
An object-oriented testing
approach based om a rigorous model

of claimed functionality

A thesis by : Noel M O' Connor
Bachelor of Science in Computer Applications

Supervisors : Mr. R Verbruggen, MMgtSc, MMI(KULeuven)
Professor T Moynihan, MSc, PhD, FICS, FSS

Submitted to : Dublin City University
School of Computer Applications

for the degree of
Master of Science

August 1990

Declaration
No portion of the work referred to in this thesis has been submitted
in support of an application for another degree or qualification of
this or any other University or Institute of learning.

Abstract

An object-oriented testing approach based on
a rigorous model of claimed functionality.

A uthor : Noel M O' Connor

Testing aims to enhance the quality of the software under test. This is achieved through
finding and removing errors which, if they were present, would detract from the
operational efficiency or accuracy of the product and therefore detract from the product's
quality.
Black box testing is based on knowledge of the specified functionality of a product,
whereas white box testing makes use of knowledge of the program code. Regardless of the
testing technique employed, the main objective is to derive a set of test cases that will
uncover defects in the code.
In this thesis my testing approach focuses on an object-oriented model of a software
system. The model is constructed through "reverse engineering" a rigorous description of
claimed functionality from the user documentation of the product. The model is represented
in the form of objects, attributes and operations. The operations are perceived by the user
as being the functionality of the system.
My approach uses an object-oriented black box testing technique to exercise the
functionality of the model. This is achieved through deriving test cases from the model
(which is represented at a different level of abstraction using graph theory notation).
The test cases consist of the valid sequences of operations that are allowed, along with the
expected output for each such sequence. My objective is to completely exercise the
functionality of the model using a minimum set of valid test cases.

To my parents.

• • • in

Acknowledgements

Renaat, eternally grateful. Thanks for all the time you invested
with me while working on this thesis. I couldn't have done it
without you. Here's to the VERBRUGGEN development method!

Tony, thanks for all the help on the SCOPE project, your
inspiration, and for your credit card when we most needed
it (Paris 89).

Colophon : This thesis was typeset in Times font using Microsoft Word on
a Macintosh IIx, and printed on a PSJet laser.

Contents

Contents

Abstract ii

Acknow ledgem ents iv

Chapter 1
Introduction
1.1 Introduction 1
1.2 Testing in perspective 1
1.3 A History of Errors 1
1.4 Attaining Software Quality 2
1.5 Thesis overview 2

Chapter 2
SCOPE project and Software Certification
2.1 Introduction 4
2.2 SCOPE 4
2 .2 .1 SCOPE in general 4
2 .2 .2 SCOPE objectives 5
2.3 SCOPE breakdown 5
2 .3 .1 Technology 5
2 .3 .2 Database 6
2 .3 .3 Case studies 6
2 .3 .4 Management 7
2.4 Certification Framework 7
2 .4 .1 The Certification Model and Certification Method 9
2 .5 Knowledge flow resulting from SCOPE 9
2.6 Definition of Certification 12
2 .6 .1 Why Certification ? 12
2 .6 .2 Purpose of Certification 12
2 .6 .3 Stages of Certification 13
2.7 Understanding Certification 14

C ontents

2 .8 Perceptions of Certification 14
2 .8 .1 The SCOPE view 14
2 .8 .2 The user/customer view 14
2 .8 .3 The manufacturer's view 15
2 .8 .4 The Independent evaluators view 15
2 .8 .5 The legal community's view 15
2 .8 .6 The public's view 15
2.9 Factors which may have an influence on Certification 16
2 .9 .1 Software in use 16
2 .9 .2 Software development 17
2 .9 .3 Software in systems 18
2 .10 Experiences of Software Certification 18
2 .11 Summary 19

Chapter 3
The Tango Case Study
3.1 Introduction 20
3.2 Tango description 20
3.3 Quality attributes of Tango to be assessed 21
3.4 Objectives of the Tango case study 22
3.5 Assessing quality of documentation 23
3 .5 .1 Developing the rigorous model 23
3.6 Conclusions from developing the rigorous model 46
3.7 Case studyConclusions 48
3 .7 .1 Judgements reached on 'Certification specification' 48
3 .7 .2 Tango and certification 48
3 .7 .3 Inspection and checklists 49
3 .7 .4 Tools 49
3.8 Summary 49

Chapter 4
Testing state-of-the art
4.1 Introduction 50
4.2 Software quality 50
4 .2 .1 Verification 50

Contents

4 .2 .2 Validation 52
4.3 Static Analysis 53
4.4 Formal technical reviews 53
4 .4 .1 Inspection techniques 53
4 .4 .2 Walkthroughs 54
4.5 Testing related definitions 54
4.6 Testing in general 56
4 .6 .1 Software Reliability and testing 56
4.7 What is software testing ? 57
4 .7 .1 Why Test ? 57
4 .7 .2 When should testing be done ? 58
4 .7 .3 Testing and Quality 58
4.8 Testing techniques 58
4.9 Black Box Testing 59
4 .9 .1 Equivalence class Partitioning 60
4 .9 .2 Boundary value Analysis 60
4 .9 .3 Data validation testing 61
4 .9 .4 Random testing 61
4 .9 .5 Cause effect graphing 61
4.10 White box testing 62
4 .1 0 .1 Statement testing 62
4 .1 0 .2 Arc and Path testing 62
4 .1 0 .3 Data flow testing 65
4.11 Testing Systems 66
4 .1 1 .1 The testing process 67
4.12 Test planning 69
4.13 Types of test cases 69
4.14 Tools for Testing 70
4.15 Tools supporting testing 71
4.16 Types of tools 71
4 .1 6 .1 Static Analysis Tools 72
4 .1 6 .2 Dynamic Analysis Tools 73
4 .1 6 .3 Test Support Tools 73

Contents

Chapter 5
Object-oriented black box testing
5 .1 Functional Testing 74
5.1.1 Functions 74
5.1.2 Software development and functions 74
5.1.3 Variables and data structures 74
5.1.4 States 75
5.1.5 Faults 75
5.1.6 Functional testing theory 75
5.2 Functional Testing of Tango 76
5.2.1 Trapping the functionality of Tango 76
5.2.2 Applying functional testing theory to Tango 77
5.3 Object-oriented unit testing 78
5.3.1 Objects 78
5.3.2 When should testing begin ? 78
5.3.3 What testing techniques should be used ? 78
5.3.4 What should be tested ? 78
5 .4 Object-oriented unit testing of Tango 79
5.4.1 Object-oriented test results 81
5 .5 Test Cases 82
5.6 Generating test cases 83
5.7 Counting the number of test cases 83
5 .7 .1 Test case form 83
5.7.2 Test case notation 83
5.7.3 Rules for counting the number of test cases 85
5.7.4 Deriving test cases 85
5.8 Estimating the number of Tango test cases 85
5 .9 Minimising the number of test cases 86
5.10 Specifying test cases for Tango 86
5.11 Minimising the number of Tango test cases 87
5.12 Graph terminology 87
5 .1 2 .1 Applying Directed Graphs 88

Contents

5.13 Modelling Tango using graph notation 88
5.14 Using the graph model as a basis for testing 92
5.15 Adjacency matrix theory 93
5.16 Developing an adjacency matrix for Tango 93
5.17 Interpreting the adjacency matrix 96
5.18 Manipulating the adjacency matrix 96
5.19 General conclusions 98

Chapter 6
Conclusions And Future Directions
6.1 Justification of object-oriented testing method 99
6.2 Applying other testing methods 100
6 .2 .1 Applying the Boundary Value Analysis method 100
6 .2 .2 Applying the Category-Partition Method method 101
6.3 Formal Methods 102
6.3.1 The model and states 102
6.3.2 Formalising the testing method 103
6.4 Developing the rigorous model - an alternative approach 104
6.5 Manipulating the model 104
6.5.1 A White box view 104
6.5.2 The Cyclomatic Complexity of the Model 105
6.6 Future Directions 108
6 .7 General Conclusions 108

List of Appendices
Bibliography

Chapter 1 : Introduction

Chapter 1

Introduction

1.1 Introduction
Businesses and governments are increasingly investing money into software systems
whose successful operation is critical to their bottom line. Producing reliable systems
requires the use of several techniques - not just review, not just inspection, and not just
one type of testing. It needs a well thought-out, comprehensive application of several
techniques throughout the development life cycle. These techniques fall under the
umbrella of "software verification and validation". My main interest focuses on the area
of software testing.

1.2 Testing in perspective
Testing provides a complementary mechanism to explore a systems' operational
behaviour. Few people would want to fly on a theoretically safe airplane that had not
been flown before. Few would trust a program that had never been run. The sinking of
the HMS Titanic gave us a graphic and tragic example of what can happen when an
inaccurate model is used. Over the past forty years, as the use of digital computers has
increased, there has been a corresponding increase in the number of software failures
[Gel 88]. During this period, the idea behind making testing a cost-effective process
has grown as well. Since testing is as old as coding, most people involved in the

software industry have their own mental model of testing. As a result, there are many
unrecognised differences in the various mental models, and the result has produced a
lot of confusion amongst customers, managers, analysts, programmers and testers.

1.3 A History of Errors
Most computer malfunctions are caused by software failure of one kind or another.
Aerospace, military and space travel provide such examples. One such example from
military is when USAF pilots were testing the F-16 fighter aircraft, the first thing they
did was to tell the onboard computer to raise the landing gear while the plane was still
on the runway. Another disaster was when an F-16 plunged into the Gulf of Mexico
because the onboard computer was not programmed to cope with very low flying.
Medical computer glitches have cost a lot of lives. In 1980, a man undergoing
microwave arthritis therapy was killed when the therapy reprogrammed his pace-maker,
while faulty

i

Chapter 1 : Introduction

software in an insulin pump, caused insulin to be delivered at the wrong rates and a

medical system was recalled after it was discovered that it had mixed up patients' names

and records.
In fact computer 'foul ups' have a long and less than distinguished history. In 1960
computers of the BMEWS(Ballistic Military Early Warning System) at Thule initiated a
nuclear alert after the rise of the moon above the horizon was interpreted as a nuclear
attack. In another case, a flock of geese was thought to be a group of inbound nuclear
warheads [Per 90].
While refrigerators, cars, washing machines and practically every other consumer
goods are sold with guarantee of quality and workmanship, the same cannot be said of
software.

1.4 Attaining Software Quality
The requirement for high quality of software is becoming increasingly acute, and
recognition of this need is becoming more widespread. While techniques such as
superior development methodologies can do a lot to enhance software quality, there still
exists a consensus that software quality can neither be obtained nor convincingly
demonstrated without significant testing activities [Ric 89], Testing aims to determine
and assure that software products are of "high quality". Testing researchers all agree
that there is no absolute, fixed notion of what "software quality" means. Instead, there
is an agreement that software should satisfy a variety of qualities such as robustness,

functional correctness, efficiency and reliability. Different products emphasise different
qualities and accordingly have different testing requirements.

1.5 Thesis overview
In this thesis I describe my method for object-oriented black box testing based on a
rigorous model of claimed functionality. I worked on the European project SCOPE in
which DCU are partners. The SCOPE project centres around the idea of software
certification and the implications of providing a certificate to a software product.

Chapter two looks at the SCOPE project and software certification. It examines the
different views of certification and the problems associated with such a venture in the
context of software.

2

Chapter 1 : Introduction

Chapter three describes the DCU case study on which I based my research. The case
study involved taking a piece of 'live' software and documentation, deriving the quality
attributes which needed to be assessed, in the form of a 'certification specification', and
to make subsequent 'judgements' on these attributes. The attributes assessed were
correctness, maintainability, reliability, security, performance, usability, quality of
documentation and 'ease of housekeeping'. They were individually assessed using
methods such as 'reverse engineering', checklists and testing. The 'judgements’
reached on the attributes included in the 'certification specification' are documented in
this chapter. Chapter three also looks at how a rigorous model of claimed functionality
was "reverse engineered" from user documentation.

In Chapter four I put the testing area in perspective. There are various testing
techniques varying from black box to white box approaches. They all share the same
goal - to highlight the presence of errors in the software. The terminology associated
with testing, such as unit testing, top-down testing, test cases etc., is also explained in
this chapter.

In Chapter five I present my own testing method. The method is object-oriented based,
using an object-oriented view of the system to drive a black box testing technique. My
testing method uses ideas from the object-oriented rigorous model developed in Chapter
three as well as incorporating some elements of graph theory. I was able to apply the
method as a way towards generating test cases which were in the form of allowable
sequence(s) of operations comparing actual output with expected output.

In the final chapter, I broadly assess my method showing how it can be integrated and
expanded to incorporate existing testing techniques, as well as how it could be
formalised.

3

Chapter 2 : SCOPE project and Certification

Chapter 2

SCOPE project
and

Software Certification

2.1 In tro d u c tio n
In this chapter I will examine the European project SCOPE and explain the
terminology associated with software certification.

2.2 SCOPE - Software Certification Programme in Europe - is an European
project partially funded by the ESPRIT II (European Strategic Program for
Research and Development in Information Technology) initiative. There are eleven
partners involved in the project including Dublin City University. The other
partners are universities, standards/certification bodies and software developers
from other European countries. The full list of partners involved are Yerilog(VLG)
- France, Etnoteam (ETN) - Italy, GMD,GRS - (Germany), ERIA (ERI) - Spain,
ElectronikCentralen(ECT), - Denmark, City University(CTU), United Kingdom
Atomic Energy Association(UKA), Strathclyde University(STR), Glasgow
College(GCT) - UK and Dublin City University(DCU) - Ireland.The project is
organised into two sequential work packages; the first one lasting 22 months (399
man months) and the second 42 months (912 man months) [SCO1 89].

2.2.1 SCO PE in general

SCOPE has the job of defining the overall European certification scheme and identifying
and developing software tools to support test laboratories. The EC wishes to see a
European-wide system in place by the mid-90s. Under this scheme, each country would
have one or more software test laboratories. Typically, a software developer would
submit his product to a test lab and would specify the characteristics of the product to be
certified e.g. conforming to specification, portability, usability, reliability. If the test lab
was happy with the product, it would issue a 'quality seal1 endorsing the particular
product attributes inspected. The possession of that ’seal1 would help the developer
market his product across Europe.

Chapter 2 : SCOPE project and Certification

2.2.2 SC O PE objectives
The three major objectives of the SCOPE project are :

(1) To clarify the customer/supplier relationships by defining procedures that would
enable the granting of a 'quality seal' to the software when it complies with a certain set
of pre- specified attributes.

(2) To develop new efficient and cost effective certification technologies for the
granting of this 'seal'.

(3) To promote the use of modern software engineering technology to be used during
the development of the software and contributing to the 'seal' delivery.

2.3 SCO PE breakdow n
The first SCOPE work package is broken down into four tasks.

2.3.1 Technology

This task is concerned with :
identifying the relevant state of the art on software certification, agreeing on definitions
and terminology, determining what software attributes can and should be certified;

defining a prototype certification programme that will be explored using the first set of
six case studies, with the primary aim of deriving a set of pragmatic certification
procedures and acceptance criteria;

establishing a relationship with standards organisations in order to prepare the
implementation of the proposed certification technology as a basis for newer standards
and to survey developments at an international level;

establishing and defining the legal issues and requirements which may affect software
certification;

evaluating the data collected by the case studies and determining the applicability of the
first set of certification procedures;

5

Chapter 2 : SCOPE project and Certification

2.3.2 Database
The database task has four main a im s:
(1) to specify the database service.
(2) to develop the database and analysis system.
(3) to collect data and to administer the database.
(4) to develop tools for use in data collection and to provide a tool based analysis
service.

2.3.3 Case studies
There are many problems to be solved before a certification scheme for software
products can be proposed to the EC. For example, what attributes of software are
measurable in a reasonably objective, easy to produce way ? How should the
measurements be made, and at what probable cost ? What form should a 'quality seal'
take ? These problems can only be solved by trying out ideas on real software
products, and seeing what works. Hence the need for case studies in the project.
Their were six case studies in the first phase of SCOPE, each conducted by a single
partner as given in Figure 2.1 A further set are planned for the second phase. The
case studies were selected in order to be representative of confidentiality conditions of
third party assessment. One of the SCOPE partners ETNOTEAM [ETN 89],
proposed a three-tier product classification scheme covering risk class, domain and
application area.

P a rtn e r C ase Studv Risk Class D om ain ADDlication

DCU TANGO limited economic private Service control
ETN VICTOR limited economic private Information
systems
GRS WHISKY safety critical private Service control
GCT X-RAYS low economic private Information
systems
STR YANKEE low economic business Service control
VLG ZULU low economic business Utility

Figure 2 .1

The case studies were intended to demonstrate the feasibility of software certification
on a limited scale by defining a prototype certification programme and they were also
used to represent systems thought to warrant certification.

6

Chapter 2 : SCOPE project and Certification

Each partner used a different approach in dealing with their case study, although the
overall emphasis was predominantly on static analysis, data flow analysis and
statistical validation analysis of metrics data. The DCU case study TANGO will be
described in Chapter three.

2.3.4 Management
From a managerial viewpoint SCOPE has had to overcome several difficulties from a
'standard' ESPRIT project, such as the number of partners (eleven), and the number
of people involved, along with the nature of the work which is mostly at the
conceptual level as opposed to the tool development level. Management of the project
was handled by Verilog and they had to ensure complete integration among all
partners.

2.4 Certification Framework
During phase one of SCOPE, a certification framework was developed as shown in

Figure 2.2. The framework was designed to be flexible, evolutionary and capable
of rapid responses to change. In time the framework should be capable of dealing
with any software product. The framework is based upon a Certification model
and a Certification method which will allow a software product to be awarded a
certificate, if after independent evaluation it is shown that the product complies with
all necessary requirements, results and standards.

The certificate will be graded into a number of levels of increasing stringency. This
will ensure the whole spectrum of software will be covered, ranging from simple
non-critical application through to complex high safety critical applications.

7

Chapter 2 : SCOPE project and Certification

Identify
Product parts

Process evidence

Specify w Software
W

character ist ics

Choose and Apply
Measurement

W
process

Certi f icat ion
Method

Cert i f icat ion
Model

Figure 2.2 : SCOPE Certification Framework

Chapter 2 : SCOPE project and Certification

2.4.1 The Certification Model and Certification Method
The certification model is comprised of four sub-models that help define the issues

introduced by the certification method. It consists of the following

(1)Software product model
(2) Software development process model
(3) Software characteristics model
(4) Measurement model
These models will be further refined in the second phase of SCOPE.

(1) The software product model consists of a list of product parts which are
precisely defined. The objective of this model is to only identify those elements in a
product which are useful to the certification process.

(2) The software development process model identifies items of process
evidence that may be useful to facilitate product measurements. In one sense this
development effort attempts to reconcile the two ideas of "process" certification and
"product" certification.

(3) The software characteristics model is the kernel of the certification model.
It defines what characteristics of a software product can be assessed. Presently, this
model consists of definitions of "correctness" and "reliability" and refinements to the
notion of "workmanship". The major issue at stake here is to define the characteristics
in an unambiguous way.

(4) The measurement model is more complex. The problem lies in dealing with
the complexity of the state of the art measurement and assessment techniques. There
are numerous metrics proposed and their relevant applications vary significantly. The
measurement model uses a modular approach, deciding on a small set of metrics and
assessment techniques, that can be specialised, and combined in to what is termed an
"assessment brick" [SCO1 90]. This "brick" acts as a single assessment technique and
gathers information pertaining to :
- software characteristics
- applicable tools

- the predicted cost of its application
- conditions for its application

2.5 Knowledge flow resulting from SCOPE
The resulting information flow from the project is shown in Figure 2.3. The main

9

Chapter 2 : SCOPE project and Certification

streams of technology and information transfer are :

(1) Direct technology transfer from the SCOPE community to :
-software engineering specialists developing software certification tools for use by the
test labs
-software engineering specialists developing new tools for use by the software
producers for enhanced quality and contributing to the delivery of the seal
(2) Secondary technology transfer from :
-the developers of new technology to the test labs and software producers
-the test labs to the software producers for enhanced development quality
(3) feedback information transfer to the SCOPE community from :
-the test laboratories
-the software producers

10

Chapter 2 : SCOPE project and Certification

Figure 2.3 : Inform ation and Technology Transfer

il

Chapter 2 : SCOPE project and Certification

2.6 Definition of Certification
The process of confirming that a system, software subsystem, or computer program
is capable of satisfying its specified requirements in an operational environment [IEE
89].

2.6.1 Why Certification ?
The process of certification, (i.e. awarding an independent certification formally
attesting fulfilment of conditions and requirements) has been established for many
years. Contemporary examples range from, "seals of approval" for domestic goods to
"certificates of airworthiness" for aircrafts. A seal or certificate is seen as giving a
product a cachet of superiority, as something distinguishing it from its competitors. In
other cases, a certificate showing conformity with requirements and regulations is a
statutory requirement before a product (such as an aircraft or ship) can be put into
service.

Most examples of certified products that come to mind are hardware, physical objects
that can be observed, analysed and measured. A software program poses unique
problems when one questions how it may be certified in the same sense as hardware
is certified. It is often impossible to measure all the characteristics, and behaviour
modes of a software product. The fact that most software is only licensed for use, and
not purchased by the user helps to further confuse the issue.

2.6.2 Purpose of Certification
The different views of the service given by a software product are :
- expected service
- specified service
- actual service

The user need is basically that the product (actual service) must agree with his/her
expectations, i.e. there must be an absolute agreement between expected and actual
service.

12

Chapter 2 : SCOPE project and Certification

2.6.3 Stages of C ertifica tion
There are suggested ten distinct stages in the certification of a software product. These

are:
(1) Submission of the product to the Certification agency
(2) Agreeing on the certification requirement
(3) Agreeing on an initial cost estimate
(4) Analysing the product
(5) Producing a certification specification
(6) Relating the specification to tasks, techniques and tools
(7) Producing a certification plan
(8) Costing the certification plan
(9) Implementing the certification plan
(10) Producing a certification report

As the user expectations are rather subjective and are often related to non-expressed
characteristics, the certification process cannot base itself simply upon this agreement

2
of actual service versus expected service [SCO 89].The process should involve the
correspondence between the specified and actual service as given in F igure 2.4
below.

13

Chapter 2 : SCOPE project and Certification

2.7 Understanding Certification
The obvious perception of certification is that it gives some form of guarantee. At
least it is assumed that the risks of failure are reduced where certification involves
some form of independent assessment. Hardware can be relatively easily defined and
measured, while software is not bounded by any physical consideration at all. It is
when software is combined with hardware, in monitoring or controlling a physical
process, that the inherent dangers of software failure start to become apparent.

2.8 Perceptions of Certification
Certification is seen by different people or organisations in different ways.
Certification will always be given on the basis of closely defined parameters, derived
from particular needs and for particular applications. These limitations need to be fully
understood by everyone concerned such as users, customers, manufacturers,
assessors, legal representatives, and the general public. Without this understanding,
the role of certification will be misinterpreted, and this will be swiftly followed by the
process becoming discredited.

2.8.1 The SCOPE view
Considerable progress can be made towards a framework of software certification
which will, at least, provide economic levels of assurance commensurate with all the
risks involved in the use of the software in any particular situation.The most
appropriate state-of-the-art tools and methods to attest conformity o f the software
product with specific design requirements and attributes can be used.

Where safety is not an issue, the certification process may provide no more than a
"seal of quality". This would give assurance to the user that a well defined
development methodology had been used; the product had been adequately tested; the
product would do what it was supposed to do under defined conditions of use, and
would be maintained if things went wrong.

2.8.2 The user/customer view
The user/customer view of certification will be that of a guarantee - first, that the
software will perform as described and second, that it will not fail in normal use. A
customer who buys a certified product will not be surprised if it costs more than a
competitor's product which is not certified. The extra cost will be justified by the
expectation that the certified product is, in some way superior. Above all, the
customer will expect the manufacturer to support a certified product in the event of
any problems. It may be expected that the manufacturer will indemnify the user

14

Chapter 2 : SCOPE project and Certification

against any consequential loss, attributable to the use of the product, and that the
certificate will provide protection against third-party claims for damages.

2.8.3 The manufacturer's view
The software manufacturer's view is likely to be the most diverse of all those
concerned with certification. The view will be influenced by the manufacturers in
depth knowledge of the problems in producing software economically, and from the
need to gain a competitive 'edge' in the marketplace.
On the positive side, a certificate could signify a superior product which would sell
better. Independent assessment would provide a further layer of test and checking for
errors that may have remained undiscovered during development.

2.8.4 The Independent evaluator's view
Clearly, the independent evaluator (e.g. a 'test lab') will see certification as a
valuable source of work and will build an organisation suited to the needs of the
task. This will involve suitably qualified staff who are familiar with the problems
associated with a range of applications, the availability of suitable standards, tools
and techniques, and the economic costs associated with the process. One particular
cause for concern will be the possibility of being deemed to be responsible when
certified software fails.

2.8.5 The legal community's view
The legal community's view will be constrained by the legislation which relates to
software. Examples of such legislation are Copyright, Product Liability and
Consumer Protection laws, reinforced by the legal judgements made in relevant
cases.

There is, as yet, little experience from litigation concerning software other than on
alleged infringement of copyright. The legal problems that are related to certification
are much more likely to arise from failure of the software in some degree. Claims for
economic or financial loss, damage, injury or death which are allegedly caused by
the failure o f a certified software product could be expected.
Questions concerning whether software is a product or service, or dealing with the
failure of a certified product (e.g. Who should be liable ? - Should it be the software
developer, the independent assessor, or both developer and assessor) All these
questions need to addressed.

2.8.6 The public's view
It is extremely likely that the general public will have little knowledge of the

15

Chapter 2 : SCOPE project and Certification

limitations of a certificate awarded to software. Like the user, the public's perception
will be that of a guarantee against failure, a certificate that the product is reliable and

safe.

2.9 Factors which may have an influence on Certification

2.9.1 Software in use
Application
The application to which software is directed will determine the level of certification
necessary. The same software product (e.g. a spreadsheet program) may be used in
different ways with quite different levels of risk in use and consequence of failure
within different sectors.

User environment
The environment in which a software product will be used is extremely difficult to
control or define. The principal problem will be to decide a representative
environment for certification.

Risks and consequences of failure
The consequences of software failure vary widely, from minor irritation to human or
environmental disaster. The need to assure a low probability of failure for a software
product will affect the cost of certification.

Host computer
Programs can run under both different computers and different operating systems.
This may involve multiple certifications of the same product.

Maturity
Maturity will be important in considering both applications and products. Can
experience of the same or similar applications help to guide the certifier ? Is the
product already in use, with end-user experience ? Is the product similar to another
product that has already been certified or is it just a new version ?

16

Chapter 2 : SCOPE project and Certification

Expertise of user
Software products are used by people ranging from naive to expert users, so the
user experience level will differ significantly for the same product.

Support of producer
The level of in-service support available from the producer may have an influence on
the integrity of a product. Support will vary from minimal for a low-cost commercial
package, to continuous on-site support for complex 'one-off commissioned
applications.

2.9.2 Software development

Experience of developer
The experience of a software developer should be considered. The maturity of the
organisation, skill of the staff, development methods employed, familiarity with the
application, are all factors which have been shown to influence product quality.

Interaction with the customer or developer
Besides the support for a product provided by a software developer, the level of
interaction with the customer (who may not be the end user) in formulating the
requirements is an important factor.

Commercial constraints
The quality of the final product will be influenced by a number of commercial
constraints. Budgets, profits and time scales will all influence the design,
development methodology, and level of testing respectively.

Methodology used
A wide range of development methods are in use. Some of these are new and others
are mature with recognised standards. One method may be preferred by a particular
software developer, e.g. in the UK, SSADM is used for governmental

administrative applications. The maturity of the methodology (in terms of experience
and results achieved) may also influence the scheme of certification required.

17

Chapter 2 : SCOPE project and Certification

Programming language
Programs are implemented in a wide variety of languages and a certification process
must be able to accommodate the use of any of them in a product. Some applications
may require the use of more than one language - e.g. real time applications are often
a mixture of high level languages and assembler.

2.9.3 Software in systems

Minimum systems
A program must be associated with a processor before it can be used, and this will
form a minimum system. Usually, the program will be loaded on to a computer, but
it is not uncommon for a program to be an integral part of a processor e.g. a
computer stored on a chip.

Typical systems
Usually the computer and program will be managed by an operating system. This
combination will interact through peripheral equipment with an operator and other
equipment such as mass storage devices, vdus, printers, plotters. In some
applications it will be necessary to ensure that peripheral equipment is included as an
integral part of the certification process.

Complex systems
Complex based computer systems will pose the most difficult problems for a
certification process. These systems involve computer control of electronics, devices
which may be mechanical, hydraulic or chemical processes, or plants. The
functionality of this type of system may be inseparable from the functionality of the
software.

2.10 Experiences of Software Certification
Although the use of certification is not widespread in the software industry as in
other industrial areas, there are some domains which have experience in certifying
software. Two such domains, the nuclear industry and the civil aviation
authority,.concern very high criticality software for which certification is required.

18

Chapter 2 : SCOPE project and Certification

2.11 Summary
I have looked at the SCOPE project along with the notion of software
certification.When human lives are at risk the notion of certification is approached
very cautiously. In the next chapter I examine the case study TANGO, in which
DCU played the role as 'certifiers'.

19

Chapter 3 : The Tango Case Study

Chapter 3

The Tango Case Study

3.1 Introduction
The SCOPE case study deliverable focused on six different case studies. They were intended to
represent future independent third party certification of software. They included different types of
software, with varying criticality levels, which hadn't undergone any certification process.
The DCU case study focused on a product code named as Tango. There follows a description of
Tango, and the objectives of the case study in relation to the SCOPE project. The rigorous model
developed during the course of the case study forms the basis for my object-oriented testing
approach described in Chapter five.

3.2 Tango description
Tango is a computerised medical records system for use in health screening clinics. It provides
complete clinical management facilities for health screening clinics and large companies that
provide a screening service. Its main objective is to computerise the entire process of patient
administration in such an environment.
The main functions of Tango include :
Patient Appointment Management
Medical Report Generation
Patient Recall Management
Medical Test Results Storage
Patient Billing

The system also provides a number of administrative functions which include the back-up of the
database to floppy disks and access to a separate word processing package which allows the user
to change reports. Tango was developed over a five man month period. It was developed in a
strictly informal manner with no functional specification. As a result there is an incomplete
development trail. The system was written in a high-level fourth generation language - INFORMIX
4GL.The system incorporates the use of UNIPLEX to cater for the word-processing requirements
mentioned. Therefore, Tango depends on other products in the run-time environment. Tango runs
on a 386 PC based machine under the UNIX operating system. It consists of approximately 7-8K
of source code. The memory requirements are 2MB of RAM for one user, with an extra 1MB for
each additional user. One patient record requires 4KB of disk memory. The documentation

provided with Tango is informal and consists of a user/technical manual. The developer is prepared

20

Chapter 3 : The Tango Case Study

to make modifications to the software to suit specific customer needs. It is possible to have
multiple versions of the product existing with minor differences. The typical Tango user is a non
computing expert who is hoping that Tango will contribute to improved efficiency and
effectiveness in running his/her business.

3.3 Quality attributes of Tango to be assessed
As case study partners, DCU took on the role of 'certifiers'. The first step was to decide on the
product attributes to be assessed. These are included in the 'Certification specification'. The
attributes are correctness, reliability, integrity/security, usability, 'ease of housekeeping',
performance, quality of documentation, and maintainability. A brief description of each product
attribute is given.

Correctness : Tango must provide the functionality claimed for it in user-documentation. The
product described is the basis of the contract between the developer and customer.

Reliability : Tango plays an essential role in the operations of a health screening clinic. System
crashes etc.. would pose very serious problems for the user. Hence, reliability is of great
importance.

Integrity/Security : Tango is used in health screening clinics so it deals with very sensitive

personal data. Security/Integrity of data is therefore very important. Access to sensitive data should
be restricted and properly controlled. As an important integrity aspect, due to Tango's application
domain, loss or corruption of data must be minimised at all times.

Usability : Tango is used by an ever changing population of non-expert users, so Tango must be
easy to learn and use. It should cope well with users' mistakes and provide good error detection
and correction. The user interface is of great importance.

'Ease of housekeeping' : Users will not be experts. Routine operations such as doing back
ups, restoring from a crash etc., should be easy to do.

Performance : Tango is used in real time during consultation with a patient so processing times
and response times must be stated. Limiting factors such as file sizes should also be clearly stated
and accurate.

21

Chapter 3 : The Tango Case Study

Quality of documentation : Tango documentation should be readable, complete, consistent and
accurate. The documentation is a description of Tango's functionality, so clarity and completeness

of documentation are of vital importance.

Maintainability : Tango software and documentation must be easy to maintain as the product is
tailored for individual sites and is subject to ad hoc field maintenance, for bug correction,
functional enhancement and adaption to changes in the run time platform.

3.4 Objectives of the Tango case study
While working on the case study I invested most of my effort in assessing 'correctness' and
'quality of documentation' as I felt that the most important question to be answered in the
certification of a product like Tango is :
"Does Tango do what its supportive documentation claims it does ?"
as this is the basis for the contract between the developer and the supplier. To answer this question
involves answering two subsidiary questions :

(1) : "What is it claimed Tango does?"
and

(2) : "Does Tango meet the claims?"

The answer to the first subsidiary question lies in the supportive documentation (brochures,
technical and user manuals).

The answer to the second subsidiary question is obtained by black box testing to reconcile actual
functionality with claimed functionality.
The notion of "reverse engineering" a rigorous description of claimed functionality from the user
documentation was a major aim of the case study, particularly seen as how I could apply this
rigorous model. The process of reverse engineering would also expose ambiguities and
inconsistencies in Tango documentation. A major use for the model would also be in generating
black box test cases. This would exercise the functionality of the system better than test cases
based simply upon page 26 of the user manual which says that "if I choose option three from the
patient menu then a patient data entry screen will be shown". The rigorous model would therefore
help to assess the quality(e.g. accuracy, completeness) of the user documentation in respect of its
description of the functionality of Tango. The experience gained with Tango would provide

valuable insights into the problems and potential of certification of low cost products, produced
through an informal small scale development process.

22

Chapter 3 : The Tango Case Study

3.5 Assessing quality of documentation

The documentation on which the 'purchaser' will make his/her decision may suffer from a number
of flaws. These flaws can at a syntactic or semantic level. Here the process of building the rigorous
model of Tango is described by applying it to an early draft of a piece of real user-documentation.
This modelling approach is object-oriented, based upon the ideas of [Boo 86], [Coa 90] ,[Ver 88]
and [Mey 88].
Also some ideas from the field of formal specification are referenced ([Jon 90],[Woo 88]).

3.5.1 Developing the rigorous model

This section describes a method for critically evaluating Tango's user-oriented functional
specification by 'reverse engineering' a rigorous model of the system's functionality from the
documentation [Moy 90], The objective of reverse engineering is to increase the overall
comprehensibility of a system for both maintenance and new development. This is achieved
through analysing a subject system to identify the system components and their interrelationships,
and to create a representation of that system in another form or at a higher level of abstraction
[Chi 90]. The process of building the model helps to expose the structure of the system and gives
clues about possible defects in the documentation.
The model that was constructed forms the basis for my object-oriented testing approach in Chapter
five. The method is applied to a real instance of documentation and highlights a number of
significant flaws which would probably have been missed by a traditional document review.

23

Chapter 3 : The Tanno Case Study

Here is the list of sequential steps taken towards developing the rigorous model.

Step 1 : Identify candidate objects
Step 2 : Identify object-class and assembly-structure hierarchies
Step 3 : Identify attributes and user-operations for each object
Step 4 : Identify instance connections between candidate objects
Step 5 : First document review session with developer
Step 6 : Extract the pre- and post-conditions for each operation
Step 7 : Confirm the existence of operations to add, modify, and

remove instances of each object type
Step 8 : Final document review session with the developer

Step 1 : Identify candidate objects
The first step was to identify the application-domain objects and object-classes which are
referenced in the documentation. Some objects were excluded, even those clearly playing an
important part in the application environment, which were not explicitly recognised by the
software.

Each object was given a unique name, generally the name by which it was most frequently referred
to in the documentation. Also noted were any apparent synonyms for the same object. Nouns were
judged to be possible synonyms if they appeared to be used interchangably in the documentation or
if they 'sounded' the same at a common sense level. Further confirmation that two or more nouns
were really synonyms for the one object was obtained if the same user-operations seemed to be
applicable to each and if they appeared to share the same attributes.The high frequency of apparent
synonyms made the task quite difficult and represented a serious flaw in the document.

24

Chapter 3 : The Tango Case Study

_P-bjgct

ADMISSION

ADMISSION NOTIFICATION

ADMISSIONS LIST

APPOINTMENT SCHEDULE LIST

BLOOD DATA RESULTS

BLOOD DATA TEST

BIOCHEMISTRY RESULT

BIOCHEMISTRY TEST

BLOOD PRESSURE RESULTS

BLOOD PRESSURE TEST

CHEST X-RAY RESULT

CHEST X-RAY TEST

CONFIGURATION PARAMETERS

CONSTANT

CROWN CRISP TEST

CROWN CRISP TEST RESULT

CYTOLOGY RESULT

CYTOLOGY TEST

CYTOLOGY TEXT

DOCTOR EXAMINATION CODE

DOCTOR EXAMINATION

DOCTOR EXAMINATION RESULTS

DOCTOR EXAMINATION TEXT

DOCTOR TEST RESULTS

DOCTORS TEST

ECG TEST

ECG TEST RESULT

ECG TEXT

FAMILY HISTORY TEST

FAMILY HISTORY TEST RESULT

GP LETTER

HAEMOCULT TEST

Figure 3.1

Syn.o n y m ls i

RECORD BOOK

DAY-SHEET

PHYSICAL EXAMINATION

DOCTORS LETTER

25

Chapter 3 : The Tanno Case Study

Q-bjec.t

HAEMOCULT TEST RESULTS

HAEMOTOLOGY RESULT

HAEMOTOLOGY TEST

HAEMOTOLOGY TEXT

HEARING TEST

HEARING TEST RESULTS

HEIGHT AND WEIGHT RESULTS

HEIGHT AND WEIGHT TEST

INVOICE

LABEL

LABORATORY TEST

LABORATORY TEST RESULTS

LETTER

LUNG FUNCTION RESULTS

LUNG FUNCTION TEST

MAMMOGRAM RESULT

MAMMOGRAM TEST

MAMMOGRAM TEXT

MEDICAL FORMULA

NEW PATIENT

NEW PATIENT APPOINTMENT

NURSE TEST RESULTS

PATIENT

NURSES TEST

OUTPUT

PAST HISTORY TEST

PAST HISTORY TEST RESULT

PATHOLOGY RESULT

PATHOLOGY TEST

PATHOLOGY TEXT

PATIENT ADDRESS LABEL

Figure

S vnonym (s)

AUDIOMETRY TEST

ADDITIONAL PATHOLOGY

3.1 (continued)

26

Chapter 3 : The Tango Case Study

O b je c t S ynp.nyjnisji

PATIENT APPOINTMENT

PATIENT CONFIRMATION LETTER

PATIENT FOLLOW-UP REPORT

PATIENT LETTER

PATIENT MEDICAL REPORT

PATIENT RECALL LABEL

PATIENT RECALL LETTER

PATIENT TEST RESULT

PERSONAL DETAILS RESULTS

PERSONAL DETAILS TEST

PHYSICAL EXAMINATION DEFAULT TEXTS

V IS IT

CONFIRMATION LETTER

MEDICAL REPORT

RECALL LETTER

STANDARD TEXTS

PREVIOUS VISIT SUMMARY MEDICAL REPORT PATIENT SUMMARY MEDICAL

REPORT

PRINTER PARAMETER

REPORT

REPORT PARAMETER

RETURNING PATIENT

RETURNING PATIENT APPOINTMENT

SAMPLE IDENTIFICATION LABEL

SCREENING DOCTOR DOCTOR

SCREENING NURSE NURSE

SCREENING TYPE

SOCIAL HABITS TEST

SOCIAL HABITS TEST RESULTS

TEST

TEST RESULT CODE

TEST RESULT IDEAL RANGE

URINALAYSIS RESULT

URINALAYSIS TEST

VISION RESULTS

VISION TEST

X-RAY TEXT

Figure 3.1 (continued)

27

Chapter 3 : The Tango Case Study

Step 2 : Identify object-class and assembly-structure hierarchies

The object-types shown in Figure 3.1 are highly interrelated. Some object-types denote a
super-class or sub-class of other object-types. For example, TEST is a super-class which
includes DOCTORS TEST,NURSES TEST and LABORATORY TEST as sub-classes.
Some object-types are assembly structures built from two or more other object-types. An
example is where, PATIENT TEST RESULT is the aggregate o f DOCTORS TEST
RESULT, NURSES TEST RESULT and LABORATORY TEST RESULT. Figure 3.1
also includes 'objects' which are actually individual instances of an object-class. For
example CROWN CRISP TEST is an instance of DOCTORS TEST.
Such object structures were looked for in the documentation. There was considerable
difficulty in doing so. Only one hierarchy was explicitly identified. Other hierarchies were
implicit and were pieced-together only with painstaking study of the document. Figure
3.2 shows the provisional object structures that were found. The notation used to
represent the structures is drawn from [Coa 90], The 'consists o f relationship in an
assembly-structure is represented with a triangle pointing to the aggregate object.
The exercise was well worth while. It greatly added to the understanding of the scope and
static structure of Tango. A nice example of abstraction in action.

28

Chapter 3 : The Tango Case Study

Patient

A
Patient Appointment

A
New
Patient

Returning
Patient

New
Patient
Appointment

Configuration Parameter

A
Screening Screening
Type Doctor

Screening
Nurse

Physical
Examination
Default
Text

Returning
Patient
Appointment

Constant

A
Printer

Parameter
Report
Parameter

Nurses Test

A
JßKnoc

Vision
Test

Blood
Data
Test

Test

A
Doctors Test

Hearing
Blood

Pressure
TestHeght

and Weight
Test

A
rpwn

;risp
Test

Past
History

Test

Socia
Habits
Test

mih

Chest
X-Ray
Test

C

 1
Laboratory Test

Pathology
Test

A

Urinalysis
est

Lung Function
Test

Personal
Details

Test Doctor
Examination

Test

Mammogram
Test

Bio-
Chemistry

Test EGG
Test

Haematology

Figure 3.2 : The Object Class Hierarchies

29

Chapter 3 : The Tango Case Study

Patient Test Results

Nurses Test Results

 A
Jjdaemocult

Result

Doctors Test Results Laboratory Test Results

A
Crown
Crisp
Test
Result

etc. etc..

C
X
T<
Result

hest
X-Ray
Test

etc.

List

Report

A

Appointment
Schedule
List Patient

Medical
Report

Output

A

Patient
Follow up
Report

Label

_A.
Le ter Invoice

Patient Patient
Address Letter
Label

Sample G.P.
Identification Letter
Label Patient

Recall
Label

A

Patient
Recall
Letter

Patient
Confirmation
Letter

Previous
V isit

Summary
Medical
Report

Figure 3.2 : The Object Class H ierarchies (continued)

30

Chapter 3 : The Tango Case Study

Step 3 : Identify attributes and user-operations for each object
The next step was to identify the attributes of each candidate object and the user-operations
which could be applied to the object. It was found that a number of user-operations
automatically triggered-off a series of 'side-effect' operations on other objects. For
example, the user-documentation states that when the user attempts to add an appointment

for a 'new' patient, the personal details of the new patient are automatically requested, and
a record for that patient automatically added to the patient details file, before the
appointment is processed. Some of these automatically invoked operations may also be
invoked directly by the user whilst others may not. A simple notation was developed to
capture this behaviour.

The analysis was restricted to operations explicitly described in the user-documentation.
There was no surmise about 'invisible' operations internal to the software.
Some difficulty was experienced in gathering the attributes and operations for many of the
objects because these were not explicitly recorded in an 'easy to get at way' in the
document. The presence of apparent synonyms for some attributes and operations added to
the difficulty of the task.
The process threw up a number of apparent anomalies in the documentation. For many
'objects' no attributes and no operations could be found. Some obvious questions posed
were : Could it be that these 'empty' objects were not really objects in their own right ?
Could it be that they were really attributes of other objects, unrecognised synonyms, or
were intended to play some other role in the system ? These problematic objects are listed in
Figure 3.3.

31

Chapter 3 : The Tango Case Study

ADMISSION

ADMISSION NOTIFICATION

MAMMOGRAM TEXT

TEST RESULT IDEAL RANGE

TEST RESULT CODE

DOCTOR EXAMINATION RESULT

DOCTOR EXAMINATION

PHYSICAL EXAMINATION DEFAULT TEXT

Figure 3.3 - Candidate Objects for which
could be found

Figure 3.4 shows the attributes and user-operations that were identified for each 'non
empty' object. For economy and clarity of presentation, the full use of 'inheritance' was
made in that each attribute and user operation is located in the most general object-class to
which it appears to apply. Members of sub-classes inherit these attributes and operations
from their super-classes. Figure 3.4 gives a very good overview of the structure and
functionality of Tango. This is a good example of the descriptive power of abstraction and
inheritance when used in combination.

MEDICAL FORMULA

DOCTOR EXAMINATION CODE

ECG TEXT

HAEMOTOLOGY TEXT

PATHOLOGY TEXT

X-RAY TEXT

CYTOLOGY TEXT

DOCTOR EXAMINATION TEXT

no operations and no attributes

32

Chapter 3 : The Tango Case Study

Patient
Appointment

Appointment Number
Patient Number
Date of Visit
Admitted (Yes/No)
etc....

Modify
Cancel
Reinstate
Admit
Unadmit
Clearout

New .Patient
Appointment

Returning Patient
Appointment

(as above) (as above)

Make New Patient
Appointment

{P1} w \
Make Returning Patient

Appointment

This shows that 'Make New Patient Appointment' automatically
triggers off 'Add New Patient'.

(See 'New Patient' in this figure)

Figure 3.4 : Attributes and operations

33

Chapter 3 : The Tango Case Study

Configuration Parameter

?
Sccpemng

Screening Code

Screening Name

Add

Display

Amend

Remove

Screening
D octor

Doctor Code

Doctor Name

Add

Display

Amend

Remove

¡ f e e ™ 9
Nurse Code

Nurse Name

Add

Display

Amend

Remove

Physical Exam ination
D efault Text
(No attributes
identified)

(No operations
identified)

C onstant

Display
Amend

O utput

P rin t

A

„ P rin ter
P a ram e te r

(Many attribute!
identified)

„R e p o rt
P a ram eter

(Many attributes
identified)

Label Report Invo ice L e tte r

Admissions
List

Appointment
Schedule List

Patient
Medical
Report

Patient
Follow-up
Report

Previous
Visit
Summary
Medical
Report

Patient
Letter

3.P.
_etter

Amend Amend ^mend

5
etc

Figure 3.4 : Attributes and operations (continued)

34

Chapter 3 : The Tango Case Study

This shows that 'Add New Patient' is automatically
triggered by 'Make New Appointment'.
(See 'Patient Appointment' in this figure)

Test Patient Test Results

(Each of the 21 tests Is
described In detail in
the documentation)

Patient Number

Appointment Number

No operations on instances
of test identified

Add

Display

Amend

35

Chapter 3 : The Tanno Case Study

Step 4 : Iden tify instance connections betw een cand ida te objects
An instance connection is a constraint on the existence of an instance of an object-class.
For example, a set of test results for a patient (i.e. PATIENT TEST RESULTS) can exist
only if there is a corresponding instance of a PATIENT APPOINTMENT. Instance
connections are an important component in the description of any system.
Figure 3.5 shows the instance connections that could be identified from Tango
documentation. The instance connections are drawn at the highest level of generalisation at
which they appear to apply. Thus lower level object-classes are shown in F igure 3.5 only
if they participate in instance connections in which the more general or aggregate object
does not participate. The cardinality of each connection is also shown. Where cardinality
could not be determined from the documentation, a "?" appears. The notation is used to

express the cardinality of an instance connection. Here is an example:
APPLE<1:2 1:1>0RANGE shows that each instance of APPLE must be associated
with exactly one instance of ORANGE and that each instance of ORANGE must be
associated with one or two instances of APPLE. The task of constructing Figure 3.5
from user-documentation proved to be rather difficult. Few instance connections were
explicitly identified.

A number of apparent anomalies were identified. These fall into two categories :

(1) The existence of seemingly 'disconnected' objects

Despite a lot of effort no instance connections for sixteen candidate objects were identified,
(see Figure 3,6). Maybe connections do exist but they could not be deduced from the
documentation. These sixteen 'disconnected' objects happen to be the same sixteen
'objects’ for which no attributes and operations were found (see F igure 3.3).
(2) The existence of instance connections of unspecified cardinality. The cardinality of

four instance connections could not be established from the user-documentation:

36

Chapter 3 : The Tango Case Study

PATIENT < 1:10:?> PA TIEN T-A PPO IN TM EN T

NURSE'S TEST RESULTS <?:1.......?:7> NURSES' TEST

DOCTOR'S TEST RESULTS <7:1.......?:6> DOCTORS'TEST

LABORATORY TEST RESULTS <?:1-— ?:8> LABORATORY TEST

These unspecified cardinalities raise a number of questions which could be of great
importance to potential users of Tango. For example, can only one future scheduled
appointment exist at any given time for a patient? Or is it possible to stack-up a number of
future appointments for a patient? If some of the nurses',doctors' or laboratory tests are
not administered to a patient, do the test results for the tests which ARE administered
constitute a valid set of patient test results?

37

Chapter 3 : The Tango Case Study

Patient Patient 1:1 1:1 Patient Screening
Address Label Recall Letter Recall Label Invoice Type

0:M

1 :1

PATIENT
TEST
RESULTS

1:1

Nurses
Test
Results

Doctors
Test
Results

?:1

?: 7

?:1

?:6

Nurses
Test

Doctors
Test

Output
0:M 0:M

0:? PATIENT
APPOINTMENT

X ° 7
Patient /
Confirmation
Letter 1

X 1 :1 /
0 : 1 / ------------------- 1—

Screening Screening Appointment
Nurse Doctor Schedule

.ist

0:1

PATIENT
MEDICAL
REPORT

1:1
Labor.
Test
Result

atory

s

?:1

?:8

Laboratory
Test

G.P. Summary
Letter Medical

Report

Constant

1:1

0:1

Sample
Identification
Label

Figure 3.5 : Instance Connections

38

Chapter 3 : The Tanno Case Study

ADMISSION

ADMISSION NOTIFICATION

MAMMOGRAM TEXT

TEST RESULT IDEAL RANGE

TEST RESULT CODE

DOCTOR EXAMINATION RESULT

DOCTOR EXAMINATION

MEDICAL FORMULA

DOCTOR EXAMINATION CODE

ECG TEXT

HAEMOTOLOGY TEXT

PATHOLOGY TEXT

X-RAY TEXT

CYTOLOGY TEXT

PHYSICAL EXAMINATION DEFAULT TEXT DOCTOR EXAMINATION TEXT

Step 5 : First document review session with developer

Steps 1 through 4 identified a number of'puzzles' with Tango's user-documentation.
Before proceeding any further with the analysis of the document, a document review
session was held with the developer to confirm the validity of the analysis and to sort out
the 'puzzles'.

First Figure 3.1 was reviewed. It was confirmed that all but one of the candidate
synonyms really are synonyms. VISIT is not a synonym for PATIENT APPOINTMENT
as thought, but is a synonym for ADMISSION.

Next Figures 3.3 and 3.6 were reviewed which list, respectively; objects that are
apparently 'empty' (i.e. have no attributes and no operations) and objects that do not seem
to participate in any instance connections. It was learnt that DOCTOR EXAMINATION
actually consists of nineteen different tests, called PHYSICAL EXAMINATION TESTs,
which involve examining some physical attribute of the patient (for example his/her eyes).
Each of these tests is identified with a unique code (DOCTOR EXAMINATION CODE
synonym for which is TEST RESULT CODE) which is an attribute of the test rather than
an object in its own right. The result for a test is DOCTOR EXAMINATION RESULT.
Associated with each test is a paragraph of standard text (PHYSICAL EXAMINATION
DEFAULT TEXT). The doctor may include this paragraph of text in the PATIENT

MEDICAL REPORT if the result of the test is 'normal'. If the result is 'abnormal', the
doctor may generate his/her own text (DOCTOR EXAMINATION TEXT).

Figure 3.6

39

Chapter 3 : The Tango Case Study

It was also learnt that MEDICAL FORMULAS and TEST RESULT IDEAL RANGEs are
algorithms and constants respectively used by the software when computing PATIENT
TEST RESULTS. These object types appear to be 'hard-coded' into the system. The term
ADMISSION NOTIFICATION was used in error in the documentation. It should have
read APPOINTMENT NOTIFICATION and is a further synonym for PATIENT
CONFIRMATION LETTER. The term ADMISSION refers to a PATIENT
APPOINTMENT for which the PATIENT has attended and undergone tests.
MAMMOGRAM TEXT, ECG TEXT, HAEMOTOLOGY TEXT, PATHOLOGY TEXT,
X-RAY TEXT and CYTOLOGY TEXT refer to free text paragraphs which may be
generated by clinic staff for inclusion in the PATIENT MEDICAL REPORT if, for
example, the results of these tests are abnormal.

Figure 3.5 (Instance Connections) was then reviewed. It was confirmed that the analysis
was correct. The four instance connections for which no cardinalities could be found were
looked at in particular The review established that the system will allow only one future,
scheduled PATIENT APPOINTMENT to exist for any PATIENT (i.e. future appointments
can't be stacked up for a patient). From the review it was learnt that a partial set of test
results does constitute a valid set PATIENT TEST RESULTS (i.e. not all tests must be
administered to a patient).

Following on the review the various diagrams were amended as necessary. Having
resolved all the puzzles, the next step in the analysis took place.

40

Chapter 3 : The Tango Case Study

Step 6 : Extract the pre- and post-conditions for each operation

This step concerned constructing the pre- and post-conditions for each user-operation. This
proved to be moderately difficult. Very few of the conditions were made explicit in the
documentation. This meant relying heavily on a limited application domain knowledge and
on intuition. As a result, there was no reason to suggest that the analysis was accurate and
complete. Figure 3.7 shows a 'best shot' at making the pre- and post-conditions explicit.
As in earlier figures, each operation is attached to the most general object-class to which it
applies. It is made explicit in the diagram where the pre- or post-conditions differ for a sub
class. This use of abstraction greatly simplifies the presentation.

The notation used for recording the conditions is fairly informal, but was adequate for the
purpose in hand. Had the complexity of the application been greater, it would have been
necessary to adopt a more formal and elaborate notation such as that used in VDM [Jon 90]
or Z [Woo 88]. In some of the conditions, the notion of a 'state-indicator' is introduced
[Ski 90]. The use of the state-indicator helped to express constraints on the sequences of
operations which may be validly applied to an instance of an object-class, and helped to
express alternative post-conditions where the effect of an operation is contingent on the
internal state of the object.

In addition to a general feeling of unease about the accuracy and completeness of Figure
3.7, a number of specific ambiguities in the documentation were identified. For example,
can the details of a PATIENT APPOINTMENT be modified after the PATIENT has been
admitted? Is it possible to cancel a PATIENT APPOINTMENT which has not resulted in
an ADMISSION but which is less than three months old (and thus not removable by
'clearout')? To make a RETURNING PATIENT APPOINTMENT must there exist an
instance of a previous, admitted PATIENT APPOINTMENT for this PATIENT ? Perhaps

the answers to these questions are unimportant to users - but maybe this is not so.

41

Chapter 3 : The Tango Case Study

Qbjççt Operation Pre-Condition Post-Condition

Patient Display Patient

details

Patient present (self evident)

Amend Patient Patient present (self evident)

details

Patient Modify state indicator = 1 or ? state indicator unchanged

Appointment Cancel state indicator = 1 or ? state indicator = 2

Reinstate state indicator = 2 state indicator = 1

Admit state indicator = 1 state indicator = 3

Unadmit state indicator = 3 state indicator = 1

Clearout date of visit earlier

than 3 months ago
and

if state indicator = 3

if state indicator * 3

Patient Appointment

moved to archive table

Patient Appointment

Sub-Types:
deleted from system

New Patient Make new Patient Patient not present Patient present and

Appoinment Appointment Patient Appointment

present with state-

indicator = 1

Returning
Make Returninq

Patient present and no Patient Appointment

Patient Patient Patient Appointment present with state-

Appointment Appointment present for this

Patient with state-

indicator = 1 and

Patient Appointment

present for this

patient with state-

indicator = 3

indicator = 1

Figure 3.7 : Pre and Post conditions for user operations

42

Chapter 3 : The Tango Case Study

Object Operation Pre-Condition Post-Condition

Output Print (self evident) (self evident)

Sub-Types:

Patient
Medical
Report

Amend
(self evident) (self evident)

Patient
Letter

Amend (self evident) (self evident)

G.P.
Letter Amend (self evident) (self evident)

Configuration

Parameter

Sub-Types:

Screening
Type

Add Display Amend

Remove

(self evident) (self evident)

Screening
Nurse

Add Display Amend (self evident) (self evident)

Remove

Screening
Doctor

Add Display Amend (self evident) (self evident)

Remove

Physical
Examination
Default Text (None)

Figure 3.7 : Pre and Post conditions for user operations
(continued)

43

Chapter 3 : The Tango Case Study

Figure 3.7 : Pre and Post conditions for user operations
(continued)

44

Chapter 3 : The Tango Case Study

Step 7 : Confirm the existence of operations to add, modify, and remove
instances of each object type
By its nature, one would expect any information system to provide user-operations to add
and delete instances of persistent objects and operations to modify the values of the
attributes. An exception to this generalisation would be an object, such as a table of
'hardwired' constants, which by design the user is not allowed to change. In step 7, an
instance of each object-class was 'walked' through its life-cycle and confirmed, or
otherwise, the presence of these basic operations. If these operations are missing from the
documentation, it may signal an inadvertent omission from the documentation or a
deliberate design decision which may have important implications for the user. Figure
3.8 shows those object-classes for which one or more of the basic operations could not be
found. Once again, the full use of abstraction is applied in presenting the results.

Figure 3.8 presents a number of puzzles. While a new instance of PATIENT is
automatically created when a NEW PATIENT APPOINTMENT is made, there appears to
be no operation which allows the user to directly create a new instance of PATIENT. Can a
new patient be added only in the context of that patient making his/her first appointment?

It appears that instances of the following objects are 'hard-wired1 into the system and may
not be added, changed or removed by the user : TEST, MEDICAL FORMULA, TEST

RESULT IDEAL RANGE and PHYSICAL EXAMINATION DEFAULT TEXT. The first
three of these object-classes specify the various tests to be applied to patients and contain
parameters and algorithms for processing test results. Thus they are very central to the
operation of the system. Perhaps user operations for their maintenance exist in the
software, but they do not appear in the documentation.

45

Chapter 3 : The Tanno Case Study

Obiect Create Operations Amend Operations Remove Operations

Patient No Yes No

Test
No No No

Medical No No No
Formula

Test Result
Ideal Range

No No No

Physical
Examination
Default

No No No

Text

Figure 3.8 : Persistent objects for which no Create,
Amend or Remove user-operations
could be found.

Step 8 : Final document review session with the developer
The purpose of this final step was to confirm the validity of the analysis in steps 6 and 7
and to feed back the new 'puzzles' that had been found in the documentation. The
objectives were achieved during the review.

3.6 Conclusions from developing the rigorous model
An approach to critically examining the content of a piece of draft user-documentation has
just been described. There is a degree of confidence in this approach in that the process of
constructing the 'rigorous model' uncovered problems which a more traditional document
review would have missed.

46

Chapter 3 : The Tango Case Study

The notation used is relatively informal but was adequate for the task. However, to cope
with more complex systems the notation would need elaboration and an increase in the level
of formality. Also tool support would be required to analyse documents describing larger
or more complex systems.

A good knowledge of the application domain is very important. The more the model
builder knows about the application domain, the speedier and more thorough the analysis.
Maybe the best person to build the model is a potential user!

For the future, the idea of re-writing a user-document so that its structure and content are
isomorphic with that of the rigorous model seems to be valid. One can even visualise a tool
which would take the model as input and automatically produce a 'skeleton' of the
restructured document for completion by a human author. The new 'de-bugged' document
would have a 'logical' structure which users might find easier to comprehend than a
document structured in any other way. The degree of benefit in such restructuring would
probably depend on the extent to which the constructs in the model reflect the user’s
'mental model' of the application domain (see [Car 88]). This question can only be
answered by empirical research.

47

Chapter 3 : The Tango Case Study

3.7 Case study conclusions
These are the conclusions derived from the case study.

3.7.1 Judgem ents reached on 'Certification specification'
Figure 3.9 shows the 'judgements' reached on each product attribute agreed in the
'Certification specification'.

A ttrib u te Judaement Reference

Correctness marginally acceptable Chapter 3,5

Reliability acceptable Appendix C

Logical data security unacceptable Appendix B

Usability unacceptable Appendix A

'Ease of house-keeping' acceptable Appendix E

Performance acceptable Appendix F

Documentation unacceptable Chapter 3

M aintainability acceptable Appendix D

Figure 3.9

The overall judgement was that documentation, logical data security and the user-interface
required considerable improvement before the product could be 'approved'.

3.7.2 Tango and Certification

The experience with Tango suggested that it is possible to 'certify' an off-the-shelf PC-
based software product within an acceptable time scale and cost. The importance of
building a well-thought-out and agreed 'Certification Specification' with the developer at
the outset of a certification exercise also proved to be a valuable exercise. Also the view that
all certification exercises must include 'reliability' and 'correctness' amongst the attributes
to be assessed was agreed. These two attributes are fundamental, regardless of the
application and the context of use. Other attributes such as portability, usability and
maintainability may or may not be important in particular instances. Therefore, these
attributes might not appear in a certification specification. Based on the experience with

48

Chapter 3 : The Tango Case Study

Tango the 'certificate' must make explicit the particular attributes which were tested and
approved. An unqualified,'blanket' imprimatur on a software product is a very dubious
proposition. The certification process must include feedback to the developer on what
needs to be done to the product to make it 'certifiable' should it fall short of acceptability
on an attribute. Thus, technology transfer and product and process improvement will be
encouraged.

3.7.3 Inspection and checklists
The case study placed a lot of emphasis on the use of inspection and checklists. In the
absence of agreed standards for most if not all of the product attributes examined,
professional judgement was often used in reaching a set of conclusions. Despite any
progress that may be made in the future in the science of software metrics, professional
judgement will play a big role in certification exercises.

3.7.4 Tools
During the case study I sought tools to support the approach in developing a rigorous
model of Tango's functionality from its documentation. I didn't find any tools to support
this task. Again no tool was readily available. A tool was needed to compute white-box

maintainability metrics on Tango source code. Existing tools don't have a front end for
INFORMIX 4GL so a manual approach was adopted to computing metrics. (See Appendix
D). Also I needed a tool to help generate test cases from the rigorous model. Again no tool
was readily available.

3.8 Summary

The Tango case study proved very useful in terms of a 'certification' exercise. Although

only a prototype attempt at certifying a piece of software, it did give valuable insights into
such a venture.

In Chapter five I explain my method of taking the particular case of object-oriented testing
and showing how this can be made more rigorous using an object-oriented model of the
system. In Chapter four I will examine state-of-the-art in the testing area..

49

Chapter 4 : Testing state-of-the-art

Chapter 4

Testing state-of-the art

4.1 Introduction
Verification and validation (V&V) is one of the software engineering disciplines that help
build quality into software. It is a collection of analysis and testing activities across the full
life cycle as shown in Figure 4.1.

4.2 Software quality is defined by the IEEE [IEE 89] a s :

(1) The totality of features and characteristics of a software product that bear on its
ability to satisfy given needs; for example, conform to specifications.
(2) The degree to which software possesses a desired combination of attributes.
(3) The degree to which a customer or user perceives that software meets his or her
composite expectations.

(4) The composite characteristics of software that determine the degree to which the
software in use will meet the expectations of the customer.

4.2.1 Verification :
(1) The process of determining whether or not the products of a given phase of the
software development cycle fulfil the requirements established during the previous
phase.

(2) Formal proof of program correctness.
(3) The act of reviewing, inspecting, testing, checking, auditing, or otherwise
establishing and documenting whether or not items, processes, services, or documents
conform to specified requirements.
Verification [Fuj 89] involves evaluating software during each life-cycle phase to ensure
that it meets the requirements set forth in the previous phase.

so

Chapter 4 : Testing state-of-the-art

stem.,.
as ib ility

Validation

Software plans
and .
require m e n ta /

Validation

Product
Design

Integration

Implemenatation

Svste.m

Operations and
maintenance^'’

Figure 4.1

51

Chapter 4 : Testing state-of-the-art

4.2.2 Validation :
The process of evaluating software at the end of the software development process

to ensure compliance with software requirements.

Validation involves testing software or its specification at the end of the development effort
to ensure that it meets its requirements (that it does what it is supposed to do).

While "verification" and "validation" have separate definitions, it is possible to derive the
maximum benefit by using them synergistically and treating "V&V" as an integrated
definition.

V&V test activities span many phases, from requirements through installation. V&V testing
continues into the operations and maintenance phase to address any changes made to the
software after initial delivery. A comprehensive test-management approach recognises the
differences in objectives and strategies of different types of testing. The main testing
activities which are examined later in this Chapter - unit, integration, system and acceptance
testing, all produce test-plan, test-design, test-case, and test-procedure documents.

In brief, unit testing verifies the design and implementation of software units or modules;

Integration testing verifies functional requirements as the software units are integrated,
directing attention to internal software and external hardware and operator interfaces;
System testing validates the entire program against system requirements and performance
objectives; Acceptance testing validates the software against V&V acceptance criteria,
defining how the software should perform with other completed software and hardware. In
addition to testing against system and software requirements, effective testing requires a
comprehensive understanding of the system. Such an understanding is developed through
systematically analysing the software's concept, requirements, design and code.

52

Chapter 4 : Testing state-of-the-art

4.3 Static Analysis : The main aim of static analysis is to determine properties of the
software product without actually executing the software. The software product (usually
code or specification) is read in by a static analyser which produces output of three basic

types.
- Analysis of the code.
- Numerical values describing some attribute of the code.
- Alternative representations of the product, (e.g. directed graphs LOGISCOPE, ASA
[Ver 90]) or restructured code (SPADE [PVL 90]).

4.4 Formal technical reviews
A formal technical review is a software quality assurance activity that is carried out by
software engineers. The objectives of a formal technical review are :
- to highlight errors in the function, logic or implementation of the software
- to verify that the software under test meets its requirements
- to assure that the software has been represented according to predefined standards
- to achieve software that is developed in a uniform manner
- to make software projects easier to manage

The formal technical review is actually a class of reviews which includes inspection
techniques and walkthroughs.

4.4.1 Inspection techniques :

The inspection of software is a method of static testing to verify that software meets its
requirements. It engages the developers and others in a formal process of investigation that
usually detects more defects in the product (and at a lower cost) than does machine
testing. The inspection process has been very successfully applied to areas such as
software test plans, user documentation, high level design, system structure design. It
suggests that virtually anything that is created by a development process, and that can be
made visible and readable can be inspected [Fag 86].

53

Chapter 4 : Testing state-of-the-art

Software inspections are conducted by peers, and typically comprise three to six
participants. The objective of a software inspection is to detect and identify software
element defects. This is a rigorous, formal peer examination that does the following :
(1) verifies that the software element(s) satisfies its specifications
(2) verifies that the software element(s) conform to applicable standards
(3) identifies deviation from standards and specifications
(4) collects software engineering data (e.g. fault and effort data)
(5) does not examine alternatives or stylistic issues

4.4.2 W alkthroughs
The objective of a walkthrough is to evaluate a software element. Although long associated
with code examinations, this process is also applicable to other software elements such as
architectural design, detailed design, test plans/procedures, and change control procedures.
The major objectives are to find defects, omissions, and contradictions; to improve the
software element(s); and to consider alternative implementations.
Other important objectives of the walkthrough process include exchange of techniques and
style variations, and education of the participants. A walkthrough may point out efficiency
and readability problems in the code, modularity problems in the design or untestable
design specifications.

4.5 Testing related definitions
These are some definitions related to the testing area [IEE 89].

Testing :

The process of exercising or evaluating a system or system component by manual or
automated means to verify that it satisfies specified requirements or to identify
differences between expected and actual results.

Test case :

A specific set of test data and associated procedures developed for a particular
objective, such as to exercise a particular program path or to verify compliance with a
specific requirement.

Test data :

Data developed to test a system or system component.

54

Chapter 4 : Testing state-of-the-art

Test bed :
(1) A test environment containing the hardware, instrumentation tools,
simulators, and other support software necessary for testing a system or system
component.
(2) The repertoire of test cases necessary for testing a system or system component.

Test log :
A chronological record of all relevant details of testing activity.

Test plan :
A document prescribing the approach to be taken for intended testing activities. The plan
typically identifies the items to be tested, the testing to be performed, test schedules,
personnel requirements, reporting requirements, evaluation criteria, and any risks requiring
contingency planning.

Test report :
A document describing the conduct and results of the testing carried out for a system
or system component.

Test phase :
The period of time in the software life cycle during which the components of a software

product are evaluated and integrated, and the software product is evaluated to determine
whether or not requirements have been satisfied.

Test procedure :
Detailed instructions for the set up, operation, and evaluation of results for a given test.

Automated test generator :

A software tool that accepts as input a computer program and test criteria, generates test
input data that meet these criteria, and sometimes determines the expected results.

55

Chapter 4 : Testing state-of-the-art

Software reliability :
(1) The probability that software will not cause the failure of a system for a specified time
under specified conditions. The probability is a function of the inputs to, and use of the
system, as well as a function of the existence of faults in the software. The inputs to the
system determine whether existing faults, if any, are encountered.

(2) The ability of a program to perform a required function under stated conditions for a
stated period of time.

4.6 Testing in general
Testing is an activity where a program, or a module of a program, is subjected to a
sequence of inputs and the outputs are compared to the expected outputs. Myers [Mye 79]
states a number of rules that serve well as testing objectives :
- testing is a process of executing a program with the intent of finding errors
- a good test case is one that has a high probability of finding as yet undiscovered error
- a successful test case is one that uncovers an as yet undiscovered error.
If testing is carried out successfully, it will uncover errors in the software. As a secondary
benefit, testing demonstrates that software functions appear to be working according to
specification and that performance requirements appear to have been met. Also, data which
is collected during testing provides a good indication of software reliability, and some
indication of software quality as a whole.

The testing process can be a costly, time consuming activity that can take up as much as
50% of development costs. In testing safety critical systems (e.g nuclear reactor
monitoring, flight control) it can cost three to five times as much as all the other steps in the
software engineering process combined.

Software testing is perhaps the most critical element of software quality assurance given
that it represents the review of specification, design and coding. As in other stages of the
software development process, it is also error prone. Testing can be used only to detect the
presence of errors. It cannot be used to achieve the opposite - to prove conclusively their
absence]Rat 87].

4.6.1 Software Reliability and testing

Software reliability can be viewed as the probability that a given program will operate
correctly in a specified environment for a specified duration. Several models have been
proposed for estimating the reliability of programs. They can be broadly categorised into

56

Chapter 4 : Testing state-of-the-art

software reliability growth models and statistical models.
Reliability growth models predict a program's reliability on the basis of its error history.
Statistical models estimate it by determining the response (success/failure) of a program to a

random sample of test cases, without correcting any errors which may be discovered

during this process.
Of course testing is very closely related to the assessment of the reliability of programs, and
in fact one important application of software reliability theory is to provide feedback
regarding the amount of testing necessary in order to achieve a reliability objective
[Goe 85].

4.7 What is software testing ?
When testing, the objective would appear to be to enhance the quality of the product under
test. Also, when carried out effectively in a commercial sense, software testing contributes
to the delivery of higher quality software products, more satisfied users, and lower
maintenance costs. From a scientific point of view, good testing will result in more accurate
and reliable results. Inadequate, ineffective testing will naturally lead to low quality results,
unhappy users, increased maintenance costs, unreliable, and inaccurate results. Software
testing is an active process. If after performing a test, no errors have been revealed, then
one should not passively assume that there are no errors present in the software - rather the
testing process has failed to find the errors which one believes are present in the software
[Par 89].

4.7.1 Why Test ?

Software testing may in itself be an expensive process, but the cost of not testing is
potentially a lot higher. In a safety critical system where human lives are at stake this is self
evident. System economics isn't adequate for determining whether a product should be
released or not in relation to safety critical systems
However, it is economics which are both the driving force and the limiting factor in testing.
The most serious errors in a piece of software, are those which are not discovered but
remain dormant when the system goes live.
Given the potential loss risks, be they commercial or life-threatening, it is obvious why
software producers might want to enhance the quality of the delivered software. It is

infeasible to exhaustively test all but the most simple piece of software. One must

remember that although the aim of any software tester will be to highlight all errors, the

reality is that there is no way of highlighting the errors that remain. No piece of software

would ever be released on the market if the developers were pledged to certify that it was

57

Chapter 4 : Testing state-of-the-art

totally free of errors.

4.7.2 W hen should testing be done ?
Traditionally software testing has centred on the testing of program code. However, errors
are not made only in the final coding of the program - they can be made throughout the
system development life-cycle. If testing is done only after coding is completed, then errors
from as early as the requirements stage might well be embedded within the software. When
testing is done only at this late stage, then the earlier in the life-cycle the original error was
made, the more costly will be its removal. Testing should be a continuous process

throughout the system development life-cycle.

4.7.3 Testing and Quality
Testing aims to improve the quality of the product under test. This is achieved through
finding and removing errors, which if were present, would detract from the operational
efficiency or accuracy of the product and thereby detract from the product's quality. In
defining quality we can take the definition according to Crosby [Cro 79].
Quality is conformance to requirements.
Other definitions include:

Quality is fitness for purpose.
Quality is fulfilment of requirements.

These definitions all have one thing in common - they relate the finished product back to its
original design intentions. The testing process is an integral part of any quality programme.
To establish whether a product conforms to its requirements, it must be tested against those
requirements.

4.8 Testing techniques
Any engineered product (and most other things) can be tested in one of two ways:
(1) knowing the specified function that a product has been designed to perform, tests can
be conducted to demonstrate that each function is fully operational;
(2) knowing the internal workings of a product, tests can be conducted to assure that "all
gears mesh"; i.e. that the internal operation performs according to specification, and all

internal components have been adequately exercised. The first approach is called black box
testing and the second, white box testing [Pre 88]. Regardless of the testing technique
employed the main objective is to derive a set of test cases that will uncover defects in the
software.

58

Chapter 4 : Testing state-of-the-art

4.9 Black Box Testing :
This form of testing is used to check conformance of the behaviour of the software with a
reference such as requirements, system specification, or user manual. (Also referred to as
functional testing or closed box testing). The term black box is used, as the program (or
the functions exercised by the program) are treated as a black box whose functionality is
determined by observing the outputs to corresponding inputs.
The aim of black box testing is to test a program from its specification. No reference is

made to the internals of the program i.e. the software code. See Figure 4.2. The tester is
provided with the specification of the software component under test. This is then used to
derive appropriate test cases. Black box testing is based on a specification of all possible
input to, and output from the software under test, as well as a description of the processing
of the data. An example of pure black box testing is with regard to the functional parts of
the acceptance test, where the end user tries out the features and functions of the overall
system.

f

input output

Figure 4.2 : Black-box function

There are advantages with black box testing as no knowledge about the internal software is
needed so the tester doesn't have to examine the software structure. Therefore, less effort is
required compared to other testing techniques.

There are disadvantages in the technique such that the results gained are purely qualitative.

59

Chapter 4 : Testing state-of-the-art

(i.e. no qualitative statement about failure behaviour or a degree of correctness can be
given). One still cannot get clues from the program about which test inputs exercise the

program the best.
Black box testing is complementary to all white box verification methods.

4.9.1 Equivalence class Partitioning :
In attempting to minimise the number of test cases, the input space of a program is
partitioned into equivalence classes with respect to the program's input specifications
[Mye 79], [Red 83]. An ideal test case will uncover a class of errors that might otherwise

require execution of many cases before the general error is observed.
Test case design for equivalence class partitioning is based on an evaluation classes for an
input condition. An equivalence class represents a set of valid or invalid states for input
conditions. Typically, an input condition is either a specific numeric value, a range of
values, a set of related values, or a Boolean condition (e.g. yes or no). Equivalence classes
can be defined according to the following :

(1) If an input is Boolean, then one valid class and one invalid class are defined.
(2) If an input condition specifies a range, one valid and two invalid equivalence classes
are defined.
(3) If an input condition specifies a member of a set, one valid equivalence class and one
invalid equivalence class are defined.
(4) If an input condition requires a specific value, one valid and two invalid equivalence
classes are defined.

4.9.2 Boundary value Analysis :
Boundary value analysis is a test case design technique that complements equivalence class
partitioning. This approach to black box testing involves choosing test cases that lie on or
near the boundaries of an input domain. For some undefined reasons a larger proportion of
errors tend to occur at the boundaries of the input domain, rather than at the centre.
The following are the guide-lines applied in selecting test cases for this technique:

(1) If an input condition specifies a range bounded by values x and y, then test cases
should be designed with values at x and y, just above and just below x and y.

(2) If an input condition specifies a number of values, test cases should be developed that

exercise the maximum and minimum numbers. Values just above and below the maximum
and minimum are also tested.

60

Chapter 4 : Testing state-of-the-art

(3) If a data structure within a program has a prescribed boundary, then a test case that
exercises the structure at its boundary should be applied.

(4) Boundary value analysis also derives test cases from the output domain. (1) and (2)
are applied to output conditions.

4.9.3 Data validation testing :
This technique uses the idea of filling in the gaps left by other black box testing methods. It
is similar to other methods in that it is heuristically based (i.e. a set of guide-lines are
provided to assist in testing, but no formal analysis is used). An example of this technique
is when commands are typed using a keyboard, then the following data validation tests
would be appropriate.
(1) Generate a system interrupt immediately after a command has been entered
(2) Omit all commands (i.e. just carriage return)
(3) Type in a partially correct command and then terminate the command entry
(4) Provide syntactically correct input that is out of sequence or specified at the wrong time
(5) Specify commands with the incorrect syntax
(6) Give correct commands, but with too much qualifying data

4.9.4 Random testing :

Here the program is tested by randomly selecting some subset of all possible input values.
There has been strong disagreement about its usefulness in the testing process [Mye 79].

4.9.5 Cause effect graphing :
This technique provides a concise representation of logical conditions and corresponding
actions [Elm 73]. It involves analysing the program specification to determine its affect on
various types of input. The technique involves four steps :
(1) Causes (input conditions) and effects (actions) are listed for a module, and an identifier
is assigned to each
(2) A cause-effect graph is developed
(3) The graph is converted to a decision table
(4) Decision table rules are converted to test cases

Cause effect graphing is useful for exercising combinations of conditions. As in
equivalence class partitioning, the identification of the causes from the specification is far
from straightforward [Par 89].

61

Chapter 4 : Testing state-of-the-art

4.10 White box testing :
White box tests are defined taking into account the internal structure of the program being
tested and, in addition to the comparison of achieved and expected outputs.(Also referred to
as structural testing, glass-box testing,open box testing). White box testing has received the
most attention in terms of testing research, and there are a number of methods associated
with it - far more than with black box testing.
The main aim of white box testing is to "cover" or "exercise" the code with a degree of
thoroughness (e.g. every statement is executed). Initially it may not appear obvious why
white box testing is necessary given that black box testing checks the specification against
the implementation. Why more testing ? There may be parts of the software which are not
fully exercised through the black box functional tests.

4.10.1 Statem ent testing
This method of white box testing requires test data to be constructed which causes each
statement in the code to be executed

4.10.2 Arc and Path testing
The starting point in this form of white box testing is to derive a program flow graph which
represents a program in terms of arcs (showing flow of control) and nodes (representing
decisions). Arc (or branch) testing requires the construction of test data to cause each arc (a
point in the program where a decision is made, such as an " i f statement or "while"
condition) to have a true and a false outcome. A path is defined as consisting of a number of
arcs [Chu87],
(1) Given the flow graph representation of the following constructs as shown in
Figure 4.3
Sequence
If
Until
W hile

(2) Assuming that GOTO statements are not used in a program, it is a straightforward
process to derive the flow graph for any program by substituting these representations for
program statements.

(3) An exhaustive white box test would involve all possible combinations of all arcs. Apart

from the most simple of software structures this is an impossibility. So the objective of

62

Chapter 4 : Testing state-of-the-art

structural testing can be reworded to : not to test all possible arc combinations but to make
sure that all possible arcs are traversed at least once.

(4) The number of independent paths in a program can be ascertained by applying the
Cyclomatic complexity,[McC 76] to the program flow graph. An independent path is
defined as one which traverses at least one new arc in the flow graph. In programming
terminology this means exercising one or more new conditions. When used in the context
of path testing, the value computed for cyclomatic complexity also identifies the upper
bound for the number of tests that must be conducted to assure that all statements have been
executed at least once.

The cyclomatic complexity V(G) is defined as :
NUM BER OF ARCS - NUM BER O F NODES + 1

The cyclomatic complexity is termed a software metric that provides a quantitative measure
of the logical complexity of a program. It sets an upper bound on the number of test cases
that must be designed and executed to guarantee coverage of all program statements
[Li 87],[McC 89],

63

Chapter 4 : Testing state-of-the-art

Figure 4.3 : Flow graph representations

64

Chapter 4 : Testing state-of-the-art

Deriving test cases using M cCabe's metric
(1) Develop flow graph.
(2) Determine the cyclomatic complexity V(G).
(3) Determine the set of linearly independent paths. The set of V(G) gives the number of
linearly independent paths through the program control structure.
(4) Develop test cases that will exercise each independent path. It is important to choose
test data so that conditions at the predicate nodes are appropriately set as each path is tested.
Each test case is then executed and compared to expected results. Once all test cases have
been exercised, it is important to check if all statements in the program have been executed

at least once.

4.10.3 Data flow testing
So far we have looked at statement, arc and path testing, which require that the test data
cause every node, arc or path in the program's flow graph to be executed. According to
Frankl and Weyuker, [Fra 88] statement and arc testing can fail to expose many common
errors, and path testing is usually infeasible since programs with loops have infinitely many
paths. A number of test data adequacy criteria which are based on data flow (DF) analysis,
some of which "bridge the gap" between arc testing and path testing have been proposed.
These criteria are based around the idea that there should be little confidence in a system
which believes that a variable has been assigned the correct value at some point in the
program, if no test data causes the execution of a path from the assignment to a point where
the variable's value is subsequently used.

A family of test data data adequacy criteria, based on the analysis of the DF characteristics
of the program being tested is described in [Rap 82]. These criteria, termed data flow

testing criteria were originally defined for a fundamental programming language having
simply

- assignment statements
- conditional and unconditional statements
- I/O statements.

They require that the test data exercise certain paths from a point in a program where a
variable is defined to points where the variable is subsequently used. There is a tool
ASSET [NYU 90] which performs DF testing on programs written for such a language.

65

Chapter 4 : Testing state-of-the-art

4.11 T esting System s

Black box and white box testing techniques in terms of individual computer programs have
been examined so far. This is related to unit testing which is defined in the next section. It
is unreasonable to try and test systems as a single unit except in the case of small computer
programs. Software systems are constructed in terms of sub systems; subsystems are in
turn comprised of modules which are made out of procedures. The testing process is akin
to the software coding process in many ways in that it should progress in stages. The
stages should in turn logically proceed from the previous stage. See F igure 4.4 which
identifies one possible testing implementation. In Chapter five there is a discussion on
object-oriented unit testing which is based on the area of object-oriented design.

Figure 4.4 : Stages of testing

66

Chapter 4 : Testing state-of-the-art

4.11.1 The testing process

Unit testing :
This is the basic level of testing where individual components (e.g. functions or objects)
are tested to ensure that they operate correctly. Unit testing demands that each component is
independent of all other system components during testing.
Module testing :
After each program unit has been tested then module testing can take place. It should be
possible to test a module as an independent entity, without the presence of any other system
modules.
Subsystem testing :
This is where modules are integrated together to form subsystems. This stage of testing
should concentrate on detecting interface errors.
Integration testing :
Integration takes place when the subsystems are merged together to make up the whole
system. This stage focuses on finding errors which result from unanticipated interactions
between subsystems and components. This looks on the functional performance of the
entire system and considers the system itself a black box.

Top-down and Bottom-up testing
Assume we have a tree structure which represents the relationships between subsystems.

See Figure 4.5 which demonstrates that subsystem 1 calls subsystems 2, 3, 4 but is not
called by any subsystem itself.

Top-down testing :

In this type of testing subsystems are examined starting from the top of the tree and then
progressively work through to the subsystems at the bottom of the tree. See Figure 4.5.

Bottom-up testing :

Bottom-up reverses the process of top-down. The components making up a subsystem are
tested individually. Then they are integrated to form a subsystem and this is subsequently

tested. This form of testing is more appropriate during the latter stages of the software life
cycle when all subsystems are available. See Figure 4.5.

67

Chapter 4 : Testing state-of-the-art

Figure 4.5

Incremental testing :
Incremental testing introduces one subsystem at a time. The system starts off as one
subsystem and this is tested in an appropriate way. If this subsystem is deemed satisfactory
then another subsystem is introduced and further testing is administered. The process
continues until all subsystems are integrated into the complete system. The rationale behind
this form of testing is that if a subsystem introduced produces errors in the system, then the
likelihood is that these errors are attributable to the latest subsystem added.

Acceptance testing :
Acceptance testing concentrates on the readiness of a system for full installation. Three
levels of testing can be applied at this point. The first is known as alpha testing. The user
identifies the functions to be tested via requirements/design/code documents. Beta testing
involves the role of the analyst and the use of tools. The goal of beta testing is identical to
that of alpha testing but tools are used to check to see if all functions have been tested.
Gamma testing is at the highest level. This uses tools of two kinds. The first kind of tool
determines if all functions have been tested and the second kind checks to see if all
expressions are tested over expression fault revealing tests.

68

Chapter 4 : Testing state-of-the-art

4.12 Test planning
As testing is such an important stage, a test plan may be introduced. Usually test planning

will be concerned with laying out standards for the testing process rather than describing
the actual testing.
- The system should be explicitly specified
- Test cases should be derived at the design and implementation stage
- Set out the resources required for testing, the costs of testing,the scheduling of the tests.
If only a small part of the system is incomplete then system testing cannot start.
A test plan might take the form of a test case folio [Het 88].
The following should be identified :

Test group/test case
Testing objectives
Test data
Expected results

How will the test be conducted ?
Who will administer the test ?
Actual results

4.13 Types of test cases

Figure 4.6 shows the different types of test cases.

lyp .e Source

Requirements based

Design based

Code based

Randomized

Extracted

Extrem e

Specification

Logical System

Data structures and code
Random generator

Existing files or test cases

Limits and boundary conditions

Figure 4.6

69

Chapter 4 : Testing state-of-the-art

Requirements based test cases
The most direct source of test cases is from the functional specification of what the program
is supposed to do. The specification details how the program should behave, what inputs it
accepts, what processing it achieves, and the outputs it produces. E.g. If the specification

states that the program produces four different kinds of report then it is necessary to derive
test cases that will will produce all four.

Design and code based test cases
Design based test cases are based upon studying the software design and identifying areas
or features that are not adequately covered by the requirements based tests. The reason is to
supplement the requirements based tests and to cover the design interfaces and paths within
the software. Code based test cases are based on the actual software code and data
structures such that every program statement is exercised at least once and every decision is
exercised over all outcomes.

Extracted and randomized
These techniques both produce large volumes of data quite easily, but two limiting
constraints subsist; notably that it is difficult to produce expected data results for all the test
data and it is also takes a lot of time to review all of the data produced.

Extreme
It is well known within the resting area that the "best" test cases are those that have the
highest probability of finding faults if they are present. Exceptional conditions, extremes,
boundary conditions, and abnormal cases all make superb test cases because they represent
error-prone areas [Het 88].

4.14 Tools for Testing

Tools have evolved rapidly during the last decade. Extensive development has taken place
both in the research laboratories and the commercial marketplace, as witnessed by the
richness and variety of tools available.

Ever since the first compilers, editors and debuggers were developed, tools have played an

important role towards improving productivity. As the product development stage became
more complex, new tools were developed to handle additional tasks. Eventually, the
application of tools spanned the entire life-cycle.

Software is now viewed as the set of objects developed during all phases of the project life
cycle. This view has evolved over two stages.:

70

Chapter 4 : Testing state-of-the-art

(1) the greater awareness of the importance of the analysis and design phases developed

during the 1970s

and
(2) the development of tools in the 1980s to support these activities.

The first stage started when developers realised that the analysis and design phases offered
strong leverage for the prevention and detection of errors. The second stage started when
early CASE(Computer-aided software engineering) tools provided analysis and design
work benches to help automate the front end of the development process.
Presently, we are entering the third stage where the application o f tools is broadening and
deepening throughout the life-cycle, and where tools have become more refined and
integrated.

4.15 Tools supporting testing
Tools address the different aspects of the testing approach:

(1) They provide a controlled environment in which testing can take place. If the target
system is simple, it is often possible to simulate it as a more powerful host, thus gaining
access to a richer set of tools, (e.g. RUTE [GEE 90]) by simulating the final execution
environment as a way of expediting test execution.

(2) They are used for test data selection. A decision is needed on which combinations of
input values will most thoroughly exercise the system and will most likely uncover defects,
(e.g. T [PPE 90]) which uses heuristics and models of common defects to generate test
cases. This testing tool also addresses the notion of minimising the testing overhead
(especially the cost of redundant testing).

(3) They perform the testing through capturing and organising the resulting output
(e.g. Xray/DX [MRH 90]). Most such tools work on the final executable code, monitoring
its operation for conformance to specifications.

4.16 Types of tools

Tools that can reduce test time are always going to be valuable in the area of software

development. Although current usage of automated tools is limited in terms of software
testing , it is highly probable (especially with the emergence of CASE) that their use in

applications will be increased somewhat in the future and that they won't remain just as

71

Chapter 4 : Testing state-of-the-art

research vehicles. Tools can be classified into two groups according to the analysis they
perform: static analysis tools and dynamic analysis tools. There is also another family of
test related tools that neither perform direct test nor use any specific testing technique.
These are called test support tools [Lut 90].

4.16.1 Static Analysis Tools
These tools focus on requirements/design documents and on structural aspects of programs
i.e. those characteristics of a program that can be discerned without actually executing it.

Static analysis tools analyse program structure characteristics without regard to the
execution of the program that is being tested. Static analysis of programs may include a
combination of some of the functions listed below:

Code Auditing

This refers to the examination of source code to determine whether or not specified
programming standards have been followed. Typical standards include adhering to
structured design and coding, or using a standard coding format.

Consistency Checking
A consistency check determines whether or not units of program text are internally
consistent in the sense that they implement a uniform notation or terminology and are
consistent with a specification.

I/O Specification Analysis

This method generates test input data through analysis of I/O specifications.

Data Flow Analysis
This consists of the graphical analysis of collections of (sequential) data definition and
reference patterns to determine constraints which can be placed on data values at various
points of execution of the source program.

72

Chapter 4 : Testing state-of-the-art

4.16.2 Dynam ic Analysis Tools
These tools support the testing process by directly executing the program under test. They
produce certain information on the executed program (e.g which parts of the program are
being executed the most). Some of the tools in this category are :

(1) Symbolic evaluators which accept symbolic values and execute them according to the
expression in which they appear in a program. They are used to support test data
generation, path analysis, and detection of data flow anomalies (ATTEST).

(2) Test data generators assist a user in generating test data. There are three different kinds
of test data generators - pathwise test data generators, data specification systems and
random test data generators.

4.16.3 Test Support Tools
They function by simulating an environment for running module tests. They provide a
standard notation for specifying test cases and automating the test process. Some systems
compare the actual output with the expected output and highlight any discrepancies
[DeM 88].

Test harness
These tools are also known as automatic test drivers or testbeds. A test harness can be used
to apply a selected set of test cases to a program and to verify the correctness of the
resulting test output. A harness requires that the user constructs a set of test cases. Each test
case should provide values for input variables and describe the expected values of output
variables. Sophisticated test harnesses allow a user to start up a system at some
intermediate point of execution and to test values at intermediate points [How 87].

Comparators
This kind of tool compares two versions of data to identify the differences between the two
versions. The data may be program code, output of an execution, or data files.
Comparators serve primarily as tools for validating modified software to assure that the
revised software contains only particular modifications. The use of a comparator helps limit
the scope of reverification that must be performed on modified programs
(e.g. DIFFS [SCS 90]).

73

Chapter 5 : Object-oriented black box testing

Chapter 5

Object-oriented
black box testing

Introduction
In this chapter I further examine the Tango case study and use it towards a way of
developing my object-oriented testing approach.

5.1 Functional Testing
Functional testing is a process of verifying that the functions of a system are present as
specified.

5.1.1 Functions
According to Howden [How 87], mathematically all functions are of the form / ; a — > b

where / is a function which, for every object of type a, returns an object of type b. In the
simplest cases, types are sets of simple objects, such as integers or reals, and in more
complex cases they are structured objects having different components.

A function transforms an object of one type into an object of another type. An object can be
defined as data of type real, integer or it could be even structured in the form of an array,
file etc.,. Data types of the same kind are those that have the same properties and which
allow the same set of operations to be applied to them. Examples of common data types are
integers and strings of characters. The same set of operations such as add, divide, multiply,
and subtract can be applied to integers.

5.1.2 Software development and functions
Functions and their associated data are the basic conceptual units that are used to build
software. They have many uses, not only in software programs but at the requirements and
design levels they can also be useful. They may be both formally and informally defined.

5.1.3 Variables and data structures

Different programming languages contain different kinds of built-in data types and data
structures. Variables and data structures can be looked at in two ways. One way is as

denoting objects of a certain type, and the other way is as storage structures for holding

74

Chapter 5 : Object-oriented black box testing

objects of the appropriate type. Sometimes, a variable can be used for several different

types of data.

5.1.4 States
States are associated with variables and data structures in programs. Variables and data
structures can be in different states depending on the types of data they contain. Some
states are history states, in the sense that they denote what has been done to the data in a
data structure. An example of this is if it was necessary to check if the student number in a
new student record (that was read into a data structure) is the same as the old student
number. The student record is in the state unchecked before the check, and after the new
record has been read in. Afterwards it is in the checked state. Generally, the state of a
system or program is associated with the contents of all its variables and data structures.
State assertions describe the relationships between data. State assertions and functions have
a complementary relationship. Functions transform one program state into another and a
program can be described in terms of either the sequences of state transforming
computations it performs, or the sequences of states it goes through during its sequences of
computations.

5.1.5 Faults

Functional faults relate to incorrect expressions, and incorrect input/output behaviour is the

end result.Structural faults relate to incorrect program or module structure and incorrect
function sequences or function interactions is the result.

5.1.6 Functional testing theory
There is a mathematical model which states for every function / written by a programmer,
there exists a correct version of that program /*. When testing a function one uses

selected input and the result is compared to the expected correct output (the output that
would be produced b y /*) . This theory assumes the existence of an input/output oracle
which, for an input X for the function / and output from the function y = f (x) , it is
possible to determine if y = f * (x) .

75

Chapter 5 : Object-oriented black box testing

5.2 Functional Testing of Tango
The objective is to (black box) functionally test Tango. Tango documentation is informal
consisting of a user oriented functional specification. From this documentation, a rigorous

model of claimed functionality was constructed and is described in chapter three. The first
question that must be answered if Tango is to be functionally tested is :
What are the functions of Tango ? The documentation doesn't consist of any requirements
or design information, and the view of the system is strictly an object-oriented via the
rigorous model.

5.2.1 Trapping the functionality of Tango

Identifying functions to be tested
Assume that one operation is comprised of many separate functions, i.e.

0 1 = { f • / Im }

Each function within an operation can be defined separately as :
f n : d n — > d n '
f ¡2 ■ d / 2 — > dj2'
f im * dim — > d im '

where f i m is a function m belonging to operation i, which for every data type dim

returns a data type dfm

The total number of operations in the system is given by

n

X x k (X = 1 n)
k=1

X : object
N = num ber o f ob jec ts

n = num ber o f opera tions on each object

The number of functions in the system can then be expressed as :
n m

X X x r j (X = 1 n)
k=1 j=1

N = num ber o f ob jec ts

m = num ber o f fu n c tio n s w ith in an operation

n = num ber o f opera tions on each object

76

Chapter 5 : Object-oriented black box testing

The change in data for an object X after applying one operation is equivalent to applying

a series of functions. These functions are embedded in the software and they may be
explicit or implicit. However, there is no 'direct access' to these functions. Functional
testing implies that the code implementing these functions are tested; in theory functional
testing cannot be achieved Knowledge is limited, in that one only knows that the functions
exist so the closest one can get at a function is via an object operation. This leads into
object-oriented testing which is examined later in the chapter.

5.2.2 Applying functional testing theory to TANGO
Given the Tango functionality TANGOF and assuming there is a version of Tango called
TANGOF* which is functionally correct. The total input data is X and the output data is Y.
Let X = { X t , x 2, X n } and Y = {yi,y2, Y n } .

Therefore, yn = TANG OF (xn)

yn = T A N G O F *(xn)

For every object operation Oj represented by a number of functions

i f 11, f ¡2,........ - f l rri} there exists a correct version of that operation O f . W hen

testing an operation, selected test data is chosen, and the result of applying that operation is
compared to it's expected correct output.Given an input X for the operation Oj and output
from the operation y = Oj(x), it is possible to determine y = Oi*(x).

77

Chapter 5 : Object-oriented black box testing

5.3 Object-oriented unit testing
Although object-oriented environments are being used much more frequently in software
development, there has been little attention focused on object-oriented testing. Here is a
brief explanation of unit testing on modules developed with an object-oriented language
[Fie 89].

5.3.1 Objects
An object is the basic building block of of an object-oriented environment, and it is used to
model some entity in an application. An object is composed of data and methods. The data
constitutes the information in the object. The methods, which are the same as procedures
and functions in procedural languages such as Pascal or C, manipulate the data. Generally,
objects of the same kind or class usually exist in most applications. Each object in an
object-oriented environment is an instance of some class.

5.3.2 When should testing begin ?
In a procedural language such as Cobol or Pascal, a complete unit might not exist until
several functions or procedures are implemented. However, in an object-oriented
environment, once a class has been defined and coded, then it can be considered a complete
unit, and ready for use by other modules in the system. This really means that unit testing
must be considered a lot earlier in an object-oriented environment.

5.3.3 What testing techniques should be used ?
Since the paradigm surrounding object-oriented programming emphasises the external
behaviour of data abstractions rather than the internals, one would expect to employ black
box, functional testing techniques. However, a more thorough white box testing technique
is actually needed.

5.3.4 What should be tested ?

Ideally one would like to completely path test all classes of objects, particularly for critical
application systems. However, the resources needed to achieve this may be quite extensive,
and in working towards this, tradeoffs are likely to be made. But the testing process can be
refined somewhat and a minimum set of test cases can be derived.

78

Chapter 5 : Object-oriented black box testing

5.4 Object-oriented unit testing of Tango
The rigorous model described in chapter three captures an object view of the system and
not a functional one. Initially object oriented unit testing was used to validate the rigorous
model. This form of testing highlighted any potential anomalies or discrepancies in the
model as well as showing some object operations provided by the software but not
mentioned in the documentation. Each object class was individually exercised against the
actual functionality of Tango as depicted in Figure 5.1. Generally, the functionality
present in the software matched the claims made in the product description. However some
significant discrepancies were uncovered between the documents and actual product
behaviour. The software includes a number of extra un-documented functions. Also, some
of the more important object operations depend on pre-conditions which are not
documented. The functionality of some of the operations is not clear. The complete set of
results are shown.

79

Chapter 5 : Object-oriented black box testing

Tango
Documentation

wm i t lÄ I
1 ! ' »si

 > .
iSSiSs;®::-:

Tango
User Interface

Object Oriented
Rigorous Model

Object
Oriented
Unit test

TEST
RESULTS

Figure 5.1

so

Chapter 5 : Object-oriented black box testing

5.4.1 Object-oriented test results

O bject :

Patient

There are extra operations 'Make a patient record' and 'Delete a patient record'

O bjec t :

Patient Appointment

A pre-condition for the 'Modify' operation is that there does not exist a patient appointment
on file which was cancelled previously;

Pre-conditions for the 'Cancel' operation should be that there does not exist a cancelled
patient appointment and an admitted patient;

O b je c t su b -ty p e s :

New Patient Appointment
Returning Patient Appointment

To 'Make a new patient appointment' or to 'Make a returning patient appointment' a pre
condition is to 'Make a patient record' for that patient.

O bjec t :

Test

No operations identified.

O bject :

Patient Test Results

The add and amend operations are not made explicit. Only 'A dd1 exists which may or may
not involve an 'Amend'.

81

Chapter 5 : Object-oriented black box testing

Object :
Configuration Parameter
Object sub-types :
Screening Type
Screening Doctor
Screening Nurse
Physical Examination default text
Constant

Physical Examination default text has undocumented attributes 'Number' and 'Area
code' along with operations A dd', 'Change', 'Delete', and 'Display'.

Object :
Output
Object sub-types :
Label
Report
Invoice
Letter

The amend operation on some of the sub-types (Patient Letter) and (G.P. Letter) is
not provided in Tango. There is some extra Label output produced consisting of individual
or batch 'Bill' labels. Tango also produces an individual patient 'Archive' report.

5.5 Test Cases
Test cases are input and output specifications along with a statement of the function under
test.

I have decided on a test case form consisting of
(1) Test Case i.d. : identification of the test
(2) Testing objectives : what the test achieves
(3) In p u t : the test data that drives the test
(4) Expected O utput: what the anticipated result is

(5) Actual O utput: the actual result
(6) Results : Comparison of (4) and (5) and what action, if any is necessary.

82

Chapter 5 : Object-oriented black box testing

5.6 Generating test cases
In an ideal situation, it would be desirable to generate test cases to cover every possible
input and every possible permutation of situations the system could ever face; the system
would then be tested exhaustively to ensure that its behaviour would be error free. A slight
problem with this is that it doesn't work. The number of test cases for a typical large
complex system is massive, reaching a figure of the order lO100 test cases. With this figure
and conducting a test case every millisecond, it would take longer than the projected age of
the universe to exercise these test cases fully. As a consequence, nobody carries out truly
exhaustive tests on anything other than the most trivial system; the best one can hope to do
is to generate test cases that will exercise (or cover) a large percentage of the different
decision paths that the system can take.

5.7 Counting the number of test cases
Chusho [Chu 89] has a method of counting the minimum number of test cases. He

proposes a systematic test case generation method for functional testing called AGENT
(automated generation method of test cases). AGENT consists of the the following
components:
- a functional diagram (FD) which formally expresses the functional specification of a

program

- a mechanical procedure for generating test cases from the FD. An FD model is composed
of a state transition model and a Boolean function model.

5.7 .1 Test case form
A test case in this instance constitutes a sequence of states passed through in testing and a
pair of conditions in each state which must be satisfied by the input and output data. In
generating test cases from the FD, Chusho proceeds to say that it is important that the
number of test cases is practical, and that the criteria for test case generation is clear.

5.7.2 Test case notation
A CST (condition structure tree) is developed using the notation in Figure 5.2 for the
sequencing that can apply to state transitions.

(1) Certain state transitions will follow in sequence (AND/Sequence)

(2) Other state transitions will be selected on a choice basis (OR/Selection)
(3) Some state transitions will be repeated (Iteration)

83

Chapter S : Object-oriented black box testing

Figure 5.2

84

Chapter 5 : Object-oriented black box testing

5.7.3 Rules for counting the number of test cases

- Sequence : j = m ax(ii,i2, in)
- Selection : j = ii + ¡2 + ••••+ in
- Iteration : j = j + 1

5.7.4 Deriving test cases
Each node of the CST is retrieved in post order, and the number of test cases in each node
is calculated using the rules above. The test cases are then synthesized in numerical order
from 1 to n where n is the number of test cases in the root node of the CST, while test
cases are made up in each node from the children's test cases.

5.8 Estimating the number of Tango test cases
When using object-oriented unit testing, each object was treated individually. Now, testing
is considered in terms of the model as a whole.
The total number of operations supported by the model is

£ x k
k=1

(X = 1 N)
N = num ber o f ob jects

n = num ber o f operations on each ob ject

The total number of operation sequences produced by the model is of the order:

N n

T t X x k (X s 1 n)
1 k = 1

E.g. given a model with 4 objects each object having 3 operations would produce a total of
81 possible sequences of operations! The objective is to generate a minimum number of test
cases that will fully exercise the system. In the following sections this issue will be
discussed in more detail.

85

Chapter 5 : Object-oriented black box testing

5.9 Minimising the number of test cases
Hetzel [Het 88] shows a way of examining the test cases derived logically from a program
specification by dropping any that are redundant or dominated by any other cases. He says
that there is no harm in having a few too many test cases. On the other hand, there is no
point in using test cases that provide little or no additional information. He uses the idea of
a functional test matrix as a way of selecting a minimal set of functional test cases that
"covers" the program functions. The functional test matrix relates program functions to
selected test cases or situations. Ostrand and Balcer in describing their strategy for test case
generation [Bal 88] for a category-partition method minimise the number of test cases
through
(1) Analysing the program specification
(2) Partitioning the different significant test cases that can occur within each category
(3) Determining the constraints among the choices of test cases within each category.
The tester decides how different choices interact, how the occurrence of one choice can
affect the existence of another, and what special restrictions might affect any choice.

5.10 Specifying test cases for Tango
I propose the following test specification for TANGO

(1) Take as input the validated rigorous model description consisting of objects, attributes

on objects, operations on objects and pre and post conditions for each object operation.

(2) Produce test cases that will take the form of the valid sequences of operations along
with a set of input and expected output data for each test case.

86

Chapter 5 : Object-oriented black box testing

Using the test case form I presented in section 5.5 the Tango test cases appear as follows.

(1) Test Case i.d. : Unique test case number
(2) Testing objectives : To check that the sequence of operations perform correctly
(3) In p u t : Sequence of operations to be exercised along with pre-condition(s) and post

condition^)
(4) Expected O u tpu t: Expected result from applying this operation sequence
(5) Actual O utpu t: This is the actual result of applying the specified sequence of
operations
(6) Results : The Actual Output is compared with the Expected Output. Comments
are made on the adequacy of the test and the results are documented.

5.11 Minimising the number of Tango test cases
Each object operation has a set of private pre- and post- conditions. It is possible to make
use of these conditions in that a post-condition of one operation may be linked to a finite
number of pre-conditions of other operations. Therefore, the links between operations that
depend on pre-and post-condition dependencies can be made explicit, (i.e. a post-condition
post; of operation Oj (i = 1 n) could be the pre-condition prej+x of operation
O i+x (x > o). This is one possible way of constructing, as well as minimising a set of
valid test cases.

5.12 Graph terminology
A directed graph or digraph G = (V, E) consists of two sets: a finite set V of elements
called vertices and a finite set E of elements called edges. Each edge is associated with an
ordered pair of vertices. The symbols Vi ,V2 , . . .V n are used to represent vertices and the
symbols e i , e 2 , to represent the edges of a directed graph. A vertex is represented in
the form of a circle and an edge is represented by a line segment connecting the circles that
represent the end vertices of the edge. In addition each edge is assigned an orientation

indicated by an arrow which is drawn from the initial to the terminal vertex. A walk W in G
is a sequence of vertices v-|V2Vn such that n > 0. The length of a walk W =
Vi V2-...Vn, denoted |W |, is the number n of vertex occurrences in W. Note that a walk of
length zero has no vertex occurrences; such a walk is called empty.

87

Chapter 5 : Object-oriented black box testing

5.12.1 A pplying D irected Graphs
Processing such a graph is akin to travelling around in a city with many one-way streets.
Often the edge direction reflects some type of precedence relationship in the application
being modeled. For example, a directed graph might be used to model a manufacturing
line, with vertices corresponding to jobs to be done and with an edge from x to node y if
the job corresponding to node x must be done before the job corresponding to node y.

5.13 M odelling Tango using graph notation
Figure 5.3 shows a new model representation for the validated Tango objects Patient,
Patient Appointment, and Patient Test Results. For clarity purposes, the model only shows
the sub-object types Patient Medical Report and Admissions List of the object Output. The
object sub-types of Constants, which are Screening Doctor, Screening Nurse, Screening
Type and Physical Examination Default Text operate as 'stand alone' objects so they are
shown separately as in Figure 5.4. Objects that don't play a significant role in the general
functionality of Tango are omitted.

88

Chapter 5 : Object-oriented black box testing

Delete Patient

\ / \ Add Patient / \
\ \ -----------— -------- ► / Exist \ (Not Exist \

Not Exist Patient AND — I Patient
y V Patient J \ I \ Appointment/

Figure

89

Chapter 5 : Object-oriented black box testing

Figure 5.4

90

Chapter 5 : Object-oriented black box testing

Figure 5.4 (continued)

91

Chapter 5 : Object-oriented black box testing

The model in Figure 5.3 was constructed by representing the pre-and post- conditions
and operations of the various objects to form a directed graph. The conditions are used to
act as vertices shown as circles in Figure 5.3 while operations depending on these
conditions are used to link these vertices and are represented as edges. An example drawn
from Figure 5.3 is where a pre-condition of the operation A dd Returning Appointment'
(represented by an edge) for a patient, is that the patient was previously admitted which is
represented by the vertex labeled 'Exist Patient Admission'. Where two or more pre
conditions are required for an operation to be exercised they are shown as been ANDed
together. It can be seen from the diagram which sequences of operations are legal and how
test cases might be constructed to exercise the model. I will now examine an approach to
this construction.

5.14 Using the graph model as a basis for testing
As mentioned previously, the model is defined in the form of a directed graph

G = (V, E) where the elements of V are known as vertices or nodes and the elements
of E are the edges. Yates and Malevris proposed a selection strategy aimed at reducing the
number of infeasible paths generated during edge testing [Mai 89]. My objective is to
achieve graph coverage through the following steps. Here is my proposal:

(V Select a set ^ of paths through G which covers the edge set E; In section 5.8 I

estimated the number of possible paths in the model to be of the order

N n

T t X X k (X = 1 n)
1 k = 1

This estimation consists of many infeasible paths, e.g. one cannot have the operation
sequence of'A dd Patient' followed by 'Display Laboratory Results'.

(2) Clearly the number of infeasible paths needs to be minimised. This can be achieved

through deriving from ^ a corresponding set, ^ , of paths through G and constructing

a set of test cases,) that will exercise G using each path of ^ in turn; ^ i s

derived through documenting the legal sequences of operations.

(3) Execute G with T(^) . (i.e. Applying a valid set of test cases that exercise G)

92

Chapter 5 : Object-oriented black box testing

5.15 Adjacency Matrix theory
Let G = (V, E) be a directed graph. Let V = {Vi ,N/2,...vn) and E = (ei ê). The
adjacency matrix M = [my] of G is an n x n matrix my defined as follows :

1, if (v|, v ¡) 8 E

m y = {

0, otherwise

5.16 Developing an adjacency matrix for Tango

Figure 5.5 is identical to Figure 5.3 except that a letter is now associated with each
edge. Although the theory of an adjacency matrix states that (Vj,Vj) is set to 1 if there is an
edge from vertex Vj to vertex Vj, I have altered the rule slightly such that (e i,em) is set to
1 if there is a vertex from edge ei to edge e m-
The adjacency matrix in Figure 5.6 is constructed directly from Figure 5.5. It shows a
matrix entry of 1 if there is a pre or post condition(vertex) Unking two operations(edges).

The adjacency matrices for the graphs in Figure 5.4 are self evident and are not discussed
any further in this chapter.

93

Chapter S : Object-oriented black box testing

Delete Patient

94

Chapter 5 : Object-oriented black box testing

A B C D E F G H 1 J K L M N 0 P Q R S T U

A 1
B 1 1
C
D
E
F
G 1 1 1
H 1
1 1 1 1
J 1
K 1 1 1 1 1 1 1 1 1 1 1
L
M
N
0
P
Q
R
S
T
U

F igure 5.6

95

Chapter 5 : Object-oriented black box testing

5.17 Interpreting the adjacency matrix
As stated, an adjacency matrix entry equal to 1 in Figure 5.3 signifies a link between two
operations. An adjacency list can be easily derived from an adjacency matrix. A link from x

to y is represented by the appearance of a y on x's adjacency list. The adjacency list for
Figure 5.6 is shown below in Figure 5.7.

A : B
B : A I
G : J K L
H : G
I : D E G
J : H
K : C F M N O P Q R S T U

Figure 5.7

Reading the adjacency list literally signifies that B is followed by A. A and I are
followed by B etc.,. From this the first set of test cases can be derived. An example of a
test case derived from Figure 5.7 is:

(1) Test Case i.d. : 2 B A (i.e. Test case number 2, exercising edges B followed by A)
(2) Testing objectives : to check that the operation 'Add patient record' followed by
the operation 'Delete patient record' perform correctly.
(3) Input: Add patient record/Delete patient record
(4) Expected O u tp u t: The patient record doesn't exist
(5) Actual Output : (The result of applying the above Input)
(6) Results : The Actual Output is compared with the Expected Output. Comments
are made on the adequacy of the test and the results are documented.

96

Chapter 5 : Object-oriented black box testing

5.18 M anipulating the adjacency matrix

The (i,j) entry myr of Mr is equal to the number of directed walks of length r from Vj
to Vj. Figure 5.8 s h o w s t h e r e s u l t o f s q u a r in g th e a d j a c e n c y m a t r ix M of Figure 5.6

2
(i.e. M). This matrix shows the number of directed walks of length two from operation i
t o operation j .

A
B
C
D
E
F
G
H

J
K
L
M
N
O
P

Q
R
S
T
U

Figure 5.8

A B C D E F G H I J K L M N O P Q R S T U

1
1 1 1 1

1
1 1 1
1 1 1

1

97

Chapter 5 : Object-oriented black box testing

The adjacency list derived from the adjacency matrix in Figure 5.8 is shown in Figure
5.9. This can be interpreted as previously. Test cases are derived which gradually cover
the model. The next step in the testing process would involve cubing the matrix M (i.e.

3
M), deriving the adjacency list and exercising the test cases. These test cases would list

the operations of length three from operation k to operation 1.

A : A
B : B D E G
G : H
H : J K L
1 : J K L
J : G

Figure 5.9

5.19 General conclusions
In section 5 .14 1 explained that my objective was to derive a set of test cases that would

exercise the model through identifying the set T (Ç) . I used adjacency matrix theory to

represent the directed graph in Figure 5.3. The test cases that were derived from the
adjacency matrices and lists, can be viewed as being members of the valid set of test cases.
These test cases will eventually fully exercise the model. They can be represented in the

form Mr e T(Ç) . In Chapter six I make some overall conclusions and

recommendations on my testing approach.

98

Chapter 6 : Conclusions A nd Future Directions

Chapter 6

Conclusions
And Future Directions

6.1 Justification of object-oriented testing method

How can informally developed software with no functional specification, an informal
development trail, no design documents be tested ?
The answer is it cannot be tested, unless you try to reconcile what documents you have

with the actual functionality.
This is the core of my method as discussed earlier. Developing the rigorous model in
Chapter three was the first attempt at this reconciliation of claimed functionality versus
actual functionality. Although building the model figured more as a documentation
metric than a testing metric it proved to be very useful for object-oriented unit testing.
This helped to validate the model through exercising each of the object classes against
the actual functionality of the product. The results of this testing uncovered many
problems with the documentation.

A new testing model was constructed using the validated model of objects, attributes
and pre- and post- conditions. The basis of this model was that operations were linked
via these conditions so different operations were sometimes dependent on the same pre-
condition(s). I used the established methods of graph theory and adjacency matrices to
represent my testing model. As you can see the model is rather easy to read and it
describes the system in a very realistic way. i.e. If I want to add a patient appointment
for a patient, then a patient record for that patient must already exist, and I must also
display that patient record. So it reads quite literally!

One of my initial objectives was to devise a method that would help to generate test
cases and to exercise adequate functional coverage of the system. The testing model
helped me to achieve my objective. Through representing the model in the form of an
adjacency matrix and subsequently as an adjacency list, test cases were systematically
generated.

99

Chapter 6 : Conclusions And Future Directions

6.2 Applying other testing methods
In classical functional testing, the observable functions implemented by a system or
program are tested over typical input-output scenarios. Functional testing is often
augmented with special case and boundary tests. Software testing still is the principal
way of locating errors in programs and it is the bench-mark by which the pre-delivery
level of confidence in a program's veracity is established. Even though there are many
testing techniques available (see Chapter four), none of them can actually guarantee to
isolate all sources of program error. Howden [How 78], recommends that several
techniques should be applied in order to arrive at the desired confidence level, (i.e. we
have tested this product as much as we possibly can).
In order to strengthen the proposed object-oriented testing methodology I have
described in Chapter five,some established testing methods can be used to enhance the
method making it perhaps more trustworthy. Black-box testing methods such as
Category-Partitioning and Boundary Value Analysis are just two examples which could
be used.

6.2.1 A pplying the Boundary Value Analysis method
The following test case is derived from the testing model.

(1) Test Case i.d. : 7 B
(2) Testing objectives : to check that the operation A dd patient record' performs
correctly.

(3) Inpu t: Add patient record
(4) Expected O utput: The patient record exists
(5) Actual O utput: (The result of applying the above Input)
(6) Results : Document the comparison of Actual Output with Expected Output

100

Chapter 6 : Conclusions And Future Directions

Through using the Boundary-Value Analysis method the Input section of this test case
could be augmented e.g. If I know that the system is to support patient record numbers
from 1 to 1000, then when I'm adding a patient record, I will allocate patient numbers
at the boundaries (i.e. -1,0 and 999,1000,1001).

6.2.2 Applying the Category-Partition M ethod method
This method uses the notion of a test frame which consists of a test case, the commands
necessary to set up the test and instructions for checking the test. Using the same test
case example the test frame produced might look like:

Test Frame:
Test Case i.d. : 7 B
In pu t: Add patient record
Constraints : (1) Not Exist Patient

(2) Exist Patient

Commands to set up the test:
Using constraint (1) Add patient record
Actual O utput: (The result of applying the above Input)
Expected Output : The patient record exists.

Using constraint (2) Add patient record
Actual O utput: (The result of applying the above Input)
Expected O utput: Patient record already exists.

Instructions for checking the test:
Document the comparison of Actual Output with Expected Output in each of the
two cases above.

101

Chapter 6 : Conclusions And Future Directions

6.3 Formal M ethods
Gerhart [Ger 89] discusses Formal Methods in relation to developing trustworthy
computer systems. What transpired is that Formal Methods are as important to software
engineering as are Applied Mathematics to Aeronautical engineering. Here are some of
the relevant points she makes:
- safety critical systems are compelled to work the first time, whereas other systems are
phased in gradually
- software engineers are not subject to the professional certification criteria or indeed the
codes of practice of other engineering fields.
- no set of standard engineering techniques for safety critical systems has been agreed
upon.
This introduces the notion of formalising the testing method I developed.

6.3.1 The model and states
What I have effectively achieved in terms of the testing model, is to define a system in
terms of its operations along with the pre- and post- conditions on these operations.
Thus having pre condition pre i and applying operation ope i then the post condition
post i will be true. So the state of the system changes from pre i to post i. Through
documenting a system for every pre condition, post condition and operation, a system
can be completely defined. This is akin to the notion of an FSM (Finite State Machine).
An FSM is often drawn as a state transition diagram showing how the system moves
from one state to another, or as a matrix in which the dimensions are state and input,
and the matrix cells contain the action and new state resulting from receipt of the input
in the given state.
The value of FSMs are such that the system can be modelled as a black box taking as
input a sequence of operations. The advantages of such a representation are that certain
properties can be checked both mechanically and reliably. It is also quite easy to work
with such a representation.

102

Chapter 6 : Conclusions And Future Directions

6.3.2 Formalising the testing method
In attempting to formalise my testing method some of the ideas of VDM [Jon 90] can be
applied. VDM (Vienna Development Method) is a method which enables the
specification of sequential systems in terms of pre- and post- conditions of states.
System data types consist of state specification (satisfying an explicitly given invariant)
together with a collection of operations.
Referring to the rigorous model of Chapter three the operation
Add New Appointment on object Patient Appointment is represented as:

Add New Appointment
ext wr Appointment Number/Date of Visit/Time of Visit/etc.,

rd Patient Number/Patient Surname/Patient Address
/Date of birth/phone number/etc..

pre condition Exist Patient OR Not Exist Patient Appointment
post condition Exist New Appointment

It can be seen that each operation is classed as having a set of private variables which
may be either read(rd) or write(wr) access. Also the pre- and post- conditions relevant
to that operation are documented. The notion of a pre-condition can be linked to the set
of private variables attributable to that operation. In the example above a pre-condition
of the Add New Appointment operation is stated as Exist Patient OR Not Exist
Patient Appointment. The pre-condition Exist Patient can be expanded to the
data represented by this statement, (i.e. patient i.d, patient address, age, marital
status...). All of this data must be valid for the pre-condition to hold.

103

Chapter 6 : Conclusions And Future Directions

6.4 Developing the rigorous model - an alternative approach
In Chapter three I developed a rigorous model from a user oriented functional
specification. The model served many functions notably highlighting problems with the
documentation. The final model also formed the basis for object-oriented unit testing.
When this testing was completed, the model was used towards a way of deriving test
cases. Constructing the model should not be thought of in a post-development sense
(i.e. wait until product is developed with it's user documentation and then reverse
engineer a rigorous description). The model could be built during the design stage of
the product by the developers themselves or even the users.

6.5 M anipulating the model
I have represented the model as an abstraction of the rigorous model constructed in
Chapter three. This representation proved useful for applying adjacency matrix theory
to derive test cases. The model can be viewed in some other ways as a further means to
support the testing process.

6.5.1 A W hite box view
The model can be viewed as a white box structure consisting of If/Then/Else/Or
possibilities. From the model or graph it can be seen how the model is driven using
operations. A typical white box structure derived from the model might be represented
in the following way by taking some of the operations and conditions.
E.g.
If pre-con = Exist Patient And Not Exist And
If operation = Add New Appointment
Then post-con = Exist Patient Appointment;

If pre-con = Exist Patient Appointment And
If operation = Display Patient
Then post-con = Exist Patient Appointment displayed;

If pre-con = Exist Patient Appointment displayed And
Not Exist Patient Appointment cancelled And
If operation = Admit Patient
Then post-con = Exist Patient Admission Else
If operation = Amend Patient
Then post-con = Exist Patient Appointment changed Else
If operation = Cancel Patient Appointment
Then post-con = Exist Patient Appointment cancelled;

104

Chapter 6 : Conclusions And Future Directions

6.5.2 The Cyclomatic Complexity of the Model
The cyclomatic number [War 89] and the accompanying program control flow graph
can be used to identify test cases. The cyclomatic number corresponds to the number of
test paths which correspond to the basic paths derived from the control flow graph.
With this information, test cases can be generated for a program. Therefore, the
cyclomatic number could be derived from a white box structure as shown in 6.5.1 or
even directly from the adjacency matrix representation of the model. This could be
achieved in the following way.
Figure 6.1 is identical to Figure 5.3 except each vertex is now labelled with a
number. Figure 6.2 is an adjacency matrix representation of the model shown in
Figure 6.1. This time the adjacency matrix is developed with the idea that (vi,vj) is
set to 1 if there is an edge from vertex Vi to vertex vj. Referring to Figure 6.2, each
row with two or more entries represents a decision vertex. Therefore, by totalling the
number of Is in rows 2, 5, 7 and 9 minus the number of relevant rows(i.e 4) the
cyclomatic number for the model can be obtained. In this case the cyclomatic number is
12. Obviously, when the matrix is further manipulated to show the operations that can
be reached over a distance of two and three etc., different cyclomatic numbers will be
produced.

105

Chapter 6 : Conclusions And Future Directions

Delete Patient

106

Chapter 6 : Conclusions And Future Directions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 1
2 1 1
3
4
5 1 1
6 1
7 1 1 1
8
9 1 1 1 1 1 1 1 1 1

10
11
12
13
14
15
16
17
18
19

F igure 6.2

107

Chapter 6 : Conclusions And Future Directions

6.6 Future Directions
The obvious next stage would be tool support for my testing method. Initially the
rigorous model would have to be developed manually but an object-oriented tool could
be used to support the validated testing model, in terms of conditions and operations.
From there, one could see a tool that would automatically generate test cases using my
object-oriented testing approach.

6.7 General Conclusions
The method I developed applies itself well to a large number of existing software
products with no functional specification. I started out with a user-oriented
manual/specification and I ended up with a valid set of test cases that couldn't have
possibly been constructed from simply reading the documentation. The model shows
an accurate concise view of the system. I could see how the model might become part
of the documentation as it interprets the functionality of the system very clearly.
I showed how test cases can be derived from the model and how it accommodates
other testing methods. The fact the model could be developed during the design stages
of the product adds credibility to the method. In this way the functional testing
problems that arise could be overcome, as the tester would have knowledge of the
functions within an operation. The system could then support a white box testing
approach. At the moment the model is really used to implement a black box object-
oriented testing method. Incorporating a white box method along with the existing
black box technique would contribute to a very comprehensive testing methodology,
one that would ensure even better functional coverage.

108

APPENDIX A

CHECKLIST FOR ASSESSING THE QUALITY
OF A HUMAN-COMPUTER INTERFACE

Introduction

The use of checklists to assess the quality of a user-interface is very
much a 'second-best' approach. Empirical research has shown that
conclusions reached by certifiers and system designers through the use
of 'checklists' are generally less valid and reliable than assessments
based on actual user experience of the interface. Despite this caveat,
experience has shown that inspection guided by a checklist can reveal
any serious deficiencies in a user-interface.

The checklist questions shown overleaf are cross-referenced to the
components of quality in figure 1 to which they refer [Joh 89], [Shn 86],
[Whi 88].

In making an overall judgement on the adequacy of the product's
interface .reference should be made to the agreed Certification
Specification for the product.

YES UNCERTAIN

The whole 'style' and 'feel' of the interface
is appropriate for the application. (1.1,1.7)

Menus .functions »commands »keywords etc. have
well-chosen names and are easy to remember.
(1.1,1.2,1.3)

Icons are well designed and have an obvious
meaning. (1.1,1.2)

There is consistency in design etc., of: (1.3)

data entry panels and forms

data display panels

fields

menus

command lines,prompts etc.

error messages

'help' information

There are consistent,easy-to-remember
conventions for : (1.3)

using selection mechanisms
(e.g. mouse,cursor control)

use/meaning of function keys

use/meaning of 'buttons',scroll-bars etc.,

The user is unlikely to get 'lost' in the software
(i.e. navigation is not too mentally demanding).

(1.5)

If the user DOES get lost,he/she can easily escape to
the 'top' or other 'home' position without doing damage.

(1.5)

The design of menus,icons,commands,selection mechanisms etc.
lets the user move quickly to where he/she wants to go.

(1.5)

Input data validity checking is adequate.
(1.6)

Error messages are sufficient and helpful.
(1.6)

Users can't 'crash' the system bv mistake.
(1.6)'

User mistakes are signalled positively an appropriate mode (e.g.
'bleep',flashing panel)

(1.6)

Internal system problems and exceptional conditions are
signalled positively and in an appropriate mode (e.g. 'bleep' etc.)

(1.6)

Adequate user-help is provided (on-line or hard-copy).
(1.2,1.6)

The user is never left wondering if the system has 'died'
(i.e. there is some immediate response to all user-actions,the
system reports progress of lengthy internal operations).

(1.4)

Advanced functions are 'hidden' or otherwise packaged so that
beginners are not overwhelmed.

(1.2)

Inexperienced users are offered suitable default values
and/or assistance in setting parameter values.

(1.2)

Adequate 'fast-track' is available to experienced users
(e.g. command language,user-definable macros).

(1.2,1.5)

Display screens and panels are well laid-out and 'uncluttered'.
(1.8)

Character-sets,icons,graphics etc. have good legibility.
(1.8)

Window manipulation functions are adequate.
(1.8)

'WYSIWYG' is used where needed.
(1.4)

Response-times and screen display-rates are adequate.
(1.4,1.8)

OVERALL JUDGEMENT ON THE QUALITY OF THE
INTERFACE :

ACCEPTABLE

UNDECIDED

UNACCEPTABLE

COMMENT :

APPENDIX B

LOGICAL SECURITY CHECKLIST FOR SINGLE USER
MICROCOMPUTER-BASED SYSTEMS HOLDING
SENSITIVE OR CRITICAL DATA

In making a judgement on acceptability, reference should be made to the
agreed Certification specification.

E=usually considered essential
D=usually considered desirable

1. LOGICAL ACCESS CONTROLS

1.1 Identification of user :

(E) Must the user provide a user-id which is validated by software before
access is allowed?

(E) Is the user-id at least four characters long?

1.2 Authentication of user :

(E) Must the user provide a password which is verified against the user-id?

(E) Is the password at least six characters long?

(E) Is display of the password suppressed?

(E) Is the user allowed only a pre-set number of attempts to enter a password
(e.g. three)?

(D) Is the table of user-id/passwords encrypted?

(E) Is a user able to change his/her password?

(D) Does the system force a user to periodically change his/her password?

1.3.1 Access to data :

(E) Does the system allow restriction of individual user's access rights to
read,copy,update and delete specified data on the basis of password?

(D) Does the system keep a log of all accesses to specified data showing
user-id,date,time and operations invoked?

(D) Does the system automatically sign-off a user after a period
of inactivity?

1.3.2 Access to functions :

(E) Does the system allow restriction of individual user's access to specified
functions/procedures on the basis of password?

(E) Does the system keep a log of all accesses to specified functions showing
user-id,date and time?

(D) Does the list of functions displayed to a user list only those functions the
user is authorised to perform?

(E) Are users prevented from reading or amending the software?

1.3 Authorisation of user :

2. APPLICATION CONTROLS

(E) Can the system maintain an audit-trail of specified transactions stamped
with user-id,date and time?

(E) Does the system support any needed reconciliation controls on
inputs processing and outputs?

(E) Is input data adequately validated for format,range and sequence?

(E) Is there adequate functionality for backing-up data and software?

(D) Does the system force the user to take back-ups of data and software at
appropriate intervals?

(E) Is there adequate functionality to allow the user to restore
the system after a crash?

(D) Is there a facility for automatic recovery after a crash (through,for
example,the use of parallel transaction files)?

3. OPERATING SYSTEM SECURITY CONCERNS

(E) Is the system secure against users attempts to use operating system
services rightly reserved for 'super-user'?

OVERALL JUDGEMENT ON LEVEL OF LOGICAL SECURITY

ACCEPTABLE

UNACCEPTABLE

COMMENT :

APPENDIX C

TANGO - FAILURE REPORT

Time of start of session (HH:MM) :

Date of occurrence (DD/YY/MM) :

Time of occurrence (HH:MM) :

Failure type :
(Please tick whichever is appropriate)

(i) Adding/Amending a patient record
(ii) Entering test results
(iii) Doing a 'backup'
(iv) Doing a report
(v) Using a system utility

System identifier :

(i) Hardware :
(ii) Operating System :

Severity:
(Please tick whichever is appropriate)

(i) Complete system 'crash'
(ii) Hardware failure
(iii) TANGO system failure (e.g. accessing a file)
(iv) Needed to 'rebuild' system fully
(v) Needed to 'rebuild' some of the system

Time of start of session (HH:MM) :

Part of system which failure occured:
(Please tick whichever is appropriate)

(i) Patient Appointment/Admission
(ii) Nurses Functions
(iii) Doctors Functions
(iv) Laboratory Results
(v) Reports and labels
(vi) System Utilities

APPENDIX D

Maintenance and Maintainability

Maintenance is modification of a software product after delivery to correct faults,
to improve performance or other attributes, or to adapt the product to a changed
environment.

Maintainability is the ease with which a software system can be corrected when
errors or deficiencies occur, and can be expanded or contracted to satisfy new
requirements [IEE 89].

The quality specification of maintainability defined as in [UKM 891 is shown below.

Factor M aintainability

Criterion : Self M odularity Design Module Consistency
Descriptiveness S im p lic ity S im p lic ity

Metrics : SD(1) MO(1) DSI(1) MSI(1) CS(1)

SD(3) MO(4) DSI(8) MSI(4) CS(6)

Referring to Li and Cheung [Che 87] and Ward in [War 89] the following checklists
relating to each criterion are established.

Self-descriptiveness

S D (1) Is there a standard such that each module contains the
following:

(i) a description of the module's function

(ii) the author's name

(iii) the version number

(iv) the version date

(v) a documented list of the inputs accepted by that module

(vi) a documented list of the outputs produced by that module

(vii) a description of the processing to be done in that module

(viii) the pre-requirements that must be satisfied before that
module can be executed

SD (2) Does the standard used support adequate in-line comments ?
(i.e. a consistent frequency of good quality comments in each module)

S D (3) Does the standard used support a strict format for the
structure of each module ?
(i.e. Does each module have declarative / input / processing / output
sections respectively)

Modularity :

M O (l) Are all software modules and functions developed according to
a structured technique ?
(e.g. through the use of DFDs or structure diagrams)

M O(2) What type of coupling exists ?
Note : (Coupling is the relationship that exists between two or more
modules)

Type of coupling
(1) Content coupling : One module references the contents of another

module

(2) Common coupling : Modules reference a shared global data
variable

(3) External coupling : Modules reference the same externally
declared variable

(4) Control coupling : One module passes control to another module

(5) Stamp coupling : not as in (1)..(5)

M O(3) Is output data always passed back to the calling module ?
(An example might be through parameter calls using global variables)

M O(4) Is control always returned to the calling module when
execution is complete ?
(i.e. the code doesn't form a "daisy chain" of statements.

D S I(l)

D SI(2)

D SI(3)

D SI(4)

D SI(5)

D SI(6)

D SI(7)

D SI(8)

Design

Is the system and program documentation of good standing
quality ?
(i.e. flow charts, hierarchical diagrams...)

simplicity :

Is every module written identified in documentation ?

Is there a description of every module in the documentation ?

Is there a description of "why" every module exists ?

Is there a statement of "what" the module does ?

Are all sub-ordinate modules identified in sequence ?

Is there a description of the "relationship" of each module with
another module or modules ?

Is there a description of how other modules "interact" with a
particular module ?

Module simplicity

M S I(l) Is each module well structured ?
(i.e. "non-spaghetti" structure)

M SI(2) Is the flow of control within a module from top to bottom ?
(i.e. typically non-looping within a module.

M SI(3) Does each data variable have a single use ?

M SI(4) Does each module perform a single, explicit function ?
(e.g. we might have a 'control' module solely concerned with calling
other modules in some sequence).

Consistency

CS(1)

CS(2)

CS(3)

CS(4)

CS(5)

Do the input procedures and input formats for each module
have a set standard ?
(Do they take a similar structure in each module ?)

Do the output procedures and output formats for each module
have a set standard ?
(Do they take a similar structure in each module ?)

Is error handling dealt with in a consistent manner in each
module ?
(Are inputs validated before accepted ?)

Is the amount of error handling adequate for each module ?
(i.e. Are all possibilities covered ?)

Is the naming of all data variables standardised ?
(Are meaningful variable names used?)

C S (6) Is there a section in each module which deals explicitly with
the declaration and definition of all global variables in that module

Armlving McCabes complexity metric to Tango

The McCabe metric is a number that represents the complexity of a module. It is
based on the number of decision statements in the module. It has been found that if
the complexity measure of a module exceeds 10, the expectation of that module
being error-prone also increases and hence the more difficult to maintain.

The cyclomatic complexity of a module can be represented numerically as in
[War 89]. The general form of the complexity metric is :

V(G) = No. of edges - No. of nodes + 1

I applied McCabe's metric to some INFORMIX 4GL(Tango) source code modules
given that the language emphasises some procedural constructs. I took a random
selection of 40 modules and we established the cyclomatic complexity for each. The
total complexity was 200, giving an average module complexity of 5. On an average
basis this number is well within the acceptable range. Only two of the modules had
complexity values greater than 10 (i.e. 17 and 21).

Therefore, on a 'complexity' level it would suggest that Tango software is
easily maintainable given its low module complexity numbers and an average module
complexity of 5.

APPENDIX E

ASSESSMENT OF ’EASE OF
HOUSEKEEPING’ REQUIRED BY THE PRODUCT

By 'housekeeping' is meant operations such as :

Product Installation

Customisation

Installation of enhancements/new releases

Taking security backups

Restoring files/databases from backups
(where these are the responsibility of the user)

The assessment should include both the operation and the adequacy of any
supporting documentation or on-line help. The criteria used when assessing an
operation should be those defined in the agreed
certification specification.

OPERATIONS EXAMINED ACCEPTABLE NOT ACCEPTABLE

etc.,

COM M ENTS :

APPENDIX F

ASSESSMENT OF 'PERFORMANCE' OF THE PRODUCT
(excluding 'reliability')

'Performance' attributes fall into at least three categories :

Processing times (e.g. response times »throughput rates)

Limiting Values (e.g. maximum parameter values,maximum file sizes)

Resource Requirements (e.g. minimum hardware/software
requirements to support the product)

The performance attributes assessed and the criteria for acceptance
should be those agreed in the Certification Specification.

NOT
ATTRIBUTE ASSESSED ACCEPTABLE ACCEPTABLE

COMMENTS :

Bibliography

Bibliography

[Bal 88] Balcer M J and Ostrand T J, The category-partition method for
specifying and generating functional tests, Communications of the ACM, June
1988.

[Bai 89] Balcer M J and Hasling W H, et al,Automatic Generation of Test
Scripts from Formal Test Specifications, Proceedings of the ACM SIGSOFT,
Third Symposium on Software Testing, Analysis, and Verification, ACM
press, Dec 1989.

[Boe 81] Boehm B W, Software Engineering Economics, Prentice Hall, New
York, 1981.

[Boo 86] Booch G, Object-Oriented Development, IEEE Transactions on
Software Engineering, Feb 1986.

[Car 88] Carroll J M and Olson J R, Mental Models in Human-Computer
Interaction, Helander M,(editor), Handbook of Human-Computer Interaction,
Elsevier Science Publishers, Amsterdam,1988.

[Chi 90] Chikofsky E J , Cross J H, "Reverse Engineering and Design
Recovery : A Taxonomy", IEEE Software, Jan 1990.

[Chu 87] Chusho T, Test Data Selection and Quality Estimation based on the
concept of essential branches for Path Testing, IEEE Transactions on
Software Engineering, 1987.

[Chu 89] Chusho T, Functional Testing and Structural Testing, Japanese
perspectives in software engineering, System development laboratory, Hitachi
Ltd., Kawasaki, Japan, 1989.

[Coa 90] Coad P and Yourdon E, Object-Oriented Analysis, Yourdon
Press,New Jersey,1990.

[Cro 79] Crosby P, Quality is free, McGraw-Hill, 1979.

Bibliography

[DeM 88] DeMillo R A, McCracken M W, et al, Software Testing and
Evaluation, Benjamin Cummings Publishing Company, Inc, 1987.

[Ell 87] Ellison J R, andPritchard J A T, Security in Office Systems,, NCC
Publications,1987.

[Elm 73] Elmendorf W R, Cause Effect Graphs in Functional Testing, IBM
Technical report, IBM Dev. Div, New York, 1973.

[EIN 89] ETNOTEAM, Case study definition report for VICTOR, SCOPE
internal document, 1989.

[Fag 86] Fagan M E, Advances in Inspections, IEEE Transactions on
Software Engineering, July 1986.

[Fie 89] Fiedler S P, Object-Oriented Unit Testing, Hewlett-Packard journal,
April 1989.

[For 90] Forester T and Morrsion P, Computer Unreliability and Social
Vulnerability, FUTURES magazine, Jun 1990.

[Fra 88] Frankl P G and Weyeuker E J, An Applicable Family of Data Row
Testing Criteria, IEEE Transactions on Software Engineering, Oct 1988.

[Fuj 89] Fujii R U and Wallace D R, Software Verification and Validation :
An Overview, IEEE Software, May 1989.

[GEE 90] RUTE (not publicly available)
General Electric.

[Geh 86] Gehani N and McGettrick A D, Software Specification Techniques,
Addison-Wesley, New York,1986.

[Ger 89] Gerhart S L, Assessment of Formal Methods for Trustworthy
Computer Systems, Proceedings of the ACM SIGSOFT, Third Symposium
on Software Testing, Analysis, and Verification , ACM press, Dec 1989.

[Goe 85] Goel A L, Software Reliability Models : Assumptions, Limitations
and Applicability, IEEE Transactions on Software Engineering, Dec 1985.

Bibliography

[Gui 89] GuiUemette,R.A. The CLOZE Procedure:An Assessment of the
Understandability of Data Processing Texts, Information and
Management, Volume 17,1989.

[Het 88] Hetzel B, The Complete Guide to Software Testing, QED
Information Sciences, Inc., 1988.

[How 87] Howden W E, Functional Program Testing and Analysis,
McGraw-Hill Book Co., 1987.

[IEE 89] Software Engineering Standards, (Third edition), Institute of
Electrical and Electronic Engineers, Inc., 1989.

[Joh 891 Johnson G and Ravden S, Evaluating the Usability of a Human-Computer
Interface,Hoisted Press (New York),1989.
[Jon 90] Jones C.B,Systematic Software Development using VDM Prentice
Hall,New Jersey,1990.

[Li 87] Li H F and Cheung W K, An Empirical Study of Software Metrics,
IEEE Transactions on Software Engineering, Jun 1987.

[Lut 90] Lutz M, Testing Tools, IEEE Software, May 1990.
[Mai 89] Malevris N and Yates D F, Reducing the effects of infeasible paths
in branch testing, Proceedings of the ACM SIGSOFT, Third Symposium on
Software Testing, Analysis, and Verification,1989.

[McC 76] McCabe T J, A Complexity Measure, IEEE Transactions on
Software Engineering, Dec 1976.

[McC 89] McCabe T J and Butler C W, Design Complexity Measurement and
Testing, Communications of the ACM, Dec 1989.
[Mey 88] Meyer,B.,Object-Oriented Software Construction, Prentice
Hall,New Jersey, 1988.

[Moy 90] Moynihan J A, O' Connor N M, Towards a method for assessing
the functionality of a user-oriented functional specification, (To be presented
at the IFTP Working Conference on Approving Software Products (ASP-90)),
September 17 - 19,1990.

Bibliography

[MRH 90] Xray/DX (publicly available)
Microtech Research.

[Mye 79] Myers G, The art of Software Testing, Wiley - Interscience,
Chichester, 1979.

[NYU 90] ASSET
Computer Science Department,
New York University
New York,
USA.

[Par 89] Parrington N and Roper M, Understanding Software Testing, Ellis
Horwood Ltd., 1989.

[PPE 90] T (publicly available)
Poston Programming Environments.

[Pre 88] Pressman R S, Software Engineering, A practioners approach,
McGraw-Hill Book Co., 1988.

[PVL 90] SPADE
Program Validation Limited,
26 Queens Terrace,
Southampton,
SO 1, 1BQ,
UK.

[Rap 82] Rapps S and Weyeuker E J, Selecting Software Test Data Using
Data Flow Information, IEEE Transactions on Software Engineering, Dec
1982.

[Rat 87] Ratcliff B, Software Engineering Principles and Methods, Blackwell
Scientific Publications, 1987.

[Red 83] Redwine S T, An Engineering Approach to Software Test Data
Design, IEEE Transactions on Software Engineering, Mar 1983.

Bibliography

[Rie 89] Richardson D, Aha S et al., Integrating Testing Techniques Through
Process Programming, Proceedings of the ACM SIGSOFT, Third
Symposium on Software Testing, Analysis, and Verification, ACM press,
Dec, 1989.

[SCO1 89] SCOPE Technical Annexe, SCOPE consortium, Jan 1989.

[SCO2 89] Software Certification : State of the Art, SCOPE consortium, Sep
1989.

[SCO190] SCOPE Phase 2 definition report, SCOPE consortium, Apr 1990.

[Sed 83] Sedgewick R, Algorithms, Addsion-Wesley Publishing Co., 1983.

[Shn 86] Shneiderman B, Designing the User-Interface,Addison-Wesley,1986.

[Ski 90] Skidmore S Farmer R. et al,SS ADM Models and Methods, National
Computing Centre of Great Britain, Manchester, 1990.

[Suf89] Sufrin B, Effective Industrial Application of Formal Methods,in :
Ritter G X, (editor),Information Processing 89-Proceedings of the IFIP 11th.
World Computer Congress, North-Holland,Amsterdam,1989.

[Swa 81] Swamy M N and Thulasiraman, Graphs, Networks and
Algorithms, John Wiley and Sons, Inc., 1981.

[UKM 89] Specification of software quality attributes
Software quality evaluation guidebook,
UK Managing dealer Microinfo Ltd,
P.O. Box 3, Omega Park, Alto, Hampshire, GU34 2PG, England,

[Ver 88] Verbruggen R, Object-Oriented Design, Does it Exist?, in Advance
Papers of Third International Workshop on CASE, Cambridge, MA, Jul
1988.

Bibliography

[Ver 90] LO G ISC O PE, ASA
Verflog,
150, Rue N. Vauquelin,
F 31081 Toulouse Cedex,
France.

[War 89] Ward W T, Software Defect Prevention Using McCabes Complexity
Metric, Hewlett-Packard Journal, Apr 1989.

[Whi 88] Whiteside J and BennettJ, et al.,Usability Engineering:Our
Experience and Evolutionen HelanderM • (editor),Handbook o f Human
Computer Interaction,Elsevier Science Publishers,1988.

[Woo 88] Woodcock J, and Loomes M, Software Engineering Mathematics ,
Pitman, London,1988.

