
Mixing Formal Specifications

Using ICL

(Interconnection Language)

Author

Margaret O’Donnell B.Sc.

Supervisor

Prof. J. A. Moynihan

Submitted to

The School of Computer Applications

Dublin City University

for the degree of

Master of Science

Septem ber 1994

D ecla ra tio n

I hereby certify that this material, which I now submit for assessment

on the programme of study leading to the award of Master of Science

in Computer Applications, is entirely my own work and has not been

taken from the work of others save and to the extent that such work

has been cited and acknowledged within the text of my work.

Signed: / W O ' Dat e \ ~ L l - *1-

Margaret O’Donnell

Miqtozuiedgements

I would like to thanf^ my supervisor, Trof Tony ‘Moynifian, whose patience and
guidance throughout this work, proved invaluable,. I u>ould also like, to thank my
family, all my friends and fellow postgraduates fo r their encouragement and intriguing
distractions, finally, sincere and special thanks to ‘Ken fo r his patience and support
and especially fo r proof-reading this thesis.

C hap ter 1 An Introduction to SPECS and the Mixing of Form al Languages 1

1.1 Introduction... 1

1.2 How Mixed Specifications are used in S P E C S .. 3

1.3 The SPECS Project .. 3

1.3.1 SPECS’s Goals and Achievements .. 3

1.3.2 Software Development Life-cycle Work P ackages.............................. 5

1.4 Tools used and developed in SPECS ... 7

1.5 SPECS Architecture for handling Specifications... 8

1.6 DCU’s Role in software development life-cycle of SPECS 9

1.7 My Role In SPECS 11

1.9 Summary .. 12

C hap ter 2 The Form al Specification Languages to be M ixed(SDL & LOTOS) . . . 13

2.1 Introduction... 13

2.2 SDL Specification and Description Language... 13

2.2.1 SDL - A Brief Overview... 13

2.2.1.1 History .. 13

2.2.1.2 Application Area ... 13

2.2.1.3 System D escrip tion ... 14

2.2.2 Behaviour D esc rip tio n ... 14

2.2.2.1 Use of Blocks in S D L .. 15

2.22.2 Processes in SDL . .. 17

2.2.23 Data Handling ... 17

2.2.2.4. States and Transitions ... 19

2.2.3 Conclusion on S D L .. 20

2.3 LOTOS Language Of Temporal Ordering Specification 21

2.3.1 LOTOS - A Brief O verv iew ... 21

2.3.1.1 History .. 21

2.3.1.2 Structure of the L a n g u a g e .. 22

2.3.2 Behaviour D esc rip tio n ... 22

2.3.2.1 How to define a system’s behaviour in L O T O S23

2.3.2.2 Process Communication ... 27

2.3.2.2.1 Basic L O T O S .. 28

23.2.2.2 Full L O T O S .. 28

23.2.3 LOTOS Structure Specification .. 29

2.3.2.4 The use of algebra data type in LOTOS 30

23.2.5 The SPECS Data Types for L O T O S 30

2.3.2.6 LOTOS Example .. 33

2.3.3 LOTOS in Practice ... 35

2.4 Conclusion (LOTOS vs SDL)... 36

2.5 Summary .. 38

C hapter 3 A Description of the In te rconnection Language (ICL)39

3.1 Introduction.. 39

3.3 Overview of Two Alternative Mixing Approaches .. 40

3.3.1 Introduction ... 40

3.3.2 LOTOS-SDL Integration via Service D efin itions............................... 40

3.3.3 Mixing at different le v e ls .. 42

3.3.3.1 Representation Level Interoperability (R L I) 43

3.3.3.2 Specification Level Interoperability (SLI)43

3.3.4 Interoperability Mixing Model .. 44

3.3.4.1 In troduction ... 44

3.3.4.2 Description of the m o d e l... 45

3.4 Mixing LOTOS and SDL Specifications.. 46

3.5 The Interconnection Language ICL ... 47

3.5.1 ICL Syntax Rules ... 48

3.5.1.1 Transformation mappings from SDL to L O T O S48

3.5.1.2 Transformation mappings from LOTOS to S D L49

3.5.2 Explanation of the Rules ... 49

3.6 How does the mixing w o r k ... 54

3.7 Mixing Results .. 55

3.8 Summary of the ICL lan g u ag e .. 56

C hap ter 4 M ixing SDL and LO TO S using the ICL Production R u le s 57

4.1 Introduction.. 57

4.2 Products of the CR&F M ethodology.. 57

4.3 ICL Production R u le s .. 58

4.3.1 Using the Classified Specification .. 58

4.3.2 Using the Rigorous Specification... 60

4.3.2.1 Using The DFD’s ... 60

4.3.2.2 Using the Message Sequence Charts (MSC) 61

4.3.2.3 Using ASN.l and PSpecs .. 61

4.3.3 Using the Formal Specification .. 62

4.3.4 Constructing the ICL s ta tem e n ts ... 63

4.3.4.1 ICL Specification Header .. 64

4.4 Conclusion and Implementation of the R u le s ... 65

4.5 Summary .. 65

C hap ter 5 Application of the IC L Production Rules to the SPECS Pilot Case

S tu d y .. 67

5.1 Introduction.. 67

5.2 Overview of the SPECS Pilot Case S tu d y ... 67

5.3 Description of the Alarm Call Service ... 68

5.3.1 Introduction .. 68

5.3.2 Functionality of the Alarm Call Service.. 68

5.4 Alarm Timer Process .. 70

5.5 Generating the ICL specification... 70

5.5.1 Using the Classification Specification 70

5.5.2 Using the Rigorous Specification ... 74

5.5.2.1 Using the DFDs..74

5.5.2.2 Using the MSC .. 75

5.5.2.3 Using ASN.l+PSpec .. 76

5.5.3 Using the Formal Specification.. 76

5.5.4 Construct the ICL statements ... 78

5.5.4.1 ICL Specification Header ... 81

5.6 Conclusion .. 82

C hap ter 6 C o n c lu s io n s ... 83

6.1 In troduction.. 83

6.2 Results of the Pilot Case Study .. 84

6.3 Strengths and Weaknesses of the ICL Production Rules 85

6.3.1 Advantages to using the Rules...85

6.3.2 Limitations of the R u le s ... 85

6.4 Possible Enhancements to IC L .. 86

6.4.1. Refinement of the Data Type Approach .. 86

6.4.2 Nested Mixing ... 87

6.5 Summary .. 87

B ibliography .. 89

Appendix A

The Informal Specification of the Alarm Service

Appendix 15

The Classified Specification for the Pilot Case Study

Appendix C

The Rigorous Specification for the Pilot Case Study

A ppendix D

The SDL specification for the Pilot Case Study......

Appendix E

The LOTOS Specification for the Pilot Case Study

Appendix F

The ICL Specification for the Pilot Case Study

M ixing Form al Specifications Using ICL (In terconnection Language)

M argare t O ’Donnell Septem ber,1994

ABSTRACT

There is an increasing need and desire to develop systems by combining components that are
written in different languages and/or run on different kinds of machines. Success largely
depends on the ability of their components to communicate and work together despite their
differing backgrounds.

This thesis addresses the problem of mixing two formal specification languages, SDL and
LOTOS. Various approaches to mixing specification languages are examined including the
SPECS approach which is presented in more detail. A unique feature of the SPECS approach
is the support of multiple specification languages, including the ability to mix specifications
languages within a given system design. This area of research investigates the SPECS specific
mixing language ICL (Interconnection Language). The thesis looks at two formal languages,
one of an asynchronous nature (SDL) and one of a synchronous nature (LOTOS), which can
be combined using the Interconnection Language. Also a set of rules are given to produce
this formal mixing specification from less formal descriptions. These rules use a range of
informal representations and rigorous models of the required system to produce of the ICL
specification. An application of these rules is presented.

This research work was carried out as part of DCU’s contribution to the SPECS (Specification
and Programming Environment for Communication Software) project, part of the RACE
program of the EC. SPECS’s aim was to, as much as possible, automate the software
development process by using formal languages. An overview of the SPECS project is
presented in chapter 1 of this thesis.

C hap ter 1 A n Introduction to SPECS and the Mixing of Form al Languages

1.1 In troduction

This chapter gives an introduction to the mixing of formal specification languages and

describes the research work that I contributed to the SPECS' project, part of the

RACE2 programme of the EC. The language, for mixing formal specification

languages, on which I focused my research is the "In te rconnec tion Language"

ICL3. It is the mixing language used by SPECS to mix the system with its

environment and its sub-components that are specified in a different language.

The formal specification languages used by the SPECS project are SDL4 and

LOTOS5. An ICL specification allows specifications written in SDL and LOTOS to

interact. A system can be divided into sub-components, specified in a language best

suited to represent its behaviour and combined into one specified system, via an ICL

specification. A set of rules, the "ICL Production Rules" which I devised, is given to

derive an ICL specification from the products of each of the development processes

used in SPECS for producing formal specifications. The description of these rules and

their application to a "pilot case study" is the core of my dissertation and also my

personal contribution to SPECS. An overview of the mixed specified system is given

in Figure 1.1.

SPECS is one of four RACE software technology projects. The RACE SPECS project

covers the tasks pertaining to the techniques for the specification, design,

1 SPECS Specification and Programming Environment for Communications

2 RACE Research and Development in Advanced Technologies in Europe

3 Interconnection Language

4 Specification and Description Language

5 Language Of Temporal Ordering Specification

implementation, testing and reuse of IBC6 software. The primary aim of the SPECS

project is to provide maximum automation and optimisation of the software

engineering of IBC software within its software development life-cycle.

The project was organised into nine workpackages in which each workpackage was

assigned an aspect within this life-cycle. The aspect of the development process life

cycle which DCU was assigned was the production of Formal Specifications. The

formal specifications LOTOS and SDL with the ICL specification to glue these two

components together, when completed, would be passed on to the workpackage which

was assigned the next step in the software development life-cycle. This development

process life-cycle is described in this chapter in section 1.3.2. From these formal

specifications a high-level programming language is produced from SPECS code

generation tools, thus achieving SPECS aim to automate and optimise the software

engineering of IBC software.

6 IBC Integrated Broadband Communications (Unifying the various means of transmission (terrestrial,
mobile satellite..) and various kinds of services offered on this telecommunications network.

2

1.2 H ow M ix ed S p ec ifica tio n s a re u sed in S P E C S

A unique feature of the SPECS environment is the ability to handle several

specification languages separately or even co-existing within a particular specification.

It was the conclusion of the "definition phase" of the SPECS project that none of the

current specification languages such as SDL, LOTOS and ESTELLE supports all the

needs for a specification of telecommunication systems, but that most desirable

features are available somewhere amongst the languages. However, a compromise has

to be made to some extent where two languages like SDL and LOTOS have different

paradigms. LOTOS assumes synchronous communication whilst in SDL it is

asynchronous. Although both FDTs7 can be handled by the semantic layer of the tools

developed by SPECS, an additional language to define the inter-connection between

them has to be designed and implemented to enable the handling of the complete

mixed FDT systems. Thus SPECS has defined a scheme for combining specifications

in LOTOS and SDL, bridging the worlds of synchronous and asynchronous

specification languages. This mixing scheme is ICL "Interconnection Language". This

language maps the outputs of LOTOS events to incoming queues in SDL and also

maps SDL outgoing signals directly to gates to activate LOTOS events. This offers

the possibility to specify parts of large systems in the best suited language and to

reuse existing specifications.

1.3 The SPECS P roject

1.3.1 SPECS’s Goals and Achievements

The global objective of SPECS was to define a methodology that would promote the

use o f form al description languages throughout the methodology to enable the

engineering o f lB C software to be o f better quality, quicker and cheaper. The software

development life-cycle from informal requirements to executable and tested code is

7 FDT Formal Descriptive Techniques

covered. The goals included in this are:

methods for the analysis o f informal specifications and the generation of

formal specifications in LOTOS and SDL.

methods for the analysis o f formal specifications, based on their semantics, to

detect errors as soon as possible in the development process.

methods for the generation of implementations from formal specifications.

methods for the generation o f TTCN8 test cases from formal specifications and

the verification and the execution of these test cases

methods for the reuse o f components in the various development activities.

SPECS has tried to adapt the possibilities offered by the achieved goals to practical

applications in industrial software development. A Pilot Case Study which offered

many of the characteristics of an industrial development was carried out to test the

SPECS m ethodology. The case study has validated several aspects o f the SPECS

m ethodology and the "1CL Production Rules" which I defined. The feedback provided

was beneficial and taken into account in the final project deliverables. A detailed

account o f the Pilot Case Study can be found in Chapter 5.

To distribute the architecture and m ethodology o f the project, SPECS produced

"S P E C S - T H E B O O K : Synopsis "[SPECS 93]. The book was designed for readers

who are engineers or information technologists and are working in the field of

telecommunications, or readers who are interested in the use o f FDTs. The book itself

is not an evaluation o f FDTs but provides an overview of the detailed project work

and shows results o f the SPECS approach.

8 Tree and Tabular Combined Notation. See [ISO 90].

4

1.3.2 Softw are D evelopm ent Life-cycle W o rk Packages

The follow ing are the related workpackages to the software Developm ent life-cycle:

Work Package 3 SPE C S-Specification G eneration . This workpackage has been

concerned with the developm ent and refinement o f a m ethodology and o f tools for

generating formal specifications from informal ones. This m ethodology is knows as

5

the CR&F9 process. DCU provided its contributions to this work package.

Work Package 4 SPEC S-Specification H andling. The role o f this workpackage has

been the development and maintenance o f the SPECS tower languages, methods and

tools to handle formal specifications (SDL and LOTOS). The tower languages are the

main languages that SPECS focused on and are shown in figure 1.3. The functions of

this package was the refinement o f m ethodologies for the stepwise production of

formal specifications (which have been embedded in the CR&F approach), the support

for refinement o f specifications towards implementation and the development of

proprietary languages for LOTOS and SDL.

Work Package 5 SPE C S-Sem antics and A nalysis. Each of the tower languages of

SPECS can be translated into a comm on internal representation, called M R/CRL10.

The MR/CRL consists o f a mathematical representation model (MR) and the concept

o f a machine interpretable comm on representation language (CRL). The MR/CRL is

split into analysis A-CRL and implementation I-CRL. This work package developed

tools and techniques for the structural and dynamic analysis o f A-CRL specifications

and defined a generic schem e for the properties o f specifications on both the tower

and A-CRL level.

Work Package 6 S P E C S -Im plem en ta tion G eneration . This workpackage has been

based on the developm ent o f the implementation CRL (I-CRL) to which formal

specifications are translated and from which implementation code11 is derived. The

generated code relies on a Run-Time Environment (RTE), also developed by WP6,

which provides the environment to execute the generated code. This work package

developed the tools to translate the formal specifications into I-CRL, then translate the

I-CRL into a programming language (in this case ’C ’), plus generating a portable Run-

9 CR&F Classification, Rigorisation and Formalisation
(See Section 1.8 for a brief explanation on each)

10 Mathematical Representation and its Common Representation Language

11 The C programming language is the current implementation language.

Tim e Environment. These tools have been tested by the Racebank case study [DW P3.8

92] and used by the Pilot case study (Appendix A), two case studies that DCU

contributed to the SPECS project. For the Racebank, apart from generating the core

code o f the system, the environment code was written also, which establishes the

connection between the signals and events o f the system and the external world. The

ICL specification which would define these connections w as contributed by DCU.

Work Package 8 SPEC S-Testing. This workpackage was involved in identifying the

functional and non-functional properties o f 1BC system s for testing purposes. This

work package developed a test language comprising o f extensions to the ISO standard

test language TTCN. The responsibility o f this work package was the refinement of

methods for automatic generation o f tests from specifications and the definition of a

test facility to manage test sessions.

1.4 Tools used and developed in SPEC S.

SPECS proposes methods and tools applicable to the entire IBC software development

life cycle. SPECS methods and tools provide facilities for the handling of

specifications in SDL and LOTOS, particularly: m ixing o f languages, use o f SPECS

data types, help tools, support for SDL-92, reporting back from the CRL to the user

at the LOTOS/SDL level. The tools were installed and run on a UN IX12 based

workstation with X W indow s13 and the Concerto14 development environment. The

style of the screen layout is based on the use o f overlapping windows appearing on

the screen, menus (permanent and popup) for access to the tools, and interaction

through either the keyboard or the mouse.

12 UNIX is a trademark of AT&T Bell Laboratories

13 X Windows is a trademark of M.I.T.

14 Concerto is a trademark of Sema Group

SPECS-
Testlng
Methods

SPECS-
Common
Semantics
& Analysis
Methods

Simulation On-Line Interface

Figure 1.3 The SPECS architecture

1.5 SPEC S A rch itec tu re fo r h an d lin g Specifications

The SPECS architecture, adapted from generic compiler architectures, allows towers

to be built for each specification language, a tower having a translator to a common

internal representation. Central in the architecture is this internal representation. An

abstract formalisation, M R/CRL, has been developed that has an expressive power

exceeding that o f the standard specification languages, and that is capable of being

extended with many other concepts. M R/CRL serves as target for translators from all

specification languages used, and as source for compilers to implementation languages

and operating system s interfaces, as w ell as to representations suited for simulation

and analysis. Thus the architecture is "open" to allow a number o f targets for the

generation o f code. An important feature resulting from this architecture is the ability

to m ix specification languages within a given specification. Parts of a given

8

specification can each be done in the m ost appropriate specification language, yet,

because o f the comm on internal representation, such mixed specifications can be

analysed, animated, phototyped, automatically implemented and tested. The SPECS

architecture can be seen in figure 1.3.

1.6 D C U ’s Role in so ftw are developm ent life-cycle of SPECS

SPECS was organised into nine workpackages. Each workpackage was assigned an

aspect o f the development life-cycle in SPECS (section 1.3.2). The aim of the

workpackage to which DCU contributed w as the development o f formal specifications

using a defined m ethodology and various methods and tools developed within SPECS.

The Work Package is known as "Work Package 3" or "WP3" and D C U contributed

its deliverables to this work package.

WP3 was responsible for the developm ent o f methods and tools to help produce

formal specifications from a purely informal description of what the user intended but

may include parts that are already in a more rigorous form. The input to this process

is a m ixed informal document whose content is expressed in som e combination of

natural language, o f expressions such as data flow diagrams or entity relationship

diagrams com ing from particular analysis techniques, and of formal languages. The

methods and tools developed in W P3, rely on a "divide and conquer" strategy to cope

with the com plexity o f the problem. The method divides the production of the formal

specification into three generation processes, the classification, rigorisation and the

formalisation processes.

The classification process (based on a conceptual model o f the application) where all

aspects o f the desired system are identified and are defined as a set o f application

concepts. The rigo risa tion p rocess (based on general purpose techniques e.g. data

flow diagrams, m essage sequence charts and entity relationship diagrams) where the

behaviour o f the system is modelled. The fo rm alisation process (based on the formal

languages SD L and LOTOS) where the system is specified formally using the products

of the previous two processes. These development processes are collectively known

9

as the C R & F m ethodology (Classification, Rigorisation and Formalisation). From the

specifications produced by these three processes I defined rules and guidelines to

produce the ICL specification. This rules are given in detail in chapter 3.

Products of CR&F
f =>¡90(1 ̂ A fOssetlW Formal

■ i d . -

Production
^ Rules ^

Figure 1.4 Overview of ICL Production Rules in Relation to CR&F Methodology

10

1.7 My Role In SPECS.

Work in SPECS involved the production of methods and tools to derive formal

specifications from informal ones by using the CR&F m ethodology developed by

SPECS. From the products o f the CR&F process a m ixed specification was produced

to m ix these formal specifications. The area chosen for my research were the methods

used to produce mixed specifications. A set o f rules, the "ICL Production Rules", was

defined to automate the production of an ICL specification using the products o f the

CR&F m ethodology. These products are the Classification specification, Rigorous

specification and the Formal specification. Figure 1.4 illustrates an overview of the

"ICL Production Rules" in relation to the CR&F M ethodology. The production of the

ICL specification was standardised to fo llow a structure similar to the CR&F process.

These rules assume no detailed know ledge of the Interconnection Language used to

mix the specifications. Constructing these rules involved producing the CR&F

products to give correct and concise formal specifications, and defining steps where

information is extracted from each specification to construct the m ixing specification.

The results o f my work were contributed to the deliverables produced by DCU

[DW P3.8 92] and to the book by SPECS [SPECS 93],

1.8 O verview o f th e thesis

This chapter described the goals and achievements o f the SPECS project, its work

structure, integration of work packages and the architecture chosen to achieve its aim.

A lso an account o f my role in the SPECS research project and its relevance to my

area of study is presented.

Chapter 2 describes the two formal specification languages, SDL and LOTOS. It

presents a description o f each language, a comparison o f the two, and their limitations.

Chapter 3 looks at other approaches to allow different specification or programming

languages to be m ixed with each other. It also describes the Interconnection

Language, which is designed to support the mixing o f SDL and LOTOS.

Transformation mappings between each language are given and also an account of

11

how the m ixing works between a SDL specification and a LOTOS specification via

an ICL specification. Chapter 4 presents an approach to tackle the problems of

combining formal specification languages. This approach involves combining the two

formal languages SDL and LOTOS by follow ing the set o f rules, which I defined, to

produce the necessary ICL specification. These rules are known as the "ICL

Production Rules". The SPECS Pilot Case Study given in Chapter 5 is based on one

of the ISD N 15 supplementary services. The case study was taken from CET16

ELDIS17 switch project. ELDIS is an ISD N rural exchange targeted at the Portuguese

market. The ICL Production Rules are applied to this case study as a worked example.

An informal specification of the case study is given in Appendix A. The products of

the software life-cycle developm ent that DCU implemented for the Pilot Case Study,

including the ICL specification are given in the rest o f the Appendices. Chapter 6

gives the conclusions to m y work.

1.9 S um m ary

This chapter described the RACE Project SPECS and its primary aim - to automate
as far as possible the software development process. The automation process of

software development incorporated two formal specification languages, SDL and

LOTOS. The ability to m ix these specification languages would prove beneficial to

an analyst wishing to specify different behaviour aspects o f a system in the most

appropriate specification language. The SPECS software development life-cycle is

presented, showing how DC U functioned in this life-cycle. A lso an overview of my

research and my contributions to SPECS are given.

,s Integrated Services Digital Network

16 Centro de Estudos de Telecoinunicacoes

17 Estacao Local Digital com Integracao de Servicos

12

Chapter 2 The Formal Specification Languages to be Mixed(SDL & LOTOS)

2.1 In troduction .

This chapter describes the two formal specification languages used within SPECS to

represent the behaviour o f system s. The formal specification languages SDL and

LOTOS are presented in turn. A t the end o f this chapter a comparison of the two

languages is given. The Interconnection Language (ICL) allows the m ixing o f these

two languages.

2.2 SDL Specification and D escrip tion Language.

2.2.1 SDL - A B rie f O verview .

2.2.1.1 H istory

SDL is a standard language for the specification and description of system s. CCITT

(International Telegraph and Telephone Consultative Committee) has developed and

standardised it. It was first defined by Recommendations Z.101 to Z.103 in 1976 and

later extended in Recom mendations Z.101 to Z .104 in 1980. It was further extended

and reorganised in 1984 [BELI 88]. To date SDL has been extended and harmonised

to a single mathematical definition.

2.2.1.2 A pp lication A rea

A s the language was developed for the purpose o f specifying telecommunication

system s including data communications, it also can be used in all real time and

interactive system s. System s can be developed and understood one part at a time,

which is essential for distributed systems. SDL may be used to represent, at various

levels of detail, the functional properties o f a system. If a system can be effectively

m odelled by comm unicating Extended Finite-State M achines then this system ’s

behaviour could successfully be described in SDL eg. functions for telephone, telex,

13

data switching.

2.2.1.3 System D escrip tion

The system is what the SDL description specifies, an abstract machine communicating

with its environment, and contains everything the specification is trying to define. It

comm unicates with the environment via channels. A system diagram contains the

follow ing elements:

system nam e. (Identification of the system).

signal descrip tion . (This elem ent contains a signal name and the types of

values conveyed by the signal).

channe l descrip tion . (This elem ent contains a channel name, a list of signal

names for signals that can be transported by the channel, and the identification

o f the endpoints o f the channel - block or environment).

d a ta type descrip tion . (Description o f the Data types used within the system

e.g Booleans, natural).

block descrip tion . (A block is a part o f the system that can be treated in

various respects (development, description, understanding, etc) as a

self-contained object).

2.2.2 B ehav iour D escrip tion

The behaviour o f a system depends on the combined behaviour of a number of

processes in the system. A process is an extended finite state machine, that works

autonom ously and concurrently with other processes [BELI 88], Communication

between processes is performed asynchronously by discrete m essages, called signals.

Signals can be received and sent by the processes to/from the environment o f the

14

system (See Figure 2.1). Its reaction to external stimuli (in the form o f signals) can

be predicted, and is in accordance with its description. Each process has:

unique address (PId). Each signal has the address o f the sending and the

receiving process, along with possible data values. Thus the receiving process

is always aware o f the address o f the sending process.

ability to store variables, along with the state information.

a infinite input queue for the queuing o f incoming signals. W hen a signal

arrives a transition occurs then the signal is removed from the input queue

(Figure 2.2). In a transition, variables can be manipulated, or created; also new

processes can be created and signals can be sent.

2.2.2.1 Use o f B locks in SDL

Systems that are specified by a formal specification language are usually quite

com plex so it is necessary to have a structuring concept to break down the complexity

o f the system . In basic SDL, a system description is structured into block descriptions

and process descriptions as shown in Figure 2.3. An SDL system would contain one

or more blocks, interconnected with each other and with the boundary of the system

by channels. Within a block, processes can communicate with one another either by

SDL Specified System

Processes communicating via Queues

Figure 2.1 Communication between processes is performed by signals.

15

Signal

Figure 2.2 Queuing of incoming signals via channels

Environment

Figure 2.3 System Behaviour

signals or shared values. B locks provide:

a convenient mechanism for grouping processes,

a boundary for the visibility o f data.

16

Thus the grouping o f processes within a block is a reasonable functional grouping.

W hen designing a system using blocks, break the system into functional units, then

assign processes to these units. A block can be partitioned into (sub)blocks and

channels, similarly to the partitioning o f the system according to figure 2.3. Repeated

block partitioning results in a block tree structure (with the system as the root block)

[HOGR 88], Signal routes are communication paths between processes within the

block or between processes within the boundary o f the block. A block diagram is

similar to a system diagram.

2 .2 2 .2 Processes in SDL

A Process is an extended finite state machine which defines the dynamic behaviour

of a system. Before a process receives a signal it is in an awaiting state. The process

then responds by performing the specific actions that are specified for the receiving

signal.

The different states o f a process allow it to perform different actions in response to

receiving a signal. With each state, the memory o f actions performed are provided.

W hen all o f the actions associated with that receiving signal have occurred, the next

state is entered and the process returns to its awaiting state. Processes can be created

or terminated by other processes. Several instances o f the same process type may be

created and exist at the same time. They can also be executed independently and

concurrently.

Should a process perform a stop action and there are pending signals that were sent

to it and not yet received, then such signals are discarded.

2.2.2.3 D ata H andling

2.2.2.3.1 A b strac t D a ta Types

In order to describe data types in SDL, w e use the abstract data type (ADT) approach.

17

This means that all data types are defined in an implementation independent way, in

terms o f their properties alone. The definition o f an abstract data type has three

components.

set o f values

set o f operations

set o f axioms defining the operations

SORTS bool
am* ; ->hon!
f a l s e ; > b u ;> t ■

no) : bool ->l)ool .

HQN'S
n o i (u u c) - f a l s e

r v IM IJfalS C ! = t r u e '

: ; ' ' ’ ' ■..■■■ ■■■ • ' .• ••• ' • • .

Table 2 ADT example

In the most sim ple case, an ADT is a set o f objects hereafter called sort, together with

a number of operators on this set. Standard operators may have arguments of different

sorts, and the results o f the operators are always in one o f the sorts. Thus an ADT =

sorts + operators. SDL abstract data types provide a powerful means of specifying

data by describing their behaviour rather than their implementation [BARR 85], There

are three aspects to describing ADTs, which are the signature, terms and equations.
The names o f the sorts and operators, together with the definition o f domains and

codom ains o f the operators, are called the signature of the ADT. A term is the

combination of applications o f the operators to the elem ents o f a sort. Equations

between terms specify which terms represent the sam e elem ent o f a given sort. For

exam ple not(false) = true specifies that both terms represent the same value. Table 2

show s an ADT which has the sorts "boolean" and its various operators. Use o f these

data types is shown in the SDL specification for the pilot case study in Appendix D.

Abstract data types can be described only once in the system description.

18

2 .2 .2A . S tates and T ransitions

Process behaviour may be specified either by a single monolithic state transition

diagram or by a set o f partial state transition diagrams. Figure 2.4 shows the behaviour

o f the system defined by a directed graph. The behaviour o f this system is to validate

a users transaction [D.W P3.8 92].

The system inputs the users identification and necessary details from the incoming

signal trans_inter and checks this information with an external process. The external

process acts as a data source which returns TRUE or FALSE, to which our system

then responds. Two states waitJor_trans_req (wait for the user request) and

wait_for_trans_res (wait for the result) are involved . If the machine is in state

waitJorjransjreq it can perform a transition to state wait_forjrans_res initiated by

an output trans_aaac to the external process. During the transition an input signal

from the external process is received. The output o f this signal w ill result in a

transition to the starting state.

19

start state input output nextstateoo <
Figure 2.4a Basic constructs for the description o f a process.

Using the five basic constructs for the description o f a process : start, state, input,

output, and nextstate as shown in figure 2.4a, a description o f our system by a process

diagram is given in figure 2.4b. From the process diagram the SDL specification code

can be produced.

2.2.3 C onclusion on SDL.

From this chapter w e see that every process is associated with an input queue, which

acts like a FIFO queue. Any signal arriving at the process and belonging to its so

called ’com plete valid input signal set’ is put into the input queue, (see figure 2.2

Process communication). If in a given state the input queue is not empty, the first

signal (in FIFO order) is removed from the queue (it is consumed). It is checked

whether this signal can initiate a transition. If so, the transition is performed; if not,

the signal is discarded. Som etim es the discarding of a signal is not required, thus the

2 0

signal should be saved for future use. SDL has the save construct for this. The

queuing aspect of SDL is taken into consideration when m ixing the specification with

another.

A comparison is given at the end of this chapter between SDL and LOTOS. SPECS

takes these characteristics o f SDL into consideration when using the interconnection

language to mix specifications.

2.3 L O T O S L anguage O f T em poral O rd e rin g Specification

2.3.1 L O T O S - A B rie f O verview

2.3.1.1 H istory

LOTOS has been standardised as ISO18 88077 by the joint ISO and IEC committee

JTC1/SC21 on OSI19. It was developed by FDT experts from ISO/TC97/SC21AVG1

ad hoc group on FDT/Subgroup C during the years 1981-86. LOTOS is intended for

formally describing OSI Standards, but has much wider applicability. As a FDT it is

generally applicable to distributed, concurrent, information processing systems.

LOTOS has been extensively applied to the description o f OSI Standards in Layers

2 to 7. H owever it is a general-purpose, formal specification language for describing

concurrent and distributed system s.

The basic idea from which LOTOS was developed was that system s can be specified

by defining the temporal relation among the interactions that constitute the externally

observable behaviour o f a system. Contrary to what the name seem s to suggest, this

description technique is not related to temporal logic, but is based on process algebraic

methods [LUIG 90]. The formal mathematical model o f LOTOS is based on a mixture

of the principles o f M ilner’s Calculus o f Communicating Systems (CCS) [MILN 85]

18 International Organisation for Standardisation

19 Open Systems Interconnection

21

and Hoare’s Communicating Sequential Process (CSP) [HOAR 85]

2.3.1.2 S tru c tu re o f th e L anguage

There are two components to the language, the first one deals with the description of

process behaviours and interactions known as the control component. Most o f the

theoretical framework of the control component and especially the concept o f internal

action are based on M ilner’s work. Non-determinism is m odelled by internal actions

as in [MILN 85], The rendezvous semantics follow Hoare’s "multi-way rendezvous"

concept, by which all processes that share a gate must participate in a rendezvous on

that gate. The second component deals with the description of data structures and

value expressions, the data type component. This part is based on the formal theory

o f abstract data types and equational specification o f data types.

2.3.2 B ehaviour D escrip tion

Dynamic behaviour is described in terms of processes which interact synchronously

by events. A black-box view o f dynamic behaviour is taken, namely that one should

specify only the relative order o f externally-visible events, not the detailed machinery

which produces the required behaviour. In LOTOS, a distributed, concurrent system

is seen as a process, possibly consisting o f several sub-processes.

A sub-process is a process in itself, so that in general a LOTOS specification describes

a system via a hierarchy o f process definitions. A process is an entity able to perform

internal, unobservable actions, and to interact with other processes, which form its

environment. Thus the use o f LOTOS is to describe system s in terms o f their

capability to interact with their environment.

The m ixing language captures and specifies these interactions of the LOTOS

specification with its environment and other specifications. For LOTOS, interactions

between processes are through units o f synchronisation known as events (or atomic

interactions, or sim ply actions) which occur at the interaction point (see figure 2.5).

2 2

Events are atomic in the sense that they occur instantaneously, without consuming

time. An event is thought o f as occurring at an interaction point or gate, and in the

case o f synchronisation without data exchange, the event name and the gate name

coincide. There are three methods o f inter-process communication:

pure synchronisation, where no values are exchanged

value establishment, where one or more processes supply a specific value

which is acceptable to the other processes

value negotiation, where two or more processes agree on a set o f values.

Process communication is discussed in more detail later on in this chapter.

Figure 2.5 LOTOS Process Interaction Point

2.3.2.1 How to define a system ’s behav iour in L O T O S.

This section uses the operators in LOTOS to show how a system can be formally

specified. A process is specified in LOTOS, by what is known as a behaviour

expression. These behaviour expressions are built out o f actions and operators. They

define the externally visible behaviour o f a process in terms o f sequences o f events

in which it may participate. The follow ing is a list o f the more comm only used

23

operators to express the behaviour of a system.

2.3.2.1.1 Sequencing. B is the behaviour o f a box that first has to synchronise on "a",

and later w ill behave as "B1". The operator is known as the sequential composition

operator.

B ; a ; B1

It is used to prefix a behaviour expression with an event called an "action prefix".

Example : connectjrequest; connect_confirm; data; DISCONNECT

2.3.2.1.2 In te rn a l actions. Internal actions or events are represented by ’i \ and

represent non-determinism since the environment may not influence them. B will

behave as B 1 after som e undefined, but finite, time has gone.

B := i ; B1

Example : W O R K [] (i; GO_TO_BED). This indicates that GO_TO_BED may

happen without work being an option. (’[]’ is the choice operator which is described

in 2.3.2.1.7).

N ondeterm in istic choice. Internally, in an uncontrollable manner, a demon will

perform one or the other internal events. So, B may behave as B1 or as B2, where the

actual events which happen may be influenced by the environment o f the process.

B := i; B1 [] i; B2

2.3.2.1.3 P aralle lism .

G eneral C ase. Every action performed by B1 on gate "g" must wait for a matching

action o f B 2 on "g". A lso actions performed on any other gate may be freely

interleaved. B1 and B 2 are synchronised on "g" and only on "g".

B ;= B1 \[g]\ B2
Example : (offjiook; dial; answer; speak; onjiook; TELEPHONE)

\[dial]\

(find_number; dial; engage Jbrain; speak; CALL)

24

Synchronise w ill only happen oil the dial event and w ill allow "speak" in the first

behaviour expression before "answer" and after "on_hook" in the second behaviour

expression.

P u re in terleaving . This operator is used to allow behaviours to unfold completely

independently in parallel. Given the expression B1 III B2, if both B1 and B2 are ready

for som e action (say actions b l and b2 respectively), then both action orderings (bl

before b2, b2 before b l) are possible. N otice that b l and b2 may even be the same.

Since B l III B2 transforms, after an action, into an expression still involving the "III"

operator, w e conclude that this case of parallel com position expresses nothing but an

interleaving o f the actions o f B l with the actions o f B2.

Example : (datajn; data_out; BUFFER)

III (read; mark; digest; B O O K)

The behaviour o f this expression could either be :

a) data_in, read, mark, data_out, d ig e s t

or b) read, mark, digest, d a ta_ in

F ull synchron isation . The synchronising parallel composition operator "II" is used

where there are events that need to be synchronised. A typical exam ple o f the use of

this parallel operator is when the capabilities o f a process are determined by two or

more o f its subprocesses. The behaviour of the example below would be bang, start,

finish.

Exam ple : (bang; start; finish; ATHLETE) II (bang; start; finish; STARTER)

2.3.2.1.4 T erm in a tin g a process.

Successful te rm in a tio n . Exit is a process w hose purpose is solely that o f performing

the successful termination action 8, after which it transforms into the process stop,

exit -> 5 -> stop.

B := exit

Example : clock_in; clock_out; exit;

25

Inac tion . This is usually used to represent inaction or deadlock.

B := stop

Example : born; live; die; stop.

2.3.2.1.5 P rocess enabling. B1 enables B 2 upon its successful termination. If B1 does

not terminate successfully, B 2 will not be initiated.

B := Bl > > B2

Example : SHOP process

visit_shop; buy_food; comejiome; exit
EAT process

cook_food; eat_Jood; stop
DINE process

SHOP » EAT

If the left-hand behaviour expression does not terminate successfully, the right-hand

behaviour expression will not apply.

2.3.2.1.6 Process d isabling . Behaviour expression B l may be disabled by the initial

event o f B 2 at any point o f its execution, with the subsequent behaviour that of B2.

If B l terminates successfully, then B2 disappears. Frequently used in specification

when there is a need to specify behaviour which may be interrupted by something

else.

B ;= Bl [> B2
Example : (send_data; resetjtimer; receive_ack; exit)

[> (time_expired; sound_alarm; stop)

This expression may terminate successfully if an acknowledgem ent is received to a

m essage, but may sound an alarm if no acknowledgem ent is received within some

time period. Thus the disable operator allows the right-hand behaviour expression to

interrupt the left-hand behaviour expression. When it happens, the future behaviour

is that o f the right-hand behaviour expression.

26

2.3.2.1.7 Choice. In the expression below B is able to perform "a" or "b". If "a", then

behaves as B l; if "b", as B2. Decision is external to B. To put it in other words, B

offers both "a" and "b"; the environment w ill choose one o f them. If the environment

offers both, the decision is nondeterministic. The choice between the alternatives is

resolved by the environment o f the process.

B := a ; Bl [] b ; B2

Example : (lift_arrive; ENTER) [] (lift_broke; USE_STAIRS)

2.3 .2 .1 .8 G u ard . If the condition yields TRUE, B behaves as B l . Otherwise, as "stop".

B := [cond]-> Bl
Example : [door_open] -> enter;

2.3.2.1.9 H iding. A llow s one to transform som e observable actions o f a process into

unobservable ones. Gate "g" is not known outside B l . That means there is no need to

wait for synchronisation from outside B l . In the example below the observable

behaviour is begin, end, 5.

B := hide g in Bl

Exam ple : hide middle in (begin; middle; exit) \[middle]\ (middle; end;exit)

2.3.2.2 Process C om m unication

Communication between processes takes place at interaction points called gates. A

gate is an abstract entity that is shared by two or more processes. Points o f interaction

between a system and the environment or a process are known as event gates. The

system offers events at these gates. This would be defined as follows:

An event offer is written as

g!E

where g is the event gate

and E stands for an expression defining

the value to be offered.

27

If two processes (the environment is also seen as a process) offer the same values at

the same gate, then the event may occur which in this case results in a synchronisation

o f the participating processes. The basic elem ent of the control part o f a LOTOS

specification is the action offered, where a process declares itself ready to synchronise

with other processes and establish one or more values. Behaviour expressions may be

abstracted in processes that are later instantiated much like conventional procedures.

They may be thought o f as parameterised processes. The header of a process neatly

distinguishes between gate and value parameters.

process B[g] (x:integer) : exit ;=

g ! E; exit
endproc

when instantiated
B LmJ (4)

The above expression shows the process B offering the integer value "4" on gate "m".

2.3.2.2.1 B asic L O T O S

This is the subset o f LOTOS where processes interact with each other by pure

synchronisation, without exchanging values. In basic LOTOS we can appreciate the

expressiveness o f all the LOTOS process constructors (operators) without being

distracted by interprocess value communication.

2.3.2.2.2 Full L O T O S

In full LOTOS, processes may exchange values or be parameterised by them. If a

process B1 offers g!v for all values v o f a data type t, then this is written as g ? x :t .

Say we have another process B2 offering the value E o f type t, then B1 may

synchronise with process B2. This can be interpreted as a value passing from B2 to

B 1. Values can also be created. A process B3 offering g?y:t would be creating a value

y o f type t. A non-empty list o f event offers is allowed at one gate.

28

Events may only occur if the event offers o f both participating processes ’match’.

W hile in basic LOTOS an observable action coincides with a gate name, in full

LOTOS it is formed by a gate name follow ed by a list o f zero or more values offered

at that gate: g<vl...vn> .

For example, g!3 states that the process is offering to synchronise on the specific

value 3 with other processes, on gate g. g?x:integer states instead that the process is

ready to synchronise on any integer value with other processes, on gate g. Thus, two

processes containing these two complementary action offers may be able to

synchronise, and if they do, the second process gets the value 3 for the variable x.

"Multiple" and "bidirectional" action offers are also possible, such as g!3?x:integer,

where the process declares itself ready to simultaneously offer a value and receive one

on gate g. Selection predicates can establish conditions for when an action may occur.

specification:
Specification typical_spec [gate list] (parameter l i s t) : functionality

type definitions
behaviour

behaviour expression
where

type definitions
process definitions

endspec

process definition:
process typical_proc [gate list] {parameter list) : functionality :=

behaviour expression
where

type definitions
process definitions

endspec

Figure 2.6 Typical structures o f specification and process definition

2.3.2.3 LOTOS Structure Specification.

29

The structure o f a LOTOS specification is shown in figure 2.6. Process and type

definitions appear in the "where" clause o f a specification or process definition, in

either order or even interleaved. It clearly appears that a specification and a process

definition have similar structure. A minor difference is that the behaviour expression

is preceded by the keyword "behaviour" in the first case, and by the definition symbol

in the second case. A more significant difference is that som e type definitions

may appear before the behaviour expression of a specification, whereas this is not

allowed in a process definition.

2.3.2.4 T he use o f a lg eb ra d a ta type in L O T O S

The LOTOS language is based on process algebras and equational specifications of

abstract data types. The m ost basic form o f data type specification in LOTOS consists

o f a signature and, possibly, a list o f equations. Data types are described in terms of

their components and the effects o f operations on them. They are described abstractly

in the sense that implementation concerns (eg. order and length of fields) are

deliberately avoided.

ACT ONE allows com plex data types to be built out o f sim ple ones, and allows data

types to be parameterised. The data typing part o f a LOTOS description defines the

meaning o f values and expressions which appear as parameters in the behaviour part

of the description.

2.3.2.5 T he SPECS D ata Types fo r LO TO S.

The data part o f LOTOS is based on the specification language ACT ONE which

gives a powerful notation for defining abstract data types [EHRI 85], Experience

show s that rather sim ple types (eg. records or enumerated types) occur frequently in

specifications. Due to the initial algebra semantics, lots o f equations have to be written

in a schematic way. This is a tedious and error-prone task.

SPECS LOTOS offers the predefined sim ple types Boolean, Integer, Rational and

30

Character. The first three o f them have the usual meaning. The type Character gives

a representation o f the ASCII character set by nullary functions (operations without

arguments in LOTOS terminology). The simple types can be used in a specification

after declaring them in a library statement.(e.g. library Boolean, Integer, endlib). A

number o f predefined parameterised data types also exist which take as parameters a

number o f item data types. The parameterised data types are list, set and map. The

data types list and set have their usual functions. The data type map has as parameters

a domain and codomain data type, and the values o f a map data type are finite

mappings (functions) from domain values to codomain values. A complete list of

predefined SPECS data types and operators can be found in [4.17 92],

The data type approach presented by SPECS was driven by the follow ing

requirements:

No writing o f equations for "standard" operations like selecting a record

component or equality between values o f a given sort.

No change o f LOTOS syntax.

The resulting specification must be statically correct LOTOS. In addition it

must be possible to expand a specification to pure LOTOS with the intended

semantics.

Generation o f efficient code must be possible.

Finally, there is a quite specific SPECS requirement: the approach must

support the m ixing o f several specifications written in LOTOS and/or SDL.

SPECS first considered only a restricted set o f datatypes that are sufficient for

practical purposes. SPECS have standard scalar types (boolean, numbers, characters)

and generic types (like sets, arrays etc.) together with the usual operations on them.

To every sort declaration SPECS have attached a special comment (called "pragma")

31

to indicate its intuitive meaning e.g. "this is a list o f integers". From the point o f view

o f the syntax of the specification language these pragmas are comments, but they have

a specific format that make them recognisable by the SPECS translators. All

operations are declared together with a pragma, stating e.g. "this operation selects the

first elem ent o f the list". For example, a LOTOS m essage primitive is defined and

declared in table 2.1.

Table 2.1 LOTOS message primitive example

type Primitive is Address, Module
sorts Primitive (*$ rec $ *)

opns CON_RQ (*$ uikrec 3 $*); Address,Address, Module -> Primitive
calling_of (*$ sel 1 $*)
called_of (*$ sel 2 $*) : Primitive -> Address
module_of (*$ sel 3 $*) : Primitive -> Module

endtype

The pragma rec defines the m essage primitive as a record. In the pragma m krec, the

constant 3 denotes the number of components the record Primitive has. Note that the

pragmas can handle the case where two or more components belong to the same sort.

In table 2.1 two selector operations have the same signature but they are distinguished

by the integers in their respective pragmas. The compiler interprets the meaning of

these equations via the pragmas [KARN,91],

SPECS proposal considerably shortens the LOTOS declaration of widely used data

types. It supports both rewrite techniques and generation of efficient code, since

SPECS aims at the automatic code generation from such specifications. Moreover,

there is no change to LOTOS syntax and static semantics rules. The number of axioms

to be written by the user is reduced significantly. To support the development o f the

few remaining user-defined equations, m ethodological guidelines are given. These

guidelines assume only minimum AD T knowledge. The formal semantics o f the

approach are well-defined by giving a mapping to standard LOTOS. The same

mapping can be used to transform a SPECS LOTOS specification in a way such that

32

standard LOTOS tools can be applied to it.

Specification Large_of_[inl, in2, in3, out] : noexit

type integer is
sorts int
opns

zero : -> int
succ : int -> int
la rg e s t: int, int -> int

eqns forall X,Y : int ofsort int
largest (zero, X) = X;
largest (X, zero) = X;
largest (succ(X), suec(Y)) = succ(largest(X,Y));

endtype

behaviour
hide centre in
(
Large_of_ [in i, in2, centre]
l[centre]l
Large_of_ [centre,in3,out]
)

where
process Large_of_ [vail,val2,max] : noexit :=

(
vall?X :int; exit (X, any int)

III
val2?Y:int; exit (any int, Y)

)
»
accept V: int, W, int in

max!largest(V,W); stop
endproc

endspec

Figure 2.7 LOTOS specification of a system which accepts three natural numbers and stops after
printing the largest of them.

A lso the algebraic data types in SD L and LOTOS are in general difficult to handle by

semantic tools. In order for SPECS semantic tools to be able to handle data, the

predefined data types are used, which means that both animation and code generation

can be done automatically. SPECS LOTOS tools directly interpret the SPECS data

types, for example when animating a specification or when generating C code.

2.3.2.6 LOTOS Example

33

Figure 2.8 Action trees

The temporal ordering o f actions can be shown by an action tree. The following

specification is m odelled by an action tree to show the possible sequence o f events

and highlight the use o f the operators explained earlier. The exam ple is a simple

LOTOS specification for an entity which is able to accept three natural numbers in

any order and stops after printing the largest o f them (See Figure 2.7). The action tree

of each process in shown in Figure 2.8. The action tree of the specification is shown

in Figure 2.9.

The behaviours part o f the specification describes the top structure o f the specification,

which consists o f two instantiations o f process Large_of_. This process finds the

largest o f two values read in on the gates vail and val2 and gives the result on gate

larger. As the two copies o f Large_of_ are instantiated, their gates are relabelled

respectively as: ini, in2, in3, end. Thus the output value (largest o f two natural

34

numbers) is passed from one instantiation to the other via gate centre.

2.3.3 L O T O S in P ractice.

A m ethodology for using LOTOS specifications in the implementation phase is still

a subject o f research. SPECS have produced such a m ethodology which successfully

produces C code for a LOTOS specification.

Specifications o f real-life system s o f thousands o f lines have been written in LOTOS.

Som e o f these are on their way towards becoming part o f ISO International Standards.

For example: several OSI layers (Network, Transport, Session), specifications of

telephone system s [FACI 88], etc. (in addition o f course to all the best known "text

book" exam ples such as the Alternating Bit Protocol, the Dining Philosopher’s

35

problem, etc.). Several such exam ples are included in [VVD E 89]. The language is

starting to be used in industrial environments, especially in the UK where British

Telecom and Hewlett-Packard have substantial LOTOS groups.

2.4 C onclusion (LO TO S vs SDL).

LOTOS has synchronous communication ports and SDL has asynchronous

communication ports. Synchronous communication is characterised by the fact that the

communicating partners are involved in an interaction at the same time. An example

of this is shaking hands. Asynchronous communication can be described by

introducing a context which hides a system from its environment. The system only

communicates indirectly via its context with its environment. An example is writing

a letter: the moments o f writing and reading are independent; the postal service

constitutes the context.

The nature o f SDL signals and LOTOS events are quite different since an event

carries only a list o f data values whereas signals have additional knowledge about

their receiver and sender addresses. In synchronous communication there is no real

notion of send and receive, only of interaction. In asynchronous communication the

partners perceive the occurrence o f communication at different moments in time. The

one that starts the communication is called the sender, the other the receiver.

If a LOTOS event occurs then this "signals" to the specification that the environment

has participated in that event and the environment also "knows" that the specification

has accepted that event. In SDL the situation is quite different. There are no direct

means for the environment to detect whether a signal has been "accepted" by SDL or

not. It is even not defined what "accepted" means in terms o f SDL. It could mean that

the signal has been removed from the input queue o f the receiver or that the

processing triggered by the signal is in a certain state. This is also the same for signals

from the SDL specification to its environment. It is the very nature of asychronous

communication. These problems are discussed in chapter 3 in m ixing SDL and

LOTOS.

36

The data type approach for these two languages differs substantially from the usual

approach in programming languages, where a user has to define a new data type by

means of already defined data types, ultimately by means o f the predefined data types

of the language.The data type concept in SDL and LOTOS is based on the abstract

data types (ADT), and is conceptually based on the specification language ACT ONE

[KARN 91]. ACT ONE is an algebraic specification method and it can be used for

unparameterised as w ell as parameterised A D T specifications. Structure and properties

o f the system ’s data structures are describes using this method [SMIT 89]. This gives

a powerful notation for defining abstract data types. Although the notations used in

SDL and LOTOS differ for historical reasons, the equivalence o f the concept is

underlined by the fact that ISO and CCITT were able to agree on a common document

for both [BELI 91].

Unlike SDL, LOTOS descriptions are generally more abstract, hence there is usually

a bigger step in producing implementations. The other major difference from SDL is

that LOTOS has a fu lly formal definition : there can be no dispute over the meaning

o f a LOTOS description, and rigorous analysis is possible. On the debit side, LOTOS

requires deeper study and more discipline if good descriptions are to be written, but

the results sim ply repay the time spent.

LOTOS emerges favourably over SDL and other similar languages such as Estelle.

The detailed differences between the two languages were shown to lead to significant

w eaknesses in SDL descriptions [VISS, 86], SDL lies somewhere between a

specification language and an implementation language, and does not quite manage

to be either. Although claim ing to be a specification language, SDL is really a high-

level implementation language.

The main strength o f the language LOTOS is its precision o f expression, its

implementation-independence, and its ability to analyse system s which makes it more

suitable for definitive descriptions o f OSI standards. SDL has other important roles to

play. In particular, it has a useful part to play in giving guidance on implementation

issues and in providing reference implementations. LOTOS is really a general-purpose

37

language for formally specifying concurrent and distributed system s. LOTOS may thus

be used in a wider context than SDL.

2.5 S um m ary

In this chapter w e looked at the two formal specification languages SDL and LOTOS,

and compared their differences. Although LOTOS appears to be most favourable

language, SDL does have its advantages in being more reliable and o f course best

suited to specifying the behaviour o f asynchronous systems.

Chapter 3 looks at the reasons for mixing formal specification languages and presents

the Interconnection Language which enables the.se languages to be mixed. Other

approaches to combining languages are also examined.

38

Chapter 3 A Description of the Interconnection Language (ICL)

3.1 In tro d u c tio n

This chapter mainly concentrates on the m ixing o f SDL and LOTOS using the mixing

language ICL. The Interconnection Language (ICL) is used within SPECS to describe

the combination o f com plete specifications written in LOTOS and/or SDL. This

chapter brings forward advantages to m ixing specifications, examines the

Interconnection Langauge and gives a detailed explanation of the mapping rules of

the language. Chapter 4 gives a step by step technique to produce the ICL mixing

specification using the specifications produced from the CR&F methodology. This

technique is known as the "ICL Production Rules" and is applied to the SPECS pilot

case study in chapter 5.

This chapter also looks at another type o f mixing. An approach to mixing specification

languages adopted by [WILE 90] is presented. He explains that the mixing o f different

languages can be placed into two categories which are mentioned in this chapter. A

model given to illustrate one o f these categories, the "Specification Level

Interoperability", - which [WILE 90] defined to be the ability o f the components to

communicate and work together despite their differing paradigms.

3.2 W hy m ix specification languages?

The need for the interaction of different languages, despite their background arises in

many contexts. Generally, the desire to com bine programs written in different

languages springs from the availability o f specific capabilities in som e particular

language, processor or existing program. Thus, for example, the number-crunching

power o f a vector processor and the availability o f a particular numerical analysis

routine in Fortran might entice a programmer to attempt to have a LISP program

running on a workstation interacting with Fortran code running on the Vector

processor. The reasons for m ixing formal specification languages are :

39

R e-use existing specifications : A llow system designers to extend the

behaviour o f a specified system by combining new specifications with

previously existing specifications.

Flexibility : Specifications written by a set o f people with different

backgrounds can be combined. M ixing allows the re-use o f existing

specifications even if they are written in a language different from the one

used for the new specification.

B ette r specification o f a system : One formal language may have better

facilities to represent a certain aspect o f the behaviour o f a given system than

another. Depending on the problem at hand, it may be the case that some of

its subproblems are easily expressed in LOTOS, whereas SDL is better suited

for other parts. These "modules" are then combined into one single system

which solves the initial problem.

F o r te s t cases : One language can be used to specify test cases for

specifications written in the other language.

3.3 O verview o f Two A lte rna tive M ixing A pproaches

3.3.1 In tro d u c tio n

This section presents two approaches to m ixing languages. The first approach

describes the work carried out in the Esprit Project 2565 ATMOSPHERE on method

integration of LOTOS and SDL through service definitions. The second approach

describes different levels that system s or subsystem s can communicate, despite having

been written in different languages.

3.3.2 L O T O S-SD L In teg ra tio n via Service D efinitions

This section presents a description of the ’Service D efinitions’ used in Esprit Project

40

2565 ATM OSPHERE for LOTOS-SDL integration and gives an example showing

how service definitions can be used in the specification of an alarm activation service.

ATM OSPHERE’S LOTOS-SDL integration used the behaviour expressions o f LOTOS

to specify signalling interfaces in SDL descriptions. These interface descriptions are

called ’Service D efinitions’. This was achieved by adjusting the LOTOS notation to

meet the requirements o f SDL interfaces. The internal modules o f the overall structure

of the SD L system are view ed as black boxes. Conceptually these internal modules

would be SDL blocks. For any other process to communicate with these ’black boxes’,

the only know ledge required is ’how ’ the communication occurs, i.e. how to behave

according to the service definition.

The service definition language is similar to the syntax o f LOTOS and describes the

flow o f inputs and outputs o f each module. The following concepts comprise the

service definition language (their informal sem antics are given in italics) [KRON 93]:

Action prefix ; - sequential operator

Value declaration g!v - sending o f signals

Variable declaration g?x:type - receiving o f signals

Choice [] - conditionality

Interleaving III - arbitrary mutual tem poral ordering o f events belonging to different

event sequences

Enabling » - sequentiality, dependent on successful term ination preceding sequence

o f events

Disabling [> - means to interrupt the ’ordinary ’ sequence o f events

stop - the non-event

exit - signifies successful term ination

These are then translated into SDL state machines. This is done by hand as there are

many aspects of design that have to be elaborated at the SDL level. In writing the

SDL state machines for each module a semantic interpretation can be given to the

interconnections o f each module.

41

An example o f a service definition is given below using an alarm service activation

process. This service accepts from the user a valid address and time for which an

alarm is required. The user is informed o f the success or failure o f the operation. The

service definition o f the alarm activation would be defined as follows:

aIarm _activation := ?address ?alarm_time;

((lack; exit [] !nack; stop)

» (alarm_set [] alarm _not_set)) [> break

alarm_set := ¡success; exit

alarm_not_set := ¡failure; exit

break := !system_break; exit [] ?user_break; exit

ATM OSPHERE developed tools to verify and validate the SDL state machines against

their service definitions. The service definition approach provides a powerful

conceptual tool for the early phases o f the SDL based design process and gives the

analyst a chance to apply the method in the later stages, such as testing and

maintenance.

3.3.3 M ixing a t d iffe ren t levels

The m ixing o f different languages can be categorised into two levels. These two levels

• Representation Level Interoperability

• Specification Level Interoperability

Interoperability means the ability o f two or more system s or subsystems to

communicate or work together despite having been written in different languages. A

central issue in supporting interoperability is achieving "type correspondence" so that

entities, such as data objects or procedures used in one system can be shared by

42

another program that may be written in a different language or running on a different

kind o f processor. W hile most approaches to m ixing provide support at the

representation level, my research concentrates on the specification level of

interoperability. Sections 3.3.3.1 and 3 .3.3.2 describes each o f these two levels.

3.3.3.1 R ep resen ta tion Level In te ro p e rab ility (R LI)

This level is concerned with how the representation o f sim ple types, such as integers,

floating-point numbers or characters, differ in different languages or on different

processors and focuses on ways to map between those different representations. It

provides a means o f overcom ing differences in the w ays that different machines or

programming languages implement sim ple types. M ost approaches to supporting

interoperability have been based on establishing correspondence o f data types at the

representation level.

The earliest form of this approach involved interoperation through ASCII

representations o f data, where the data communicated between the "interoperating"

program via files. This required the programs them selves to translate the data either

into or out o f the ASCII representation.

The U N IX operating system supports interoperability via pipes (untyped byte streams)

through which two interoperating programs can communicate. The byte stream can

encode any type o f data. So, as long as the interoperating programs agree on how to

interpret the bytes, they can share data o f any type. Again, this requires the programs

at either end o f the pipe to translate the shared data from its actual type into the byte

stream representation and back again.

3.3.3.2 Specification Level In te ro p e rab ility (SLI)

Specification level interoperability extends representation level interoperability by

43

hiding the differences on data types. For example, where RLI20 would hide the byte

orders o f array elem ents used to represent a stack object, SLI21 would hide the fact

that the stack was represented as an array. Thus the representation of the stack as an

array or as a linked list or both is made irrelevant to the different programs sharing

the stack.

By increasing the degree o f information hiding, the extent to which interoperating

programs depend on low -level details o f each other’s data representations is reduced.

SLI allows much greater flexibility in implementation approaches and thus more

opportunities for optimisation. SLI also increases the range o f languages and types that

can participate within an interoperating system.

3.3.4 In te ro p e rab ility M ixing M odel

3.3.4.1 In tro d u c tio n

To achieve the specification level interoperability, [WILE 90] developed a model to

support m ixing system s that allow data objects or procedures to be shared. This model

consists o f four components:

• Unified Type M odel

• Language Bindings

• Underlying Implementations

• Automatic Assistance

A diagram o f this m odel is shown in figure 3.1.

20 RLI Representation Level Interoperability

21 SLI Specification Level Interoperability

44

UTM
Entities to
be shared

Representations of data objects
Standard Interface

Objects to be
Shared

Figure 3.1 Interoperability model for supporting mixed systems [WILE 90]

3.3.4.2 D escrip tion o f the m odel

A unified type m odel (UTM), which is a notation for describing the entities

to be shared by interoperating programs (different programs that will

comm unicate with each other). UTM type definitions supplement but do not

replace the type definitions for the shared entities that are expressed in the

language(s) in which the interoperating programs are written. A UTM should

be capable o f expressing high-level, abstract descriptions o f the properties of

a broad range o f types, but need not adhere too closely to the syntax or type

definition style o f any particular programming language.

language bindings, which connect the type m odels o f the languages to the

45

Unified Type M odel. Given a Unified Type M odel and a particular

programming language, there must be a way to relate the relevant parts of a

type definition as given in the language to a definition as given in the Unified

Type M odel. Each such mapping between a UTM and a particular language

is referred to as a language binding. Not all aspects o f a UTM must be

mappable to a given language, but only those that are relevant to the programs

in that language. A set of different bindings could be defined for a given

language, each providing mappings for only those UTM aspects relevant to a

particular interoperating program written in that language.

u n derly ing im plem entations, which realise the types used by the different

interoperating programs. The combination of a UTM type definition and a

language binding induces an interface through which an interoperating program

written in that language can manipulate instances o f that entity type.

Underneath the interface w ill be one or more representations for data objects

and code to im plem ent procedures (i.e., operations) that the interface provides

for manipulating the data objects.

au tom ated assistance, which eases the task o f combining components into an

interoperable whole. The creation of a UTM definition would be greatly

increased through automatic support by providing a library of pre-existing

UTM type definitions, language bindings and underlying implementations, plus

a browser for exploring that library. An automatic generation tool would also

be valuable. Such a tool would, for example, take a UTM type definition, plus

specification for the desired language binding and underlying implementation

and generate the corresponding interface.

3.4 M ixing L O T O S an d SDL Specifications

This section describes an overview of the functionality o f the ICL mixing language.

The main aim of this m ixing is to transform the LOTOS events into SDL signals and

vice versa which makes it possible that one specification becomes part o f the

46

environment o f the other. It is necessary that the specifications to be mixed follow the

data type conventions defined by SPECS. In order to allow m ixing, the external

interfaces o f the specifications to be m ixed must be designed with the same conceptual

ideas in mind. So, when re-using existing specifications it is possible to take an

existing specification and "connect" new ones to it. The new ones must adopt the

interface concepts o f the old ones in the sense that there must be a suitable

correspondence between gates and/or signals. W hen combining specifications which

have been built independently it is likely that som e changes w ill be necessary to

achieve this. Specifications developed via the SPECS m ethodology (CR&F Approach)

allow less room for such changes.

There m ust be a clear correspondence between certain events and signals. In case of

LOTOS/LOTOS and SD L/SDL m ixing, this is the correspondence o f the list o f data

carried by connected signals or gates (the signal/gate names can be different). For the

m ixing o f different specification languages (LOTOS/SDL m ixing) a more subtle

approach is applied, where only som e values have to match, whereas other values are

used to carry specific routing information. The connections between the various

specifications can be defined by a special purpose Interconnection Language (ICL).

A t the final stage o f the formal specification design, the LOTOS component, the SDL

com ponent and the ICL component can be jointly com piled into C.

3.5 T he In terconnection L anguage IC L

ICL allows us to describe the transformation in a concise way in allowing single

statements to cover a large number o f transformations by means o f "wildcard-like i.e.

(*)" statements. It was originally designed with the idea o f allowing the mixing

between SDL and LOTOS specifications. Therefore the central parts of the ICL are

the statements (also called rules) that allow expression o f this mixing. Additionally

there are constructs for specifying the system interface, for instantiating subsystems

and for LOTOS/LOTOS and SD L/SDL communication.

W hen m ixing different specifications one specification becom es part of the

47

environment o f the other. Since both languages expect from the environment a

behaviour in terms o f their own language, som e intermediate translation is needed.

An SDL environment sends signals to the SDL system and receives signals from the

SDL system. W e w ill denote SD L signals with name s. valuelist vl. via channel ch.
from sender send, to receiver rec. as <s.vl.ch.send.rec.>. A LOTOS environment

synchronises with the LOTOS system over certain events. LOTOS events are noted

over gate g. with valuelist vl. as <g.vl>. [SSH 92].

3.5.1 IC L Syntax Rules

3.5.1.1 T ran sfo rm a tio n m app ings from SDL to LO TO S

W hen describing m ixed specifications it is necessary to give a definition o f mappings

between SD L signals and LOTOS events. One problem when defining such mappings

is the difference in information contents o f events and signals. LOTOS events are

more abstract in the sense that they do not contain sender and receiver information (

events have no direction at a l l). Furthermore there is no channel concept in LOTOS.

W hen studying LOTOS specifications it can clearly be observed that LOTOS gates

som etim es directly express "signals" and sometim es are used like "channels" on which

several signals are exchanged. In the second case a further qualification is needed (by

the means o f data values) to identify the signal. This technique is called subgating.

In SDL process instances are identified by so called PId (process instance identifiers

) values that are automatically available. In practice they are often used to maintain

the communication between specific processes.

From the notation above, the transformation form is <s,vl,ch,send,rec> -> <g,vl’>-
W e assume that vl is som e representation that is the sam e for LOTOS and SDL. vl’
w ill always be augmented with at most two values which are added at the beginning

and/or end o f the list. The problem is tackled by having a number o f predefined data

types like integer, record, set. etc (For SPECS data types see chapter 2 section

2.3.2.5). They are equivalent for SDL and LOTOS and can be mapped to the same

48

representation on CRL level.

Signals from the SDL channels contain more information than a LOTOS event, so it

is necessary sometim es to decode that additional information into a valuelist.

According to [SARI 91], mapping rules are given to generate mappings for a large

class o f signals and still to allow a distinguished treatment that takes the semantic

differences into account. These generic mappings are given in table 3.1. On this table

fixed names are denoted by quoted strings i.e. "subgate". Unquoted variable names i.e.

vl are used to indicate that they are copied from the signal to the event. To indicate

that the value does not matter a is used. This means that the transformation can

be applied for arbitrary values o f the specific field.

The idea behind those rules is to generate transformations for a large class o f signals

and still to allow a distinguished treatment that takes the semantics difference into

account. The rules o f Table 3.1 handle a large number of signal to event

transformations. In fact each rule adds several elem ents into the relation Signal-to-

Event, where Event is the set o f all LOTOS events and Signal is the set o f all SDL

signals. If the value o f a signal "s" consists o f one boolean value the rule 1.2 adds:

< "s",<true>,*,*,"LPid"> -> < "g", "subgate"A< tru e > >

< "s",<false>,*,*,"LPid"> -> <"g","subgate"A<fa i s e »

3.5.1.2 T ran sfo rm a tio n m app ings fro m L O T O S to SDL

Table 3.2 below shows the generic mapping rules for LOTOS to SDL. The individual

rules o f table 3.1 share similar interpretations to the ones in table 3.2 which are

explained in the next section.

3.5.2 E xp lanation o f th e Rules

R ule (1.1) means : If a signal with name "s" com es from the SDL system on

any channel from any sender and it is directed to LOTOS (receiver PId is

49

Table 3.1 Generic Mapping Rules for SDL to LOTOS

(1.1) < ”s".vl* .* . "LPid" > - <"g".vl>

(1.2) < "s"M* .* ."LPid" > - < "g". "subgate "Avl >

(1.3) < "s".vl.* .pidS."Lpid" > - < "g".vlApidL >

(1.4) < "s".vl* ,pidS."Lpid" > - < "g"."subgate"AvlApidL >

(1.5) < "s".vl."c".* ."Lpid" > - < "g".vl >

(1.6) < "s”.vl."c".* ."Lpid" > - < "g". "subgate"Avl >

(1.7) < "s".vl. "c".pidS. "Lpid" > - < "g".vlApidL >

(1.8) < "s".vl. "c".pidS. "Lpid” > - < "g". "subgate"AviApidL >

Table 3.2 Generic Mapping Rules from events to signals

(2.1) < "g".vl> - < "s".vl* . "LPid". * >

(2.2) < "g"."subgate"Avl > - < "s".vl* ."LPid".* >

(2.3) < "g".vlApidL > - < "s".vl.* ."LPid".pidS >

(2.4) < "g". "sub gate"AvlApidL > - < "s".vl* ."LPid".pidS >

(2.5) < "g".vl > - < "s".vl."c"."LPid".* >

(2.6) < "g”. "subgate"Avl > - < "s".vl, "c". "LPid". * >

(2.7) < "g".vlApidL > - < ”s".vl. "c". "LPid".pidS >

(2.8) < " g"."sub gate"AvlApidL > - < "s".vl."c"."LPid".pidS >

"LPid") it may be mapped to a LOTOS event over gate "g" with valuelist vl.
Note that the sim ple copying o f value lists is only possible because w e have

assumed that LOTOS and SDL values have been mapped to the same

representation.

50

R ule (1.2) means : In this case, signal "s" is transformed to an event over "g"

where the value list starts with the specific value ''subgate

R ule (1.3) means : The sender Pid is appended to the valuelist of the generated

LOTOS event. W e use the operator ”A'' to denote that pidS refers to the SDL

representation of the Pid value and p idL refers to the equivalent LOTOS

representation. There must be a suitable correspondence between values of the

two different representations. Since SDL pidS are isomorphic to the natural

numbers it is rather natural to use only similar sorts for pidL.

R ule (1.4) means : A combination o f rule (1.2) and (1.3).

R ule (1.5) only signals V ' arriving on channel "c" are mapped. The fact that

the signal has arrived on a specific channel is mapped to the LOTOS value

"Ival" and prefixed to the value list o f the generated LOTOS event.

R ule (1.7-8) Similar to rules (1.2-1.4) with the exception that only signals "s"

arriving on channel "c" are transformed.

This is the foundation of the SPECS m ixing scheme which is a mapping between

LOTOS events and SDL signals and vice versa. These rules are not very intuitive for

the inexperienced analyst. Thus I produced another set o f rules, the ICL Production

Rules, which aid the analyst in producing the ICL specification. (Chapter 4 section

4.3).

Table 3.3 shows the essential ICL syntax to express SDL/LOTOS mixing that

corresponds to the generic mappings defined in tables 3.1 and 3.2. Brackets ("[]")

denote optional constructs and terminal symbols (keywords) are quoted.

Within this section w e w ill clarify the semantics o f our LOTOS and SDL mixing

schem e by making use o f an example (Figure 3.3). In this sim ple example, a signal

sig(com m ,91) could be mapped to an event sig!comm!91. This example takes a piece

51

Table 3.3 The essential ICL syntax

<ICL> := { < ICLstatement > }

<ICLstatement> := <signal> <action>

I <action> <signal>

<signal> ‘SIGNAL’ <signalname>
'(*) ’[‘VIA ’ <channelname>]

<action> ‘ACTION’ <gatename> [‘! ’< va lu e>]‘!* ’[‘!PID’]

<signalname> SDL signal identifier

<gatename> := LOTOS gate identifier

<channelname> := SDL channel identifier

<value> ;= value being exchanged

of LOTOS that is at any time able to perform one event of the form g!0.g!l.g!2... (in

our notation < ”g" .”0">...) or an event h!91. The LOTOS operator "[]" denotes a

choice, the denotes sequence and "g?n:nat" expresses the ability to perform any

''#''-action with a natural number value.

The SDL part is a one-state process that waits for the reception o f a signal "in" that

carries a data value o f type natural number (in our notation <"in".n.***>) and that

responds by sending a signal "out" with value "17" to LOTOS. W e resolve the

indeterminism at the LOTOS side ("g?n:nat") by receiving a value from SDL and the

"INPUT" statement o f SDL w ill be fed with the value o f the "h"-action. This is

shown in Figure 3.3.

W hen the system starts, both the queue between SDL and LOTOS (QSDL-LOTOS)

and the channels o f the SDL system s (Cin-Cout) are empty. Since SDL waits for the

reception o f in(n) it can do nothing. So it is LOTOS’s task to take the initiative.

52

Lotos system SDL system

Figure 3.3 Interconnection Example
ICL : action h!* -> signal in(*) 1* 1*1

signal out(*) -> action g!* 1* 2*1

Event h!91 w ill take place and w ill be mapped to signal in(91) and sent to SDL.

After reception o f this signal, out(17) w ill be sent, mapped to g!17 and put in to

QSDL-LOTOS. N ow the LOTOS action "g?n:nat" may synchronise with g! 17 and

the event is removed from QSDL-LOTOS. LOTOS has also the possibility to perform

another h event to be mapped to an SDL signal "in".

Rule (1) states that every event l.hln w ill be transformed to a signal sdl.in(n) and sent

to SDL. Rule (2) states that every sdl.out(n) signal sent from SDL to its environment

w ill be transformed to a l.gin event and put into the queue QSDL->LOTOS. LOTOS

then synchronises with that queue in such a way that it is always possible to

"consume" the first elem ent o f the queue.

53

3.6 How does the mixing work

The ICL language allows one to describe the transformation in a concise way.

Single statements are able to cover a large number of transformations by

means o f "wildcard-like" statements. In general an infinite number of

transformations are needed. This essentially is caused by the parameterisation

o f gates and signals. Furthermore it has been taken into account that signals

and events differ in their information content. Events carry only a list of data

values whereas signals have additional know ledge about their receiver and

sender addresses.

The gap between synchronous LOTOS and asynchronous SDL communication

has been closed by queuing signals from SDL to LOTOS.

Pure LOTOS/LOTOS m ixing is described by giving a list of gates from

different LOTOS subsystems that have to synchronise. This allows the

description o f the same combinations that can be represented using LOTOS

parallel operators (III, II, l[..]l) and hide.

Pure SD L/SDL m ixing is realised by allowing that signals are exchanged (and

renamed) between SDL subsystems.

In order to distinguish between gates or signals from different systems, their

names are qualified with the system name. The names o f all system s involved

in a m ixed system have to be different.

Direct transformation of a LOTOS gate name to a SD L signal name where

data are copied as they are. Copying of data is possible because w e allow only

certain data types(like e.g. integers, records, sets,..) which are equivalent in

LOTOS and SDL and which are mapped to the same lower level

representation. These are the so-called SPECS data types.

54

Transformation o f a LOTOS gate name to an SD L channel name, where one

elem ent o f the LOTOS value list is used to identify a specific signal. As an

example w e can transform event in_port!on_hook!l to signal on_hook(1) on

channel c_in, or signal offjtook(l) on channel c_out to event

off_port!ojf_hook! 1. This is expressed by the rules in table 3.4. (The star

indicates an arbitrary list of data items.)

Usage o f one elem ent o f the value list o f a LOTOS event as PId value for

SDL. This makes it possible that a LOTOS process remembers the sender

process o f a signal and can direct further communication to the same process.

Table 3.4 Example of subgating.

ACTION SIGNAL
in_port!on_hook! * -> on_hook(*) VIA c_in

SIGNAL ACTION
off_hook(*) VIA c_out -> out_port!off_hook!*

3.7 M ixing R esults

M ixed specifications are translated into the internal Common Representation Language

(A-CRL, I-CRL) and therefore all the CRL methods and tools offered by SPECS are

available, for instance code generation and simulation.

The compilation to C code and necessary runtime environment sub-routines deliver

a routine with the interfaces described in the ICL. This routine can be embedded into

the target application. It offers the following interfaces:

Synchronisation events to be shared between the mixed system and its

55

environment. Environment refers to the threads that communicate with the

m ixed system via RTE primitives.

Signals sent to specific environment threads.

Reception o f signals from the environment.

In order to use the generated code, the routine representing the mixed system has to

be started by a piece o f C code to be provided by the system developer. It is also

necessary to provide som e environment code that interacts with the system and

performs the embedding into the application. For example the environment code may

display some m essage if a specific signal is received or it may offer an event on user

request.

3.8 S um m ary o f the IC L language

ICL is designed to express the connection between LOTOS and SDL system s. An

ICL specification can link an arbitrary number of these specifications to form one

system. This chapter presents the syntax o f the ICL language and the generic

mapping rules for correct syntax. Chapter four presents another set o f rules, the "ICL

Production Rules" which guide the specifier to easily create ICL specifications using

the outputs generated by the CR&F M ethodology.

56

C h a p te r 4 M ixing SDL and L O T O S using the IC L P ro d u c tio n Rules

4.1 In tro d u c tio n

SPECS has defined a m ethodology (CR&F m ethodology) for producing the SDL and

LOTOS specification but no steps or guidelines were given for producing the ICL

specification. From working with the DCU team on the CR&F methodology, the

production o f the formal specification LOTOS is found to be efficient and quite

automatic. Using the specifications produced from each process, I defined a set of

rules to also automate the construction o f the ICL specification. This chapter looks at

this set o f rules, the ICL Production Rules for generating the ICL specification, which

adhere to the ICL generic mapping rules in chapter 3 tables 3.1 and 3.2. The ICL

Production Rules use the outputs o f the CR&F m ethodology. An overview of the

CR&F m ethodology is given below. These rules aid in the production o f a concise and

correct ICL specification.

4.2 P rod u c ts o f th e C R & F M ethodology.

The m ethodology is com posed o f three processes:

C lassification, for getting a first understanding o f the input specification by

identifying entities in the informal specification and re-expressing it in terms

o f concepts in the application domain.

R igorisa tion , for increasing such understanding through analysis and building

o f different view s using different paradigms.

Form alisa tion , for actually producing the formal (SDL/LOTOS) specification

using all the know ledge acquired in the previous processes.

The processes, collectively called the C R & F-process, aim is to establish an increasing

understanding o f the application domain, o f the input specification and of the

57

requirements o f the system under development, and to express this understanding as

formal specifications.

The m ethodology was named after the above processes names, as C R & F

m ethodology. The ICL Production Rules use the products o f these processes to

produce the ICL statements. These are the:

C R & F Classified Specification. An exam ple is shown is Appendix B.

C R & F Rigorous Specification. An exam ple is shown in Appendix C.

C R & F Formal Specification. (Consisting o f 2 or more system s expressed in

SDL and/or LOTOS). An example is shown in Appendix D for SDL and

Appendix E for LOTOS.

4.3 IC L P ro d u c tio n R ules

This section presents a set o f rules on using the products o f the CR&F m ethodology

to produce the ICL specification. Each rule consists o f an explicit statement o f the rule

follow ed by a justification. A detailed know ledge and understanding o f the ICL

m ixing language is not necessary.

4.3.1 U sing the C lassified Specification

R ule 1: From each o f the classified components, the interface aspect gives the

com plete set o f communications for that component. It details the external

interface, indication and response, and the internal interface. Interface aspects

are defined in terms o f inputs and outputs. List all entities o f the interface

aspect for each component.

The Classification process is a process o f identifying and defining application

concepts, then re-expressing the informal specification in terms of these concepts.

58

Gasification Specification
Classified Component

Class User
Information Aspects

Behaviour Aspects

Interface Afpecls
External Interface

request : output a 'invocatian_segment'
camfirmation ; input a ’nodflcation„segment'

Pud nrf Class

Figure 4.1: Interface Aspects of the Classified Specification gives signals/actions a object

A Classified component consists o f three aspects :

information aspect

behaviour aspect

interface aspect

The in fo rm atio n aspect describes how the properties o f the objects o f the class are

represented. The beh av io u r aspect describes the sequence o f actions performed by the

objects o f the class. The in terface aspect describes the object’s ability to cooperate

with other components in its environment [BELS 92], This aspect is the main source

of information for the ICL specification (see figure 4.1).

notificatioa_segment
input signals/actions

invocation_segment
output signals/actions

59

The classification process w ill record information about the target system and the

development process in a set o f classified-components and development-components.
An application concept is described as a class contained in the body of a classified-
component. The class is described by its behaviour, information, interface and intrinsic

m iscellaneous aspects. A section o f a classified specification based on a pilot case

study is given in Appendix B.

Defining communications between the subsystem and its environment for the

generation of ICL statements is a very specific activity, thus only one aspect of the

classified specification is necessary, i.e. the interface aspect. Using the conceptual

structure o f the classified specification and the interface aspects, an overall

understanding o f the needs and the requirements o f the target system is attained.

4.3.2 U sing the R igorous Specification

The rigorous specification gives a good understanding of the functionality o f the

system. It is possible to structure the statements for each of the two system s from well

detailed rigorous m odels. At this point the decision as to which section of the system

is to be represented by which specific tower language should have been made. The

steps below show how to interpret each of the rigorous models to obtain the

information necessary for the production of the ICL statements.

4.3.2.1 Using T he D FD ’s

R ule 2: The data flow s between the process in the context diagram are to be

specified in the header o f the ICL specification. The data flow s between the

subsystem s in Level 0 DFD constitute the ICL mapping statements

From the context diagram the system ’s communications with its environment are

defined. The external communication, that the system has with its environment, is

easily identifiable from this rigorous model. These data flow s are to be specified in

the header o f the ICL specification, as they represent the system s external

60

communication.

The subsystems which represent the parts o f the system to be defined in the different

tower languages are identified. The data flow s between these subsystems, as noted in

the rigorous m odel’s Level 0 DFD, represents the main communications between the

two tower languages which will be mapped to ICL statements. This gives only an

overview o f the communication between the tower languages and between the system

and its environment. Each data flow arrow may have more than one value being

passed but each data flow must be represented by at least one ICL statement.

Any new inter-process communication from this stage on, will be hidden, as they are

not externally visible. Level 0 DFD identifies the main processes in the system. The

behaviour o f these processes may be specified either by LOTOS or SDL.

The system is partitioned into a number of processes which synchronise according to

a given architecture. These subprocesses are expanded in DFDs at lower levels.

4.3.2.2 Using the M essage Sequence C h a rts (M SC)

R ule 3: Communication with external processes on an M SC may be defined

by one ICL statement. Disregard communications between processes which are

internal to a particular subsystem.

The M essage Sequence Charts (MSC) give a graphical and concise description of the

m essages being passed. This rigorous m odel is vital for understanding the relationship

between each subsystem as it clearly defines the reason for each m essage. The same

communication may be present in two or more M SCs as a different sequence o f

events may cause it to occur.

4.3.2.3 U sing A S N .l an d PSpecs

R ule 4: U se the A S N .l descriptions o f the data structures and types to identify

61

the exact contexts o f each information flow . An enumerated type used in a

communication flow to another processes may denote more than 1 ICL

statement.

ASN. 1 gives a detailed description of the data structure o f the m essages being passed.

The Process Specifications (PSpecs), describe the behaviour of each process. Using

these two m odels, the specifier can accurately state the data type of information (i.e.

integer/boolean) being passed and the reason why, before looking at the formal

specification. The A S N .l describes the exact contents o f each flow entering and

leaving the system.

4.3.3 Using the F o rm al Specification

Rule 5: Read carefully each of the formal specifications noting in each

specification the data being received/sent externally. Ensure that the data type

declaration for the value(s) being passed is consistent in both specifications

(i.e. same data type is used). From the information obtained in Rule 3 from the

M SC, identify the SDL and LOTOS statements where points o f external

communication between specifications occur.

Due to the limitations o f ICL it is important that the formal specifications are of a

consistent style. Direct transformation of a LOTOS gate name to an SDL signal name

is possible by the use o f certain data types (e.g. integers, records, sets, etc.) which are

equivalent in LOTOS and SDL and which are mapped to the same lower

representation. These are the SPECS data types. With ICL the handling o f data values

is successful when the formal specifications are restricted to using SPECS data types.

Transformation of a LOTOS gate name to an SDL signal name, where one element

of the LOTOS value list is used to identify a specific signal, is known as subgating.

It is only allowed with enumerated types. In ICL, it is not possible to map booleans

that are being passed between two systems. The solution is to introduce an enumerated

type for these data values in both specifications.

62

Table 4.1 Syntax template for LOTOS to/from SDL mappings

6,a From a LOTOS event to a SDL signal:
action lotos-subsystem-ID . gate-name(s)!*
->
signal sdl-subsystem-ID . signal-name(*)

via sdl-subsystem-ID . channel-name;

6.b From a SDL signal to a LOTOS event:
signal sdl-subsystem-ID . signal-name(*)

via sdl-subsystem-ID . channel-name;
->
action lotos-subsystem-ID . gate-name(s)!*

Table 4.2 Syntax template for mappings to the border of the system.

6.c Communication flow from SDL to system border:
signal sdl-subsystem-ID . signal-name(*)
->
signal icl-system-ID . signal-name(*);

6.d Communication flow from system border to SDL:
signal icl-system-ID . signal-name(*)
->
signal sdl-subsystem-ID . signal-name(*);

6.e Communication flow to/from LOTOS event with system border:
action icl-system-ID . gate-name,

lotos-subsystem-ID . gate-name!*;

4.3.4 C o n stru c tin g th e IC L sta tem en ts

R ule 6: Construct the ICL statements individually, using the syntax template

in table 4.1 and 4.2. Using the follow ing system identifier names.

lotos-subsystem-ID = system identifier for LOTOS spec.,
sdl-subsystem-ID = system identifier for SDL spec.,

icl-system-ID = system identifier for ICL spec.

63

From the rigorous specification, a clear correspondence between events and signals

would have been established from Rule 5. These correspondences can be defined

using the Interconnection Language (ICL). From analysing the general construct of

the language, I have developed five types o f statements which would support all

mappings. These syntax templates for constructing ICL statements are shown in table

4.1 and table 4.2.

For an SDL signal connected directly to the border of the system , the direction of the

signal is important. In table 4 .2 the flow o f communication is specified for SDL

mappings.

4.3.4.1 IC L Specification H ead er

R ule 7: Construct the ICL Specification Header, from the syntax template in

table 4.3, using the system s external communication flow s identified in Rule

1 and Rule 2.

The header o f an ICL specification indicates which variables are accessible to the

environment o f the com plete system. The header is used to produce the signature files

which are necessary for testing the interface o f the final system. Each ICL

specification has a header which consists o f a formal parameter list. This contains a

list o f LOTOS gates communicating with the environment o f the system. For SDL it

contains in/out signals and in/out channels for communication at the border o f the

system.

The extem al-gate-nam es is a list of gates where the LOTOS specification

com m unicates with its environment. The inchannel and outchannel refer to those

channels on which the SD L specification would communicate with its environment.

The insignal and outsignal refer to the signals on these channels.

64

Table 4.3 ICL specification header syntax header

7.a ICL Specification Header Template

icl-system-ID [external-gate-names]
{

inchannel SDL-channel;
outchannel SDL-channel;

insignal signal-name;
outsignal signal-name;

}
using

lotos-subsystem-ID, SDL-subsystem-ID
where

/* then follow the actual ICL statements */

end system

4.4 C onclusion and Im p lem en ta tion o f the Rules

Using the products o f the CR&F m ethodology enables the specifier to obtain an

overall understanding o f the system. The ICL Production Rules allows a software

engineer to produce an accurate ICL statement without a detailed knowledge o f the

language being necessary. Chapter 5 shows how these m ixing rules are used to

produce the ICL specification for the SPECS Pilot Case Study.

The A S N .l, PSpecs and DFD can be used to ensure that all the data, or

communication flow s, referred to in these techniques have been identified in the ICL

specification.

4.5 S um m ary

The rules presented above are easily followed, self explanatory and easily applied.

Although these rules depend on the CR&F m ethodology being follow ed to produce

the formal specifications, the rules produce a reliable ICL mixing specification and

leave little room for error. Insight is gained on the system behaviour from the

classified, rigorous specifications thus aiding the specification production process.

In the next chapter the m ethodology described in the previous section is applied to an

65

example in the SPECS Pilot Case study. The informal Specification of the problem,

as defined in [ARISE, 92] is contained in Appendix A.

66

Chapter 5 Application of the ICL Production Rules to the SPECS Pilot Case
Study

5.1 Introduction

In this chapter the rules for generating an ICL specification, described in the previous

chapter, are applied to a case study. The case study was based on a service provided

by the national Portuguese ISDN standard for the user of supplementary services. Due

to the vast amounts of informational documents generated by the CR&F processes in

this case study, the information has been condensed in this chapter. The complete

documents are given in the appendices. The complete informal Specification of the

problem can be found in Appendix A. The system is classified into concepts in

Appendix B. Its behaviour is modelled in Appendix C using software development

models i.e. Data flow diagrams, Message Sequence Charts. The Pilot Case Study’s

behaviour is formally specified in Appendix C (SDL specification) and in Appendix

D (LOTOS specification). These formal specifications were produced from the CR&F

Methodology. The mixing specification which is the result of the "ICL Production

Rules" is given in Appendix E.

5.2 Overview of the SPECS Pilot Case Study.

The informal specification was provided by CET (Centro de Estudos de

Telecomunicacose), a Portugese member of the ARISE project. It is a section of the

CET’s ELDIS project. ELDIS is an ISDN rural telephone exchange used widely in

Portugal. ELDIS utilises distributed computing, a relational database and high level

design.

The case study concerns the provision of supplementary services to the users of an

ELDIS exchange. At present ELDIS users have access to eight such services :

Closed User Group

Call Forwarding

67

Advice of Charge

Malicious Call Identification

Outgoing Calls Barring Service

Incoming Calls Barring Service

All Calls Barred Service

Alarm Call Service

Due to pressure of time and manpower, SPECS-Specification Generation was unable

to develop all of these functions. It was decided to concentrate on the Alarm Call

Service as it does not rely on other services for its performance. Also it is not

necessary that all of the calls be modelled to successfully test the SPECS methodology

and ICL Production Rules.

In Figure 5.1, a block diagram of the Alarm Call service shows the two main

processes, the USER and the Call Control Coordinator, and their interactions with each

other. The figure shows that the Call Control Coordinator contains two sub processes

that interact internally to the system.

5.3 Description of the Alarm Call Service

The following description of the Alarm Call Service is taken from [ARIS 92]:

5.3.1 Introduction

The Alarm Call Service is activated by inputs from the subscriber. This service

provides four functions. These functions are invoked by the user sending a specific

service code via a keypad to the Call Control Coordinator.

5.3.2 Functionality of the Alarm Call Service.

5.3.2.1 Activation
For activation of Alarm Call service, the user invokes the call control coordinator

68

Procedures
activation
deactivation
interrogation

notification

Context

Segment

Call Control Coord.

AC Processor
Alarm timer

11EVN.

indication

response

KEY : INV. = invocations
ENV. = event notification

Figure 5.1: Abstract "realistic" view of the considered problem context

(CCC) with a request of an alarm time. The (CCC) checks the users validity and

responds to the request. At the appropriate time an alarm is activated and the message

is sent to the user.

5.3.2.3 Deactivation

The user sends a message to the CCC requesting the deactivation of his/her alarm call.

5.3.2.4 Interrogation

The user may check if his requested service has been established or if the correct

alarm time has been received by the CCC.

69

5.3.2.5 Notification

A list of the responses from the CCC. These responses inform the user on the status

of his/her request.

Notification on Activation

Notification on Deactivation

Notification on Interrogation

A complete description of the informal specification, giving the service code for each

function, can be found in Appendix A.

5.4 Alarm Tinier Process

Although it was not specifically required, it was decided to design a process which

initiated alarm calls. This was deemed to be necessary as otherwise comprehensive

testing and demonstration of the case study would be impossible. This extra process

was called the Alarm-Timer. It receives the current time and checks to see which users

require a call at this time.

The rest of this chapter shows the production of the ICL statements necessary for the

pilot case study, using the ICL Production Rules in Chapter 4.

5.5 Generating the ICL specification.

5.5.1 Using the Classification Specification

The initial input to the classification process was the informal specification provided

by CET in Appendix A. The following classified components constitute the classified

specification of the problem considered. (The Full classified specification of the pilot

case study is given in Appendix B.)

10

Context Interface Aspects

User Interface Aspects

Call Control Coordinator Interface Aspects

Analyser Interface Aspects

AC Processor Interface Aspects

Alarm Timer Interface Aspects.

From the interface aspects of these components, we receive an understanding of their

interaction with other components and their environment. Using Rule 1, the following

is an extract from the classification specification explaining each of their interface

aspects. The Interface Aspects of these Components are as follows;

5.5.1.1 The Context Interface Aspects

interface aspects

internal interface

‘user’ ‘request’ interfaces to call_control_coordinator’ ‘indication' ;

‘call_control_coordinator’ ‘response’ interfaces to ‘user’ ‘confirmation’.

These communications are shown in Fig A .l of appendix A. Thus we have two

external communication flows. The user "requests" to the system (indication) and

receives a "response" (confirmation). The request is known to the system as

"invocation-segment and the confirmation as "notification segment" as shown in the

User’s interface aspects.

5.5.1.2 The User

interface aspects

external interface

request: output a ‘invocation_segment’;

confirmation: input a 'notification_segment'.

11

These interface aspects are the same as the ’Context Interface Aspects’.

5.5.1.3 The Call Control Coordinator

interface aspects

external interface

indication: input a ‘invocation_segment’ ;

response: output a ‘notification_segment’. /* f iAom/to User*/

internal interface

‘analyser’ ‘AC_activation’ interfaces to ‘acprocessor’ ‘activation’;

‘analyser’ ‘AC^deactivation’ interfaces to ’acprocessor’ ‘deactivation’;

‘analyser’ ‘AC_interrogation’ interfaces to ’ac^processor' ‘interrogation’;

‘ac_processor’ ‘notification’ interfaces to ‘analyser’ ‘AC^notification’;

‘ac_processor’ ‘alarm’ interfaces to ‘call_control_coordinator’ ‘alarm’.

These seven communications are shown in Figure C.2 of appendix C. Again we have

the same two external communication flows and four new internal communication

flows. The alarm interface would be the alarm time from the alarm timer process. This

would be an ICL statement from the call control coordinator to the border of the

system. The four internal communications are expanded below in sections 5.5.1.4 and

5.5.1.5.

5.5.1.4 The Analyser

interface aspects

external interface

indication: input a ‘Segment’;

response: output a ‘Segment’; /* information fo r the user*/

AC_activation: output invoking activation o f AC fo r a ‘User’, with "address",

"hour" and "minute" extracted from the ‘Segment’ received as ‘indication’;

72

AC_cLeactivation: output invoking deactivation o f AC fo r a ‘User' with

’’address" extracted from the ‘Segment’ received as ‘indication ;

AC_interrogation: output invoking interrogation o f AC fo r a ‘User’ with

"address” extracted from the ‘Segment’ received as ‘indication’ ;

ACjiotification: input notification information about an ACJnvocation.

/* four information flows from/to the AC-Processor */

5.5.1.5 The A C Processor

interface aspects

external interface

activation: input the "hour", "minute" and ’User’ "address" fo r AC

invocation;

deactivation: input the ‘User’ "address" fo r the supplementary service

deactivation;

interrogation: input the ‘User’ "address" fo r inquiring from the network about

the AC service;

notification: output notification information about an AC invocation;

alarmjtimeout: input a ‘User’ "address";

alarm: output a ‘User’ "address".

5.5.1.6 The Alarm Timer

The alarm timer process checks the time value of all the user’s records in the data

base against the current time and sets off an alarm if necessary. It receives the current

time from a database called "Clock" and checks each user’s entry in the Alarm -

Database. If the time in the user’s record matches with the time stored in the "Clock"

database, then the address of that user is sent out on the ALARM flow to the Alarm

73

Handler process. See Figure C.3 in Appendix. Its interface aspects are given below.

interface aspects

external interface

set_alarm: input an Hour and a Minute;

turn_ojf: input;

ask_on_off: input;

current_on_off: output a Boolean;

ask_setting: input;

currentjsetting: output an Hour and a Minute;

alarm_timeout: output a ‘User' ‘address’.

5.5.2 Using the Rigorous Specification

5.5.2.1 Using the DFDs.

Communication with the Environment: Using Rule 2, the Context Diagram shown

in Appendix C Figure C .l , shows two data flows between the environment,the USER,

and the system, the CALL CONTROL COORDINATOR. These communications will

be represented by at least 2 ICL statements.

The CALL CONTROL COORDINATOR consists of two independent systems, the

AC-PROCESSOR and the ANALYSER. The AC-PROCESSOR was specified in

LOTOS and the ANALYSER was specified in SDL. The data flows between these

subsystems, as noted in the rigorous model Level 0 DFD Appendix C Figure C.2,

represent the main communications between the two tower languages which can be

mapped to ICL statements. This shows the minimal number of ICL statements

necessary. In this case there are seven data flows; Invocation Segm ent, Notification

Segment, AC-Activation, AC-Deactivation, AC-Interrogation, AC-Notification, Alarm.

74

5.52.2 Using the MSC

From the Message Sequence Charts, identify the external process and take these

communication lines only. Disregard the process communication between internal

processes. The same communication may be present in two MSC charts, as a different

sequence of events may cause it to occur.

Following Rule 3 for each MCS gives is a list of the exact ICL statements.

No. of ICL Description Reference
statements

2 From user to analyser. Appx.C Fig C.14

2 Alarm Activation

1
+ notification success Appx.C Fig C.4

Alarm Activation

+ notification failure Appx.C Fig C.5

2 Alarm Deactivation

1

+ notification success Appx.C Fig C.6

Alarm Deactivation

2
+ notification failure Appx.C Fig C.7 & C.8

Alarm Interrogation

1

+ notification success Appx.C Fig C.9

Alarm Interrogation

1
+ notification failure Appx.C Fig C.10 & C.l 1

Alarm from Alarm Timer

to Alarm Handler. Appx.C Fig C .l2

1 Time from Clock to Alarm Timer Appx.C Fig C.13

(13 ICL statements)

75

5.S.2.3 Using ASN.l+PSpec

Enumerated type denotes more than 1 ICL statement as stated in Rule 4. This allows

the use of subgating as shown in chapter 3 table 3.4. AC_Notification is enumerated

from:

successful_activation - facilidade Aceite

unsuccessful_activation - erro de activacao

successful_deactivation - facilidade desactivada

unsuccessful_deactivation - error de desactivacao

interrogation_result - desperatar <hour:time>

unsuccessful_interrogation - error na consulta

These messages will be passed from the AC-processor to the Analyser. They can be

passed as strings but since strings are difficult to manage in LOTOS, subgating is used

instead by using the gate name and the message being passed.

5.5.3 Using the Formal Specification

As the formal specifications were developed using the SPEC’s data types and tools,

they would have the correct requirements for mixing using ICL. From Rule 5, the

actual lines from the formal specification where the external communication is

sent/received are given below. The SDL specification is given in Appendix D and the

LOTOS specification in Appendix E.

For Mapping SIGNALS to EVENTS

a) From OUTPUT AC_ACTIVATION (address, time) ; to

AC_ACTTVATION ? address : addressjype ? time : tim ejype;

b) From OUTPUT AC_DEACT1VATE (address); to

ACJDEACTIVATION ? address : addressjype;

76

c) From OUTPUT ACJNTERROGATE (address); to

A CJNTERR OGA TION ! ERR 0_DE_DESA CTIVA CA O ! address;

For Mapping EVENTS to SIGNALS

d) From AC_NOTIFICATION ! FA CIUDADE_A CEITE ! address;

to INPUT AC_ACTIVATE_SUCCESS (address) ;

e) From AC^NOTIFICATION ! ERRO_DE_ACTTVACAO ! address;

to INPUT AC_ACnVATE_UNSUCCESS (address);

f) From A C_N0TIF1CA TI ON ! FAC1L1DADEJDESACTIVAD A ! address;

to INPUT AC ̂ DEACTIVATE, SUCCESS (address);

g) From A C_NOTIFICA TI ON ! ERRO_DE_DESA CTIVA CA O ! address;

to INPUT AC_DEACTIVATEJJNSUCCESS (address);

h) From AC_NOTIFICATION ! DESPERTAR ! time ! address;

to INPUT AC_INTERROGATE_SUCCESS (time , address);

i) From AC_NOTIFICATION ! ERRO_NA_CONSULTA ! address;

to INPUT AC JNTERROGATE JJNSUCCESS (address);

For Mapping SIGNALS to the border of the system.

j) From OUTPUT NOTIFY (address, <service message>, time); to the environment.

k) From the environment to

INPUT INVOKE (address, service_code, invocation, time);

77

signal-name

channel-name

= A C_DEACTIVATE_S UCCESS

= ANA LYSER_A C_PROCESS OR

this gives the following ICL statement;

a c tio n AC _PR O C ESSO R . A C _ N O T IF IC A T IO N !

FAC1LIDADEJDESACTIVADA ! * ->

signal ANALYSER . AC_DEACTIVATE_SUCCESS

(*) via ANALYSER . ANALYSER J lC_PROCESSOR;

Syntax template 6.b From an SDL signal to a LOTOS event:

For signal OUTPUT AC_ACTIVATION (address, time) ; to be mapped to event

AC_ACTIVAT10N ? address : address_type ? time : timejtype;

Using syntax template 6.b in table 4.1 chapter 4:

signal sdl-subsystem-ID . signal-name(*)

via sdl-subsystem-ID . gate-name(s)

->

action lotos-subsystem-lD . gate-names(s) ! * ;

where;

lotos-subsystem-ID = AC_PROCESSOR

sdl-subsystem-ID = ANALYSER

gate-name(s) = AC_ACTIVATION

signal-name = ACTIVATION

channel-name = ANALYSER_AC_PROCESSOR

this gives the following ICL statement;

signal ANALYSER . AC_ACTTVATE (*)

via ANALYSER . ANALYSER_ACOPROCESSOR

->

action AC_PROCESSOR . AC_Activation ! * ;

19

Syntax template 6.c For Signals from System Border to SDL

From the environment to a SDL process INPUT invoke(address,service_code,

invocation, time);. Using the syntax template 6.c in table 4.2 chapter 4, where the new

parameter is;

icl-system-ID = CA LL_C ONTR OLjCO ORDINA TOR

gives the following ICL statement;

signal CALLjCONTR OLJCO ORDINA TOR. INVOKE (*)

via CALL_CONTROL_COORDINATOR. USER_ANALYSER

->

signal ANALYSER.INVOKE (*) via ANALYSER. USER ̂ ANALYSER;

Syntax template 6.d For Signals from SDL to System Border.

From the SDL process OUTPUT notify() to the environment using syntax template

6.d in table 4.2 Chapter 4 gives:

signal ANALYSER.NOTIFY (*) via ANALYSER. USER_ANALYSER

->

signal CALL_CONTROL_COORDINATOR.NOTIFY (*)

via CALLjCONTR OLJCO ORDINA TOR. USER_ANALYSER;

Syntax template 6.e For Events to/from the Border of the System.

From the environment, the event ALARM occurs, which would synchronise with the

event ALARM of the AC_PROCESSOR specification. Using syntax template 6.e in

table 4.2 of chapter 4 would give the following ICL statement:

80

action CALLjCONTROLjCOORDINATOR . ALARM, AC_PROCESSOR . ALARM /*

In both these cases the border of the System is identified by the icl-system-ID.

5.5.4.1 ICL Specification Header

The header of an ICL specification indicates which variables are accessible to the

environment of the complete system. The header is used to produce the signature files

which are necessary for testing the interface of the final system.

Using the header template 7.a from Rule 7, we construct the ICL specification header

as follows: From the LOTOS specification we have two external communication

flows. The ALARM from the process Alarm Timer (internal process of the system) to

the Alarm Handler^part of the environment) and the Time from the Ck>cfc(part of the

environment) to the Alarm Timer. These extemal-gate-names must be included in the

header. Also on the SDL side, the external interfacing parameters were two signals,

NOTIFY and INVOKE. These will also be part of the header. Using the header

template 7.a in table 4.3 in chapter 4, the ICL specification header is defined.

system call_control_coordinator

[ALARM, TIME, ADDJUSERS]

{

inchannel user_analyser ;

outchannel user_analyser;

outsignal notify ;

insignal invoke

I

using

/ * System Identifier fo r the LOTOS * /

AC_PROCESSOR,

/ * System Identifier fo r the SDL * /

ANALYSER

where

81

/* Actual ICL statements */

endsystem

5.6 Conclusion

This chapter demonstrated the application of the "ICL Production Rules" to the SPECS

pilot case study. These rules have proven to be efficient and accurate in producing an

ICL specification for systems developed using the SPECS CR&F methodology.

8 2

Chapter 6 Conclusions

6.1 Introduction

This research was carried out as part of DCU’s contribution to the SPECS project, part

of the RACE program of the EC. This thesis addresses the problem of combining

specifications written in different FDTs. To my knowledge, the most practical

approach for mixing formal specification languages is the SPECS method. SPECS has

developed a mixing language and support tools to implement the combination of

LOTOS and SDL specifications. The rules SPECS devised towards producing the ICL

specification were quite "ad-hoc" with no adequate structure. Thus as part of my

research and work with SPECS, I defined a set of rales to automate the generation of

the ICL specification.

The aim of the SPECS project was to automate the software development process as

much as possible. Deriving a methodology for producing formal languages was an

intermediate goal towards achieving this aim. Code generation tools, developed by the

SPECS project, take the formal specifications as input and automatically translate them

into a suite of programs, in the programming language C, thus reducing the time that

normally would be required to develop software. Chapter 1 gives a description of my

role in SPECS and describes the SPECS project work structure, integration of work

packages and architecture to achieve its aim.

The two formal languages on which SPECS concentrated were SDL and LOTOS.

These are described in detail in chapter 2 and a comparison of these two languages

is given.

Other approaches to mixing languages are described in chapter 3, including the SPECS

approach. A description of how the mixing works between SDL and LOTOS

specifications via an ICL specification is presented. Also a brief description of the

CR&F methodology is given, where the outputs of each process are used to produce

the ICL specification. A set of rules, referred to as the "ICL Production Rules", are

83

given in chapter 4. These rules aim to automate the production of the ICL

Specification. A worked example, the SPECS Pilot Case Study, is presented in chapter

5, to illustrate the use of the ICL Production Rules. The results of the Pilot Case

Study are given in this chapter.

The results of my work were incorporated in the deliverables produced by DCU and

in the book by SPECS "SPECS - THE BOOK:Synopsis" [SPECS 93], The two main

deliverables are "CR&F Specification o f the SPECS Pilot Case Study" [I.WP3.9 92]

which describes the pilot case study undertaken SPECS in its final year and "Final

Methods and Tools fo r the Generation o f Specifications" [DWP3.8 92] which describes

in detail the work done by workpackage 3 in SPECS final year.

6.2 Results of the Pilot Case Study

The set of rules presented in chapter 4 are a revised version of those which are

documented in the SPECS project deliverables. The products of the pilot case study

are shown in the appendices. INESC produced an SDL specification and DCU

produced the LOTOS specification and the ICL specification which linked these two

specifications together, creating a system called "Call Control Coordinator". The Pilot

Case Study provided an excellent environment to test the "ICL Production Rules". One

aspect of the rules was the speed in producing the ICL specification once the SDL and

LOTOS specifications were completed and tested separately. In comparison to the

other formal languages, it took less than a third of the total formalisation time.

The results of the Pilot Case Study showed advantages in using formal specifications

for developing software. When the final executable code was being intensively tested,

a number of errors and bugs were uncovered. These were small aspects of the system

which were overlooked by the system specifier. These errors were easily traced back

to the relevant parts of the SDL and LOTOS specifications, and amended. These

amendments filtered through to the ICL specification. In comparison to amending C

programs, this was not a difficult task as formal specifications are concise and it is

easier to detect errors in them. When the formal specifications were corrected, new

84

versions of the executable code were produced within minutes by the SPECS tools.

This demonstrated the ease with which amendments can be made to C-code produced

using the SPECS methodology.

6.3 Strengths and Weaknesses of the ICL Production Rules.

6.3.1 Advantages to using the Rules.

The "ICL Production Rules" defined in chapter 4 provide the system specifier with an

insight into, and understanding of the system being developed. These rules are

intuitive and easy to follow. The specifier does not have to work through listings of

formal languages to extract the required information between the specifications to be

mixed. A range of different rigorous modules is used to capture as much information

about the intended system as possible. Thus the technique for developing the ICL

specification is semi-automated. The rules would appear to have been designed for

inexperienced system developers but they efficiently produce a correct mixing

specification.

6.3.2 Limitations of the Rules.

The system specifier has the extra burden of familiarising him/herself with the

specifications produced by the CR&F methodology. Since the ICL language is

restricted to mixing the specifications produced by this methodology it would be good

advice to follow the methodology, not only because of the ICL limitations but also,

because it aids the production of correct formal specifications.

A number of tools have been developed for the production, static semantics checking

and translating of the ICL specification. These tools are only applicable to SPECS and

may not be generally suitable for other systems.

The extent to which the rules were tested was restricted. Although the rules were used

in another case study performed in SPECS, RACEBANK, the only major application

85

was the Pilot Case Study. The rules were satisfactory and produced a fundamentally

correct ICL specification with minor errors.

6.4 Possible Enhancements to ICL

The handling of value-lists is not yet flexible enough. The values passed by the ICL

are indicated by "(*)" for an SDL signal and "!*" for a LOTOS action. This stands for

the number of passed values. No checks on compatibility of those values are

performed. The ICL specification header for LOTOS does not contain the information

as regards which gate may be used to pass which kind of value and how many values.

ICL does not handle a one-to-many mapping. If an action on the LOTOS side is used

in more than one ICL (action->signal) statement then the SDL system always has

to be the same. Also as in most languages, there is a specific ordering to the mapping

of values. Subgates have to be at the first position in the value list and PId values

have to be at the last position. All other values have to be in the same order on the

LOTOS and SDL side. For instance it is not possible to map the gate

< "g ",< "0 ","true ">> to signal < "s",< "true","0">,*,*,*>. In this case a more

sophisticated notation which does not depend on subgating would be useful.

LOTOS and SDL share the same representation of their data values, that is Abstract

Data Types (ADTs). This made it easier for the SPECS tools to validate the ICL

specification against the formal specifications. ICL may also be used to combine an

SDL specification with an ESTELLE specification as this would be similar to

combining two SDL specifications. This would involve modifications to the tools or

development of new tools to check the correctness of the ICL specification for

SDL/ESTELLE combination.

6.4.1. Refinement of the Data Type Approach

The formalism used by the tower languages SDL and LOTOS to define data types was

found to be quite difficult to understand. This is because the task of correctly and

completely specifying a datatype in an axiomatic way (by means of signatures and

86

equations), is not an easy one, and often underestimated even by experts. Thus there

is room for improvement in the support for development of datatypes. For example,

one such improvement would be adding constructs to the language that are oriented

towards a more imperative style of datatype specification, e.g. enumerated types,

records. Another improvement would be to decorate signature definitions with special

annotations, called pragmas, which could be used to generate implemented datatypes

in the common representation languages (CRL). A more long-term improvement

would be the use of these pragmas to generate equations automatically and so align

this approach with the axiomatic one. [SSH 92],

6.4.2 Nested Mixing

The SPECS mixing approach was originally only intended to show the feasibility of

interconnecting LOTOS and SDL specifications by making use of an intermediate

language. Therefore it was not a design goal to provide support for the combination

of mixed systems. Nevertheless it turned out that ICL is powerful enough to express

such a "nested" mixing. ICL can handle LOTOS gate parameters, LOTOS value

parameters, SDL channels and SDL signals. As this list covers the possible external

interfaces of the "ICL system" (i.e. a system that is not described in terms of SDL or

LOTOS specification language but by means of ICL itself), there is no theoretical

difficulty in allowing ICL systems as subsystems. This will support the assembly of

large systems from smaller parts which are complete, self-contained specifications and

can therefore be understood and analysed separately.

6.5 Summary.

This dissertation has provided rules to mix SDL and LOTOS specifications. This is

achieved by viewing the specification in one langauge as part of the other language’s

environment. These rules, "ICL Production Rules" are presented in chapter 4. An

application of these rules to an industrial example is given in Chapter 5. The

feasibility of such intermixing increases the possibility of reusing specifications as

sub-systems in a larger context and allows the use of the most appropriate

87

specification language for a given task.

88

Bibliography

[ARIS 92]

[BARR 85]

[BELI 88]

[BELI 91]

[BELS 92]

[BIEM 86]

[BIND 91]

[BOLO 89]

[BOLO 90]

ARISE Document ARCE0048.MSW, "Specification and Requirements

Document for CET Case Study", version 1.0, 6th January 1992.

S. Barra, O. Ghisio, M. Modesti "Mapping SDL data tyes in CHILL",

CSELT Technical reports - Vol XII- No3, 1985.

Ferenc Belina, "The CCITT-Specification and Description Language

SDL", University of Hamburg, Hamburg. 1987.

Ferenc Belina, "SDL with Applications from Protocol Specification",

Prentice Hall International (UK) Ltd, 1992. Chapter 7 pg 136.

Dag Belsnes, "The Classification Process", NCC-Norweigan Computer

Centre, Blindem, 0314 Oslo 3, Norway, 1992.

Frank Biemans and Pieter Blonk, "On the Formal Specification and

Verification of CIM Architectures Using LOTOS", Philips CAM

Centre, The Netherlands, 1986.

Carl Binding, Heinz Saria and Heinrich Nirschl, "Mixing LOTOS and

SDL Specifications", IBM Research Division, Zurich Research

Laboratory, 8803 Ruschlikon, Switzerland, 1991.

Tommaso Bolognesi, "Introduction to the ISO Specification Language

LOTOS", Elsevier Science Publishers B.V. (North-Holland), 1989.

Tommaso Bolognesi, "On the Soundness of Graphical Representations

of Interconnected Processes in LOTOS", C.N.R.-CNUCE, 36, Via S.

Maria - 56100 Pisa - ITALY, 1990.

89

[BRIN 87]

[DUAP 91]

[DWP3.8 92]

[D4.17 92]

[ECHA, 86]

[EHRI 85]

[EIJK 90]

[FAER 92]

[FACI 88]

Ed Brinksma, Giuseppe Scollo and Chris A.Vissers, "Experience with

and Future of LOTOS as a Specification Language", University of

Twente, The Netherlands, 1987.

Michel Dauphin, "SPECS: Formal Methods and Techniques for

Telecommunications Software Development", Centre d’Etudes et

Recherches IBM France, 1991 page 1-7.

D.WP3.8, "Final Methods and Tools for the Generation of

Specifications”, 46/SPEAVP3/DS/A/008/al, RACE 1046, 1992

"Final Methods and Tools for the handling of SPECS tower

Languages", SPECS- Specification Handling, SPECS internal document

id: 46/SPE/WP4/DS/A/017/bl ver. 6, October 1992.

W.F. Chan K. Turner, "The Daemon Game in ESTELLE, LOTOS and

SDL" Draft E xam ple, Joint M eeting ISO/CCITT

(ISO/TC97/SC21AVG1/FDT-CCITTX/3), Turin, December 15-19,1986.

H.Ehrig and B.Mahr, "Fundamentals of Algebraic Specification 1",

Springer Verlag, 1985.

Peter Van Eijk, "Tools for LOTOS Specification Style Transformation",

University of Twente, The Netherlands, 1990.

Ove Faergemand, "Stepwise production of an SDL Specification", TFL,

Lyngso Allé 2, DK-2970 Horsholm, Denmark, 1992.

Faci, M., Logrippo, L., and Stepien, B. "Formal Specification of

Telephone Systems in LOTOS", Brinksma, E., Scollo, G., and Vissers,

C. (eds.) Protocol specification, Testing, and Verification VII, North-

holland, 1988, 399-410.

90

[GUST 92]

[GUTT 85]

[HALL 90]

[HOAR 85]

[HOGR 88]

[ID35 91]

[ISO 90]

[I.WP3.9 92]

[I.WP613 92]

J.Gustafsson, E.Mumprecht, "LOTOS ADT Based Random Testing",,

IBM Research Divison, Zurich Research Laboratory, 8803 Ruschlikon,

Switerland, 22 January 1992.

John V. Guttag, James J. Horning, Jeannette M. Wing, "The Larch

Family of Specification Languages", Massachusetts Institute of

Technology, IEEE software 0740-7459/85/0900/0024, September 1985.

Anthony Hall, "Seven Myths of Formal Methods", IEEE Software

0740-7459/90/0900/0011, 1990.

Hoare, C.A.R. "Communicating Sequential Process", Prentice-Hall,

1985.

Dieter Hogrefe, Sebastiano Trigla, Ferenc Belina, "Modelling OSI in

SDL", University of Hamburg, Fondazione Ugo Bordoni Rome,

Telelogic Malmo, 1988 pg 1-4.

SPECS-Specification Generation, "Prototype Methods and Tools for the

Generation of Specifications, SPECS-id: 46/SPE/WP3/PI/C/005/a0,

December 1991.

"Conformance Testing Methodology and Framework - Part 3: the tree

and tabular combined notation (TTCN)", ISO, DIS 9646-3, March

1990.

I.WP3.9, "CR&F Specification of the SPECS Pilot Case Study",

SPECS Specification Generation, CEC Id: 46/SPE/WP3/PI/C/009/a3,

ver. 3, 7 December 1992.

I.WP6.13, "Use of SPECS for implementation", SPECS-Implementation

Generation, IBM France, 12 October 1992.

91

[KARN 91]

[KISH 91]

[KOIC 91]

[KRÖN 93]

[LEDU 87]

[LUIG 90]

[MIGIJ 88]

Georg Kamer, Heinz Saria, and Bo Bichel Noraek, "Simple ADTs in

LOTOS", Alactel Austria - ELIN Research Centre, Ruthnergasse 1-7,

A-1210 Wien, Austria, Telecom Research Laboratory, Lyngso Alle,

DK-2970 Horsholm, Denmark, 1991.

Yoshinori Kishimoto, "SOFTON:A Flexible Software Construction

Model by Interface Mediation", Systems Development Laboratory,

Hitachi, Ltd., IEEE Software, 0730/3157/91/0000/0479, 1991.

Yoshinori Kishimoto, Koichi Yamano, "Softon: A flexible Software

Construction Model by Interface Mediation", Systems Development

Laboratory, Hitachi, 1099 Ohzenji, Asao-Ku, Kawasaki-shi, 215 Japan.

Kronlof Klaus (Editor), "Method Integration, Concepts and Case

Studies", John Wiley & Sons Ltd., 1993.

Leduc, G.J. "The Intertwining of Data Types and Processes in

LOTOS." In: H.Rudin and C.H. West (eds.) Protocol Specification,

testing, and Verification, VII. North-Holland, 1987, 123-136.

Luigi Logrippo, University of Ottawa, Protocols Research Group,

Canada KIN 9B4; Tim Melanchuk, Advanced Development Group,

Gandalf Data Ltd., 130 Colonnade Rd. S., Canada K2E 7J5; Robert

J.Du Wors, Connected Systems Group, 61 Reaney Court, Canada K2K

1W7; "The Algebraic Specification Language LOTOS: An Industrial

Experience", Proceedings of the ACM SIGSOFT International

Workshop on Formal Methods in Software Development, Napa,

California, May 9-11, 1990

Tomas de Miguel and Jose A.Mahas, "An Implemtation Architecture

for LOTOS", Dpto:Ingenieria Telematica (ETSIT) ETSI

Telecomunicacion, UPM, Madrid, SPAIN, 1988

92

[MILN 85]

[MURP 91]

[NCC 86]

[PUEN 86]

[QUEM 89]

[Q.931 92]

[REED 92]

[SCOL 87]

[SARI 91]

R.Milner, "A Calculus of Communicating Systems, Lecture Notes in

Computer Science, vol.92, Springer-Verlag, 1985.

S. Murphy, "Experiences with Estelle, LOTOS and SDL: a protocol

implementation experiment, Per Guinningberg and J.PJ.Kelly,

Department of Electrical and Computer Engineering, University of

California, Santa Barbara, CA, USA.

National Computer Centre, "STARTS- Software Tools for Application

to large Real-Time Systems - SDL", ISBN 0 850012 5774, 1986.

J.A. de la Puente, A Crespo and T.Perez, "Formal specification of Real-

Time Software Systems. An Industrial Example", IFAC Real Time

Programming, Lake Balton, Hungary 1986.

J. Quemada and A. Azcorra, "A Constraint Oriented Specification of

Al’s Node", Department of Telematics Engineering, Madrid University

of Technology, SPAIN, 1989.

ISDN User-Network Interface Layer 3 Specification for Basic Call

Control, 355 pages, CCITT Blue Book, volume VI, fascicle 11,

recommendation Q.931 (1.451).

Rick Reed, Michel Dauphin, John Evans, "Methods for Quality and

Automation", 1992.

Giuseppe Scollo and Marten Van Sinderen, "On the architectural design

of the formal specification of the session standards in LOTOS", Twente

University of Technology, Department of Computer Science, The

Netherlands, 1987.

Heinz Saria, "Definition of ICL", SPECS ID. A.A41.ELIHS354, March

93

[SPECS 92]

[SPECS 93]

[SSH 92]

[TRET 89]

[TRET 92]

[TURN 87]

[TURN 89]

[VALE 90]

SPECS RACE Ref: 1046, "The Project SPECS", The SPECS

Consortium, 1992, page 5.

SPECS The Consortium, "Specification and programming Environment

for Communication Software", North-Holland, 1993.

SPECS-Specification Handling (WP4), "Final common methods and

tools for the handling of SPECS tower languages", ed. ANV-ELIN,

August 1992.

Jan Tretmans. "Hippo : A LOTOS simulator". In Peter H.J. van Eijk,

Chris A.Vissers, and Michel Diaz, editors, "The Formal Description

Technique LOTOS", pages 391-396, Elsevier Science Publishers B. V.

(North Holland), 1989.

J.Tretmans and L.Verharrd, "A Queue Model Relating Synchronous and

Asynchronous Communication". Internal Report TFL RR 1992-1, TFL,

Horsholm, Denmark, 1992. Memorandum INF-92-04, University of

Twente, Enschede, The Netherlands, 1992.

Kenneth J. Turner, "LOTOS : a practical formal description technique

for OSI, University of Stirling, Scotland, 1987.

Kenneth J. Turner, "The Formal Specification Language LOTOS",

Department of Computing Science, University of Stirling, Stirling FK9

4LA, Scotland, 8th August, 1989.

A.Valenzano, R.Sisto and L.Cimminiera, "An abstract execution model

for basic LOTOS", Software Engineering Journal, November 1990.

1991.

94

[VVD 89]

[VISS 86]

[VISS 87]

[VISS 88]

[WILE 90]

[WING 87]

[X.208 87]

van Eijk, P., Vissers, C.A., and Diaz, M. "The formal Description

Technique LOTOS". North-Holland, 1989.

Chris A. Vissers, Giuseppe Scollo, and Antonello Di Stefano, "LOTOS

in Practice", Department of Computer Science, Twente University of

Technology, The Netherlands, 1986.

Chris A. Vissers, "LOTOS Background", University of TWENTE,

Dept. Informatics, 7500, AE Enschede, The Netherlands, 1989.

Vissers, C., Scollo, G., Alderden, R.B., Schot, J., and Ferreira-Pires, L.

"The Architecture of Interaction Systems", Lecture Notes, Twente

University of Technology (NL), 1989.

Jack C. Wileden, Alexander L. Wolf, Willan R. Rosenblatt, Peri L.Tarr,

"Specification Level Interoperability", AT&T Bell Laboratories Murray

Hill New Jersey, Computer and Information Science Department,

University of Massachusetts, 1990.

Jeannette M. Wing, "Writing Larch Interface Language Specifications",

Camegie-Mellon University, ACM transactions on Programming

Languages and Systems, Vol.9 No.l, January 1987, Pages 1-24.

"Specification of Abstract Syntax Notation One (ASN.l)",

recommendation X.208, CCITT, 1987.

95

Appendix A The Informal Specification of the Alarm Service

The informal specification was provided by CET, a Portuguese member of the ARISE project.

It is a section of CET’s ELDIS project. ELDIS is an ISDN rural telephone exchange used

widely in Portugal. The case study is concerned with the provision of supplementary services

to the users of an ELDIS exchange. One such service is the Alarm Call Service which is used

in the Pilot Case Study.

A .l Description of the Alarm Call Service

The following description of the Ahurm Call Service is taken from [ARIS 92]:

A.1.1 Introduction

The Alarm Call Service is an ELDIS proprietary service and is activated by inputs of the

subscriber.

A.1.2 Procedures

General

The operation of Alarm Call in Keypad mode makes use of the KEYPAD and DISPLAY

information elements inserted in adequate messages of the call basic control. The invocation

procedures use the * and # characters with the following meaning:

* - Start o f invocation/split o f fields

* - End o f invocation

Activation/Deactivation/Interrogation

Activation

For activation of AC service, the user shall send a SETUP message with the KEYPAD

FACILITY information element with the following coding:

* <Service-Code> * <Hour> * <Minute> #

Service-Code = 313

Hour = A two dig it number in the range 0..23

Minute = A two dig it number in the range 0..59

A l

Deactivation

For deactivation of the AC service the user shall send a SETUP message with the KEYPAD

FACILITY information with the following code

* <Service-Code> #

Service-Code = 313

Interrogation

To interrogate the network about the AC service the user shall send a SETUP message with

the KEYPAD FACILITY information element with the following code:

* # <Service-Code> #

Service-Code = 313

A.1.3 Notification

Notification on Activation

When activating the AC service, the network shall answer in the case of unsuccessful

activation with the following code:

ERRO DE ACTTVACAO

and, if successful, the display shall be the following:

FACILIDADE ACEITE

Notification on deactivation

When deactivating the AC service, the network shall answer in the case of success with

the following code:

FACILIDADE DESACTIVADA

and if unsucessful, the display will be:

ERRO DE DES A CTIVA CA O

Notification on interrogation

When interrogating the AC service, the network shall answer with DISC, REL or REL COMP

message, including the DISPLAY information element with the following code:

DESPERTAR H H :M M

being HH the hour and MM the minutes field. When interrogating the AC service, the

A2

network shall answer in the case of unsucessful activation with the following code:

ERRO NA CONSULTA

As the task of working with this informal specification proceeded, a number of

communications, by telephone and meetings, with CET took place to elicit further

information. Elsewhere in the informal specification there was a brief description of an

Analyser which took the invocation segments from the User and passed them onto the

relevant supplementary service. When this system was specified by SPECS-Specification

Generation, the Analyser was expressed using SDL and the supplementary service processor

(.AC-processor) was expressed in LOTOS. For the purpose of this example, it is the Analyser

which sends the user’s commands to the AC-processor. The Analyser performed some initial

parsing on the user’s inputs which made them more easily processable by the AC-Processor.

Alarm Timer

Although it was not specifically required, it was decided to design a process which initiated

alarm calls. This was deemed to be necessary as otherwise comprehensive testing and

demonstration of the case study would be impossible. This extra process was call the Alarm-

Timer. It receives the current time and checks to see which users required a call at this time.

A3

Appendix B

The Classified specification for the Pilot case study

B .l Conceptual structure of the classified specification

A classified specification is a set of "classified components". Figure B.l shows the
conceptual structure of the classified specification of the Pilot Case Study. Each
"classified component" is represented by a rounded box, labelled with the name of the
component.
The (unidirectional) "conceptual structure links" between classified components are
denoted by arrows. Each arrow is labelled with the type of link, according to their
definition in [ID35 91].
The dashed horizontal lines suggest interaction, through messages, between objects of
the "classes" connected by each line.
A "class" describing such a message can be highlighted by crossing the dashed line
with a short line attached to the "class" (e.g. ’Segment’).

Figure B .l: Conceptual structure of the classified specification.

B.2 Conventions in the Textual Classified Specification

B 1

Class names begin with an Uppercase letter e.g. Context
Class (interface, information and behaviour) aspects appear in lowercase characters
(e.g. address).
Quoted class names and aspects, defined in some class, appear between single quotes
(e.g. ‘Segment’ class or ‘indication’ event).
External interface aspects are defined in terms of inputs and outputs. A colon (:)
separates the name of each input or output from the respective definition.
The following data types (classes) are assumed to be predefined:

Boolean - true or false logical type.
Integer - zero or positive number.
Hour - integer range from 0 to 23.
Minute - integer range from 0 to 59.
(IA5) character - 7 bits ASCII symbol.
(IA5) character string - chain of characters.

B.2.1 The "Context" Classified Component

Description : system context in the considered problem.
Interface : (this component sets the boundary of the system context; only an internal
interface between the part objects user and call_control_coordinator is classified.)

CLASSIFIED COMPONENT Context

concept structure

decomposition links

—> * Call_control_coordinator
—> * User
--> * Segment

class Context

information aspects CLOSED

part objects

* part object user CLOSED o f
CLOSED * class User

* part object call_control_coordinator CLOSED o f
CLOSED * class Call_control_coordinator

interface aspects

internal interface

B2

‘user’ ‘request’ interfaces to
‘call_control_coordinator’ ‘indication ’;

‘call_control_coordinator’ ‘response ’
interfaces to ‘user’ ‘confinnation’.

end o f class

END OF CLASSIFIED COMPONENT

B.2.2 The ‘‘User” Classified Component

Description: Abstract and generic user (terminal) of an ELDIS ISDN local exchange.
Abstract, insofar as an active peer entity of ISDN local layer 3 protocol - DSS.I
LAPD [Q.931 92] - is reduced to a dummy peer entity of "layer 4" virtual
communication. And generic, because address is meant to be a parameter of class
User, though a single user is considered.
Interface: conventional primitives request and confirmation of an OSI layer. The data
types Integer and IA5 character string are assumed to be pre-defined.

CLASSIFIED COMPONENT User

class User

information aspects CLOSED

part objects

* part object address CLOSED o f
CLOSED * class Integer

relationships

* relation CLOSED invocation_segment CLOSED
sequence o f

CLOSED * class Segment

* relation CLOSED notification_segment CLOSED
sequence o f

CLOSED * class Segment

behaviour aspects CLOSED

behaviour description

* CLOSED on internal event service_invocation_ready

B3

atomic action sending o f an object
‘invocationjsegment’ (through the 'request'
output) conveying the ‘User’ 'Address’ and a
'keypad'Jnformation_e lenient' invoking a
supplementary service in "keypad mode".

* CLOSED on external event confirmation do
atomic action
display the notification o f an invoked
supplementary service, conveyed by the
received ' no t ifi cation _segment‘ in a
‘display __information_element’.

interface aspects

external interface

request: output a ‘invocation_segment’;

confirmation: input a (notification_segment’.

end o f class

END OF CLASSIFIED COMPONENT

do

B.2.3 The “ Segment” Classified Component

Description: abstraction of a "segment array". An abstract object which conveys the
relevant information of a segment array is assumed to be common to both peer sides.
So it is also regarded as a "layer 4" virtual message between both peer sides, thus
bypassing the actual ELDIS ISDN local protocol (layers 1 to 3). Requirements on
physical formats for part of a Segment are attached as the intrinsic miscellaneous
aspects Keypad coding and Display coding
Interface: the data types Integer, Hour and Minute are assumed to be pre-defined.

CLASSIFIED COMPONENT Segment

class Segment

information aspects CLOSED

part objects

* part object address CLOSED o f
CLOSED * class Integer

B4

* part object keypad_information_element CLOSED o f
CLOSED * class IA5_character_string

* part object display_information_element CLOSED o f
CLOSED * class IA5_character_string

miscellaneous aspects

—> * Keypad_coding
—> * Display_coding

end o f class

END OF CLASSIFIED COMPONENT

B.2.3.1 The “ Keypad coding” Intrinsic Miscellaneous Aspect

DESIGN CONSTRAINT Aspect: Software Design Constraint

The follow ing information codes are strings o f "IAS"
(7 bits ASCII) characters such as, namely, the ones
available in a phone keypad: *, # and the decimal
digits (0 to 9).

1 Keypad Information Element Coding fo r Alarm Call
(AC) Supplementary Service Invocation Procedures

ServicejCode = 313

1.1 A C_activation_coding

*'<Service_Code> *<Hour> *<M inute>#

Hour = A two dig it number in the range 0..23

Minute = A two dig it number in the range 0..59

1.2 AC_deactivation_coding

#<Service_Code>#

1.3 AC_interrogation_coding

B5

*#< Se r\’ic e_Code>#

B.2.3.2 The “ Display coding” Intrinsic Miscellaneous Aspect

DESIGN CONSTRAINT Aspect: Software Design Constraint.

The follow ing information codes are strings o f "IA5”
(7 bits ASCII) characters.

1 Display Information Element Coding fo r Alarm Call
(AC) Supplementary Service Notification Procedures

In the next situations the network shall answer
with the (DISC, REL or) REL COMP message which
shall include the DISPLAY information element
with the proper notification o f the following ones.

1.1 A C_acti va tio n jio tificati on

1.1.1 A C_acti vationjsuccessjiotification

FAC1L1DADE ACEITE

1.1.2 A C_activationjunsuccess_notification

ERRO DE ACTIVACAO

1.2 A C_deactivationjwtification

1.2.1 AC_deactivation_success_notification

FACILIDADE DESA CTIVADA

1.2.2 AC_deactivationjunsuccess_notification

ERRO DE DESA C U V A CA O

1.3 A C_in te rrogationjio tification

1.3.1 A CJnterrogationjiuccessjiotification

B6

DESPERTAR <HH>:<MM>

where H H are two digits representing the hour
and M M denote the minute.

1.3.2 AC_interrogation_unsuccess_notification

ERRO NA CONSULTA

B.2.4 The “ Call control coordinator” Classified Component

Description: the actual "system" under development. Restricted to the functionality of
the AC supplementary service and without calls modelling.
Interface: external (virtual) interface through Segments (the real interface would be to
a ELDIS local layer 3 protocol control module.). The external interface connects
internally to Analyser which still interfaces to AC processor.

CLASSIFIED COMPONENT Call_control_coordinator

concept structure

decomposition links

—> * Analyser
—> * AC_processor

class Call_control_coordinator

information aspects CLOSED

part objects

* part object analyser CLOSED o f
CLOSED * class Analyser

* part object acprocessor CLOSED o f
CLOSED * class AC_processor

relationships
* relation CLOSED invocation_segment CLOSED
sequence o f

CLOSED * class Segment

* relation CLOSED notification_segment CLOSED
sequence o f

CLOSED * class Segment

B7

behaviour aspects CLOSED

behaviour description

* CLOSED on external event indication do
atomic action sending o f an object
‘Segment’ (the received ‘invocationjsegment’)
to ‘analyser’ ‘indication'.

* CLOSED on internal event response do
atomic action sending o f an object
‘Segment’ (the ‘notification_segment’ coming

from ‘analyser’ ‘response’) conveying a
‘ display_information_element’.

* CLOSED on internal event alarm do
atomic action
- TO BE CONSIDERED ONLY IF MODELLING CALLS -
place an alarm call to the local ‘User’ whose
‘address’ was assigned to the triggered timer.

interface aspects

external interface

indication: input a ‘invocationjsegment’;

response: output a ‘notificationsegment’.

internal interface

‘analyser’ ‘AC_activation’ interfaces to
‘acjprocessor’ ‘activation’;

‘analyser’ ‘AC__deactivation’ interfaces to
‘acprocessor’ ‘deactivation’;

‘analyser’ ‘AC_interrogation’ interfaces to
‘acprocessor’ ‘interrogation’;

‘acjprocessor’ ‘notification’ interfaces
to ‘analyser’ ‘AC_notification’;

‘ac_processor’ ‘a larm ’ interfaces to
‘ ‘call_control_coordinator’ ‘alarm

end o f class

B8

END OF CLASSIFIED COMPONENT

B.2.5 The “ Analyser” Classified Component

Description: "demultiplexer" of invocations of the AC supplementary service.
Interface: two separate external interfaces, respectively, with Call control coordinator
and with AC processor.

CLASSIFIED COMPONENT Analyser

class Analyser

behaviour aspects CLOSED

behaviour description

* CLOSED on external event indication do

case
selector is ‘keypad_information_element’
o f (the received) 'Segment'

* when AC_activation_coding
do
atomic action sending o f an object
with "hour", "minute" and ‘User’ "address"
through ‘ACjactivation output.

* when AC_deactivation_coding
do
atomic action sending o f an object
with ‘User’ "address" through
‘AC jdeactivation' output.

* when AC_interrogation_coding
do
atomic action sending o f an object
with ‘User’ "address" through
‘ACJinterrogation’ output.

end o f case

* CLOSED on external event A C jio tifica tion do

atomic action sending o f an object
‘Segment’ (through response’ output) to

B9

‘Call_control_coordinator’ ‘response ’,
conveying, in a ‘display_information_element’,
an eventual notification about an AC
supplementary service invocation (received
through ‘A C jio tifica tion ’ input).

interface aspects

external interface

indication: input a ‘Segment’;

response: output a ‘Segment’;

AC_activation: output invoking activation o f
AC fo r an 'User', with "address", "hour” and
"minute" extracted from the ‘Segment’ received
as ‘indication’;

AC_deactivation: output invoking deactivation
o f AC fo r an ‘User’ with "address" extracted
from the ‘Segment’ received as ‘indication’;

ACJnterrogation: output invoking interrogation
o f AC fo r an 'U ser'w ith "address" extracted
from the ‘Segment’ received as ‘indication’;

AC_notification: input notification information
about an AC invocation.

end o f class

END OF CLASSIFIED COMPONENT

B.2.6 The “ AC processor” Classified Component

Description: processor for invocations of the AC supplementary service.
Interface: two separate external interfaces: one, explicit, with AC processor and
another, implicit, with Call control coordinator for placing an eventual "alarm call"
to the respective user.

CLASSIFIED COMPONENT ACprocessor

concept structure

layering links

BIO

~> * Alarm_timer

class ACprocessor

information aspects CLOSED

relationships

* relation CLOSED alarm.jdatabase CLOSED set o f
CLOSED * class Alarm_timer

behaviour aspects CLOSED

action definition

* CLOSED action authorization_check is
atomic action
Check in ‘alarm_database’ i f there is
any ‘a larm jtim er' assigned to the user
identified by its "address".
I f so then the result is "success”.
Otherwise it means "unsuccess".

* CLOSED action hourjninutejcheck is
atomic action
Check the validity o f the given "hour"
and "minute" values (respectively belonging
to the ranges 0 to 23 and 0 to 59).
I f so then the result is "success".
Otherwise it means "unsuccess".

* CLOSED action on_check is
atomic action

‘ask_on_off o f the ‘alarmjdatabase'
'A larm jtim er' given by ‘User' 'address' o f
'activation'. I f i t returns ‘true' (Alarm
timer on) then the result is "success".
Otherwise it means "unsuccess".

* CLOSED action activation_checks is
atomic action
perform 'authorizationjcheck
I f successful, perform 'hour_tninute jcheck '.
I f the previous conditions hold then the
result is "success".
Otherwise if means "unsuccess".

* CLOSED action

B11

deactivation_or_interrogation_checks
is

atomic action
perform ‘authorizationjcheck'.
I f successful, perform ‘on_check'.
I f the previous conditions hold then the
result is "success".
Otherwise it means "unsuccess".

behaviour description

* CLOSED on external event, activation do

sequence o f

* action activation_checks

* case selector is 'activation_checks' result

* when success
do
sequence o f
* atomic action sending o f an object

to \set_alann’ o f the ‘alarm_database'
'Alarm_timer' given by 'User' "address"
o f 'activation', with "hour" and "minute"
o f 'activation'.

* atomic action sending o f an object
through 'notification' output, with
the information in the
'A C_activation_success_notification ’
format,

end o f sequence

otherwise

atomic action sending o f an object
through 'notification' output, with the
information in the
'AC_activation_unsuccess_notification'
format.

end o f case

end o f sequence

* CLOSED on external event deactivation do

B 12

* action deactivation_or_interrogation jcheck.s

* case
selector is

‘deactivation_or_interrogation_checks'
result

* when success
do
sequence o f
* atomic action sending o f an object

to ‘turn_off’ o f the ‘alarm_database ’
‘A larm jtim er' given by 'User' "address"
o f ‘activation

* atomic action sending o f an object
through ‘notification’ output, with
the information in the
‘AC_deactivation_success_notification’

format.
end o f sequence

otherwise

atomic action sending o f an object
through ‘notification' output, with the
information in the
‘AC_deactivation_unsuccess_notification’

format.

end o f case

end o f sequence

* CLOSED on external event interrogation do

sequence o f

* action deactivation_or_interrogation_checks

* case
selector is

‘deactivation_or_interrogation_checks’
result

* when success
do

sequence o f

B 13

sequence o f
* inclusion o f partial sequence

‘ask_setting’ o f the ‘alarmjdatabase’
‘Alarm_timer’ given by ‘User’
"address” o f ‘activation’ (returning
the 'Alarm_timer’ ‘hour’ and ‘minute’).

* atomic action sending o f an object
through ‘notification’ output, with
the information in the
‘A C_interrogation_success_notification ’

format,
end o f sequence

otherwise

atomic action sending o f an object
through ‘notification’ output, with the
information in the
A C jnterrogationjunsuccessjiotification ’

format.

end o f case

end o f sequence

* CLOSED on internal event alarmjtimeout do
atomic action sending o f an object
(through ‘a larm ’ output) with the ‘User’
"address" o f 'alarm jtimeout'.

interface aspects

external interface

activation: input the "hour", "minute" and
‘User’ "address” fo r AC invocation;

deactivation: input the ‘User’ "address" fo r the
supplementary service deactivation;

interrogation: input the ‘User’ "address"
fo r inquiring the network about the AC service;

notification: output notification information
about an AC invocation;

alarmjtimeout: input an ‘User’ "address";

B14

alarm: output an ‘User' "address",

end o f class

END OF CLASSIFIED COMPONENT

B.2.7 The “ Alarm timer” Classified Component

Description: functionality of a generic alarm clock for a AC supplementary service.
Interface: the external interface (below) assumes the data types Boolean, Integer, Hour
and Minute to be pre-defined.

CLASSIFIED COMPONENT Alarm J im e r

class A la rm jim e r

information aspects CLOSED

part objects

* part object address CLOSED o f
CLOSED * class Integer

* part object on_off CLOSED o f
CLOSED * class Boolean

* part object hour CLOSED o f
CLOSED * class Hour

* part object minute CLOSED o f
CLOSED * class Minute

behaviour aspects CLOSED

behaviour description

* CLOSED on external event set_alarm do

sequence o f

* atomic action state change
set 'on_o jf to true.

* atomic action object value modification
"hour” and "minute" o f 'set_alarm' are
assigned to, respectively, ‘hour’ and
‘minute

B 15

* CLOSED on external event turn_off do
atomic action state change
set ‘on_off to false.

* CLOSED on external event ask_on_off do
atomic action sending o f an object
Boolean (through ‘cur ren tjm _o ff' output)
with the 'on_off' state value.

* CLOSED on external event ask_setting do
atomic action sending o f an object
(through 'current_setting' output to
'ACprocessor’) with the values o f 'hour'
and ‘minute'.

* CLOSED on internal event alarm jtimeout do
atomic action sending o f an object
(through ‘alarm jtimeout’ output to
'AC'jprocessor') with the ‘User' ‘address’.

interface aspects

external interface

setjxlarm : input an Hour and a Minute;

turn J if f) input;

ctsk_on_oJf: input;

current_on_off: output a Boolean;

ask_setting: input;

currentjsetting: output an Hour and a Minute;

alarmjtimeout: output an ‘User' 'address',

end o f class

END OF CLASSIFIED COMPONENT

end o f sequence

B16

Appendix C

The Rigorous Specification for the Pilot Case Study

C .l Introduction
This appendix gives the rigorous models used to describe the functionality and
behaviour of the supplementary services described in appendix A and conceptualised
in appendix B. From these models a new process was introduced to the system which
would check the time recorded in the user’s records against the current time and return
an alarm call to the user. This new process, called Alarm-Timer, is shown in Level
0 DFD and a description of its behaviour is given in section C.2.4.6.

C.2 Rigorous Models
The Rigorous step of the CR&F methodology uses 5 different models to describe the
system under examination. These are :

Data/Control Flow Diagrams (DDFDs)
Message Sequence Charts (MSCs)
Abstract Syntax Notation 1 (ASN. 1)
Process Specification (PSPECs)
Entity-Relationship Diagrams (ERDs)

C.2.1 Data Flow Diagrams

Figure C .l Context Data Flow Diagram of the Pilot Case Study

Cl

ACWwMIIon
1

Analyser
AC-Dtactfvtfon

2

AC-Procvssor
AC-lmenegsUon

<—
AC-NotHe»tfon

Notification Segment

Invocation Segment

AJaim

Alarm
Handler

Figure C.2 Level 0 DFD of the Call control controller

Alarm Timer

Alarm Activation

Alarm Deactivation

AC-Activation

, AC-Notification

AC-Deactlvatlon^

^ AC-Notification

AC-lnterrogation^

/ AC-Notification

> Alarm

Alarm interrogation

Figure C.3 Level 1 DFD of the AC-Processor

i

C.2.2 Message Sequence Charts

Figure C.4 : MSC for Successful Alarm Activation

Figure C.5 MSC for an Unsuccessful Alarm Activation

C3

Figure C.6 MSC for Successful Alarm Deactivation

Figure C.7 MSC for Unsuccessful Alarm Deactivation (No. 1)

C4

Figure C.8 MSC for Unsuccessful Alarm Deactivation (No.2)

Figure C.9 M SC for Successful Alarm Interrogation

C5

Figure C.IO MSC for Unsuccessful Alarm Interrogation (No.l)

Figure C .l l MSC for Unsuccessful Alarm Interrogation (No.2)

C6

Alarm
Handler

<- Alarm

Alarm Timer Clock

Time

(Time from clock
of user record m

Database

Alarm

and time
atch)

Figure C.12 MSC for Successful Alarm Timer

Figure C.13 MSC for Unsuccessful Alarm Timer

C l

User Analyser

Invocation Segment

Notification Segment

Figure C.15 MSC for User to Analyser.

C.2.3 Abstract Syntax Notation 1 (ASN.l)
This section describes the data structures, data types and messages of variables used
within the system by using ASN.l notation. The syntax used is that described in
[X.208 87].

ALARM-Database ::=
SET {

address INTEGER
hour INTEGER (0..23)
minute INTEGER (0..59)
on_off BOOLEAN
authorization BOOLEAN

}

CLOCK ::=
SET {

hour INTEGER (0..23)
minute INTEGER (0..59)

}

All the Data Flows contained in the DCFDs are described here using ASN. 1 :

Invocation_Segment ::=
SET {

address INTEGER

C8

keypad_coding IA5STRING ::=
keypad_request
display_coding IA5STRING empty

}

keypad_request ::= ENUMERATED
{AC_Activation_coding(0), AC_Deactivation_coding(l),
AC_Interrogation_coding(2)}

AC_Activation_coding IA5STRING ::=
" *service_code*hour*minute#"

AC_Deactivation_coding IA5STRING ::=
"#service_code#"

AC_Interrogation_coding IA5STRING ::=
" *#service_code#"

service_code INTEGER ::= 313

hour INTEGER (0..23)
minute INTEGER (0..59)

Notification_Segment ::=
SET {

address INTEGER
keypad_coding IA5STRING empty
display_coding IA5STRING
AC_Notification

}

AC_Activation ::=
SET {

address INTEGER
hour INTEGER
minute INTEGER

}

AC_Deactivation ::=
SET {

address INTEGER
}

AC_Interrogation
SET {

address INTEGER
}

C9

;

AC_Notification ::= ENUMERATED
{successful_activation (0), unsuccessful_aetivation (1),
successful_deaciivaiion (2), unsuccessfuI_deaciivation (3),
interrogation_result (4), unsucccssfuljnterrogation (5)}

suceessful_activation IA5STRING ::=
"FACILIDADE ACEITE"

unsuccessfuI_activation IA5STRING ::=
"ERRO DE ACTTVACAO"

successful_deactivation IA5STRING ::=
"FACILIDADE DESACTIVADA"

unsuccessful_deactivation IA5STRING ::=
"ERRO DE DESACTIVACAO"

interrogation_result IA5STRING
"DESPERTAR hour:minute"

unsuccessful_result IA5STRING ::=
"ERRO NA CONSULTA"

Set_Alarm ::=
SET {

address INTEGER
hour INTEGER (0..23)
minute INTEGER (0..59)
on^off BOOLEAN ::= TRUE

}

Tum_Off_Alarm
SET {

address INTEGER
on_off BOOLEAN FALSE

}

Current_Alarm_Setting ::=
SET {

hour INTEGER (0..23)
minute INTEGER (0..59)

}

User_Alarm_Record ::=
SET {

address INTEGER
hour INTEGER (0..23)
minute INTEGER (0..59)

CIO

}

Check_On_Off ::=
SET {

on_off BOOLEAN
}

TIME ::=
SET {

hour INTEGER (0..23)
minute INTEGER (0..59)

}

ALARM ::=
SET {

address INTEGER
}

on_off BOOLEAN

This section shows the behaviour of the processes of the system.

C.2.4 Process Specifications (PSpecs)

C.2.4.1 PSpec of Analyser

START
NEXTSTATE wait for segment

STATE wait for segment
INPUT Invocation_Segment /* from User */
DECISION service_code = 313

(TRUE):
DECISION is AC_Activation_coding

(TRUE):
OUTPUT hour, minute, address
/* AC_Activation to AC_processor */;
NEXTSTATE wait for Notification;

ENDDECISION
DECISION is AC_Deactivation_coding

(TRUE):
OUTPUT address
/*AC_Deactivation to AC_processor*/;
NEXTSTATE wait for Notification;

ENDDECISION
DECISION is AC_Interrogation_coding

(TRUE):
OUTPUT address
/* AC_Interrògation to AC_processor*/;
NEXTSTATE wait for Notification;

ENDDECISION
(FALSE):

/* No description of what happens if service
code is not 313 in informal or Classified
specifications */

ENDDECISION
STATE wait for Notification;

INPUT AC_Notification;
/* from AC-processor */
OUTPUT Notification_Segment;
/* created using AC_Notification and address read in

above - output to the User */
NEXTSTATE wait for segment;

C.2.4.2 PSPEC of Alarm Handler

C12

This process will not be described here as no informal specification for it currently
exists. Similarly no attempt will be made to formalise this into SDL or LOTOS.

C.2.4.3 PSPEC of Alarm Activation

START
NEXTSTATE wait for AC_Activation;

STATE wait for AC_Activation
INPUT AC_Activation /* from analyser */;
DECISION((Hour >= 0) and (hour <= 23)

and (minute >= 0) and (minute <= 59))
(TRUE):

NEXTSTATE check authorization;
(FALSE):

NEXTSTATE send error message;
ENDDECISION

STATE check authorization
INPUT authorization_check;

I* from database */
DECISION (authorization_check = TRUE)

(TRUE):
Set_ Alarm, address = AC_Activation. address;
Set_Alarm.hour = AC_Activation.hour;
Set_Alarm. minute = AC_ Activation, minute;
Set_Alarm.on_off = TRUE;
OUTPUT Set_Alarm
/* to database */;
OUTPUT successful_activation
/* to Analyser as AC_Notification */;
NEXTSTATE wait for AC_Activation;

(FALSE):
NEXTSTATE send error message

ENDDECISION
STATE send error message

OUTPUT unsuccessful_activation
/* to Analyser as AC_Notification */;
NEXTSTATE wait for AC_Activation

C.2.4.4 SPEC of Alarm Deactivation

START
NEXTSTATE wait for AC_Deactivation;

STATE wait for AC_Deactivation
INPUT AC_Deactivation;
INPUT authorization_check;

/* from database */
DECISION (authorization_check = TRUE)

(TRUE):

C13

NEXTSTATE check On_Off_Flag;
(FALSE):

NEXTSTATE send error message
ENDDECISION

STATE check On_Off_Flag
INPUT on off
/* from database */;
DECISION (on_off = TRUE)

(TRUE):
tum_off_alarm.address =

AC_Deac tivation. address ;
tum_off_alarm.on_off = FALSE;
OUTPUT Set_Alarm
/* to database */;
OUTPUT successful_deactivation
/* to Analyser as AC_Notification */;
NEXTSTATE wait for AC_Deactivation;

(FALSE):
NEXTSTATE send error message

ENDDECISION
STATE send error message

OUTPUT unsuccessful_deactivation
/* to Analyser as AC_Notification */;
NEXTSTATE wait for AC_Deactivation

C.2.4.5 PSPEC of Alarm Interrogation

START
NEXTSTATE wait for AC_Interrogation;

STATE wait for AC_Interrogation
INPUT AC_Interrogation;
INPUT authorization_check;

/* from database */
DECISION (authorization_check = TRUE)

(TRUE):
NEXTSTATE check On_Off_Flag;

(FALSE):
NEXTSTATE send error message

ENDDECISION
STATE check On_Off_Flag

INPUT on_off
/* from database */;
DECISION (on_off = TRUE)

(TRUE):
INPUT current-alarm-setting
/* from database */
AC_Notification := interrogation_result
+ current-alarm-setting.hour + ’:’

C14

+ current-alarm-setting.minute
OUTPUT AC_Notification
/* to Analyser */;
NEXTSTATE wait for AC_Interrogation;

(FALSE):
NEXTSTATE send error message

ENDDECISION
STATE send error message

OUTPUT unsuccessful_interrogation
/* to Analyser as AC_Notification */;
NEXTSTATE wait for ACMnterrogation

C.2.4.6 PSpec of A larm -T im er

/* Checks the user’s entry in the alarm-database with the current time. When a match
is found an alarm is sent to the user. */

START
NEXTSTATE initialise old-time;

STATE initialise old-time
old-time.hour := 24;
old-time.minute := 24; /* set old-time to some invalid value */
NEXTSTATE get lime

STATE get time
INPUT time /* from Clock */
DECISION (old-time = time)

(TRUE):
NEXTSTATE initialise old-time;

(FALSE):
NEXTSTATE search user database;

ENDDECISION
STATE search user database

INPUT User-Alarm-Record; /* get Record for first User in database */
NEXTSTATE check not end of list;

STATE check not end of list
DECISION (valid(User-Alarm-Record))

(TRUE):
NEXTSTATE check users time;

(FALSE):
old-time := time; /* end of list reached, start again */
NEXTSTATE get time;

ENDDECISION
STATE check users time

DECISION ((User-Alarm-Record.hour = time.hour) and
(User-Alarm-Record.minute = time.minute))

(TRUE):
NEXTSTATE check on_off;

C15

(FALSE):
NEXTSTATE get next user record;

ENDDECISION
STATE check on_off;

DECISION (User-Alarm-Record. on_off = true)
(TRUE):

OUTPUT User-Alarm-Record.address; /* on Alarm flow */
NEXTSTATE get next user record;

(FALSE):
NEXTSTATE get next user record;

ENDDECISION
STATE get next user record

INPUT User-Alarm-Record; /* get Record for next User in database */
NEXTSTATE check not end of list

C.2.5 E n tity R elationsh ip D iag ram

Figure C.14 Entity-Relationship Diagram for SPECS Pilot Case Study.

C16

/* SPECS SDL component; version 1.3;
on 92/05/14;
translated to ACRL apparently with success.
Minimum comments, to avoid odd observed problems.
*/

system analyser ; /* Parameters and Constants */
synonym max_calls /* natural */

integer = 1 ;

/* Data Types */

newtype service_code_type enum /* 313 */ ac_service_code
endnewtype ;

newtype invocation_type
enum ac_activation , ac_deactivation , ac_interrogation
endnewtype ;

newtype ac_display_type
enum
facilidade_aceite , erro,_de_activacao ,
facilidade_desactivada , erro_de_desactivacao ,
despertar , erro_na_consulta

endnewtype ;

syntype address_type = /* natural */ integer endsyntype ;

syntype ho u rjy p e = /* -1 to 23 *1 integer endsyntype ;

syntype minute_type = /* -1 to 59 */ integer endsyntype ;

newtype time_type struct hour hour_type ; minute m inutejype
literals dummy_time
axioms dummy_time == make ! (- 1 , - 1) endnewtype ;

/* Signal interface to "User" (in environment) */
signal
invoke
(
address_type , service_code_type , invocation_type ,

A p p en d ix D

T h e S D L sp ec ifica tio n fo r th e P ilo t C a se S tu d y

D1

tim ejype
), notify (address_type , ac_display_type , time_type) ;

/* Signal interface with "AC processor" (in environment) */

signal
ac_activate (addressjype , tim ejype) ,
ac_deactivate (addressjype) ,
acjn terrogale (address_type) ,
ac_activate_success (addressjype) ,
ac_activate_unsuccess (addressjype) ,
ac_deactivate_success (addressjype) ,
ac_deactivate_unsuccess (addressjype) ,
acJnterrogate_success (addressjype , u m c jy p e) ,
acjnterrogate_unsuccess (address_type) ;

signallist ac Jnvocations =
ac_activate , ac_deactivate , acjn terrogate ;

signallist ac_notifications =
ac_activate_success , ac_activate_unsuccess ,
ac_deactivate_success , ac_deactivate_unsuccess ,
acJnterrogate_success , acJnterrogate_unsuccess ;

/* Structure */

block ac_analyser referenced ;

channel user_analyser
from env to ac_analyser with invoke ;
from ac_analyser to env with notify ;

endchannel ;

channel analyser_ac_processor
from env to ac_analyser with (ac_notifications) ;
from ac_analyser to env with (acjnvocations) ;

endchannel ;
endsystem ;

block ac_analyser ;
process ac_analysis referenced ;

signalroute frontl from env to ac_analysis with invoke ;

signalroute front2 from ac_analysis to env with notify ;

connect user_analyser and frontl , front2 ;

D2

signalroute ac_backl
from env to ac_analysis with (ac_notifications) ;

signalroute ac_back2
from ac_analysis to env with (ae_invocations) ;

connect analyser_ac_processor and ac_backl , ac_back2 ;
endblock ;

/* Behaviour */

process ac_analysis (1 , max_calls) ;
del address address_type

5

invocation invocation_type

service_code service_code_type
j
time time_type ;

start ;
nextstate wait_for_invocation ;
state wait_for_invocation ;
input
invoke (address , service_code , invocation , time) ;
decision service_code ;
(ac_service_code) :
decision invocation ;
(ac_activation) :
output ac_aclivate (address , time) ;
nextstate wait_for_notification ;

(ac_deaclivation) :
output ac_deactivate (address) ;
nextstate wait_for_notification ;

(ac_interrogation) :
output ac_interrogate (address) ;
nextstate wait_for_notification ;

else : nextstate wait_for_invocation ; enddecision ;
else : nextstate wait_for_invocation ; enddecision ;

endstate wait_for_invocation ;

state wait_for_notification ;
input ac_activate_success (address) ;
output
notify (address , facilidade_aceite , dum m y_tim e) ;
nextstate wait_for_invocation ;

input ac_activate_unsuccess (address) ;
output

D3

notify (address , erro_de_activacao , dummy_time) ;
nextstate wait_for_invocation ;

input ac_deactivate_success (address) ;
output
notify (address , facilidade_desactivada . dummy_time
) ; *

nextstate wait_for_invocation ;

input ac_deactivate_unsuccess (address) ;
output
notify (address , erro_de_desactivacao , dummy_tirae) ;
nextstate wait_for_invocation ;

input ac_intcrrogate_success (address , time) ;
output notify (address , despertar, time) ;
nextstate wait_for_invocation ;

input ac_interrogate_unsuceess (address) ;
output
notify (address , erro_na_consulta , dummy_time) ;
nextstate wait_for_invocation ;

endstate wait_for_notification ;
endprocess ;

D4

Appendix E

The LOTOS Specification for the Pilot Case Study.

(* Version : 1.2 *)

specification
AC_PROCES SOR [AC_ACTIVATION, AC_DEACTIVATION,
AC_INTERROGATION,
AC_NOTIFICATION,ADD_USERS, ALARM,TIME] : noexit

library Integer, Boolean
endlib

type
Enrichedlnt

is
Integer
opns
1 (*$ userdefined $*) -> int
2 (*$ userdefined $*) -> int
3 (*$ userdefined $*) -> int
4 (*$ userdefined $*) -> int
5 (*$ userdefined $*) -> int
6 (*$ userdefined $*) -> int
7 (*$ userdefined $*) -> int
8 (*$ userdefined $*) -> int
9 (*$ userdefined $*) -> int
10 (*$ userdefined $*) -> int
23 (*$ userdefined $*) -> int
25 (*$ userdefined $*) -> int
59 (*$ userdefined $*) -> int
61 (*$ userdefined $*) -> int

eqns
ofsort int

1 = succ(O);
2 = succ(succ(0));
3 = succ(succ(succ(0)));
4 = succ(succ(succ(succ(0))));
5 = succ(succ(succ(succ(succ(0)))));
6 = succ(succ(succ(succ(succ(succ(0))))));
7 = succ(succ(succ(succ(succ(succ(succ(0)))))));
8 = succ(succ(succ(succ(succ(succ(succ(succ(0))))))));
9 = succ(succ(succ(succ(succ(succ(succ(succ(succ(0)))))))));

10 = succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(0))))))))));

E l

23 = 10 + 10 + 3;
25 = 23 + 2 ;
59 = (25*2) + 9;
61 - 59+2

endtype

type addressjype is Enrichedlnt, Boolean
sorts address_type (*$ rec $*)
opns

invalid_addrcss (*$ userdefined $*) : -> address_type
mk_address (*$ rakrec 1 $*): int -> addressjype
eq (*$ equal $*),
ne (*$ notequal $*) : addressjype, address_type -> Bool
eq (*$ userdefined $*),
ne (*$ userdefined $*) : addressjype, int -> Bool

eqns
forall

address : addressjype,
n : int

ofsort addressjype
invalid_address = mk_address(pred(0));

ofsort bool

address eq n = address eq mk_address(n);
address ne n = address ne mk_address(n);

endtype

type tim e jy p e is Enrichedlnt, Boolean
sorts tim e jy p e (*$ rec $*)
opns

va lid jim e (*$ userdefined $*) : tim e jy p e -> Bool
invalidJim e (*$ userdefined $*) : -> tim ejype
m k jim e (*$ mkrec 2 $*) : int, int -> tim ejy p e
hour_of (*$ sel 1 $*) : tim e jy p e -> int
minute_of (*$ sel 2 $*) : tim e jy p e -> int
eq (*$ equal $*) : tim ejype, tim e jy p e -> Bool

eqns
forall times : tim ejype

ofsort tim e jy p e
invalid jim e = mkjime(pred(0),pred(0));

ofsort bool

((hour_of(times) ge 0) and (hour_of(times) le 23)

E2

and (minute_of(times) ge 0) and (minute_of(times) le 59))
=> valid_time(times) = true;

(((hour_of(times) le 0) or (hour_ol'(times) ge 23))
or ((minute_of(times) le 0) or (minute_of(times) ge 59)))
=> valid_time(times) = false;

endtype

type
AC_NOTIFICATION

is
sorts AC_NOTIFICATION (*$ enum 6 $*)

opns
FACILIDADE_ACEITE,
ERRO_DE_ACTIVACAO,
FACILID ADE_DES ACTIV ADA,
ERRO_DE_DESACTIVACAO,
DESPERTAR,
ERRO_N A_C ON SIJLT A :

-> AC_NOTIFICATION
endtype

type
UserListElement (* LINK : R-component store description

and C-coraponent Alarm-timer information aspects *)

is address_type, time_type, Boolean
sorts user (*$ rec $*)

opns
(* represents the information stored about each user in

* the Supplementary Services Database, i.e. User Address,
* hour and minute of alarm call, on/off flag for alarm
* service and authorization flag for alarm service. *)

mk_user (*$ mkrec 4 $*): addressjype, time_type, bool, bool-> user
(* mk_user(address, time , on_off, authorised)

* means that the user whose address in the ISDN system
* is address has its alarm lime set for time,
* its on_off flag is set to the boolean value on_off and
* its authorization flag set to the boolean value
* authorised. *)

address_of (*$ sel 1 $*) : user -> addressjype
alarm Jim e_of (*$ sel 2 $*): user -> tim ejype
on_off_flag_of (*$ sel 3 $*),
authorization_flag_of (*$ sel 4 $*):

E3

user-> bool
_ eq _ (*$ equal $*), _ ne _ (*$ notequal $*):

user, user-> bool
end type

(* User_list is a list of all users that the Supplementary
* Services Database is aware of and stores information on.
r For each user it contains a record with the user’s
* address on the system, the time that their
* alarm call is set for, a flag to indicate whether the
* alarm is on or off and a flag to indicate whether or
* not the user is authorised to use the Alarm Call service *)

type
UserList

is
Enrichedlnt, UserListElement,address_type, time_type, Boolean

sorts u se r jis t (*$ list(user) $*)

opns
remove_user (*$ userdefined $*): address_type, u se rjis t-> user_list

(* change_user(address,t,o,a,users) changes for the user
* with address address, time time, on_off
* flag to o and authorization flag to a. *)

change_user (*$ userdefined $*):
address_type, time_type, bool, bool, user_list-> u se r jis t

make_user (*$ userdefined $*):
addressjype, tim ejype , bool, bool, user_list-> user_list

valid_user (*$ userdefined $*): address_type, user_list-> bool
alarm_time_of (*$ userdefined $*): addressjype, user_list -> time_type
on_off_flag_of (*$ userdefined $*): addressjype, userJist-> bool
authorization_flag_of (*$ userdefined $*): addressjype, userJist-> bool
eq (*$ equal $*), _ne_ (*$ notequal $*): u se rjis t, u se r jis t ->bool
<> (*$ empty $*): -> u se r jis t
mklist (*$ $*): user-> u se r jis t
conc (*$ $*): u se rjis t, u se r jis t-> u se r jis t
first (*$ $*): u se r jis t-> user
rest (*$ $*): userJist-> u se r jis t
sublist (*$ $*): u se rjis t, int, int-> u se r jis t
length (*$ $*): u se r jis t-> int

eqns
forali

address 1, address2 : addressjype,
t
o, a
us

: tim ejype ,
: bool,
: u se r jis t

ofsort user list

E4

= (sn * V ‘ o ‘ i ‘ issojppu) iosn“oSuBqo
<=

(
(((sn) isjy) jo ssaippe ou jssojppi?)

pire (<> ou sn)
)

• (
((sn) isoi * issojppt?) josn oaoiuoj

i

((v. ‘ o ‘1 ‘ jssojpps) Josn- >{iu)
ISTRUÌ

)
ouoo

= (sn ‘ B ‘ o V jssojppiî) J0sn~0§ireip
<=

(
(((sn) isjij) jo s'so.ippp bo jssojppu)

pue (<> ou sn)
)

; <>
= (sn ‘ í ‘ o ì ‘ [s’S'OjppTi) josi-ToSinup

<= (<> bo sn)

Ç3

• (
((sn) 1S0J ‘ issojppîî) josn oaoiuoj

‘ ((sn) is.ni) isipjui
)

ouoo
= (sn 1 \ ssoippT?) J0sn“0A0ui0j

<=
(

(((sn) is.nj) jo ssojppR ou jssojppu)
put? (<> ou sn)

)

: ((sn) 1S0.1 ‘ j ssojppiï) i0sn~0A0Ui0j
= (sn * [ssojppu) Josn- 0Aoiuo.t

<=
(

(((sn) îsjij) jo ssojppt? bo i ssojppu)
pun (<> ou sn)

)

; <> = (sn ‘ [ssojppt?) josn oaoiuoj
<= (<> bo sn)

conc
(

mklist (first (us)) ,
change_user (address I , t , o , a , rest(us))

) ;

(us eq <>) =>
makc_uscr (address 1 , t, o , a , us) =

mklist
(mk_user (address 1 , t , o , a)) ;

(us ne <>) =>
make_user (address 1 , t, o , a , us) =

conc
(

mklist
(mk_user (address 1 , t , o , a))

US

)

ofsort time_type
(

(us ne <>) and
(address 1 eq address_of (first (us)))
)
=>
alarm_time_of (address 1 , us) =

alarm_time_of (first (us)) ;

(
(us ne <>) and
(address 1 ne address_of (first (us)))
)
=>
alarm_time_of (address 1 , us) =

alarm_tinie_of (address 1 , rest (us)) ;

ofsort bool
(us eq <>) =>

valid_user (address 1 , us) = false ;

(
(us ne <>) and

E6

¿a

= (sn * i ssojppi?) jo“3iqj uonF/uoqim’
<=

(
(((sn) 1S.II.J) jo ssaippi? ou jssaipps)

pul? (o ou sn)
)

; ((sn) isjij) jo~Si?u~uoi]ttzuoi|inB
= (sn ‘ jssojppT?) jo~3«iJ- uopuzuoipnt?

<=
(

(((sn) 1S.IIJ) jo ssojppt? bo jssaippu)
pun (o ou sn)

)

; osp’j = (sn ‘ j ssojppB) jo- SRU- uoyir¿uoqmTí
<= (o bo sn)

; ((sn) ísoj ‘ i ssojppu) jo~§ i?li_jjo_ uo

= (sn ‘ jssaippi?) jo- §\?u- jjo- uo

<-
(

(((sn) 1S.IIJ) jo ssaippiî ou \ ssaippu)
pire (o ou sn)

)
i ((sn) isjij) jo 3i?LI JJO uo

= (sn ‘ issojppB) jo- 3t?ij"jjo- uo
<=

(
(((sn) isjij) jo sso.ippt! bo jssojppi?)

puB (o ou sn)
)

: ospy = (sn ‘ jssojppe) jo~3rlTjjo- uo
<= (<> bo sn)

; ((sn) ísoj ‘ jssojppi*) .iosn~pip?A
= (sn ‘ i ssojppií) Josn_pqi’A

<=
(

(((sn) isjij) jo sso-ippi? ou jsso.ippi?)
put? (o ou sn)

)

: on.ii = (sn ‘ jssojppi?) josn~pip?A
<=

(
(((sn) isjij) jo ssojppi? bo issojppe)

\end{ verbatim}
\begin{ verbatim}

behaviour

hide
QUERYJJSERS, CHANGEJJSERS, N EX TJJSER
in
START_AC_PROCES S OR[AC_ACTIVATION, AC_DEACTIVATION,
AC_INTERROGATION, AC_NOTIFICATION, ALARM, TIME,
Q U ER Y JJSERS, CHANGE_USERS, ADD_USERS, NEXT_USER]

l[QUERY_USERS,CHANGE_USERS, ADD_USERS, NEXT_USER]I

USERS_MANAGER
[QUERY_USERS, CHANGE_USERS, ADD_USERS,NEXT_USER] (<>)

where

process USERS_MANAGER [QUERY_USERS, CHANGE_USERS,
ADD_USERS,NEXT_USER] (users : user_list) : noexit :=

(
QUERYJJSERS ? address : addressJype;
(

([valid_user(address,users) eq true]->
(* Query user’s details (i.e. alarm time,

authorization and on_off flags *)
(

QU ERY JJSERS ! alarmjime_of(address,users)
! on_off_flag_of(address,users)
! authorizationJlag_of(address,users);

USERSJVIANAGER[QUERY_USERS, CH AN G EJJSERS,
ADD JJSERS, N EX TJJSER] (users)

) (* end valid users eq true *)
n
[valid_user(address,users) eq false]->
(

Q UERYJJSERS ¡false;
USERS_MANAGER[QUERY_USERS, CHANGEJJSERS,

A D D JJSERS, NEXTJJSER](users)
) (* end valid users eq false *)

) (* end valid user options *)
) (* end query users block *)
□
(* Amend a user record *)

authorization_flag_of (address 1 , rest (us))
endtype

E8

CHANGE_USERS ?address : address_type
?alarm_time : time_type ? on_off, authorization : bool;
(

USERS_MANAGER[QUERY_USERS, CHANGE_USERS,
ADD_USERS ,NEXT_USER]
(change_user(address, alarm_time, on_off authorization,users))

)
□
(* Add a new user *)
ADD_USERS ?address : address_type

? alarm_time : time_type
? on_off, authorization : bool;

(
USERS_MANAGER [QUERY_USERS, CHANGE_USERS,

ADD_USERS, NEXT_USER]
(make_user(address , alarm_time, on_off ,

authorization ,users))
)
D
N E X TJJSER ? user_offset : int;
(* Given the position of a user in the list return their address *)
(

let tem p_user_list: u se r jis t
= sublist(users, user_offset, length(users))

in
(

[temp_user_list ne <>] ->
(

NEXT_USER ! address_of(first(temp_user_list));
exit

)
[]
[temp_user_list eq <>] ->
(

NEXT_USER !invalid_address;
exit

)
)
>>USERS_MANAGER[QUERY_USERS, CHANGE_USERS,

ADD_USERS,NEXT_USER] (users))

endproe

(* LINK : R-component Level 1 DFD AC-Processor and
C-component AC-Processor *)

E9

process START_AC_PROCESSOR [AC_ACTIVATION, AC_DEACTIVATION,
ACJNTERROGATION, AC_NOTIFICATION, ALARM, TIME,
Q UERYJJSERS, CHANGEJJSERS, ADD_USERS,
NEXT_USER] : noexit :=

(
ALARM_ACTIVATION [AC_ACTIVATION, AC_NOHFICATION,

CHANGE JJSERS,Q U ERY JJS E R S]

III

ALARM_DEACTIYATION [AC_DEACTIVATION, AC_NOTIFICATION,
QUERYJJSERS, CHANGE_USERS]

III

ALARM_INTERROGATION [AC_INTERROGATION, AC_NOTIFICATION,
QUERY_U SERS]

III

ALARM_TIMER [ALARM, TIME, QUERYJJSERS, CHANGE_USERS,
N EX TJJSER]

)
endproc

(* LINK : R-component Alarm Activation PSpec and
R-components System Communication 2 & 3
and C-component AC-Processor behaviour aspects *)

process ALARM_ACTIV ATION
[AC_ACTIVATION, AC_NOTIFICATION, CHANGEJJSERS,

QUERY JJS E R S]
: noexit

(* ALARM ACTIVATION process accepts the user’s address and the time
* for which the alarm is required on the AC_ACTICATION
* gate. After checking that the time values are within the
* required range, and that the user is authorised to use the alarm
* facility (by reading the value of the authorization flag in the
* user’s database entry) the user’s database entry is updated to
* record the alarm time and the on_off flag is set to true. The user
* is informed of the success or failure of the operation on the
* AC JUSTIFICATION gate.
*)

(
AC_ACTIVATION ? address : addressjype ? time :tim ejype;

E10

([valid_time(time) eq false]->
((* User’s proposed lime is invalid *)

AC_N OTIFIC ATIO N ! ERRO_DE_ACTIV AC AO ¡address;
exit

) (* end val time eq false *)
[]

[valid_time(time) eq true]->
((* time in valid range *)

QUERY_USERS ¡address ?stored_time:time_type ?on_off:Bool
?authorization:Bool;

([authorization eq true]-> (* User is authorised *)
(

CHANGE_USERS ¡address ¡time ¡true ¡true;
AC_NOTIFICATION !FACILIDADE_ACEITE ¡address; exit

) (* end auth eq true *)
[]
[authorization eq false]->
((* User is not authorised *)

AC_N OTIFIC ATION !ERRO_DE_ACTIVACAO ¡address; exit
) (* auth eq false *)

) (* end authorization checks *)
[]
QUERY_USERS¡address ¡false;
((* User is not valid (i.e. does not exist *)

AC_NOTIFICATION !ERRO_DE_ACTIVACAO ¡address; exit
) (* end false *)

) (* val time eq true *)
) (* end time checks *)
»
ALARM_ACTIVATION[AC_ACTIVATION, AC_NOTIFICATION,

CHANGEJJSERS, QUERY_USERS]
)
endproc

(* LINK : R-component Alarm Deactivation PSpec and
R-components System Communication 4,5 & 6
and C-component AC-Processor behaviour aspects *)

process ALARM_DEACTIVATION [AC_DEACTIVATION, AC_NOTIFICATION,
QUERY_USERS, CHANGE_USERS] : noexit :=

(* ALARM DEACTIVATION process accepts the address of the user who wishes
* to have their alarm turned off on the AC_DEACTIV ATION gate. After
* checking that the user is authorised to use the Alarm Call facility
* and that the alarm is turned on, the on_off flag is set to false. The
* user is informed of the success or failure of the operation on the
* AC_NOTIFICATION gate.

E l l

(
AC_DE ACTIVATION ? address : address_type;
(QUERY_USERS ¡address ?time:time_type ?on_off:Bool

?authorization:Bool;
([(authorization eq true) and (on_off eq true)]->

(* User is authorised and alarm is set *)
(

CHANGE_USERS ¡address ¡time ¡false ¡true;
AC_NOTIFICATION !FACILIDADE_DESACTIVADA ¡address; exit

)
[]
[(authorization eq false) or (on_off eq false)]->
(

(* User is not authorised or alarm is off*)
AC_NOTIFICATION !ERRO_DE_DESACTIVACAO ¡address; exit

)
)
D
QUERY_USERS ¡address ¡false;
(

(* User is not valid (i.e. does not exist *)
AC_N OTIFIC ATION ! ERRO_DE_DES ACTIV AC AO ¡address;
exit

))
»
ALARM_DEACTIVATION [AC_DEACT!VATION, AC_NOTIFICATION,

QUERY_USERS, CHANGE_USERS]
)
endproc

*)

(* LINK : R-component Alarm Interrogation PSpec and
R-components System Communication 7,8 & 9
and C-component AC-Processor behaviour aspects *)

process ALARM_INTERROGATION [AC_INTERROGATION, AC_NOTIFICATION,
QUERY_USERS] : noexit :=

(* ALARM INTERROGATION process accepts the address of the user who wishes
* to query their alarm time on the AC„TNTERROGATION gate. After checking
* that the user is authorised to use the Alarm Call service and that the
* alarm is turned on the process returns a string containing the
* hour and minute that the alarm has been set to on the AC_NOTIFIC ATION
* gate (or a message indicating that the operation failed).
*)

AC_INTERROGATION ? address : address_type;

E12

(QUERY_USERS ¡address ?time:time_type ?on_off:Bool
?authorization:Bool;

([(authorization eq true) and (on_off eq true)]->
(* User is authorised and alarm is set *)

(
AC_NOTIFICATION ¡DESPERTAR ¡time ¡address;
exit

)
□
[(authorization eq false) or (on_off eq false)]->
((* User is not authorised or alarm is off*)

ACJMOTIFICATION ! ERRO_NA_CONSULTA ¡address;
exit

)
)
[]
QUERY_USERS ¡address ¡false;
((* User is not valid (i.e. does not exist *)

AC JN OTIFIC ATION ! ERRO_NA_CONSULTA ¡address;
exit

))
»
ALARM_INTERROGATION [AC_INTERROGATION,

ACJMOTIFICATION, QUERY_USERS]
)
endproc

(* LINK : R-components System Communication 10 & 11
and C-component Alarm-Timer *)

process ALARM_TIMER [ALARM, TIME, QUERY_USERS,
CHANGE_USERS, NEXT_USER]:noexit :=

(* ALARM_TIMER receives the current time on the
* TIME gate. It calls the CHECK_FOR_ALARM process to see if any
* user has the current time set as its alarm time. If such a user
* exists their adddress is written on the ALARM gate.
*)

(
TIME ?current_time:time_type;
CHECK_FOR_ALARM[ALARM, QUERYJJSERS, CHANGE_USERS,

N EX TJJSER] (current_time, 1)
» ALARM_TIMER[ALARM, TIME, QUERY_USERS,

CHANGE_USERS, NEXT_USER]
)

where

process CHECK_FOR_ALARM[ALARM, QUERYJJSERS,

E13

CHANGE_USERS, N EX TJJSER]
(current_time : time_type, user_offset : Int): exit :=

(* CHECK_FOR_ALARM receives the current time and
* the list of user records. If the user list is empty then the process
* exits giving a user address of zero and a boolean value of false.
* If there is a match between the inputted time and the time to which
* a user has their alarm set, then the process exits, returning
* that user’s address and a boolean value of true. Otherwise the process
* recursively calls itself, passing the time and the rest of the list
* of users’ records as parameters.
*)
(

N EX TJJSER ! user_offset ? address : address_type;
([address ne invalid_address]->

(
QUERY_USERS'address ?time:time_type ?on_off:Bool

?authorization:Bool;

([(time eq current_time) and (on_off eq true)
and (authorization eq true)]->

((* User’s alarm is on *)
ALARM ¡address;
CHANGE_USERS ¡address ¡time ¡false ¡true; exit
(* Turn on/off flag off after raising alarm *)

) (* end time eq current etc. *)
) (* end time checks etc. *)
»
CHECK_FOR_ALARM [ALARM, QUERY_USERS,

CHANGE_USERS, NEXT_USER]
(current_time ,succ(user_offset))

) (* address ne invalid *)
[]
[address eq invalid_address]->
((* Finished searching list *)

exit
) (* address eq valid *)

) (* end address options *)
) (* end process *)
endproc

endproc

endspec

E14

Appendix F

The ICL specification for the Pilot Case Study

system call_con tro l_co ord in ator

I ALARM, TIME, A D D JJSERS J

{
inchannel user_analyser ;
outchannel user_analyser;
outsignal notify ;
insignal invoke

using
/* System Identifier for ihe LOTOS */
AC.PROCESSOR,

/* System Identifier for the SDL */
ANALYSER

where

signal
ANALYSER . AC_ACTIVATE
(*) via ANALYSER . ANALYSER_AC_PROCESSOR

->
action AC_PROCESSOR . AC_Activation !* ;

signal
ANALYSER . AC_DEACTIVATE
(*) via ANALYSER . ANALYSER_AC_PROCESSOR

->
action AC_PROCESSOR . AC_Deactivation !* ;

signal
ANALYSER . ACJNTERROGATE
(*) via ANALYSER . ANALYSER_AC_PROCESSOR

->
action AC_PROCESSOR . AC_Inlerrogation !* ;

action AC_PROCESSOR . AC_Notification
! FACILIDADE_ACEITE !*
->

FI

signal
ANALYSER . AC_ACTIVATE_SUCCESS
(*> via ANALYSER . ANALYSER_AC_PROCESSOR;

action AC_PROCESSOR . AC_Notification
! ERRO_DE_ACTIVACAO !*
->
signal

ANALYSER . AC_ACTIVATE_UNSUCCESS
(*) via ANALYSER . ANALYSER_AC_PROCESSOR;

action AC_PROCESSOR . AC_NOTIFICATION
! pACILID AD E_DES ACTIVAD A !*
->

ANALYSER . AC_DEACTIVATE_SUCCESS
(*) via ANALYSER . AN AL Y S ER_AC_PROCES S OR;

action AC_PROCESSOR . AC_NOTIFICATION
! ERRO„DE_DESACTIVACAO !*
->
signal

ANALYSER . AC_DEACTIVATE_UNSUCCESS
(*) via ANALYSER . ANALYSER_AC_PROCESSOR;

action AC_PROCESSOR . AC_NOTIFICATION
! DESPERTAR !*
->
signal

ANALYSER . AC_INTERROGATE_SUCCESS
(*) via ANALYSER . AN AL YSER_AC_PROCES SOR;

action AC_PROCESSOR . AC_NOTIFICATION
! ERRO_NA_CONSULTA !*
->
signal

ANALYSER . AC_INTERROGATE_UNSUCCESS
(*) via ANALYSER . ANALYSER_AC_PROCESSOR;

/* LOTOS gates that are ’directly connected’ to the
border of the system */

action CALL_CONTROL_COORDINATOR . ALARM,
AC_PROCESSOR . ALARM !* ;

action CALL_CONTROL_COORDINATOR . TIME,
AC_PROCESSOR . TIME !* ;

F2

*

/* SDL channels that are directly connected to the
border of the system.
There are two messages on this channel.
Invocation and notification Segment. */

/* signal from the user to the analyser */

signal
CALL_CONTROL_COORDINATOR . INVOKE

(*) via CALL_CONTROL_COORDINATOR . USER_ANALYSER
->

Signal ANALYSER . INVOKE
(*) via ANALYSER . USER_ANALYSER ;

/* signal from the analyser to the user */
signal

ANALYSER . NOTIFY
(*) via ANALYSER . USER_ANALYSER

->
signal CALL_CONTROL_COORDINATOR . NOTIFY
(*) via CALL_CONTROL_COORDINATOR . USER_ANALYSER ;

endsystem

F3

