
TITLE

Photoluminescence studies of Silicon doped with

Copper & Zinc.

A THESIS FOR THE DEGREE OF MASTER OF SCIENCE 

PRESENTED TO THE NATIONAL COUNCIL FOR EDUCATIONAL AWARDS

BY

NIALL O' DONNELL 

SCHOOL OF PHYSICAL SCIENCES 

NATIONAL INSTITUTE FOR HIGHER EDUCATION DUBLIN.

RESEARCH SUPERVISOR. DATE

DR. M.O. HENRY (INTERNAL) 13/6/88

Page' (i)



ABSTRACT

This report investigates the properties of silicon

doped with the transition metal impurities copper and zinc.

Low temperature photoluminescence measurements reveal an 

intense luminescence band with zero phonon structure around 

919.56mev.Also contained in the spectra is the characteristic 

copper-copper pair band which has been identified as 

originating from isoelectronic Cu-Cu pair centres in a <111> 

conf iguration.

The 919.56 mev is found to have a slow decay time at

low temperatures. This was exploited by the adoption of

phase-shift techniques in a phase sensitive lock-in 

amplifier, which allowed the 919.56 mev band to be studied in 

isolation from the overlapping copper-copper pair band.

The 919.56mev luminescence spectrum exhibits a strong

phonon sideband structure. The most prominent zero phonon

line is observed at 919.56mev with phonon replicas separated

by 6.3 mev indicating strong coupling to a local mode phonon

of energy 6.3 mev. Special features observed at higher

temperatures around the principle zero phonon line are

identified as anti- Stokes replicas as well as lines

originating in electron states at = 3.3mev and E^ = 4.6mev

above the lower excited state at E .o
The temperature dependence of the luminescence decay 

time was studied using deconvolution techniques to correct 

for the detector response function. A rapid fall off is
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observed for the decay time over the temperature range 50 -

100K, corresponding to thermalization over an energy barrier

of 65 mev. The data is interpreted in terms of an

isoelectronic bound exciton. The energy level structure and

luminescence decay time are found to agree well with a model

in which the binding centre is axial, with a positive

(tensile) stress field and a large electron - hole exchange

energy of 14 mev. The model proposed for the centre is a 
+ 2 — +Cu - Zn - Cu defect, where a substitutional zinc double 

acceptor complexes with two interstitial copper atoms to 

produce the isoelectronic binding centre for the excitons.
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Chapter 1. Introduction to Semiconductors.

1.1 Introduction.

Semiconductors today are among the most interesting 

and useful substances of all classes of solids. This is so 

because of the wide variety of devices employing 

semiconductors as well as the wide spectrum of phenomena 

which they exhibit. Since the development of the transistor 

by Shockley, Bardeen, and Brattain in the late 1940's, 

semiconductors have become the most actively studied

substances in solid state physics. Because of this enormous 

activity, much has been learned about their basic properties

and how to utilize them in designing even more efficient

devices.

This chapter begins with a description of crystal 

structure followed by how the assemblage of similiar atoms

into an array leads to the formation of bands of allowed

states seperated by an energy gap. This energy gap may

contain allowed states, some localized due to impurities and 

others permeating the crystal (excitons), and so have a major 

impact on the optical properties of crystals. There then 

follows a discussion on how an electron once excited to a

higher state, decays to its equilibrium position, emitting

radiation in the process. This chapter concludes with a brief 

review of isoelectronic bound excitons occurring in 

semiconductors such as GaP and Si.
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1. 2 Crystal structure.

A crystalline solid is one in which the basic units

i.e. the atoms are arranged in a lattice, - a repetitive 

three dimensional framework. For example, the lattice 

structure of a hypothetical two dimensional crystal is 

illustrated in figure 1 .1 .

Figure 1.1, A crystalline solid, all atoms are

arranged periodically.

The distance between any two neighbours in the x-direction is 

'a' and in the y-direction is 'b'.A perfect crystal maintains 

this periodicity for infinite x and y. Because of this 

periodicity, then to an observer located at any of the sites 

A, B or C, the crystal appeares exactly the same. In reality 

however one cannot prepare a perfect crystal since at the 

surface the periodicity is interrupted. The atoms near the
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surface 'see' a different environment to those deep in the 

bulk of the crystal and so behave differently. Considering 

figure 1 . 1 the position vector of any lattice point relative 

to point A is given by

R = n1 a + n2 b  1.1

where a and b are as in figure 1 . 1 and n^ and n^ are

integers. A unit cell of a two dimensional lattice is defined

as an area which, when translated using equation 1 .1 , will

cover the whole lattice once. There are two classes of

lattice, the Bravais and the non-Bravais. In a Bravais

lattice, all atoms are of the same kind and so all lattice

points are equivalent, whereas in the non-Bravais type, some

of the lattice points are nonequivalent. There are 14 Bravais
(1 2 )lattices which are grouped into seven crystal systems ' 

Because of translational invariance, a characteristic feature 

of crystal structures just described, there are a large 

number of translations which a perfect crystal may undergo 

and remain unchanged.

One may view a single atom in free space to have full 

rotational symmetry but an atom in a crystal has symmetry 

characteristics which are determined by the lattice. Because 

of this, its energy levels are less degenerate than those of 

a free atom. A knowledge of the symmetry of the crystal tells 

a great deal about the possible behavior which may be found 

in the crystal. Such properties as the number of possible 

energy levels and their degeneracy may be determined from
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symmetry. All wavefunctions of the Hamiltonian corresponding

to the same energy level form a vector space which is

invariant under the transformation of the symmetry group From

symmetry considerations the group of the Hamiltonian and thus

the number and dimensionality of its irreducible

representations are known. The symmetry properties of

impurity states in semiconductors show that for a single

electron or hole in silicon, the appropriate group is the

double group T^. This group has eight different irreducible

representations; and , are one dimensional P^, and

r7, are two dimensional, P^ and P^, are three dimensional and

ro is four dimensional. The possible classifications for o
electron states are P^, P2, , P^, 2^, while the hole

states are Tg, , P^.

1.3 Band structure.

When many similiar atoms are brought together to

form a crystal structure as described in section 1 . 2 the 

wavefunctions describing the electrons on different atoms 

begin to overlap. To satisfy The Pauli Exclusion principle, 

the states of all spin-paired electrons accquire energies 

which are slightly different from their values in the 

isolated atom. The lowest energy state outside core shells is 

called the valence band (VB) and is completely filled with

electrons. The upper band of states however contains no

electrons and is called the conduction band (CB).
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E

0

Figure 1.2, Energy band diagram for a semiconductor.

The behaviour of an electron in a crystalline solid is 

determined by studying the appropriate Schrodinger equation.

where V(r) is the potential 'seen' by the electron and U(r) 

and E are the state function and energy of this electron 

respectively. The one feature of the quantum states of 

crystals which is most important is that the electronic 

wavefunctions have a special form imposed by the translation 

periodicity of the crystal. Each electronic wave function is 

assigned a crystal momentum 'p' and a band index 'n', (p=hk, 

where h is plank's constant and k is a wave vector). The wave 

function U ^ which satisfies the Schrodinger equation is 

given by

[-h2/2m V 2 + V(r)]V(r) = Ey(r) 1.2

Vnk(r} = texP(ik-r >) unk 1.3

where unk(r ) a periodic function of r, with the
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periodicity of the crystal lattice. Substituting for U(r) in

1 . 2  yields an expression for E^.

The band structure of a crystal can be described by the 

nearly free electron model for which the band electrons are 

treated as perturbed only weakly by the periodic potential 

of the ion cores. In this model there occur no solutions of 

the Schrodinger equation in substantial regions of energy 

and it is these energy gaps which are of decisive

significance in determining whether a solid is an insulator 

or a conductor.

Ek = ti2/2m [ kJ + K2 + K2 ] 1.4

E E

0

KK

(a) ( D)

Figure 1.3(a) Plot of E versus K for a free electron 

(b) Plot of E versus K for an electron in a monatomic

linear lattice, of lattice constant 'a'.
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The energy gap of a material is defined as the energy

separation between the bottom of the CB and the top of the

VB . It is the extent of this gap and the availability of 

electrons that determines whether a material is a metal, an 

insulator or a semicoductor. In a semiconductor the energy 

gap extends over less than 3ev and the density of electron 

states in the upper band or the density of hole states

(absence of electrons) in the lower band is generally less
7 0 -  3than 10 cm . However m  a metal the density of electron

2 3 - 3states in the CB is usually greater than 10 cm and the 

energy gap is much smaller or nonexistent. In the case of an 

insulator the gap is much greater than 3ev but there is a 

negligible concentration of electrons in the CB.

For almost all semiconductors the perfect crystal 

will be an insulator at absolute zero temperature. The 

characteristic properties of such a semiconductor are brought 

about by thermal excitation, impurities, lattice defects or 

departure from chemical composition. As the temperature is 

increased electrons are thermally excited from the VB to the 

CB and the holes created in the VB contribute to the 

electrical conductivity of the semiconductor. Certain 

impurities when introduced into a semiconductor can affect 

the electrical properties of such a material, eg. the 

addition of one boron atom to 1 0  ̂ silicon atoms increases the 

conductivity of the sample by a factor of 10^. To understand 

this one must look at the actual structure of both boron and 

silicon. Silicon crystalises into the diamond structure 

having four valence electrons, each atom forming four
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covalent bonds with its nearest neighbours. If an impurity 

atom is introduced with a valence of three, such as boron, it 

may reside on one of the silicon sites. As boron is trivalent 

one of the electron bonds remains vacant. This vacancy may be 

filled by an electron moving in from another bond. In this 

way the hole can migrate throughout the crystal. The 

trivalent atom is known as an acceptor as it accepts 

electrons to complete its tetrahedral bonds. If on the 

other hand a pentavalent impurity atom such as phosphorus is 

introduced into the silicon structure, then only four bonds 

are needed to complete the bonding, the fifth detaches from 

the impurity and is free to migrate throughout the crystal. 

As the impurity atom has lost an electron it becomes 

positively charged and so the free electron is attracted to 

the positive ion. Since the pentavalent atom gives an 

electron to the CB it is known as a donor and creates a level 

close to the CB, whereas the trivalent atom creates a level 

close to the VB and is known as an acceptor. The diamond 

structure of silicon comprises of two interpenetrating 

face-centered cubic arrays which are based on the points 

(0,0,0) and (1/4,1/4,1/4). This is clearly shown in figures

1.4 a , b , c .
[1111 T 

Ĥ lll

Figure 1.4 (a) Model, (b) Cubic Cell, (c) Tetrahedral

Bonding, of the Silicon Lattice.
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From figure 1.4 (c) it is evident that the silicon crystal 

has highly directional valence bonds in the <1,1,1> 

directions since every atom has four nearest neighbours along 

the <1,1,1> directions, twelve next nearest neighbours along 

the <1,1,0> axis and so on. The interstitial sites with 

tetrahedral symmetry have the same number and spacing of 

nearest neighbour atoms as the substitutional sites. The 

volume of these interstitial sites is similiar to that of the 

substitutional sites thereby emphasising the ease at which 

impurities can be incorporated into the silicon lattice. 

Although the substitutional and interstitial sites are by 

no means the only sites available to impurities within the 

lattice, they are the sites of higest symmetry and 

consequently the most commonly occupied.

From the discussion of band structures it is clear 

that allowed states have definite energy assignments and as 

such these states are distributed in momentum space. Silicon 

is an indirect gap semiconductor, i.e. the minimum of the CB 

and the maximum of the VB do not correspond at the same value 

of the wavevector k. Silicon has six equivalent conduction 

band minima located about 80% of the way to the zone boundary 

along the [1,0,0] directions. The valence band maximum occurs 

at k=0 where two degenerate bands with different curvatures 

meet, giving rise to holes with different effective masses. 

The ^3 / 2 band maximum is four fold degenerate while the 

P^ 2  maximum is doubly degenerate.
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Figure 1.5 Band structure of silicon plotted along the
[100] and [111] directions.
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1.4 Recombination mechanisms in semiconductors.

The most direct and the simplest method of probing 

the band structure of a semiconductor is to measure the 

absorption spectrum. In the absorption process a photon of 

known energy excites an electron from a lower energy state to 

a higher one. Therefore by simply placing a semiconductor at 

the output of a monochromator and studying the changes in the 

transmitted radiation, one may discover all the possible 

transitions an electron can make and learn much about the 

distribution of states. There are many transitions an 

electron can make when excited by such incident radiation, 

band -to- band, impurity -to- band, free carrier 

absorption, etc. Consider the case of the band -to- band 

transition, i.e. the excitation of an electron from the VB to 

the CB as shown in figure 1.6 below.

Figure 1.6, Absorption process in (a) a direct, and (b) an

indirect gap material.



In (a) above the lowest point on the CB corresponds to the 

highest point on the VB for the same value of the wavevector 

k. In this case because the absorbed photon has a small 

wavevector there is no appreciable change in k in going from 
the VB to the CB. The threshold frequency F for absorption 

by the direct transition determines the bandgap E .

E = hF.  1.5g t

However (b) represents an indirect transition as the lowest 

point of the CB is separated in k space from the VB edge. 

Because of this the indirect transition involves both a 

photon and a phonon. The absorption threshold for this case 

is at

E = hF + hn  1.6g

where n  is the frequency of the phonon. Phonons can either be 

emitted or absorbed and it is by this process that momentum 

is conserved in the lattice. A phonon is a quantum of lattice 

vibration and although a broad spectrum of phonons is 

available only those with the required momentum change are 

usable.

Emission of radiation is the inverse of the 

absorption process. An electron occupying a higher energy 

state than it would under normal equilibrium conditions makes 

a transition to an empty lower energy state and all or most
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of the energy is emitted as electromagnetic radiation. Most 

of the examples given above for absorption can also be given 

for emission and produce a characteristic emission spectrum. 

There is however an important difference between the 

information one can obtain by absorption and by emission in a 

semiconductor. The absorption process can involve all the 

states of the semiconductor resulting in a broad spectrum 

whereas the emission process couples a narrow band of states 

and so produces a narrow spectrum. Photoluminescence is the 

emission of electromagnetic radiation in excess of thermal 

radiation from the semiconductor when the excitation source 

used is light. Luminescence emission involves radiative 

transitions between electronic energy levels of the material. 

Luminescence emission may take place during the time of 

excitation, in which case the phenomenon is known as 

fluorescence, whereas if the emission continues after the 

excitation has been removed then it is known as 

phosphorescence.

Figure 1.7, Diagramatical representation of both
excitation and decay processes.
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Figure 1.7, above shows the excitation and the decay process 

with a ground state energy Eq and excited state energies E^, 

1 E 3 and E^. By irradiating the sample with light of 

suitable wavelength then the material can be raised from Eo 
to E.,. Because the energy difference between E and E is 

small, that excited state tends to decay non-radiatively by 

phonon emission,releasing the energy as heat to the material. 

Radiative emission occurs when the energy difference is large 

as in the transition E^ to E . The material decays 

radiatively between levels 1 and 0 emitting a photon in the 

process of energy hf, where

hf = E, - E  1.71 o

Non-radiative decay occurs by a multiphonon process 

and is a consequence of the interaction with the crystal 

field. The stronger the coupling, the more probable that 

non-radiative decay will occur. When the optically active 

atom is in an excited state, radiative and non-radiative 

decay are possible. In the non-radiative process between two 

levels, the energy is emitted as a number of phonons, as many 

as are required to bridge the gap seperating the levels. The 

larger the number of phonons involved the lower the 

non-radiative transition probability. Therefore it is 

acceptable to presume that the non-radiative probability 

decreases as the energy seperation between levels is large. 

On the other hand the radiative probabilty increases with
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increasing energy separation.

Just as static changes can change the energy levels

and as a result change the frequency of the optical

transitions, so dynamic strains caused by lattice 

vibrations, can modulate the frequency of the optical

transitions. This can lead to frequency modulation sidebands 

(phonon sidebands) accompanying the sharp optical lines (no 

phonon lines ). If the initial and final electronic states 

have a similar (but not identical), sensitivity to strain 

then the 'modulation index' is small and the sideband is

weak. If the difference in sensitivity is large however, the 

sideband is strong, (section 4.1).

1.5 Bound Excitons.

Structure for photon energies is often shown up by 

reflectance and absorption experiments just below the energy 

gap, where the absorption of a photon creats an exciton 

either in the direct or the indirect process. Because of 

their attractive nature, an electron and a hole are bound 

together by coulombic interaction and it is this bound 

electron - hole that is called an exciton. It has been shown 

that both a free electron and a free hole are formed whenever 

the crystal absorbs a photon of energy h f greater than the 

bandgap E . This is true for a direct process; in an indirect 

phonon assisted process, the threshold is lowered by the 

phonon energy h n  , as described above. There are two such 

kinds of 'Free Excitons' (FE), the Frenkel exciton in which
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the exciton is small and tightly bound and the Mott-Wannier 

exciton in which the exciton is weakly bound, with an 

electron - hole separation large in comparsion with the 

lattice constant.

A Bound Exciton (BE) in a semiconductor is the name 

given to a many - particle electronic excitation containing 

an electron - hole pair bound to a defect. A BE is an 

electronic excitation of a defect. The ground state in the 

case of donors and acceptors already contains one bound 

particle, an electron in the case of a donor and a hole in 

the case of an acceptor. However in the case of neutral 

centres (isoelectronic) the ground state of the excitation 

is the bare defect. The localization of an additional 

electron - hole pair to the defect creates the BE excitation, 

which thus may be regarded as containing two electronic 

particles for a neutral defect and three particles for a 

donor or an acceptor (if single donors or acceptors are 

considered). The defect potential and the local strain field 

at the defect both interact with the particles present in the 

BE. The local strain field in the vicinity of the defect is 

usually a minor perturbation for shallow substitutional 

defects and a major one for deep defects. Interaction between 

the electronic particles of the BE are always present to a 

certain degree and the actual magnitude of these defects will 

grow with the localization of the wave functions of the 

particles bound to the defect.
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1.5.1 Isoelectronic Bound Excitons.

One can easily distinguish between neutral defects 

and donor or acceptor type defects, as each has a different 

number of particles in the BE excitation. Donor and acceptor 

type defects have been discussed in section 1 . 2 and a 
description of neutral defects will be given here. A neutral 

defect or as it is widely known an isoelectronic defect is a 

defect which supplies the same number of valence electrons as 

the atom of the host material which it replaces. Therefore 

this type of defect is electrically neutral although its 

electronic structure will differ from that of the replaced 

atom. It is this difference that may give rise to localized 

impurity states within the band gap or may give rise to bound 

states. Hopfield et al proposed a model for isoelectronic

traps which explains many of the observed optical properties. 

An isoelectronic trap can be attractive either to an elecron 

or a hole. As the trap is neutral, any binding is due to 

short range forces. It can therefore introduce a bound state 

for a single particle if it possesses a strong enough short 

range potential. After binding this electron or hole, the 

trap becomes positively or negatively charged depending on 

the particular case. Because of this, the trap can attract 

either a hole or an electron by 'strong long range coulombic 

forces .

This suggests two types of trap depending on which 

carrier is bound first. Assuming that the first carrier 

attracted to the trap is a hole and is bound strongly, the
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wave function of the second carrier, an electron, will be 

bound by coulombic interaction and will be donor like. If on 

the other hand the first carrier bound to the trap is an 

electron then the second carrier a hole, bound by coulombic 

forces will be acceptor like. While the energy level ground
state for both acceptor and donor isoelectronic traps may be

the same, their phonon coupling may be radically different. 

It is the particle which is strongly attracted to the local 

potential which is chiefly responsible for the phonon

coupling, so that phonon coupling provides a way of

determining whether a trap is an isoelecronic donor or an 

isoelectronic acceptor.

A lot of theoretical work on isoelectronic traps has 

been concerned with the formulation of an understanding

of the mechanisms by which a free carrier becomes bound to a
(4 5)neutral impurity ' . Some information can be derived from

a phenomenological approach based on the electronegativity of 

both the host and the impurity atoms. Experimental data 

suggests that an isoelectronic impurity may bind a hole (or 

an electron) only if its electronegativity is smaller (or 

larger) than that of the host atom it replaces Such a

rule is supported by the fact that the electronegativity of 

the elements decreases with increasing atomic weight. 

Therefore heavier atoms substituting for host atoms are hole 

attractive and lighter atoms are electron attractive. 

Although for many isoelectronic impurities in semiconductors 

electronegativity differences would indicate the possibility 

of producing a bound exciton, remarkably few are observed.
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This indicates that the influence of strain seems to be very 

important.

1.5.2 Isoelectronic traps in GaP.

GaP is the most widely studied material concerning 

isoelectronic traps and much of our present understanding has 

been obtained from optical studies of recombination 

mechanisms from excitons bound to these centres. The 

recombination of the bound electron and hole gives rise to 

sharp no-phonon luminescence lines, that are very amenable to 

detailed analysis using high resolution spectroscopy at low 

temperatures. A typical example of an isoelectronic trap in 

GaP is the nitrogen (N) related trap in which the 

substitution of nitrogen for phosphorous creates single 

excitons bound to isolated nitrogen atoms  ̂̂ . This 

particular example is known as a point substitutional 

isoelectronic acceptor, while bismuth (Bi) substitution gives 

rise to an isoelectronic donor. The strength of this centre's 

luminescence compared with that associated with nitrogen 

reflects the increased coupling of the exciton to the lattice 

surrounding the defect. An example of a molecular 

isoelectronic trap is the Lithium complex (Li-Li-O) in GaP, 

^ ^  where three atoms replace a molecule of the GaP lattice. 

At low temperatures this centre introduces four zero phonon 

lines.
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1.5.3 Isoelectronic traps in Si.

Within the last few years considerable work has

emerged on exciton luminescence due to isoelectronic traps in

silicon. It is interesting to note that there are no point
isoelectronic traps associated with Si in comparsion to GaP.

An example of an isoelectronic trap in Si is the Beryllium

complex (Be-Be). This centre introduces a molecular type trap
( 8 )suggested from an examination of the phonon sidebands

It is interesting, in view of the fact that it was in

Si that donor and acceptor bound excitons were first observed 
(9 ), that it is only recently that excitons bound to 

isoelectronic centres have been detected in this material. 

Sharp lines in the luminescence spectrum first reported by 

Vouk and Lightowlers have recently been attributed to

bound exciton recombination at an isoelectronic centre 
(11,12,13) possibly involving iron (14,15) and a similar 

complex system has been detected in Si:Tl, ^ ^  . Weber et. 
al. (l^) have reported exciton recombination at an 

isoelectronic defect at low concentrations, while other

complex isoelectronic defects have been reported in laser

irrai
(18)

(17)annealed irradiated Si and in irradiated lithium doped

material

Recent studies have shown transition metal 

impurities such as copper (Cu), chromium (Cr), and iron (Fe) 

to be responsible for the formation of isoelectronic traps. 

This increase in activity points towards a study of silicon 

doped with transition metal impurities.
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1.6 Conclusion.

A brief review has been given of the crystal and 
band structures for silicon. Recombination mechanisms and 
optical properties of semiconductors in general have been 
reviewed leading to an understanding of isoelectronic type 
defects that occur in semiconductors.

We have seen that one area of study of isoelectronic 
traps is still in its infancy, i.e. isoelectronic traps 
associated with transition metal doping in silicon. The 
following chapters discuss one such centre which we have 
examined - associated with a copper - zinc complex. Chapter 2 
gives a general overview of transition metal impurities in 
silicon while at the same time discussing the effect of 
copper and zinc seperatly incorporated in silicon.
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Chapter 2: Transition Metal Impurities in Silicon.

2.1 Introduction.

The Transition Metal (TM) elements occupy regions

of the periodic table where an inner shell of electrons is

being filled as the atomic number increases. Because of its

nature, a TM atom can sustain as many as five different

charged states in the narrow (l.lev) bandgap of silicon

whereas the various ionizied states of a free TM impurity are
(iq 20 911spread over a range of many ev's v •*x ' . This result was

first observed experimentally in silicon and was later

accounted for by theory. Haldane and Anderson (22) solved 

the Anderson Hamiltonian model and concluded that many charge 

states were a result of strong rehybridization between the 

transition atom d-orbitals and the crystalline s-p orbitals 

which occur every time an electron is added to, or subtracted 

from the gap states. Most impurities have more than one

electron (or hole) outside of the closed shell. They donate 

or accept one or in some cases several electrons as the 

position of the Fermi level is varied within the forbidden 

gap.

Despite nearly three decades since the first
(19)pioneering work of Ludwig and Woodbury ' , the electronic

and structural properties of the Si:TM system still remains

unclear. The many new experimental techniques which have been
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discovered since this early work, and the application of 

numerous theoretical models to the problem has generated a 

wealth of new data ^3)^

2.2 Transition Metal Impurities.

One of the major obstacles in establishing a 

clear picture of TM impurities in silicon arises from the

high diffusivity of these elements. The diffusion
o -4 2coefficients at 1000 C range from 10 cm /sec for Ni (as

large as typical liquid diffusivities) and decrease to
- 8 2 (25a)10 cm /sec for lighter impurities such as Ti and V

Another obstacle arises because the solubilities of these

impurities are low (1 0 ^  or 1 0 ^  /cm^) and the atoms tend to

precipate rather than being retained in supersaturated

Figure 2.1 Solubilities and Diffusivities of 3d transition

metals in silicon (25 )
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Because of this fact, mobile atoms experience a strong

thermodynamic force to find more stable configurations. The

fastest diffusing elements Ni, Cu and Co precipate even when

using fast quenching techniques so that it has not been

possible to assign any energy level to a well defined

configuration of these elements. Iron and manganese in

silicon can be found as isolated interstitials after

sufficiently rapid cooling down but are unstable at room

temperature. For a mobile interstitial metal atom the first

most stable configuration is the formation of a complex with
(26 27)another impurity atom ' . Heat treatment to temperatures

in the range 200°C --  90Q°C results in dissociation and

subsequent further complexing of the very mobile transition
*. i 4. (28)metal atoms

The evidence of the TM lattice site preference

(substitutional versus interstitial) and aggregation state

(isolated impurities versus impurity clusters) is very

inconclusive. It has been known for a long time that the site

preference depends on a fine control of the material

preparation parameters as much as on the nature of the
(19 2 0 )impurity atom itself ' . For example impurity acceptor

pairs are often produced by the diffusion of TM's into P-type

silicon near its melting point followed by a slow quenching
(19 2 0 )procedure ' . However if a more rapid quenching

procedure is achieved then interstitials may be produced.

Diffusion into N-type material followed by a slow quenching
4 imay produce impurity clusters (e.g. Mn clusters or Fe
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clusters) (29). jf the sample contains impurities such as Cu, 
Ag or Zn, a diffusion of an additional transition element can 
produce an impurity in a substitutional site (3). por many of 
the TM1s pairing reactions of interstitials with 
substitutional acceptors are found to occur (25).

2.3 The Ludwig & Woodbury Model.

The first systematic study of TM's in silicon was 
performed over twenty years ago by Ludwig and Woodbury (25) t 
Their work primarly on Electron Paramagnetic Resonance (EPR) 
of TM doped silicon constitutes a source of valuable 
information today (19,25). «rhe electronic properties of
semiconductors, in particular silicon, are altered by the 
presence of both substitutional and interstitial 3d TM 
impurities. For a wide variety of these elements energy
levels are produced within the bandgap. These levels are
termed 'deep' levels since they are not close to either of 
the allowed bands, as opposed to 'shallow' levels introduced
when impurities such as boron and phosphorus are incorporated
into silicon. Shallow impurities introduce minor 
perturbations in the crystal (as manifested by the fact that 
they give rise to bound states in the fundamental band gap
very close to the band edge) and generally contribute extra 
charge carriers, electrons or holes. However TM impurities 
constitute a more severe local perturbation, giving rise to 
bound states that are considerably more localized and often 
have energies deep in the band gap. Unlike shallow
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impurities, deep centres act primarily as carrier traps or

recombination centres. Evidence of this fact is seen from
( 25)experiments undertaken by Ludwig et al . These

experiments also suggest that the interstitial site is

favoured over the substitutional site for the iron group TM 

elements which consists of the elements scandium through to 

copper.

When incorporated into silicon at a site of

tetrahedral symmetry, the 3d level, whose electrons have two 

units of angular momentum and has available to it five

orbital states, splits into two levels which belong to the 

doublet 'e' and the triplet ^ 2 ' states. According to the 

Ludwig and Woodbury model, an atom entering the host lattice 

interstitially obeys Hund's rule, i.e. the splitting between 

the 'e' and 't2 1 levels is small so that the orbitals are

filled in such a way to maximise the total spin while 

satisfying the Pauli Exclusion principle. Most EPR spectra of 

TM doped silicon have been described by the Ludwig & Woodbury 

model. They developed a model for electron states of 

interstitial and substitutional 3d metals in silicon which 

successfully explains the observed EPR sepctra. The basic 

assumption of this model is the promotion of the 4s electrons 

into the 3d shell for a 3d metal in silicon.

The essential features of the Ludwig & Woodbury model 

are indicated in figure 2.2. According to the model when a 

substitutional site is filled by an impurity then four of the 

impurity's electrons are involved in the bonding. The 

remaining electrons outside the n=2 shell occupy the 3d level
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which has been stated above to be split into e and t2 states 

by the tetrahedral crystal field. In effect the model assumes 

formation of covalent bonds with the silicon neighbours by 

the hybridization of four of the 3d electrons. The 

substitutional atom is in an effective cubic crystal field of 
negative charges from the surrounding valence electrons. The 

interstitial position is also characterized by tetrahedral 

symmetry and the 3d level splits as before. However the sign 

of the crystal field is reversed with ^ 2 ' level now below 

the 'e' level. The strongly localized covalent bonding of the 

surrounding silicon atoms concentrates the valence electron 

density between the host atoms. The interstitial thus 

experiences a cubic crystal field as before but in this case 

arising from not completely shielded nuclear positive 

charges. In this case electrons are not required for bonding 

and according to the model all electrons outside the n= 2  

shell are contained in the 3d shell.

Interstitial Substitutional

Ion V2+ Cr+ ,Mn+ Mn+,Fe+ Cr+,Mn+ Mn2-
Configuration 3d3 3d6 3d7 3d2 3d5

e ____  ____• . t2Filling of 
3d Orbitals. ____ .

   •  • * •
t2 . ..

Figure 2.2, Electronic structure of 3d metal ions in
., . (25)silicon
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2.4 Photoluminescence Properties.

TM imputities such as copper (Cu)f iron (Fe), and 

chromium (Cr) have recently been reported as responsible for

the formation of isoelectronic traps in silicon, so beginning
(24)a new era in luminescing defects . The observed

photoluminescence (PL) is characterised by strong intensities

although the concentrations of the emitting centers may be
(24)quite low. According to Sauer and Weber such large

intensities at low concentrations indicate internal quantum

efficiencies near unity.

As stated eariler, for many of the TM impurities

pairing reactions of interstitial and substitutional atoms

are found to occur. Experimental evidence for such pairing
(25)has come primarily from EPR work . Recently however, PL

has been found to provide evidence of such pairs (30,31)  ̂

Fortunately a defect which would not be detectable by EPR due 

to the absence of unpaired electrons, may be detected in PL 

by observing the radiative recombination of excitons bound to 

the defect. In this study PL has been used to examine the 

properties of silicon doped with the deep double acceptor, 

zinc, and the highly mobile transition metal impurity, 

copper.

Table 2.1 gives three examples of impurities in 

silicon forming isoelectronic traps, i.e. copper,iron and 

chromium. This table shows the zero-phonon line energy and
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the local mode energy. It can be seen from the table that as 
the atomic weight of the impurity atom increases the local 
mode energy decreases. This is so because the heavier the 
impurity atom the smaller the vibration it makes with the 
lattice and so the smaller it's local mode energy.

Table 2.1 Parameters of PL lines.

Cu-Cu Fe-B Cr-B

PL line position 
(ev)

Zero phonon 1.0145 1.0668 0.8439

Local modes 1.0075
1.0005
0.9933

1.0572
1.0470
1.0363

0.8302
0.8160

Local mode energy
(mev) 7.0 9.6 13.6
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2.4.1 Copper doped Silicon.

Most of the TM1s are known to be fast diffusing 

elements in a silicon lattice at elevated temperature, in 

particular copper, making it a suitable element to study. For 

the characteristic photoluminescence spectrum shown in figure

2.3 below it has been conclusively proven, by isotope line 

shifts, that copper is in fact responsible for the defect, 

and the spectrum is assigned to isoelectronic Cu-Cu pairs in 

a [1 1 1 ] configuration .

Energy S (ev)

1.00 0.95 0.90

Wavelength (urn)

Figure 2.3, Spectrum of Cu-Cu pair luminescence with local

mode sideband structure (Cu°, .... )
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The low temperature PL spectrum reveals a series of sharp 

satellites accompanying the no-phonon (NP) line. This ground 

state to ground state transition is accompanyed by up to 

twelve Stokes satellites at successive line spacings of 

7.0ev. Special features observed at higher temperatures were 

identified as anti-Stokes replicas as well as transitions 

originating in electronic states at Eq = 0.15mev, = 1.9mev

and E^ = 9.6mev above the upper defect electronic ground 

state at Eq . The observed spectroscopic spacings from the NP 

line of these excited states are consistant with the 

quantitative analysis of the temperature dependence of the NP 

line intensity. The large background phonon sideband which 

accompanys the sharp vibrational modes (Cu° , ... ) is due to 

the coupling of the low energy acoustic lattice modes and 

increases dramatically at higher temperatures. Because the 

thermal dissociation energy of the exciton and the 

spectroscopic localisation energy differ so much, a 

description in terms of a isoelectronic donor or acceptor can 

be made. In this way the binding energy of the more tightly 

bound particle can be calculated and this energy reflects 

deep donor or acceptor binding properties. A number of

recently detected line systems have been ascribed to
^ - 4. ■ 4. 1 ( 24 , 30 , 31) .complexes containing other transition metal ions

Electrical data for TM's in silicon are described in several

hundred publications, most of which are reviewed by Chen and 
( 37 )Milnes . Conclusive identification and energy levels are,

however not available in general.
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2.4.2 Zinc doped Silicon.

If the impurity zinc only, is incorporated into the 
silicon lattice then three acceptor levels may be formed in 
the band gap (33). Two donor levels appear as a result of 
precipation of the zinc - silicon solid solution and are
attributed to interstial zinc. The high diffusion
coefficient found for zinc in silicon suggests that the flow
of zinc at high temperatures is mainly interstitial.

Si Si

Figure 2.4, Substitutional & Interstitial Zinc in silicon.

Figure 2.4 (a) above illustrates an interstitial zinc atom 
which would be expected to introduce two donor levels into 
silicon. Since at low temperatures zinc is found to introduce
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acceptor levels, it is assumed that interstitial zinc reacts 
with lattice vacancies at high temperatures to produce 
substitutional zinc. Figure 2.4 (b) shows a substitutional
zinc atom which might be expected to introduce two acceptor 
levels. Thus zinc can conceivably introduce both donors and 
acceptors into pure silicon. Zinc diffusion into doped
silicon may however produce ion pairs and complexes. The
compounds will have empty orbitals and so may act as
acceptors. Zinc was found to migrate in the form of positive 
doubly charged ions in silicon in the temperature range
980-1270OC by using the p-n junction technique (34).
Investigations by Glinchuk (35) and Kornilov (36) suggest 
that zinc, based on its multiply charged energy states may be 
an effective recombination centre and so be of primary 
importance in minority carrier silicon devices. Work has been 
done by various authors but in particular Sclar (37)/ in 
which the suitability of zinc doped Silicon as an infrared 
detector was investigated. It was found that the spectral 
response of a Si:Zn system was in the band 2.5um and 3.3um at 
a working temperature of 112K. This response is similar to 
that of the lead sulphide (PbS) intrinsic detector and its 
detectivity approaches competitive values.

2.3 Conclusion.

A brief review has been given on transition metal 
impurities in silicon, with particular reference to the 
Ludwig & Woodbury model which helps to explain EPR spectra of
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transition metal doped silicon. A brief discussion on the 
diffusivity and solubility properties of such impurities in 
silicon has also been given. A summary of known TM related 
photoluminescence bands, and a discussion of the properties 
of Si:Cu and Si:Zn have also been included. The research 
which is described in this thesis concerns a new 
photoluminesence band associated with both Copper and Zinc. 
Before presenting detailed results of the photoluminescence 
measurements, the experimental techniques employed are 
described in the next chapter.
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CHAPTER 3. Experimental Methods.

3.1 Introduction.

When Silicon is doped with the transition 
metals copper and zinc, a broad luminescent band appears in 

the spectrum corresponding to transitions lying in the 

infra-red region of the electromagnetic spectrum. Because the 

efficiency of luminescence is small at room temperature, the 

samples must be cooled to low temperatures.

There are two bands associated with this particular 

defect in silicon at low temperatures the first of which has 

been studied in detail by various authors (30,31) t^e

second which will be described in this thesis.

(1) A band ranging from 1.2 microns to 1.4 microns

which has been identified with a copper-copper pair defect.

and

(2) A second band ranging from 1-3 microns to 1.7

microns.

It is this second region which is of most interest as

it is only observed when both copper and zinc are diffused

into silicon. The presence of water vapour absorption in the 

region of interest complicates the spectra considerably and 

so an algorithm was written to correct for this.

The experimental system and signal processing 

developed to record the spectra and to overcome these 

problems are discussed in detail in the following sections.
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3 . 2 Experimental System.

Luminescence spectra of P-type silicon doped with 
copper and zinc were recorded at temperatures ranging from 
4.2K to 125K. The excitation source used was a 150W xenon arc 
lamp, whose output was focussed down into a 0.25m 
spectrometer (600 lines/mm) and the relevant exciting 
wavelength was focussed down onto the sample. The 
luminescence was collected by an aspheric lens and focussed 
into a Spex one metre focal length Spectrometer (600 
lines/mm). The detection was through a North Coast germanium 
pin-diode, which was interfaced to a BBC microcomputer via an 
analogue -to - digital converter for signal processing.

A l t * *
L a m

y tc u u ifC o o tn f
Sampl t

line*
C h o p p t ' Sowrc#Ipa r

01 ' J
I f Te C TO A  w '

- z n ____ S<M K lnM ntlar

L OC K  * IN

S U H t  

M U O V A  I

ttc

C H A JIT n  o n  t*
HE C O A D IU

Figure 3.1, Experimental Apparatus
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3.2.1 Sample preparation and cooling.

Samples were prepared by taking equal amounts (2 

grams) of copper (99.99%) and zinc (99.99%) and placing them 

along with P-type Hoboken float-zone refined silicon into an 

evacuated quartz tube. After sealing, the tube was placed 

into the furnace heated to 1100°C and left for sixteen hours 

to ensure complete diffusion of both impurities. It was 

necessary to perform the diffusion in a helium atmosphere so 

as to minimise unwanted impurities, such as oxygen from 

entering the silicon lattice at such high temperatures. On

completion of diffusion the samples were quenched in vacuum 

oil and then thoroughly cleaned following the procedure given 

in table 3.1 below.

Table 3.1 Cleaning Procedure.

1. Rinse in methanol.

2. Boil in methanol.

3. Boil in trichorethylene.

4. Rinse in methanol.

5. Rinse in de-ionized water.

6 . Rinse in 10% solution of

HF in HN03>

7. Rinse in de-ionized water.

8 . Allow to dry.

This procedure enabled good surfaces to be obtained so that 

efficient luminescence was produced.
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As stated above the samples must be cooled to low

temperatures. This was achieved by an Air Products compressor 

- expander module (CS202W), which took the temperature down 

to 15K. During operation the compressor draws low pressure 

helium from the system return line, compresses, cools, cleans 

it and then delivers it through the system supply line to the 

expander line. On leaving the compressor, the helium gas 

contains heat and some lubricant which have to be got rid of. 

The water return system cools the gas while the oil seperator

and the adsorber clear any oil particles which may be in the

gas. From the adsorber the gas is passed to the expander

module where on entry it is further cooled on its way to the 

heat station. The heat station temperature is thus reduced 

providing refrigeration at cryogenic temperatures. Because of 

radiation losses and the fact that cryo grease was used to 

mount the samples onto the sample holder the lower limit of 

the temperature was 15K.

Figure 3.2, (a) Compressor and (b) Expander modules

Page 49



In addition to the expander module, there is also included a 

sample holder connected to a second stage heat station, a 

radiation shield connected to the first stage heat station 

and a vacuum shroud connected to the skirt.(figure 3.2). Both 

the radiation shield and the vacuum shroud are designed so as 

to allow incoming light to illuminate the sample and allow 

the luminescence to be collected by the aspheric lens L2. The 

sample holder is made from pure copper which needs to be able 

to hold the sample securely, this was achieved by using cryo 

grease because of its good conductivity at low temperatures. 

Incorporated into the cyclinder assembly is a thermocouple 

(Au Fe/Chromel) and a heater, both of which were connected to 

a control unit. In this way good control of the temperature 

of the sample could be maintained.

As the lower temperature obtained with this procedure 

was 15K a Thor helium flow cryostat (C584) was employed 

to work at liquid - helium temperatures. Figure 3.4 shows a 

schematic diagram of the system used.

Figure 3.3, Liquid Helium Flow Cryostat.
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The system consists of a flow cryostat, siphon, sample stick, 

gas flow regulator system, pump and liquid helium storage 

can. Electrical connections on the sample stick enable 

temperatures to be read off easily. The sample is cooled by 

conduction as the liquid helium is admitted into the cryostat 

by means of a pump but does not come in contact with the 

sample. The sample makes thermal contact with the liquid 

helium by means of helium gas admitted into the sample space 

at atmospheric pressure and so the sample is cooled by

conduction.

3.2.2 Optics and detection system.

The excitation sources used were a xenon arc lamp 

(150w) and an argon ion laser (Coherent model 52). In the

case of the xenon arc lamp the light was first focussed into 

a 0.25m spectrometer whose grating was ruled at 600 lines/mm 

and blazed at 1.0 microns. This infra-red grating allows

wavelengths just above the bandgap of silicon to be used 

which were found to give efficient luminescence. The xenon 

arc lamp gave strong output between the wavelengths 800nm and 

lOOOnm which was particularly suitable for the experiments 

undertaken here. However when using the laser there was no 

need for this spectrometer as the required wavelengths could 

be tuned in as needed. The incident light was then focussed 

down onto the sample and the luminescence was directed into 

the lm SPEX spectrometer (model 1704) by means of an aspheric 

lens. The SPEX 1704 lm Czerney - Turner spectrometer was
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fitted with a grating ruled at 600 line/mm and blazed for 1 . 2  

microns. Control of the grating motors was by a compudrive 

CD2 microprocessor system which in turn was controlled by a 

BBC microcomputer. An external pulse provided by the 

microcomputer moved the grating a predetermined increment and 

this would repeat until the wavelength range was completed. 

In this manner a complete spectrum could be obtained.

Detection of the luminescent features was made using 

a North Coast EO-187 liquid nitrogen cooled detector. When 

the detecting element and the electronics reached thermal 

equilibrium (77K), a quiescent voltage of approximately -0.95 

Volts appears on the output. Illumination of the diode with 

infra-red radiation results in a positive signal being added 

to this quiescent level. Because of this level a 'back off' 

circuit was employed which resulted in the voltage varying 

from 0 volts to some positive voltage value. The detector was 

so sensitive that cosmic radiation caused large spikes to

appear on the output and so distort the true output. An 

electronic spike removal unit was built to overcome this 

problem. When a spike appeared on the output of the detector, 

a large differentiated signal was produced causing a sample 

& hold circuit to come into effect. In this way cosmic spikes 

were eliminated from the spectra. Although the circuit 

usually operated satisfactorily small spikes were recorded at 

high gain settings. In these circumstances software was used 

to eliminate the spikes which is explained in the next

section. After passing through the spike removal unit the

signal was amplified and then passed through a 12 bit
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analogue-digital converter. From there the signal was 

transferred to the BBC microcomputer where the necessary 

processing and analysing was performed.

3.3 Signal Processing.

The spectral region in which the luminescence of 

interest lies, is a region in which there is strong 

atmospheric water vapour absorption. This absorption consists 

of large 'dips' in the luminescence signal giving strange 

features in the spectra. It was decided in order to obtain 

reasonable spectra, that these anomalies would have to be 

eliminated. This was achieved by software in the following 

manner.

A standard light source was used in which the 

spectral response was known. This source ( Optronics 200W 

tungsten filament lamp ) was passed through the same optical 

path as the luminescence, and the output monitored by 

computer. As the true spectral response was known 

irregularties caused by water absorption over a given 

wavelength range can be measured. This water vapour spectrum 

was then divided into all observed luminescence spectra over 

the same wavelength region. In theory therefore the water 

vapour effect could be removed from the spectra but because 

of changing humidity, the affect of the absorption on the 

luminescence changes and so the computer will adjust 

incorrectly. Another problem inherent in the system is the
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reproducability of the spectrometer in talcing two seperate 

spectra. As the vapour lines are narrow (FWHM =2mev) then any 

deviation of the spectrometer would cause non-cancellation of 

the water vapour feature and introduce small positive and 

negative going signals.

Figure 3.4, Spectral and Experimental response of a tungsten

lamp.

It is evident from figure 3.4 (a) & (b) that the ideal 

response of the lamp as given by the manufacturers is 

different from that obtained experimentally. The difference 

being due to the detector and grating response over the 

specified wavelength range. This anomaly was eliminated by 

the following simple technique. The ideal response curve was 

normalised with respect to its maximium level and percentage
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drop in intensity at various wavelengths obtained. These 

values were then compared to the percentage drop in intensity 

of the experimental response at the same wavelength readings.

The Germanium detector used had a DC and an AC 

facility and it was found while recording spectra in DC a 
small drift in the output signal was obtained. This error was 

easily remedied by taking the slope of the line joining the 

first and last points of the spectrum and adjusting 

accordingly. However, for a region where there is a large 

band structure this may not be possible. In this situation AC 

techniques are best employed as there is no drift component 

but it has the disadvantage of reducing the signal level by 

1/2.
Using the AC technique the excitation light is 

chopped at a known frequency and the AC component of the 

luminescence is fed into a lock-in amplifier along with the 

reference signal usually obtained from the chopper. The 

lock-in amplifier works on the principle that any signal 

which is of the same frequency as the reference signal will 

be enhanced while all other signals of different frequency 

will be neglected. The output of the lock-in is a DC signal 

which is proportional to the amplitude of the AC input 

component.

Because luminescence from inequivalent centres will 

have different decay rates this difference may be used to 

distinguish between different luminescence features. This is 

achieved simply by using 'phase sensitive' techniques. The 

amplitude of the pumping light is square wave modulated by a
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chopper, and as a result, the luminescent output is partially 

modulated at the chopping frequency and the modulated output 

is detected by lock-in techniques. The broken curves VI and 

V2 in figure 3.5 show the sine wave components which are 

detected by the lock-in. The luminescent output is obtained 

by 'beating' it against a reference signal derived from 

the chopper. It is clearly seen that a maximium signal is 

obtained when both the phase of the reference and that of the 

luminescence coincides. If it is supposed that two 

luminescent outputs from different centres occur, having 

different decay rates, then their sine wave components will 

be out of phase with each other as fg below. In this situation 

the signal from

Figure 3.5, Luminescence patterns from fast and slow decay.
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V2 is below its maximium and if the phase is adjusted so that 

VI is nulled then the only signal from the lock-in will be 

due to V2. In this way signal contribution from different 

luminescent centers can be eliminated and only one center be 

examined. Figure 3.6(a) shows a complete spectrum from 1.1 to

1.7 showing the now familiar Copper pair spectrum along with 

new system. From various articles (24,25) it was found that 

the lifetime component for the Cu-Cu pair varied between 460 

and 670 microsec. Therefore by nulling this signal one can 

see the contribution from the Cu-Zn system only. Figure 

3.6(b) shows this very well.

1.2 1.4 1.6 1.2 1-4 1,6

W avelength (urn)

Figure 3.6, The effect of lock-in techniques.
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As was stated above cosmic ray spikes were detected by 

this particular type of detector and caused sharp spikes to 

appear in the spectra. This situation was remedied to some 

extent while working in DC by the spike eliminator, which got 

rid of most of the pulses. However while working in AC the 

suitation was complicated by the fact that spikes which were 

out of phase with the signal appeared as negative pulses. The 

spike removal unit was not able to handle such pulses so 

software techniques were employed. By finding the full width 

half maximum (FWHM) of the sharpest known luminescent line 

then one is able to compare this FWHM with that of all other 

lines. As the spikes encountered were very sharp their FWHM 

was less than the luminescence features and in this way 

unwanted spikes were eliminated.

Figure 3.7 shows a spectrum of the system in question in the 

region 1.34 microns to 1.45 microns, showing the elimination 

of water vapour absorption (b), and cosmic ray spikes (c).
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1 1 ^

Figure 3.7, Spectra showing (a) water vapour absorption 

effects, (b) cosmic spikes effects and (c) elimination of

such effects.

3.4 Signal Analysis.

Having obtained the various spectra which were 

processed as in section 3.3, it was then necessary to analyse 

the data now acquired. Use was made of a BBC microcomputer 

and a VAX system for such analysis, which principally took 

the form of finding lifetime components of the centre in

question. In finding the decay kinetics of the system use was 

made of a chopper configuration as shown in figure 3.8

below.
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Sample

Source
Figure 3.8, Chopper arragement.

The excitation source (xenon arc lamp) was passed through the 

chopper, whose aperature was 3mm in diameter. At the same 

time a helium neon laser beam was passed through this same 

aperature, and whose spot could be positioned easily for the 

detection electronics (figure 3.9). With this arrangement, 

when the excitation light was chopped off the sample, a pulse 

was sent from the detection electronics which triggered the 

microcomputer. The microcomputer then read the detector via 

an analogue to digital converter. In this way a series of 

lifetime measurements could be made over time scales ranging 

from 16msec to 400msec depending on software.

Figure 3.9, Circuit diagram for detection electronics.
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Having obtained the relevant decay curves it was then

necessary to extract the various lifetime components from

this data. From semi-log plots of Ln(I/I ) vs Time, it wasmax
clear that there were three components present in the data.

Subsequently by fitting an exponential to the long lived

portion (t'3 ) an<i subtracting this fit from the original data 

one was able to retrieve a second component ('̂ ■2  ̂ which when 

subtracted from the now new generated data revealed the third 

component (t ^). In this way the various components could be 

extracted, giving an equation describing their behaviour 

given by equation 3.1.

f(t) = A expC-t/t^) + B exp(-t/^2) + C exp(-t/^) —  3.1

where A,B,C are preexponential constants, t is time and>£^, 

X-2'^3 a r e  t *l e  components obtained as above. The
response of the system was also measured in the same way and 

it was found that it also had three components associated 

with it. Because of its complexity no discernible results 

could be taken from the actual decay curves and their log 

plots as the system was imposing a large contributon.

It was therefore necessary to deconvolute the

contribution of the system out of the actual decay curves and 

so obtain the true response of the sample. If S(t) defines 

the observed sample response and D(t) the detector response 

then one is required to derive the true sample impulse 

response i(t) i.e. the response that would be observed if the
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sample was excited by a pulse of zero duration but of finite 

energy. If D(t) is approximated by a string of impulses and a 

functional form assumed for i(t) then a series of values of 

S (t ) can be obtained at different times as a simple summation 

of the contributions from all previous impulses. It will be 

shown how any continuous D(t) can be decomposed into a string 

of impulses and a summation over finite time evaluated, 

resulting in what is known as the convolution integral. This 

idea can be understood by examining figure 3.10,

T1IC

Figure 3.10, Three excitation impulse spikes of different 

area and occuring at times tg, t^, and (b) the summation
* j - u .  i  (32)of these pulses

Assuming a simple exponential of the form EXP(-t/D for the 

impulse function then the observed decay S(t) will be the sum 

of the contributions from the three impulses at an(3 ^  *

i.e. S(t) = Dq + D 1 + D2 t2 <= t

S(t) = Dq + D1 tL < t < t2
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S(t) = D,

S(t) = 0
fco < t < tl

t 0 >

Dq = Ix EXP [ _(t-t0 )/Y]

D! = I2 EXP [ -(t-t1 )/'r']

° 2 = I3 EXP [ -(t-t2 )/'t/]

where dq,D-̂  and D2 are the responses of the sample to only 

the excitation pulses at tQ/ and t2 . Prom this analysis 

therefore if there are a number of impulses at times t^ and 

each excitation impulse has a weighting factor of D^ then

S(t) y ^ Dj

where p assumes the largest value such that t <= t. As 

stated above the equations just described confront the 

problem of a discrete form for D(t). However in most cases 

D{t) is given by a continuous function and needs to be 

decomposed into a series of impulses.

Each D (t ) between t_._&t/2 and tj+At/2 is replaced 

with an impulse at t^ where At is the separation in time 

between points. As At becomes small then

Dj = D(tj)*&t

therefore
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■ X '
S(t) = > D(tj) i(t-tj) at

for small enough &t this equation approaches the integral

t t
S (t ) = J  D(x) i(t-x) dx = J*i(x) D(t-x) d x   3.2

0 o
S{t) = D(t) * i(t )

where i(t) represents the true response of the sample and '*' 

denotes convolution. Prom equation 3.2 it can be easily seen 

that if a functional form for the true response i(t) is 

assumed i.e. a single or double exponential, then the 

integral can be evaluated and expressions for S(t) can be 

obtained. This calculated form of S(t), denoted Scal{t), is 

then compared to the actual set of S(t), denoted Sexp(t), 

obtained experimentally and a good fit is got via software 

using least square reduction methods. The results obtained 

by this method are given in the following chapter.

Page 64



3.4.1 Software Analysis.

The structure of the programming was such that memory 

space was conserved at all times. The programes were written 

in Basic, and in Assembler when data needed to be read into 

the computer quickly (program A2.2 appendix 1). The program 

structure was as that shown in figure 3.11 below, i.e. broken 

up into four main sections, acquisition, processing, 

analysing and displaying of data.

Flow chart of program structure.

Start

Menu

1. Acquisition

2. Processing

3. Analysis

4. Display

| End |

Figure 3.11, Schematic diagram of program structure.
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Sta rt

Initialisation of 
registers

.1:

1. Lifetime measurements
2. Band measurements

A$ ??

A$ = l

Set
wavelength

I
Memory

A/D convert

I
Delay

A $ = 2

Wavelength
range

i=l to p

A/D convert

Increment

Plot

Sa^re

End

Figure 3.12, Flow chart of 1 Data Acquisition

These programs interface the BBC microcomputer with external 

peripherals via the analogue to digital converter so enabling 

the operator to control the grating motors, to sample the 

detector at specific time intervals or over a specific 

wavelength range and to control a chopper mechanism as 

described in section 3.4.
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Figure 3.13, Flow chart of 1 Data Processing

This program corrects spectra for system response, water 

vapour absorption and for the presence of cosmic ray spikes, 

all of which have been described earlier.
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Start

Figure 3.14, Plow chart of ' Data Analysis '.

This set of programs allow lifetime measurements to be made 

using two methods, semi log plots of Ln(I/I ) Vs Time and
IDdX

deconvolution, each of which has been explained in the text. 

Programs give 'hard' copies of the various spectra which 

were obtained during experiments.
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3.5 Conclusion.

The above chapter clearly explains the experimental 
system used throughout the project, the sample preparation, 
and the detection procedure both hardware and software. It 
was stated that low temperatures were needed in order to 
detect the luminescence coming from the samples. In this work 
the luminescence was dispersed by a SPEX lm spectrometer and 
detected by a liquid nitrogen germanium detector. Software 
processing of spectra allowed the suppression of cosmic 
spikes as well as eliminating the effects of both water 
vapour absorption and the system response.
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Chapter 4: Results and Analysis.

4.1 Introduction.

The electrical properties of silicon can be 
influenced by the presence of impurities in its crystalline 
lattice and consequently a great amount of effort has been 
directed at understanding the behaviour of such defects. The 
normal procedure has been to first try and identify the 
defects present and then understand the mechanisms involved 
in their incorporation into the lattice. These microscopic 
descriptions of the individual defects will then provide 
insight into their influence on the macroscopic properties of 
the host lattice.

In the following paragraphs, the luminescence 
properties of the centre will be considered as well as how 
the centre is affected by being part of a crystal lattice 
which can undergo both static and dynamic distortions. These 
dynamic changes are brought about by atoms vibrating about 
some average position. Because of these distortions the 
electronic states of the impurity atom can be severely 
affected. In addition the environment may be affected by 
changes in the electronic state of the impurity. It is
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therefore clear that in order to describe optical transitions 

both the impurity state as well as the lattice state should 

be considered.

Spectra relating to transition metal impurities in 

silicon show strong phonon side bands which are due to the 

excitation of lattice phonons and localized vibrations during 

the optical transitions. The localized vibrations are often 

sufficiently described in a configurational co-ordinate 

diagram, as shown in figure 4.1.

Ui
>*Uik.
0)c
LU

Excited State 
A

Ground State 
G

M

W H

Local Lattice Co ordinate

Figure 4.1, Co-ordinate diagram showing (a) weak coupling

and (b) strong coupling.

Figure 4.1 shows such a diagram for one vibrational mode with 

energy hw. The ground state (G) and the excited state (A) are 

shown. It is assumed that there exists discrete quantum 

states of the lattice, these are denoted n=0 , n=l, ..., when
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the electronic system is in the ground state and m=0 , m=l, 

..., when the electronic system is in the excited state. 

Physically one assumes that the electrons move in a potential 

well determined by the actual positions of the neighbouring 

atoms and so the energies of the electronic defect states are 
affected by the atomic position. On the other hand the 

equilibrium positions and vibrational states of the nuclei 

are determined by the average positions of the electrons and 

so depend only upon the electronic state. Excitation or 

recombination between defect states therefore causes 

rearrangements of the atoms in the defect surroundings.

The solutions to the harmonic oscillator equation

E = (n+l/2)Tiw   4.1n

form a ladder of states with the energy separation "hw, and 

each such quantum of energy is known as a phonon. The new 

equilibrium position in the excited state causes an energy 

relaxation

E = Stiw   4.2r

where S is the Huang Rhys factor and is a measure of the 

coupling coordinate displacement between the ground state and 

the excited state. For large values of S strong phonon

coupling - the energies of the electronic state are strongly 

affected by the lattice relaxation. In luminescence at low 

temperature ( KT << ‘tiw ) one observes transitions from the
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lowest excited state (m=0 ) into the different ground states 

n=0, n=l, ... .This explains the equidistant line systems 

shown in the following sections.

The positions of the electronic levels depend on the 

value of the crystal field, as does the frequency of the 

radiation emitted. Because of lattice vibrations the crystal 

field is being modulated and this modulates the frequency of 

the emitted radiation. When the crystal field modulation is 

weak the associated side bands which are produced in optical 

studies are weak and the spectra are dominated by sharp 

lines. However when the field modulation is strong, the side 

bands become more broad and the sharp lines reduce in 

intensity. According to crystal field modulation theory, the 

energy of the no-phonon line should be determined by the 

static crystal field of the atoms in their average positions, 

and it should be exceedingly sharp. However in practice the 

lines are much broader than predicted by theory. The reason 

being that strains and defects in the structure of the 

crystal cause the average seperation between neighbours to 

vary from place to place. This causes a range of values for 

the energy of the no-phonon line from atoms in different 

parts of the crystal. When the light is from a macroscopic 

volume of crystal, the no-phonon line is a composite of very 

sharp no-phonon lines from different microscopic sections of 

this volume, each with a slightly different energy. This 

inhomogeneous broading causes the finite width of the 

observed no-phonon line.
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4.2 The copper-zinc system in Silicon.

Having established the experimental and signal 
analysis techniques in the preceeding chapter, there now 
follows a review of the results obtained during the 
experimental work carried out in the N.I.H.E. Dublin. As was 
stated eariler in this thesis, the incorporation of both 
copper and zinc reveals a spectrum as shown in figure 4.2.

Figure 4.2, Low temperature (T=14.5K) spectra of
(a) CuZn luminescence and (b) with Cu phased out.
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Figure 4.2 contains the characteristic copper band which is 

associated with a copper-copper pair, as well as the new 

band associated with the presence of copper and zinc. This 

new band ranges from 1.3 urn (956.1mev) to 1.7 urn (731.2mev). 

Watkins et.al.(39)detected the copper associated luminescence 

in copper doped samples and measured lifetimes (480 - 670

microsec) in the temperature range 1.3K to 13K. 

Luminescence transitions from different centres will 

generally have different lifetimes. It is then possible to 

distinguish between the two bands using lock-in techniques, 

if the detector response is faster than at least one of 

the luminescence decay times. Figure 4.2 shows the result 

when the copper band is phased out leaving only the 

contribution due to the copper-zinc band.

4.2.1 Intensity Analysis.

The low temperature PL spectra of a silicon sample

(p-type) doped with copper and zinc is shown in figure 4.3.

The 4.2K spectrum is dominated by the lines CuZn°, CuZn^,...,

and also by a broad background signal. The line labelled

CuZn° is a NP line located at 919.56mev £ 0.lmev and the o
various phonon replicas CuZn^,... are seperated by 6.3mev. 

The labelling CuZn| is indicative of how such systems are 

commonly described. Upper indices characterise the number of 

emitted phonons (positive integer) or absorbed phonons 

(negative integer), while the lower indices refer to 

electronic excitations in the upper defect state. The Stokes
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Figure 4.3, Spectra of CuZn luminescence with local mode 
sideband structure, for T=4.2K and T=23.3K.
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vibrational mode satellites CuZn'o/ • • • • are replicated at
higher temperatures as anti-Stokes satellites CuZn^ while 

new lines appear also seperated by 6 .3mev and are labelled A, 

a'/A1' , ... . The general complexity of the sideband as a

whole is indicative of coupling to a wide spectrum of phonons 

by the centre from which the luminescence originates. Table

4.1 gives both the energy and wavelength positions of all the 

lines seen in the spectra.
oIt is suggested that the line labelled CuZn0 ■
Z t is

replicated as a Stokes vibrational mode satellite with a

phonon energy equal to 6.3 mev. This is clearly shown in 

figure 4.4 where the first phonon replica is partially lost 

under the no-phonon line CuZn^ and the subsequent phonon

replicas are too weak to be detected.

Figure 4.4, Detailed diagram of stucture around the no-phonon

line located at 919.5 mev (lo) showing the replica of the
o

CuZn2 line (Ii) at T=20K.
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The relative intensity of the lines I and 1^ as a function 

of temperature is shown in figure 4.7. A comparison of the

spectroscopic energy separation and the activation energy

obtained from the slope of the graph of ln(I^/I ) versus

1 /temperature, indicates a common ground state for the
transition. In order to show how this is so, consider the 

following diagram representing an energy level diagram for 

some semiconductor. Both levels are decaying to a common 

level and their population densities are as shown. It is 

assumed that the degeneracies in both cases are equal.

Figure 4.5, Energy level diagram.

If I indicates the intensity of the low lying level then

I =f N where fo is the transition probability for that level o o
and N is the population of that level. By the same token the 

intensity N exp (-A-E/KT ) .

Therefore

  =  exp(-*E/KT)
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Taking LOGe of both sides of the equation reveals

LOG --- - 4E/KT ___  4.3e
fo

Therefore a plot of LOGe (I^/IQ ) vs 1/T gives a slope of -aE/K

and an intercept of LOG {f,/f ).e l o
To verify that this thermalization obeys Maxwell-Boltzman 

statistics, a careful study of the temperature dependent line 

intensities was undertaken. Care must be taken at low 

temperatures in order not to heat the sample with the 

excitation source. To overcome this problem a defocussed beam 

was used and so the thermocouple reading would accurately 

reflect the sample temperature.

1335 W a v e le n g th  (u m ) ,’G6S
Figure 4.6, The intensity variation of the 919.5 mev (IQ )

924 mev (1^) lines.
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Figure 4.7, The thermalization of I and 1^ lines.

The truly LOG behaviour of intensity of the lines I and 1^ 

is shown clearly in figure 4.7 above. The activation energy 

(4.6 + 0.1 mev) obtained from the slope of the graph is 

consistent with the spectroscopic separation, within 

experimental error,(Slope = - AE/k, k = Boltzman's constant). 

The intensity of the zero phonon line (919.5 mev) will 

decrease with increasing temperature as the transitions 

involving thermally stimulated emission of phonons become 

more probable. Therefore the strength of the zero phonon line 

is affected by the strength of that transition's coupling to 

the lattice. By extrapolation of data on figure 4.7 to 

infinite temperature, one may obtain the ratio of the 

transition probability of the zero phonon line to that of the 

excited level, assuming equal phonon coupling for the states. 

The ratio obtained in experiment suggested that both lines I 

and 1  ̂ were equally probable,

i.e. f^/f = !•

From the high temperature spectrum of figure 4.3
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(b ), it is clear that a new set of lines emerges labelled A,
I I I

A ,A , .. Since we observe line A only in higher temperature

spectra, it's initial state must lie higher in energy than

the initial state of CuZn0. Since the position of line A iso *

lower in energy than CuZn°, this implies a schematic energy 

level system as shown in figure 4.8 for these two lines.

Figure 4.8, A split ground state configuration.

We do not find any evidence to support this model.

Specifically the transition marked C in figure 4.8 would be

expected to produce a line in the spectrum, unless totally

forbidden by selection rules. Given the strong phonon

coupling which this centre experiences., a totally forbidden

transition is very unlikely. Furthermore all isoelectronic

centres reported to date for silicon produce a singlet ground

state. A careful study of the thermalisation behaviour of the

line marked A suggests an alternative explanation. The

results of these measurements are shown in figure 4.9. This

data indicates that the initial state for line A lies 3.2 +

0.1 mev above the initial state of CuZn°. The separation ofo
CuZn0 and A is 3.0 + 0.1 mev. Note that the sum of theseo
quantities (6 . 2 + 0 . 2 mev) agrees within experimental error

with the energy of the strong local mode phonon which
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dominates the spectrum. All of these facts are reconciled if 

we assume that the line A observed in the spectra is the 

first phonon replica of a (weak) zero phonon line which lies

3.2 mev above CuZn°. We have examined the spectra carefully 

for such a line, but without success. In the absence of any 

direct evidence to support this second model, we examine in 

detail the structure of the phonon sideband.

Figure 4.9, The thermalization of the Io and A lines.

As stated in section 4.1 the relative intensities of 

the various lines in the spectrum is largely dependent on the 

coupling with the lattice. This coupling is characterisied by 

a factor known as the Huang Rhys factor (S). The relationship 

for the intensities is given by

I Snn

I nio

4.4

Where I is the intensity on the n ^  phonon and I the n 1 v o
intensity of the no-phonon line. Using this equation and the 

fact that the local mode energy is known to be 6.3 mev, then

Page 83



a series of spectra can be computed numerically to replicate 

the experimentally obtained spectra. Figure 4.10 shows a 

series of spectra obtained numerically for the three system 

CuZnQ , A, and CuZn2> Adding these three line systems together 

and introducing a background band reveals figure 4.11. When 

compared to the experimentally obtained spectrum figure 4.11

(b), then there is good aggreement at high energies for 

S=1.78, but at low energies the computed spectrum differs 

from that of the experimental spectrum. It should be noted 

that at these low energies water vapour absorption, which was 

discussed in chapter 3, strongly affects the spectra. It is 

therefore impossible to state with much certainity these 

lines are as strong as they seem to appear in the spectra.

Figure 4.10, Numerically computed line systems for the CuZn°

A, and CuZn^ systems.
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Figure 4.11, Theoretical and Experimental obtained spectra.

Page 85



Table 4.1 , Energy and Wavelength positions of lines.

Line :

CuZn1 o
CuZn^
CuZn0o
CuZn^
CuZn' o
CuZn^
CuZno
CuZn^
CuZnô
CuZn^

CuZn ô
CuZn^

CuZn^

CuZn.̂

CuZn^
CuZn^
CuZn^

( A )

( A M

( A " )

( A " ' )

Energy ; 

(mev)

+ 0.05

925.47
924.22 
919.56
916.6 
913.12
910.6 
906.8
904.5 
900.65
898.23 
894.43
892.32
886.5
880.32 
873.83
867.6
860.0

Wavelength ; 
(Angs)

± 5

13431
13452
13517.3
13553.2
13615.6
13650.5 
13707.26
13742.2 
13801.14 
13838.25
13897.2
13929.9
14021.6
14119.9
14224.7 
14327 .3
14453.9
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The above analysis of the thermalisation of the various lines 

would suggest firstly that there is an excited state 

transition (CuZn^), located 4.6mev above the no-phonon line. 

We also conclude on the basis of thermalisation data and the 

modelling of the phonon sidebands that another excited state 

exists at approximately 3.2 mev above CuZn°. Based on these 

conclusions we propose the energy level diagram shown in 

figure 4.12 for the centre.

Figure 4.12,Energy level diagram for the CuZn related system.
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4 . 3 Photoluminescence Lifetime Analysis.

PL lifetime measurements have played an important 

role in proving the isoelectronic nature of binding centres 

since the associated lines have extremely long decay times. 

The apparatus used in obtaining the decay kinetics of the 

system is explained in full in section 3.4. Because the 

lifetime of the system under inspection was so long, the 

conventional technique of collecting data using a box car 

single averager could not be used. (The model of averager

available was a EG&G 4422 giving a maximum gate time of 20 

msec ). Therefore two methods were concentrated on, lock-in

techniques in which the phase difference between the

excitation and the luminescence is adjusted to maximise or 

minimise the detector response and so enable lifetimes to be 

calculated. The second technique involved programming a

microcomputer to act as a box car averager but with a gate 

time that varied from 16 msec to 400 msec.

4.3.1 Lock-in Techniques.

This technique utilizes a chopped pump light source 

and phase sensitive detection. If the sample is optically 

pumped with a light source which is chopped at a frequency w, 

the luminescent transitions would be modulated in intensity

at the chopping frequency, and there would be a phase

difference between the pump light and the transition which



would be determined by the lifetime of the particular level 

under investigation. This phase difference could be read 

exactly from the lock-in detector (model EG&G 5206). An 

additional feature of this method is that the phase control 

could be set to null out any signal of a given time constant 

and so leaving only contributions from longer time constants. 

The lifetime component is obtained either from the time or 

phase shift between the excitation waveform and the sample 

emission or the degree of modulation of the emission. 

The equation

Tan (0) = wt 4.5

allows lifetimes to be easily calculated

where 0 = phase difference
w = angular frequency, 

t = lifetime component.

Table 4.2 Lock-in technique.

Temperature Phase Lifetime

(K) (o) (msec)

13
20
25
30
35
40
45
50
55
60

53.7
53.2
52.6
51.6
48.3
46.1
43.2
42.4
40.6 
40.0

10.57
10.38
10.16
9.80
8.72
8.07
7.29
7.09
6.66
6.52
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This method however only gave a single value for the lifetime 

because of the fact that only one frequency was used, and so 

the lifetime obtained could be termed a mean lifetime.

More novel techniques such as 'quadrature frequency 

resolved spectroscopy' (QFRS) in which the lock-in is set in 

exact quadrature by observing scattered excitation light and 

nulling the signal, and 'in-phase FRS' in which the lock-in 

is set to maximise the signal are both commonly used today. 

A frequency sweep then gives a signal from which the lifetime 

can be calculated. The mathematics which describes this is 

explained elsewhere (41).

x Quadrature 
• Inphase

T o  20 30 40 50 eo 75 ab 90 ioo

Frequency (Hz)

Figure 4.14, QFRS and In-phase FRS for the CuZn system.
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This, however did not give conclusive results because of the 

long lifetimes involved which necessitated slow chopping 

frequencies. In order to utilise this method a frequency 

scan from very low frequencies to high frequencies has to be 

made. It was, however impossible to get accurate data at low 
frequency because the lock-in amplifier used was not accurate 

enough at these frequencies.

4.3.2. Computer Techniques.

As was stated eariler, the conventional box car 

averager could not be used because the lifetime components 

being measured were too long lived. It was therefore 

necessary to program a microcomputer to act as a box car but 

with a much longer variable gate time. The apparatus is 

explained in section 3.4 while the software is given in 

appendix 1. Figure 4.15(a) shows an Intensity versus Time 

plot for the detector while (b) shows the corresponding log 

plot. From this plot it is clearly seen that in fact the 

response of the detector is a highly complex function and not 

a simple exponentional. Using a NAG libary routine (F04JAF) a 

functional form for the response could be obtained. This 

routine confirmed that the response was a sum of three 

exponentials with time constants and preexponential factors 

given in table 4.3.
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Figure 4.15, (a) Intensity vs Time,(b) Log intensity vs Time,

for detector.

Table 4.3, Response function of detector.

D (t ) = klexp(-t/Vl) + k2exp(-t/<2 ) + k3exp(-t/*\3)

kl = 11.5 1 = 2.3 msec
k2 = 205.0 2 = 14.0 msec
k3 = 619.8 3 = 72.0 msec

In order to prove the values obtained from this routine to be 

correct the following procedure was adopted. Assuming the 

response curve could be fitted to a sum of three exponentials 

then by fitting an exponential to the long lived portion ('̂ 3 ) 

and subtracting this fit from the original data one is left 

with contributions from the remaining two components. If this 

process is repeated with the second component ^ ) now 

subtracted then one is left with the short lived component

(tT̂ ). In this way verification of the three components in the 

detector response was made.

These same procedures were performed for the sample 

response and yielded table 4.4 below.
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Table 4.4, Lifetime components of sample.

Temperature Lifetime

K msec

tl t2 t3

13.4 4.5 22.3 73.3
25.3 4.8 2 1 . 2 74.3
35.0 4.3 16.9 71.1
45.0 3.5 18.6 81.6
55.1 3.6 13.6 71.6
65.1 2 . 1 13.8 77.6
75.0 2 . 1 13.5 76.5

Figure 4.16 shows Intensity vs Time plots for the sample at 

T=13.4K, T=35K, T=50K and T=65K. The dotted line represents 

the detector response. It is clearly seen that at low 

temperatures the lifetime is in fact long compared to the 

detector response and that at high temperatures the lifetime 

approaches the response time of the detector.

(c) T=50K and (d) T=65K.

Figure 4.16, Intensity vs Time plots at (a) T=13.4K, (b) T=35K
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It can be clearly seen from the above discussion that because 

of the complexity of the detector response the sample 

response was complicated and in order to obtain the 'true1 

response of the sample some means of eliminating the 

contribution of the detector from the observed response, 

needed to be done. The following section describes one such 

method, known as deconvolution.

4.3.3 Deconvolution Techniques.

As stated above the contribution from the detector

S(t) defines the observed sample response and D(t) the 

detector response then by the convolution theorem (section 

3.4)

Q A



where i(t) is the true sample response.

If a single exponential for for the true response of the 

sample is assumed { i(t) = kexp(-t/"t') } , then

t

S(t) = kexp(-t/^ ) j D (x ) exp(x/^) dx .... 4.6

o

In order to solve this equation several methods ranging from 

Laplace and Fourier inverse transforms techniques to Least 

square techniques were used. It was found that the latter 

technique gave the most successful results as both the 

Laplace and Fourier methods magnified the noise element which 

was inherent in the data, rendering the results unusable.

On solving equation 4.6 then S(t) can be written as,

S(t.) = { S(ti_1 ) + k 6 tD(ti_1) } exp (- t/r) + k AtD(ti )

  4.7

where At = k anĉ  are as i-n equation 4.6.

If on the other hand the true response of the sample is taken

as an nth order exponential then the expression for S(t)

becomes a sum of n terms each of the form of equation 4.6. In



this way one generates values for S(t) which are then 
compared to the experimentally obtained values. A 
mathematical comparison is then made between these values and 
the lifetime is adjusted until a good fit is obtained. To 
avoid having to fit the pre-exponential factor, one can 
normalise Scal(t) to the same peak height as Sexp(t).

The results of this method are shown in figure 4.18 
in which data at T=35K,T=50K and T=65K are fitted to a single 
exponential impulse function.
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Figure 4.18, Deconvoluted results at T=35K (a), T=50K (b)

T=65K (c).

{ x - Theory, . - Experimental, }
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However it was found that at low temperatures {T < 30K} that 

the true response was approximated by a double exponential of 

the form

i(t) = k^exp(-t/'K + k2exp(-t/^2)   4.8

Solving for this in equation 4.6 gives the following results 

for T=13.4K and T=18.2K.

Figure 4.19, Deconvoluted results at (a) T=13.4K

and (b) T=18.2K.

{ x - Theory, . - Experimental, }
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From the above analysis it is evident that for temperatures 

below 30K, the transients consist of two components given by 

equation 4.8, whereas single exponential decays are observed 

for all temperatures above 30K. In equation 4.8 the true 

decay time of the luminescence is assumed to be 'C  ̂ This 

term describes the decay of centres created during the 

excitation pulse. The 2 nd terra describes the decay of 

excited states formed by the transfer of energy into the 

centre from long lived traps of lifetime

Table 4.5, Temperature and Lifetime measurements.

Temperature Lifetime

K msec

t2

13.4
15.2
18.2 
2 2 . 2  
25.3 
28.1 
31.8
35.0
40.0
45.0
50.1
55.1
60.2 
65.1
70.0
75.0
80.0 
85.0 
90.6

9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 
8.7
7.0
5.0
4.0
2 . 0  
2 . 0  
2 . 0  
2 . 0  
2.0

30.0 
29 .0
27.0
24.0
2 2 . 0  
2 0 . 0



Figure 4.20, Luminescence lifetime vs temperature plot
for CuZn system in silicon.

The best fit for the above data points was obtained using 

equation 4 . 9 below; the meaning of the symbols is given in 

figure 4.21.

go+giexp(-Ei/KT)+g2exp(-E2/KT)+g3 exp(-E3/KT)

'T'(T) =    — --------------------

Xo+Xiexp(-Ei/KT)+X2 exp(-E2/KT)+X3 exp(-E3/KT)

Da  no i n n



where ^(T) is the experimentally determined lifetime as 

a function of temperature, g^ are the degeneracies of the 

levels and are pre-exponential factors formed from the

degeneracy and the transition probability of the level.

Energy (mev), = g ^ (sec-1

E3 = 65 2.0 x IQ8

E, =
4.66

3.20

E = 0

5.5 x 10'

5.5 x 10‘

5.5 x  10‘

Figure 4.21, Energy level diagram for the 

analysis of lifetime data.

The decay process is found to have a deactivation energy

equal to 65 mev (shown as the dotted line in figure 4.20).

This type of temperature dependence, observed for several
(42)luminescence bands in silicon indicates thermal

activation of a bound electron or hole into a band. The 

spectroscopically obtained total binding energy was 

calculated to be 250 mev, leaving the binding energy of the
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primary particle to be 185 mev.

It is also possible by temperature controlled PL 

measurements to distinguish between the weak bonding of one

of the localized charge carriers and the much stronger

binding energy of the remaining carrier. Figure 4.22 below
shows the results of such an experiment.

Temperature (k)

Figure 4.22, Total Intensity of Band versus Temperature.

The absolute area under the band increases dramatically 

between T = 10K and T = 55K. This temperature range

corresponds to the filling of the optical centre whereas the

temperature range T = 60K and T = 100K corresponds to the

dissociation of one of the particles from the centre. A log 

plot of the intensity over the range T = 60K and T = 100K

reveals a dissociation energy of 80 mev. Although this is

different from that obtained from the decay kinetics (60 mev)
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it is a quite reasonable result considering the 

approximations one would have to make in calculating the area 

under the band.

4.4 A Tentative Model.

A model which provides an approximation to the

energy spacings and the relevant luminescence intensities of

the lowest energy bound exciton transition for various
(4 3 )defects in silicon , has been developed by Davies . The

model is based on the ideas of Morgan and Morgan developed in
(44)the early seventies . The model shows how the axial

nature of isoelectronic defects in silicon can be attributed 

to an uniaxial stress acting on the crystal's valence band 

and conduction band extrema. This model is only concerned 

with the lowest energy bound exciton states, which are 

assumed to be formed from a free hole taken from the k= 0  

valence band maximum with an angular momentum quantum number 

of j = 3/2. The 12 electron states are formed from the 

conduction band minima, 2 spin states for each of the 6 

minima. They form and orbital states when localised

on a Td centre, with assumed to be lowest in energy and

well separated from the an<̂  ^5 states. The basis states

used in the calculation are therefore the products of the six 

hole states and the two electron states,(spin 'up' and 'down' 

in the Pi orbital state), giving a total of twelve states. In 

this way the J=1 and the J=2 states are formed.

The axial nature of the isoelectronic defect is
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represented by an uniform, uniaxial stress of magnitude Sfc.

The matrix which describes this effect is expressed in basis

functions which are the twelve products of the hole

wavefunctions with the electron spin states. The twelve

states i=l to 1 2 are ordered as follows, states i=l to 8 are

formed from the lower energy hole valence band states at

k=0, and states i=9 to 12 involve the split off valence band

states. The total matrix is the sum of the Hermitean

matrices, M=A+B, where, A describes the valence band spin

orbit coupling £, with elements Aii=“ */3 f°r i=l to 8 and

A^=2V/3 for i=9 to 12. The spin orbit coupling (V)is defined
( 43)to have an energy equal to 44mev for silicon

B describes the electron - hole exchange energy ( & ) and the

stress representing the axial nature of the defect. Morgan & 
( 44)Morgan , defined the electron - hole exchange energy as

that energy which separates the J=2 states from the J=1

states. The origin of the J = 1,2 exciton states can be

explained as follows. If an electron and hole are bound to a

T^ centre by a potential weak compared to the spin - orbit

coupling, then the lowest energy exciton states are formed

from the hole j=3/2 states and the electron j=l/2 states.

These states form a J=2 quintuplet and a J=1 triplet, with

J=2 lower in energy by from the J=1 states.

The other parameters which appear in matrix B are related to

the stress. A total of four independent parameters are used

- A, B, C, S^j. Of these A, B, C describe stress induced

interactions among the P , P and P valence band orbitalx y z
(43)states . The values of A, B and C are accurately known
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for the free exciton (47). The free exciton values are 

adopted in this model for bound excitons on the basis that 

the exciton states are only slightly perturbed in going from 

free to bound. To include the effects of a uniaxial stress, 

the conventional approach of expressing the stress 

Hamiltonian in terms of stress tensors is adopted. The stress 

tensors take the form

S. . = S Cos(r.i) Cos(r.j)13 ^

where St is the stress, r is the stress direction and i,j are 

crystal axis (x,y,z). The values of the S^j factors can be 

calculated quite easily once the stress axis is known.

Matrix B is given below where,

S0 = (2S -S -S )B ,• zz xx yy
S* = 3(S -S )B,* xx yy
A = 7.8mevGPa ^, B=22.6mevGPa ^, C=52.5mevGPa ^
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Table 4.6 Matrix B

10

o
o
0
0
0

iiCj,.
vicij,,-!!,,)
-lA - I,

\ JC(J,.-u. )

- X  IC(J,: -  U..-1 

-i,\: - iCj.a i 
0 
0 
0 
0
-14

iA : - iCi.A i 

» . \ :
\  icii,. -  u , I 
0

%

0
0
0
0
14

0
I)
0
0
\ ids.: -is,: I 

s.\2

- f , \ 2 -  iO .A  I 

0
HA
14

II
U
0
II
i a : - i o . a  j 

- \  icu,. -« .  i 

j.\ :

\ icu,: )
o 
o 
o

i a ;>

The matrices describing the effects of stress and the 

electron - hole exchange energy are computed and using the 

NAG libary routine (F02AXF), the complete matrix is
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diagonalised numerically.This technique was used by Davies 

to explain two well known luminescence bands in silicon, 

the ABC band and the Be related band the results

of which will be given discussed briefly here.

4 3

51re$s S, (GPo)

Figure 4.23, The lower energy bound exciton states as a

function as stress St>

Considering figure 4.23, the degeneracy of each exciton state

is shown in the margins. For > 0 the energy levels are

arbitarily labelled 1 to 5, and for S < 0 the states which

form the triplet - singlet pair as | |-* »are labelled T & S.

In fitting the ABC band and Be related band to this model it

was found that the best fit was obtained with St > 0 .
(45)Previous work has established that both the ABC and the

Be related centres occur at defects with a <111> axis.
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E"*rgy (meV)

Figure 4.24, (a) The ABC no-phonon region at 30K and (b) the

Be related no-phonon region at 13K and broken curve at 2K 

measured in luminescence. Energy spacings from the

calculations are shown by the verticle lines. The forbidden 

transitions are shown by broken lines (4 3 )*

The model works particularly well and predicts the position 

of the luminescence lines. A best fit procedure can be 

undertaken to obtain the best fit parameters for the stress

' St ' and the electron-hole exchange energy 1 & The

following table gives the results obtained from this

procedure.
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Table 4.7, Best fit parameters for Stress and
( 43 )Electron - Hole Energy

Model: Stress Electron - Hole Energy
A

St

(Gpa) (mev)

ABC 0.108 + 0.006 1.4 + 0.3
Be 0.025 + 0.002 2.18 + 0.04

Having succeeded in modelling both the ABC defect and the Be

related defect, it was then attempted to fit the defect which

has been stated in this thesis to be associated to both

copper and zinc.

Figure 4.25, (a), The luminescence structure around the 

no-phonon line (919.56 mev), (b), Model prediction with

Stress S =-0.0875 GPa and Exchange Energy =4.66 mev 

(c), Model prediction with Stress St = 0.140 GPa and 

Exchange Energy = 14.3 mev.

Figure 4.25 (a) shows the no-phonon region at 14K whereas (b)



shows the levels produced when the stress is negative. It can

be seen that levels are produced 3.15 mev and 4.64 mev above

the no-phonon line. These lines correspond to the lines

obtained in luminescence. There is however another level

produced 0.49 mev above the no-phonon line but there is no

evidence of this line or it's phonon replicas in luminescence
(43)studies. According to Davies this level is equally

allowed as the no-phonon line and so should be seen. This 

would therefore seem to suggest that modelling the system 

with negative stress is incorrect. Figure 4.25 (c) shows 

another fit for which the levels produced from the model are 

in similar positions as those produced in luminescence. In 

this case there are two other levels produced 15.7 mev and 

18.7 mev above the no-phonon line. These would not be 

expected to appear in luminescence because of their energy 

separation. From calculations the intensity of these lines is 

is predicted to be approximately 1 % of the no-phonon line at 

40K. It is therefore reasonable not to expect to see these 

lines in luminescence. This would suggest that with a 

positive stress and a large exchange energy the best results 

are obtained. Table 4.8 shows the experimentally and 

theoretically obtained values
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Table 4.8, Theoretical values (with St=0.140 and =14.3).

Energies are normalized with respect to the

no-phonon line.

LINE ENERGY (mev)

Experimental : Theoretical

excited state 3.2 3.14
excited state 4.66 4.68

15.69
18.74

This model very simply predicts the positions of lines found 

in luminescence studies, and gives a parameterisation of the 

properties of the lowest engery levels of excitons bound to 

axial isoelectronic defects in silicon. Because of its over 

simplification the model is expected to fit the lowest energy 

states best and to give an increasingly bad description to 

the higher energy states. Although the exciton binding energy 

can be related to the stress, this is by no means the only 

process operating to bind the exciton and so these other 

means should be taken into account in such a model.

This model predicts a axial defect for the copper & 

zinc related defect in silicon. It should be noted at this 

point that copper is one of the best known activators of 

efficient luminescence in semiconductors.The presence of both 

copper and zinc in a host material material has major 

consequences for semiconductors since the defect forms a deep 

lying trap in the band gap of silicon. Zinc has the 

configuration [Ar] 3 d ^  4s2 while copper has [Ar] 3 d ^  4s1,
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where [Ar] represents the core electrons with the 

configuration of argon.

Figure 4.26, Schematic representation of the defect.

We tentatively propose that the luminescence centre is a 

defect with a substitutional zinc atom and two copper atoms 

located at interstitial sites, figure 4.26. Each copper atom 

provides a single electron to make up for the shortage in 

zinc. In this way the copper ions become Cu^+ [Ar]3d^ 4s^

and the overall defect takes the form [Cu^+ Zn2 Cu^+ ]^. This 

particular configuration is overall neutral consistent with 

the isoelectronic nature of the defect.
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4.5 Conclusion.

In this chapter results of luminescence studies of 

copper-zinc doped silicon are given, revealing a no-phonon 

line at 919.5 mev with phonon replicas separated by 6.3 mev. 

Also discussed were the techniques used in obtaining lifetime 

measurements. These included Lock-in techniques as well as 

computer sampling of the signal. It is stated that in 

obtaining such measurements the contribution from the 

detector system was large and as such needed to be 

'subtracted' from the data. A deconvolution technique is 

described and is shown to give a extremely good fit to the 

experimental data. The particular lifetimes obtained (Table 

4.5) show that the defect is very long lived (9 msec) up to 

T= 45K. At higher temperatures the lifetime decreases to the 

response of the detector. From the graph of lifetime versus 

temperature the binding energy of the loosely bound particle 

is found to be 65mev.

The assignment of the majority of strong zero phonon 

line luminescence systems in silicon to exciton recombination 

at isoelectronic traps has relied heavily on transient 

luminescence decay time data, since the chemical identities 

of the associated defects are not yet established. It would 

seem from the lifetime data in figure 4.20 that suggestions 

to the isoelectronic nature of the defect are justified.

The modelling of the system to an uniaxial stress 

acting on the crystal's valence band and conduction band



extrema was achieved in section 4.4. This modelling provides 

an approximation to the energy spacings, and although the 

lowest-energy exciton states are in agreement with 

experimental data, the model gives a bad description to the 

higher energy states. It is suggested that the configuration 

taken up by the impurities is as follows, zinc occupys a 

substitutional site while two copper atoms occupy an 

interstitial site each, so maintaining a neutral defect and 

giving the defect it's isoelectronic properties.
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5.1 Conclusion.

The luminescence associated with exciton decay in

copper-zinc doped silicon has been studied by the

photoluminescence technique. The experimental findings have
established that the dominant luminescence system with a

no-phonon line located at 919.5 mev, is indeed due to exciton

recombination at an isoelectronic centre. We tentatively

suggest that a zinc atom along with two copper atoms interact

to form the isoelectronic trap in silicon. We suggest that

copper oxidizes into the state Cu1+ and that zinc forms its
2 -normal configuration in silicon i.e. Zn . The zinc atoms

reside on a substitutional site while the copper atoms reside

on interstitial sites as shown in chapter 4. This particular

situation gives an overall configuration of [Cu+ Zn2 Cu+ ]^,

which is a neutral defect. As stated earlier the chemical

identity of the associated defect has not yet been

conclusively established but its very long transient

luminescence decay time,( 9 msec up to 45K ), seems to

suggest recomination at a isoelectronic trap.
( 39 )As reported by various authors , copper alone forms

an isoelectronic defect in silicon and the luminescence 

associated with this defect is found to have a lifetime 460 

usee and 670 usee in the temperature range T=1.3K to T=13K. 

With the introduction of an additional transition metal 

impurity such as zinc, the formation of a second luminescent 

defect occurs at lower energy. However the lifetime 

associated with this new defect is much longer, of the order
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of 9 msec up to T=45K. A careful study of the lifetime versus 

temperature reveales how strongly or weakly the binding 

energy of the secondary particle is. Section 4.4 gives the 

results obtained after 1deconvoluting' the system response 

out of the various spectra. As was stated, this needed to be 
done because of the large contribution associated with the 

detector being present in the sample decay. An algorithm was 

developed and was found to work very well.
( 43)An extension of the model developed by Davies 

shows,within experimental error,the axial nature of the

defect. This simple model provides a reasonable 

parameterisation of the properties of the lowest energy 

levels of excitons bound to axial isoelectronic defects in 

silicon. By using two variables, the stress (St) and the 

electron - hole exchage energy (A ), the energy levels can be 

simulated. From the analysis of the previous sections this 

model is sufficient at explaining the energy levels of the

copper zinc related defect in silicon.

In chapter 2 it was stated that most of the transition 

metal impurities are known to be fast diffusing elements in 

silicon at elevated temperatures. Because of this fact trace 

contamination during processing of silicon wafers for device 

production is frequently observed. It is not uncommon to find 

associated with these impurities precipitates in the volume 

and on the surface of the wafer. These in turn may

drastically effect the performance of the device in a number 

of different ways. They may cause an increase in the

recombination-generation current as well as an increase in

Page 117



the leakage current of reverse biased junctions (25a)^

Because of the ease with which transition metals are 

incorporated into silicon, it is very difficult to specify 

exactly the impurities involved. This, however can be solved 

by using a technique known as isotope shift analysis. As 

stated in chapter 2 , transition metals can have many charge 

states in silicon. In order to identify these charge states 

Zeeman analysis can be preformed.

The review material given in chapters 1 & 2 of this

thesis shows that although isoelectronic traps have been 

studied in semiconductors, there are still some potentially 

rewarding areas of study, particularly in connection with 

transition metal impurities in silicon.
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APPENDIX 1 SOFTWARE.

Link program.

Data Acquisition.

Excitation luminescence.

Decay luminescence.

Water vapour absorption.

Data Processing.

Data Analysis.

Semi-log fit { ln(I/Imax) vs time }

Deconvolution of spectra.

Data Display.

Exponential Fit.

Diagonalisation of matrix.
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10
20
30
40
50
60
70
80
90

1 0 0
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

Data Acquisition " 
Data Processing " 
Data Analysis 
Data display "

REM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

REM ***** * * * * *

REM ***** LINK PROGRAM *****
REM ***** *****
REM ************************************
REM
REM
REM
MODEO
PRINTTAB(20)"Linking program "
PRINTTAB (20)"________________  "
PRINT-.PRINT 
PRINTTAB(20,5) "1 
PRINTTAB(20,7) "2 
PRINTTAB(20,9) "3 
PRINTTAB(2 0,11)"4 
PRINT:PRINT:PRINT 
INPUT "Choice ",C$
IF C$="1" THEN PROCAcquisation 
IF C$="2" THEN CHAIN "CORRECT"
IF C$ = "3" THEN CHAIN 
IF C$ = "4" THEN CHAIN 
GOTOI8 O
DEF PROCAcquisition 
CLS
PRINTTAB(20) " Data Acquisition
PRINTTAB (20) "  ______________
PRINT-.PRINT 
PRINTTAB(20,7)
PRINTTAB(20,9)
PRINTTAB(20,11) "c 
PRINT:PRINT:PRINT 
INPUT "Choice n,C$
IF C $ = " A " THEN CHAIN

"ANALY"
"PLOT"

"a,
"b, 
11 -

Lifetime measurements 
Intensity scan 
Water vapour scan

IF C$="B" 
IF C$="C" 
GOTO 3 30 
ENDPROC

THEN CHAIN 
THEN CHAIN

"DECAY"
"SAMPLE"
"VAPOUR"
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10 REM **************************************************
20 REM ****** Program to sample analogue to digital ***
30 REM ****** converter over a specific wavelength ***
40 REM ****** range. ***
50 REM **************************************************
60 REM
7 0 REM
8 0 REM 
90 REM

100 REM *******************************
110 REM *** Check for background ***
120 REM *** signal. ***
^30 pgjnj *******************************
140 CLOSE$0:MODE3:A=&FCF0
150 ?(A+ll)=&C0:?(A+2)=&70:?(A+4)=6:?(A+5)=0
160 C=0:PRINTTAB(5,5)" CHECK TO SEE IF SLIT IS CLOSED"jK=GET 
170 FOR T=1 TO 10:?A=0:?(A+12)=&0C:?(A+12)=&0E 
180 a=(?(A+l))*16+(?(A))MOD16 
190 C=C+a:PRINTa:NEXT :B=C DIV 10
200 PRINTTAB(5,15)"BACKGROUND D.C. SIGNAL ="B :K=GET:CLS 
210 PRINTTAB(5,5) "ADJUST FOR MAX SIGNAL"
220 PRINTTAB(5,10)"TYPE R TO CONTINUE"
230 K=GET:?(A+12)=&0C:?(A+12)=&0E 
240 IN=?(A+l)*16+?(A)MODl6 
250 PRINTTAB(5,15)"MAX SIGNAL ="B-IN 
260 IF K<>69 AND K<>82 THEN 230 
270 IF K=69 THEN 230
280 REM ***************************************************** 
290 PRINT: PRINT: PRINT-.CLS: *DRIVE0 
300 PRINT:PRINT"Sample spectrum"
310 a=OPENIN"START":INPUT$a,Start 
320 b=OPENIN"END":INPUT$b,End 
330 c=OPENIN"Inc":INPUT$c,Inc 
340 CLOSEJO 
350 CLS
360 PRINT:PRINT:PRINT"Starting wavelength "Start 
370 PRINT:PRINT"Finishing wavelength "End 
380 PRINT:PRINT"Incremental rate "Inc
390 P=(End-Start)/Inc+l
400 INPUT"Do you want to change wavelength range y/n"
410 IF GET$="Y" THEN PROCINITIAL
420 PRINT:PRINT:INPUT"Temperature of sample ",Temp 
4 30 MODE4:DIM Y(P)
4 40 PROCADC:PROCDATA:PROCSAVE:PROCREPEAT:CHAIN"LINK"
4 50 END
460 DEF PROCINITIAL 
470 CLS
480 PRINT:INPUT"Starting wavelength ",Start 
490 PRINT:INPUTnFinish wavelength ",End 
500 PRINT:INPUT"Incrementa1 rate / sec ",Inc 
510 P=(End-Start)/Inc+l 
520 PROCwave:ENDPROC
530 REM *****************************************************
535 REM
536 REM
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54 0 REM ******************************
550 REM *** Data points stored ***
560 REM *** in array Y(D). ***
5 7 0 REM ******************************
580 DEF PROCDATA
590 X =0:Al=Start:CLS:M=1 
600 FOR D=1 TO P
610 ?A=0:?(A + 12) = &EC :FOR 1=1 TO 200 :NEXT
62 0 ?(A+12)=&CE:Y(D)=B-(?(A+1)*16+?(A)MODI6):PRINTTAB(5,5)Al 
630 MOVE X,Y(D)/2:DRAW X,Y(D)/2:X=X+1200/P:Al=Al+Inc

NEXT:ENDPROC
640 DEF PROCADC
6 50 A=&FCF0:?(A+ll)=&C0:?(A+2)=&70:?(A+4)=6:?(A+5)=0:ENDPROC 
660 REM *****************************************************
670 DEF PROCSAVE
680 INPUT"Do you want to save y/nM 
690 IF GET$="N" THEN ENDPROC 
695 PRINT:PRINT
700 INPUT "Name of file " B$:Y=OPENOUT(B$)
710 PRINT$Y,Start:PRINT$Y,End:PRINT$Y,Inc:PRINT$Y,Temp
7 20 FOR D=1 TO P
730 PRINT$Y,Y(D) :NEXT:CLOSE$0:ENDPROC 
74 0 DEF PROCwave
750 a=OPENOUT"START":PRINT$a,Start 
760 b=OPENOUT"END":PRINT$b,End 
7 70 c=OPENOUT"INC":PRINT$C,Inc
780 CLOSE$0:ENDPROC 
790 DEF PROCREPEAT
800 PRINT"Do you want to repeat the experiment y/n "
810 IF GET$="Y" THEN 350 ELSE ENDPROC 
820 ENDPROC
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10 REM *****************************
2 0 REM ** **
30 REM ** DECAY LUMINESCENCE **
4 0 REM ** **
50 REM *****************************
6 0 MODEO
70 INPUT "Number of data points to be stored , ",N 
80 PRINT:PRINT:PRINT"Time delay per point = 1,2,3 .... 
90 PRINT .-PRINT: INPUT t 

100 PRINT:PRINT:INPUT"Temperature of sample ",Temp 
110 PRINT:PRINT:INPUT"Wavelength reading ",Wave 
120 DIM MCI% 450,Y (N ),TALLY%10 
130 STORE%=HIMEM-10 0 0 0
140 PROCMEM :PROCINITIAL :PROCDATA : PROCDRAW 

PROCSAVE :PROCREPEAT 
150 CHAIN"LINK" .-END
160 REM *********************************************** 
17 0 REM *****************************
180 REM **** Initialize memory ****
190 REM **** locations. ****
2 00 REM *****************************
210 DEF PROCMEM 
220 T14=0:XX%=N
23 0 TALLYLO%=&8 0:TALLYHI% = & 81:TALLYCL% = & 8 2

TALLYCH% = &83 :TALLY% = &84 .-DELAY =&85
24 0 ? (TALLYLO%)=STORE%MOD2 56 :?(TALLYHI%)=STORE%DIV2 56 
250 TALLYCL%=((STORE%+XX%+l)MOD256)

TALLYCH%=((ST0RE%+XX%+1)DIV256)
26 0 ENDPROC
270 REM *********************************************** 
280 REM *****************************
290 REM **** Assembly language ****
300 REM **** for intake of ****
310 REM **** points. ****
320 REM *****************************
330 DEF PROCINITIAL 
340 CH=16
350 FOR S=0 TO 2 STEP 2 
360 P%=MCl%
370 [ OPT S
380 . GALV JSF: c o n
390

400 . STl LDA $&00
410 STA &FE6C
420 LDA $ &FF
430 STA &FE6D
440 LDA &FE6D
450 AND $&10
460 BEQ STl
470 .START LDA $0
480 STA TALLY%
490 STA TALLY%+1
500 .TE LDX $0
510 . LPl LDA TALLYHI%
520 CLC

msec. "

* *
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530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060
1070
1080

. MNO 

. ET

• ST

.LO 

. LOl

. TEl

, GHI 
.RESET

.CON

CMP $TALLYCH%
BCS MNO
JMP ET
LDA TALLYLO%
CLC
CMP $TALLYCL%
BCS RESET
CLC
LDA $1
ADC TALLYLO%
STA TALLYLO%
LDA $0
ADC TALLYHI%
STA TALLYHI%
PHP
PHA
TXA
PHA
LDX $t
LDA $248
STA DELAY
DEC DELAY
BNE LOl
NOP
DEX
BNE LO
NOP
PLA
TAX
PLA
PLP
LDA &FCF0
LDA &FCF1
LDX $&00
STA (TALLYLO%, X)
LDA $&CC
STA SFCFC
JMP TE
CLI
RTS
LDA &FCF0
LDA $&0F
STA TALLY%+1
JMP GHI
LDA $&C0
STA &FCFB
LDA $T14
STA &FCF4
LDA $0
STA &FCF5
STA 4FCF3
LDA $470
STA &FCF2
LDA $CH
STA SFCF0
LDA 4FCF0
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1090
1 1 0 0
1 1 1 0
1 1 2 0 ]

LDA $ & EC 
STA &FCFC 
RTS

1130 NEXT S 
1140 ENDPROC
1150 REM ******************************************
1160 DEF PROCDATA
1170 FOR D=1 TO 10
1180 PROCMEM:CALL GALV
1190 FOR 1 = 1 TO N :Y (I )=?(STORE% +1)* 16
1200 NEXT:PROCDRAW
1210 NEXTD:ENDPROC
1220 DEF PROCSAVE
1230 MOVEO,30:INPUT" Do you want to save y/n"
1240 IF GET$="YM THEN 1260 ELSE ENDPROC 
1250 PRINT
1260 INPUT" Name of file "B$
1270 X=OPENOUT(B$)
12 8 0 PRINT$X,N:PRINT$X, t:PRINT$X,Temp: PRINT$X, Wave 
1290 FOR 1=1 TO N :A%=Y(I)
1300 PRINT $X,A%
1310 NEXT:CLOSE$0:ENDPROC 
1320 DEF PROCDRAW
1330 CLS:X=0:YMAX=0:PROCCALCULATE
134 0 FOR q=l TO N
1350 Y=((Y(q))*850/YMAX)
1360 MOVE X, Y :DRAW X,Y
1370 X=X+1200/N:NEXT q rENDPROC
1380 NEXT q
1390 DEF PROCCALCULATE 
1400 FOR i%= 1TO N
1410 IF Y (i%)>=YMAX THEN YMAX = Y(i%)
1420 NEXT
14 30 ENDPROC
14 40 DEF PROCREPEAT
1450 PRINT"Do you want to repeat the experiment y/n 
1460 IF GET$="Y" THEN 60 ELSE ENDPROC 
14 7 0 ENDPROC



10 REM **************************************************** 
20 REM **** ****
30 REM **** Water vapour absorption spectrum ****
4 0 REM **** ****
50 REM **************************************************** 
60 MODEO 
65 CLEAR
70 PRINT:PRINT:PRINT 
80 PRINT" Water vapour spectrum H 
90 PROCINITIAL:PROCADC:PROCBACKGROUND 

100 MODE4
110 DIM Y(P):DIM Yl(P)
12 0 PROCDATA
130 INPUT "Do you want a copy on chart y/n"
140 IF GET$="Y" THEN PROCDAC
145 PRINT
150 PROCWATERVAP
160 INPUT "Do you want a copy on chart y/n"
170 IF GET$="Y" THEN PROCDAC 
175 PRINT
180 PROCDRAW
181 PR I NT "Do you want to repeat the experiment y/n"
182 IF GET$="Y" THEN 10 ELSE CHAIN "LINK"
183 END
190 DEF PROCINITIAL 
200 PRINT
210 a=OPENIN "START":INPUT$a,Start 
220 b=OPENIN "END":INPUT$b,End 
230 c=OPENIN "Inc":INPUT$c,Inc 
240 CLOSE$0
250 PRINT“Wavelength range ",Start " to "End 
260 PRINT:PRINT"Incremental rate "/Inc 
270 INPUT"Do you want to change y/n"
280 IF GET$="Y" THEN PROCNEW 
290 P=(End-Start)/Inc+l 
300 CLOSE$0:ENDPROC 
310 DEF PROCDATA
320 X=0:Al=Start:b=l:d=&FCC0:?(d+3)=128:CLS
3 30 FOR D=1 TO P
340 ?A=16:?(A+12)=&EC 
350 FOR 1=1 TO 2 00:NEXT 
360 ?(A+12)=&CE
370 Y(D)=B-(?(A+1)*16+?(A)MODI6)
380 PRINTTAB(5,5)Al
390 MOVE X,Y(D)/2:DRAW X fY(D)/2
4 00 X=X+1200/P:Al=Al+Inc:NEXT:ENDPROC 
410 DEF PROCDRAW
420 MOVE 0,0:DRAW 0,900
430 DRAW 1200,900:DRAW 1200,0:DRAW 0,0:VDU5
440 MOVE 250,1000:PRINT"Intensity vs Wavelength "
450 MOVE -10,910:PRINT"|":MOVE 590,910:PRINT"J"

MOVE 1190,910:PRINT"|"
4 60 ENDPROC
470 DEF PROCLABLE
480 MOVE -150,950:PRINTStart
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490 MOVE 900,950:PRINTEnd
500 VDU4:ENDPROC
510 ENDPROC
520 DEF PROCWATERVAP
530 VDU4
540 PRINT"correction for absorption"
550 K=GET
560 X=0:Al=13401
570 Slope=(Y(P)-Y(1))/(End-Start)
580 Intercept=Y(1)-Slope*Start
590 FOR D=1 TO P
600 y=Slope*Start+Intercept
610 Yl(D)=y/Y{D)
620 Y (D)=Yl(D )*Y(D )
630 MOVEX,Y(D)/2:DRAW X,Y(D)/2
640 PRINTTAB(5/5)Al:Al=Al+Inc
650 X=X+1200/P:Start=Start+Inc:NEXT:*DRIVE2
660 x=OPENOUT"VAP"
670 PRINT$x,Start:PRINT$x,End:PRINT$x,Inc
680 FOR 1=1 TO P
690 PRINT$X,Y1(I):NEXT:CLOSE$0 : ENDPROC
700 DEF PROCDAC
710 Al=Start
720 FOR D=1 TO P
730 V=2048-(Y(D))* 1.5
740 d?b=(V)DIV16
750 d?2=((V)MODI6)*(l+16*b)
760 PRINTTAB(5/5)Al:Al=Al+Inc
770 FOR 1=1 TO 200:NEXT
780 NEXTDtENDPROC
790 DEF PROCADC
800 A=&FCF0:?(A+ll)=&C0:?(A+2)=& 70
810 ?(A+4)=6:?(A+5)=0:ENDPROC
820 ENDPROC
830 DEF PROCNEW
840 CLS
850 INPUT"Wavelength range ",Start/End
860 INPUT"Incremental rate ",Inc
870 a=OPENOUT"START":PRINT$a,Start
880 b=OPENOUT"END":PRINT$b,End
890 c=OPENOUT"INC":PRINT$c,Inc
900
905

ENDPROC

910 DEF PROCBACKGROUND
915 CLS
920 A=&FCF0:?(A+ll)=&C0:?(A+2)=&70:?(A+4)=6:?(A+5)=0
930 C=0:PRINTTAB(5,5) "Check to see if slit is closed ":K=GET
940 FOR T=1 TO 10:?A=16:?(A+12)=12:?(A+12)=14
950 a=(?(A+l))*16+(?(A ))MODI6
960 C=C+a:PRINTa:NEXT:B=C DIVIO
970 PRINTTAB(5,15) "Background d.c. voltage = "B:K=GET:CLS
980 PRINTTAB(5,5) "Adjust for max signal-"
990 PRINTTAB(5,10) "Type R to continue "

1000 K=GET:?(A+12)=12:?(A+12)=14
1010 IN=?(A+1)*16+?(A)MOD16
1020 PRINTTAB(5,15) "Max signal = "B-IN
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1030 IF K<>69 AND K<>82 THEN 1000 
104 0 IF K=69 THEN 1000
1050 ENDPROC
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10 REM *******************************
20 REM **** **
30 REM **** DATA PROCESSING **
4 0 REM **** **
50 REM *******************************
6 0 REM
7 0 REM 
80 REM 
90 REM

100 MODE3 
110 *.
120 INPUT"NAME OF FILE" ,B$:x=OPENIN(B$)
130 CLS
14 0 INPUT$x/S:INPUT$x,E:INPUT$x,Inc:INPUT$x,Temp
150 PRINT:PRINT:PRINT"Starting wavelength " ,S
160 PRINT:PRINT:PRINT"Finishing wavelength ",E
170 PRINT:PRINT:PRINT"Incremental rate ",Inc
180 P=(E-S)/Inc+1
185 FOR 1=1 TO 10000: NEXT
190 MODE4:DIM Y(P)
200 FOR 1=1 TO P
210 INPUT$x,A%:Y(I)=A%:NEXT:CLOSE$0
220 PROCDRAW :PROCSPIKE:PROCVAP:PROCInten:PROCDRAW jPROCSMOOTH 
230 PROCDRAW:PROCSAVE:CHAIN"LINK":END
240 REM ********************************************************** 
250 REM *******************************
260 REM *** Spike removal ***
27Q r e m  *******************************
280 DEF PROCSPIKE
290 X=0:FOR 1=1 TO 200:Y(0)=Y(1)
300 IF Y (I)>=Y(1-1)* 1.1 THEN Y(I) = (Y(1-1))
310 IF Y (I)<=Y(1-1)/l.1 THEN Y(I) = (Y(I-l)+Y(1-2)+Y(1-3 ) )/3
320 NEXT
330 FOR 1=450 TO 2000
340 IF Y (I)>=Y(1-1)* 1.1 THEN Y( I ) = (Y(1-1)+Y(1-2)+Y(1-3)+Y(1-4))/4
350 IF Y (I)<=Y(1-1)/l.1 THEN Y(I) = (Y(1-1)+Y(1-2)+Y(1-3 ) )/3
360 NEXT:ENDPROC
370 REM **********************************************************
380 DEF PROCDRAW
390 X=0:CLS:FOR 1=1 TO P
400 MOVE X,Y(I)/2:DRAW X ,Y (I)/2:X=X+1200/P:NEXT:ENDPROC 
410 X=X + 1200/P:NEXT:ENDPROC
4 20 REM ********************************************************** 
430 REM **********************************
440 REM *** Smoothing ***
450 REM **********************************
4 60 DEF PROCSMOOTH 
470 FOR 1=1 TO P 
480 IF I<3 THEN GOTO 520 
490 IF I> = 1995 THEN 520
500 Y(I)=0.4*Y(I)+0.2*Y(I-l)+0.1*Y(I-2)+0.2*Y(I+l)+0.1*Y(I+2)
510 GOTO 530 
520 Y (I )=Y(I)
530 NEXT:PROCDRAW:ENDPROC
54 0 REM **********************************************************
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550 REM **************************************
560 REM *** Correcting for. ***
570 REM *** water vapour absorption ***

590 DEF PROCVAP 
600 y=OPENIN"VAP"
610 CLS:X=0:FOR 1=1 TO P 
620 INPUT$y,Y:Y(I)=Y(I)*Y
630 MOVE X ,Y (I)/2:DRAW X ,Y (I)/2:X=X+1200/P:NEXT I:ENDPROC 
640 REM 
6 50 REM *
660 REM *** Intensity correction ***
6 70 REM **********************************
680 DEF PROCInten
690 FOR 1=1 TO 500:Y(I)=Y(I)*1.02:NEXT 
700 FOR 1=501 TO 750:Y(I)=Y(I)*1.04:NEXT 
710 FOR 1=751 TO 1000 : Y (I)=Y(I)* 1.07:NEXT 
720 FOR 1=1001 TO 1150:Y (I)=Y(I)*1.15:NEXT 
730 FOR 1=1151 TO 1250:Y(I)=Y(I)*1.22:NEXT 
740 FOR 1=1251 TO 1400:Y (I)=Y(I)* 1.3:NEXT 
750 FOR 1=1401 TO 1550:Y(I)=Y(I)*1.45:NEXT 
760 FOR 1=1551 TO 1700:Y(I)=Y{I)*1.61:NEXT 
770 FOR 1=1701 TO 1800sY(I)=Y(I)*2 :NEXT 
780 FOR 1=1801 TO 1900:Y (I)=Y(I)*2.38:NEXT 
790 FOR 1=1901 TO 2000: Y( I )=Y(I) *2. 78 -.NEXT 
800 PROCDRAW:ENDPROC 
810 REM 
820 REM
830 REM *** Saving data files ***

850 DEF PROCSAVE
860 PRINT"Do you want to save y/n"
870 IF GET$="Y" THEN 880 ELSE ENDPROC 
880 PRINT:INPUT"Name of file "B$
890 Y=OPENOUT (B$)
900 PRINT$Y,S :PRINT$Y,E :PRINT$Y,Inc :PRINT$Y,Temp 
910 FOR D=1 TO P 
920 PRINT$Y,Y(D )
930 NEXT:CLOSE$Y:ENDPROC
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10 REM ******************************************
20 REM ***** *****
30 REM ***** Program to analyse. spectra *****
4 0 REM ***** *****
5 0 REM ******************************************
60 CLS
70 PRINTTAB(20) " Analysis "
80 PRINTTAB( 20) " _ _ _ _ _ _  *
90 PRINT:PRINT:PRINT 

100 PRINTTAB(20) " 1. Semilog plot ln(I/Imax) vs time "
110 PRINT:PRINT:PRINT
120 PRINTTAB(20) " 2. Deconvolition { D(t) = E(t) ** i(t) } "
130 PRINT:PRINT:PRINT
140 PRINTTAB(20) " 3. Area under curve "
150 PRINT:PRINT:PRINT 
160 INPUT "Choice ",C$
170 IF C$= "1" THEN CHAIN "LIFE"
180 IF C$= "2" THEN CHAIN "DECONVO"
190 IF C$= *3* THEN CHAIN "AREA"
200 GOTO 170
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10 REM ***************************************************** 
20 REM **** *
30 REM **** Least square fit of decay *
40 REM **** curves *
5 0 REM **** *
60 REM ***************************************************** 
70 MODEO 
80 *.
90 PRINT:PRINT:PRINT:

100 INPUT"Name of data file" ,B$
110 L=OPENIN(B$)
120 INPUT$L,N
130 INPUT$L,time
140 INPUT$L,Temp
150 INPUT$L,Wave
160 DIM Y(N),Y1(N),Y2(N )
170 FOR 1=1 TO N :INPUT?L,A%:Y (I )=A%:NEXT :CLOSE$0 
180 B=0
190 FOR P=1 TO 20 :B=B+Y(P+180):NEXT :B=B/20 
2 00 MODE4
210 PROCCALCULATE:PROCDRAW:PROCINTENSITY 
220 CHAIN "ANALY"
230 END
24 0 DEF PROCCALCULATE
250 YMAX=0:YMIN=100
260 FOR i%= lTO N
270 IF Y (i%)>YMAX THEN YMAX=Y(i%)
280 IF Y (i%)<=YMIN THEN YMIN=Y(i%)
290 NEXT i%
300 ENDPROC 
310 DEF PROCDRAW 
320 X=0
330 FOR 1=1 TO N
340 MOVE X,(Y(I)-B)/2+100:DRAW X ,(Y (I }-B)/2+l00
350 X=X+1000/N:NEXT :ENDPROC
360 DEF PROCINTENSITY
370 CLS:VDU4:VDU 29,0;1000;:X=0
380 FOR 1=1 TO N
390 IF Y (I)— B<=0 THEN 440
400 Yl(I)=LN((Y(I)-B)/YMAX)
410 Y=Yl(I)*200 
420 MOVE X+2, Y + 2:DRAW X-2;Y-2 
430 MOVE X-2,Y+2:DRAW X+2,Y-2 
440 X=X+1000/N:NEXT I
450 INPUT"START POINT'STA:INPUT"FINISH POINT"FIN
460 T=STA*time:P=FIN -STA
470 a=0:b=0:c=0:d=0:e=0
4 80 REM SLOPE OF SLOW COMPONENT
4 90 FOR 0=STA TO FIN
500 PROCSUM :T=T+time:NEXT O
510 PROCSLOPE:PROCEQ:PROCCALCULATE2
520 T=0 :X=0:FOR 0=1 TO N
530 Y1(0)=LN(Y2(0)/Imax) :Y=Y1(0)*200 :MOVE X,Y:DRAW X,Y 
540 P=200:PROCSUM :T=T+time 
550 X=X+1000/N:NEXT 0:PR0CSL0PE 
560 a=0:b=0:c=0:d=0:e=0
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570 INPUT"START POINT"STR:INPUT "FINISH POINT"FIN :T= (time)*STR 
580 FOR 0=STR TO FIN 
590 Y l (0)=(Y (0)-Y2(0))
600 IF Yl(0)<=0THEN GOTO 630 
610 Yl(0)=LN(Yl(0)/(YMAX-Imax))
620 PROCSUM
630 T=T+time :NEXT O
64 0 PROCSLOPE:PROCEQ :ENDPROC
650 DEF PROCSUM
660 a-a+T*Yl(0) :REM sum t*y
670 b=b+T :REM sum t
680 c=c+Yl(0) :REM sum y
690 d-d+Yl(O)*Yl(O) :REM sum sqr y
700 e=e+T*T :REM sum sqr t
710 ENDPROC 
720 DEF PROCSLOPE 
730 Slope=(P*a-c*b)/(P*e-b*b)
74 0 Intercept=(e*c-b*a)/(P*e-b*b)
75 0 PRINTTAB(0,20)Slope,Intercept 
760 ENDPROC
770 DEF PROCEQ
78 0 T=0:X=0;FOR p=l TO N
7 90 Yl(p)=T*Slope+Intercept:Y=Yl(p)*200
800 MOVE X,Y:DRAW X,Y :X=X+1000/N :Y2(p)=EXP(Yl(p))*YMAX
810 T=T+time:NEXT p :ENDPROC
820 DEF PROCCALCULATE2
830 lmax=0:Imin=100
840 FOR i=l TO N
850 IF Y2(i) > Imax THEN Imax=Y2(i)
860 IF Y2(i) <= Imin THEN Imin=Y2(i)
870 NEXT i:ENDPROC

Paael37



10 REM ****************************************************
20 REM **** ****
30 REM **** Deconvolution of spectra ****
4 0 REM **** { D(t)= E(t)*i(t) } ****
50 REM **** ****
60 REM ****************************************************
70 @%=&20303:CLOSE$0:MODEO
8 0 PROCINITIAL:PROCBACKGROUND:PROCDRAW:0=0 : PROCchoice:PROCleast 
90 PROCLifetime 

100 END
110 DEF PROCINITIAL 
120 *.
130 PRINT:PRINT:PRINT:PRINT
140 INPUT " File to be deconvoluated M,Name$
150 z=OPENIN Name$:Z=OPENIN "DET400"
160 INPUT$Name$,N 
170 INPUT$Name$,t 
180 INPUT$Name$,Temp 
190 INPUT$Name§,Wave 
200 MODE4
210 DIM Z(N),X(N),Y1(N),Y(N),Area(N),U(N),D(N)
220 DIM R(N),Chi(100)
230 FOR I = 0 TO N-l
240 INP(JT$Z,Z(I) :INPUT$z,X(I)
250 NEXT I:CLOSE$Z:CLS
260 MOVE 0,0:DRAW 0,1000:DRAW 1200,1000:DRAW 1200,0:DRAW 0,0
270 ENDPROC
280 DEF PROCBACKGROUND 
290 K=0:K1=0:B=0
300 FOR 1=1 TO 20:K1=K1+Z(I+180):NEXT 
310 Kl=Kl/20
320 FOR 1=1 TO 20:B=B+X(1+180):NEXT
330 B=B/20:ENDPROC
34 0 DEF PROCDRAW
350 FOR I = 0 TO N-l
360 L=Z{I)/2:DRAW K ,L-Kl:K=K+1200/N
370 DRAW K,L-Kl
380 K=K+1200/N
390 NEXTI:MOVE 0,0
400 MOVE 0,0
410 FOR I = 0 TO N-l
420 L=(X(I)-B)/2
430 MOVE K+2,L+2:DRAW K-2,L-2:MOVE K-2,L+2:DRAW K+2,L-2
440 K=K+1200/N:NEXT:ENDPROC
450 DEF PROCchoice
460 CLS:0=0+1
470 PRINT:PRINT
480 PRINT"Sample response given by single (1) or double (2)

exponential "
490 PRINT:PRINT
500 IF GET$="2" THEN PROCdouble
510 PROCsingle
520 ENDPROC
530 DEF PROCsingle
540 PRINT" Sample response is given by —  kl*exp(-t/tl)-- "
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550
560
570
580
590
600
610
620
630
640
650
660

670
680
690
700
710

720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060
1070
1080

PRINT:PRINT
INPUT" Preexponential factor kl = ", kl 
PRINT:PRINT
INPUT" Lifetime component tl = ",tl "msec"
PRINT:PRINT:t2=0:k2=0 
S=kl*lE-3:P=EXP(-2/tl)
Y (0)=0:Z(0)=0 
X=0:L=0 
FOR 1=1 TO N
U(I)=(U(I-l)+S*(Z(I)-Kl))*P+S*(Z(I-l)-Kl)

MOVE X+2,Y(I)/3+2:DRAW X-2,Y(I)/3-2 
MOVE X-2,Y(I)/3+2:DRAW X+2,Y(I)/3-2 
MOVE L,(X(I)-B)/3:DRAW L,(X(I)-B)/3 
X=X+12 00/N:L=L+1200/N 
NEXT:ENDPROC 
DEF PROCdouble
PRINT"Sample response is given by -- kl*exp(-t/tl)

k2*exp(-t/t2)—  "
PRINT:PRINT
INPUT" Preexponential factors kl,k2 = ", kl,k2 
PRINT:PRINT

lifetime component tl = \ t l

lifetime component t2 = ",t2

INPUT" Short 
PRINT:PRINT 
INPUT" Long 
PRINT:PRINT
REM ********************************** 
REM ***** *****
REM ***** Finding area under *****
REM ***** response curve ***** 
REM ***** *****
REM ********************************** 
i=N
FOR 1=1 TO i 
C=0:h=i*2E-3 
h=i*2E-3
IF i<=7 GOTO 970
A=Z(l)-Kl+4*(Z(2)-Kl)+2*(Z(3)-Kl) 
B=Z(i)-Kl+4*(Z(i-l)-Kl)+2*(Z(i-2)-Kl) 
FOR 11=4 TO i-3 
C=C+4 *(Z(11)-Kl)
NEXT II
Area(i)=(h/3)*(A+B+C)
GOTOlO 30 
V=0
FOR P=1 TO i 
V=V+Z(P )-Kl 
NEXT P
Area(i)=(h/i)*V 
REM P. Area(i) 
i=i-l 
NEXTI
M=OPENOUT "AREA"
FOR 1=1 TO N 
PRINT$M,Area(I)
NEXT:CLOSE$M
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1090 t=0
1100 CLS:FOR 1=1 TO N 
1110 Y(I)=Area(I)*EXP(-t/tl)
1120 Yl(I)=Area(I)*EXP(-t/t2)
1130 t=t+2E-3:NEXT I 
1140 P1=EXP((-2E-3)/tl)
1150 P2=EXP((-2E-3)/t2)
1160 X=0:L=0:t=0:CLS
1170 Z(0)=0:FOR 1=1 TO N
1180 a=kl*Y(I)* PIsb=k2*Yl (I)*P2
1190 c=lE—3*(Z (I)—K1)*(kl+k2) + (Z (I — 1)—Kl)*(kl*Pl+k2*P2))
1200 D(I)=a+b+c
1210 MOVE X ,D/10:DRAW X,D/10
1220 MOVE L+2, (X(I)-B)/3+2:DRAW L-2 , (X (I )-B)/3-2 
1230 MOVE L-2,(X(I)-B)/3 + 2: DRAW L+2,(X (I )-B)/3-2 
12 4 0 X=X+1200/N:L=L+1200/N:t=t+2E-3 
1250 NEXTtENDPROC
1260 REM **************************
1270 REM Statement of least squares •
12 80 REM **************************
1290 DEF PROCleast
1300 PRINT"Single (1) or double (2) exponential "
1310 X=0
1320IF GET$="2" THEN GOTO 1410 
1330
1340 FOR 1=1 TO N 
1350 R (I)=X(I)-U(I)
1360 X=X+R(I):NEXT 
1370 Chi(0)=X*2 
1380 PROCChoice
1390 IF Chi(O) <=Chi(0-l) THEN PROCChoice 
1400 IF Chi(O) >Chi(O-l) THEN ENDPROC 
1410 FOR 1=1 TO N 
1420 R(I)=X(I)-D(I)
1430 X=X+R(I):NEXT 
14 4 0 NEXT 
1450 Chi(O)=X~2 
1460 PROCChoice
1470 IF Chi(O) <=Chi(0-1) THEN PROCChoice 
1480 IF Chi(O) >Chi(0-l) THEN ENDPROC 
1490 DEF PROCLifetime
1500 PRINT "Sample response = "kl "*exp (-t/" tl")"

+ k2"*exp (-t/n t2")"
1510 ENDPROC
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10 REM *****************************************************
2 0 REM **** **
30 REM **** Program to plot decay spectra on **
40 REM **** rikad plotter **

50 REM **** **
6 0 REM ***************************************************** 
70 MODE3 
80 *.
90 PRINTCHR$(130)"NAME OF FILE":INPUTB$

100 L=OPENIN(B$)
110 INPUT$L,N:INPUT$L,time:
120 INPUT$L,Temp:INPUT$L,Wave
130 MODEO:X=100:t=N* 2
140 DIM Y(N),Yl(N):@%=131850
150 FOR 1=1 TO N
160 INPUT$L,A%:Y(I)=A%
170 MOVE X,Y(I)/2:DRAWX,Y (I)/2
180 X=X+1000/N:NEXT I :CLOSE$0 :PROCCAL
190 PRINT"Do you want an intensity or a log plot I/L"
200 IF GET$="L" THEN PROCLOG ELSE PROCPLOT 
210 VDU3
220 PRINT"Do you want to plot another spectrum y/n"
230 IF GET$="Y" THEN 10 ELSE CHAIN "LINK"
24 0 END
250 DEF PROCCAL
260 YMAX=0:YMIN=100
270 FOR i=l TO N
280 IF Y (i)>YMAX THEN YMAX=Y(i)
290 IF Yji ) <=YMIN THEN YMTN=Y(tt)
300 NEXT 1 :ENDPROC 
310 DEF PROCXAXIS
320 PRINT"M100,100":PRINT"D2500, 100, 2500,1800, 100,1800,100,100 
330 Xl=X/3+100 
340 FOR I=lTO 3 
350 VDU21
360 PRINT"M"+STR$(X ) + " , 80"
370 PRINT"P|"
380 PRINT"M"+STR$(X) + " ,70"
390 PRINT"S3,3P" STR$(I*t/4)
400 VDU6 :Xl=Xl+X/3:NEXT:ENDPROC 
410 DEF PROCYAXIS 
420 Y=100:FOR 0=0 TO 4:VDU21 
430 PRINT"Ml00,"+STR$(Y )
440 PRINT"P_"
450 PRINT"P"STR$(0/4)
460 VDU6:Y=Y+400:NEXT :ENDPROC 
4 70 DEF PROCPLOT
480 VDU2:X=100:FOR 1=1 TO N:VDU21 
490 Y=INT(Y(I )*1650/YMAX)+50 
500 PRINT"M"+STR$(X)+","+STR$(Y)
510 PRINT"D"+STR$(X) + ","+STR$(Y) , "B20"
520 X=X+2400/N:X=INT(X):VDU6:NEXT 
530 PROCXAXIS:PROCYAXIS:PROCWRITE 
540 PROCWRITEl:ENDPROC 
550 DEF PROCWRITE
560 PRINT"Mll50,30S3,3PTime (msec)"
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570 PRINT"M1700 , 1600PSample Si:B 50 ohm cm"
580 PRINT"M1700 / 1500P Cu & Zn diffused at "
590 PRINT"M1700, 1400P T=1100.
600 PRINT"M1700,1300P Temperature of sample "Temp:PRINT"PK"
610 ENDPROC
620 DEF PROCWRITEl
630 PRINT"M1000,1750S5,5P Intensity vs Time "
640 PRINT"M50,750QlS3,3PIntensity (arb. units)"
650 PRINT"Hn:ENDPROC
660 DEF PROCLOG
670 X=100:VDU2:VDU29,0;1000;
680 VDU2
690 FOR 1=1 TO N
700 IF Y(I)<=0 THEN 730
710 Y (I)=LN({Y (I ))/YMAX)
720 MOVE X,Y(I )* 100:DRAW X,Y(I)*100 
7 30 X=X+1000/N:NEXT: PROCCAL: PROCXAXIS 
740 Y=1700:FOR 0=0 TO 4:VDU2l 
750 PRINT"M0,"+STR$(Y)
760 PRINT"P_"
770 @%=131850
780 o=0*YMIN/4:PRINT"P"o :Y=Y-400:VDU6:NEXTO
790 X=100
800 FOR 1= 1TO N
810 Y(I)=Y(I)*1650/ABS(YMIN)+50
820 Y (I)=INT(Y(I) )
830 Y(I)=1600+Y(I)
840 VDU21
850 PRINT"M"+STR$(X)+","+STR$(Y(I))
860 PRINT"D"+STR$(X)+","+STR$(Y(I))
870 X=X+2400/N 
880 VDU6:NEXT
890 PRINT"M1000/1700S5,5P LOG(I/Imax) vs Time"
900 PROCWRITE 
910 PRINT"H*
920 VDU3 
9 30 ENDPROC
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10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
2 0 0
210
220
230
240
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260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

REM ******************************************************* 
REM **** ****
REM **** Program to plot spectra ****
REM **** ****
REM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

MODE3
*

4

PRINTCHR$(130)"NAME OF FILE":INPUTB?
L=OPENIN(B$)
INPUT$L,S : INPUT?L, E : INPUT$L, INC: INPUT?L, Temp 
X=0:P=(E-S)/INC+1 
MODE4:DIM Y(P)
FOR 1=1 TO P 
INPUT$L,A%:Y(I)=ABS(A%)
Y (I)=ABS(A %)
MOVE X,Y(I)/2:DRAWX/Y(I)/2 
X=X+1200/P:NEXT I:CLOSE$ 0:PROCCAL 
REM PROCSPIKE
INPUT"Do you want to look at a specific wavelength range"
IF GET$="Y" THEN PROCDIVISION 
PROCPLOT: PROCXAXIS: PROCYAXIS : PROCWRITE 
PRINT"H":VDU3
PRINT'Do you want to plot another spectrum y/n "
IF GET$="Y" THEN 10 ELSE CHAIN "LINK"
END
DEF PROCCAL 
YMAX=0:YMIN=100 
FOR i=l TO P
IF Y(i)>YMAX THEN YMAX=Y(i )
IF Y (i)<=YMIN THEN YMIN=Y(i )
NEXT i:ENDPROC 
DEF PROCXAXIS 
VDU2:Xl=X/5+100 
FOR I=lTO 5
PRINT"M*+STR$(Xl)+"/3Q":PRINT"S3,3"
PRINT"P|"
PRINT"M"+STR$(Xl)+",0"
PRINT"P" STR$(S+INT(I*(E-S)/5) )
VDU6:Xl=Xl+X/5:NEXT
PRINT"M1000,75":PRINT"P Wavelength (A) "
ENDPROC 
DEF PROCYAXIS 
VDU2:Y=50 
FOR 0=0 TO 4 
VDU21
PRINT"M95,"+STR$(Y)
PRINT"P_"
PRINT"P"STR$(0/4)
Y=Y+400:VDU6:NEXT:ENDPROC
DEF PROCPLOT
VDU2:X=100
FOR 1=1 TO P
VDU21
Y=INT(Y(I)*1600/YMAX)+50 
PRINT"M"+STR$(X )+","+STR$(Y)
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560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000

PRINT"D"+STR$(X)+","+STR$(Y),"B20" 
X=X+2500/P:X=INT(X):VDU6:NEXT
REM PRINT"M 1000,1200S5,5PINTENSITY VS WAVELENGTH"
ENDPROC
DEF PROCWRITE
PRINT"M1600, 1200PTEMP "Temp:PRINT" PK"
PRINTnMl000,1650PEnergy (mev)"
X2=X/5+100 
FOR 1=1 TO 5
PRINT"M"+STR$(X2)+",1800"
PRINT*P|*
PRINT"M'+STR$(X2)+",1750":PRINT"S3,3"
K=S+((E-S)/5)* I
Kl=l.243E-3/((K )*1E-10)
e%=13l594
PRINT"P"K1
VDU6:X2=X2+X/5:NEXTI
PRINT"M4 0,700":PRINT"Q1P Intensity (arb. units)"
ENDPROC
PRINT"H*
VDU3
DEF PROCDIVISION 
PRINT:PRINT 
CLS
INPUT"Wavelength range ", S,E
X=0:S2=S-S+1j E2=E-S
FOR i=S TO E/INC
MOVE X,Y(i)/2
DRAW X,Y(i)/2
X=X+1200/(E-S)
NEXT
PROCCAL
ENDPROC
DEF PROCSPIKE
FOR 1=1 TO 100
IF Y(I)>1.05*Y(1-1) THEN Y(I)=Y(I-1)
NEXT
FOR 1=450 TO 1100
IF Y(I)>1.05*Y(I —1) THEN Y (I) = (Y (1-1) )
IF Y (I)<Y(1-1)/I.05 THEN Y(I)=Y(I-1)
NEXT 
X=0:CLS
FOR I=S1 TO El/INC
MOVEX,Y (I)/2:DRAW X,Y(I)/2
X=X+1200/(E-S+l):NEXT:ENDPROC
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*** To Fit an Excitation Impulse ***
*** to a Series of Exponentials. ***
* *  *  *  *  *

*** N.I.H.E. DUBLIN, ***
*** ***

DOUBLE PRECISION SIGMA, TOL, A(1000,200), B(1000),
C(1000,200), WORK(16)

INTEGER I, IFAIL, IRANK, LWORK, NIN, NOUT, NRA,
NA,J,L,K

CHARACTER *2 7 TITLE
WRITE (6,*) " Input data file 001 to 020 "
READ (5,*) NA
WRITE (6,*) " Output files stored at 020 to 040 " 
READ (5,*) NOUT
WRITE (6,*) "Input location of matrix A "
READ (5,*) NIN
READ (NIN,99999) TITLE
WRITE (NOUT,99998) TITLE
NRA=1000
LWORK=16
IFAIL=0
M=200
N=3
TOL=5.0E-4 

DO 20 I = 1,M
READ (NIN,*) ( A(I,J), J=1,N )

C WRITE (6,*) ( A (I,J ) , J=1,N )
20 CONTINUE

DO 30 1=1,M
READ (NA,*) ( B(I) )

C WRITE (6,*) ( B (I ) )
30 CONTINUE

C WRITE (6,*) ( A{I,J ), J=1,N), 1=1,M )

DO 4 0 K = 1, M
DO 50 L = 1,N
C ( L, K) = A (K , L )

C WRITE (6,222) { A(K,L) )
50 CONTINUE
40 CONTINUE

C WRITE (6,222) (( C(K,L), L=1,M ), K=1,N )

222 FORMAT (3F7.3)
WRITE (NOUT,99 996)
WRITE (NOUT,99992) (( A(I,J), J=1,N ), 1=1,M )
WRITE (NOUT 99995)
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CALL F04JAF (M ,N ,A ,B,NRA,TOL,SIGMA,IRANK,IFAIL,WORK,LWORK 

WRITE (NOUT,99994)
WRITE (NOUT,99992) ( B(I), 1=1,N )
WRITE (NOUT,99993) SIGMA, IRANK 
STOP " END OF PROGRAM "

99999 FORMAT ( A35 )
99998 FORMAT ( 2X,/,IX,A35,// "RESULTS" )
99997 FORMAT ( 2F6.2 )
99996 FORMAT ( "MATRIX A" )
99995 FORMAT ( "VECTOR B" )
99994 FORMAT ( "SOLUTION VECTOR" )
99993 FORMAT ( "STANDARD ERROR = ", F10.4, "RANK = ",12 )
99992 FORMAT ( 1A,3F9.3 )

END

WRITE (NOUT,99992) ( B(I), 1=1,M )
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’’ c s ? E i ge n v a l ue s  and E i gen</ ec t : r s
:  -' j complex .L. e ' c . , t e i n  % i .

s, » • i r  ' I i n  • k
t  - r, c  w*1J  C- L  ;  IM ,

CJJTP'JT GF PROGRAM IS OBSERVED TRANSITION ENERGIES .

DOUBLE PRECISION ARC 1 2 , 1 2 )  ,AI  < 1 2 , 1 2 )  ,WR< 12) ,VR<12 , 12 )  , V I  < 1 2 ,1 2 ) ,  
WK K 1 2 )  ,WK2( I 2) PWK3(I2> ,A< 12 , 12 )  ,B< 1 2 , :  2) , 31^100)  ,DEL< 1 0 0 ) ,
W<1 2 ) , C< 3 0 0 0 ) , 0 < 3 0 0 0 ) , E ( 3 0 0 0 ) , F  < 3 0 0 0 ) ,ABS

REAL Y l l Y 2 , Y 3 #Y4

INTEGER I , N , J , I A R , 1VR, I A 1 , I V ! , I FA1L,NOUT , P , Q , L 

NOUT =20
OPEN <20 , F I L E = ' DAT A . ' , ST A TU S= ' NE U ' )

IAR=12
: a i = i 2
IVR=12
: v : = ! 2
N=12
D e f i n i n g  work space *or  the r o u t i n * .

A I = 7 .8 
81=22 . 6 
C I =5 2 .5 
AE=5.8  
B E - I I  . 3 
CE=45.3
A 1 ,81 , 4 Cl are parameter s  a c c u r a t e l y  known ■for the 
■free exc i ton in s i  1 i c o n .
s a r i i ne t e r s  -for BE are A E = 5 . 8 , B E = i l  . 3 , C E = 4 5 , 5 .
Parameters  -for ABC are A E = 4 . 0 , 8 E = 1 5 . 5 , C E = 3 5 . 5 .
S t r e s s  i s  p o s i t i v e  f o r  tens ion and n e g a t i v e  -for compress  i o n . 
M a t r i x  i s  s e t  up us ing  s t r e s s  pa r a me t e r s  -for the t r a n s i t i o n  
ene rgy ,  h e .  i i  the VB i s  pe r t u r bed  to h i gher  e l e c t r o n  energy  
s t r e s s  term i s  ne ga t i v e  for  t r a n s i t i o n  i s  n e g a t i v e l y  p e r t u r b e d .

ISX-l 
I SY=1 
: s z= i
I n t e r n a l  s t r e s s  d i r e c t i o n ,

eso =4<;
701=0.05 
; “A i w=0 
Yl=3.2 
Y2=J.o4 
Y3='3.7 
r J - 1 3 . 7 2
D E L ( i ) = 0 . 3
1   «L— 1
Y 1 , Y 2 , Y 3 , Y 4 a r ?  e n e r g i e s  f o u n d  i n  l u m i n e s c e n c e  s t u d i e s .
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The e i g e n v a l u e s  a r e  c h a n g e d  t o  r e l a t i v e  t r a n s i t i o n  er ne i  
and  compared to Y 1  The b e s t  - f i t  i s  t h e n  o b t a i n e d .

DC 10 P = 2 , 1000 
: e l  • -  < = D tL - :p -  *.
,** * t __ -I A «  ^ •
Z - .  1 -  u » J  V  I  »

r. * • «  * «■*
J — „  | i  J  <w J

=?;'a-i> + c.:cc.:

1 R e a '  c o m p o n e n t s  o-f m a t r - i ' : .

CALL MAT I < A I , N , SI  , I S X , I S Y , I S Z , Cl  , 3 )
C I m a g i n a r y  components o-f m a t r i x .

CALL F G 2 A X F ( A R , I A R , A I , I A I , N , W R , V R , I V R , V 1 , 1 V I , W K 1 , W K 2 , W K :  
C NAG 1 i ba r y  r o u t i n e  t o  d i a g o n a l i s e  a h e r m i t e a n  m a t r i x .

I F  ( I F A I L . E Q . O )  GO TO 30 
WRITE ( 5 , 9 9 9 96 )  I F A I L
STOP

C WRITE ( 5 , 9 9 )
C WRITE ( 5 , 9 9 9 9 4 )  (WR( I ) , 1  = 1 , N)
30 C( L ) = WR( 3 ) - WR(  1)

D ( L ) = W R ( 5 ) - U R ( 1 )
E( L ) = WR ( 6 ) - WR (  1)
F ( L ) =WR( 8 ) - WR< 1)
WRITE ( 5 , 9 9 9 9 4 )  C ( L ) , 0 < L ) , E ( L )  , F ( L )
WRITE ( 5 , 9 9 9 9 4 )  S I ( Q ) , DEL<P)

1 F ( A B S ( D ( L ) - Y 2 )  . GT . TOL)  GO TO 3 2  
1 F ( A B S ( E ( L ) - Y 3 >  . G T . T O L )  GO TO 3 2
I F ( A B S ( C ( L ) - Y 1 ) . G T . T O L )  GO TO 3 2  
I F ( A B S ( F ( L ) - Y 4 ) . G T . T O L )  GO TO 32

33  W R I T E ( 5 , 99994 )  C ( L ) , D < L ) , E ( L ) , F ( L )
C W R I T E ( 5 , 9 9 9 9 4 )  Y 1 , Y 2 , Y 3

U R I T E ( 5 , 99 994 )  S I ( Q ) , D E L ( P )

32 L=L +1
20 CONTINUE
10 CONTINUE

STCP

99 FORMAT ( '  E I GENVALUES ' )
?S FORMAT (' EIGENVECTORS’ )
999 FORMAT ( F 1 0 . 5 )
CC0 9 9 FORMAT ( A35)
? c : 5 o s c e m a ~ • 2 F 3 . 5 )
9 9 9 9 ? FORMAT ( 2 X , / 1 X , A 3 5 , / / ' R E S U L T S ' >
9 9 ? ?  5 FORMAT ( 'ERROR IN C02AXF I F A I L
9 ? ? ? 4 FORMAT ( F 10 . 5 ,  2X , F 10 . 5 ,  2X , F 10 . 5
? ? ? ? : -CFMAT ( 3 F 5 . 5 )
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REAL PART OF IN T E R N A L  STRESS M A T R IX  
M a t r i x  a l s o  h a *  J - J  c o u p l i n g  o i  m a g n i t u d e  DEL ( m e v )  
w h i c h  i s  d e - f i n e d  i n  t h e  s u b r o u t i n e .  ESO i s  t h e  s p i n  

; ng a n d  e q u a l s  4* T: e .

ajNL'a —n d x
XN0Y=NDY
XNDZ=NDZ
ON GM= SQ R -  ( XN DX « *  2 *  XT IDY <*2-)ClDZ**2 )
DX=XNDX/DNQM
DY=XNDY/DNGM
: : = x n :-z / dngk
3X X= S: ( Q) * DX< DX
SYY=S1( Q) * DY* DY
3 2 Z = 3 I ( 3 ) * D Z * D Z
S X Z = S I ( a ) * D X * 0 2
SXY=SI <Q) * DX* DY
S Y 2 = S I ( 0 ) *DY*DZ
S T H = ( 2 . 0 * S Z Z - S X X - S Y Y ) * B I / 2 .0
3EP=SGRT( 3 . 0 ) * ( S X X - S Y Y ) * 3 1 / 2 . 0
DO 40 1 = 1 ,N
DO 40 J = 1 , N
A< I , J ) = 0 .0
FORMAT <F 1 0 . 3 , 2 X , F 1 0 , 3 )

DEFINE MATRIX ELEMENTS

A ( 1 , l ) = - 3 . 0 * D E L ( P ) / 8 . 0 - S T H  
A< 2 , 1 ) = - C I * S X 2 / S Q R T ( 3 . 0 )
A ( 2 , 2 ) = - D E L ( P ) / 8 , 0 + S T H  
A< 3 , 1 ) = - SEP  
A ( 4 , 2 ) = - S E P
A < 5 , 2 ) = - D E L ( P ) * S Q R T < 3 . 0 ) / 4  
A< 3 , 3 ) = D E L ( P ) / 8 . 0  + STH 
A< 4 , 3 ) = C I * S X Y / S Q R T < 3 . 0 )
A< 4 , 4 ) = 3 . 0 * D E L ( P ) / 8 . 0 - S T H  
A ( 5 , 5 ) = 3 . G * D E L < P ) / 8 . 0 - S T H  
A ( * , 3 ) = - D E L ( P ) / 2 . 0  
A(  6 , 5 ) = - C I * S X Z / S Q R T ( 3 . 0 )
AC 6 , 12)  = - C : * S X Z / S Q R T ( 2 . 0 )
A ( 6 , 6 )  = D E L ( P ) / 8 . 0  + STH 
A ( 7 , 4 ) = - D E L ( P ) * S Q R T ( 3 . 0 ) / 4  
A ( 7 , 5 ) = - S E ?
A - : 7 , 7 ) = - D E L ( P ) / 8 . 0 t STH 
A ( 3 , i ) = - S E ?
A ( 8 , 7 ) = C ! * S X Z / S G R T ( 3 . 0 )
A ( 3 , 3 ) = - 3 . 3 * D E L ( P ) / 8 . 0 - STH  
A ( 8 , ! 2 ) = C : » S X Z / S Q R T ( 6 . 0 >
A(  S’ , 1 ) = C I « 3 X Z / 3 Q R T ( 6 . 0 )  
A C ? , 2 ) = - S T H * 3 G R T ( 2 . 0 )
AC 9 , 3:• = - CI ♦SXZ/SQRT( 2 , 0 '
AC 9 , 4 J=- SEP* cGR7( 2 . 0  
A C ® , 9 ) = - D E L C ? ) / 4 . 0  
AC 1C , 1 j  ,' = D=wC P ) / 4  .0 
A C1 1 , 1 1 )=DEL C r ) / 4 .0 
A(  1 2 , 1 2 ) = ~ D E L ( P ) / 4 ,0 
A ( 1 0 i 1 ) =SEP*SQRT( 2 . 0 )
A ( i 0 , 2 ) = - C I * S X Z / S Q R T ( 2 . 0 )
A(  10 , 3 ) = S T H * S 3 RT ( 2 . 0 )  Pagel49
A(  10 , 4 } =CI »SXZ/ SGRT( <4 . 0>



J=l«4
A ( i 2 ,  J ) =A ( 1 0  , i )
A ( 11 , J ) = A ( 9 , 1 ) 

sC CONTINUE
? £ - i= l . - 8
; , l ) = A ( i >-  e s c / 3 . 0  

CONTINUE
w'L- oJ

?:  A ( 1 ,1 >=A< I , i ) * 2 . C » c 3 C . ' 3 . C
30 32 : = : , n
00 81 J=1 ,N 
A ( 1 , J ) = A < J ,  1)

31 CONTINUE
82 CONTINUE

RETURN
END

SUBROUTINE MAT I < 8 , N , SI ,N D X ,N D Y,N D Z , CI ,Q )

C IMAGINARY PART OF hMTRJX

DOUBLE PRECISIO N 8 < 1 2 , 1 2 ) , S I < 5 0 )
INTEGER 0 
XNDX=NDX 
XNDY=NDY 
XNDZ=NDZ
DN0M=SQRT (X N D X **2 -*X N D Y **2 + X N D Z **2 )
OX=XNDX/DNCh
0Y=XNDY/DN0M
DZa XNDZ/DNGH
SXY=*SI<Q)*DX#OY
S Y Z= S I < Q) * DY* DZ

0 0  90 I - 1 , N  
DO 90 J « 1 , N  

90 8 < 1 , J ) * 0 . 0

C DEFINE W T R 1 X  ELEMENTS

8 < 2 , 1 ) = - C I * S Y Z / S Q R T ( 3 . 0 )  
B ( 3 , 1 ) = - C I * S X Y / S Q R T ( 3 . 0 >
8 < 4 , 2 ) = - C I * S X Y / S Q R T ( 3 . 0 )
8 ( 4 , 3 ) = C I » S Y Z / S Q R T ( 3 . 0 )  
B U , 5 ) = - C I * S Y Z / S Q R T ( 3 . 0 )
B< 7 , 5 )  = - C I * S X Y / S Q R T < 3 . 0 )  
8 ( 8 , 4 ) = - C I * S X Y / S Q R T < 3 . 0 )
9 ( 8 , 7 ) = C I * S Y Z / S Q R T ( 3 , 0 )
8 ( 8 , 1 1 ) = C I « S Y 2 * S Q R T ( 2 . 0 / 3 . 0 )  
8 ( 9 , 1 ) = C I * S Y Z / S Q R T ( 4 . 0 )
8 ( 9 , 3 ) = C I * S Y Z / S Q R T ( 2 . 0 )
B( 9 , 4 ) = C I  *SXY*SGRT ( 2 . 0 / 3  .O') 
B( 10 ,1 ) = C I  <SXY*SQRT( 2 . 0 / 3 .  O'1 
B ( 1 0 J2 ) = - C I * S Y Z / S Q R T ( 2 . 0 ^
B ( 1 0 , 4 ) = - C I * S Y 2 / S Q R T  < 6 . 0 )
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J =  1 ♦ 4
b< 11 ,j>=e(9,n
B <12,J) = 8<10,1)
continue
00 120 1=1,N
oo :;5 j=j,n 
g<: ,j)=e<j,;>

::z continue
::c continue

9̂* EnR^TfElf\?>
RETURN 
EN0
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