
Training Platfoim for the Design of a 
Windows Multimedia Device

G. P. O' Donnell, B.Sc.

Master of Engineering 

Dublin City University 

Dr. E. R. Lynch 

DIT, Kevin Street 

May 1995

I hereby declare that the material contained in this thesis is based on worked carried out 

by myself.



I hereby certify that this material, which I now submit for assessment on the programme 

of study leading to the award of Master of Engineering is entirely my own work and has 

not been taken from the work of others save and to the extent that such work has been 

cited and acknowledged within the text o f my work.

Signed: V' . -.-A , ______ Date: 1 ~  £  ~ ? S



Acknowledgements
I would first like to thank my family for their support and assistance in allowing to me 

to complete this project and Dr. Raymond Lynch, my supervisor for his advice, 

assistance and supervision.

I would also like to thank the following people for their help and advice on various 

aspects o f the project

The post-graduate students on the fourth floor, Jonathan, Tony, Brian, Simon, Terry, 

Mick and Joe.

Dr. C. Downing and P. Comiskey.

The technicians on the fourth floor Ronan, Dermot, Des, Mick, Ron and Eamon.

Mr. C. Cowley, Head of the Telecommunications and Electronics Department and the 

assistant head Mr. C. Bruce.

The DIT Strategic Research Development programme (SRD-2) which provided the 

funding for this project.



Table of Contents
Chapter 1 

Introduction to the Multimedia Teaching Platform
1.1 Introduction ..........................................................................................  1

1.2 Multimedia Teaching P la tfo rm ........................................................... 1

1.3 MTP's Sound C a rd ...............................................................................  3

1.4 Microsoft Windows 3 .1 ........................................................................ 4

1.5 Windows M ultim ed ia ..........................................................................  5

1.6 MTP's Windows A pp lication .............................................................  6
1.7 Windows Device Drivers ..................................................................  7

1.8 The MTP Device D riv e r .....................................................................  7

1.9 Layout of T h e s is ..................................................................................  8

Chapter 2 

Design of the MTP’s Sound Caid
2.1 Introduction ........................................................................................ 9

2.2 Design Criteria ..................................................................................  9

2.2.1 Continuous Recording and P la y b a ck ...................................................... 9

2.2.2 Introduction of Hardware F a u lts ...........................................................  11

2.3 Data Buffering in the M T P .............................................................  11

2.3.1 Size of the Sound Cards Swinging Buffers ......................................  13

2.3.1.1 Physical Organisation of the Hard Disk ............................... 13

2.3.2 Data Buffering in the Windows Environm ent....................................  15

2.4 Data Transfer between Sound Card and PC's M em o ry ............... 16

2.4.1 Programming the DMA Controller ........................................................  17

2.4.2 DMA Transfer I/O C y c le s .....................................................................  17

2.4.2.1 I/O Port to Memory Transfer Cycle .................................... 18

2.4.2.2 Memory to I/O Port T ransfer...................................................  19

2.5 Capabilities of the Sound C a rd ........................................................  20



2.6 Sound Card Design ...................................................................... 20

2.6.1 Swinging Buffers .....................................................................................  21

2.6.2 Address D ecod ing .....................................................................................  22

2.6.3 DMA / Interrupt G eneration.................................................................... 23

2.6.4 Control L o g ic .............................................................................................  24

2.6.5 I/O In te rface ................................................................................................ 25

2.6.6 Serial In te rfa c e ..........................................................................................  26

2.6.7 Clock Generation ...................................................................................... 26

2.6.8 Bus Interface .............................................................................................  26

2.7 Operation of the Sound Card in the Playback and Recording

modes .................................................................................................  27

2.7.1 Digital R ec o rd in g .....................................................................................  28

2.7.2 Differences Between the Analogue and Digital Recording

M o d e s .........................................................................................................  31

2.7.3 Analogue P la y b a c k ...................................................................................  31

2.7.4 Differences Between in the Analogue and Digital Playback

M o d e s .........................................................................................................  34

2.8 Summary .............................................................................................  34

Chapter 3 

Hardware Description of the MTP's Sound Card
3.1 Introduction ................................................................................. 35

3.2 Design of the Sound C a r d ................................................................  35

3.2.1 Address D ecod ing ......................................................................................  35

3.2.2 Swinging Buffers ......................................................................................  38

3.2.3 DMA / Interrupt G eneration....................................................................  39

3.2.4 Control L o g ic .............................................................................................. 41

3.2.4.2 Swinging Buffers' Read and Write Requests .......................  44

3.2.4.3 Swinging Buffers' Serial Interface and PC Data Buffer 

E n a b le s .......................................................................................... 44

3.2.5 I/O In te rface ................................................................................................  46

3.2.5.1 Digital R ec e iv e r ......................................................................... 46



3.2.5.2 Digital T ransm itter................................................................... 46

3.2.5 3 Analogue to Digital C o n v erte r..............................................  47

3.2.5.4 Digital to Analogue C o n v erte r...............................................  47

3.2.6 Clock Generation .......................................................................................  48

3.2.6.1 Channel C onsistency................................................................... 49

3.2.7 Serial Interface ......................................................................................  50

3.2.7.1 Serial to Parallel Converter C lo ck s ......................................... 50

32.1.2  Parallel to Serial Converter C lo c k s ......................................... 51

3.3 Field Programmable Gate A rra y .....................................................  52

3.3.1 FPGA Logic Implementation ...............................................................  53

3.4 Design Im plem entation.....................................................................  53

3.5 Testing of the Sound C a rd ................................................................  53

3.5.1 Address D eco d in g .................................................................................... 54

3.5.2 Control L o g ic ...........................................................................................  56

3.5.3 Clock Generation .................................................................................... 58

3.5.4 Recording and Playback Tests ............................................................. 60

3.5.4.1 Playback T e s ts ............................................................................. 60

3.5.4.2 Recording T e s t s ..........................................................................  61

3.5.4.3 Analogue Quality T e s ts .............................................................  61

3.6 Summary .............................................................................................  62

Chapter 4 
Introduction to Windows C Programming
4.1 Introduction ........................................................................................  63

4.2 The Windows Operating Environm ent...........................................  63

4 2.1 Non Preemptive Multi-tasking .............................................................  63

4.2.2 Application's Message Q u e u e ................................................................  64

4.2.3 Application Programming In te rfac e s ...................................................  64

4.2.4 Dynamic Link L ib raries ..........................................................................  64

4.3 Differences between DOS and Windows A pp lications  65

iii



4.4 Windows Programming Conventions.............................................  65

4.4.1 Main Window of A pplication...............................................................  66

4.4 2 H a n d le s .....................................................................................................  67

4 4.3 Functions and V ariab les.........................................................................  67

4.5 The MTP's Windows A pplication...................................................  68
4.5.1 Source Code for Main Window of the MTP's A pplication  68

4.5.2 Source Code for Dialog B o x e s ............................................................. 73

4.5.3 The Resource Script ..............................................................................  74

4.5.3.1 The Dialog B o x ..........................................................................  75

4.5.3.2 Menu Bar and Accelerator Table ...........................................  78

4.5.3.3 Icons and Bitmaps .....................................................................  79

4.5.3.4 String T a b le .................................................................................. 80

4.5.4 The Module Definition F i l e .................................................................. 80

4.5.5 Header File ..............................................................................................  81

4.5.6 Project File ..............................................................................................  81

4.5.7 Help F i l e ...................................................................................................  82

4.6 Windows M u ltim ed ia ........................................................................  83

4.7 Summary .............................................................................................  84

Chapter 5
The MTP’s Windows Application
5.1 Introduction ........................................................................................  85

5.2 The Windows A pplication ................................................................  85

5.3 The API's Low Level Audio Functions .........................................  87

5.3.1 Data Queue ..............................................................................................  88

5.3.2 Sending data to the Waveform Device ..............................................  88

5.3.3 Opening and Closing the Waveform D ev ice ...................................... 89

5.3.4 Application Callback Methods .............................................................  90

5.3.5 Waveform Messages supported by the A pp lication .........................  90

5.3.6 Accessing WAVE files ..........................................................................  91

iv



5.4 Playback and Recording Process ................................................... 91

5.4.1 Application's Analogue and Digital M o d es .......................................  92

5.5 Starting and Maintaining Continuous P lay b ack ............................ 93

5.5.1 The PlayProc Function ......................................................................... 93

5.5.2 Processing M M  WOM DONE Messages .......................................  94

5.6 Starting and Maintaining Continuous R e co rd in g ..........................  96

5.6.1 The RecordProc Function ..................   96

5.6.2 Processing M M  WIM DA TA messages ............................................  96

5.7 Summary ............................................................................................. 98

Chapter 6 

The MTP’s Waveform Device Driver
6.1 Introduction .......................................................................................... 100

6.2 Waveform Device Driver ...................................................................100

6.2.1 Managing Data Transfer ......................................................................  101

6.3 Device Driver Communications ........................................................ 102

6.3.1 Communicating with the Device D riv e r ...............................................  102

6.3.2 Communicating with the Windows Application ................................ 103

6.4 Structure of the Waveform Device Driver ................................... 104

6.4.1 Program M o d u le ......................................................................................  104

6.4.2 Interrupt Service Routines and Flags ...............................................  105

6.5 Device Driver Initialisation ................................................................ 106

6.5.1 The Driver Installation Entry Point Function ................................... 107

6.6 The Message Processing Entry Point Functions ............................. 110

6.6.1 The widMessage Function ....................................................................  I l l

6.6.2 The wodMessage Function ..................................................................  115

6.7 Maintaining Continuous R ecord ing ................................................... 118

6.7.1 The widFillBuffer Function ..................................................................  120

6.8 Maintaining Continuous P layback ......................................................121

6.8.1 The wodLoadDMABuffer F u n c tio n .....................................................  122

6.9 Summary ................................................................................................ 125

V



Chapter 7 

Debugging the Preset Faults of the MTP
7.1 Introduction .......................................................................................... 126

7.2 Hardware and Software Debugging A i d s ........................................ 126

7.2.1 Logic A n a ly se r.........................................................................................  126

7.2.2 Digital Storage Oscilloscope ...............................................................  127

7.2.3 Test Signals and Test Files ..................................................................  127

7.2.4 Test P o in ts ................................................................................................. 127

7.2.5 Software Debugging Aids ..................................................................... 128

7.3 Design Faults ........................................................................................128

7.4 Hardware Design Faults ..................................................................... 128

7.4.1 Address Decoding Fault .......................................................................  129

7.4.2 DMA and Interrupt Generation Fault ................................................  129

7.4.3 Clock Generation Fault ..........................................................................  130

7.4.4 Control Logic F a u lt .................................................................................. 130

7.5 Software F a u l t s ..................................................................................... 130

7.5.1 Interrupt Service Routine F a u lt .............................................................  131

7.5.2 File Access Fault ....................................................................................  131

7.5.3 Device Driver Fault ...............................................................................  131

7.5.4 Data Queue Maintenance F a u l t .............................................................  132

7.6 Debugging a Recording F a u lt..............................................................132

7.6.1 Description o f an Example Recording E r ro r ......................................  132

7.6.2 Debugging P r o c e s s .................................................................................  134

7.7 Debugging a Playback Fault ..............................................................136

7.7.1 Description o f the Playback F a u l t ........................................................  138

7.7.2 Debugging Process .................................................................................  138

7.8 Summary ................................................................................................ 140

vi



Chapter 8 

Summary and Future Development of the MTP
8.1 Introduction ......................................................................................... 141

8.2 The Multimedia Teaching P latform ..................................................141

8.3 Future Development of the MTP .................................................... 142

Appendix A
Serial Digital Audio In terface ....................................................................  A l

Appendix B
Schematic Diagrams and Test Points for the Sound Card ..................  B1

Appendix C
Direct Memory Access ............................................................................... C l

DMA Transfer Cycle .................................................................................  C2

DMA Registers and Initialisation ............................................................  C2

Programming the DMA Controller .......................................................... C5

Interrupts......................................................................................................... C7

Priority Interrupt Controller ......................................................................  C8

Programming the PIC .................................................................................  C8

Appendix D
Using the MTP A p p lica tio n ....................................................................... D1

Appendix E
Windows Operating Modes ....................................................................... E l

vii



Appendix F
RIFF File F o rm a t.........................................................................................  FI

PCM Audio Format ....................................................................................  F2

Multimedia File I/O Functions and S truc tu res .......................................  F2

Appendix G
Hungarian N otation ....................................................................................... G1

Appendix H
Help File for the MTP Application .........................................................  HI

Appendix I
Device Driver Installation .........................................................................  II

Appendix J
Installing the MTP A pplication .................................................................  J1

Building the Installation D is k ....................................................................  J2

viii



Figure 1.1 Overview of the Multimedia Teaching Platform......................................  2

Figure 1.2 Layout o f the MTP's Sound Card.................................................................. 4

Figure 1.3 Communication between a Windows Application and the

Multimedia Device Drivers.............................................................................5

Figure 2.1 Single and Double Buffering on the Sound Card................................... 12

Figure 2.2 Layout o f Hard Disk.....................................................................................  13

Figure 2.3 Data Buffering used by the MTP to Maintain Continuous

Recording or Playback................................................................................. 15

Figure 2.4 Block Diagram of System Bus and Peripheral Devices used by the

Card.................................................................................................................. 16

Figure 2.5 DMA transfer from an I/O Port to Memory............................................ 18

Figure 2.6 DMA transfer from Memory to an I/O Port............................................ 19

Figure 2.7 Block Diagram of the Swinging Buffer Section..................................... 21

Figure 2.8 Block Diagram of the Address Decoding and Bus Interface

Sections...........................................................................................................  22

Figure 2.9 Block Diagram of the DMA / Interrupt Generation Section  24

Figure 2.10 Block Diagram of the Control Logic Section.......................................... 25

Figure 2.11 Block Diagram of the I/O Interface Section............................................  25

Figure 2.12 Block Diagram of the Serial Interface Section.......................................  26

Figure 2.13 Block Diagram of the Clock Generation Section...................................  27

Figure 2.14 Data flow through the Multimedia Teaching Platform.......................... 28

Figure 2.15 The Recording Process.................................................................................  29

Figure 2.16 Operation o f the Sound Card during Recording.....................................  30

Figure 2.17 The Playback Process.................................................................................... 32

Figure 2.18 Operation of the Sound Card during Playback........................................ 33

Figure 3.1 General I/O Port Read Cycle....................................................................... 37

Figure 3.2 General I/O Port Write Cycle...................................................................... 37

Figure 3.3 Block Diagram of the Swinging Buffers................................................... 38

Figure 3.4 Generation of the DMA Interrupt...............................................................  40

Figure 3.5 Generation of the Switching Interrupt.......................................................  40

Figure 3.6 Switching Circuit for the Swinging Buffers..........................................  42

List of Figures

IX



43

47

48

49

50

51

52

54

55

55

56

57

57

58

59

59

66

76

82

85

87

90

92

94

95

97

Waveforms during a switch from the first Swinging Buffer to the

second...........................................................................................................

Serial Data from the Digital Receiver...................................................

Serial Data required by the Digital to Analogue Converter..............

Synchronisation o f the Digital Receiver and Counter........................

Channel Consistency Circuit....................................................................

SiPo's Serial Shift and Parallel Load Clock Signals, SiPoSCK and

SiPoLOAD...................................................................................................

PiSo's Serial Shift and Parallel Load Clock Signals, PiSoSCK and

PiSoLOAD...................................................................................................

Simulated DMA Write Request...............................................................

DMA Write Request..................................................................................

Simulated Address Decoding Waveforms.............................................

Simulated Swinging Buffer Read and Write Requests and Data

Buffer Enable Signals................................................................................

Rose Requests.............................................................................................

Simulated Wosc and Rose Signals.........................................................

Wosc Requests............................................................................................

Simulated Parallel Load and Serial Shift Clocks for the Serial

Interface........................................................................................................

Parallel Load and Serial Shift Clocks for the Serial Interface. . . .

Main window of Application...................................................................

The Digital Recording Dialog Box.........................................................

Application's Project File..........................................................................

Structure of Application............................................................................

Control over the Waveform Device Driver during Recording or

Playback.......................................................................................................

Waveform messages processed by the Application.............................

Playback and Recording Process from Application's

Perspective...................................................................................................

The PlayProc Function..............................................................................

Processing a MM_WOM_DONE message............................................

RecordProc function for starting recording...........................................

x



Figure 5 8 Processing of a MM_WIM_DATA message....................................  98

Figure 6.1 Layout o f Waveform Device Driver.......................................................  101

Figure 6.2 Communication between Application, Device Driver and the

Waveform Device....................................................................................... 102

Figure 6.3 Waveform Device Driver Initialisation................................................... 107

Figure 6.4 Messages supported by the DriverProc function................................... 108

Figure 6.5 Messages processed by the widMessage/wwc/Jo/i................................  I l l

Figure 6.6 Messages processed by the wodMess&ge function...............................  115

Figure 6.7 Flowchart for widFillBuffer function......................................................  120

Figure 6.8 Flowchart for the wodLoadDMABuffer function.................................  123

Figure 7.1 Flowchart for Debugging a Recording Fault.........................................  133

Figure 7.2 Operation o f the Sound Card during Recording...................................  135

Figure 7.3 Fault in both Recording Modes of the Sound Card............................. 136

Figure 7.4 Flowchart for Debugging a Playback Fault...........................................  137

Figure 7.5 Output Waveforms observed on the Storage Oscilloscope.................  138

Figure 7.6 Operation of the Sound Card during Playback...................................... 139

Figure A. 1 Subframe Format.......................................................................................... A1

Figure A.2 Biphase Mark Coding.................................................................................  A2

Figure A.3 Frame and Subframe Synchronisation Preambles................................. A2

Figure B .l Address Decoding Section.........................................................................  B2

Figure B.2 DMA and Interrupt Generation Section.................................................. B3

Figure B.3 Swinging Buffers Section..........................................................................  B4

Figure B.4 Control Logic Section.................................................................................  B5

Figure B.5 Serial Interface Section...............................................................................  B6

Figure B.6 Clock Generation Section........................................................................... B7

Figure B.7 Analogue I/O Interface Section................................................................  B8

Figure B.8 Digital I/O Interface Section.....................................................................  B9

Figure B.9 Physical Layout o f the Sound Card....................................................... B10

Figure C.l Bit Configurations for the Page and Address Registers........................ C4

Figure C.2 Bit Definitions o f the Mode Register......................................................  C5

Figure C.3 Bit Definitions o f the Status Register...................................................... C5

Figure D.l The Analogue Playback Dialog Box........................................................ D1

Figure D.2 The Digital Recording Dialog Box..........................................................  D2



Figure F I  WAVE File Structure.................................................................................  F2

Figure H.l Application's Help Window. ................................................................. HI

Figure H.2 Play HYPERTEXT screen with the segmented-graphics bitmap,

PLAYHELP.SHG.......................................................................................  H4

Figure J. 1 The Installation Program displaying the Welcome Dialog Box. . . J2

Figure J.2 Installing the Application's Files..............................................................  J2

xii



Table 2.1 I/O Port Addresses......................................................................................  23

Table 3.1 Bit definitions for the Buffer Status Byte..............................................  36

Table 3.2 I/O Interface Chips......................................................................................  46

Table 4.1 Application's File Types............................................................................. 69

Table 4.2 Multimedia Device Drivers........................................................................ 83

Table 5.1 Description of Application's File.............................................................. 86

Table 6.1 Waveform Device Driver Files................................................................. 105

Table A .l Differences in the Digital Audio formats............................................  A l

Table B .l Test Points for the Address Decoding Section........................................ B l l

Table B.2 Test Points for DMA / Interrupt Generation Section...............................B l l

Table B.3 Test Points for the Swinging Buffer and Control Logic

Sections...........................................................................................................B12

Table B.4 Test Points for the Serial Interface Section............................................. B12

Table B.5 Test Points for the Clock Generation Section.........................................B13

Table B.6 Test Points for the Analogue I/O Interface..............................................B13

Table B.7 Test Points for the Digital I/O Interface.................................................. B14

Table B.9 Test Points for the Analogue I/O Interface..............................................B16

Table C.l DMA Channels in the AT PC................................................................... C2

Table C.2 DMA Controller Registers accessed by the Device Driver when

programming the DMA Controller......................................................... C3

Table C.3 Lower Hardware Interrupt Lines..............................................................  C8

Table G .l Examples of Hungarian Notation..........................................................  Gl

Table H .l FOOTNOTES used for HYPERTEXT jum ps........................................ H4

Table J.l Files required by the DSKLAYT program.............................................  J3

Table J.2 Installation Disk Files.................................................................................  J8

List of Tables



Listing 4.1 Program listing of HELLO.C....................................................................  65

Listing 4.2 Windows window class structure, WNDCLASS. .............................  70

Listing 4.3 Windows message structure, MSG..........................................................  71

Listing 4.4 Message processing procedure, WndMainProc, for the

Application............................................................   72

Listing 4.5 Main dialog box function fhRecdDigt, for the Digital Recording

dialog box....................................................................................................  74

Listing 4.6 Message processing structure for the Digital Recording Dialog

Box................................................................................................................  75

Listing 4.7 Resource Script definition of the Digital Recording Dialog Box. . 76

Listing 4.8 Resource Script definition for the Application's 'Play' Pull-Down

M enu.............................................................................................................  79

Listing 4.9 Application's Module Definition file, MMAPP.DEF............................ 81

Listing 4.10 Declaration of the Multimedia Device Drivers in SYSTEM.INI. . 84

Listing 6.1 DriverCallback function.............................................................................  103

Listing C .l Programming DMA Channel 7................................................................. C6

Listing C.2 Programming Interrupt Vector Bh, Hardware Interrupt IRQ3. . . .  C9

Listing H .l Project File for the Help File...................................................................  H2

Listing H.2 Sections o f the Help File's Source File................................................... H3

Listing 1.1 Device Driver's Setup file, OEMSETUP.INF..........................................  II

Listing J.l The Setup Script file, MMAPP.MST......................................................  J4

Listing J.2 Installation Disk's Image file, MMAPP.INF..........................................  J6

Listing J.3 The Setup List file, SETUP.LST.............................................................. J7

List of Listings

xiv



Equation 2.1 Minimum Buffer Size...............................................   14

Equation 3.1 DMA Read and Write Request's Boolean Expressions..................... 41

Equation 3.2 Swinging Buffer's Read and Write Requests....................   45

Equation 3.3 Serial Interface and PC Data Buffers' Enables..................................  45

List of Equations

xv



Abstract
There are many Windows Multimedia plug-in cards available for a Personal Computer 

(PC), but they are not suitable for a laboratory teaching platform for several reasons. 

Firstly, their hardware and software details are not available because o f the market 

driven need to keep all hardware and software details from competitors. Secondly, the 

cards are not designed to allow faults to be introduced. Thirdly there is the inherent 

requirement that Windows applications be uniform to the point where application 

software sees the same interface, irrespective o f which Windows compatible card is 

being used. These latter points are highly desirable from the user's point of view but not 

from a teaching viewpoint, where the goal is to enlighten the student in the hardware 

and software design techniques used to perform the stated objective.

The Multimedia Teaching Platform consists of a sound card, Windows 3.1 

application and a Windows standard mode device driver. The sound card can 

continuously play or record audio files to the PC's hard disc in an analogue or a digital 

format. The digital format conforms to the consumer digital formats, IEC-958 Consumer, 

S/PDIF and CP-340 Type 2. Programmable logic was used on the sound card to allow 

hardware faults to be easily introduced. Hardware faults can be introduced by replacing 

the memory device which programs the logic array. Software design faults can be 

introduced by providing faulty source code for the device drivers and for the user 

interface. By introducing both hardware and software design faults, students can gain 

valuable experience in software and hardware debugging techniques and in the Windows 

environment.



Chapter 1
Introduction to the Multimedia Teaching 
Platfoim

1.1 Introduction
The purpose of this project was to develop a Multimedia Teaching Platform for a 

Microsoft Windows environment. In the era of VLSI and modular software where so 

much information is concealed behind a hardware or software interface, it is important 

for the engineering student to gain first-hand experience of hardware and software design 

and debugging techniques. Part o f the philosophy of this project therefore, was to design 

a platform which puts the student in the position of having to detect and resolve 

software and hardware faults introduced to highlight the different aspects of Windows 

Multimedia.

This chapter provides an introduction to the Multimedia Teaching Platform and 

explains its three components, the Windows application, the device driver and the sound 

card. The structure of Microsoft Windows and Windows Multimedia are briefly 

explained along with the Windows Multimedia interface between the Windows 

application and the device driver.

1.2 Multimedia Teaching Platform
The development of the Multimedia Teaching Platform (MTP)  consisted of writing a 

Windows application and device driver along with designing, building and testing a 

sound card. The MTP system is illustrated in Figure 1.1. The MTP system requires an 

analogue and digital audio amplifier to provide the source and target for the sound card's 

audio data. The digital audio interface supports the S/PIDF and IEC-958 consumer 

digital audio format which is explained in Appendix A. The Windows application 

controls the sound card through the device driver. The device driver directly accesses 

the sound card and handles the transfer of data between the sound card and the Windows 

application.

1



Multimedia Teaching Platform

t t
Analogue and 
Digital Audio 

Amplifier

«-C Cd Player ]

«-C DAT

Tape D ec k ]

I Ir ”

Left Right
Speaker Speaker

Analogue and 
Digital Audio 
Sound Card

Device
Driver

Windows
Application

Î
PC's 

Hard Disc

Figure 1.1 Overview o f the Multimedia Teaching Platform.

Two designs were considered for the sound card. The first design used a Field 

Programmable Gate Array (FPGA) to implement the functional blocks of the sound card 

[16], such as Address Decoding and Clock Generation for the digital and analogue 

interface chips. The second used a mixture of combinational logic and a microprocessor 

to control the data flow through the card. This second design was discarded for its 

complexity when compared with the FPGA design. Furthermore the microprocessor 

design would have required another memory device along with a FPGA (for its 

combinational logic) and its memoiy device. The microprocessor would provide the 

MTP with the ability to introduce hardware faults through software by reprogramming 

the microprocessor but these faults would not be suitable because they could not be 

easily debugged and they would substantially increase the knowledge base required by 

the student for which the MTP is designed.

There are commercially available sound cards but their hardware schematic 

diagrams and their Windows application source code are not released to the public. 

Also, even if the sound card's schematic diagrams were available, the sound card itself 

uses proprietary VLSI devices and is not designed as a teaching platform. With the 

MTP, the user has access to the source code for its Windows application and device 

driver along with the schematic diagrams for its sound card.

2



The sound card utilises programmable logic to implement a significant part of 

its hardware design [16], The hardware faults can be easily introduced into the MTP by 

replacing the Programmable Read Only Memory {PROM) device without altering any 

physical links or connections. This PROM programs the FPGA which is responsible for 

implementing the sound card's Address Decoding, Control Logic and Clock Generation 

and therefore provides a large source of possible faults. Oscilloscopes and logic 

analysers can be connected to test points on the card as described in the card's schematic 

diagrams in Appendix B. These tests points allow the student to concentrate on 

debugging the card rather than identifying devices and tracing connections between 

them. The software faults are introduced by providing faulty source code for the 

Windows application and device driver.

The sound card was chosen as the multimedia device because its hardware is 

simpler to design and understand than a video card and the device driver is easier to 

understand and debug. The video standard is still evolving with a suitable compression 

scheme yet to be accepted and, at present, sound is the most common form of Windows 

Multimedia in use.

1.3 MTP’s Sound Card
The sound card is capable o f recording and playing stereophonic analogue and digital 

consumer audio signals. The analogue source and target is a normal analogue audio 

amplifier with its associated source equipment while the digital source and target are any 

digital audio devices which provide digital consumer format serial outputs and inputs. 

For consistency the analogue audio system possesses the same sampling frequency and 

bit resolution as the consumer digital audio format.

Figure 1.2 shows the functional block layout of the MTP's sound card, The 

Swinging Buffers section consists of a pair of data buffers which maintain continuous 

recording or playback. The device driver can access one Swinging Buffer while the 

Serial Interface accesses the other. This ensures a continuous data flow between the 

external audio device and the Personal Computer's (PC) hard disk. The DMA \ Interrupt 

section generates the two interrupts which trigger the transfer of data between the 

Swinging Buffers and the PC's memory. The interrupt service routines (ISRs) for the two 

interrupts are contained in the device driver and they transfer data using direct memory 

access (DMA). For more information on DMA and interrupts see Appendix C.

3



Digital

I/O 
Interface

Li
Analogue

I/O

Serial
InterfaceN
Clock

Generation

Swinging 4 
Buffers J

— —

Control
1 1

Logic H !J 1—

Address
Decoding

D M A /
Interrupt

Generation

vwl
Data Lines

Figure 1.2 Layout o f the MTP's Sound Card.

Control LinescxT

The Clock Generation section provides the different clocks for the I/O Interface, 

Serial Interface and the Control Logic sections. The Control Logic section controls 

access to the Swinging Buffers.

1.4 Microsoft Windows 3.1
Microsoft Windows is a graphical user interface for DOS based PCs [14], Windows 

provides a multi-application environment where applications are represented by small 

graphical images or icons. Applications must be specifically written for Windows to take 

full advantage o f its multi-application environment. Windows is written in C++ and runs 

on top of DOS which it requires for low level file access [3, 14], The advantages of 

Windows can be summarised as follows;

♦ Consistent User Interface

All applications have the same appearance and user interface principles such as 

pull-down menus and dialog boxes. For example, all word processing packages 

possess a File menu that contains the standard Open and Save A s dialog boxes.

♦ Data Transfer and Application Communications

There are several standard ways in which applications can communicate and 

interchange data. Applications can send messages to other applications and data 

can be transferred through the Clipboard, by Dynamic Data Exchange (DDE) or 

by Object Linking and Embedding {OLE).

4



♦ Application Programming Interface

The Application Programming Interface (A PI) provides the functions required by 

a Windows application to operate in the Windows environment. The API also 

provides hardware independence for applications accessing the PC's hardware. 

These functions range from creating and displaying the application's window to 

the multimedia functions used to control the sound card. The multimedia devices 

supported by Windows are accessed through the API's multimedia functions 

contained in the MMSYSTEM module. These functions send standard device 

specific messages to the device drivers which in turn control their multimedia 

hardware device.

1.5 Windows Multimedia
Windows Multimedia provides the user with the ability to control media devices, audio 

and animation resources, audio and visual peripherals and external devices such as 

videodisc players, through API commands. The Windows module MMSYSTEM contains 

the multimedia functions of the Windows API [10], Figure 1.3 illustrates the API

Waveform MIDI Joystick Digital Video Animation DAT Videodisc CD Audio 
Figure 1.3 Communication between a Windows Application and the Multimedia

Device Drivers.

5



multimedia interface between the Windows application and the multimedia device 

drivers. The MMSYSTEM module is composed of the Multimedia Control Interface 

(MCI), and the low level functions for controlling the multimedia devices. MCI provides 

single high level commands for performing complete multimedia operations, such as 

recording an audio file. The low level functions provide direct control over the 

multimedia device but are more complex, requiring several steps to perform the 

equivalent high level command. For example playing an audio file requires at least five 

different low level functions compared to the MCI's single command.

The high level commands while advantageous from a programming viewpoint, 

hide much o f the inner workings of Windows Multimedia from the programmer. For 

example they do not illustrate how the device driver and application communicate with 

each other, nor do they explain the process of playing or recording waveform audio. 

Consequently, the Windows application developed in this project uses the low level 

audio functions. The MMSYSTEM module converts these low level audio functions to 

waveform device driver messages which the waveform device driver processes and 

converts into hardware dependant code [12], Similarly the waveform device driver 

communicates with the application via the MMSYSTEM module.

1.6 MTP's Windows Application
The Windows application in this thesis allows the user to record or play analogue or 

digital audio. The application uses the low level audio functions to record and play the 

analogue audio. The procedure for recording and playing back files is explained in 

Appendix D. The digital format is not supported in Windows Multimedia at present, but 

has been implemented in this project by sending special predefined messages through 

MMSYSTEM to instruct the waveform device driver to configure the card for digital 

operation. The files played and recorded are in the Windows RIFF WA VE format [9], 

The 44.1 kHz 16 bit stereo PCM WA VE format, the most complex format was chosen 

as the one which the sound card should support. The application is written in C rather 

than C++, the object orientated version of C, to reduce the knowledge base requirements 

o f the student, therefore making the MTP more accessible.

6



1.7 Windows Device Drivers
In any computer, device drivers provide the communication interfaces between the 

operating system and the hardware devices Hardware device drivers provide hardware 

independence and standard software interfaces for programs which access the hardware. 

They relieve the programmer from needing to know any specific hardware details about 

the device.

In Windows, device drivers can be software or hardware oriented. For instance 

the driver that controls the graphics card is hardware based while the screen savers are 

software based. There are two types of Windows device drivers, Standard mode and 386 

Enhanced mode drivers [12], Standard mode drivers are used in the three modes of 

Windows. The Windows operating modes are explained in Appendix E. Enhanced mode 

drivers are only used in the 386 Enhanced mode and are known as virtual device drivers 

(VxD). These VxDs make their hardware appear virtual allowing the device to be shared 

among many applications while maintaining the illusion to each application that it has 

sole ownership o f the device. The Standard mode driver only allows single ownership 

of the hardware device it supports.

1.8 The MTP Device Driver
The device driver developed in this project is a Windows Standard mode compatable 

device driver. This driver replaces the waveform device driver that is responsible for 

audio data, if  one is present in the Windows environment. Waveform audio is the 

Windows term for digitised analogue audio data. The device driver however, has more 

features than a standard waveform device driver because it also supports the consumer 

digital format along with an analogue format. The sound card itself can only support 

single ownership, so the advantages of a VxD would not be utilised.

The driver is written to accept special MMSYSTEM messages to convert the 

input or output medium to the analogue or digital format. The driver interprets the 

MMSYSTEM messages and controls the card accordingly. Two 4 kbyte ping-pong 

memory buffers are used by the driver to maintain data flow between the driver and the 

sound card. The driver is responsible for servicing the sound card's interrupts and 

managing the DMA transfers between the sound card and the DMA buffers. The device 

driver is written in a mixture o f 80286 assembler language and C.

7



1.9 Layout of Thesis
The following chapters o f the thesis can be described as follows. Chapter 2 introduces 

the MTP's sound card and describes the decisions taken when designing the card. The 

functional blocks of the card are described in detail in Chapter 3 along with the testing 

procedures used when verifying the card’s design. Chapter 4 introduces the principles 

of C programming in the Windows environment and describes the files required to create 

a Windows application. The MTP's Windows application is described in Chapter 5 while 

the MTP's device driver is described in Chapter 6. Chapter 7 examines the preset faults 

o f the MTP and describes the general debugging procedure using the recording and 

playback flowcharts. Chapter 8 summarises the MTP and examines areas where further 

development might take place.

8



Chapter 2
Design of the MTP's Sound Card

2.1 Introduction
This chapter introduces the Multimedia Teaching Platform's sound card and describes 

the design process of the card. A general description o f how the card operates in the PC 

environment and the techniques it employs to transfer data are discussed. The hardware 

structure o f the card is briefly discussed along with a description of the process of 

recording and playing audio files from the card's perspective.

2.2 Design Criteria
The design o f the sound card was based on two requirements, a capability for continuous 

recording and playback and the ability to easily introduce hardware faults. The first 

involved a consideration of the PC's hard disk performance and microprocessor speed, 

the data transfer rate required by the analogue and digital interface devices and the 

environment in which the sound card operates. The second involved a method of easily 

modifying the sound card's logic circuits with minimal disturbance to physical 

connections. These design requirements are expanded in the following sections.

2.2.1 Continuous Recording and Playback

The sound card must be capable of maintaining continuous data flow to and from the 

PC's hard disk in the Windows and DOS environments. The PC can actually transfer 

data between its memory and the sound card at a faster rate than that required by the 

analogue or digital devices, namely at 1.4112 Megabits per second (Mbit/s) [6], But 

many older hard disks are unable to sustain this data transfer rate and therefore some 

form of buffering on the sound card is required. For this reason two swinging buffers 

were included on the sound card. The PC's hard disk performance and microprocessor 

speed directly determine the buffer's minimum size requirements.

The operating environment of the card must also be considered when calculating 

the buffer size. The Windows environment dictates the use o f interrupts and Direct

9



Memory Access (DMA) to transfer data between the PC's memory and the buffers. The 

microprocessor in the Windows environment usually has several applications running at 

once, and therefore it has more housekeeping tasks to perform than in a single 

application environment, such as DOS.

DMA combined with interrupts allows data to be transferred between the PC's 

memory and the sound card's Swinging Buffers with minimal direct microprocessor 

involvement. The microprocessor is interrupted only when DMA transfer sessions need 

to be initialised, and the transfers are then performed by the DMA controller while the 

microprocessor is free to perform other tasks. These DMA sessions take more than twice 

the time o f their direct microprocessor controlled I/O counterparts, because a DMA I/O 

transfer cycle is longer and the DMA controller is configured to release the bus after 

every DMA operation [17], Otherwise the microprocessor would be denied the bus until 

the DMA session finishes.

The paging hardware of the Intel microprocessors, when operating in protected 

mode, only guarantees 4 kbytes of contiguous physical memory [5], This places a 

maximum limit of 4 kbytes on the size o f DMA sessions. The size of the Swinging 

buffers will therefore be a multiple of 4 k. Consequently some method had to found to 

manage the multiple DMA sessions required to empty or fill the buffers. This was 

achieved by using two sources o f interrupts, namely the Switching Interrupt, generated 

when the hardware switches from one Swinging Buffer to the other, and the DMA 

Interrupt generated when a DMA session on the sound card's DMA channel has finished. 

The Switching interrupt will trigger the initial access to the Swinging Buffers while the 

DMA Interrupt, generated at the end o f a DMA session, manages further accesses to the 

buffer. In subsequent sections this transfer method will be referred to as the DMA / 

Interrupt transfer mode.

In the DOS environment where the microprocessor can devote most of its time 

to the application, microprocessor I/O read and write operations can be used to transfer 

data to and from the sound card. The application can poll the sound card by reading the 

Buffer Status Register, and determine when data need to be transferred. This transfer 

mode, called Polled I/O, is faster than the DMA / Interrupt mode but cannot be used in 

the Windows environment. At power-up the sound card is automatically configured for 

Polled I/O by its power-up circuitry. The DMA / Interrupt mode is enabled (and the

10



Polled I/O mode simultaneously disabled) by writing to specific I/O port addresses, as 

described in Section 2.5.

2.2.2 Introduction of Hardware Faults

For the card to be practical in a learning laboratory environment, the hardware faults 

must be introduced as easily as possible, without having to manually modify any 

physical connections. This criterion was meet by using programmable logic to implement 

the sound card's logic. A Field Programmable Gate Array (FPGA)  implements the sound 

card's Address Decoding, Control Logic and Clock Generation sections. This FPGA is 

programmed at start-up using a Programmable Read Only Memory device (PROM) [16], 

A hardware fault can be introduced by simply replacing the PROM  with one which 

programs the sound card with a predefined fault.

2.3 Data Buffering in the MTP
The MTP was designed to operate in two different data transfer modes, Polled I/O and 

DMA / Interrupt in both the DOS and Windows environments. Regardless o f which 

environment or transfer mode was used, some form of buffering is required on the sound 

card because the PC cannot maintain the continuous data transfer rate (one sample every 

11.34 |is) required by the I/O interface o f the sound card. This buffering can be in the 

form of a single or double (swinging) buffer arrangement as shown in Figure 2.1. There 

can also be single or double buffers in PC memory to further compensate for the slow 

data transfer rate between the hard disk and memory.

The Double Buffering System can be implemented with two first-in-first-out 

(FIFO) buffers [7], A FIFO buffer allows independent access to the buffer from two 

separate channels. This allows simultaneous read and write requests to be processed by 

the FIFO's internal logic. The FIFO possesses separate internal read and write count 

registers which ensures that only valid locations are accessed when reading or writing 

to the FIFO. This system is organised so that as one buffer is being accessed by the PC 

the other is accessed by the I/O Interface of the sound card.

The Single Buffer System can be implemented with a single FIFO buffer. This 

system operates in a similar manner to the Double Buffering System in that one half of 

the FIFO is being accessed by the PC while the sound card's I/O Interface accesses the 

other half. However this system is more difficult to control than a discrete (two FIFO)

11



double buffering system, requiring more logic and a larger FIFO than the double 

buffering system. For this reason a Double Buffering System was chosen for the MTP 

design

Single Buffer System

Input
or

Output

Double Buffer System

Input
or

Output

T1 = Transfer Rato from the Hard Disk to Memory

T2 -  Transfer Rate from Memory to Sound Card

T 3  = Transfer Rate required by the Sound Card I/O  Interface

Figure 2.1 Single and Double Buffering on the Sound Card.

Just as double buffering can be employed on the sound card, a similar 

arrangement can be organised for PC memory when operating in the DMA / Interrupt 

transfer mode. This eases the timing demands for data transfer between the hard disk 

and PC memory. While the DMA controller is transferring data between the sound card 

and PC memory, the processor can be transferring between the hard disk and memory.

However, the Polled I/O mode does not benefit from swinging buffers in PC 

memory because it requires the processor to directly transfer data between memory and 

the sound card's buffers. For example, when recording, the processor must transfer data 

between the sound card's full swinging buffer and the empty PC swinging buffer and 

then between the full PC swinging buffer and the hard disk before the other buffer on 

the sound card has been filled. The same timing restrictions are imposed if only one PC 

memory buffer is used. For this reason the size o f the sound card's buffers was 

calculated based on the Polled I/O mode and assuming a single memory buffer.

12



2.3.1 Size of the Sound Cards Swinging Buffeis

The approach taken in determining the size of the Swinging Buffers was based on first 

finding a minimum buffer size for an unfragmented hard disk and then testing larger 

buffer sizes on a fragmented disk to ascertain if continuous recording or playback can 

be sustained. This approach was taken because of the difficulty in accurately determining 

the access time o f a fragmented hard disk.

Referring back to Figure 2.1 the timing restrictions imposed on the double 

buffering system in the playback mode are that for the chosen buffer size X (in words), 

the time to read from the hard disk and fill the empty buffer must be less than the time 

for the I/O Interface to empty the other buffer. If this is achieved then continuous 

recording or playback can be maintained.

2.3.1.1 Physical Organisation o f the Hard Disk

The hard disk used in the test machine was composed of five platters or disks stacked 

on top o f each other as shown in Figure 2.2. Each platter possessed two recording 

surfaces and therefore two heads. The capacity o f each platter depends on the number 

o f tracks on it. Each track is made up of sectors which contain a fixed number of bytes. 

All tracks contain the same number of sectors regardless of their position on the platter.

Figure 2 .2  L ayout o f  H ard Disk.

13



This particular hard disk possessed 512 bytes per sector and 17 sectors per track. This 

80 Mbyte hard disk contains approximately 160,000 sectors which for convenience are 

grouped together to form clusters.

Using the physical organisation of the hard disk described above, the time to read 

from an unfragmented hard disk1 and fill a memory buffer (Tl) can be calculated as 

follows;

♦ The time for the head to move to the first sector of the file is taken as the average

seek time of 31.5 ms.

♦ There is another transition time when the head moves to the next adjacent track after

all the file's sectors have been read from this track. This movement takes 5.18 

ms and the number of times this occurs when filling a buffer is given by the 

ratio o f the buffer size X, to the number o f words per track (17 sectors x 256 

words per sector).

♦ The transfer time to fill the buffer is the buffer size multiplied by the transfer rate

of the disk, 4.56 (as.

The time for the I/O Interface to empty a Swinging Buffer is X x 11.34 ps (T3). The 

PC can perform an I/O write instruction every 1 ps, so a buffer can be filled in X ps 

(T2). Therefore, for continuous operations the following condition must be satisfied;

1 2 + 7 2  s T3 

o r

(31,5/hj + 5.18ws*------—-----  + 4.56ps*X) + (lp ,5 *X ) s 11.34ps*X
17 * 256

Equation 2.1 Minimum Buffer Size.

Equation 2.1 yields a minimum buffer size of 6864 words. Tests were performed with 

8 kword buffers which were found to be unreliable for a fragmented disk. Therefore 16 

kword buffers were used which were found to be able to sustain continuous operations 

on a fragmented hard disk. The Swinging buffers are composed of two 8 k x 9 bit 

IDT7206 first in first out buffers (FIFOs) with 50 ns access time. The 50 ns access time 

was required to compensate for the propagation delays introduced by the Address 

Decoding and Control Logic circuits when reading data from the buffers.

1Performance figures from Norton Utilities Ver. 3.0

14



2.3.2 Data Buffering in the Windows Environment

There are three levels o f data buffering employed by the MTP to maintain continuous

recording or playback when operating in the Windows environment using the DMA /

Interrupt transfer mode, as shown in Figure 2.3. The first two are implemented by the

Swinging Buffers on the sound card and the ping-pong buffers in the device driver.

These are required due to the inability o f the hard disk to continuously transfer data to

the I/O Interface at the required transfer rate (1.4112 Mbits/s), and the maximum number

of DMA transfers allowed per DMA session. I f  the PC and hard disk were fast enough

to compensate for the extra processing involved in the Windows environment, then there

would be no need for any DMA buffering and the Swinging Buffers on the sound card

would only be required for lossless data transfer.

Sound Device Windows
Card Driver Application

Continuous 
Input or 
Output

Swinging 
Buffer 1

Swinging 
Buffer 2

Ping
Buffer

Pong
Buffer

^ P

Buffer 1

Buffer 2

H
Hard
Disk

1'

Buffer X

Swinging Ping-Pong Application's
Buffers Buffers Data Queue

Figure 2.3 Data Buffering used by the MTP to Maintain Continuous Recording or
Playback.

The buffering between the application and the device driver's ping-pong buffers 

is imposed by the Windows environment. The device driver's ping-pong buffers require 

another level of buffering between themselves and the hard disk for two reasons. The 

first reason is due to the restriction on the size o f  the ping-ping buffers, 4 kbytes each 

as explained in Section 2.2.1. These buffers are therefore too small to maintain 

continuous data transfer between the hard disk and the I/O Interface. The second reason 

is due to the device driver operating at a higher priority level than Windows 

applications. The application can not directly access the device driver's buffers without 

causing a General Protection Fault in the Windows environment. This would 

immediately cause the Windows environment to halt and terminate the application. 

Therefore the device driver must transfer data between its ping-pong buffers and the data

15



buffers provided by the application. This further increases the transfer time between the 

hard disk and the Swinging Buffers. Windows requires the application to control disk 

access and provide the device driver with a sufficient number of data buffers so that it 

can maintain continuous data transfer to the I/O Interface through the Swinging Buffers 

[11].

2.4 Data Transfer between Sound Card and PCs Memoiy
The peripheral components involved in transferring data between the sound card and the 

PC's memory are shown in Figure 2.4. The Swinging Buffers are accessed through I/O 

ports and the card supports two forms of I/O data transfer, Polled I/O and DMA / 

Interrupt as explained previously. The Polled I/O transfer mode is performed by the 

microprocessor's I/O port read and write instructions. In this case, the microprocessor 

is responsible for generating the memory address, enabling data buffers, and memory 

and I/O port control signals, such as memory read (MEMRbar) and I/O port write 

(IOWbar).

Address lines

Data Lines

I/O Read/Write Signals 

Control Signals

Memory Read/Write

Microprocessor

INTR

Memory Read/Write 

Control Signals

Address lines 

Data Lines

Memory

Sound Card
Address lines 

Data Lines

Interrupts ( IRQ3 and IRQ7) 
I/O Read/Write Signals 
Control Signals 
DMA Request 
DMA Acknowledge

DACK7bar
DRQ7
I/O Read/Write Signals 
Memory Read/Write 
Control Signals 
HOLD Request 
HOLD Acknowledge

Address lines

DMA Controller

Priority Interrupt 
Controller (PIC)
Interrupt 3 and 7 

Interrupt Request 

Address lines 

Data Lines

System Bus
Figure 2.4 Block Diagram o f System Bus and Peripheral Devices used by the Card.

16



The DMA / Interrupt mode is managed by the DMA controller. Once the DMA 

controller has control o f the System Bus after a DMA request from the sound card, it 

will generate the signals required to transfer data between the sound card and the PC's 

memory. The DMA sessions are programmed by the sound card's interrupts, SwitchlRQ 

(IRQ3) and DMAIRQ (IRQ7). When one of these interrupt lines is pulsed low, it will 

be latched by the Priority Interrupt Controller (PIC). The PIC will then interrupt the 

microprocessor. The microprocessor will acquire from the PIC the interrupt vector of the 

recently activated interrupt line. This interrupt vector will point to the corresponding 

interrupt service routine. This interrupt service routine will then program the DMA 

controller. For information on programming the PIC, see Appendix C.

2.4.1 Programming the DMA Controller

The DMA controller is programmed by writing to its internal registers, accessed through 

I/O ports as described in Appendix C [8], These define the number of transfers per 

session, the starting memory address for transfers and its operating mode, such as its 

type o f transfer and its transfer mode. The MTP programs the DMA controller in the 

following configuration;

♦ Channel selected : Channel seven (third channel of the second DMA controller).

The following configuration information refers to this channel only.

♦ Type of transfer : I/O port write to memory or I/O port read from memory.

♦ Increment Address : Current address is incremented after every transfer.

♦ Transfer Mode : Single mode which releases the System Bus after every transfer 

Before the DMA controller is programmed, the channel being programmed must be 

masked by setting the appropriate bit in the DMA controller's mask register. The channel 

can then be programmed without DMA transfers occurring while the channel is being 

configured. Once programmed, the channel can be unmasked and DMA requests can 

now generate DMA transfers.

2.4.2 DMA Transfer I/O Cycles

The sound card requests DMA transfers on the DMA request line for channel seven, 

DRQ7. This signal is active high and once received by the DMA controller, the DMA 

controller will request control o f the system bus from the microprocessor by asserting 

its HOLD signal. The microprocessor when it has finished its present instruction will

17



release the system bus by asserting its hold acknowledge signal, HLDA. Once the DMA 

controller receives this signal it will start a DMA transfer cycle as programmed for 

channel seven. The memory address generated by the DMA controller is determined by 

its internal page and current address registers. The DMA controller will generate the 

signals required to transfer the 16 bit word between the sound card and the PC's 

memory.

2.4.2.1 I/O Port to Memoty Transfer Cycle

Figure 2.5 illustrates the DMA I/O port to memory transfer cycle [7], The process of 

transferring data from the Swinging Buffers to the PC's memory can be summarised as 

follows:-

♦ DMA controller receives a DMA transfer request signal, DRQ7, on DMA channel

seven from the sound card's DMA / Interrupt Generation section.

♦ DMA requests control of the system bus from the microprocessor.

♦ DMA controller is granted control of the system bus.

♦ DMA controller generates the memory address from its internal current address and

page registers.

Processor
Clock

HLDA

AENbar

AO to A19

lOWbar

MEMRbar

DO to D15

DACK7bar

—

J

>< Valid M<:mory Add ess X

\  - - -/
\

/̂alid Data
/

DMA Bus Cycle

Figure 2 .5  DM A transfer from  an I/O  Port to M em ory.

18



♦ DMA controller generates its DMA transfer acknowledgement signal for channel

seven, DACK7bar.

♦ DMA controller now generates the general I/O port read signal, IORbar. On the sound

card the DMA / Interrupt Generation section generates a Swinging Buffer read 

request from a combination of this signal and the DACK7bar signal. The Control 

Logic will direct this read request signal to the first Swinging Buffer.

♦ Data from the Swinging Buffers drive the data lines on the system bus.

♦ DMA controller now generates the memory write signal MEMWbar, which latches the

data on the system bus into the specified memory location.

2.4.2.2 Memoiy to I/O Port Transfer

Figure 2.6 illustrates the DMA memory to I/O port transfer cycle [7], The process or 

transferring data from the PC's memory to the Swinging Buffers by the DMA controller 

can be summarised as follows:-

♦ DMA controller receives a DMA request signal, DRQ7, on DMA channel seven from

the DMA /  Interrupt Generation section.

♦ DMA controller requests control of the system bus from the microprocessor.

Processor
Clock

AENbar 

AO to A19 

IORbar

MEMWbar 

DO to D15

DACK7bar

0 1 2 3 4 5 6

—

J

1

>< Valid Memory Addr BSS X

1

/  s
\  S T  
Valid Data

DMA Bus Cycle

Figure 2 .6  DM A transfer from  M em ory to an I/O Port.

19



♦ DMA controller is granted control of the system bus.

♦ The memory address generated by the DMA controller is determined by its current

address and page registers.

♦ DMA controller issues a DMA transfer acknowledgement signal on channel seven,

DACK7bar.

♦ DMA controller generates a memory read signal MEMRbar, which will place the

memory location's data on the system bus.

♦ DMA controller now generates the I/O port write signal IOWbar. This signal in

conjunction with the DACKTbar signal generates a Swinging Buffer write 

request. The Control Logic directs this request to the appropriate Swinging 

Buffer.

♦ The data on the system bus is now latched into the memory of the write enabled

Swinging Buffer.

2.5 Capabilities of the Sound Card
The sound card is capable o f recording and playing continuous audio files to and from 

the PC's hard disk. The audio can be in an analogue format or in the consumer digital 

audio format (see Appendix A). The digital and analogue formats are fully compatible. 

Their stored samples have the same properties in terms o f  sampling frequencies (44.1 

kHz), sample resolutions (16 bit), and coding (PCM stereo, see Appendix F). Files 

recorded in one mode can also be played back in the other mode.

The digital consumer format is not supported in Windows Multimedia at present, 

but is supported in this card. The card can operate in the Windows or DOS 

environments and resides in a full length ISA slot on the system bus of the PC.

2.6 Sound Card Design
The sound card's design can be broken into several sections, each dedicated to 

performing a function required by the card during recording or playback. These 

functional blocks were illustrated previously in Chapter 1, Figure 1.2 and are now briefly 

described.

20



This section is responsible for maintaining continuous data flow between the external 

device, amplifier or CD Player, and the sound card. The block diagram of this section 

is shown in Figure 2.7. The Swinging Buffers are composed of two 16 kword buffers 

which are in turn made up o f two 9 bit first in first out (FIFO) buffers. The two FIFOs 

provide the 16 bit storage required to support the 16 bit I/O transfer operations used 

when transferring data between the PC's memory and the sound card. The size of the 

Swinging Buffers is such as to provide the PC with sufficient time to either fill or empty 

one Swinging Buffer while the I/O Interface is accessing the other Swinging Buffer, 

without breaking the continuous data flow between the Swinging Buffers and the I/O 

Interface. From the perspective o f the CPU or the DMA controller the Swinging Buffers 

are seen as I/O ports. There are separate ports for reading and writing, while the same 

port can access both buffers. The Control Logic determines which buffer receives the 

request.

2.6.1 Swinging Buffets

Serial
Interface

Serial Interface 
Data Buffer 
Enables

Read
Requests

Full and 
Empty Flags

Write
Requests

PC Data
Buffer
Enables

Bus
Interface

Figure 2 . 7  B lock  Diagram o f  the Sw inging B u ffer Section.

21



2.6.2 Address Decoding

The Address Decoding is responsible for configuring the card and for accessing the 

Swinging Buffers when operating in the Polled I/O transfer mode. A block diagram of 

the Address Decoding section and the System Bus Interface is shown in Figure 2.8. The 

address range o f the sound card lies between 0300h to 0314h (hexadecimal) which is 

within the allowed Prototype Card range, 0300h to 031Fh. The I/O port addresses and 

their functions are listed in Table 2.1.

A 0 - A 9  —  

SBH Ebar -  

A EN bar —  

lORbar —  

lO W bar —  

DA C K 7bar- 

TC  --

D
a
t

a

B
u
f
f
e
r
s

PC System Bus

Address
Decoding

DIGITAL IN

DIGITAL O UT Si9 nal 
Selection

ANALOG UE IN ( state F |jp. F |ops ) 

ANALOG UE O U T

IN Directional Signals 
O U T for Control Logic

I01 6b ar 16 Bit Transfer Request

MResetbar

lOPortReadbar i/o Port Transfer

lOPortW ritebar Mode Requests

Ö L  HIG HENbar

LO W EN bar

PC System Bus TV
Data
Buffer

Buffer
Status
Register

Data
Buffer

/[ State Flip-Flops and 
J  the Swinging Buffer's 

’  Empty and Full Fbgs

Low Byte

High Byte
Swinging

Buffers

Figure 2.8 Block Diagram o f  the Address Decoding and Bus Interface Sections.

The card is reset by the Master Reset signal (MResetbar). Each analogue and 

digital mode has a corresponding State flip-flop, DIGITAL IN, DIGITAL OUT, 

ANALOGUE IN and ANALOGUE OUT, which configure the card in the corresponding 

operating mode. Only one of these flip-flops should be in a set state at any one time, 

otherwise the card will not be configured correctly. At power-up they are placed in the 

DIGITAL IN mode by the power-up circuit as shown in Appendix B, Figure B .l. These 

flip-flops are accessible through their respective I/O port addresses as shown in Table 

2.1. They are reset only through their I/O port addresses and not by MResetbar which 

resets the rest of the card's logic circuits. Therefore, their states must be known in order

22



to reset or set the appropriate flip-flops. These states can be determined from the Buffer 

Status Register, implemented as an I/O port in this section of the card.

Function I/O Port Address (hex)

Master Reset (MResetbar) 300

Buffer Write (IOPortWritebar) 302

IRQ Enable 304

DIGITAL IN 306

DIGITAL OUT 308

ANALOGUE IN 30A

ANALOGUE OUT 3 0C

DMA Enable 30E

Buffer Status Register 310

Buffer Read (IOPortReadbar) 312

Table 2.1 I/O Pori Addresses.

There are two other I/O ports implemented which allow access to the Swinging 

Buffers when using the Polled I/O transfer mode, Buffer Read and Buffer Write. Two 

mutually exclusive control signals, IN and OUT are also provided by this section for 

controlling the direction of data flow through the card These signals are generated from 

the logical OR combination of the DIGITAL IN and ANALOGUE IN signals.

2.6.3 D M A  / Interrupt Generation

The block diagram of the DMA / Interrupt Generation section is shown in Figure 2.9. 

This section is responsible for requesting DMA I/O transfer cycles, generating read and 

write requests for the Swinging Buffers from these DMA I/O transfer cycles and for 

generating the Switching and DMA interrupts, IRQ3 and IRQ7 respectively.

DMA cycles are requested through the DMA controller's request signal for the 

seventh DMA channel DRQ7. This signal is active high and is controlled by the 

Swinging Buffers' full or empty flags depending on the operating mode of the card.

23



The read and write requests, DMAIOPortReadbar for recording and 

DMAIOPortWritebar for playback are generated from the active low DMA acknowledge 

signal DACKTbar, and the IORbar or IOWbar signals. The DACK7bar signal will be 

accompanied by the appropriate IORbar or IOWbar depending on the DMA channel's 

configuration (I/O port read / DMA write to memory or I/O write / DMA read from 

memory) in the DMA controller.

DMA Request
E F Ib a r  --------►

E F2bar --------

F F Ib a r  --------

FF2bar --------

DRQ 7

DM AEnable

DMA I/O Port Read and Write Requests
DM AIOPortReadbarDACK7bar 

IORbar —  

IOW bar —  

O U T ----------

DMAIOPortW ritebar

Switching Interrupt DMA Interrupt

DMAIRQ  
( IRQ7 )

Figure 2.9 Block Diagram o f the DMA /  Interrupt Generation Section.

2.6.4 Control Logic

The Control Logic section controls access to the Swinging Buffers and its block diagram 

is shown in Figure 2.10. There are three sources of read and write requests for the 

Swinging Buffers. They are from the mutually exclusive Address Decoding section 

during Polled I/O mode and the DMA / Interrupt Generation section during DMA / 

Interrupt mode, and from the Serial Interface section. These requests are directed to the 

appropriate Swinging Buffer depending on the configuration of the card and the current 

state of the Swinging Buffers. Switching between the Swinging Buffers is performed by 

the WENbar signals. These active low signals determine which Swinging Buffer is write 

enabled. For example during recording, after one Swinging Buffer has been filled, the 

Control Logic switches these signals, write enabling the other buffer which is now 

filled.

24



!

Write Enable Signals
E F Ib a r --------~

EF2bar  *<

F F Ib a r  * h

FF2bar  «"

MResetbar • “

O U T --------------«h

WEN1 bar

W EN2bar

Swinging Buffer Signals

DMAIOPortReadbar

DMAIOPortWritebar

lO P ortR eadbar--------

lO P ortW ritebar--------

DMAEnable -----------

Rose -----------------------

W o sc -----------------------

W E N 2 b a r-----------------

W E N Ib a r ----------------

O U T --------------------------

M Resetbar --------------

Read
Requests

Write
Requests

Serial Interface 
I  Data Buffer 
' Enables

PC Data  
Buffer Enables

R1bar

R2bar

W 1bar

W 2bar

S IB E Ibar

SIBE2bar

P C B E Ibar

PCBE2bar

Figure 2.10 Block Diagram of the Control Logic Section.

2.6.5 I/O Interface

The I/O Interface section provides the analogue and digital interface for the sound card 

and its block diagram is shown in Figure 2.11. It is composed of a digital receiver 

(DRX) and digital transmitter (DTX) both configured for the consumer digital audio 

format together with a digital to analogue converter (DA C) and an analogue to digital 

converter (ADC) for the analogue recording and playback capabilities.

Clocks from 
the Clock 

Generation Section To Clock Generatin Section

Serial Data »
Digital Transmitter 

DTX

Serial Data 

— +—

Serial Data

Digital Receiver 
DRX

Analogue to 
Digital Converter 

ADC

T
Digital to 
Analogue 
Converter 

DAC

Stereo 
Analogue Inputs

Stereo 
Analogue OutputsDigital Input Digital Output

Figure 2.11 B lock  Diagram o f  the I/O Interface Section.

25



2.6.6 Serial Interface

The block diagram of the Serial Interface section is shown in Figure 2.12 This section 

converts between the parallel data of the Swinging Buffers and the serial data o f the I/O 

Interface. The serial shift and parallel load clocks are provide by the Clock Generation 

section.

SiPo Converter
Selection of 

Serial Data Source
DIGITAL 
DATA IN

ANALOGUE 
DATA IN

DIGITAL 
DATA OUT

ANALOGUE 
'  DATA OUT

Figure 2.12 Block Diagram of the Serial Interface Section.

2.6.7 Clock Generation

The block diagram of the Clock Generation section is shown in Figure 2.13. The various 

clocks for the DTX, ADC, DAC and Serial Interface are generated here. This section 

also provides the read and write requests to transfer data between the Swinging Buffers 

and the I/O Interface. All clocks are derived from a master clock which is generated 

from either a crystal oscillator or by the DRX during digital recording.

2.6.8 Bus Interface

The Bus Interface section is composed o f data buffers and transceiver for isolating the 

sound card from the PC's system bus and is included in Figure 2.8 along with the 

Address Decoding logic.

26



Clock Selection
Serial Interface 

Clocks

MCK -----
DRXMCK  

DRXLR -

Counter

Enable m

Clock .

PiSoSck

SiPoSck

PiSoLoad

Read and Write Requests 

Figure 2.13 Block Diagram of the Clock Generation Section.

2.7 Operation of the Sound Card in the Playback and 

Recording modes
The sound card possesses four operating modes; digital recording (DIGITAL IN), digital 

playback (DIGITAL OUT), analogue recording (ANALOGUE IN) and analogue 

playback (ANALOGUE OUT). From the PC's viewpoint there is no difference between 

them once the card has been configured. The transfer of data between the hard disk and 

the Swinging Buffers is independent of the source or output format of the data. The 

main difference between these modes is in the area between the Swinging Buffers and 

the I/O Interface.

Figure 2.14 illustrates the data flow through the MTP when the DMA / Interrupt 

data transfer mode is used. At the user level, the Windows application sends data buffers 

to the Windows device driver to replay or fill with recorded data. The device driver uses 

DMA to transfer the data between the device driver and the Swinging Buffers. The 

Control Logic directs the read and write requests to the appropriate Swinging Buffers 

while also maintaining continuous data flow between the I/O Interface and the Swinging 

Buffers.

Two hardware interrupts are used by the device driver to synchronise filling or 

emptying o f a Swinging Buffer. The Switching Interrupt indicates that a Swinging 

Buffer switch has occurred, which triggers a DMA session to begin emptying or filling 

a Swinging Buffer. Only 2 kwords are transferred during each DMA session. Each DMA 

interrupt, generated at the end o f a DMA session, triggers a subsequent DMA session,

27



thereby eventually causing the Swinging Buffer to be completely filled or emptied. 

Along with the Switching interrupt, seven DMA interrupts are required to transfer the 

16 kwords in a Swinging Buffer. A DMA interrupt count flag keeps track of the number 

o f DMA interrupts occurring and the count flag is reset when a Swinging Buffer transfer 

is complete.

Sound Card Device Driver Application

Swinging 
Buffer 1

Swinging 
Buffer 2

Serial Control
I/O interface Logic
Interface

Pmg
Buffer

Pong
Buffer

DMA
Controller

M M SYSTEM  Data Hard
Module Buffers DiskInterrupts

Figure 2.14 Data flow through the Multimedia Teaching Platform.

2.7.1 Digital Recording

The steps involved in the recording process (analogue or digital) are described in the 

flowchart o f Figure 2.15. Looking just at the digital case, the first step is to configure 

the State flip-flops. This involves reading the Buffer Status Register and clearing the 

current State flip-flop and setting the DIGITAL IN State flip-flop. The MResetbar signal 

is now issued which resets the controlling logic for the FIFOs within the Control Logic 

section and also resets the flip-flops controlling the DMA and Interrupt enable signals.

Once the MResetbar signal has been issued, the Serial Interface's serial to 

parallel converter (SiPo) will convert the serial data from the DRX into the parallel data 

required by the Swinging Buffers. The Control Logic section will now pass the 

continuous write requests from the Clock Generation section through to the first 

Swinging Buffer, W lbar as shown in Figure 2.16. As the buffer fills the Control Logic 

also ensures that the Swinging Buffers never receive simultaneous read and write 

requests or that the same read or write request is received by both of the Swinging 

Buffers.

28



f  Start )

Figure 2.15 The Recording Process.

29



Once the first Swinging Buffer has been filled, the Control Logic triggered by 

the buffer's full flag going active, will switch the write request's destination from the 

first to the second buffer by toggling the WENbar signals. This switch will cause the 

DMA / Interrupt section to generate the Switching interrupt, SwitchlRQ. The resulting 

interrupt service routine, which resides in the device driver, initialises the DMA 

controller for a DMA session. This will read 2 kword from the card and write it to the 

device driver's ping memory buffer.

Figure 2.16 Operation o f the Sound Card during Recording.

The DMA controller will wait for channel seven's DMA transfer request signal 

(DRQ7) to be placed high before it starts the DMA transfers. This signal is controlled 

by the empty flags o f the Swinging Buffers and will be high only when both o f the 

empty flags are inactive. Therefore, this signal only goes high after the first sample has 

been written to the second Swinging Buffer, setting its empty flag inactive. It remains 

high until the first Swinging Buffer has been emptied. Once the DMA controller has 

control of the system bus, it will perform a combined I/O read and memory write 

operation.

30



When the 2 kwords have been transferred to the DMA ping buffer an interrupt 

is generated from the combination of the DMA controller's terminal count signal (TC), 

common to all its channels, and DACK7bar, to prevent other channels' TC signals 

triggering this interrupt. This DMA interrupt will set up a DMA session to empty the 

next 2 kwords from the first Swinging Buffer which will fill the DMA pong buffer. 

While this DMA session is taking place in the background, the device driver will 

transfer the previously filled ping buffer to the application's data buffer.

This process is repeated until the full Swinging Buffer has been completely 

emptied. Figure 2.16 shows the empty flag of the first Swinging Buffer EFlbar, active 

at the end o f the DMA sessions. The size of each of the Swinging Buffers is 16 kwords, 

therefore eight 2 kword DMA sessions are required to empty one Swinging Buffer. This 

is triggered by one Switching and seven DMA interrupts. A count flag is used to keep 

track of the number o f DMA sessions. The eight DMA interrupt service routine just 

resets the count flag,

When the second Swinging Buffer has been filled a switch will occur which will 

start the process of emptying it in the same manner as for the first Swinging Buffer. The 

sound card will continue to operate in this manner, transferring the Swinging Buffers to 

the empty ping-pong buffers while the full ping-pong buffer is transferred by the device 

driver to the application's data buffer until the device driver stops recording.

2.7.2 Differences Between the Analogue and Digital Recording Modes

The only significant difference between the analogue and digital recording modes is in 

the Clock Generation section. When digital recording is active, the DRX extracts its 

clock signals from the digital audio input signal and replaces the crystal oscillator as the 

source of the master clock for the Clock Generation section. All clock signals for the 

ADC are produced by the Clock Generation section.

2.7.3 Analogue Playback

The general playback process is described in the flowchart of Figure 2.17 while the 

general playback operation o f the sound card is illustrated in Figure 2.18. The State flip- 

flops are configured for analogue playback before the MResetbar is issued as explained 

previously. MResetbar will reset the Swinging Buffers and the sound card's logic. The

31



DMA and interrupt enable signals are then activated by writing to their respective I/O 

port addresses.

Figure 2.17 The Playback Process.

The ping-pong buffers are filled by the device driver from the application's data 

buffer before setting up a DMA session to transfer the ping buffer to the first Swinging 

Buffer. This DMA kickstart is required because the Switching interrupt is only generated 

when a Swinging Buffer has been emptied. In the playback mode, the DMA request pin 

for channel seven (DRQ7) is controlled by the full flags of the Swinging Buffers,

32



therefore once the DMA session has been initialised a DMA transfer is requested 

immediately

MResetbar

186mS
= 8 DMA IRQ interrupts

Figure 2.18 Operation o f the Sound Card during Playback.

The first DMA interrupt will be generated when the first DMA session has 

finished. The DMA interrupt service routine will set up another DMA session to transfer 

the full pong buffer to the first Swinging Buffer while the empty ping buffer is filled by 

the device driver from the application's data buffer. This DMA session will in turn 

trigger another DMA interrupt at the end of its DMA session, and the process continues 

until the Swinging Buffer has been filled.

To fill a Swinging Buffer requires eight DMA sessions of 2 kwords each, which 

are triggered by one Switching and seven DMA interrupts except at start of playback 

when the DMA kickstart function replaces the Switching interrupt. As before, the eighth 

DMA interrupt, generated from the seventh's DMA session, must not set up another 

DMA session. This interrupt just resets the count flag to allow the DMA interrupts to 

fill the next Swinging Buffer. When the first Swinging Buffer has been filled, the 

Control Logic will be triggered by its full flag going active, which will toggle the

33



WENbar signals, thus write enabling the second Swinging Buffer as shown in Figure 

2.18. This buffer switch generates a Switching interrupt which starts the process of 

filling the second Swinging Buffer.

This process continues until the device driver stops playback. The Swinging 

Buffers provide the application and device driver with sufficient time to maintain 

continuous playback.

2.7.4 Differences Between in the Analogue and Digital Playback Modes

The two main differences between the analogue and digital playback modes are the 

Serial Interface and the I/O Interface clock signals. The Serial Interface requires different 

serial output shift rate clocks depending on the playback mode. The DAC and DTX 

require different clock signals from the Clock Generation section.

2.8 Summaiy
This chapter describes the design process of the MTP's sound card and the method used 

to calculate the size o f the Swinging Buffers. The layers o f buffering used by the MTP 

when operating under the Windows environment are also explained along with the 

operation o f the sound card during recording and playback in its DMA / Interrupt 

transfer mode.

34



Chapter 3
Hardware Description of the MTP’s Sound 
Caid

3.1 Introduction
This chapter describes the functional blocks of the sound card in detail. The unique 

design aspects o f each functional block or section are highlighted. The testing procedures 

used to verify the recording and playback modes of the sound card are described at the 

end o f this chapter.

3.2 Design of the Sound Card
This section describes the design of the functional blocks of the sound card. These 

sections were briefly described in Chapter 2 but their operation or design was not 

explained in detail. The different subsections of the sound card were illustrated 

previously in Figure 1.2. The signals which end in bar signify an active low signal and 

not an inversion.

3.2.1 Address Decoding

The address decoding schematic diagram is shown in Appendix B, Figure B .l. Standard 

address decoding techniques are used to provide access to the I/O ports, namely address- 

line decoders and logic gates [5, 7], The I/O port address range is as described in Table

2.1. Two of these ports are read only, Buffer Status Register which returns the Buffer 

Status Byte, and the Buffer Read (IOPortReadbar) which returns a word from the active 

Swinging Buffer. The Buffer Status Byte describes the current state o f the State flip- 

flops and the Swinging Buffers. Buffer Read is directed to the appropriate Swinging 

Buffer by the Control Logic as described in Section 3.2.4.2.

Table 3.1 defines the individual bits of the Buffer Status Byte. The four lowest 

bits o f the Buffer Status Byte determine the state of the Swinging Buffers. These signals 

are active low while the four highest bits are the State flip-flop conditions which are 

active high and are explained later in this section.

35



There are eight addresses which can be 

written to. One of these, Master Reset 

(MResetbar), resets the card and is only used 

when the card is being initialised. The 

remaining addresses set or reset t-type flip- 

flops which control the configuration of the 

card. The four State flip-flops, DIGITAL IN,

DIGITAL OUT, ANALOGUE IN and 

ANALOGUE OUT are not cleared by 

MResetbar unlike the Interrupt enable 

(IRQEnable) and the DMA enable 

(DMAEnable) flip-flops.

The reason for MResetbar not clearing

the State flip-flops is to ensure that the state

of the card is stable before and after a
Table 3.1 Bit definitions fo r the

MResetbar signal occurs. For the recording
Buffer Status Byte.

modes, MResetbar starts recording and a

change in the state of the card would cause a switch of the Swinging Buffers. This may

cause invalid data to be written into the Swinging Buffers, corrupting the start o f the

recording.

Buffer Write (IOPortWritebar) writes a word to the active Swinging Buffers 

when the Polled I/O transfer mode is active. This write request is directed to the 

appropriate Swinging Buffer by the Control Logic. The I/O port read and write requests 

are 16 bits wide. The Control Logic circuit determines which Buffer is read or write 

enabled which reduces the number o f I/O ports required. All the I/O ports are 16 bits 

wide to reduce the number o f gates required to implement the address range.

The I/O Read Cycle is described in Figure 3.1. The IORbar signal is the critical 

signal because it is the last to go active and the first to become inactive. The active 

period is approximately 250ns and data must be valid at the PC buses' data buffers when 

IORbar goes inactive at the end of the processor's wait cycle Tw. The propagation path 

for the IORbar signal must be minimised. The shortest propagation path through the 

address decoding circuits was achieved by using IORbar only at the end of the address 

decoding sequence. This is used to enable the last address line decoder which generates

Bit Purpose

0 Buffer 1 Full

l Buffer 2 Full

2 Buffer 1 Empty

3 Buffer 2 Empty

4 DIGITAL IN

5 DIGITAL OUT

6 ANALOGUE IN

7 ANALOGUE OUT

36



Processor
Clock

AENbar 

AOto A19 

lORbar 

DO to D15

Valid Memt ry Address

w

< >

>C

Valid Data from I/O Port 

Figure 3.1 General I/O Port Read Cycle.

the read request. Because the path through the Address Decoding and Control Logic, 

although minimised, was still over 120 ns, this dictated the use o f fast FIFOs for the 

Swinging Buffers.

The I/O Port Write Cycle is shown in Figure 3.2. Propagation delays are not as 

critical as in the I/O Port Read Cycle because now the FIFOs are being written to. 

However the same technique was carried out as for the IORbar case. The address 

decoding section also generates the IN and OUT directional signals. The signal IN is the 

logical OR operation o f DIGITAL IN and ANALOGUE IN states while the OUT signal 

is the inverse of the IN signal.

Processor
Clock

AENbar 

AO to A19 

lOWbar 

DO to D15

Z>C

w

<

Valid Port Address

Valid Data to I/O Port >

Figure 3 .2  G eneral I/O  P ori Write Cycle.

37



The Swinging Buffers consist of four FIFOs and eight 74F245 bidirectional data buffers. 

The block diagram of this section is shown in Figure 3.3 while its schematic diagram 

is shown in Appendix B, Figure B.3 The FIFOs are 16 k x 9 bits wide and there are 

two per Swinging Buffer to provide the 16 bit data width. There are also two 74F245 

bidirectional data buffers per FIFO. The data buffers ensure that there is no data 

contention between the Serial Interface and the PC's data buffers, and they are enabled 

by the Control Logic.

3.2.2 Swinging Buffers

Serial
Interface

Serial Interface 
Data Buffer 
Enables

Read
Requests

FuH and 
Empty Flags

Write
Requests

3X

_z_
Data

Outputs

FIFO 1A

—*— *" ■

L - J

3 x

Data
Outputs

FIFO 1B

?

Data
Outputs

FIFO 2A

7
- j e 

>
Data

Outputs

FIFO 2B

Datass- Inputs

PC Data
Buffer
Enables

f  '
PC 1A

V----,-------J

f

High
Byte

Figure 3.3 Block Diagram of the Swinging Buffers.

Both the Serial Interface and the PC must have access to the inputs and outputs 

o f the FIFOs. Therefore, the FIFOs inputs and outputs are tied together, to allow each 

data buffer access to both. In this situation data contention would be a problem between 

the inputs and outputs, if read and write requests occurred simultaneously but the 

Control Logic ensures that this never occurs. Read and write requests are active low 

signals. The data are clocked into the FIFO inputs on the rising edge of the write 

requests. Data are available on the outputs, 50ns after the falling edge of the read

38



request signal. The empty and full flags are active low and are taken from each 

Swinging Buffer's high byte FIFO.

3.2.3 DMA / Interrupt Generation

The schematic diagram for the DMA / Interrupt Generation section is shown in 

Appendix B, Figure B.2. This section of the card consists o f a DMA request circuit, two 

interrupt generators, and a DMA read/write pulse generator circuit. These different 

components are enabled by the DMAEnable and IRQEnable signals which are provided 

by the Address Decoding section. The interrupts are the DMA and Switching interrupts, 

DMAIRQ and SwitchlRQ respectively. The DMA interrupt line is IRQ7 (LPTI) while 

the Switching interrupt is IRQ3 (COMM2).

The DMA controller's channel seven request line (DRQ7) is active high, and is 

generated from the Swinging Buffer's empty and full flags. A DMA request is required 

immediately on entering playback mode, to fill the first Swinging Buffer. The logical 

AND combination o f the full flags produces this request. Initially both buffers' full flags 

will be high as the buffers have just been reset and are now empty. Therefore DRQ7 

remains high until the first buffer is filled. The DMA request for the second Swinging 

Buffer will not be generated until the first buffer's full flag has gone inactive, after the 

first read has taken place. For the recording modes the buffers' empty flags control 

DRQ7.

The DMA interrupt is generated at the end of the each DMA session and triggers 

a subsequent DMA session. It is produced from a logical combination of the DMA 

controller's Terminal Count signal (TC), and the DMA controller's channel seven 

acknowledgement signal, (DACKVbar). TC is a general DMA channel signal which 

indicates that the present data transfer completes a DMA session (4 kbytes). DACK7bar 

instructs the sound card that this present I/O cycle is a DMA I/O transfer cycle on 

channel seven. Therefore the combination of TC and DACK7bar is required to prevent 

interrupts from being called by other channels' TCs.

The PC's PIC requires its interrupt lines (IRQ#) to be pulsed low to signal an 

interrupt [5], The low to high transition of this interrupt pulse latches the interrupt into 

the PIC. Therefore, TC signal is inverted and logically ANDed with DACK7bar to 

produce this low pulse. IRQ7 is the logical OR combination of this pulse and

39



IRQEnablebar as shown in Figure 3.4. IRQEnablebar is required to place the interrupt 

in a high state when IRQEnablebar is inactive, high.

IRQEnablebar.

DACK7bar

TC

>

Figure 3.4 Generation o f the DMA Interrupt.

The Switching interrupt must be generated for every switch of the Swinging 

Buffers, to trigger a DMA session which begins emptying or filling a Swinging Buffer. 

The circuit shown in Figure 3.5 is used to trigger this interrupt. The t-type flip-flop is 

cleared by the MResetbar signal which also sets WEN2bar low and WEN 1 bar high. 

These are the write enable signals for the Swinging Buffers provided by the Control 

Logic and their generation is explained in Section 3.2.4.1. The IRQEnablebar signal is 

then set (low) which will allow the WENbar signals to control the interrupt line. The OR 

gate is required to place the interrupt line high when IRQEnablebar is inactive (high).

F igure 3.5 Generation o f  the Switching Interrupt.

40



WEN2bar now controls the interrupt line because the flip-flop's inverted output enables 

its AND gate.

When the first Swinging Buffer switch occurs, the high to low transition of 

WEN2bar will pull the interrupt line low. The low transition of WEN2bar will trigger 

the one shot circuit. The one shot circuit is configured to produce a low pulse of 300 

ns duration that toggles the t-type flip-flop on its rising edge. WEN 1 bar will now control 

the interrupt line because its AND gate is enabled by the flip-flop's Q output, which 

pulls the line high again. This rising edge clocks the interrupt into the PIC. On the next 

Swinging Buffer switch, W ENlbar will start the interrupt generation sequence by pulling 

the line low while WEN2bar pulls it high. The WENbar signals will continue to generate 

this Switching interrupt until the sound card ceases operations.

DMA lOPortReadbar = (IORbar» IOWbar)+DACK7bar+OUT
3.1.1

DMAIOPortWritebar = (IORbar +IOWbar) •(DACK7bar* IN)
3.1.2

Equation 3.1 DMA Read and Write Request's Boolean Expressions.

The read and write cycles for DMA I/O read and write operations are similar to 

the I/O Port operations which were explained in Section 2.4.2. Read and write request 

signals for the Swinging Buffers are generated from DACK7bar and IORbar or IOWbar. 

The PC system bus's data buffers are enabled by DACK7bar. DACK7bar is active longer 

than the IORbar or IOW bar signals, therefore the data are always stable when the PC 

latches it into memory. The boolean expressions for the DMA read and write requests 

are listed in Equations 3.1. The first equation, 3.1.1 is the logic expression as 

implemented in the sound card while the second 3.1.2 is the general active low 

expression.

3.2.4 Control Logic

The schematic diagram for the Control Logic is shown in Appendix B, Figure B.4. The 

Control Logic manages the Swinging Buffers. W EN lbar and WEN2bar are mutually 

exclusive signals which avoid any read-write conflicts. These signals are produced by 

the two outputs of a t-type flip-flop and therefore they cannot be in the same state at the

41



same time. The Address Decoding section provides two mutually exclusive signals, IN 

and OUT which determine the directional strategy of the Control Logic.

3.2.4.1 Swinging Buffer Switch

The Swinging Buffers must be regularly switched to maintain continuous data flow 

between the I/O Interface and the Swinging Buffers. The full and empty flags of the 

Swinging Buffers control this switching. Figure 3.6 shows the Swinging Buffer's 

switching circuit.

Figure 3.6 Switching Circuit fo r  the Swinging Buffers.

When in playback mode, switching is controlled by the Swinging Buffers empty 

flags EFlbar and EF2bar. The waveforms for a general switch from the first to the 

second Swinging Buffer are illustrated in Figure 3.7. When the first Swinging Buffer has 

been emptied by the read request oscillator pulse (Rose), the buffers must switch so that 

Rose begins emptying the full second buffer. I/O write requests from the microprocessor 

or the DMA controller are now diverted to the first buffer. Data must be continually 

read from the Swinging Buffers by Rose to maintain continuous playback,

The second Swinging Buffer will be full with its empty flag inactive, when this 

switch occurs. When the first Swinging Buffers's empty flag goes low after its last read, 

the logical AND combination o f the two empty flags will move from high to low. This 

falling edge triggers a one shot circuit that produces a low pulse on its inverted output.

42



The rising edge of this pulse clocks the WENbar's t-type flip-flop which toggles the 

WENbar signals, read enabling the second Swinging Buffer and write enabling the first.

Last Read Request for first Swinging Buffer

Rose I
88.2 kHz ---- 1 .............................. i

R 1b ar _ J

R 2bar *  .  r

E F Ib a r

E F 2b ar

W E N Ib a r

W E N 2 b a r
WENbar switch must occur 
after Rose has gone high to 
prevent a false read request 
being generated.

Figure 3.7 Waveforms during a switch from the first Swinging Buffer to the second.

The one shot circuit is required to allow sufficient time for the last read from the 

first Swinging Buffer to be loaded into the Serial Interface and subsequently shifted into 

the I/O Interface's active output device. The Swinging Buffer's empty flag is active 

immediately after the last read request has been received. If the switch occurred 

immediately, data from the last read would be corrupted by the other Swinging Buffer 

receiving a false read request caused by the generic Rose signal still being low. To 

prevent this data loss and subsequent exchange o f channels, the switch must be delayed 

for more than half a read request cycle, which is 5.7 jas (1/88200 Hz). The one shot 

circuit provides a 7 jas delay.

There is a difficulty at the start o f playback when the first Swinging Buffer has 

been filled and the other is still empty. The logical AND combination of the empty flags 

in this situation will not provide the low to high transition required by the one shot 

circuit to toggle the WENbar signals. The process o f generating this switch is as follows, 

the Swinging Buffer's first empty flag sets a d-type flip-flop which was initially cleared 

by the MResetbar signal. This flip-flop's output provides the low to high transition

43



which will trigger the one shot circuit and subsequently toggle the WENbar t-type flip- 

flop, switching the buffers.

In the recording modes, the empty flags are replaced by the full flags. The 

switching operation is identical to the play mode with no special circuitry required at 

the start of recording.

3.2.4.2 Swinging Buffers' Read and Write Requests

The Swinging Buffers read and write requests, R lbar, R2bar, W lbar and W2bar are 

generated from three possible sources, the DMA controller, the Clock Generation section 

and the microprocessor I/O instructions. Equations 3.2 illustrate the logic steps in 

generating the separate read and write requests for the individual Swinging Buffers. The 

equations are written in two different forms. The write requests are the active low 

Boolean expressions, while the read requests describe the logic implementation on the 

sound card as can be seen from Appendix B, Figure B.4.

The PC Swinging Buffer request signals, RPCbar and WPCbar are generated as 

shown in Equations 3.2.1 and 3.2.2. These signals are never active simultaneously. The 

WENbar signals are then used to generate separate read and write requests for the 

individual Swinging Buffers as shown in Equations 3.2.3 to 3.2.6. The Clock Generation 

section's single read and write requests (Rose and Wosc), are combined with the 

WENbar signals to produce another set o f read and write requests for the Swinging 

Buffers, Rosclbar, Rosclbar, W osclbar and Wosc2bar. These are then combined with 

RPClbar, RPC2bar, W PClbar and WPC2bar to produce the Swinging Buffer read and 

write requests as shown in Equations 3.2.10 to 3.2.14.

3.2.4.3 Swinging Buffers' Serial Interface and PC Data Buffer Enables

The Control Logic also controls enabling and disabling o f the Serial Interface buffers 

and the PC buffers within the Swinging Buffer section. These signals are active low and 

their Boolean expressions are listed in Equations 3.3, Again there is a distinction 

between the active low Boolean expressions and the logic as implemented on the sound 

card. The Serial Interface buffers are controlled by either the Wosc write requests or the 

Rose read requests depending on the data direction through the card. The PC data 

buffers are enabled from either o f the separate PC read or write requests. These separate

4 4



RPCbar = (DMAJOPortReadbar • DMAEnable) + (IOPortReadbar • DMAEnablebar)
3.2.1

WPCbar = (JDMAlOPortWritebar+DMAEnable) • (IOPortWritebar + DMAEnablebar)
3.2.2

RPC 1 bar = /iPCtar + WEN2bar
3.2.3

RPC2bar = RPCbar + WENlbar
3.2.4

WPClbar = WPCbar • WENlbar
3.2.5

FKPC2ter = • WEN2bar
3.2.6

Rosclbar = Rose + IN + WEN2bar
3.2.7

Rosc2bar = /tosc + IN + ENlbar
3.2.8

fFascifar = frasc • OC/71 • WENlbar
3.2.9

Wosc2bar = JPasc • Ot/T • WEN2bar
3.2.10

= Rosclbar • RPClbar
3.2.11

R2bar = Rosc2bar • RPC2bar
      3.2.12
Wlbar = Wosclbar + WPClbar

3.2.13
= Wosc2bar + WPC2bar

3.2.14

Equation 3.2 Swinging Buffer's Read and Write Requests.

read and write requests are composed o f DMA and Polled I/O requests as illustrated 

previously in Equations 3.2. These data buffers are oriented so that their directional pins 

are all controlled by the IN signal.

SIBElbar =(W osc + OUT + W EN lbar) • (Rose + IN  +W EN2bar)
3.3.1.

SIBE2bar =(W osc + IN  +W EN2bar) • (Rose + OUT + W ENlbar + IstFF lbar)
3.3.2.

PCBElbar = R PClbar + W PClbar
3.3.3.

PCBE2bar =RPC2bar + WPC2bar
3.3.4.

E quation 3 .3  Serial Interface and P C  D ata Buffers' Enables.

45



3.2.5 I/O Interface

The analogue and digital I/O interface chips are manufactured by Crystal Semiconductor 

Corporation [6] and are listed in Table 3.2. The I/O Interface is divided into an 

Analogue and a Digital I/O Interface and their schematic diagrams are shown in 

Appendix B, Figures B.7 and B.8 

respectively. All devices use a

44.1 kHz L/R clock to delineate 

the samples into left and right, left 

being the clock's high half. The 

most significant bit is the first bit 

o f every channel. The local clocks 

are generated from a 22.5792 MHz 

crystal oscillator or from the DRX 

in the digital recording mode.

3 .2 .5 .1  D igital R ece iv e r

Unless it is configured to extracts its master clock signal from its input signal, the DRX 

will lose synchronisation with its input signal, resulting in loss of data. The locally 

generated master clock possesses too much jitter to provide lossless data reception [6], 

Two other clock outputs are also provided by the DRX for synchronisation with the 

serial data. The DRX's clocks are a 11.2896 MHz master clock, a 2.8224 MHz bit clock 

and a 44.1 kHz L/R clock. This master clock replaces the master clock in the Clock 

Generation section. Therefore in this mode, all the sound card's clocks are derived from 

the DRX. The DRX's L/R clock synchronises the other clocks to the raw audio data 

from the DRX. The raw data are clocked out from the DRX on the rising edges of the 

first 16 bit clock cycles after every L/R clock transition as shown in Figure 3.8. Only 

the raw audio data are stored and all the control and user information is discarded in this 

present design.

3 .2 .5 .2  D igital T ran sm itte r

The digital transmitter (DTX) is configured so that each one of its three clocks are 

externally generated. These clocks are generated by the clock generation section and 

consist of a 11.2896 MHz master clock, a 2.8224 MHz bit clock and a 44.1 kHz L/R

Analogue to Digital 

Converter {ADC)

CS5338KP

Digital to Analogue

Converter {DA C)

CS4328KP

Digital Receiver {DRX) C8412A

Digital Transmitter {TDX) CS8402A

Table 3.2 I/O Interface Chips.

46



clock. The DTX samples the raw audio data from the Serial Interface on the first 16 

falling edges of its bit clock at the start of each channel. The DTX can accept limited 

control and user information on dedicated pins. The validity bit is set via its dedicated 

pin to indicate that the data being transmitted are suitable for conversion to analogue.

Left Right

L / R Clock f 1“
44.1 kHz    !

Bi,2.?E<SCK) Jiii -din -Jifin -An -dir
MSB LSB MSB LSB MSB

Bit Transitions f  f  f  f

Figure 3.8 Serial Data from the Digital Receiver.

3 .2 .5 .3  A n alo g u e  to D igital C o n v erte r

The Analogue to Digital Converter System (ADC) is the CS5338KP. Contained on this 

chip are a sample and hold, analogue to digital converter and anti-aliasing filters for 

each channel. The ADC uses 64 times over sampling delta sigma modulators with digital 

filtering and decimation which removes the need for an external anti-aliasing filter. The 

filter has a band pass range of 0 to 24 kHz with 0.01 dB pass band ripple, linear phase 

and greater than 80 dB stop band attenuation. The input range is ±3.68 volts. Three 

locally generated clocks are required, a 5.6448 MHz master clock, a 2.8224 MHz bit 

clock and a 44.1 kHz L/R clock. The data are clocked out in the same format as the 

DRX (see Figure 3.8). For input protection, a NC5532 chip, containing two low noise 

operational amplifiers, buffers the input signals.

3 .2 .5 .4  D igital to A n alo g u e  C o n v erte r

The Digital to Analogue System (.DAC), CS4328KP, is contained on one chip. This 

chip has an 8 times over-sampling interpolation filter followed by a 64 times over 

sampling delta sigma modulator for each channel. The system has 120 dB signal to noise 

ratio, linear phase, and zero phase error between the channels. Three locally generated 

clocks are required, a 5.6448 MHz master clock, a 1.4112 MHz bit clock and a 44.1

47



kHz L/R clock Data are sampled on the falling edge of each bit clock cycle as shown 

in Figure 3.9.

L / R Clock
44.1 kHz

Bit Clock (SCK)
1.4112 MHz

Sampling 
Position

Left Right

15 14 15 14 15

MSB LSB MSB LSB

Figure 3.9 Serial Data required by the Digital to Analogue Converter.

3.2.6 Clock Generation

The Clock Generation section consists of a crystal oscillator, an 8 bit counter and 

channel consistency circuits. The schematic diagram for this section is in Appendix B, 

Figure B.6. The local clocks are generated from a 22.5792 MHz crystal in a series 

resonant circuit with the crystal operating in its fundamental mode. A divide by two 

circuit produces the 11.2896 MHz local master clock that clocks the 8 bit counter. This 

8 bit counter produces the clocks required by the I/O Interface, Serial Interface and 

Control Logic circuits. All subsequent clocks derived from the master clock change on 

the rising edge of the previous clock.

The 11.2896 MHz local clock is masked in the digital recording mode. As 

explained previously, the DRX extracts its own 11.2896 MHz clock from the incoming 

digital audio signal which then clocks the 8 bit counter, producing the required clock 

signals. The circuit shown in Figure 3.10 is required to synchronise the 8 bit counter's 

L/R clock with the L/R clock from the DRX, otherwise synchronisation between the 

counter's and the DRX's L/R clocks cannot be guaranteed and data will be lost at the 

Serial Interface. The MResetbar signal will clear the d-type flip-flop, which in turn 

clears the 8 bit counter. The next rising edge of the DRX's L/R clock will permanently 

set this flip-flip, enabling the counter. The counter is now synchronised with the DRX's 

L/R clock.

48



MResetbar -----------------------------------------------

Figure 3.10 Synchronisation o f the Digital Receiver and Counter.

The L/Rx2 clock from the 8 bit counter provides the source o f the read and write 

requests (Rose and Wosc), that the Control Logic delivers to the Swinging Buffers for 

transferring data between them and the Serial Interface.

3.2.6.1 Channel Consistency

The circuit in Figure 3.11 is required to maintain channel consistency in the playback 

and recording o f stereo WAVE files. When recording data, the d-type flip-flop is reset 

by the MResetbar signal which masks the oscillator generated write request (Wosc) 

signal. When the first L/R clock's rising edge occurs after the MResetbar signal, it sets 

the flip-flop and allows the L/Rx2 clock to generate the Wosc signal by unmasking its 

OR gate. Therefore the first Wosc signal occurs on the left channel or high half of the 

L/R clock, and is the first sample to be written to the Swinging Buffers.

A similar arrangement is provided for playing the left channel first. Rose's OR 

gate is disabled until the first Buffer has been filled by using the first Swinging Buffer's 

Full flag ( l sl FF1) to clear the flip-flop. When this flag goes active the next falling edge 

of the L/R clock will set the d-type flip-flop, enabling the L/Rx2 clock to generate the 

Rose signal. Rose is generated on the right or low half of the L/R clock, because the 

data must be first loaded into the Serial Interface before being shifted out to the I/O 

Interface on the next half of the L/R clock. Therefore, the I/O Interface receives its first 

sample on the left (high) half of the L/R clock.

The Clock Generation circuit also provides the parallel loading and bit shifting 

clocks for the Serial Interface which are described in the next section.

49



Figure 3.11 Channel Consistency Circuit.

3.2.7 Serial Interface

The Serial Interface converts the parallel data of the Swinging Buffers to and from the 

serial data of the I/O Interface. It consists of 16-bit serial to parallel and parallel to serial 

converters, SiPo and PiSo respectively and its schematic diagram is shown in Appendix 

B, Figure B.5.

The SiPo is composed of two 8 bit 74F595 shift registers while the PiSo is 

composed of two 8 bit 74F165 shift registers. For PiSo operation, the serial output of 

the low byte shift registers is feed into the serial input of the high byte shift registers, 

allowing the whole sample to be shifted through the high byte's serial output pin. 

Similarly for SiPo operation the serial output of the low byte shift registers is feed into 

the serial input of the high byte shift registers, allowing the whole sample to be shifted 

in through a single serial input pin. Both the SiPo and PiSo clocks for parallel loading 

and serial shifting are provided by the Clock Generation section.

3.2.7.1 Serial to Parallel Converter Clocks

The serial data from the DRX or the ADC are shifted on the first 16 rising edges of 

their bit clocks after every L/R clock transition. Therefore the serial data are stable on 

the corresponding falling edges o f the bit clocks. The serial shift clock signal is

50



generated from the logical AND combination of the inverted bit clock and the L/Rx2 

clock as is shown in Figure 3.12.

L / R Clock
44.1 kHz

L / Rx2 Clock
88.2 kHz

Left Right

j i_______ r
j i i i r

in£24ds ciock inn J in  run jui. n_
Serial Shift Clock f "  LfT_fl

MSB, . LSB MSB. . LSB MSE
Serial Data 
Transitions

Parallel 
Load Clock

Figure 3.12 SiPo's Serial Shift and Parallel Load Clock Signals, SiPoSCK and

SiPoLOAD.

The Swinging Buffers sample data on the rising edge o f their write requests 

which are generated from the L/Rx2 clock. The SiPo's parallel outputs are also loaded 

on the rising edge o f its parallel load signals. Therefore, for valid data to be sampled by 

the Swinging Buffers, its write request and the parallel load signal must be the inverse 

o f each other. The inverted L/Rx2 clock loads the parallel outputs of the SiPo.

3.2.7.2 Parallel to Serial Converter Clocks

The PiSo requires different serial shift clocks for shifting data into the DAC and DTX 

and is illustrated in Figure 3.13. The DAC requires a slower bit clock than the DTX. 

The DAC and DTX sample their serial data on the falling edges o f their bit clocks so 

the data must be stable at these transitions. To guarantee the correct bit clocks, 

ANALOGUE OUT is used to mask or unmask the two bit clocks, thus allowing only 

one clock to generate the PiSo's serial shift clock. When the DAC is the target, the 

ANALOGUE OUT signal allows the 1.4112 MHz clock to supply the serial shift clock. 

The 2.8224 MHz DTX bit clock is enabled by the inverse of the ANALOGUE OUT 

signal. It is then logically ANDed with the L/Rx2 clock to generate the PiSo's serial 

shift clock. This logical AND combination is required because the data must be shifted

51



out during the first 16 bit clock cycles after every L/R clock transition as shown in 

Figure 3.13.

Left Right
L / R Clock

J r44.1 kHz

L / Rx2 Clock 
88.2 kHz J I I I Tr

Serial Shift 
Clock for DAC

15 14 7 15 8 7

Serial Shift Clock 
for Digital Receiver

15 14 0 15 14 0m -in___ ruwi____ r
Parallel 
Load Clock U u

Parallel load beforeI
i first bit is sampled

Figure 3.13 PiSo's Serial Shift and Parallel Load Clock Signals, PiSoSCK and

PiSoLOAD.

The internal registers of the PiSo must be loaded from their parallel inputs before 

the first bit of each sample is shifted out. This parallel load signal is not edge triggered 

but is an active low signal, therefore a one shot circuit is used to produces this low 

pulse. The waveforms in Figure 3 .13 also illustrate the location of the parallel load pulse 

in relation to the first sampling intervals of the two serial shift clocks. The DTX latches 

its samples earlier than the DAC, therefore the DTX's 2.8224 MHz serial shift clock 

dictates the timing restrictions. The parallel load must be active within half a bit clock 

cycle to guarantee that the first bit is stable when sampled by the DTX. It must be 

inactive before the second data bit is shifted out by the second rising edge of the serial 

shift clock. The one shot circuit produces a low pulse o f 200 ns duration, to load the 

parallel inputs and be inactive before the second shift of the serial shift clock.

The XILINX XC4003 Field Programmable Gate Array (FPGA) [16] was chosen to 

implement the Address Decoding, Control Logic and Clock Generation circuits for the 

sound card. This FPGA which can operate at up to 60 MHz is sufficient to meet the 

timing requirements which occur when writing to the Swinging Buffers from the PC. 

The FPGA is a volatile device which must be programmed at power-up. This program

3.3 Field Programmable Gate Array

52



is contained in a PROM which is connected to the FPGA in its master parallel mode 

At power-up the FPGA will read the PROM and configure itself.

3.3.1 FPGA Logic Implementation

The FPGA is divided into discrete logic blocks, each capable o f implementing a three 

variable Boolean equation. The Boolean equation is implemented in random access 

memory (RAM) look up tables. Each logic block also possesses a flip-flop on its output 

which can be used if required. These logic blocks are called control logic blocks (CBLs) 

and are connected together using :-

♦ local links which only connect adjacent CBLs

♦ the global network which can connect all CBLs

♦ fast global network which only connects certain CBLs.

3.4 Design Implementation
The sound card's design was first implemented with discrete logic devices to quickly and 

efficiently test the design of the sound card. The prototype design was built from the 

74F and 74LS series logic families.

After the sound card's design was finalised it was then transferred to the XILINX 

FPGA. This required some modifications to the design due to the manner in which the 

logic circuits are implemented in the XILINX environment. These modifications were 

required to meet the various timing specifications which were automatically met by the 

discrete logic but were not met by the FPGA. The software package for programming 

the FPGA was responsible for converting the schematic diagrams to CBL functions and 

connecting these CBL blocks together.

3.5 Testing of the Sound Card
The sound card in both discrete and FPGA forms was thoroughly tested using the logic 

analyser to examine the signals which possessed critical timing characteristics and with 

test files and test signals as described in Section 3.7.4. The following sections describe 

the critical timing signals and the steps taken to ensure they were maintained. Due to 

restrictions on the size o f labels for the leads of the logic analyser, some names were 

shortened, such as MResetbar to MRST.

53



3.5.1 Address Decoding

The address decoding section guarantees valid data transfer between the PC's memory 

and the FIFOs. The FIFOs latch data on the rising edge of their write requests and 

therefore the PC data buffer enable signals must remain active for at least the minimum 

time interval stated in the FIFOs specifications (5ns) to guarantee that the FIFOs latch 

the data correctly. This was achieved using a one shot circuit to produce the PC bus's 

data buffer enable signals. This guarantees that the PC bus's data buffers will be enabled 

long enough for the data to be latched into the Swinging Buffers. The one shot circuit 

consists of a counter, driven by one o f the FPGA's internal clocks generated from its 

internal oscillator.

Figure 3.14 illustrate the simulated waveforms for a DMA write request that 

generates the PC bus's data buffer enable signals while the actual waveforms sampled 

by the logic analyser are shown in Figure 3.15. Figure 3.16 shows the simulated 

waveforms for a variety of Address Decoding operations ranging from resetting the 

sound card to I/O port read requests.

A E N B A R 
5 B H E 0 A R  
I O R  B AR 
I  OU B AR 
0 A C K 7 B A R  
A 0 
A 1 
A 2 
A 3 
A 4 
A 5 
A 6 
A 7 
A B 
A 9 
GSR
I  0 1 6 B A R
LOW EN
H I G H E N
H R E S E T B A R
I 0 P 0 R T U R I
d i g i t a l i n

o i g i t a l o u

A N A I O G U E O I  
A N A L O G U E I  
O M A E N A B L E  
I R Q E N A B L E  
I  N
o u r
B U F F E R S T A
I O P D R T R E A

0
1
o
1
0
0
1
0
0 t---------------- r
0 t

0 1

0 "I
1
1
0
0
1
1
1
1
1
0
0
0
0
0
1
0
1
1

4 4 0 0 4 3 0 0 4 4 0 0 4 5 0 0  4 6^0 0 4 7 0 0 4 B 0 0

Figure 3.14 Simulated DMA Write Request.

54



MACHINE
Markers
Accumul
Time/Di

I - Timing Waveforms
Off 

ate Off
20 nsv 500 ns Deloq 1 0 s Sample period

1

1 IDACK7 01
AEN 02 l
IOR 05
DEN 03
NRQ1 04

HRQ2 15
RRQ1 08
RRQ2 09

------1------ 1-------1------ 1------ i------ 1-------1------ 1------ 1----—

Figure 3.15 DMA Write Request.

Figure 3 .1 6  S im ulated A ddress D ecoding W aveforms.

55



3.5.2 Control Logic

The simulated waveforms that confirm the bidirectional operation o f the Control Logic 

are shown in Figure 3.17. The enable signals for the Swinging Buffer Serial Interface 

and the PC data buffers were required to be active longer than the read and write 

requests to guarantee correct data transfer. This was accomplished with several one shot 

circuits which produce the required buffer enable signals. The simulated waveforms for 

the sound card's write requests, generated from the sound card's oscillator, are shown in 

Figure 3.18 while the actual waveforms from the logic analyser for the Rose and Wosc 

signals are shown in Figures 3.19 and 3.20 respectively.

6 S R 0 1
DM A R E A OB A 1 r
I Q P O R T R E A I 1
I 0 P 0 R T V R I 1
D M A W R I T E B 1 1 • 1

O H A E N A B L E 1
OUT 0 1
H R E S E T B A R 1 i
vose 1 ■ ■- U  ' ' ' LJ
RDS C 1 • " - • L J  • L J

W E M 2 B A R 0 i n
W E N 1 B A R 1 • r i * •
1 S T F F 1 B A R 0
P C B E 2 B A R 1 J i ,
P C B E 1 B A R 1 j 1
R 1 B A R 1 u
fl 2 B A R 1 [ i_i
W 1 B A R 1 u . . .  . |

U 2 B A R 1 U  1
S I B E 1 B A R 1 • " ... LJ
S I B E Z B A R 1 LJ LJ

6 5 5 6 9  5 2 5 Ó 0 0  5 0 Ó 0 0 7 5 Ó 0 0  1 0 0 0 0 0  1 2 5 0 0 0  1 5 0 0 0 0  1 7 5 0 0 0  2 0 0 0 0 0

Figure 3.17 Simulated Swinging Buffer Read and Write Requests and Data Buffer

Enable Signals.

56



I S  T F T  1 

0 R X M C K 

D I G I T A L I N  

HCK OSC 

OR X L /  R

m r e s e t b a r

GSR
A N A L O G U E O

X T I

SC K A 0

L / R

ROSC

WOSC

SCK

HCK

P I S  OS CK 

S I P O S C K  

S I P O L O A D  

P I S  OL 0 AD

Figure 3.19 Simulated Wosc and Rose Signals.

Figure 3.18 Rose Requests.

57



MACHINE 1 - Timing Waveforms
Markers Off
Accumulate Of f
Time/Div 20.00 us Delay 95.70 us Sample period » 800 ns

nRST 0
RRQ1 02

RRQ2 03
WRQ1 04 : : .  ! : : I : ,  ' : ' !
HRQ2 05
L/R 06

J________ L. _l_____ L.

Figure 3.20 Wose Requests.

3.5.3 G ock Generation

The clock signals required by the Serial Interface are generated in this section. The PiSo 

load clock is the most difficult to produce because it requires a low pulse for every 

sample with a maximum duration of 354 ns. This is generated using a one shot circuit 

triggered by the L/Rx2 clock ( 88.2 kHz) signal. The one shot circuit in the FPGA was 

composed o f several logic gates and a digital counter run from an internal clock. The 

simulated waveforms showing the clocks required by the Serial Interface for the 

recording and playback modes are shown in Figure 3.21, while the actual waveforms are 

shown in Figure 3.22. Figure 3.18 illustrates channel consistency between recording and 

playback modes. The first read request occurs on the left channel while the first write 

request occurs on the right channel before it is shifted in the DTX or DAC on the left 

channel.

58



1 S T f  F 1 

D R X MC K 

D I G I T A L I N  

MC K O S C

1

Mil . r i w i i M i i M i i u i i i r M J i i i i n ^  r i u i r |0

0

1

D R X L /  R

h r e s e t b a r

GSR

A N A L O G U E O I

X T I

S CK AO

L / R

ROS C

U OSC

SCK

M C K

1 J i
1

0

0

1

n _1

0 r ~

1 i i ■

1 L_ __ J
1 JlfL i  f u i r u m r i r u L n n  n  i u u  u u u i n  n ;  u  u i n n n n  r j u i r j  m r u  u  u

0

P I S O S C K  

S I P O S C K  

S I P Q L O A D  

P I S D L O A D

i n n n n n n n n n n n n n n n  n n n n r0

1 JLlULULillUUUUU LJUUU "  liL'ULU
0 1 1

1
1 0Z 6 5 8 . 6

J u
1 0  4 0 0 0  lOfi'OOO 1 0  BO 0 0  1 1  0 0 0 0  1 1 2 0 0 0  1 1 4 0 0 0

Figure 3.21 Simulated Parallel Load and Serial Shift Clocks fo r  the Serial Interface.

IMACHINE 1 |~ Timing Waveforms
Markers Off -
Accumulate Off
Tlme/Div 2 . 0 0 0  us D e 1au 1 8 >000 us

PSLOADOI

PSCLK 02
SPLQAD03
SPCLK 04

II
if

Sample period

¥

100 ns

Figure 3 .22  Parallel L oad  and Serial Shift C locks f o r  the Serial Interface.

5555555Z55555555555555555555555555555R555555555



3.5.4 Reconling and Playback Tests

Once the functional blocks o f the sound card had been individually tested, the recording 

and playback modes of the card were tested. The playback and recording tests described 

in the following sections are also required when identifying the predefined faults 

introduced in Chapter 7.

The hardware functionality was tested in the DOS environment for several 

reasons. Firstly, testing the card in the Windows environment would involve testing and 

developing the hardware and software simultaneously. This would be undesirable 

because this would greatly increase possible sources o f errors. Secondly, hardware errors 

would be more difficult to identify due to the fact that the software cannot be guaranteed 

to be error free. Thirdly, a DOS program which records or plays back through the sound 

card is not tied to the restrictions imposed by Windows, such as the maximum size and 

priority levels required to access the DMA buffers. These factors make it undesirable 

to develop and test the sound card in the Windows environment.

3.5.4.1 Playback Tests

The files used in the playback tests were generated to provide a reference, against which 

the playback modes can be tested. The playback tests can be divided into three 

categories:-

♦ Predefined Playback : Involves playing back a test file and observing the outputs of

the sound card. For the digital mode the output o f the digital amplifier is 

observed. These test files allow the output to be compared against the known 

waveform of the test files. This test can easily verify channel consistency and 

data loss. If a test file has one channel muted, the loss of one sample will cause 

the waveform to switch channels.

♦ Data Transfer : Tracing individual samples through the data paths o f the sound

card, verifying data transfer.

♦ Audio : Playing back audio files, music or voice. These are preliminary tests

carried out before the Predefined Playback tests to provide general information 

on the quality o f the playback modes.

60



3.5.4.2 Recording Tests

Recording tests have an advantage over playback tests in that the recorded samples can 

be examined. Recording tests can be divided into similar categories as the playback 

tests:-

♦ Predefined Recording : This can only be performed with the analogue recording mode.

It involves placing a waveform, generated by a signal generator, on one or both 

of the analogue inputs. The recorded waveforms can be compared against the 

waveforms on the analogue inputs. As explained previously, channel consistency 

and data loss can be tested with one input channel muted.

♦ Comparison Recording : This is restricted to the digital recording mode, because it

requires the samples to be identical for every recording, a CD for example. The 

same piece of audio signal from a CD was recorded several times. Each time 

recording was started before the start of the audio signal. This guaranteed that 

the same reference point was captured for each recording. The samples before 

the start o f the audio, whose values are zero, were removed from the recorded 

files. These modified files were then compared against each other for missing 

samples and different sample values.

♦ Data Transfer : Involves tracing samples through the data paths of the sound card,

verifying data transfer.

♦ Audio : This involves playing back recorded files to give a general indication o f the

state of the recording modes of the sound card. This relies on the playback mode 

being correct because otherwise inaccurate conclusions could be drawn.

3.5.4.3 Analogue Quality Tests

The tests carried out in Sections 3.5.4.1 and 3.5.4.2 are functional tests and do not 

provide any information regarding the overall quality o f recording and reproduction. 

These are primarily determined by the ADC and DAC chips, whose performance 

measurements are available from their data sheets. Although the sound card is a fully 

functioning 16 bit analogue and digital I/O card it is primarily intended for use as a 

teaching aid in a laboratory environment. Consequently quantitative paramemters such 

as Signal to Noise Ratio (SNR), Frequency Response or Harmonic Distortion are not of 

major importance to the card function and are left as an exercise for the MTP's student 

audience.

61

I



3.6 Summaiy
This chapter describes in detail the functional blocks of the sound card and highlights 

the unique aspects of each. The testing procedures used in verifying the operating modes 

of the card are also described. The sound card's operation is verified with the selected 

timing diagrams shown in this chapter.

62



Chapter 4
Introduction to Windows C Programming

4.1 Introduction
This chapter provides an brief introduction to writing Windows applications in C source 

code. The major Windows programming issues are explained along with the various 

elements of a Windows application. This chapter assumes that the reader is familiar with 

the C programming language and with using Windows in general. In the software 

chapters, Chapter 4, 5 and 6, the following convention is used to describe functions: -

♦ Windows API functions are in italics

♦ functions called by Windows which the application must supply are in bold are

♦ functions specially written for the MTP are in bold and italics.

4.2 The Windows Operating Environment
Microsoft Windows is a message based graphical environment where applications are 

represented by small graphical images. The user is no longer required to enter a 

command line to run these applications, instead applications are run from these graphical 

images. The Windows operating environment runs on top of DOS which it requires for 

its file I/O functions. The Windows environment controls all application access to the 

PC's hardware [14], The Windows environment offers many advantages over the 

command line DOS environment, such as device independence for applications and a 

multi-application environment.

4.2.1 Non Preemptive Multi-tasking

Windows is not a true multi-tasking environment where tasks are allocated processor 

time depending on the tick of a hardware clock and are suspended when their time slice 

has elapsed. It is more accurate to call Windows a non-preemptive multi-application 

environment because it does not forcefully remove applications once their allocated time 

slice has elapsed. Windows relies on applications cooperating with the system and 

releasing control when inactive [14], Windows applications can run in two states,

63



foreground and background. The application running in the foreground has the system 

focus and therefore receives most of the CPU's time and most o f the keyboard input. 

Only one application can run in the foreground at a time while there may be several 

running in the background.

The 386 Enhanced application in the CONTROL PANEL of the MAIN  group 

in Windows, provides the ability to set the priorities of the foreground and background 

applications. The time slice is also determined here but these figures are only estimates 

as to the exact scheduling which occurs [12]. For a single PC, Windows offers a huge 

advantage over DOS in its ability to run more than one application simultaneously, 

providing fast switching between them along with a uniform application interface.

4.2.2 Application's Message Queue

Windows communicates with applications by sending messages to them. These messages 

are placed in the application's message queue waiting to be processed by the application 

[14]. The messages range from mouse and keyboard events to messages from other 

applications. The application can also send messages to Windows and to other 

applications using Windows API functions.

4.2.3 Application Programming Interfaces

Windows provides the Application Programming Interface (API) for applications to 

communicate and control the various hardware and software elements o f the PC [11,14], 

The application can use the API functions for hardware independence. The API 

functions send standard messages to the device drivers which then access the hardware. 

These API functions also provide interfaces for the COM ports and for Windows 

Multimedia devices.

4.2.4 Dynamic Link Libraries

Dynamic Link Libraries (DLLs) are used extensively in Windows. The Windows 

operating system itself is composed o f several DLLs. DLLs can contain functions, 

Windows resources and data which can be loaded, removed and reloaded into memory 

when required [14]. They are program modules which are only accessed by other 

modules at run time and therefore reduce the memory requirements for the system. 

Device drivers are also DLL modules.

64



4.3 Differences between DOS and Windows Applications
The C program for DOS in Listing 4 1 displays the text Hello on the PC's screen. The 

whole program is contained in a single file consisting of six lines. To display this text 

in the Windows environment requires more than sixty lines of code and three separate 

files. This may appear to be elaborate but the program created is substantially more 

versatile than the DOS program. The Windows program possesses all the usual 

properties o f a Windows application, such as being capable of being moved and resized 

with the keyboard or mouse and having multiple copies active simultaneously. Most of 

the implementation o f this functionality is hidden from the programmer in the Windows 

environment.

#include <stdio.h> 
int main(void)
{
printf("Hello") ; 
return (0);
}

Listing 4.1 Program listing o f  HELLO.C.

The fundamental component of a Windows application is where it processes its 

messages. This section is called the message processing loop [14], Along with system 

messages, applications can send messages to each other. This concept of an application 

waiting for the system to send it messages is foreign to a DOS application programmer, 

but is typical of a graphical user interface such as Windows. A DOS program usually 

follows a procedural format whereas a Windows program uses an event based structure 

where it responds to user and system messages.

4.4 Windows Programming Conventions
One of the problems of programming in Windows is the wealth of new terminology, 

functions and structures in the Windows environment. Windows provides the 

programmer with over one thousand API functions, many of which are totally new to 

DOS based C programmers. An example is the standard Windows SaveAs dialog box 

common to all text editing packages. This function requires the programmer to initialise 

a Windows OF data structure and pass it to the GetSaveFileName function. Windows

65



will then manage the dialog box and return with TRUE if a filename was selected or 

FALSE if  the operation was cancelled. If TRUE was returned then the IpstrFile field of 

the OF structure contains the selected file. These functions are powerful because of the 

control Windows possesses over the application's environment.

4.4.1 Main Window of Application

Windows is an object orientated environment and as such, the term window can have 

two meanings. Firstly, in the object oriented sense it refers to both the data and the code 

for the window. Secondly, in the visual sense it refers to the graphical representation on 

the PC's screen of a window. The term application's windows in this chapter, refers to 

the second graphical definition. The window for the MTP's application is shown in 

Figure 4.1.

System
Control
Panel

Menu
Bar

Window Title Minimise Button Maximise Button

Figure 4.1 Main window o f Application.

The application can possess other windows, known as CHILD windows which 

are objects themselves because they contain data and code and are self contained. 

Examples of these windows are dialog boxes, scroll bars, edit windows and push 

buttons. The PUSHBUTTON child window for example changes its bitmap whenever 

the left mouse button is depressed while positioned over the push button without any 

direct intervention from the application.

66



4.4.2 Handles

Handles are used extensively in Windows to provide indirect access to Windows 

resources and objects. For instance, handles are initialised when resources are opened, 

such as when the waveform output device is opened and they are used to access the 

device or resource. For C DOS-based developers the only time handles are encountered 

is when accessing files using C s file I/O functions or the DOS INT 21h interface 

functions.

Memory is also accessed through handles. The memory block must first be 

requested from the system with the GlobalA Hoc function which if successful will return 

a handle to the memory block. The memory locations can only be directly accessed by 

locking the block in memory using the GlobalLock function with the memory block's 

handle passed as one of its arguments. This function will then return a pointer which can 

be used as a normal memory pointer. The pointer locates the beginning of the memory 

block. When the block is not locked in memory, the handle allows Windows to move 

the block around or swap it to disk, without having to continually update pointers [14],

4.4.3 Functions and Variables

Windows introduces a new naming convention and some new variables for programming 

in Windows. The naming convention is called HUNGARIAN  notation where the prefix 

o f the variable name describes the variable type. For instance a variable called 

dwDuration is a 'double word' (dw) variable while JpszString is a 'long pointer to a 

string terminated by a zero' (Ipsz). Appendix G contains a list o f the most common 

hungarian notation prefixes and the new Windows variables. Function and variable 

names in Windows can be quite large, and capital letters are strategically introduced to 

make them more easily readable. For example the function waveOutUnprepareHeader 

is easier to read than waveoutunprepareheader.

All Windows functions use the PASCAL calling convention for parameter 

passing, therefore functions called by Windows must also use this convention and are 

declared with the PASCAL keyword. The PASCAL calling convention is different to 

the normal C convention in that the order in which parameters are passed on the stack 

differs. The PASCAL convention pushes the parameters on to the stack in order, from 

left to right, which is opposite to the C convention. Furthermore the PASCAL 

convention relies on the called function to remove the parameters from the stack before

67



returning, whereas with the C convention the function which issued the call cleans up 

the stack after the called function returns.

Functions which Windows calls must be declared with the EXTERN keyword 

or be declared in the EXPORTS section of the application's module definition file [3, 

14], These functions must also use the FAR keyword in their declaration because they 

reside in a different code segment. Functions which reside in DLLs must also follow 

these guidelines.

4.5 The MTPfs Windows Application
A Windows application is composed o f several files whose responsibilities range from 

creating the application's window to determining how its various code and data segments 

are dealt with in memory. The files required by most applications are the C source code 

files for the application window and dialog boxes, the resource script file, the module 

definition file and the project file which links all these different files together [3], The 

files which contain the source code for the applications window and dialog boxes are 

explained in the first two sections while the other files required to build the application 

are explained later. Table 4.1 describes the files required to build a Windows 

application.

4.5.1 Source Code for Main Window of the MTP's Application

The application window's source code is responsible for creating the application's 

window and processing the application's messages and for this project is contained in 

the file, MMAPP.C. The source code for the application in the Borland (TurboC++) and 

Microsoft (Visual C-H-) environments are on the two disks which accompany this thesis. 

The Borland source code is on the application's installation disk in the BSOURCE 

directory while the Microsoft code is on the device driver's installation disk in the 

MSOURCE directory. The application's two principal functions are WinMain and 

MainWndPnoc, which create the application's window and process its messages 

respectively [14],

The WinMain function is the Windows equivalent of the MAIN function in C for 

DOS and is the first function called by the system when the application is started. This 

function creates, initialises and displays the application's window and specifies the 

procedure which will process its messages.

68



Type File Description

SOURCE.C Contains source code for processing the 
application's messages.

HEADER.H Contains the application's identifiers for its 
resource elements.

RESOURCERC Windows resources use by the application are 
defined or referenced in this file.

MODULE.DEF Defines how Windows handles the application's 
code and data segments in memory .

HELP.HLP Help file for the application.

PROJECT PRJ Project file for compiling and linking the 
application's files in the Borland TurboC++ 
development environment.

MAKEFILE. M AK Project file for compiling and linking the 
application's files in the Microsoft Visual C++ 
development environment.

Table 4.1 Application's File Types.

There are several steps involved in setting up the application's window which 

involves calling Windows functions and initialising Window structures required by these 

functions. The first step involved in displaying the application's window is to register 

the window class with the function RegisterClass, but only if this application is the first 

instance of the application. The hlnstance variable is examined to determine if there are 

other instances of the application active. There can be several instances of the same 

applications simultaneously active within Windows. This function takes the Windows 

structure WNDCLASS as its sole argument. This structure is defined in the 

WINDOWS.H file and defined within this structure is the application's icon, mouse 

cursor, the window's background pattern and its message processing function, 

MainWndProc. The different elements o f this structure are illustrated in Listing 4.2. The 

RegisterClass function returns the value TR UE (one) when successful and FALSE (zero) 

otherwise.

Secondly, the window must be created using the CreateWindow function. This 

function has eleven parameters passed to it ranging from the application's window title 

and style, to the position and size o f the window and it returns the handle o f the

69



wndclass.style = CS_HREDRAW | CS_VREDRAW; 
= (LPVOID)MainWndProc; / ,wndclass.lpfnWndProc 

wndclass.cbClsExtra 
wndclass.cbWndExtra 
wndclass.hlnstance 
wndclass.hCursor

= 0; 
= 0;

'roc; / / A p p l i c a t i o n s .  
/ /  P r o c e s s in g  f u n c t i o n .

= hlnstance;
= LoadCursor(hlnst,IDC_ARROW );

wndclass.hlcon
/ /  A p p l i c a t io n '  s  cu rso r .  

= LoadIcon( hlnstance,
MAKEINTRESOURCE(MMAPPICON) );

/ / A p p l i c a t i o n  ' s  ico n .  
= GetStockObject(WHITE_BRUSH);

// A p p l ic a t io n  ' s  background co lo u r .
wndclass.IpszMenuName 
wndclass.IpszClassName

= "MMAPP"; // Application's menu bar.
= szAppName;

Listing 4.2. Windows window class structure, WNDCLASS.

window. Thirdly, the window must be displayed using the Show Window function. This 

function only displays the window and it does not display the window's client area. The 

client area is the area enclosed by the windows border and menu bar. The Show Window 

function takes the handle of the window along with a command string describing how 

the window is to be displayed, normally or minimised. The client area is displayed by 

the application posting a WM PAINT message to itself using the UpdateWindow 

function. The applications message processing routine will then display the 

MMAPP.BMP bitmap in the window's client area as shown in Figure 4.1.

The next part of the WinMain function is known as the application's message 

loop. This loop consists of four functions, GetMessage, TranslateAccelerator, 

TranslateMessage, DispatchMessage. This loop constantly polls the application's message 

queue using the GetMessage function. Once a message has been received, the 

TranslateAccelerator function translates the keyboard's V M K E Y U P  and 

WM KEY DOWN  message sequence into the appropriate W M S Y  SCOMAND  or 

WMJCOMMAND messages. The TranslateMessage function provides keyboard 

translation from the physical keyboard to the virtual keyboard which the application 

employs. The DispatchMessage returns the message back to Windows to be sent to the 

application's MainWndProc procedure for processing.

These functions all use the Window's message structure as one of their 

parameters. This structure is shown in Listing 4.3. The first element of the message 

structure is the handle to the target window while the second is the message number. 

The message itself is determined by the next three elements. The last two elements relate

70



t y p e d e f  s t r u c t  t a g  MSG {

WPARAM
UINT
HWND

message;
wParam;
IParam;
time;

hwnd; // Handle of target window. 
// The message identifier. 
// Message parameters.

LPARAM

POINT
DWORD // Time of message.

// Mouse position at time 
// of message.

MSG ;

Listing 4.3. Windows message structure, MSG.

to the time the message was posted and the mouse cursor position in screen coordinates 

at that particular time.

The MainWndProc function is responsible for processing the application's 

messages. It is specified as the message processing procedure in the application's 

WNDCLASS structure defined in the WinMain function. For this project the message 

processing structure o f  MainWndProc is shown in Listing 4.4. Four parameters are 

passed to this function, the window's handle, the message number and the wParam (16 

bit) and IParam (32 bit) integers. Messages can be from a number of different sources, 

mouse, keyboard, timer or from the low level waveform device driver which have the 

MM_ prefix, MM WIM_CLOSE for example. The WM COMMAND  message is sent 

whenever a menu item is selected or a control item is accessed, for example an edit 

window in a dialog box. The low word of the 32 bit IParam integer is examined to 

determine the menu item selected. This value must be non-zero. The macro LOWORD  

extracts the low order word.

71



{
switch(message) // Message processing.
{

case WM_INITDIALOG : 
break;
case MM_WIM_OPEN : // W aveform  i n p u t  d e v i c e  o p e n e d .
break;
case MM_WIM_DATA :
break; // W a v e h e a d e r  r e t u r n e d  fr o m  t h e  w a v e fo r m  i n p u t  d e v i c e .  
case MM_WIM_CLOSE : // W aveform  i n p u t  d e v i c e  c l o s e d .
break;
case MM_WOM_OPEN : // W aveform  o u t p u t  d e v i c e  o p e n e d .
break;
case MM WOM_DONE :
break; 7/ W a v e h e a d e r  r e t u r n e d  f r o m  t h e  w a v e fo rm  o u t p u t  d e v i c e .  
case MM_WOM_CLOSE : // W aveform  o u t p u t  d e v i c e  c l o s e d .
break;
case WM_COMMAND : // P u l l - d o w n  m e s s a g e s .
if(!LOWORD(lParam)) { // Identify which pull-down menu item

was s e l e c t e d .
switch(wParam) { 
case IDM OPEN : 
break;
case IDM SAVEAS : // S e l e c t  d e f a u l t  f i l e  f o r  r e c o r d i n g .
break;
case IDM_WAVEIN : // W aveform i n p u t  d e v i c e  c a p a b i l i t i e s .
break;
case IDM_WAVEOUT : // W aveform o u t p u t  d e v i c e  c a p a b i l i t i e s . 
break;
case IDM_APPLICATION : // A p p l i c a t i o n  i n f o r m a t i o n .
break;
case IDM_PLAYANALOGUE : // A n a lo g u e  p l a y b a c k  d i a l o g  b o x .
break;
case IDM_PLAYDIGITAL : // D i g i t a l  p l a y b a c k  d i a l o g  b o x .
break;
case IDM_RECORDANALOGUE :// A n a lo g u e  r e c o r d i n g  d i a l o g  b o x .  
break;
case IDM_RECORDDIGITAL : // D i g i t a l  r e c o r d i n g  d i a l o g  b o x .
break;
case IDM_YES : // E x i t  a p p l i c a t i o n ?
break;
case IDM_NO : // C a n c e l  e x i t  command.
break;
default: 
break;
)

}break;
case WM_SIZE : // A p p l i c a t i o n ' s  w indow  s i z e  h a s  b e e n  c h a n g e d .
return 0;
case WM_PAINT : // C l i e n t  a r e a  n e e d s  r e d r a w i n g .
break;
case WM_DESTROY : // S e n t  t o  t h e  a p p l i c a t i o n  a f t e r  i t s

/ /  w indow  h a s  b e e n  re m o v e d  f r o m  t h e  s c r e e n .
break;
default : // M e s sa g e  i s  p r o c e s s e d  a n yw a y  t o

// M a i n t a i n  g o o d  h o u s e  k e e p i n g .  
return DefWindowProc(hWnd, message, wParam, lParam);

}return 0L;
)

Listing 4.4. Message processing procedure, WndMainProc, fo r  (he Application.

long FAR PASCAL MainWndProc(HWND hWnd, WORD wMessage,
WORD wParam, LONG lParam)

72



Each menu item is identified by a unique number defined in the application's 

header file, MMAPP.H  and this identifier is also used in the resource script when 

declaring the menu items. The IParam of the MSG  structure will be set to this number 

when the menu item has been selected by the user. The case switch structure identifies 

the particular menu item and the message is then processed. This usually involves 

calling a dialog box. The WM SYSCOMMAND  messages relate to control box 

messages, such as client area repaint, minimising and maximising the application's 

window. The control box is situated in the top left hand comer of the windows or dialog 

box's caption bar. This box controls the position and state of the window. In the case 

of a WM PAINT message being received, the window's client area is redrawn.

For the WM DESTROY message, the function PostQuitMessage sends a 

message to Windows requesting termination of the application. After each message has 

been processed, control is returned to the WinMain message loop. If there is no match 

within the switch case statements, the message is returned to Windows for processing 

by the DefWindowProc procedure to ensure that all message are processed..

4.5.2 Source Code for Dialog Boxes

The source code for a dialog box is very similar to the application's window code and 

is composed of an initialisation and display function, and a message processing function 

[14], The first function, fnRecdDigt, is called by the application window's message 

processing procedure, MamWndProc. Listing 4.5 shows the dialog box's main function, 

fnRecdDigt. The dialog box's message processing routine is fnRecdDigtDlgProc, which 

is passed as a parameter to the Windows function, MakeProcInstance. This function 

returns the address o f the fnRecdDigtDlgProc function's PROLOG code. This code is 

required by Windows to establish the function's DA TA segment when it is called by 

Windows to process the dialog box's messages.

The Windows function DialogBox displays the dialog box and links the message 

processing procedure to this dialog box. The message processing function's PROLOG 

code pointer IpfnRecDigtDlgProc is passed along with the application's main window 

handle, application's instance handle and the dialog box's resource name. This function 

does not return until the dialog box has been closed.

The structure o f the message processing loop for the digital recording dialog box 

is shown in Listing 4.6. and consists of a CASE SWITCH  structure to identify the

73



int fnRecdDigt(HWND hParentWnd)
{

int RetCode;
FARPROC lpfnRecdDigtDlgProc;

hPrtWnd=hParentWnd; // Pointer to dialog box's processing function. 
lpfnRecdDigtDlgProc = MakeProcInatance((FARPROC)fnRecdDigtDlgProc,

hlnst);
if((RetCode = DialogBox(hlnst, "RecordDigital", hParentWnd,

lpfnRecdDigtDlgProc)) == -1) {
MessageBox(NULL, "Unable to display dialog", "System Error", 

MB_SYSTEMM0DA1 | MB_ICONHAND | MB_OK); 
return FALSE;

}// Display the dialog box. Function returns when dialog box is closed. 
FreeProcInstance((FARPROC)lpfnRecdDigtDlgProc); 
return(RetCode);

)

Listing 4.5. Main dialog box function fnRecdDigt, fo r  the Digital Recording

dialog box.

message. The WM COMMAND  message is sent when one of the dialog boxes' control 

elements is accessed. To determine the sender of the message the wParam is examined 

using another CASE SWITCH  structure. The dialog box controls are described in the 

resource script and are assigned designators in the application's header file, MMA PP.H 

and the message is compared with these designators to identify the message.

4.5.3 The Resource Script

The Windows resources used by the application are defined in the resource script. 

Window resources are the application's icons, bitmaps, menu bar, pull-down menus and 

dialog boxes. The resource script must have the .RC  file extension. The different 

resources defined in the application's resource file can be produced by the visual 

resource editing packages from Borland or Microsoft which accompany their Windows 

programming packages [1], These editors produce the application's resource script and 

the different resources are described in the following sections.

74



(
switch(message)
{

case WM_INITDIALOG :
break; // Initialisation of dialog box.
case WM_HSCROLL :
break; // Processing scroll bar messages,
case WM_COMMAND : 

switch(wParam) {
case RecdDigt_Record :
break; // Record push button pressed.
case RecdDigt_Cancel :
break; // Cancel push button pressed.
case RecdDigt_FileName :
break; // Filename push button pressed.
case RecdDigt_Duration :
break; // Duration EDIT window accessed.
default : 
return FALSE;

}
case WM_SYSCOMMAND :

switch(wParam & OxFFFO) { 
case SCCLOSE :
break; // Dialog box closed from its Control Box.

)
}
return FALSE;

)

Listing 4.6. Message processing structure fo r  the Digital Recording Dialog Box.

BOOL FAR PASCAL export fnRecdDigtDlgProc(HWND hDlg, WORD message,
WORD wParam, LONG IParam)

4.5.3.1 The Dialog Box

The dialog box's appearance is determined by the resources attributed to it in the 

resource file. The dialog box's physical dimensions, push buttons, bitmaps, scroll bars, 

edit windows and any other resources are declared in the resource file [1]. The dialog 

box can also be defined in a separate file by including it in the resource file using the 

C #INCLUDE statement. External dialog box definition files can usually be identified 

by their .DLG file extensions.

75



Scrollbar
Figure 4.2. The Digital Recording Dialog Box.

RecordDigital DIALOG 18, 18, 130, 100
STYLE DS_MODALFRAME | WS_POPUP I WS_CAPTION | WS_SYSMENU 
CAPTION "RECORD : DIGITAL"
BEGIN // D e fa u l t  push  b u t to n .

DEFPUSHBUTTON "Record", RecdDigt_Record, 80, 40, 40, 14
PUSHBUTTON "File Name", RecdDigt_FileName 80, 12, 40, 14 
PUSHBUTTON "Cancel", RecdDigt_Cancel, 80, 63, 40, 14 
CONTROL " 00 : 00 : 00 ", RecdDigt_Duration, "EDIT",

E_LEFT | WS_CHILD | WS_VISIBLE | WS_BORDER | WSJTABSTOP 
10, 65, 45, 12

// E d i t  window f o r  e n t e r in g  record  d u r a t io n . 
LTEXT "File Name", -1, 10, 4, 30, 8 // S t a t i c  t e x t , left aligned.
LTEXT "Duration", -1, 10, 55, 30, 8 
LTEXT "Max Duration",-1,10,30,50,8

// To b e  u pda ted  a t  d i s p l a y  t im e .  
LTEXT RecdDigt_FileText, 13, 15, 50 , 8
LTEXT RecdDigrt DiakSpace, 15, 42, 39 , 8

CONTROL -1, "static", SS_BLACKFRAME I WS CHILD |
WS_VISIBLE, 10, 13, 55, 12 

CONTROL -1, "static", SS_BLACKFRAME | WS_CHILD |
WS_VISIBLE, 10, 40, 45, 12

SCROLLBAR RecdDigt_ScrollBar,10,85,110,10
END

Listing 4.7. Resource Script definition o f the Digital Recording Dialog Box.

76



The digital recording dialog box is illustrated in Figure 4.2 while its definition 

is shown in Listing 4.7. The resource is defined as a dialog box by the DIALOG 

statement in the first line of Listing 4.7 and is called RecordDigital. RecordDigital is 

used by the Windows DiaJogBox function to display this dialog box [14], The position 

and size of the dialog box are defined by the sequence of numbers at the end of the first 

line o f the listing. The first pair o f dimensions refer to the display position of the dialog 

box's top left hand comer in relation to the screen's top left-hand comer, while the 

second pair refer to the subsequent width and height of the dialog box. All elements of 

the dialog box requiring position and size use this format. These units refer to Dialog 

Box Units (DLUs), which are derived from the standard 8-bit font. A standard character 

will be 8 DLUs wide and high. The style of the dialog box is defined in the second line. 

For example the WS SYSMENU flag declares that the dialog box has a control box in 

its top left hand comer for closing or moving the dialog box. The caption for the dialog 

box's caption bar is defined in the next line.

Two push buttons are defined next using the PUSHBUTTON statement with the 

record push button declared as the default one (DEFPUSHBUTTON). This default push 

button is the push button which has the input focus when the dialog box is initially 

displayed. The PUSHBUTTON statement defines the push button's text and position in 

relation to the dialog box's top left hand comer. The components of the dialog box are 

also known as controls, which can be static or non static. Push buttons and scroll bars 

are examples o f non static controls while the rectangle around the file name is a static 

control.

All non-static dialog components are referenced with an identifier which is 

assigned a unique number defined in the application's header file. For example the 

RECORD push button's identifier RecdDigt_Record is assigned the value 150 in the 

header file. This value will be one of the parameters o f the message sent to the dialog 

box's message processing function whenever this button is pressed.

The text displayed in the dialog box is defined using the LTEXT statement. This 

statement aligns the text to its left horizontal coordinate while the statements RTEXT 

and CTEXT, right align and centre the text respectively. The text which is not assigned 

the value -1 as its identifier, is text which can be changed by the application. For 

example the available recording duration cannot be determined in advance so it must be 

updated when the dialog box is initially displayed and when a recording has taken place.

77



The Windows functions GetDlgltem and SetfVindowText are used to update the dialog 

box's text items.

The CONTROL and "EDIT" key words define a text entry field or edit window. 

This allows the user to enter text into this window through the keyboard when the 

window has the input focus. An edit window is most commonly encountered in word 

processing packages. This edit window allows the user to enter the desired recording 

length more accurately than the scroll bar will allow. This edit window is also a CHILD 

window because it can receive and send messages to other windows. The dialog box has 

no control over this window. The edit window receives keyboard messages if it has the 

input focus and will display what the user has entered. Each time it is accessed it 

informs the dialog box by sending messages to it. The flags accompanying the 

CONTROL statement define the type and the appearance of the edit window. The 

CONTROL statement is also used to define two black rectangles which are non 

changeable (-1) and static, "static". These rectangles are below the FILE NAME  and the 

M AX DURA TION text as illustrated in Figure 4.2.

4.5.3.2 Menu Bar and Accelerator Table

The application's menu bar is composed of the following items, FILE, PLA Y, RECORD, 

INFO (information), HELP and EXIT. These items possess a pull-down menu with two 

or more elements. These pull-down menu items will in turn call a dialog box. The 

definition o f the PLA Y menu bar item is shown in Listing 4.8 along with the section of 

the accelerator table which defines the PLA Y menu items short cut key or accelerator 

keys [1],

The POPUP "&Play " statement highlighted in Listing 4.8. defines a menu bar 

item while the pull-down elements o f this menu item are declared between the following 

BEGIN and END statements. The ampersand '&' preceding the letter in the menu bar 

item's name determines which letter in conjunction with the ALT key selects this 

pull-down menu, ALT+P in this case. The MENUITEMstatement defines the pull-down 

menu items and their identifiers. These identifiers are declared in the application's header 

file and are used by the application's Message Loop to determine which pull-down menu 

element was selected. When the pull-down menu is active the ampersand in the 

pull-down menu name determines which letter selects the pull-down menu item. The 

three dots after the name of the pull-down item is a standard way of notifying the user

78



MMAPP MENU //Menu Bar and pull-down menu definitions.
BEGIN

POPUP "iPlay" // Definition of menu bar item.
BEGIN // Definitions of pull-down menu items.

MENUITEM "¿Analogue...\tAlt+A", XDMPLAYANALOGUE 
MENUITEM SEPARATOR
MENUITEM "SDigital...\tAlt+D", IDM_PLAYDIGITAL

END
END

MMAPP ACCELERATORS // Accelerator Table.
BEGIN

// Definition of accelerator keys for analogue play pull-down menu item.
"A", XDM_PLAYANALOGUE, VXRTKEY , ALT
"D", IDM_PLAYDIGITAL, VIRTKEY , ALT

END

Listing 4.8. Resource Script definition fo r  the Application's 'Play' Pull-Down

Menu.

that the item calls a dialog box for requesting further information from the user. The 

MENUITEM SEPARATOR  statement introduces a line dividing the previous and 

subsequent pull-down menu items. The menu definition can also reside in an external 

file which is included in the resource script using the #INCLUDE statement. This file 

usually has the file extension .MNU.

Accelerator keys are key combinations which select the pull-down menu element 

whether the pull-down menu is active or not. They are defined in the A ccelerator Table, 

MMAPP ACCELERATORS section of the resource script, part of which is shown in 

Listing 4.8. Accelerator keys are usually a simultaneous combination o f a letter of the 

alphabet and one or more of the SHIFT, CONTROL and A L T  keys. They are usually 

included in the pull-down menu item's name, for example ALT+A  tells the user the key 

combination for the analogue playback dialog box.

4.5.3.3 Icons and Bitmaps

The icons and bitmaps employed by the application are stored in external files which 

are declared with the ICON  or BITMAP statements respectively in the resource script 

as follows. COMPACTSYM ICON COMPACT.ICO

MMAPPBMP BITMAP MMAPP.BMP

79



These files are in the Windows standard icon or bitmap formats and can be created by 

many graphics packages. The icon's files have the ICO file extensions while the bitmaps 

have the .BMP extensions.

4.5.3.4 String Table

This is an array of character strings which the application can use for displaying 

information. The strings have a unique identifier defined in the application's header file 

which the application requires to retrieves the string from the resource script with the 

LoadResource function. The application does not possess a String Table but the device 

driver, which is a Windows program, does contain a String Table in its resource script.

4.5.4 The Module Definition File

The applications module definition file [14] determines the manner in which the 

application's code and data segments are handled in memory. The different code and 

data segments can be defined as combinations of one or more of the following 

modifiers, PRELOAD, MOVEABLE, DISCARDABLE, MULTIPLE and FIXED. The 

PRELOAD modifier specifies that the segment is loaded into memory once the 

application is run. With the MOVEABLE  modifier selected, the segment can be moved 

about in memory by Windows when necessary. This may be due to the segment not 

being used for a long time if the application is running in the background or to release 

memory for use by other applications.

The DISCARDABLE  modifier specifies that the segment does not have to be 

saved to disk if it is removed from memory, it can simply be reloaded from the 

application when required again. This is reserved for segments which are never modified 

such as code and constant data segments. The MULTIPLE modifier specifies that more 

than one copy o f the segment can exist in memory. This is reserved for data segments 

where each must be exclusive to the particular instance o f the application.

When the FIXED modifier is used, once the segment is loaded, it cannot be 

moved by Windows until the application is closed. The application's module definition 

file is shown in Listing 4.9. with the data segment described as FIXED and the code 

segment as DISCARDABLE PRELOAD.

The sizes of the LOCAL HEAP and STACK  are also defined in this file. The 

STACK  size for a Window's application is much larger than for a DOS based

80



NAME

CODE
STUB
EXETYPE
DESCRIPTION

MMAPP
'Multimedia Teaching Platform' 
WINDOWS 
1WINSTUB.EXE'
DISCARDABLE PRELOAD

DATA
HEAPSIZE 
STACKSIZE

FIXED
8192

40000
EXPORTS

MAINWNDPROC

FNPLAYDIGTDLGPROC

FNAPPLICATIO NINFO D LG PRO C

FNPLAYRNIjGDLGPROC

FT7RECDDIGTDLGPROC

FUtBECDMSTLGDLGPROC

@1
02
03

04
05
06

Listing 4.9 Application's Module Definition file, MMAPP.DEF.

application due to the re-entrant nature o f the message structure used in Windows. For 

this reason the STACK  size is set at 40000 bytes. The LOCAL HEAP is the memory 

that the application can allocate from its local memory while the application is running. 

Its size depends very much on the memory requirements o f the application.

The modal definition file also contains the line STUB Windows Stub'. Whenever 

an attempt is made to run the application from the DOS environment, this stub stops the 

application from running and displays a text message that the application requires the 

Windows environment to run [14]. Defined in the EXPORTS section are the functions 

that can be called by other applications, including Windows. These are the message 

processing functions for the application's windows and it's dialog boxes.

4.5.5 Header File

The application's header file MMAPP.H, contains the identifiers for the dialog box's 

control elements, menu bar items, pull-down menu items and any other definitions 

required by the application. This file is included in the C source files along with any 

other header files required, WINDOWS.H for example.

4.5.6 Project File

This file is used to compile and link all the separate files together within the chosen 

programming environment. The Borland TurboC++ project file has a .PRJ extension

81



while the Microsoft Visual C++ project file has the MAK extension. The TurboC++ 

version of the application's project file is illustrated in Figure 4.3. The files can be 

compiled separately using the different command line switches and then linked together 

again using command line switches to produce the Windows executable file but the 

scope for errors is much greater than if the application is compiled and linked within the 

Windows environment [3], All that 

is involved in creating the 

application's executable file is 

selecting the correct compiler and 

linker options and then compiling 

and linking the application. The 

compiler options range from the 

memory model that the application 

uses to the default parameter 

passing conventions used.

4.5.7 Help File

This file while not required to generate a Windows application, is nevertheless an 

essential part o f every application's user interface. The Windows environment also 

introduces a standard format for help files. These files usually have the .HLP extension. 

There is also a standard application which allows the user to navigate through the help 

file, WINHELP.EXE situated in the main Windows directory [15]. The process of 

generating the help file is described in Appendix H. The application can call this help 

file application using the Windows WinHelp function and request which help file to 

load. The contents page of the help file, MPTHELP.HLP can be called as follows;

WinHelp(hWnd, "mtphelp.hlp", HELP CONTENTS, 0);

In this thesis, the application's help file contains bitmap images o f the recording and 

playback dialog boxes with pop-up boxes explaining the purpose of each o f their 

controls. The contents page also provides pop-up boxes to explain the application's menu

:: Project: mrtwpp O E 3
¿HcNgmc Unes Code Data Location I

4fi9 3i :¡n m u
appcap.c 74 217 45
playanlg.c 450 3242 272
playdigtc 448 3257 271
recddigtc 332 1B96 480
recdanlg.c 328 1896 481
waveln.c 436 2629 349
waveout.c 477 3243 344
wlncaps.c 191 1471 176
function.c 363 2196 31B8
woutcaps.c 213 1763 136
mmapp.def n/a n/a n/a
mmapp.rc n/a n/a n/a

Figure 4.3. Application's Project File.

82



4.6 Windows Multimedia
The Windows API multimedia functions were first introduced as extensions to the 

Windows 3 0 environment in 1991. They were integrated into the Windows environment 

with the introduction o f Windows 3.1 [11], The multimedia functions are contained in 

the Windows module MMSYSTEM, which is contained in the DLL, MMSYSTEM.DLL 

situated in the SYSTEM  subdirectory of the main Windows directory. The MMSYSTEM 

module is composed o f the Multimedia Control Interface (MCI), and the low level 

functions for audio and MIDI as illustrated in Figure 1.3.

The MCI provides the high level multimedia functions which perform complete 

multimedia operations with one function call, such as playing an audio file. The 

multimedia device drivers are contained in the SYSTEM subdirectory of the Windows 

directory and are listed in Table 4.2. The Windows file SYSTEM.INI determines which 

drivers are loaded into the Windows operating environment at Windows start-up time. 

The multimedia device drivers are declared in the [mci] section of the SYSTEM.INI file, 

while the audio and MIDI device drivers are declared in the [drivers] as illustrated in 

Listing 4.10 [11],

The low level waveform (analogue) audio and MIDI functions allow more control 

o f the waveform and MIDI device because they access the device driver directly and not 

indirectly through the MCI device driver. They require several different functions to 

perform the same operation as one of the high level commands.

Media Type Device Driver

CD Audio mcicda.drv

Sequence mciseq.drv

Waveform Audio mci wave, drv

Audio and Video mciavi.drv

Table 4.2 Multimedia Device Drivers.

83



[mci]
CDAudio=mcicda.drv // Compact Disc driver.
Sequencer=mciseq.drv
WaveAudio=mciwave.drv // Multimedia Waveform driver.
AVIVideo=mciavi.drv // Multimedia Audio and Video driver.

[drivers]
midimapper=midimap.drv
timer=timer.drv // System Timer.
WAVE=mmteach.drv // Multimedia Teaching Platform's driver.

Listing 4.10 Declaration o f the Multimedia Device Drivers in SYSTEM.INI.

4.7 Summary
This chapter introduces the basic programming and operating principles o f Windows. 

Fundamental examples o f functions that a Windows application must provide are 

explained along with the files required by a Windows application and the Multimedia 

section of the Windows operating environment are also explained.

84



Chapter 5
The MTP's Windows Application

5.1 Introduction
This chapter describes the Windows application developed to play and record RIFF 

WA VE files through the sound card. The application allows the user to record and play 

analogue and digital audio files to and from the hard disk o f the PC using the 

multimedia low level audio functions provided by the Windows API [11], The 

application is written specifically to take advantage of the sound card's digital audio 

capabilities.

The analogue audio mode o f the sound card is known as waveform audio in 

Windows Multimedia and the hardware device which produces waveform audio is 

known as the waveform device. The waveform device can also be split into waveform 

input and output devices.

5.2 The Windows Application
The Windows application allows recording and playback of Windows' RIFF WA VE 

(.WA V) formatted files. The structure of WAVE files is explained in Appendix F. The 

menu structure of the application is shown in Figure 5.1. All pull-down menu items 

invoke dialog boxes except for the NO pull-down menu item of the EXIT menu item 

which cancels the exit command and returns control to the application's window. The

Cj ED ( Play j

I Application |

1
t .

( Record j [ In fo rm a t;o ni 1 Help ] ( Exit )

I
J f¡7v.~77) ( ' a m ' )  ( gym ) f ~ * » l Q.. ) ( NO j

Figure 5.1. Structure o f Application. 

85



dialog boxes range from waveform device information to recording and playing files. 

The files which compose the application are listed in Table 5.1 along with a brief 

description of each. The application's source code for the Borland and Microsoft 

environments can be found on the two disks which accompany this thesis. The 

application communicates with the waveform device driver through the multimedia API 

functions provided by the Windows MMSYSTEM module, while the waveform device 

driver will control the sound card in response to these messages.

File Description

MMAPP.PRJ Project file (Borland TurboC++ environment).

MMAPP.C Source code for application's main window

MMAPP.RC Resource script.

MMAPPDEF Module definition file.

MMAPP.H Header file.

VARIABLE.H MMAPP.C header file for global variable definitions.

APPCAPC Source file for the information dialog box.

WINCAPS C Source code for the waveform device's input 
capabilities dialog box.

WOUTCAPS.C Source code for the waveform device's output 
capabilities dialog box.

WAVEIN.C Recording functions.

WAVEOUT.C Playback functions.

RECDDIGT.C Source code for the digital recording dialog box.

RECDANLG.C Source code for the analogue recording dialog box.

PLAYDIGT.C Source code for the digital playback dialog box.

PLAYANLG.C Source code for the analogue playback dialog box.

FUNCTTON.C Other functions required by the application

Table 5.1. Description o f Application's File.

86



5.3 The API’s Low Level Audio Functions
The WAVE files can be played or recorded using the MMSYSTEM's high or low level 

audio functions. The high level commands [11] can accomplish recording or playback 

with a single function whereas the low level commands [11] require several functions 

as illustrated in Figure 5.2. These high level audio commands use the standard Windows 

Multimedia waveform driver, MCIWA VE.DRV, to control the waveform device via the 

MTP's device driver, MMTEA CH.DR V. This hides the actual process o f playing and 

recording files. The low level commands directly access the MTP's device driver, 

therefore providing more control over playback and recording than the higher level 

functions.

The low level commands place the responsibility on the application to control 

the waveform device. This involves opening the waveform device, closing the device 

and maintaining a continuous data flow to the device. Using the low level functions 

provides a greater insight into Windows Multimedia than the high level functions. The 

following subsections describe the responsibilities imposed on the application when 

using the low level audio functions.

M M SYSTEM
Module

/  \

Application must maintain the data 
queue for the driver.

Multimedia Device Driver 
maintains the data queue.

Figure 5.2 Control over the Waveform Device Driver during Recording or
Playback.

87



5.3.1 Data Queue

The recording and playback processes are sustained by the application sending data 

memory buffers to the waveform device via its device driver. A single buffer cannot be 

used to maintain continuous recording or playback because the data transfer rates 

between the PC's hard disk and memory and between memory and the waveform device 

over the ISA bus are not fast enough. If two buffers were used it could result in 

playback or recording skips due to the application not being able to access the hard disk 

quickly enough. Therefore to guard against these skips or data losses, three buffers were 

used.

The buffers are returned to the application when the device driver has finished 

filling or emptying them. The application must empty \ fill and prepare them before 

sending them back to the device driver. The application's three data memory buffers 

guarantee a data queue of one buffer for the device driver. One buffer is in the data 

queue while the device driver is accessing another buffer and the third has been returned 

to the application. The application processes the returned buffer and accesses the WAVE 

file before the data queue is emptied by the device driver.

5.3.2 Sending data to the Waveform Device

The data are sent to the device driver using the wavelnAddBuffer and waveOutWrite 

functions for recording and playback respectively [11]. These functions require three 

parameters, the device handle, a pointer to the WA VEHEADER structure and the size 

o f the passed structure pointer. The WA VEHEADER structure describes the data 

memory buffer and contains the pointer to the data memory buffer, size of the buffer, 

number o f bytes used by the device driver along with flags describing the status and 

properties o f the buffer. The buffer must be locked in memory as it is accessed at 

interrupt time by the device driver. This is accomplished by the wavelnPrepareHeader 

or waveOutPrepareHeader functions [11]. When the buffers are returned they must be 

released from their memory locked state using the wavelnUnprepareHeader or 

waveOutUnprepareHeader functions [11].

88



5.3.3 Opening and Closing the Waveform Device

The low level audio functions for opening the input or output waveform device are 

wavelnOpen and waveOutOpen, while the functions wavelnClose and waveOutClose 

close the waveform devices [11]. The wavelnOpen function is defined as follows, 

wavelnOpen ( LPHANDLE &hWaveIn,

WORD wDevicelD,

LPPCMWA VEFORMA T Ippcm WaveFormat,

DWORD Callback, DWORD dwCallbacklnstance,

DWORD dwFlags);

where &hWaveln is a pointer to a device handle, wDevicelD  is the waveform device 

identification number, Ippcm WaveFormat is a pointer to a structure describing the data 

format, dw Callback is the handle of the callback window or the pointer to the callback 

function, dwCallbacklnstance is the callback instance data and dw Flags is the flags for 

opening the waveform device. The waveOutOpen function is identical except for the 

handle pointer being the address of a WaveOut handle.

The device handle will be initialised by the device driver and provides proof of 

ownership o f the device when communicating with the waveform device. The device 

identification number can be any number between zero and one less than the number 

returned by the wave capability functions, wavelnCaps and waveOutCaps. This 

identification number must be zero because the MTP waveform device is only capable 

o f supporting one device at a time.

The PCMWA VEFORMA T structure describes the format o f the WAVE file's 

data and for the sound card must be the PCM 44.1 kHz 16 bit stereo format [11]. The 

application uses windowed callback for waveform communications and therefore 

dw Callback is the application's window handle. The dwCallbacklnstance parameter is 

not used here because the waveform device does not support multiple ownership.

The last parameter determines how the waveform device is opened and several 

flags can be used together. I f  the device is only being asked for its capabilities then the 

flags parameter is set to WA VE FORMA T QUERY while for windowed callback it is 

set to CALLBACK WINDOW.

A waveform device must be closed as soon as the application is finished using 

it. The wavelnClose and waveOutClose functions only require the respective device 

handle to close the particular device.

89



5.3.4 Application Callback Methods

The device driver must communicate with the application during the process of 

recording or playback to maintain continuous data flow. The methods for receiving 

waveform device driver messages [11] are as follows:- 

♦Windowed Callback : handle to a window.

+Function Callback : pointer to a function which resides in a DLL module locked in 

memory. This function is limited because it is called at interrupt time which 

restricts the data and functions it can call.

♦Task Unlocking : pointer to a task which will be unblocked.

In this project the Windowed Callback method was used because it does not require an 

extra program module (DLL) to hold the callback processing algorithms and it 

demonstrates the principle of a dialog box and a window being separate objects. The 

dialog box is the application's active window while its main window processes the 

waveform device driver messages.

5.3.5 Waveform Messages supported by the Application

The waveform device driver is opened for windowed callback and therefore the window 

specified as the callback window must process the device driver's waveform messages. 

These messages are sent by the device driver through the MMSYSTEM module and 

have the M M  prefix marking them as multimedia messages [11] and they are illustrated 

in to Figure 5.3. The messages correspond to opening and closing the waveform device 

and to the return o f data buffers from the device driver. The algorithm for processing 

the data buffer return messages, MM WOM DONE and M M W I M D A  TA, are 

explained in Sections 5.5.2 and 5.6.2.

f  APPLICATION 1

[  MM_WOM_OPEN ) [  MM_WOM_CLOSE ]  [  MM_WOM_DONE ]  [  MM_WIM_OPEN ]  f  MVI_WlM„CLOSE ]  [  MM_W1M_DATA )

Waveform Output Messages Waveform Input Messages

F igure 5.3 W aveform m essages processed  by the Application.

90



5.3.6 Accessing WAVE files

The multimedia file I/O functions are used by the application to access the RIFF WAVE 

files. These functions are specially designed for general RIFF files and are part of the 

Windows system software [11]. Therefore, they allow easier management of multimedia 

files and do not increase the programs size. The functions are explained in Appendix F.

5.4 Playback and Recording Process
In this section, the general process o f recording or playing a WAVE file is described in 

general terms before explaining the steps in greater detail. The processes are illustrated 

in Figure 5.4. and can be summarised as follows:-

♦ Acquiring Resources

Acquire system resources needed to perform the waveform operation. The first 

step involves acquiring memory for the data buffers which the application uses 

to send data to the device driver by the Windows application. The waveform 

input or output device is then opened in the desired format. The data buffers are 

then prepared and sent to the waveform device. Playback starts once a data 

buffer is sent to the device driver while recording must be started directly by the 

application. The multimedia file I/O functions are used to access the RIFF 

WAVE format file.

♦ Maintaining the Data Queue

Maintain the data queue to produce continuous playback or recording. The data 

buffers are returned to the application after the device driver has finished with 

them. The application must access the WAVE file to fill or empty the data buffer 

before sending them back to the device driver to maintain continuous data flow.

♦ Releasing Resources

Release the data buffers back to the system and close the waveform device and 

the WAVE file. The waveform input and output devices stop once they run out 

of data from the application.

91



Playback ProeMS Recording Process

Start

Start

Acquire and lock memory 
for the data buffers.

Acquire and lock memory \ 
for the data buffers.

Create the 
WAVE file.

__f
End

(A)  (B)

Figure 5.4 Playback and Recording Process from Application's Perspective.

5.4.1 Application’s Analogue and Digital Modes

The only difference between the analogue and digital modes from the application's view 

point is the extra message sent to the sound card when the digital modes are chosen by 

the user. For digital playback the message WODM SET DIGITAL is sent to the 

waveform device driver using the waveOutMessage function while for digital recording 

WIDM SETDIGITAL is sent using wavelnMessage. These messages are defined in both

92



the Windows application's and device driver's header files as 21 and 22 respectively. The 

default modes of the waveform device are the analogue modes.

5.5 Starting and Maintaining Continuous Playback
The PlayProc function is responsible for initialising the waveform output device and 

starting playback of the chosen WAVE file. Initialising the device involves acquiring 

memory, opening the device, reading from the WAVE file and preparing the data 

memory buffers and sending them to the device driver. The device driver automatically 

starts playback once it receives a buffer so as to respond as quickly as possible to the 

users playback request.

The MM_WOM DONE message is sent by the device driver to the application 

whenever a data memory buffer has been played [II]. The application's main window 

message processing function, MainWndProc, processes this message and maintains 

continuous playback. This involves reading from the WAVE file, filling the returned 

buffer before preparing the buffer and sending it back to the device driver.

5.5.1 The PlayProc Function

The PlayProc function is described in Figure 5.5. Once it has acquired the memory for 

the data buffers, PlayProc will open the specified WAVE file using the procedure 

OpenWAVFile. This procedure will open the file and confirm that it is in the required 

format for the waveform output device. The file pointer is moved to the data field of the 

data subchunk o f the WAVE file using the Multimedia File I/O functions [11], PlayProc 

then moves the file pointer to the requested starting location along the data subchunk 

using the mmioSeek function. The data memory buffers are then filled with the data 

from the WAVE file using the ReadWA VDataProc function and their WA VEHEADER 

structures are initialised and prepared using the waveOutPrepare function.

The waveform output device is now opened. If  the digital output mode is selected 

then the special WIDM SETDIGITAL message is sent to the device driver. Playback 

is ready to commence and it is started when the first WA VEHEADER is sent to the 

waveform output device using the waveOulWrite function.

93



Start.

Acquire memory for; 
the data blocks.

________ I _________

______________ I _______________
Open the W A V E  file and verify its i 

PCM format. Position file pointer to | 
start of the waveform data.

   * ____________
Fill memory buffers with data 

from the opened file.

X

Figure 5.5 The PlayProc Function.

5.5.2 Processing MM_WOM_DONE Messages

The device driver will send a MM W O M D O N E  message to the requested callback 

window when it has played a data memory buffer. The callback window is the 

application's main window as specified when the waveform output device was opened. 

The processing of this message is described in Figure 5.6.

The processing o f these MM WOM DONE messages can be summarised as 

fo llow s. The re tu rned  WAVEHEADER  is unprepared  using the 

waveOutUnPrepareHeader function and the header queue variable bHeaderQueue is 

decremented. This variable keeps track o f the number of buffers in the data queue. The 

global play duration variable dw Play Duration, is now reduced by the WA VEHEADER's 

data size field. The bHeaderQueue variable is compared with zero to determine if this

94



M M _W O M _D O N E  
message received from 

waveform output device.

______________I ______________
Unprepare returned W AVEHEADER  

and decrement header queue variable. 
Reduce play variable by 

WAVEHEADER's data size field.

 I______
Yes Header queue variable 

equal to zero ?

Has device been 
closed ?

“  Required length 
played ?

Return.

Figure 5.6. Processing a M M W O M D O N E  message.

is the last WA VEHEADER in the queue. If it is the last then the waveform output 

device is closed using the waveOutClose function.

If  it is not, then the chv Play Duration variable is examined to determine if the 

remaining WAVEHEADERs in the data queue will complete playback. If they will 

complete playback then the WA VEHEADER is not returned to the device driver and no 

further processing o f this particular message occurs. Alternatively if another 

WAVEHEADER is required in the data queue, the close flag bClose, is examined to 

determine if  the user has stopped playback by pressing the Cancel (Stop) push button 

or by closing the playback dialog box. If this flag is set then the waveform output device 

is immediately closed. I f  the waveform device is still open, then the ReadWA VDataProc 

function will fill the data memory buffer from the WAVE file. The WA VEHEADER is

95



now prepared and sent to the device driver. The bHeaderOueue variable is also 

incremented.

If the device was closed then the WA VEHEADER is not sent to the device 

driver and the bHeaderOueue is not incremented. Therefore, when the remaining 

WA VEHEADERs in the queue are returned, the bHeaderOueue will be decremented to 

zero and the waveform output device will be closed. The data buffers' memory is 

released when the application receives the MM IVOM CLOSE from the device driver 

after the waveform output device has been successfully closed

5.6 Starting and Maintaining Continuous Recording
Recording involves the RecordProc function which initialises the resources required for 

recording and starts recording. Recording must be started using the wavelnStart function. 

The applications window's message processing function MainWndProc processes the 

MM WIM DATA messages and maintains continuous recording [11],

5.6.1 The RecordProc Function

The RecordProc function is described in Figure 5.7. Firstly, it acquires the memory 

buffers from global memory, before creating the WAVE file with the CreateFile 

function. This function creates a WAVE file in the PCM 44.1 kHz 16 bit stereo format 

and places the file pointer at the data field of the file's data subchunk. The 

WA VEHEADERs are then initialised and prepared before being sent to the waveform 

input device with the wavelnAddBuffer function. Recording is now started using the 

wavelnStart function.

5.6.2 Processing M M W I M D A  TA messages

The device driver will send MM  WIM DA TA messages to the application main 

window's processing procedure, MainWndProc, when it has filled a WA VEHEADER's 

data field. Figure 5.8 describes the processing of this message. The record duration 

variable dwRecordDuration, is reduced by the returned WA VEHEA DER's bytes recorded 

field dwBytesRecorded, before the WA VEHEADER is unprepared, reinitialised and 

prepared. The WA VEHEA DER's data is written to the WAVE file using the 

WriteWA VData function and the queue variable bHeaderQueue is decemented. This 

variable keeps track o f the number of WA VEHEADERs in the data queue, The

96



T____
Acquire memory for 

the data blocks.

Start.

 1_____________
Create the WAVE file and 

position the file pointer to the start 
of the WAVE file's data.

V_____________
Open waveform intput device in 

the specified PCM format and for
windowed callback.

I

Return.

Figure 5.7. RecordProc function fo r  starting recording.

WA VEHEADERs bytes recorded field is examined to determine if any recording took 

place. If this field is zero then recording has been stopped and the WA VEHEADER is 

not sent to the device driver.

The dwRecordDuration variable is examined to determine if the 

WA VEHEADERs in the data queue will complete recording. If they will not, then the 

WA VEHEADER is sent to the device driver and bHeaderOueue is incremented. T h e  

bHeaderOueue is compared with zero to determine if there is still a queue. If this 

variable is zero then recording has been completed and the waveform input device is 

closed with the wavelnCIose function.

97



MM_WIM_DATA message 
received from waveform 

input device.

___________________ I ____________________
Reduce the recorded duration variable by the 

returned WAVEHEADER's bytes recorded field.:

_____________________________I____________________________ .

Unprepare the W AVEHEADER and 
decrement the header queue variable.l 

Prepare the WAVEHEADER.

.--------------------  Recording Stopped ?
---------------------------------

No

Figure 5.8. Processing o f a MM WIM DATA message.

When the waveform input device has been closed, the MM_WIM_CLOSE 

message is sent to the application by the device driver. This message will release the 

memory back to the system and close the WAVE file.

5.7 Summary
This chapter describes the MTP's Windows application and the data queue maintenance 

algorithms used to maintain continuous recording or playback o f the WAVE formatted

98



files. The Windows API functions used by the application are also described along with 

the functions specially written for the application.

99



Chapter 6
The MTP's Wavefoim Device Driver

6.1 Introduction
This chapter describes the device driver written to meet the requirements for a Windows 

waveform device driver. The processing of MMSYSTEM messages by the MTP's driver 

is explained in detail along with the driver algorithms for playing and recording WAVE 

files with the sound card.

The waveform device driver developed in this project to control the sound card, 

or waveform device in Windows terminology, conforms to the standards required by 

Windows Multimedia [11], This driver supports the PCM 44.1 kHz 16 bit stereo 

waveform (analogue) audio recording and playback formats. At present, the consumer 

digital format is not a standard Windows Multimedia format, therefore the MTP's 

application sends messages specific to this project to the MTP's driver, which in turn 

configures the sound card for the selected digital operations.

6.2 Waveform Device Driver
The waveform device driver is responsible for controlling the waveform device. This 

device driver is written specially for the waveform device because it must control the 

waveform device in response to MMSYSTEM messages [11], These messages are 

generated by the MMSYSTEM's multimedia functions which are called by the 

application in response to particular user actions, such as a request to play a WAVE file. 

The responsibilities o f the driver are follows:-

♦ Managing the transfer of data between the waveform device and the PC's memory

♦ Only allowing single ownership of the device

♦ Communicating with the application which owns the device

♦ Loading and removing itself from memory at the start and end o f a Windows session 

The waveform device dictates that the device driver only supports single ownership of 

the sound card, because it possesses no hardware facilities to support multiple 

ownership. The device driver can be divided into several sections as illustrated in Figure

1 0 0



6.1. The source code for the device driver can be found in the DSOURCE directory on 

the driver's installation disk.

Installation 
Entry Point 

Function

J i
Waveform

Device
Initialisation
Functions

Enable and 
Disable 

Functions H Wa 
Input 
Enti 
_ F u |

Waveform 
Input / Output 
Entry Point 
Functions

W a v e fo rm  
D e v ic e  D river

H Z

H
_. _  L  Waveform a_
Png-Pong | n  |npun0utpu t M

U 6rS Functions

Interrupt
Service

Routines

Figure 6.1 Layout o f Waveform Device Driver.

6.2.1 Managing Data Transfer

The device driver receives from the application, WAVEHEADERs which contain 

pointers to data memory buffers. These buffers are then sent to or filled from the 

Swinging Buffers on the waveform device, depending on the mode of operation. These 

WA VEHEADER structures are passed to the device driver using the MMSYSTEM's low 

level audio functions [11], The device driver will be sent several WA VEHEADERs from 

the application and these must be accessed in the order in which they were sent by the 

application. Otherwise the playback or recording process will be corrupted.

The device driver therefore uses a linked queue o f WA VEHEADERs, each one 

pointing to the next one in the queue. The WA VEHEADER structure possesses a field 

which can be used to point to another WAVEHEADER. This field is appropriately 

known as the WA VEHEADER 's next waveheader_pointer. The device driver will update 

this field o f the last WAVEHEADER in the queue to the next WAVEHEADER it 

receives from the application. The queue can also be referred to as the data queue or the 

WA VEHEADER queue. The WA VEHEADER at the top o f the queue is stored in the 

glpWOQueue or glpWIQueue variables in the device driver, depending on the operating 

mode o f the waveform device .

101



6.3 Device Driver Communications
The MMSYSTEM module provides the interface between the application and the device 

driver. The application sends messages to the device driver viaMMSYSTEM's low level 

audio functions and the device driver sends messages to the application through 

MMSYSTEM's DriverCallback function [11], Figure 6.2 illustrates this relationship 

between the application, MMSYSTEM and the device driver when the applications uses 

the low level functions to communicate with the driver.

W indows Application

r  '  ' " “  r I
■ ■■ ! 4

DriverCallback Function ] ( Low Level Audio Functions]

1 t  -  -  -  i I J

Callback function
Waveform Entry 
Point Functions

Interrupt Service 
Routines Waveform Device 

Initialisation Functions

D M A  Controller

T
W aveform  Device

M M S Y S TE M
module

W aveform
Device
Driver

Figure 6.2 Communication between Application, Device Driver and the Waveform
Device.

6.3.1 Communicating with the Device Driver

The waveform device driver can only be called from five functions. Two o f these are 

the standard DLL functions LibEntiy (or LibMain if  there is no LibEntiy present) and 

WEP which every DLL must possess. LibEntiy is called by Windows whenever a DLL 

is being loaded into memory while WEP is called when removing a DLL from memory 

[11]. The remaining three functions are known as entry point functions. There must be 

entry point functions for initialising the device driver at Windows start-up time

102



DriveriNtH:, along with one each for controlling waveform input and output, widMessage 

and wodMessage respectively [11]. These three functions are explained in detail in 

Sections 6.5.1, 6.6.1 and 6.6.2.

The DriverProc, widMessage and wodMessage entry point functions are passed 

a number o f parameters with one parameter describing the message sent by 

MMSYSTEM. In this thesis a C CASE SWITCH structure has been used to identify 

these messages and process them accordingly. All the messages passed are standard 

Windows messages with the exception o f the messages for the sound card's digital 

modes which are unique to this project and waveform device driver.

6.3.2 Communicating with the Windows Application

The device driver is opened for Windowed Callback as described previously in Chapter 

5, Section 5.3.4. The MMSYSTEM's DriverCallback function [11] is used to send 

messages to the application's main window for processing. The format of this function 

is shown in Listing 6.1. This function will send the application its messages in the 

method chosen when the application opened the waveform device. The device driver 

must send standard multimedia messages when it has been opened or closed in either 

o f its input or output modes and when it has finished with a WA VEHEADER sent to 

it by the application. The messages sent to the application were illustrated previously in 

Chapter 5, Figure 5.3.

DriverCallback(pWave->dwCallback, // User's callback DWORD.
HIWORD(pWave->dwFlags) 
pWave->hWave, 
msg,
pWave->dwInstance, 
dwl,
OL) ;

DCB NOSWITCH, // Flags.
U  Handle to  the waveform device.

// The message. 
// User's instance data.

// First DWORD. 
// Second DWORD.

Listing 6.1 DriverCallback function.

103



6.4 Structure of the Waveform Device Driver
The waveform device driver in this project can be considered to be composed o f three 

functional sections, responsible for driver installation, waveform input and waveform 

output. Each of these sections contains an entry point function along with other functions 

and interrupt service routines. These sections can be summarised as foliows>

♦ Driver Installation

The installation and removal o f the device driver from memory at the start and 

end o f a Windows session.

♦ Waveform Input

Controls the waveform input device and transfers data from the waveform 

device, maintaining continuous recording.

♦ Waveform Output

Controls the waveform output device and transfers data to the waveform device, 

maintaining continuous playback.

6.4.1 Program Module

The device driver is composed o f one data and several code segments. It is split into 

several different segments to provide as much memory flexibility as possible. The code 

and data segments which contain the interrupt service routines and the driver's data must 

reside in fixed memory segments because they are accessed at interrupt time and must 

therefore be present in memory. Therefore, to keep the size of fixed memory to a 

minimum the device driver is split into several code segments,

The TEXT code segment and the data segment are assigned the FIXED 

PRELOAD descriptors [14] in the driver's module definition File, M M  TEA CH.DEF. This 

module definition file differs slightly from the applications file because the device driver 

is a Windows DLL. Therefore the PROGRAM  identifier is replaced by the LIBRARY 

identifier and the driver does not contain a stack size because it uses the stack of the 

application which called it. The other code segments, COMMON, INIT and WA VE are 

assigned the MOVEABLE DISCARDABLE PRELOAD descriptors [14]. These three 

code segments contain functions which are accessed at different times and can be 

discarded by Windows from memory when memory is scarce. For example the INIT 

code segment is only required at the start and end of Windows. The files which make 

up the device driver are described in Table 6.1.

104



File Name File Description

MMTEACHH Header file for driver's C programs.

MMTEACH.INC Include file with definitions for the driver's 
assembler language programs.

MMTEACH.DEF Module definition for constructing the driver as a 
Windows DLL module.

LIBINIT.ASM Functions which initialises the driver.

INITA.ASM Contains functions called when enabling and 
disabling the driver.

COMMONA.ASM Functions common to the waveform input and 
output devices.

WAVEA.ASM Contains functions used to initiate and control 
the waveform input and output devices.

MMTEACH.ASM Functions required by the device to maintain 
recording or playback.

DRVPROC.C Driver Installation Entry Point function.

INITC.C Functions called to detect the waveform input 
and output devices.

CONFIG.C Configuration information dialog box function.

WAVEFIX.C Contains functions for transferring data between 
the waveheaders and the DMA buffers.

WAVEIN.C Waveform input device's Message Entry Point 
function.

Table 6.1 Waveform Device Driver Files.

6.4.2 Intemipt Service Routines and Flags

The device driver provides the interrupt service routines for the waveform device's two 

hardware interrupts. These interrupts are initialised when the driver is enabled and 

removed when the driver is disabled. The interrupts are common to the recording and 

playback modes. An address table contains the recording and playback functions. The 

jgbln tU sed  flag is used to produce the table index which in turn is used to call the 

appropriate function.

Flags are used extensively in this project to determine the state of the waveform 

device. There are flags describing the state and ownership of the hardware interrupts

105



(gbln tU sed) and whether a waveform device is free ( _gb WavelnFIags) . These flags are 

examined whenever an attempt is made to open the waveform device. There are also 

flags for determining if DMA in occurring (jgfDMABusy), for stopping playback loops 

(bBreakLoop) and for counting the DMA interrupts (gbIntCount7)

6.5 Device Driver Initialisation
Device drivers are loaded into memory at Windows start-up time. The drivers are loaded 

in the order they appear in the SYSTEM.INI file [11]. This file may also contain 

configuration information for the driver if necessary. This information is usually 

contained in a section named after the driver. In the case o f this project the name 

[MMTEACH] would be used as the section name if the driver needed initialisation 

information.

The steps involved in loading the driver are described in Figure 6.3 and can be 

summarised as follows (see Section 6.3.1). The function LibEntiy (L1BINIT.ASM), 

which must be included in all Windows device drivers, is called by Windows to begin 

loading the device driver [11]. This function in turn calls the Windows Kernel procedure 

Liblnit to initialise the device driver's local memory heap if  one is declared in the 

driver's module definition file. The DLL initialisation function LibMain (INITC.C) is 

then called by LibEntiy to perform any other initialisation required by the DLL before 

being loaded into memory.

The LibMain function saves the driver's handle in the global variable hModule. 

This is the handle passed to the Windows application by the device driver whenever it 

successfully opens one o f the waveform devices. The sound card's (waveform device) 

BUFFER STATUS REGISTER is used to test if  the sound card is present. This test 

involves attempting to place the card in its digital playback mode. I f  it succeeds then the 

driver is loaded, otherwise a message box is displayed informing the user that the driver 

cannot be loaded due to the waveform device not being detected.

Windows now sends messages to the device driver's installation entry point 

function DriverProc [11], to determine if  the driver is to be enabled and if not whether 

it is to remain in the system or be discarded. This function is described in detail in the 

next section.

106



W indow  base operating 
I system loaded. Device 

drivers are now loaded. 1

__________z__________ .
LibEntry begins loading the driver.

Figure 6.3 Waveform Device Driver Initialisation.

6.5.1 The Driver Installation Entiy Point Function

The Driver Installation Entry Point function is called DiiveiProc (DRVPROV.C) and is 

responsible for enabling, disabling, removing and installing the waveform device driver 

in response to standard messages sent to it by Windows [11]. The format of this function 

is as follows:

FAR PASCAL T>riveiProc(DWORD chvDriverID, HANDLEhDriver, UINT uiMessage,

LPARAM  IParaml, LPARAM lParam2)

The double word dwDriverlD  is the identification number for the driver while hDriver 

is the driver handle. The parameter uiMessage is the message identifier and the IParaml 

and !Param2 parameters are message dependant. The function is implemented in a C 

CASE-SWITCH  structure to identify and process the received messages. Figure 6.4 

illustrates the messages which the function must support and they are described as 

follows.

107



Figure 6.4 Messages supported by the DriveiProc function.

DRV_LOAD : Sent to the driver when it is loaded, always the first message received 

by a driver.

DRV_FREE : Sent to the driver when it is about to be discarded, always be the last 

message received by a driver before it is freed.

DRV_OPEN : Sent to the driver when it is opened.

DRV_CLOSE : Sent to the driver when it is closed.

DRV_ENABLE : Sent to the driver when the driver is loaded or reloaded and whenever 

Windows is enabled. The drivers should only hook interrupts or expect any part 

of the driver to be in memory between enable and disable messages.

The Enable (INITA.ASM) function is called first and will attempt to 

allocate memory for the two DMA buffers using the dmaAllocateBuffer and 

dmaAllocateBufferPong (both in INITA.ASM) functions. These functions are 

identical except for their address storage variables. They attempt to acquire a 4 

kbyte buffer from memory which does not cross a page boundary. If  a page 

boundary is crossed then the buffer cannot be guaranteed to be contiguous in 

memory, due to the processors protected mode paging hardware which can map 

linear memory to any location in physical memory. First, the algorithm acquires 

a 4 kbytes memory block from global memory using the Windows function 

GlobalA Hoc with the GMEM FIXED and GMEM_SHA RED flags. The 

GMEM FIXED flag locks the block in memory because it is accessed at 

interrupt time. The block is checked for a page boundary. If  a page boundary is

108



present, the block is returned to system memory using the Windows function 

GlobalFree and an 8 kbytes memory block is acquired. If the lower half of this 

block contains a page boundary then the starting address o f the DMA buffer is 

moved to the next page within this 8 kbyte memory block.

The interrupt vectors for the two interrupts are set to the addresses of the 

interrupt service routine functions using the InitSetlnterruptVector (INITA .A SM) 

function. This function uses the DOS 21h interrupt functions, 35h and 25h to 

retrieve and replace the interrupt vectors respectively. The function 

InitSetlntMask (INITA .A SM) will enable the waveform device's two interrupts 

lines by modifying the PIC's mask register. These interrupts will be inactive due 

to the power-up circuitry of the waveform device.

DRV_D1SABLE : Sent to the driver before the driver is freed and whenever Windows 

is disabled. The Disable (INITA.ASM) function is called which will call the 

widSuspend and wodSuspend (both in INITA.ASM) functions to examine the 

waveform devices active flags and suspend the waveform devices if  they are 

active. The interrupt mask is restored to its original state using the 

InitSetlntMask (INITA.ASM) function. The two interrupt vectors are also 

restored with the InitSetlnterruptVector (INITA .A SM) and the DMA buffers are 

returned using the dmaFreeBuffer and dmaFreeBufferPong (both INITA .A SM) 

functions.

DRV_QUERYCONFIG : Sent to the driver to determine if the driver supports custom 

configuration. The driver returns the value zero to indicate that software 

configuration o f the waveform device is supported. This feature is only included 

to allow the device driver's information dialog box, describing its hardware 

requirements, to be displayed from the Drivers applet from the Control Panel of 

the MAIN  group in Program Manager. Otherwise the SETUP push button of the 

Drivers applet, which allows software modification o f the selected device driver, 

would be inactive resulting in the inability to display the device driver's 

information dialog box.

109



DRV_CONFIGURE : Sent to the driver so that it can display a custom configuration 

dialog box. The configuration dialog box only displays information about the 

device driver and the interrupt and DMA requirements o f the sound card because 

the card does not support dynamic software configuration. This function is 

contained in the DRIVER.C file o f the device driver.

DRV_INSTALL : Sent to the driver when the driver is being installed. Appendix I 

describes the installation disk for the device driver. Windows will transfer the 

driver to the Windows SYSTEM  subdirectory and modify the [drivers] section 

o f SYSTEM.INI to include this driver. The DRV CNF RESTART value is 

returned which will cause Windows to display a dialog box, asking the user if 

they wish to restart Windows. I f  a change in the device driver has occurred, 

Windows must be restarted to allow this change to take effect on the system.

DRV REMOVE : Sent to the driver when it is being removed from the system. It must 

remove its entries in the SYSTEM.INI file. The function, ConfigRemove 

(CONFIG.C) is called which uses the WritePrivateProfileString function to 

remove the device driver from the [drivers] section of the SYSTEM.INI file. The 

return value is DRV CNF RESTART which was explained previously in 

DRV_INSTALL.

6.6 The Message Processing Entiy Point Functions
Windows requires that the waveform input and output message processing entry point 

functions be called widMessage and wodMessage respectively [11]. These functions are 

similar to the driver installation function in that they were constructed with a C CA SE- 

SWITCH  structure to identify and process the messages sent to them by the 

MMSYSTEM module. There is a standard set of messages which must be processed for 

each waveform device, with a further set o f optional messages. The standard set covers 

opening, closing and querying devices, sending data to them and generally controlling 

their operation while the optional set covers volume control and preparation of data 

blocks. These functions are only called once the Windows environment has been 

initialised and the system's device drivers have been loaded.

110



The widMessage function [11] is the entry point function for controlling the waveform 

input device and is situated in the WAVEIN.C file. The format of this function is as 

follows.

DWORD FAR PASCAL widMessage (  WORD id, UINT msg, DWORD dwUser,

DWORD dwParaml, DWORD dwParam2)

This function first determines if the driver is enabled by examining the driver's enable 

flag gfEnable, this flag is zero if the driver is disabled and non zero if  enabled. If the 

driver is enabled the function checks the id  parameter which is the identification number 

for the target device. This identification number value can range from zero to one less 

than the number o f input devices that the waveform device driver supports. Therefore 

it must be zero as the waveform device driver only supports a single waveform input 

device.

The msg parameter specifies the message being sent to the driver. This message 

is identified and processed using a C CASE-SWITCH  statement. The dwParaml and 

dwParam2 parameters are message dependant. The dw User parameter is used when more 

than one waveform input device is supported. Separate instance structures containing 

device information will be created by the device driver for every waveform input device 

opened.

The standard messages which this function must support are described next, 

along with the processing done by the device driver for each one. Figure 6.5 illustrates 

the messages processed by the function.

6.6.1 The widMessage Function

Non standard riMBiag*

Figure 6.5 Messages processed by the widMessage function.

Il l



WIDM_GETNUMDEVS : Sent to the device to determine the number of devices the 

hardware supports. The hardware will only support one device, therefore the 

value one is returned.

WIDM_GETDEVCAPS : Sent to determine the capabilities of the waveform input 

device. The function widGetDevCaps is called which will fill the 

WA VEIN CAPS structure passed as a pointer with the waveform input device's 

capabilities and other device driver information. The value zero is returned.

WIDM_OPEN : Sent to acquire and open the waveform input device. The 

PCMWA VEFORMA T structure passed as a pointer will be compared with the 

device driver structure to determined if the requested format is supported by the 

waveform input device. If the requested format is not supported then the error 

code WAVERRJBADFORMAT is returned. The dwParam2 parameter is 

compared with WA VE FORMA T QUERY to determined if device information 

was only requested. The value zero is returned if  this is true and otherwise the 

waveform input device is opened as follows.

The function widAquireHardware (WA VEA.ASM) is called which 

examines the gblntUsed and gWavelnFIags flags to determine if the waveform 

input device is free, If  the device is free then these flags are set to 

INT WA VEIN and WIF A LLOCA TED respectively, to prevent the waveform 

device from being opened by another application.

The memory required for the driver's plnClient structure is allocated from 

the driver's local heap. This structure is initialised with information regarding the 

Window's application which has opened the device and the format of the 

waveform input device. The function waveCallback (WA VEFIX.C) is called to 

notify the application that the device has been opened. This function in turn calls 

the MMSYSTEM's DriverCallback function which notifies the application in its 

chosen callback method. The value zero is returned.

WIDM_CLOSE : Sent to close the waveform input device. The waveform input device 

is only closed if  recording is not taking place. The glpWIQueue pointer is 

examined to determine if a recording queue exists. I f  a recording queue exists

112



then WAV ERR STILLPLA YING is returned, otherwise the function widStop 

( WAVEA.ASM ) is called which masks the DMA channel using the 

dmaMaskClumnel (MMTEA CH.A SM) function and returns any remaining data 

using the widSendPartBuffer (WA VEIN.C) function. The waveCallback 

( WAVEFIX.C) function then notifies the application that the waveform input 

device has been closed. The plnClient structure's memory is now released from 

the driver local heap using the Windows function LoccdFree. The value zero is 

then returned to indicate that the waveform input device was successfully closed.

WIDM_ADDBUFFER : Sent when an application's data memory buffer is to be filled 

with recorded data. The flags of the received WA VEHEADER structure pointer 

are examined to determine if the WA VEHEADER in already in the data queue 

and if it has been locked in memory. An error value is returned if the 

WA VEHEADER is not valid, otherwise the function widAddBuffer 

(WA VEIN.C) is called which adds the WA VEHEADER to the queue. This 

function walks down the queue to the last WA VEHEADER and places the 

pointer to the new WA VEHEADER in the last WAVEHEADER's next 

waveheader_pointer_i\ield. If  no queue exists then the top of the data queue is set 

to this WA VEHEADER. The value zero is returned if  the WA VEHEADER was 

successfully added to the queue otherwise an error code is returned.

WIDM_START : Sent to start recording. The function widStart (WAVEA.ASM) is 

called to start recording. This function will first set the gbWavelnFlags to 

WIF STARTED to state that recording has started. The function dmalnitDMAIn 

is now called to initialise the DMA controller and then the dspReset function 

will reset the waveform input device. The gbDigital flag is then examined to 

determine if  the digital input mode has been selected and the card is then 

configured accordingly. Recording is started when the card's logic is reset, by 

issuing the reset signal, MResetbar. Finally the DMA and Interrupts signals are 

unmasked by writing to their respective I/O ports. The widStart function now 

returns to widMessage. The value zero is returned.

113



WIDM_STOP : Sent to stop recording. The function widStop ( WA VEA.ASM) is called 

which will stop recording if it has been started. This function will then call the 

dmaMaskChannel (MMTEA CH.A SM ) function to mask the DMA channel before 

calling the widSendPartBuffer (WA VEIN.C) function to return the unfilled 

WA VEHEADERs back to the device. The gbWavelnFlags flag is then cleared. 

The value zero is returned.

WIDM_RESET : Sent when recording is to be stopped and all data memory buffers are 

to be returned. The function widStop (WAVEA.ASM) is first called to stop 

recording. The function widFreeQ (WA VEIN.C) is then called to return all 

WA VEHEADERs in the recording queue to the Windows application. The value 

zero is returned.

WIDM_GETPOS : Sent to request the present recording position in bytes from the start 

o f recording. The function waveGetPos (WA VEOUT.C) is called which first 

examines the passed MMTIME structure pointer to determine the requested time 

format. If  the requested format is TIME BYTES (time in bytes), then the 

MMTIME structure is set to the plnClient structure's dwBytesCount field. This 

contains the total number o f bytes recorded since recording started.

WIDM SEDTD1GITAL : This message is unique to the MTP device driver and it 

enables the digital recording capability by setting the jgbDigitcd flag to the 

DIGITAL mode. This flag is examined by the WidStart function which will 

configure the card for digital recording if  this flag is set.

Optional messages are WIDM PREPARE and WIDM_UNPREPARE which if 

not supported in widMessage and are instead processed by the MMSYSTEM module 

[11]. These messages are sent by the wavelnPrepareHeade r and the 

wavelnUnprepareHeader functions respectively which are required to page lock and 

unlock the data blocks in memory.

The messages that widMessage sends to the application are the 

MM W IM OPEN and MM_WIM_CLOSE messages [11], They are sent using the 

DriverCallback function in the format chosen by the application when the waveform

114



input device was opened. The interrupt service routines are responsible for sending the 

MM_WIM_DATA message to the application whenever a data memory buffer has been 

filled and removed from the data queue.

6.6.2 The wodMessage Function

The wodMessage function [11] is is the entry point function for controlling the 

waveform output device and is situated in the WA VEOUT.C file. The function is 

declared as follows.

DWORD FAR PASCAL wodMessage (  WORD id, UINT msg, DWORD dwUser,

DWORD dwParam I, DWORD dwParaml)

The wodMessage function checks the device's identification number, id, before allowing 

any messages to be processed. The waveform output device only supports one instance 

so the identification number must be zero.

Figure 6.6 describes the messages processed by the device driver's wodMessage 

function. The standard messages which this function must support and the processing 

done by each are now briefly described.

Figure 6.6. Messages processed by the wodMessage function.

WODM_GETNUMDEVS : Sent to the device to determine number of devices the 

hardware supports. The hardware only supports one device, therefore the value 

one is returned.

WODM_GETDEVCAPS : Sent to determine the capabilities of the waveform output 

device. The function wodGetDevCaps (WA VEOUT.C) is called which fills the 

application's PCMWA VEFORMA T structure (passed as a pointer) with the 

waveform output device's capabilities. The value zero is returned or a relevant 

error value if an error occurs.

115



WODM_OPEN : Sent to acquire and open the waveform output device The 

PCMWA VEFORMA T structure passed as a pointer, parameter dwParam I , which 

defines the desired format that the application wants to playback in, is checked 

against the waveform output devices supported format, PCM 44.1 kHz 16 bit 

stereo. If the desired format is not supported then the error value 

WAVERR BADFORMAT is returned. The dwParam2 parameter is compared 

with W A V E F O R M A TO U E R Y  to determine if device information only was 

requested. The value zero is returned if information only was required. The 

function wodA cquire Hardware ( WAVEA.ASM ) is now called. This function 

examines the gblntUsed and gbWaveOutFlags to determine if the waveform 

device is free. I f  the device is free then these flags are set to INT WA VEOUT 

and W OFALLOCATED  respectively. The MMSY SERRALLOCA TED value 

is returned if an error occurred and the device was not allocated. The pOutClient 

structure is now initialised. First, memory is obtained from the device driver's 

local heap using the Windows function LocalAlloc and second, the structure is 

initialised with application information and the waveform output format. The 

waveCallback (WA VEFIX.C) function is now called to inform the application 

that the waveform output device is now opened. The value zero is returned to 

indicate successful opening of the device.

W O D M C LO SE : Sent to release and close the waveform output device. The 

glpWOQueue pointer is examined to determine if a playback data queue exists. 

If  a queue exists then the waveform output device is still playing and is not 

closed. The WAVERR STILLPLAYING error value is returned to the 

application. I f  the waveform output device is not playing then it is released with 

the widRelease (INITA.ASM) function and the application is notified that the 

device is being closed with the waveCallback (fVA VEFIX.C) function. The 

pOutClient structure's memory is freed using the Windows LocalFree function. 

The value zero is then returned.

WODM_WRTTE : Sent when the application sends a data memory buffer to be played. 

The passed WA VEHEADER flags field is examined to determine if it has been 

prepared and is not already in the data queue. If it is fails then the relevant error

116



code, WA V ER R U N  PREPARED or WAV ERR STILLPLAYING is returned. 

The function wod Write (WAVEA.ASM) is called if the WAVEHEADER is 

valid. This function places the WAVEHEADER in the queue by updating the 

queue's last WA VEHEADER entry's nextw aveh eaderjo in ter  field to point to 

this WA VEHEADER. If no queue exists then the WA VEHEADER is placed at 

the top o f the queue and the wodKickStartWaveOut (WA VEAASM ) function 

is called to start playback. This function fills the DMA buffers, resets the sound 

card and places it in the requested playback mode by examining the gbDigital 

flag. The function then initialises and unmasks the DMA channel with the 

dmaStartDMA Out before enabling the DMA / Interrupt mode of the sound card. 

The value zero is returned.

WODM_PAUSE : Sent when playback is to be suspended. The function wodPause 

(WA VEA A S M ) is called which sets the gfWaveOutPaused flag to TRUE ( the 

value one ). This function then calls the wodWaitForDMA (WA VEA A SM ) 

function to allow the last DMA session to be completed before the waveform 

device is paused. The value zero is returned.

WODM_RESTART : Sent when playback is to be restarted. The function wodResume 

is called which tests the gfW aveOutPaused flag to determine if the waveform 

output device was paused. The function exits if  the device was not paused, 

otherwise it clears the gfW aveOutPaused flag and calls the 

wodKickStartWaveOut (WA VEA A SM ) function to start playback. The value 

zero is returned.

WODM_RESET : Sent to stop playback and return all data memory buffers to the 

application. The wodHalt (MMTEACHASM) function is called to stop the 

current DMA session. This function clears the gfBusy flag to stop any further 

DMA sessions from being started before the DMA channel is masked by the 

dmaMaskClumnel(MMTEA.CH.ASM) function. The wodFreeQ (WA VEOUT.C) 

function is then called which returns all unplayed WA VEHEADERs back to the 

application. The gfWaveOutPaused and bBreakLoop flags are cleared along with 

the dwByteCount element of the pOutClient structure.

117



WODM_BREAKLOOP : Sent to break the looping of data memory buffers. Buffers can 

be replayed continuously with the loop flags o f the buffers' WA VEHEADER 

structures. The bBreak flag is set to one which will break the playback loop 

when the next DMA session is started by the wodLoadDMA Buffer

(WA VEFIX.C) function. This function is called at every playback interrupt by 

their interrupt service routines. The value zero is returned.

W ODM _GEIPOS : Sent to request the present playback position in bytes from the start 

o f playback. The function waveGetPos (WA VEOUT.C) is called which was 

explained earlier in the WIDM GETPOS case for the widMessage function.

WODM_SETDIGITAL. This message is unique to the MTP driver and sets the digital 

playback mode. The gbDigital flag is set to its DIGITAL state by this message.

None of the optional messages for the waveform output device are supported by 

the waveform device but for reference they are WODM_GETPITCH,

W O D M _ S E T P IT C H , W O D M _G E T V O L U M E , W O D M _S E T V O L U M E  

WODM GEIPLAYBACKRATE, WODM SETPLAYBACKRATE, WODM PREPARE 

and WODM_UNPREPARE. These messages are concerned with the playback sampling 

rate and volume control which the waveform output device does not support. The 

WODM PREPARE and WODM_UNPREPARE are identical to the waveform input's 

optional messages WIDM PREPARE and WIDM IJNPREPARE and are processed by 

the MMSYSTEM module [11].

The messages that wodMessage will send to the application are the

M M  WOM OPEN and M M W O M C L O S E  messages [11]. The DriverCallback

function is used to send these messages to the application.

6.7 Maintaining Continuous Recording
Once recording has started the device driver's interrupt service routines will maintain 

continuous recording if  the application is capable of sustaining the data queue. The 

application creates the data queue by sending WA VEHEADER structures to the driver. 

The WA VEHEADER structure intum points to an empty data buffer used to store the 

incoming audio data. The application must empty the returned WA VEHEADER's data

118



fie ld , (the data memory buffer), to disk and send the WAVEHEADER back to the 

waveform device before the data queue is empty, otherwise data may be lost due to both 

Swinging Buffers being full.

When a Swinging Buffer has been filled, the Switching interrupt is generated 

which triggers its interrupt service routine, Switch_ISR (MMTEACHASM). This 

function will set up the DMA controller to read the first 2 kwords from the full 

Swinging Buffer, causing the DMA controller to fill the empty DMA ping buffer. 

Meanwhile S w itch lS R  will call the widFillBuffer (WA VEFIX.C) function to transfer 

the full DMA pong buffer to the WA VEHEADER's data field, The terminal count signal 

(TC) from this DMA session will generate the DMA interrupt, causing its interrupt 

service routine, DMA ISR (MMTEACHASM) to be called. This ISR will set up the 

DMA controller to read the next 2 kwords from the Swinging Buffer and fill the empty 

DMA pong buffer, while the widFillBuffer (WA VEFIX.C) function transfers the driver's 

full ping buffer to the data field o f the WA VEHEADER at the top of the data queue.

Another TC signal is generated when the previous DMA session is completed, 

which generates another DMA interrupt which will transfer the next 2 kwords from the 

Swinging Buffer to the empty DMA ping buffer while the full DMA pong buffer is 

transferred to the WA VEHEADER's data field. The filling of one DMA ping-pong 

buffer occurs while the other is transferred to the WA VEHEADER's data field. Seven 

DMA interrupts are required to empty a FIFO after the switching interrupt ( 7x2k + 2k 

= 16k ). A count variable is used to determine when seven DMA interrupts have 

occurred. This eighth interrupt will just reset the count variable. The flag gbDMA Buffer 

determines which DMA buffer is empty, and which is full and is updated by every ISR.

The initial Switching interrupt does not cause the DMA pong buffer to be 

transferred to the WA VEHEADER's data field because it has not yet been filled. T he 

following section describes the function called by the ISR, which is responsible for 

transferring the DMA buffers to the WA VEHEADER's data field and for maintaining 

the data queue when a WA VEHEADER is filled and returned.

119



The widFillBuffer (WA VEFIX.C) function is called by the ISRs to empty a full DMA 

buffer. This function transfers the data to the data field of the WA VEHEADER at the 

top of the data queue. The function's flowchart is shown in Figure 6 7. The parameters 

passed to this function are, the far pointer to the DMA buffer and the DMA buffer's size.

6.7.1 The widFillBuffer Function

Figure 6.7 Flowchart fo r  widFillBuffer function.

Initially the data queue pointer, glpWIQueue, is checked to determine if there is 

a data queue. If  there is no queue then the function returns immediately. Otherwise the 

wBytesTransfered variable is set to zero. A WHILE loop is entered which will empty

120



the DMA buffer if  the sum total of the data fields in all the WA VEHEADERs in the 

data queue is large enough. This WHILE loop compares the wBy tesTransferred variable 

with the DMA buffer size and breaks from the loop when they are equal, which is when 

a DMA buffer has been emptied.

If the data count (dwCurlnCount) and data pointer (hpCurlnData) variables are 

zero then recording has just been started. These variables are then initialised to the 

WA VEHEA DER's data size and datafield address respectively. If  the WA VEHEA DER's 

data fie ld  is large enough, the DMA buffer is transferred to this field and the data count 

and pointer variables are updated. If the data fie ld  is not large enough then the data fie ld  

is filled and the WA VEHEA DER is returned with its flag field set to WHDR DONE. 

The WA VEHEA DER is returned using the widBlockFinished (WA VEFIX.C) function 

which also calls the waveCallBack (WA VEFIX.C) function to send a MM_WIM_DATA 

message [11] to the application.

The top of the data queue is then updated to the next WA VEHEA DER using the 

old WA VEHEADER's next waveheaderjpointer field. I f  this field is zero then this is 

the end of the queue and the function returns the number of bytes transferred. If  there 

is another WA VEHEA DER then the data count and pointer variables are updated as 

before. The w By tesTransferred variable is updated with the number o f bytes transferred 

from the DMA buffer and this variable ensures the DMA buffer is emptied even if 

several WA VEHEADERs are required. The WHILE loop will be repeated until the 

DMA buffer is empty or the data queue is reduced to zero.

6.8 Maintaining Continuous Playback
Playback is started once a WA VEHEA DER has been sent to the waveform output 

device. The wodW rite (WA VEA.ASM) function, which adds WA VEHEADERs to the 

data queue, is responsible for starting playback. Playback is maintained if the application 

can refill and return played WA VEHEADERs to the waveform device before the data 

queue is empty. As explained previously two interrupts are responsible for accessing the 

waveform device's Swinging Buffers, the DMA and the Switching interrupt. The process 

of filling an empty Swinging Buffer from the data queue is described next.

When a Swinging Buffer has been emptied the Switching interrupt will be 

generated. The resulting ISR, Switch_ISR, will set up a DMA session to transfer the 2 

kwords from the full DMA ping buffer to the empty Swinging Buffer. The ISR then

121



calls the wodLoadDMABuffer (WA VEFIX.C) function which fills the DMA pong buffer 

from the WAVEHEADER's data field. The TC signal from this DMA session will 

generate the DMA interrupt whose ISR, DMA_ISR, will setup another DMA session. 

This DMA session will transfer the next 2 kwords from the full DMA pong buffer to 

the Swinging Buffer while the empty DMA ping buffer is filled from the 

WA VEHEADER's data field. The DMA interrupts will be processed until the Swinging 

Buffer has been filled. Seven DMA interrupts are required to fill the Swinging Buffer 

along with the Switching interrupt ( 7x2k + 2k = 16k ). A count variable determines 

when seven DMA interrupts have been processed and on the eighth interrupt this count 

is reset for the next set o f DMA interrupts. The gbDMABuffer flag determines which 

DMA ping-pong buffer is full and which is empty.

The start up process is different to the normal transfer process, and is started by 

the wodKickstartWaveOutput (W AVEAASM ) function. First, both DMA ping-pong 

buffers are filled if there is sufficient data in the data queue. Next, a DMA session is set 

up to transfer the 2 kwords from the DMA ping buffer to the waveform device. Both of 

the Swinging Buffers are empty initially, therefore when the first Swinging Buffer has 

been filled (after the seven DMA interrupts), a Switching and a DMA interrupt will be 

generated simultaneously. There is no DMA conflict because this eighth DMA interrupt 

only resets its count variable. The normal playback operations described earlier occur 

from now on.

6.8.1 The wodLoadDMABuffer Function

The wodLoadDMABuffer (WA VEFIX.C) function is called from the Switching and 

DMA ISRs and is responsible for filling the empty DMA buffer with data from the data 

fie ld  of the WA VEHEADER which is at the top of the WAVEHEADER queue. This 

function also maintains the queue and returns empty WA VEHEADERs to the application 

along with controlling the looping of WA VEHEADERs. The parameters passed are a 

far pointer to the DMA ping-pong buffer and the size o f this buffer. The flowchart is 

described in Figure 6.8.

122



Start

Return all amply WAVEHEADERs and 
reset the bytes transferred variable

Queue exists ?

Bytes transferred less

Figure 6 .8  F lowchart f o r  the w odL oadD M A  Buffer function.

123



This function will first return any empty WA VEHEADERs with the 

wodPostAUHeaders (WA VEFIX.C). Empty WA VEHEADERs are placed in their own 

dead queue (IpDeadHeads) which the wodPostAUHeaders function walks down, sending 

each WA VEHEADER back to the application. Next, the wBytesTransf erred variable is 

set to zero. This variable ensures that the DMA buffer is filled unless there is 

insufficient data in the queue.

The WHILE loop compares the wBytesTransf erred variable with the DMA buffer 

size and breaks from the loop when they are equal which is when a DMA buffer has 

been filled. This loop performs the following operations on the DMA buffer and the data 

queue. If the queue is new then the data count (dwCurCourtt) and data pointer 

(hpCurData) variables are initialised from the WA VEHEADER at the top of the queue. 

If  there is no queue then the DMA buffer is filled with silence before the function 

returns.

Next the flags field of the WA VEHEADER is examined to determine if this is 

the start o f a playback loop. The IpLoopStart and dwLoopCount variables are copied 

from the WA VEHEADER fields if the WA VEHEADER's flag fie ld  is set to dw Loops. 

Next the bBreakLoop flag is examined to determine if the user has requested a break in 

the playback loop process. The playback loop's start and count variables are examined 

to determine if  this is the end of a playback loop. I f  it is, then the data count variable 

is set to zero and the DMA buffer is filled with silence (OOOOh) before the function 

returns. The data count variable is compared with zero to determine if data is to be 

transferred to a DMA ping-pong buffer. The empty DMA ping-pong buffer is filled with 

the data pointed to by the WA VEHEADER (the WA VEHEADER's data field).

The data count, data pointer and the wBytesTransf erred variables are then 

updated. If  the data count variable is zero then the WA VEHEADER is empty and the 

queue must be updated. If  a playback loop has not finished and the WHDR ENDLOOP 

flag has not been set in the WA VEHEADER's flags field, then the dwLoopCount 

variable is compared with zero. If  the dwLoopCount variable is zero then the empty 

playback loop WA VEHEADERs are placed in the dead queue and the top o f the queue 

is updated to the next WA VEHEADER, otherwise the dwLoopCount variable is 

decremented and the playback loop restarted. If there is no playback loop active then the 

WA VEHEADER is placed in the dead queue and the top of the queue is updated to the

124



next WA VEHEADER. The above WHILE loop is repeated until the DMA buffer has 

been filled or the queue is empty.

The WA VEHEADERs in the dead queue are returned if no data was transferred 

to the DMA buffer. This may occur if a zero length WA VEHEADER was sent to the 

waveform device. Returning these dead WA VEHEADERs may cause the application to 

restart the waveform device by sending more WA VEHEADERs. The DMA buffer is 

padded with silence if the DMA buffer was not filled. The function MemFillSilence 

(MMTEA CH.A SM) fills the buffer with zeroes. The wodLoadDMABuffer returns the 

number o f bytes transferred, wBytesTransferred.

6.9 Summary
This chapter describes the layout of the MTP's waveform device driver. The functions 

which the driver must support are explained, namely DriveiProc, WidMessage and 

wodMessage along with the Windows messages processed by each. The procedure for 

communicating with the application is also described long with the algorithms employed 

by the driver during recording or playback.

125



Chapter 7
Debugging the Preset Faults of the MTP

7.1 Introduction
This chapter explains the procedure for debugging the Multimedia Teaching Platform 

when hardware and software faults are introduced. General hardware and software 

debugging flow charts for recording and playback are described and are used to detect 

the source of various deliberate faults. Two example faults, one a hardware recording 

fault and the other a software playback fault, are debugged using these flowcharts. The 

range o f possible software and hardware faults is also briefly described.

7.2 Hardware and Software Debugging Aids
The two most common hardware debugging aids are a logic analyser and a digital 

storage oscilloscope while the software aids are the debugging applications from 

MICROSOFT or BORLAND for debugging Windows programs developed in their 

respective development environments [2], These software debugging aids provide source 

code debugging of the Windows application and allow tracing of the messages received 

and sent by an application. Another valuable debugging technique is the use o f test files 

and test signals for playback and recording respectively. These signals provide continuity 

and consistency testing for the hardware and software.

7.2.1 Logic Analyser

The logic analyser provides a digital snap-shot o f the signals it is sampling. It can 

typically view up to sixteen signals over a wide range of time intervals, from 

nanoseconds (ns) to seconds. The general operating mode of the sound card can be 

easily tested by viewing the sequences of Swinging Buffer read and write requests, 

Swinging Buffer switches, interrupts and DMA transfers and comparing them with the 

expected signal sequences.

126



7.2.2 Digital Storage Oscilloscope

The digital storage oscilloscope provides an analogue snap-shot o f the signals but as 

with the normal oscilloscope it is limited to displaying only two signals at a time. It 

displays the signal's actual voltage levels and is therefore suitable for examining the 

analogue output signal levels when test files are being replayed.

7.2.3 Test Signals and Test Files

Test signals and test files play an important part in detecting and identifying faults and 

in confirming that the sound card's recording and playback modes are operating 

correctly. These file and signal tests are described in Chapter 3, Section 3.5.4 and are 

briefly discussed here. These tests allow comparisons between adjacent samples and 

allow tracing of the samples through the data paths o f the sound card. Test signals 

cannot be generated for the digital recording mode but this does not pose too much of 

a problem because its operation is nearly identical to the analogue recording mode.

Test signals are used to test the analogue recording mode of the sound card by 

examining the recorded file and comparing it with the expected recording. These signals 

also allow samples to be traced through the sound card thereby verifying its operation. 

Muting one channel allows the card's channel consistency to be verified. If one sample 

is lost the signal will switch channels.

Several test files were generated for testing playback continuity which included 

a ramp waveform, a sine waveform and a one channel ramp waveform. These files are 

replayed in the analogue and digital modes and their outputs are stored with the digital 

storage oscilloscope for examination. For the digital mode the signal from the digital 

amplifier's analogue output is stored. The one channel ramp waveform allows playback 

consistency to be verified.

These file and signal tests are one of the first steps taken when attempting to 

identify an unknown hardware or software fault. They provide invaluable information 

regarding the source of faults because they provide a reference against which the actual 

signals from the oscilloscope or logic analyser can be compared.

7.2.4 Test Points

The most important signals in each section are labelled as test points in their schematic 

diagrams. The test points allow the student to quickly determine the operating status o f

127



each particular section and also reduces the time to locate signals on the card. These test 

points are all readily available on the sound card and none are contained internally in 

the FPGA. The first two letters of each label refers to the section they belong to, for 

example in the Address Decoding section, ADTP-2 is the enable signal for the lower 

data byte's System Bus buffers (U-22). The test points for each section are tabulated in 

Appendix B, Tables B1 to B7.

7.2.5 Software Debugging Aids

The debugging packages from MICROSOFT and BORLAND provide similar debugging 

utilities. Both include utilities to trace the messages received by the Windows 

application and to examine Windows global memory. They also contain a source 

debugger for stepping through Windows programs. Breakpoints can be set and the 

application's variables and local memory can be examined. Unfortunately the device 

driver cannot be debugged with these debugging packages [2],

7.3 Design Faults
The hardware faults can be introduced into the circuit by replacing the source code in 

the FPGA's PROM while software faults are introduced by providing faulty source code 

for the device driver or the Windows application source code. There is a huge range of 

possible software and hardware faults, but the example faults chosen are ones that are 

easily identifiable without requiring detailed knowledge o f the hardware or software.

The software faults are selected to highlight a particular aspect of Windows 

Multimedia such as maintaining continuous data flow. The software faults are explained 

in Section 7.5 while the hardware faults are explained next in Section 7.4.

7.4 Hardware Design Faults
Hardware design faults can be easily introduced into the circuit without having to 

modify any physical connections by replacing the PROM. This PROM is responsible for 

programming the FPGA at power-up time.

A large number o f design faults can be introduced because the FPGA implements 

the Address Decoding, Clock Generation, Control Logic and the DMA and Interrupt 

sections. To identify a hardware fault which has been traced to one of the sections

128



implemented in the FPGA, the student uses the FPGA's schematic design entry and 

programming software. This allows the student to examine the particular section's logic 

circuits and allows simulation o f the circuit to verify its operation. A hardware fault is 

described for each section implemented in the FPGA as follows.

7.4.1 Address Decoding Fault

One example fault for the Address Decoding section is to make the I/O port addresses 

for the digital and analogue recording modes identical. This will result in the serial data 

received by the Serial Interface in the recording modes, being the logical OR 

combination o f the serial data from the digital receiver and the serial data from the 

analogue to digital converter. The symptoms for this type o f fault would suggest that the 

fault lies in one of the following sections, Serial Interface, Address Decoding, Clock 

Generation or in the software configuration of the card as carried out by the device 

driver. Further investigation by the student would reveal that this fault lies in the 

Address Decoding section. Observing the test points ADTP-4 (ANALOGUE IN) and 

ADTP-6 (DIGITAL IN) would identify this fault.

7.4.2 DMA and Interrupt Generation Fault

One example of a fault in the DMA and Interrupt Generation section is if the Switching 

interrupt's generating circuit is modified to fire only once. This will result in the second 

Switching interrupt never being generated and the sound card ceasing further operations. 

The symptoms for this fault occur in every recording or playback mode. This circuit 

modification involves removing the t-type flip-flop o f the generation circuit and 

replacing it with a d-type flip-flop. The possible causes o f the fault's symptoms could 

be the interrupt service routines, DMA and Interrupt Generation section, Logic Control 

or incorrect initialisation o f the DMA controller by the software. Examination by the 

student of the sound card's operating modes would confirm that the second Switching 

interrupt (test point DITP-10) was not being generated and further investigation would 

pinpoint the error.

129



7.4.3 Clock Generation Fault

One example of a fault for the Clock Generation section is to invert the serial shift clock 

o f the SiPo converter o f the Serial Interface, resulting in the serial data from the I/O 

Interface being sampled on their transitional edges. This would be achieved by removing 

the inverter which converts the PiSo serial shift clock into the SiPo serial shift clock. 

This would cause random errors to occur frequently in the recorded data in both 

analogue and digital modes. The possible causes of the symptoms of this fault might be 

in the Serial Interface section, Address Decoding section, the DMA controller initialised 

to an incorrect memory address, the software writing wrong data to the hard disk or the 

Control Logic producing simultaneous data buffer enables for the Swinging Buffers 

resulting in data contention. The source o f random errors is usually difficult to detect 

but the Serial Interface is one of the first places to be examined by the student and this 

would quickly reveal this fault. Observing the test point SITP-4 (SIPOSCK) in the Serial 

Interface would force the student to investigate the generation of this clock signal in the 

Clock Generation section using the FPGA's functional test software.

7.4.4 Control Logic Fault

One example of a fault in the Control Logic section is if the switching of the WENbar 

signals is not delayed long enough to allow the final Swinging Buffers' read or write 

requests to be completed. This will cause the channels to be exchanged at every 

Swinging Buffer switch. This is a subtle fault because losing one sample every 16 k 

samples is not likely to be detected by the human ear. But if  the sound card was being 

tested for channel consistency with test files it would be very evident if the one channel 

ramp waveform was played back. Therefore this fault could be used when the card's 

performance was being thoroughly tested. Identification o f this fault would involve 

examination o f the Control Logic section with the FPGA's software.

7.5 Software Faults
The scope o f possible software faults is vast but the faults selected are those which 

highlight a particular aspect of Windows Multimedia such as data queue management. 

The following faults highlight the operation of the hardware interrupt service routines, 

data queue management, file formats and the correct termination of the playback 

operation.

130



7.5.1 Interrupt Service Routine Fault

One example of a fault in the interrupt service routine is if  the DMA interrupt counter 

is not reset to zero after the eighth DMA interrupt. This will corrupt recording and 

playback after the first switch o f the Swinging Buffers. The DMA interrupts will not set 

up DMA sessions or transfer data from the application's data buffer resulting in the 

Swinging Buffers never being emptied or filled fully. This fault is easily located, once 

the general operation o f the sound card is investigated using the logic analyser. The 

second DMA interrupt does not generate another DMA interrupt when filling or 

emptying the second Swinging Buffer after the first Swinging Buffer switch.

7.5.2 File Access Fault

One example o f a fault in the area of file access is if the format chunk in the recorded 

WAVE file is incorrectly set to the PCM 44.1 kHz mono 16 bit format which none of 

the playback modes support. The application will display an error informing the user that 

the requested playback file's format is not supported by the sound card. This is a 

software error which does not require any hardware debugging. The recorded file will 

be examined to determine its format before investigating the file creation function for 

correct file creation, particularly creating the format subchunk.

7.5.3 Device Driver Fault

One example o f a fault in the device driver is if  the silence padding function of the 

device driver's playback mode writes the incorrect value into the partially filled DMA 

buffer. An audible click will be heard at the end of playback. The value 8000h is written 

instead of OOOOh which results in the output signal going to its maximum negative level 

causing the audible click. The symptoms o f this fault would point to a software problem 

rather than a hardware fault. This fault may not be heard or observed with a test file if 

the test file's length is a multiple o f the DMA buffers size, 4 kbytes. If  it is a multiple, 

then this silence padding function is never used and no fault is observed on the digital 

storage oscilloscope. This discrepancy would point to a fault in the silence padding 

function.

131



7.5.4 Data Queue Maintenance Fault

One example of a fault in the area of data queue maintenance is if the size o f the data 

buffers used by the application are set too large, continuous recording or playback 

cannot be maintained. Accessing the disk takes up too much of the systems time 

resulting in the interrupts being serviced too late to maintain the data flow between the 

Swinging Buffers and the I/O Interface. Observing the sound card's operation for small 

recording or playback lengths would prove that the hardware was performing correctly. 

This would cause the student to concentrate on the management o f the data queue by 

the software.

7.6 Debugging a Recording Fault
The flowchart for identifying a general recording fault is shown in Figure 7.1 and it 

describes the process o f locating the area of the Multimedia Teaching Platform which 

contains the fault. There are different types o f recording faults such as corrupted 

recordings faults or terminal faults where the recording process is never completed. The 

debugging steps for the different recording faults are grouped together to form a general 

debugging flowchart. Once the area of the fault has been identified, the system is 

examined in detail and compared against its normal operating process to identify the 

cause o f the fault. Non terminal recording faults are usually noticed when the recorded 

file is replayed and an audible difference is detected by the listener when compared with 

the original audio signal. An important consideration when beginning to debug a non 

terminal recording fault is to first confirm it is not a playback fault.

7.6.1 Description of an Example Recording Error

Consider the following example o f a terminal recording fault. The recording process is 

started by the user selecting the Record push button in the analogue recording dialog 

box (see Appendix D Figure D.2). The user knows recording has been started because 

the text o f the Cancel push button in the recording digital box has been changed to Stop. 

The change only occurs when recording has been started by the application and its text 

returns to Cancel when recording has finished. This push button's text is changed to 

indicate its different function during recording, which is to stop recording, whereas 

normally this push button closes the dialog box.

132



 c
E x a m in e  1be ■ Generation s*

~  Z T
[_ F a u l t  idtantr

□
■ c

E x a m in e  th e  
C o n tr o l  L o g ic :

T e
P C '!

E x a m in e  th e  DMA 
tr a n s f e r  r e q u e s t  s ig n a is .

, " 3  :1 F a u tt  id e n tif ie d  J

Ex
dr

m ain

S B u ffe r  — S w in g in g  B u ffer

Figure 7.1 Flowchar



The recording dialog box's scroll bar shows the percentage of recording which 

has occurred but this is not updated, indicating that recording is not taking place. Also 

the push button's text is never changed back to Cancel from Stop, After the user has 

manually stopped recording with this Stop push button and attempts to replay the 

recorded file, a message box is displayed stating that the selected file is corrupt.

This terminal fault could be in the hardware or software. For example, the 

hardware may be operating perfectly while the software is not maintaining the data 

queue or the hardware may not be generating the interrupt service routines. The steps 

involved in locating this recording fault are now described.

7.6.2 Debugging Process

The first step when debugging a recording fault is to determine if the fault is common 

to both recording modes, analogue and digital. The second step is to determine whether 

a signal is present on the analogue inputs, otherwise further investigation will be 

pointless. I f  it is not common then this immediately reduces the possible sources of the 

fault. The example fault is common to both recording modes, therefore tests signals are 

placed on the analogue inputs. The oscilloscope is used to verify that these signals are 

present on the inputs of the analogue to digital converter (tests points AITP-6 and AITP-

7).

The recording process is repeated in the analogue mode and the recorded file is 

examined. I f  the file is not corrupt then recording has taken place which points to a 

playback error rather than a recording error. The example fault in this case does not 

produce a valid recording. The file is viewed using an editor which can display the file 

in hexadecimal. This will reveal if the file is in the correct RIFF WAVE format and if 

the file creation function of the application is correct. For the example fault this test 

reveals that one Swinging Buffer's data (32 kbytes) was recorded to disk, but the file 

was not properly closed because the data size field of the RIFF chunk does not equal 

the size of the combined form at and data subchunks of the file. The size of the recorded 

data suggests a hardware or an interrupt fault resulting in only the first Swinging Buffer 

being emptied and written to disk.

The logic analyser is now used to examine the recording operation of the sound 

card. This will determine if  the hardware and software are maintaining recording for the 

specified length o f time and will provide valuable information on the possible sources

134



of the fault. Further investigation is always required to pinpoint the fault. The following 

signals, Switching and DMA interrupts (DITP-10 and DITP-9), DACK7bar (DITP-5), 

DMA's TC (DITP-11), MResetbar(ADTP-8), Swinging Buffers full and empty flags 

(DITP-1, 2, 3 and 4), W ENlbar (DITP-12) and the Swinging Buffers' read and write 

requests (SBTP-6, 7, 8 and 9) are sampled by the logic analyser. The logic analyser is 

configured to trigger when the MResetbar signal is activated at the start of recording, 

and begins sampling for approximately one second. These signals will determine if the 

card is sustaining recording. If recording is being sustained then these signals should be 

identical to those shown in Figure 7.2.

MResetbar
------------- -----------

Switching IRQ 1i 1

DMA IRQ m m m m m m
DACK7bar INI llll mi mi mi mi mi
R1bar llll llll mi mi
R2bar llll mi mi
W1bar lllllllll lllllllll iiiiiiiii iiiiiiiii
W2bar lllllllll iiiiiiiii iiiiiiiii mini
WENlbar

WEN2bar

FFIbar

FF2bar

EFIbar 1 ~ ~ i— i L_
EF2bar 1 i i

m=e DMA IRQ nteirupts
"706™̂

Figure 7.2 Operation o f the Sound Card during Recording.

In the example fault, recording is not being sustained as shown in Figure 7.3. 

Examination o f these signals reveal that the first Swinging Buffer is filled and 

subsequently emptied by the Switching and DMA interrupts but the second Swinging 

Buffer is not emptied. The WENbar signals do not toggle after the first switch, resulting 

in the Switching interrupt not being generated which in turn does not generate the DMA 

interrupts required to empty the second Swinging Buffer. Therefore the fault is identified 

as being situated in the switching circuits of the Control Logic section.

135



This fault requires detailed examination of the switching circuits to determine 

why a switch occurs only after the first Swinging Buffer has been filled. The playback 

modes are unaffected which indicates that the fault lies in the recording mode's 

triggering circuits for switching the Swinging Buffers. The schematic diagrams for the 

Control Logic section used when generating the PROM program for the FPGA are 

examined with the FPGA's schematic design entry and programming software package. 

Examination o f these switching circuits reveals that switching is only triggered by the 

first Swinging Buffer's empty flag whereas it should be the logical AND combination 

o f the two Swinging Buffers' empty flags.

MResetbar
----------------- -----------------1-----------------f

|^ — —

Switching IRQ *
DMA IRQ Uk
DACK7bar llll
R1bar llll
R2bar

W1bar Il l l l l l l l
W2bar I l l l l l l l l I l l l l l l l l i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i m i n i
W EN Ibar

WEN2bar

FFIbar

FF2bar

EFIbar

EF2bar

m loom s
= 8 DMA IRQ Interrupts

Figure 7.3 Fault in both Recording Modes o f the Sound Card.

7.7 Debugging a Playback Fault
The general flowchart for identifying a playback fault is shown in Figure 7.4. This is a 

general debugging flowchart which describes the steps required to identify the two types 

o f playback faults, terminal or corrupted (non terminal) playback. The flowchart will 

pinpoint the area where the fault lies and the student is then required to investigate this 

area further.

136



N o , /  P O ’
\  e n a b t

E x a m in e  
th e  C

NO <  D M A  In

E x a m in e  th
a ev lco  drive»

N o  r-
~  \  "

E x a m in e  th< 
qu ® uo  m a lr

S  Buffer = S w in g in g  Buffer

Figure 7.4 Flowchat



7.7.1 Description of the Playback Fault

Consider the following non terminal playback fault. A file is played and the application 

starts and terminates playback correctly but the audio playback is corrupt. The corruption 

is repetitive and consists o f skips in the audio playback. The playback process can be 

paused and restarted correctly so it would not appear to be a hardware fault.

7.7.2 Debugging Process

The first step is to determine if the fault is present in both playback modes. In this case 

the fault is present in both modes, therefore the analogue mode is used for convenience 

to identify this fault. Otherwise the digital mode signal must be converted to analogue 

by the digital amplifier before being stored with the digital storage scope. The analogue 

removes the need for the digital amplifier. The one channel ramp test file is replayed in 

the analogue mode and is examined with the digital storage oscilloscope (test points 

AITP-8 and AITP-9). The output 

waveforms are corrupted as shown in 

Figure 7.5. The channels are being 

inadvertently switched and a small 

section of the ramp is being lost at 

every channel switch. The frequency 

o f  this fault is 340 ms, which 

suggests a software rather than a 

hardware problem. A channel switch

could be caused by a sample being figure 7.5 Output Waveforms observed on the 
lost during every Swinging Buffer Storage Oscilloscope.

switch but the frequency of this fault

does not match the Swinging Buffer

switching frequency (186 ms).

The missing parts of the waveform also point to a periodic fault and it is also

noted that the continuous parts of the waveform are not corrupt, The general playback

operation, as described in Section 7.6.2, is nevertheless investigated with the logic

analyser, to confirm that continuous playback is occurring. The waveforms in Figure 7.6

were observed indicating correct playback operation of the sound card.

340 mSeconds

Left
Channel

Right
Channel

138



MResetbar

Switching IRQ  A k Á A X A I  I

DMA.RQ U4T4* 4'4T 444 444 **4 Mi 444 44
DACK7bar

R1bar

R2bar

W1bar

W2bar

W E N  1 bar

WEN2bar

FFIbar

FF2bar

EFIbar

EF2bar

186m S444 = 8 DMA IRQ interrupts

Figure 7.6 Operation o f the Sound Card during Playback.

I I I I I I I I I I ^
l l l l l l l l l l l l l l l l l l l ! l l l l l l l l l i i Hi i i i i

l l l l l l l l l l l l l l l l l l i i Hi i i i i ii
l l l l l l l l mi m i H

III! l l l l mi m i
L
r

1 i ■■ —

1

___

The oscilloscope waveforms in Figure 7.5 indicate a software fault because the 

fault is repetitive at a stable frequency and does not stop continuous playback. The 

interrupt service routines' in the device driver which are responsible for the initialisation 

of the DMA controller cannot be the source of the fault, because of the frequency of the 

fault. Therefore the application software is examined, particularly the data pointers used 

when reading from the file and the data pointers sent to the device driver.

The data pointers used by the application when reading data from the RIFF 

WAVE file were compared with the data pointers stored in the WAVEHEADER 

structures using the source code debugging applications. These pointers were found to 

be identical. For the example fault, the frequency o f the channel switching is similar to 

the size of the data field (dwBufferLength) of the WA VEHEADERs sent to the device 

driver. A difference in the data buffer sizes used by the application's file functions and 

the size of the buffers used by the device driver could produce this fault. The 

dwBufferLength field of the WAVEHEADER dictates the size of the buffers that the 

device driver uses (60,000 bytes) and they were found not to be equal to the size of the 

data buffers used by the function (70,002 bytes) which reads from the WAVE file. This

139



was due to the existence o f two constants, both used for the size of the data buffers. 

There was a local constant in the C file (MMAPP.C) that processes returned 

WA VEHEADERs, which was used instead of the global constant to set the size of the 

WA VEHEADER's dwBufferLength field. Therefore, there was a size difference between 

the data read from the WAVE file and the data sent to the sound card which resulted 

in the periodic channel switching and loss of data.

7.8 Summary
This chapter introduces the debugging techniques for identifying the MTP's preset faults. 

A selection of hardware and software MTP faults are described and two o f these are 

debugged using the MTP's general playback and recording flowcharts. These flowcharts 

illustrates the steps taken in identifying the section o f the MTP that possessed one of 

these preset faults,

140



Chapter 8
Summary and Future Development of the 

MTP

8.1 Introduction
This chapter discusses and summarises the Multimedia Teaching Platform and examines 

areas where further development work can be carried out.

8.2 The Multimedia Teaching Platform
The objective of this thesis was to develop a teaching platform for the design o f a 

Windows Multimedia device. This involved the development of a Windows application 

and device driver and the design, construction and testing of a digital and analogue 

sound card. The MTP as presented successfully achieved the objective.

The sound card design involved the use of advanced programmable logic in the 

form of a FPGA to provide the ability to introduce preset hardware faults. The sound 

card supported both analogue audio signals and the consumer digital format (Appendix 

A) found in commercial digital audio equipment, such as CD players and DCC players.

The software was composed of a Windows application and a Standard mode 

device driver. The driver was written in a mixture o f C and 80286 assembler and 

conformed fully to the Windows Multimedia standard for waveform device drivers. The 

application used the low level multimedia audio functions defined in the MMSYSTEM 

module o f Windows to provide the user with greater control over playback and 

recording. Algorithms were also developed in the application to maintain the data queue 

between the application and the device driver, thus ensuring continuous recording or 

playback. The application also introduces the user to the files which make up a 

Windows application and the role each one performs.

The MTP also introduces a number of important Windows software features 

which are often only briefly covered, such as installation software and help files. These 

features of the application while not necessary, are highly desirable from the user's 

perspective. Their importance to a Windows application is only noticed by the user when

141



they are absent. Appendix H explains the process of generating a .HLP format help file 

while Appendix J describes the steps involved in creating the installation disk for the 

MTP application.

The unique programmable logic of the sound card and the availability of the 

source code for both the application and device driver allows for the introduction of 

preset faults in the MTP. These faults were developed to highlight the different aspects 

of Windows Multimedia, such as data queue management. The ease of introducing new 

faults provides the MTP with a powerful ability to develop new faults tailored to the 

student's knowledge and experience. The MTP also provides general recording and 

playback debugging flowcharts to assist the user in identifying the areas in which the 

preset faults lie. These flowcharts still require initiative from the student to pinpoint the 

cause o f the preset fault. Solving the faults teaches the student valuable hardware and 

software debugging techniques

8.3 Future Development of the MTP
The next obvious development o f the present MTP would be a laboratory test with 

undergraduate students to evaluate its performance and the suitability o f the preset faults. 

The feedback from the students would be carefully examined to highlighting any areas 

of the MTP which could be improved to increase its teaching potential.

Other developments areas might include audio compression and decompression 

which are not addressed at present by Windows Multimedia. Compression and 

decompression is vital for certain multimedia file types such as video, where the size of 

uncompressed data is too large for present hard disks to hold more than a few minutes 

o f uncompressed information. With the demand for better quality video and high 

definition digital TV (HDTV), compression will become essential.

There are compression standards available but these have not been universally 

accepted by manufacturers which have already implemented their own compression 

schemes. For instance Intel use their own Indeo video compression scheme. MPEG is 

a prime example o f a universal compression scheme which is only supported by a 

limited number of video capture cards. If  compression and decompression are 

implemented independently by manufacturers this leads to incompatibility when dealing 

with compressed files and a compressed sound file will not be automatically playable 

on another manufacturer's card.

142



Compression and decompression capabilities could be achieved using discrete 

compression and decompression chips but would be inappropriate from a teaching 

viewpoint. Implementing the compression and decompression algorithms explicitly using 

a digital signal processor (DSP) would allow faults to be introduced into these 

algorithms. This would greatly increase the teaching capabilities o f the MTP and provide 

the student with experience o f compression and decompression algorithms in a real time 

situation. This DSP facility could be implemented using a second plug-in card or a 

piggy-back board. The second plug-in card would be more suitable because of the 

problem of accessing the chips beneath the piggy-back card when debugging the card.

When recording, the DSP would compress a full Swinging Buffer to a partially 

filled Swinging Buffer, and the DMA controller would transfer this compressed data to 

the PC's memory. The DMA transfer from the Swinging Buffers would be faster due to 

the reduction in the data to be transferred. A faster hard disk would also be required to 

allow sufficient time for the data to be compressed in real time without any data loss 

from the I/O Interface. When playing back compressed data, the Swinging Buffer would 

be partially filled by the DMA transfers which the DSP would then fill by 

uncompressing this compressed data.

143



References
[1] Resource Workshop: User's Guide. Borland International Inc, California USA, 1991

[2] Turbo Debugger 3.0 fo r Windows: Useras Guide. Borland International Inc, 

California USA, 1991.

[3] TurboC++ 3.0 for Windows: Programmer's Guide. Borland International Inc, 

California USA, 1991.

[4] TurboC++ 3.0 for Windows: User's Guide. Borland International Inc, California 

USA, 1991.

[5] Byers, T.J. Inside the IBM PC AT. MicroTest Productions Inc, McGraw-Hill, New 

York USA, 1985.

[6] Volume 1 Data Book A/D Conversion ICs. Crystal Semiconductor Corp, Houston 

USA, 1994.

[7] Hall, Douglas V. Microprocessors and Interfacing: Programming and Hardware, 2nd 

Edition. McGraw-Hill International Editions. New York, USA. 1992

[8] Hogan, Thom. The Programmers PC Source Book, 2nd Edition. Microsoft Press, 

USA, 1991

[9] Hubbard, H. Inside the RIFF Specification, Dr Dobb's Journal, September 1994. 

United Newspapers Publication, California USA. Pages 38 to 45.

[10] Jeffries, Thomas. Multimedia Infrastructures: Byte, August 1993, McGraw-Hill 

Publications, New York. Pages 193 to 198

[11] Microsoft Development Network and Library (CD-ROM), Microsoft Corporation, 

One Microsoft Way, WA 98052-6399, USA.



[12] Norton, Daniel A. Writing Windows Device Drivers. Addison Wesley Publishing 

Company, USA, 1992.

[13] Oney, Walter. Examining the Windows Setup ToolKit, Dr. Dobb's Journal, February 

1994. United Newspapers Publication, California, USA. Pages 68 to 72.

[14] Petzold, Charles. Programming in Windows: The Microsoft Guide to Writing 

Applications fo r  Windows 3, 2nd Edition. Microsoft Press, Washington USA, 1990.

[15] Stevens, Al. Help fo r  Windows Help Authors, Dr Dobb's Journal, April 1994. 

United Newspapers Publication, California USA. Pages 86 to 91.

[16] The Programmable Logic Data Book, Xilinx 1994

[17] LIU, Yu-Cheng and GIBSON, Glenn A. Microcomputer Systems: The 8086/8088 

Family. Architecture, Programming and Design, 2nd Edition. Prentice-Hall International, 

USA, 1986.



Appendix A
Serial Digital Audio Interface
There are two formats in use, Consumer and Professional. The serial digital audio data 

interface implemented in the sound 

card, conforms to the following 

Consumer format standards, IEC-958 

Consumer, S/PDIF and CP-340 Type 

2. The consumer format is designed 

for commercial consumer products,

CD players for example. The 

professional format on the other hand 

is designed for professional or 

recording studio use. Table A .l lists 

the major differences between the 

two formats.

Consumer Professional

H ardw are

0.5 Vpp 5 Vpp

75 £2 Terminated 
Coaxial Cable

Balanced Twisted 
Wire Pair

Software

Control Bits Control Bits

Table A l  Differences in the Digital 
Audio formats.

The digital audio format is composed of frames. There is a left and right channel 

subframe per frame while 192 consecutive left or right subframes form a channel status 

block. The subframe format is shown in Figure A .I. The subframe can have a total of

SubFrame Frame

Bit 0

Vafdity 
Use Data
Channel Status Data 
Party Bit

28 29 30 31

l i t i
Figure A . l  Subframe Format.

A l



24 audio bits but only 16 are used in the consumer format. The parity bit ensures even 

parity over the subframe. The validity bit indicates if the audio data is suitable for 

conversion to analogue audio. The user bit is designed for transmitting user information. 

The control information bits builds up from 192 consecutive subframes to form a 

channel status control block for each channel.

Clock

Bit
Pattern _________  ______  ______________

0 1 1 0  1 0  0
Biphase
Mark Data ______  ___ ___ ___ ______

Figure A .2 Biphase Mark Coding.

The line coding used is Biphase Mark. Figure A.2 shows the generation of the 

code from the clock and bit sequence. It is this clock that can be extracted from the 

coded data by the receiver. This coding scheme has low D.C. content along with good 

clock extraction capabilities and polarity independence. The low D.C. content is due to 

a transition occurring at ever bit boundary as shown in Figure A.2. A one is represented 

by a transition within the bit boundaries while a zero has none.

Synchronisation for block and subframes are achieved through coding violations. 

These violations signal the start 

o f a block or subframe and are 

known as preambles. Figure 

A.3 shows the preambles used 

for each subframe and status 

block. The arrows illustrate 

where coding violations have 

occurred due to boundary 

transitions not taking place.

T f
—— — ! r—  --

Preamble X
Left Channel

T T: _
Preamble Y
Right Channel

T T
Preamble Z
Channel Status Block

I I i
Figure A .3 Frame and Subframe Synchronisation 

Preambles.

A2



Appendix B

Schematic Diagrams and Test Points for the 
Sound Card
The X labels in the scematic diagrams refer to devices contained in the FPGA while the 

U labels refer to external devices on the sound card. Figures B.l to B.8 are the 

schematic diagrams for the card and Figure B.9 shows the physical layout o f the card. 

The designated test points for each section are tabulated after the schematic diagrams 

in Tables B1 to B7.

Bl



Figure B .l  A ddress D ecoding Section.



Figure B .2  DMA and Interrupt Generation Section.

B3



fig u re  B .3 Sw inging B uffers Section.

B4



Figure



Figure B .5 Serial Interface Section.

B6



Figure B .6  Clock Generation Section.

B7



È
I « X i

i-,

tH 5"

- ì r  ^
iH h^1

Z O
H hIl m i

f i

P  . 
Hrrll'- 
Si 

Hh

ÌS?l?Ì^ÌfeESÌiE

.. ì

c
s |33

O o Po
Hh Hh

pi  Sì

■ fi

(1 /

(D

(Ir
i  s ì s*

*$3 1>I

— H>
l i

r

351
0

l ì

>V •
axs — — t OND

. 3P 
£ 3

M

r f h

8?
Hh
8s 
“•*» s

V c s -
J } +

Sì
H h

H M i "

! j

gtggfl* üâ

-j j  Q Q
^ y i È i f s

Lfff
i l i

f i h
■ J
Hh

li9
a

HD

f

Figure t ì .7 Analogue PO Interface Section.

B8



S3a
/ ¡ Va ' *  *

I aS3

-P-

a £ a n s a  r. ?.

nMn o

F

e * g * s !

$ —(D § Q i  i Q i  *

3 3

u c £ a

4 3
*  84=

-I

=T

I ?

-!
z %

H F jfr

K 2 3 a M  i g M  |S I8

lg  I  §  ,3  ^  I  >

È É ÈVo/  Vo/  o /

9 9

Hi"
/-,
e

\ •

fig u re  B .8  D igital I/O  Interface Section.

B9



1 = Digital Receiver

2 = Digital Transmitter

3 = 74H C 00

4 = ADC

5 = 5532 Op-Amp

6 = DAC

7 = FPG A (XC4003)

8 = PROM

9 = F IF 0 1 A

12 = F IF 0 2 A

15 = F IF 01 B

18 = F IF 02 B

10, 13, 16 & 19 = 74F245

11 ,14 , 17 & 20 = 74F245

21 = 74F04 (Ose)

22 & 23 = 74F245

24 = 74F244

25 = 74F125

27 & 26 = PiSo

28 & 29 = SiPo

30 = 74F32

31 = 74F08

32 = 74F244

33 = 74F244

Serial
Interface

Analogue
Interface

Component Side

Swinging Buffers
,v<

■ I

Programmable Logic _  Digital Interface

I3S3ST3

Buffer Interface

j i
m

Local
Oscillatorru

(also Buffer 
Interface)

Piggy-back
PCB

Figure B.9 Physical Layout o f the Sound Card.

BIO



A ddress D ecoding

ADTP Number Label

1 I016BAR

2 I.OWENBAR

3 HIGHENBAR

4 ANALOGUE in

5 AN/VLOGL’E OUT

6 DIGITAL IN

7 DIGITAL OUT

8 MRKSETBAR

9 BUFFER STA R  S REG.

Table B .l Tesi Points fo r  the Address Decoding 
Section.

DMA / Interrupt Generation

DIGTP Number Label

1 FF1BAR

2 FF2BAR

3 EF1BAR

4 EF2BAR

5 DACK7BAR

6 IORBAR

7 IOWBAR

8 DRQ7

9 DMAIRQ

10 SWITCIIIRQ

11 TC

12 WEN 1 BAR

Table B.2 Test Points fo r  DMA /  Interrupt 
Generation Section.

B11



Swinging Buffer and Control Logic

SBTP Number I.abel

1 DIR

2 SIBE1BAR

3 SIBE2BAR

4 PCBE1BAR

5 PCBE2BAR

6 R1BAR

7 R2BAR

8 W1BAR

9 W2BAR

Table B.3 Test Points fo r  the Swinging Buffer and 
Control Logic Sections.

Serial Interface

SITP Number Label

1 PISOLOAD

2 PISOSCK

3 SIPOLOAD

4 SIPOSCK

5 DIGITAL DATA IN

6 ANALOGUE DATA IN

7 DIGITAL DATA OUT

8 ANALOGUE DATA OUT

Table B.4 Test Points fo r  the Serial Interface 
Section.

B12



Clock Generation

CGTP Number Label

1 DRXMCK

2 DRXLR

3 DIGITAL IN

4 ICKLD

5 SCK

6 L R

7 ACKO

8 X T I

9 ANALOGUE OUT

10 SCKAO

11 MCK

Table B.5 Test Points fo r  the Clock Generation 
Section.

Analogue I/O Interface
AITP Number Label

1 L R

2 SCK

3 ICKLD

4 ANALOGUE DATA IN

5 ANALOGUE DATA OUT

6 LEFT AN/YLOGUE I/P

7 RIGHT ANALOGUE I P

8 LF.FT ANALOGL'E O P

9 RIGHT ANALOGUE O/P

10 XTI

11 SCKAO

12 L R

Table B .6  Test Points f o r  the A nalogue 1 0
Interface.

B 13



Digital I/O Interface

DITP Number Label

I MCK

2 SCK

3 l.R

4 DIGITAL DATA IN

5 DRXMCK

6 DRXI.R

7 DIGITAL DATA IN'

8 DIGI TAL I P

9 DIGITAL O P

Table B .7 Test Points fo r  the Digital I/O Interface.

B14



Appendix C
Direct Memoiy Access
The generic Direct Memory Access (DMA) controller chip used in the AT Personal 

Computer (PC) is the Intel 8237. This device is used to transfer data between memory 

and peripheral devices or from one memory location to another without microprocessor 

control. In PCs the current DMA controllers are integrated into a VLSI device which 

also contains the Priority Interrupt Controller (PIC) along with other peripheral devices. 

The AT computer possesses two DMA controllers, the first is cascaded through the 

second so that there is only one source o f DMA requests to the microprocessor. Table

C.l describes the PC's DMA channels [8], The first DMA controller only permits 8 bit 

transfers while the second only supports 16 bit transfers. The second DMA controller 

must therefore be used by the MTP's device driver to allow 16 bit I/O transfers between 

the PC's memory and the sound card. Each DMA controller supports four DMA 

channels which can be configured separately by writing to several internal registers 

located in the PC's low I/O port address map.

Channel 0 1 2 3 4 5 6 7

Function Spare SDLC Disc Spare Cascade Spare Spare Spare

Bit
Transfer

8 8 8 8 16 16 16

Table C.1 DMA Channels in the A T PC.

DMA Transfer Cycle

The DMA controller has a request line (DRQ#) for each of its channels, which are 

active high. If a DMA request is received on one of these lines then the DMA controller 

will signal the microprocessor by activating the Hold Request (HOLD) line. The 

microprocessor when its has finished its present operation, will release control of the bus 

to the DMA controller, notifying it with its Hold Acknowledgement (HLDA) signal. The 

DMA controller will now perform the DMA operation that the requesting DMA channel

Cl



was initialised for. The DMA acknowledgement (DACK-bar) signal notifies the 

peripheral device of a DMA I/O cycle on the particular DMA channel. The DACK#bar 

signal is active low. At the end of a DMA session, the Terminal Count (TC) signal is 

issued on the last transfer cycle. This signal is common to all the DMA controller's 

channels.

DMA Register and Initialisation

The DMA controller is initialised by writing to several internal 8 and 16 bit registers 

that control the size o f transfer, type of transfer and the starting memory address for the 

transfers. Table C.2 describes the registers used in initialising DMA channel seven, the 

fourth channel of the second DMA controller. The registers used for transfers are the 

Page Address register, Base and Current Address registers, Base and Current Count 

registers, Mode register and the Mask register.

Register I/O Port Address (hex)

Channel 7

Page Address Register 8A

Base and Current Address Registers CC

Base and Current Count Registers CE

Second DMA Controller

Mode Register D6

Mask Register D4

Clear Byte Pointer D8

Table C.2 DMA Controller Registers accessed by the Device Driver when 
programming the DMA Controller.

The two Base registers are write only registers which reside at the same I/O port 

addresses as their corresponding read only Current registers as shown in Table C.2. The 

Current registers are initialised to the Base registers whenever the Base registers are 

written to. These Base registers are only written to when the controller is being 

initialised. The Current registers indicate the present address location and the remaining 

number of transfers left in the DMA session.

C2



The four Address and Count registers are 16 bit internal registers that are 

accessed through 8 bit I/O address ports Writing to these 16 bit registers is achieved by 

an internal flip-flop which toggles between the high and low bytes upon every I/O port 

access to these registers. This flip-flop can be reset by writing to its I/O port, Clear Byte 

Pointer. Upon reset the 8 bit I/O port address accesses the lower byte of the internal 16 

bit register.

The Base and Current Address registers are different for each DMA controller. 

For the first controller, which only supports 8 bit transfers, they hold the address range 

AO to A15 while for the second one, which only supports 16 bit transfers, they hold A1 

to A 16. Figure C.l illustrates the difference between the Address registers for the 8 and 

16 bit DMA controllers. The Page registers holds the same address bits A16 to A23 for 

both controllers. The Current and Page Address registers combine to yield the total 

address, which can be in the range 0 to 16 Mbytes. The Page register is a static register 

which limits the size of DMA sessions to the size of the Base Address and Count 

registers. These 16 bit registers therefore, impose a maximum transfer size of 64 kbytes 

(216) for the 8 bit controller and 128 kbytes for the 16 bit controller.

Page Register Base Register

A23 A16 A1S

A23 A16 A16

0
0

8 Bit Transfer 

16 Bit Transfer

Figure C .l Bit Configurations fo r  the Page and Address Registers.

The bit configurations for the Mode register are defined in Figure C.2. Bits 0 and 

1 define which channel is to be initialised, while bits 2 and 3 define the type of data 

transfer, I/O read or write or memory to memory. Bit 4 is the auto-initialisation mode, 

which defines whether upon completion of the specified number of data transfers, 

another is automatically started. Bit 5 determines if the memory address in the Current 

Address register is incremented or decremented after each transfer. Bits 6 and 7 define 

the basic type of DMA transfer in relation to bus management. In Single Mode, the 

DMA controller will release control of the bus after every DMA transfer, irrespective 

o f the current state of the DMA request line, thus ensuring the processor is never locked 

out. For the Block Mode, the DMA controller will transfer the complete block o f data 

without yielding control of the bus. In Demand Mode, the controller will transfer data

C3



while the channel's request line is active and a terminal count has not been reached. The 

terminal count is an active high signal issued by the controller whenever a channel's 

count register has reached zero. The final mode is the Cascade Mode which programs 

all the DMA channels for Single Mode transfer.

Btt
Numbar

o I

L

t

-C

00 Channel 0

01 Channel 1

10 Channel 2
11 Channel 3

00 Verify

01 Memory Write

10 Memory Read
11 Illegal

XX If Bits 6 & 7 are 1

0 No Automitialisation
1 Autoinitialisatin

0 Address Increment
1 Address Decrement

00 Demand

01 Single 

10 Block
11 Cascade

Figure C.2 Bit Definitions o f the Mode Register.

There are three more registers, the Command Register, the Status Register and 

the Write All Mask register. The command register is initialised by the PC's ROM BIOS 

at boot-up and establishes the DMA Request (DRQ#) and DMA Acknowledge 

(DA CKzbar) active levels and the priority scheme of the DMA channels. This Command 

register is a write only register which shares the same I/O port address with the read 

only Status register. The Status register defines the state of each DMA channel and is 

described in Figure C.3. The Write All Mask register is used to mask or unmask each 

channel collectively rather than individually as in the Mask register.

C4



Status Register

Bit Value

— *  1 : Channel 0 has reached TC
 1 : Channel 1 has reached TC

-----------------------» • 1 : Channel 2 has reached TC
  — 1 : Channel 3 has reached TC

 • "  1 : Channel 0  Request Active
---------------------- — -------------------------*■ 1 : Channel 1 Request Active

-------------------------------------------------------------- ► 1 : Channel 2 Request Active
------------------------- »■ 1 : Channel 3 Request Active

Figure C.3 Bit Definitions o f the Status Register.

Bit 7 6 5 4 3 2 1 0

Programming the DMA Controller

The steps involved in programming DMA channel seven using assembler language are 

illustrated in Listing C .l. These step are applicable to all channels. First, the channel 

must be masked to stop any DMA activity on the channel and to ensure that DMA 

cycles are only started at the required time, which is after the channel has been fully 

initialisation. The channel is masked by writing 07h to the DMA controller's Mask

mov d x , MaskReg ; M a s k i n g  c h a n n e l  7.
mov a l , 07h
o u t d x , a l

mov d x , P a g e R e g ; S e t  up  t h e  P a g e  r e g i s t e r .
mov a l , P a g e A d d r e s s
o u t d x , a l

mov d x , C l e a r B y t e ; C l e a r  b y t e  p o i n t e r .
o u t d x , a l

mov d x , A d d r e s s R e g ; S e t  up t h e  B a s e  A d d r e s s
mov a x , A d d r e s s ; r e g i s t e r .
o u t d x , a l ; Low a d d r e s s  b y t e .
mov a l , ah
o u t d x , a l ; High  a d d r e s s  b y t e .

mov d x , C o u n tR e g ; S e t  up B a s e  C o u n t  r e g i s t e r
mov a x , C o u n t - 1
o u t d x , a l ; Low c o u n t  b y t e .
mov a l , ah
o u t d x , a l ; H ig h  c o u n t  b y t e .

mov d x , ModeReg } S e t  up  Mode r e g i s t e r .
mov a l , T r a n s f e r T y p e ; T y p e  o f  DMA t r a n s f e r .
o u t d x , a l

mov d x , MaskReg ; Unmask c h a n n e l  7.
mov a l , 03h
o u t d x , a l

Listing C.1 Programming DMA Channel 7.

C5



register, I/O port D4h. The value seven corresponds to masking channel 4 of the DMA 

controller but this is the PC's second DMA controller whose channels are designated 4, 

5, 6 and 7.

Once the channel has been masked, the DMA controller can be safely initialised. 

The memory buffer's Page and Base Address register values are now written to their 

respective registers at I/O port addresses 8Ah and CCh. These values are calculated from 

the memory buffer's starting address as illustrated previously in Figure C .l. Before 

writing to the Base Address register, the DMA's internal flip-flop must be cleared to 

guarantee access to the lower byte of the 16 bit Base registers first. This is accomplished 

by writing to the Clear Byte Pointer at I/O port D8h.

The value written to the Base Count register is one less than the required number 

of DMA cycles because the DMA's cycles are stopped when the count register reaches 

FFFFh and not OOOOh. The type of DMA session determines the value written to the 

Mode register. For the memory read and I/O port write transfer, the value 47h is written 

while for memory write and I/O read the value 4Bh is written. The value 47h correspond 

to a memory read from a I/O port on channel seven in single mode DMA transfers with 

address increment and no auto-initialisation. The value 4Bh differs in that the DMA 

transfers are memory read and I/O port write cycles. The DMA controller has now been 

initialised and is now unmasked by writing 03h to its Mask register, I/O port D4h. DMA 

transfers can now take place on Channel 7.

Interrupts
Interrupts inform the microprocessor o f events which it must respond to, for example 

when a key has been pressed on the keyboard. These events can be software or hardware 

generated and each interrupt possesses a routine or program, which the microprocessor 

calls to service the interrupt. This program is called the Interrupt Service Routine (ISR). 

In the first 1024 bytes of the PC's memory resides the Interrupt Vector Table (IVT) 

which has an entry for each one of the PC's 256 interrupts [17]. Each entry is four bytes 

long and contains the segment and offset for each interrupt's ISR. When the Intel 

microprocessors are operating in their protected modes, the IVT is replaced by the 

Interrupt Descriptor Table (IDT) which is similar to the segment descriptor table used 

for code and data segments. The DOS interrupt 21h functions 35h and 25h can be used 

to set and read the interrupts vectors in both modes.

C6



The PC possesses 15 hardware interrupts which are available on the PC's system 

bus. These interrupts are implemented using two PICs, consisting of a master and slave. 

The slave PIC is cascaded through the third interrupt line o f the master PIC resulting in 

only 15 interrupts being available rather than 16. The master PIC's interrupts are 

described in Table C.3.

Name Timer Keyboard Cascade Comm
2

Comm
1

LPT
1

FDisc LPT
2

IRQ No. 0 1 2 3 4 5 6 7

Vector No. 8 9 A B C D E F

Table C.3 Lower Hardware Interrupt Lines.

Priority Interrupt Controller

The Priority Interrupt Controller (PIC) provides the interface between the microprocessor 

and the hardware interrupt lines (IROs). It provides priority and masking of multiple 

interrupt lines.

The PICs are initialised by the PC's ROM BIOS at boot-up. The master PIC is 

initialised by writing Initialisation Control Words (ICW) to I/O port addresses 20h and 

21h. There is a certain bit combination written to I/O port 20h to start the initialisation 

process and a set sequence o f I/O port writes to 21h and 20h are required to configure 

the PIC. The default configuration for the PC is fixed priority and positive edge 

triggered interrupts, therefore IRQ lines cannot be simultaneously shared between several 

devices. The interrupt lines must be held high when inactive and pulsed low to latch 

them into the PIC.

Operational Control Words (OCW) also reside at the same I/O port locations and 

are used to individually mask and unmask interrupts and to issue End of Interrupt 

Commands (EOI). When a hardware generated interrupt's ISR is finished it must issue 

an EOI command to the first OCW. This command resets the PIC IRQ's input, allowing 

further interrupts to be latched by the PIC. There is also a general EOI command which 

can be issued by writing 20h to the first OCW (I/O port address 20h). The second OCW 

is known as the Mask register. This is situated at I/O port address 21h. Each IRQ line 

can be masked by setting its corresponding Mask register bit to one or unmasked by

Cl



setting it to zero, bit zero controls IRQO. The sound card uses two interrupts and these 

are the Comm2 and LPT2 interrupts, which are known as the Switching and DMA 

interrupts respectively.

Programming the PIC

The procedure for programming the hardware interrupt IRQ3 (Comm2) using assembler 

language is shown in Listing C.2. The hardware interrupt IRQ3 corresponds to the 

interrupt vector Bh. First, the interrupt being changed is masked by setting its bit in the 

PIC's Mask register to one. Next the DOS interrupt 2 Ih function 35h is used to retrieve 

the present ISR from the interrupt vector and store it the gdwOldSwitchlSR variable so 

it can be returned it to its original state when the program is finished. This interrupt 

vector is then set to the new ISR using the DOS interrupt 21h function 25h. The IRQ 

line is now unmasked by setting its mask bit in the Mask register to zero.

mov dx, MaskReg
i n a l , dx
o r a l , 08h
o u t dx, a l

mov a l , OBh
mov ah, 35h
i n t 21h
mov ax , bx
mov dx, e s
mov [ g d w O l d S w i t c h l S R ]
mov [ g d w O l d S w i t c h l S R ]

p u s h ds
mov a l , OBh
mov ah, 2 5 h
I d s bx, lp N e w I S R
i n t 21h
p o p ds

mov dx, MaskReg
i n a l , dx
a n d a l , 0F7h
o u t dx , a l

; Mask IRQ3.

R e t r i e v e  IS R  f o r  v e c t o r  Bh.

O ld  IS R  i n  ES:BX.
S a v e  o l d  I S R .

; S a v e  D S .

; New IS R  i n  DS:BX.

; S e t  t h e  n ew  v e c t o r  f o r  Bh.  
; R e s t o r e  DS.

; Unmask IRQ3.

Listing C.2 Programming Interrupt Vector Bh, Hardware Interrupt JR03.

C8



Appendix D
Using the MTP Application
This appendix explains how to record and play WAVE files with the MTP application. 

The application's menu bar and the options it presents to the user are also described.

Playing and Recording W A V E  Files

The WAVE files can be recorded and played back in the analogue or digital modes 

using dialog boxes called by the Play and Record menu bar items. These menu bar items 

provide an analogue or a digital option which will display the appropriate dialog box 

when selected.

The Play Dialog Box

The dialog boxes for the analogue and digital playback options are identical except for 

their titles or Caption Bars. The analogue playback dialog box is displayed in Figure

D .l. In the case, the user has selected the WAVE file FLUTE. WA V to be played for 

one second, beginning one second from the start of the file. The length of the file is 

displayed in the File Length section. The start position and playback duration can be 

selected though edit windows as illustrated. The scroll bar at the bottom of the dialog 

box can also set the start position and when playback is active, it moves to show the 

present playback position.

File Name

Figure D .l  The A nalogue Playback D ialog  Box.

D1



The File Name push button allows the user to select the filename for playback 

using the standard Windows Open dialog box. The push buttons Play, Pause and Restart 

control playback while the Cancel push button closes the dialog box. When playback is 

taking place the Cancel push button's text is changed to "Stop”. This push button will 

then only stop playback and set its text back to "Cancel". The push button's text is 

automatically returned to "Cancel" when playback has finished. The Play push button 

in the analogue or digital play dialog box starts playback of the chosen file from the 

requested start position and for the requested duration. If  the duration is zero then the 

file is played from the start position to the end of the file.

The Record Dialog Box

The record dialog box is identical for the analogue and digital options except for the 

Caption Bars. Figure D.2 shows the record digital dialog box. This dialog box allows 

the file name and recording duration to be chosen. The maximum recording duration is 

displayed above the selected recording duration. The durations are in the form, minutes, 

seconds and hundreds o f seconds. There are push buttons for starting and stopping 

recording along with a push button File Name, for changing the recording file name. The 

file name is changed using the standard Windows Save A s dialog box. The Cancel push 

button will close the dialog box if recording is not taking place. When recording is 

taking place, the Cancel push button's text is changed to "Stop" and is returned when 

recording is stopped or has finished. Pressing the Stop (Cancel) push button during 

recording only stops recording. The scroll bar can also be used to choose the recording

File Name —

Max Recording 
Duration

Recording
Duration

RECORD : DIGITAL

File Name
AUDIO.WAV File Nam e

M ax  Duration

03 : 1 6 : 9 5 Record

Duration

00 : 00 : 00 Cancel

♦ _ l ----------------- I----------------------- *

File Name 
Selection

Scrollbar

Figure D.2. The Digital Recording Dialog Box.

D 2



duration in relation to the maximum duration possible. When recording is taking place, 

the scroll bar moves to represent the present recording position in relation to the chosen 

recording length.

Default File Selection

The FILE menu bar item allows the user to select the default files for recording and 

playback. The FILE pull-down menu consists o f the common Windows' Open and Save 

A_s options. These pull-down items will call the standard Windows dialog boxes for 

opening and saving files. The file name selected in the Open dialog box will be the 

default file name for the playback dialog boxes. Similarly the Save A s  dialog box sets 

the default recording file name. File names can also be selected in the dialog boxes but 

these do not update the default file names.

Waveform Device Information

The Info menu item displays two pull-down items, Wave Out and Wave In. These 

elements select dialog boxes which displays the waveform output and waveform input 

capabilities o f the waveform device.

Help and Application Information

The Help menu bar item contains the Help and Application pull-down elements. The 

Application element displays a dialog box which provides general information about the 

application. The Help element calls the Windows help application which in turn loads 

the application's help file, MTPHELP.HLP and displays its contents page.

Exiting from the Application

The Exit menu bar item displays two pull-down options, Yes or No. The Y_es pull-down 

item when selected displays a message box prompting the user to confirm exit from the 

application. The No pull-down element will cancel the Exit menu selection.

D3



Appendix E
Windows Operating Modes
There are three operating modes for Windows, Real, Standard and Enhanced. A brief 

description o f the major features o f each follows.

Real Mode

This was the first operating mode for Windows when it was introduced in 1985 and 

was designed to run on the Intel 8086 microprocessor. Real mode used the Intel 8086 

microprocessor's segment and offset technique to generate the 20 bit physical memory 

address. The total data memory for the system and the active applications was 

restricted to the lower 640 kbytes o f the memory space which proved a major 

handicap as the size o f Windows applications increased. This mode was discarded 

from Windows 3.1 onwards [12].

Standard Mode

Standard mode was designed for the Intel 80286 microprocessor and required at least 

one megabyte of extended memory to run. It was introduced in Windows 2.0 [12]. 

This mode used the microprocessor's protected mode to increase Windows' 

performance. The size o f system memory was increased by the microprocessor's 

segment selector and offset method. This allowed up to 16 Mbytes o f physical 

memory [12]. The selector points to a selector table in memory which contains the 

base address. The offset is added to this base address to generate the physical memory.

The selector table also contains information regarding the selector type and its 

priority levels. They provide protection against unauthorised access. Each program 

operating under protected mode has a priority level ranging from zero to three. Level 

zero is reserved for the Windows operating system and is known as the supervisor 

mode while normal Windows applications run at level three and is therefore known 

as the user mode.

The priority level o f the accessing application must be greater or equal to the 

selector's priority level otherwise access will be refused. This protects the system from

El



accidental corruption by Windows applications. This protection does not prevent 

Window applications from overwriting each other as they run at the same priority 

level. Higher priority segments can be accessed by lower priority applications using 

call gates but these are strictly controlled.

The Interrupt Vector Table (IVT) is replaced by the Interrupt Descriptor Table 

(IDT). This IDT is similar to the normal segment selector table. The interrupt selector 

is similar to the normal code selector. The I/O port addresses can also be prioritised, 

and an I/O privilege map in Windows can restrict the I/O port address space available 

to applications [12],

DOS applications can be run in Windows Standard mode, but they require the 

microprocessor to switch from protected mode to real mode [12]. They cannot run 

when minimised and all Windows applications are suspended while the DOS 

application is active.

80386 Enhanced Mode.

The 80386 Enhanced mode was introduced in Windows 3.0 and can only be run on 

an Intel 80386 microprocessor or higher. Enhanced mode retains all the benefits of 

Standard mode but includes increased memory and Virtual 8086 mode. The maximum 

size of segments is increased to 4 Gbytes and each segment can be divided into 4 

kbytes pages. These small pages can be swapped between the hard disk and memory 

when physical memory is over committed, thus increasing system performance. This 

paging is implemented in hardware and introduces virtual memory to Windows [12], 

The Virtual 8086 mode allows DOS applications to run in the microprocessor's 

protected mode, eliminating the need to switch to the microprocessor's real mode. 

Multiple DOS applications can therefore run simultaneously along-side normal 

Windows applications. The DOS applications are now no longer suspended when 

minimised.

E2



Appendix F
RIFF File Foimat
The format for Windows Multimedia files is the RIFF format. RIFF stands for Resource 

Interchange File Format and was developed jointly by Microsoft and IBM [9], The 

format was designed to supported different types of Multimedia files such as the 

waveform audio (WA VE) files and audio video interleave (A VI) files, and to allow for 

the introduction of new formats as Windows Multimedia develops.

RIFF files are composed o f blocks of data known as chunks. The primary or 

parent chunk is the RIFF chunk. This chunk contains all the other chunks of the file, 

known as subchunks. The types o f subchunks contained in the RIFF chunk depend on 

the RIFF file type. A chunk is composed of three elements or fields. The first field is 

a four-character code specifying the chunk ID, a double word specifying the size of the 

data contained in the chunk's data field, and the chunk's data itself. RIFF and LIST 

chunks contain an extra field known as a form field which defines the format o f the data 

in the file. The LIST chunk is the only other chunk which can contain subchunks. The 

maximum size of the data is limited to 4.29 Giga bytes which is more than adequate at 

present but may become a problem for future formats such as Digital High Definition 

Television (HDTV).

RIFF WAVE File Fonnat

The first chunk encountered in a WAVE file is a RIFF chunk which possesses a form 

field of type WA VE. The data size field o f this chunk is the size o f all its subchunks. 

The WAVE format can contain several different subchunks but only the FORMA T and 

DATA chunks are used here. Figure F .l. illustrates the WAVE file format used by the 

application.

The FORMA T subchunk describes the format of the data contained in the DA TA 

chunk and its identification (ID) field is fmt. The data o f this chunk is a 

PCMWA VEFORMA T structure. This structure contains the sampling frequency, bits per 

sample, bytes per second, stereo or mono, minimum number of bytes per complete 

samples (left and right if  stereo) and the data type which is always PCM. The next 

subchunk is the DA TA chunk which contains the actual waveform data. This chunk has

FI



Riff Chunk

ID Size Form Type Data

ID Size Data ID Size Data

Format Subchunk Data Subchunk
Figure F.l. WAVE File Structure.

an ID field of data. The maximum size o f the data the file can hold is approximately

6.7 hours o f uncompressed 44.1 kHz 16 bit stereo data. The WAVE format can also 

contain additional subchunks, a fact subchunk, associated data LIST adtl and a cue- 

points subchunk for identifying different locations within the file for synchronisation 

with other multimedia devices.

PCM Audio Format
The most common RIFF WAVE format is the Pulse Code Modulation (PCM) format. 

For the PCM 16 bit stereo format the data is stored left channel first and least significant 

byte first [11], The format chunk contains all the data required to set up the waveform 

device for this format. Because the digital format only involves a different transmission 

medium and the coding of the signal is also PCM, the input or output medium is 

irrelevant when dealing with WAVE files.

Multimedia File I/O Functions and Structures
The application uses the Multimedia File I/O functions for accessing the WAVE files 

on the hard disk rather than the normal Windows or C functions for several reasons. 

First, these functions are part o f Windows so they do not increase the size o f the 

application. Second, they are specifically written for RIFF files and provide easier and 

faster navigation through these files [11],

There are several new data structures associated with these functions. HMMIO 

is a file handle similar to the normal file handles but is not compatible with C or DOS 

file functions. The MMCKINFO  structure contains information on a chunk. The most 

important of these being the type of chunk, size o f data field and a pointer to the chunks

F2



data field from the beginning of the chunk. The MMIOINFO structure contains 

information on the current state of a file. For a complete description of the different 

elements of each structure refer to the Microsoft Multimedia Programmer's Reference, 

listed in the Bibliography,

The Multimedia File I/O Functions can be identified by their mmio prefixes and 

they contain the standard set of file functions, opening, closing, reading and writing. 

They also contain unique functions such as mmioCreateChunk, mmioDescend and 

mmioAscend. The mmioAscend and mmioDescend functions are used to navigate 

through the various chunks o f the RIFF file without calculating the various pointers for 

the data fields manually. The mmioDescend function will move the file pointer to the 

data field o f the present chunk while mmioAscend moves the pointer to the beginning 

of the next chunk. The mmioDescend function will fill the MMCKINFO structure with 

the chunk details which the mmioAscend function utilises when moving to the next 

chunk.

F3



Appendix G
Hungarian Notation
The Hungarian notation used in the Windows application's C programs and the device 

driver's C and assembly language programs is shown in Table G.l. The variable types 

which may not be familiar are the DWORD, BYTE  and BOOL which are simply 

modifications of previous types LONG and CHAR, which do not require the 

UNSIGNED keyword.

Prefix Data Type

c char (8 bits)

by BYTE (unsigned char)

n short or int (8 bit integer)

i int (16 bit signed integer)

x, y short (used as x, y coordinates)

b BOOL ( 16 bit integer)

ui or w UINT or WORD (unsigned 16 bit integer )

1 LONG (32 bit signed integer)

dw DWORD ( unsigned 32 bit integer)

fn function

s string

lpsz long pointer to a string terminated by zero

Table G .l Examples o f Hungarian Notation.

G1



Appendix H
Help File for the MTP Application
The help implemented in the Windows MTP application provides explanations for the 

menu bar items and the process of recording or playing files. This is not a 

comprehensive help document but does demonstrate the common help principles. The 

Windows program WINHELP.EXE, situated in the Windows directory, provides the 

interface for accessing Windows HELP format files [11, 15],

The application's help file consists of a CONTENTS PAGE with HYPERTEXT 

jumps to other screens and GLOSSARY 

items which display pop-up boxes when 

selected. The CONTENTS PAGE o f the 

HELP file is shown in Figure H .l. The 

text shaded (Green in colour) and 

underlined by a solid line in Figure H .l, 

are HY PERTEXT jumps which allow the 

user to call up a new text screen related 

to the highlighted text. They provide 

links between the different sections of the 

help file. The GLOSSARY hot spot text 

areas are coloured and underlined with a 

dashed line. The help file also contains 

bitmaps with GLOSSARY pop-up boxes.

Generating the Help File

The help file is generated by the HC31.EXE compiler from the help project file 

MTPHELP.HPJ and the separately compiled help source file MTPHELP.RTF. The help 

file MTPHELP.HLP, is generated from the following two commands issued at the 

system prompt;

H O I  MTPHELP.RTF

HC31 MTPHELP.HPJ

pie Edit Bookmati jjelp

MultimediaTeaching Platform Help Contents. 

Using The MultimediaTeaching Platform :

A bout M TP 

R eco rd in g  A udio 

Playing A udio 

Menu Options:

File
P lay

Record

Information

Exit

Help

Figure H .l Application's Help Window.

HI



The help project file is shown in Listing H.l and has the same format as a .INI 

Windows file. The [OPTIONS/  section contains optional information regarding the help 

file. The TITLE keyword sets the Windows WINHELP program's title bar while 

COMPRESS determines whether the file is compressed. The [FILES] section specifies 

the source files which make up the help file. The [MAP] section is optional and defines 

the help file's context sensitive elements. One of these elements can be accessed 

immediately when the help file is called, if the WinHelp function's context flag is set 

and its context value equals one of these numbers.

[OPTIONS]
T I T L E = M u l t i m e d i a  T e a c h i n g  P l a t f o r m  
COPYRIGHT=Kevin S t r e e t ,  DIT.
COMPRESS=TRUE

[FILES]
m t p h e l p . r t f

[MAP]
# d e f i n e  H_About_MTP 10
# d e f i n e  H _ F i l e  20
# d e f i n e  H _ R e c o r d i n g  40
# d e f i n e  H _ P l a y b a c k  30
# d e f i n e  H _ I n f o r m a t i o n  50
# d e f i n e  H_Help  60
# d e f i n e  H _ E x i t  70

Listing H .l Project File fo r  the Help File.

The Help File's Source File

This source file is in the Rich Text Format (.RTF) and is shown in Listing H.2. 

Displayed in this listing are the CONTENTS PAGE, the HYPERTEXT jump Play and 

the GLOSSARY item Analogue Audio. The double underlined text shown in Listing

H.2, states HYPERTEXT jum p points while single underline text states GLOSSARY 

items. The text in brackets immediately after the underlined text is the reference name 

of the GLOSSARY item or the HYPERTEXT jump section. This text is hidden in the 

RTF format and this is illustrated by brackets enclosing the text.

The GLOSSARY and HYPERTEXT sections are declared using # footnote. The 

HYPERTEXT element can contain a number of properties which are also declared with 

footnotes. For example the $ footnote determines the string which appears in the Go To 

list box in the Search dialog box o f the WINHELP program when this element is 

selected in the Search dialog box. Table H.l shows the footnotes used for the

H2



{bml icon.bap)

Multimedia Teaching Platform Help Contents.

Using The Multimedia Teaching Platform :
A b c m ^ _ £ i X £  [ H_Abo u t_MTP ]
Recording Audio[H_R&cord±ng]
Playing Audio[B_Playback]

Menu Options :
File[HJFile]
P l a v fH Pla.vba.ck]
Record[H_Recording] 
i | l £ o £ m a t i 2 I l  f H_Znforma.ti.on ]
Exit[ H _ E x i t ]
Help m  Help?

----------------------------- Page Break----------------------------
# $ k + Play

The process of playing analogue or digital files is identical.
Playback is accomplished with one of the dialog boxes from the Play
menu bar item. The dialog box shown below allows the user to select
the WAVE file, the start position and the duration of playback.

{bmc playanlg. sbg}
----------------------------- Page Break----------------------------
# Analogue Audio

The analogue audio is the 44.1 kHz 16 bit stereo PCM WAVE format.

Listing H.2 Sections o f the Help File's Source File.

HYPERTEXT jumps in the help file and their functions. The + footnote assigns a 

context number to the HYPERTEXT element which is used in context sensitive help for 

jumping immediately to the subject, bypassing the CONTENTS PAGE.

The bitmap ICON.BMP is inserted into the start of the CONTENTS PA GE with 

the hidden text bml icon.bmp. The bml statement inserts the bitmap on the left-hand side 

of the CONTENTS PAGE. The bmr statement places the bitmap on the right while the 

bmc statement places the bitmap in the current line of text. This bitmap can itself be 

defined as a HYPERTEXT jump or a GLOSSARY item by underlining the bitmap 

statement and declaring the jum p or pop-up reference after it. The Play HY PERTEXT 

text also contains a bitmap image, bmc playanlg.shg. This bitmap is in the segmented- 

graphics bitmap format (.SHG). This format contains hot spot areas which can in turn

H3



Footnote Function

# Reference Name.

S String displayed in the Search dialog box.

K. String displayed in the Go To list box of the 

Search dialog box.

+ Definition of context number

Table H .l FOOTNOTES used fo r  HY PERTEXT jumps.

call GLOSSARY and HY PERTEXT items. The bitmap is created in the SHED.EXE 

application from a normal Windows bitmap file. The SHED.EXE application allows the 

user to define graphical hot spot areas on the bitmap and link these to GLOSSARY or 

HYPERTEXT elements in the help file's source file. This application is one of the visual 

programming aids which are included with most Windows programming packages. The 

PLA Y ANALOGUE  and RECORD DIGITAL dialog boxes displayed in the Recording 

and Play HY PERTEXT screens will display GLOSSARY pop-up boxes when one of 

their controls is selected. These pop-up boxes explain the function of each control. The 

PLAY HY PERTEXT screen is shown in Figure H.2.

P e  Edit Boojtffl«rfc Help 
Ç on U n l» ! I w k *  1 I HitjoiT | s
Play

The p rocess  of p laying analogy.? or d ig ita l files is iden tica l 
P la yba ck  is accom plished  with one of  the dialog boxes from  the  
P lay  menu bar itsm . The dialog bo* shewn below allovrs t f e  user 
to  se lec t th e  W A V E  file , the start position and the  duration o f 
p layback

FHc Length 

[ do : 05 : oo

Start

F ile  N am e

AUDIO.WAV File Name

D u ra tio n

00 : 01 : 00 I I 00 :0 2  : 00 Ploy

L
P a u se R estait Cancel

s i...li.":::. w

Figure H.2 Play HY PERTEXT screen with the segmented-graphics bitmap,

PLA YHELP.SHG.

H4



Appendix I
Device Driver Installation
The device driver can be installed in Windows manually or automatically. Manual 

installation involves placing the line "WA VE=MMTEA CH.DR V" in the [drivers] section 

o f the SYSTEM.INI file, and copying the device driver MTEACH.DRV , to the 

SYSTEM  subdirectory in the main Windows directory. Automatic device driver 

installation is accomplished by the Drivers applet in Control Panel. Control Panel is in 

the Main group of Program Manager. This installation requires an installation disk 

containing the device driver MMTEACH.DRV, and the standard setup file 

OEMSETUP.INF, for third party device drivers [11]. This file is listed in Listing 1.1. 

and contains the number of disks required for installation along with the type of device 

driver "WA VE", and the name of the device driver MMTEA CH.DR V. The DRIVERS 

applet will perform the same process as described for manual installation.

[disks]
1 =. ,"Multimedia Teaching Platform", diskl

[Installable.Drivers]
MMTEACH = 1rmmteach.drv, "Wave", "Multimedia Teaching Platform", 

Listing 1.1. Device Driver's Setup file, OEMSETUP.INF.

II



Appendix J
Installing the MTP application
This Appendix explains the process involved in installing a Windows application from 

its installation disk using the Microsoft Windows Setup Utility [11, 13], The steps 

involved in building the installation disk for the MTP application are also described.

Windows Setup Utility

Windows applications are installed using the Windows Setup Utility. This utility can be 

broken into two sections. The first section is composed o f SETUP.EXE and its list file 

SETUP.LST. The SETUP.EXE program is responsible for transferring the files, listed 

in its list file, to a temporary directory on the hard disk. These files are required by the 

next part o f the installation process, _MTEST.EXE the installation program. This 

program is a BA SIC interpreter which reads the installation setup script, MMAPP.MST. 

This script controls the installation process, it is responsible for displaying dialog boxes 

and processing the options which the user selects.

The Microsoft Windows Software Development K it Ver.3 (SDK) [11] contains 

a setup development kit in its MSSETUP directory situated in its main directory. This 

kit contains applications and source code for building installation disks for Windows 

applications.

Installing the application

This Windows application is installed on to the PC's hard disk from its installation disk, 

labelled "Installation Disk fo r  the Multimedia Teaching Platform's Windows 

Application”. The application is installed by running the executable file SETUP.EXE on 

this disk. This program requires Windows to be active and will start Windows if 

Windows is not already running.

The process o f installing the Windows application from the user's perspective is 

explained. First, a dialog box is displayed which informs the user that the installation 

process is being initialised. This initialisation process involves transferring files required 

by the installation program to a temporary directory. This temporary directory is deleted 

when the installation process finishes. When this process is completed, the installation

J1



program is started which displays a 

dialog box requesting the user to 

CONTIN U E  or EXIT  the 

installation process as shown in 

Figure J.l. There is also a HELP 

option. This option displays a 

dialog box which provides 

information on the installation 

process. If  the EXIT option is 

selected then the installation 

process is stopped and none of the 

application's files are transferred.

If  the CONTINUE option 

decompressed and transferred from 

the installation disk to the default 

directory. A dialog box is displayed 

as shown in Figure J.2, which 

provides information on the present 

application file being transferred.

The dialog box also contains a bar 

indicator that reports the percentage 

of the installation process which 

has been completed.

Building the Installation Disk

The process of building the installation disk for the application can be summarised as 

follows:-

Step 1 : Identify the files which the application needs to run and store these in a

new working directory along with the files required by the installation 

process. The files needed are shown in Table J.l.

Step 2 : Create the setup script MMAPP.MST, in the working directory and

modify the dialog box templates.

Figure 11 The Installation Program displaying 

the Welcome Dialog Box.

Multimedia 'leaching Pialloni!

is taken, then the application's files can now be

Figure J.2 Installing the Application's Files.

J2



Step 3 : Create the layout file MMAPP.LYT with the Windows program

DSKLAYT.EXE.

Step 4 : Create the disk image and the MMAPP.INF file using the DOS program

DSKLATY2.EXE. The MMAPP.INF file determines the files needed by 

the application to run and on which disk they are stored on.

Step 5 : Modify the MMAPP.INF file to only include the application's files.

Step 6 : Compress the MMAPP.INF file.

Step 7 : Modify the SETUP.LST file.

Step 8 : Transfer the disk image files, the compressed image file and setup list file

to the installation disk.

Setup Utility's Files Application Files

Setup.exe mmapp.exe

Setup. 1st mmapp.bmp

_mstest.exe mmapp.ico

mscomstf.dll speaker.ico

mscuistf.dll comdisc.ico

msdestf.dll compact.ico

msinsstf.dll recorder.ico

msshlstf.dll mtphelp.hlp

msuilstf.dll bc30rtl.dll

setupapi.inc bwcc.dll

mmapp.mst

Table J.1 Files required by the DSKLAYT program.

The first step involves creating a working directory for developing the installation 

disk. This directory is filled with the application's files and the files required by the 

setup utility as described in Table J.l. The next step is to create the setup script 

MMAPP.MST. This is in the form of a BASIC language source file as shown in Listing 

J.l. The first section of the script involves customising the user interface. References to

J3



the library MSCUISTF.DLL are declared. This library is a DLL which contains the 

dialog boxes and their processing functions along with the bitmap which is displayed 

in the installation program's mam window as shown in Figure J. 1

'^INCLUDE 1setupapi.inc1 
GLOBAL DEST$
CONST WELCOME = 100
CONST APPHELP = 900
DECLARE SUB Install
DECLARE FUNCTION MakePath (szDir$, szFile$) AS STRING 
INIT:

CUIDLL$ = "mscuistf.dll" ''Custom user interface dll
HELPPROC$ = "FHelpDlgProc" ''Help dialog procedure
SetBitmap CUIDLL$, 2
SetTitle "Multimedia Teaching Platform"
szlnf$ = GetSymbolValue("STF_SRCINFPATH")
IF szlnf$ = "" THEN

szlnf$ = GetSymbolValue("STF_CWDDIR") + "MMAPP.INF"
END IF
ReadlnfFile szlnf$
DEST$ = "C:\MMAPP"

WELCOME:
sz$ = UIStartDlg(CUIDLL$, WELCOME, "FInfoDlgProc", APPHELP,

HELPPROC$)
IF sz$ = "CONTINUE" THEN 

UIPop 1
ELSE

GOTO QUIT 
END IF 
Install 

QUIT:
END

SUB Install STATIC
SrcDir$ = GetSymbolValue("STF_SRCDIR")
CreateDir DEST$, cmoNone
AddSectionFileaToCopyList "Files", SrcDir$, DEST$ 
CopyFilesInCopyList
CreateProgmanGroup "Multimedia Teaching Platform", "", cmoNone
ShowProgmanGroup "Multimedia Teaching Platform", 1, cmoNone 
CreateProgmanltem "Multimedia Teaching Platform", "MiTEACH",

MakePath(DEST$,"mmapp.exe"), cmoOverwrite
END SUB
FUNCTION MakePath (szDir$, szFile$) STATIC AS STRING 

IF szDir$ = "" THEN
MakePath = szFile?

ELSEIF szFile$ = "" THEN 
MakePath = szDir$

ELSEIF MID$(szDir$, LEN(szDir$), 1) = "\" THEN 
MakePath = szDir$ + szFile$

ELSE
MakePath = szDir$ + "\" + szFile$

END IF 
END FUNCTION

Listing J.1 The Setup Script file, MMAPP.MST.

J4



The Welcume dialog box as shown in Figure J.l is displayed with the UIStartDlg 

function. For more information on the installation program's functions refer to the setup 

documentation in the SDK. This dialog box's processing function will return control to 

the installation program when the user has selected the Quit or Continue option. If the 

Continue option has been selected then the application is installed with the Install 

procedure (SUB Install Staticj. The dialog boxes Welcome and Help, are modified from 

the sample source code for the MCUISTF.DLL library. The "Multimedia Teaching 

Platform" bitmap is created and displayed using the statement SetBitMap CUIDLLS, 2, 

where 2 is DLL reference number for this bitmap. The sample code is in the directory 

MSSETUPYBLDCUI, situated in the main SDK directory.

The third step is to create the layout file, MMAPP.LYT using the 

DSKLAYT.EXE Windows program. This program sets the attributes for all the 

installation files and is in the directory MSSETUPYDISKLAY, situated in the main SDK 

directory. The attributes which can be set include which type of installation disk the file 

is to be stored on (read only), whether to compress and decompress the file and whether 

to overwrite a file if  it already exists. The files shown in Table J.l possess the following 

attributes; Any Diskette, Overwrite Always, Compress, Decompress, Vital File and File 

Date is the same as the source file’s date. The exceptions are the SETUP.EXE and 

SETUP.LST which must not possess the Compress and Decompress attributes because 

they initialise the installation process.

The fourth step uses the layout file to build the installation disk and the image 

file MMAPP.INF. This file is used by the installation program to determine where the 

files are stored and what their attributes are. The DOS program DSKLAYT2.EXE 

creates this image file and the installation disk in the specified directory. The files with 

the Compress attribute are compressed by this program using the COMPRESS EXE 

program which resides in the same directory as the DSKLAYT programs. 

DSKLAYT2.EXE is run from its own directory with the following switches

DSKLAYT2 MMAPP.LYT (full path to working directory)\MMA PP.INF /d  

\setup / f  /k 144

The first file is the layout file, followed by new image file with the path to the working 

directory. The /d  \setup switch determines the directory where the setup disks are to be 

created. The installation disk image will be stored in the directory SETUPVDISKl. The 

/ f  switch overwrites the MMAPP.INF file if one already exists when the installation

J5



disks are being built. The k 144 switch instructs DSKLAYT2 to build installation disks 

for 1.44 Mbyte floppy disks.

The MMAPP.INF file created by DSKLAYT2.EXE unfortunately includes the 

files required by the initialisation and installation programs These will be transferred 

along with the application's files to the application's directory. In this installation process 

where the user does not have a selection of installation options these files are not 

required For a more sophisticated application where the user has a choice of installation 

options then these files may be transferred. The MMAPP INF file is edited and the 

installation files are removed. The MMAPP.INF file is shown in Listing J.2.

[ S o u r c e  M ed ia  D e s c r i p t i o n s ]
"1" ,  " d i s k l " ,  " b c 3 0 r t l . d l  ", " . . \ d i s k l "

[ D e f a u l t  F i l e  S e t t i n g s ]  
"ST F_BACKU P" = ""
"STF COPY"
"STF_DECOMPRESS
"ST F_OVERWRITE"
"STF_READONLY"
"STF_ROOT"
"STF_SETTIME"
"STF_TIME"
"STF VITAL"

= "YES"
= "YES"
= "ALWAYS" 
= "YES"_ If II
= "YES"
=  " 0 "

= "YES"
[ F i l e s ]

1 ,  c o m d i s c . i c o , , , ,  1 9 9 3 - 0 8 - 0 4 , , , ,  ¡READONLY,, 
1,  c o m p a c t . i c o , , , ,  1 9 9 3 - 0 7 - 2 8 , , , ,  ! READONLY,, 
1 ,  mmapp. i c o , , , ,  1 9 9 4 - 1 0 - 2 0 , , , ,  ¡READONLY, ,, ,  
1 ,  r e c o r d e r . i c o , , , ,  1 9 9 4 - 1 0 - 2 0 , , , ,  ! READONLY, 
1 ,  s p e a k e r . i c o , , , ,  1 9 9 4 - 1 0 - 2 0 , , , ,  ! READONLY,, 
1 ,  m t p h e l p . h i p , , , ,  1 9 9 4 - 1 1 - 1 1 , , , ,  ¡READONLY,, 
1 ,  m m a p p . b m p , , , ,  1 9 9 4 - 1 0 - 0 1 , , , ,  ! READONLY,, , ,  
1,  m m a p p . e x e , , , ,  1 9 9 4 - 1 2 - 0 1 , , , ,  ¡READONLY,, , ,

,,, 766,,,,,,,, 766,,,,,, 7 6 6,, ,,,
t ti ! 7 6 6 , 1 1 1 1

iti 7 6 6 iliti ,,, 11166,,,,, , 44118,iti,
i 156498i i i i ,

1,  b c 3 0 r t l . d l l , , , ,  1 9 9 2 - 0 6 - 1 0 , , , ,  ¡ R E A D O N L Y , , , , , ,  1 4 3 8 0 2 , , , , ,

Listing 1 2  Installation Disk's Image file, MMAPP.INF.

The fifth step involves manually compressing the image file into the MMAPP.IF_ 

file as follows,

COMPRESS (path to working directory)\MMA PP.INF (path to working 

directory) 'MMA PP.IF 

The underscore character (_) at the end of the file name denotes a compressed file.

The penultimate step is to modify the sample list file SETUP.LST. This file 

determines which files are transferred to the temporary directory and is shown in Listing 

J.3. The setup script MMAPP.MST, is added to the list as shown in Table J.3. The 

[Files] section determines the transferred files along with their names when transferred

J6



to the hard disk. The [Options] section determines the properties of the dialog box which 

is displayed when the files are being transferred, such as the title "Multimedia Teaching 

Platform Setup" and the message "Initialising Setup..." in the center of the dialog box. 

The name of the temporary directory and the disk space required for installation are also 

declare in this section. The statement CmdLine = mstest mmapp.mst C " S %s %s" 

is responsible for running the installation program with the setup script, MMAPP.MST.

[Parana]
WndTitle = Multimedia Teaching Platform Setup 
WndMess = Initialising Setup...
TmpDirSize = 900 
TmpDirName = -msstfqf.t
CmdLine = _mstest mmapp.mst /C "/S %s %s"
DrvModName = DSHELL
[Files]
mmapp.if_ = mmapp.inf 
mmapp.in_ = mmapp.ing 
mmapp. ms_ = mmapp. ms t 
setupapi.in_ = setupapi.inc 
mscomstf.dl_ = mscomstf.dll 
msinsstf.dl_ = msinsstf.dll 
msuilstf.dl_ = msuilstf.dll 
msshlstf.dl_ = msshlstf.dll 
mscuistf.dl_ = mscuistf.dll 
msdetstf.dl = msdetstf.dll 
_mstest.ex_ = mstest.exe 
setup.exe = ’setup.exe 
setup.1st = setup.1st

Listing 1 3  The Setup List file, SETUP.LST.

The last step is to transfer the installation disk image files to the installation disk 

The setup list and compressed image file are also transferred to this disk. The files 

contained on the installation disk are shown in Table J.2. The application can now be 

installed from this disk.

J7



File Name Transferred Name

_mtest.ex_ _mtest.exe

bc30rtl.dl_ bc30rtl.dll

comdisc.ic_ comdisc.ico

compact.ic_ compact.ico

mmapp.bm_ mmapp.bmp

mmapp.ex_ nunapp.exe

mmapp.ic_ mmapp.ico

mmapp.if_ mmapp.inf

mmapp.in_ mmapp.ing

mmapp.ms_ mmapp.mst

mscomstf.dl_ mscomstf.dll

mscuistf.dl_ mscuistf.dll

msdestf.dl_ msdestf.dll

msinsstf.dl_ msinsstf.dll

msshlstf.dl_ msshlstf.dll

msuilstf.dl_ msuilstf.dll

mtphelp.hl_ mtphelp.hlp

recorder.ic_ recorder.ico

setup.exe setup.exe

setup.1st setup.1st

setupapi.in_ setupapi.inc

speaker.ic_ speaker.ico

Table J.2 Installation Disk Files.

J8


