tome I drew a
 treages of 1 and 13 years \quad yese blood sazples rere then rested using the Critical Flicxem Fusiontest (cra) for aeasles antibodies. The proportions susceptible in each of the age groups was then derived from the results of these tests. \quad should point ont that althoughthis is thebestway to estamate theproportion susceptible to measles it is not almays possible die to the fact other countries have been immonising for several years and that unvaccinated blood is unavailable. In such cases the proportion susceptiblemot be estimated from cases notifications, these
however are notoriously unreliable
As has been said ajove taecollection of data can be a very laborious and tame consuming task, especially where records are scarce oz straly ron zaistant ratreforef aust stress to all
 recoras (esjectally of a̧e) I aust also castior otiar aatheaaticians taat worisig aith aataematiacal godels for diseasestingelandean be very difficult, outinast say, also very interesting, rewarding and lope of some benifit tothe community

NATIONAL INSTITUTE OF HIGHER EDUCATION

SCHOOL OF MATHEMATICAL SCIENCES
MSc THESIS

A Mathematical Model for Measles Epıdemıcs $1 n$ Ireland

Catherıne Comıskey B A (Mod)

Supervisor
Prof A D. Wood
School of
Mathematical Sciences

This thesis is based on the candidates own work

May 1988

ACKNOWLEDGEMENTS

I wish to sincerely thank my supervisor Professor A D Wood for his support and encouragement throughout the research for this thesis I also wish to acknowledge my debt to him for arranging profitable meetangs and discussions with the following people Dr 2 Johnson, Computer Section, Eastern Health Board, Jame's Street, who gave me every assistance while I was collecting data on immunisation in Community Care Area 8; Dr D Reynolds, who assisted me with helpful suggestions for Chapter 3, Professor Irene Hillary and her staff, Department of Medical Mıcrobiology, University College Dublin, who analysed the blood samples discussed in Chapter 2 and Smith, Klyne and French who funded part of this research

Finally, I wish to thank Ms Geraldine Comyn for her excellent work of typing the manuscript.

```
For their continued support throughout
    my education
```

The alm of this work is to establish a matnematical model for measles epidemics and to predict levels of vaccination coverage requiret in Ireland $1 n$ order to eradicate tne disease The emphasis througnout has oeen to derive the parameters of the model using data collected in Ireland. To achieve this a nonlinear differential equation model first oroposed by Anderson R M. and May R.M. has been adopted and adjusted to meet our application

In Chapter l we introduce the concept of mathematically modelling the dynamics of an infectious disease and we also propose a simple constant parameter model We then move on ln Chapter 2 to discuss what is known as "the force of the infection". This is then calculated for Ireland by testing over 100 blood samples for measles antibodies.

In Chapter 3 we estimated the Irish interepidemic period using Hopf's bifurcation theorem. In Chapter 4 we move on to the more detailed model with age dependence. We also estimate the age dependent survival rate $\mu(a)$ for the Irish population.

Finally, in Chapters 5 and 6 , we look at 1 mmunisation and the results predicted by the model. In Chapter 5 we derive $c(a)$, the Irısh age dependent vaccination rate This is accomplished by computerising over 4,000 immunisations.

We also predict how the reproductive rate, R_{o} of the disease will change with vaccination. In Chapter 6 We numerically analyse the model with the Irlsh age dependent parameters and we predict the levels of vaccination required in order to eradicate measles in Ireland.

CONTENTS

Page Number

Chapter 1

Introduction to Epidemiology and
Mathematical Modelling .

Chapter 2

```
On the Force of Infection }\lambda(a)\mathrm{ and
Estimation Eor Irısh Data .. ... ... ... }2
```


Chapter 3

On the Interepidemac Period and
Estimation of T for Measles in Ireland. .

Chapter 4

> Introducing the Age Dependent Yodel and
> the Mortality Parameter $\mu(a) \quad$.

Chapter 5

On Immunisation and Estimation of $c(a)$, the
Vaccination Rate in Ireland 73

Chapter \quad
Numerical Results, Conclusions and
Recommendations 91

Preface

This research was motivated by the implementation of the measles vaccination program in Ireland in October 1985 At that time there was much discussion and confusion over the safety and efficacy of vaccines With this in mind Professor Alastair Wood, (Wescan Professor of Applied Mathematics), N I H E Dublin, and I decided to investigate the effects of the measies vaccination program on the Irish population.

This work was alded by the works and papers of R.M Anderson and R M May They have shown, by many practical examples how mathematics can model endemic disesases such as measles and can accurately predict future epldemıological parameters Throughout this thesis the aim has been to assess these population and epidemic parameters for measles in Ireland These parameters were then inserted into a mathematical model in order to predict. a) future trends in measles epidemics in Ireland and b) the levels of vaccination required in order to eradicate the disease

It $1 s$ hoped that this thesis will stimulate other mathematicians to tackle the problems of epldemlology in a practical way It is also hoped that the results provided in this work will assist those of the medical profession in their difficult task of estimation and prediction of epıdemiolocical parameters

CHAPTER I

INTRODUCTION TO EPIDEMIOLOGY AND MATHEMATICAL MODELLING

Abstract

In the preface we discussed cre motivation Eor this particular research We shall now expand on this and show how matnematical modelling of edidemics has evolved and developed We shall do this by giving, (a) a brief historical outline of mathematical epidemiology and (b) an account of the development of mathematical theories on the spread of epidemic diseases We shall then move on to duscuss some more recent work, namely that of N T.J. Balley, who in a single work (6) describes in detail the mathematıcal basis of the population dynamics of infectious diseases We shall be looking mainly at his work on deterministic models and also at the information on the dynamics of a disease that can be galned from these models Einally we shall move on to introduce a non linear deterministic differential equation model by R. Anderson and R May We shall discuss this particular model in detail and shall see what we can learn from this simple constant parameter model

Eirst recorded accounts of epidemlcs go back as far as the anclent Greeks of approximately $400 \mathrm{~B} C$. Genuine progress in epidemiology was not made until the l9th Century This was due to the research of pasteur(1822-1895) and Koch(1843-1910) both of whom made great progress in the

science of bacteriology Medical and vital statistics were Eirst compiled as early as the lith Century, at this stage at was still to early for any theory of epidemics Also, at this time, the necessary mathematical techniques were themselves then only in the process of jevelopment and no sufficiently precise hypotheses about the spread of disease surtable for expression in mathematical terms had been proposed However in 1760 Danlel Bernoulli used a mathematical method to evaluate the effectiveness of the technique of variolation against smallpox with a view to influencing public health policy. Some curve fitting methods were used by Evans(1875) on the smallpox outbreak of 187l-2, but this met with little success.

By the end of the 19 th century the general mechanism of epidemic spread as ravealed by bacteriologacal research made possible some new developments. Hammer(1906) belelved that the course of an epidemic must depend on the number of susceptibles and the contact rate between the susceptibles and infectious individuals. The simple mathematical assumptions made by Hammer are oasic to all subsequent deterministac theories. Hammer by using these simple ideas deduced the existence of periodic recurrences These ideas were later taken up by Soper(1929)(20). In the meantime Ross(1911) was working out a deterministic matnematical model for the transmission of malaria. Erom his model we can deduce the future state of the epidemic given the inital

```
numbers of susceotiole and infectious individuals, togetiner with the attack, lecovery, birth and death rates For the first time it was possible to use a well organised mathematical theory as a research tool in epidemiology
```

More detailed and elaborate mathematical studies of the same type were later developed by Kermack and McKendrick(1927-1939). These authors also considered the problems of endemic diseases. Their most important result was the well known threshold theorem, according to which the introduction of infectious cases into a community of susceptibles would not give rise to an epidemic outbreak if the density of susceptioles was below a certain critical value. If, on the other hand, the critical value were exceeded, then there would be an epidemic of sufficient magnitude to reduce the density of susceptibles as far below the threshold as it originally was above. We shall look closer at this critical value or threshold later in thas chapter.

Work specifically associated with measles was carried out by Soper(1929). With his deterministic model he made tne very important discovery that the basic assumptions entailed, as far as recurrent epidemics were concerned, a damped train of harmonic waves. Publıshed data on measles although exhibiting marked varlations in incidence from year to year showed no tendency to damping we shall be looking at the
interemicemac period of measles incidence in Ireland later in Chapler 3 Eirst, let us examine some of the work of Bailey in, "The Mathematical Theory of Infectious Diseases", first puplished in 1957,(6)

In the above work Bailey introduces a simple deterministic model for recurrent epidemics. He models common infectious diseases such as measles, diseases which are really endemic, that is they are constantly with us although often presenting considerable fluctuation in prevalence Bailey introduces a basic deterministic model, which under appropiate conditions yields a steady state about which natural periodic oscillations are possible. However these oscillations are damped in contradiction with observed epidemiological phenomena. This as we have seen was farst observed by Soper

Bailey considers a community of J individuals comprising of at time t, X susceptibles, Y infectives in circulation and Z individuals who are isolated, dead or recovered and immune. Thus $X+Y+Z=N$. The infection rate is B and the recovery rate is γ so giving $B X Y \Delta t$ new infections and γ^{Y} Δt removals in time Δt He further assumes that there is a continuous stock of new susceptibles. The basic set of differential equations is given by

```
dt = - BXY
```

dY
$d t=B X Y-\gamma^{Y}$
d 2
$d t=\gamma^{Y}$

As the first two equations do not depend on 2 we can consider the system
dX
$\mathrm{dt}=-B X Y$
$d Y$
$d t=B X Y-\gamma Y$

Erom this we can determine $X(t)$ and $Y(t)$ and we can obtain
$Z(t)$ from the fact that $N=X(t)+Y(t)+Z(t)$

We have from system (1.2)
$\underline{d Y}=\underline{d Y} / \underline{d X}=B X Y-\gamma Y=-1+\gamma / B X$
$d X \quad d t / d t \quad-B X Y$
whicn when separating the variables and integrating gives

$$
\begin{equation*}
Y(x)=y_{0}+x_{0}-x+\gamma / B \ln X / x_{0} \tag{array}
\end{equation*}
$$

where X_{o} and Y_{o} are the initial numbers of susceptibles and infectives and $p=j / B$ is the removal rate $A s$ we can see from figure (1 1) $Y(x)$ is an increasing function of x, that is $d Y / d X>0$ for $x<p$ and is decreasing for $x>p$ also $Y\left(X_{0}\right)=Y_{0}>0$ Hence there exists a unique point X_{u} with $0<x_{u}<x_{o}$ such that $Y\left(x_{u}\right)=0$
Since for $y=0, y^{\prime}=x^{\prime}=0$ then the equilibrium points lie on the x axis. The conclusions drawn from this analysis and from figure (1.1) are that an epidemic will occur only if the number of susceptibles in a population exceeds the threshold value $p=\gamma / B$ and the disease dies out only for lack of infectives and does not stop for lack of susceptibles This leaves us at the Kermack and Mckendrick thresnold theorem, proof of which can be found in Baxley(6) or Braun(8).

In describing a deterministic model for the endemic measles infection Bailey returns to the model described above He introduces a birth parameter μ so giving $\mu \Delta t$ new susceptibles in time Δt. He takes the population N to remain constant by assuming that the new susceptibles are balanced by an appropriately defined deatn rate Constructing the simple model he concentrates on the groups of susceptibles and infectives making the further assumption that the death

ILLUSTRATION OE THE BASIC THRESHOLD THEOREM

Figure (l l) showing the trajectories of the solution curves
of the first order equation $d Y / d X=-1+\gamma /(\beta X)$

```
rate of susceptibles as nejligible comoared to taat of the
``` infected population This is equivalent Lo assuming that on average the deaths of removed individuals are just balanced by the births of new susceptioles These assumptions lead to the following set of differential equations
\(d x=-B x y+\mu\)
dt
\(d y=3 x y-\gamma y\)
\(d t\)

By equating the differential equations to zero we find the equilibrium values \(x_{0}=Y\)

B

The equations for small departures from these equilibrium values are obtained by writing \(x=x_{o}(1+u)\)
\[
\begin{equation*}
Y=Y_{0}(1+v) \tag{array}
\end{equation*}
\]
and substituting these into our system (1 4) above gives
\(\sigma \underline{d u}=-(u+v+u v)\)
\(d t\)
\(r d v=u(1+u)\)
\(d t\)

\section*{and \(u^{2}\)}

By neglecting the oroduct \(1 v_{n}\) and eliminating \(u\) from the equations we obtain the second order differential equation 1n v,
\(\left.\frac{d^{2} v}{d t^{2}}+\frac{(1}{\sigma}\right) \frac{d v}{d t}+\frac{(1) v}{5 r}=0\)
which has the solution
\(v_{1}=v_{0} e^{-t / 2^{5}} \cos \xi t \quad\) where \(\xi=\left(\frac{1}{\sigma_{i}}-\frac{1}{4 \sigma^{2}}\right)^{1 / 2}\)
for a suitably chosen origin of time. We then obtain the solution for \(u\) given oy \(u_{l}=v_{o}(r / \sigma)^{1 / 2} e^{-t / 2 \sigma}\left(\cos \left(\xi t+\psi^{\prime}\right)\right.\) where \(\cos \psi=-1(r / \sigma)^{1 / 2} \quad 0 \leqslant \psi \leqslant \pi\)

2
These linearised solutions involve damped harmonic trains of waves with period \(\frac{2 \pi}{5}\). Soper belleved that the allowance for an incubation period of 2 weeks, as is the case with measles, would remove the damolng This, however, was found to be incorrect An important consequence of Baileys work is that while the additional. assumption of a constant fresh supply of new susceptibles accounts for the epidemic waves, it does not explain the damping down to a steady endemic state, which is not in accordance with observed epidemiological data we shall be looking at the Irisn interepidemic period in Chapter 3

\begin{abstract}
Moving ahead to some of the more recent work 17 mathematical epidemiology we shall now study tie deterministic models proposed by \(R M\) Anderson and \(R\) iay, (1,2,3,4) They address many of the 1 mportant epidemılogical questions which still remain to be answered For example, what proportion must be immunised in order to eradicate the disease What reduction in disease incidence is to be expected given an age specific vaccination schedule? What is the effect of vaccination on the average age at which individuals acquire infection and on the time between epidemacs (termed the interepidemic period)? Anderson and May draw from both deterministic modelling theory and from the data that is avallable to them in England and Wales to answer these and other related questions. We shall consider their work in relation to the Irish situation and Irısh data We shall see what knowledge of the aetiology of measles \(1 n\) Ireland \(i s\) to be found from an adaptation of one of their simple deterministic models.
\end{abstract}

In order to devise a mathematical model describing the dynamics of measles Anderson and May make several assumptions, these are as follows:
(1) The population is divided into discrete classes where \(X(t)=\) the number of susceptibles at tame \(t\), \(H(t)=\) the number of those who are infected sut not yet infectious,
\(Y(t)=\) the number of infectious ans \(Z(t)=\) the number of recovered or immune
(2) The size of the population (or density) \(N\) remains roughly constant on a time scale appropriate to the pathology of the disease or at least changes on a time scale long compared with other time scales of interest. This is a reasonable assumption for the Irish population as can be seen from figures(1.2) Note also that \(N=X+H+Y+Z\). This assumption corresponds to the assumption that the net input of susceptibles into the population by birth is rouginly equal to the net mortality \(\mu N\), where \(\mu\) is the death rate and life expectancy is \(1 / \mu\).
(3) The net rate at which infections are acquired is proportional to the number of encounters between susceptible and infectious individuals, BXY B is called the transmission coefficent

FIGURE \(12(6)\)
VARIATION IN POPULATION FIGURES IN THE 5-9 AGE GROUP OVER THE PERIOD 1926 - 1981

FIGURE \(12(\alpha)\)
variation in population figures in the 15-19 AGE GROUP OVER THE PERIOO 1926-1981
POPULATION \(\times 10^{3}\)

(4) Individuals pass from the latent state to the infectious state at a per capıta rate \(\sigma\) (such that the average latent period \(1 s 1 / \sigma\)) and recover to \(j 01 n\) the \(1 m m u n e\) class at a per capita rate \(\gamma\) (where 1/ \(\gamma\) is the average infectious period) Estimates for these constant parameters are set out in table (1 1) below

Table 1.1
\begin{tabular}{lcc}
\hline Infectious & Latent Period & Infectious Period \\
Disease & \(1 / \sigma(\) days \()\) & \(1 / \gamma(\) days \()\) \\
\hline Measles & 6 to 9 & 6 to 7 \\
\hline
\end{tabular}
(5) Immunty \(1 s\) lifelong. This is the case with measles
(6) Finally we assume homogeneous mixing

It is important to note at this stage that the assumption that the parameters \(\beta, \sigma, \gamma\) and \(\mu\) are simple constants is artificial but these parameters used as such in a time dependent model can provide useful and illumanatang results. Using these assumptions we construct a set of four first order non linear differential equations,
\(d t=\mu N-\mu X-3 X Y\)
dH
dt \(=3 X Y-(\mu+\sigma) H\)
\(d Y\)
\(d t=\sigma H-(\mu+\gamma) Y\)
\(d Z\)
\(d t=\gamma^{Y}-\mu Z\)

Adding all four equations gives \(d N=0\), corresponding to \(d t\)
the original assumption that iv is constant we also note that this model does not incorporate any vaccination program that may be in operation. This is the case for Ireland from October 1985. We shall see in Chapter 5 how the above model can be developed to include such a program

A disease such as measles will maintain itself within a population provided the reproductive rate \(R\), of the infection is greater than or equal to unity. This reproductive rate is defined as the expected number of secondary cases produced by an infectious individual in a population of \(X\) susceptibles. If \(R<1\) the disease will die out even \(1 f\) there
are susceptible peozle in the community this concept of the reoroductive rate is also discussed by Dietz(10)

For the time dependent model above we define
\(R=\) \(\sigma B X\)
\((\sigma+\mu)(\gamma+\mu)\)

This definition is biologically intultive for we know that secondary infections are produced at a rate of BX, (transmission coefficent by population of \(X\) susceptibles) throughout the expected lifetime, _l, of an infectious
\[
\gamma+\mu
\]
individual. Of these a fraction, \(\sigma\), will survive the \((\sigma+\mu)\)
latent period to become the second generation of infectious individuals.

We have said that the reproductive rate must exceed unity for the disease to establish itself within a community That is to say that each infectious individual must infect at least one susceptible This requirement is equivalent to the criterion that the population of susceptibles must exceed some threshold density, that is \(X>N_{T}\). This has been discussed in great detail by Waltman (19) We seen from (1 12) that \(N_{N}\) is defined as
\[
\begin{equation*}
N_{T}=\frac{(\gamma+\mu)(\sigma+\nu)}{B \sigma}, \tag{113}
\end{equation*}
\]
we can now exoress equation (1 12) above
as \(R=\underline{X}\).
\({ }^{\mathrm{N}} \mathrm{T}\)
For measles in developed countries the duration of the latent and infectious periods, \(1 / 6\) and \(1 / \gamma\) is of the order of a few days while \(1 / \mu\) is of the order of approximately 70 to 75 years

Under these carcumstances equations (1.12) and (1.13) above can be approximated as \(R=\frac{B X}{\gamma}\) and \(N_{T}=\underset{B}{\gamma(1)}\). We note here that the same threshold valve is derived in Bailey's work a oove However we cannot as yet find estimates for these parameters because of the difficulty in estimating the transmission coefficent, B.

We now introduce the important concept of the basic reproductive rate of an infection, denoted \(R_{0}\). This is introduced in order to illuminate further the ideas discussed above. For a directly transmitted viral infection \(R_{o}\) is defined as the average number of secondary infections

\section*{Footnote}

producej when one infectious individual is introduced into a population where everyone is susceptible Equivalently it may be defined as the value of \(R\) in a disease free population The value of \(R_{o}\) depends both on blological factors relatea to the aetiology of the infection and on environmental and social factors, having to do with contacts among susceptible and infectious individuals.

Anderson and May (2) derive some interesting relations between \(R_{o}\) of an endemic infection such as measles and the epidemiological parameters. Parameters are the fraction of the population that is susceptible and the average age of first infection. These they derive under the assumption they call 'weak homogeneous mixing' This says that the rate of appearance of new infections is linearly
proportional to the number of susceptibles \(X\). In their model the age structure is included, so that \(X\) is now a function of the two variables, age, a and time, \(t\) This is in contrast to what they call the assumption of 'strong homogeneous maxing', which assumes that the rate is proportional to both \(\bar{X}\) and \(\bar{Y}\), that is \(B \bar{X} \bar{Y}\) Where \(\bar{X}\) is defined, as \(\bar{X}(t)=\int_{0}^{\infty} X(a, t) d a\)
the total number of susceptioles and \(\bar{Y}\) is similarly defined.

\footnotetext{
Under the assumption of weak homogeneous mixing Anderson and llay argue as follows As the infection becomes
}
```

established the fraction of the Dopulation who remain
susceptible will decrease The net fraction susceptidle may
be denoted }\overline{x}\mathrm{ , where }\overline{x}=\frac{\overline{X}}{\overline{N}}\mathrm{ .
On average, under the assumption that the rate of appearance of new infections is linearly proportional to the number of susceptibles, the number of secondary infections will be diminished below the number occuring when all are susceptible by the factor $\bar{x}$ That $1 s$, the value of the effective reproductive rate $R 1 s^{*}$ $R=R_{0} \bar{x}$

If an infection is established at roughly steady equilibrium value, the effective reproductive rate will be unity. This is because at equilibrium each infection on average produces exactly one secondary infection This common sense result has been established rigorously by Nold (17) in 1979. Therefore, at equilibrium, $R_{o}$ and the fraction susceptible $\bar{x}$ are related by•
$R_{0} \bar{x}=1$

This is a very useful result, for if the equilibrium fraction of the population who are susceptible can be determined from sereological data or otherwise we can use equation (l 18) above to estimate $R_{o}$. We have established that at equilibrium $R_{0} \bar{x}=1$ In deciving this we have
made no assumptions about now individuals acquire infection At equiliorium before vaccination, susceptibility is lost only by natural infection, at equilıbrıum after a vaccination program is in place susceptibility can be lost either dy immunisation or by acquiring tine infection Provided no other social or environmental changes have taxen place $R_{o}$ will remain unaltered and equation (l.18) provides the surprising conclusion that the fraction of the population who are susceptible to infection will remain the same after a vaccination program has been implemented as it was before.

We shall explore further estimates of $R_{o}$ and relate this parameter to Irish data in our next chapter on $\lambda$, the force of infection. We shall demonstrate the relationships between $\lambda, A$, the average age of first infection and $R_{0}$. We shall also see, in our chapter on mortality, the effect that the Irish mortality curve has on $R_{0}$

ON THE force of infection $\lambda(a)$ and estimation FOR IRISH DATA

```
We shall now discuss the estimation of age related rates of infection from case notification and sereological data, with particular emphasis on estimating the age related rate of infection or force of infection of measles in Ireland This we shall estimate dy means of a serological survey.
```

In a study of the transmission dynamics and epidemiology of measles or any such viral or oacterial infection of man, case reports and sereological data stratified according to age are an important source of information. Because the dimensions of age and time are equivalent, age-related changes can reflect temporal changes in the rate or force of disease transmission within a community Data from case reports have many limitations one of which is a possible age-related bias in case reporting It is believed that the probability of a case being reported in the very young is higher than that for the adult age class. Data from age stratified sereological surveys carried out before the implementation of a vaccination program can provide accurate information on the proportion of 1 mouses

```
 One of the earliest serological surveys was carried out
by Collins*in 1924 and again in 1929 His analysis was
```

* Collins, so (1929)

Age incidence of the common communicable diseases of children us Public Health Reports wt
based on an age specific "incidence rate" This was defined as the number of reported cases per unit of $t i m e$ in a given age class, divided by the total number of individuals in that age class Today this is termed the age specific "attack rate" and 1 s often defined per 1,000 head of population This statistic has many limitations as it tahes no account of the numbers in each age class who are actually susceptible to infection. A precise measure of the rate at which susceptibles acquire infection was first proposed by Muench (14) in 1959. He employed simple mathematical models to mirror age related changes in the proportion of individuals who had experienced infection Muench used a parameter termed "the force of infection" defined as the instantaneous per capita rate at which susceptible individuals acquire infection It is this force of infection that we shall estimate for measles in Ireland. This in turn will lead us to a further estimate of the previously defined parameter, $R_{o}$

It is both interesting and illuminating to see how Muench developed the 1 dea of "a force of infection" as the concept can be difficult to understand. Muench draws an analogy between a catalytic process in chemistry and the individuals in a population The simplest picture of a catalytic process in chemastry involves molecules of an original substance, this, he says, may be equated with individuals in a population that has not yet been in contact

```
with an infective force In chemistry, the original
molecules are subjected to a contact with molecules of a
catalytic substance, a contact between the two implies the
creation of another substance Similarly the uninfected
Individuals of a population can be conceived as subjected to
a force of infection which changes them to infected
Individuals. The basic rate at which molecules are changed
depends on -
(a) the relative number of molecules of catalyst and (b) the number of contacts made by each per unit time. Thus (a) and (b) make a force which can be expressed as the number of effective contacts per unit time. The force of infection acting on the population can similarly be measured in terms of effective contacts per unit cime (usually a year) per individual "Effective contact" here has the meaning used by Wade frost a contact sufficient to produce infection \(2 f\) the subject is susceptible
```

Muench proposes the following hypothesis in order to derive mathematically the force of infection we begin with a quantity of unchanged molecules or individuals This quantity we shall make equal to 1 and deal wath the fraction changed at any time t. This fraction we designate $y$ so that l - $y$ is the relative amount still left unchanged at time t This then 15 the part on which the catalytic or infective force can still work, at the rate of $r$ effective contacts per individual per unit of time. The speed at which the
$d y=r(1-y)$
dt

This is a simple linear differential equation which has the general solution
$y=1+c e^{-r t}$.
$I_{f}$ we substitute $Y=0$ and $t=0(1$ e starting at time $=0)$
we have. $y=1-e^{-r t}$.

This form of the equation describes the expected behaviour of a group of molecules, or persons, starting entirely unchanged, or susceptible at the beginning of observation or at birth (when $t=0$ ) and exposed to a continuous bombardment of catalysis or infection a constant rate of reffective contacts per individual per unit time.

In order to transfer the catalytic picture to a model of infection acting on a population it 15 necessary to include some assumptions, namely
(a) The population is entirely susceptible to infection at blrth
(b) A constant force of infection to which this population is exposed
(c) Evidence which will show that infection has tahen place, allowing the estimate of $y$, or the fraction infected at any time $t$ Ihis may consist of positive histories or the results of laboratory findings

With regard to measles, assumption (a) is unfulfilled as ut $1 s$ belleved that crildren possess their maternal antibodies up to the age of 6 months. However, we shall see that thas can easily be overcome. We shall also see that the force of infection $1 s$ in fact not a constant but rather a function of age. Finally, we shall look at the findings of our Irish sereological survey in order to estimate $y$, the fraction infected and subsequently $\lambda$, (or $r$ ) the force of infection

In order to estimate the Irish force of infection we shall follow some guidelines set out by B.T. Grenfell and R.M. Anderson (l2) We have seen from the simple catalytic model of Muench that the proportion susceptible $x(a)$ in age class a 15 given by
$x(a)=\exp (-\lambda a)$

More generally, if the force of infection $\lambda(a)$ is age-dependent then
$x(a)=\exp \left[-\int_{0}^{a} \lambda(s) d s\right]$

$$
\begin{equation*}
y(a)=1-x(a) \tag{array}
\end{equation*}
$$

Equation (25) can be expressed in terms of the cumulative distribution function of age at infection, $F(a)$ (the proportion of a coinort all of whom were susceptible at birth who nave experienced infection (i e. who are immune by age, a), where
$F(a)=1-\exp \left[-\int_{0}^{a} \lambda(s) d s\right]$

To account for maternally derived antibodies in children born to mothers who have experienced the infection, $\lambda(a)$ can be set to zero below a lower age threshold m (This is usually assumed to be in the region of 05 years for measles) We note at this stage that we have succeeded in modifying the 3 assumptions set out by Muench

Muench $(14)$ as we have seen, assumed $\lambda$ (or $r$, as he used) to be constant and independent of host age Griffiths (13) noted $1 n$ an analysis of the age distribution of infection for measles in England and wales that $\lambda$ tends to rise linearly with age between the ages of 0 and 10 years. Anderson and May (1) also discuss the estimation of $\lambda$ as a Iinear function of age In Grenfell and Anderson (12) we see that $\lambda$ can be expressed as a polynomial of degree $K$ where
$\lambda(a)=\sum_{1}^{k} b_{1} a^{1}(m<a \leqq u)$
$\lambda(a)=0 \quad(a \leq m)$
where the upper age limit $u$ denotes human life expectancy or the oldest age class for which data $1 s$ available The lower age limit m represents the age to which a child is protected by the maternally derived antibodies

Table 2.1 below shows estimates for the force of infection from several studies (12). The coefficients were obtained as in Grentell, by assuring a binomial distribution for $F(a)$ and estimating the parameters (the by's) by maximum likelihood

We shall now look at an estimation of $\lambda$ within an Irish context As we have said the proportion infected by age can be derived from two different sources One, case notifications, as we have seen, can be biased, with cases being reported more frequently among the younger age groups. In Ireland there is the further problem in that before the introduction of an extensive publicity campaign and vaccination, measles was not considered to be a serious infection Often children were not attending their G . P especially if more than one child in the household had the infection However, in Ireland we had one major advantage and that was the availability of unvaccinated blood samples Data arising from age-stratified sereological surveys provide information on the proportion of immune In the absence of vaccination such data in principle correspond directly to the proportion of infected

Table 21
Details of the Polynomial Relationships Between Force of Infection and Age of Contacting Measles

Data   Source	Upper   Age   LImit	Polynomial Degree		O	$\mathrm{b}_{1}$		$b_{2}$		3		$\mathrm{b}_{4}$		an Age at tack, Years
$\begin{aligned} & \text { Baltimore } \\ & 1905-15 \end{aligned}$	25	3		00594	00679	-0	00561		000122		--	6	72
$\begin{aligned} & \text { Rural } \\ & \text { 14aryland } \\ & 1908-17 \end{aligned}$	20	4	00	0663	-0.0228		0102		000951	0	000261	9	27
Aberdeen $1883-1902$	15	4		429	-0.325	-0	113		0.0124	0	00042	4	75
England and Wales 1948-68	25	2	-0.	. 0105	0.0864	-0	0411		--		--	4	96
Now llaven   Small   Families	15	2	-1	475	0411		021		--		--	8	01
New Haven Large Eamilies	15	2	-0	261	0.186		0125		--		--	5	51


#### Abstract

The data that we shall use for our astimation of $\lambda$ was collected from childrens' blood samples that were sent to the Department of Medical Microbiology, University College Dublin, for different kinds of tests There was nothing in the nature of these sispected diseases to render the cnildren more or less likely (than the general age group) to have had measles 145 samples were collected All of these samples were dated pre October 1985 (1.e. pre the implementation of the vaccination program) For each sample we found the age and the sex of the child. These samples were then tested for measles antibodies using the CFF test Figure (2 1) shows the age distribution of the samples


We can see Erom figure (2.1) that all samples used were taken from children more than 1 year old. This was to allow for the possible presence of maternally derived antıbodies As there were more samples available for some ages samples were grouped into the following age categories, lyear, 2 years, 3 years, 4 years, the proportion susceptible at ages 5, 6 and 7 years were grouped and the mean proportion susceptible for ages 6 years $1 s$ expressed, ages 8,9 and 10 and 11,12 and 13 were similarly grouped. A table of the grouped proportions susceptible $1 s$ shown in tables 2 below and a plot of these is shown in figures (2).

FIGURE 2.1
SHOWING THE AGE DISTRIBUTION OF NUMBER OF available blood samples


## Table 2.2(a)

Age $1 n$ Years	Proportion Susceptible to Measles
1	037500
2	050000
3	033300
4	0272700
5	0.230670
6	015000
7	033330
8	0.00000
9	0142857
10	0.375000
11	0.33300
12	0.00000
13	000006

Table 2.2(a) showing the proportion susceptible to measles at each age from a sample of 145 bloods.

Table 2.2(b)


1	0.37500
2	0.60000
3	0.33300
4	0.27270
6	0.22916
9	0.17390
12	0.15789

Table 2.2(b) as for $2.2(a)$ but data $1 s$ grouped for ages 5 to 13 years.




#### Abstract

Figures (2) showing the proportion of children susceptible to measles infection in Ireland A sample of 145 bloods was drawn from the records of the Medical Microoiology department at University College Dublin by kind permission of Professor Irene fillary.


We see from Figure (2 2b) that tne proportion susceptible follows a negative exponential distribution from the age of two years. This is as expected from Muencn's original model where he expresses the fraction infected as

$$
y=1-e^{-r t}
$$

with exp(-rt) as the fraction susceptible.

However what $1 s$ very unexpected is the fact that the proportion susceptible is still rising sharply between the age of $l$ and 2 years. This would seem to $1 m p l y$ that the maternal measles antıbodies are stıll present in a large proportion of children at this age or else reflects the fact that measles epidemics are periodic For example, although a child may lose immunity at six months, there may not be a measles epidemic to infect that child for another 1 - 2 years. (See section on the interepidemic period). As it is the policy to vaccinate children at the age of of 15 months it would appear that it is possible for the antibocies in the children's blood to destroy the virus and renaer the child susceptible to measles at a later date we snould
also note that this age group constitutes the iargest number of samples

We now utilise the above data to estimate the force of infection, $\lambda$ We know that the proportion susceptible is glven by
$x(a)=\exp \left[-\int_{0}^{a} \lambda(s) d s\right]$

If we assume a linear force of infection we can fit a function of the form.
$x(a)=\exp \left[r a^{2}+s a\right]$
to the proportion susceptible. Using the method of least squares we have.
$x(a)=\exp \left[0.0012439 a^{2}-0.326783 a\right]$.

Several other methods, including fitting quadratics and cublcs, can be shown not to yield such a close fit.

Note that the data for 1 to 2 year olds was not included in the estimation of this function. From the above estimation of the proportion susceptible we can compute $\lambda(a)$, the force of infection we have

```
\lambda(a) = - 0 0024878a+0 326783.
for 2\leqslant a\leqslant 12
```

This is a linear function with a very small negative slope In Table 23 below we have set out the estimates for $\lambda(a)$ at the varlous ages.

## Table 23

Age, a Years	$\lambda(a)$
2	0.322
3	0.319
4	0317
6	0.312
9	0304
12	0.297

We can see from Table 2 that in Ireland the force of infection is almost constant.

We have said that muench belleved $\lambda$ to be independent of age Griffiths belleved it to rise linearly with age and Anderson and Grenfell belleved that $\lambda$ could be polynomial However, looking at figure 23 we see that $\lambda(a)$ in Ireland $1 s$ almost constant. For measles 1 n England and Wales of 1965 1975, 11 入 (a) was linear as can be seen from figure 24

## $\lambda(a)$ FOR MEASLES

$$
\begin{aligned}
& \text { a (years) }
\end{aligned}
$$

## 3

IN IRELAND

FIGURE 2.4
$\lambda(a)$ FOR MEASLES IN ENGLAND AND WALES 1965-1975


Having estimated $\lambda(a)$ Eor measles in Ireland we now can derive another very important parameter from this estimation The parameter in question 1 s the average age at infection, $A$ This in turn will lead us to furtner estimates for $p_{0}$, the basic reproductive rate, of which we will see more later A 15 given by

$$
\begin{aligned}
A & =\frac{\int_{0}^{a} a \lambda(a) x(a) d a}{\int_{0}^{\infty} \lambda(a) x(a) d a} \\
& =\int_{0}^{\infty} x(a) d a
\end{aligned}
$$

From this we can derive the average force of infection, $\lambda$

$$
\lambda=1
$$

A

If we treat $\lambda$ as independent of age we can relate it to the more observable A. If we know A from previous case studies, we have a rough estimate of $\lambda$ we have from equation
$\left(\begin{array}{ll}2 & 12\end{array}\right)$

$$
\begin{aligned}
A & =\int_{0}^{\infty} \exp \left[-\int_{0}^{a} \lambda(s) d s\right] \\
& =\int_{0}^{\infty} \exp \left[0.0012439 a^{2}-0.326783 \mathrm{a}\right] \mathrm{da}
\end{aligned}
$$

Numerically integrating the above gives us the average age at infection for measles in Ireland, wo have

$$
\begin{aligned}
A & =314 \text { years } \\
& \simeq 38 \text { months }
\end{aligned}
$$

This would appear to se very young in comparison with other European countries The average family size in Ireland being greater than other European countries could also reduce the average age at infection (for example the whole family is infected when the eldest child is exposed to an epidemic at school). In England and Wales the average age at infection was seen to be between 4 and 5 years However, upon further research into regional measles susceptibility surveys carried out in Ireland prior to (1)

October 1985 we find that $M . O^{\prime}$ Boyle carried out a survey in Waterford City, He questioned 2,192 children between the ages of 0 to 16 years he found that $65 \%$ of all cases occured in the preschool group (under 4 years) also $92 \%$ of cases occured before the age of 6. However, what is most interesting about his survey is that he found the mean age of attack to be 41 months, a difference of only +3 months as predicted by our mathematical model and sereological survey.

We have successfully shown that the mathematical model can reflect and predict important epidemiological parameters. In our next chapter we shall discuss the interepidemic period of measles incidence in Ireland and we shall use the mathematical model along with parameter estimates to demonstrate and predict the interepidemic period for Ireland. (1) O' Boyle, M (1985)

IRish Medical Journal, September Vol 78, No 9


#### Abstract

Long term records of measles exhioit marked variation in ancidence from year to year These fluctuations tend to be of a regular nature With measles a major epidemic is experienced every two to three years This interval between epidemics is termed the interepidemic period These fluctuations are influenced by the fact that the number of susceptible children decreases as immunity is acquired by recovering from infection, then the number of susceptibles increases slowly as children are born.


We have seen in Chapter One how compartment models consisting of systems of non linear differential equations can be used to describe the dynamics of the childhood disease measles. We shall now see how the fluctuations in incidence can be found by analysing the equilibrium points of the system and their behaviour. We shall also see how the interepidemic period is related to the parameters that characterise the infection, such as the latent and infectious periods and the average age of infection. Figure 31 shows how the the 2 to 3 year cycle of measles can be seen in data from case notifications in England and Wales

Showing the Number of Cases of Measles in England and Wales from 1940 to 1980 (Note the $2-3$ year interepidemic period)


Figures 3.2 show the fluctuations in the numbers of case notifications in Irish data. The 2 to 3 year cycle $1 s$ not as clear here due to inconsistencies in reporting

For a compartment model to mirror a real oscillating process it must possess stable limit cycle solutions of the equations Also the system must possess at least one physically realistic singular point We shall now examine our compartment model for such properties. The non mathematician may prefer to torn directly to page 53

## FIGURE 3.2a

## SHOWING THE CYCLIC PATTERN IN MEASLES INCIDENCE IN IRELAND FROM 1945 TO 1985



YEAR

FIGURE 3.2b SHOWING THE CYCLIC PATTERN IN IN DUBLIN FROM 1945
measles - Dublin


## MEASLES INCIDENCE TO 1985



```
 We have the system
```

$$
\begin{align*}
& \frac{d X}{d t}=\mu H+\mu Y+\mu Z-\beta X Y  \tag{array}\\
& \frac{d H}{d t}=\beta X Y-(\mu+\sigma) H  \tag{array}\\
& \frac{d Y}{d t}=\sigma H-(\mu+\gamma) Y  \tag{array}\\
& \frac{d Z}{d t}=\gamma Y-\mu Z \tag{3.4}
\end{align*}
$$

The equilibrium points can be found by setting:
$d X / d t=d H / d t=d Y / d t=d Z / d t=0$
This gives us the simple critical point $(X, G, Y, Z)=(0,0,0,0)$.
However we are looking for a physically realistic critical
point. The existence of a limit cycle around the simole
critical point would entail negative values of $X, B, Y$ and $Z$
that is susceptible, infected, infectious and immune.
Looking again at the system of equations we see that
$N=X+H+Y+2$ or $X=N-H-Y-Z$, substituting this
into our system (3.1) to (3.4) we have
$\dot{H}=B N Y-B Y H-B Y^{2}-B Z Y-(\mu+\sigma) H$
$Y=\sigma H-(\omega+\gamma) Y$
$\dot{z}={\underset{i}{i}}_{Y}^{Y}-\mu Z$

> where $E_{1}$ is very small as it contains terms containing $\mu$ which is small in comparison to other terms, also $E_{1}<0$. We note here that $Z$ is positive (and hence so is $f$ and $Y$ ) provided that:

$$
\mu^{2}+\mu \sigma+\mu \gamma+\sigma \gamma
$$

$B>$

$$
\begin{equation*}
\sigma \mathrm{N} \tag{3.10a}
\end{equation*}
$$

$$
>0.00095
$$

Assuming this to be so we now have a physically realistic critical point of the system (3.5) to (37).

We consider the nature of this equilibrium point by looking at the Jacobian matrix of the system above. We have

$$
\underline{J}=\frac{\partial(\dot{H}, \dot{Y}, \ddot{Z})}{\partial(H, Y, Z)}=
$$

$$
\left(\begin{array}{ccc}
-B Y-(\mu+\sigma) & B N-B H-B Z-2 B Y & -B Y  \tag{3.11}\\
\sigma & -(\mu+\gamma) & 0 \\
0 & \gamma & -\mu
\end{array}\right)
$$

(1) The details of this computation may be found on page 55

$$
\begin{align*}
& \text { From (37) we see that at equilibrium } Y=(\mu / \gamma) 2 \\
& \text { and we have in turn from (3) and (3) respectively } \\
& H=\frac{(\mu+\gamma) \mu}{\sigma \gamma} 2 \\
& B=N \sigma \gamma-(\mu+\sigma)(\mu+\gamma) \sigma \gamma=N-\underset{\gamma}{ }+E_{1} \\
& Z=B \sigma((\mu+\gamma) \mu+\mu \sigma+\sigma \gamma) \tag{3.10}
\end{align*}
$$

For simplicity we write the characteristic equation as
$\left|\begin{array}{ccc}a-\lambda & b & c \\ d & e-\lambda & 0 \\ 0 & f & g-\lambda\end{array}\right|=0$
with obvious definitions for $a, b, c, d, e, f$, and $g$
The characterıstic polynominal is a cubic algebraic
equation given by
$\lambda^{3}-(e+g+a) \lambda^{2}+(g a+g e+a e-d b) \lambda$
$+(g d b-g a e-c d f)=0$,
which we write more simply as
$\lambda^{3}+p_{2} \lambda^{2}+p_{1} \lambda+p_{0}=0 \quad$.

We are interested 10 the nature of the roots of the above cubic. For the equilibrium point of the system to be unstable, at least one root of the above cubic must have a positive real part From the Routh-Aurwitz criterion we know that for all solutions of a cubic to have negative real parts three necessary and sufficient conditions must be satisfied they are
(1) $p_{2}>0$
(11) $p_{0}>0$ and
(111) $\mathrm{P}_{2} \mathrm{P}_{1}-\mathrm{P}_{0}>0$

We consider first condition (1) $p_{2}>0$. We have
$p_{2}=3 \mu+\gamma+\sigma+B(\mu / \gamma) 2 ;$
this is positive as all the terms are dositive. Looking at condition (11), $p_{o}>0$, we have $P_{0}=-\sigma B N+\sigma B \frac{(\mu+\gamma)}{\sigma} \frac{\mu}{\gamma} Z+\sigma B Z+2 \sigma B \frac{\mu}{\gamma} Z$
$+\frac{B \mu}{\gamma}(\mu+\gamma) 2+(\mu+5)(\mu+\gamma)+3 \sigma 2$
$=-\sigma B N+\sigma B Z+\sigma \gamma+B \sigma Z+E_{2}$,
where $E_{2}^{(1)}$ is small as it is the collection of terms containing the parameter $\mu$. Also we can show that for current parameter estimate $-1.44<E_{2}<0$. By simple algebraic manipulations we see that $p_{0}>0$ provided $B>\underset{-1}{ } E_{2}=0.00095$ (for current estimates), $\quad \sigma(N+2 E)$

We also know that this is always positive as both $E_{1}$ and $E_{2}$ are small compared to the other terms.

We now wish to consider condition (111) of the Routh Hurwitz criterion, that is, $15 \mathrm{p}_{2} \mathrm{p}_{1}-\mathrm{p}_{0}>0$, to do this we first examine the sign of $p_{1}$. We have
$P_{1}=\mu B Y+\mu(\mu+\sigma)+(\mu+\gamma) B Y+(\mu+\sigma)(\mu+\gamma)+\mu(\mu+\gamma)+$ $\sigma B[H+2+2 Y]-6 B N$

We know that $Y=(\mu / \gamma) 2$, therefore we have:
$P_{1}=\mu B(\mu / \gamma) 2+\mu(\mu+\sigma)+(\mu+\gamma) B(\mu / \gamma) 2+(\mu+\sigma)(\mu-\gamma)+$ $\mu(\mu+\gamma)+\sigma B\left[\frac{[(\underline{\mu}+\gamma) \mu}{\sigma \gamma}+1+2 \frac{\mu}{\gamma}\right] 2-\sigma B N$,

Which we write as,

```
(1) See page 55
```

$D_{1}=\sigma j+\sigma B Z+E_{3}-5 B N$,
where $E_{3}^{(1)}$ contains all terms that contain a multiple of $\mu$. We know that $E_{3}$ is small and we can see that it is positive we know from $(310)$ that $Z=N-\gamma / B+E_{1}$, we can therefore write

$$
\begin{align*}
p_{1} & =\sigma \gamma+\sigma B\left(N-\gamma / B+E_{1}\right)+E_{3}-\sigma B N  \tag{3.21}\\
& =\sigma B E_{1}+E_{3} . \tag{array}
\end{align*}
$$

We see that $p_{1}>0$ provided that $\left|E_{3}\right|>\left|S B E_{1}\right|$; this is true for the current parameter estimates Returning to condition (111), $p_{2} p_{1}-p_{0}>0>$ We have
$p_{2} p_{1}-p_{0}=$
$\left.B^{2} \frac{(\mu N}{\gamma}+E_{1} \frac{\mu}{\gamma}\right) \sigma E_{1}+B\left[E_{3}\left(\frac{\mu N}{\gamma}+E_{1} \frac{\mu}{\gamma}\right)+E_{1} \sigma(\gamma+\sigma+2 \mu)-\right.$
$\left.\left(\sigma N+2 \sigma E_{1}\right)\right]+E_{3}(\gamma+\sigma+2 \mu)-\left(E_{2}-5 \gamma\right)$
We now have a quadratic in $B$ which we may write as:
$E(B)=A B^{2}+B B+C$
where
$A=\sigma E_{1} \frac{\mu}{\gamma}\left(N+E_{1}\right)<0$
$B=\frac{\mu}{\gamma} E_{3}\left(N+E_{1}\right)+\sigma E_{1}(\gamma+\sigma+2 \mu)-\left(5 N+2 \sigma E_{1}\right)<0$
$C=E_{3}(\gamma+\sigma+2 \mu)-\left(E_{2}-5 \gamma\right)>0$

Bifurcation will occur at a critical value $B_{o}>0$ defined by the equation
$E(B)=0$
which has two solutions, but only one of them, namely.
$B_{0}=-B-\sqrt{B^{2}-4 A C}$
$2 A$
Is positive Hence,
(II See page 56
$F(B)>01 f B>B_{0}$ anב
$F(B)<0$ If $0<B<B_{O}$
Consequently, the equilibrium point ( $H, Y, Z$ ) is stable for $B>B_{0}$ and unstable for $0<B<B_{o}$

We shall now prove that the conditions of the hopf Bifurcation theorem are fulfilled at $B=B_{0}$. Namely, the characteristic equation has a palr of complex conjugate roots
$\lambda_{2}(B)=\alpha(B)+1 w(B)$
$\lambda_{3}(B)=\alpha(B)-1 w(B)$
and the conditions to be fulfilled are:
(1) $\quad \alpha\left(B_{0}\right)=0$
(11) $w\left(B_{0}\right)>0$
$\left.(111) \frac{d \alpha(B)}{d B}\right|_{B=0} \quad<\quad$.

Given that these conditions hold, then we know from the Hopf Bifurcation theorem that there exist periodic orbits around the equilibrium point (at least in the vicinity of the bifurcation point $B=B_{o}$ ).

The characteristic polynominal takes the following form for

$$
\begin{align*}
& B=B_{0} \\
& \lambda^{3}+p_{2}\left(B_{0}\right) \lambda^{2}+p_{1}\left(B_{0}\right) \lambda+p_{0}\left(B_{0}\right) \\
& =\lambda^{3}+p_{2}\left(B_{0}\right) \lambda^{2}+p_{1}\left(B_{0}\right) \lambda+p_{2}\left(B_{0}\right) p_{1}\left(B_{0}\right)  \tag{array}\\
& \text { for at } B=B_{0}, f\left(B_{0}\right)=p_{2}\left(B_{0}\right) p_{1}\left(B_{0}\right)-p_{0}(B)=0
\end{align*}
$$

Therefore our characteristic Dolynominal evalusted at $B=B_{0}$ takes the form
$\left(\lambda-\lambda_{1}\left(\beta_{0}\right)\right]\left[\lambda^{2}+\left(w\left(\beta_{0}\right)\right)^{2}\right)$,
from this we know
$\lambda_{1}\left(B_{0}\right)=-p_{2}\left(B_{0}\right)<0$
$w^{2}\left(\beta_{0}\right)=p_{1}\left(B_{0}\right)=\underline{p}_{0}\left(B_{0}\right)>0$
$p_{2}\left(B_{0}\right)$
Thus the conditions (1) and (11) are satisfied $x f:$
$W\left(B_{0}\right)=+\sqrt{p_{1}\left(B_{0}\right)}$
and $\lambda_{2}\left(B_{0}\right)=1 w\left(B_{0}\right)$ and $\lambda_{3}=-1 w\left(B_{0}\right)$

To investigate the requirement (111) we use the continuation of the root $\lambda_{2}$ in the neighbourhood of $B_{o}$. The root $\lambda_{2}(B)$ satisfies the equation.
$\left[\lambda_{2}(B)\right]^{3}+p_{2}(B)\left[\lambda_{2}(B)\right]^{2}+p_{1}(\beta)\left[\lambda_{2}(B)\right]+p_{0}(\beta)=0$
for every $B$.

We require $\left.\frac{d \alpha(B)}{d B}\right|_{B_{0}}=\left.\frac{d\left[\operatorname{Re} \lambda_{2}(B)\right]}{d B}\right|_{B_{O}}$

$$
\begin{equation*}
=\left.\operatorname{Re} \underline{d \lambda}_{2} \underline{(B)}\right|_{B_{0}} \tag{3.35}
\end{equation*}
$$

Differentiating with respect to $B$ we arrive at:
$d \lambda_{2} \underline{(B)}\left[3\left[\lambda_{2}(B)\right]^{2}+2 p_{2}(B) \lambda_{2}(B)+p_{1}(B)\right]$
$d B$
$+\left[\lambda_{2}(B)\right]^{2} \underline{d p}_{2}(B)+\lambda_{2}(B) \underline{d p}_{1}(B)+d D_{0}(B)=0$
dB
$a B$
$d B$

As we have seen
$\lambda_{2}(B)=\alpha(\beta)+1 w(\beta)$
therefore $\left.\operatorname{Re}{\underset{d \lambda}{2}}_{2} \underline{(B)}\right|_{B_{0}}=\left.\frac{d \alpha(B)}{d B}\right|_{B_{0}}$
and thus we have from equation (3 36) above
$\left.\frac{d \lambda_{2}(\beta)}{d B}\right|_{B_{0}}=$
$-\left.\frac{-\left[\lambda_{2}(B)\right]^{2} d p_{2}(B) / d B-\lambda_{2}(B) d p_{1}(B) / d B-d p_{0}(B) / d B}{3\left[\lambda_{2}(B)\right]^{2}+2 p_{2}(B) \lambda_{2}(B)+p_{1}(B)}\right|_{B_{0}\left(\begin{array}{ll}3 & 37\end{array}\right)}$
the real port of
1f the above is less than zero than the third condition of the Hopf Bifurcation theorem is satisfied and there will exist periodic orbits around the equilibrium point

We shall now prove that this is indeed the case.

We have seen in (3.15) that
$p_{2}(B)=3 \mu+\gamma+\sigma+B(\mu / \gamma) Z$, which when substituting in for $Z$ gaves, $P_{2}(B)=2 \mu+\gamma+\sigma+(\mu N / \gamma) B+E_{1}(\mu / \gamma) B$.

Differentiating with respect to $B$ gives,
$\frac{d Q_{2}(B)}{d B}=\frac{\mu N}{\gamma}+E_{1} \frac{\mu}{\gamma}>0$
We also have,
$p_{1}(B)=\sigma B E_{1}+E_{3}$ which on differentiating gives,
$\partial p_{1}(B)=\sigma E_{1}+d E_{3}(B)>0$ for $B>B_{0}$.
$\mathrm{d} \beta$
dB
$\left(\begin{array}{ll}3 & 39\end{array}\right)$

Einallv we have,
$D_{0}(B)=-\sigma N B+\sigma B Z+\sigma \gamma+\sigma B Z+E_{2}$
When we substitute in for 2 we have,
$P_{0}(B)=\sigma N B-\sigma \gamma+2 \sigma E_{1} B+E_{2}$
Differentiating the above $p_{0}(B)$ with respect to $B$ gives,
$\partial \underline{p}_{0}(B)=\sigma N+2 \sigma E_{1}+\underline{D E}_{2} \underline{(B)}>0$, for $B>B_{0}$
$d B$
$d B$
Finally, we substitute equations (3 38) to (340) into (3 37)
rationalising and taking the real part only gives
$\left.\frac{d \alpha(B)}{d \beta}\right|_{B_{0}}=$
$\left.\left\{-p_{1}(\beta)\left[\mu N / \gamma+E_{1} \mu / \gamma\right]-\dot{p}_{2}(\beta)\left[\sigma E_{1}+d E_{3}(\beta) \mid d \beta\right]-\left[\sigma N+2 E_{1} \sigma+d E_{2}(\beta) / d \beta\right]\right\}\right|_{1}$
$/\left\{2 P_{1}(\beta)+2\left[p_{2}(\beta)\right]^{2}\right\} \cdots$,
(341)

As $p_{1}\left(B_{0}\right),\left[\frac{[\mu N}{\gamma \gamma}+E_{1} \frac{\mu}{\gamma}\right],\left[\sigma E_{1}+\frac{\left.d E_{3} B\right]}{d B},\left[\sigma N+2 G E_{1}+\frac{\left.d E_{2} B\right]}{d B}\right.\right.$,
and $p_{2}\left(B_{0}\right)$ are all positive, we have,
$\left.\frac{d \alpha(B)}{d B}\right|_{B_{O}}<0$
and the third condition of the Hope bifurcation theorem is fulfilled. Hence according to the Hope bifurcation theorem, there exist periodic orbits around the equilibrium point, at least in the vicinity of the bifurcation point $B=B_{o}$

```
 've have seen laat the Hopf bisurcation tieo.am nlovides
us with the condations necessary for the e\lambdaistence of real
periodic solutions for a system of ordinary differential
equations,
dX = E(X,V),
dt
where }\vec{F}\mathrm{ and }X(v,t)\mathrm{ are }n\mathrm{ dimensional vectors and }v\mathrm{ a real
parameter The theorem also provides us with the approximate
period of the solution. We have.
Period, T = 2II
w
glven that the characteristic equation of \(A(v)\) has purely imaginary roots \(\pm 1 w\), where
A(v) is the 1 inearised matrix of (3 4 4) abot the singular point \(a(v)\), that is
\(A(v)=\left[\nabla_{x} E(X, v)\right]_{x=a(v)}\)
We have seen that \(\omega=\sqrt{p_{1}\left(\beta_{0}\right)}\), and
we have therefore from the \(H o p f\) biflrcation theorem-an
estimate of \(T\). We have,
\[
T=4.2
\]
```

We shall now compare tnis with estimates from numoers of reported cases of measles in Ireland and in Dublin from 1945 to 1985. From figure $3.2 a$ and figure $32 b$ we can derive the average interepidemic period for measles These are set out in Table 3.1 below

Table 3 1
Shows the Interepidemic Periods (in years) in Ireland and in Dublin between the years 1945 to 1985
$\frac{\text { Ireland }}{2}$
2
3
2
2
3
2
3 4
$4 \quad 2$
$2 \quad 6$
4 3
$5 \quad 6$
4
2
Average Interepidemic Period Ireland 2.86 years

Average Interepidemic
$\frac{\text { Dublin }}{2}$
2
3
2
5
2
3
4
2

6
-
Period Dublin
3.33 years

We see from Table (3.1) that the Hopf bifurcation theorem estimate of tne interepidemic period is slightly higher than the actual as derived from Irish records This may be due to the fact that throughout our calculations pertalning to the theorem we have been using a death rate of $\mu=1 / 75$ years. For those in the $0-15$ years old age oracket this death rate may in fact oe lower.

We have succeeded in showing how the fluctuation in the incidence of measles in Ireland is reflected in the nonlinear differential equation compartment model by the study of the equilibrium points and their behaviour we have also successfully shown how the Hopf Bifurcation theorem provides an estimate for this interepidemic period

Throughout Chapter three we have used lne following parameter estimates
(1) $N=64,000$, this $1 s$ the number of oirths in 1985 that
is the total population of the cohort studied
(11) $1 / \sigma$ ls the average latent period, we have $1 / \sigma=9$ days $=0025$ years, we have therefore $\sigma=41$ years $^{-1}$
(111) $1 / \gamma=6$ days $=0.016$ years which implies

$$
\gamma=61 \text { years }^{-1}
$$

(iv) $1 / \mu$ is the average 11 fe expectancy, we have $1 / \mu=70$ years which implies $\mu=0014$ years $^{-1}$
(v) $E_{1}$ of equation $(310)$ equals
$\begin{array}{ll}N \sigma \gamma & -N,\end{array}$
$\sigma \gamma+\left(\mu^{2}+\mu \gamma+\mu \sigma\right)$
for the parameter estimates given adove we have
$Z_{1}=-36.5$
(vi) $\mathrm{E}_{2}$ of equation (3 16) equals
$S B\left(\frac{\mu+\gamma}{\sigma}\right) \frac{\mu}{\gamma} 2+2 \sigma B \frac{\mu}{\gamma} 2+B \frac{\mu}{\gamma}(\mu+\gamma) 2+\mu^{2}+\mu \sigma+\mu \gamma$

Substituting in the parameter values gives us
$E_{2}=319818 B-448$
We know from (3 10a) that $B>0.00095$ for 2 to be positive, we have therefore
$E_{2}>-144$
(vil) $E_{3}$ of equation $(320)$ equals
$U B \frac{\mu}{\gamma} Z+\mu^{2}+\mu \sigma+(\mu+\gamma) \frac{B \mu Z}{\gamma}+\mu^{2}+\mu \sigma+\mu \gamma+\mu^{2}+\mu \gamma+$ $\left.\frac{(\sigma B(\mu+\gamma) \mu}{\sigma \gamma}+\sigma B 2 \mu\right) 2$
On substitution of parameter values we have,
$E_{3}=300628453-0.013$
Given that $B>0.00095$ we have
$E_{3}>2843$
(vili)The co-efficents of equation (3 24) are as follows.
A > - 21,968 841
B $>-2776642.1$

C > 2792.51
(1x) The roots $B_{1}$ and $B_{o}$ of equation (3.24) are as follows $B_{1}>-126.39, \quad B_{0}>0001$

```
We have examıned a time dependent model ano founc it useful in illuminating certain basic principles However the assumption that the parameters of the model are simple age independent constants is an over simplification
```

We can generalise the time dependent model to include the effects of age independence, particularly in mortality rates, vaccination rates and transmission rates This will allow us to give a more rigorous discussion of $R_{o}$ and later in chapter 5, a more rigorous discussion of our vaccination policy.

Our analysis of the transmission of measles will involve a compartment model with age structure The population is again divided into discrete classes, at age a and at time $t$ we have
$X(a, t)=$ number susceptible, at age $a$, at time $t$
$H(a, t)=$ number infected but not yet infectious
$Y(a, t)=$ number infectious.
$z(a, t)=$ number recovered and immune.

The partial differential equations for this system are first order nonlinear They describe the rates of change of $X, H, Y, Z$ with respect to ooth age a and time $t$ They are


The parameters $\gamma$, the recovery rate and 5 , the rate of passing from infected to the infectious state are as before In Chapter 1 However we now assume that all individuals are subject to an age dependent mortality rate $\mu(a)$ and that individuals are vaccinated at an age dependent rate c(a) We have also assumed, as before, that immunity is lifelong, as ls the case with measles.

By considering the equilibrium state of this jeneral model we can gain further understanding of the temporal
behaviour or dynamics of the general model To do this we make the further assumption that births and deaths exactly balance That is, we are assuming that the population remalns roughly constant on the time scale appropiate to the pathology of the disease This is not an unreasonable assumption for Ireland as can be seen from figures (4.1) below, these show the population age structure of Ireland over several decades

At equilibrium the partial differential equations (4.1) to (4.4) reduce to.
$\underline{d X}=-[\lambda(a)+\mu(a)+c(a)] X(a)$
da ( 4 5 $)$
$\underline{d H}=\lambda(a) X(a)-[\sigma+\mu(a)] H(a)$
da
$\underline{d Y}=5 H(a)-[j+\mu(a)] Y(a)$
da
$\underline{d Z}=\gamma^{Y(a)}+c(a) X(a)-u(a) Z(a)$
da
where $N(a)=X(a)+N(a)+Y(a)+2(a)$, with initial conditions
$X(0)=V(0), H(0)=Y(0)=Z(0)=0$

When discussing the tame dependent model we assumed that
all the parameters including mortality were independent of age we did this in order to make the mathematics of the

FIGURE 41
POPULATION CLASSIFIED BY AGE GROUP AT
CENSUS 1951


AGE GROUP

FIGURE 41
POPULATION CLASSIFIED BY AGE GROUP AT CENSUS 1961


AGE GROUP


AGE GROUP

FIGURE 41
POPULATION CLASSIFIED BY AGE GROUP AT CENSUS 1981


AGE GROUP
model easier and more elegant ratner than because real populations have age independent death rates This assumption of age independence is frequently made and can oe found in the works of Dretz (4), Balley (6) and Anderson and May (1) We have also assumed that the population remains constant and that the birth rate equals the death rate. We shall now examine the mortality rate in Ireland and 1ts dependence on age

Our aim is to derive an age dependent mortality rate for Ireland so that the model will represent the dynamics of the measles infection within the Irish population in a more realistic way. We shall finally in chapter six insert this realistic parameter back into the model and numerically solve the above equations (4.5) to (4.8) for $X, H, Y$ and 2 that 15 , susceptibles, infecteds, infectious and recovered and immune respectively.

To derive the age independent mortality rate we need to study the numbers and hence proportions of people remaining in various cohorts. These are set out in table 4 below.

Table 41
Proportion Remaining in Each Cohort Born from 1900 to 1980

Age 1 n	Number Born	Number Remaining	Proportion
1981	into Cohort	an each Cohort	Remaining
			1n each
			Cohort
81	704530	88750	0125970
80	70184.0	115370	0.164240
79	71156.0	11150.0	0.156698
78	715410	12181.0	0.170266
77	72261.0	13521.0	0.187113
76	71427.0	15153.0	0.212147
75	72147.0	16446.0	0.227951
74	70773.0	17631.0	0.249120
73	714390	18274.0	0.255799
72	72119.0	20288.0	0.281313
71	71774.0	220660	0.307437
70	713510	24879.0	0.348685
69	70835.0	25649.0	0.362095
68	702140	26583.0	0.378500
67	690970	26426.0	0382448
66	67501.0	28444.0	0.421386
65	648140	267810	0413198
64	614210	27214.0	0.443073
63	610920	24632.0	0403195
62	61829.0	24471.0	0395785
61	67015.0	29479.0	0439887
60	61010.0	30470.0	0.499426
59	58849.0	299830	0.509490
58	616900	30499.0	0.494391
57	63402.0	293600	0.463077
56	62069.0	30275.0	0.487764
55	61176.0	29489.0	0482035
54	600540	29823.0	0496603
53	591760	28840.0	0.487360
52	582800	29945.0	0.513813
51	58353.0	29942.0	0.513118
50	57086.0	31130.0	0.545318
49	56240.0	29016.0	0.515932
48	57364.0	31320.0	0.545987
47	57897.0	29761.0	0514034
46	582660	303370	0520664
45	58115.0	31416.0	0.540583
44	564880	32781.0	0580318
43	56925.0	30911.0	0543013
42	560700	331030	0590476
41	565940	348110	0615101
40	567800	343130	0604315

Proportion Remaining in Each Cohort Born from 1900 to 1980

39	66117.0	339950	0514164
38	643750	376760	0585258
37	65425.0	382540	0.584700
36	668610	403330	0603267
35	679220	43571.0	0641486
34	58978.0	443430	0642857
33	65930.0	464100	0703928
32	64153.0	469760	0732249
31	63565.0	465050	0.731613
30	62878.0	477240	0.758994
29	64631.0	468850	0725426
28	62558.0	49713.0	0794671
27	62534.0	48800.0	0.780375
26	61622.0	50584.0	0.820876
25	60740.0	50071.0	0.824350
24	61242.0	51945.0	0.848192
23	59510.0	526830	0.885280
22	60188.0	53832.0	0894398
21	60735.0	57213.0	0.942010
20	59825.0	57308.0	0957927
19	61782.0	59342.0	0.960506
18	63246.0	609860	0.964267
17	64072.0	617790	0.964212
16	63525.0	61443.0	0.967225
15	62215.0	602070	0967725
14	61307.0	59386.0	0.968666
13	61004.0	59368.0	0.973182
12	62912.0	612170	0.973058
11	64284.0	62643.0	0.974473
10	67551.0	65992.0	0.976921
9	68500.0	66937.0	0.977183
8	68700.0	67186.0	0.977962
7	68900.0	67430.0	0978694
6	67200.0	65862.0	0.980089
5	67700.0	66413.0	0.980990
4	68900.0	67665.0	0.982075
3	70300.0	69096.0	0.982873
2	72500.0	714570	0.985610
1	74100.0	73213.0	0.988030

Table 4.1 shows the following.
a) The age of each cohort in 1981. 1981 was used as it was then the most recent census year we start studying
conorts Erom 1990 on This raises some problems tnat are peculiar to ireland Due to the partition of the country in 1921 records of oirths prior to this contain those for the 6 counties of Northern Ireland but death Eigures after this date do not contain the northern figures $H e n c e$ we must subtract off individual figures for the 6 northern counties This is mentioned in order to show how politics can effect studies and one must keep this in mind
b) The number of births in the Republic of Ireland in each year from 1900 to 1980.
c) The number of those aged 81 years down to those aged 1 remaining in 1981. Some problems were also experienced at this stage we find that in the age range of 20 years to 1 year there are more children remaining than were actually born' It is possible that this is due to the $1 n$-migration of families in the 1970 's. However this problem can be overcome by looking at, first, the number of deaths of those aged $<1$ in 1961 , those aged $<1$ and aged 1 in 1962, those aged $<1$, aged 1 and those aged 2 in 1963 and so on until we find the number of deaths of those aged $20,19,18, \ldots 1$, and $<1$ in 1981 By performing this task we can find the correct number of deaths in the cohort born 101961 . These figures (on deaths) can then be subtracted from the numbers born in 1961 up to 1981 to arrive at the correct numbers of 20 Year olds remaining in 1981 This can be repeated for

```
 each of the cohorts
d) The correct proportions remaining in each of the cohorts
aged 8l years to l year
```

Once the correct proportion remaining in each of the cohorts $1 s$ found we can plot the data and subsequently fit a suitable function to the resulting plot The above data was plotted using the ilnitab statistical package. The shape of the curve can be seen in figure (4.2) below

Figure (4.2) shows the age dependent survival curve for Ireland in 1981. The age specific mortality rate $\mu(a)$ is the logarithmic derivative of this curve with respect to a. We shall derive this result mathematically later in thas chapter.

We can see from figure (4) that most people survive up to the age of 25 years. After this there is a decline in the proportions remaining. This is most likely due to
emigration rather than to death The data suggests that a suitable function for those remaining in the 1 year to 25 year age bracket would be,
$S(a)=1 \quad a<25$
in other words all survive up to and including the age of 25 years A sultable function for the remaining data can be derived from Newton's Interpolating Formula for a polynomial

## FIGURE 4.2

PLOT OF SURVIVAL CURVE

## PROPORTION REMAINING


of degree 3 working from grouped averages we have table 42 below

Table 4.2
AGE(years) PROPORTION RE IAINING

29.5	0.756017
45.5	0.543876
61.5	0.449806
77.5	0.186688

Using Newtons method of divided differences we have

	x	$f(x)$	$f\left(\begin{array}{lll}x_{1} & x_{2}\end{array}\right)$	$f\left(\begin{array}{llll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3}\end{array}\right)$	$\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}\right)$
$\mathrm{X}_{1}$	29.5	0.756017	-0.0132588		
$\mathrm{x}_{2}$	45.5	0.543876		0.000230609	
$\mathrm{x}_{3}$	615	0.449806	-0.0058793	-0.0003017	-0 000011089
$\mathrm{X}_{4}$	77.5	0.186688	-0.0164448		

Newton tells us that the required polynomial is of the form$P(x)=f(x)+f\left(x_{1} x_{2}\right)\left(x-x_{1}\right)+f\left(x_{1} x_{2} x_{3}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)$ $+f\left(x_{1} x_{2} x_{3} x_{4}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)$

This gives us:
$P(x)=0756017-0.0132588(x-295)$
$+0.00023061(x-29.5)(x-455)$
$-00000111(x-295)(y-455)(x-615)$

```
\(S(a)=1\)
 for \(a \leqslant 25\)
\(S(a)=P^{2}(a)\)
 \(a>25\)
```

Where $P(x)=A x^{3}+B x^{2}+C x+D$ where $A=-1.0 \times 10^{-5}, B=1565 \times 10^{-3}, C=-8.785 \times 10^{-2}$, $D=2.242$

We shall see $1 n$ chapter 5 how a generalisation of this survival curve will effect our ammunisation policy. We said above that the age specific mortality rate $\mu(a)$ is the logarithmic derivative of the age dependent survival curve S(a) We shall now prove this by looking closer at some basic reliability theory

Consider the compartment model with age structure we assüme that individuals are subject to an age dependent mortality rate $\mu(a)$ an age class a. We also assume that the number of births equals the number of deaths. How then does the parameter $\mu(a)$ relate to rellability theory?

Let $p(a)=$ age specific death rate.
$S(a)=$ prooability of surviving to age $a$.
$N(a)=$ the number in the population at age a

Consider (a, $a+\oint a), \delta a \operatorname{small}$, tnen the number of deaths in $(a, a+\delta a)=\mu(a)^{*} N(a) * \delta a$

For examole

The number of deatns in say the (12 months,l8 months) age group that is the ( 12 months, $12+6$ months) age group would de $\mu(12) * N(12) * 6$ montns, that $1 s$, (the death rate of those aged 12 months) * (the number of 12 month olds) * ( 6 months)

The probaoility of death in $(a, a+\delta a)$ is
$\left(\mu(a)^{*} N(a) * \delta a\right) / N(a)=\mu(a) \delta a$ that $1 s$,
(expected number of deaths)/(number at risk),
therefore the probabity of an individual alive at $a$,
surviving to $a+\oint a \operatorname{ls}$

$$
1-[\mu(a) \delta a]
$$

Now the probability of individual alive at $a+\delta a$, that is surviving to age $a+\delta a$

$$
=S(a+\delta a)
$$

$=$ probability (allve at a) ${ }^{\text {a }}$ probability (survives from a to $a+\delta_{a}$ )

$$
=S(a) *(1-[\mu(a) * \delta a])
$$

that 2 s

$$
S(a+\delta a)=S(a) *(1-[\mu(a) * \delta a])
$$

Rearranging we get.

$$
[S(a+\delta a)-S(a)] / \delta a=-\mu(a) * S(a) .
$$

Letting $\delta a \rightarrow 0$ implies $d S / d a=-\mu(a) * S(a)$

Separating the variables we have, $\delta S / 5(a)=-\mu(a) * d a$

Integrating from 0 to a gives us $\int_{0}^{a} 1 / S(a) d S=-\int_{0}^{a} \mu(a) d a$
which implies $[\ln (S(a))]-[\ln (S(0))]=-\int_{0}^{a} \mu(t) d t$

But $S(0)=1$, which implies $\ln S(0),=0$ therefore we have $\ln S(a)=-\int_{0}^{a} \mu(t) d t$
which implies $S(a)=\exp \left[-\int_{0}^{a} \mu(t) d t\right]$.

We have related our survivor function to our compartment model parameter $\mu(a)$ Can we perhaps derive this result in another way ${ }^{\text {a }}$ Consider the following

Let $F(a)=$ probability of death before age a
We know $S(a)+F(a)=1$ therefore (4 il)

$$
F(a)=1-\exp \left[-\int_{0}^{a} \mu(t) d t\right]
$$

In fact $F(a)$ equals the cumulative distribution function of ages to death. From reliability theory we know

$$
\begin{equation*}
f(a)=3 F(a) / d a \tag{412}
\end{equation*}
$$

which equals the probability density function of ages to death. Because $f(a)=$ (probability of dying at age a) (probability of surviving upi age $a)$, we have $f(a)=\mu(a) S(a)$ Using $(412)$ we can say $F^{\prime}(a)=\mu(a) S(a)$ and from $(411)$ we, know that $F^{\prime}(a)=-S^{\prime}(a)$ We now have
$-S^{\prime}(a)=\mu(a) S(a)$ which implies $=-[d S / d a] / S(a)=-d[\ln S(a)] / d a=\mu(a)$ as required

We have shown how the compartment parameter $\mu(a)$ relates to rellability theory and we have also snown that it is indeed the logarithmic derivative of the survival curve we shall now state the age specific mortality rate for Ireland using the survival curve derived above

We have from (4.10):
$\mu(a)=0 \quad a \leqslant 25$ years,
$\mu(a)=-\frac{d \ln P(a)}{d a}$
a> 25
In Chapter 6 we shall use the Irasn mortality rate derived above to estimate the proportions of children susceptible, and immune to measles in the coming years.

ON IMMUNISATION AND ESTIMATION OF $c(a), ~ T H E ~ V A C C I N A T I O N$ RATE IN IRELAND

```
We snall now see how the introduction of the age dependent model with age dependent parameters enables us to give a more rigorous description of the values of \(A, R_{o}\) and \(N_{T}\) We snall also examine the effect of introducing immunisation into the model. We shall look at
```

1) the prediction of the levels of 1 mmunity required to eradicate the disease given a specific vaccination program,
2) the effect of vaccination on $A$, the average age of infection,
3) the effect of vaccination on the numbers of cases of measles and of measles encephalitis.

Prior to October 1985 no such program existed in Ireland.
All newborn infants were and still are immune to infection as a consequence of the protection provided by their maternal antibodies, these are passed via the placenta into the blood stream of the baby during pregnancy. For measles, infants remain protected for roughly their first $s i x$ months of life. The recommended age for vaccination 1515 months because it is belleved that the rate of seroconversion is

```
maximised at thls age Vaccination at a lower age glves
lower seroconversion rates due to the protection of the
maternal antibodies The policy of vaccinating all children
at this optimum age has veen adopted by the Irish Health
Boards
```

How then do we describe this oarameter? Prior to October 1985 we had.
(a) $C(a)=0 \quad 0 \leqslant a \leqslant L \quad L=70$ years
and from 1985 to the present it $1 s$ hoped that:
(b) $C(a)=0 \quad a<15$ months
$1 \quad a=15$ months
$0 \quad a>15$ months
In other words no children are vaccinated before the age of 15 months, all or most children are vaccinated at the age of 15 months and no children are vaccinated after this age. This is of course an ldeal situation which will not occur In reality it does however give us many insights into the levels of immunity required to eradicate the disease if we adopt such a policy. This we shall discuss later first we consider the situation as it actually occurred in one Community Care Area of Dublin.

Community Care Area 8 in Dublin, lies on the northern outskirts of the city, it contains densely populated urban areas and rural areas with sparse population prior to the introduction of the measles immunisation program, in October

```
1985, a survey of 2436children oetween the ages of 1 and 5
years was carried out The alm of this survey was to test
for the proportions susceptible to measles and hence
establısh a target figure for the initial lmmunisations The
results of this survey are set out in Table 5 1 below Some
similar surveys were conducted in other parts of the country
with the simılar results.
```

For tear reasons we feel justified in
Taking Community Care Area 8 (C CA. 8) as a sample
population representative of the general population $n_{\wedge}$ we
examine the numbers of actual vaccinations at specific ages
in the area Assuming that the distribution of vaccinations
is similar throughout the country we shall take this sample
data and estimate $C(a)$, the vaccination rate for all of
Ireland

Patient files for children in the General Medical Service in C CA. 8 were computerised, this gave over 2,000 medical card cases. From these we saw what proportions were immunised in the various age groups. Using immunisation forms returned by doctors in the area we computerised over 2,000 1 mumisations of those in the non General Medical Service sector. This gives us over 4,000 records of children immunised in the various age groups. As the total population figures were available for these age groups in this area the proportion immunised in each of the age groups was derived The lenghty process occupied 3 mouth es in the Summer 81986

Thúle 5.1

AGE 10 years	Immundsed	Status Unknown	Had Measles	Vacc beEore 1/10/85	Left   Area	Refused	ContraIndicat	Other	Row Total
1	12	11	6	2	0	0	0	1	32
	3758	3448	$188 \%$	638	008	008	$0.0 \%$	318	118
2	315	225	107	22	34	1	1	4	709
	4448	3178	1518	318	$48 \%$	018	018	$05 \%$	2418
3	298	209	168	18	36	2	2	10	743
	4018	2818	2268	248	488	033	038	138	2538
4	270	194	309	20	51	1	1	5	851
	3179	$228 \%$	3638	2.48	608	0.18	0.18	$06 \%$	29 0\%
5	158	145	244	7	38	1	3	5	601
	2638	2418	4068	128	638	028	$05 \%$	$08 \%$	20 5\%
Cotal	1053	784	834	69	159	5	7	25	2936
	3598	2678	2818	248	548	028	028	098	10008

Results of survey carried out by Dr $Z$ Johnson in C C A prior to the
introduction of measles vaccination

He finds Lhat approximately 30 of children in the 1 - 5 year age group need lo be immunisej

The results of this work are shown in Table 52 below Table 5.2

Age at vaccination	Proportion Vaccinated
(years)	
1	0410
2	0.387
3	0.333
4	0233
5	0.115

Table 5.2 showing the proportion vaccinated in each age group for Community Care Area 8 from October 1985 to June 1986.

A plot of the proportion vaccinated versus age can be seen in figure 5.1 below

FIGURE 51
PROPORTIONS VACCINATED IN C C A 8 Vs age at vaccination


The method of least squares was used to fit as quadratic to the original data on the proportions vaccinated glving $c(a)=r a^{2}+s a+t$ with $r=-0.01686, s=0026743 t=040083$

A plot of the estimated proportion vaccinated versus age is glven 1 n figure 52 below

FIGURE 5
ESTIMATED PROPORTIONS VACCINATED IN C.C A 8 Vs age at vaccination

IT PROPDRTION VAC


The derived vaccination rate gives the following
estimates of proportions vaccinated
Table 5.3
$\frac{\text { Age at Vaccination }}{(\text { years) }}$

1

2

3

4

5
$\frac{\text { Estimated Proportion }}{\text { Vaccinated (i) }}$
0.411
0.3871

0329
0.238
0.113

Table 5.3 as for Table 5.2 but shows estimated proportions vaccinated

Since March 1986, we know that the Health Board's policy has been to vaccinate all or most children at the age of 15 months What are the effects of this vaccination and given this policy what proportion must we 1 mannose in order to eradicate the disease? Must we vaccinate all children?

Vaccination has two effects, first we have the obvious effect that those $\quad$ immunised are protected against infection. We also have a less oovious effect, that is that a susceptible child has less chance of acquiring the disease in a partially vaccinated community than in an unvaccinated one. This is because there are fewer people infectious in the community to give the disease to the child Therefore it is not necessary to immunise all children in order to eradicate the disease
(i) Confidence Interval on estimated proporter vaccinated at age 1
 We have $p=0411, n=3062, S \epsilon=00000791$ $C I=04108 \hbar 04112$
As the sample sizes are very large and the standard errors very small
no otter confidence utervali were es limated

As measles is endemic we can find some interesting
relations between $R_{o}$ and the fraction of the population that are susceptible or the average age at first infection This in turn wall allow us to discuss 3 , the proportion of the population immunised, in more detall

As the infection becomes established the fraction of the population who remain susceptible will decrease. The net fraction susceptable may be donated by $\bar{x}$, where
$\overline{\mathrm{x}}=\overline{\mathrm{X}} / \stackrel{\mathrm{N}}{ }$
$\bar{X}$ is the total number of susceptibles and $\bar{N}$ is the total population. If we make the Anderson and May (2) assumption of weak homogeneous mixing, we are assuming that the rate of appearance of new infections is linearly proportional to the number of susceptibles. Therefore, on average the number of secondary infections will be diminished oelow the number occurring when all individuals are susceptible, by the factor $\bar{x}$. That $i s$, the effective reproductive rate, $R$, is. $R=R_{0} \widetilde{x}$

If the infection $i s$ established at a roughly steady equilibrium value the effective reproductive rate will be unity (at equilibrium each infection on average produces exactly one secondary infection). As we saw in , at equilibrium $R_{o}$ and the fraction susceptible, $\widehat{x}$, are related by $R_{0} \hat{x}=1$

If the equilibrium fraction of the population who are susceptible can be determined, equation (5) can be used to estimate $R_{0}$ (Estimates of $R_{0}$ shall be discussed in the next section and again in more detail in Chapter 6)

Equation (5.5) cannot be satisfied if the proportion of the population who are successfully vaccinated, p, exceeds some critical value As the fraction susceptible cannot exceed the fraction not successfully vaccinated ( $\hat{x}<l-p$ ) the equation can only be satisfied if $R_{o}(l-p)$ exceeds unity. It follows that if the proportion vaccinated exceeds the value: $p>1-1 / R_{0}^{*}$
then the effective reproductive rate of the infection will necessarily be less than unity and the infection will die out. In other words equation (5 6) gives a rough criterion for eradication of an infection by a vaccination program

We also see that infections with high $R_{o}$ values, as in the case with measles, require a higher proportion of children to be vaccinated in order to eradicate the disease.

Diet (9,10) has derived the relation.

$$
\begin{equation*}
R_{0} \simeq \lambda L=\underline{L} \tag{5.7}
\end{equation*}
$$

A
or more realistically for a step function mortality curve
(1 e. everyone lives up to the age, L) we have

* This is a very important result for the medical profession We require $R_{0} \bar{x}<1$ for eradication Tharaphe if we vaccinate a proportion $p$ we will howe a proportion $1-p$ not vaccinated ie $\bar{x}=1-p$ We now require $R_{0}(1-p)<1$, if we rearrange this we see that $\rho>1$ - $1 / R_{0}$ pr eradication of the infection

$$
\begin{equation*}
R_{0}=(L / A) /[1-\exp (-L \mid A)] \tag{array}
\end{equation*}
$$

which approximates to

$$
\begin{aligned}
R_{0}=\frac{L}{A} \quad \text { (for } A<L, \text { as is the case with } \\
\quad \text { measles in Ireland) }
\end{aligned}
$$

To give a feeling for these parameters, we consider some typical values for $A$, taking $L=70$ years, we have Table 54 below

Table 5.4
A

$R_{0}$	P
(greater than)	

3
23.33
0957
35
2000
0950
4
1750
0943

In areas, of lower age of acquiring infection, $R_{o}$ will be larger, implying that a larger proportion of children should be immunised $2 n$ order to eradicate the disease This should be kept in mind in Ireland where we have both large urban and rural areas $H$ igher levels of coverage may be requrred to eradicate the disease within these urban areas. These figures are very high and will be very difficult to achieve in practice. In the United States of America where pre-school vaccinations is compulsory to the extent that a certificate of $\quad$ mmunisation $1 s$ an entry requirement for

```
school, measles nas virtually disappeared as more tran 95% of children are vaccinated before going entering school In the United kingdom ammunisation is not enforced by law any nigh levels of vaccinalion have proved difficult to acnieve
```

We have estimated the proportions we need to vaccinate glven the values of $\mu(a), A$, and $R_{o}$ before vaccination. we have seen the importance of $R_{0}$ and $A$ in determining these proportions We shall now address the questions, what nappens to this reproductive rate, $R_{0}$, of the disease if we lmmunise, will it lncrease or decrease? Also, what happens to, $A$, the average age of acquiring the infection, after the introduction of an immunisation program?
da
$\underline{d H}=\lambda X-(\sigma+\mu(a)) H(a)$
da
$\underline{d Y}=G H-(\gamma+\mu(a)) Y(a)$
da
$\underline{d Z}=\gamma Y-\mu(a) z(a)$
da

By introducing the sat of starred variables

$$
\begin{equation*}
X(a)=x^{*}(a) \phi(a) \tag{array}
\end{equation*}
$$

Where

$$
\begin{equation*}
\phi(a)=\exp \left[-\int_{0}^{0} \mu(s) d s\right] \tag{array}
\end{equation*}
$$

With $Y^{*}, H^{*}$ and $Z^{*}$ defined analogously,
We arrive at a set of equations identical to the above but with mortality factored out,
we now have
$X(a)=X^{*}(a) \oint(a)$
Hence. $\quad d X=-(\lambda+\mu(a)) \quad X^{\star}(a) \phi(a)$
da
But $\frac{d X}{d a}=\frac{d\left[X^{*}(a) \phi(a)\right]}{d a}$
$=x^{*} \phi^{\prime}(a)+\phi(a) X^{*}$, Where ' denotes differentiation (5.16)
Also. $\phi(a)=\exp \left[-\int_{0}^{a} \mu(s) d s\right]$

$$
=\exp \left[-\left(U_{1}(a)-U_{1}(0)\right)\right]
$$

which $2 m p l i e s$

$$
\begin{align*}
\phi^{\prime}(a)= & -\mu(a) \exp \left[-\int_{0}^{a} \mu(s) d s\right] \\
= & -\mu(a) \phi(a) \tag{5.17}
\end{align*}
$$

Therefore
$\underline{d X}=X^{*}(-\mu(a) \phi(a))+\phi(a) \quad X^{*}$
da
But
$\underline{d x}=-(\lambda+\mu(a)) \quad X^{*}(a) \phi(a)$
da
Hence
$x^{\star}(-\mu(a) \phi(a))+\phi(a) x^{\star}=-(\lambda+\mu(a)) x^{\star}(a) \phi(a)$
which when both divided by $\phi(a)$ gives
$-(\lambda+\mu(a)) X^{*}(a)=-\mu(a) X^{\star}+X^{\star}$

On re-arranging
$X^{*^{\prime}}=-X^{*}(a)-\mu(a) X^{*}+\mu(a) X^{*}$
which gives, on dividing by $\psi(a) \neq 0$
$\underline{d}{ }^{*}=-\lambda X^{*}(a)$.
da

Mortality has disappeared as required.
Introducing an age specific vaccination rate into our
set of starred equations gives us.
$\underline{d X^{*}}=-\left(\lambda^{\prime}+c(a)\right) X^{*}(a)$
da
$d B^{*}=\lambda X^{*}-\sigma H^{*}(a)$
da
$\underline{d Y^{*}}=\sigma H^{\star}-\gamma Y^{\star}(a)$
da
$\underline{d Z}^{*}=\gamma Y^{*}+c(a) Z^{*}(a)$
da
here $\lambda$ is theforce of infection at equilibrium after the immunisation program is established. Also we are taking $\lambda$
independent of age for simplicity The above set of
differential equations has boundary conditions
$X^{\star}(0)=N(0), H^{\star}(0)=Y^{*}(0)=Z^{*}(0)=0$

We can easily find $X^{*}(a)$ from the above Using an integrating factor we have:
$X^{*}(a)=N(0) \exp \left[-\lambda^{\prime} a+\int_{0}^{a} c(s) d s\right]$
As $X(a)=X^{*}(a) \phi(a)$ we have the number of susceptibles at age, $a$, given by:
$X(a)=N(0) \exp \left[-\lambda^{\prime} a+\int_{0}^{a} c(s) d s\right] \phi(a)$
and
$N(a)=v(o) \oint(a)$

By integrating equation (5.25) for $X(a)$ over all ages we can compute $\bar{X}$ (the total number susceptible) for any specific vaccinatıon program $c(a)$ and any mortality rate $\mu(a)$. We can then discover $\hat{x}$ the fraction susceptible and we can find $R_{o}$.

The policy for vaccination in Ireland is to vaccinate a proportion, $P$ of children at age $b, b$ being 15 months. $c(a)$ in this case can be taken to be a Dirac- $\delta$ Eunction centred on $a=b$ Using such $a c(a)$ we obtain.
$X(a)=N(0) \exp \left[-\lambda^{\prime} a\right] \phi(a) \quad a \leqslant b$
$X(a)=(1-p) N(0) \exp \left(-\lambda^{\prime} a\right] \phi(a) a>b$

Where
$\phi(a)=\exp \left[-\int_{0}^{a} \mu(s) d s\right]=1$
given that
$\mu(a)=0$ for $a<L, \mu(a)=-\infty$ for $a=L$

The total number susceptible, $\bar{X}$, is given by $\int_{0}^{\infty} X(a)$ da where,
$\int_{b}^{L} x(a) d a=\int_{0}^{L}(1-p) N(o) \exp \left[-\lambda^{\prime} a\right] d a$
$=\left.(1-p) N(0)\left(1 /-\lambda^{\prime}\right) \exp \left(-\lambda^{\prime} a\right)\right|_{b} ^{2}$
$=(1-p) N(0)\left(1 /-\lambda^{\prime}\right) \exp \left[-\lambda^{\prime} L\right)-(1-p) N(0)$
$\left(1 /-\lambda^{\prime}\right) \exp \left(-\lambda^{\prime} b\right)$
$=\frac{N(0)}{\lambda^{\prime}}\left[(1-p) \exp \left(-\lambda^{\prime} b\right)-(1-p) \exp \left(-\lambda^{\prime} L\right)\right]$
and $\int_{0}^{b} x(a) d a=\frac{N(0)}{\lambda^{\prime}} \exp \left(-\lambda^{\prime} b\right)+\frac{N(0)}{\lambda^{\prime}}$
We now howe $\bar{x}=\frac{N_{(0)}}{\lambda^{\prime}}\left[1-p \exp \left(-\lambda^{\prime} b\right)-(1-p) \exp \left(-\lambda^{\prime} L\right)\right] \quad(5$ 29a) Using equation (5.29a) we can give estimates for the total numbers susceptible under our given immunisation policy and the proportions actually vaccinated

We have seen above that.
$R_{0}=1 / \hat{x}, \hat{x}=\bar{X} / \bar{N}$ which implies $R_{0}=\bar{N} / \bar{X}$,
where $\overline{\mathrm{V}}=\mathrm{N}(0) \mathrm{L}$.

This now provides an estimate for the reproductive rate of the disease given our estimated Irish mortality curve and immunisation policy.
$R o=\frac{\bar{N}}{\bar{X}}=\frac{\mathrm{V}(0) L}{N(0)\left[1-p \exp \left(-\lambda_{b}^{\prime}\right)-(1-p) \exp \left(-\lambda^{\prime} L\right)\right] / \lambda^{\prime}}$

$$
=\frac{\lambda^{\prime} L}{11-p \exp \left(-\lambda^{\prime} b\right)-(1-p) \exp \left(-\lambda^{\prime} L\right)}
$$

Various estimates of $R_{o}$ given the Irish data are discusser in Chapter 6 Note we must keep in mind that we require $R_{o}$ to be oelow unity in order for the disease to die out We should find that $R_{0}$ decreases with vaccination, the extent of the decrease depending on $P$, the proportion immunised.

We have observed the effects of vaccination on the reproductive rate of the disease. We shall now look at the effects of vaccination on $A$, the average age of infection with measles. This average age A can vary greatly depending on the degree of urbanisation, being much higher in areas of dense population. In Ireland we belleve $A$, to be in the range of 3 to 5 years this is in accordance with similar populations in England and Wales. Direct estimates of A are best obtained from elther serological surveys or case notifications, neither of which are ready available in Ireland and, where available, case notifications may be seriously underestimated.

Infection of any cinld with measles can lead to the more dangerous infection of measles ancephalitis. The risk of measles encephalitis is a very serious one. Survivors often have permanent brain damage and mental retardation It is

```
known tnat tne rlsk of tnls disease varles with age, the
older chald belng at a higher risk Wide spread immunisation
within a community increases the average age A at which an
infection is acquired, therefore we must examine our
vaccination policy with this in mind If we vaccinate a
proportion P, P<l, of all children then there will remain a
proportion, l-P of cnildren at rlsk to infection These may
develop the infection at a later age due to the fact that
there will be fewer susceptible children in circulation and
hence fewer infectious. Given this situation will more or
less chıldren in Ireland develop measles encephalitis? As
yet there as no data available on the numbers of
post-vaccination cases of measles encephalitis However in
the coming years these should be carefully monitored in
order to check that our immunisation policy is indeed a safe
one and that our levels of coverage our adequate. Eigure
(5.3) below shows the number of cases of measles
encephalitis in the years 1991 to 1985, prior to mass
lmmunisation We shall discuss the effects of vaccination on
the average age of first infection and on the numbers of
cases of measles encephalitis when we examine our numerical
results in Chapter 6.
```


# NUMBER OF CASES OF MEASLES ENCEPHALITIS <br> IN THE YEARS 1981 TO 1985 <br> PAIOR TO MASS IMMUNISATION 



```
In the preceding chapters we introduced a constant parameter, time dependent model We saw now this simple model was useful in illuminating certain basic principles In particular providing us with estimates of.
```

(a) The average age at infection, A.
(11) The basic reproductive rate, $R_{0}$.
(111) The interepidemic period, $T$.

In chapters 2,4 and 5 we found the age dependent force of infection, the mortality rate and the vaccination rate Eor Ireland we used this information to derive the average age at first infection in Ireland. We shall now use these parameters to derive the intrinsic reproductive rate before and after the advent of the Irish vaccination program. Finally, we shall estimate from the above the fraction of the population which must be vaccinated in order to eradicate measles in Ireland

In the second half of this chapter we shall present the model with Irish parameters. We shall numerically solve the system, (a set of non-linear differential equations) and we will show how the model predicts, (given certain specified initial conditions) tne proportion of a particular conort susceptiole to measles infection before and after the

We have seen that the disease will maintain itself within the population provided the reproductive rate, $R$, of the infection is greater than or equal to unity $R$, is the expected number of secondary cases produced by one infectious individual in a population of $X$ susceptibles. The intrinsic reproductive rate of the disease $R_{o}$ may be defined as the value of $R$ in a disease-free population. We shall see that $R_{o}$ can be estimated from the relation:
$R_{0}=1+L / A$
Where $L$ is the human infe expectancy and $A$ is the average age at first infection.

For the model described in equations 4.3 to 48 we can use a result obtained by $D i e t z(9,10)$ and generalised by Anderson and May (2). They have.


For Ireland we have from page 78,
$\mu(v)=0, \quad v<70$,
$c(v)=-001686 v^{2}+0.026743 v+0.40083$
$\lambda(v)=-00024878 v+0.326783$.
Looking at the simple case when all the rate parameters are constants and there 15 no vaccination program, equation (6.1) reduces to
$R_{0}=1+(\lambda / u)$, as the average age at first infection is $A=$ $1 / \lambda$ and $L=1 / \mu$ we have the simplified equation for $R_{o}$ given in (6.0) above

Let us now insert the Irash ${ }^{-}$parameters into (6.1) and examine the instrinsic reproductive rate for Ireland We have before the implementation of the vaccination program
$c=0$ so giving
Ro $=\frac{\int_{0}^{70} \exp [0] \mathrm{da}}{\int_{0}^{70} \exp \left\{-\int_{0}^{a}-0.0024878 \mathrm{v}+0.326783\right\} \mathrm{da}}$
$=70$
$3.13711=22.3135$.
We can now see that this Eigure for $R_{o}$ is very close to our first approximation of $R_{0}=1+L / A=1+70 / 325=22.54$.

> After, the implementation of our vaccination program we have $\mathrm{R}_{0}=\int_{0}^{b} \exp \left[-\int_{0}^{1} c(v) d v\right] d a+\int_{1}^{b} \exp \left[-\int_{1}^{b} c(v) d v\right] d a+\int_{6}^{b} \exp \left[-\int_{1}^{b} c(v) d v\right] d a$ $\int_{0}^{1} \exp \left[-\int_{0}^{a} \lambda(v) d v-\int_{0}^{1} c(v) d v\right] d a+\int_{1}^{b} \exp \left[-\int_{0}^{a} \lambda(v) d v-\int_{1}^{a} c(v) d \sigma\right] d a+\int_{b}^{0} \exp \left[-\int_{0}^{a} \lambda(v) d v-\int_{1}^{b} c(v) d v\right] d a$
which implies that.

$$
R_{0}=\frac{1+238929+182402}{0853368+102249+0138279}=10738838
$$

The above estimate is based on $c(v)$ as derived from our sample of vaccination rates. If we assume that all children up to the age of 6 years are vaccinated at a constant rate, $c=1$ we have

$$
R_{0}=\frac{\int_{0}^{b}\left[\operatorname{evp}\left\{-\int_{0}^{a}(v) d v\right\}\right] d a+\int_{6}^{70} \exp \left[-\int_{0}^{b} c(v) d v\right] d a}{\left.\int_{0}^{b}\left[\exp 100012439 a^{2}-1.326783 a\right]\right] d a+\int_{6}^{70} \exp \left[-\int_{0}^{a} \lambda(v) d v-\int_{0}^{6} c(v) d v\right] d a}
$$

which implies,

$$
R_{0}=1.5291 \quad \therefore .
$$

We can see from the above that the introduction of vaccination has reduced the intrinsic reproductive rate considerably. However, we must remember that for the eradication of measles in Ireland we must ensure that $R_{0}<1$.

More generally if it is the policy to vaccinate a proportion of the population at a constant rate $c$ while the remalning fraction 1 - $p$ is not covered by the vaccination program it has been shown that the intrinsic reproductive rate $R_{0}^{\prime}$, Anderson and yay (2), 15 :
$R_{0}^{\prime}=R_{0}[1-\operatorname{cp} /(c+\mu)]$
where $R^{\prime}$, is the intrinsic reproductive rate after the vaccination program and $R_{o}$ is the rate before, $c=1 / v$ with $v$ equalling the average age at vaccination.

If then we decide before the start of the vaccination program (by means of surveys etc) that on average nalf of our children have had measles and therefore we target our vaccination policy at $p=05$ we shall have in Ireland after initial vaccinations
$R_{0}^{\prime}=223135[1-(1 / 2.6)(0.5) /(1 / 26)]=11156$

What proportion then, need we $\quad$ mmunise in Ireland in order to reduce $R_{o}$ below unity) From equations (0 0) and (6 2) we can prove that the fraction of the population that must be protected must exceed

```
p> 1+v/L
 l + A/L
where \(v\) is the average age at which individuals are vaccinated (i.e \(v=1 / c\)). Since \(p\) cannot oe greater than 1 we see that eradication is possible only if \(A>v\). This is an important result when we consider that 1 n Ireland \(A=3.16\) years. Irish children need to be vaccinated at an early age however immunisiation at too early an age can lead to poor seroconversion and hence loss of 1 mmunity.
```

We can estimate $v$ from our sample data on vaccination we have $v=2.6$ years Taking $L=70$ years gives $p>0.9923$
ıf we manage to reduce $v$ to 15 months or 1.25 years we then have•
$p>09738$
which is still a very large proportion. One of the main reasons for this is our very low average age at first infection On a still more pessimistic note it has been found that outbreaks of measles can still occur even when more than $99 \%$ of chlldren have been vaccinated The reported outbreak in question arose in Texas among sciool cnildren, the first being a fifteen year old girl

```
99% of the school cnildren were documented as having veen
lmmunlsed however upon measles antibody tests tney found that
5% were not protected Vaccination may have failed for
several reasons These include administering tne vaccine to
lnfants under l5 months, administering it in conjuction with
immunoglobulin or lmproperly storing it For these reasons
the Irisn medical profession must be aware of the possibility
of an outbreak even where all children have been vaccinated.
```

It is interesting to note the age of the girl in wnich the infection arose It is well known that vaccination increases the average age at infection. A susceptible has less chance of acquiring the infection in a partially vaccinated community than in an unvaccinated population. There are less infectious individuals around from whom one can contract the disease However, it is also well knownthat the risk of acquiring measles encephalitis as a complication is also higher amongst those who contract the disease at an older age

In Ireland the severity of the disease in terms of mortality and morbidity has not cinanged in 20 years The rate of deaths to notification is 15 per 10,000 . There has been 82 deaths $1 n 15$ years and at least 25 cases of encephalitis in 10 years $1 n$ Ireland However, we can take some comfort from the fact that Anderson and May have snown in (2) that vaccination at whatever level always acts to reduce the

```
number of encephalitls cases Takı\etag parameter values
appropriate to the U K population ve A = 5 years, v = 2 2
years and p = 0.5 they Elnd that mmnunisation levels of 50%
result in only a 25% reduction in tme number of encephalitis
cases A 90% coverage results in a 75% reduction, while higher levels of vaccination result in eradication The reduction \(1 n\) the number of cases in non linearly related to the proportion of the cohort immunised. This non-linear effect \(1 s\) important because substantial reductions in the number of cases of encephalitis will only occur as the overall level of herd 1 mmunity begins to approach the criticial level for eradication.
```

We have seen what proportion we need to immunise in order to eradicate measles in Ireland we shall now return to the model We shall see what proportions of susceptible, infected, infectious and lmmunes the model will predict given the Irish age dependent parameters. These we shall compare with the results of our seriological survey. We have the systom as described $1 n(4.5)$ to (4.8). This system can be solved numerically for $X, H, Y$ and $Z$ given the following initial conditions-
(1) $x(05)=64,000$. This $1 s$ the number of births in
1984. We choose this year as vaccination was
introduced into Ireland $1 n 1985$ We shall be
following the movement of this jarticular cohort in the model

```
(11) H(0 5) = Y(0 5) = Z(0 5) = 0 There are no
 infected, infectious, recovered and lmmune at the
 age of 6 months We note nere that
 X +H+Y + Z =N as required
```

(111) We take $\mu(a)=0$ as the death rate amongst those in the age range of interest 1 e 6 months to 10 years is neglig ble
(iv) $C(a)=0$ We wish to examine the proportions the model will predict as susceptible prior to the implementation of a vaccination program
(v) $\lambda(a)$ is a linear function for $a \geqslant 0.5$ years. The force of infection acts only on those not protected by the maternal antibodies These are thought to last for 6 months
( $\mathrm{Vi}^{\prime}$ ) Finally $0.5 \leqslant a \leqslant 10$ as most of the parameters have been estamated for the younger age groups. Also measles in Ireland is a childhood disease.

These parameter values are substituted into the program below. (Note the program below is a modification of an NAG Library program).

```
 PROGRA:1 ODE SOLVER
 IMPLICIL REAL*8(A-Y,O-Z)
 REAL *8 X, XEND, SSIZE, Xl
 REAL * 8 Y(4), Z(4)
 N = 4
 X = 0 5DO
 XEND = l ODl
 SSI2E = 0. 5DO
 Y(1) = 64 0D3
 Y(2) = 0 0DO
 Y(3) = 0.0D0
 Y(4) = 0.0D0
 WRITE (28,99) X,(Y(I),I = l,V)
 DO 100 I = 1,l9
 XI = X + SSIZE
CALL GEAR (N,X,Xl,Y)
 X = X + SSI2E
 WRITE (28,99) X,(Y(J), J = 1, N)
-100 CONTINUE
 99 FORMAT (/, ' T = ', Dl3 6,' Y(I) ='4Dl3.6)
 END
C
 SUBROUTINE GEAR (N,X,XEND,Y)
 IMPLICIT REAL*8 (A-H,O-2)
 REAL *8 TOL, X, XEND, OLDX
 INTEGER I, IFAIL, IW, J, N, NOUT
 REAL *8 W(4,22), Y(4)
C
 EXTERNAL FCN
 IW = 22
 TOL = 1. OD-7
 IFAIL = l
 OLDX = X
 CALL DO2EAF(X,XEND,N,Y,TOL,FCN,W,IW,IFAIL)
 X = OLDX
 IF (TOL.LT.O ODO) WRITE (6,99994)
 WRITE (6,99996) IFAIL
99994 FORMAT (/,' RANGE TOO SMALL FOR TOL ')
99996 FORMAT (/,' IFAIL = ', Il)
END
C
SUBROUTINE ECN (T,Y,E)
IMPLICIT REAL *8(A-H, O-Z)
REAL *8 T
REAL * 8 Y(4), F(4)
ZLMDA = - 2 4878D-3*T+3.26783D-1
2MUA = 0.0D0
CA = 0.0DO
SIGMA = 40.556DO
GAMMA = 60 833DO
```

C

```
F(1)=-Y(1)* (2LMDA + 2MUA + CA)
F(2) = -Y(2) * (SIGMA + 2MUA) + ZLMDA * Y(1)
F(3) = SIGMA * Y(2) - (GAMMA + 2MUA) * Y(3)
F(4) = GAM!1A * Y(3) + CA*Y(1) - 2MUA * Y(4)
RETURN
END
```

This program uses the Gear method in order to solve the system The results can be seen in Table 6.1 and Table 6.la below

TABLE (6.1a)
SHOWS THE PROPORTION SUSCEPTIBLE TO MEASLES OF THE
ORIGINAL COHORT OF 64,000 CHILDREN, AT AGE a

Age No. Susceptible No. Immune Proportion Susceptible years

0.5	64000.0	0.0	100000
10	54403.3	8864.1	0.85005
1.5	462744	17104.9	0.72304
2.0	39384.5	24089.2	0.61538
2.5	33541.4	30012.1	0.52408
3.0	28583.0	35038.1	0.44661
3.5	24372.7	39305.5	038082
4.0	20795.5	42931.0	0.32493
4.5	17754.4	46013.0	0.27741
5.0	15167.4	48634.7	0.23699
5.5	12965.4	50866.0	0.20258
6.0	11090.1	52766.4	0.17328
6.5	9491.8	54385.8	0.14831
7.0	8129.0	55766.6	0.12702
7.5	6966.2	56944.8	0.10885
8.0	5973.4	57950.5	0.09333
8.5	5125.3	58809.7	0.08008
9.0	4400.3	59544.1	0.06875
9.5	3780.2	60172.2	0.05907
10.0	3249.6	60709.7	0.05077

Several important results should be noted from this table
(a) By the age of 10 years there are still over 3,000 of the original cohort of 54,000 children, susceptible to measles infection

TABLE 61
SHONS THE PREDICTED NUMBERS OF SUSCEPTIBLE, INEECTED,
INFECTIOUS AND RECOVCRED AND IMIMUVE AI AGE a

A	X	H	Y
AGE	NO $s$	INFECTED	INFECTIOUS

(years) SUSCEPTIBLE
$0.500000 \mathrm{D}+00$
$0.100000 \mathrm{D}+01$
$0.150000 \mathrm{D}+01$
$0.200000 \mathrm{D}+01$
$0.250000 \mathrm{D}+01$
$0.300000 \mathrm{D}+01$
$0.350000 \mathrm{D}+01$
$0.400000 \mathrm{D}+01$
$0.450000 \mathrm{D}+01$
$0.500000 \mathrm{D}+01$
$0.550000 \mathrm{D}+01$
$0.600000 \mathrm{D}+01$
$0650000 \mathrm{D}+01$
$0.700000 \mathrm{D}+01$
$0750000 \mathrm{D}+01$
$0800000 \mathrm{D}+01$
$0.850000 \mathrm{D}+01$
$0.900000 \mathrm{D}+01$
$0.950000 \mathrm{D}+01$
$0.100000 \mathrm{D}+01$
$0.640000 \mathrm{D}+05$
$0.544033 \mathrm{D}+05$
$0.462744 \mathrm{D}+05$
$0.393845 \mathrm{D}+05$
$0.335414 \mathrm{D}+05$
$0.285830 \mathrm{D}+05$
$0.243727 \mathrm{D}+05$
$0.207955 \mathrm{D}+05$
$0.177544 \mathrm{D}+05$
$0.151674 \mathrm{D}+05$
$0.129654 D+05$
$0.110901 \mathrm{D}+05$
$0.949184 D+04$
$0812899 \mathrm{D}+04$
$0.696616 \mathrm{D}+04$
$0.597338 \mathrm{D}+04$
$0.512527 \mathrm{D}+04$
$0.440031 \mathrm{D}+04$
$0.378025 \mathrm{D}+04$
$0.324958 \mathrm{D}+04$
$0.000000 D+00$ $0.438612 \mathrm{D}+03$ $0.371633 \mathrm{D}+03$ $0.315073 \mathrm{D}+03$ $0.267283 \mathrm{D}+03$ $0.226880 \mathrm{D}+03$ $0.192701 \mathrm{D}+03$ $0.163770 \mathrm{D}+03$ $0.139267 \mathrm{D}+03$ $0.118502 \mathrm{D}+03$ $0.100895 \mathrm{D}+03$ $0.859553 \mathrm{D}+02$ $0.732723 \mathrm{D}+02$ $0.624986 \mathrm{D}+02$ $0.533414 \mathrm{D}+02$ $0.455534 \mathrm{D}+02$ $0.389261 \mathrm{D}+02$ $0.332831 \mathrm{D}+02$ $0.284753 \mathrm{D}+02$ $0.242768 \mathrm{D}+02$
$0000000 \mathrm{D}+00$ $0.294018 \mathrm{D}+03$ $0249114 \mathrm{D}+03$ $0.211196 \mathrm{D}+03$ $0.179159 \mathrm{D}+03$ $0.152073 \mathrm{D}+03$
$0.129161 \mathrm{D}+03$ $0.109768 \mathrm{D}+03$ $0.933428 \mathrm{D}+02$ $0.794237 \mathrm{D}+02$ $0676211 \mathrm{D}+02$ $0576074 \mathrm{D}+02$ $0491063 \mathrm{D}+02$ $0.418851 D+02$ $0357474 \mathrm{D}+02$ $0.305276 \mathrm{D}+02$ $0.260857 \mathrm{D}+02$ $0.223037 \mathrm{D}+02$ $0.190815 \mathrm{D}+02$
$0.163348 \mathrm{D}+02$

2

RECOVERED/
IMMUNE
$0000000 D+00$ $0886409 D+04$ $0.171049 \mathrm{D}+05$ $0.240892 \mathrm{D}+05$ $0.300121 \mathrm{D}+05$ $0.350381 D+05$ $0.393055 \mathrm{D}+05$ $0.429310 D+05$ $0.460130 D+05$ $0.486347 \mathrm{D}+05$ $0.508660 \mathrm{D}+05$ $0.527664 D+05$ $0.543858 \mathrm{D}+05$ $0.557666 \mathrm{D}=05$
$0569448 \mathrm{D}+05$
$0579505 \mathrm{D}+05$
$0538097 \mathrm{D}+05$
$0.595441 D+05$
$0.601722 \mathrm{D}+05$
$0.507097 \mathrm{D}+05$


FIGURE 61
SHOWING PLOT OF NO SUSCEPTIBLE US AGE (WHEAE C ( a ) $=0$ )


FIGURE 6 1a
SHOWING PLOT OF NO IMMUNE AT AGE A $($ WHERE $C(a)=0)$

NO IMMUNE

(b) Between tne ages of 3 and 35 years there $1 s$ an average of 26,000 susceptable to infection This is a very large number when we consider the fact that the average age of infection is 325 years.
(c) The number of infected is always larger than the number of infectious $T h i s$ is due to the fact that the latent period is longer than the infectious period.
(d) At each age point $X+H+Y+Z=N$, where $N$ is the total population of the original cohort.

Figures (6.1) and (6.la) show plots of the numbers susceptible at age a and numbers 1 mmune at age $a$. We see that there is a snarp decline in the numbers susceptible in the early years. This decrease then slows down in the older years. Similarly with the numbers of 1 mmune, these rise steadily up to the age of 6

How then do the pre-vaccination results predicted by the model compare with the existing situation? from our sample of 145 cases we have estimates of the proportions 1 mmune and susceptible to measles infection in Ireland before the introduction of the vaccination program The predicted proportions susceptiole at age a and the sample estimates of the proportions susceptible are given in Table 62 below.

Table ( 62 ) shows tne predicted and estimated proportions susceptible to measles infection in ireland prior to the introduction of the vaccination program in Octover 1985

TABLE 62

Age a 1 Y Years	Sample Estimates	Model Estimates
2	0.6	0.61533
3	0.33	0.44661
4	0.2727	0.32493
5	0.229	0.17328

As we can see the model predictions are extremely close to those proportions estimated from the sample.

We now take the model a step further by introducing vaccination into the model We adapt the above program to solve the system given the following intial conditions.
(1) We start at age $a=1$ year as vaccinations start at the age of 15 months
(1ı) Some children will have contacted the disease
between the ages of 6 montins (when the maternal
antibodies start to wear off) and 15 months (when immunisation starts). We therefore do not have all
of the original cohort of 64.000 susceptible We
know from our predictions earlier that the force of infection acting on susceptibles from $s i x$ months to

1 year gives us the following numbers of susceptible, infected, infectious and recovered and immune respectively

$$
\begin{aligned}
a=1 \quad X(a) & =54,403 \\
H(a) & =439 \\
Y(a) & =295 \\
Z(a) & =8,864
\end{aligned}
$$

$(111) C(a)=-0.01686 a^{2}+0.026743 a+0.40083$ This $1 s$
estimated from the sample vaccination program discussed in chapter $5 . A l s o 1 \leqslant a \leqslant 6$ years.

These conditions with program (6.1) yield the following results. See Table (6.3).

TABLE 6.3
SROW PROPORTIONS SUSCEPTIBLE TO MEASLES INFECTION
AT AGE a GIVEN $C(a)=$ QUADRATIC

Age No. Susceptible No. Immune Proportion Susceptible years

1.0	54403.0	8865.0	0.850047
1.5	37743.0	25746.2	0.589734
2.0	26357.8	37287.7	0.411841
2.5	18606.7	45144.8	0.290730
3.0	13333.7	50489.7	0208339
3.5	9740.5	541317	0.152195
4.0	72843	56621.1	0113818
4.5	5600.3	583279	0.087505
5.0	4445.0	59498.8	0069453
5.5	36577	60296.7	0.057152

We now note from Table (6 3) that
(a) The numpers susceptible are decreasing at a faster
rate However, by the age 55 years tnere are
still over 3,500 susceptible to measles
(b) With regard lo the proportions susceptible we see that at the age of 3 years there is still almost 218 susceptible to measles. Again this is a very
high percentage given that the average age at
infection is 325 years. It would be desireaole to
reduce the proportion susceptible at this age
considerably
TABLE 6.4
PROPORTIONS SUSCEPTIBLE BEFORE AND AFTER VACCINATION

PRE-VACCINATION
AGE
PROPORTION SUS.
1.00000
1.0

1. 5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0

POST-VACCINATION
AGE PROPORTION SUS
$10 \quad 0850047$
1.50 .589734
$2.0 \quad 0411841$
$2.5 \quad 0.290730$
$3.0 \quad 0 \quad 208339$
$3.5 \quad 0.152195$
$4.0 \quad 0.113818$
$4.5 \quad 0.087505$
$5.0 \quad 0.069453$
$5.5 \quad 0.057152$

Comparing the proportions susceptible pre and post
vaccination we see in Table (6.4) and from Figure (6 2) tnat
(1) Vaccination reduces the proportions susceptible considerably Before vaccination $5 \%$ of the


AGE

FIGURE 626<br>PROPORTION SUSCEPTIBLE AFTER VACCINATION


original cohort remarned susceptible at the aje of 10 With vaccination approximately $5 \%$ remain susceptible by the age of 35 years Thas reoresents a considerable improvement
(11) In the earlier, younger age groups we see that vaccination has reduced the number of 15 year olds susceptible to measles by approximately $13 \%$, the numper of 2 year olds by $205 \%$, the number of 25 year olds by 225 , the number of 3 year olds by approximately $23 \%$ and the number of 3.5 year olds by 23\%. These are not large 1 mprovements. The current vaccination program should be alming to immunise the children at as young an age as possiole for we have a very young average age at infection We have seen earlier in this chapter that for the successful eradication of an infectious disease such as measles $V<A$.
(111)Vaccination raises the average age at infection and hence reduces $R_{0}$. As we have seen for eradication $R_{0}<1 . \quad$ For our vaccination program to succeed we must increase our levels of coverage The required levels for eradication are in the region of $97 \%$.

Finally, what then should be the alms of future policy and further research? with regard to policy we should alm for (a) Widespread immunisation with a coverage of $97 \%$ to
(b) Immunisation at as young an age as possible, in order to ensure that the average age at vaccination is less than tne average age at infection
(c) The reduction of $R_{0}$ to less than untry If such were the case measles in Ireland would die out.
(d) The collection and compilation of appropriate data. There is an urgent need for the collection of seriological data (by surveys with fine age stratification) and vaccination data (also with age stratification) These are very important for the interpretation of epidemiological trends in disease incidence under the given vaccination policy.

[^0]```
diseases in Ireland Provided the researcher is willing to
apply hıs mathematıcal skılls and collect the approprıate
data, many useful results can be predicted for the common
mnfectrous diseases zn Ireland
```


references

i Anderson, R il and May, $R M(1982)$ Directly transmatted infectious diseases control by vaccination Science 215, 1053 - 1060

```
Anderson, R M and May, R M (1983) Vaccination agaınst
rubella and measles quantatative investigations of
different policies Journal of Yygiene 90, 259-325
```

Anderson, R.M and May, R (1985) age-related changes in the rate of alsease transmission laplications for tne
 -436

4
Anaerson, P A ano Mây $\mathrm{P} M$ (1985) Vaccination and hera immunity to minectious alseases Reture Vol 313, No 604s, pp 323-329
Armitage, P (1971) Starastical lethocs in lieorcal
Research Blachwell Scientific Publications, Oxford
6. Balley, N T J (1975) The Mathematacal Theory of Infectious Diseases and its Applications London Griffin

7 Black, F (1959) Measles Antibodies in the pooulation of New Haven, Connecticut Journal of Immunology 83

8 Braun, (19) Differential Equations and Their Applications Springer Verlag

9 Dietz, K (1975) Transmission and control of arborvirus diseases In Epidemiology (ed D Ludwig and K L Cooke), pp 104-121 Phıladelphıa Socıety for Industrıal and Applied Mathematics

Dletz, K (1976) The incidence of infectious diseases under the influence of seasonal fluctuations lecture Notes In Blomathematics 11, $1-15$

11 Flood, R G (1983) Population Blology of Infectious Diseases Irish Mathematical Society Newsletter

Grenfell, B T and Anderson, R M (1985) The estimation of age-related rates of infection from case notifications and sereological data Journal of Hyglene 95, pp 419-436

13 Grıffıths, D A (1974) A catalytıc model of infection for measles Applied Statistics 23, 330-339

14 Muench, H (1959) Catalytıc Models in Epıdemıology Harvard University Press

15 Murray, J D and Hastings, S P (1975) The existence of oscillatory solutions in the Field-Noyes model for the Belovsov-Zhabotinskil Reaction Slam Journal of Applied

Mathematics, Vol 28, No 3, pp 678-688
Murray, J D (1977) Lectures on Nonlinear Differental
Equation Models in Biology Clarendon Press Oxford
Nold, A (1979) The infectee number at equilibrium for a
communicable disease Mathematical Biosciences 46,
pp 131-138
Noszitlczius, Z, Farkas, H and Schelly, Z A (1984)
Explodator A new skelton mechanısm for the halate draven
chemıcal oscillators Journal of Chemical Physics 80(12)
pp 6062-6070
Sanchez, D A (1968) ordinary differential equations and
stability theory An Introduction W H Freeman and Company,
San Francisco and London
Soper, H E (1929) Interpretation of periodicity in disease
prevalence Journal of the Royal Statistical Society 92 ,
pp $34-73$
Waltman, P (1974) Determanistic Threshold Models in the
Theory of Epidemics Lecture Notes in Biomathematics
New York Springer Verlag

[^0]: With regard to future research we have in our model made the assumption of homogeneous mixing That is that the population mixes in a homgeneous manner, at a given point in time, each susceptible has an equal prooability of encountering an infectious person In natural communties there will be groups of individuals who are less at risk of exposure to infection than other groups. There is a need for further work on the impact of anhomogeneous mixing. Similar comments also apply to vaccination coverage, since this is rarely uniform throughout the different regions of the country. Finally, our analysis is based on measles infection, the methods, however, can be applied to the epidemiological study of a wide variety of infectious

