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A B ST R A C T

by Noel Edward O’Connor B. Eng.

An efficient representation of two-dimensional visual objects is specified by an 
emerging audiovisual compression standard known as MPEG-4. It incorporates the 
advantages of segmentation-based video compression (whereby objects are encoded 
independently, facilitating content-based functionalities), and also the advantages of 
more traditional block-based approaches (such as low delay and compression 
efficiency). What is not specified, however, is the method of extracting semantic objects 
from a scene corresponding to a video segmentation task. An accurate, robust and 
flexible solution to this is essential to enable the future multimedia applications possible 
with MPEG-4.

Two categories of video segmentation approaches can be identified: supervised and 
unsupervised. A representative set of unsupervised approaches is discussed. These 
approaches are found to be suitable for real-time MPEG-4 applications. However, they 
are not suitable for off-line applications which require very accurate segmentations of 
entire semantic objects. This is because an automatic segmentation process cannot solve 
the ill-posed problem of extracting semantic meaning from a scene.

Supervised segmentation incorporates user interaction so that semantic objects in a 
scene can be defined. A representative set o f supervised approaches with greater or 
lesser degrees of interaction is discussed. Three new approaches to the problem, each 
more sophisticated than the last, are presented by the author. The most sophisticated is 
an object-based approach in which an automatic segmentation and tracking algorithm is 
used to perform a segmentation of a scene in terms of the semantic objects defined by 
the user. The approach relies on maximum likelihood estimation o f the parameters of 
mixtures o f multimodal multivariate probability distribution functions. The approach is 
an enhanced and modified version of an existing approach yielding more sophisticated 
object modelling. The segmentation results obtained are comparable to those o f existing 
approaches and in many cases better. It is concluded that the author’s approach is ideal 
as a content extraction tool for future off-line MPEG-4 applications.

Video Object Segmentation for Future Multimedia Applications
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1. IN TRO DUCTIO N

1.1 Context of this research

The proliferation of personal computers in recent years, in conjunction with the 

continuous evolution of digital networks, has ensured a worldwide trend towards a new 

digital age. Nowhere is this more prevalent than in the area of telecommunications and 

multimedia. The introduction of the telephone revolutionised the world by allowing 

instant voice communication. A similar revolution is already underway with the 

expansion of digital communication services to include audio, visual and data-based 

information. More and more in the business world, video conferencing is being used as 

a viable alternative to extensive travelling in order to meet with colleagues or clients 

around the globe. The videophone, whilst only a novelty at the moment, is likely to 

become more widely adopted by the general public in the future. After all, no science 

fiction movie is complete without the pre-requisite videophone in every day use! 

Similarly, the television broadcast, film production and graphic design communities, in 

their never-ending quest for an enhanced reflection o f reality, are turning to digital 

multimedia technologies as a means of meeting their requirements.

The arrival o f this new digital age has brought with it many technological challenges. 

Multimedia data must be represented in a manner suitable for meeting the requirements 

placed upon it. It must be compressed to minimise storage costs and to ensure that it can 

be transmitted at the data rates possible on existing networks. It needs to be protected 

against corruption. It should be processed in such a way as to facilitate reuse. In certain 

cases it must be encrypted. Sometimes, in order to protect ownership rights and for 

other legal considerations, it is necessary to incorporate non-removable qualities in the 

data. Digital visual information (i.e. still images and video sequences) in particular 

presents significant challenges, consisting as it does of large volumes of information to 

be processed in order to meet these requirements.
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Aspects of video compression are considered in this thesis. Technological advances in 

this field in recent years have presented new challenges. After addressing issues of 

compression of digital video for user requirements such as efficient storage and 

transmission, it has become apparent to the research community that given these 

possibilities, further enhanced functionalities are required. It is no longer enough for the 

average person, either in the home or in the workplace, to be a passive observer of 

visual information: the visual data must be efficiently represented in such a way as to 

facilitate interaction. Similarly, it is no longer enough for people involved in producing 

the visual information (from film producers to graphic artists) to be capable of editing 

and manipulating content on the traditional (unwieldy) image by image basis. Rather 

they require access to, and interaction with, the content o f the digitised scene in order to 

improve it, modify it, or construct a completely new scene. For these reasons, the 

envisaged enhanced functionalities are usually termed content-based functionalities.

In order to allow access to the content o f visual data, the research community has turned 

its attention to the analysis of a digitised scene (either still image or moving video) into 

its component parts, how ever these are defined. This process is usually termed 

segmentation as the visual data is segmented into units smaller than images, which are 

not geometrically regular partitions of an image, and which reflect image content. 

Compression of the image or sequence in terms o f these units offers a means of 

providing interactive content-based functionalities. The discussion in this thesis focuses 

on this important issue of segmentation.

1.2 Objectives of this research

The first objective o f this thesis is to place in context the further investigations 

described here. To achieve this objective, various methods of video compression for 

existing user applications are first described. The content-based functionalities required 

by future multimedia applications are then introduced. The actual compression approach 

converged upon for potentially providing these functionalities is examined. This 

approach does not completely solve the problem of providing the required 

functionalities. Rather, it solves part of the problem and leaves the other part, a video 

segmentation problem, as an open issue. This serves to emphasise the importance of

2



video segmentation as an enabling technology for future multimedia applications and 

justifies the research carried out by the author in this area.

The second objective of this thesis is to describe the current state o f the art technology 

being used to address the issue o f segmentation. Segmentation may be addressed in 

different ways depending on the nature of the user application which requires content- 

based functionalities. In this work, the approaches are divided into two categories 

corresponding to on-line and off-line segmentation. Existing segmentation approaches 

which can obtain a measure of success for both scenarios are described. Some o f these 

approaches help form the basis of a new approach to segmentation (see below) whilst 

others are used for comparison and evaluation of this new approach.

The third objective o f this thesis is to investigate a new approach to solving the 

segmentation problem considering the off-line scenario. Three schemes, each more 

sophisticated than the last, are developed by the author in order to address this issue. 

The mathematical justification of the technologies investigated in these approaches is 

presented, as well as results to illustrate the nature o f the approaches and their 

performance. In each case, the performance of the approach is analysed.

An implicit objective o f any research work is to indicate a direction for further research. 

The final objective of this thesis is to consider the proposed solution to the segmentation 

problem and to present possibilities for improvement. The possibility of using the 

solution as a basis for addressing related (future) challenges in the field is also 

presented.

1.3 Structure of this thesis

The first half of this document is a review of existing technologies. In chapter two, the 

block-based approach to video compression is described. The underlying philosophy of 

redundancy reduction for compression is first explained. The compression tools 

developed based on this philosophy are then described. Finally, the organisation of these 

tools into complete block-based encoding/decoding schemes is described. The schemes 

described are H.261, H.263, MPEG-1 and MPEG-2, which are all international 

standards for video compression. It is also explained in this chapter how a block-based



approach can lead to visually disturbing compression artefacts, particularly at lower bit 

rates.

In the third chapter, an alternative approach to compression based on video 

segmentation is described. It is explained how this approach was initially investigated as 

a means of avoiding block-based artefacts. It is further explained how content-based 

functionalities are feasible when segmentation is included in a compression scheme. 

Two of the best known (in Europe at least) compression schemes embodying this 

approach, known as SIMOC and MORPHECO, are described and discussed. It is 

explained that neither approach is capable of supporting the envisaged content-based 

functionalities, since they are both tightly-coupled analysis-coding systems, which do 

not produce real semantic object segmentations.

The new audiovisual (AV) compression standard, known as MPEG-4, which supports 

content-based functionalities by block-wise encoding arbitrarily-shaped image segments 

corresponding to semantic objects, is presented in chapter four. This completes the 

description of the evolution of video compression technology from purely block-based 

approaches, through purely segmentation-based approaches, to finally, a hybrid 

segmentation-based and block-based approach. The content-based functionalities which 

the MPEG-4 standard supports are outlined and possible applications are discussed. The 

decision that the MPEG-4 standard should not standardise segmentation is justified. The 

consequence of this, namely the importance of video segmentation for future MPEG-4 

applications, is high-lighted. The future work o f the MPEG standards group, known as 

MPEG-7, is also briefly described and the potential importance of segmentation as a 

feature extraction tool in this context is proposed.

Current state of the art solutions to the segmentation problem in the context of MPEG-4 

applications are described in chapters five and six. Chapter five describes three existing 

approaches to unsupervised segmentation. The performance of these techniques in terms 

of potential MPEG-4 applications is analysed. It is explained how all three approaches 

are restricted by the fundamental inability of automatic segmentation techniques to 

extract semantic meaning from a scene. It is concluded that these approaches are only
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suitable for a subset of possible MPEG-4 applications, corresponding to on-line real­

time MPEG-4 applications which can tolerate inaccurate object segmentations.

Chapter six describes three existing approaches to supervised segmentation which are 

suitable for off-line, non real-time MPEG-4 applications. Examples of applications 

possible with this approach to segmentation are presented. Again, the performance 

(amongst other considerations) of these approaches is considered. Whilst the 

segmentation results obtainable with each scheme are comparable, it is proposed that 

they can be distinguished on the basis of user interaction. One of the approaches in 

particular can obtain accurate segmentation results with a minimum amount of 

interaction, which is easily performed. This approach forms the basis o f the author’s 

further investigations which attempt to address certain limitations associated with the 

scheme.

The second half of the document details the further investigations carried out by the 

author. The mathematical background necessary for the author’s solution to the 

supervised segmentation challenge is presented in chapter seven. The chapter introduces 

multidimensional statistical signal processing and outlines key techniques in this field 

such as Maximum Likelihood (ML) estimation and the Expectation-Maximisation (EM) 

algorithm. Existing applications of these techniques to the segmentation problem (and 

the promising segmentation results obtained) are discussed. It is concluded that these 

techniques can be very useful tools for segmentation.

The method of user interaction found to be most suitable in chapter six, is incorporated 

into two supervised segmentation schemes developed by the author, which are presented 

in chapter eight. The first is a rudimentary region-based scheme based on clustering. 

The second is an enhanced region-based scheme based on the statistical processing 

techniques of chapter seven. It is explained how these schemes can be used to perform 

object segmentation for off-line MPEG-4 applications. However, these schemes are not 

investigated in full as they include a number of drawbacks, such as inaccurate object 

segmentation and problematic object tracking, which hamper their development. 

Segmentation results obtained with these schemes are presented to illustrate these 

claims.
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The method of object modelling which proved to be successful in one o f the approaches 

of chapter six, is incorporated into a supervised segmentation scheme developed by the 

author, which is presented in chapter nine. This object model is used to enhance the 

second approach presented in chapter eight. The result is a modified enhanced version 

of the scheme described in chapter six which yields more appropriate object models. 

The new approach addresses the limitations o f the schemes presented in chapter eight by 

automatically segmenting and tracking actual semantic objects. It also addresses the 

limitations of the similar approach described in chapter six. The performance of the 

scheme is discussed, and the limitations of the approach in terms of tracking objects are 

explained. Possible ways of addressing these limitations are then suggested. It is 

concluded that the approach is an ideal candidate for segmentation in future off-line 

MPEG-4 applications.

The final chapter reviews the conclusions drawn in this thesis and suggests directions 

for future research considering the approach to segmentation described in chapter nine. 

Possible high level enhancements of the scheme when considered in a complete MPEG- 

4 video object segmentation application are proposed. The potential use o f the object 

models used in the author’s approach, in order to extract descriptions of MPEG-7 

features, is also discussed.

All segmentation results in chapters eight and nine are obtained using MPEG-4 test 

sequences in QCIF or QSIF format. The presented images, however, are scaled either up 

or down in order that the results may be arranged appropriately in the document. A 

glossary of commonly used abbreviations and terms is provided at the end of this 

document for the reader’s convenience. A list of related publications which are 

referenced in the main text of the document is also provided. The appendices contain 

information useful in understanding the content of the document, including ancillary 

related information not contained in the main text. Appendix A includes a derivation 

necessary for deriving key equations in chapter seven. Also included are two examples 

o f the derivations in chapter seven in their simplest form. Appendix B contains 

segmentation results to illustrate that the segmentation process of chapter nine can 

perform equally well for different image resolutions or formats.
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2. B L O C K -B A S E D  V ID E O  C O M P R E S S I O N

2.1 Introduction

In this chapter, the traditional approaches to digital image/video compression are briefly 

reviewed. At the highest level, image compression can be considered to take place in 

two steps. In the first step the spatial redundancy in the image is reduced. Redundancy 

in this context refers to those image components to which the human visual system is 

least sensitive, and which may be successfully removed without causing a significant 

deterioration in subjective image quality. The second step is to efficiently represent in a 

bitstream the entropy o f the components not removed. When considering video, and the 

significant amount of temporal redundancy present in most sequences, a prior temporal 

redundancy reduction step is required. The high level steps to be followed in this case 

are (i) to reduce temporal redundancy between images, (ii) to reduce the spatial 

redundancy of the result, and (iii) to form an efficient bitstream representation of the 

entropy o f the remaining image data.

Most image and video compression schemes operate on blocks of pixels as opposed to 

the entire image. In this way, each block can be treated independently. This is important 

if  the scheme is to be used in a real-time application (i.e. a decoder can start to decode 

blocks as soon as they become available). Also, the transmission error characteristics 

can be improved by treating blocks independently (i.e. an error in decoding one block 

will be localised as it cannot propagate into other blocks)'.

The following sections outline the main redundancy reduction tools used in image/video 

compression. The chapter focuses on the application of these tools in block-based 

compression schemes. These tools have been successfully integrated into a number of 

international standards and these standards and their target applications are described. 

These descriptions (and indeed the descriptions of other compression schemes

1 Error robustness and the possibility o f  error detection and concealment are important considerations for nearly all 
applications involving compressed visual data.
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throughout this thesis) focus on redundancy reduction and not the method of entropy 

encoding.

2.2 Transform-based Coding

In the transform-based approach to compression, the image signal is mapped from one 

domain (normally spatial or temporal) into another domain, referred to as the transform 

domain. In the case of an orthogonal transform, the transform operation is unique and 

reversible [1]. Furthermore, the energy of the signal is preserved in the mapping 

between domains and thus, the original signal can be completely recovered by the 

inverse transformation. It is not the transformation itself which results in compression. 

Rather, compression is achieved by processing the signal in the transform domain. In 

the case of a digital image, the data to be transformed consists of a set o f pixels. The 

transformed pixels in the new domain are referred to as coefficients as the transform can 

be considered to be a series expansion of the original signal using a new set of basis 

vectors [1].

An important property of orthogonal transforms is decorrelation. If an input signal is 

highly correlated, a properly chosen orthogonal transform can reduce (even eliminate) 

correlation [1], This is an important property o f orthogonal transforms when they are 

considered for image/video compression purposes as it means that each coefficient in 

the transform domain can be treated independently.

Another very important property of orthogonal transforms when applied to correlated 

signals is energy compaction [1], This means that, in the transform domain, a large 

percentage of the overall signal energy is concentrated in a small number o f the 

transform coefficients. Compression can be achieved by filtering these coefficients in 

the transform domain to remove those which can be considered to be less important to 

the overall signal representation. In the following section, the Discrete Cosine 

Transform (DCT), which is the transform most often used in image/video compression, 

is described. As illustrated in the remainder of the chapter, it is at the heart of the most 

popular image/video compression schemes.
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The DCT has several properties which make it very attractive for use in the field of 

image/video compression. In particular, the DCT compacts the energy of the signal into 

a few coefficients, it has a fast implementation (both forward and inverse 

transformations), there is minimum residual correlation, and it is real-valued and 

separable. In addition, the DCT is a close approximation to the statistically optimal 

Karhunen-Loève Transform (KLT) [1],

The coefficients of a 2-D DCT of a block of pixels have a special interpretation which is 

exploited in image/video compression. The basis functions of the DCT are arranged in 

order of increasing vertical and horizontal spatial frequency. The top left region in a 

transformed block represents the DC and low frequency coefficients. Due to energy 

compaction these contain most of the signal information and are the most visually 

important. The coefficients located in horizontal and vertical positions represent 

increasing horizontal and vertical frequencies (referred to as AC coefficients).

In order to encode an image using the DCT, the normal procedure is divide the image to 

be encoded into 8 x 8  non-overlapping blocks o f pixels and to encode each block 

independently [2]. Each block undergoes a 2-D DCT. The resultant coefficients are then 

quantized in order to reduce entropy and to aid in the elimination of any small and 

unimportant coefficients [2]. In order to exploit the characteristics o f the resultant 

coefficients, they are treated in a particular order. The most popular order is the zig-zag 

scan [2], This results in quantized coefficients in order of increasing frequency, starting 

with the DC coefficient. This is desirable as large numbers o f the higher order 

coefficients along this scan will be zero after quantization.

The organisation of coefficients described above is suitable for Run Length Encoding 

(RLE) where the length of each run (i.e. a number of similar values in a row in the scan) 

of a particular quantization level are the coding events. These are represented using pre­

determined variable length code-words (VLCs). Shorter VLCs are used for more 

frequently occurring runs (such as runs o f zero) thereby achieving compression. For 

further compression efficiency, a special end of block VLC can be transmitted at any 

point indicating that all the remaining coefficients in the block are zero.

2.2.1 DCT-based Coding
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The DCT-based approach to image compression has proven to be very robust and 

efficient. In fact the Joint Photographic Experts Group (JPEG) o f the International 

Standards Organisation (ISO) has specified a DCT-based still image compression 

standard (normally referred to simply as JPEG). This standard utilises the above 

approach in order to specify a number of coding modes for still images [2],

2.3 Hybrid (Transform-DPCM) Coding

Redundancy can also be removed by a technique known as predictive coding. In this 

approach, each pixel in an image is predicted by pixels in its local neighbourhood and 

the prediction error is transmitted. The prediction error has lower entropy than the 

original pixel sample and can thus be quantized with fewer quantization levels, giving 

data compression.

The most popular form of predictive coding is known as differential pulse code 

modulation (DPCM). This approach utilises a feed-back loop in the encoding process 

(referred to as the coding loop). The prediction of each pixel in the encoder is made with 

respect to a previously encoded and reconstructed pixel, thus avoiding error propagation 

and allowing the decoder to mimic exactly the operation of the encoder. It is therefore 

necessary for the encoder to perform decoding and to store reconstructed pixels in order 

to make the prediction.

DPCM can be used to reduce the temporal redundancy present between successive 

images in most video sequences. As in DCT-based coding, DPCM operates in a block- 

wise manner. In this case, the prediction of a block is extracted from the previous 

reconstructed image. The prediction error between the original block and its prediction 

can then undergo spatial redundancy techniques in order to achieve further compression. 

DCT-based encoding (with VLCs tailored to prediction error data) is normally used and 

the overall approach is a hybrid transform-DPCM compression scheme.
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The method of obtaining the prediction for a block of pixels is known as motion 

estimation (ME) as the underlying objective is to calculate the motion of a block from 

one image to the next. This proceeds by moving a block around its co-ordinates in the 

previous reconstructed image in order to determine how the block has moved from one 

image to the next2. What is actually sought is the location which produces the best 

match for the block. A number of methods exist for determining the best match [3], but 

the one most often used is the mean absolute distance (MAD). A number o f algorithms 

exist for fast searches which attempt to converge quickly on the best match [3]. Having 

found the best match, the result is a motion vector for the block which specifies the 

displacement in both vertical and horizontal components.

Given the motion vector, the prediction is obtained by simply copying the contents of 

the displaced block in the previous reconstructed image into the current block location. 

This process is known as motion compensation (MC). The original block and the MC 

block are subtracted and the result is a prediction error block which can undergo DCT- 

based encoding. Both ME and MC are required in an encoder, however the decoder only 

requires a MC module as the motion vectors are transmitted. Both encoder and decoder 

require a memory for the previous encoded image (referred to as a frame memory).

2.4 Block-based Video Compression Standards

The video compression tools described in the previous sections have undergone 

substantial research and subsequent development to international standardisation status. 

The way the tools are employed in a standardised compression scheme is very much 

dependent on the nature o f the applications which motivated the development o f the 

standard in the first place. In the following sections the main video compression 

standards are briefly described and compared.

2.3.1 Motion Estimation and Compensation

2 This assumes that all pixels in the block move with coherent translational motion. The effects o f  other more 
complicated motions such as rotation are ignored.
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In response to the growing demand for visual telephony and video conferencing 

services, the International Telecommunications Union (ITU-T) developed video 

compression standards targeted at this narrow bandwidth real-time application. 

Recommendation H.261 is a video codec specification suitable for real-time AV 

services at p  x 64 Kb/sec, where / m s  the range of 1 to 30 [4]. This choice o f bandwidth 

is motivated by the bit-rate o f baseline ISDN (Integrated Services Digital Network). The 

overall codec has a hybrid structure incorporating both transform and predictive coding. 

The algorithm creates two types of frames. The first, known as an INTRA frame (I- 

frame), is encoded independently using the DCT. The second type of frame, known as 

an INTER frame (P-frame), is encoded with reference to a previous I or P-frame. A 

simplified diagram of the codec structure is illustrated in Figure 2.1 [4].

2.4.1 ITU-T H.261 Video Compression

Video

Figure 2.1 - Structure of a H.261/H.263 encoder

An image to be encoded is divided into 16 x 16 non-overlapping blocks o f pixels. The 

coding unit is referred to as a macroblock. Each macroblock is encoded independently. 

A macroblock has four coding mode decisions associated with it corresponding to 

INTRA or INTER, MC or no MC, loop filtering or not, and coded or not-coded. 

Information on these four modes must be transmitted for each macroblock as overhead. 

Each macroblock is decoded and reconstructed in the encoder. In INTER mode, the 

output of the inverse transform is the prediction error which is added to the prediction

12



obtained by motion compensation. In INTRA mode the output is the reconstructed 

macroblock. The decoded macroblocks are aggregated to form the previous 

reconstructed image which is stored in the frame memory for encoding the next image.

A two-dimensional 8 x 8  DCT is used for spatial data compression. In the case o f an 

INTER mode decision, the input data to this DCT is the prediction error. In the case of 

INTRA mode, the input data are the pixel values themselves. DCT coefficients are 

quantized, zig-zag scanned and entropy encoded. The INTRA DC coefficient is encoded 

using a fixed length code-word (FLC). There are 31 quantizers available for the AC and 

INTER DC coefficients. The quantized coefficients are encoded by VLCs using RLC

H.261 specifies one motion vector per macroblock. The motion vector data is 

predictively encoded using VLCs for the differences between the horizontal and vertical 

motion vector components [2]. Motion compensation in the encoder is optional in H.261 

(although the decoder must accept one motion vector per macroblock).

An optional low pass filter may be introduced into the codec after MC. The motivation 

for this is to reduce the quantization noise in the feedback loop and/or to reduce the 

effects of high frequency artefacts introduced by MC [2]. No filter coefficients are 

defined but a separable filter, similar to that used in JPEG, is recommended.

Selected processing steps and parameters of the H.261 compression scheme are not 

specified. These are normally parts of the compression algorithm which are non- 

normative and yet have a significant impact on overall image quality and compression 

efficiency. This provides a suitable forum for competition of H.261 products in the 

market-place. For example, the method of motion estimation in the encoder, the use of a 

loop filter, the arithmetic process for computing the DCT, the control of the data rate, 

and the method o f mode decision for each macroblock can be defined by the encoder 

designer.
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2.4.2 ITU-T H.263 Video Compression

In addition to H.261, the ITU-T has produced another standard for video compression, 

developed for very low bit-rate applications such as video telephony over the public 

services telephone network (PSTN) and mobile telephony. This recommendation, 

known as H.263, is very similar in concept to H.261, although with significant 

improvements which allow the video codec to operate efficiently at bit-rates lower than 

64 Kb/sec [2]. Like H.261, the overall codec structure is a hybrid DPCM/DCT encoding 

system. The simplified diagram of the H.261 encoder in Figure 2.1 translates directly to 

H.263. In the following, the main differences between the two are outlined.

In H.263, motion compensation with half-pixel accurate motion vectors is allowed. 

Motion compensation is performed using bilinear interpolation. Also, motion vectors 

are allowed to point outside the current image. This latter is called unrestricted motion 

vector mode. In this case, pixels at the edge of the image are used to form the prediction 

[2], Another motion compensation method known as advanced prediction mode is also 

available. In this case, each macroblock can have four motion vectors associated with it. 

The prediction is formed using a technique known as overlapped block motion 

compensation (OBMC) [2].

An optional encoding mode known as syntax-based arithmetic coding (SAC) mode is 

available in H.263. In this mode, all VLC operations o f H.263 are replaced with more 

efficient arithmetic encoding/decoding operations [2]. An optional extra type of encoded 

frame, known as a PB-frame is also available. This is actually two separate frames. The 

first is a normal P-frame, predicted from the previous P-frame. The second is a B-frame 

(where B stands for “bi-directional”) which is predicted from both the previous P-frame 

and current P-frame being decoded [2],

2.4.3 MPEG-1: Audiovisual compression for digital storage media

The Motion Picture Experts Group (MPEG) was established by ISO in order to specify 

standards for AV compression. MPEG-1 is a standard supporting compression of AV 

data at rates o f around 1.5 Mb/sec [2], This data rate is motivated by the transfer rate of 

a CD-ROM which, due its low price and ease of production, has become widely
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accepted as a digital storage medium for AV information. The objective of the MPEG-1 

video compression standard is to specify a highly flexible source coding algorithm 

which is applicable to a wide range of digital storage media (DSM) applications. A very 

large number of compression options are specified in the encoding process. MPEG-1 is 

specified so that the decoder is much simpler than the encoder. A simplified decoder 

ensures that low cost, mass market implementations can be produced - a necessary 

requirement for the type of digital storage applications at which the standard is targeted.

The structure of MPEG-1 is based very much on H.261 with some extra extensions for 

digital storage applications. H.261 is targeted at video conferencing applications which 

normally contain a small amount of motion and in which reasonably low visual quality 

is acceptable. MPEG-1 on the other hand, requires that every frame of a sequence 

(which may have fast motion) be encoded to a high degree o f quality (comparable to 

that of a video cassette recorder). This is not possible with H.261, even when operating 

in the mid-range of its p x 64 Kb/sec bandwidth [2]. Furthermore, MPEG-1 supports 

extra functionalities necessary for its target applications, such as random access (i.e. fast 

access to an arbitrary frame), high resolution still frame and variable mode video 

playback (forward, reverse, normal speed, fast speed).

MPEG-1 specifies three types of coded images [2]. The first is referred to as an I-picture 

and this is analogous to the I-frame of H.261. The second type of coded image is known 

as a P-picture which is analogous to the P-frame in H.261. A B-picture is encoded using 

both a past frame and a future frame in the sequence [2].

As in H.261/H.263, the basic coding unit in MPEG-1 is the macrobloclc. In an I-picture 

each macroblock in encoded in INTRA mode. Each 8 x 8  block in the macroblock is 

transformed into the DCT domain and the coefficients undergo quantization, zig-zag 

scanning and entropy encoding. The quantization takes place with reference to a user- 

defined quantization matrix which specifies the quantizer to be used for each coefficient 

(except the DC coefficient) [2]. The user-defmed matrix ensures that quantization can be 

tailored to a particular application. The quantized DC coefficients undergo lossless 

encoding using a DPCM technique [2], The quantized AC coefficients are not predicted,
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but undergo zig-zag scanning and entropy encoding using RLC, in a manner very 

similar to H.261.

The macroblocks in a P-picture are encoded using motion compensation and DCT-based 

coding o f the prediction error. Four coding modes exist for each macrobloclc. An MC/no 

MC decision can be made to indicate that no motion vectors are to be encoded for the 

macroblock. Motion vectors are encoded differentially with VLCs in a manner similar 

to that used in H.261. A macrobloclc in a P-picture can be encoded in INTRA or INTER 

mode depending on which gives the most efficient compression. In fact, a macroblock 

need not be encoded at all if  the quantized DCT coefficients are zero and this is 

indicated with a coded/not coded mode decision. Finally, a quant/no quant decision is 

made which indicates whether or not the quantizer scale is to be changed in the 

macroblock. Visual image quality can be improved by varying the quantizer to reflect 

scene activity [2],

Decoded B-pictures need not be stored as they are not used for subsequent prediction. In 

order to encode a macroblock in a B-picture, three predictions of the macroblock 

corresponding to forward, backward and bi-directional are available. There are two 

types of motion vector to be encoded (forward and backward) and each is encoded with 

reference to a predictor of similar type [2]. Quantization and encoding o f the DCT 

coefficients in a B-picture macroblock are performed in the same manner as in P- 

pictures.

2.4.4 MPEG-2: Generic Video Compression

The second standardisation work item of the ISO Motion Picture Experts Group is 

normally referred to as MPEG-2. It is a compression standard developed to support 

video transmission at bit-rates in the range 2 to 15 Mb/sec [2]. MPEG-2 is designed for 

applications such as DSM, electronic cinema, satellite broadcast, high definition 

television (HDTV) supporting existing television, multimedia, computer games, etc. 

The standard is very flexible, allowing specification o f video compression for many 

applications between the high performance (or complexity) and low performance (or 

complexity) extremes. Because of this, the standard is designed to support a very wide 

range of bit-rates, spatial and temporal resolutions, qualities and services.

16



It is not practical to support all application options in a single bitstream syntax, and so a 

number o f bitstream syntax subsets are defined and are referred to as profiles and levels. 

As a result, MPEG-2 is often considered as a generic tool-box for video compression. 

The basic video compression algorithm for MPEG-2 is very similar to that o f M PEG-1. 

It also consists of INTRA frame compression and INTER frame prediction (both 

forward and backward). Only the high level differences between MPEG-1 and MPEG-2 

are described here.

Compatibility and scalability are the two fundamental concepts underpinning MPEG-2. 

Compatibility ensures that an MPEG-2 decoder can decode the output o f existing 

encoders, such as H.261 and MPEG-1 [2], Conversely, an existing decoder can decode 

the MPEG-2 bitstream (or at least a part thereof). A bitstream is considered scalable if  it 

possesses the property whereby part o f it can be decoded independently o f the rest in 

order to produce a meaningful output [2]. In this way, cheaper decoders can decode low 

quality and/or low resolution (both spatial or temporal) video, whereas a more 

expensive decoder can produce better quality video from the same bitstream. This is 

important for targeted applications such as multipoint video conferencing, database 

browsing, and video communications over asynchronous transfer mode (ATM) 

networks. Scalability consists of having a number of layers in the bitstream. The most 

basic layer (referred to as the base layer) can be decoded by the decoder of lowest 

complexity and the other layers ignored. Decoders of higher complexity can decode 

these other layers (referred to as enhancement layers) along with the base layer for 

enhanced functionality. MPEG-2 supports a number of different types of scalabilities 

such as spatial scalability, temporal scalability, SNR scalability, data partitioning and 

hybrid scalability [2],

When considering non-scalable encoding in MPEG-2, the main difference with respect 

to MPEG-1 is the consideration of interlaced video. Interlaced video is very important 

for many of MPEG-2’s targeted application areas, particularly broadcasting. The main 

tools adopted in order to improve coding efficiency for interlaced video are a field/frame 

adaptive DCT, field/frame adaptive MC, and a new scanning order for DCT coefficients 

to cope with field pictures [2], In addition, a non-uniform quantizing step size
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assignment method is defined which provides finer control of the quantization process 

for high-quality coding [2],

2.5 Conclusions

The video compression standards described in this chapter have proven to be very 

successful. Although these standards are quite recent, products offering the envisaged 

services in each case are already becoming available. It is clear that the underlying core 

technology is successful in meeting its required objectives, in terms of efficiency and 

quality. H.261/H.263 can provide video-conferencing facilities of acceptable quality at 

low bit rates. MPEG-1/2 can provide higher quality video for either off-line or real-time 

higher bit rate applications.

The schemes described are all lossy in that compression o f the original data is achieved 

by throwing out some image data that is considered redundant. Naturally, this loss is 

reflected in some reduction of the decoded image quality. The loss o f information 

typically manifests itself as artefacts in the decoded picture. These artefacts, particularly 

at higher bit rates, may be transparent to the human visual system (e.g. the loss o f very 

fine detail may not even be missed). However, at very low bit-rates the effect of these 

artefacts is more prominent and they become visually annoying. As could be expected 

of block-based schemes, the coding artefacts are themselves block-oriented. They arise 

primarily from coefficient quantization errors, due to the coarse quantization necessary 

at lower bit rates, which ensure that an exact block reconstruction is not obtained. Since 

the inter-correlation between blocks is not exploited this results in visible discontinuities 

among adjacent blocks (known as blocking artefacts). The regular structure o f such 

artefacts when considered in natural images is visually disturbing. The effect of motion 

compensation can further reduce image quality by reinforcing the effect of this coarse 

quantization in the displaced block which itself may exhibit visible discontinuities with 

respect to its neighbours.

As outlined in chapter four, compression standards of the future have requirements for 

content-based functionalities. In this case, a purely block-based approach to 

compression is not appropriate. The initial investigations o f the video compression 

community into non-block-based approaches in order to provide efficient compression,
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whilst avoiding blocking artefacts and at the same time addressing content-based 

functionalities, are described in the next chapter.
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3. S E G M E N T A T I O N -B A S E D  V I D E O  C O M P R E S S I O N

3.1 Introduction

In the block-based approach to video compression, the individual images to be encoded 

are modelled as a set o f independently moving square blocks. This is a rather artificial 

description of an image and it gives rise to visually disturbing distortions known as 

blocking artefacts, particularly at low bit rates. Consequently, non-block-based 

approaches to video compression were also considered within the research community. 

The coding units o f these new approaches were arbitrarily-shaped image segments 

which reflected actual scene content, and which were derived from a segmentation of 

each image prior to encoding. By describing these image segments in a compact 

manner, it was hoped to achieve more efficient compression. Furthermore, since these 

segments reflect the natural content of the scene, it was proposed that any coding 

artefacts arising from such an approach would be visually less disturbing than the 

unnaturally regular artefacts produced by block-based approaches.

As standardisation work on block-based compression schemes was coming to an end, it 

became clear that the next generation of video compression standards would have very 

different requirements. In addition to coding efficiency, future standards would also 

have to provide for the possibility o f much higher levels o f end user interaction3. The 

envisaged new levels of interaction would require the possibility for an end user to 

interact with actual scene content. In this way, future compression schemes are required 

to support content-based functionalities. A regular splitting of the image into square 

blocks cannot provide these functionalities. Segmentation-based encoding approaches, 

however, were considered ideal candidates for providing this. In light of this, and with 

the advent of a new standardisation work item, the new segmentation-based approaches 

to video compression received a lot of attention.

3 Both MPEG-1 and MPEG-2 provide a certain level o f user interaction but o f a  very restricted nature (fast-forward, 
reverse, applied to the entire scene)
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When segmentation-based compression is considered there are two approaches: object- 

based and region-based. An object is considered to be a grouping of pixels which forms 

a partition of an image which has some semantic meaning associated with it. In other 

words, the grouping reflects a human’s interpretation o f the scene. A region, on the 

other hand, is a grouping of pixels which are homogeneous according to some chosen 

criterion but which need not necessarily have a semantic meaning associated with it. An 

object is normally made up of a number of image regions and is thus not generally 

homogeneous according to a single criterion. For example, an object can be composed 

of many regions of different intensity, colour and motion.

The relationship between objects and regions is illustrated in Figure 3.1 below. In 

Figure 3.1(a) a selected semantic object in the scene (i.e. the foreground person) is 

composed of a number o f image regions, homogeneous according to a luminance-based 

criterion, which in this case have a semantic meaning associated with them (e.g. hair, 

face, jacket, etc.). Figure 3.1(b) shows another example of a selected semantic object 

(i.e. both foreground figures) which is composed of a number of image regions, 

homogeneous according to the same criterion as above. However, in this case very few 

image regions can be considered to have semantic meaning associated with them.

Object-based video compression performs the segmentation of an image prior to 

encoding on the basis o f objects present in the scene. Compression is obtained by 

exploiting the spatial and temporal redundancy within the object’s segmentation in each 

image in the sequence, and by compactly representing object parameters. Region-based 

video compression performs the segmentation on the basis of detecting homogeneous 

regions in the scene and exploiting the temporal and spatial redundancy associated with 

these regions throughout a sequence. Both the object-based and the region-based 

approach to video compression are described in this chapter. In each case, individual 

compression schemes implementing these coding philosophies are described and 

discussed.

3.2 Objects and Regions: Two different approaches
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(a) An object is made up o f regions with 
semantic meaning

Figure 3.1 - The relationship between objects and regions

3.3 Object-Oriented Analysis Synthesis Coding

The approach of object-oriented analysis synthesis coding (OOASC) is to segment each 

image to be encoded into objects which conform to an underlying source model. The 

source model is described by a set o f well defined parameters. Model parameters are 

obtained by analysis o f the input image at the encoder. Using the encoded and 

transmitted parameters, the objects are synthesised at the decoder. Analysis synthesis 

coding techniques have been published which use three-dimensional models, known as 

wire frames, in order to code special known objects in the scene [5][6], These models 

represent the actual three-dimensional structure of the object to be coded (e.g. a person’s 

head or torso). This approach to analysis synthesis coding is considered to be very 

specialised and limited to a narrow set of applications and as such, it is not described 

here.

The OOASC approach of Musmann et al [7] was to develop a more general approach to 

analysis synthesis coding, which did not restrict itself to coding known objects. In the 

proposed approach, a number o f different generic models can be used. For example, in 

[7] and [8] the analysis and synthesis o f both two-dimensional and three-dimensional 

models is examined. It is not required that the algorithm understand the actual semantic 

meaning of objects conforming to such models, thus making this approach applicable to 

a wider class of scene types than the wire frame approach referred to above. No user 

interaction or human intervention is required in the analysis step, as objects are detected

(b) An object is made up o f regions with no 
semantic meaning
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and their parameters extracted automatically, thus making this approach a suitable 

candidate for real-time video compression.

Object parameters are obtained by automatically analysing and segmenting the input 

image at the encoder [9]. Using the encoded and transmitted parameters, the object can 

be synthesised at the decoder and the input image reconstructed. The parameters 

extracted encapsulate the shape, motion and texture o f each object. Thus, compared to 

block-based approaches, there is an extra data source to be encoded, corresponding to 

the shape information. In order to ensure coding efficiency, a very compact encoded 

representation of shape is required. However, the visual distortions introduced by 

encoding shape information tend to be geometric in nature and thus (hopefully) less 

visually disturbing.

Only the parameters o f moving objects in the scene are transmitted for each image. In 

order to reconstruct an entire image, knowledge o f static regions is required. This is 

achieved by using a colour (i.e. luminance and chrominance information, also referred 

to in this chapter as texture) memory for the sequence. Ideally, only decoded shape and 

motion parameters are required in order to synthesise an object. However, very often an 

object will consist of sub-regions which cannot be synthesised to a sufficient degree of 

quality in this manner. These correspond to regions within the object whose behaviour 

does not conform to the underlying source model, or regions which by their very nature 

are unpredictable (e.g. an eye opening/closing). Such regions are termed Model Failure 

(MF) regions. It is necessary to encode shape and texture parameters for MF regions. 

These parameters (which complete the parameter set for each object) are extracted by 

analysing the synthesised object.

3.3.1 SIMOC: The COST 211ter analysis synthesis encoder

The COST (Coopération Européenne dans la recherche scientifique et technique) 

Telecommunications activities provide an open and flexible framework for research and 

development collaboration in Europe. The COST 21 Ibis Action was a project dealing 

with redundancy reduction techniques applied to video signals and COST 21 Iter is a 

follow-on project to this [10]. This collaborative research forum facilitates the creation 

and maintenance in Europe of a high level of expertise in the field o f video
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compression. The project contributed significantly to both ITU and ISO standardisation 

bodies. The group was partly responsible for the definition and development o f H.261 

and H.263, as well as contributions to MPEG-1 and MPEG-2.

When the standardisation effort on H.261/H.263 was coming to an end, COST 21 Iter 

turned its attention to segmentation-based representations of video, with the objective of 

performing collaborative research in this area with a view to eventual standardisation. 

To this end, an OOASC scheme was chosen as the focus of the group. The target 

applications of the scheme were real-time video conferencing and video telephony. A 

reference model known as the Simulation Model for Object-based Coding (SIMOC)

[11] was defined, the purpose o f which was to define a common specification o f an 

OOASC algorithm which could be collaboratively developed by the members o f COST 

21 Iter. SIMOC was based on the work of Musmann et al.

3.3.2 A Description of SIMOC

The underlying source model in SIMOC is a single planar flexible natural object which 

moves translationally in the image plane (i.e. a two-dimensional object with two- 

dimensional motion) across a static background. The structure of the SIMOC encoder is 

shown in Figure 3.2. Overall, a DPCM approach is employed, whereby the encoder 

incorporates a decoding mechanism for prediction. Illustrative examples of various 

processing steps and results obtained using SIMOC are presented in Figure 3.3. These 

examples were generated using a software simulation of SIMOC developed by the 

author in the ANSI C programming language.

Image Analysis:

The task of image analysis is to automatically extract the parameters of the object 

present in the current image Ik+]. Analysis is carried out on I k+l with reference to the

previous reconstructed image Ik . Shape, motion and texture parameters ( S k+], M k+], Tk+1 

respectively) for the object are extracted. The individual processing steps are briefly 

described below.
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Image Analysis - Change Detection'.

The static background constraint of the SIMOC source model leads to the implicit 

assumption that any change or difference between successive images in a sequence is 

due to the presence of a moving object. Thus, the objective of the first step in the image 

analysis procedure is to obtain a binary segmentation o f the current image indicating 

changed and unchanged regions. To perform the segmentation, the current image and 

the previous reconstructed image are subtracted. The difference image is filtered and 

thresholded in order to segment a changed area [11].

Source Model

Figure 3.2 - The structure of SIMOC

Image Analysis - Moving Object Segmentation:

The change detection segmentation is further segmented into moving object, static 

background and uncovered background4 image regions by reversing the effect of the 

estimated motion (see below) and comparing with the previous segmentation mask [11]. 

The shape of the moving object is approximated using a combined spline/polygon 

approach and the vertices of this approximation, together with the set o f spline/polygon 

decisions, constitute the required shape parameters Sk+l [11].

4 Texture for these regions must sometimes be transmitted. This is achieved using the same VQ approach as for MF 
regions.
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(a) Original image (b) Change detection 
segmentation

(c) Moving object segmentation

» ,
(d) M odel failure regions within 

an object

(e) Coded images

Legend: (b): white =  changed, black = unchanged
(c): white =  object, grey =  uncovered background, black =  static background
(d): white = model failure

Figure 3.3 - Illustration of SIMOC encoding 

Image Analysis - Motion Estimation'.

The motion between successive images in the video sequence is estimated using a three- 

step hierarchical block matching algorithm, which is based on the work of Bierling in

[12]. After estimation, the obtained motion vector field is interpolated to obtain a dense 

motion vector field. The change detection segmentation is used to constrain the 

estimation process [11]. This results in a set of motion parameters M k+l for the object.

Image Analysis - Model Failure Detection'.

By necessity, this analysis step takes place after synthesis (see below). The quality of 

the synthesis is evaluated in order to locate any MF regions. These are detected by 

evaluating the synthesis error over the object using a MAD criterion, and detecting
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regions where this error is unacceptable [11], The shape o f these regions is 

approximated using a spline curve approximation with only four vertices. The texture of 

these regions is encoded using a vector quantization (VQ) approach [11]. The VQ 

indices constitute the texture parameters Tk+] for an object5.

Parameter Memory:

The parameter memory is analogous to the frame store of traditional block-based 

encoders. It is used to store the object’s decoded parameters from the previous frame

{Sk, M k , f k } , as well as the previous object segmentation mask. The parameter memory 

also includes the colour memory which is used to store texture already encountered in 

the encoding process. Texture parameters are stored in the parameter memory by 

updating the colour memory with the transmitted texture [11].

Parameter Encoding and Decoding:

The estimated parameters are predictively encoded via adaptive arithmetic encoding

[13]. The coding events formed for the shape parameters are run-lengths based on the 

vertices and the spline/polygon decisions for the approximation [11]. The coding events 

for motion are the predicted motion vector differences, whilst the coding events for 

texture are VQ code-book indices [11], Parameter decoding reverses the operation of the

encoding. These decoded parameters {$k+], M k+], Tk+]} are then used to synthesise the 

object and reconstruct the current image.

Image Synthesis:

The shape of each object is first reconstructed using the decoded shape parameters. This 

shape is filled with texture from the colour memory, suitably motion compensated using 

the decoded motion parameters [11], The shape of the MF regions is also reconstructed 

and the decoded texture is used to fill these regions, thereby replacing the equivalent 

synthesised regions within the object. Finally, in order to obtain a completely 

reconstructed scene, the texture for the static regions in the image is taken directly from 

the colour memory [11],

5 The shape parameters for MF regions are added to Sk+].
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The underlying objective in region-based coding is to take human sensitivity to image 

contours and textures into account in the coding process. The coding units are 

arbitrarily-shaped image regions which are homogeneous in texture according to some 

chosen criterion, and which reflect the content of the scene. The approach generally 

consists of three steps. The first is the region-based segmentation o f the image to be 

encoded and is the crucial step which leads to a codec structure6. The second step deals 

with encoding the segmentation for transmission. Texture information (i.e. the 

luminance and chrominance information) within these regions is encoded in the third 

step. In a manner similar to OOASC, since the segmentation used in the encoding 

process reflects scene content, it is proposed that the type of distortions introduced by 

such an approach are less visually disturbing than blocking artefacts.

3.4.1 Morphological Tools for Region-based Segmentation

The most popular approaches to region-based coding are approaches which use 

morphological image processing tools. This is because morphological tools can produce 

the required segmentations very easily. Mathematical morphology is a geometric 

approach to image processing which can easily take advantage of such criteria as size, 

shape, contrast and connectivity. A number o f tools have been developed which allow 

analysis and segmentation of a grey level image in these terms [14]. These tools can be 

easily extended to cope with sequences by considering the signal to be defined in three 

dimensions with time making up the third dimension [15]. This simply corresponds to 

changing the local neighbourhood, termed a structuring element, on which the tools are 

defined [15].

Many morphological tools rely on two basic transformations known as erosion and 

dilation [14]. Erosions and dilations allow the definition o f size-oriented filters known 

as openings and closings. An opening removes the bright elements o f the picture which 

do not fit within the structuring element, whereas a closing removes the dark elements

[14]. Open-close or close-open filters can be defined when processing requires that both

3.4 Region-based coding

6 The nature o f  the segmentation indicates how it can be most efficiently encoded.
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dark and bright elements be considered. These filters can be used to simplify an image 

before segmentation, however they do not preserve the contour information present.

By introducing the notion of connectivity and a reference function, a set of geodesic 

morphological filters can be defined [14]. These filters are called reconstruction filters, 

as they attempt to reconstruct the reference function by successively dilating/eroding the 

input signal. When the reference function is the original image and the input function is 

a morphologically filtered version of that image, the output is the original image with 

the filtered elements removed but with contour preservation of the remaining image 

components [14].

The traditional morphological approach to segmentation relies heavily on the use of the 

morphological gradient which is the difference between a dilation and erosion of an 

image. The gradient transformation highlights contour points, but represents a loss of 

information [15]. This is not usually of much consequence for still images, but has more 

serious implications in the case of image sequences.

The watershed algorithm is a very powerful morphological segmentation tool which 

produces very clean spatial segmentations with excellent contour localisation [16]. The 

watershed segmentation is created by treating the morphological gradient as a 

topographic surface and by building a segmentation based on its local minima via 

immersion simulations [16]. If the watershed algorithm is applied directly to the 

gradient of the image, the result is extreme over segmentation [16]. This can be avoided 

by morphologically filtering the input image and extracting markers7 for the required 

regions in the segmentation prior to the watershed process [16]. The results of the 

watershed algorithm and other morphological transforms are illustrated in Figure 3.4. 

These results were generated using software implementations of the morphological 

transforms, developed by the author in the ANSI C programming language.

7 Markers can be extracted based on various criteria such as contrast or flatness.
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(a) Original image
reconstruction o f  (a)

(c) Original image (d) Gradient of (c)

m b

(e) Watershed over­
segmentation o f (c)

(f) Watershed segmentation 
with markers

Figure 3.4 - Illustration o f morphological processing

3.4.2 MORPHECO: A morphological region-based video codec

The RACE MORPHECO (Morphological Codec for Storage and Transmission) project 

used the above basic morphological tools (amongst others), suitably extended to three- 

dimensions, to produce an integrated morphological region-based video codec. The 

coding scheme is usually referred to simply as MORPHECO. It is a hierarchical 

segmentation-based coding scheme following a top down approach [15]. The first level 

of the hierarchy produces a very coarse segmentation which produces low visual 

quality. The segmentation is coarse in the sense that it contains very few image regions, 

however, the contours of the regions in the segmentation are very precise. Subsequent 

levels of the hierarchy introduce more regions into the segmentation, without altering 

the segmentations of preceding levels, leading to higher quality coded images. Each 

level passes the coding residue (see below), the current segmentation and the original
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image to be encoded to the next level o f the hierarchy. The operation o f the coding 

scheme for one level o f the hierarchy is shown in Figure 3.5.

Figure 3.5 - One level of the MORPHECO coding hierarchy

The simplification controls the number o f regions retained in a particular level o f the 

hierarchy. Morphological filters based on reconstruction8 o f erosion or dilation are used

[15]. The marker extraction step extracts markers for three-dimensional homogeneous 

regions. The segmentation from previous levels of the hierarchy is used as it already 

indicates regions which are homogeneous. Marker extraction is performed by extracting 

flat regions (corresponding to the interior of regions) and contrasted regions 

(corresponding to visually important regions) [15 |. The decision block precisely locales 

the contours of the marked regions. In order to perform this segmentation, the watershed 

algorithm is used. Since contours of moving objects in an image sequence appear as 

thick image segments in a three-dimensional gradient, a modified watershed algorithm 

is applied to the original signal [15].

Quality estimation is carried out in the coding block by actually encoding the data in the 

segmentation and subtracting the resultant coded image from the original image. The 

difference between the original image and the encoded image is passed to lower levels 

o f the hierarchy as the coding residue. For the first image o f the sequence, both contours 

and texture are coded in INTRA mode using a modified chain code approach, low order

8 Actually, consideration of video sequences requires partial reconstruction filters to be used 115],
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polynomials and block truncation coding9 [15]. In subsequent images, the contours and 

textures are predicted using motion compensation and the prediction error is encoded 

using a similar approach [15]. Motion information consists of one vector per region in 

the segmentation, which describes the translational motion of the region between 

images.

3.5 Discussion

Both SIMOC and MORPHECO were considered to be ideal candidates as starting 

points for a new video compression standard which would support content-based 

functionalities. The COST 21 Iter group intended to collaboratively develop SIMOC 

towards a description suitable for proposal for standardisation. In fact, MORPHECO 

was also eventually introduced into the COST 21 Iter framework with a similar view in 

mind. However, due to a number of limitations, neither MORPHECO nor SIMOC were 

eventually adopted as the basis for a new round of video compression standardisation 

work. The reasons for this are explained in this section.

The most fundamental limitation of SIMOC lies with the choice of source model. Using 

this model, successful OOASC is restricted to scenes containing only one object and a 

static background, in other words, to a class of sequences which exhibit the 

characteristics of a video conferencing application. Sequences exhibiting more than one 

moving object or a moving background (e.g. due to camera motion such as zoom and 

pan) cannot be efficiently encoded using this approach. Furthermore, objects moving 

with more complicated motion than simple translation (which is quite likely for many 

objects) will be poorly represented using this source model.

The choice o f source model is reflected in the analysis procedure. Change detection 

assumes that any change between images is due to the presence o f a moving object. In 

the case of sequences exhibiting background movement, this assumption does not hold. 

This is illustrated in Figure 3.6(a) and (b) where the change detection mask calculated 

by SIMOC for a sequence with a moving background (i.e. the Foreman test sequence) is

9 It should be noted that these are only examples o f coding techniques which may be used within the MORPHECO 
framework.
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presented. The change detection mechanism breaks down completely and almost the 

entire image is detected as the “object”. The encoded representation of this scene 

produced by SIMOC is neither efficient, nor does it reflect scene content [17].

Another limitation of the SIMOC algorithm is the approximation of MF regions. Even 

when dealing with sequences which conform to the underlying source model, these 

regions very often have complex shapes (e.g. see Figure 3.3) and an approximation with 

only four vertices is not suitable as it actually increases the size o f such regions [17]. 

This leads to a decrease in coding efficiency since it requires encoding texture for 

regions which have already been sufficiently synthesised. Furthermore, MF regions will 

tend to grow in size over the course o f a sequence, leading to a significant decrease in 

coded image quality [17].

SIMOC does not specify an INTRA encoding scheme. All practical compression 

schemes require a full frame update mode. This mode must at least encode the first 

frame of the source video sequence. Typically, a build-up phase is unavoidable and 

video quality is quite low during this time. This effect is not taken into account in 

SIMOC where the first reconstructed image is required for the initial change detection. 

In fact, a low quality reconstructed image will severely affect the change detection 

process [17] as illustrated in Figure 3.6. The first image of two test sequences encoded 

using the INTRA mode of H.261 is illustrated in Figure 3.6(c) and (d). The change 

detection segmentations obtained based on these are presented in Figure 3.6(e) and (f). 

The resultant segmentations exhibit a blocky unnatural contour, or else the entire change 

detection procedure fails.

One of the main advantages of block-based approaches is that since blocks are treated 

independently, a decoder can start to decode a block as soon as it is transmitted thus 

keeping overall delay to a minimum. However, in the case o f a segmentation-based 

approach, the decoder must wait until the encoder analyses an entire image and 

transmits the shape information before it can start the decoding process. Thus, 

segmentation-based coding implies an implicit coding delay of one frame. This may not 

be an issue for off-line coding applications, but it is a severe restriction in real-time
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applications such as video conferencing or video telephony at which SIMOC was 

targeted.

(a) Image from a sequence with 
a moving background

(b) Change detection segmentation 
produced from (a)

j'/i ¡if i h » 1

(c) H.261 INTRA coded image

fit V. •
I

(d) H.261 INTRA coded image

(e) Change detection produced 
from (c)

(f) Change detection produced 
from (d)

Legend: white = changed, black = unchanged

Figure 3.6 - Illustration o f the limitations o f SIMOC

One the main motivations of OOASC is to produce a compression scheme which 

produces visually acceptable coding artefacts. The assumption is that a human observer 

is less sensitive to distortions introduced by compressing object model parameters than 

the more visually disturbing blocking artefacts. However, examining the images of 

Figure 3.3(e) it can be seen that this is not always the case. Sometimes the distortions 

introduced are even more unnatural in nature and hence more disturbing (see image on 

right in Figure 3.3(e)).
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MORPHECO suffered from very few of the problems associated with SIMOC. 

MORPHECO can be considered to have an underlying source model of moving image 

regions, which is a more general source model than that o f SIMOC. As such, the 

MORPHECO approach can be applied to a much wider class o f scenes. There is no 

limitation to a single object, as the segmentation is considered to be a tessellation of the 

image in terms of homogeneous regions which reflect the objects present. Furthermore, 

the morphological tools used to obtain this segmentation are very robust for a wide class 

of scene types. The hierarchical approach ensures that all region types are catered for, 

leading to an accurate segmentation reflecting image content. MORPHECO also has its 

own INTRA encoding scheme which is closely related to INTER frame coding. Thus, 

the effect of INTRA coding on the segmentation performance is already considered in 

the codec structure.

However, MORPHECO does suffer from the inherent delay associated with any 

segmentation-based approach. As in SIMOC, an entire image must be analysed and the 

complete segmentation performed before decoding can commence. This delay is 

exacerbated in the case o f MORPHECO which uses three-dimensional morphological 

tools which reference both the preceding image and subsequent image to the image 

being coded. However, the MORPHECO codec was not targeted at real-time 

applications. Rather, as the title of the project suggests, a key application of 

MORPHECO was video compression for storage, which can be performed off-line.

The limitations associated with SIMOC ensured that the algorithm was eventually 

abandoned and never developed to a state suitable for proposal for standardisation. 

MORPHECO was not a suitable candidate either, but for different reasons. The key to 

understanding this lies in the consideration of the type of functionalities required of a 

new video compression standard. As stated in the introduction to this chapter, the main 

functionality required is the ability for the user to interact with scene content. As 

explained in the next chapter, scene content in this context refers to semantic objects. 

Thus, semantic object segmentations are required for the encoding process. Neither 

MORPHECO nor SIMOC produce semantic object segmentations. SIMOC, whilst 

being object-based, can only segment a restricted class of objects and even then the 

segmentation is not very accurate. MORPHECO, on the other hand, encodes image
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regions and no semantic object segmentation is available. In both SIMOC and 

MORPHECO, the encoding scheme is very tightly linked to the image analysis process. 

Because of this, the overall quality and usefulness of the compressed representation is 

highly dependent on the segmentation process. In the next chapter, it is described how 

analysis and encoding were de-coupled to produce a compression scheme which 

supports content-based functionalities. The resulting approach incorporates the 

advantages o f both segmentation-based and block-based compression. That is, objects 

are encoded independently (thereby allowing access to scene content), but in an 

efficient, flexible, and robust manner using modified block-based coding tools.

36



4. RECENT DEV ELO PM ENT S IN VIDEO

CO M PRESSIO N

4.1 Introduction

Recently, a large number of new application areas for encoded AV data have been 

proposed. These application areas include concepts such as content-based AV database 

access, AV home editing, tele-shopping, computer games, and remote monitoring and 

control. One common feature of all these application areas is that interaction with AV 

content is fundamental for the envisaged application or service. For multimedia 

applications o f the future, it is no longer enough for the user to be a passive observer of 

AV data. Rather, it is desired that the user be able to react to what is seen or heard, in 

order to tailor the AV application or service to his/her own needs. Another fundamental 

concept encapsulated by these new application areas is the notion of re-using AV 

encoded data in an intuitive and flexible manner. Consider an application allowing the 

editing and manipulation of AV data where it is desired to create new AV content based 

on AV content in a library. In order to do this, so that the resultant AV content is 

seamless, the stored AV content should have an encoded representation which facilitates 

re-use. In this chapter, the third standardisation work item of ISO’s Motion Picture 

Experts Group, normally referred to simply as MPEG-4, is described. This new standard 

addresses the needs of future AV applications and services by supporting content-based 

functionalities. Also briefly described in this chapter is the envisaged MPEG-7 standard 

which is just starting to be developed. These two standards are described because, as 

outlined in this chapter, this serves to high-light the importance of video segmentation 

for future multimedia applications.

4.2 MPEG-4: A new representation of audiovisual data

Considering the AV encoding standards described in chapter two, it is clear that 

interaction is limited to the temporal aspect of AV sequences, whereby the user can 

linearly traverse the sequence at variable speeds (in other words, fast-forward, reverse,
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pause, etc. applied to an entire scene). Re-use of coded AV data is restricted as it 

corresponds to extracting a rectangular segment from a sequence and inserting it into 

another application, when perhaps only a particular object in the scene and not the entire 

scene is desirable in the new application. These deficiencies of the existing standards 

form the basis of the MPEG-4 standard. At the core of MPEG-4 is a new representation 

of AV data. The MPEG-4 standard has adopted a scene representation in terms of the 

individual AV objects which make up a scene, and each AV object is encoded 

independently [18]. As explained in the following discussion, this new representation of 

AV data enables MPEG-4 to achieve its main objectives of support for content-based 

functionalities and re-use o f encoded AV data.

4.2.1 Objectives of MPEG-4

The major goal of MPEG-4 is to provide a new form of interactivity with AV coded 

data [19]. When viewing a scene a user may wish to interact with the content o f the 

scene for a variety of reasons. The user may require increased quality or temporal 

resolution for a particular object because it is more important to him/her than the rest of 

the scene. They may wish to remove an object from the scene because it is obscuring 

what they really want to see/hear. Perhaps they would like to insert an object in the 

scene in order to create a new scene. The exact nature o f the interaction will depend on 

the associated application. An object-based scene representation facilitates this type of 

interaction. Since each object is encoded independently it becomes possible to interact 

with that object alone, without affecting the rest of the scene. Furthermore, it allows the 

re-use of encoded AV data, as a stored AV object can be easily added to the scene, or 

the objects in the scene can be used at a later date in a different scene. Also, since the 

objects are treated independently, it is possible to encode each object using a coding 

scheme best suited to the nature of the object10. By adopting an object-based scene 

representation, the standard effectively removes the responsibility of scene composition 

from the decoder and allows the possibility of providing it as a functionality of the 

user’s application.

10 In this way, objects o f different media types can be represented and used to build a scene consisting o f very 
different types of content.
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The standard has other objectives such as scalable coding, transmission across 

heterogeneous and error-prone networks, hybrid natural/synthetic content coding and 

coding o f multiple concurrent data streams. Whilst these objectives are greatly 

facilitated by an object-based scene representation, they are not described in detail here. 

The reader is referred to [19] for a more complete description.

4.2.2 An MPEG-4 System

Figure 4.1 shows a complete MPEG-4 encoding and decoding system for visual objects. 

Input objects are encoded and may be multiplexed with other stored objects for 

transmission. At the receiving side, the objects are de-multiplexed and decoded. A 

display is created by combining these decoded objects. They may be combined with 

other objects stored at the receiver. User interaction is allowed at any stage o f the 

encoding/decoding process. The user may choose which objects to encode, how to 

encode them, and to what quality. The user can also decide which objects to decode and 

at what quality level to perform this decoding. Finally, the user is instrumental in 

creating the desired display as he/she can decide which objects are to be used to form 

the display, as well as how to display these objects (this is the process termed scene 

composition above).

Stored Objects Stored Objects

  Q

i i  i i i
I_______________I_____________________!______1____________ I___________ J

I
I
I

User Interaction

Figure 4.1 - The complete MPEG-4 encoding and decoding system for visual objects
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In MPEG-4 video compression, objects are referred to as Video Objects (VOs). A VO is 

a semantic object in the video scene which evolves through time. A VO can be an 

arbitrarily-shaped object in a video scene, such as a foreground person, or can be a 

rectangular object corresponding to the entire scene. A VO evolves temporally through 

a video sequence and a snap-shot o f the state o f the VO at a particular time instant is 

termed a Video Object Plane (VOP). VOPs are analogous to frames in block-based 

coding techniques.

Each VOP has associated with it four pixel components which represent the object’s 

shape and texture. Luminance and chrominance information (i.e. Y,U  and V 

components) is used for texture exactly as in a rectangular video frame. The object’s 

shape is represented using a pixel component termed the alpha plane (sometimes 

termed the alpha channel). This is a segmentation which defines the object’s shape and 

transparency information. A binary alpha plane indicates a completely opaque object. 

Alternatively the alpha plane may contain different grey level values indicating parts of 

the object which are partially transparent. The concept of VOs, VOPs, YUV and alpha 

components is illustrated in Figure 4.2.

4.2.3 Video Objects and Video Object Planes

Figure 4.2 - Video Objects and Video Object Planes
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A diagram of the high level structure of an MPEG-4 video encoder is shown in Figure 

4.3. As explained by O ’Connor and Winder in [20], a layered coding methodology is 

adopted to facilitate the object-based scene representation. Although it is not shown in 

the diagram, it is implicitly assumed that some composition information specifying the 

VO’s spatial and temporal position is also encoded.

4.2.4 Structure of an MPEG-4 Video Codec

Input
I

-►I VO I
I Definition i 
I '

Sc- VOj
Encoding

-----►

Coding
Control

•

•

•
MUX

voN
Encoding

User Interaction '

Figure 4.3 - High level structure of an MPEG-4 video encoder

The VO definition block has the task of defining meaningful objects in a scene with 

which the user may wish to interact. It is the process of creating a sequence of VOPs for 

a particular object, which amounts to an object segmentation process. The segmentation 

process may be automatic or semi-automatic or obtained via a chroma-keying process 

(i.e. blue screen technology, see section 6.2) in a studio. MPEG-4 will not standardise 

this segmentation process. In this way, MPEG-4 specifies a coded representation of 

objects, but not the way in which these objects were obtained (for more information on 

VOP creation and MPEG-4, see the final section of this chapter). Figure 4.3 shows the 

possibility of user interaction at the encoder11. User interaction may occur at the coding 

control block whereby the user may request that a particular VO be coded to higher 

quality than other VOs. User interaction can also occur at the multiplexer whereby the 

user may wish to change a VO’s composition information prior to transmission. 

Alternatively, due to bandwidth limitations for example, the user may request that a 

particular VO is not transmitted at all.

11 This implicitly assumes the availability of a return channel for the associated application.
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The high level structure of an MPEG-4 video decoder is illustrated in Figure 4.4. Each 

VO is demultiplexed from the bitstream and independently decoded using its own 

decoder [20]. The composition block has the task of combining the decoded VOs to 

create a scene. This is actually an MPEG-4 systems issue and as such, the exact nature 

of this block is not outlined, except to note that user interaction may occur during 

composition. User interaction at the decoder may also occur at the demultiplexer. The 

user may request, for example, that only a subset of the available VOs be decoded, 

thereby lightening the load on the decoder.

Figure 4.4 - High level structure of an MPEG-4 video decoder 

4.2.5 MPEG-4 Compression Tools

In this section, the actual encoding tools adopted by MPEG-4 are described. The 

description is limited to tools used for encoding natural arbitrarily-shaped VOPs and 

even then only a subset of the available tools is explained. A more complete description 

of MPEG-4 coding tools can be found in [21]. There are three types of encoded VOPs 

referred to as 1-, B- and P-VOPs, which are analogous to the 1-, B- and P-pictures of the 

other MPEG standards.

A bounding box is placed around the VOP to be encoded, which limits the amount of 

data to be coded for each VOP. The bounding box is the tightest rectangle which 

includes all non-zero pixels in the VOP’s alpha plane. This bounding box is divided into 

non-overlapping 16x16  blocks. Each block is referred to as an alpha block. The same 

block grid is applied to the texture component of the VOP and each texture block 

(referred to as a macroblock, as in H.261, H.263, MPEG-1 and MPEG-2) is encoded 

independently.

42



An alpha block (macroblock) may be completely outside the shape o f the YOP and thus 

need not be coded at all. Alternatively, an alpha block (macroblock) may be completely 

inside the shape of the VOP. These are encoded in a manner very similar to existing 

block-based standards. Finally, an alpha block (macroblock) may be partially inside the 

shape o f the VOP. These blocks need special consideration as they require the 

transmission of shape, and also the use of this shape information in motion 

compensation and texture encoding.

MPEG-4 Compression Tools - Shape Coding'.

Each alpha block in the bounded VOP is encoded separately. In this section, only binary 

alpha plane encoding is described. In this case, an alpha block is referred to as a Binary 

Alpha Block (BAB). BABs are encoded using motion compensation and Context-based 

Arithmetic Encoding (CAE) [21]. A simple motion estimation procedure at full pixel 

resolution is carried out for each BAB. Each BAB’s motion vector is predictively 

encoded using neighbouring shape and texture motion vectors. Shape update 

information for the BAB is encoded using the CAE scheme with reference to the motion 

compensated BAB.

MPEG-4 Compression Tools - Motion Estimation and Compensation 

Motion estimation and compensation of macroblocks partially within the shape of the 

VOP uses two tools known as polygon matching and padding [21]. For macroblocks 

which are completely inside the shape of the VOP, the motion estimation procedure is 

very similar to that of existing standards. The estimation is carried out at half-pixel 

resolution. The advanced prediction mode of H.263 (corresponding to four motion 

vectors per macroblock) is available and OBMC is used to form the prediction. A 

padding scheme is also used to extend the reference VOP beyond its bounding box in 

order to provide unrestricted motion estimation, similar to H.263. Motion vector 

information is predictively encoded in a manner similar to other standards, although 

special rules are required to cope with the different macroblock cases and the arbitrary 

shape of the VOP.
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MPEG-4 Compression Tools - Texture Coding

Texture coding consists of compressing raw pixel data in the case o f I-VOPs and 

compressing the prediction error in P- and B-VOPs. Macroblocks completely within the 

shape of the VOP are coded using a conventional DCT scheme. Two alternatives exist 

for encoding macroblocks partially within the shape of the VOP [21]. In the first 

approach, a subblock is padded using the same technique as in motion estimation and a 

conventional DCT transform is then applied. In the second approach, a DCT transform 

modified to cope with arbitrarily-shaped image regions, known as the Shape Adaptive 

Discrete Cosine Transform (SADCT), is employed. DCT coefficients are quantized, zig­

zag scanned and entropy encoded using VLCs as in H.263, MPEG-1, etc.

MPEG-4 Compression Tools - Scalability and Error Robustness

In a manner similar to MPEG-2, scalable coding is also supported by MPEG-4. Both 

temporal and spatial scalability are supported, although only temporal scalability may 

be used in the case of arbitrarily-shaped VOPs [21].

4.3 MPEG-7: A description of audiovisual Content

The Multimedia Content Description Interface, more commonly known as MPEG-7, is a 

new work item within the ISO MPEG standardisation process. This work item was 

initiated in recognition of the increasing availability of AV data o f all kinds in many 

different locations. In order to use this AV content in some way, it must first be located. 

However, due to the proliferation of this type of information, it has become increasingly 

difficult for a user to locate and obtain AV content particularly suited to his/her needs. 

The overall objective of MPEG-7 is to specify a description of multimedia information 

which can then be used to index the data for storage and subsequent retrieval [22], This 

description will be content-based reflecting the semantic content o f the AV data. In this 

way, flexible, efficient queries tailored to a user’s exact needs can be made on databases 

containing AV data described using MPEG-7.

The MPEG-7 standard will support a broad range o f applications. Application areas 

such as digital libraries, broadcast media selection and multimedia editing have all been 

targeted as areas which will benefit from MPEG-7. Specific applications within these 

areas such as journalism (e.g. searching a database for a video/audio clip o f a politician
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or celebrity, searching for AY content on a specific historical event or a range of similar 

events) and tele-shopping (e.g. searching an on-line catalogue), have already been 

identified.

A very generalised illustration of an MPEG-7 system is shown in Figure 4.5. This 

indicates that descriptive features must be first extracted from the AV data. These 

features are then used to form the description of the data. MPEG-7 will not standardise 

the way in which the feature extraction is performed [22]. This is because 

interoperability does not depend on the actual feature extraction method, but on a 

common description of features. This is analogous to the way in which MPEG-4 does 

not standardise VOP creation. Similarly, MPEG-7 will not standardise the search engine 

used to locate AV content, nor indeed the way in which the results o f queries are dealt 

with.

Feature Description Search
Extraction of features (MPEG-7) Engine

I : W hat w ill actually  be s tandard ised  

Figure 4.5 - A very generalised MPEG-7 system

4.3.1 Objectives of MPEG-7

Whilst a number of proprietary solutions exist for searching a database based on 

content, these solutions tend to be limited to a particular data type or a particular type of 

query. MPEG-7 intends to extend these solutions to incorporate more flexible queries 

based on a large range of data types such as still images, video clips, audio clips and 3- 

D models. MPEG-7 will also specify a way of linking the description of the AV data to 

the actual location of the data itself. In this way, the AV content need not be co-located 

with its description. The description o f the AV content will be independent of the 

encoding process used to produce the content such as MPEG-1, MPEG-2, JPEG, etc. 

Although the description is independent o f the encoding process, MPEG-7 will borrow 

heavily from MPEG-4. The object-based scene representation and subsequent encoding 

of MPEG-4 is a key mechanism for enabling content-based descriptions.
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MPEG-7 will ensure that the features used to describe AV content can be tuned to a 

particular application. This will be achieved by the use of several levels o f abstraction 

for the descriptive features. For example, low level features (e.g. size, shape, colour for 

visual data) may be extracted and described automatically. However, in the higher levels 

o f abstractions, the features (e.g. plot synopsis, characters, actors, director) will require 

human intervention in the description process.

MPEG-7 will also support the description of non-content-based information which may 

be useful and/or necessary for the envisaged applications. These types of descriptive 

features will contain such information as (i) the form of the AV data (i.e. the coding 

scheme used), (ii) access conditions (e.g. copyright on the AV data), (iii) classification 

(e.g. parental rating or classification into pre-defined classes of content), (iv) links (i.e. 

to the actual location of the AV data, or related AV content), and (v) context (e.g. in the 

case of non-fiction AV content, it is very often necessary to know when, where and why 

the content was recorded).

4.4 Discussion

MPEG-4 restricts itself to standardising the way in which AV objects are represented. It 

will not define the way in which these objects are generated prior to the encoding 

process. MPEG-4 only specifies the bitstream syntax necessary to represent a video 

object so that it is MPEG-4 compliant. The process o f obtaining video object 

parameters, i.e. the VO Definition block of Figure 4.3, is an image analysis task, 

corresponding to the segmentation of a semantic object at each time instant o f a video 

sequence. In other words, it is the process of creating arbitrarily-shaped VOPs.

VOP creation is analogous to the analysis task in the OOASC approach and the image 

partition task in region-based coding. In these coding approaches, the encoding 

mechanism (and hence the coded representation), is very closely linked to the analysis 

procedure and is therefore dependent on the performance o f this analysis. The coded 

representation specified by MPEG-4, however, is independent of the way in which the 

parameters describing the video object are obtained. For example, the shape coding 

technique divides each VOP’s shape into blocks and treats each block independently. 

This is a very generic approach to shape representation which can be applied to any
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shape: the shape of an image region, the shape o f a person present in the scene, or even 

the shape of text in the scene. Irrespective of the form of the video object to be encoded, 

its shape and texture can be represented using the techniques specified by MPEG-4. In 

this way, MPEG-4 combines the advantages o f both segmentation-based and block- 

based compression. The basic coding units are objects (in the form of a sequence of 

arbitrarily-shaped VOPs), thereby facilitating content-based functionalities, but they are 

encoded in a block-based manner to facilitate many other functionalities (compression 

efficiency, low-delay, error robustness, etc.).

The way in which the MPEG-4 standard restricts itself to simply specifying an encoded 

representation for a VOP is not a limitation on the part o f the standard. In fact, it is a 

necessary restriction to ensure its commercial success. A specification of an encoded 

representation of VOPs ensures interoperability between MPEG-4 products. What will 

differentiate MPEG-4 products in the market place, however, is the manner in which the 

VOPs are created. In the absence of a segmentation process during video capture (e.g. if 

chroma-keying technology is unavailable, see section 6.2), an MPEG-4 application 

allowing the creation of VOPs in a flexible, robust and exact manner will be more 

attractive to users than one in which VOP creation is inaccurate, or fails for certain 

scene types. A further advantage of the approach taken by MPEG-4 is the fact that the 

standard will be able to avail of future technological advances in the field o f video 

segmentation.

In a similar manner, MPEG-7 will not standardise the way in which features are 

extracted from an AV scene in order to construct a description of the scene. Again, this 

promotes a competitive aspect to the MPEG-7 standard: a good feature extraction 

method for a particular application will ensure a commercial edge in the market place. It 

also allows MPEG-7 to avail of any future advances in feature extraction technology. 

Low level feature extraction is an image analysis task which attempts to extract features 

such as the shape, colour or motion of objects in order to describe them. It can therefore 

be conjectured that segmentation will be important for extracting low level features for 

an MPEG-7 description.
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The fact that neither MPEG-4 nor MPEG-7 will standardise segmentation serves to 

emphasise the importance of video segmentation as an enabling feature o f future 

multimedia communications and applications. In the following chapters, a selection of 

existing (state o f the art) approaches to video segmentation are described and their 

suitability for the task o f VOP creation for MPEG-4 applications is examined. The 

potential use o f segmentation in conjunction with MPEG-7 is further discussed in 

chapter ten.
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5. U N SU PER V ISED  VIDEO SEG M EN TA T IO N

5.1 Introduction

In the previous chapter, it is explained how the development o f a reliable robust 

segmentation technique is essential for the commercial success of MPEG-4 applications 

which require arbitrarily-shaped VOPs, and which do not have access to a priori 

segmentation information (i.e. if a segmentation process such as chroma-key cannot be 

used directly in the video capture process). It is further conjectured that segmentation 

will have an important role to play in the feature extraction process for MPEG-7 

applications. In this chapter, a number of approaches to unsupervised video 

segmentation which may be used for the purposes of creating arbitrarily-shaped VOPs 

are reviewed. The term unsupervised refers to the fact that the segmentation process is 

completely automatic. In other words, no user interaction is allowed at any stage o f the 

segmentation process. These approaches are reviewed because they are suitable for a 

particular subset of MPEG-4 applications. Based on the review in this chapter, however, 

it is explained in chapter six why these approaches are not suitable for all types of 

MPEG-4 applications, thereby explaining the motivation behind the investigation of a 

different category o f segmentation approaches. The chapter concentrates on approach to 

segmentation based on motion. The various approaches are briefly described followed 

by a discussion of their suitability for providing the type o f segmentations necessary for 

MPEG-4 applications.

5.2 Object-based v. Region-based Segmentation

As explained in chapter three, when video segmentation is considered in a compression 

framework, two approaches are available. The first is object-based, whereby an image is 

partitioned into regions which have a semantic interpretation (i.e. a moving object). The 

second is region-based, whereby an image is partitioned into regions which exhibit a

degree of homogeneity. When considering automatic segmentation for the purposes of

arbitrarily-shaped VOP creation, it is clear that an object-based approach is the best 

solution. The partition of a scene into semantic objects is dependent on a semantic
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interpretation of the scene. This is an ill-posed problem for a computer unless some 

underlying object model is provided which an algorithm can use to approximate real- 

world considerations. A region-based segmentation, which does not consider such a 

model (see chapter 3, Figure 3.1), is ill-suited to the automatic extraction o f objects. 

Simply stated, it is assumed that a semantic object generally, consists o f a number of 

homogeneous image regions, but a region-based segmentation algorithm has no means 

of knowing which regions to group in order to form the object segmentation. However, 

as is seen in this chapter (section 5.6.1), region-based segmentation tools can be used in 

order to enhance the result produced by an object-based segmentation process.

5.3 Motion-based Segmentation

In object-based unsupervised segmentation, the approach is to segment objects on the 

basis of observable motion, which can be estimated automatically. After estimating the 

motion between two images in a video sequence, areas o f coherent motion within the 

image to be segmented are detected. The underlying assumption is that this coherent 

motion is indicative of a moving object present in the scene. A segmentation of the 

image on this basis corresponds to arbitrarily-shaped VOP creation. The estimated 

motion may be used to initialise the segmentation process in the next image of the 

sequence to be segmented, thus ensuring that the located objects can be tracked over 

time. This temporal coherence can be achieved by initialising the estimation o f motion 

parameters in the next image with the calculated motion estimates for the current image, 

or by projecting the current segmentation into the next image.

5.4 Segmentation via Change Detection

Change detection was first introduced in chapter three where its use within SIMOC was 

described. As outlined in chapter three, the underlying philosophy of change detection 

segmentation is that any change between two successive images in a video sequence is 

due solely to the presence of a moving object. In SIMOC, the segmentation algorithm 

consists o f a very simple global thresholding o f the difference image between two 

successive images in a sequence to produce a change detection mask, and the 

subsequent processing of this mask based on estimated object motion to obtain an 

output object segmentation. Change detection-based segmentation can be considered to
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be a very simple example of motion segmentation: initial image analysis is driven by the 

implicit assumption of a moving object present in the scene, and the result o f this initial 

analysis is refined using the estimated motion. A number of drawbacks o f the change 

detection approach were pointed out in chapter three. These drawbacks ensured that 

SIMOC could not perform efficiently as a segmentation-based video encoder. In this 

chapter, change detection is considered purely in a segmentation framework.

The main drawback of a restrictive source model (see section 3.5) corresponds to the 

central weakness of change detection as a segmentation approach. However, the 

approach also contains a number of other limitations. The first is the sensitivity of the 

segmentation result to the threshold used on the difference image. This threshold is very 

sensitive to the particular scene to be segmented. This is illustrated in Figure 5.1 

below12. By slightly changing the difference image threshold, a much improved 

segmentation (i.e. one that more closely reflects the actual object) is obtained. Using an 

unsuitable threshold means that differences between two images, which simply 

correspond to noise and/or illumination variations, are classified as changed regions. 

Such threshold sensitivity is extremely undesirable in an automatic segmentation 

algorithm which is to be applied to a number o f different scene types.

Another limitation of change detection is that very often the contours obtained do not 

accurately reflect the contours of the actual object. Consider the worst case scenario, 

where the sequence being segmented consists of a white square moving horizontally 

across a black background. In this case, the change detection mask of Figure 5.2(a) is 

obtained. This illustrates the fact that even though the required object is actually 

moving, this movement is not detectable in the difference image and hence it is 

impossible to obtain the required segmentation. Although this example may appear 

somewhat contrived, since the white square is not a natural object, the problem also 

exists for objects which conform to the underlying source model. Consider the image 

illustrated in Figure 5.2(b), which is taken from a sequence of a textured square moving 

horizontally across a black background. The change detection mask obtained is depicted 

in Figure 5.2(c). In this case, the correct shape of the square does not appear in the

12 All change detection segmentations were generated using the SIMOC software implementation of chapter three.
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change detection segmentation, since even in the case o f natural texture, the movement 

of parts o f the object is not detected in the difference image.

(a) First frame in a sequence with 
illumination variations

(b) Second frame in a sequence 
with illumination variations

(c) Change detection mask (d) Change detection mask obtained
obtained with a threshold of 2 with a threshold of 3

Legend: (c) & (d): white = changed, black = unchanged

Figure 5.1 - The sensitivity of change detection to the difference image threshold

The change detection-based segmentation approach of Mech and Wollborn [23][24] 

attempts to address the drawbacks outlined above. The segmentation technique is 

illustrated in Figure 5.3 and the main processing steps are described below.

The first step is a global motion estimation step which attempts to compensate for the 

presence of a moving background or a moving camera in the sequence to be segmented. 

Given two successive frames of the video sequence I k and I k_x, an apparent camera 

motion, such as a zoom or pan, is estimated and the globally motion compensated frame 

I k̂ c is produced [24]. This motion compensated frame is used in all subsequent 

processing.
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(a) Change dctcction mask 
produced by a white square 
moving horizontally on a 
black background

(b) A square filled wilh texture 
from the Miss America 
sequence moving horizontally 
across a black background

(c) Change detection mask obtained 
using (b)

Legend: (a) & (c): white = changed, black = unchanged

Figure 5.2 - Change detection fails to extract the required contours

Figure 5.3 - An enhanced change detection segmentation algorithm

A scene cut in the video sequence being analysed is detected in the next step by 

analysing the difference between the motion compensated previous frame ' and the 

current frame Ik [24]. If a scene cut is deemed to have occurred, the segmentation 

parameters are reset to their initial values and the segmentation process starts again as if 

from the beginning of the sequence.



The first task of change detection is to compute the difference image between the 

current frame I k and the motion compensated previous frame I ^MXC. A global threshold 

is applied to the difference image to obtain an initial change detection mask. The pixels 

of this mask then undergo an iterative relaxation process, whereby the threshold used to 

assign pixels to changed/unchanged regions is locally adapted based on (i) the assumed 

Gaussian camera noise, (ii) the estimated variance o f the luminance signal within the 

changed regions and (iii) the local changed/unchanged configuration o f the pixel under 

consideration [23]. All pixels classified to the object within a recent time interval are 

added to the change detection mask using the object memory, OMmem, (corresponding 

to a mask of all pixels classified to the moving object in previous frames) [23]. Finally, 

the resultant change detection mask CDM  is obtained by applying a morphological 

closing and eliminating small regions.

A dense motion vector field, D M V F , within the identified changed area is calculated 

using the same motion estimation algorithm as that of SIMOC [23]. The first object 

segmentation step is used to further segment the changed region into a moving object 

and an uncovered background region, in exactly the same as way as carried out in 

SIMOC [23]. This produces an initial object mask OMjnU . The final segmentation step 

adapts the contours of the initial object mask OMhljl to the actual contours present in the 

luminance image using a Sobel operator [23]. The result is the final segmentation mask

OMj~mai .

5.5 Segmentation via Motion Model Clustering

The segmentation technique described in this section is embedded in an overall process 

known as layered decomposition of video, proposed by Wang and Adelson in 

[25] [26] [27]. This is a process whereby an entire video sequence is decomposed into a 

set o f depth-ordered layers, with one layer for each object present in the scene. A layer 

is a complete representation o f an object over the course o f a sequence corresponding to 

the object’s observable luminance, motion and shape information throughout the 

sequence [25]. To achieve a layered representation, it is necessary to segment each 

object in the scene at each time instant. These segmentations are then processed to 

extract occlusion and depth information in order to build the layers [25], In this section,
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the discussion is limited to the actual segmentation technique used to segment each 

object in each image, which corresponds to arbitrarily-shaped VOP creation.

The segmentation algorithm uses affine motion models which describe motions such as 

translation, rotation, zoom and shear. The physical interpretation o f such models is the 

motion o f a three-dimensional planar surface under orthographic projection [26], The 

assumption is that such a model can represent the movement of a semantic object and 

the objective is to detect multiple such motions in the scene. Motion models are 

identified, estimated and allowed to iteratively compete for pixel support. The support 

of each object after the iteration terminates constitutes a segmentation of the scene. The 

structure o f the algorithm is illustrated in Figure 5.4 below.

I ter i i t inu

' k - l

Optical Flow 
Estimation

DMVF

r
i

Hypothesis Generation 
and 

Clustering

Initial Conditions------------ -

Hypothesis Testing 
and

Model Assignment

Figure 5.4 - Segmentation via motion model clustering

The first step in the segmentation process is the calculation of the optic flow between 

the previous image I  k_x and the current image I k to be segmented using a multi-scale 

coarse-to-fine algorithm based on the gradient [26] [27], This results in a dense motion 

vector field DMVF which describes the motion at each pixel in the current image.

The segmentation iteration is initialised by deriving a set of motion model hypotheses 

(corresponding to the parameters of affine motion models). The hypotheses from the 

segmentation of the previous image can be used for the initial hypotheses. Alternatively, 

the initial hypotheses can be generated by projecting the previous segmentation into the 

current frame based on the estimated dense motion vector field13 (these are the initial 

conditions referred to in Figure 5.4) [27]. When considering the first two images of the 

sequence, neither a previous segmentation nor a set of motion hypotheses are available.

13 That is, model parameter estimation takes place over the set of pixels classified to the model in the new image.
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In this case, the hypotheses are generated by dividing the image into non-overlapping 

square blocks and deriving motion hypotheses for each block [27], A standard linear 

regression technique conditioned on the optic flow data is used for this [26] [27]. Either 

way, in order to converge on the subset of correct models present in the scene, a K- 

means clustering algorithm14 in the affine parameter space is employed [27]. The affine 

parameters of the cluster centres are taken as the required motion hypotheses

{M ,... M N } where N  is the number of motion hypotheses (corresponding to the 

number of detected objects). In the next step, each motion hypothesis is tested for each 

pixel in the image and the pixel is assigned to the motion hypothesis which best 

describes its motion [27], The assignment decision is carried out by applying each 

motion model to the pixel under consideration and calculating the error obtained with 

this prediction compared to the error obtained using the optic flow motion vector for the 

pixel. The pixel is assigned to the motion model which produces the smallest error. This 

results in an output segmentation of the current frame 7 . The entire segmentation

process (i.e. hypothesis generation, clustering, hypothesis testing, and model 

assignment) is iterated until no pixels are reassigned within 7 from one iteration to 

the next.

5.6 The COST 211ter Analysis Model

With the advent of MPEG-4 video compression, the COST 21 Iter group decided to 

change the main focus of its work away from video compression in order to address 

segmentation for arbitrarily-shaped YOP creation. Furthermore, in light of the new 

MPEG-7 initiative the group decided to also focus on image analysis for feature 

extraction [28]. A test model for collaborative development, known as the COST 21 Iter 

Analysis Model (AM), was specified. This consists of a set of tools and algorithms for 

image analysis which allows segmentation and feature extraction within a single 

framework. The envisaged application scenario for the AM is described in [28]. This 

application scenario depicts the integrated AM framework, referred to as the Kernel of 

Analysis for New multimedia Technologies (KANT), which has the task of producing 

content for an MPEG-4 (or MPEG-7) encoder. KANT consists of the complete AM, a 

user interface, and provision for user interaction.

14 a  detailed description o f X-Means clustering is provided in chapter eight.
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The AM has the task of providing a number of functionalities which are required to 

enable MPEG-4 and MPEG-7 applications. These functionalities are sometimes termed 

(i) unsupervised object detection and tracking, (ii) supervised object detection and 

unsupervised tracking, and (iii) object feature extraction and tracking. The first 

functionality implies that the AM must be capable of automatically detecting and 

tracking a semantic object present in a video sequence. The second functionality 

requires that the AM must support some form of user interaction in detecting and 

segmenting objects present in an image with the ability to then automatically track these 

objects. The third functionality requires that the AM must be capable of extracting 

features which characterise the objects present in the sequence, and of tracking these 

features over time. The AM is only considered here in terms of the first functionality, 

which corresponds unsupervised segmentation.

5.6.1 Segmentation via the COST 211ter Analysis Model

The approach taken by COST 21 Iter is to employ some useful region-based analysis 

tools in the overall segmentation process. The AM is partly based on the approach of 

Alatan et al described in [29]. This algorithm performs both a region-based 

segmentation and a motion-based segmentation independently, and uses these two 

segmentation results as inputs to an intelligent rule-based processor. The rule-based 

processor attempts to construct the correct segmentation by considering both results. 

The previously obtained segmentation is also an input to the rule-based processor so that 

detected objects can be tracked. The rule-based processor is a very flexible processing 

block, capable of accepting as many inputs as are available (once appropriate rules are 

defined).

The approach of Alatan et al within the AM is illustrated in Figure 5.5. Currently 

change detection can only be used in the AM via a single switch in the rule processor 

which essentially replaces the approach of Alatan et al with the approach of Mech and 

Wollborn15 (the dotted lines in Figure 5.5). Since this approach is previously described 

in this chapter, the discussion here is limited to the structure of the AM based on [29].

15 The only difference is that the contours o f the moving object are refined using the result o f the region-based 
segmentation and not a Sobel operator as before.
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Figure 5.5 - The COST 21 Iter Analysis Model

Colour segmentation processing produces a region-based segmentation of the 

current frame lk. It is assumed that Ik contains both luminance and chrominance 

information (i.e. Y,U  and V image components). The region-based segmentation is 

produced using a Recursive Shortest Spanning Tree (RSST) method [29], The algorithm 

starts by considering each pixel as a separate region. A distance metric is defined for 

calculating the distance between two neighbouring regions in terms of the colour 

difference, whilst considering the size of the regions. The regions with the smallest 

distance are merged. This merging process continues until only a required number of 

regions are present in the segmentation. S[eg is an input to the rule-based processing 

block.

Local motion estimation produces a dense motion vector field for the current image 

MVk using the scheme of Bier ling in [12]. Local motion segmentation has the task of 

producing a motion-based segmentation of the current frame. RSST is also used for this, 

but this time the algorithm is applied to the dense motion vector field [29]. The output 

of this processing block Sk'" is also an input to the rule-based processor. The previously 

obtained segmentation mask is motion compensated using the calculated local 

motion estimates. The result constitutes the final input Sklc to the rule-based processor.

58



The task of the rule-based processor is to construct the output segmentation based on the 

available inputs and a set of defined heuristics. In a first step, every region in S rkeg is 

associated with one region in S ”01 and S ^ c . This is achieved by calculating the area of 

overlap of a region in S"g with respect to each motion region, and assigning it to the 

motion region with the greatest area of overlap [29]. Each motion region in »S'“"' is then 

labelled as moving or stationary by calculating the average motion vector for the region 

and comparing it to a pre-defined threshold [29], Each motion region in Sk4( assumes 

the same moving/stationary label as the corresponding region in S'™',. Each region in

S'keg assumes the moving/stationary label of the motion region in S™"' it is assigned to. 

Finally, the heuristic rules are applied.

The application of the rules has the following effects. If all the regions assigned to an 

object in the motion compensated previous segmentation have the same 

moving/stationary label, then these regions are merged and the object is considered as 

successfully tracked. Otherwise, if the object in the previous segmentation was moving, 

and some regions assigned to this object have different moving/stationary labels, then 

obviously part of the object has stopped moving. Thus the moving regions of this object 

in the current frame are merged to produce the current tracked segmentation of this 

object. The stationary regions are also merged to form a new stationary object. If  the 

object in the previous segmentation is stationary, and some regions of the current image 

assigned to this object have different moving/stationary labels, then obviously part of 

this object has started moving (e.g. a static background region may contain an object 

which starts to move at some arbitrary point in the sequence). Thus, all stationary 

regions of the object are merged to form the stationary object in the current frame, and 

the moving regions mapped to this region in the current motion segmentation are 

merged to form new moving objects. It should be noted that regions in the motion 

compensated segmentation which retain the stationary label for a pre-defined length of 

time are deemed to belong to the scene background. Thus, if part of an object stops 

moving, it will eventually be assigned to the background. The result of this processing is 

a segmentation of the current frame S™" in terms of moving and stationary objects (in 

which the latter, when considered collectively, forms the scene background).
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Post-processing is carried out in order to obtain a refined segmentation. Small regions in 

the segmentation are detected and merged to larger neighbouring regions [29]. In a 

second step, the grey-level segmentation mask undergoes morphological filtering to

smooth the contours of the regions present. This produces the overall final segmentation

5.7 Discussion

Experimental results have verified that the enhanced change detection approach of Mech 

and Wollborn performs much better than simple change detection segmentation 

[23] [24]. The adaptive thresholding scheme reduces the sensitivity of the change 

detection process. The use of the Sobel operator ensures that output segmentations 

reflect the contours in the original images. Furthermore, by considering and 

compensating for the global motion in the scene, the algorithm can be successfully 

applied to a wider class of scene types. The experimental results obtained using the 

motion model clustering approach of Wang and Adelson indicate the promising 

performance of this technique [25][26][27], It is clear from the presented results that 

different affine motions in the scene can be detected and accurate segmentations 

obtained for regions exhibiting these types of motion. Experimental results also indicate 

the promising performance of the approach of Alatan et al [29]. Significant motions in 

the scene are detected and successfully tracked due to the rule-based processor which 

reflects what actually occurs in the scene using appropriate heuristics. Furthermore, the 

contours obtained are very accurate due to the use of the region-based segmentation in 

determining the exact location of colour region boundaries.

Unsupervised segmentation has, however, fundamental unavoidable limitations. The 

implicit assumption of Wang and Adelson and Alatan et al is that an area of coherent 

motion corresponds to an object in the scene. This is not necessarily so, depending on 

the semantic interpretation of the scene. For example, a semantic object corresponding 

to a person can consist of multiple motions (e.g. a head moving one way, arms moving 

another). In the approach of Alatan et al and Wang and Adelson these motions will 

appear as separate regions in the final segmentation. If it is known a priori that only a
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single moving object exists, then these regions can be labelled as a single object 

segmentation. If this is not the case, however, the algorithm cannot know how to group 

different motions to form a single object. Whilst in the approach of Mech and Wollborn, 

the motion need not be coherent in order to form an object segmentation (it must simply 

produce a change between one image and the next), the approach faces the same 

limitation when dealing with multiple objects: it cannot group different changed areas to 

form an object segmentation. In a similar manner, even when assuming a single object, 

a semantic object segmentation obtained using any of these schemes gradually builds up 

over time. Different parts of the entire object are not guaranteed to move at the same 

time. The parts which do not move are not detected as part of the object until they do so. 

Finally, of course, there is no segmentation for the first image in a sequence since the 

schemes rely on motion which must be estimated between successive images.

These limitations are unavoidable because unsupervised approaches rely on the 

relatively low-level feature of estimated motion. Another higher level semantic 

paradigm is required in order to recognise independent motions, or lack thereof, as 

belonging to the same “real world” semantic object required by the user. This is 

analogous to the problem of grouping image regions to form a semantic object 

associated with automatic region-based segmentation schemes.

The attraction of automatic approaches to segmentation is that, since no user interaction 

is necessary at any stage, they can potentially be used in real-time application 

environments. Consider, for example, a video surveillance application where it is 

desired to detect an intruder in a scene and transmit a coded representation of the scene 

to a central surveillance station for evaluation by a human observer. This scenario is an 

ideal candidate for a real-time MPEG-4 application. An unsupervised segmentation 

algorithm is used to detect the required video object (the intruder) and to create the 

associated arbitrarily-shaped VOPs from the source video. An MPEG-4 video encoder 

can then use these VOPs to produce a compressed version of the scene with the intruder 

object at a higher quality than the rest of the scene (using MPEG-4 scalability), thus 

aiding human evaluation. The first appearance of the object (i.e. the first non empty 

segmentation mask) could be used to trigger this evaluation. In this surveillance 

scenario, segmentations such as those produced by the approaches described in this
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chapter are acceptable. It is enough to be able to detect that the intruder is present by 

detecting motions where none should be present, and obtaining the shape of these 

motions. A segmentation of the entire intruder may not even be necessary. It may be 

sufficient to segment only the moving part of the intruder and to transmit this section of 

the scene at higher quality to a human observer who can infer what is actually taking 

place in the scene.

Given the limitations associated with unsupervised approaches to segmentation, it is 

clear that such approaches are suitable for a particular class of MPEG-4 applications 

(i.e. real-time applications requiring content-based functionalities, which can tolerate 

inaccurate or partial object segmentations). However, as explained in the next chapter, 

there is another class of MPEG-4 applications which require accurate segmentations of 

entire “real-world” semantic objects. In this class of applications, the ill-posed problem 

of segmenting objects based on a human’s semantic interpretation of the scene must be 

addressed. In this case, the segmentation results produced by automatic techniques such 

as those described in this chapter are not acceptable. However, a segmentation algorithm 

can be effectively relieved of the burden of semantic object definition through the 

introduction of user interaction. This has prompted the research community to turn its 

attention to a different category of segmentation approaches which allow user 

interaction, in order to address the requirements of these (normally off-line) 

applications.
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6. SUPERVISED VIDEO SE G M E N TA TIO N

6.1 Introduction

For a certain class of multimedia applications it is necessary to obtain very accurate 

segmentations of the required semantic objects for an entire video sequence and thus, 

the techniques described in the preceding chapter are not suitable. In this case, it is 

necessary to include user interaction in the segmentation process in order to allow 

semantic meaning to be defined. This has prompted the investigation of a category of 

approaches to segmentation known as supervised segmentation. The term supervised 

here refers to the fact that user interaction is allowed. In this chapter, a number of 

supervised segmentation approaches are described and their overall performance, as 

well as the type of user interaction employed, is discussed. The most promising aspects 

of one approach in particular, leads to it being used as the basis of the author’s further 

investigations into supervised segmentation in chapters eight and nine.

6.2 Why Supervised Segmentation?

Consider a content production/editing application in which it is required to extract an 

object from source video so that it can be combined with different objects in order to 

create a new scene. This scenario is an ideal candidate for an off-line (i.e. non-real-time) 

MPEG-4 application, consisting as it does of off-line video object compression and 

composition. If the content is being produced in a studio, a chroma-key system may be 

used to generate the required VOPs. A chroma-key system is one in which an object is 

filmed in front of a colour not contained in the object (normally a blue screen). By 

simply extracting the background colour from the resultant video sequence (a relatively 

simple segmentation process), it is possible to recover the shape of the required object. 

However, such a process may not be available due to the expense involved, or due to the 

fact that it is required to segment objects from an existing archive of frame-based video. 

In the absence of a chroma-key system, a segmentation process is necessary in order to 

create the required VOPs. This segmentation process should be as accurate as possible 

to avoid missing part of an object, or mixing part of the background of one sequence
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with that of another during the composition process, in order that the resultant scene 

would appear seamless.

In the content prod uction/editing scenario the drawbacks of automatic segmentation 

techniques (e.g. missing part of an object if it does not move like the rest of the object, 

or no segmentation available for the first image in a sequence, or slow build-up of the 

entire object segmentation) are unacceptable. However, with the real-time constraint 

relaxed, it is possible to allow user interaction in the segmentation process. Including 

user interaction in the process relieves the segmentation algorithm of the ill-posed 

problem of trying to extract semantic meaning from the scene, and places this task in the 

hands of the user. This in turn allows the user the possibility of obtaining exactly the 

segmentation he/she desires in terms of content (i.e. what is segmented) and quality (i.e. 

accuracy of the resultant segmented object).

Another advantage of a supervised approach to segmentation is that the segmentation 

process can be tailored to different end-user applications with little effort and is thus 

generally much more flexible than an automatic process. Figure 6.1, for example, 

illustrates two different semantic objects for different applications in the same scene. 

This first is the girl in the MPEG-4 Weather test sequence and the second is simply the 

girl’s jacket. The first may be required in order to place the girl on a different 

background in an editing application (e.g. placing a different weather map behind the 

girl), whilst the second may be useful in creating content for a tele-shopping application 

(e.g. where the user may request: “show me the jacket in a different colour’’). The same 

supervised segmentation approach with different forms of interaction can be used to 

segment both types of objects making this approach to segmentation applicable across a 

range of applications'6.

6.3 Object-based v. Region-based Segmentation Revisited

The previous chapter concentrates on object segmentation approaches based on 

estimated motion in a scene. This is because in a completely automatic framework, 

objects can only be detected based on their motion. Many tools exist for obtaining

16 The segmentations o f Figure 6.1 were both generated using the algorithm presented in chapter nine which was 
developed by the author.
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accurate region-based segmentations (e.g. the watershed algorithm, RSST) but as 

explained in the previous chapter, a purely region-based segmentation process cannot 

automatically group image regions to form a required object. However, if user 

interaction is allowed, it becomes possible to include region-based segmentation in an 

object segmentation process. Of the three supervised approaches described in this 

chapter, two are region-based and the other is object-based.

(a) An image from the W eather test (b) The semantic object is the (c) The semantic object is the
sequence weather girl weather g irl’s jacket

Figure 6.1 - Illustration of the different natures of semantic objects 

6.4 Requirements on User Interaction

There are certain considerations regarding the degree of user interaction which is 

desirable in a supervised segmentation process. The approach most often used in 

existing commercial applications is to allow a user to indicate every pixel in an image 

associated with the required object (or at least pixels belonging to its border). This is a 

very laborious and error-prone task, which quickly becomes impractical if it is to be 

repeated for every image in a lengthy video sequence. Ideally, the user should only have 

to indicate the shape of the object at a particular time instant in the sequence, with 

further instances of this object throughout the sequence segmented automatically. In 

other words, user interaction is used to segment the object in one image and this object 

is then automatically tracked throughout the rest of the sequence.

It is further proposed here that the amount of interaction necessary to segment the object 

in the initial image should itself not be excessive. The objective is to make the 

segmentation task as easy as possible for the user. The necessity of indicating every 

pixel of the object (or its border) should be avoided. The purpose of user interaction 

should be to provide an automatic segmentation algorithm with some clues as to the
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nature of the user’s requirements. The segmentation algorithm can then take these clues 

as input and use them to segment the required object as accurately as possible. The 

resultant segmentation can be presented to the user for approval. If it is not sufficiently 

accurate for the user’s needs, he/she may decide to completely re-do the segmentation 

process. Alternatively, he/she may decide to manually refine the automatically 

generated segmentation. Either way, the entire segmentation process is less time 

consuming (and hence less expensive!) and the results obtained are tailored to the user’s 

individual requirements. User interaction for refinement is not considered in this chapter 

(or indeed chapters eight and nine), but is discussed in chapter ten

6.5 Segmentation via Fuzzy Logic

An approach to supervised segmentation using fuzzy logic was proposed by Steudel and 

Glesner in [30] and [31]. The algorithm consists of iterative user interaction coupled to 

an automatic segmentation process to segment a required object in the initial image of a 

video sequence. The automatic segmentation algorithm employs fuzzy logic in order to 

consider multiple information sources in the segmentation process. The segmentation 

algorithm itself is presented in [31] where it is used to segment still images in order to 

perform region-based encoding. A fuzzy logic framework used to track the required 

object after it has been segmented in the initial image is proposed in [30],

6.5.1 User Interaction

The segmentation algorithm of Steudel and Glesner segments an image into regions 

which are homogeneous according to a given criterion. An object present in the image is 

considered to be made up of an arbitrary number of such image regions. User interaction 

consists of the user indicating to the algorithm the regions which make up the required 

object. This is achieved via a single mouse click by the user within each of the object’s 

regions. This indicates to the algorithm a single pixel, sometimes called a seed, which is 

a member of the required region. The automatic segmentation technique is a region- 

growing process, whereby, starting from the seed pixel, adjacent pixels are added until 

no more pixels conform to the homogeneity criterion.
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The entire process is illustrated in Figure 6.2. The user examines the initial image and 

decides which object he/she wishes to segment (e.g. the car in Figure 6.2) and also 

identifies the regions making up this object. The user then starts to segment the object. 

The algorithm starts with a blank segmentation mask (i.e. an empty VOP). The user 

clicks somewhere in the first region to be segmented. The region-growing process then 

segments all pixels which belong to this region. The resultant region is added to the 

segmentation mask as part of the object. This process is repeated for each image region 

and the result of the region-growing process is added to the object segmentation mask 

each time. The final result is a segmentation for the entire object (e.g. the final 

segmentation in Figure 6.2).

Initial Image

mouse clicks

automatic
segmentation

jroces^^w

automatic 
segmentation 

process #2

Final Segmentation

automatic
segmentation 

^  process #4

automatic 
segmentation 

process #3

Figure 6.2 - Illustration of Steudel and Glesner’s approach to user
interaction

6.5.2 Object Segmentation

Starting from the seed pixel, region-growing consists of finding adjacent pixels which 

fulfil the homogeneity criterion. Steudel and Glesner use a fuzzy set approach which 

allows a number of different features to contribute to the homogeneity measure in a
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intuitive manner, which mimics the semantic reasoning of a human [31]. The different 

features considered are (i) the difference in intensity between a pixel under 

consideration and the mean intensity of the region, (ii) the local intensity gradient at the 

pixel under consideration, (iii) the size of the region, and (iv) the smoothness of the 

contours of the region. These features are introduced as linguistic variables in the rule 

premises of the fuzzy rule-based system and result in single rule conclusions [31].

There are four linguistic expressions (and associated fuzzy sets) for the single rule 

conclusions, which correspond to four degrees of certainty with which a pixel belongs to 

a region (not merge, probably not merge, probably merge, and merge). The following 

heuristic rules are applied. If the intensity difference is small, then the pixel should be 

merged, otherwise it should not be merged (the resultant region should be homogeneous 

in terms of grey-level). If the gradient is small, then the pixel should probably be 

merged, otherwise not (a strong gradient indicates that the pixel is outside the region’s 

boundary). If the region size is small, then the pixel should be merged (large regions are 

favoured in order to more quickly build up a complete object segmentation). If the 

contours of the region are smooth, then the pixel should probably be merged, otherwise 

probably not (most natural object boundaries are smooth).

Membership functions of the fuzzy sets used in the rule’s premises are also defined [31]. 

The final output membership function is the union of the fuzzy sets of each conclusion 

after clipping its degree of membership at the degree of membership for the 

corresponding premise [31]. The final output value (i.e. merge or not) is generated from 

the output membership function using the centre of gravity method [31]. In summary, 

for each pixel adjacent to the region (starting from the seed pixel) the features are 

calculated, the rules evaluated, and a final region membership decision made. This 

process is repeated until no more pixels are added to the region. This entire process is 

iterated for each region making up the object.

6.5.3 Object Tracking

In order to track the object segmented in the initial image into the next image in the 

sequence, a two-step process is employed [30]. In the first step, the motion between the 

two images is estimated. A half-pixel accurate segmentation-constrained hierarchical
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block matching algorithm is employed [30]. Bilinear interpolation is used to produce a 

dense motion vector field from the motion vector estimates. This motion vector field is 

used to project the contour of the object in the initial image into the next image to be 

segmented. The object’s contour is represented using a vertex-based approach similar to 

that of SIMOC [31]. The result of this step is a projection of the object’s shape into the 

current image to be segmented.

Simply projecting the object’s shape from image one to the next is not sufficient to 

generate a segmentation with the required high degree of accuracy. This is due to the 

nature of the motion estimation/compensation technique, which (being block-based) is 

only an approximation to the object’s true motion [31]. For this reason, the object’s 

shape in the new image is refined in a second object tracking step. This refinement is 

carried out in a fuzzy rule-based framework, very similar to that used when segmenting 

the initial image [31]. Each compensated vertex is displaced in either direction along a 

line orthogonal to the two adjacent connecting line segments in the polygon 

approximation. The objective is to calculate the displacement which best refines the 

object’s contour. A set of local image features are calculated and used in the fuzzy rule- 

based system to generate probabilities for each displacement position.

The features used are (i) the intensity gradient of the pixel at the displaced location, (ii) 

the displacement itself in pixel units, (iii) the smoothness of the contours, (iv) the colour 

gradient of the pixel under consideration and (v) special consideration for image 

boundaries [30]. In a manner similar to that outlined above, the calculated features are 

fuzzified with the membership functions used in the premises of the rules. The rules 

reflect the following three heuristics: (i) a small displacement is favoured because this is 

more likely than a large displacement (the vertices have already been motion 

compensated), (ii) a large gradient in the colour and luminance components indicates 

that the pixel is near the edge of the object, and (iii) a vertex coincident with the image 

border is not allowed move from this position unless the suggested displacement is 

large. Using the same method as above, the fuzzy conclusions for each rule are 

aggregated to form a single fuzzy main result which is then defuzzified. This produces a 

probability for each vertex displacement position. The displacement with the highest 

probability is the refined position for the vertex under consideration. The result of this
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step is a refinement of the projected object contours based on local features. This two- 

step tracking process is repeated for every image in the sequence.

6.5.4 Discussion

The reported results of the segmentation approach of Steudel and Glesner are very 

promising (see [30] and [31]). The scheme allows the accurate segmentation and 

subsequent tracking of video objects in a variety of scene types. However, there are 

potential limitations with this approach. The amount of user interaction required may be 

excessive in certain scene types. It is possible that the object to be segmented may 

consist of very many small regions, and hence, a mouse click is required for every 

region (e.g. consider the worst case scenario where the object to be segmented is a 

person wearing a checked shirt!). In this case, user interaction does not meet the 

requirements of section 6.4 as it is excessive in nature and difficult to perform. The 

tracking step may also be problematic. If the object has a complicated shape, then a 

large number of vertices are required to describe its contour. Each must be successfully 

tracked in order to obtain accurate object segmentations. This may be difficult if the 

object changes shape dramatically or moves very fast.

6.6 Segmentation via Multidimensional Statistical Processing

A supervised segmentation approach based on statistical processing was proposed by 

Chalom and Bove in [32], The underlying philosophy is to consider the scene as a 

collection of semantic objects, including a background object. The approach relies on 

user interaction performed on an initial image in order to obtain important clues as to 

the nature of the objects which the user wishes to segment. The objects are modelled on 

the basis of this user interaction and the scene itself is modelled as a collection of object 

models. Each pixel in the image is allowed to compete for membership of one of the 

available models in an automatic segmentation algorithm, and is eventually assigned to 

the most likely object model, thereby obtaining a segmentation of the scene. The 

segmented objects are then tracked in subsequent images in the sequence using one of 

two techniques.
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The purpose of user interaction in the approach of Chalom and Bove, is to allow the user 

to indicate objects in the scene which he/she would like segmented. This is achieved by 

allowing the user to draw on the scene by simply dragging a mouse over the image. In 

this way, the user creates a set of scribbles for the objects to be segmented. The user 

gives a label to each scribble whereby each label corresponds to an object to be 

segmented. The minimum number of labels is two, corresponding to the required object 

and “everything else” (i.e. the background object). Two different scribbles can have the 

same label, indicating different parts of the same (possibly disjoint) object in the image. 

This user interaction process is illustrated in Figure 6.3. The user draws on the image 

with a mouse and labels the required object (in this case the car i.e. the unbroken 

scribble in Figure 6.3). The user then labels the background as the second object. In this 

case, it is more convenient for the user to use two scribbles of the same label in order to 

indicate the background object (i.e. the two dashed scribbles in Figure 6.3).

6.6.1 User Interaction

Final Segm entation

user scribbles

Figure 6.3 - Illustration of Chalom and Bove’s approach to user interaction

The result of user interaction is a number of important inputs to the automatic 

segmentation process. The most important input is the number of required objects in the 

image, which is simply the number of different labels in the set of scribbles. The set of 

scribbles associated with a particular object also give a very good indication of the 

location of this object in the image. Finally, the scribbles for an object also give a very 

good indication of the nature of the object to be segmented (see section 6.6.2).

Initial Image
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The automatic segmentation process of Chalom and Bove, like that of Steudel and 

Glesner, uses multiple information sources. A number of measurements (termed 

features) are made for each pixel in the image. These correspond to luminance, texture, 

colour, motion, and position information at each pixel [32]. The luminance and colour 

features for each pixel are simply the pixel’s Y, U and V (or RGB) values. The position 

features are simply the pixel’s horizontal and vertical co-ordinates within the image. 

The motion features for each pixel consist of the vertical and horizontal motion vector 

components of a dense motion vector field estimated for the image to be segmented 

using optic flow. Texture features are calculated as statistics on local luminance 

information. These features are arranged in a multidimensional feature vector (see 

section 8.2) for each pixel in the image [32],

Given this dense feature space for the image to be segmented, the probability 

distribution function (PDF) of each feature is modelled parametrically. It is assumed 

that the distribution of each feature across an object can be modelled as the sum of one 

or more Gaussian PDFs (this concept is further explained in section 9.2). Since this 

distribution is not known a priori, the results of user interaction are used to approximate 

each object’s PDF. The feature vector of every pixel contained in the set of scribbles for 

a particular object (i.e. every pixel which lies on one of the scribbles) is taken as a 

member of a training data set for the object. This training data is used to estimate the 

parameters of the PDF of each feature across the object [32].

The main difficulty is deciding how many modes the PDF should have (i.e. how many 

Gaussians in the sum, see chapter nine). To determine this, the number of modes is 

allowed to vary between one and a maximum number and the required parameters are 

estimated each time using an Expectation-Maximisation (EM) algorithm [32] (the EM 

algorithm is explained in more detail in chapter seven). For each PDF, the distance 

between the model and the training data is calculated, and the most appropriate number 

of modes is chosen [32]. In this way, each object in the image is modelled as a 

multivariate multimodal Gaussian PDF [32],

6.6.2 Object Segmentation
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The pixels used to construct the training data are considered to be labelled prior to the 

segmentation process. The task of the segmentation process is to assign one of the 

available object labels to every other pixel in the image. This is achieved via the 

estimated PDF model for each object using maximum a posteriori (MAP) hypothesis 

testing [32]. Assuming that the individual features are independent, this reduces to 

evaluating the PDF for each object for a particular pixel (i.e. feature vector), and 

assigning the pixel to the object with the highest associated probability [32]. This results 

in a segmentation of the scene in terms of the labelled objects.

6.6.3 Object Tracking

Two approaches can be used for tracking the segmented objects. The first and simplest 

approach consists of simply re-using the estimated PDFs in order to segment subsequent 

images. In this approach, the MAP hypothesis testing and pixel assignment is carried 

out for every pixel in the new image to be segmented [32]. In the second approach, the 

PDF estimates are updated for every new image to be segmented. This is achieved by 

tracking the training data from one image to the next [32]. A motion estimation 

algorithm is employed and the pixels making up the training data are motion 

compensated into each new image to be segmented. The feature vectors associated with 

the compensated training data in the new image constitute a new training data set. Given 

this training data, the segmentation process continues in the same manner as above.

6.6.4 Discussion

As in the approach of Steudel and Glesner, the reported segmentation performance of 

the approach of Chalom and Bove is very promising (see [32]). A number of objects in a 

scene, moving with complicated motion, can be successfully segmented and tracked. 

The scheme has, however, certain key advantages over that of Steudel and Glesner. The 

interaction required of the scheme is never excessive and is easy to perform: it simply 

requires the user to draw on an image, and very often a single scribble per object will 

suffice, thus meeting the requirements of section 6.4. It should be noted, however, that it 

is important that the training data derived from a scribble be representative of the entire 

object (see chapter nine for details of this for a similar scheme). The PDF models used 

to represent objects prove to be very successful, irrespective of the nature of the objects
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to be segmented. Another advantage of this approach is the fact that multiple objects in 

the same scene can be segmented simultaneously.

There are, however, limitations associated with the approach of Chalom and Bove. The 

training data used (corresponding to user scribbles) in order to formulate object models 

is very sparse. That is, the number of pixels used to derive model parameters is small 

compared to the total number of pixels to be segmented. This may result in poor initial 

estimates of model parameters if, for example, the scribbles are small compared to the 

objects to be segmented. This in turn will result in poor segmentation results. The first 

tracking approach suggested (i.e. simply using the parameter estimates calculated in the 

initial image for MAP hypothesis testing in every subsequent image), takes no account 

of the temporal evolution of objects in the scene (e.g. object regions appearing or 

disappearing). Thus, the PDF parameters may become less appropriate for modelling 

objects over the course of a sequence, leading to a deterioration in segmentation 

accuracy. Furthermore, if the second approach to object tracking in section 6.6.3 is 

employed, unless the tracking of the sparse data set is very accurate, object modelling 

will also deteriorate from one image to the next, producing a gradual reduction in 

segmentation accuracy. Finally, in order to derive the required PDF estimates, a number 

of EM algorithms must be employed, which is a potentially computationally expensive 

and time consuming process.

6.7 Segmentation via Mathematical Morphology

As explained in chapter three, morphological tools constitute a very powerful approach 

to region-based segmentation. The watershed algorithm, for example, produces a 

segmentation of an image with excellent localisation of image region contours. 

Grouping watershed image regions to produce a semantic object segmentation can 

produce very accurate object borders. Thus, applying user interaction to the result of 

morphological processing can allow an object to be segmented in an initial image in a 

sequence. Given this segmentation of the object, there exists morphological techniques 

for automatically tracking this object throughout the rest of the sequence.
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The approach to user interaction in a morphological framework is different to the types 

of user interaction outlined thus far in this chapter. In both the approach of Steudel and 

Glesner and that of Chalom and Bove, the user indicates to the underlying automatic 

segmentation process the type of segmentation required (i.e. a scribble says “this is the 

nature o f the required object ”, a mouse click says “segment a region starting here, 

similar to this point”). In other words, user interaction is used to drive an automatic 

segmentation process. In the case of the morphological approach described here, 

however, user interaction is applied after the automatic segmentation process has been 

performed.

User interaction can be applied to the result of a watershed segmentation of the initial 

image in the sequence. This can be carried out in a number of ways. One example is to 

allow a user to perform a mouse click in each watershed region making up an object to 

progressively build up an object segmentation. Alternatively, a user could perform a 

mouse drag within the object to be segmented, thereby creating an object scribble. Any 

watershed region which contains at least one pixel of the object scribble is then included 

in the object segmentation. This latter technique is favoured here as it avoids the 

potentially excessive amount of interaction necessary with clicking on each region (see 

section 6.5.4). This technique is illustrated in Figure 6.4 below17.

6.7.1 User Interaction and Object Segmentation

(a) Watershed o f original (b) Object scribble (c) Object segmentation
luminance image

Figure 6.4 - Illustration of user interaction on the result of morphological processing 

6.7.2 Object Tracking

Given the segmentation of an object in the initial image in a sequence, morphological 

processing may be used to automatically track the object throughout the rest of the

17 These results were generated using the same software simulation o f the watershed algorithm as in chapter three.
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sequence. An approach which has demonstrated reasonably accurate results is the 

double partition approach of Marqués and Molina, presented in [33]. In this approach, 

the object segmentation is not projected directly into the next image to be segmented. 

Rather, a fine partition of the previous image is projected into the next image. The 

regions in this fine partition are tracked and the object segmentation is reconstructed in 

the new image to be segmented.

Due to drawbacks associated with the watershed algorithm when applied simply to the 

luminance component (see next section), in the author’s opinion, the fine partition of 

[33] should actually be calculated using a modified watershed algorithm which uses 

both luminance and chrominance information. The regions of this partition are then 

homogeneous in terms of colour. This segmentation technique can then be applied to 

both the initial image and the current image to be segmented. User interaction is applied 

to the initial image in order to produce the object segmentation in a manner similar to 

that outlined in Figure 6.4 above. The object is then tracked using the technique referred 

to above (termed partition projection).

The motion between the two images is estimated using a block-based motion estimation 

algorithm and the markers of the fine partition of the initial image are motion 

compensated [33], These compensated markers are then adjusted to the fine partition 

boundaries in the image to be segmented. A two-step fitting procedure is used for this

[33]. The first step, based on geometrical considerations, locates the centre o f every 

region in the new image. In the second step, a cleaning process is applied to the marker 

regions based on analysis of the image gradient covered by the markers. The exact 

region contours associated with the markers in the new image are calculated using a 

watershed algorithm using both contour and texture information [33]. The result of this 

step is a final fine partition of the image to be segmented. Since the algorithm tracks the 

labels of the regions which make up the required object, these regions can be merged to 

produce a segmentation of the object in the current image. This tracking technique can 

then be repeated for all remaining images in the video sequence.
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As is clear from Figure 6.4, very accurate segmentations of the required object in the 

initial image are possible with the morphological approach. However, if a watershed 

segmentation of the luminance image component is used (as in Figure 6.4 and [33]) 

rather than the proposed watershed, it may be impossible to accurately segment the 

object. This is because the watershed will not extract colour region boundaries which do 

not appear in the luminance image (e.g. two adjacent eqiluminant regions with different 

colour). This may be avoided (except when the luminance contour is just not present) by 

using a very fine watershed segmentation, corresponding to the watershed applied to the 

gradient without filtering. The extreme over segmentation in this case, however, 

increases the amount of user interaction required (more interaction is needed and must 

be performed very carefully).

In a manner similar to that of Chalom and Bove, multiple objects can be segmented 

simultaneously with the morphological approach. The tracking results reported (see 

[32]), however, are not as impressive as those obtained by the author using a scheme 

similar to that of Chalom and Bove (see section 9.6.1 and 9.6.2). This is probably due to 

the partition projection approach, which may have difficulty in certain scene types to 

accurately track all the small regions composing an object (e.g. if there are a large 

number of small object regions and the object moves with complicated motion). The 

main advantage of the approach is that it requires the least amount of user interaction 

(i.e. there is no necessity for a background scribble, simply one for the required object).

6.8 Conclusions

All three approaches described in this chapter make use of multiple information sources 

in the segmentation process. The approach of Studel and Glesner uses multiple rules in 

the fuzzy logic rule-based system, whereby each rule is designed to process a local 

image feature. Similarly, in the approach of Chalom and Bove, local image features are 

arranged in a feature vector for each pixel. The watershed algorithm used in the 

approach of Marqués and Molina uses both contour and luminance information in order 

to build a fine partition. In this way, the resultant segmentation in each case is based on 

simultaneously processing information from a diverse range of sources such as motion,

6.7.3 Discussion
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colour, texture, luminance and shape. The segmentation techniques of Wollborn and 

Mech and Wang and Adelson described in the previous chapter deal only with a single 

information source (the approach of Alatan et al uses multiple information sources, 

corresponding to the use of colour in the RSST). Change detection works solely on the 

luminance difference image. Polynomial motion modelling considers only estimated 

motion. Such approaches attempt to segment a semantic object on the basis of a single 

parametric model, which is very often impossible. The approaches described in this 

chapter, however, make use of any available information which may be of use in 

distinguishing an object from the background. This factor, coupled with user interaction 

to indicate to the algorithm the nature of the required object, results in very useful and 

powerful segmentation techniques. For this reason, multiple information sources are 

employed in the author’s further investigations into supervised segmentation described 

in chapters eight and nine.

All the approaches described in this chapter exhibit the type of flexibility illustrated in 

Figure 6.1. Using the approach of Steudel and Glesner, the interaction can be stopped 

after segmenting the weather girl’s jacket or after segmenting the entire weather girl. 

Using the approach of Chalom and Bove, the weather girl can be labelled as one object, 

or alternatively, simply her jacket can be labelled as the object (this is how the results of 

Figure 6.1 were generated by the author). Similarly, in the morphological approach it is 

completely up to the user which regions to group in order to form an object.

The reported performance of these techniques (presented in [30][31][32] and [33]) 

indicate comparable segmentation results, although the results of Chalom and Bove are 

clearly the best. As outlined in this chapter, what distinguishes the techniques is the type 

of user interaction employed. The scribble-based approach is more attractive than a 

mouse-click approach in terms of the amount of user interaction necessary. 

Furthermore, the scribble-based approach is a more intuitive form of interaction for the 

end-user, particularly if the user is unfamiliar with the segmentation mechanism (as is 

very often the case). Drawing a scribble is a more “user-friendly” version of the existing 

approach of outlining every pixel on an object’s border (less care and attention is 

required for a similar result). For this reason, this form of user interaction is adopted by 

the author in chapters eight and nine. Another advantage of both the approach of
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Chalom and Bove and the morphological approach, is that multiple objects in the scene 

can be defined and segmented. In other words, the arbitrarily-shaped VOPs for two or 

more objects can be created simultaneously.

Although the least amount of interaction is required with the scribble-based 

morphological approach, the most promising segmentation results are those of Chalom 

and Bove. This is due to the method of object modelling which allows a good 

description of objects as a basis for segmentation. This approach to object modelling is 

adopted by the author as the basis of extending the region-based segmentation schemes 

presented in chapter eight to cope with objects.

Whilst the author’s investigations in chapter nine are based on the approach of Chalom 

and Bove, the scheme developed attempts to address the limitations of this approach. 

The sparseness of training data is avoided by automatically augmenting this data (see 

section 9.3.2). The computationally burdensome iterative application of a number of 

EM algorithms is avoided by extending user interaction (see section 9.3.1). In the 

approach of Chalom and Bove, MAP testing is performed based on PDF parameters 

derived solely from the training data. In the author’s approach, whilst the initial PDF 

parameter estimates are derived based solely on training data, all available information 

(i.e. all pixels in the image) are used to refine the parameter estimates. This results in 

object models which more appropriately reflect the nature of the object. Furthermore, 

the tracking scheme employed by the author uses all available segmentation information 

for a particular image in order to update the model parameters used to segment the next 

image in the sequence (as opposed to simply tracking training data to update parameters 

or using the parameter estimates of a single image). This ensure temporal coherency and 

reduces the chances of the gradual deterioration of segmentation accuracy possible with 

either tracking approach of Chalom and Bove.

The supervised segmentation techniques described in this chapter are quite different in 

nature. The approach of Steudel and Glesner and the morphological approach are 

region-based whilst that of Chalom and Bove is object-based. In chapter eight, two 

supervised region-based schemes investigated by the author, which incorporate the user 

interaction approach of Chalom and Bove, are presented. The development of these
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schemes is necessary as they form the basis of the author’s modified and enhanced 

version of the scheme of Chalom and Bove, presented in chapter nine.
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7. M A X IM UM  LIKELIH O O D E ST IM A TIO N  AND

MIXTURE DENSITIES

7.1 Introduction

A commonly encountered task in the field of signal processing is the estimation of the 

parameters of a probability distribution function (PDF). This amounts to inferring the 

values of unknown or random quantities from a set of observations which are random 

variables. For example, consider using a set of observations drawn from a distribution of 

unknown mean in order to estimate the value of the mean. Alternatively, consider the 

task of estimating the parameters of a signal, the observations on which are corrupted by 

noise. These two examples are representative of two different classes of estimation 

problems known as parameter estimation and random variable estimation, respectively

[34]. In this chapter, the parameter estimation problem is examined. A parameter 

estimation technique known as Maximum Likelihood (ML) estimation is introduced and 

an illustrative example of its use is presented. ML estimation of mixtures of PDFs is 

then presented, again with an example. A particular technique for obtaining ML 

estimates of mixture parameters in the presence of incomplete data, known as the 

Expectation-Maximisation (EM) algorithm, is then explained. The use of the EM 

algorithm in video segmentation (both supervised and unsupervised) is described, and 

its promising performance when used in this context is discussed. The mathematical 

techniques described in this chapter are basis of the supervised segmentation approach 

of Chalom and Bove, described in the previous chapter. Consequently, these techniques 

also form the basis of the author’s further investigations detailed in chapters eight and 

nine: they are used in one of the region-based schemes of chapter eight, and the object- 

based scheme of chapter nine.

The examples of parameter estimation presented in this chapter (see section 7.2.1 and 

7.3.1) were derived by the author and consider only multivariate Gaussian PDFs. 

Appendix A contains a derivation required by these examples, as well as some simpler 

examples considering only univariate Gaussian PDFs. It should be noted that whilst
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these examples are intended to be illustrative in nature in the context of this chapter, 

these derivations are used directly in the segmentation techniques described in the 

following chapters.

7.2 Maximum Likelihood Estimation

Let x be data observed from a distribution X  with PDF p{x\0) which is completely

defined by the parameter set 9 = ... 9m]7 . Suppose that N  observations, xx,..., xN , are

made on the outcomes of the random variables X x, . . . ,X N. Further, assume that Xi is 

independent of X , for all i ^  j . The objective of ML estimation is to obtain an estimate 

of the parameters defining the PDF based on these observations. The approach taken is 

to view the PDF as a function of 9 , for fixed values of the observations [34]. The ML 

estimate, denoted O™1 , is then that value of 9 which makes the given values of the 

observations the most likely.

The PDF when viewed as a function of 9 for fixed values of xl, . . . ,x N is known as the

likelihood function, lx(9) = lx(d\xx, . . . ,x N ĵ = p (xx, . . . ,x N\d} . The ML estimate is the 

value of 9 which maximises this function:

O1̂  = argm ax/^#) Equation 7-1
e

Since it is the maximising value (i.e. the argument) which is important and not the 

maximum value itself, constants or terms which do not depend on 9 in the likelihood 

function are often suppressed or ignored. Furthermore, very often it is more convenient 

to maximise the log likelihood function, Lx{9) = log /v (6*J:

9ML = arg max Lx (9) Equation 7-2
e

This is equivalent to maximising the likelihood function, since the logarithm is a 

monotonic function.

A necessary (but not sufficient) condition to maximise the (log) likelihood function is 

for the gradient to vanish at the ML value of 9 [35]:
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v , ( 4

where =
<ai

¿?
¿KL

Equation 7-3

It should be noted that when the observations are independent, the joint PDF of the 

observations can be written as the product of the individual PDF of each observation i.e. 

p (xx,---,xN\&) = p (x}\0y ■ -p(xN\0) . In this way, the ML estimate can be written as:

6 = argmaxlog
e M

: arg max
e

¿ l o g  p(xj\0)
7=1

Equation 7-4

7.2.1 ML Estimation of a M ultivariate Gaussian PDF

In this section, as an example of ML estimation, the parameters of a multivariate 

Gaussian distribution are estimated. In this case, the PDF of the random vector takes the 

form:

1
p(x\0) = T exp

( 2kY\B2\.

which is completely defined by the parameters 0 = [6j <5,]7, where 9X = mx is the mean

vector, 02 = A is the covariance matrix of the distribution, and k is the dimension of the 

random vector. For the purposes of the following derivations, it is assumed that the 

individual components of the random vector are independent. The log likelihood 

function can be written (assuming independent observations of the vector):

4 (0 )  = £  -  f  log(2*) -  | lo g |3 | -  |(X j -  q y t ç ' l x ,  -  3)

To obtain 0, :

J j -  Z  -  T k,8 f 2 ' ' ] -  5 lo g l^! I - \ ( X J -  9\ ) ’ ( * /  -  )

i = i

= 0

(see Appendix A for the exact details of this last step)
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(since 6̂  = (0̂ )' when the components of the random vector are independent)

£ [ < * , - s ) ] = o
j=i

N

Equation 7-5

In order to calculate Q ‘̂\  it is first noted that because the individual components of the 

random vector are independent, 02 can be written as:

0

02 =

<T,

0 07

which in turn means:

k  ̂ 1\°i\= n  °>2and (xj -  ey°? (xj -  &\)= Z(*A -  y -r
M /=1 2̂,

where x h is the /'''component of x t , £?l( is the Vhcomponent of <?,, and 02 =  erf is the 

/'* variance of 02. Thus, the log likelihood function can be written as:

4 (0 )=  I  
>1

- 1  log(2ar) -  log 01: -  i  2  (*j, -  )’ J
z /=1 * /=! «2,

It is sufficient to maximise this function for any 02(, and the result holds for all 

1 = 1 . .k  .

To obtain 6̂ :

39,2, j - 1
• * log(2/r) -  i  £  log ft, -  i  X  (xA -  f t,) ' J  -

I
./=!

2  /=i tk 2

- + - ( * ,  )24 -  
26» 2 A *' #

=  0

J
= 0

y=i
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= O /2)'hiL = T7 2  (x /, _6i,) 2 Equation 7-6
jv /=1

From Equation 7-5 and Equation 7-6 above, it is clearly seen that the ML estimates of 

the parameters of a multivariate Gaussian PDF, based on a number o f samples and 

assuming independence of random vector components, are simply the sample 

multivariate means and variances. This result is used in chapter eight to calculate initial 

estimates of the parameters of the PDFs used to model region types in the region-based 

EM segmentation approach (see section 8.4.2). It is also used to calculate initial 

estimates of the parameters of each mode of the multimodal PDFs used to model objects 

in chapter nine (see section 9.3.3).

7.3 Maximum Likelihood Estimation of Mixture Densities

In this section, PDFs are considered which can be represented as the sum of a number of 

PDFs. These are referred to as mixture densities. Mixture densities are considered here 

because, as illustrated in chapters eight and nine, a mixture density can be used to model 

PDFs in a segmentation framework: in chapter eight the PDF of the image to be 

segmented is modelled as a mixture of the PDFs of the types of region present (see 

section 8.4.1), whereas in chapter nine, the PDF of the image to be segmented is 

modelled as a mixture of the PDFs of the objects present (which themselves are 

modelled as mixtures of PDFs of image regions - see section 9.2).

Consider a random variable X  drawn from a mixture of g  groups, G,,. . . ,  Gg , which are

g
mixed in the proportions n x, . . . ,n g where /  \n, = 1. The PDF of X  can be represented

/=i

in the finite mixture form as [36]:

g

p x (x) = n.p. (x) Equation 7-7
/=i

where p t (x) is the PDF of the i"‘ group, G ,. Very often, each PDF in the mixture is 

assumed to belong to the same parametric family. In this case, the parameters o f the 

mixture are completely defined by a parameter set 6 and the mixture density can be 

written as:
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P x ( x \0) = T J?ri P i ( x \ 0 i ) Equation 7-8
/=!

where p ,(x |^  )is  the PDF of group G ,, which is completely defined by the parameter 

vector 0r

The mixing proportion nj , can be viewed as the prior probability that X  belongs to 

group G ,. The posterior probability of X  belonging to G,., having observed l a s  x, 

denoted r(, is [36]:

From Equation 7-9, it can be seen that the posterior probability that an observation x j 

belongs to group G,. (where K{j is the prior probability that x j belongs to G, ) is given

The posterior probability is simply the result of the evaluation of the PDF in question at 

the observation value, weighted by the prior probability, and normalised by the sum of

probabilities of region-type membership in the E-Step of the EM region-based 

segmentation scheme described in chapter eight (see section 8.4.3), and also to calculate 

both posterior mode and object membership probabilities in the E-Steps of the object- 

based scheme described in chapter nine (see sections 9.3.4 and 9.3.5).

In order to obtain ML estimates of the parameters of the mixture, N  observations, 

xt,- ■ ■ ,xN, on the mixture are considered. As before, it is assumed that each observation 

is independent. The likelihood function is formed by evaluating the joint densities of the 

random variables at their observed values, conditional on posterior group membership 

probabilities [36], It is thus possible to write the log likelihood function for the mixture 

as [36]:

/=!

Equation 7-9

by:

Equation 7-10

similar calculations for all PDFs in the mixture. This result is used to calculate posterior
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g  N

4 ( « ) = E Z ^  log J Equation 7-11
i= l  j  =1

To obtain the required ML estimates for the parameters of the mixture, the log 

likelihood function is maximised as before:

v » 4 ( s ) U . = 0 Equation 7-12
e=eM-i=i j=i

Since the individual PDFs of the mixture are from the same parametric family, it is only 

necessary to solve this equation once, for 6j , which then holds for all i = l...g :

g  ]\f rÿ

Y Æ j Ti i ~ ^ ^ p { x\ e)  = 0 Equation 7-13
/=1 ./=! ffli

7.3.1 ML Estimation of Mixtures of Multivariate Gaussian PDFs

In this section, as an example of ML estimation of mixture density parameters, the 

situation whereby each PDF in the mixture is a multivariate Gaussian distribution is 

considered. In this case, each PDF can be written as:

P i(* j\ ei )  = '— \— r exP - 1 ( x j  ~ ) \ ' ( x j  ~  \ )
(2ny 9

9, 9 ,where 9, = m, is the mean3 'l 1which is completely defined by the parameters ty = 

vector of group G,., 9t = A,, is the covariance matrix of G,, and k is the dimension of

random vector X . As before it is assumed that the components of the random vector 

X  are independent. Equation 7-13 thus becomes:

i i
log(2>r) -  -  log 9h -  ~  (xj - 9 h) r 9r' (Xj -  6». ) =  0

To obtain 9ML :

^  d

Mu
~  |  log(2ff) -  | lo g |eh | - 1  (Xj -9,. y  9rl (Xj -  6J. ) = 0

7=1 L  * L
= 0

(see Appendix A for the exact details of this last step)

87



h  i

(since 6j~1 = j when the components of the random vector are independent)

Z v . / - 3 , 2 ^ 7 = °
7=1 H

Z v ’i
N

Z
Equation 7-14

Since the components of the random vector are assumed to be independent, 6, can be 

written as:

0

3 ='i

<rr

0

which in turn means that:

A

3 . | = I K  “ ><* - 1% (*, -  % ) = £  <*/, -  )2 ^/=i /=i/=i

.2where 9  ̂ = cr. is the /"variance of group G ,, is the / component of 0: , and a h is 

the l"' component of jc . Equation 7-13 can then be written:

- 1  log (2 ff) -  ^  X  l o g ^  -  j  X  ( x , . -  9h))
*

2£z /=! ft
= 0

It is sufficient to solve this equation for any 9t , and the result holds for all l = \ . . . k , 

and all i = 1.. .g .

To obtain 9. '"':'n

A
■ £  log(2;r) -  i 2  logfl -  ̂  D  (x, -  a f

2 £
= 0

N
1 -  va 1

2<9 2
+ —(x, -6> ) —r'■> v h 'i; ’ Q-

'ii
= 0
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=>E^k-(^-^)2]=0
7 = 1

- ^ ) 2 = 0
./=! 7=1

0.ML -  ( a f ) ML - — -----^------------------- Equation 7-15

'  ' 2 > ,
7=1

From Equation 7-14 and Equation 7-15 above, it is clearly seen that the ML estimates of 

the parameters of the i PDF in a mixture of multivariate Gaussians, based on a number 

of samples and assuming independence of random vector components, are the weighted 

sample multivariate means and variances, where the weighting is based on the posterior 

probability with which each sample belongs to the i"' PDF (including a normalisation 

factor, i.e. the denominator of Equation 7-14 and Equation 7-15). This result is used in 

the M-Step of the region-based EM segmentation scheme described in chapter eight, 

where it is used to update the parameters of the region-type PDF models (see section 

8.4.5). It is also used to update the parameters of each mode of the multimodal PDFs 

used to model objects in the object-based segmentation scheme described in chapter 

nine (see section 9.3.5).

7.4 The Expectation-Maximisation Algorithm

The Expectation-Maximisation (EM) algorithm is a general iterative approach to 

computing ML estimates. A complete review of the development of the EM algorithm, a 

review of the relevant literature, and a very general statement of the algorithm can be 

found in [37]. The algorithm can be used when the available observations are 

incomplete or can be viewed as incomplete [35].

To illustrate this concept of incompleteness, consider the example of estimating the 

parameters of multivariate Gaussians in a mixture (section 7.3.1). If the group 

membership of each observation drawn from the mixture is known, then the ML 

estimation of parameters is straightforward. The posterior probabilities for each
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observation for each group are replaced by a group indicator vector. This is simply a 

vector containing an entry for each group, which is one if the observation belongs to a 

group, and zero otherwise. In this case, Equation 7-14 and Equation 7-15 revert to 

Equation 7-5 and Equation 7-6 respectively for each group. If  the group membership 

information is not available, Equation 7-10 indicates a method for calculating the 

posterior group membership probabilities (assuming prior probabilities) from which it is 

then possible to obtain the required group indicator vectors (i.e. zif= 1, if  tv > r,. for all

t = l . . . g , t * i ,  otherwise Zy = 0, where z/;.is the ilhcomponent o f the group indicator 

vector Zj for observation x.).  Unfortunately however, Equation 7-10 depends upon the 

unknown parameter 6), which is required to be estimated in the first place. Clearly, it is 

necessary to classify each observation drawn from the mixture to a particular group in 

order to obtain estimates of group parameters.

It may not be possible to classify every observation prior to the estimation procedure. 

For example, it may only be practical to classify a small subset o f the observations 

x ,,...,x )( ( n « N ) ,  with the observations xn+],. . . ,x N remaining unclassified. The 

classified observations are normally referred to as training data [36]. It is required, 

however, to use both the training data (corresponding to the n observations and their 

group assignments) and the remaining observations in the estimation process. This is 

desirable if  it is required to use a very rich data set in order to obtain parameter 

estimates (see the difference between the author’s use of the EM algorithm, and that of 

Chalom and Bove outlined in section 7.5), or in order to update the estimated 

parameters as new observations (whose classification is unknown) become available in 

the future.

Formally, the training data is denoted t = where y j - [ x j , z \  which

contains both the observations themselves, x j , and the group indicator vectors, z j ,

j  = \...n  [36]. The unknown data is denoted as tu = (x(1+l. . ,xA, ) . Such a formulation of 

the estimation problem is considered to consist of incomplete data, as the group 

indicator vectors zn+l, . . . ,zN are missing.
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Parameter estimation on the basis of both classified and unclassified observations can be 

carried out via ML estimation of the parameters of the mixture density:

g
p x (x\x¥)  = Y Jx ipM °i')

i = 1

where 'P = \jz denotes the vector of all unknown parameters. The log likelihood 

function for ¥  formed by t , tu can be written as [36]:

g n
LCV) = £ £ * / ,  ^ ¿ n ipi{xJ\a^\+  £  l o g /? * (* ,. |*F)

/ = i . / = i . / = « + 1

As explained in the previous section, the ML estimate is obtained by calculating the 

value of ¥  at which the gradient vanishes, i.e. = 0. The complete data

for this formulation of the estimation problem is taken as t , tu and the unknown 

Zj, j  = n + 1... N  . In this case the log likelihood function can be written as [3 6]:

Lc 0*0 = £  £  zy log Pi (Xj\q) + £  £  Zjj log
i= 1 j = \  /=1 /=1

The EM algorithm operates by considering the unknown group indicator vectors as 

missing data. The first step, known as the Expectation Step (E-Step), is the calculation 

of the expectation of the entire log likelihood function, conditioned on the observed data 

and using an initial estimate T 0 for the required parameters:

t/('P ,'F°) = JB{zc (T )|/,i„ ,'P0}

This corresponds to simply replacing each unobserved group indicator with its expected 

value conditional on x f , i.e. e Iz.j jc; ,XF01 [36]. In other words, z,y is replaced with the 

initial estimate of the posterior probability that the observation x . belongs to group i . 

This is another way of stating Equation 7-10 given that an initial value of the required 

parameter 0i and initial prior probabilities are assumed.

The second step of the EM algorithm, known as the Maximisation Step (M-Step), 

consists of obtaining that value of 0  which maximises u [ xi J, x¥ ° ) . This is equivalent to 

solving Equation 7-13, using the posterior probabilities calculated using Equation 7-10. 

Very often, a closed form solution exists for this, making the EM algorithm a practical
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approach. Consider Equation 7-14 and Equation 7-15, for example, which are the 

required closed form solutions in the case of mixtures of multivariate Gaussian 

distributions.

The E-Step and M-Step are iterated and the obtained estimates of each iteration (both 

parameter estimates and group membership probabilities) become the initial estimates 

for the next iteration. The EM algorithm is stated and the entire process illustrated

graphically in Figure 7.1.

• Choose an initial estimate ^F0 , consisting of initial parameter 
estimates 6'°, and an initial set of membership probabilities
n ii, i  = \ . . . g , j  = \ . . . N

• For k  = 0,1,2,...
E-Step
Compute U ( x¥ , ' ¥ k) = £ {zc0F)|i,

i.e. Tï = g for all X j , j  = I . . . N  and

i=i
forali i = \ . . . g

M-Step
Calculate XFA+1 such that lPA+1 = argmax£7(lF ,vF/c)

s n ^  r
i.e. solve r  l o g p f a j t y )

/=1 ./=!
= 0

set ^ +1 = T-j for all j  = I . . . N and for all i = \ . . . g  

set 6f+1 = 0- for all i = l . . . g

Figure 7.1 - The EM Algorithm

The EM algorithm ensures that the likelihood function for the incomplete data cannot be 

decreased from one iteration to the next, thereby guaranteeing convergence [36], 

Convergence is obtained when the calculated estimates remain the same from one
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iteration to the next (or at least when the difference between these, calculated using a 

suitable distance metric, is sufficiently small). More information on the convergence of 

the EM algorithm, as well as proof of this convergence can be found in [35], After the 

EM algorithm has converged, the result is a final ML estimate of the parameters of the 

mixture, and a final set of posterior group membership probabilities for all

observations used in the estimation process, t™al, i = l . . . g , j  = l . . . N .  The latter is a 

very useful by-product of the EM algorithm as these probabilities may be used in a 

subsequent classification process (e.g. deriving group membership information for the 

unclassified observations).

7.5 Applications and Discussion

The EM algorithm has been successfully applied in a wide variety of signal processing 

applications. For example, Moon in [35] outlines the use of the EM algorithm for an 

Emission Tomography (ET) application as well as an Active Noise Cancellation (ANC) 

application. In [38], Feder and Weinstein describe in detail the estimation of the 

parameters of a number of superimposed signals (in the presence of additive noise) 

using the EM algorithm. In this section, the discussion is limited to video segmentation 

applications of the EM algorithm.

As stated in the previous section, the EM algorithm is suited to estimation problems in 

the presence of incomplete data. Video segmentation can be considered an incomplete 

data problem. Video segmentation consists of classifying each pixel in an image to one 

of a number of available groups based on underlying models for the groups. The more 

accurately the models reflect the groups, the more accurate the segmentation. 

Unfortunately, it is impossible to accurately estimate the parameters of these groups 

without knowing the classification18.

Consider the case of unsupervised segmentation. The motion in a scene often consists of 

very different types of motion corresponding to camera/background motion, object 

motion, and even multiple motions within an object. The motion cannot be described by 

a single model, but rather as a mixture of a multiple different motion models. In order to

18 This is the “chicken and egg” problem referred to by Alatan et al in [29].
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obtain good estimates of the parameters of these models the pixel support for each 

model is required. The complete data in this case consists of the pixel luminance data 

(on which the motion is measured), which is observable, and the group/model 

assignment of each pixel, which is not. An example of performing unsupervised motion 

segmentation using an EM-based framework is presented by Brady and O ‘Connor in

[39]. In this approach the motions in a scene are modelled as a mixture of polynomial 

(either affine or quadratic) motion models. The overall approach has three steps 

consisting of a detection step, a tracking step and a validation step.

The tracking step of Brady and O ’Connor takes as input the previously obtained motion 

parameters and the segmentation of the previous image based on these parameters. A 

spatio-temporal EM formulation is used to segment the current image based on these 

inputs [39], Initial pixel model membership probabilities are calculated based on the 

previous segmentation (i.e. temporal constraints are employed) [39]. The E-Step 

computes posterior model membership probabilities based on the current estimates of 

motion parameters. The probability of each pixel is adjusted based on the pixels in the 

same region in a fine watershed partition of the current image (i.e. spatial constraints are 

employed) [39]. Based on these probabilities, each pixel is assigned to a particular 

model i.e. the group indicator vectors are determined as in section 7.4. The M-Step uses 

these indicator vectors to update the model parameters [39], These steps are then 

iterated until convergence. The classification obtained after convergence is a tracked 

segmentation.

The detection step of Brady and O 'Connor attempts to formulate hypotheses about the 

presence of new moving objects in the scene. Pixels within a tracked object’s 

segmentation whose motion cannot be well described using any of the available models 

are identified. These are referred to as outliers [39] (see chapters eight and nine for more 

details on outliers). A large homogeneous region of outliers indicates the possibility of a 

new moving object. A motion model hypothesis is formed for this possible new object 

and this model is allowed to compete for support with existing models using another 

EM algorithm, which is spatially constrained only [39]. The classification obtained after 

convergence of this EM algorithm is a proposed segmentation of the current image.
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The validation step of Brady and O ’Connor is used to determine which of the motion 

hypotheses is correct. A tool known as the Minimum Description Length (MDL) 

estimate is used for this [39], This estimates the cost of encoding a particular 

segmentation. The underlying philosophy is that the best segmentation and motion 

estimates will result in the most compact representation. To identify motion hypotheses 

which may be extraneous, each new motion model hypothesis is removed and the MDL 

estimate is recalculated19. If the MDL estimate decreases with the removal of a motion 

hypothesis, then the model is deemed unnecessary and is removed from the scene [39]. 

The output of this step is the final segmentation of the image.

A similar application of the EM algorithm in a supervised segmentation scheme is 

presented in the approach of Chalom and Bove [32], described in chapter six. In this 

approach, training data in the form of sets of pixels assigned to particular objects, is 

supplied by the user. The approach uses an EM algorithm in order to estimate the 

parameters of the multimodal PDFs used to model each object (see section 6.6.2). There 

is no PDF mode information associated with the training data for a particular object. 

Thus, in this case, the complete data consists of the training data for the object, which is 

observable, and the mode classification information, which is not.

Assuming initial mode membership probabilities for the pixels in the training data and 

an initial set of mode parameters, the EM algorithm can be applied to obtain refined 

mode parameters [32]. As explained in chapter six, a series of such EM algorithms, each 

with a different number of modes, is applied to determine the best number of modes that 

should be used to model the object [32], In a final step, MAP testing is used to derive 

the segmentation of the scene based on the estimated PDF parameters. The PDF of each 

object in the scene is evaluated for each pixel in the image, and the pixel is assigned to 

the object with the highest associated probability (this is analogous to a single E-Step 

followed by calculation of the group indicator vectors).

As is clear from the approach of Chalom and Bove, supervised video segmentation can 

also be formulated as an incomplete data problem in a manner similar to unsupervised 

segmentation. Whilst the author’s supervised scheme, presented in chapter nine, is based

I 9 MDL validation is also applied in the tracking step in order to eliminate objects which have disappeared.
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on the approach of Chalom and Bove, a somewhat different formulation of the EM 

algorithm is used. In this case, the complete data set consists of all pixels in the image 

and their associated classifications. In this data set, only the classifications of the 

supplied training data (i.e. the result of user interaction) are observable. The training 

data is used to calculate initial parameter estimates and initial object membership 

probabilities. The EM iteration is then applied using the complete data set (i.e. all 

initially unlabelled pixels are used to update the model parameters in the M-Step)20. As 

explained in section 7.4 and chapter nine, this results in more appropriate object models 

as a richer data set is used to derive the final model parameters.

The results presented for these EM-based approaches to video segmentation indicate the 

promising performance of each. In the case of unsupervised motion segmentation, the 

successful segmentation of a scene into a number of coherent motion regions using the 

EM algorithm is presented by Brady and O ’Connor in [39]. In the case of EM-based 

supervised approaches, the successful segmentation of a variety of semantic objects is 

presented by Chalom and Bove in [32] and by the author in chapter nine. It is clear from 

these results, and the discussion above, that formulating the segmentation problem in 

terms of parameter estimation in the presence of incomplete data, and using the EM 

algorithm as a means of solving this problem, is an elegant way of addressing the 

“chicken and egg” problem of video segmentation. As such, the EM algorithm 

constitutes a very powerful tool for the purposes of video segmentation.

20 The explanation o f the EM  algorithm in this chapter is outlined considering such an approach.
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8. TWO SUPERVISED R E G IO N -BASED  

SEG M EN TA TIO N  SCHEMES

8.1 Introduction

In this chapter, two approaches to supervised segmentation developed by the author for 

the purposes of creating arbitrarily-shaped VOPs for off-line MPEG-4 applications are 

presented. In each case, the form of user interaction found to be most promising in 

chapter six, i.e. the scribble-based approach of Chalom and Bove [32], is employed. 

Unlike the approach o f Chalom and Bove, however, the approaches presented here are 

region-based and in this respect are similar to both the morphological approach and the 

approach of Steudel and Glesner [30] described in chapter six. A semantic object in a 

scene is considered to be a collection of image regions. A user indicates the approximate 

location of these regions and an automatic segmentation algorithm then attempts to 

segment exactly these regions. Finally, the resultant region-based segmentation is used 

to create the required semantic object segmentation.

The first approach described in this chapter is based on clustering multidimensional 

image attributes. The second approach is based on the estimation techniques described 

in chapter seven, again using multiple image attributes. These two techniques are very 

closely related. In fact, the second approach is an enhanced version o f the first, which 

allows misclassifications in the segmentation process to be detected and avoided. The 

description of these approaches concentrates on their usefulness for segmenting objects 

in still images. As explained in this chapter, both approaches include limitations which 

make them unsuitable for this task. Object tracking with these approaches is feasible but 

problematic and given the poor segmentation results obtained, it is not explored here. 

Whilst the two approaches are ultimately found to be unsuitable for the task of creating 

arbitrarily-shaped VOPs, they are described here because they form the basis o f the 

author’s enhanced version of the scheme of Chalom and Bove, presented in chapter 

nine: the second approach (which itself is an enhanced version o f the first) can be 

extended using the object PDF model of Chalom and Bove to a complete object-based
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segmentation and tracking approach which outperforms that o f Chalom and Bove (see 

section 9.6.4).

Segmentation results obtained using both approaches are presented in the course o f this 

chapter. In each case, these results were obtained by simulating the segmentation 

algorithm in the ANSI C programming language. The software simulations were carried 

out under the Unix operating system on a SPARC Ultra workstation. The programs 

were developed within the software platform used to develop the implementation o f the 

MPEG-4 video encoder which was used by O ’Connor and Winder in [20], This 

software platform has proven to be flexible and portable.

8.2 Segmentation using Multiple Image Features

As explained in section 6.8, incorporating multiple information sources in a 

segmentation algorithm can produce very good results. For this reason, this approach is 

employed in both segmentation approaches described in this chapter. Multiple 

information sources are introduced to the segmentation process in exactly the same 

manner as proposed by Chalom and Bove in [32], A number offeatures are measured at 

each pixel in the image and arranged in a multidimensional feature vector for each 

pixel. The actual features used here are a subset of those used by Chalom and Bove. 

Although the results presented in this chapter are not as promising as those of Chalom 

and Bove, ultimately a subset of their features was found to produce comparable 

segmentation results (see section 9.6.4) and as such, the computational cost associated 

with the unused features (i.e. calculating optical flow and local texture features for each 

pixel) was avoided. The features used are each pixel’s luminance (7) and chrominance 

information (U  and V), and each pixel’s spatial location within the image. The latter is 

simply the pixel’s horizontal co-ordinate in the image (x) and the pixel’s vertical co­

ordinate in the image (y). The concept of a feature vector for a pixel is illustrated 

graphically in Figure 8.1.
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8.3 Segmentation via Clustering

Clustering is a technique which can be used to segment an image into a number of 

regions, each of which exhibit a measure of homogeneity according to a chosen 

criterion. In the case of the segmentation approach described here, the homogeneity 

criterion is defined by the choice of features in the feature vector. The features chosen 

attempt to ensure image regions homogeneous in terms of colour and spatial location. 

The entire set of feature vectors for the image to be segmented constitutes a 

multidimensional feature space. The objective is to look for clusters in this feature 

space. A cluster is a grouping of vectors which are considered “similar” according to an 

appropriate measure of similarity. Usually this similarity measure is defined as the 

proximity of vectors in the feature space according to a suitable distance metric. Each 

cluster has a representative vector associated with it, termed a cluster centre (or 

centroid). Iterative approaches are employed to detect and calculate these cluster 

centres. Implicit in this iterative procedure is the classification of each feature vector 

(and hence pixel) to one of the available cluster centres, thereby obtaining a 

segmentation of the image.

The main difficulty in clustering is the initial choice of cluster centres in order to start 

the iterative process21 [40], The segmentation approach described in this chapter avoids 

this difficulty by introducing user interaction. The user interaction informs the 

automatic clustering process of the number of required cluster centres, and allows the 

calculation of initial estimates of these centres. After the clustering iteration has 

terminated, the result is a region-based segmentation of the image. In order to obtain a 

semantic object segmentation, subsequent user interaction is required. A graphical

• - Pixel position in image

Figure 8.1 - A multi-dimensional feature vector

21 This is equivalent to the problem of extracting semantic meaning faced by any automatic segmentation technique.
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overview of the entire segmentation process is presented in Figure 8.2. In the following 

discussion, the algorithmic details of the various processing steps are explained and the 

results obtained using this technique are presented.

Figure 8.2 - A supervised clustering scheme for object segmentation

8.3.1 Image Segmentation via Clustering: An overview

Clustering in its simplest form can be explained by considering a set of samples 

F  = | / t... f N ] ,  each of which is to be classified to one of K  available classes (c,... cK j . 

This classification can be represented by a set of class labels C(,,) (since an iterative 

procedure is used, C(w) is used to denote the classification at the n"' iteration). This set 

has an entry for each sample, and each entry is one of the available class labels. It is

assumed that a suitable error function exists which measures the optimality

of the classification.

The clustering procedure starts by choosing an initial classification, C(0). This 

classification is then iteratively modified so that the value of e {f ,C(-")) decreases from 

one iteration to the next. In this way, the process converges on the optimum value of 

e (kF ,C (-"'>) . The iteration stops when the classification does not change from one 

iteration to the next, or in other words, when it is impossible to further reduce

e (f ,c {"}).

In the segmentation approach described here, the set of samples F = \ f  \... f N} 

corresponds to the feature space (where N  is the number of pixels in the image), the set
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of classes {c,. . .cK] corresponds to a set of region labels (where K is the number of

labels), and the classification C(,,) to a segmentation of the image. The initial 

classification required to start the iteration is obtained via user interaction.

Using the Euclidean distance as the measure of similarity between feature vectors, the 

function E^F,C(f,)J can be defined as:

e (f ,C("]) = Yu Equation 8-1
*=1 /, 6Ck

where the second summation is performed over all samples classified to the k"' cluster, 

and n k is the k lh cluster centre. It can be shown, that for a fixed set of samples and a 

fixed set of class assignments, EyF,C(n)} is minimised by choosing jLik as the mean of

the k lh cluster [40]. In this case, the clustering process is known as /T-Means clustering

[40] and the algorithm can be compactly described as follows: (i) an initial classification 

is chosen, (ii) the mean of each cluster is computed, (iii) each sample is reassigned to 

the cluster with the closest mean, (iv) if the classification of samples has not changed, 

the iteration is terminated, otherwise it starts again from step (ii).

8.3.2 Feature Extraction

The first step of the segmentation process is to build the feature space F  for the image 

to be segmented IYUV . Calculating luminance and spatial location features for each pixel 

is a trivial task, as it simply corresponds to extracting each pixel’s grey-level value and 

co-ordinates within the image. Since the 4:2:0 format for progressive video is used, the 

resolution of the chrominance components is half that of the luminance components. 

The chrominance components are therefore bi linearly interpolated to the same 

resolution as the luminance component in order to obtain chrominance features for 

every pixel.

The values of the different features can have different dynamic ranges. A feature which 

exhibits larger characteristic values in the distance calculation will tend to dominate the 

clustering process. In this scheme, it is desired to allow each feature to contribute 

equally to the clustering process so that the resultant regions in the segmentation are
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indeed homogeneous in terms of the chosen features. The features are therefore 

normalised so that their values are bounded by the range [0,1]. Special consideration 

must be given to the spatial location features. Even when normalised, these features tend 

to dominate the distance calculation, and their values are therefore down-weighted by a 

factor of ten before normalisation. This down-weighting value was chosen based on 

experimental results. The clustering process was successively applied to a number of 

test images with down-weighting factors ranging from one to twenty. A factor of ten 

produced the most accurate segmentations (both in terms of region-based segmentations 

and the resultant object segmentations), for the largest number of test images. Using 

other factors, particularly at the extremes of the investigated scale, produced region- 

based segmentations which were not at all homogeneous, or alternatively, 

segmentations which were simply a tessellation of the x-/y-plane (thus making it 

impossible to extract the required semantic object). The factor ten seemed a good 

compromise between allowing some spatial homogeneity whilst avoiding a spatial 

tessellation.

8.3.3 Initial User Interaction

User interaction for the clustering segmentation technique follows the mouse drag 

approach of Chalom and Bove [32], albeit in a slightly different manner due to the fact 

that this approach is region-based, and indeed a specific type of region-based approach 

(whilst that of Chalom and Bove is object-based). When clustering is applied to image 

segmentation, a one-to-one mapping between cluster centres and image regions is not 

guaranteed (see section 8.3.7). A particular cluster centre can map to multiple image 

regions which are spatially disjoint but which exhibit the same type of homogeneity. For 

this reason, user interaction consists of labelling certain types of regions and 

disconnected scribbles of the same label are allowed. Interaction proceeds by allowing 

the user to scribble on the original colour image and thereby label types of image 

regions which are required in the final segmentation. The output of this user interaction 

is an initial segmentation. This initial segmentation Ireg is very sparse, as it simply 

consists of the labelled scribbles with all other pixels in the image considered as 

unlabelled. Clearly, the number of differently labelled scribbles in l mg gives the 

number of required cluster centres K .
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Given the initial segmentation, which corresponds to an initial classification for the 

clustering process, it is possible to calculate initial estimates of the cluster centres. The 

initial segmentation defines an initial labelling of the feature space. However, only 

feature vectors corresponding to pixels coincident with a scribble have a label at this 

time. The set of feature vectors for each set of similarly labelled scribbles is used to 

calculate an estimate for the associated cluster centre. The k'h cluster centre, 

corresponding to the k'h label in the initial sparse segmentation, is calculated as the 

mean feature vector of this set:

8.3.4 Clustering Initialisation

« Ji k

where nk is the number of pixels in the set of similarly labelled feature vectors ck .

8.3.5 Clustering Iteration

The clustering iteration starts by assigning each unlabelled feature vector to one of the 

cluster centres. Assignment is based on the Euclidean distance metric, which can be 

calculated between two feature vectors f] and / .  as:

the process is repeated. Each new classification of the feature space constitutes a 

segmentation of the scene. The iteration is terminated either when the optimality of the 

classification (calculated using Equation 8-1) or the actual segmentation itself does not 

change from one iteration to the next (these two conditions are equivalent).

8.3.6 Subsequent User Interaction

The result of the clustering process is a region-based segmentation of the image I  . 

However, it is a special case of a region-based segmentation. There are only as many

Equation 8-2

Equation 8-3

Each unlabelled feature vector is assigned to the closest cluster centre under Equation 8- 

3. Given this new classification, the cluster centres are updated using Equation 8-2 and
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labels in this segmentation as were specified by the user, and very often spatially 

disjoint regions have the same label. For the purposes of generating a semantic object 

segmentation, it is necessary to treat each of these regions as independent entities. In 

other words, object segmentation takes place at the region level and not the cluster level.

As explained in chapter six, in order to build an object from a region-based 

segmentation, subsequent user interaction is required on the result of the automatic 

segmentation process in order to indicate which regions compose the object. This is 

achieved in this segmentation approach by a mouse drag over the region-based 

segmentation indicating regions in the required semantic object segmentation. All the 

pixels of any region coincident with a mouse drag are included in the object 

segmentation.

8.3.7 Results

Segmentation results for this scheme were generated using three test images, each of 

which was selected from an MPEG-4 test sequence. The sequences used were QCIF 

versions of Foreman, Mother and Daughter, and Weather and in each case the initial 

image in the sequence was chosen in order to generate results. The supplied user 

interaction overlaid on the original image in each case is illustrated in Figure 8.3. The 

initial sparse segmentations defined by this user interaction are illustrated in Figure 8.4 

as images in which the colour white indicates the unlabelled pixels in the image. The 

number beside a scribble in these images indicates the label of the associated region 

type. The segmentations obtained by the clustering process in each case are illustrated in 

Figure 8.5. In these images, each grey level indicates a different region type label.

(a) Foreman test image (b) M other and Daughter test image (c) W eather test image

Figure 8.3 - User interaction for supervised clustering process
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(a) Foreman test image (b) Mother and Daughter test (c) W eather test image
image

Figure 8.4 - Sparse segmentations defined by Figure 8.3

(a) Foreman test image (b) Mother and Daughter test image (c) W eather test image

Figure 8.5 - Segmentation results obtained using the supervised clustering process

The approach produces a region-based segmentation of a scene in terms of 

homogeneous colour regions. This is due to the consideration of both luminance and 

chrominance information in the segmentation process. The advantage of considering 

both these information sources in the segmentation process is illustrated in Figure 8.6(a) 

which shows the segmentation of the Foreman test image using only one information 

source, corresponding to a single luminance feature for each pixel. The result is that 

regions which can be segmented on the basis of colour information (e.g. the man’s hat 

and the background building) cannot be segmented on the basis of luminance 

information alone. This effect can be avoided by considering chrominance information, 

but only if the features used are normalised so that they contribute equally to the 

clustering process. This is illustrated in Figure 8.6(b) which depicts the segmentation 

obtained for the Foreman test image using both luminance and chrominance features but 

without normalising the feature space. The feature with the largest dynamic range (the 

luminance information in this case) contributes most to the clustering process and the 

final result is not much better than that of Figure 8.6(a).
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(a) Single information source (b) Un-normalised multiple (c) the effect o f spatial features
information sources without down-weighting

Figure 8.6 - The effect of multiple information sources in the segmentation process

The spatial location features are included in the feature vectors in an attempt to produce 

spatially homogeneous regions in the output segmentation. As stated previously, it is not 

desirable to allow these features to contribute equally to the segmentation process. 

Figure 8.6(c) shows the segmentation result obtained using all features, but when the 

spatial co-ordinates are not down-weighted as previously outlined. The spatial features 

tend to dominate the segmentation process and the result is simply a spatial tessellation 

of the image. Choosing the down-weighting factor in order to avoid this effect and yet 

allowing some contribution of spatial constraints is non-trivial. For example, choosing a 

factor of five will produce more homogeneous regions in the segmentation of the 

Mother and Daughter test image, but will have an adverse effect on the results for the 

Foreman test case. This is due to the fact that the amount of down-weighting required is 

sensitive to the nature of the scene to be segmented and the applied user interaction. The 

Mother and Daughter test image, for example, is labelled for the most part with one 

scribble per region type (see Figure 8.4(b)) because the scene is more or less a collection 

of spatially disjoint homogeneous region types. This lends itself very well to 

considering spatial constraints in the segmentation process. The Foreman test image, on 

the other hand, can be considered to consist of large numbers of similar region types 

(see Figure 8.4(a)). A strong influence of spatial constraints is not appropriate in this 

case, because the individual regions of a particular type are distributed around the 

image. The factor ten chosen for the results depicted in Figure 8.5 has proven 

empirically to be a good compromise for the three test cases.

The results presented in this section indicate the possibility of obtaining a region-based 

segmentation of colour images using a very simple segmentation process. However, it is
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clear from the results of Figure 8.5 that this approach also has a number of drawbacks 

associated with it. The most obvious drawback is the fact that if all types of region in a 

scene are not labelled (as is the case in all the test images presented here for example), 

then there exists image regions which do not have a suitable cluster centre to which to 

be assigned. The pixels of such image regions will be assigned to the “best” cluster 

centre of those available (corresponding to the closest in Euclidean distance terms) even 

though it may be a very poor choice.

The misclassification obtained is illustrated in Figure 8.5(b) and Figure 8.5(c), in which 

the original user scribbles are visible in the final segmentation. The pixels contained in a 

scribble are considered labelled prior to the segmentation process and their label cannot 

be subsequently changed. The pixels of a region which does not have an appropriate 

cluster centre available are assigned to an unsuitable centre (e.g. the contours on the 

weather map in Figure 8.5(c) are assigned to the same cluster centre as the weather 

girl’s shirt, the black vertical stripe at the left edge of the Mother and Daughter image is 

assigned to the cluster centre corresponding to the scribble on the mother’s hair). The 

cluster centre is then updated using these poorly classified pixels and the centre diverges 

away from the original estimates, to finally represent the unlabelled region type in 

which the user had (obviously) no interest! Similarly, if two region types which are in 

fact similar are labelled with different labels (e.g. the two human faces in Mother and 

Daughter), then there exists an extra unnecessary cluster centre which may not have 

many pixels assigned to it (as they have already been assigned to the other almost 

identical centre). The worst case scenario is that no pixels are assigned to this centre at 

all and it appears as a scribble in the final segmentation with the adjacent pixels 

assigned to the competing cluster centre (see Figure 8.5(b)).

A threshold on the result of the distance metric used to calculate assignment to avoid 

this misclassification is feasible. However, it is likely that this threshold would have to 

be chosen on the basis of consideration of the image to be segmented, and would very 

likely be different for each new image considered. Since one of the requirements on user 

interaction in a supervised scheme is that it be kept to a minimum, whilst being easy to 

perform (see section 6.4), it was desired to avoid such sensitivity for the techniques 

investigated here and this alternative was therefore not investigated further. Actually,
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this effect is avoided by the second region-based approach described in this chapter, 

which can at least identify unsuitable classifications.

As stated previously, in order to build a semantic object segmentation, it is necessary to 

treat each spatially disjoint region in the segmentation as a separate entity. It is not 

enough to work on the basis that certain labels make up an object, but rather on the basis 

that certain regions of certain labels make up an object. This is illustrated in Figure 

8.7(a)-(c), where the subsequent user interaction employed in order to build a semantic 

object segmentation for each of the test images is overlaid on the segmentation result. 

The resultant object segmentation (with the image data “painted” inside the object for 

visualisation purposes) is illustrated in Figure 8.7(d)-(f). Also presented is the inverse of 

the “painted object” in each case (see Figure 8.7(g)-(i))22.

From the results presented in Figure 8.7, it is clear that it is possible to obtain semantic 

object segmentations using this approach. Flowever, further drawbacks of the approach 

are evident in Figure 8.7. In each test case, significant user interaction is applied and yet 

the semantic object segmentations contain “holes” corresponding to small regions which 

are part of the object but which are not encompassed by the user interaction. This is due 

to the fact that the regions in the segmentation are not very homogenous and the overall 

segmentation appears “noisy” (i.e. large numbers of very small regions). The inclusion 

of spatial features is intended to prevent this. However, the down-weighting factor used 

is not optimal and the result is that these features have less than the desired effect in the 

segmentation process.

It is also clear that the subsequent user interaction must be performed very carefully. For 

example, two disconnected scribbles are required in the case of the Foreman test image 

in order to avoid large portions of the background being included in the object 

segmentation. Also, including required regions in the object segmentation (such as the 

man’s shoulder in the Foreman test image) can result in undesirable regions being 

included in the resultant object segmentation.

22 This method of presenting results is widely used in the field of object segmentation as it allows a more complete 
evaluation. It indicates not only image pixels which are classified to an object but also pixels which are not. In fact, 
this method has been adopted by the COST 21 Iter Simulation Subgroup in order to evaluate segmentation results.
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In summary, the segmentation results obtained with this scheme are not as accurate as 

the results obtainable with other supervised approaches, such as those described in 

chapter six. Furthermore, user interaction in this scheme meets none of the requirements 

of section 6.4, since the amount of interaction is excessive and is difficult to perform: it 

is required both before and after automatic segmentation processing, and must be 

carried out very carefully in the latter case. It is concluded that this scheme is unsuitable 

as a candidate for easily creating object segmentations with the high degree of accuracy 

required by future MPEG-4 applications.

(b) Subsequent user interaction 
overlaid on Figure 8.5(b)

(c) Subsequent user interaction 
overlaid on Figure 8.5(e)

(f) The semantic object extracted 
from Figure 8.7(c)

(e) The semantic object extracted 
from Figure 8.7(b)

(a) Subsequent user interaction 
overlaid on Figure 8.5(a)

(d) The semantic object extracted 
from Figure 8.7(a)

(g) The inverse o f Figure 8.7(d) (h) The inverse o f Figure 8.7(e) (i) The inverse o f  Figure 8.7(f)

Figure 8.7 - Semantic object segmentations using the supervised clustering process
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In this section, another supervised semantic object segmentation technique developed by 

the author is presented. The overall approach is exactly the same as that described in the 

previous section. User interaction (both initial and subsequent) is employed in exactly 

the same manner. The difference between the two segmentation schemes is the nature of 

the automatic segmentation process. The clustering approach of Figure 8.2 is replaced 

with a different automatic segmentation process. In actual fact, the new process is a 

more sophisticated version of the clustering scheme which addresses some of the 

limitations of clustering as outlined in the previous section. It produces more 

homogeneous regions in the automatically generated region-based segmentation.

As in the clustering approach, multiple information sources are considered in the 

segmentation process to produce a region-based segmentation of the input colour image. 

The exact same feature vector formulation is used for this, although this segmentation 

scheme requires that features are treated in a slightly different manner. The automatic 

segmentation process employed makes use of the ML estimation techniques described 

in chapter seven. The image to be segmented is assumed to be composed of a number of 

different types of regions. Thus, the PDF of the feature vectors of the image to be 

segmented is represented as a mixture of PDFs, where the component PDFs of this 

mixture are the PDFs of the different region types. Multivariate PDFs from the same 

parametric family are used to model the distribution of feature vectors across image 

region types. The underlying approach is to estimate the parameters of the mixture. The 

mixture model parameters are estimated using the EM algorithm, which as explained in 

chapter seven, is a robust iterative approach to obtaining ML estimates of the mixture 

parameters. A by product of this estimation procedure is a classification of each pixel to 

one of the PDFs of the mixture, thereby producing a segmentation of the original image. 

In a manner similar to the clustering scheme, the initial estimates used to start this 

iterative procedure are obtained using the sparse segmentations which are the output of 

the initial user interaction process.

The use of the EM algorithm in this context is somewhat different to that of Chalom and 

Bove in [32], Chalum and Bove use the EM algorithm (actually, a number of EM 

algorithms) to derive initial mixture parameters, whereas in the approach described here,

8.4 Segmentation via a Region-based EM Algorithm
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the EM algorithm is used to refine initial parameter estimates (and thereby obtain a 

segmentation). In the author’s approach, initial parameters are calculated using 

straightforward ML estimation. This is possible because, since the approach is region- 

based, the training data consists of feature vectors labelled to a single PDF in the 

mixture. Another difference in the use of the EM algorithm is that, in the author’s 

approach, all available observations (corresponding to all pixels/feature vectors in the 

image) are used, whilst Chalom and Bove limit the EM algorithm to the training data. 

Considering the different nature of the scheme presented here to that of Chalom and 

Bove (region-based as opposed to object-based), the effect of this difference is not 

immediately apparent. However, this is a fundamental advantage of the author’s 

extended EM-bascd approach (see chapter nine) over that of Chalom and Bove (see 

section 9.6.4).

The automatic segmentation process is illustrated graphically in Figure 8.8 and in the 

following discussion the algorithmic details of the main processing steps are explained. 

This followed by a presentation of the segmentation results obtained using this scheme.

hr
/-I.../V

The Automatic Segmentation Process

Figure 8.8 - The region-based EM segmentation algorithm
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The distribution of feature vectors across an image region type is modelled using a 

multivariate Gaussian PDF. The individual features in a feature vector are assumed to be 

independent. Whilst this may not be strictly true, the results presented indicate that this 

is a reasonable working assumption. Gaussian PDF models were chosen because as 

reported in [32] they perform well for natural images in a similar EM-based 

segmentation formulation. The number of PDFs in the mixture is indicated by the 

number of different region types in the user supplied sparse segmentation (i.e. the 

number of different region type labels).

8.4.1 Model Formulation

The PDF of the i'h region type can be written as:

p,U \o,) = -------!— r exP °H (f  - gh)
(2 ny o,

which is completely defined by the parameters 6i = 0t 0t ,where 6i = f m is the mean

feature vector of region type i , Qh
0

0 <

where cr2 is the variance of the k'h
'k

feature in region type i , and k is the dimension of the feature vector. The mixture of 

PDFs can be written as:

where g  is the number of PDFs in the mixture.

The complete feature space, F = \ f j \ , (where N  is the number of pixels in the

image) constitutes a set of independently observed samples on the mixture which can be 

used to derive the required ML estimates of model parameters. Since features are 

considered independent during ML estimation, the feature extraction process is in fact 

simpler than that used in the clustering scheme. The extracted features need not be 

normalised nor down-weighted because, since each feature is treated independently in 

the segmentation process, all features are guaranteed to contribute equally to the 

segmentation process.

112



Model initialisation is performed in two steps, both of which make use o f the user- 

supplied sparse segmentation I  . The first step consists of deriving initial estimates

for the mixture model parameters based on the training data. The feature vectors of 

pixels contained in a set of scribbles for a particular region type are taken as members of 

the training data set for that region type. ML estimates of the required parameters are 

calculated based on these samples. From Equation 7-6 it can be seen that an ML 

estimate for the mean feature vector of region type i can be easily calculated as:

= - E / j  Equation 8-4
' U ^ -

where S, is the set of feature vectors for region type i and ni is the number of feature 

vectors in this set. From Equation 7-5 it can be seen that an ML estimate o f the variance 

of the k"' feature of region type i can be calculated as:

<  = “7  X  (-4  -  f>% )2 Equation 8-5
ni fj eS,

where f m is the k'h component of f m . Parameter estimates are calculated for each PDF 

in the mixture, resulting in an initial set of mixture parameters {£}■},_, g ■

In the second step, the prior probability o f a feature vector belonging to a particular PDF 

in the mixture must be initialised. These prior probabilities are used in the EM iteration 

when refining the initial parameter estimates. They are represented with a probability 

vector Kj for each feature vector. This vector has g  components and each component is

the prior probability with which the feature vector can be assigned to a PDF in the

£
mixture (note: £ Ktj = ] , where is the prior probability that f j belongs to /"PD F).

The model membership of feature vectors in the training data set is assumed known. 

Thus, the prior probability vectors for these feature vectors contain one in the associated 

region type’s entry with zero for all other components (i.e. n n becomes the group 

indicator vector ztj for these pixels, see section 7.4). Equal prior probabilities are

8.4.2 Model Initialisation
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assigned for all models for feature vectors in the unknown (i.e. initially unlabelled) data 

set. This results in an initial set of prior probabilities for the entire image ,=1..^ .
j = \ . . . N

8.4.3 The E-Step

The expectation step of the EM algorithm consists of estimating the posterior PDF 

membership probabilities of all feature vectors conditioned on all available 

observations, and using the current estimates of the PDF parameters. The posterior 

group membership probabilities are represented in exactly the same manner as prior 

probabilities. Each feature vector has associated with it a posterior probability vector r.

probability that f j belongs to group i ). From Equation 7-10, it is clear that these 

posterior probabilities may be calculated as:

In the first iteration of the EM algorithm, the initial parameter estimates and the initial 

prior probabilities as described above, are used to calculate the first set of posterior 

probabilities. In subsequent iterations, the posterior probabilities of the previous 

iteration are used as the prior probabilities for the current iteration. Similarly, the most 

recently updated set of mixture parameters (calculated in the M-Step of the previous 

iteration, see below) are used as model parameters for the current iteration.

In addition to posterior probability estimation, the E-step contains a process known as 

outlier detection, which is vital to the performance of the overall segmentation 

algorithm. An outlier is a feature vector which cannot, with a significant degree of 

probability, be assigned to any PDF in the mixture. These outliers can be detected based 

on the result of the evaluation of each PDF at this feature vector. If the result is zero for 

all PDFs in the mixture then this feature vector is an outlier. In actual fact, outliers are 

defined as feature vectors whose probabilities are close to zero for all PDFs. Outliers are 

identified by detecting such feature vectors. An outlier decision is carried out

with an entry for each PDF in the mixture (note: ^  rn -1, where Tg is the posterior

Equation 8-6

;=i
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independently for each feature of a feature vector for a particular PDF. It is based on 

calculating the distance of the feature being tested from the PDF mean value for this 

feature, and thresholding this distance as follows: if the distance is greater than 2.5 

times the standard deviation, it is assumed that the evaluation of the PDF for this feature 

is a value very close to zero. If a feature vector contains one such feature, its 

membership probability for the entire PDF is set to zero. If a similar result is obtained 

for all PDFs in the mixture with this feature vector, then it is classed as an outlier. This 

method of outlier detection is used in the motion segmentation technique of Brady and 

O ’Connor (presented in [39]) where it proves to be quite effective. Detected outliers are 

removed from subsequent processing of the image and result in unlabelled regions in the 

final segmentation. Outlier detection and removal is necessary because otherwise these 

inappropriate feature vectors will be used when updating model parameters in the M- 

Step. This will contaminate the estimates of model parameters, cause them to diverge 

from the correct estimates, and eventually result in misclassifications.

8.4.4 Classification and Convergence Testing

Given the posterior probabilities, it is possible to derive a segmentation, I  , of the 

scene. This is achieved by classifying each feature vector (and hence it’s associated 

pixel) to a particular PDF in the mixture. The feature vector is classified to the PDF with 

the highest associated probability in the posterior probability vector (i.e. by calculating 

the group indicator vectors of all pixels in the image as outlined in section 7.4). This 

classification procedure is used to control the EM iteration. The segmentation derived 

from the current iteration of the algorithm is compared with that derived from the 

previous iteration. If no pixels have been reassigned between one iteration and the next, 

then the iteration is terminated, and the current classification is output as the region- 

based segmentation of the scene. Otherwise, the posterior probabilities are passed to the 

M-Step and the iteration continues.

8.4.5 The M-Step

The objective of the maximisation step is to calculate updated parameter estimates, 

based on the observed data and the posterior probabilities of group membership
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calculated in the E-step. From Equation 7-14, it can be seen that given the posterior 

probabilities, the updated mean feature vector of the ilh PDF can be calculated as:

N
Z V i

f  = ^   Equation 8-7

' z*
7=1

Similarly, from Equation 7-15, the variance of the k'h feature in the /"'PDF can be 

updated as:

~Nerf = —  jj------------ Equation 8-8

7=1
Assuming that the input to the M-Step is a set of posterior probabilities calculated in the

n'hiteration of the algorithm ,=i...g , the result of the above calculations is a set of
7 = 1 . . -N

mixture parameters to be used in the next iteration \dj .

8.4.6 Results

In this section, the segmentation results obtained using this scheme are presented. In 

order to compare the performance of this scheme with the clustering approach, the exact 

same test conditions are employed. The same user supplied scribbles as illustrated in 

Figure 8.3 and Figure 8.4 are used for the initial sparse segmentations. The region-based 

segmentations obtained based on this user interaction are illustrated in Figure 8.9. As 

before, the results are presented as images in which each different grey level represents 

a region type label. The white regions in these images indicate outliers in the 

segmentation process.

Figure 8.10(a) shows the segmentation result obtained for the Foreman test image with 

normalisation of the feature space. The image of Figure 8.10(b) depicts the 

segmentation result obtained using down-weighted spatial location features. The results 

obtained are identical to that of Figure 8.9(a). This to be expected considering the
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feature independence assumption incorporated into the ML estimation process. This 

result holds for all test images considered.

(a) Foreman test image (b) M other and Daughter test image (c) W eather test image

Figure 8.9 - Segmentation results obtained using the supervised EM-based process

(a) Normalised feature space (b) Down-weighted spatial
location features

Figure 8.10 - The independence of features in the EM-based process

It is clear from these results that the supervised EM-based segmentation approach 

produces much cleaner segmentations than that of the clustering approach. Regions in 

this segmentation are more homogeneous, because since outliers are considered, very 

little misclassification occurs. The resultant segmentation also reflects the user’s 

labelling of the scene. However, there are a large number of outliers present in the final 

segmentation. The nature of these outliers for each test image is illustrated in Figure 

8.11 by “painting” the actual image data onto the outlier locations.

Outliers represent image region types which were not labelled by the user during user 

interaction (e.g. in the case of Foreman, the logo in the top left of the image or the 

diagonal stripes on the building). They also very often represent region contours. This is 

due firstly to the fact that a region’s contour may not appear in the same location in both 

luminance and chrominance components, and secondly due to the fact that regions are
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modelled as Gaussian distributions which do not expect a sharp cut off at region 

boundaries. It can also be seen that some outliers represent sub-sections of region types 

which were actually marked by the user (e.g. parts of the man’s hat in Foreman, parts of 

the background wall in Mother and Daughter, and parts of the woman’s torso in 

Weather). This is because these sub-regions are in fact separate homogenous colour 

regions, even though they may not appear so to a user. For example, a shadow or strong 

illumination variation within what may be user-defined as one region type, will appear 

as an outlier region.

Foreman test image (c) W eather test image

Figure 8.11 - The nature of outliers in the EM-based process

Outliers representing image region types not indicated by the user are not undesirable in 

the final segmentation. The segmentation algorithm cannot be relied upon to correctly 

classify the pixels of such regions. In fact, an automatic classification technique for 

outliers will produce inappropriate classifications such as those which occur in the 

clustering process. This will affect the overall segmentation result in an adverse manner 

as it means that the estimates of model parameters become contaminated with 

inappropriate samples. In the case of a supervised approach, it makes sense to present 

these outliers to the user along with the segmentation result in order to obtain further 

instruction on how to treat these outliers (segmentation refinement is further discussed 

in chapter ten). Outliers corresponding to sub-regions within labelled region types, 

however, are undesirable in the final segmentation as they lead to less homogeneous 

region types in the final segmentation.

Outliers corresponding to sub-regions occur due to the sparse nature of the training data 

for each region type. A scribble consists of a small number of pixels which may not 

adequately reflect the variance of features within a region type. A method of reducing
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the number of such outliers is to automatically augment the available training data prior 

to the automatic segmentation process. This is achieved using a watershed segmentation 

of the luminance component of the original image. The watershed is calculated on a 

morphologically filtered version of the original image. An open-close filter of size 3 x 3  

is used to ensure a fine watershed partition. The augmentation proceeds by considering 

each scribble in conjunction with the watershed segmentation. All pixels of any 

watershed region, which contain at least one scribble pixel, are included in the 

associated training data set. The watershed segmentation of each test image is shown in 

Figure 8.12(a)-(c). The augmented training data sets in each case are depicted in Figure 

8.12(d)-(f). Each augmented scribble is shown as a different grey level region with the 

label of the associated scribble drawn within each region. White regions in these images 

correspond to pixels not included in the training data (refer to Figure 8.4). The 

segmentation results obtained using the augmented training data are depicted in Figure 

8.12(g)-(i) (the white regions in these images correspond to outliers).

It is important to note that the classification of training data is assumed known prior to 

the segmentation process, and thus, need not be re-estimated. However, pixels within 

the training data can be detected as outliers. This is necessary to allow for small 

misclassifications of training data (e.g. if a user’s scribble is slightly outside an image 

region, or the watershed augmentation in the luminance component results in 

chrominance information from neighbouring regions being included). It results in a 

gradual build up of outliers as the estimation process gradually converges on the most 

dominant sub-region within a labelled region-type (after all, a region type is modelled 

using a single Gaussian PDF). This gradual build up of outliers for the Mother and 

Daughter test image is illustrated in Figure 8.13, where again, the original image data 

has been “painted” onto outlier locations.

In order to make the overall segmentation process less sensitive to sub-regions within 

region types, the iteration is terminated early in order to avoid this gradual build-up of 

outliers. The iteration is stopped when only a small percentage of pixels is reassigned 

between iterations. The results depicted in Figure 8.14 show the segmentations obtained 

by stopping the iteration when only 10% of all pixels in the image are re-assigned 

between one iteration and the next (as before the outliers are presented as white
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regions). Using the augmented training data and early termination, the overall number of 

outliers is dramatically reduced, and the EM-based process results in very clean 

segmentations.

(a) Watershed segmentation 
Foreman test image

of (b) Watershed segmentation of 
Mother and Daughter test image

(c) Watershed segmentation o f 
W eather test image

(d) Augmented training data from 
Figure 8.4(a) and Figure 8 .12(a)

(e) Augm entai training data from 
Figure 8.4(b) and Figure 
8.12(b)

(f) Augmented training data from 
Figure 8.4(e) and Figure 8.12(c)

(g) Segmentation result using 
training data o f Figure 8.12(d)

result using 
training data of Figure 8.12(e)

(i) Segmentation result using 
training data o f Figure 8.12(f)

Figure 8.12 - Segmentation results after automatic augmentation of training data

The EM-based approach can be seen to perform much better than the clustering 

approach. The individual regions in the EM region-based segmentations are more 

homogeneous. There is a direct one-to-one mapping between a user scribble and a 

region-type in the final segmentation. Pixels whose misclassification would degrade the 

overall performance of the algorithm are identified and removed from further processing 

(and can optionally be presented to the user for further classification).
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(a) Outliers alter iteration if 1 (b) Outliers after iteration tt3 (c) Outliers after iteration #5

Figure 8.13 - The gradual build-up of outliers in the EM-based process

(a) Foreman test image (b) Mother and Daughter test image (c) Weather test image

Figure 8.14 - Segmentation results via early termination of the EM iteration

The improved performance of the EM-based algorithm is not surprising since this 

approach can be considered to be an improved version of the simple X-Means clustering 

approach. Both approaches attempt to classify samples between a number of competing 

groupings. In the clustering approach, this is achieved based on the distance between the 

sample and the various groupings within the feature space. This takes no account of the 

variance that normally exists within the groupings (particularly when these groupings 

correspond to image region types in natural images). The EM-based approach, on the 

other hand, takes this variance into account by using a Gaussian PDF to model region 

type PDFs. In order to update grouping parameter estimates in the clustering approach, 

it is necessary to make a “hard” classification of the available samples. In this way, the 

approach is sensitive to misclassification which will propagate over time. The EM 

approach avoids this by allowing a sample to contribute to a suitable degree to the 

parameter estimates of a number of competing groupings. Furthermore, probable 

misclassifications can be detected (via outlier detection) and removed from subsequent 

processing, in order to avoid contamination of parameter estimates. A similar
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functionality in the clustering approach would necessitate an image dependent threshold 

on the classification metric (and even this may not be sufficient).

The updated graphical representation of the complete semantic object segmentation 

algorithm, including the augmentation of the training data, is illustrated in Figure 8.15. 

In this diagram Ireg is the augmented sparse segmentation.

Figure 8.15 - A supervised EM-based scheme for object segmentation

As in the case of clustering-based segmentation, semantic object segmentations may be 

extracted from the region-based segmentation results. As before, in order to achieve 

this, it is necessary to treat each spatially disjoint region as a separate entity. Special 

consideration must also be given to outlier image regions. The subsequent user 

interaction employed to segment objects, overlaid on the results of Figure 8.14, is 

illustrated in Figure 8.16(a)-(c). All the pixels of an outlier region which contains at 

least one scribble pixel are included in the associated object segmentation. In Figure 

8.16, subsequent user scribbles are presented as white pixels, and outlier regions as 

black pixels. The objects generated based on this interaction are illustrated using the 

dual “painted object” method in Figure 8.16 (d)-(i).

It is clear that the supervised EM-based approach can be used to derive semantic object 

segmentations. When the improved segmentation performance of this approach is 

considered, these segmentations could be expected to be of higher quality than those 

produced using clustering. However, the objects generated using the EM-based 

approach can be seen to be less accurate. Object contours are inaccurate and the objects 

contain “holes”. This is a result of the way in which outliers are dealt with in the
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subsequent user interaction process. The “holes” are due to small regions of outliers not 

included in a user’s scribble. Outliers tend to constitute region contour pixels, as well as 

unlabelled region types and sub-regions within labelled region types. The entire set of 

outliers for an image can thus consist of a connected set of outlier groupings. Allowing 

user interaction to simply include an outlier region, corresponding to an image region 

contour, results in large regions of the image assigned to the wrong object.

(b) Subsequent user interaction 
overlaid on Figure 8.14(b)

(e) The semantic object extracted (f) The semantic object extracted 
from Figure 8.16(b) from Figure 8.16(c)

WEATHER 
FORECAST T"

8.16(e)
(i) The inverse o f Figure 

8.16(f)

Figure 8.16 - Semantic object segmentations using the EM-based process

This “knock-on” effect of outlier inclusion is avoided in the user interaction employed 

in Figure 8.16, by simply excluding outlier regions which cause this effect. Predictably, 

this results in less accurate object contours and missing regions in the final 

segmentation. Clearly, a more sophisticated approach to user interaction in order to deal 

with outliers is required. One possibility is to allow a user to “edit” outlier regions (e.g.
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(a) Subsequent user interaction 
overlaid on Figure 8.14(a)

(c) Subsequent user interaction 
overlaid on Figure 8 .14(c)

(d) The semantic object extracted 
from Figure 8.16(a)

(g) The inverse o f Figure 
8.16(d)



allow a user to disconnect outlier groupings into contour outliers and region outliers), 

and to treat each outlier region separately. A possible way of automating this “edit” 

functionality would be to reapply the segmentation algorithm considering only the 

detected outliers (e.g. initial user interaction on outlier regions to mark outlier region 

types, and then subsequent EM-based segmentation between these regions). However, 

considering the complex nature of this enhancement, which in addition places a further 

burden on the user, this approach was not investigated. Even in the absence of such an 

enhancement, the user interaction required of this scheme does not meet the 

requirements of section 6.4, for the same reasons as the clustering-based scheme, 

outlined in section 8.3.7. In summary, considering the excessive amount of user 

interaction required by this scheme, and the inaccurate segmentation results obtained, it 

is clear that this approach is not suitable for creating arbitrarily-shaped VOPs with the 

high degree of accuracy required by future off-line MPEG-4 applications.

8.5 Conclusions

Neither of the approaches described in this chapter fulfil the requirements on user 

interaction outlined in section 6.4. Both approaches require initial interaction prior to an 

automatic segmentation process, as well as subsequent user interaction to extract an 

object from the resultant segmentation. The nature of the initial interaction affects the 

quality of the automatically generated region-based segmentation. It is important in the 

case of the clustering approach that the user label all types of region present in the scene 

in order to obtain a region-based segmentation reflecting his/her requirements. This is 

not as critical in the case of the EM-based scheme in which unlabelled region-types will 

appear as outliers. Subsequent user interaction in both cases is not as demanding and yet 

must be performed very carefully in order to produce an accurate object segmentation. 

In the case of clustering, the user must be careful to encompass every small 

disconnected region in the segmentation which forms part of an object. Similar care 

must also be taken in the case of the EM-based segmentation. However, also included in 

this process is the burden of dealing with outliers which, as outlined in section 8.4.6, is 

not a trivial task. It is clear that even in the case of substantial initial and subsequent
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interaction23 the resultant semantic object segmentations are not as accurate as the 

results presented in [30][32][33] for the techniques described in chapter six.

The description of the two semantic object segmentation approaches described in this 

chapter restricts itself to the application of these approaches to still images. As stated in 

chapter six, it is desirable to extend such approaches so that the object can be defined in 

an initial image via user interaction, with automatic object tracking throughout a 

sequence thereafter. Since the segmentation approaches described in this chapter build 

objects in a manner similar to the morphological approach described in chapter six, a 

similar approach to object tracking could be employed.

The region-based segmentation of the clustering approach could be tracked into 

subsequent images in the sequence using the estimated cluster centres after the 

clustering iteration has terminated. These centres could be used to perform an initial 

classification of every pixel in a new image. Given this initial classification, the 

clustering iteration could take place as usual, producing a region-based segmentation of 

the new image. However, in order to automatically track the required object, it would be 

necessary to track the individual regions making up the object in the new segmentation. 

This is problematic considering the nature of the segmentations produced by the 

clustering process. The segmentations appear noisy with many small regions present. 

Establishing a correspondence between two such successive region-based segmentations 

is a difficult task considering that some regions may disappear, or change shape, or even 

be obscured by newly appearing regions.

The region-based segmentation produced by the EM-based approach could also be 

tracked in a similar manner. The PDF parameter estimates converged upon for one 

image could be used to initialise the segmentation process for the next image. In such a 

scenario, every pixel in the new image is initially unlabelled with equal prior 

probabilities of belonging to one of the available PDFs. The posterior probabilities of 

every pixel could then be computed using the PDF parameter estimates from the 

previous image. The EM iteration could then be employed in order obtain a region- 

based segmentation of the new image. Due to the homogeneous regions produced by

23 Much more than required for the techniques described in chapter six.
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this segmentation process, the region correspondence problem, which arises when re­

building object segmentations, should not be as severe as in the clustering case. 

However, as in the case of the clustering process, it would be necessary to deal with new 

regions appearing in the scene, or existing regions disappearing.

The extension of the schemes described in this chapter into the temporal domain is not 

investigated. This is because, considering the excessive amount of user interaction 

required, the resultant inaccurate segmentations obtained, and the problematic nature of 

object tracking, neither scheme is a suitable candidate for creating arbitrarily-shaped 

VOPs in an MPEG-4 application. However, as described in the next chapter, the EM- 

based scheme can be extended to a full object-based segmentation and tracking scheme. 

The extended scheme places less burden on the user and the object segmentations 

obtained for the initial image are very accurate. These segmentations also facilitate 

object tracking in a straightforward manner. Furthermore, newly appearing or 

disappearing object regions can be dealt with quite efficiently based on outlier 

processing. The method of extending the scheme is to include the object model used by 

Chalom and Bove [32]. By additionally improving the method of object tracking, the 

overall result is a modified and enhanced version of the approach of Chalom and Bove, 

which addresses the limitations of this scheme as discussed in chapter six, and results in 

improved performance.
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9. A SUPERVISED OBJECT-BASED SE G M EN TA T IO N

SCHEM E

9.1 Introduction

This chapter presents a supervised segmentation approach developed by the author for 

segmenting and tracking semantic objects in natural video sequences. Like the region- 

based approaches presented in the previous chapter, the approach consists of user 

interaction coupled to an automatic segmentation process. However, the segmentation 

process is an enhanced version of the EM-based approach of the previous chapter which 

models actual semantic objects in the scene, thereby producing an object-based 

segmentation. This object-based approach was developed due to the limitations of the 

approaches described in the previous chapter, and because an object-based approach is 

more attractive as an arbitrarily-shaped VOP creation tool for a number of reasons. 

Firstly, an object-based segmentation approach eases the burden of initial user 

interaction as it simply requires a user to mark an object and not construct an object 

based on a previous result. Secondly, subsequent user interaction for refinement (see 

chapter ten for more details on this) is also easier to perform since this interaction takes 

place at the object level, and not the more abstract region or region-type level. Finally, 

unlike region-based approaches (see section 8.5), an object-based scheme very often 

suggests a straightforward method of object tracking. The main advantages of an object- 

based scheme in terms of usability, flexibility and accuracy are described and 

demonstrated in this chapter.

The author’s approach is based on the approach of Chalom and Bove [32] which was 

found to be the most promising of the supervised segmentation approaches reviewed in 

chapter six. The same scribble-based form of user interaction is employed and the object 

PDF model of Chalom and Bove is used to extend the region-based EM segmentation 

approach of the previous chapter. The differences and new contributions are as follows. 

User interaction is extended by an easily performed extra step which allows a user to 

more completely define the nature of the models used to represent objects. This avoids
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the computationally burdensome iterative application of a number of EM algorithms 

used by Chalom and Bove for this purpose (see section 6.6.4). The watershed-based 

adjacency criterion described in the previous chapter is introduced to improve the model 

initialisation step. This addresses the limitations of the sparse training data used by 

Chalom and Bove (see section 6.6.4). Chalom and Bove use EM algorithms to perform 

model initialisation based on training data, followed by MAP hypothesis testing on the 

complete data (i.e. all available observations) as a segmentation process [32], In the 

approach presented here, a modified clustering process applied to the training data is 

used for model initialisation, followed by an EM algorithm applied to the complete data 

to iteratively refine these estimates and converge on a final segmentation. In this way, 

all pixels in the image contribute to a greater or lesser degree in the parameter 

estimation process. This rich data set for parameter estimation yields very good object 

models whilst using only a subset of the image features required by Chalom and Bove 

(corresponding to those which are the easiest to compute). Furthermore, a different 

tracking scheme to that of Chalom and Bove is employed. A simple motion model is 

employed, yet the potential errors of tracking training data are avoided since the 

author’s tracking scheme ensures robust temporal coherence between object 

segmentations, even in complicated scene types. Unlike either tracking approach of 

Chalom and Bove, the author’s approach considers phenomena such as object regions 

appearing or disappearing throughout the course of a sequence. As a result of these 

enhancements, the author’s scheme can be applied to a wider class of scene type than 

that of Chalom and Bove (who only present results for one scene type corresponding to 

a scene with a simple and static background).

The complete segmentation approach consists of two high-level steps: segmentation of 

an initial image (which requires user interaction) and automatic tracking of the 

segmented objects throughout a video sequence. These two high-level steps are 

presented in the following sections. A system overview of each step is presented, 

followed by the algorithmic details of the individual low-level processing steps. In each 

case, the segmentation results obtained are presented. In order to generate these results, 

the entire segmentation approach was simulated in the ANSI C programming language 

under the Unix operating system on a Sparc Ultra workstation. The MPEG-4 compliant

128



software development environment used to simulate the segmentation schemes of the 

previous chapter was also used here.

9.2 Object and Scene Modelling

The region-based segmentation approaches of the previous chapter consider an image to 

be composed of a number of different region types. User interaction consists of marking 

these region types via a user scribble generated by a mouse drag over each region type 

present in the scene. In the object-based approach presented here, the scene is 

considered to be a collection of different semantic objects. Clearly, the objects making 

up a scene depend on the user’s interpretation of the scene and the nature of the 

application in which the object segmentations will be used (see section 6.2). This 

semantic information is conveyed to the segmentation process via object-based user 

interaction. It should be noted that the minimum number of objects in a scene is two, 

corresponding to an object which the user wishes to segment and “everything else”. 

However, as in the approach of Chalom and Bove, multiple objects (i.e. more than two) 

can be segmented simultaneously.

Each object in the scene is considered to be composed of a number of different image 

regions or region types. This is the basis of all the approaches described in chapter six 

and also the basis of subsequent user interaction in the clustering and EM-based 

approaches of the previous chapter. As in the approach of Chalom and Bove, this 

assumption is incorporated into the method of modelling objects. Multivariate Gaussian 

PDFs modelling the distribution of luminance, chrominance and spatial features across 

image region types are shown to perform well in the previous chapter (i.e. they produce 

homogenous region-based segmentations). As such, in the scheme presented here, the 

PDFs of region-types composing an object are modelled in exactly the same manner. 

The PDF of an object is modelled as a multimodal Gaussian PDF which is simply the 

normalised sum of the independent multivariate Gaussian PDFs of the region types 

making up the object. Object modelling using multimodal PDFs is illustrated in one 

dimension in Figure 9.1 below. Figure 9.1(a) illustrates the luminance feature of each 

pixel in an object. Figure 9.1(b) illustrates how the object is composed of a number (five 

in this case) of luminance image region types. Each image region type corresponds to a 

mode in the multimodal PDF modelling the distribution of the luminance features across
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the object as depicted in Figure 9.1(c)24 (for illustration purposes the multimodal PDF is 

not normalised).

Mode 5

Mode 4  Aà--------  Mode 3
Mode 2 

Mode 1

(a) Luminance features o f an object (b) Luminance region-types making up the object

Grey L evel

(c) Multimodal Gaussian PDF o f luminance features o f the object

Figure 9.1 - A multimodal PDF for an object in one dimension (luminance)

The PDF of the image to be segmented is modelled as a mixture density of the 

individual multimodal multivariate PDFs of the objects present in the scene. An EM 

formulation is employed to obtain the parameters of the mixture and the overall 

segmentation approach is very similar to the region-based EM segmentation process of 

the previous chapter. In fact, the approach is an extension of the previous approach, 

using the object PDF model of Chalom and Bove in order to cope with objects instead 

of region types (i.e. the Gaussian PDFs for each region type in chapter eight are replaced

24 The segmentation o f the object and its segmentation into different region types as depicted in Figure 9.1 was 
generated using the author’s segmentation approach. The parameters used to plot the PDFs were those estimated by 
the segmentation process.
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with multimodal Gaussian PDFs for each object). The PDF of the image to be 

segmented can be written in finite mixture form as:

P ( f )  = Y uniP i(f\6i) Equation 9-1
/=i

where g  is the number of objects in the mixture, p . ( J |<9(.) is the PDF of the ilh object 

with M  modes, completely defined by the parameter set 0l = | ,6̂  j . . .{ o ^ , 6̂ )j . 

The parameter O' = /„ ' is the mean feature vector of the j"' mode, and

e; =
kr o

° k ) ' .

and k is the dimension of the feature vector.

, where |er2j is the variance of the k"‘ feature in mode j

9.3 Object Segmentation in the First Image

The EM algorithm is employed to converge on ML estimates of the parameters of the 

mixture and a by-product is a classification of each pixel in the image to one of the 

models (i.e. objects) in the mixture. As usual, in order to start the EM iteration, initial 

estimates of the mixture parameters and initial prior membership probabilities are 

required. As in the region-based EM approach, these are calculated on the basis of user 

interaction. The EM algorithm is applied in the same manner as in the previous chapter, 

which is different to the use of the EM algorithm by Chalom and Bove. The training 

data is used to derive initial estimates but all available data is used to refine these 

estimates (whereas Chalom and Bove limit parameter estimation to the training data). A 

graphical overview of the entire segmentation approach for the first image in a video 

sequence is presented in Figure 9.2. In the following discussion the individual 

processing steps of Figure 9.2 are explained in more detail.
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The Automatic Segmentation Proccss

Figure 9.2 - The supervised object-based EM segmentation scheme for still images 

9.3.1 User Interaction and Feature Extraction

Feature extraction takes place in exactly the same manner as for the region-based EM 

segmentation approach described in the previous chapter. Luminance, chrominance and 

spatial features are extracted from the original image 1YUV and arranged in a feature 

vector for every pixel in the image, thereby producing a feature space F .

User interaction for this approach also takes place in a manner very similar to that 

employed in the schemes described in the previous chapter (albeit with an extra step). 

Since the approach is object-based, the first step o f user interaction is to allow the user 

to mark (and thereby label) objects present in the scene which he/she would like 

segmented. In exactly the same way as performed by Chalom and Bove, this is achieved 

via a mouse drag over the input image in order to create scribbles which label objects in 

the scene. Disconnected scribbles of the same label are permitted so that the user can 

mark different parts o f the same (possibly disjoint) object (see Figure 6.3). The result is 

a sparse segmentation of the image 7„/y consisting simply of the labelled scribble 

pixels with all other pixels unlabelled. The number of different scribble labels in is 

the number o f objects to be segmented g . Theoretically there is no limit on the allowed 

number o f objects. The feature vectors o f pixels contained in a set o f similarly labelled



scribbles constitute the training data for the associated object, which is used to initialise 

mixture parameters.

The second step of the user interaction process, which extends the user interaction 

process of Chalom and Bove, is to allow the user to specify the number of modes for 

each object. This corresponds to the user deciding how many region types are contained 

in an object and inputting this information into the segmentation algorithm. This may be 

difficult, particularly given that illumination variations and small colour changes may 

appear to the segmentation process as different region types within what a user may 

subjectively term one region type (see section 8.4.6). However, it is only necessary for 

the user to specify an approximation of the number of modes. The segmentation 

algorithm automatically corrects this parameter to a more suitable value as it iterates. 

Normally, the number chosen by the user based on a subjective evaluation of the region 

types making up an object is an appropriate initial estimate. This number of modes 

specification step is not necessary in the approach of Chalom and Bove where this is 

estimated automatically based on the results of a number of EM algorithms, each of 

which estimates the object model parameters for a specified number of modes [32]. 

Such an automatic process could be introduced into the approach described in this 

chapter, but it is difficult to justify the extra complexity this would entail given that an 

approximate initial estimate (which can be subsequently refined) of this non-critical 

information can be obtained simply by the user specifying a single number for each 

object. Thus, whilst user interaction is extended, this extension requires very little effort 

of behalf of the user, and it is easy to perform.

9.3.2 Augmentation of Training Data

As in the EM-based approach of the previous chapter, the training data indicated by 

I ohJ is very sparse. It normally consists of a small number of pixels (in the order of 

hundreds) for each object, whereas the number of unlabelled pixels in the scene is much 

greater. For this reason, the training data is automatically augmented in the same 

manner as performed in the previous chapter. A fine watershed partition of the 

luminance image to be segmented is calculated ( Al l  the pixels (and hence 

feature vectors) of a watershed region which contains at least one scribble pixel are
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included in the training data set for the associated object. This produces an augmented 

training data set, indicated in Figure 9.2 by the less sparse segmentation I . .  . This
J  ring

augmentation constitutes a much richer data set for model initialisation than that of 

Chalom and Bove. This, in association with the user supplied number of modes, allows 

very good initial object model estimates to be derived using a smaller number of 

features for each pixel, whilst avoiding the application of a number of EM algorithms.

It should be noted, however, that this augmentation of the training data places a 

restriction on user interaction. It is imperative that when a user scribbles on an object the 

scribble is completely contained within the object’s borders. If this is not the case (e.g. 

if even one scribble pixel is outside the object), then watershed regions belonging to the 

adjacent object will be included in the training data. This may result in a mode being 

added to the object PDF for these regions, and will cause misclassifications between the 

adjacent objects in the segmentation process (see Figure 10.2). This effect is avoided in 

the EM-based approach of the previous chapter by simply detecting such training data 

as outliers, which is possible since each region is modelled by a single PDF. However, it 

is an unavoidable limitation of the approach described here. During the model 

initialisation process, the algorithm cannot identify regions which do not belong to the 

object, as this is analogous to the fundamental inability of automatic segmentation 

techniques to extract semantic meaning. However, given a relatively large object 

compared to the scene size, this restriction can easily be avoided by the user.

9.3.3 Object Model Initialisation

As in any EM-based estimation framework, model initialisation takes place in two steps: 

initial model parameter estimation and initial model membership probability estimation. 

Initial parameter estimates are calculated independently for each object. The input to the 

parameter estimation step consists of (i) the augmented sparse segmentation which 

defines an initial labelling of the feature space, (ii) the feature vectors for this labelling, 

(iii) the user-defined number of modes for each object and (iv) the watershed 

segmentation of the input image. The objective is to segment each object’s training data 

into a number of region types corresponding to the specified number of modes, thereby 

obtaining the parameters of these modes, The training data is composed of a number of
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small image regions corresponding to those watershed regions included by the 

augmentation process. Since the watershed partition is an over segmentation of the 

scene, there normally exists a larger number of watershed regions than the required 

number of modes. Initial parameter estimation proceeds by successively merging 

watershed regions within a clustering framework until the required number of region 

types (i.e. modes) are obtained. In the following two paragraphs, this initial parameter 

estimation process is outlined for a single object. It should be noted that the overall goal 

is to divide an object (more specifically its training data) into a number of different 

region types. It is possible that each region type may have more than one homogenous 

region associated with it in an object (e.g. consider a person’s arms). Thus, it is 

undesirable to spatially constrain this merging process and because of this, the spatial 

co-ordinate features are not considered in the clustering process.

Each small watershed region assigned to the object’s training data constitutes a 

clustering in the feature space. Centres for each cluster, corresponding to the mean 

feature vector, are calculated using Equation 8-2 applied to each watershed region. 

Given this large set of centres, the distance between each centre is calculated using 

Equation 8-3. The two cluster centres with the smallest distance are merged. The pixels 

of both regions are assigned the same label in the watershed segmentation and the new 

cluster centre is calculated, again using Equation 8-2. This merging process is then 

repeated until there are only as many region labels as the specified number of modes. 

These regions are taken to be the region types making up the object. Initial ML 

estimates of the PDF parameters of the j"' region type, corresponding to initial 

estimates of mode j , may be calculated according to Equation 7-5 and Equation 7-6 as:

where nj is the number of pixels in mode j  , and is the k"‘ component of .

It may happen that the number of watershed regions contained in the training data is 

actually smaller than the required number of modes. Consider, for example, a small

Equation 9-2

Equation 9-3
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object for which the user mistakenly specifies too large a parameter for the number of 

modes. In this case, the user-specified number of modes is ignored and the merging 

process is skipped. The number of modes is taken as the number of watershed regions 

making up the training data, and PDF parameters are estimated directly from these 

regions. In other words, the user-specified number of modes is a maximum allowable 

number of modes in the initial parameter estimation process. The process will choose a 

number of modes up to this value, depending on the watershed segmentation. As 

explained below, the number of modes is further automatically modified during the 

segmentation process.

The second step of model initialisation is to assign prior object membership 

probabilities to each pixel. As before (see section 8.4.2), these probabilities are 

represented by a probability vector tu, for each feature vector. The pixels contained in a

training data set for an object contain a one in the appropriate component with zero 

elsewhere (i.e. they are the group indicator vectors of section 7.4). The probabilities for 

unlabelled pixels in the image are set to be equally likely for each object. The final 

output of the model initialisation step is a set of mode parameters for each object in the

mixture \o^  and a set of prior object membership probabilities for each pixel in the
/=]...g

image, for each object .
i= i— g

9.3.4 Classification

The classification step can be considered to be the E-Step of the object-based EM 

segmentation algorithm [41][42], The goal is to estimate posterior object membership 

probabilities for each pixel in the image (i.e. the complete data set). The posterior 

probability for a single pixel and a single object is calculated by evaluating the object’s 

multimodal multivariate PDF for the associated feature vector. This produces a 

probability which is adjusted based on the prior membership probability of the pixel of 

belonging to the object, and normalised based on the sum of similarly adjusted 

probabilities for all objects in the mixture. This calculation is essentially the E-Step of 

Equation 8-6 for object PDFs, written as:
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where is the posterior probability with which pixel j  belongs to object i , nr is the 

associated prior probability, and / ', ( / / ) 61,) is the PDF of the /"'object evaluated at 

feature vector / . .

As in the E-Step of the region-based segmentation algorithm of the previous chapter, 

outliers are also detected in this step. In this segmentation process, outliers are 

considered in two separate ways. The first considers outliers between objects (termed 

naturally enough, between object outliers). These are pixels whose posterior 

membership probability is zero for every object (i.e. the denominator of Equation 9-4 

above evaluates to zero). These correspond to pixels in the image which, based on the 

training data, do not really belong to any object. These are normally pixels of region 

types contained in an image but not labelled to any object by a user’s scribble. The 

segmentation algorithm has no means of knowing to which object these outliers belong 

and they are removed from further processing as they are detected. Outliers within 

objects (termed within object outliers) are also considered. These are pixels which can 

be assigned to an object but whose mode membership is not easily ascertained. As 

described in section 9.3.5, these are detected as in the EM-based approach described in 

chapter eight.

The labelling of pixels in the training data is assumed to be known prior to the 

segmentation process. However, these pixels are still included in the entire EM process. 

This is because the objective is not simply to segment the initial image but also to track 

the segmentation thereafter. For successful tracking, a good object characterisation is 

necessary. The training data pixels are considered in order that they can be detected as 

within object outliers and new modes assigned to the object, if necessary, in order to 

obtain a more complete characterisation of the object (see section 9.3.5 below). 

However, unless they are detected as outliers, their classification will not be changed 

from the initial a priori labelling.



The result of the E-Step calculation is a set of posterior object membership probabilities 

|  Tj |  (since an iterative scheme is employed, these are the posterior probabilities of the
i= i - - g  

./'= I...JV

n'h iteration). This essentially constitutes a soft segmentation of the image, whereby 

each pixel belongs to each object with varying degrees of probabilities. A hard object- 

based segmentation is easily obtained by simply examining the posterior probabilities of 

a pixel for the objects in the mixture, and assigning the pixel to the object with the 

highest associated probability (i.e. generating the group indicator vector for each pixel 

as outlined in section 7.4). This produces an object-based segmentation of the scene I  ohj 

(see Figure 9.2). This segmentation is used to refine each object’s PDF parameters (see 

below), after which, the classification step is re-iterated. For every iteration except the 

first, the posterior probabilities calculated in the previous classification step are used as 

the prior probabilities of the current step25. Convergence of the overall algorithm is 

obtained when the segmentation between two iterations remains the same. In actual fact, 

the iteration is stopped when only a small percentage of pixels in the image (i.e. 10%, as 

in the EM-based approach of the previous chapter) are reassigned.

9.3.5 Region-based EM Segmentation

The region-based EM segmentation step is the M-Step of the object-based EM 

segmentation algorithm [41] [42], The task of this step is to update the object mode 

parameter estimates so that the classification (E-Step) can be reiterated. Each object’s 

parameters are updated independently. This is performed using the EM algorithm of 

chapter eight. In this case, rather than segmenting an image into different region types, 

the algorithm segments an object into different region types (corresponding to modes) 

and in the process, obtains updated estimates of the region type (mode) parameters. In 

other words, the algorithm of chapter eight is constrained to operate within each object’s 

partition in I obj, in order to implement the M-Step of the object-based EM algorithm. A

brief overview of the algorithm used in this context is presented in the following sub­

sections.

25 In the first iteration, the prior probabilities used are those produced by the model initialisation step.
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Region-based EM Segmentation - Model Initialisation:

The object is considered to be a mixture of Gaussian PDFs where each PDF corresponds 

to a mode. For the first iteration of the object-based algorithm (i.e. the first application 

of the region-based EM algorithm for each object), the initial estimates of the 

parameters of these PDFs are available as the output of the object model initialisation 

step. For every other iteration of the object-based EM algorithm, the initial parameters 

are the stored final parameters of the previous application of the region-based EM

algorithm ({#,}" * in Figure 9.2). For each application of the region-based EM
i=t...g

algorithm, the prior mode membership probability of each pixel in the object’s partition 

is set to be equally likely for each mode.

Region-based EM Segmentation - E-Step:

The posterior mode membership probabilities are estimated based on the current 

estimate of mode parameters, and the prior mode membership probabilities. These 

posterior probabilities can be used to obtain a mode segmentation of the object using the 

classification method of section 8.4.4, and are also used as prior mode membership 

probabilities in the next iteration of the region-based EM algorithm. The region-based 

iteration terminates with the same convergence criterion as described in section 8.4.4. 

The output is a mode-based segmentation of each object I obj d . The equation for 

calculating posterior mode membership probabilities can be written as:

where T{j is the posterior probability with which feature vector f j ( / .  e the feature

modes for this object.

Region-based EM Segmentation - Within Object Outlier Processing-.

This is an important step of the EM algorithm which is not performed in the region- 

based segmentation approach of the previous chapter. In the previous chapter, outliers 

are simply removed from the segmentation process. This is because the algorithm

Equation 9-5

vectors assigned to this object) can be classified to mode i , and M  is the number of
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cannot know to which region these pixels should be assigned and so they are presented 

to the user for further instruction. However, in the case of the region-based EM 

segmentation process described here, the algorithm knows that such outliers belong to 

the associated object. A reasonable assumption is that they belong to extra modes in the 

object not specified by the user. Within object outliers are detected in exactly the same 

manner as in section 8.4.3, and collected over the iterations of the region-based EM 

algorithm for the current object. After the region-based EM iteration has terminated, the 

collected outliers are median-filtered and homogeneous groupings are detected. The 

largest such grouping (i.e. the largest number of pixels) is selected as an extra mode. 

The multivariate mean and variances of this grouping are calculated using Equation 9-2 

and Equation 9-3, and a new mode is added to the object’s PDF. Only one mode may be 

added for each complete application of the region-based EM algorithm. In this way, the 

number of modes specified by the user for each object is adjusted automatically. Outlier 

pixels which are not included in a new mode are temporarily given the same mode label 

as the closest labelled pixel. These reappear as outliers during the next application of the 

region-based EM algorithm and thus, have the possibility to form yet another mode for 

this object.

Region-based EM Segmentation - M-Step:

Each mode’s parameters are updated using the M-Step of section 8.4.5 (i.e. using 

Equation 7-14 and Equation 7-15), except that the processing is restricted to within the 

current object’s partition in Iobj.

9.3.6 Post-processing

After the object-based EM iteration has terminated, two outputs are available. The first 

is the object-based segmentation of the image (i.e. I obj in Figure 9.2). The second is the

final mode segmentation of each object (i.e. I ohJ d in Figure 9.2). Actually, I  nhj d is a 

superset of I ohj which contains not only the object partition, but also the partition of the 

modes making up the object. There is no guarantee that adjacent pixels will be assigned 

to the same object in the segmentation process. An object’s partition in I ohJ can consist

of one or more large regions (corresponding to the actual object) and some small 

disconnected regions (corresponding to misclassifications). For this reason, the
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segmentation undergoes post-processing based on the assumption that pixels contained 

in the object are adjacent (in a region growing sense) to one of its user scribbles. The 

scribbles are overlaid on the object segmentation, and only partitions containing an 

object scribble are retained for display. The effect of post processing should be reflected 

in the mode segmentation, which is retained along with the object segmentation for 

tracking purposes. However, this is not investigated here. Thus, object 

misclassifications are tracked in the present scheme (see section 9.6.1).

9.4 Results

In this section, segmentation results obtained using the object segmentation process for 

a single image are presented. In each case, the results are generated using an image (the 

first image unless otherwise stated) from a selection of the MPEG-4 test sequences. This 

section is intended to illustrate the nature of the segmentation process, and to indicate its 

performance. The section is divided into a number of subsections in order to illustrate 

the different aspects of the scheme.

9.4.1 Illustration of the Segmentation Process

The entire segmentation process is illustrated in Figure 9.3 where a single test image, 

corresponding to the first image in the MPEG-4 Foreman test sequence, is segmented. 

Figure 9.3(a) shows the user interaction applied to the test image. This illustrates a user 

marking two objects in the scene. One object is the foreground figure of the man, 

indicated by the single white scribble, and the other is the background (i.e. everything 

else in the scene) indicated by two user scribbles of the same label (i.e. the darker 

scribbles). The training data generated for this user interaction, after automatic 

augmentation via the watershed partition, is depicted in Figure 9.3(b). The same 

watershed segmentation of the scene as illustrated in Figure 8.12 was also used here. In 

this image, the white pixels represent the training data for the foreground figure, the 

grey pixels the training data for the background object, and the black pixels are 

unlabelled.

Four modes are specified for the foreground object, corresponding to the face, hat, shirt 

and shoulders region types. Five modes are specified for the background object,
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corresponding to two modes for the background building and three modes for the part of 

the building in shadow. The segmentation of the augmented training data into these 

modes via watershed partition clustering is illustrated for each object in Figure 9.3(c) 

and (d). In these images, each different grey level within the training data indicates a 

mode of the object (black pixels indicate pixels not included in the training data). It 

should be noted that the modes reflect very closely the different types of regions 

contained within each object.

The output of the entire segmentation process before post processing (i.e. Iohj in Figure 

9.2) is illustrated in Figure 9.3(e) and (f). Each object segmentation may contain small 

disconnected regions giving the overall segmentation a noisy appearance. For example, 

a small part of the logo in the top left comer of the image, and a region in the bottom 

right of the background are classified to the foreground object. These image regions 

were not included in user interaction. The misclassification occurs because (i) they are 

similar (in terms of colour) to parts of the foreground object and (ii) they are not 

different enough from either background or foreground object to be classified as an 

outlier region. The final mode segmentation of each object (i.e. I obJ a in Figure 9.2) is 

illustrated in Figure 9.3(g) and (h). In these images, black pixels represent pixels outside 

the object segmentation and each mode is represented with a different grey level. 

Clearly, each object is accurately segmented in terms of the region types composing the 

object. This, in conjunction with the actual object segmentation, represent a good 

characterisation of each object, and are thus suitable for tracking purposes. The final 

object segmentations obtained after post processing are illustrated in Figure 9.3(i) and 

(j). Small disconnected regions assigned to each object are removed and the overall 

result is a “cleaner” segmentation.

Figure 9.4 illustrates the nature of outliers in the segmentation process. Figure 9.4(a) 

depicts the between object outliers collected over the segmentation process (these 

gradually build up as the entire segmentation algorithm iterates). In this case, there are 

only a very small number of outliers. They mostly correspond to a region type in the 

original image not included in the training data for either object (i.e. most of the logo in 

the top left corner of the image). This region type is not characterised by either object 

PDF model and these pixels cannot be classified. They are removed from the process as
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they are detected. Figure 9.4(b) and (d) illustrate the nature of within object outliers 

detected during the region-based EM segmentation process. The outliers within the 

foreground object, after the EM region-based segmentation has terminated for the first 

time, are illustrated in Figure 9.4(b) (where white pixels indicate outliers). They 

correspond to region types within the object (e.g. eyes, the brim of the man’s hat, etc.) 

which are not described by the object’s PDF model, and thus constitute new modes. The 

outliers are filtered, and the largest homogeneous region is selected for further 

processing as described above. The outlier region selected is illustrated in Figure 9.4(c) 

where the black pixels indicate outliers in this case. The outliers detected after the 

region-based EM segmentation has terminated for the second time are illustrated in 

Figure 9.4(d). The number of outliers is reduced since the object PDF model is more 

complete.

Processing of outliers is the mechanism by which the number of modes in an object’s 

PDF is automatically adjusted away from the user-specified parameter to a more 

suitable parameter, reflecting actual object content. In the case of the Foreman test 

image, for example, it may not be intuitively apparent to a user that the brim of the hat 

is a region type separate to the hat (hence it was not included in the initial list of modes). 

In fact, the extra region type present may be due to shadows or illumination variations 

within what the user perceives as a single region type (see section 8.4.6). However, in 

terms of the object PDF model, this section of the image is regarded as a separate region 

type and must be added to the PDF. In actual fact, the user-specified number of modes is 

not a critical parameter and an approximate value for this will suffice. Furthermore, a 

good object segmentation can be achieved without a very good characterisation of an 

object by its PDF model26. This is because the segmentation is derived based on models 

competing for pixel support. As long as the models are reasonably different, and reflect 

a reasonable characterisation of the object, an accurate segmentation is possible. This is 

illustrated in Figure 9.5 which depicts segmentations of the same scene with different 

number of mode parameters for each object27. The segmentation results obtained are 

comparable in terms of accuracy to those of Figure 9.3.

26 However, in general a good characterisation is necessary for tracking purposes.
27 For conciseness, the object-based segmentation is depicted as a single image with object and outlier contours 
overlaid on the original dimmed image.
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(a) User scribbles (b) Augmented training data

(c) Initial mode segmentation of 
foreground object

(d) Initial mode segmentation o f 
background object

(e) Segmentation o f foreground 
object without post processing object without post processing

mode segmentation o! 
foreground object

mode segmentation o f 
background object

(i) Final segmentation of 
foreground object

(j) Final segmentation 
background object

Figure 9.3 - Selected processing steps of the object-based segmentation process
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(a) Between object outliers (b) Within object outliers (first iteration)

(c) N ew  mode added to object (d) Within object outliers (second iteration)

Figure 9.4 - Outliers in the object-based segmentation process

(a) Foreground object: 2 modes initially 
Background object: 3 modes initially Background object: 3 modes initially

Figure 9.5 - The effect of the number of modes parameter on the 
segmentation process

9.4.2 Performance of the Segmentation Process

Segmentation results obtained by applying the segmentation approach to a number of 

test images from a selection of MPEG-4 test sequences are illustrated in Figure 9.6. In 

each test image, two objects (one foreground and one background) were selected and the 

user interaction for this is illustrated in Figure 9.6(a)(c)(e)(g) and (i). The segmentations 

of the foreground objects are depicted in Figure 9.6(b)(d)(f)(h) and (j). Very accurate 

object segmentations are obtained in each case. These segmentation results for an initial 

image are more complete than those of Chalom and Bove [32], who only present results
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for two sequences: a sequence of people dancing and the Table Tennis test sequence. In 

both these sequences the background is composed of a small number of large regions of 

distinctive colours, thereby greatly facilitating segmentation. Clearly, the author’s 

segmentation approach can be applied to a wider class of scene type (e.g. scenes with 

complicated backgrounds such as the Foreman, Weather, Mobile and Calendar, and 

Container test sequences). This is undoubtedly due to the superior object modelling 

carried out by the author: the augmentation of training data, and the use of the complete 

data in deriving estimates, yields PDFs very suitable for segmentation purposes.

9.4.3 Flexibility of the Segmentation Process

There is no limitation on the types of objects to be segmented. As illustrated in Figure 

9.6, the algorithm performs well for human objects and non-human objects. The nature 

of the object to be segmented is decided by the user. This demonstrates the flexibility of 

a supervised object-based approach, particularly when used as a means of content 

generation for off-line MPEG-4 applications as discussed in section 6.2. In fact, the 

illustrative images of Figure 6.1 were generated using the segmentation approach 

described here applied to the same image, but with different objects selected (i.e. the 

weather girl in one case and simply the weather girl’s jacket in the other).

There is also no limitation on the number of objects which can be segmented at one 

time. For example, if a scene contains three objects which the user wishes to segment, 

then each can be segmented as an object-background pair separately (as in Figure 9.6). 

Alternatively, the user may decide to segment all three objects simultaneously which 

necessitates only one application of the segmentation process to the image. Either way, 

the segmentation results are comparable in terms of accuracy. Examples of segmenting 

more than two objects simultaneously are presented in Figure 9.7. This is an advantage 

of this approach (and that of Chalom and Bove) over the approach of Steudel and 

Glesner [30][31], which is limited to segmenting a single object in an iterative fashion.
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(a) User scribbles for M other and Daughter 
(mother and daughter - 6 modes, b/g - 4 modes)

(b) Mother ¡md Daughter object

(c) User scribbles for Kids 
(child - 4 modes, b/g - 7 modes)

(d) Child object

(e) User scribbles for Weather 
(weather girl - 4 modes, b/g - 4 modes)

(1) W eather girl object

(g) User scribbles for M obile and Calendar 
(ball - 2 modes, b/g - 6 modes)

(h) Ball object

(i) U ser scribbles for Container 
(ship - 3 modes, b/g - 6 modes)

(j) Ship object

Legend: b/g =  background (i.e. everything in the scene bar the named object)

Figure 9.6 - A selection of objects segmented from various MPEG-4 test sequences
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Daughter (3 objects)
(b) Objcct-based segmentation

(c) User scribbles for Kids (3 objects)

Figure 9.7 - Multiple objects segmented simultaneously

The segmentation results presented thus far have indicated a minimum amount of user 

interaction, consisting of very simple user scribbles and inputting a single number (i.e. 

the initial number of modes) for each object. This represents much less user interaction 

than that required by the region-growing approach of Steudel and Glesner [30] and both 

approaches described in chapter eight. Even though the segmentation results are not 

pixel-accurate (e.g. missing part of the child’s face or including part of the background 

in the weather girl in Figure 9.6), they are of sufficient accuracy for many MPEG-4 

applications. Furthermore, if pixel-exact segmentations are required, then this 

segmentation approach is a first step in the process which provides the user with very 

good results for further processing. The results require a minimum of subsequent user 

interaction/editing in order to obtain pixel-exact representations (for proposals on how 

to carry out this editing see chapter ten). These results can be slightly improved by 

performing more user interaction. However, a large increase in performance in terms of 

accuracy is not noticeable. This is due to the automatic augmentation process which can 

be considered as compensation in the case of minimal user interaction. The minimal 

approach to user interaction presented here is actually desirable, since one of the
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requirements on a supervised segmentation process is to relieve a user of the tedious 

process of outlining manually every pixel on an object’s contour (see section 6.4).

The flexibility of the segmentation approach is further illustrated in Figure 9.8, where 

the object-based segmentation approach is used to generate region-based segmentations 

of two test images. In order to generate a region-based segmentation, each region type in 

the image is selected as a separate object and the number of modes for each object is set 

to one. The user scribbles used to generate the results of Figure 9.8 were those used in 

chapter eight for the same test images (see Figure 8.3 and Figure 8.4). The segmentation 

results of Figure 9.8 are actually better than those generated using the region-based EM 

segmentation approach (see Figure 8.14). This is due to within object outlier processing 

in the object-based approach, which will actually add a mode to a single region-type if 

necessary (e.g. to cope with shadows and illumination variations). Between object 

outliers are depicted in Figure 9.8 as white pixels, and there are fewer of these than in 

the results of Figure 8.14.

(a) Region-based segmentation o f (b) Region-based segmentation o f W eather
M other and Daughter

Figure 9.8 - Region-based segmentations via object-based approach

9.4.4 Failure of the Segmentation Process

The segmentation algorithm does not perform well for every test sequence. Figure 

9.9(b) depicts the segmentation result obtained when attempting to segment the person 

in the 10th image of the Hall Monitor test sequence. This result is understandable when 

the nature of the two objects to be segmented is considered. Both are very similar in 

terms of colour and thus, compete more or less equally for pixel support. To make 

matters worse, because the person is small with respect to the size of the image, it is 

difficult to draw a scribble over the person which does not subsequently include a
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background watershed region in the augmented training data. This background region is 

treated as a mode in the person object, and the result is the classification of 

neighbouring background (constrained by the spatial features) to the person. Figure 

9.9(d) indicates an even worse case of the segmentation algorithm failing to extract the 

required objects. In the case of the News test image, there is a lot of similarity between 

the selected objects. The watershed partition itself (which is derived solely from the 

luminance component) does not reflect the objects’ contours and thus (due to the 

augmentation process), the training data for each object consists partly of pixels from 

other objects in the scene. The object PDF models compete equally for support and the 

result is an inaccurate noisy segmentation.

(a) User scribbles for Hall Monitor 
person - 2 modes, b/g - 6 modes

(b) Person object

(c) User scribbles for News (d) Object-based segmentation
male - 3 modes female - 4 modes 

dancer -1  mode b/g - 5 modes

Legend: b/g = background (i.e. everything in the scene bar the named objects)

Figure 9.9 - When the object-based segmentation process fails

In summary, it is clear that given an image in which the objects to be segmented are 

very similar in terms of colour (and particularly in terms of the luminance component) it 

is difficult to obtain accurate segmentations. However, under such circumstances, many 

segmentation approaches (including those described in chapter six) will face similar 

difficulties. In many cases (in fact, in all but two of the test sequences considered) the 

supervised approach described in this chapter constitutes a very powerful segmentation
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process which is ideal for creating arbitrarily-shaped VOPs in still images. It can be 

more widely applied than the approach of Chalom and Bove (on which it is based) and 

exhibits a high degree of segmentation accuracy. In order to further improve the results, 

subsequent user interaction is necessary. This subsequent user interaction should include 

the processing of between object outliers. These should be displayed to the user after the 

segmentation process has terminated, in order that they can be assigned to an available 

object. This is considered an important area for future research. Currently, between 

object outliers are simply removed from the segmentation process. In the absence of 

subsequent user interaction, this is a reasonable approach since there are normally very 

few between object outliers, as the detection process for these is (deliberately) less strict 

than that for within object outliers.

9.5 Tracking the Segmented Objects

Given a segmentation of the initial image in terms of the required objects, the 

segmentation approach attempts to automatically track the temporal evolution of each 

object throughout the rest of the sequence. Objects are tracked by applying the object- 

based segmentation approach to each successive image, initialised with the 

segmentation results for the previous image. An extra step is incorporated prior to 

initialisation in order to account for any motion present in the video sequence. The 

overall process is illustrated in Figure 9.10 and the individual processing steps are 

described in the following discussion.

Chalom and Bove propose two techniques for tracking semantic object segmentations 

[32], The first consists simply of applying MAP testing to every pixel of each new 

image based on the object parameters estimated for the initial image. The second 

consists of tracking the training data of the first image, via motion estimation, and using 

this to initialise new object parameter estimates. As outlined in section 6.6.4, tracking 

training data points can be problematic in the case of complicated object motions. 

Furthermore, neither approach of Chalom and Bove addresses the issue of object regions 

appearing or disappearing (which should be reflected in the objects’ PDFs) due to the 

object’s or the scene’s temporal evolution. As such, neither approach is adopted as the 

basis of the author’s tracking described here. Rather, the segmentation of the initial 

image is projected into the new image to be segmented and then further refined to
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account for object regions appearing or disappearing. In this way, the tracking procedure 

described here is more robust (i.e. it can be applied successfully to a wider class of 

scene types) than that of Chalom and Bove.

Figure 9.10 - The automatic EM-based segmentation scheme for object tracking

9.5.1 Feature Extraction

The current image to be segmented is denoted IyUV in Figure 9.10, and features are 

extracted for this image in exactly the same manner as for the first image in the 

sequence.

9.5.2 Motion Estimation

The motion estimation step attempts to calculate the motion between the current image 

to be segmented, and the previous image in the sequence IyVy . A very simple motion 

estimation scheme is employed, although any motion estimation scheme which 

produces a dense motion vector field28 could be used. The actual scheme employed is 

based on the hierarchical block-matching scheme proposed by Bierling in [12], and 

employed by Alatan et al in [29]. A motion vector is estimated for every 4th pixel in the 

horizontal and vertical positions. Three hierarchical block-matching levels are used with

28 Alternatively, any motion estimation algorithm from which a dense motion vector field can be derived (e.g. via 
interpolation) can be used.
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parameters (in pixels) as specified in Table 9.1 below. In Table 9.1, “Block Size” is the 

size of the block used in the matching criteria (MAD is used for this), “Search Range” is 

the maximum horizontal and vertical displacement of this block in the search process, 

and “Step” is the step size used in the search. The result of this step is a motion vector 

for every 4 x 4  pixel block in the image. This is not really a dense motion vector field 

(DMVF), but it approximates the motion at every pixel.

Table 9.1 - Motion estimation parameters for object-based tracking process
Level 1 Level 2 Level 3

Block Size 32 16 4
Search Range 8 4 2
Step 2 2 1

9.5.3 Motion Compensation

The motion vectors calculated using the motion estimation scheme described above are 

used to compensate for the motion present between two images in the sequence. The 

object-based segmentation of the previous image and each object’s mode

segmentation are motion compensated29. This produces an initial segmentation

for each object, 1^ ' ,  and its modes / (“c d , in the current image. This information is 

used to re-initialise each object’s PDF parameters.

9.5.4 Object Model Re-initialisation

ML estimates of the parameters of each mode30 of each object are calculated based on 

the motion compensated mode segmentation using Equation 9-2 and Equation 9-3. 

Initial prior object membership probabilities are calculated on the basis of the motion 

compensated object segmentation 1 ^  . Each object partition is represented as a binary

image which undergoes mean value filtering with a large filter window (25 x 25 pixels). 

Membership probabilities are calculated for each pixel by extracting the normalised

29 in  practice, only one segmentation image ( )  needs to be motion compensated as this is essentially a
./ mode

j k —1
superset o f l nh- (i.e. it contains the object-based segmentation o f the image but also each object’s segmentation 

into modes).
30 It is possible that not all modes will appear in the motion compensated mode segmentation o f an object (e.g. a 
mode with very fast motion, or motion not approximated by the motion model). In this case, the missing mode will 
not be tracked.
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values from the filtered images. This is similar to the method of extracting temporal 

constraints used in the context-constrained EM algorithm for automatic motion 

segmentation described by Brady and O ’Connor in [39].

9.5.5 Classification and Region-based EM Segmentation

Given initial estimates of the mixture parameters, the segmentation process continues in 

almost the same manner as for the first image in the sequence. There is, however, an 

extra step in the region-based EM segmentation process, which is necessary when 

tracking objects. The extra step is necessary in order to cope with disappearing object 

regions. As an object moves, parts of it may become occluded or actually move outside 

the image. Also, the illumination effects and shadows within a region type may vary 

from one image to the next. In section 9.3.5, it is explained that in the initial image, the 

latter lead to new modes added to an object as it is segmented. Both the effect of object 

motion and the transitory nature of illumination variations imply that an object mode 

can disappear from one image to the next. This must be detected, and the object PDF 

must be modified, in order to maintain a reasonable characterisation of the object for 

future tracking. Even if a mode has disappeared from one image to the next, it will 

appear in the motion compensated mode segmentation used in model re-initialisation 

(see section 9.5.4). However, the pixels used to generate new initial estimates for this 

mode’s parameters no longer reflect a separate region-type in the object, but actually 

correspond to an existing mode which is itself also initialised (the latter is the original 

region type without shadows in the case of illumination variations). Thus, the same 

image region type may be initially represented twice in the object’s PDF. These two 

modes will compete for assignment of pixels. The probabilities of pixels of this region 

type will, over a number of iterations, gradually tend to 1 for one mode, leaving the 

other mode with all zero probabilities for these pixels. This is indicated by tu (as

calculated in Equation 9-5) evaluating to zero for all feature vectors / .  ( / .  e  the set of

pixels assigned to this object) for a particular mode i . This occurrence is detected and 

the redundant mode is removed.

When an object moves, new region types within the object may become visible in the 

scene (e.g. a hand being raised). In this way, it may become necessary to add new
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modes to the objects. This does not require an extra step in the region-based EM 

segmentation process, as it is already handled by within object outlier processing. If a 

new region of an object appears in the current image to be segmented within the object’s 

motion compensated segmentation in the previous image, then the pixels of this new 

region will be included in the re-initialisation of the object’s mode parameters. These 

pixels will then be detected as within object outliers, and a new mode will be added to 

the object to account for their appearance. Unfortunately, as illustrated in the results 

section, new object regions do not always enter the scene within the motion 

compensated previous object partition and this can cause misclassification of these new 

regions.

The final output (i.e. after convergence) of the object-based segmentation iteration I kohj,

and the final output of the region-based segmentation iteration for each object I kohj d , 

are retained in order to initialise the segmentation process in the next image to be 

segmented. As in the case of the initial image in the sequence, between object outliers 

detected during the segmentation process for each image are not considered in the 

tracking process. They are simply removed from processing. No memory of these 

outliers is maintained from one image to the next.

9.5.6 Post-processing

In order to derive the final segmentation of an image, similar post processing to that 

used for the first image in the sequence is applied to I knhj. For tracked segmentations, it 

is assumed that the segmentation of the required object is close to the segmentation of 

the object in the previous image. The previous segmentation is overlaid on the current 

segmentation and only partitions which overlap are retained. The effects of this post­

processing should be incorporated into the object mode segmentation, and thus reflected 

in the object characterisation. However, as in the case of the first image in the sequence, 

this is not investigated here.
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In this section, object tracking results are presented for a selection of MPEG-4 test 

sequences. In each case, the segmentation of the initial image used is the segmentation 

presented in the previous results section for the corresponding sequence. Object 

tracking, when the segmentation of the initial image does not perform well, is not 

investigated. If the approach cannot segment the objects in the first image based on user 

interaction, it will not be able to do this automatically in subsequent images. This is 

because (as is clear from the results presented here), the segmentation process cannot 

correct itself. It is sensitive to unsuitable initial parameter estimates. Given such 

estimates in the form of an inaccurate segmentation of the initial image, the algorithm 

will not obtain reasonably different characterisations of the objects in the second image 

and tracking results will be poor. These results will then deteriorate with every new 

image segmented, since the segmentation of each new image is initialised with the 

previous result. Results are presented here which indicate tracking performance given a 

reasonably accurate segmentation of the first image.

One hundred images (with no frame skipping) were segmented for each test sequence. 

This number of test images was chosen in order to reflect the use of the approach in an 

off-line MPEG-4 VOP creation application. Ideally, the technique should automatically 

segment every available image. In practice however, this is unlikely. One can imagine a 

scenario whereby the algorithm is used to segment a similar set of images in a sequence. 

If the scene changes substantially (e.g. objects leaving or entering: phenomena which 

are not considered by this approach), or the tracking procedure starts to fail, then the 

user would most probably stop the tracking process and re-initialise the segmentation 

process. As is demonstrated in this section, tracking throughout one hundred images in 

the case of certain test sequences is optimistic, given some limitations associated with 

the tracking process. As in the previous results section, the presented results are divided 

into subsections in order to illustrate the nature and performance of the tracking process.

9.6.1 Illustration of the Tracking Process

The re-initialisation step of the tracking process for the second image of the Foreman 

test sequence is illustrated in Figure 9.11. The motion compensated mode segmentation

9.6 Results
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is presented for each object in Figure 9.11(a) and (b). In these images, each mode is 

represented by a different grey level. Black pixels indicate pixels not classified to the 

object. The method of deriving initial prior object membership probabilities is 

illustrated in Figure 9.11(c) and (d). In these images, each object’s partition in the 

motion compensated object segmentation is represented as a binary image which 

undergoes undergo mean value filtering. These images can be considered to be 

probability images, whereby the brighter the grey level, the more probable that the 

associated pixel is a member of the object. The filtering process “blurs” the probabilities 

around the object’s boundaries (which are likely to change from one image to the next) 

whilst maintaining object membership in the centre of the object, thus enforcing 

temporal coherence. The initial object membership probabilities for each pixel are 

extracted as the normalised values (i.e. the filtered grey levels mapped into the range 

[0,1]).

The tracked foreground object prior to post-processing, is presented in Figure 9.11(e). 

As can be seen, the bottom right background region remains classified to this object in 

the second image since the results of post-processing in the initial image are not 

reflected in the object’s PDF. The final output foreground object segmentation for this 

image is presented in Figure 9.11(f). The object tracked into different images of the 

sequence is presented in Figure 9.11(g) and (h). Figure 9.11(h) illustrates the effect of 

new object regions entering the scene. The man’s hand enters the bottom right of the 

image. As it does so, it occludes an existing region for this object (the misclassified 

background region) and becomes incorporated into the object segmentation. As 

illustrated in Figure 9.13, the effects of newly appearing object regions is not always as 

fortuitous.

9.6.2 Performance of the Tracking Process

This section illustrates the tracking of a selection of the objects segmented in section 

9.4. The tracking results obtained for the Mother and Daughter test sequence 

considering two objects (corresponding to the foreground object and the background 

object) are presented in Figure 9.12. As in the Foreman case, the tracking process 

performs very well for this sequence. This is undoubtedly due to the nature of the 

objects being segmented. Objects are large compared to the image size and a good
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characterisation of each is possible. The effect of trying to segment similar (in terms of 

colour) adjacent objects is evident here. The frame of the picture in the background has 

almost the same colour characteristic as the mother’s hair. It is included (albeit spatially 

constrained, thanks to the spatial features) in some segmentations.

(c) Filtered motion compensated 
object segmentation of 

foreground object

(e) Tracked foreground object 
before post processing

(b) M otion compensated mode 
segmentation o f background 

object

(d) Filtered m otion compensated 
object segmentation of 

background object

(f) Tracked foreground object after 
post processing

(a) M otion compensated mode 
segmentation o f foreground 

object

Figure 9.11 - Illustration of the object-based tracking process

158



(a) Tracked foreground object in 
2nd image

(b) Tracked foreground object in 
40th image

(c) Trackcd foreground object 111 

60th image
(d) Tracked foreground object in 

84th image

Figure 9.12 - Tracked foreground object of Mother and Daughter test sequence

The tracked object-based segmentation of the Mother and Daughter test sequence 

considering three objects is presented in Figure 9.13. In these results, the disadvantages 

of the appearance of new object region-types are illustrated. The mother’s arm region 

appears in the scene, but as it appears it occludes the daughter object (see Figure 

9.13(c)). The pixels of the arm region type are included in the initialisation of the 

daughter object PDF parameters, and the arm region type is then classified to the 

daughter object. This limitation of the segmentation process is unavoidable. The 

algorithm cannot know how to classify appearing regions (it is the same problem faced 

by unsupervised approaches which cannot extract semantic meaning from a scene). This 

is a strong argument in favour of subsequent user interaction on segmentation results. 

Whilst the segmentation and tracking algorithm provide accurate segmentations, to 

achieve exact segmentations (based on a user’s perception of the actual objects present), 

it is necessary to edit/modify these results. This modification should include the 

possibility of assigning new regions entering the scene to a particular object. The 

advantage of the approach presented in this chapter, is that this subsequent interaction 

can be kept to a minimum (e.g. the hand is a mode which could be swapped between 

objects).
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(a) Object-based segmentation o f 
2nd image

(d) Object-based segmentation of 
84th ¡mage

Figure 9.13 - Tracked object-based segmentation of Mother and Daughter test 
sequence considering three objects

The tracked foreground object of the weather sequence is illustrated in Figure 9.14. A 

limitation of the tracking process is clearly seen in these results. The segmentation of 

the foreground object in the initial image contains parts of the background: part of the 

weather map is assigned to the girl’s hair (see Figure 9.6). This occurs because this part 

of the background is assigned to the training data of the weather girl by the 

augmentation process (the contour between the background and the girl’s hair is not 

present in the watershed partition of the image). This background region is included as a 

mode in the foreground object and contaminates the initial estimates of this object’s 

parameters in subsequent images. The result is that background pixels start to get 

assigned to the object (constrained by the spatial features). These misclassifications then 

further enforce the effect of the contamination and as the sequence progresses, the 

segmentation diverges from the required object.

(c) Object-based segmentation o f 
6 0 *  image

(b) Object-based segmentation o f 
4 0 *  image
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(a) Tracked foreground object in 
2nd image

(b) I racked foreground object in 
2 2 '’^ image

(c) Tracked foreground object in (d) Tracked foreground object in
5 0 *  image 10 0 *  image

Figure 9.14 - Tracked foreground object of Weather test sequence

The tracked object-based segmentations of the Kids sequence, considering three objects, 

(corresponding to the background and each child), are presented in Figure 9.15. This 

sequence is very challenging for the tracking process. The motion in the sequence (the 

moving ball and the children attempting to catch it) is very fast. In order to be able to 

estimate this motion, the parameters of Table 9.1 had to be adjusted for this sequence. 

The search range was doubled for the first two levels of the estimation hierarchy. The 

tracking algorithm performs very well for a short time. The flying ball is tracked in the 

first part of the sequence (Figure 9.15(a) and (b)) and is only subsequently lost when it 

reaches its destination (it falls sharply and the motion estimation algorithm fails to 

detect this, see Figure 9.15(c)). The ball, whilst tracked, receives the same label as the 

child on the right, because the ball was considered part of this object in the first image. 

When the motion of the ball is not captured by the estimation algorithm, the ball does 

not appear in the motion compensated mode segmentation of this object. Thus, the 

pixels of the ball are included in the mode initialisation process for the background 

object, and the ball is classified to the background. The ball remains classified to the 

background until it approaches the child on the left (Figure 9.15(d)), at which point it is 

classified to this child object because it is more similar to this object than to the 

background (both the ball and the child’s torso are red). As the sequence progresses, the
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algorithm has difficulty tracking the child on the right. This object initially has part of 

the background assigned to it: the black striped artefact on the right (this happens since 

the background has only one mode and the child’s hair is black). The object then 

performs very fast and complicated motion and eventually becomes spatially connected 

to this part of the background (the child’s leg touches the edge of the image). The 

motion compensated mode segmentation of the child then becomes contaminated with 

information from the real background, and the object never becomes disconnected from 

the black stripe. However, these segmentation results are very encouraging considering 

the challenging nature of this sequence.

(b) Object-based segmentation o f 
7 *  image

(a) Objcct-based segmentation o f  5“1 
image

(c) Object-based segmentation o f  I „ 
image

(d) Object-based segmentation of 
2 7 *  image

(e) Objcct-bascd segmentation of 
6 6 *  image

Figure 9.15 - Tracked object-based

100* image

segmentation of Kids test sequence

9.6.3 Failure of the Tracking Process

The failure of the tracking process to accurately segment objects in a sequence is 

illustrated in Figure 9.16. This sequence represents the worst case scenario for the
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tracking algorithm. The segmentation of the object in the first image, whilst reasonably 

accurate, contains part of the background: the “halo” effect around the ball (see Figure 

9.6(h)). Furthermore, the ball is a small object with respect to the size of the scene and 

its characterisation, which is thus based on a small number of pixels, is particularly 

susceptible to contamination of parameter estimates. To make matters worse, the ball 

moves with a rotational motion which cannot be estimated correctly with the relatively 

simple block-based motion estimation scheme employed. Furthermore, due to camera 

motion, a new region appears in the scene (the surface below the ball) and is 

misclassified to the ball object. The result is that the tracking accuracy deteriorates as 

the sequence progresses.

(c) Tracked ball object in 7 0 *  image (d) Tracked ball object in 100*  image

Figure 9.16 - Tracked ball object in the Mobile test sequence 

9.6.4 Comparison with Chalom and Bove’s Approach

As stated previously, the author’s scheme addresses the potential limitations of the 

approach of Chalom and Bove. Augmentation of training data for initial parameter 

estimation, and the use of all available information in the parameter refinement process, 

lead to very appropriate object PDF models for segmentation (using a small number of
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features) regardless of scene type. In this way, the author’s scheme can be applied to a 

wider range of scenes and objects than that of Chalom and Bove (who only present 

results for two sequences, which are similar in nature). Furthermore, using the author’s 

scheme, successful object segmentation and tracking can be achieved without the optic 

flow motion estimation procedure necessary with Chalom and Bove’s approach, whilst 

at the same time accounting for the appearance or disappearance of object regions 

throughout a sequence. The enhanced performance of the author’s scheme is illustrated 

in Figure 9.17 below, where the same publicly available test sequence as used by 

Chalom and Bove is segmented using the author’s approach.

In Figure 9.17 the Table Tennis test sequence is segmented, starting from the same 

temporal reference as reported by Chalom and Bove (see “Simulation Results” in [32]). 

Whilst the exact same user interaction could not be applied, the user scribbles drawn by 

the author in Figure 9.17(a) attempt to mimic as closely as possible those of Chalom 

and Bove. In fact, one scribble is omitted by the author, corresponding to the second 

scribble on the table in [32], This was omitted because otherwise, the augmentation 

process includes part of the background in the training data (due to the fact that the 

white stripe around the table does not appear in the watershed segmentation). However, 

this scribble is difficult to perform and is actually not necessary in the author’s approach 

in order to achieve a very accurate segmentation. The resultant object segmentations 

(presented in the same format as used by Chalom and Bove) are illustrated in Figure 

9.17(b)-(e). Comparing these results to those presented in [32], it may seem, at first 

glance, that the results are almost identical and that the author’s scheme provides little 

extra benefit. However, these results are considered superior for two reasons. Firstly, the 

author’s results are derived using a subset of the features used by Chalom and Bove, 

corresponding simply to luminance, chrominance, and spatial features (which are almost 

trivial to compute). Thus, the computationally burdensome optic flow, and local texture 

features of Chalom and Bove are not employed and yet almost the exact same highly 

accurate result is achieved. This again underlines the improved object modelling 

approach of the author. Secondly, the motion estimation scheme used by the author is 

very rudimentary (a three-step block matching approach) and yet the tracked results are 

almost exactly the same, again using a smaller subset of the features used by Chalom 

and Bove.
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Notes:
(i) number o f  modes for table =  2
(ii) number o f  modes for wall =  1
(iii) number o f modes for poster = 2
(iv) number o f modes for man =  3
(v) number o f modes for ball =  1

^  :q j

i''1

*
(b) Object-based segmentation o f  (a)

■
(c) Obj eel-based segmentation of 3rd image

(c) Object-based segmentation of I0lh image

Figure 9.17 - Segmentation results using the same test conditions as Chalom and Bove

9.7 Discussion

Overall, the performance of the author’s segmentation approach is extremely 

encouraging. For most of the test sequences considered, it is possible to accurately 

segment a variety of semantic objects in the first image of a sequence. The amount of 

user interaction required is minimal, and it is easy to perform (similar to that required by 

Chalom and Bove’s approach or the morphological approach of chapter six). The
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scheme is flexible, allowing different types of objects to be segmented (further object 

segmentations for a variety of object types using different image resolutions/formats are 

presented in Appendix B). Furthermore, the amount of subsequent interaction required 

for pixel-exact segmentations is kept to a minimum, due to the segmentation accuracy 

obtained. Thus, the scheme meets all the requirements on a supervised segmentation 

approach outlined in chapter six. It is therefore concluded that this approach is ideal for 

the purposes of creating arbitrarily-shaped VOPs for future off-line MPEG-4 

applications.

The author’s scheme is a modified and enhanced version of the approach of Chalom and 

Bove. Comparable segmentation results are obtained using only a subset of the features 

used by Chalom and Bove, corresponding to the subset easiest to compute. By a simple 

extension of user interaction in a non-critical manner, the successive application of a 

number of different EM algorithms is avoided. The problem of sparse training data is 

addressed via automatic augmentation. By using all available observations to derive 

parameter estimates, object PDF models more closely reflect the nature of the object, 

which leads to a more generic segmentation approach which can be applied to a wider 

class of scene types. The potentially problematic tracking approaches of Chalom and 

Bove are replaced by a tracking process which ensures temporal coherence, and which 

accounts for the disappearance and appearance (at least to some degree!) of object 

regions.

The limitations of the author’s approach are mainly in the tracking process. Clearly, this 

is very sensitive to contamination of parameter estimates with inappropriate data. A 

very accurate segmentation of the required object in the first image in the sequence is 

necessary for accurate tracking. This limitation could be addressed by allowing user 

interaction on the results of the segmentation process, in order to edit the object 

segmentation and obtain a more accurate result for tracking (a proposal for the exact 

form that this interaction could take is presented in the next chapter). This interaction 

can be considered to be an enhanced form of the post-processing described in this 

chapter. It is clear that the effect of post-processing on the segmentation result should be 

reflected in the object PDF models. For the post-processing described in this chapter, 

the removal of disconnected regions should also be carried out in the mode
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segmentation, and the pixels of the removed regions should be assigned to another 

object. The object to which these pixels should be assigned could be decided based on 

evaluating each object’s PDF for these pixels, and assigning them as an extra mode to 

the object with the highest probability. If no suitable object is available, then these 

pixels should be classified as between object outliers and included in the refinement 

process outlined in the next chapter. An alternative solution, is to actually incorporate 

the effect of post-processing into the segmentation process itself. In fact, this is why 

spatial co-ordinates are included in the feature vectors. The objective is to obtain 

spatially homogeneous region type segmentations, and hence, spatially homogeneous 

objects. However, it is clear that the effect of other features can override the spatial 

considerations. To avoid this, the classification process of the segmentation algorithm 

could be further spatially constrained. For example, rather than assigning a pixel to an 

object based on the probability calculated by evaluating each object’s PDF, this 

assignment could be carried out by weighting the calculated probability with knowledge 

of the probable classification of neighbouring pixels (in a manner similar to the spatial 

constraints employed by Brady and O ’Connor in [39]).

Another limitation of the tracking process is the motion estimation algorithm employed. 

The block-based scheme investigated here is not reliable when applied to generic scene 

types. It does not account for the complicated motions (such as rotation) which an object 

can exhibit. To address this limitation, more sophisticated models should be used. To 

this end, the scheme presented by Brady and O ’Connor in [39] (see section 7.5) could 

be integrated with the scheme described in this chapter31. The tracking scheme described 

in this chapter, without motion estimation, could be used to derive approximate initial 

segmentations of two consecutive images in a sequence. The motion modelling 

approach of Brady and O ’Connor could then be applied, constrained by the object 

partitions of these segmentations. This should result in very good motion model 

estimates, which when used to project the objects’ mode segmentations, should improve 

tracking.

The test sequences used in this chapter are considered to be representative of the type of 

input an MPEG-4 encoder could expect. As such, it can be claimed that for sequences in

31 This is not investigated here but targeted as a direction for future research.
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which the segmented objects can be tracked, this approach is a powerful tool for 

creating arbitrarily-shaped VOPs for off-line MPEG-4 applications. In the next and final 

chapter, the approach is considered in the framework of a complete VOP creation 

environment, and directions for future research are identified.
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10. CONCLUSION

10.1 A Brief Review

In chapter two, the development of video compression technology in recent years is 

outlined. The fundamental techniques for reducing spatial and temporal redundancy in a 

digital video signal (transform coding and predictive coding respectively) are 

introduced. These techniques are normally applied as block-based tools using the DCT 

and motion estimation/compensation. The use of these tools in international video 

compression standards for different applications (H.261, H.263, MPEG-1 and MPEG-2) 

is briefly described. It is explained how block-based compression can lead to visually 

disturbing blocking artefacts, particularly at lower bit rates.

Chapter three reviews the investigation of segmentation-based compression by the 

research community. These approaches were first investigated as a means of obtaining 

efficient compression whilst avoiding block-based artefacts. The approaches were also 

attractive as a means of providing content-based functionalities. Segmentation-based 

compression can be carried out by OOASC or by a region-based approach. SIMOC (an 

OOASC approach) was eventually abandoned as a compression scheme due to 

limitations such as (i) its inappropriate source model, (ii) the inefficient compression of 

model failure regions, (iii) the lack of an INTRA coding scheme (and indeed, the effect 

of INTRA encoding on segmentation performance) and (iv) the inherent delay 

associated with OOASC. MORPHECO (which is a region-based approach) does not 

suffer from such limitations, except the inherent analysis delay. However, in order to 

provide content-based functionalities, it is necessary for the segmentation used to reflect 

semantic meaning, which is not the case in a morphological approach. Nor is this the 

case in SIMOC, due to the limitations referred to above. Furthermore, the analysis 

(segmentation) and encoding steps in both SIMOC and MORPHECO are tightly 

coupled (i.e. compression efficiency depends on the performance of the segmentation 

step).
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Chapter four describes the new MPEG-4 compression standard which incorporates the 

advantages of both segmentation-based and block-based compression. MPEG-4 

specifies a compressed representation of rectangular and arbitrarily-shaped VOPs. A 

sequence of arbitrarily-shaped YOPs represents a semantic video object (VO) present in 

the scene. A VOP is encoded using a block-based shape coding tool to compress the 

alpha channel, in conjunction with modified existing block-based tools to compress 

image data. MPEG-4 does not standardise a segmentation algorithm in order to create 

arbitrarily-shaped VOPs. Rather, an efficient compression scheme is defined which is 

independent of the segmentation process (unlike SIMOC and MORPHECO). As such, 

MPEG-4 can avail of future advances in the field of segmentation. It also leaves open a 

competitive aspect to the standard which is essential for ensuring its success. An 

accurate, robust and flexible method of creating arbitrarily-shaped VOPs will be a 

distinguishing factor for many future MPEG-4 products in the market place. MPEG-7, a 

new ISO work item aimed at developing a multimedia content description standard, is 

also briefly introduced in this chapter. It is conjectured that segmentation will have an 

important role to play in extracting object features, so that they can be described by 

MPEG-7.

Three unsupervised segmentation processes suitable for creating arbitrarily-shaped 

VOPs, are described in chapter five. Since segmentation in this thesis is discussed in 

terms of semantic object segmentation, unsupervised region-based approaches are not 

considered. Such approaches generally have no means of grouping image regions to 

form objects. The underlying assumption of unsupervised object-based schemes is that 

any motion in the scene (excluding camera motion) is due to the presence of moving 

semantic objects. The change detection-based approach of Mech and Wollborn [23] [24] 

addresses many of the limitations of change detection as employed in SIMOC. The 

polynomial motion modelling approach of Wang and Adelson [25][26][27] uses affine 

motion models to ensure that object motions more complicated than simple translation 

can be segmented. The automatic segmentation functionality of the COST 21 Iter AM 

is in part based on the scheme of Alatan et al [29] which uses a region-based 

segmentation tool (RSST) in order to refine the results of motion segmentation (which 

itself is derived using RSST) via a rule-based processor. All three approaches, however, 

are restricted by the fact that semantic meaning in a scene cannot be defined
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automatically. This is a fundamental limitation of unsupervised segmentation when 

considered in an MPEG-4 VOP creation context. However, considering segmentation 

performance, and the fact that no user intervention is required at any stage of the 

segmentation process, these approaches are suitable for creating arbitrarily-shaped 

VOPs for real-time MPEG-4 applications which do not require accurate segmentations 

of objects at all times (e.g. video surveillance).

As explained in chapter six, there exists a class of MPEG-4 applications (e.g. content 

production or editing) which require accurate segmentations of entire semantic objects. 

However, in these (normally) off-line segmentation processes user interaction can be 

introduced to define semantic meaning in a scene, and thus relieve the segmentation 

process of this ill-posed problem. This is termed supervised segmentation. Ideally, user 

interaction should only be applied to the first image in the sequence, with automatic 

segmentation and tracking of the defined objects thereafter. It is further proposed that 

this initial interaction should itself not be excessive. The idea is to roughly mark objects 

to be segmented and to allow an automatic segmentation process to define their exact 

shape. Allowing user interaction in the segmentation process means that region-based 

techniques can be employed. The user may interact with a region-based segmentation 

process (or interact with the results of such a process) in order to build a semantic object 

segmentation.

Three supervised segmentation approaches, suitable for creating arbitrarily-shaped 

VOPs for off-line MPEG-4 applications, are described in chapter six. The reported 

segmentation results of these schemes are comparable, but those of Chalom and Bove 

[32] are the most promising. The approaches can be distinguished on the basis of user 

interaction. The approach of Steudel and Glesner [30][31] potentially requires 

significantly more interaction than that of Chalom and Bove or the proposed 

morphological approach. Whilst the morphological approach necessitates the least 

amount of user interaction, the tracking results of Chalom and Bove are superior to the 

morphological tracking results of Marqués and Molina [33]. This undoubtedly due to 

Chalom and Bove’s approach of modelling objects as multivariate multimodal PDFs, 

which allows a good characterisation of objects as a basis for segmentation. However, 

there exist limitations with the approach of Chalom and Bove : the training data used to
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derive PDF parameter estimates is very sparse, a number of successive applications of 

EM algorithms (see below) is required to obtain these estimates, and the tracking 

mechanism (tracking training data or just using original parameter estimates) may be 

problematic in complicated scene types. However, these limitations are addressed by the 

author’s further investigations where the advantages of the approach o f Chalom and 

Bove (namely the methods of user interaction and object modelling) are used in an 

enhanced scheme which avoids these limitations.

The EM algorithm is described in chapter seven as a method of obtaining ML estimates 

of mixture density parameters in the presence of incomplete data. The object 

segmentation problem can be considered to be an incomplete data problem: object 

parameters are required in order to create a segmentation, but these parameters cannot 

be estimated without a segmentation. The approach of the EM algorithm is to start with 

appropriate initial parameter estimates and iteratively refine these based on estimated 

pixel object membership probabilities, to finally converge on the ML parameter 

estimates. A by-product is the required object-based segmentation. The EM algorithm 

has been successfully employed in the unsupervised video segmentation approach of 

Brady and O ’Connor [39], and the supervised approach of Chalom and Bove, referred 

to above. As such, it represents a powerful segmentation tool, and is used by the author 

in the modified segmentation approach of Chalom and Bove presented in chapter nine.

Two supervised region-based segmentation approaches, developed by the author, are 

presented in chapter eight. These approaches are developed as they are the basis of the 

author’s modified and enhanced version of the scheme of Chalom and Bove. The first 

approach is based on clustering multidimensional feature vectors. The second approach 

employs the EM algorithm. The same form of user interaction as employed by Chalom 

and Bove (except that it is region-based in nature) is used in each case. The clustering 

scheme requires that every region type in the image be indicated by user interaction, 

otherwise misclassification occurs. The EM-based approach deals with this by detecting 

outliers which correspond to region types not indicated by the user. As a result, the EM- 

based approach produces a segmentation of the image into homogeneous regions which 

reflect the region types indicated by the user. However, construction of a semantic 

object based on this result will result in an inaccurate segmentation unless outliers are
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reassigned appropriately. Interaction with the results of the clustering process can also 

produce semantic objects. However, in both cases the interaction must be performed 

very carefully. The semantic object segmentations obtainable with these approaches are 

not as accurate as those obtainable with the schemes described in chapter six, nor does 

user interaction meet the necessary requirements. Object tracking is feasible with these 

approaches but difficult in practice and is therefore not further explored. However, the 

EM-based approach (which itself is an enhanced form of the clustering approach) can be 

enhanced using the object PDF model of Chalom and Bove in a straightforward manner.

The resultant supervised object-based segmentation approach is presented in chapter 

nine. It is based on ML estimation of the parameters of multivariate multimodal PDFs 

(via the EM algorithm of chapter seven), which are used to model semantic objects in 

the scene. The segmentation process lends itself to object tracking throughout a 

sequence in a straightforward manner. From the presented results (see sections 9.4 and 

9.6), it is clear that very accurate object segmentations can be obtained for still images 

with very little user interaction (much less interaction than in the region growing 

approach of Steudel and Glesner described in chapter six). This user interaction is also 

easy to perform, meeting the requirements outlined in chapter six. The tracking scheme 

performs well in most cases. Limitations such as a rudimentary motion estimation 

scheme and sensitivity to unsuitable parameter estimates, mean that accurate tracking of 

objects is not always achieved. However, possible solutions to these limitations are 

proposed. In most cases, this scheme can produce very accurate object segmentations 

throughout a sequence, which could be refined with little effort to obtain pixel accurate 

segmentations. The approach is therefore considered to be an ideal candidate for 

producing arbitrarily-shaped VOPs for off-line MPEG-4 applications.

Whilst the object PDF model used in the author’s approach is that of Chalom and Bove, 

the overall scheme is somewhat different in order to address the limitations associated 

with Chalom and Bove’s approach. Sparse training data is avoided using an automatic 

augmentation process developed in chapter eight, the result of which is a richer data set 

for the calculation of initial object PDF parameter estimates. The successive application 

of a number of EM algorithms to calculate these estimates is avoided via a simple 

extension of user interaction (which is easy to perform, and is non-critical in nature).
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Furthermore, the EM algorithm employed by the author uses all available information 

(corresponding to all pixels in the image) in order to refine object PDF parameters and 

converge on very suitable models. The potentially problematic tracking of Chalom and 

Bove is addressed by using a scheme developed by the author, which ensures temporal 

coherence, whilst making allowance for object regions appearing/disappearing in a 

scene. The overall result is that the author’s scheme can be successfully applied to a 

wider class of scene types. Using the same test sequence as Chalom and Bove and 

almost identical user interaction, the same segmentation and tracking results can be 

obtained whilst using only a subset of the features employed by Chalom and Bove 

(corresponding to those easiest to compute), and a very simple motion estimation 

scheme. This indicates that the object PDF models derived by the author are more 

complete and appropriate for segmentation than those of Chalom and Bove.

10.2 Directions for Future Research

10.2.1 A Complete MPEG-4 VOP Creation Environment

In this section, the integration of the segmentation algorithm of chapter nine into a 

complete interactive environment for producing arbitrarily-shaped VOPs for MPEG-4 

applications is proposed. In order for this environment to be really useful for an end 

user, a number of enhancements are required to the basic algorithm. Some of these are 

implementation issues whilst some present opportunities for future research. The latter 

are briefly described here.

The objective of a VOP creation environment is to provide the user with a complete 

segmentation application which can be tuned based on his/her preferences in order to 

segment and track objects in a wide variety of scene types. The various high-level 

processing steps required by such a scheme are presented in Figure 10.1.

Figure 10.1 - The processing steps of a complete VOP creation 
environment
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The first step is to specify the segmentation parameters. The parameters used in chapter 

nine constitute a reasonably robust parameter set for most scene types and could be used 

as appropriate defaults for the non-technical user. However, for the more advanced and 

technically-aware user, as much flexibility as possible should be allowed in this step. 

Parameters to be specified could be the input to the segmentation process, or parameters 

configuring the segmentation process.

The segmentation algorithm of chapter nine uses multiple input information sources, 

corresponding to intensity, colour, and spatial location, arranged in feature vectors. For 

certain segmentation problems, when specifying the input to the segmentation process, 

the user may wish to use a subset of these (e.g. when a grey level image is to be 

segmented). Alternatively, the user may wish to include different representations of the 

features (e.g. RGB components for colour rather than YUV) or to include new features 

which may be useful for particular images (e.g. texture features based on local grey 

level co-occurrence matrices). The effect of different feature sets in the segmentation 

process is an area which requires investigation. The user must also specify the number 

of modes for each object in this step (the iterative scheme outlined in the next section 

could be incorporated here).

Parameters configuring the segmentation algorithm could be a specification of the tools 

to be used in the segmentation process. The watershed algorithm is currently used to 

obtain a fine region-based partition of the luminance image. However, for certain 

images the watershed may miss important object/region contours (because they are not 

strongly in evidence in the luminance component). Thus, the user may wish to choose 

the region-based segmentation algorithm to be used. Choices could include a watershed 

in the colour space or the RSST segmentation of Alatan et al [29]. The effect of 

different schemes on segmentation performance should be investigated to ensure that 

these are viable options. A true expert user may also wish to specify the motion model 

to be used in tracking. Sometimes a simple translational model will suffice, whilst as 

outlined in chapter nine, in other cases a more sophisticated model would be more 

appropriate. The user should be allowed to choose an appropriate motion model based
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on observation of the motion in the sequence. The effect of different motion models on 

the segmentation process should be investigated.

After specifying the input and configuring the segmentation process, the algorithm of 

chapter nine, suitably adjusted, could be invoked for the first image. The results of this 

segmentation process may suffice for the user’s needs. Alternatively, a more accurate 

segmentation may be required. It is therefore desirable to allow the user to refine the 

segmentation results if necessary. The framework in which to perform this refinement is 

a matter for further research. One scenario is to present each object to the user separately 

(in a similar manner to the images of Figure 9.3(i) and (j), for example) along with the 

between object outliers (which the user should assign to one of the objects). User 

refinement of one object segmentation result should then be reflected in the results for 

other objects. One possibility for the actual refinement mechanism is to allow the user to 

click on regions within the object segmentation and thereby delete the associated region 

in the fine region-based segmentation from the object (and add it to another object). 

Another, perhaps more interesting, possibility is to reapply the segmentation algorithm 

to the object segmentation results. This process, termed here scalable segmentation, 

could be used to refine an object’s segmentation or to further segment an object into 

sub-objects (e.g. consider creating “hot-spots” within an object for an interactive tele­

shopping application). The idea of scalable segmentation is illustrated in Figure 10.232. 

The concept of scalable segmentation and its potential consequences for the 

segmentation process should be further investigated.

Given a segmentation of an initial image which meets the users requirements the 

tracking mechanism of chapter nine could then be employed33. After tracking, the user 

should again be given the choice to refine the tracked segmentation in the same way as 

above, before proceeding with the segmentation of the next image.

Such a scenario as that outlined above should provide a flexible and powerful 

environment for creating arbitrarily-shaped VOPs for MPEG-4 encoding. It could be 

used as a content creation tool for future MPEG-4 applications. It employs powerful

32 These preliminary results were obtained using the segmentation algorithm of chapter nine.
33 It is assumed here that the limitations o f the tracking scheme are addressed, specifically that the effect o f post 
processing is reflected in the PDF models.
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segmentation technology which can be guided by the user to address his/her 

requirements. From the user’s point of view, this corresponds to a powerful image 

processing tool-box which relieves the drudgery of manual segmentation, normally a 

time-consuming (and expensive) process which involves outlining by hand the required 

object in each image of a sequence.

(a) User interaction on (b) Poor segmentation of
original object

(c) User interaction on (b) (d) Refined object
segmentation

(e) User interaction on (d) (f) Sub-objcct

Figure 10.2 - Scalable segmentation for refinement and further segmentation

10.2.2 MPEG-7 and Segmentation

As outlined in chapter four, MPEG-7 is a new standardisation effort for audiovisual 

content description. Visual content will be described based on a number of features 

extracted automatically, and semi-automatically from the visual data34. MPEG-7 will not 

standardise the method of feature extraction, but will standardise a set of features and 

appropriate instantiations of these features. Whilst not exclusive to MPEG-4 coded data, 

MPEG-7 will support the object-based approach of MPEG-4. Low-level object features

34 O f course, some high-level features will be extracted on a completely manual basis (e.g. director, actors, 
characters, plot synopsis, etc).
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such as colour, shape, position, trajectory, composition, etc. may be useful in describing 

objects. It is clear that segmentation may have an important role to play in MPEG-7.

The segmentation algorithm described in chapter nine may be an appropriate approach 

to extracting instantiations of low-level MPEG-7 features (instantiations of features are 

sometimes termed descriptors). This is particularly true if the process were to be 

incorporated into a complete VOP creation environment for MPEG-4 applications as 

proposed in the previous section. The creation of a VOP immediately addresses features 

such as the object’s shape, location and trajectory in a scene. The descriptors used to 

represent these features based on a segmentation result is a matter for further research. 

For example, in order to extract the trajectory of the object in a scene it is necessary to 

consider the entire sequence of tracked VOPs. The VOPs could be processed in order to 

extract a polynomial motion model which describes the temporal evolution of the object 

(this in particular is targeted as a direction for future research).

The output of the segmentation process of chapter nine is not simply a segmentation of 

the objects present in a scene. The segmentation is based on a characterisation of the 

objects and as such, the output of the process is also a description of each object present 

(corresponding to the PDF models converged upon by the iterative process). This 

description consists of information on the number of region-types making up an object 

and the colour and spatial characteristics of these region types. This can be considered 

as addressing features such as colour and composition for an object. It is conjectured 

that a multimodal multivariate PDF has the potential of being a good starting point for 

extracting MPEG-7 descriptors for these object features. Again, the exact descriptors to 

be derived from the PDF is a matter for future research.

As stated in chapter nine, a very good characterisation of an object is not always 

necessary for segmentation purposes. Rather a characterisation which distinguishes the 

object from other objects in the scene is required. For MPEG-7 purposes, which will 

attempt to describe individual objects, this characterisation should be as complete as 

possible. A more complete characterisation could be obtained by performing an iterative 

user interaction process. For example, the mode segmentation of the augmented training 

data based on the initial user input number of modes could be displayed to the user who
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may then adjust his/her original estimate to more closely represent the visual data, thus 

gradually converging on a better overall description of the object.

The underlying objective of MPEG-7 is to make it easier to locate AV data. If an object 

is to be described using descriptors derived from a PDF, it is necessary to develop a 

matching criteria in order that searches can be made against stored object descriptions. 

Developing such a similarity measure is not trivial (e.g. different PDFs may have 

different features, different numbers of modes, etc.). The development of a suitable 

similarity metric and an appropriate matching criterion, as well as the generation of 

good representative parameters in order to form queries, are targeted as important areas 

for future research.
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G LO SSA R Y

alpha plane

AM

arithmetic
encoding

BAB

CAE

CD-ROM

chroma-key

CIF

COST 211ter 

DCT 

DPCM  

DSM

EM

image channel specifying the degree of transparency of each 
pixel in an image

Analysis Model: an evolving description of the COST 21 Iter 
common image/video analysis system

an efficient method of encoding data given the probability 
distribution of the data

Binary Alpha Block: a subset of pixels from a binary alpha 
plane (consisting of 16 x 16 pixels)

Context-based Arithmetic Encoding: an efficient method for 
compressing binary image data

Compact-Disc/Read Only Memory: a high density storage 
media used for removable read-only memory on a computer
system

(also blue-screen) a studio process whereby the shape of a 
foreground object is directly recoverable from the filmed
footage

Common Intermediate Format: picture format with three 
components corresponding to a luminance (Y) component and 
two colour difference (U and V) components (the picture size is 
352 pixels per line by 288 lines)

a European collaborative research group working on aspects of 
video compression and analysis

Discrete Cosine Transform: a reversible transform used to 
achieve redundancy reduction in image compression systems

Differential Pulse Code Modulation: a predictive coding method 
incorporating a feedback loop to avoid error propagation

Digital Storage Media: any media for storing digitised audio­
visual information (e.g. CD-ROM)

Expectation-Maximisation: a robust iterative procedure for 
obtaining ML estimates in the presence of incomplete data
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HDTV

INTRA
compression

INTER
compression

ISDN

ISO

ITU-T

MAP

macroblock

MC

MDL

ME

ML

MPEG

OOASC

PDF

High Definition Television: television services incorporating a 
widened aspect ratio, increased picture resolution and CD 
quality audio

compression of an image by reducing spatial redundancies

compression of an image by reducing temporal redundancies

Integrated Services Digital Network: a public digital network 
intended to replace PSTN while also adding new and improved 
services

International Standards Organisation

International Telecommunications Union

maximum a posteriori: hypothesis testing whereby an entity is 
assigned to the most probable of a number of available groups 
based on evaluating each group’s PDF

a subset of an image on which compression tools are applied 
(consisting of a 16 x 16 block of luminance pixels and two 8 x 8  
blocks of chrominance pixels)

Motion Compensation: a method o f obtaining a prediction for 
an image based on estimated motion (see Motion Estimation)

Minimum Description Length principle: a means of defining an 
optimisation criterion for model fitting problems where no 
bound on the complexity of the model is specified

Motion Estimation: the process of estimating the motion present 
between two successive images in a video sequence (in it’s 
simplest form it is carried out in a block-wise fashion)

Maximum Likelihood: a method of parameter estimation based 
on a choice of the most likely parameter values according to a 
fixed set o f observations

Motion Picture Experts Group: an ISO working group dealing 
with the standardisation of coding methods for multimedia data

Object-Oriented Analysis Synthesis Coding: an approach to 
video compression based on estimating the parameters of 
objects present in the scene and synthesising the object based on 
these parameters

Probability Distribution (Density) Function
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PSTN

QCIF

QSIF

RLC

RSST

segmentation

SIF

SIMOC

VLC

VO

VOP

watershed

Public Services Telephone Network: the conventional analogue 
telephone network

Quarter CIF: picture format which is % the size o f CIF

Quarter SIF: picture format which is % the size o f SIF

Run-Length Coding: a method o f forming coding events based 
on the number of sequential occurrences of data items in an 
ordered scan

Recursive Shortest Spanning Tree: a hierarchical (multivariate) 
segmentation technique based on successively merging regions 
in a fine partition

the process of grouping pixels in an image according to a 
common characteristic

an image format similar to CIF

Simulation Model for Object-based Coding: an OOASC scheme 
developed by COST 21 Iter

Variable Length Coding: an entropy encoding technique 
whereby more frequently occurring coding events are given 
shorter code words

Video Object: the MPEG-4 term for a semantic object present in 
a scene

Video Object Plane: the MPEG-4 representation of a semantic 
object at a given time instant corresponding to an image 
consisting o f Y, U and V components and an alpha plane which 
defines the object’s segmentation

a segmentation technique based on applying immersion 
simulations to a morphological gradient
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A PPE N D IX  A: U SEFU L D ER IV A TIO N S

Derivation necessary for Equation 7-5 and Equation 7-14

— (¿ x -m )1 A (x -m ))  = -A (x  -  m) -  A 1 (x -m )  

where x,m  are k x I vectors, and A is a symmetric k x k matrix.
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The PDF of the random variable takes the form:

Example 1: ML Estimation of a Univariate Gaussian PDF

p(x\0) =
1

2 02jM e x p [

which is completely defined by the parameters 0= 0 ^  , where 0] = m is the mean

and & = c r  is the variance o f the distribution.

Considering N  independent observations, the likelihood function can be written as:
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Accordingly, the log likelihood function can be written as:
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The i'h PDF in the mixture is written as:

Example 2: ML Estimation of Mixtures of Univariate Gaussian PDFs

p,(x\Oi) =
1

M LA|J * *  J

a 0; , where 0, = m, is thewhich is completely defined by the parameters 0t =

mean of group G ,, and 0r = <jf is the variance o f group G; . The maximising 

expression then bccomes (see chapter seven):
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A PPE N D IX  B: EXTENDED R ESU LTS

In this section, a selection o f segmentation results obtained using the object-based 

scheme o f chapter nine applied to various image resolutions/formats are presented. Two 

MPEG-4 test sequences were used to generate these results: Mother and Daughter (CIF) 

and Fish (SIF). Also presented is a segmentation of a JPEG test image of resolution 522 

x 404. The resultant segmentations are scaled down so that they can be arranged 

appropriately in the document.

The only segmentation parameters changed from those outlined in chapter nine in order 

to generate these results were associated with motion estimation. For both Fish and 

Mother and Daughter the motion estimation search range was doubled in order to 

accommodate these larger image resolutions.

User scribbles on 1sl image 
mother and daughter - 6 modes 

background - 4 modes

Mother and daughter segmented in 41st image M other and daughter segmented in 91sl image

B -l



F ish  T est S eq u en ce  (SIF )

User scribbles on l sl image 
fish - 3 modes 

background - 5 modes

Fish segmented in 14lh imageFish segmented in 5 ^  image

B-2



JPEG Test Image

User scribbles on original image 
foreground object - 4 modes 
background object - 3 modes

Segmentation o f foreground object

Segmentation of background object
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