
Title: The estimation and compensation of processes with time delays 

Candidate: Aidan O ’ Dwyer, B.E., M.Eng., C. Eng, M.I.E.I.

Ph. D. thesis 

University Name: Dublin City University 

Supervisor: Dr. John Ringwood 

School: School of Electronic Engineering 

Month and Year of Submission: August 1996



I hereby certify that this material, which I now submit for assessment on the program 

of study leading to the award o f Ph.D. is entirely my own work and has not been taken 

from the work o f others save and to the extent that such work has been cited and 

acknowledged within the text o f my work.

Signed:

Date: J _  O c W o ^ p



Acknowledgements

I would like to express my gratitude to my supervisor, Dr. John Ringwood, for 

his encouragement and advice over the past four years. Thanks, John.

I would also like to thank my friends at the Dublin Institute o f Technology, 

Kevin St., for their interest in my work; in addition, I would like to gratefully 

acknowledge the partial financial support o f the European Social Fund Training for 

Trainers program, administered through the D.I.T.



Contents

Abstract 1

Chapter 1: Introduction 2

1.1 Background to research work 2

1.2 Thesis layout 4

1.3 Thesis contributions 4

Chapter 2: Approaches to model parameter and time delay estimation 6

2.1 Introduction 6

2.2 Time domain methods for parameter and time delay estimation 8

2.2.1 Off-line estimation methods 8

2.2.1.1 Methods using known process parameters 8

2.2.1.2 Experimental open loop methods 8

2.2.1.3 Experimental closed loop methods 10

2.2.1.4 Other methods 11

2.2.2 Methods based on multiple model estimation 11

2.2.3 On-line estimation methods 12

2.2.3.1 Methods that use rational approximations for the time delay 13

2.2.3.2 Overparameterisation of the process in the discrete time

domain 14

2.2.4 Gradient methods o f parameter and time delay estimation 17

2.2.4.1 Introduction 17

2.2.4.2 Gradient algorithms for estimation based on the Newton-

Raphson, Gauss-Newton and steepest descent methods 22

2.2.4.3 Other gradient algorithms for time delay estimation 23

2.2.5 Time delay estimation in the absence o f other process parameters 23

2.3 Frequency domain methods for parameter and time delay estimation 26

2.3.1 Frequency response estimation 26

2.3.2 Parameter and time delay estimation using higher order spectra 31

iv



2.3.2.1 Introduction 31

2.3.2.2 Parameter estimation techniques using higher order spectra 32

2.3.2.3 Conclusions 34

2.3.3 Model parameter estimation using frequency response data 3 5

2.4 Other methods of process parameter and/or time delay estimation 39

2.5 Conclusions 43

Chapter 3: Open loop time domain gradient methods o f parameter and

time delay estimation 45

3.1 Introduction 45

3.2 Rational polynomial approximation of the time delay variation 48

3.3 Convergence o f the non-delay model parameters 51

3.4 Convergence o f the model time delay 54

3.4.1 Convergence o f the model time delay - Case 1 55

3.4.2 Convergence o f the model time delay - Case 2 61

3.4.2.1 The time delay as an integer multiple of the sample period 61

3.4.2.2 The time delay as a real multiple of the sample period 67

3.4.2.3 Conclusions 71

3.4.3 Convergence o f the model time delay - Case 3 71

3.5 Convergence o f the full parameter set 77

3.5.1 Convergence o f the full parameter set - Case 1 78

3.5.2 Convergence o f the full parameter set - Case 2 87

3.5.2.1 The time delay as an integer multiple of the sample period -

white noise input 87

3.5.2.2 The time delay as a real multiple of the sample period - white

noise input 93

3.5.2.3 Conclusions 96

3.5.2.4 The time delay as an integer multiple of the sample period -

square wave input 97

3.5.2.5 The time delay as a real multiple of the sample period - square

wave input 102

3.5.2.6 Conclusions 103

v



3.6 Conclusions 104

Chapter 4: Frequency domain methods of model parameter and time delay

estimation 106

4.1 Introduction 106

4.2 Process frequency response measurement 107

4.2.1 Introduction 107

4.2.2 Process frequency response identification in open loop 108

4.2.3 Frequency updating 111

4.2.4 Process frequency response identification in closed loop 114

4.2.5 Use o f power spectral methods for identifying the process

frequency response 119

4.2.6 Conclusions 122

4.3 Model parameter estimation using frequency response data 123

4.3.1 Introduction 123

4.3.2 The estimation of the parameters of an arbitrary order model

(with time delay) 125

4.3.2.1 Estimation using an analytical approach 125

4.3.2.2 Estimation using a gradient approach 130

4.3.3 Case studies 136

4.3.3.1 FOLPD model parameter estimation 136

4.3.3.2 SOSPD model parameter estimation (with no zero) 143

4.3.3.3 Estimating the parameters of a third order model (with time

delay) and no zeroes 151

4.3.3.4 Estimating the parameters of a second order model (with time

delay) and one zero 157

4.3.5 Model structure selection 159

4.3.6 Recursive estimation o f the model parameters 170

4.3.7 Other issues 172

4.3.7.1 The choice o f the learning rate, (_i 172

4.3.7.2 Normalising used in the cost function 172

4.3.7.3 Other methods of calculating the initial model parameter

vi



values

4.3.7.4 The choice o f model parameter estimation method

4.3.8 Conclusions

172

173

174

Chapter 5: The compensation o f processes with time delay 176

5.1 Introduction 176

5.2 Parameter optimised controllers 177

5.2.1 The design o f PID parameter optimised controllers 177

5.2.1.1 Introduction to the PID controller 177

5.2.1.2 The specification o f the controller parameters 180

5.2.1.2.1 Iterative methods 181

5.2.1.2.2 Tuning rules 183

5.2.1.2.3 The minimisation o f a performance criterion 185

5.2.1.2.4 Direct synthesis 188

5.2.1.2.5 Robust controllers 189

5.2.2 The design of lead, lag or lead-lag parameter optimised controllers 192

5.2.3 Conclusions 192

5.3 Structurally optimised controllers 194

5.3.1 The Smith predictor and its variations 194

5.3.1.1 Introduction 194

5.3.1.2 The design of the Smith predictor in continuous time 198

5.3.1.3 Smith predictor modifications in the continuous time domain 200

5.3.1.4 The control o f unstable processes using time delay

compensators 200

5.3.1.5 The implementation o f the Smith predictor in discrete time 201

5.3.1.6 The analytical predictor algorithm 202

5.3.1.7 The use o f the Internal Model Control (IMC) strategy 203

5.3.1.8 Generalised Smith predictors for MIMO process models 204

5.3.2 Direct synthesis methods 205

5.3.2.1 Introduction 205

5.3.2.2 Continuous time domain 205

5.3.2.3 Discrete time domain 206

vii



5.3.2.4 Direct synthesis controller design methods for MIMO

process models 209

5.3.3 Optimal controller design methods 210

5.3.3.1 Introduction 210

5.3.3.2 Input-output design approach 210

5.3.3.3 State-space design approach 212

5.3.3.4 Other optimisation strategies for SISO process models 213

5.3.4 Predictive controllers 213

5.3.5 Other compensation strategies for processes with time delays 215

5.3.5.1 F eedforward control 215

5.3.5.2 Other strategies 216

5.3.6 Conclusions 217

Chapter 6: The compensation of processes with time delays by using an

appropriately modified Smith predictor 218

6.1 Introduction 218

6.2 The Smith predictor and its modifications 219

6.2.1 Introduction 219

6.2.2 Optimising the servo and regulator responses 221

6.2.3 The design of a realistic modified Smith predictor 223

6.2.4 The design of the time advance approximation 228

6.3 Simulation results 229

6.4 Sensitivity analysis 234

6.5 Conclusions 241

Chapter 7: Closed loop time domain gradient methods for parameter and

time delay estimation 243

7.1 Introduction 243

7.2 Algorithms based on a Gauss-Newton gradient approach 245

7.2.1 Theoretical development of the Gauss-Newton (1) algorithm 245

7.2.2 Theoretical development of the Gauss-Newton (2) algorithm 249

7.2.3 Theoretical development of the Gauss-Newton (3) algorithm 251

viii



7.2.4 Algorithm representations 253

7.3 Algorithms based on a Newton-Raphson gradient approach 261

7.3.1 Theoretical development o f the Newton-Raphson (1) algorithm 261

7.3.2 Theoretical development of the Newton-Raphson (2) algorithm 263

7.3.3 Theoretical development o f the Newton-Raphson (3) algorithm 265

7.3.4 Algorithm representations 266

7.4 Parametric estimation - simulation results 270

7.4.1 Time delay estimation 270

7.4.2 Estimation of the non-delay parameters 280

7.5 Parameter estimation in the modified Smith predictor 283

7.5.1 Introduction 283

7.5.2 Development of the gradient algorithms 283

7.5.3 Parameter estimation - simulation results 285

7.6 Analytical exploration of the algorithms used 287

7.6.1 Non-delay model parameter estimation 287

7.6.2 Model time delay index estimation - non-delay parameters known 288

7.6.3 Model time delay index estimation - non-delay parameters unknown 288

7.6.4 Model time delay index estimation for a general model 291

7.6.4.1 Process and model in SOSPD form 292

7.6.4.2 Process and model of arbitrary order 294

7.8 Conclusions 297

C h a p t e r  8: Conclusions 301

8.1 Gradient algorithms for parameter and time delay estimation 301

8.2 The use o f the Smith predictor structure for identification and control 304

8.3 Future direction o f the field 304

9. Glossary of essential terms and symbols used 306

10. References 313

ix



List of Figures

Chapter 2

2.1: Correlation analysis (Unbehauen and Rao (1987)) 27

2.2: Open loop implementation 27

2.3: Closed loop implementation 28

Chapter 3

3.1: MSE surface (Pade) 50

3.2: MSE surface (Product) 50

3.3: MSE vs. Model gain 53

3.4: MSE vs. Model time constant 53

3.5: Normalised MSE vs. time delay index - white noise input 59

3.6: Normalised MSE vs. time delay index - square wave input 59

3.7: Updating of the model time delay index - Case 1 59

3.8a: Time delay index estimate 60

3.8b: e2(n) corresponding to Figure 3.8a 61

3.8c: Time delay index estimate 60

3.8d: e2 (n) corresponding to Figure 3.8c 61

3.9: Normalised MPE vs. time delay index - white noise input 65

3.10: Normalised MPE vs. time delay index - square wave input 65

3.11: Updating of the model time delay index - Case 2 66

3.12a: Time delay index estimate - white noise excitation 66

3.12b: e3(n) corresponding to Figure 3.12a 67

3.13a: Time delay index estimate - square wave excitation 66

3.13b: e3(n) corresponding to Figure 3.13a 67

3.14: Normalised MPE vs. time delay index - white noise excitation - gb = 0.0 70

3.15: Normalised MPE vs. time delay index - white noise excitation - gb = 0.5 70

3.16: Normalised MPE vs. time delay index - square wave excitation - gb = 0.0 70

3.17: Normalised MPE vs. time delay index - square wave excitation - gb = 0.5 70

x



3.18: Normalised MPE vs. time delay index - white noise excitation - Ts = 0.1s 75

3.19: Normalised MPE vs. time delay index - white noise excitation - Ts = 0.02 s 75

3.20: Updating of the model time delay index - Case 3 76

3.21a: Time delay index estimate - white noise excitation 76

3.21b:e6(n) corresponding to Figure 3.21a 76

3.22: Normalised MPE vs. time delay index (conditions in equation (3.60) met) 82

3.23: Normalised MPE vs. time delay index (conditions in equation (3.60)

violated) 82

3.24: Updating the full parameter set - Case 1 83

3.25a: Gain estimate 84

3.25b: Time constant estimate 84

3,25c: Time delay index estimate 84

3.25d: e,(n) 84

3.26a: Gain estimate 84

3.26b: Time constant estimate 84

3.26c: Time delay index estimate 84

3.26d: e,(n) 84

3.27a: Time delay index estimate 85

3.27b: Time delay index estimate 85

3.28: Normalised MPE vs. time delay index - white noise excitation 91

3.29: Normalised MPE vs. time delay index - white noise excitation 91

3.30: Updating the full parameter set - Case 2 92

3.31a: Gain estimate 92

3.31 b : Time constant estimate 92

3.31c: Time delay index estimate 93

3.31 d: e,(n) 93

3.32: Normalised MPE vs. time delay index - white noise excitation - gb = 0.0 96

3.33: Normalised MPE vs. time delay index - white noise excitation - gb = 0.5 96

3.34: Normalised MPE vs. time delay index - square wave excitation 100

3.35: Normalised MPE vs. time delay index - square wave excitation 100

3.36a: Gain estimate 101

3.36b: Time constant estimate 101

3.36c: Time delay index estimate 101

xi



3.36d: e,(n) 101

3.37: Normalised MPE vs. time delay index - square wave excitation - gb = 0.0 103

3.38: Normalised MPE vs. time delay index - square wave excitation - gb = 0.5 103

Chapter 4

4.1: Open loop implementation 108

4.2: Magnitude estimate - open loop - forgetting factor = 0.95 113

4.3a: Phase estimate - open loop - forgetting factor = 0.95 113

4.3b: Beat frequency (expanded) 113

4.4: Magnitude estimate - open loop - forgetting factor = 0.8 114

4.5: Closed loop representation 114

4.6: Block diagram of the closed loop system implementation 118

4.7: Magnitude, phase and frequency convergence 119

4.8: Examination o f 32j/3Tm2 < 0 - K m = 5.03 142

4.9: K ra — (j, = 0.5 142

4.10: Tm — fj, = 0.5 142

4.11: Tm - n  = 0.5 142

4.12: Unit step response of the process and the FOLPD model 142

4.13: Polar plot o f the process and the FOLPD model 143

4.14 -4.18: d2j/d a lm2 < 0 for five pairs o f K m and xm values 149

4.19-4.23: d2j/S a2m2 < 0 for five pairs o f Km and xm values 149

4.24: Km -  (J, = 1.0 150

4.25: a lm — p, = 10.0 150

4.26: a2m -  |a. = 10.0 150

4.27: xm — n = 0.1 150

4.28: Unit step response o f the process and the SOSPD model 150

4.29: Polar plot of the process and the SOSPD model 151

4.30: Flowchart summarising the algorithm for model parameter estimation 161

4.31: Km- n  = 0.5 162

4.32: Tm —  j j . = 0.5 162

xii



4.33: T m - n  = 0.5 162

4.34: Unit step response o f the process and the FOLPD model 163

4.35: Polar plot o f the process and the FOLPD model 163

4.36: K m -  n = 0.1 164

4.37: a lm- ja  =  0.1 164

4.38: a Jm- |. i  = 0.1 164

4.39: Tm- n  = 0.01 164

4.40: Unit step response o f the process and the SOSPD model 164

4.41: Polar plot of the process and the SOSPD model 165

4.42: Km - jj, = 0.1 165

4.43: a lin -  |u. =  0.1 165

4.44: a2m -  n = 0.1 165

4.45: xm -  (.i = 0.01 165

4.46: Unit step response o f the process and the SOSPD model 166

4.47: Polar plot o f the process and the SOSPD model 166

4.48: Km -  n = 0.1 167

4.49: a lro -  j. l = 0.1 167

4.50: a 2m- (.1 = 0.1 167

4.51: xm-  }.i = 0.01 167

4.52: Unit step response o f the process and the SOSPD model 167

4.53: Polar plot o f the process and the SOSPD model 168

4.54: K* -  =  1.0 168

4.55: a lm -|a . = 10 168

4.56: a2m -p .  = 10 168

4.57: Tm- n  = 0.1 168

4.58: Unit step response of the process and the SOSPD model 169

4.59: Polar plot o f the process and the SOSPD model 169

4.60: Recursive estimation algorithm 170

4.61: Km- | i  = 0.5 171

4.62: Tm -  (.i = 0.5 171

4.63: Tm -  jj. = 0.5 171

xiii



Chapter 5

5.1: Block diagram of a SISO process controlled by an ideal PID controller 177

5.2: Smith predictor implementation 195

5.3: Alternative Smith predictor implementation 195

5.4: Block diagram for the IMC structure 203

Chapter 6

6.1: Block diagram of the Smith predictor structure 219

6.2: Block diagram of a generalised Smith predictor structure 220

6.3: Modified Smith predictor design considered 226

6.4-6.9: Servo and regulator responses - Simulation 1 230

6.10-6.15: Servo and regulator responses - Simulation 2 231

6.16-6.21: Servo and regulator responses - Simulation 3 232

6.22-6.27: Servo and regulator responses - Simulation 4 233

6.28: S^M ' / S f  when the parameters defined in equations (6.38) to (6.41)

are used 238

6.29: S f p /  SqSP when the parameters defined in equations (6.38) to (6.40)

are used; the exact value of the time advance is used 238
-pM SP /  T SP

6.30: S„ / S„ when the parameters defined in equations (6.38) to (6.41)

are used, with the disturbance present on the process output 240
^  MSP /  -T'SP

6.31: S„ / S ‘ when the parameters defined in equations (6.38) to (6.40)

are used, with the disturbance present on the process output; the exact value

of the time advance is used 240

Chapter 7

7.1: Block diagram of the Smith predictor 243

7.2: Graphical interpretation of the algorithm 245

7.3: Representation of the Gauss-Newton algorithms for time delay estimation 255 

7.4: Representation of the Gauss-Newton algorithms for model gain or

xiv



model time constant estimation 255

7.5: Representation of the sensitivity functions for the Gauss-Newton 

algorithms 256

7.6: Representation of the Gauss-Newton algorithms for simultaneous 

model parameter estimation 257

7.7: Representation of the Gauss-Newton algorithms for simultaneous 

model parameter estimation (of a general order model) 258

7.8: Representation of the sensitivity functions for the Gauss-Newton 

algorithms (general order model) 260

7.9: Representation of the Newton-Raphson algorithms for time delay 

estimation 268

7.10: Representation of the Newton-Raphson algorithms for model gain or 

model time constant estimation 268

7.11 : Representation of the sensitivity functions for the Newton-Raphson (1) 

algorithm 269

7.12-7.15: Time delay updating - Case 1 271

7.16-7.17: Time delay updating - Case 2 272

7.18-7.19: Time delay updating - Case 3 272

7.20-7.23: Time delay updating - Case 4 273

7.24-7.27: Time delay updating - Case 5 274

7.28-7.33: Time delay updating - Case 6 275

7.34: Phase plots of processes and their models (Case 6) 276

7.35-7.40: Time delay updating - Case 7 277

7.41 : Polar plots of processes and their models (Case 7) 278

7.42-7.47: Time delay updating - Case 8 278

7.48: Phase plots of processes and their models (Case 8) 279

7.49-7.52: Gain updating 281

7.53-7.54: Time constant updating 282

7.55-7.58: Time delay updating - modified Smith predictor 285

7.59-7.60: Gain updating - modified Smith predictor 286

7.61-7.62: Time constant updating - modified Smith predictor 286

XV



Title: The estimation and compensation of processes with time delays

Author: Aidan O ’ Dwyer

ABSTRACT

The estimation and compensation of processes with time delays have been o f interest 
to academics and practitioners for several decades. A full review of the literature for 
both model parameter and time delay estimation is presented. Gradient methods of 
parameter estimation, in open loop, in the time and frequency domains are 
subsequently considered in detail. Firstly, an algorithm is developed, using an 
appropriate gradient algorithm, for the estimation of all the parameters of an 
appropriate process model with time delay, in open loop, in the time domain. The 
convergence o f the model parameters to the process parameters is considered 
analytically and in simulation. The estimation of the process parameters in the 
frequency domain is also addressed, with analytical procedures being defined to 
provide initial estimates o f the model parameters, and a gradient algorithm being used 
to refine these estimates to attain the global minimum of the cost function that is 
optimised. The focus of the thesis is subsequently broadened with the consideration of 
compensation methods for processes with time delays. These methods are reviewed in 
a comprehensive manner, and the design of a modified Smith predictor, which 
facilitates a better regulator response than does the Smith predictor, is considered in 
detail. Gradient algorithms are subsequently developed for the estimation o f process 
parameters (including time delay) in closed loop, in the Smith predictor and modified 
Smith predictor structures, in the time domain; the convergence of the model 
parameters to the process parameters is considered analytically and in simulation. The 
thesis concludes with an overview of the methods developed, and projections regarding 
future developments in the topics under consideration.
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CHAPTER 1

Introduction

1.1 Background to research work

The aim o f the research is to review identification and compensation methods 

for processes with time delays, and to develop appropriate identification and 

compensation strategies. A time delay may be defined as the time interval between the 

start of an event at one point in a system and its resulting action at another point in the 

system. Time delays are also known as transport lags, dead times or time lags; they 

arise in physical, chemical, biological and economic systems, as well as in the process 

of measurement and computation. Specific examples of systems with time delay are 

defined by Latour et al. (1967), Sandoz (1987), Papageorgiou and Messner (1989), 

Gendron et al. (1993), Menhaj and Hagan (1994) and Igarashi et al. (1994), amongst 

others. The estimation of time delays also arises in signal processing applications, 

where a time delay is also known as a time difference of arrival (TDOA) between two 

signals; such a measurement arises in underwater tracking applications, biomedicine, 

geophysics, astronomy, acoustics, seismology and telecommunications (Silva (1987), 

Salt et al. (1993), Shen et al. (1993), Sheridan (1993), Laguna et al. (1994) and 

Webster (1994)). Generally speaking, in the signal processing applications, it is the 

estimation o f ‘pure’ time delay that is required, rather than the estimation of time 

delays in the presence o f other process parameters.

Process parameter and time delay estimation techniques may be broadly 

divided into off-line techniques and on-line techniques, with on-line estimation 

requiring recursive estimation in a closed loop environment. On-line estimation is 

often called adaptive parameter estimation or sequential parameter estimation (Ljung 

(1987)) or identification by means of computers in on-line operation with the process 

(Isermann (1991), Isermann et al. (1992)). The choice o f identification method for 

parameter estimation depends on the purpose o f the identification, which determines 

the model needed and the accuracy required; a trade-off exists between required 

accuracy and computational effort when choosing the identification method. The
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choice of identification method also depends on whether the process may be 

interrupted from its normal operation, or if  identification must take place during 

normal closed loop operation.

Apparent time delays may result when high order processes are approximated 

by means of lower order transfer functions (Seborg et al. (1989)). The time delay 

estimated in these applications may be a combination of a ‘pure’ time delay and 

contributions due to high order dynamic terms in the process transfer function. Bentley

(1989) gives a pneumatic transmission line as an example of such a system and models 

it as a first order lag plus time delay (FOLPD) model. As mentioned, the purpose of the 

identification determines the model required. Newell and Lee (1989) state that there is 

much debate (in process control circles) over how complex a model may reasonably be 

identified from experimental data; they suggest that this depends on the data quality 

available (i.e. if  the data is corrupted by noise) and the analysis technique used. The 

authors suggest that a cautious approach is to identify a FOLPD model from the 

experimental data and that an optimistic approach is to identify a second order system 

plus time delay (SOSPD) model from the data. Other authors that consider appropriate 

modelling methods for real processes include Latour et al. (1967), Pollard (1971), 

Edgar et al. (1981), Smith and Corripio (1985), Morari and Zafiriou (1989), 

Papageorgiou and Messner (1989), Seborg et al. (1989), Hang and Chin (1991), De 

Carvalho (1993), Gendron et al. (1993), Hang et a l (1994b), Kotob et al. (1994), 

Readle and Henry (1994), Schei (1994), Smirthwaite et al. (1994) and Yang (1994); 

these authors work is examined in more detail by O ’Dwyer (1996a). A conclusion from 

this work is that even if the process has no physical time delay, it may be possible to 

model such a (possibly high order) process by a low order model plus time delay; it 

also appears reasonable that either a FOLPD model (for overdamped processes) or a 

SOSPD model (for overdamped or underdamped processes) should be estimated, as 

either of these approximate process models appears to be sufficiently accurate for 

many applications. However, if  a priori information on the process is available (such 

as the process order), the estimation of the full order model plus time delay may be 

indicated; in any case, the work in the thesis will concentrate on the identification of 

processes that are adequately modelled by a linear model with time delay.
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1.2 Thesis layout

The thesis will deal with the identification of process model parameters, and 

time delay, in both open loop and closed loop environments, together with the 

compensation o f such systems. Chapter 2 classifies and outlines the approaches to 

model parameter and time delay estimation that have appeared in the literature; both 

off-line and on-line estimation techniques are treated. Chapter 3 develops one such 

estimation technique, involving the use of a gradient method, to estimate the 

parameters in open loop, in the time domain. Chapter 4 discusses frequency domain 

methods of parameter and time delay estimation; one such method uses a gradient 

approach to estimate the parameters. The focus is broadened in Chapter 5, in which 

compensation methods for processes with time delays are discussed in detail; one such 

compensation method, that involves the design of a modified Smith predictor, is 

treated in Chapter 6. Time domain methods that facilitate the estimation of the 

parameters in closed loop (in a Smith predictor structure) using appropriate gradient 

techniques are described in Chapter 7. In each of these chapters, conclusions as to the 

efficacy of the techniques discussed are reached, and further work is suggested. The 

conclusions o f the work are outlined in Chapter 8, followed by a glossary of essential 

terms used in the thesis and a list of references. Thirteen technical reports, written by 

the author, are referenced throughout the thesis; these reports provide supplementary 

details on the topics discussed.

1.3 Thesis contributions

Original work contained in this thesis includes the following topics:

(1) The comprehensive review of methods defined in the literature for model parameter 

and time delay estimation (Chapter 2).

(2) The formulation o f the cost function (which is a function of the error between the 

process and the model in the time domain) with respect to the time delay variation 

between the process and the model, when a variety o f polynomials are used as 

approximations for the time delay variation. This work is detailed in Chapter 3.

(3) The development o f seven theorems that are concerned with the minimisation of 

the cost function, when the parameters of a first order discrete stable process with time
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delay are being estimated, in open loop, in the time domain. The theorems involve the 

calculation o f the cost function and, in most cases, the proving that the cost function is 

unimodal with respect to the process time delay (as the model time delay varies), under 

defined operating conditions, using the principle of induction. These theorems are 

proved in Chapter 3.

(4) The development o f algorithms for process frequency response measurement, in 

both open loop and closed loop, that use the ratio of the Fourier transforms of the 

output and input to the process and use a power spectral density approach. This work is 

detailed in Chapter 4.

(5) The development o f analytical and iterative techniques to estimate the parameters 

of an arbitrary order model plus time delay from the process frequency response 

(Chapter 4). A model order estimation technique is also developed.

(6) The full review o f methods defined in the literature for the compensation of 

processes with time delays (Chapter 5).

(7) The development o f a modified Smith predictor, that improves the regulator 

response (when compared to the Smith predictor), while ensuring approximately the 

same servo response. This work is reported in Chapter 6.

(8) The development o f five alternative gradient algorithms to the algorithm defined by 

Marshall (1979) and Bahill (1983), for the updating of the model parameters and time 

delay, in closed loop, in the time domain (Chapter 7); two of the algorithms are based 

on a Gauss-Newton gradient implementation and three of the algorithms are based on a 

Newton-Raphson gradient implementation. Three theorems are developed that show 

that the cost function is unimodal with respect to the process time delay as the model 

time delay varies, when the parameters o f a number o f process models are to be 

estimated.
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CHAPTER 2

Approaches to model parameter and time delay 

estimation

2.1 Introduction

A time delay has been defined in Chapter 1 as the time interval between the 

start of an event at one point in a system and its resulting action at another point in the 

system. This chapter of the thesis will discuss time delay estimation methods (together 

with model parameter estimation methods, where appropriate) that have been proposed 

in the published literature; these methods may be broadly classified into time domain 

and frequency domain techniques.

Time domain estimation methods will be treated first. A number of off-line 

estimation techniques are outlined, for single input, single output (SISO) and multi­

input, multi-output (MIMO) model structures, in open loop and in closed loop. A full 

discussion o f multiple model estimation techniques will then be carried out; these 

methods typically involve estimating a number of models, each with a different value 

of the time delay, and subsequently determining the most appropriate model. However, 

these methods tend to be computationally intensive. A number o f on-line estimation 

techniques will subsequently be treated, followed by a discussion of gradient methods 

of parameter and time delay estimation; the latter methods may be implemented in 

either open loop or closed loop, and in either an off-line or on-line manner. The 

estimation of time delays in the absence of other process parameters is also reviewed; 

such techniques are normally associated with signal processing applications.

Frequency domain estimation techniques may be classified in a similar manner 

to time domain estimation methods. The use of the frequency domain, as a means of 

estimating the parameters and time delay of a process model, has a certain intuitive 

appeal, since the time delay contributes to the phase term but not the gain term of the 

frequency response. A complete discussion of frequency domain estimation methods 

(which include higher order spectral algorithms) is provided.
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Other possibilities for estimation are subsequently debated such as the use o f 

neural networks, the use o f process order identification methods and the 

implementation o f the estimation strategies in the delta domain.

In each of the sections o f the chapter, comparisons between the methods 

reviewed and conclusions as to the applicability o f various classes o f methods will be 

drawn, as appropriate. General conclusions from the literature review will be drawn 

and approaches to time delay estimation where original work may be usefully done will 

be outlined. The discussion in this chapter is further detailed by O ’Dwyer (1996a).
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2.2 Time domain methods for parameter and time delay 

estimation

2.2.1 Off-line estimation methods

The off-line estimation techniques may be broadly divided as follows:

(a) Methods using known process parameters

(b) Experimental open loop methods

(c) Experimental closed loop methods

(d) Other methods.

2.2.1.1 Methods using known process parameters

Estimation methods that use known process parameters are based on 

calculating an estimate of the parameters of a low order model plus time delay from the 

known parameters of a high order process. The methods are largely "rule of thumb" 

based methods that are unsuitable for the estimation o f time delays o f unknown 

processes. The methods, considered in detail by O’Dwyer (1992) previously, will not 

be reconsidered in this chapter.

2.2.1.2 Experimental open loop methods

These methods are based on estimating the parameters (including the time 

delay) from appropriate data gathered during tests while the process is in open loop. 

Typically, the input to the process is in step or pulse form. One of the first such 

methods was described by Ziegler and Nichols (1942), in which the time constant and 

time delay o f a FOLPD process model are obtained by constructing a tangent to the 

step response at its point o f inflection. The intersection of the tangent with the time 

axis at the step origin provides an estimate o f the time delay; the time constant is 

estimated by calculating the intersection o f the tangent with the value of the steady 

state output divided by the model gain. Other such tangent and point methods for 

estimating the parameters of a FOLPD model are described by Cheng and Hung (1985) 

and De Carvalho (1993), among others. The method may also be used to determine the



parameters o f a SOSPD model; Smith (1957), Perlmutter (1965), Meyer et al. (1967), 

Csaki and Kis (1969), Sundaresan et al. (1978) and Huang and Clements (1982) 

describe such approaches. The major disadvantage of all these methods is the difficulty 

of determining the point of inflection in practice.

Some methods that eliminate this disadvantage use two points on the process 

step response, to estimate the FOLPD model parameters, such as those described by 

Sunderesan and Krishnaswamy (1978) and Cheng and Hung (1985), or use two, three 

or more points on the process step response, to estimate the parameters of a SOSPD 

model, such as those described by Huang and Clements (1982), Huang and Huang

(1993), Huang and Chou (1994) and Rangaiah and Krishnaswamy (1994a), (1996). An 

alternative experimental method involves calculating the parameters of an appropriate 

model from the area under the step response output curve (Nishikawa et al. (1984), 

Arzen (1987)).

Experimental open loop tests are a straightforward method of calculating the 

model parameters; however, the parameters of a FOLPD model approximation, 

determined by using actual step response data, may vary considerably depending on the 

operating conditions of the process, the size of the input step change and the direction 

of the change, with these variations being usually attributed to process nonlinearities 

(Seborg et al. (1989)). Harris and Mellichamp (1980) declare that a major drawback of 

an approach that involves the introduction o f a step change is that the process must be 

sufficiently disturbed by the change to obtain reasonably accurate dynamic 

information; such a disturbance may well force the process outside the region of 

(approximately) linear behaviour. Arzen (1987) points out that methods to determine 

the dynamics of a process by examining its response to a deterministic signal such as a 

step or pulse input are conditioned on no drastic disturbances influencing the process. 

The time scale o f the process must also be known in advance in order to determine 

when the transient response has been completed. Morari (1988) makes the important 

point that the method of judging model quality by comparing the process step response 

to the model step response is not necessarily the best means of optimising the model 

quality from the point o f view of control system design; the author shows that three 

processes that have practically identical open loop responses may behave very 

differently under feedback.
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2.2.1.3 Experimental closed loop methods

These methods are based on estimating the parameters (including the time 

delay) o f a model from appropriate data gathered during the closed loop operation of 

the controlled process. The data is generally obtained from the closed loop step 

response; the methods typically involve the analytical calculation of the parameters of 

an appropriate process model from output measurements (such as the steady state 

value of the response and the first and second peak response values), of a unity 

feedback closed loop system under proportional control. Typically, the time delay is 

approximated in an appropriate manner (Yuwana and Seborg (1982), Jutan and 

Rodriguez (1984), Lee (1989), Jutan (1989), Bogere and Ozgen (1989)), though this is 

not absolutely necessary (Sung et al. (1994)). Chen (1989) and Lee et al. (1990) 

calculate the ultimate gain and frequency of a unity feedback closed loop system under 

proportional control, from the step response, and use these measurements to calculate 

the parameters o f an appropriate open loop model. Hwang (1993), Hwang and Tseng

(1994) and Hwang and Shiu (1994) use a combination of the methods based on step 

response measurements, and measurements o f the ultimate gain and frequency, to 

determine the best process model; the latter two papers also outline similar 

identification strategies in closed loop when a PI or PID controller is used. Hwang

(1995) brings together this work by outlining methods for the identification of a 

SOSPD process model in closed loop, by using the P, PI or PID controllers, and 

applying either a step, pulse or impulse test input signal in setpoint. In a more recent 

application, Kavdia and Chidambaram (1996) use the method o f Yuwana and Seborg 

(1982) to calculate the parameters of a FOLPD model for an unstable process.

Refinements to the published algorithms are possible, as detailed by O’Dwyer 

(1996a); however, as mentioned in this report, the robustness o f many of the estimation 

methods to noise on the process response is questionable. One method for which this 

comment does not apply is the characteristic areas method o f Nishikawa et al. (1984), 

in which the area under the step response output curve is used to calculate the model 

parameters.
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2.2.1.4 Other methods

Other off-line estimation methods do not naturally fall into any of the 

categories described earlier. Examples o f methods that may be used to estimate the 

parameters and time delay o f a linear SISO model include the following:

(a) Approximating the time delay by a Laguerre polynomial and using the standard 

(off-line) least squares estimation method to identify the parameters o f the resulting 

model (De Souza et al. (1987), (1988), Salgado et al. (1988)) and

(b) Defining a state space model for the process and implementing a maximum 

likelihood estimate for the process parameters and the time delay based on this 

parameterisation (Nagy and Ljung (1991)).

Representative methods that have been used to determine the parameters and 

time delay of a linear MIMO model are

(a) The extension o f a method to estimate the model order, defined for SISO systems, 

which is based on inspecting the near singularity of the information matrix, to also 

estimate time delays, if  the ranges of the time delays are known (Mancher and Hensel

(1985)) and

(b) The resolving o f output signals of MIMO processes into a set o f independent output 

signals for SISO processes by using persistently exciting Walsh function input signals; 

the Walsh functions may then be used to estimate the parameters and the time delay of 

each of the SISO processes (Bohn (1985)).

2.2.2 Methods based on multiple model estimation

These methods are based on the estimation o f a number o f different process 

models, for different values of the time delay. The model parameters chosen are those 

that minimise a cost function that depends on the difference between the process and 

the model outputs. One o f the best examples o f the approach is given by Baur and 

Isermann (1978), who use recursive correlation analysis with least squares parameter 

estimation to detect m max(dmax — d min) separate models, where mmax = the maximum 

model order and the time delay index (which is the integer value of the time delay 

divided by the sample time) lies between d min and d max. A loss function V(m,d), based 

on the residuals, is minimised as model order is varied; the optimum estimates of
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model order, m, and time delay index, d, are determined if V(m +l,d) and V(m,d+1) do 

not decrease significantly in relation to V(m,d). Other authors that also estimate the 

model order, parameters and time delay index using a multiple model method include 

Gabay and Merhav (1976), Bokor and Keviczky (1984), Peterka (1989), Hemerly 

(1991), Musto and Lauderbaugh (1991), Warwick and Kang (1993) and Tuch et al. 

(1994). Some authors concentrate on estimating the time delay and process parameters 

only; the time delay is estimated by minimising the loss function as the time delay 

index is varied, with the process parameters estimated using other methods. Among the 

authors that discuss such techniques are Hsia (1969), Rao and Sivakumar (1979), Rao 

and Palaniswamy (1983), Hansen (1983), Pearson and Wuu (1984), Wuu and Pearson

(1984), Cheng and Hung (1985), Abrishamakar and Bekey (1985), (1986), Batur

(1986), Agarwal and Canudas (1987), Jiang (1987), Juricic (1987), Kim et al. (1987), 

Unbehauen and Rao (1987), Peter and Isermann (1988), Casted (1989), Co and Ydstie

(1990), Zheng and Feng (1990), Ferretti et al. (1991), Schei (1992), Lublinsky and 

Fradkov (1993), Chen and Loparo (1993), Leva et al. (1994), Readle and Henry 

(1994), Ferretti et al. (1995) and Wang and Clements (1995).

The multiple model estimation technique may also be used to estimate the 

parameters o f multiple-input, single output (MISO) or MIMO process models with 

time delays. Authors that estimate the model order, parameters and time delay indices 

using such methods for these applications include Blessing et al. (1978), Bokor and 

Keviczky (1984), Mancher and Hensel (1985), Xu (1989) and Haest et al. (1990).

The attraction o f multiple model estimation methods is that the grid searching 

used will facilitate the estimation of the parameters corresponding to a global 

minimum of a cost function, even in the presence of local minima, provided enough 

models are estimated. The method is relatively crude compared to the use of gradient 

search methods (discussed in Section 2.2.4), and it is also more computationally 

intensive; however, the latter methods do not guarantee the estimation of the 

parameters corresponding to the global minimum, in the presence of local minima.

2.2.3 On-line estimation methods

On-line time delay estimation requires recursive estimation o f the time delay in 

a closed loop environment. The techniques may be classified as follows:
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(a) Methods that use rational approximations for the time delay, followed by 

recursive identification of the model parameters and

(b) Methods that involve overparameterisation of the process in the discrete lime 

domain.

2.2.3.1 Methods that use rational approximations for the time delay

The following rational approximations may be used for the time delay:

(a) The Taylor’s series expansion

(b) The Pade approximation

(c) The Laguerre approximation

(d) The Product approximation (or Paynter delay line)

(e) The direct frequency response approximation technique

(f) The Bessel approximation

(g) A transfer function approximation (from Marshall (1979)) and

(h) Numerical optimisation (e.g. the equiripple formula); this is defined by Piche

(1990).

These approximations have been detailed by O ’Dwyer (1996a); for example, the first 

order Taylor’s series approximation for the time delay, e“ST, is 1 -  s t  .

Seborg et al. (1989) declare that when the time delay is less than one tenth of 

the time constant (in a FOLPD process model structure), then a first order Pade 

approximation for the time delay is accurate to within engineering accuracy, 

considering that most processes behave like low pass filters; correspondingly, the 

second order Pade approximation is accurate to within engineering accuracy when the 

time delay is less than one fifth of the (repeated) time constant of a more general 

process model structure.

When the time delay is approximated by a rational polynomial, the resulting

model parameters are normally estimated in a discrete time environment using an

algorithm based, for instance, on recursive least squares (RLS); the time delay may 

then be deduced from the model parameters identified. Such an approach is outlined by 

Roy et al. (1990), (1991a), (1991b), (1991c), (1993a), (1993b), Boje and Eitelberg

(1991), Bai and Chyung (1993), Fernandes and Ferriers (1994) and Yasterbov and 

Grzywaczewski (1994). However, the method defined by Roy et al. (1990), (1991a),
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(1991b), (1991c), in which the time delay is modelled by a zero in the continuous time 

domain, with the parameters o f the model being identified using the RLS algorithm in 

the discrete time domain, did not work for simulations taken by Kelly (1991) or 

O'Dwyer (1992) i.e. it was not possible to estimate the time delay from the resulting 

process parameters identified.

2.2.3.2 Overparameterisation of the process in the discrete time domain

The method o f overparameterisation involves subsuming the time delay term 

into an extended (or overparameterised) z domain numerator polynomial. The 

corresponding parameters are estimated using a recursive estimation scheme, and the 

time delay is calculated based on the parameters identified; for a noise free system, all 

numerator parameters whose indices are smaller than the time delay index should be 

identified as zero. Only values of the time delay that are integer multiples o f the sample 

period are directly estimated by the method. The part of the time delay that is a fraction 

o f the sample period may be calculated from the numerator parameters identified, for 

processes that can be modelled by a FOLPD model (O'Dwyer (1992), (1993)) and for 

processes that may be modelled by a SOSPD model (Thomson et al. (1989)); however, 

the robustness o f these methods of estimation in the presence of noise is questionable.

Many overparameterisation methods have been defined to calculate the 

numerator (and denominator) parameters, and subsequently the time delay, for 

processes that may be modelled in SISO form or MIMO form. Kurz (1979) and Kurz 

and Goedecke (1981), for example, define a robust method for estimating the SISO 

model parameters that is equivalent to determining the best match between the impulse 

response o f the overparameterised model and the impulse response of a non- 

overparameterised model with a pure time delay; the method suffers from the 

disadvantage o f having a heavy computational load. Other methods offer various trade­

offs between robustness and computational load, such as those described by Biswas 

and Singh (1978), Astrom and Zhou (1981), Friedlander (1982), Wong and Bayoumi

(1982), Habermayer and Keviczky (1985), Habermayer (1986), Batur (1986), De 

Keyser (1986), Koivo et al. (1988), Hu et al. (1988), Keviczky and Banyasz (1988), 

Najim et al. (1988), Xu (1988), Teng and Sirisena (1988), Landau (1990), Teng

(1990), Guez and Pioviso (1991), Lundh and Astrom (1994) and Readle and Henry

(1994). Other authors describe a recursive method to estimate the parameters, order
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and time delay index for both a stochastic system and a deterministic system, using an 

overparameterised method to estimate the time delay (Chen and Zhang (1990) and 

Zhang and Chen (1990)). In an interesting paper, Keviczky and Banyasz (1992) 

identify the time delay index using overparameterisation in the delta domain (see 

Section 2.4).

Other authors identify MIMO process models (with time delays) using the 

method o f overparameterisation; Gurubasavaraj and Brogan (1983), for instance, 

extend the method of Kurz and Goedecke (1981) to estimate the time delay for each 

input-output pair o f a MIMO process. Simulation results presented by the authors show 

that the time delays may be estimated in 20 sample periods, for a 2x2 MIMO process 

with a maximum time delay index of 4; the process order is however assumed known a 

priori. Other authors that use overparameterisation for this application include Song 

and Xu (1985) and Zhang and Chen (1990).

The attractiveness o f the method o f overparameterisation as a means of 

estimating model parameters and time delay is that it is a natural extension of methods 

used in delay-free identification applications. However, the method has many 

disadvantages.

(1) The computational burden o f the RLS algorithm increases with the square of the 

number of estimated parameters (De Keyser (1986), Glentis and Kalouptsidis (1992), 

Ferretti etal. (1995)).

(2) The persistent excitation condition (a condition for parameter convergence) is more 

difficult to satisfy for overparameterised models (Kim et al. (1987), Dumont et al. 

(1993)).

(3) The adaptive capability of the corresponding controller is degraded, as it takes a 

long time for the parameters to be retuned if  a change in the process dynamics occurs 

(Kim et al. (1987)). However, it is possible by introducing a perturbation signal into 

the regressor vector, when the parameters o f the model with delay are being estimated, 

to achieve a similar convergence rate for the parameters of an overparameterised model 

as for the parameters o f a non-overparameterised model (Xia et al. (1987), Xia and 

Moore (1989)).

(4) The presence o f a high order numerator polynomial increases the likelihood of 

common factors in the numerator and denominator polynomials in the estimation 

model, rendering identification more difficult (Dumont et al. (1993)).

(5) The overparameterisation method is not robust if  a load disturbance is present, or if



measurement noise is significant (Lee and Hang (1985)). However, Xia et al. (1987) 

and Xia and Moore (1989) state that injecting an excitation signal into the regressor 

vector (for RLS estimation (1987) or recursive extended least squares (RELS) 

estimation (1989)) allows the parameters of a model o f one order of 

overparameterisation (1987) or arbitrary degree o f overparameterisation (1989) to have 

the same guaranteed convergence as the parameters of a non-overparameterised model 

(i.e. ill-conditioning is avoided for the overparameterised model) for both models with 

white noise excitation (1987) and coloured noise excitation (1989).

From this discussion, the biggest disadvantage of the overparameterisation 

method for the identification of a process with time varying delay in closed loop, 

perturbed by a pseudo-random binary signal (PRBS), is the extra computational burden 

associated with identifying a greater number of numerator parameters. In an attempt to 

reduce the computational burden associated with the overparameterisation method, the 

following ideas may be worth considering:

(a) If the time constants o f the process do not change significantly, then the 

denominator parameters need not be estimated on-line; as well as reducing the 

computational burden in the estimation stage, other advantages of this scheme are that 

excessive fluctuation of the denominator parameters is avoided and the denominator 

parameter estimates cannot drift into or near an undesirable region. This suggestion 

was made by Vogel and Edgar (1982). A further suggestion made by Seborg et al.

(1986) is that selective updating of certain model parameters be employed when the 

number o f parameters o f the process to be estimated is large; such selective updating 

could be achieved by only updating those parameters that give a significant 

improvement in the residual of the model fit.

(b) The sampling interval could be adapted to reduce the number of parameters to be 

estimated. To this end, Seborg et al. (1986) suggest that the sampling period be chosen 

so that the time delay index has a value of two or three; such slow sampling, the 

authors suggest, has the additional advantage of increasing the robustness of the 

corresponding adaptive controller. This advice may be relevant only for small values of 

the time delay as otherwise it may conflict with the most often quoted rule of thumb 

that the sampling period should be between one fifth and one fifteenth o f the 95% rise 

time o f the process step response (Iscrmann (1989)).

The methods of time delay estimation using the overparameterised model that 

appear most robust are those of Kurz (1979) and Teng and Sirisena (1988). For a
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practical application, the method of Teng and Sirisena (1988) seems to be most 

promising, because of its relative computational simplicity. The method of 

overparameterisation as a means of estimating time delays may be extended in 

application from SISO processes to MISO processes and MIMO processes. 

Surprisingly, the methods that have been well documented for the estimation o f the 

process time delay in the SISO environment have not been widely applied to the 

identification o f time delays in MIMO processes in the available literature (one of the 

few exceptions is the method outlined by Gurubasavaraj and Brogan (1983)). This 

topic is discussed more fully by O ’Dwyer (19961).

2.2.4 Gradient methods of parameter and time delay estimation

2.2.4.1 Introduction

Gradient methods of parameter estimation are based on updating the parameter 

vector (which includes the time delay) by a vector that depends on information about 

the cost function to be minimised. The gradient algorithms considered normally 

involve expanding the cost function as a second order Taylor's expansion around the 

estimated parameter vector. The cost function is given by

J (n) = 0 .5 ^  e2 (n -  j) (2.1)
j=0

with J(n) = cost function and e = error = process output minus model output. A second 

order Taylor’s series expansion o f the cost function may be determined from equation 

(2 .1 )to be

J(n +1) = J(n) + -  e '(n)) + O.5(0(n) -  9 » ) -  0 » )
59 (n) 39 (n) v ’

(2 .2)

with 0(n) € 9 T , 9(n) = parameter vector and 9*(n) = optimum parameter vector. An 

estimate o f the parameter vector is determined by minimising J(n + 1) with respect to

17



the parameter vector. A simplified updating strategy based on this minimisation is

0(n + 1) = 0(n) + puj)(n) (2.3)

with <Kn) = -
~32J(n)

-i
_3J(n)"

_302(n) _30(n)
(2.4)

and with (j)(n) e 9?" and |j. = learning rate; the default value o f ji = 1.0. The partial 

derivative o f the cost function with respect to the parameter vector may be determined 

recursively (from equation (2.1)) to be

3J(n + l) 3J(n) 3e(n + l)
+ e(n + 1)-

30(n) 30(n) 30 (n)
(2.5)

with the starting value o f the partial derivative o f the cost function with respect to the 

parameter vector assumed zero. The calculation of the second partial derivative of the 

cost function with respect to the parameter vector determines the nature of the 

optimisation algorithm. Ljung (1987) divides these optimisation algorithms into three 

classes:

(1) The updating vector is a function of the cost function, the partial derivative of the 

cost function with respect to the parameter vector and the second partial derivative of 

the cost function with respect to the parameter vector. The Newton-Raphson algorithm 

is an example; under these circumstances, the second partial derivative of the cost 

function with respect to the parameter vector (labelled the Hessian matrix), calculated 

using equation (2.5), is given by

32J(n  + 1) _  32J(n) 
302(n) ~ 302(n)

+ e(n +1)
32e(n + l) 3e(n + l)

+ -
30 (n) 30(n)

3e(n +1) 
30 (n)

(2 .6)

(2) The updating vector is a function of the cost function and the partial derivative of 

the cost function with respect to the parameter vector; in this case, an estimate of the 

second partial derivative o f the cost function with respect to the parameter vector is 

used. The Gauss-Newton algorithm (also called the method of scoring, the modified
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Newton-Raphson algorithm or the quasilinearisation algorithm), the Levenberg- 

Marquardt algorithm and the steepest descent algorithm are examples; the second 

partial derivative o f the cost function with respect to the parameter vector for the 

Levenberg-Marquardt algorithm is

32J(n + l) 32J(n) | 3e(n +1) 3e(n +1)
302(n) 302(n) 30 (n) 30 (n)

with 5 being a positive constant and the identity matrix, I e ? lnx" . The updating vector, 

(j>(n) , in this case is given by (from equations (2.4) and (2.7))

and

<Kn) =

a2J(n)
302(n)

3e(n +1) 
30(n)

e(n+  1)

X(n) + 3e(n +1)
T

32J(n)
-i

3e(n +1)
30 (n) 302(n) 30 (n)

(2 .8)

~32J(n + l ) n
-1

1 ~32J(n)
' i u ^ (n)

3e(n +1)
T

" 32J (n )"
- r

302(n) j X(n) 302(n) e(n +1) 30 (n) _302(n)_
+ 51

(2.9)

with A,(n) = forgetting factor and 0(0) = known starting values.

The Gauss-Newton algorithm omits the addition of the 51 term. These two 

algorithms are special cases of the Newton-Raphson algorithm in which the following 

conditions are fulfilled: (a) the partial derivative of the cost function with respect to the 

parameter vector is assumed to be zero at the current parameter vector (this is 

obviously an approximation, as the partial derivative will only be zero at the optimum 

parameter vector) and (b) the error multiplied by the second partial derivative of the 

error with respect to the parameter vector may be neglected (Söderström and Stoica

(1989) state that this is valid close to the optimum parameter vector).

In all these cases, the starting value of the second partial derivative of the cost 

function with respect to the parameter vector is given as a multiple o f the identity 

matrix.

The Hessian matrix for the steepest descent algorithm equals the identity
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matrix; the updating vector, <j)(n), is given by equation (2.8), with the appropriate 

substitution.

(3) The updating vector is a function o f the cost function only; these algorithms either 

form gradient estimates by difference approximations and proceed as in (for example) 

the Gauss-Newton algorithm, or have other specific search patterns.

Other gradient algorithms would not naturally fall into these classes; one 

example would be the least mean squares (LMS) algorithm defined by Widrow and 

Stearns (1985):

9(n + 1) = 0(n) -2fi(<3e(n)/39(n)) (2.10)

The choice of the gradient algorithm for a particular application depends on the 

desired speed of tracking and the computational resources available. Draper and Smith

(1981) declare that the Gauss-Newton algorithm combines the best features of the 

Newton-Raphson method and the steepest descent method, though the convergence of 

the algorithm is slower than that of the Newton-Raphson algorithm. The authors 

declare that the steepest descent method, though straightforward, often converges very 

slowly to the optimum parameter vector after rapid initial progress. Smith and 

Friedlander (1985) agree, declaring that while the recursive Gauss-Newton algorithm is 

quadratically convergent near a local minimum of the cost function, the steepest 

descent algorithm is only linearly convergent in the same situation. The Gauss-Newton 

algorithm has the advantage over the Newton-Raphson algorithm of being less 

computationally intensive; Ljung (1987) also states that the approximation used to 

determine the Gauss-Newton algorithm ensures that the Hessian matrix is positive 

semi-definite, which means that convergence is guaranteed to a stationary point. On the 

other hand, Söderström and Stoica (1989) declare that the convergence o f the Newton- 

Raphson algorithm is quadratic, whereas in practice the convergence o f the Gauss- 

Newton algorithm is linear but fast.

In a more general point about the use of gradient methods, it is important that 

the error surface in the direction of the time delay (and indeed the other parameters) 

should be unimodal. The existence of a multimodal error surface in the direction of the 

time delay has serious consequences for the use o f the gradient algorithm; indeed, it 

appears that the task of determining a global minimum in the presence of local minima
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is a very knotty problem. Vanderplatts (1984) states that the estimation process must be 

started from various initial estimates to see if a consistent optimum may be obtained 

under these conditions; reasonable assurance is then felt that this optimum point 

corresponds to the true global minimum. Rekliatis et al. (1983) state that the only 

practical strategy for locating global minima in these situations is a method called 

"multistart with random sampling". This strategy involves multiple optimisation runs, 

each initiated at a different starting point. The starting points are selected by sampling 

from a uniform distribution. The global minimum is then the local minimum with the 

lowest cost function value among all the local minima that may be identified. Scales 

(1985) suggests that in practice, one usually has to assume that it is possible to make a 

guess at the position of the global minimum that is sufficiently good so that no 

extraneous local minima interfere with the minimisation process. Ferretti et al. (1996) 

declare that the use of a filter on the data increases the range of time delay over which 

the cost function is unimodal; the bandwidth o f the filter is related to an initial estimate 

of the time delay uncertainty. However, the speed of convergence of any gradient 

algorithm used is reduced by the inclusion of a filter in this manner.

It may be possible to improve the chances that the global minimum of the error 

surface may be determined, even if the error surface is multimodal, by adapting 

techniques defined by Demuth and Beale (1977), amongst others, that improve 

backpropagation in neural networks. One technique defined by these authors is that of 

learning with momentum; the authors declare that momentum acts like a low pass filter 

on the error surface, allowing the possibility of sliding through local minima. The idea 

is that a change in the parameter will be put equal to the momentum constant (typically

0.95) times the previous change in the parameter plus 0.05 times the present change in 

the parameter. A further possibility defined is to use an adaptive learning rate; the 

authors propose that the learning rate should be decreased by a factor o f 0.7 if the new 

error exceeds the old error by a factor of 1.04 and increased by a factor of 1.05 if the 

new error is less than the old error. However, no theoretical basis is given for these two 

suggestions. A number o f other authors have defined adaptive learning algorithms; 

among them are Ho and Hsu (1992), Knapp and Wang (1992) and Qiu et al. (1992). 

These algorithms have been developed from a trial and error approach. Silva and 

Almeida (1990) and Sato (1991) also discuss the use o f momentum and learning rate 

terms in the application.

On a practical level, since all of the gradient implementations may identify
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parameters corresponding to a local minimum rather than a global minimum, it is 

important to commence iterations at good initial values o f the parameters, which may 

be obtained by physical insight for a physically parameterised model structure. A 

farther advantage in starting off at good initial values is that the number of iterations 

required for good identification is lower and the total computing time required is less.

2.2.4.2 Gradient algorithms for estimation based on the Newton-Raphson, Gauss- 

Newton and steepest descent methods

A number of authors have defined gradient algorithms based on the Newton- 

Raphson method, for estimating process parameters; Liu (1990), for example, defines a 

parameter updating scheme for an n th order process model plus time delay based on 

the algorithm. Other algorithms for appropriate parameter updating based on the 

Newton-Raphson approach include the method defined by Zhao and Sagara (1990).

The use of the Gauss-Newton algorithm to estimate process parameters was 

perhaps first proposed by Marshall (1979), who uses such an algorithm to identify the 

parameters o f a FOLPD model, in a Smith predictor structure. A number of 

assumptions are made in this analysis; Bahill (1983) subsequently used these 

assumptions to facilitate the development of an equation for the required change in the 

model time delay as a result of the change in the process time delay. A number of 

modifications of the algorithms defined above have also been considered, including 

those implemented by Kaya and Scheib (1984) (who implement Marshall's (1979) 

scheme to update the time delay estimate, and estimate the parameters of a first order 

lag (FOL) model of the non-time delayed process using the RLS algorithm), 

Romagnoli et al. (1988) and O’Connor (1989). The Gauss-Newton algorithm has also 

been used in open loop to estimate process parameters; Durbin (1984a), (1984b), 

(1985), for instance, uses the algorithm to estimate the parameters of a FOLPD model 

of the process. Simulation results quoted by Durbin (1985) show that a change in time 

delay index from 10 to 14 is followed in about 25 samples, with a change in time delay 

index from 14 to 10 followed in about 40 samples. Other such gradient algorithms are 

defined by Wong (1980), Brewer (1988) and Banyasz and Keviczky (1988), (1994). 

Other authors, such as Smith and Friedlander (1985) and Pak and Li (1992), 

concentrate on estimating the time delay only using the algorithm.
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The straightforward nature of the steepest descent algorithm has motivated a 

number of authors (such as Elnagger et al. (1989), (1990a), (1990b), (1991), (1992), 

(1993)) to apply it to the estimation of process parameters. These authors (1990a) 

estimate the non-delay parameters using the RLS algorithm, and estimate the delay 

using the steepest descent algorithm. Other authors, such as Robinson and Soudack 

(1970), concentrate on estimating the time delay only using the algorithm.

2.2.4.3 Other gradient algorithms for time delay estimation

As mentioned in Section 2.2.4.1, there are other gradient algorithms that may 

be used for model parameter and time delay estimation; Gawthrop and Nihtila (1985), 

for instance, estimate a pure time delay in a noise free environment by updating the 

time delay based on the partial derivative o f the error squared with respect to the time 

delay. Gawthrop et al. (1989) use the same technique to estimate the parameters of a 

continuous time SISO process with time delay. Other algorithms of the type under 

discussion for estimating the model parameters and time delay are defined by Pupeikis

(1985), Shah et al. (1988) (who use the LMS algorithm), Boudreau and Kabal (1992),

(1993), Hwang and Chuang (1994) and Lim and Macleod (1995). Algorithms of this 

type that estimate the time delay only are described by Chan et al. (1980), (1981), Etter 

and Stearns (1981), Reed et al. (1981), Feintuch et al. (1981), Youn et al. (1982),

(1983), David and Stearns (1983), Duttweiler (1983), Youn and Matthews (1984), 

Messer and Bar-Ness (1987), Ching and Chan (1988), Vasilev and Aidemirski (1990), 

Ho et al. (1990), (1992), (1993), Ching et al. (1991), Dokic and Clarkson (1992), 

Clarkson (1993), So and Ching (1993), So et al. (1994) and Ching and So (1994), 

amongst others.

2.2.5 Time delay estimation in the absence of other process 

parameters

In this section of the chapter, the estimation of ‘pure’ time delays is considered. 

Such time delays arise mainly in signal processing applications; in these applications, it 

is common to use the term ‘time difference of arrival’ (TDOA) rather than time delay. 

A number of classes of methods for estimating this parameter may be identified:
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1. Methods for the estimation o f a single time delay based on the cross-correlation of 

two signals.

2. Methods for multiple time delay estimation (in a MIMO environment) based on the 

cross-correlation o f two signals.

3. Other time delay estimation methods.

The estimation of ‘pure’ time delays using gradient methods, considered in 

Section 2.2.4, are not reconsidered in this section.

The cross-correlation of two signals may be used to estimate the time delay 

between the two signals, as the time at which the cross-correlation term is maximised 

corresponds to the time delay estimate. Most methods o f this type are off-line in 

nature; among the authors who discuss the cross-correlation method, and variations on 

the method, are Faure and Evans (1969), Knapp and Carter (1976), Cabot (1981), 

Carter (1981), Scarborough et al. (1981), Haas and Lindquist (1981), Hassab and 

Boucher (1981), Boucher and Hassab (1981), Stein (1981), Al-Hussaini and Kassam 

(1984), Azaria and Hertz (1984), Bradley and Kirlin (1984), Schwartzenbach and Gill 

(1984), Abatzoglou (1986), Fertner and Sjolund (1986), Hertz (1986), Al-Hussaini and 

El-Gayaar (1987), Gabr (1987), Weiss and Stein (1987), Krolik et al. (1988), Zheng 

and Feng (1988), Cusani (1989), Avitzour (1991), Kollar (1992), Gardner and Chen 

(1992a), (1992b), Gardner and Spooner (1992), Bar-Shalom et al. (1993), Clarkson

(1993), Carter and Robinson (1993), Jacovitti and Scarano (1993), Kumar and Bar- 

Shalom (1993), Shen et al. (1993), Fong et a l (1994) and Izzo et al. (1994). Meyr and 

Spies (1984) estimate the time delay in closed loop using the method, and also define 

an algorithm for the tracking of a randomly varying time delay between two stochastic 

signals. During and Jansson (1993) define a variation on the cross-correlation 

algorithm that is suitable for an on-line implementation; the authors state that the 

estimation time o f the algorithm implemented on a Texas Instruments TMS32020 

signal processor is approximately 1 ms.

Other authors use the technique to estimate time delays in multi-input, multi­

output environments or between multiple sensors and multiple targets. These 

algorithms are mostly off-line in nature, with examples of such algorithms described 

by Friedlander (1980), Ng and Bar-Shalom (1982), (1986), Tremblay et al. (1987) and 

Pallas and Jourdain (1991). Segal et al. (1991) and Antoniadis and Hero (1994) 

develop on-line, iterative algorithms for solving the multichannel time delay estimation 

problem.
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Finally, other algorithms have been defined for the estimation o f ‘pure’ time 

delays. One example o f such an off-line algorithm is defined by Kenefic (1981), in 

which the time delay between two sensors may be found by determining the maximum 

of the probability density function (p.d.f.) of the delay from a given prior distribution. 

Nehorai and M orf (1982), Hertz and Reiss (1982), Azenkot and Gertner (1985), Chiu 

(1987), George and Goodman (1988), Jesus and Rix (1988), Moddemeijer (1989), 

Champagne et al. (1991), Jane et al. (1991), Yamada et al. (1991), Lourtie and Moura

(1991), Boudreau and Kabal (1992), El-Hawary and Mbamalu (1993), Laguna et al.

(1994), Manickan et a l (1994) and Koenig (1995) define other such off-line time delay 

estimation algorithms. Less attention appears to have been paid to the on-line 

implementation o f non-cross correlation based algorithms, though one such algorithm 

is defined by Bethel and Rahikka (1987), who calculate recursively the p.d.f. of the 

time delay, from which an optimum estimate of the time delay may be determined. 

Algorithms based on the same approach are defined by Bethel and Rahikka (1990) and 

Bethel et al. (1995). Other on-line algorithms are defined by Namazi and Stuller

(1987), Feder and Weinstein (1988), Namazi and Biswal (1992) and Blackowiak and 

Rajan (1995). The latter authors investigate the performance of a simulated annealing 

algorithm in the estimation of the amplitude scaling factors and the time delays of the 

separate arrivals in a signal composed of closely spaced arrivals with added noise. The 

method is particularly interesting as the cost function to be minimised has local 

minima that make the application o f calculus based minimisation techniques (such as 

the Newton-Raphson gradient algorithm) difficult; the authors declare that the 

simulated annealing algorithm has the ability to slide through local minima.

O ’Dwyer (1996a) discusses the algorithms outlined above that appear to merit 

further investigation; overall, however, the algorithms that estimate ‘pure’ time delays 

only are less useful, at least in control applications, than algorithms that facilitate the 

estimation o f both the time delay and non-time delay model parameters.
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2.3 Frequency domain methods for parameter and time delay 

estimation

In this section, both methods o f estimating the frequency response of a process 

and methods for the subsequent estimating of the model parameters (including time 

delay) are considered, together with methods for the direct estimation of the model 

parameters based on the use of higher order spectra.

2.3.1 Frequency response estimation

The methods that have been defined for process frequency response estimation, 

in both open loop and closed loop environments, may be classified as follows:

1. The response to a sine wave input

2. The response to a pulse input

3. Correlation analysis

4. Spectral analysis

5. Methods based on the ratio of Fourier transforms

6. Optimisation methods

7. Cepstral analysis

8. The use of a relay in series with the process in closed loop and

9. Other methods.

Of course, the frequency range over which the model should be estimated needs 

to be defined. Generally, good frequency domain matching between the process and the 

model over a wide range o f frequencies about the frequency where the phase lag of the 

process equals 180 degrees is desirable, particularly for controller design (Harris and 

Mellichamp (1980), Edgar et al. (1981), Wittenmark and Astrom (1984), Lee et al.

(1990), Hang and Chin (1991) and Eskinat et al. (1993)).

The frequency response of a process (in open loop) at any frequency may be 

determined by calculating the magnitude and phase of the process from its output when 

an appropriate sine wave is input to the process; however, the estimate obtained is 

sensitive to disturbances (Söderström and Stoica (1989), Larsen (1994)).

The frequency response of a process may also be found by determining the 

response of the process, in open loop, to a pulse input (Clements and Schnelle (1963)).
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Good fitting o f the magnitude response is found in experimental work carried out by 

these authors; the goodness of fit, however, does appear to worsen at higher frequency 

values. Other pulse response techniques are defined by Rajakumar and Krishnaswamy 

(1975), Harris and Mellichamp (1985), Seborg et al. (1989) and Smirthwaite et al.

(1994).

The frequency response may be determined directly by correlation (Rake 

(1980), Unbehauen and Rao (1987), Söderström and Stoica (1989), Larsen (1994)). 

This approach may be represented in block diagram form, as shown in Figure 2.1.

Figure 2.1: Correlation analysis (Unbehauen and Rao (1987))

R(co)

The process frequency response at frequency co , G p(jco), equals R(co) + jl(co) (with

d(t) being a disturbance). Larsen (1994) declares that the method is insensitive to step 

and white noise disturbances (due to the presence o f the low-pass filters). However, 

long experiment times are often required to determine the process frequency response.

Spectral analysis techniques may also be used to calculate an estimate o f the 

frequency response in both open loop and closed loop environments. In open loop, the 

process is represented as shown in Figure 2.2.

Figure 2.2: Open loop implementation

n(t)
G d(s)

d(t)

+ -  y(t)
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In this case, n(t) and d(t) are uncorrelated. The technique involves determining an 

estimate o f the frequency response of the process, G p(jco), as follows:

G p(jo>) » Syn(ja>)/S„ (jco) (2 .11)

with Syn(jco) equal to the cross power spectral density of y(t) with respect to n(t) and 

SD(ja>) equal to the power spectral density o f n(t). The power spectral densities may 

be estimated using either the periodogram (sample spectrum) approach, which involves 

estimating the power spectral density in terms of the square o f the corresponding 

discrete Fourier transform (Unbehauen and Rao (1987), Johannson (1993)) or the 

correllelogram approach, which involves estimating the relevant covariance functions, 

and calculating the estimates of the power spectral densities from the discrete Fourier 

transforms of these covariance functions (Unbehauen and Rao (1987)). Alternative 

methods defined by Schwartzenbach and Gill (1984) and Unbehauen and Rao (1987) 

may be used to estimate the phase response o f the process, which is important for time 

delay estimation in particular. Chan et al. (1978), Hannan and Thomson (1981), 

Friedlander and Porat (1982), (1984), Chan and Miskowicz (1984) and Tachibana

(1984) also use power spectral density techniques to calculate the model parameters 

and/or the time delay.

The closed loop system considered may be represented as shown in Figure 2.3.

r(t)

Figure 2.3: Closed loop implementation 

m(t) d(t)
+

+
/*v?>G c(s) ----------H

u(t) ^  n(t)
G p(s) —

y(t)

Wellstead (1986) shows that, if r(t), m(t) and d(t) are uncorrelated, then

Gp (j® )~ S my(ja))/S m„(jffl) (2.12)

or
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G p(jco) « Sry(jco)/Snl (jco) (2.13)

Approximations for the power spectral densities may be determined by using the 

discrete Fourier transform (DFT), for instance.

The frequency response o f a process may also be obtained by using methods 

based on the ratio o f Fourier transforms. In open loop (Figure 2.2), an estimate of 

G p(j(o) may be expressed as

G p(jco) « F[y(t)]/F[n(t)] (2.14)

with F[ ] being the Fourier transform o f the relevant signal. The Fourier transform 

terms may be approximated by using the DFT (when the resulting approximation is 

called the empirical transfer function estimate (ETFE)), by using the discrete time 

Fourier transform (DTFT) or by using a numerical integration method, such as the 

Adams-Moulton method. The applicability of such approximations is discussed in 

detail by Wellstead (1981), Ljung (1987), Unbehauen and Rao (1987), Johannson

(1993) and Guillaume et al. (1996), among others. Other methods based on using 

Fourier transforms to estimate the time delay and/or the model parameters are defined 

by Hertz and Reiss (1982), Azenkot and Gertner (1985), Nagai (1986), Chiu (1987) 

and Boudreau and Kabal (1992).

In closed loop (Figure 2.3), and if r(t) and m(t) are uncorrelated, with F[d(t)] = 

0, it will be proved in Chapter 4 that

G„(j®) *  F[y(t)]/F[n(t)] (2.15)

As before, the Fourier transform terms may be approximated by using the DFT, 

the DTFT or an alternative numerical integration of the Fourier transform. The method 

for determining the frequency response in equation (2.15), when the Fourier transform 

terms are approximated by using DFT's, is also used by Lamaire et al. (1991) as a 

means of deriving a robust estimator of the process frequency response. Band-pass 

filters could be put on the input and output of the process so that F[d(t)] could be more 

reasonably assumed as zero, at one or more frequency values (Hagglund and Astrom
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(1991), Ho et al. (1994)). A related possibility is to place a number o f band-pass filters 

on the input and output of the process to determine the frequency response at a number 

o f frequencies corresponding to the centre frequencies o f the band-pass filters 

(Goberdhansingh et al. (1992)). Other authors that use Fourier transforms in closed 

loop as a means o f estimating the frequency response of the process include Harris and 

Mellichamp (1980), Krishnaswamy et al. (1987), Koganezawa (1991), Hang and Sin

(1991) and Hang et al. (1994b).

The frequency response of the process in open loop may be determined from 

the minimisation o f a possibly multimodal cost function whose variables include either 

the DFT of the input and output signals to the process (Marshand and Fu (1985), 

Schoukens et al. (1988), Pintelon and Schoukens (1990), Pintelon and Van Biesen

(1990), Kollar (1992)) or complex logarithmic frequency response data (Banos and 

Gomez (1995), Guillaume et al. (1995)). In closed loop, the maximum likelihood 

estimate of the process parameters may similarly be determined by the minimisation of 

a multimodal cost function whose variables include the DFT of the input and output 

signals to the process (Pintelon et al. (1992)). The input and output signals to the 

process are assumed to be correlated through a process noise term.

Hassab and Boucher (1976) estimate the time delay of a delayed and attenuated 

replica of a signal by the use of the natural logarithm of the magnitude squared of the 

output signal (called the power cepstrum of the signal). The authors state that when the 

technique is successful, the cepstrum yields a dominant peak away from the origin 

corresponding to the desired time delay. Barrett and Moir (1986) use cepstral methods 

for restoring the unknown phase-frequency information from the amplitude-frequency 

information that may be provided by the power spectral density techniques.

The relay autotuning method, developed first by Astrom and Hagglund (1984), 

may be used to determine one or more points on the frequency response o f the process. 

The method involves the introduction of a relay element in parallel with the controller; 

the relay is switched in when process parameter estimation is required. The limit cycle 

provoked at the process output, as a result of the introduction o f the relay element, may 

be analysed to determine approximations for the magnitude and frequency of the 

process at a process phase lag of 180 degrees. It is possible, as the authors suggest, to 

determine approximations for the magnitude and frequency of the process when the 

phase lag is 90 degrees, if  an integrator is introduced in series with the relay. The 

authors also show that approximations for the magnitude and frequency may be
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obtained when the phase lag is between 90 and 180 degrees, by the introduction of 

appropriate hysteresis on the relay element. The method is developed further by Arzen

(1987), Astrom and Hagglund (1988), Chiang and Yu (1993), Friman and Waller

(1995) and Hwang (1995). Other related approaches using the relay autotuning method 

are proposed by Hagglund and Astrom (1989), (1991), Schei (1992), Astrom et al.

(1993), Ho et al. (1994), Lundh and Astrom (1994), Lee et al. (1995b), Voda and 

Landau (1995b) and Shen et a l (1996a), (1996b), (1996c). In addition, the method may 

be applied to the estimation o f the parameters o f MIMO process models plus time 

delays, as detailed by Loh et al. (1993), Wu et al. (1994) and Friman and Waller

(1994).

Other methods of estimating the frequency response o f the process include 

estimating the magnitude and frequency o f the process at a phase lag o f 180 degrees (in 

closed loop), which is described by Balchen and Lie (1987); in this method, the system 

deviation signal is correlated with the excitation signal.

In conclusion, techniques that directly estimate the frequency response both in 

open loop and in closed loop have been well documented in the literature. The 

robustness o f many of the techniques when closed loop identification is required, with 

process noise added to both the input and the output, is questionable; some authors 

address this problem by appropriate filtering of the process input and output signals 

prior to identification.

2.3.2 Parameter and time delay estimation using higher order spectra

2.3.2.1 Introduction

Higher order spectra (or polyspectra) are defined in terms o f the higher order 

statistics (or cumulants) o f a signal. The general motivations for the use o f higher order 

spectral techniques are (1) to suppress additive, possibly coloured Gaussian noise that 

may be present on signals (2) to allow recovery o f phase information from signals and

(3) to detect and quantify nonlinearities in time series (Nikias and Petropulu (1993)). 

The use of higher order spectra is examined with special reference to the identification 

of the parameters of a SISO process model with a time delay, in both open loop and 

closed loop environments.
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An important frequency domain approach to the identification of such a process 

model is to base the identification of the model parameters on the magnitude and phase 

response of the process. The use o f second order statistics, which involve the 

calculation of the power spectral densities o f the input and output signals to the 

process, gives rise to identifiability problems when both the input and output records 

are contaminated by even white and mutually uncorrelated noise sources (Delopoulos 

and Giannakis (1994)). However, because the higher order spectrum of (coloured) 

Gaussian signals is identically zero, adding coloured Gaussian noise of unknown 

spectrum to the process input or output does not affect the process frequency response 

estimation, if  higher order spectral techniques are used.

The most common higher order spectra of a signal that are calculated are the 

third order spectrum (also called the bispectrum) and the fourth order spectrum (also 

called the trispectrum), as defined by Nikias and Petropulu (1993) and explored in 

detail by O ’Dwyer (1996a). Cross-cumulants and the cross-bispectrum or cross- 

trispectrum may also be defined in a similar manner, using relevant process input and 

output signals (O’Dwyer (1996a)).

The bispectrum and trispectrum are special cases o f the n lh order spectrum of a 

signal. Generally speaking, for computational reasons, the bispectrum of a signal is the 

most often calculated; the trispectrum of the signal may be calculated if the signal had 

zero (or very small) third order cumulants and larger fourth order cumulants. A 

symmetrically distributed random variable has a third order cumulant equal to zero, for 

instance (Mendel (1991)).

The cepstrum of higher order spectra may also be defined, as discussed by 

O ’Dwyer (1996a).

2.3.2.2 Parameter estimation techniques using higher order spectra

It has been mentioned in Section 2.3.2.1 that an important means of 

determining the parameters of the process model in the frequency domain is to first 

determine the magnitude and phase variation o f the process model with frequency. An 

intermediate stage may be to determine the bispectrum or trispectrum magnitude and 

phase estimates o f the process. Nikias and Petropulu (1993) discuss a number of 

methods that have been defined for determining the bispectrum (or trispectrum)
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magnitude and phase estimates from the input and output data o f a process; all of the 

methods involve the use of fast Fourier transforms. One o f the difficulties about 

determining higher order spectra in this way is that only a finite set o f data is used. 

Nikias and Petropulu (1993) and Matsouka and Ulrych (1984) also explain a number of 

the methods developed (by Bartlet el al. (1984) and Li and Ding (1994), amongst 

others) for the estimation o f the process magnitude and phase (subsequently referred to 

as the Fourier magnitude and Fourier phase) from the bispectral magnitude and phase 

estimates of the process determined. Other papers in which details of these algorithms 

are provided include those by Haniff (1991), Matson (1991), Rangoussi and Giannakis

(1991), Cheng and Venetsanopoulos (1992) and Li and Ding (1994). Pan and Nikias

(1987) discuss the reconstruction o f the Fourier phase from the corresponding 

trispectrum.

It is also possible to determine the bicepstrum and tricepstrum of the input and 

output data, as an intermediate stage to determining the Fourier gain and phase of the 

process. This is discussed by Alshebeili and Cetin (1990), Alshebeili et al. (1991) and 

Brooks and Nikias (1993).

The direct estimation of the process model parameters and the time delay using 

higher order spectral techniques (without first estimating the Fourier magnitude and 

Fourier phase of the process) does not appear to have been addressed in the literature. 

The estimation of the time delay between two signals (i.e. the estimation of a time 

delay term only, with no other dynamics considered) has been explored in detail by 

Nikias and Petropulu (1993), among others. The authors divide the methods used into 

the following categories:

(i) Conventional time delay estimation techniques based on third order statistics that 

involve estimating the time delay from the bispectral and cross-bispectral phases of the 

input and output signals to the process; Hinich and Wilson (1992), for example, 

estimate the time delay as the scaled difference between these phase estimates. Sato 

and Sasaki (1977), Sasaki et al. (1977), Nikias and Raghuveer (1987), Nikias and Pan

(1988), Zhang and Raghuveer (1991) and Nikias and Mendel (1993) also outline 

methods o f this type.

(ii) Parametric time delay estimation techniques, which involve modelling the time 

delay by a polynomial and estimating the polynomial coefficients; Nikias and Pan

(1988), Tugnait (1991) and Delopoulos and Giannakis (1994) also outline these 

methods. In a more recent paper, Delopoulos and Giannakis (1996) extend the method
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of Delopoulos and Giannakis (1994) to the estimation o f a process model (in rational 

polynomial form) in a closed loop environment, when both input and output data to the 

process is contaminated by additive noise having unknown cross-spectral

characteristics.

(iii) Time delay estimation techniques based on the cepstrum of higher order spectra; 

Petropulu et al. (1988) and Reddy and Rao (1987) discuss such methods in detail.

(iv) Adaptive time delay estimation based on the parametric modelling of higher order 

cross-cumulants, which use third order cumulants and a gradient-like algorithm to 

estimate the time delay, where the additive noises on the signals are of spatially 

correlated Gaussian form with unknown correlation functions (Chiang and Nikias 

(1990)).

2.3.2.3 Conclusions

The following conclusions about the use of higher order spectral techniques for 

process parameter estimation may be drawn:

1. Conventional approaches for process frequency response estimation (based on the 

power spectrum, for instance) have a lower computational intensity and a requirement 

for a smaller number of data points than do the higher order spectral approaches. 

However, the higher order spectral approaches are robust to the presence of possibly 

mutually correlated, coloured Gaussian noise (or non-Gaussian noise, with a symmetric 

p.d.f.) added to both the process input and output.

2. The problem o f process identification in closed loop using higher order spectra has 

not been completely resolved. The signals encountered in closed loop operation do not 

fit the requirement for the signals specified for process identification in all details; 

nevertheless, identification o f the process parameters may be possible in certain 

situations in a closed loop environment (e.g. if  a PRBS driving signal is added to the 

input o f the process). Delopoulos and Giannakis (1996), in a recent paper, show that 

process identification in closed loop is possible using the third order cumulants of the 

process input and output signals.

It appears that the critical factor in the decision as to whether it is appropriate to 

use higher order spectra for process parameter estimation is the magnitude and nature 

of the additive noise present on both the input and output signals to the process. 

Johnson (1985) states that, realistically, noise terms either may have a known or
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estimated mean, covariance and distribution, or may have a constant bias component 

and a stochastic component having either a zero mean or being a filtered version o f a 

white noise signal. For identification and control purposes in the self-tuning literature, 

the added noise is often considered to be modelled as the filtered version of a white

noise signal. It is possible to reduce the effect o f noise terms by pre-treatment of data

before identification (e.g. if  the noise term is drift on the input or output signals to the 

process, then the appropriate data could be filtered before identification); Ljung (1987) 

discusses a number o f approaches in this area. In a closed loop process environment, 

there seems to be less justification for the use o f higher order spectral techniques if  a 

PRBS driving signal must be added at the process input, as such a signal will be 

uncorrelated to any noise signal and thus less computationally intense methods of 

process identification may be appropriate.

Overall, the use o f higher order spectral techniques in system identification 

seems suited to a restrictive range o f problems, in which noise signals on the input and 

output to the process cannot be effectively dealt with by pre-processing.

2.3.3 Model parameter estimation using frequency response data

The approaches to estimate the parameters of an appropriately ordered process 

model plus time delay, may be classified as follows:

1. Model parameter estimation using a graphical approach

2. Model parameter estimation using an analytical approach

3. Model parameter estimation using a least squares approach; the estimation of the 

parameters o f a high order model plus time delay and the parameters o f a low order 

model plus time delay will be considered separately and

4. Model parameter estimation based on relay identification.

The model parameter and time delay estimates may be determined graphically, 

from the Bode plots o f the process; Deshpande and Ash (1983) and Seborg et al.

(1989) apply the method to the estimation o f the parameters o f a FOLPD model and a 

SOSPD model, with Luyben (1983) fitting higher order transfer functions with time 

delay to the Bode plots. Seborg et al. (1989) identify the disadvantages o f the method 

as the tediousness o f the procedure, the introduction of errors in fitting parameters for 

second order models (and, by extension, higher order models) using a trial and error
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approach and that the method does not easily facilitate the identification of more 

general transfer function models, such as those with numerator dynamics.

The parameters may also be estimated analytically, from the frequency response 

of the process. Isermann et al. (1974), for instance, analytically determine the time 

constant and the time delay o f a multiple pole process model. The model transfer 

function is

K e ST|"
G (s) = — ------  (2.16)

m (1 + sTm)n

with K m = model gain, Tm = model time constant and Tm = model time delay. Then, 

the authors provide an estimate for the model time constant and time delay as follows:

T = —,m
CO

K„

|g p0 ) |
-1 (2.17)

and

= — 
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- ^ p ( jw ) -n ta n - , (roTl11)] (2.18)

with |G p(jco)| = magnitude of the process transfer function and <))p (jco) = phase of the

process transfer function at a frequency co . Special cases o f these implementations are 

discussed by O'Dwyer (1992), (1993) and Hang et al. (1993), (1994b). Sundaresan and 

Krishnaswamy (1978), Koganezawa (1991) and O’Dwyer (1992) also consider other 

analytical methods of calculating the parameters of FOLPD and SOSPD models from 

the process frequency response.

Alternatively, the model parameters and time delay may be estimated by 

minimising the squared error between the process and the model in the frequency 

domain. For an arbitrary order model plus time delay, many of the techniques defined 

require the approximation of the time delay by an appropriate rational polynomial; the 

time delay as such is consequently not identified. Examples of such methods are 

discussed by Levy (1959), Whitfield (1986), (1987), Unbehauen and Rao (1987) and 

Hakvoort and Van den Hof (1994). Other authors, such as Dos Santos and De Carvalho

(1990) explicitly estimate the parameters of an n th order model plus time delay. These
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authors iteratively determine the estimates o f the model order and the pole and zero 

values from the estimate of the time delay, with the estimate o f the time delay 

calculated based on a least squares procedure using the phase plot. In a different 

method, Seborg et al. (1989) suggest that the parameters and the time delay of a 

process model could be estimated by selecting the value o f the time delay iteratively 

and using the method o f Levy (1959), for example, to determine the remaining process 

model parameters. Similar methods based on this multiple model estimation technique 

have been well explored in the time domain. However, the multiple model estimation 

method is computationally intensive. In a more recent paper, Young et al. (1995) 

estimate the model parameters and time delay of a linear process using a recursive non­

linear estimation technique in the frequency domain. The authors mention that it is 

possible that the parameters (and delay) identified may correspond to a local minimum 

of the cost function used, rather than a global minimum.

It is also possible to fit a low order model plus delay to the process response, in 

a least squares sense. Lilja (1988), for instance, calculates a FOLPD model of a high 

order process from four points on the frequency response of the process. The non-time 

delay parameters are determined by minimising an appropriate quadratic cost function; 

the time delay is determined separately by minimising a multimodal cost function 

using a modified Newton-Raphson algorithm, though convergence of the time delay 

estimate to the correct value of the time delay is consequently not guaranteed. 

Nevertheless, the author gives advice on strategies to determine the best estimate of the 

time delay. A simulation result provided by the author shows that a process of order 16 

is well approximated by a FOLPD model, in a frequency range corresponding to a 

phase lag range of 0 to 180 degrees. Other authors that describe algorithms of this type 

include Seborg et al. (1989) and Palmor and Blau (1994).

Finally, the parameters of the process model may also be identified by 

analysing the process output when a relay is switched into the closed loop compensated 

system in place o f the controller. It is possible to approximate the limit cycle output as 

a sinusoid (this is the basis o f the approach of Astrom and Hagglund (1984) for 

controller tuning). However, it is also possible to analyse the limit cycle output without 

any such approximation being taken. Lee and Sung (1993), for instance, calculate the 

time constant and time delay of a FOLPD model using this approach, as follows:
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S i  (219)

and xm = Tm ln[----- (2.20)

with t a = period o f oscillation o f the limit cycle, a = amplitude of the oscillation and d 

= relay amplitude (K m would need to be known a priori). Arzen (1987), Li el al.

(1991), Chang el al. (1992), Leva (1993), Benouarts and Atherton (1994) and Egan

(1994) also describe algorithms o f this type. Indeed, it appears reasonable that further 

work in this area is possible, as many authors use such relay compensator techniques 

for autotuning rather than for model parameter estimation; to this end, a development 

o f the method defined by Egan (1994) is outlined briefly in Chapter 8 and is discussed 

in detail by (VDwyer (1996k).

In conclusion, the approaches for process model parameter and time delay 

estimation that have been proposed in the literature in the frequency domain have been 

briefly documented above. The range o f frequency values over which the process is 

estimated can be specified, depending on the application.
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2.4 Other methods of process parameter and/or time delay 

estimation

The previous sections of the chapter have described in detail well-defined 

methods of process parameter and time delay estimation. Other methods do not easily 

fall into the categories discussed earlier; in this section, parameter and/or time delay 

estimation using neural networks, using process order identification methods, using the 

delta operator and using genetic algorithms are outlined.

Neural networks may be used for the identification and control o f non-linear 

processes (Narendra and Parthasarathy (1990)). The identification and control of time 

delay processes using neural networks is a subject of recent research. Bhat and 

McAvoy (1992), for instance, propose a detailed method to strip a back propagation 

neural network (BPN) to its essential weights and nodes to give it its simplest possible 

structure; the authors show that the stripping algorithm is capable of identifying the 

time delay and order o f a FOLPD process (in the discrete time domain). Other authors 

that discuss the identification and control o f processes using neural networks include 

Megan and Cooper (1992), who present a neural network approach to adaptive control 

by analysing the relationship between the error pattern and the corresponding 

adjustment needed in the gain and time constant of a first order lag (FOL) model of a 

process, and Hinde and Cooper (1994), (1995) who explore the use of a passive 

adaptive algorithm which updates the process model and the controller in closed loop 

by taking advantage o f naturally occurring dynamic events, rather than injecting 

perturbations into the system to create dynamic events. Cheng et al. (1995) identify a 

non-linear dynamic process with unknown and possibly variable time delay using an 

internal recurrent neural network. However, it is true to say that the use of neural 

networks for the identification o f processes with time delays is in its infancy.

Process order estimation strategies may also be used to estimate the time delay 

o f a process (in the discrete time domain), since the time delay appears as an increase 

in the model order o f the numerator transfer function. Process order identification 

strategies for SISO systems have been described by Unbehauen and Gohring (1974), 

Van den Boom and Van den Enden (1974), Wellstead (1978), Stoica et al. (1986), 

Unbehauen and Rao (1987), Söderström and Stoica (1989), Niu et al. (1990), 

O'Donnell (1991) and Liang et al. (1993). Process order identification strategies for
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MIMO systems have been defined by Guidorzi (1975), (1981), Tse and Weinert 

(1975), Lin and Wu (1982), Van Overbeek and Ljung (1982), Stoica (1983), Zhang et 

al. (1985), Li (1985), Chen and Guo (1987), Guo et al. (1989), Chen and Zhang 

(1990), Zhang and Chen (1990), Guillaume et al. (1992), Gu and Misra (1992), Glentis 

and Kalouptsidis (1992) and Niu and Fisher (1994). The estimation o f the time delay 

using these strategies would, however, be conditioned on the order of the non-delay 

part of the process being known a priori.

It is also possible to estimate the process parameters using the delta operator 

rather than the z (or shift) operator. The delta operator (also known as the Euler 

operator) is defined as follows:

8 = ^  (2 .21)
s

where Ts equals the sample time. Wellstead and Zarrop (1991) show that the region of 

stability for z domain poles (i.e. the unit circle) translates into a circle of centre 

(-1/TS,0) and radius 1/TS in the delta domain. Thus, as the sampling rate is increased,

the stability region defined in the delta domain approaches that of the continuous time 

domain. The following advantages are claimed for the delta operator representation 

over the shift operator representation:

(a) The representation of discrete systems in the delta domain avoids the problems of 

coefficient sensitivity in recursive digital filters at high sample frequencies, seen in the 

z domain (Goodall (1990)).

(b) A related advantage is that the delta operator allows superior finite word length 

coefficient representation (Middleton and Goodwin (1986), (1990)) under the 

assumption that the sample time is chosen according to the normally quoted rules of 

thumb.

(c) A further advantage o f the delta operator is that it "almost always" has less roundoff 

noise associated with it than does the corresponding z operator (Middleton and 

Goodwin (1986), (1990)).

(d) Middleton and Goodwin (1986), (1990) and Goodwin et al. (1988), (1992) declare 

that for parameter estimation, the least squares solving o f a set of linear equations is 

better conditioned for models represented by the delta transform.
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Terrett and Downing (1993), (1994) use the delta operator for system 

identification on a fixed point DSP using the RLS algorithm. The authors show that the 

delta operator is numerically more robust than the shift operator, at the cost o f an 

additional computational requirement (this point is also made by Goodwin et al.

(1992)). Other authors that discuss the use of the delta operator for system 

identification purposes include Goodwin et al. (1988), Middleton and Goodwin (1990), 

Wilkinson et al. (1991) and Jabbari (1991). The use of the delta domain for the 

estimation o f the time delay as well as the model parameters has not been considered in 

the literature, with the exception of the method defined by Keviczky and Banyasz

(1992), who identify the time delay index as the sum of the product of each numerator 

parameter identified and its index, divided by the sum of the identified numerator 

parameters, where both sums are taken up to a defined maximum time delay index. 

The process is modelled as a SOSPD model, with identification of the time delay 

taking place in the delta domain. There does seem to be scope to estimate the time 

delay (and the other model parameters) in the delta domain, using techniques similar to 

those used in the z domain (e.g. the overparameterisation of the process model); the 

method of Keviczky and Banyasz (1992), for instance, is an analogue o f a method 

defined by these authors (Keviczky and Banyasz (1988)) in the z domain. The use of 

the delta domain for system identification is also explored by O ’Dwyer (1996a), 

(19961).

Finally, the use of genetic algorithms for process identification (including time 

delay identification) is beginning to attract interest. Genetic algorithms search from a 

population o f points, use information about the cost function (rather than its derivative 

or other auxiliary knowledge used by gradient algorithms) and have a random 

component (quantified as a mutation rate) that helps drive the model parameters 

towards values corresponding to the global minimum of the appropriate cost function. 

These algorithms tend to be very computationally intensive; Kristinsson and Dumont

(1992) declare, for instance, that a genetic algorithm is perhaps fifty times more 

computationally intensive than is a recursive instrumental variable (RJV) system 

identification algorithm. Genetic algorithms are considered to be one extreme solution 

to the exploitation-exploration trade-off, as described by Renders and Flasse (1996); 

genetic algorithms trade-off large computation time, and poor accuracy o f the global 

minimum, with reliability in calculating the global minimum. The authors consider the 

use of gradient algorithms to be another solution to the exploitation-exploration trade­
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off; other solutions, such as the use o f multiple model estimation methods, are of 

course also possible. In an interesting recent application, Yang et al. (1996) use a 

genetic algorithm to estimate the denominator parameters and time delay o f a reduced 

order process model, while using the less computationally intensive least squares 

algorithm to subsequently determine the numerator parameters (which is a linear 

problem).
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2.5 Conclusions

This chapter has considered a wide variety o f methods for time delay and model 

parameter estimation, in both the continuous time and discrete time domains. The 

methods have been discussed in detail by O ’Dwyer (1996a), in which comparisons 

have been drawn where appropriate between methods. The wide spectrum of methods 

covered means that an overall conclusion as to the best method to use is not 

appropriate. However, it is possible to indicate the areas and methods in which original 

work may be done.

1. A major section o f the chapter has been devoted to the use of gradient methods for 

model parameter and time delay estimation. It has been decided to investigate fully the 

methods defined by Durbin (1984a), (1984b), (1985)), which facilitate identification of 

the model parameters and the time delay in open loop, because of the potential of the 

methods to estimate the parameters quickly, even in the presence o f bias and noise 

terms. Alternative polynomial approximations to the time delay than those taken by the 

author will also be considered. This work is carried out in Chapter 3. In addition, it has 

been decided to investigate closed loop methods for estimating the model parameters 

and time delay, based on the work done by Marshall (1979), (1980) and Bahill (1983). 

Alternative updating algorithms for the parameters will be defined, considering fewer 

assumptions on system behaviour than are considered by the above authors; in 

addition, the parameter updating strategies will be extended to the estimation of the 

parameters o f higher order models than the strategies considered previously. This work 

is reported in Chapter 7.

2. The frequency domain is a very natural domain for time delay estimation, as was 

mentioned in Section 2.1. It has been decided to estimate the process frequency 

response, both in open loop and in closed loop, using approaches based on the ratio of 

Fourier transforms, and the ratio of appropriate power spectral densities. It has also 

been decided to investigate a method that combines an analytical approach that gives 

initial estimates o f the parameter and time delay values, with a least squares approach 

using a gradient algorithm that updates these estimates to more accurate model 

parameter estimates. Both o f these topics are discussed in Chapter 4.

3. Other areas in which original work may be done are

(a) The estimation o f the process parameters (including time delay) based on an
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analytical description o f the actual process output, rather than on parameters calculated 

assuming a sinusoidal process output, when a relay is introduced in series with the 

process in closed loop. This work is detailed by O ’Dwyer (1996k).

(b) The use o f relevant discrete time algorithms for the estimation o f the parameters 

plus time delay o f MIMO process models; in particular, the application of 

overparameterisation methods, such as the algorithm defined by Wong and Bayoumi

(1982). Some preliminary work in this area is detailed by O ’Dwyer (19961).
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CHAPTER 3

Open loop time domain gradient methods of 

parameter and time delay estimation

3.1 Introduction

Gradient methods o f parameter estimation are based on updating the parameter 

vector using a vector that depends on information about the cost function to be 

minimised (which is equal to the sum of the squared error between the process and 

model outputs). The use of gradient algorithms for model parameter and time delay 

estimation is discussed in detail in Chapter 2.

The review and analysis o f the available literature has revealed the close 

relationship between many of the methods used for time delay estimation using 

gradient methods. For control applications, the estimation o f non-time delay 

parameters as well as the time delay is frequently required (e.g. for compensator 

design). Therefore, it has been decided to concentrate on methods that intrinsically 

estimate both model parameters and time delay. The best model to use for 

identification purposes is a vexed question as it depends, amongst other factors, on the 

data quality available (see Chapter 1); a cautious approach, which has been 

implemented in this chapter, is to identify the parameters o f a FOLPD model (Newell 

and Lee (1989)). It was decided to investigate fully the method defined by Durbin 

(1984a), (1984b), (1985) because of its potential to estimate the parameters quickly, 

even in the presence o f bias inputs and noise terms. In this method, the process is 

assumed to be modelled by a FOLPD model. The procedures developed may be 

applied to the estimation of the parameters of higher order models o f a general order 

process, though the complexity of the development is greatly increased; this 

application will be discussed further in the conclusions o f the chapter. The gradient 

algorithms are implemented by determining the partial derivatives o f the error between 

the process output and the discretized model output, with respect to the gain, time 

constant and time delay. These partial derivatives are subsequently used to update the
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model parameters. However, prior to calculating the partial derivative o f the error with 

respect to the time delay, the time delay variation (which equals the process time delay 

minus the model time delay) is approximated by a rational polynomial. Such an 

approximation will be valid for small values o f the time delay variation; the approach 

is appropriate, as the use o f the Gauss-Newton gradient algorithm, for example, 

depends on the difference between the estimated parameters and the actual parameters 

being small (as the Gauss-Newton algorithm is derived from a second order Taylor’s 

series expansion of the cost function about the optimum parameter vector). The most 

appropriate rational polynomial to use may be determined by finding the relationship 

between the mean squared error (MSE) function between the process and model 

outputs and the time delay; this relationship, which may be determined both 

analytically and in simulation, must be unimodal about the process time delay for 

successful application of the gradient descent algorithms, as must the corresponding 

relationship o f the MSE function to the process gain and time constant values.

The chapter considers, both analytically and in simulation, the convergence of 

the parameters of a FOLPD model to corresponding process parameters. The 

convergence of the non-time delay model parameters is considered first, when the time 

delay is assumed known. Subsequently, the convergence of the model time delay is 

discussed, when the non-delay model and process parameters are identical. A number 

of theorems are developed; one theorem considers convergence o f the model time 

delay index in the idealised case, when it is assumed that the process time delay is an 

integer multiple of the sample period, and is known a priori. Subsequent work 

assumes, more realistically, that the process time delay is unknown a priori-, 

convergence is considered when the process time delay is an integer multiple o f the 

sample period, and a real multiple of the sample period, as well as when the previous 

model output is used to calculate the new model output. Finally, the convergence of all 

of the model parameters is considered, when all of the process parameters are 

unknown, in the idealised and realistic cases mentioned above. This structure allows a 

comprehensive exploration of the issues.

The author has considered the use of four gradient algorithms: the Levenberg- 

Marquardt algorithm, the Gauss-Newton algorithm, the steepest descent algorithm 

(Ljung (1987)) and the least mean square (LMS) algorithm (Widrow and Steams

(1985)). The implementation of these algorithms is described in Chapter 2. O ’Dwyer 

and Ringwood (1994a), (1994b) show the estimation of the parameters o f a FOLPD
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model using these algorithms, with each algorithm facilitating the updating of the 

parameters in a broadly similar manner (at least for the simulations taken). The 

simulation results quoted in this chapter will use the Levenberg-Marquardt gradient 

algorithm for updating the parameters, with no loss o f generality, as the procedures 

developed to facilitate convergence of the model parameters to the process parameters 

are appropriate for the use of any of the gradient algorithms mentioned.
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3.2 Rational polynomial approximation of the time delay 

variation

It has been stated in Section 3.1 that prior to calculating the partial derivative of 

the error with respect to the time delay, the time delay variation, r, is approximated by 

a rational polynomial. The two first order approximations to the time delay variation 

considered are as follows:

Taylor: e”sr« l - s r  (3.1)

sr 1 -  0.5sr
Pade: e « - —— — (3.2)

1 + 0.5sr

The MSE function between the process and model outputs was calculated 

analytically, when the time delay variation was represented by each of these 

approximations in turn; it is assumed that the process time delay is an integer multiple 

of the sample period. It was determined that the MSE performance surface was 

unimodal with respect to the model time delay index when the first order Taylor’s 

series approximation was used. These calculations are done in the discrete time 

domain, as integer values o f the process time delay appear as appropriate power terms 

on the numerator transfer function o f the process, in this domain; in addition, a 

standard procedure has been defined to calculate the MSE surface, by Widrow and 

Stearns (1985), in the domain. These calculations are performed in subsequent sections 

of this chapter. The use o f the first order Pade approximation produced a non-quadratic 

MSE performance surface, which is non-unimodal in the model time delay index. This 

development is given by O ’Dwyer (1996e). The relationship between the MSE 

function and the model gain and time constant terms separately is unimodal; no 

approximation is used for the time delay variation when these parameters are being 

updated.

The use o f higher order approximations for the time delay variation is possible; 

some of the second order approximations that may be used in these circumstances are 

as follows:

Taylor: e“sr « l - s r  +0.5s2r2 (3.3)
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l-0 .5 sr + 0.0833sV 
Pade:e  « 1 + 0.5sr + 0.0833S2r 2 (3 .4)

1 -  0.0625s2r 2
Marshall 0979) : e - > , 1 + 0 - 5sy  (3.5)

l-0 .5 s r  + 0.125s2r 2
Product (Piche (1990)): e -  »  1 + a5 sr+ (U 2 5 sV  <3 '6)

l-0 .5 s r+  0.0625s2r 2
Laguene (Piche (1990)): e -  -  , ; 0.5 “ o . o g ^ V  <3'?)

Paynter (Robinson and Soudack (1970)):

1 + sr+  0.4054s2r 

Product (Gradshteyn and Ryzhik (1980)):

1
e sr » ------------------- (3.8)1 , —  , f \  A  A C / I  „ 2 „ 2  V J

l-0 .5 s r+  0.1013s2r 2 
l + 0.5sr + 0.1013s2r 2e~,r " T . n , _ . n 7 n„  2-2 0-9)

Direct Frequency Response (Stahl and Hippe (1987)):

„ 1 -  0.49sr + 0.0954s2r2
l + 0.49sr +0.0954s r2 „ 2 (3.10)

There are an infinite number of higher order approximations that may be used for the 

time delay variation; just one of these approximations is the third order approximation 

defined by Marshall (1979):

1 -  (0.167sr)3
~ l + (0.167sr)3 ( ‘ )

The use of the second order Taylor’s series approximation depends on the use 

of a higher order model for the process than a FOLPD model; the other approximations 

may be used with a FOLPD process model. It is shown by O’Dwyer (1996e) that when 

the MSE surface was calculated versus model time delay index, over a large number of 

samples, for the approximations in equations (3.3) to (3.11), unimodality was achieved 

only when a second order Taylor’s series approximation was used for the time delay 

variation (when the process is modelled by a second order lag plus time delay model).
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Two examples o f a non-unimodal MSE surface are provided below, when a second 

order Pade approximation and a second order Product approximation (as defined by 

Piche (1990)) is used for the time delay variation (Figures 3.1 and 3.2, respectively); 

the point ‘x ’ marks where r = 0 (or gp = gm ) in each case.

Figure 3.1: MSE surface (Pade) Figure 3.2: MSE surface (Product)

The condition that only the use of either a first order Taylor’s series 

approximation or a second order Taylor’s series approximation for the time delay 

variation will guarantee unimodality o f the resulting MSE function versus model time 

delay is related to the z domain models calculated (using the zero order hold 

equivalence approach) when various approximations are used (O ’Dwyer (1996e)). The 

poles o f the z domain model are always within the unit circle when either a first order 

Taylor’s series approximation or a second order Taylor’s series approximation for the 

time delay variation is used, but one or more poles are either on or outside the unit 

circle when any other approximation is used, for at least some values of the model time 

delay index. It is perhaps not surprising that the resultant generation of an unstable 

discrete domain model does not facilitate convergence o f the model time delay index to 

the process time delay index. Even in cases where unimodality o f the MSE surface is 

achieved over a large range of model time delay index values, an infinite spike always 

exists on the MSE surface when r = 0 for all approximations except the Taylor’s series 

approximations taken (e.g. Figures 3.1, 3.2). Thus, an exact estimate of the process 

time delay, using the gradient method, will not be possible in these circumstances. 

Unfortunately, Theorem 3.1 (Section 3.3) proves that satisfactory values of the non­

time delay model parameters will not be estimated unless an exact estimate of the 

process time delay is determined.
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3.3 Convergence of the non-delay model parameters

This section deals with the convergence of the non-delay model parameter 

estimates to the non-delay process parameter estimates using gradient methods; it is 

desired to prove that when the model time delay index equals the process time delay 

index, then the gradient algorithms may provide successful convergence o f the model 

gain and time constant values to the process gain and time constant values, 

respectively.

Theorem 3.1: For a first order discrete stable system, the MSE performance surface is 

minimised when the model gain equals the process gain and the model time constant 

equals the process time constant, under the following conditions:

(a) The model time delay index equals the process time delay index

(b) Measurement noise is assumed uncorrelated with the process input and output and

(c) The input to the process and the model is assumed to be a white noise input.

Proof: The process difference equation is

with Tp = process time constant, K p = process gain and T p = gpTs, Ts = sample period, 

gp = process time delay index; w(n) = measurement noise.

The model difference equation is (assuming the previous process output is used in its 

calculation)

with K m = model gain, Tm = model time constant and gm = model time delay index. 

The difference between the process and model output, e ,(n ) , is (from equations (3.12) 

and (3.13))

e, (n) = y, (n) -  yml (n) -  (e 'Ts/Tp -  e"Ts/Tm )y, (n -1 )

+K p(l -  e 'Ts/Tp )u(n -  gp - 1) -  Km(l -  e 'Ts/T"')u(n -  gm -1 )  + w(n) (3.14)

y, (n) = e 'Ts/Tp y , (n -  1) + K p (1 -  e"Ts/Tp )u(n -  gp -  1) + w(n) (3.12)

yml (n) = e_T,/Tn,y ] (n -1 )  + Km (1 -  e‘Ts/T"’ )u(n -  gm -1 ) (3.13)
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The procedure defined by Widrow and Steams (1985) may be used to calculate the 

MSE performance surface as follows:

E[e,2 (n)] = ryiyi (0) + rw  (°) + ^ 7  f  [Gml (z_1 )O llu (z)Gml (z) -  2 0 y_u (z)G ml (z)] ̂

(3 .15)

00 co

with O uu(z )=  2 ] r uu(n)z-n, O yiU(z )=  ^ r yiU(n)z-n, ryiyi(n), ruu(n) and rww(n)
n = —00 n = -o o

being the autocorrelation functions o f y,(n), u(n) and w(n) respectively; ryiU(n) is 

the cross-correlation of y,(n) and u(n). The model G m](z) corresponds to the output

y,n I C a ­

using  the residue theorem to calculate the closed curve integral, the MSE 

function is calculated (from equation (3.15)) to be (O’Dwyer (1996m)):

2KpK .( ] - e - T-'T'X '~ e - TJ1-)  yr.
(1 -  e"T̂ Tpe “Ts/T'")

+ rww(0) (3 .16)

The MSE function is minimised when 3E[e,2(n)]/ôK m and <3E[e,2(n)]/<9(l / Tm) equal

zero simultaneously. The required calculations, determined by partially differentiating

equation (3.16) (O ’Dwyer (1996m)), show that (assuming gp = gm)

2 K 2(1 -e~ Ts/T|’)2 K 2(1 
E[e, (n)] = -----

e-VTm)2

(1 ) (1 -e -2T,/Tn

5E[e, (n)] 
SK

= 0 => K =
K (1 -  e_Ts/Tp )(1 -  e_2Tl/Tm )

( l _ e-T*/T" ) ( l - e )
(3.17)

and

3E[e,2(n)] Kp( l - e - T'/T' ) 2( l - e - " - 'T- ) !

5(1 / T J ( 1 - e  's/Tn,)2( l - e -Ts/TPe-T,/Tm-j2 (3 .18)

If both 5E[e,2(n)]/0K m and 5E[e,2(n)]/3(l /T m) equal zero simultaneously, then it 

may be deduced from equations (3.17) and (3.18) that Tm = Tp and K m = K p . □
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A corollary to this theorem is that if gp ^  gm, then the MSE function is not 

minimised when K = K and T = T„. This means that the model time delay indexm  p m  p *'

must converge to the process time delay index before convergence o f the model gain 

and time constant values to the process gain and time constant values, respectively, is 

possible. A further corollary to this theorem is that the MSE function is not minimised 

when K m = K p unless gm = gp and Tm = Tp, and the MSE function is not minimised

when T = T  unless e = and K = K n . These conclusions have been constantm  p o m  c-’p  m  p

features of the simulation results taken for model parameter and time delay updating 

using gradient methods.

The unimodality of the MSE function with respect to the parameters individually 

was demonstrated, in typical simulation results, by plotting the MSE function versus the 

corresponding parameter, as shown in Figures 3.3 and 3.4. For Figure 3.3, Tp = Tm and 

gP = gm with K p = 100 and for Figure 3.4, K p = K m and gp =gm with Tp = 100; for

both of these plots, the MSE is calculated based on equation (3.16), with measurement 

noise assumed absent.

Figure 3.3: MSE vs. Model gain Figure 3.4: MSE vs. Model time constant

M odel tim e constant

These plots confirm that the MSE function is quadratic with respect to the model gain, 

though it is not quadratic with respect to the model time constant (equation (3.16)).
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3.4 Convergence of the model time delay

This section o f the chapter will consider the use of the gradient algorithm for 

updating the time delay only, with the non-time delay process and model parameters 

put equal. The gradient algorithm used, depending as it does on the partial derivative of 

the cost function with respect to the parameter value (equation (2.4)), will be a function 

of the error between the process and the output, and the partial derivative of the error 

between the process and the output with respect to the parameter value. The cases 

outlined below are considered; these cases are chosen to comprehensively cover the 

implementations possible.

1. The error and the partial derivative o f the error with respect to the time delay 

variation are calculated by using a first order Taylor’s series approximation for the time 

delay variation. This will be referred to as Case 1 in subsequent work in this section of 

the chapter. This is an idealised implementation, as the process time delay is assumed 

known a priori (and is assumed to be an integer multiple of the sample period).

2. The partial derivative of the error with respect to the time delay variation is 

calculated by using a first order Taylor’s series approximation for the time delay 

variation and the error is calculated based on using a FOLPD process model. In this 

case, updating of the model time delay when it is both an integer multiple of the 

sample period, and a real multiple of the sample period, is considered. This will be 

referred to as Case 2 in subsequent work in this section of the chapter. This case 

provides a more realistic implementation than Case 1 above, as the process time delay 

is not assumed known a priori.

3. The partial derivative of the error with respect to the time delay variation is 

calculated by using a first order Taylor’s series approximation for the time delay 

variation and the error is calculated based on using a FOLPD process model. The 

previous model output is used to calculate the new model output. This will be referred 

to as Case 3 in subsequent work in this section of the chapter; as in Case 2, the time 

delay is not assumed known a priori, though it is assumed that the process time delay 

is an integer multiple o f the sample period.
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3.4.1 Convergence of the model time delay - Case 1

Theorem 3.2: For a first order discrete stable system of known gain and time constant, 

the MSE performance surface versus model time delay index is unimodal with a 

minimum value o f the MSE occurring when the model time delay index equals the 

process time delay index, under the following conditions:

(a) The time delay variation is approximated by a first order Taylor’s series 

approximation

(b) The measurement noise is uncorrelated with the process input

(c) The resolution on the process time delay is assumed to be equal to one sample 

period and

(d) The error and the partial derivative of the error with respect to the time delay 

variation are calculated based on using the first order Taylor’s series approximation for 

the time delay variation.

Proof: The process difference equation, y2(n ) , is

y2(n) = e“Ts/Ty2(n -1 ) + K(1 - e~Ts/r)u (n-  gp -1 )  + w(n) (3.19)

with Tp = Tm = T , K p = K m = K . The corresponding model difference equation,

calculated by substituting a first order Taylor’s series approximation for the time delay 

variation, is (assuming the previous process output is used in its calculation)

y.,(n) = « - ' M .  -1) -  K(e'' ~ S|">T‘ u(n -  g J  -  K(e"T,/T -1  -  ^ M L )u(n _ gn, .  „

(3.20)

Therefore, from equations (3.19) and (3.20), e2(n) = y2(n) -  ym2(n) is given by

e2(n) = K[(l -  e T-/T)u(n-gp -  1) + (Sp 5 u ( n - g j

+(e~T,/T -  1 -  —— 5)u(n -  gn, -  1)] + w(n) (3-21)

The MSE performance surface, E[e22(n )], may then be calculated as
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E[e22(n)] = E[K2(1- e-T=/T)2u2(n -  gp -  1 )+ K (§P ^  Ts u2( n - g j ]

+E[2K (6pt  g—T-(l -  e~T,/T)u (n -  gm)u(n -  gm -  1)]

+E[K2(e_Ts/T -  1 -  ^ ^ ) V ( n  -  gm -  1)]

+E[2K(e-Ts/T -1  -  (gp~Tgm- ) u ( n  -  gB -  l)w(n) + w2 (n)]

+E[2K2 (1 -  e 'Ts/T)(e"Ts/T -1  -  ĝp ■ ^ T> (n -  gp -  l)u(n -  gm -1)]

2K 2(g - g m)Ts (g - g m)T
+E [— — p- ----------(e s/ - 1  v—   ) u ( n - g m) u ( n - g m- l ) ]

2K(e -  a YT
+E[2K(1 - e TjT)u (n - gp - 1 ) w (n) + ------- p u (n - gm)w(n)] (3.22)

Therefore, it may be shown that (O’Dwyer (1996m))

2K 2(e - e  )2T 2
E[e2! (n)l = 2K J (1 -  e-T-'T)![r,lu (0) -  r„„ (g„ -  g J ]  + --------------------- 5 [r„(0) -  r„,(l)J

2K2H -  e '^ ' l T
+ ---------------------   (gP -  gm )truu (0) -  ruu (!) + ruu (gP “  gm + 1) -  ruu (gp -  gm)] + Tww (0)

(3.23)

Therefore, E[e22(n)] = rw (0) for gm = gp. Now ruu(0) > ruu(n)Vn and for gra < gp, it

may be shown by comparing the sizes o f the individual terms in equation (3.23) that

E[e22(n)] > rww(0) for all values of gm and gp (O’Dwyer (1996m)). For gm > g p , it

may also be shown by comparing the sizes of the individual terms that

E[e22(n)] > ^ ( 0 )  for all values of gm and gp (O’Dwyer (1996m)). Thus, the

minimum value of the MSE function occurs at gm = gp and the measurement noise has

no effect on the estimated process delay index. The only situation that arises for which

E[e22(n)] = rw (0) for g m ^  gp is when the input has a flat autocorrelation function,

which corresponds to a constant level input. Thus, any input change is sufficient for 

correct process delay index estimation, if  the process delay index is estimated by
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determining the minimum of the MSE performance surface.

However, if a gradient method is used to estimate gp, then an additional

restriction that the MSE function must be unimodal about a minimum value when 

gm = gp, is imposed. The unimodality of the MSE function in equation (3.23) may be 

proved by induction; an outline of the inductive proof (provided in full by O ’Dwyer 

(1996m)) is as follows:

(a) For gp > gm, it is required to prove that the MSE function at gm = gp - 1  is greater 

than the MSE function at gm = gp. It may be proved that this is true, using equation 

(3.23), provided

[(1 -  e“T>/T)2 + (Ts/T)2 + Ts(l -  e-T’/T)/T][ruu(0) -  ruu(l)] -  (Ts/T)(l -  e-T>/T)[ruu(l) -  ruu(2)] > 0

(3.24)

Simple analysis shows that this expression is always true.

(b) For gp > gm, it is required to prove that the MSE function at gm = gp — n — 1 is 

greater than the MSE function at gm = gp -  n .  Applying equation (3.23), it may be 

proved that this is true, provided

(1 -  e-rJT?  [r„„ (n) -  r,„ (n +1)] + [ i -  + (1 -  e-T̂ ) i ] [ r , t (0) -  r„„ (1)]

+ 0  -  e-T'/T) ^ [ n r „ ( n )  -  (2n + l)ru„(n +1) + (n + l)r„„(n + 2)] > 0 (3.25)

The condition in equation (3.25) is fulfilled by many excitation signals; one example is

a white noise signal.

(c) For gp < gm, it is required to prove that the MSE function at gm = gp +1 is always 

greater than the MSE function at gm = g . Using equation (3.23), it may be proved that 

this is true, provided

2K !(1 -  e"T,/T -  Ts/T )2[ruu(0) -  r<u(l)] > 0 (3.26),
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which is always true.

(d) For gp < g m, it is required to prove that the MSE function at gm = gp + n  + l is 

greater than the MSE function at gm = gp + n . Applying equation (3.23), it may be 

proved that this is always true, provided

(1 -  e 'T,̂ T)i [ruu (n) -  r,„ (n + 1)] + [ £ -  -  (1 -  e-T' 'T) i ] [ r „ >(0) -  r„u (1)]

-(1  -  e~T'A) | - [ - n r uu (n -1 )  + (2n + l)r„,(n) -  (n + l)r„,(n +1)] > 0 (3.27)

As with equation (3.25), the condition in equation (3.27) is fulfilled by many excitation 

signals; one example is a white noise signal. □

This theorem is superficially similar to one developed by Elnagger et al. 

(1990a), for application to the estimation of the time delay of a FOLPD process model, 

in which the time delay is not approximated; these authors do not prove, however, that 

the corresponding MSE surface is unimodal.

The unimodality of the MSE function (given by equation (3.23)) versus model 

time delay index is confirmed by representative simulation results given in Figures 3.5 

and 3.6. For these simulations, K p = K ra = 2.0, Tp = Tm = 0.7 seconds with gp = 30.

The normalised MSE (equal to the MSE divided by ruu(0)) is plotted versus model 

time delay index in both cases, with rvvw(0) put to zero. The excitation signal used to 

produce Figure 3.5 is white noise, with the excitation signal used to produce Figure 3.6 

being a square wave o f period equal to 100 samples.

Considering equations (3.19), (3.20) and (3.21), a block diagram representation 

o f the gradient method to update the model time delay index is shown in Figure 3.7.
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Figure 3.5: Normalised MSE vs. time 

delay index - white noise input

Figure 3.6: Normalised MSE vs. time 

delay index - square wave input

Figure 3.7: Updating of the model time delay index - Case 1.

PROCESS

One representative simulation result corresponding to Theorem 3.2 is given in 

Figures 3.8a-3.8d. The time delay indices and the process minus model output are 

plotted against sample number. At the beginning, the starting values of the process and
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model time delay index were both equalised; a step change was then made to the 

process time delay index value. In the simulation, the update for the model time delay is 

a fractional multiple of the sample period; when the addition o f these updates exceeds 

the value of the sample period (in either the positive or negative direction), then an 

appropriate adjustment is made in the model time delay index, with the update for the 

model time delay reset to zero. The process and model gain and time constant 

parameters were put equal to 2.0 and 0.7 seconds, respectively (i.e. the simulation 

conditions correspond to the conditions taken to calculate the MSE curves in Figures 

3.5 and 3.6). The Levenberg-Marquardt gradient algorithm (Ljung (1987)) was used to 

update the model time delay index; the sample time was defined equal to 0.1 seconds. 

In the implementation o f this algorithm, the starting value of the inverse Hessian matrix 

was defined equal to 251, with 5 = 0.001 and ¡V(n) = 0.95 (these values were 

determined from simulation results to be appropriate to the application). Coloured 

measurement noise, generated by low-pass filtering a white noise signal, was added. 

The model time delay index was limited in variation to one sample period per iteration 

(which is a form of filtering on the time delay index value); such filtering was found to 

be desirable in simulation. Fast convergence to the process time delay index is seen, 

even in the presence of very substantial coloured measurement noise; this is true if the 

starting value of the model time delay index is either greater than or less than the 

process time delay index, as expected from Theorem 3.2. The error, e ,(n ), in Figures 

3.8b and 3.8d is non-zero due to the presence of the coloured measurement noise.

Figure 3.8a: Time delay index estimate

AOr______  . , __
E

Sample number

Figure 3.8c: Time delay index estimate
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Figure 3 .8b: e2 (n) corresponding to 

Figure 3.8a

Figure 3.8d: e2(n) corresponding to 

Figure 3.8c

The procedures outlined depend on a priori knowledge of the process time 

delay index, gp (as may be seen clearly in the model in Figure 3.7, for instance).

Therefore, the implementation must be regarded as an idealised case. Section 3.4.2 

provides the development of a more realistic implementation.

3.4.2 Convergence of the model time delay - Case 2.

3.4.2.1 The time delay as an integer multiple of the sample period

It is necessary to modify the procedure outlined in Section 3.4.1 if a priori

knowledge o f the process time delay index, gp, is not available (as will normally be the 

case). One possibility is to calculate the error, e3(n ) , based on using a FOLPD process 

model. The model difference equation in this case is (assuming that the previous 

process output is used in its calculation, and that Tp = Tra = T, Kp = Km = K )

y .,(n )  = e-T'/Ty2(n -  1) + K(1 -  e-T'^ )u (n  -  gm -1 )  (3.28)

with y2(n) given by equation (3.19). Therefore, from equations (3.19) and (3.28),

e3(n) = y2(n) -  ym3(n) is given by
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e3(n) = K(1 -  e 'Ts/T)[u(n -  gp -1 )  -  u(n — gm — 1)] + w(n) (3.29)

The partial derivative of the error with respect to the time delay variation may then be 

calculated by using a first order Taylor’s series approximation for the time delay 

variation. This error, e2(n ) , is given by equation (3.21); the corresponding partial

derivative mentioned above is

_ S [ u (n _ g ) _  u(n _ gm _  1)] (3.30)
9(gp - g m) T

The update vector (for updating the model time delay - equation (2.4)), which depends 

on the product of the error (e3(n)) multiplied by the partial derivative o f the error with 

respect to the time delay variation (de2(n)/d(gp -  gm)) is then independent of g p. The

cost function that approximately corresponds to this update vector will be referred to as 

the mean of the product of the errors (MPE) function; this function is defined as 

E[e2(n)e3(n)] in this case. The update vector that exactly corresponds to this cost 

function depends on e3(n)[5e2(n )/5 (gp -  g j ]  and e2(n)[de3(n )/d (gp -  g j ] . It is 

assumed that e3(n)[de2(n )/a (g p -  g j ]  « e2(n)[5e3(n )/5 (g p -  g j ] .  This is a

reasonable assumption, bearing in mind that the time delay variation, which is 

approximated by a first order Taylor’s series approximation, is assumed to be small.

The MPE cost function will equal the MSE cost function at gp = gm (when

equation (3.20) reduces to equation (3.28)).

If any other approximation to the time delay variation is used rather than a first 

order Taylor’s series approximation, then it may be shown (O’Dwyer (1996e)) that the 

partial derivative of the error with respect to the time delay variation is a function of 

g p. Thus, if  g p is unknown a priori, then a first order Taylor’s series approximation

for the time delay variation is the only approximation of interest.

It is desired to prove convergence of the model time delay index to the process 

time delay index, with the process time delay index being unknown, but with the other 

model parameters being known a priori.
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Theorem 3.3: For a first order discrete stable system of known gain and time constant, 

then the MPE performance surface versus model time delay index is unimodal, with a 

minimum value o f the MPE occurring when the model time delay index equals the 

process time delay index, under the following conditions:

(a) The time delay variation is approximated by a first order Taylor’s series 

approximation

(b) The measurement noise is uncorrelated with the process input

(c) The resolution on the process time delay is assumed to be equal to one sample 

period

(d) The error is calculated based on using a FOLPD process model; the partial 

derivative of the error with respect to the time delay variation is calculated based on 

using the first order Taylor’s series approximation for the time delay variation and

(e) The process time delay index is greater than the model time delay index, as the 

model time delay index converges.

Proof: The process difference equation, y2(n ) , is given by equation (3.19). The model 

difference equation, y m3(n ), is given by equation (3.28). The model difference 

equation for calculating the partial derivative o f the error with respect to the time delay 

variation, y m2(n ) , is given by equation (3.20). The expressions e2(n) = y2(n) -  ym2(n) 

and e3(n) = y 2(n) -  y m3(n) are given by equations (3.21) and (3.29), respectively. The 

MPE performance surface, E[e2(n)e3(n)], may then be calculated, using a procedure 

similar to that used in equations (3.22) and (3.23), to be equal to (O’Dwyer (1996m))

K !(! -  e-VT) (B»-~- S''')T-[r,u(0) -  r„ (l)  + r„(g„ -  gm +1) -  r,„(gp -  g„)] + rTO(0)

+2K2( l - e - T-/I )! [ru„ ( 0 ) - r u„(gp - g J ]  (3.31)

Therefore, E[e2(n)e3(n)] = rvvw(0) for gm = gp. It may be shown by comparing the 

sizes o f the individual terms in equation (3.31) that E[e2(n)e3(n)] > rww(0) for gp >gm 

only (O’Dwyer (1996m)).

Thus, the minimum value of E[e2(n)e3(n)] occurs at gm = gp (when g m is 

restricted to be less than or equal to gp) and the measurement noise has no effect on 

the estimated process delay value. If gp > g ,n, then, from equation (3.31), the only
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situation that arises for which E[e2(n)e3(n)] = rww(0) for gm *  gp is when the input

has a flat autocorrelation function, which corresponds to a constant level input. Thus, 

any input change is sufficient for correct process delay index estimation, provided that 

the required condition on g m is fulfilled, if  the process delay index is estimated by 

determining the minimum of the MPE performance surface.

However, if  a gradient method is used to estimate g , then an additional

restriction that the MPE function must be unimodal for gp > gm, with a minimum MPE

value occurring at gm = g , is imposed. The unimodality of the MPE function for

gp > gm may be proved by induction; an outline of the inductive proof (provided in full

by O ’Dwyer (1996m)) is as follows:

It may be proved that the MPE function at gm = g — 1 is greater than the MPE

function at gm = gp (using equation (3.31)), provided that

2(1 -  e-T-^)[r„„(0) -  ruu(1)] + i[ r„ „ (0 )  -  2 r„ (l)  + r„„(2)] > 0 (3.32)

Applying equation (3.31), it may be proved that the MPE function at gra = gp -  n -  1 is 

greater than the MPE function at gm = gp -  n , provided that

2(1 -  e“T,/T)[ruu(n) -  ruu(n + 1)] + y [ r uu(0) -  ruu(l)]

+ -  (2n + l)ruu(n + 1) + (n + l)ruu(n + 2)] > 0 (3.33)

Both o f the conditions in equations (3.32) and (3.33) are fulfilled by many excitation 

signals; one example is a white noise signal. □

The behaviour of the MPE function (given by equation (3.31)) versus model 

time delay index is confirmed by Figures 3.9 and 3.10, in representative simulation 

results. For these simulations, K p = K in = 2.0, Tp = Tm = 0.7 seconds and g p = 30; these

conditions are identical to those used to calculate the normalised MSE curves in 

Figures 3.5 and 3.6. The normalised MPE (equal to the MPE divided by ruu(0)) is 

plotted versus model time delay index in both cases, with rww(0) put to zero. The
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excitation signal used to produce Figure 3.9 is white noise, with the excitation signal 

used to produce Figure 3.10 being a square wave of period equal to 100 samples. These

plots show that the MPE performance surface is greater than rww (0) for g p >gm only,

and that when the conditions in equations (3.32) and (3.33) are fulfilled, the MPE 

function is unimodal for gp > gm, with a minimum MPE value occurring at gm = gp.

Figure 3.9: Normalised MPE vs. time 

delay index - white noise input

Figure 3.10: Normalised MPE vs. time 

delay index - square wave input

Considering equations (3.19), (3.20), (3.21), (3.28) and (3.29), a block diagram 

representation of the gradient method to update the model time delay index is shown in 

Figure 3.11.

Representative simulation results corresponding to Theorem 3.3 are given in 

Figures 3.12 and 3.13, with the time delay indices and the process minus model output 

plotted against sample number. The simulation conditions are identical to those used in 

Section 3.4.1 (and thus correspond to the conditions taken to calculate the MPE curves 

in Figures 3.9 and 3.10), with the addition that in the simulation in which a square 

wave is the excitation signal, the learning rate, p., for the time delay is put to 10 and 

filtering on the time delay update is employed; these conditions were determined to be 

appropriate for the application.
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Figure 3.11: Updating of the model time delay index - Case 2
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Figure 3.12a: Time delay index estimate- 

white noise excitation

Figure 3.13a: Time delay index estimate- 

square wave excitation
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Figure 3.12b: e3(n) corresponding to 

Figure 3.12a

Figure 3.13b: e3(n) corresponding to 

Figure 3.13a

200 400 6C0 BOO 1000 1200 1400

Sample number Sample number

Good convergence to the process time delay index is seen for g > g m. Other

supplementary simulation results show no convergence to the process time delay index 

when g p < g m. This verifies Theorem 3.3. However, the nature o f the MPE functions

(Figures 3.9 and 3.10) mean that convergence o f the model time delay index could not 

be guaranteed, as the MPE goes negative when gm > gp . Convergence could only be

guaranteed if gm is always less than or equal to gp. The convergence o f the model

time delay index in the simulations taken is due to the manner in which the parameter 

is being updated in the simulation, which tends to prevent gm going greater than gp; as

Figures 3.12b and 3.13b show, estimation is possible in the presence of coloured 

measurement noise only when such noise is at a low amplitude.

3.4.2.2 The time delay as a real multiple of the sample period

Theorem 3.3  in the previous section dealt with the estimation o f time delays 

that are integer multiples o f the sample period. For the estimation o f time delays that 

are real multiples o f the sample period (and assuming Tp = Tm = T, Kp = Km = K ),

the FOLPD process difference equation is given as (O’ Dwyer (1996e)):

y3(n) = e“T,/Ty3(n -  1) + K(1 -  e8bTs/T)u(n -  gp) + K(egbT,/T -  e 'Ts/T)u(n -  gp -  1) + w(n)

(3 .34)
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with g b = process time delay minus the process time delay index.

The corresponding model difference equation (assuming the previous process output is 

used in its calculation) is

y m4(n) = e"Ts/Ty3(n -1 )  + K(1 -  eB*T‘/T)u(n -  gm) + K(e8°Ti/T -  e"Ts/T)u(n -  gm -1 )

(3.35)

with ga = model time delay minus model time delay index.

The model difference equation for calculating the partial derivative o f the error with 

respect to the time delay variation (and assuming that the previous process output is 

used in its calculation) is

/  ^ - T  /T /  1 \ ^ ( g p  Sill S b  S a )" ^ s  / \
y m5(n ) = e s/ y 3( n - l )  E   u ( n -  g in)

-K[e~TjT - 1  -  (gp ~ g 'n~ Tgb ~ ga — ]u (n -  gm -  1) (3.36)

This equation may be deduced from equation (3.20). Therefore, from equations (3.34) 

and (3.35),

e4(n) = y 3(n) -  ym4(n) = K(1 -  eEbTs/I )u(n -  gp) + K(eEbVT -  e“Ts/T)u(n -  gp -1 )

-K ( l - e r t /T ) u ( n - g J - K ( e ^ T - e ^ /T)u ( n - g ra -1) + w (n) - (3.37)

and, from equations (3.34) and (3.36),

es(n) = y3(n) -  ym5(n) = K(1 -  e8bTi/T)u(n -  gp) + K(e6hVT -  e_Ts/T)u(n -  gp -1 )

K T s ( g  — g m +  g b — g a )  |- I J  T s ( g p § m  § b  ~  § a ) - |  ,  \
+  £   u ( n - g m) +  K [e J  - 1  £   ]u(n  -  g ffl -  1) +  w (n )

(3.38)

The MPE performance surface, E[e4(n)e5(n)], may then be calculated, using a 

procedure similar to that used in equations (3.22) and (3.23), to be equal to (O’Dwyer 

(1996m))
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K 2[(l -  eBbT̂ T)2 + (e8bTs|/T -  e-T‘/T)2 + (1 -  e~T’/T)(eĝ T -  e-T‘/T)]ruu(0)

- K 2(l + e"Ts/T -  2egaVT) ^ ( g p -  gm + gb -  ga)ruu(0) +

K2[2(l -  egbT'/T)(egbTs/T -  e 'T’/T) + (1 -  e 'T‘/T)(l -  eE°Ts/T)

-(2 eEaTs/T -  1 -  e-T‘/T) i ( g p -  gm + gb -  g,)]ruu(l) +

K2[(gP~gm + gb --ga)I i ( ] _ 2egbTs/T + e-T‘/T) -  (1 -  egbTs/T)(l -  eg°T‘/T)

.  ( ^ . / T  _  e - T s / T ) ( 1  _  2 e - T , / T  +  e ^ / T ) ] r u u ( g p  -  g j

- K 2 (1 -  egbTi|/T) [ (gp~gm + gb ~ ga)? ; + (1 _ + eĝ T)]ruu (gp -  gm -1 )  +

K2(egbT*/T - e - T-/T)[(gp gm +T§b §a-)Ts - ( l - e ĝ T)]ruu(gp - g m + l)  + rvvw(0)

(3.39)

Now, using equation (3.39), it may be shown that E[e4(n)e5(n)] = rw (0) if g p = gm 

and g b = ga. The behaviour of the MPE function versus model time delay is given by 

Figures 3.14, 3.15, 3.16 and 3.17, in representative simulation results. For these 

simulations, K p = K m =2.0, Tp = Tm = 0.7seconds and g p = 5 , with the time delay

taken in intervals o f 0.01 times the sample period. The normalised MPE (equal to the 

MPE divided by r[lu(0)) is plotted versus model time delay index for g b =0.0 and 

g b =0.5 in Figures 3.14 and 3.15, when the excitation signal to the process is white 

noise. The normalised MPE is plotted versus model time delay index for g b = 0.0 and 

g b =0.5 in Figures 3.16 and 3.17, when the excitation signal to this process is a square 

wave o f period equal to 100 samples. In Figures 3.14 and 3.16, the normalised MPE 

calculated from equation (3.31) is superimposed on the plots for comparison purposes. 

For all simulations, ^ ( 0 )  is put to zero.

Figures 3.14-3.17 show the true multimodal nature o f the MPE function versus 

model time delay when the time delay is a real multiple o f the sample period. The 

estimation of the real value of the process time delay is impossible using gradient 

methods.
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Figure 3.14: Normalised MPE vs. time Figure 3.15: Normalised MPE vs. time 

delay index - white noise excitation delay index - white noise excitation

- gb = 0.0 - gb = 0.5

gm < gp P > 9P
Model time delay index

Figure 3.16: Normalised MPE vs. time 

delay index - square wave excitation

- g b = o.o

n < g p  g m > s
Model time delay index

Figure 3.17: Normalised MPE vs. time 

delay index - square wave excitation 

-g b =0.5

Model time delay index Model time delay index
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3.4.2.3 Conclusions

In summary, the gradient method will allow the estimation o f process time 

delays that are integer multiple of the sample period, in the case where the process time 

delay is the only unknown parameter, provided the process time delay is always greater 

than the model time delay, as the model time delay converges to the process time 

delay. An alternative non-gradient method that involves estimating the proccss time 

delay index by determining the minimum positive value of the MPE performance 

surface would allow the estimation of the process time delay index under the same 

conditions as the gradient method. Unfortunately, it is not possible to estimate process 

time delays that are not integer multiples o f the sample period using the gradient 

method, though it appears from Figures 3.14-3.17 that it may be possible to do so using 

a non-gradient method based on determining the minimum positive value of the MPE 

performance surface (at least for g p > gm).

3.4.3 Convergence of the model time delay - Case 3

In Theorem 3.3, the previous process output is used to calculate the new model 

output. It was decided to investigate the convergence pattern o f the model time delay to 

the process time delay if  the previous model output is used to calculate the new model 

output. The time delay is not assumed known a priori.

Theorem 3.4: For a first order discrete stable system of known gain and time constant, 

the MPE performance surface versus model time delay index is unimodal, with a 

minimum value o f the MPE occurring when the model time delay index equals the 

process time delay index, under the following conditions:

(a) The time delay variation is approximated by a first order Taylor’s series 

approximation

(b) The measurement noise is uncorrelated with the process input and output

(c) The resolution on the process time delay is assumed to be equal to one sample 

period
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(d) The error is calculated based on using a FOLPD process model; the partial 

derivative o f the error with respect to the time delay variation is calculated based on 

using the first order Taylor’s series approximation for the time delay variation

(e) The conditions provided in the theorem are observed on the model parameters and

(f) The previous model output is used to calculate the new model output.

Proof: The process difference equation, y 2(n), is given by equation (3.19). The

corresponding FOLPD model difference equation is (assuming the previous model 

output is used in its calculation)

ym6(n) = e-T*/TymS(n -1) + K(1 -  e ^ > ( n  -  gm -1) (3.40)

The model difference equation for calculating the partial derivative of the error with 

respect to the time delay variation (and assuming that the previous model output is 

used in its calculation) is

y „ ,(n )  =  e -T- " y . , ( n  -  1) -  ^  u(n -  g „ )  -  1 -  (S ' >u(n -  g .  -  1)

(3.41)

Therefore, from equations (3.19) and (3.40),

e 6(n) = y 2(n) -  y m6(n) =  e “T-/T[y 2(n -  1) -  y m6(n -  1)]

+K(1 -  e T‘/T)[u(n -  g p -  1) -  u(n -  g m -  1)] + w (n) ( 3 .4 2 )

and, from equations (3.19) and (3.41),

e7(n) = y 2(n) -  y m7(n) = e Ts/T[y2(n -  1) -  y m7(n -  1)] + K(1 -  e_Ts/T)u(n -  gp -1 )  

+ K[—1' ^ m)TLu ( i i - g , ) t ( ^ ' r - l - ( e ,- ^ )T,) l l ( n - g .- l ) ]  + w(n) (3.43)

The MPE performance surface, E[e6(n)e7(n )], (which will approximately correspond 

to the update vector formed from the product of e6(n) and <9e7(n )/3 (gp - g m) ,  and 

will thus be independent of gp ) may then be calculated, using a procedure similar to 

that used in equations (3.22) and (3.23), to be equal to (O’Dwyer (1996m)
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K 2(] _ e -T,/T)(gp ^ J l [ruu{0) -  ruu(l) + ruu(gp -  gm + 1) -  ruu(gp -  gm)] + rlvw(0)

+2K2(1 - e"T,/T) 2[ruu(0) -  ruu(gp - g J ]  + e-2T*/T[ryjy, (0) + rymtyin, (0) - r ^ (0) -  ryym, (0)] 

-K e “T,/T(l -  e-T,/T)ruym6 (gp) + Ke‘T̂ r(l -  e~T'/T)[rliym7 (g J  -  r ^ ,  (gp)]

- e ^ T S (gp _ g J w ( g m  _ 1) _ f c ^ e - V r  _  , J j k Z l ^ K J g j

+ 2 e 'T'/TK(l -  e“T,/T)[rltyi (gp) -  ruyj (g„,)] + e‘T'/rK(gp -  g , J ^ [ r uyj (g,„ - 1 ) -  ruyj (g J ]

(3.44)

with rliy (n) being the cross-correlation function between u(n) and ys(n ), ryjy (n) 

being the autocorrelation function of y2(n) and ry>iy }(n) being the cross-correlation 

function between yx) (n) and y x2(n )-  These terms may be calculated as follows 

(O’Dwyer (1996m)):

K ^ l - e - 1̂ 2
w ° > -  u o  (3-45)

K e - ^ C l - e ^ ) r uyn4(gp) + K2( l - e - ^ ) 2ruu(gp- g J  

--------------------------------------- ( l - e ~ 2̂ ) ------------------------------------------------( }

K=-t^ (1  -  (g ,)  -  -  I -  (g> Tg J T - ](l -  e - ^  ) r . ( gp -  g„)

ryym, C°) =  (1 _ e-2T-/T)

(3.47)

Ke~T,/rr(l -  e-^ X r^ ^  (g J  + ruŷ ( g j ]  -  K2[e'T̂  -  1 -  -(gp- | m)Ti](l -  e T̂ )r,lu(0) 

ry,„.y„, ~ " " (1 _ e~2T'/T)

+ K(g* (g.  -  l) ] /( l-e -JT̂ )  (3.48)

and r„(„ (n )  = ruy_>( n - l )  + K(e-T-/Tr ' ( l - e ^ ' I )rml(0) (3.49)

73



(3.50)

ruy2 (n) = e“(n_1)Ts/TK p(l -  e~Ts/Tp)ruu(0 ) , n > g p and ruy2 (n) = 0 otherwise. (3.51)

If a gradient method is used to determine g p, when gp > gm, then the MPE function

(equation (3.44)) must be unimodal for gp > gm, with a minimum MPE value occurring

at g m = gp. The unimodality o f the MPE for gp > gm may be proved by induction; an

outline o f the inductive proof (provided in full by O ’Dwyer (1996m)) is as follows:

It may be proved, using equation (3.44), that the MPE function at gm = gp -1

is always greater than the MPE function at gm = gp. Similarly, it may be proved that

the MPE function at gm = g -  n -1  is greater than the MPE function at gm = gp -  n, 

provided that

The behaviour o f the MPE function, given by equation (3.44), versus time 

delay index is confirmed by Figures 3.18 and 3.19, in representative simulation results. 

For these simulations, K p = K m=2.0, Tp = T ltl=0.7 seconds and g p = 30. The

normalised MPE (equal to the MPE divided by rull (0)) is plotted versus model time 

delay index in both cases, with ^ ( 0 )  put to zero. The excitation signal in both cases 

is white noise, with the sample period taken to equal 0.1 seconds for Figure 3.18 and

0.02 seconds for Figure 3.19 (this means that the MPE function in Figure 3.18 may be 

directly compared with that in Figure 3.9). Non-unimodal behaviour is seen in the 

latter case (for gp > g m) at values of n when the conditions for convergence are

violated.

It is obvious from Figures 3.18 and 3.19 (without the necessity of a proof by 

induction) that convergence o f the model time delay index to the process time delay

index is not possible when g p < g m.

(3.52)

This is a sufficient condition. □
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Figure 3.18: Normalised MPE vs. time Figure 3.19: Normalised MPE vs. time

delay index - white noise excitation - delay index - white noise excitation -

Ts = 0.1 seconds Ts = 0.02 seconds

Considering equations (3.19), (3.40), (3.41), (3.42) and (3.43), the block 

diagram representation of the gradient method to update the model time delay index is 

as shown in Figure 3.20.

A representative simulation result corresponding to Theorem 3.4 is shown in 

Figures 3.21a and 3.21b, with the time delay indices and the process minus the model 

output plotted against sample number. The simulation conditions are identical to those 

used in Section 3.4.1, and thus correspond to the conditions taken to calculate the MPE 

curve in Figure 3.18; the results may be directly compared to those shown in Figures 

3.12a and 3.12b. The results in Figures 3.21a and 3.21b show that convergence of the 

model time delay index to the process time delay index is possible if the conditions for 

convergence are fulfilled. However, the nature of the MPE function (Figure 3.18) 

means that such convergence could not be guaranteed, and the convergence of the 

model time delay index in this case is due to the manner in which the parameter is 

being updated in the simulation (which prevents gra going greater than g ). Figure

3.21b shows the low level of coloured measurement noise used in the simulation.
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Figure 3.20: Updating of the model time delay index - Case 3.

Figure 3.21a: Time Delay Index estimate Figure 3.21b: e6(n) corresponding to 

- white noise excitation Figure 3.21 a
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Overall, the use o f the previous model output to calculate the new model output, 

rather than the use o f the previous process output to calculate the new model output, 

does not appear to be beneficial, because of the narrower conditions for convergence of 

the latter implementation, compared to the former implementation.
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3.5 Convergence of the full parameter set

This section of the chapter will consider the use o f the gradient algorithm for 

updating all o f the model parameter values. The gradient algorithm used is a function 

of the error between the process and the output, and the partial derivative of the error 

between the process and the output. The following cases are considered, to 

comprehensively cover the implementations possible:

1. The error and the partial derivative o f the error with respect to the time delay 

variation are calculated by using a first order Taylor’s series approximation for the time 

delay variation. This will be referred to as Case 1 in subsequent work in this section of 

the chapter, and corresponds to Case 1 in Section 3.4, where only the model time delay 

index is updated. As in Section 3.4, this is an idealised implementation, as the process 

time delay is assumed known a priori (and is assumed to be an integer multiple of the 

sample period).

2. The partial derivative o f the error with respect to the time delay variation is 

calculated by using a first order Taylor’s series approximation for the time delay 

variation, and the error is calculated based on using a FOLPD process model. This will 

be referred to as Case 2 in subsequent work in this section of the chapter (and it 

corresponds to Case 2 in Section 3.4, so that it provides a more realistic 

implementation than Case 1 above, as the process time delay is not assumed known a 

priori). In this case, the following conditions are considered:

(a) The process time delay is an integer multiple of the sample period - white noise 

input.

(b) The process time delay is a real multiple of the sample period - white noise input.

(c) The process time delay is an integer multiple of the sample period - square wave 

input.

(d) The process time delay is a real multiple of the sample period - square wave input.

In all cases, the model gain and time constant are updated assuming a FOLPD 

process model.

The case where the previous model output is used to calculate the new model 

output is not considered in detail, as the results in Section 3.4.3 revealed that there was 

no benefit, when the model time delay index was being updated, in implementing such
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a procedure compared to the procedures in Case 2, Section 3.4.2 (when the previous 

process output is used to calculate the new model output).

3.5.1 Convergence of the full parameter set - Case 1

Theorem 3.5: For a first order discrete stable system of unknown parameters, the MSE 

performance surface versus model time delay index is unimodal, with a minimum 

value o f the MSE occurring when the model time delay index equals the process time 

delay index, under the following conditions:

(a) The time delay variation is approximated by a first order Taylor’s series 

approximation

(b) The measurement noise is uncorrelated with the process input and output

(c) The resolution on the process time delay is assumed to be equal to one sample 

period

(d) The error and the partial derivative of the error with respect to the time delay 

variation are calculated based on using the first order Taylor’s series approximation for 

the time delay variation

(e) The excitation signal to the process and model is assumed to be white noise

(f) The model gain and time constant are updated based on using a FOLPD process 

model and

(g) The conditions provided in the theorem are observed on the model parameters. 

Proof: The process difference equation, y ,(n ), is given by equation (3.12). The 

corresponding model difference equation, ym](n), is given by equation (3.13) 

(assuming the previous process output has been used in its calculation). The model 

difference equation, calculated by substituting a first order Taylor’s series 

approximation for the time delay variation, is (assuming the previous process output is 

used in its calculation)

y „ , ( n )  =  e - W - y ^ n  -  1 )  -  K “ ( 8 '  ~  8 - ) T -  u ( n  -  g j  -  K J e - V ,  _  ,  _  ( E p ~  e J T - ) u ( n  - g .  -  ] )

m

(3.53)

Then, from equations (3.12) and (3.53), e8(n) = y,(n) - y mg(n) equals
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K „ ( g  g . ) T u ( n _ i J  +  K m ( e - T . ,T .  _  J _  ( 8 ,  B " ) T > ( n - g m - 1 )  +  w ( n )

m m

+K (1 -  e”T!//Tp )u(n -  g -1 )  + (e-Tŝ Tp -  e-Ts/Tm )y(n  -1 )  (3.54)

The MSE performance surface, E[eg2(n )] , may then be calculated (using a procedure 

similar to that used in equations (3.22) and (3.23)) to be equal to (O’Dwyer (1996m))

(e- v r .  (0) + 2 K* (g!* —  ̂  (e~T,/r“ -  1 -  <gp ~

+ [K,n (sp 2g|n) ts + Kp2(l -  e"T,/1p )2 + K„12(e_T*/Tm -  l - (gp -, gm)Ts)?]r[
Tm r

~2K (1 -  e-T̂ " )[ Km(gl  8m)Tlruu(gp -  gB +1) ~ K J e“™" -  1 -  ^ - ^ )rJ g p -  g j l
T‘ ill

- 2 ^ - e ^ -  )[~ K- (8' " e J T ' r , l (g... -  0  -  - 1 -  (g'  ~_g"-)T- )r,, (g„)]
*■ in * in

+ 2 ( e - V ' .  -  e " Tl/T"  ) K p ( l  -  e " T'^ *  ) r uyi ( g p )  +  ( 0 )  ( 3 . 5 5 )

For white noise excitation:

ruu(k) = ruu(0) , k = 0 and ruu(k) = 0 otherwise. (3.56)

Also, it may be shown that, for white noise excitation,

l'„„(gp + n) = (e'v , ’ r lK[ ( l - e - T''T')r „ (0 ) , n i l  (3.57)

and

r.,y, (gP + 11 ) = 0 otherwise. (3.58)

Reason: ruy|(gp) = E [y ,(n )u (n -g p>]

= E[{e"Ts/Tpy ,(n - l )  + Kp( l - e 'Ts/Tp)u (n -g p - l ) } u (n -g p)] 

= (g„ - 1 )  + Kp(l -  e '1-'1’ )r„ (1)

= e-T-^”r„r, (gp- l )

Repeated application of this procedure gives equation (3.58).
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r„y, ( g , + D  = e"V ’r,Ji(gp) + K 1, ( l - e - T'/T'K „ (0 )

= Kt ( l - e - T̂ ' ) r p,(0 )  

r „ .(g p + 2 ) = e-T-/T'rWi(g p + l) + Kp( l - e - T'/r')r „ ( l)

= Kp( l - e ' T-/T’ )e_T'/I'r„>(0)

Repeated application of this procedure gives equation (3.57).

For g m = gp , the value of the MSE (equation (3.55)) equals

MSEopt = (e”Ts//Tp -  e-T’/T" )2 ry,y_ (0) + [Kp (1 -  e"1̂  ) - K m( l - e “7̂  )]2 ruu (0) + rw  (0)

(3.59)

By comparing the amplitudes of the individual terms in equations (3.55) and (3.59), it 

may be shown that E[e82(n)] > MSEopt for

(a) gp > gm (for all values o f the other process and model parameters) and

(b) gp < gm, provided K p/K m < Tp / Tm and Tp > Tm (O’Dwyer (1996m)).

The conditions in (b) above are sufficient, rather than necessary, conditions. 

However, if  a gradient method is used to determine gp, then an additional

restriction that the MSE function must be unimodal about a minimum value when 

gm = gp, is imposed. The unimodality of the MSE function in equation (3.55) may be 

proved by induction; an outline of the inductive proof (provided in full by O’Dwyer

(1996m)) is as follows:

(a) For g p > g m, it may be proved, using equations (3.55) to (3.59), that the MSE

function at gm = gp -  1 is always greater than the MSE function at g ra = gp. Similarly,

using equations (3.55) to (3.58), it may be proved that the MSE function at 

gm = gp -  n - 1  is always greater than the MSE function at gm = gp -  n .

(b) For gp < g m, it may be proved, using equations (3.55) to (3.59), that the MSE 

function at gm = gp +1 is always greater than the MSE function at g m = gp, provided
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Tp > i ; „ a n d K p / K m < T p / T n, (3.60)

These are sufficient, rather than necessary conditions. Similarly, using equations (3.55) 

to (3.58), it may be proved that the MSE function at gm = gp + n +1 is greater than the

MSE function at gm = gp + n , provided

^ [ ( 2 n  + l ) i - ( l - e  T̂ " ) ]
m m

+Kp(l -  e T̂ Tp )2e~(n~2)Ts/,T" (e~T"/,T,’ -  e~T,',Tm ){(1 -  )e^Ts/,Tp -  —  [(n + l)e~T’/,T|’ -  n)]} > 0
Tm

(3.61)

This is a necessary condition. □

This theorem indicates that if  K p and Tp are unknown, then convergence of the

model time delay index to the process time delay index may only be completely 

guaranteed if  the value of the model time delay index is always less than or equal to the 

process time delay index. The nature of typical MSE functions versus model time delay 

index is shown by Figures 3.22 and 3.23. In Figure 3.22, K p = 2.0, K m = 1.0, Tp = 2.0 

seconds and Tm = 1.0 seconds, so that the conditions in equations (3.60) and (3.61) are 

fulfilled. In Figure 3.23, K p = 2.0, K m = 1.0, Tp = 0.7 seconds and Tm = 1.0 seconds, so 

that the conditions in equation (3.60) are violated. In both simulations, gp = 3 0 . The 

normalised MSE (equal to the MSE divided by ruu (0) ) versus model time delay index 

is plotted in both cases, with rw (0) put to zero. As expected, the normalised MSE 

function is unimodal with respect to the model time delay index, with a minimum 

value at g p = g m when the conditions in equations (3.60) and (3.61) are fulfilled; when 

the conditions given by equation (3.60) are violated, the MSE curve is still unimodal, 

but it has a minimum value when gp ï  gm .
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Figure 3.22: Normalised MSE vs, time delay index (conditions in equation (3.60) met)

Model time delay index Model time delay index

Figure 3.23: Normalised MSE vs. time delay index (conditions in equation (3.60)

violated)

Model time delay index Model time delay index

Considering equations (3.12), (3.13), (3.14), (3.53) and (3.54), a block diagram 

representation o f the gradient method to update both the model parameters and the
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model time delay index is as shown in Figure 3.24. The non-delay model parameters 

are updated based on a FOLPD process model.

Figure 3.24: Updating the full parameter set - Case 1
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One set o f representative simulation results corresponding to Theorem 3.5 are 

given in Figures 3.25a-3.25d and 3.26a-3.26d, with the parameters and the process 

minus model output plotted against sample number. At the beginning, the starting 

values of the gain, time constant and time delay index for both the process and model 

are equal; a step change was then made to the process parameter values. The parameter 

values are taken as K p = 2.0, K m = 1.0, Tp = 2.0 seconds and Tm = 1.0 seconds, so that

the conditions for the unimodality of the MSE function (given by equations (3.60) and

(3.61)) are fulfilled; Figure 3.22 shows the corresponding MSE function.
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Figure 3.25a: Gain estimate Figure 3.25b: Time constant estimate
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Figure 3.25c: Time delay index estimate
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The simulation conditions for updating the model time delay index are identical 

to those in Section 3.4.1 (with the excitation signal assumed to be white noise). The 

model gain and time constant were updated in a similar manner, with these parameter 

estimates filtered by a low pass filter. A lower limit was also put on the model time 

constant o f 0.1 times the starting value o f the model time constant (it was determined 

in simulation that this lower limit is necessary, as it is the reciprocal of the time 

constant that is being updated). A lower limit of zero is placed on the model gain and 

time delay index value.

Fast convergence to the process parameter values is seen for a relatively low 

level o f coloured measurement noise, for both cases o f interest (i.e. when the starting 

value of the model time delay index is in turn, greater than and less than the process 

time delay index). This is as expected from Theorem 3.5.

If the level of coloured measurement noise is greater than is taken in the 

simulations corresponding to Figures 3.25a-3.25d and Figures 3.26a-3.26d, reasonable 

(if noisy) convergence to the correct value of the process time delay index is observed 

(see Figures 3.27a and 3.27b).

Figure 3.27a: Time delay index estimate Figure 3.27b: Time delay index estimate
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The simulation results discussed are interesting because they show that the 

model gain and time constant values converge to the process gain and time constant 

values, in the presence o f coloured measurement noise (which is predicted from 

Theorem 3.1). Generally speaking, the model time delay index must converge to the 

process time delay index before convergence of the other parameters is observed. This
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was also explored theoretically in Theorem 3.1. Simulation work has revealed that 

there does seem to be a (relatively low) level of coloured measurement noise above 

which the model gain and time constant estimates do not converge to the process gain 

and time constant values, because of the noisy convergence o f the model time delay 

index estimate; a greater level of filtering on this parameter could be helpful. Of 

course, as in Section 3.4.1, the procedures outlined depend on a priori knowledge of 

the process time delay index, gp.

In Theorem 3.5, the previous process output is used to calculate the new model 

output. The previous model output could be used to calculate the new model output; 

the model difference equation under these circumstances is (when a first order Taylor’s 

series is used to approximate the time delay variation)

Supplementary simulation results confirm that convergence of the model parameters to 

the process parameters was achieved, when a model corresponding to equation (3.62) 

was used to determine the gradient algorithm, under the circumstances discussed in this 

section of the chapter.

The unimodality of the MSE function versus model time delay index for this 

case may also be proved by calculating the MSE function using the method o f Widrow 

and Stearns (1985). If the residue theorem is used to calculate the required closed curve 

integral, it may be determined that the MSE performance surface is quadratic in r when 

the MSE is calculated based on the model in equation (3.62), and is thus unimodal in 

this variable i.e. if, from equations (3.12) and (3.62), e9 (n) = y, (n) -  ym9(n ) , then, 

following the procedure given in equations (3.15) and (3.16), it may be proven that 

(O ’Dwyer (1996m))

m

u(n -  g j  -  Km( e T-'Tm -  1 -  (gp Tg JT > (n -  gm -  1)
m

(3.62)

(3.63)

with (3.64)
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B =
2K m2( l - e - T‘/T"-)2 2K mK p( l - e - T-/T- ) ( l - e - T̂ )

(3.65)

and

If, in addition, K p = K m = K and Tp = Tm = T , then the MSE function equals

E[e72(n)] (with e7(n) given by equation (3.43)), which may be calculated, by the use 

o f equations (3.63) to (3.66), to be

This function is unimodal, and is minimised when r = 0 (i.e. when gp = gm).

3.5.2 Convergence of the full parameter set - Case 2

In this case, the procedures defined do not depend on a priori knowledge of the 

time delay index, gp (as in the procedures defined in Section 3.4.2).

3.5.2.1 The time delay as an integer multiple of the sample period - white noise 

input

Theorem 3.6: For a first order discrete stable system o f unknown parameters, the MPE 

performance surface versus model time delay index is minimised when the model time 

delay index equals the process time delay index, under the following conditions:

(a) The time delay variation is approximated by a first order Taylor’s series 

approximation

(b) The measurement noise is uncorrelated with the process input and output

(c) The resolution on the process time delay is assumed to be equal to one sample 

period

(3.67)

87



(d) The error is calculated based on using a FOLPD process model; the partial 

derivative o f the error with respect to the time delay variation is calculated based on 

the first order Taylor’s series approximation for the time delay variation

(e) The conditions provided in the theorem are observed on the model parameters and

(f) The input to the model and the process is assumed to be a white noise signal.

Proof: The process difference equation, y ,(n ), is given by equation (3.12). The

corresponding model difference equation, yml(n ), is given by equation (3.13) 

(assuming the previous process output is used in its calculation). The model difference 

equation for calculating the partial derivative of the error with respect to the time delay 

variation, ym8(n ), is given by equation (3.53) (assuming that the previous process 

output is used in its calculation). The error, e,(n) = y , ( n ) - y m,(n ), is given by 

equation (3.14) and the error, e8(n) = y, (n) -  ym8(n ) , is given by equation (3.54). The 

MPE performance surface, E[e, (n)e8(n )], may then be calculated, using a procedure 

similar to that used in equations (3.22) and (3.23), to be equal to (O’Dwyer (1996m))

(e“T,/Tp- e-T-/r- )2ryiy|(0)

+[Kp2( l - e ^ ) 2 + K m2( l - e - T̂ ) ( l - e - T̂  ^ U O )
m

+K pK,„(l - ) ( (8> ~T^ " )T,-raa(gp - g„ +1) -[2 (1  - e ^ - )  + -(g> ~T- J T , ]raa(gp - g,„)}

+Km(e-T-'T- -  e-T-'T- ) { ^  T — T,-[r„, (g,„ -  1) -  r„, (g J ]  -  2(1 -  e-T-'T- )r„, (g J )  + r„ (0 )

Ts/Tm \  ( g p  S m ) T s~K m (l~ e~  *' m) — ruu(l) (3.68)
m

with ruu(n) and ruy (n) provided in equations (3.56), (3.57) and (3.58) respectively. 

For white noise excitation, at gm = gp , the value o f the MPE equals (using equations 

(3.56) to (3.58) and equation (3.68))

MPEop, = (e 'T-/T- - e - T̂ - ) 2r,i>|(0) + [Kp( l - e - T' ^ ) - K n, ( l - e - T’'I-)]2r„,(0) + rr a (0)

(3.69)
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By comparing the amplitudes o f the individual terms in equations (3.68) and (3.69), it 

may be shown that E[e, (n)e8(n)] > MPEopt for

(a) gp > gm (for all values of process and model parameters) 

and

(b) gp < gm, provided Kp/K in > (gm - g p)/2  and Tm > Tp (O ’Dwyer (1996m)).

The conditions in (b) are sufficient, rather than necessary conditions.

However, if  a gradient method is used to determine g , then an additional

restriction that the MPE function must be unimodal with a minimum MPE value 

occurring at gm = g , is imposed. The conditions for unimodality may be proved by

induction; an outline of the inductive proof (provided in full by O’Dwyer (1996m)) is

as follows:

(a) gP > gm; ft may be proved, using equations (3.56) to (3.58) and equations (3.68) and

(3.69), that the MPE function at gm = g  - 1  is greater than the MPE function at 

gm = gP ■ Similarly, using equations (3.56) to (3.58) and equation (3.68), it may be 

proved that the MPE function at gm = gp -  n - 1  is always greater than the MPE 

function at gm = gp -  n .

(b) gp < g m: It may be proved, using equations (3.56) to (3.58) and equations (3.68) 

and (3.69), that the MPE function at gm = gp +1 is greater than the MPE function at 

gm = gp > provided that the following sufficient conditions are obeyed:

( l-T ,/T n,)K p( l - e ' T’/T' ) > K „ ( l - e - T'/r- )a n d T „  > T p (3.70)

The nature o f the MPE function means that for a full inductive proof, it is necessary to 

prove that the MPE function at gm = gp + 2 is greater than the MPE function at

gm = gP +1 (this is because the MPE function in equation (3.68) depends on

ruu(gp -  gm +1))- A necessary condition for this to be true, using equations (3.56) to

(3.58) and equation (3.68), is if

i [ K p( l - e T A ) - K „ ( l - e ' T'/T- ) ] >
in

89



(e-T°/T" - e 'Ts/Tp )K p(1 - e"Ts/Tp )[2(1 - e 'Ts/Tm - ^ -) (1  - e‘Ts/Tp ) - y ~ ]  (3.71)
m  in

Similarly, it may be proved, using equations (3.56) to (3.58) and equation (3.68), that 

the MPE function at gm = gp + n +1 is greater than the MPE function at gm = gp + n ,

provided that

The theorem indicates that if  K p and Tp are unknown, then convergence of the model 

time delay index to the process time delay index may only be completely guaranteed if 

the value o f the model time delay index is always less than or equal to the process time 

delay index. The behaviour o f the MPE function (given by equation (3.68)) versus time 

delay index is confirmed, in representative simulation results, by Figures 3.28 and

3.29. In Figure 3.28, K p = 2.0, K m = 1.0, Tp = 0.7 seconds and Tm = 1.0 seconds so that

the conditions given in equations (3.70) and (3.71) (but not (3.72)) are fulfilled; in 

Figure 3.29, K p = 2.0, K m = 3.0, Tp = 0.7 seconds and Tm = 0.5 seconds, so that none of

the conditions in equations (3.70), (3.71) or (3.72) are fulfilled (the former conditions 

are identical to those used to calculate the normalised MSE curve in Figure 3.23). The 

normalised MPE (equal to the MPE divided by ruu(0)) is plotted versus time delay 

index in both cases, with rww(0) put to zero and g p = 30 . The excitation signal in both 

cases is a white noise signal. The results are as expected from the theorem.

K p( l-e " Ts/Tp)e

h .
Tm

K m(

[(n + l)e '2Ts/Tp - (2n + l)e"Ts/Tp + n] + 2(1 - e 'Ts/T" ) ( l - e 'Ts/Tp)e 'Ts/Tp (3.72)

This is a necessary condition. □
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Figure 3.28: Normalised MPE vs. time Figure 3.29: Normalised MPE vs. time

delay index - white noise excitation delay index - white noise excitation

Model time delay index Model time delay index

Considering equations (3.12), (3.13), (3.14), (3.53) and (3.54), a block diagram 

representation of the gradient method to update both the model parameters and the 

model time delay index may be represented as shown in Figure 3.30; as in Section 

3.5.1, the non-delay model parameters are updated based on a FOLPD process model.

A representative simulation result corresponding to Theorem 3.6 is given in 

Figures 3.3 la-3.3 Id, with the parameters and the process minus model output plotted 

against sample number. The simulation conditions for updating the time delay are 

identical to those in Section 3.5.1, though the process parameter variations considered 

are different. It was also found necessary to limit the variation of the non-time delay 

model parameters; for the simulations taken, 0.5 < K m < 3.0 and 0.5 seconds 

< Tm < 3.0 seconds were the limits. The normalised MPE curve corresponding to these 

simulation results is given by Figure 3.28.
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Figure 3.30: Updating o f the full parameter set - Case 2
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Figure 3.3 le : Time delay index estimate Figure 3.3ld : e,(n)

Sample number Sample number

These results conform with Theorem 3.6.

In this theorem, the previous process output is used to calculate the new model 

output. The previous model output could also be used to calculate the new model 

output, with the model difference equation being given by equation (3.62). Simulation 

results confirm that convergence of the model parameters to the process parameters 

also results in this case, under the circumstances discussed in this section of the 

chapter.

3.5.2.2 The time delay as a real multiple of the sample period - white noise input

Theorem 3.6 has dealt with the estimation of process time delays that are 

integer multiples o f the sample period. For the estimation o f process time delays that 

are real multiples o f the sample period, then the difference equation o f a FOLPD 

process is (O’Dwyer (1996e))

y4(n) = e~T’/Tpy4(n -  1) + Kp(l -  eHl’T,'/Tp )u(n -  gp) +

Kp(eBbT’/T" -  e"T̂  )u(n -  gp -  1) + w(n) (3.73)

The corresponding model difference equation (assuming the previous process output is 

used in its calculation) is

y mio(n) = e“T‘/Tmy 4(n -1 )  + K m(1 -  cgJJT- )u(n -  gm) + K m(e 8̂ 1- -  e"7̂ ™ )u(n -  gm -1 )

(3.74)
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The model difference equation for calculating the partial derivative o f the error with 

respect to the time delay variation (and assuming that the previous process output is

used in its calculation) is

r \  -T„/Tm f i \  ^ S n ( § p  § m  § b  S a ) ^  ^
ymii(n) = e s/my4( n - l ) ------------ 2-= -------------------u( n - g m)

V  r  - T /T  1 ( g p  S m  S b  S a ) ^ ,  , n- K J e  ls/Im- l  5   ]u(n -  gffl -1 )- . , (3.75)

This equation may be deduced from equation (3.53). Therefore, from equations (3.73) 

and (3.74),

% (n) = y„(n) -  ym,o(n) =  (e~ r'/rp - e ‘T*Am)y4( n - l )  + Kp( l - e 8bT,/T' ) u ( n - g p)

+Kp(e * * ^ -c - T̂ ) u ( n - g p - l )

- K m(l -  eB»1;/T'")u(n -  gM) -  K,n(e8' T'/T™ -  e_T'/T"')u(n -  gm - 1 )  + w(n) (3.76) 

and, from equations (3.73) and (3.75),

e„(n) = y ,(n ) -  y„„(n) = (e~T’/T' - e - IJT" ) y ,( n - l )  + K„(l - e “ v ')u(n -g „ )

+K,(e-T' ^ - e - TJT-)u(n -g  -1)

K „ T ,(g ,-g « + g b- g . )
t T

+ K .J e T-'T- -  | _ T.fe . 8 .,+gi, fc>lu(n - g .  -  I) + w(n) (3.77)

The MPE performance surface, E[el0(n)en (n)], may then be calculated, using a 

procedure similar to that used in equations (3.22) and (3.23), to be equal to (O’Dwyer 

(1996m))

(e-T’/T- - e - T*/r-")2ryiy4(0) + 2(e-T‘̂  - e - T‘̂ ) K „ ( l  - e s‘T‘̂ ) r uyj(gp -  1)

+2(e~T‘/T|’ — e‘T,/Tm )Kp(e8t,T̂ Tp - e “VIp)ruyj(gp)
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+(e-T'/T' -  e -T̂ -  ) [K "T,(gp ^ + g t —  -  K,„(1 -  e*-T-'T-)]ruy< (g m -1 )
m

+(e-T“/Tp - e~T,/Tm)[Km{e~T,/Tm _ i _  T-(gp ~ g- +gb ~ gi l - K m(eB-T-^  - e ^ /T")]ruyj (gm) +
m

[Kp2(l -  eSbT̂ Tp )2 + K p2(egbT‘/Tp -  e-T‘/Tp )2 -  Km2(l -  e6»7̂ ™ ) i ( g p -  gm + gb -  ga)]ruu(0)
m

_ Kin2(egaTs/Tm -  e"Ts/Tm )[e"Ts/T"' - 1  -  i ( g p -  gm + gb -  ga)]ruu(0) +
m

[Kp( l - e*-T'/T- ) [ K.< g p - ^  + S t - g . ) T. _  Km(1 _ e ,.T,iT)]riin(gp -  g J  +
m

K  ( e - V ,  _  e - V ,  ) [K m  { e -T ,/T . _ ,  _  _  K J e l . , . /T „  _  e -T ,/T . ) K ( g [  _  g J

+K„(1 - e*"T;T\)[K m{e*T-'T- -  l - ( Sp  8" ^ b 8,)-^}  - K m( - e T-n -  + e*-T-/r- ) ] r„ (g p - g ,  - 1 )
m

+K (e«.WT. _ e - v ,  )cK . . ( g , - e .  + 8 b -g .)T , _  Km(l -  eEaT,/T*)]ruu(g -  g„ +1) + r„ (0 )
«-p> iii >• /  -* U ll '- C ? p  &1TI

m
K 2

+[2Kp2(l -  e8bT,'/Tp )(egbTs/,Tp -  e“1̂ ) -1  -  cTt’/t" )Ts(gp -  gra + gb -  ga)]ruu(l)
m

+K m2 (1 -  e”Ts/T|" )(1 -  e8aTs/T|” )ruu (1) (3.78)

with r (n) being the autocorrelation function of y4(n). The behaviour of the MPE

function versus model time delay index is given, in representative simulation results, 

by Figures 3.32 and 3.33. For these simulations, Kp = 2.0, K m = 1.0, Tp = 0.7 seconds,

Tm = 1.0 seconds and g p = 5, with the time delay taken in intervals of 0.01 times the 

sample period. The normalised MPE (equal to the MPE divided by ruu (0)) is plotted 

versus model time delay index for g b = 0.0 and g b = 0.5. In Figure 3.32 the normalised 

MPE calculated from equation (3.68) is superimposed on the plots for comparison 

purposes. For all simulations, ^ ( 0 )  is put to zero. Clearly, the MPE function is 

multimodal with respect to time delay, when the time delay is a real multiple of the 

sample period (as in Section 3.4.2.2). The estimation of the real value o f the time delay 

is therefore impossible using gradient methods.
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Figure 3.32: Normalised MPE vs. Figure 3.33: Normalised MPE vs.

time delay index - white noise time delay index - white noise

excitation - gb = 0.0 excitation - gb = 0.5

Model time delay index Model time delay index

3.5.2.3 Conclusions

Overall, the gradient method will allow the estimation of process parameters, 

for white noise excitation, provided that the process time delay is an integer multiple of 

the sample period, and provided that the process time delay is always greater than the 

model time delay, as the model time delay converges to the process time delay (or, if 

the process time delay is less than the model time delay, the conditions in equations

(3.70), (3.71) and (3.72) must be fulfilled). This conclusion is broadly analogous to the 

conclusion in Section 3.4.2.3. The use of a non-gradient method of estimating the 

process time delay index that involves determining the minimum positive MPE value 

is also viable, at least when the process is excited by white noise. Unfortunately, it is 

not possible to estimate the process parameters if  the process time delay is not an 

integer multiple o f the sample period, using the gradient method. On the other hand, 

the indications from Figures 3.32 and 3.33 are that a non-gradient method of estimating 

the process time delay, based on calculating the minimum positive value of the MPE 

surface, may allow the estimation of the correct value of process time delay, when the
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process time delay is not an integer multiple o f the sample period (at least for 

gp > gm). It is interesting that this latter method could perhaps be used to estimate the

process time delay when gp < gm, if  gm is close to gp (at least in the simulations

taken).

3.5.2.4 The time delay as an integer multiple of the sample period - square wave 

input

Theorem 3.7: For a first order discrete stable system of unknown parameters, the MPE 

performance surface versus model time delay index is unimodal, with a minimum 

value o f the MPE occurring when the model time delay index equals the process time 

delay index, under the following conditions:

(a) The time delay variation is approximated by a first order Taylor’s series 

approximation

(b) The measurement noise is uncorrelated with the process input and output

(c) The resolution on the process time delay is assumed to be equal to one sample 

period

(d) The error is calculated based on using a FOLPD process model; the partial 

derivative o f the error, with respect to the time delay variation, is calculated based on 

the first order Taylor’s series approximation for the time delay variation

(e) The conditions provided in the theorem are observed on the model parameters and

(f) The excitation signal input is a square wave with a half period greater than the 

maximum possible process time delay.

Proof: The process difference equation, y ^ n ) , is given by equation (3.12). The 

corresponding model difference equation, yml(n ), is given by equation (3.13) 

(assuming the previous process output is used in its calculation). The model difference 

equation for calculating the partial derivative o f the error with respect to the time delay 

variation, y m8(n ), is given by equation (3.53) (assuming that the previous process 

output is used in its calculation). The error, e ,(n) = y , ( n ) - y ml(n), is given by 

equation (3.14) and the error, e8(n) = y, (n ) -  ym8(n) is given by equation (3.54). The 

MPE performance surface, E[e, (n)e8(n )], is given by equation (3.68).
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For a square wave excitation signal of amplitude ± 1: - l < r uu( k ) < l

It may be shown that, for square wave excitation,

r„y, (g„ +1) = K_(l -  e-T'/T" )

[<<-- ' '  ) '-  r,„ (0 -  gp) + (c“'-/T: r„„(l -  gp)+... +r„„ (g„ -  gp)] (3.79)

Reason: ru(| (1) = (0) + Kp(l -  )r,„(0 -  gp)

= Kp( l - e - T'/T’ )r„u( 0 - g p) 

r„y, (2) = c ™  r„, (1) + K p(l -  c T‘/T’ )ru> (1 -  g„)

= K„(l -  e ™  )[e-T'/T-r„, (0 -  gp) + ruu (1 -  gp)] 

r„, (3) = e T‘/Tpr,iyi (2) + Kp(1 - <f T-/T’ )r„, (2 -  gp)

= Kp (1 -  )[(e-T'/T- )J ruu (0 ■- gp) + r„„ (1 -  gp) + ru„ (2 -  gp)]

Repeated application of this procedure gives equation (3.79).

For gm = g , the value of E[e, (n)e8(n)] equals MPEopt, which is given by (using 

equations (3.68) and (3.79))

[Kp (1 -  e”T̂ Tp) -  K ra (1 -  e“T̂ Tm )]2 ruu (0) + 2(e“Ts/Tp -  e“1̂  )K p (1 -  e~T‘/T> )ruy, (gp) 

-(e~T"/T|’ -  e-Ts/T"’ )2KmKp(l -  e~T‘/T»' )(1 -  e T-/T" )[(e“T"/Tm )8'"-' ruu(0 -  gp)+ +ruu(gm -  gp -  1)]

+ (e-V TP _ e-Ts/Tm)2r^  (0) + rww(0) (3 80)

By comparing the amplitudes o f the individual terms in equations (3.68) and (3.80), it 

may be shown that E[e, (n)eg(n)] > MPEopt for

(a) gP > 8m (f°r ah values of other process and model parameters) 

and

(b) gp < gm, provided K p > K m and Tra > Tp (O’Dwyer (1996m)).

The conditions in (b) are sufficient, rather than necessary conditions.

However, if  a gradient method is used to determine gp, then an additional 

restriction that the MPE function must be unimodal with a minimum MPE value
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occurring at gm = g , is imposed. The conditions for unimodality may be determined by

induction. It is assumed that the excitation signal is a square wave signal o f amplitude 

± 1 and of period equal to 100 samples (i.e. that gp < 50). An outline o f the inductive

proof (provided in full by O ’Dwyer (1996m)) is as follows:

(a) gp > gm* It may be proved, using equations (3.68), (3.79) and (3.80), that the MPE 

function at gm = gp - 1  is greater than the MPE function at gm = gp for all parameter

values. Similarly, using equations (3.68) and (3.79), it may be proved that the MPE

function at gm = gp -  n - 1  is always greater than the MPE function at gm = gp -  n ,

provided

This is a necessary condition.

(b) g p < g1T1: It may be proved, using equations (3.68), (3.79) and (3.80), that the MPE 

function at gm = gp +1 is greater than the MPE function at g ra = g , provided that the 

following sufficient conditions are obeyed:

+0.08Kp( l - e  Ts/Tm)(e Ts//Tp - e  Ts/T,n) ( l - e  g"'Ts/Tm)

>0 (3.81)

Kp > Km and Tm > Tp (3.82)

Similarly, it may be proved, using equations (3.68) and (3.79), that the MPE function 

at g,n = gp + n + 1 is greater than the MPE function at gm = gp + n , provided that



-0.04K p(e"Ts/Tp -  e_Ts/T"'){— [e“nTs/Tp (2 -  e-(gm“n+nTs/Tp) -1 ]
în

+[2(1 -  e_Ts/Tm ) --^S-][e"nT'/T'’ (2 -  e_(gm_n)T'/Tp) -  l] - i [ e"(n̂ )Ts/T|’ (2 -  e~Cg"'“n+l)T‘/T"') -  ]]} 
Tn Xn

+ K p(e~Ts/Tp -  e_T' /T' " ) i [ e ”(gm_1)Ts/Tp (1 -  e”Ts/Tp)ruu(gm -  n -1 )] > 0 (3.83)

This is a necessary condition. □

The behaviour of the MPE function, given by equation (3.68), versus model 

time delay index is shown for representative simulations in Figures 3.34 and 3.35. In 

Figure 3.34, K p = 2 .0 , K m =1.0, Tp =0.7 seconds and Tm = 1.0 seconds, so that the

conditions in equations (3.81), (3.82) and (3.83) are fulfilled; in Figure 3.35, K p = 2.0,

K m =3.0, Tp =0.7 seconds and Tm =0.5 seconds, so that the condition in equation

(3.81) is fulfilled, but the conditions in equations (3.82) and (3.83) are violated. The 

normalised MPE (equal to the MPE divided by rmi(0)) is plotted versus model time 

delay index in both cases, with rmv(0) put to zero and g p = 3 0 ; the conditions taken 

are identical to those used to calculate the normalised MPE curves in Figures 3.28 and

3.29. The excitation signal used in the determination o f Figures 3.34 and 3.35 is a 

square wave signal of amplitude ± 1 and o f period equal to 100 samples. The results 

are as expected from the theorem.

Figure 3.34: Normalised MPE vs. time Figure 3.35: Normalised MPE vs. time

delay index - square wave excitation delay index - square wave excitation

1 0 0



Considering equations (3.12), (3.13), (3.14), (3.53) and (3.54), a block diagram 

representation of the scheme to update both the model parameters and the model time 

delay index may be drawn; this block diagram is the same as Figure 3.30.

A representative simulation result corresponding to Theorem 3.7 is given in 

Figures 3.36a-3.36d, with the parameters and the process minus model output plotted 

against sample number. The simulation conditions for updating the time delay are 

identical to those in Section 3.5.2.1 (and thus, these simulation results may be 

compared with those in Figures 3.31a to 3.3Id), except that the excitation signal is a 

square wave input o f period equal to 100 samples and amplitude of ± 1 . The 

normalised MPE corresponding to these conditions is given by Figure 3.34. In 

addition, the learning rate for the model time delay is put to 10 and filtering on the time 

delay update is employed.

Figure 3.36a: Gain estimate Figure 3.36b: Time constant estimate
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These results conform with Theorem 3.7.

3.5.2.5 The time delay as a real multiple of the sample period - square wave input

Theorem 3.7 has dealt with the estimation of time delays that are integer 

multiples of the sample period. For the estimation of time delays that are real multiples 

o f the sample period, then the difference equation o f a FOLPD process, y4(n ) , is given 

by equation (3.73). The corresponding model difference equation, yml0(n) , is given by 

equation (3.74) (assuming the previous process output is used in its calculation). The 

model difference equation for calculating the partial derivative of the error with respect 

to the time delay variation, y mll(n ) , is given by equation (3.75) (assuming that the 

previous process output is used in its calculation). The error, e10(n) = y4(n) -  ym]0(n ) , 

is given by equation (3.76) and the error, eH(n) = y4(n) -  y ml,(n ) , is given by equation 

(3.77). The MPE performance surface, E[e]0(n)en (n )], is given by equation (3.78).

The behaviour o f the MPE function versus model time delay index, in 

representative simulation results, is given by Figures 3.37 and 3.38. For these 

simulations, K p = 2.0, K m = 1.0, Tp = 0.7 seconds, Tm = 1.0 seconds and g p =5,

with the time delay taken in intervals o f 0.01 times the sample period (i.e. the 

simulation conditions are identical to those in Section 3.5.2.2). The normalised MPE 

(equal to the MPE divided by ruu(0)) is plotted versus time delay for g b =0.0 and 

g b =0.5. In Figure 3.37 the normalised MPE calculated from equation (3.68) is 

superimposed on the plots for comparison purposes. For all simulations, rw (0) is put 

to zero. Clearly the MPE function is multimodal with respect to the time delay, when 

the time delay is a real multiple of the sample period (as in Section 3.5.2.2). The 

estimation o f the real value o f the time delay is therefore impossible using gradient 

methods.
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Figure 3.37: Normalised MPE vs. 

time delay index - square wave 

excitation - gb = 0.0

Model time delay index 

3.5.2.6 Conclusions

Figure 3.38: Normalised MPE vs. 

time delay index - square wave 

excitation - gb = 0.5

Model time delay index

Overall, the gradient method will allow the estimation of process parameters, 

for an appropriate square wave excitation signal, when a number o f necessary and 

sufficient conditions on the process and model parameters are fulfilled. A non-gradient 

method that estimates the process time delay index by determining the minimum 

positive value of the MPE surface will also work under the same conditions. 

Unfortunately, it is not possible to estimate the process parameters if  the process time 

delay is not an integer multiple of the sample period, using the gradient method; the 

indications are from Figures 3.37 and 3.38 that it may be possible to approximately 

estimate the process time delay if it is not an integer multiple of the sample period (at 

least in the simulations taken), using a non-gradient method that calculates the 

minimum positive value o f the MPE cost function.
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3.6 Conclusions

1. The most appropriate choice o f rational polynomial to use to approximate the time 

delay variation of a process, modelled by an appropriate model, if the parameters and

time delay o f a FOLPD process are to be estimated using a gradient algorithm, is the 

first order Taylor’s series approximation.

2. Seven theorems have been developed to analytically describe the conditions under 

which the model parameters may converge to the process parameters. These theorems 

are provided in the text of the chapter. Two of the theorems deal with the idealised case 

that the process time delay index is known a priori. The case when the time delay 

index is unknown a priori is also considered; unfortunately, the corresponding cost 

functions may be unimodal when gp > g m only. This has meant that the time delay is

often correctly estimated only because of appropriate filtering on the parameter. Some 

cases of unimodality do exist for all time delay index values (e.g. the simulation 

corresponding to Figure 3.34); however, various conditions indicated by equations

(3.81) to (3.83) must be observed on the process and model parameters to achieve this 

result, which are impossible to evaluate prior to the implementation (as the process 

parameters are generally unknown). In addition, the inability o f the relevant proposed 

methods to estimate time delays that are real multiples o f the sample period (and, 

consequently, the corresponding process gain and time constants) is disappointing. 

Both of these features are difficult to reconcile with a practical application. The 

requirement that in some cases the excitation signal to the process should be of white 

noise form is another difficulty, as such a signal is not realisable in practice; however, 

other excitation signals may also be used, as described in the theorems. On a positive 

note, the fact that unimodality does exist on the cost function for some conditions, 

when the time delay is unknown a priori, provides some encouragement; it is 

particularly interesting that, comparing Figures 3.28 and 3.34, it is possible to achieve 

cost function unimodality with a square wave excitation signal and not with a white 

noise excitation signal, for one simulation condition. It would be interesting to filter 

the data before identification, as Ferretti et al. (1996) suggest that this may increase the 

range of time delay over which the cost function is unimodal, though the speed of 

convergence o f any gradient algorithm used tends to be reduced. In addition, if the
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process time delay index may be estimated accurately, an estimate o f a process time 

delay that is a real multiple of the sample period could be determined by fitting an 

appropriate curve to a plot o f the cost function (calculated, perhaps, in simulation) 

versus model time delay index.

3. An analytical approach, using the principle o f induction, has been clearly outlined to 

allow the determination o f the most appropriate excitation signal to use for a gradient 

based method for estimating the process time delay index and other parameters. The 

simulations taken are quite harsh tests o f the algorithms, with the model parameters 

required to follow large step changes in the process parameters; as mentioned in the 

introduction, the algorithms may only be reasonably expected to work well for small 

differences between the process and model parameters. The main difficulty with the 

use of the gradient algorithms, as implemented, is the estimation of the time delay 

term. One avenue of future work that may be fruitful would be to estimate the time 

delay using an alternative approach, and estimate the non-delay parameters using the 

gradient approach. One such alternative approach would be to use a multiple model 

estimation method; it may also be possible to use an alternative gradient approach in 

the frequency domain, for example. Such a gradient approach is described in Chapter

4. The work has concentrated on estimation, using gradient methods, when a FOLPD 

transfer function is used for both the process and the model. The investigation of the 

usefulness o f the method if either the transfer function o f the process or the model or 

both is not in FOLPD form could be carried out. Some preliminary work has already 

been done on the identification of the parameters of a second order model (with two 

poles and one zero) plus a time delay, when the time delay variation is approximated 

by a first order Taylor’s series approximation and a first order Pade approximation. 

However, it is unlikely that a wider range of operating conditions for the gradient 

algorithms will be determined than those described for a FOLPD process and model in 

the theorems, particularly if  the process and model are not of the same order. In 

addition, the development o f appropriate theorems, corresponding to the theorems 

defined for the FOLPD case, will be more mathematically involved as the number of 

parameters to be estimated increases.

105



Chapter 4

Frequency domain methods of parameter and time

delay estimation

4.1 Introduction

The estimation of the parameters (including the time delay) o f a model in the 

frequency domain may be considered to be divided into two stages: firstly, the 

estimation o f the process frequency response over an appropriate frequency range and 

secondly, the estimation of the parameters of the model from the frequency response. 

Both of these stages have been explored in detail in the published literature and are 

discussed in Chapter 2 o f this thesis.

This chapter will first explore methods of estimating the frequency response of 

a process, both in open loop and in closed loop. The methods considered will be based 

on using the ratio o f the Fourier transforms of output and input signals, and based on 

power spectral density techniques. Both o f these methods promise to facilitate the 

estimation o f the process frequency response in a relatively low number of 

computations (unlike the use of higher order spectral techniques, for instance, as 

discussed in Chapter 2). The estimation of the parameters of a model from the 

frequency response, by combining analytical methods and gradient based methods, will 

then be detailed. The analytical methods are based on direct calculation of the 

parameters from the frequency response, which provide initial parameter estimates. 

The gradient method then updates these initial estimates to more accurate model 

parameter estimates.
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4.2 Process frequency response measurement

4.2.1 Introduction

The process frequency response for an open loop system is trivially calculated 

as the ratio of the Fourier transforms of the output and input signals to the process. One 

recursive technique for calculating the transforms is to use the Discrete Time Fourier 

Transform (DTFT), defined as follows:

with Ts = sample time. This transform has the advantage that a new term may be added 

as new data points become available. The DTFT could be modified by including 

tapering on the data window at the start and current evaluation points of the 

summation; this proposal would reduce spectral leakage. The inclusion of a non- 

rectangular data window would, however, increase the computational complexity of 

the calculation. An alternative recursive method for determining the transforms is to 

apply a numerical integration technique to the Fourier transform. An example of 

suitable techniques is the Adams-Moulton set, as discussed by Johnson and Reiss 

(1982). The first four elements o f this set are as follows:

F (cD )  = TsX f(k T s)e-J“kT> (4.1)
k=0

Fk+,(® ) -F k(ro) = Tsx k+1 (4.2)

Fk+2(ffl) -  Fk+1(co) = 0.5Ts(xk+2 + xk+1) (4.3)

Fk+3 (©) -  Fk+2 (ro) = 0.083Ts(5xk+3 + 8xk+2 + x k+1) (4.4)

with

xk = f(kTs)e_j“kTs (4.6)
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Equations (4.2) and (4.3) are readily identified as the backward difference and

Note that equation (4.7) corresponds to a DTFT implementation. However, equation 

(4.8) corresponds to a DTFT implementation, with a data window which is tapered at 

each end. Higher order numerical integration techniques exaggerate this windowing

4.2.2 Process frequency response identification in open loop

The identification of the open-loop frequency response of the process is aided 

by inputting to the process a sinusoidal excitation signal at the frequency at which the 

Fourier transform is being evaluated. The amplitude o f this excitation signal should be 

commensurate with the amplitude o f the measurement noise in the system.

Low pass filters on the magnitude and phase estimates may be used to reduce 

the effect of harmonic frequencies. These harmonic frequencies are seen to arise from 

the definition of the DTFT. The open loop system considered is represented as shown 

in Figure 4.1.

trapezoidal rule (bilinear transform) respectively. If the identities commence from k = 

0 and have zero initial conditions, the first four terms of the integrals in (4.2) and (4.3) 

become, respectively

T s [ X 0 + X 1 + X 2 + X 3 ] (4.7)

and

Ts[0.5x 0 + x 1 + x 2 + 0 .5 x 3] (4.8)

effect.

Figure 4.1: Open loop implementation

d(t)
n(t) = A 0 sin(cot) +

y(t)

The process frequency response is estimated as follows:

(4.9)
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with N(jco) and Y(jco) being the Fourier transforms of n(t) and y(t), respectively. 

From Figure 4.1,

y(t) =  A0|G p (jco)| sin(cot + Z G p(jco)) + d (t) (4.10)

From Figure 4.1, equation (4.10) and assuming that the D'FFT is used to implement 

Y(jco) and N (jco),then

N(jco) = TsX A 0[sin(k5CoTs)]e-Jk“T- (4.11)
fc=0

N(jca) = TsA 0^[sin(kcoTs)][cos(kcoTs -  jsin(kcoTs)] (4.12)
k=0

N (jto) = 05I*Aa£[sin(2kcoTs) -  j(l -  cos(2kcoTs))] (4.13)
k=0

Y(jco) is calculated, using the same procedure as that defined in equations (4.11) to 

(4.13), to be (O’Dwyer (1996m))

Y(jto) = 0.5TsA c|G|,(j(o )|^ {[s in Z G p(j(o) + sin(2kcoTs + ZG p(jco))] + d(k7;)cos(kcoTs)j
k = 0

-j0.5T5A 0|Gp(j<u)|j^ j[cosZGp(jco )- cos(2kcoTs + ZG p(j<»))j + d(kTs)sin(kcoTs)|
k=0

(4.14)

Therefore, from equations (4.13) and (4.14)

Y(jco)

to

G p(jc o ) |£  |[s in Z G p(jw) + sin(2cokTs + Z G p(jco))] + d(kTs)cos(kwTs)}
 ___________________________________________________________

N (-ico) £ {sin(2«kTs) + j(cos(2cokTs) -1)}
k=0
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|Gp(jco)|5]j[cosZ G p(jcQ)-cos(2cokTs + Z G p(jco))] + d(kTs)sin(ka)Ts)}

- j  ^  r   (4-!5)
{sin(2cokTs) + j(cos(2cokTs) -1)}

k = 0

The terms sin(2kcoTs) and cos(2kcoTs) in equation (4.15) show that harmonic 

frequencies at multiples of twice the DTFT frequency, co, exists on the process 

frequency response estimate. If d(t) is assumed zero, then a difference equation for the 

phase o f the process evaluated using the DTFT is directly calculated from equation

(4.15) to be

. . .  , cosZG (jco)-cos(2cokTs + Z G  (jco)) - l  + cos2cokT
^k Cj03) = ^k-iCJ00) -  tan {-----------  - } - t a n  {--------------------}sinZ G p(jco) + sin(2cokTs + Z G p(jco)) sin2cokTs

(4.16)

After convergence, ^ ( jff l)  = c|)k_1 (jco) = Z G p(jco) (on average), but the phase

measurement continues to vary according to the latter two terms in equation (4.16), 

which involve the harmonic frequencies. However, when Z G p(jco) = —n ,  then from

equation (4.16),

i /• \ , v * -1 f-l-cos(2cokTs - J i)  _J - l  + cos2cokT
4>k(j«>) = <t>k(JCO)-tan ----  5---- - } - t a n  {-----, s} (4.17)

0 + sin(2cokTs -  n)  sin2cokls

i.e. c|)k(jco) = <t>k-1 (jco) and the harmonic frequency terms are zero. In a similar 

manner, it may be demonstrated, using equation (4.15), that the magnitude variations 

due to the harmonic frequency terms are zero at Z G p (jco) = —tc .

Low-pass filters on the magnitude and phase estimates may be used to reduce 

the effect o f harmonic frequencies. The first order filters used are designed to have a 

cut-off frequency below 2co . Alternatively, bandpass filters or filters with a variable 

cut-off frequency could be employed for improved performance.

The recursive schemes for calculating the frequency response need a form of 

data forgetting in a practical implementation. This is due to the constant adding of new 

terms as time progresses, which may cause the size of the DTFT to become very large. 

A consequence may be that the algorithm becomes insensitive to changes in the
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process dynamics or evaluation frequency, due to the magnitude difference between the 

new terms being added and the current transform size. An effective form of data 

forgetting is to weight the data values by progressively smaller amounts as they recede 

in time, by the introduction o f an appropriate forgetting factor; for the first order DTFT 

with a rectangular data window, the formulation is as follows:

with 0 < X < 1.

4.2.3 Frequency updating

The method described may be used to calculate the process frequency response 

at a number of different frequencies. If simple ultimate cycle methods for PID 

controller tuning are to be used, the calculation o f the ultimate frequency (i.e. the 

frequency at a process phase of -% ) is o f interest; as detailed in Section 4.2.2, no 

harmonic frequencies exist on the process frequency response at this frequency. The 

method for calculating the ultimate frequency involves the adjustment of the evaluation 

frequency o f the Fourier transform; it is proposed to extrapolate from previous phase 

and frequency values to determine the ultimate frequency. A number o f data points 

may be used to fit a high order polynomial for the phase to the data, with the 

parameters of the polynomial being calculated using, for example, a least squares 

estimation strategy. The simplest algorithm of this type would be to fit a straight line to 

two data points, giving an updated estimate o f the ultimate frequency as:

with 0 < 8 <  1 and co¡_,, co, and ooi+l are frequencies corresponding to phases 

c^.,, (j)j and (|)j+l. 5 may be considered to be an uncertainty factor that reflects the 

general non-linear nature o f the phase response. If no a priori knowledge o f the process 

is available, then a value of 8 = 0.7 gives a reasonable trade-off between the speed of 

convergence of the frequency towards the ultimate frequency and the phase response 

non-linearity.

Fk+1(®) = ^ Fk(®) + Tsx k+1 (4.18)

O  + <!>,•) (4.19)
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The update regularity of the frequency estimate that is appropriate is related to 

the number o f samples taken for the magnitude and phase measurements to settle, 

while retaining a reasonable rate of convergence of the frequency estimate to the 

ultimate frequency. A practical implementation allows updating every 100 samples for 

a trapezoidal integration technique, when the forgetting factor used is 0.97. The choice 

o f forgetting factor is determined by a trade-off between convergence speed and noise 

immunity. A value as low as 0.8 may be used in a noise-free environment, giving rapid 

convergence and response to time varying systems, while a value closer to 0.99 is 

required to average out the effect of noise. The update regularity should therefore be 

chosen together with the forgetting factor.

Some simulation results showing the estimation of the magnitude and phase are 

detailed in Figures 4.2 to 4.4. The model used for the test is

0 . 8 0 S 3 3 2 Z - + 0 .1 0 0 3 9 9 Z - ’ 

p 1 -  0.096602z + 0.002333z

This model is obtained by determining the discrete equivalent of 

G (s) = e‘0,s /(I + 0.033s)2, taking the sample period to be 0.1 seconds. A trapezoidal

integration method (equation (4.3)) is used for Fourier transform evaluation.

Figures 4.2 and 4.3a show the magnitude and phase estimates in open loop as 

the frequency is stepped from 1 Hz to 5 Hz. The low pass filter time constant in both 

cases is 10 seconds. The harmonic frequencies are evident in both cases when the 

estimates are unfiltered, though, as expected, the harmonic frequency terms tend to 

zero when the phase equals - n  radians (at 5 Hz). Figure 4.3b shows that the harmonic 

frequency fundamental (2 Hz) is twice the DTFT frequency (1 Hz). It has been 

calculated from equation (4.20) that the magnitude and phase of the process at 1 Hz are

0.96 and -0.75 radians, respectively, and the magnitude and phase at 5 Hz are 0.64 and 

-3.14 radians, respectively. These results compare well with those indicated in the 

figures.

Figure 4.4 shows the effect of varying the forgetting factor; reducing the 

forgetting factor allows faster convergence of the estimates at the expense o f a larger 

variation in the unfiltered estimates.
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Figure 4.2: Magnitude estimate - open loop - forgetting factor = 0.95

Figures 4.3a: Phase estimate - open loop - forgetting factor = 0.95
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4.2.4 Process frequency response identification in closed loop

The closed loop system considered is represented as shown in Figure 4.5.

Figure 4.5: Closed loop representation

r(t)
m(t)

+ G c(s)
+

+ +

u(t) n(t)
Gp(s)

d(t)

+ K g >
y(t)

If r(t), m(t) and d(t) are uncorrelated, then it may be deduced from Figure 4.5 that

114



n(s) = ^— 7rT T 77TT [G c(s)(r (s) -  d (s)) + m(s>] (4-21)l + G c(s)Gp(s)

It may also be concluded from Figure 4.5 that

y(s) = 1 ~[d(s) + G c(s)G p(s)r(s) + O p(s)m(s)] (4.22)

Then, it may be calculated from equations (4.21) and (4.22) that

F[y(t)] F[d(t)] + Gc(jco)Gp(jco)F[r(t)] + G p(joo)F[m(t)]
(4.23)

F[n(t)] - G c(jffl)F[d(t)] + G c(jco)F[r(t)] + F[m(t)]

In the special case that F[d(t)] = 0, equation (4.23) reduces to

G p(j©) = F[y(t)]/F[n(t)] (4.24)

The Fourier transform terms may be approximated by using an appropriate 

integration method (equations (4.1) to (4.5)). In the development, the DTFT is used to 

implement the Fourier transform terms, and it is assumed that the effect of d(t) is 

neglected, by using appropriate filtering on n(t) and y(t). Then, it may be determined 

from Figure 4.5 and equation (4.24), using a procedure similar to that implemented in 

equations (4.10) to (4.15), that (O’Dwyer (1996m))

G p( j t o ) * A , ü ^ -  (4.25)
a5 + Jb5

with

a 4 =  ¿ i ^ [ s i n ( 2 c o k T s +  < h +  <t»2 )  +  s i n ( f  +  ^ 2 ) ]  +  r ( k T s ) A 3 cos(<t>, +  <t>3 -  cokTjl 
k = 0  I 2 J

(4.26)

b4 = ¿ { ^ ■ [ co< 2c°kT1 + i  +(j)2)-cos(^)1 + <t>2)] + r(kTs)A 3 s in ^ , + (t>3 -cokTs)
k 0

(4.27)
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and

a5 = j^-[sin(2cokT s + <|>2) + sin(c|)2)j + r(kTs)A 3 cos(<t>3 -  cokTs) I (4.28)
k = 0 I 2 J

b5 = ¿ { ■ y - [ coK2“ kT, + ^ 2) -  costyj)] + r(kTs)A 3 sin(<))3 -  cokTs) |  (4.29)
k = 0

and with A, = |Gp(jco)|, <)>, = Z [G p(jco)] (4.30)

A 2 =|P(jco)|, $ 2 = 4 P (j® )]. (4-31)

P(jco) = l/[l + G p(j© )G c(jco)] (4.32)

and

A 3 = |Q(jto)|, <|>3 = ^[Q (jco)], (4.33)

Q(ja>) = Gc(jo i)/(l + G p(jo>)Gc(ja>)) (4.34)

The trigonometric terms in 2kcoTs in equations (4.26) to (4.29) show that harmonic

frequencies at multiples of twice the DTFT frequency, co, exist on the process

frequency response estimate (equation (4.25)), as in the open loop case. A difference

equation for the phase o f the process, evaluated using the DTFT, is directly calculated

from equations (4.25) to (4.29) to be (assuming r(kTs) = 0)

* .(JO  .  ♦ w ( J . )  + tan-'
sin^, + <|>2) + sin(2cokTs + <)>, + <))2)

tan-i -̂cosQftz) + cos(2a)kTs + <t>2) ) (4.35)
sin(<j>2) +  sin(2a>kTs + <j)2)

After convergence, (|)k(jco) = ()>k_|(jco) = <)),(= Z G p(jco)) (on average), but the phase

measurement continues to vary according to the latter two terms in equation (4.35), 

which involve the harmonic frequencies. However, when Z G p(jco) = - n ,  then from

equation (4.35),
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(t, k (jco ) =  (|)k_1(jc o )  +  t a n ' l {

tan~' [~ cos^ ^  +  cos( 2cokTs + ^  (4 .36)
sin(<))2) +  sin(2cokTs + (|)2)

i.e. (|)k (jco) = (j)k , (jco) and the harmonic frequency terms are zero (as in the open loop 

case). In a similar manner, it may be demonstrated, using equations (4.25) to (4.29), 

that the magnitude variations due to the harmonic frequency terms are zero at 

^G p(j® ) = ~n.

To aid identification in closed-loop, m(t) has been set up as an excitation signal 

at the appropriate (Fourier transform) frequency. This signal, while not having any 

adverse effects on the regulation properties of the system, would appear to be sufficient 

to allow consistent identification of the process frequency response in closed-loop.

A further practical addition of bandpass filters (on n(t) and y(t)) with moveable 

centre frequency may be included to concentrate calculations on the frequency range of 

interest. This helps to improve the disturbance and noise rejection properties of the 

adaptation algorithm. A Butterworth filter design is used with transfer function:

a  is a parameter determined from the equivalent low-pass design and depends only on 

the filter bandwidth, cobw, and the sampling period, Ts; co c is the centre frequency of 

the bandpass filter (Lynn and Fuerst (1994)). Alternatively, a number of bandpass 

filters could be placed on the input and output of the process to determine the 

frequency response at a number of frequencies, corresponding to the centre frequencies 

o f the bandpass filters.

The block diagram of the closed loop system implementation is shown in 

Figure 4.6; Ringwood and O ’Dwyer (1994a), (1994b) use the ultimate gain and 

ultimate frequency to calculate the parameters of a PID compensator, as indicated in 

the figure.

G bP( z) = ~1— n ™ ---------z - ( l  + a )P z  + a
(4.37)

where

P = cos(cocTs)/cos(0.5co bwTs) (4.38)
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Figure 4 .6 : Block diagram ol'the closed loop system implementation

A simulation result showing the estimation of the magnitude, phase and ultimate 

frequency is shown in Figure 4.7. The simulated model is

0.11138Z-1 + 0.0991 lz~2 
1 -  1.684z_1 + 0.7047z

In the simulation: The sample period, Ts , equals 0.2 seconds

The forgetting factor, A., equals 0.95

The low pass filter time constant equals 10 seconds
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The bandpass filter bandwidth, C0bw, equals 3 radians/second

The bandpass filter parameter, a ,  equals -0.7387.

The estimates are updated every 500 samples

Figure 4.7: Magnitude, phase and frequency convergence

Time (seconds)

The magnitude and phase values calculated at co = 4 radians/second (using 

equation (4.39)) are 0.34 and -3.15 radians, respectively; these results correspond quite 

well with the corresponding part of Figure 4.7.

4.2.5 Use of power spectral methods for identifying the process 

frequency response

Power spectral methods may be used as an alternative to Fourier transform 

methods to identify the frequency response of the process. The use of power spectral 

methods for the identification of the process frequency response in open loop has been
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discussed in Chapter 2; this section will consider the estimation o f the process 

frequency response, using power spectral methods, in a closed loop environment.

The closed loop system considered is represented as shown in Figure 4.5 

(Section 4.2.4). The power spectral density function and cross-power spectral density 

function are defined as follows:

and

S.(ju>) = £ R n(T)e - " TilT (4.40)

S„„(jo>) = £ R nJ(T le-J"TdT (4.41)

with R (T) =  Lim f  n(t)n(t + T)dt (4.42)
nV '  ti-»«=2T1 J-ri

R11V(T) = Li m— f  n(t)y(t + T)dt (4.43)
,iyV 1 ti-»«2T1 J-'n

It may be deduced from Figure 4.5 that

U(S) =  l + c ! ( s ) 0 , ( s ) [r(S) '  d Cs> - G P<s>m(s>] <4 '44>

It may subsequently be proved, by using the definitions in equations (4.40) to (4.43), 

and equations (4.22) and (4.44), and assuming r(t) = d(t) = 0, that

Gp(jco) = Suy(jco)/Su (jco) (4.45)

Wellstcad (1986) shows that, if r(t) = d(t) = 0,

G p(jcQ) = Sny(jco)/Sn (jco) (4.46)

Wellstcad (1986) also shows that, if r(t), m(t) and d(t) are uncorrelated, then
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O p(ji0) = S1, , ( j i0) /S ln„(ja,) (4.47)

or

Gp(jra) = Sry(jco)/Sm (jco) (4.48)

Approximations for the power spectral densities may be calculated by using the DTFT, 

for instance.

The estimate of the process frequency response, when the power spectral 

density is approximated by an appropriate DTFT, may be calculated by using equation 

(4.47), for example, together with the power spectral density and cross power spectral 

density formulae (equations (4.40) to (4.43)). Using these equations, and equations 

(4.21) and (4.22), and assuming that r(t), d(t) and m(t) are uncorrelated (with 

m(t) = A 0 sin(cot)), it may be calculated that (O’Dwyer (1996m))

(4.49)

with

(4.50)

(4.51)

^°^ 2 . + <j>2) -  sin(2cokTs +(j), + (|>2) (4.52)

b 2 = sin(<t>i + 4>3) + sin(2cokTs + ()>,+ ty3) (4.53)

A A A c ^
a3 = —5—- Y  cos(d)-,) + cos(2cokT„ + dO h— cos(d),) + cos(2cokT+ (|),)

b3 = ^ ° —2 Y sinCJ»,)-sin(2cokT + d>,)-  ~̂3Ck y  sinC^) + sin(2cokTs + (|)3)
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L im ~  J[r(t +  x ) - d ( t  +  x)]sincox dx
c  T ^ ”  T - t __________________________________________________k

C O S O JX

with co = kco 5, cos= sampling frequency. As in Section 4.2.4, the trigonometric terms 

in 2kcoTs in equations (4.50) to (4.55) show that harmonic frequencies at multiples of 

twice the DTFT frequency, co, exist on the process frequency response estimate 

(equation (4.49)). In a similar manner to the procedure in Section 4.2.4, and using 

equations (4.49) to (4.56), it may be shown that, if  the process frequency response is 

determined at the ultimate frequency, then the estimate taken at this frequency is an 

unbiased estimate.

4.2.6 Conclusions

A method has been defined to estimate the process frequency response, in open 

loop and in closed loop, using the ratio of Fourier transforms of the output and input 

signals to the process. The algorithm may be extended to include explicit time delay 

estimation, since the characteristic behaviour of a time delay in the frequency domain 

(i.e. a linear phase lag variation with frequency) may be resolved from the overall 

magnitude and phase measurements. Such an extension is not possible with parametric 

time-domain schemes. An alternative method to estimate the process frequency 

response, in open loop and in closed loop, using the ratio of power spectral density 

functions has also been outlined. The implementation of this method is recommended 

in future work.

Higher order spectral methods may also be used to estimate the process 

frequency response, as an alternative to the spectral analysis methods discussed. Such 

techniques are explored in detail in Chapter 2. However, it was concluded that the use 

o f higher order spectral techniques in system identification seems suited to a restrictive 

range of open loop problems, in which noise signals on the input and output to the 

process cannot be effectively dealt with by pre-processing.

and with

1 T

(4.55)

(4.56)
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4.3 Model parameter estimation using frequency response 

data

4.3.1 Introduction

This section of the chapter discusses the estimation of the parameters 

(including the time delay) of SISO process models from an appropriate number of 

arbitrarily specified points on the process frequency response. The process time delay 

affects the phase response of the process, but not its magnitude response; Dos Santos 

and De Carvalho (1990) and Koganezawa (1991), for instance, use this feature to 

separately estimate the non-delay parameters and the time delay. Lilja (1988) estimates 

the parameters o f a FOLPD process model by estimating the non-delay parameters 

through the minimisation of an appropriate cost function; the time delay is estimated 

separately by calculating the global minimum of a non-unimodal cost function using a 

modified Newton-Raphson algorithm. All o f these approaches have the disadvantage 

of separately estimating the non-delay parameters and the time delay; this leads to 

biased estimation of the time delay or difficulty in achieving reliable convergence of 

the time delay estimate to its optimum value.

These difficulties motivate an investigation of the possibility of estimating the 

non-delay and time delay parameters together. A two stage approach, combining an 

analytical approach and a gradient approach, will be defined for the estimation o f the 

parameters of an arbitrary order model plus time delay. The analytical methods are 

based on direct calculation of the parameters from the frequency response, using 

simultaneous equations which provide initial parameter estimates. A least squares 

approach using a gradient algorithm, updates the initial estimates to more accurate 

model parameter estimates (a least squares approach to the problem was originally 

suggested by Palmor and Blau (1994)). All of the parameters (including the time delay) 

are estimated together. This two stage approach will rely on the analytical estimates 

being sufficiently accurate so that unimodality o f the cost function (equal to the sum of 

the squares of the sampled errors between the process and model frequency responses) 

with respect to the parameter estimates, exists from the analytical estimates to the 

gradient estimates. These methods will be developed for the estimation o f the 

parameters of a general order model and will be applied to the estimation of the

123



parameters o f a FOLPD model and a SOSPD model, amongst others. Techniques will 

also be developed for the estimation o f an appropriate model order, and some of the 

trade-offs experienced in choosing the model order will be explored.

A number o f simulations were performed to demonstrate the operation of the 

two stage method. The following simulated process transfer functions were taken:

2e_05i
Case A: Gn(s) = ---------  (4.57)

p 1 + s

Case B: G p(s) = (4.58)
f I + 4.5s + 4.5s2

2e"
' pv~' 1 + 8.5s + 22.5s2 + 18s3

CaseC: 0 , ( 8 ) = _______  2 (4.59)

Case D: G„(s) =
2e~

p 1 + 18s + 137s2 + 567s3+ 14035“ + 2103s5 + 1846s6 + 856s7 + 158s8

(4.60)

C aseE: G p(s) = 2e \  (4.61)
H 1 + s + s

„  „  _ . .  2(l+2.25s)e ..C aseF: G (s) = -------------------   -  (4.62)
p 1 + 8.5s + 22.5s3 + 18s3

_ _  2 (l-2 .2 5 s)e '
Case G: G (s) = --------------------  -  (4.63)

p 1 + 8.5s + 22.5s2 + 18s3

These simulations cover a reasonable range o f processes, including high-order, 

underdamped and non-minimum phase processes.
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The analytical estimation of the parameters of such a model is explored in 

Section 4.3.2.1; the estimation of the parameters o f the model, using a gradient 

approach (and commencing from the model parameter values calculated from the 

analytical approach) is explored in Section 4.3.2.2.

4.3.2 The estimation of the parameters of an arbitrary order model

(with time delay)

4.3.2.1 Estimation using an analytical approach

The estimates of the parameters o f an vth order model plus time delay using an 

analytical approach are obtained by calculating the non-delay parameters from an 

appropriate number o f simultaneous equations, using data points on the magnitude 

response; the time delay is then calculated from one data point on the phase response. 

The transfer function of the vUl order model plus time delay is defined as follows (with 

v > u )

K (l + b lms + b, s2+ +h sll)e“STm
G m( s ) = ^ ^ ------  (4.64)

1 +  a i m S + a 2 m S  + ...............+ a v m S

Alternatively, the transfer function may be defined as

„  , , (b0m +b 'lms + b2ms2+ ...... + b limsll)e“STm
= i— ;------------------2----------------i  —  (4-65)

l  +  a imS +  a 2mS + ......... + a vmS

with a parameter vector

Xl = | a im a2m avm b0m blm b2m b um Tm ,X,e<R u + v +2 (4.66)

In the frequency domain, the model transfer function is

Gm(j®)
v (b0m + j®b’lm -  co2b2m -  jco3b3m + co4b4m+ )e‘

i  fc \  l — ____________________________________________________________________________ L___

1 + jcoa l m ffl2a 2 ,n - j i ù 3 a 3,n + ( D 4 a 4m + .
(4.67)
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Therefore, from equation (4.67), the numerator term of G in(jco) may be written as

N m(jû>) =

„[!

2qm ( - l ) qco2q + j
■ & ]
2>i
q=l

(2 q -l)m ( - D (4.68)

and the denominator term of G m(jco) may be written as

w[ï] * p r ]
D m O ® )*  + j  X > ( 2 r - . ) n, C“ 1)' ' ‘CD2- ’ (4.69)

i=0 r=l

with a0m = 1, ini = integer part o f  —, int = integer part of

Therefore, from equations (4,68) and (4.69), the magnitudes o f the numerator and 

denominator terms may be written as

2
M t ]

|N m(j® )| =

1
<1=0

+ Z i - i r ' i w ,
<1=1

and

in,[ i ]

2

\ - f f l  1
| D , n ( j c o ) |  =  ^

r~0
+ Z M ) ' " 3 , : - ! , « “ 1" 1

r=t

(4.70)

(4.71)

Now, from equation (4.67), |G lt1(jco)|” may be written as

I -  .,2 K n + d Imw2 + d 2mco2+ +duny " )
1 + C | m ü >  + c2roco +  + Cvm©

(4.72)

with
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( 4 . 7 3 )

( 4 . 7 4 )

( 4 . 7 5 )

mW .  int® .

d(u-l)m  =  b ( u- | )m + 2  X k < 2 < H )in b (2 u -2 q - l)m  ~ 2  S  b (2 q-2)ra^(2u-2q)m > U C V en  ( 4 . 7 6 )

do,,, = b0m2 = Km2

^ i in b lin 2b0mb2m

djm -  b2m + 2b0n)b4m 2bhI1bJm

rumt -L2J
d,„n -  b,„n + 2  X b (2 q -2 )m b (2 u -2 q + 2 )m  2  ^

q=l q=l
b(2q-l)mb(2u-2q+l)m » U e V ei1  ( 4 ‘7 7 )

t'lm aim 2ao,na2m

*'2n, a 2m +  2clQ|ntl<1 n, 2cl l ma 3m

( 4 . 7 8 )

( 4 . 7 9 )

. ? ]
c(v-om _ a<2v-i),n + 2 X a(2r-i)ma(2v-2r-i)m 2 ^  a(2r. 2)n,a(2v. 2r)nl , v even (4.80)

r=1r=)

■+;] Hi]
C v,n =  a v,n + 2  Z a ( 2 r - 2 ) n , a ( 2 v - 2 r , 2 )m - 2  X a ( 2 r - . ) „ , » ( 2 v - 2 r + 1)m » V  e V e n  ( 4 8 1 )

r= l r= l

A minimum of u+v+1 dala points on the magnitude response are required to 

estimate the parameters. If just u+v+1 data points are taken, the vector o f magnitude 

response values squared is
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F , = | G p ( j ® i ) f  | G p ( j o J u + v + 1 ) f ,F e iR U +  V +  I (4.82)

with |Gp(jco)| = process magnitude at frequency co. Then, from equations (4.72) and 

(4-82),

| g p ( . K ) | 2

| G p ( J co2 ) | 2

1 0 3 ?  

1 CO2

. cofu 

. co2u

- c o f |G p( jo ) , )2|

-ro2 G p(jco2)|

- f f l f ' G p O , ) 2 

— CD 2V|G p(jC02)|Z

^ 0 m

d l m

| g  p ( j c o  u ) | 2 

| G p ( j < n u + , ) | '

= .1 co2

1 ® u  +  ! • • “ a l l

- “ u | G p ( j r o u ) | 2

_ c o u + i | G p ( j ® u + l ) | '

- K > u V | G p ( j m u ) | 2

• - “ 2uV+ l | G p ( j f f l u + , ) | 2

^ u m

C l m

| G  p ( j ^O u + v + 1 ) |  ̂ ^ u + v  + 1 *
2 u

■ U +  V +1 U +  V +  l | G ( j ^ u  +  V + l  ) | ” • - “ ^ v + i | G p ( j f f i u + v + i ) | 2
L ^ v m  .

Thus

(4.83)

d 0 m
1 cof . - c o f |G p(ja ) ,)2| - < G p( j m , ) 2

-1
|G p(jco ,) |2

d ,m 1 COj 2 -cnjjGpCjtOj)!1 -C02v|Gp(jCD2)|2 lG p(jM2)

^ um = ■ 1 coj .  c C - c o 2|G p(jm u)|2 -CD2v|G p(jQ)u)| ¡G p (jco u )|2

C ! in
‘ ®u+l • “ u+l - ® u +i|Gp(j<n„+l)| - c o ^ | | G p(jcou+1)| |G p(jrau+1)|2

_C vm .
 ̂ ® u  + v + l • m2u.  O J y + V + l u + v + i  |G(jco u+v+l )|

2 v  1 • I2 
—CO u + v + i  |Gp (j© u + v + i  )| |G p(jcou+v+1)|

(4.84)

The non-delay parameters o f the model may subsequently be calculated from equations

(4.73) to (4.81). The time delay of the model may be calculated (using equations 

(4.65), (4.68) and (4.69)) to be

Tm =— H>p(j®) + tan
CO

-]

. r  L i + ililt ---
L 2

q = l

HI
Z ( - i ) qb;
q=0

2qmCO 2 q

tan-i
Xi (“ i)1”1 a(2r- 1),r,C°2r_1
fg]__________________

I(-Dr 2r

r = 0

(4.85)
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with <{>,,(jco) = process phase at frequency co. A less computationally intense 

alternative to the procedure defined in equations (4.64) to (4.85) is to estimate the 

parameters o f a vtk order model, with no numerator parameters, and a repeated pole. 

This model is defined as follows:

Kinl and Tm) are calculated from two simultaneous equations, by equating the 

magnitudes o f the model transfer function (calculated from equation (4,86)), at two 

frequency values co, and co3, to two corresponding data points on the process

magnitude response, ]Gp(jco()j and |Cip(jco2)| i.e.

(4.87)

and

(4.88)

From equations (4.87) and (4.88), it is calculated that

(4.89)

Using equations (4.87), (4,88) and (4.89), it is calculated that

(4.90)

From equation (4.86), it is calculated that

*»1  = [— (j03 ) — v tan"'(coTml)]
CO

(4.91)
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Equations (4.90) and (4.91) are also provided by Isermann et al. (1974) (Chapter 2).

The lower computational intensity o f this procedure is traded off against poorer 

accuracy of the parameters estimated, when compared to the analytical procedure used 

to define a general model with no numerator parameters, using equations (4.78) to 

(4.81) and equations (4.84) and (4.85).

4.3.2.2 Estimation using a gradient approach

The transfer function of the v th order model is defined by equation (4.64). The 

parameter vector is

X2 = [ K m a lm a2m avm blm b2m bura Tm]T,x2 e 9 T +v+2 (4.92)

In the frequency domain, the model transfer function is

G„(jœ) =
K m(l + jcobim -c o 2b2m -  jco3b3m +co4b4m+ )e

1 + ja>a,m -  o ra 2m -  jra3a3m + co4a4m +........

J«”n
(4.93)

The numerator term of G m(jco), N m(jco), is given by equation (4.68) and the

denominator term of G m(jco), Din(jco), is given by equation (4.69). The magnitudes

of the numerator and denominator terms ( |Nm(jco)| and |Dm(j© )|, respectively) are

given by equations (4.70) and (4.71), respectively. The phase contributions of the 

numerator and denominator terms are calculated from equation (4.93) to be



r v+i
I t

X a(2r-l)m(- 0 -1 co2r—1

“[i]
Z a 2nn( - l ) rio2r
r=0

(4.95)

If u+v+1 data points on the frequency response are taken to estimate the parameters, 

the vector o f  frequency response values is

|0,.<jco,)|...... | o p(jo>„„.,)| 4>p(jci>,)........4.p(jo>„v. l)], ,FJ eM ’" 1"*2 (4.96)

The error vector is formed as follows:

e [C, 6 j........^u + v+l û+v+2 ^u*v+3......... 2̂u+2v+2] (4.97)

with

- K - k m  ■ , i n s u + v + i

and

(4.98)

e n =  ^ m (j® iil)  +  ^ !n ( j® n l) -£ l> iilTm “ ^ p G ^ n l)  » U +  V +  1 <  n <  2u +  2v +  2

and nl = n — u - v - 1  (4.99)

The cost function, J, is formulated as

.1 = 0.5eTPe

with

P = diag
1 1 1 1 1 1

G p(jco,)| G p(jw 2) G i , ( j ° W i) ®1 ®2 ®u+v+l

(4.100)

(4.101)

The normalising matrix, P, is used to increase the range o f parameters over which 

unimodality of the cost function exists. The cost function, J (using equations (4.98) to
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(4.101)) may be calculated to be

u + v  +  l

J = 0 . 5  X > m ( j ^ n ) l

j D m ( j c o n )|
- |G p(jcon)|

| G p ( j c o n )|
+  —  (4*m ( j ®  n )  +  <t>m ( j ©  n )  “  ®  n ^ m  “  <t>p 0 ®  n ) fcon

(4.102)

Then, the updated estimate of the parameters at sample (k+1) may be calculated from 

the estimates at sample k, using the gradient algorithm:

x2(k + l) = xs ( k ) - n - ^ —  (4.103)
dx2 (k)

with ¡j. = learning rate. The initial values of the parameter estimates are determined 

using either of the analytical techniques detailed in Section 4.3.2.1. If |Nra(jco)| 

(equation (4.70)) is formulated as

“ [ i]
2

M t ]
2

|N „ (j» ) | = K

1
q*0

+
C| = l

(4.104)

with b0m = 1, then it is clear from equations (4.102) and (4.104) that the cost function 

is quadratic in the gain estimate, Km (for all values o f the numerator and denominator 

parameters and time delay estimates). It is also clear from equation (4.102) that the cost 

function is quadratic in the time delay estimate, xm (for all values of the gain, 

numerator and denominator parameter estimates). The cost function is not, however, 

quadratic in the estimates of the other numerator and denominator parameter values, as 

may be deduced from equations (4.71), (4.94), (4.95), (4.102) and (4.104). The cost 

function must be unimodal with respect to each of these parameter values (allowing the 

time delay estimate, gain estimate and other parameter estimates to vary), and must 

have its minimum value when the appropriate equivalent process parameter equals the 

model parameter, if  convergence of the model parameters to the equivalent process 

parameters is to be guaranteed. An equivalent condition is that the first partial
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derivative o f  the cost function with respect to each o f the parameter values may be 

equal to zero once only, or that the second partial derivative o f  the cost function with 

respect to each o f the parameter values must always be greater than zero (with the first 

partial derivative o f  the cost function with respect to each o f  the parameter values 

being equal to zero at appropriate parameter values). Therefore, defining

mil I

<1=0
2q (4.105)

N ml(jCD) -
f r ]
I » .
q = l

(2 q -l)m (-0 (4.106)

"’1 2
Dm ,(J«)=  Z a2nn(-0rU3' (4.107)

1=0

and

r v + i
ml -------L 2

D n,2( j ® )  =  I V - O . n H r V - 1 (4.108)
r =  I

the first partial derivatives with respect to the parameters may be calculated, using 

equations (4.71), (4.94), (4.95), (4.102) and equations (4.104) to (4.108). If h is even, 

the unimodality conditions are

3a
dJ  _  _ q  ' P|n2 (J03»)( Q2 Mn l^m (J00 n )[

n̂ I |D m(jo)n)| m(j n)|

-0-5 z ' ( M|' ,  Y JM- ) K ( j o . )  + ♦ g ( j < 0  - « ■ * .  -  ♦ p O « .) ]  =  0

(4.109)

once only and
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(4.110)

once only. Also, if  i is even,

9J
9b ii=l |Dm(joon) |N m(jm n)|

+Q ( -1) 2  ~ ‘ co ,1' - 'N  m 1 ( j  co n ) K n

' h |N m (jco n )|2
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I in ( j ® „) I '

(4.111)

once only and

9J
9b.,„

=  0 . 5 ^
11=1

Km2N ml(jcon) ( - l ) ^ , | lN m(j®„)|
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|N m(jcon)|n=1

(4.112)

once only. The second partial derivatives with respect to the parameters may be 

calculated from equations (4.109) to (4.112). If h is even, the unimodality conditions

9a-(h- = I
( h - l ) m  n =  I

[2Dm22(jc o „ )-D ml2(jcon)‘Wn2h“2|N m(jron)| l^m (jWn)| |q  / ■
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+ I <
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D m22(j®n)C°n2h~2|N m(j®„)r , D . n . ^ n K
2 h - 2

+ - } > 0  (4.113)
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with 9J/3a(h_1)m = 0 at an appropriate value o f a(ll_1)m and

d a 2hm n = l

u + v+l 2h

d„,22U«oK1'NmO„)| lN"(j“-)| |g  (¡co )

2 | D n,( jc o „ )| i U 'D „ ( j c o „ ) |  IG ' ( J ” " ) J
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with 3J/3ahm = 0 at an appropriate value of ahm. Also, if  i is even,
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with 3J/db(i_1)m = 0 at an appropriate value of b(i_1)m and

a'-S ■& *' K , ; [ N „ 22( j 0) n)

.3 Z j
| N „ ( j m „ ) |

S b 1™ ^  2 | N lm( j t o „ ) l 3|D m( j c o „ ) | L ! D m( j “ „)|

s '  +  ( jc o , , )  -  co„Tm -  ^ ( j o . ) ]
2 | N m( j c o n)|

+

+
u +  v + l
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2 | D m(jc D n)|2| N m(jc o n)|2 2 | N m( j c o n)|4
}>0 (4.116)

with 9J/9bjm = 0 at an appropriate value of b im .

Unfortunately, it was not possible to prove the conditions represented by 

equations (4.109) to (4.116) analytically, either in the general case or for any particular



model structure.

4.3.3 Case studies

Four case studies are presented to demonstrate the wide applicability o f the 

analytical and gradient methods presented in Sections 4.3.2.1 and 4.3.2.2, respectively. 

These case studies are

(1) The estimation o f the parameters o f a FOLPD model

(2) The estimation o f the parameters o f  a SOSPD model (with no zero)

(3) The estimation o f the parameters o f  a third order process plus delay model (with no 

zero) and

(4) The estimation o f the parameters o f a SOSPD model (with a zero)

4.3.3.1 FOLPD model parameter estimation

The transfer function o f the model is defined as

From equations (4.73), (4.78), (4.84) and (4.85) respectively, the parameters 

Km, Tm and xm o f the FOLPD model may be calculated analytically, as follows:

(4.117)

K (4.118)

(4.119)

(4.120)
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(equations (4.89), (4.90) and (4.91) could also be applied to determine equations

(4.118) to (4.120)). The sensitivity o f the parameters Km, Tm and xm with respect to 

the magnitude values recorded have been determined, by partially differentiating 

equations (4.118), (4.119) and (4.120) with respect to the magnitude values, to be:

SK - G ,(j® l)|3® |2VC022
dG  (jco2) |Gp(jffl2)|2co22 - |G p(jco,)|2ro,

1.5
(4.121)

SK„
q G D(ja>,)

|Gp(jco2)|3cD22^/co22 - C D , 2 

|Gp (jco 2 )|2 co 22 |G p (jco, )|2co,
15 (4.122)
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1

G p(jco)
G p(jw)

-  K„

s t

G„(jo>)| 1 + o jX 1 S|Gp(jo>)l

(4.123)

(4.124)

co,with |Gp(jco,)| and |Gp(jco2)| being process magnitude values corresponding to

and co2; co = co, or co2.

It is evident from equations (4.121) and (4.122) that the sensitivity of the gain 

estimates to magnitude values recorded is reduced if K m is calculated from 

magnitudes recorded far apart in frequency; numerical evaluations suggest that the 

magnitudes should be at least a decade apart in frequency. These numerical evaluations 

also suggest that:

(a) Tm should be calculated at frequencies when 0.25Km < |Gp(jco)| < 0.75Km; it is 

interesting in this context that Sundaresan and Krishnaswamy (1978) state that, for 

good robustness, the time constant should be calculated when |Gp(jco)

(b) Tm should be calculated at frequencies when |Gp(jco) < 0.5Km .

0.5Km .
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Ten values o f the process frequency response, spaced equally between phase 

lags o f 0° to 270° were recorded; equations (4.118) to (4.120) are used to calculate the 

FOLPD model parameters, for each o f the processes indicated in Cases A to G 

(equations (4.57) to (4.63)). Average values of the parameters are calculated over a 

number o f points o f the frequency response (to improve the robustness of the 

estimates); the frequency response data values used in equations (4.118) to (4.120) 

were chosen to conform with the rules o f thumb defined that reduce the sensitivity of 

the estimates to the magnitude values recorded. The model parameters were estimated 

under both noise free conditions and when either +10% or -10%  was added to the 

magnitude and phase values of the process frequency response (labelled the ±10% 

noise condition). The estimates of the model parameters determined are summarised in 

Table 4.1.

Table 4.1: FOLPD model parameter estimates, calculated using the analytical method

No Noise ±10% Noise

K m Tm Km Tm

Case A 2.00 1.00 0.50 2.22 1.25 0.50

Case B 2.75 7.31 1.69 2.79 6.53 1.76

Case C 2.83 12.92 3.37 3.35 15.83 2.68

Case D 2.06 10.98 11.63 2.30 13.35 11.57

Case E 2.23 1.33 1.71 2.57 1.43 1.77

Case F 3.40 14.54 1.32 2.98 11.78 1.51

Case G 2.06 5.90 5.66 2.30 7.42 5.77

The large values of the sensitivity functions calculated in typical numerical 

evaluations means that overall, the analytical approach will provide what may be best 

regarded as the initial estimates of the parameters; poor estimates o f the gain (which 

equals 2.00 in all processes taken) is seen in many of the results in Table 4.1, for 

instance, particularly under the ±10% noise condition.

The use of the gradient algorithm (equation (4.103) requires that the cost 

function be unimodal with respect to the time constant. The range o f values of the 

parameters to ensure equation (4.113) is true (with a(h_1)m -  Tm) may be determined in
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simulation for the seven processes in Cases A to G under consideration (as it was not 

possible to calculate this range of values analytically). Equation (4.113) reduces (for 

this application) to

d2J = (H y r
3Tra2 ' ^  V ( j ® j k l  + o ^ T .2)3 (l + con2Tm2)2'

, n ^ f K mo)„2(2co„X 2 - l )
■ h  | G p(jcon)|(1 + c o n2Tm2) 2

K

-°-5Z  { „  2C° *2̂  ' i  [tan-'.(co,,T J  + « , +  <|i>(j(0 , ) ]} > 0  (4.125)
n = l (i + < X r

Numerical evaluation of equation (4.125) revealed that the initial estimates o f the 

parameter values to be used in the gradient approach should be as defined, in either 

Option 1 or Option 2, to facilitate unimodality o f the cost function with respect to the 

time constant variation.

Option 1: Km (initial -  gradient) = 1,5Km (analytical) (4.126)

0 2 5Tm (optimum) < Tm (analytical) < 3.31 m (optimum) (4.127)

Tm (initial-gradient) = 0.5t1T] (analytical) (4.128)

with Km (initial -  gradient) and xm (initial ~ gradient) being the initial values of the

gain and time delay values, respectively, to be used with the gradient method. Tm

(optimum) is the least squares value of the time constant calculated using the gradient 

method. K m (analytical), Tm (analytical) and Tm (analytical) are the values of gain, 

time constant and time delay, respectively, calculated using the analytical approach.

O ption 2: 0.83Km (optimum) < K m (analytical) < 1.17Km (optimum) (4.129)

0 2 5 !^ (optimum) < ^„(analytical) < 125Tm(optimum) (4.130)



0 < xm (analytical) < 1.1 Tm (optimum) (4.131)

with Km (optimum) and xm (optimum) being the least squares values o f the gain and 

time delay calculated using the gradient method.

It is easier for the conditions in Option 1 to be fulfilled in practice, as there is a 

tendency for Tm (analytical) to be greater than 1.25Tm (optimum) (at least in the 

simulations taken). The specifications in Option 1 and Option 2 are worst case 

specifications i.e. it is possible that the parameter estimates may converge to their 

optimum values, using the gradient method, when the relevant parameter estimates 

calculated using the analytical approach fall outside the parameter ranges supplied.

The analytical estimates are first calculated (using equations (4.118), (4.119) 

and (4.120)); then the initial values o f the gain and time delay for the gradient 

estimates o f the parameters are put equal to 1.5 and 0.5 times the analytical gain and 

time delay estimates, respectively (assuming Option 1 is taken). This strategy increases 

the probability o f convergence to the optimum values of the parameter estimates using 

the gradient method, though it does not guarantee such convergence. Simulation results 

show convergence to fixed FOLPD parameter estimates using the gradient method for 

all of the processes under discussion, in both the noise free and ±10% noise condition 

considered, in considerably less than 1000 iterations. These simulation results are 

summarised in Table 4.2; there is broad agreement between the parameters estimated 

in the noise free and ±10% noise condition.

Table 4.2: FOLPD model parameter estimates, calculated using the gradient method

No Noise ±10% Noise

Km Tm Km Tm
Case A 2.00 1.00 0.50 2.02 1.02 0.51

Case B 1.96 4.65 1.73 1.93 4.55 1.77

Case C 1.84 7.67 3.47 1.78 7.46 3.55

Case D 1.75 8.00 12.01 1.66 7.35 12.40

Case E 2.32 1.15 1.66 2.32 1.16 1.68

Case F 1.96 6.71 1.84 1.95 6.69 1.87

Case G 2.19 6.73 5.62 2.17 6.48 5.74
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One representative simulation result is provided in Figures 4.8 to 4.13, for the 

process in Case C i.e. G p = 2e"s/ ( l  + 8.5s + 22.5s2 + 18s3) ; the results are obtained

under the +10% noise condition.

Figure 4.8 shows that, for the simulation taken, a wide range of initial 

parameter values is possible (O = points where 32j/<9Tm2 < 0  and • = points where 

> 0). The model parameter values calculated analytically in this case were 

Km = 3.35, Tm =15.83 seconds and xm =2.68 seconds (Table 4.1). Therefore, the 

initial estimates for the parameters when using the gradient algorithm are 

Km =5.03, Tm =15.83 seconds and Tm =1.34 seconds (Option 1); this estimate is

marked as + on Figure 4.8.

Figures 4.9, 4.10 and 4.11 show the convergence of these parameter values to 

the optimum values within 500 samples, using the gradient method. The optimum 

value of Tm = 7.46 seconds means Tm (analytical) = 2.12Tm (optim um ), conforming 

with the guideline suggested in Option 1. Figures 4.12 and 4.13 show the step response 

and frequency response of the process and model together (using Program CC). The 

fitting of the process to the model in both domains is inaccurate (except at phase lags 

around 180°), due primarily to an inaccurate estimate o f the gain of the process. 

However, the apparent time delay of the process appears to be estimated well (Figure 

4.12). Other simulation results show a similar deviation in the fitting between the 

process and the model, except when the process is itself o f FOLPD structure (as may 

be deduced from the results provided for Case A in Table 4.2). It is possible, by 

restricting the range o f phase values over which the process is identified, to yield a 

closer fitting between the process and the model in the frequency domain (over the 

corresponding frequency range) than that found in the simulation taken. O f course, the 

acceptability of the fitting of the model to the process in any particular frequency range 

depends on the use to which the model is applied.
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Figure 4.12: Unit step response o f the process and the FOLPD model
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Figure 4.13: Polar plot o f the process and the FOLPD model

4.3.3.2 SOSPD model parameter estimation (with no zero)

The transfer function of the model is defined as

Rea 1

G in(s) =
1 + a i.ns + a2,„s2

(4.132)

From equations (4.73), (4.78), (4.79), (4.84) and (4.85), the parameters o f the model 

are calculated analytically as follows:
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co = co,,co2 or co (4.135)

Tm co =  co1 ,co2 or co (4.136)

with co,, co2 and co3 being appropriate frequency values.

Numerical evaluation of the parameter estimates calculated from equations 

(4.133) to (4.136) show that the sensitivity of the model parameters calculated to 

changes in the process magnitude and phase values recorded is reduced, under the 

following conditions:

(a) The gain, K m , is calculated from three magnitude values that span at least a decade 

of frequency.

(b) The parameter a 2m is calculated from magnitudes recorded at least a decade apart 

in frequency.

(c) The parameter a lm is calculated at frequencies when 0.25Km < |Gp(jco)| < 0.75Km.

(d) The time delay, xm , is calculated at frequencies when |G p(jco)| < 0.5Km .

These rules of thumb are broadly similar to those determined when calculating the 

parameters of a FOLPD model using the analytical method.

The analytical estimates of the SOSPD model parameters are calculated for 

each of the processes indicated in Cases A to G, using equations (4.133) to (4.136), 

based on the process frequency response values also used to calculate the FOLPD 

model parameters. Average values of the parameters are calculated over a number of 

points of the frequency response (to improve the robustness of the estimates). The 

frequency response data values used in equations (4.133) to (4.136) were chosen to 

conform with the rules of thumb defined that reduce the sensitivity o f the estimates to 

the magnitude values recorded. The model parameters were estimated under both noise 

free conditions and the ±10% noise condition. The estimates o f the model parameters 

determined are summarised in Table 4.3.
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Table 4.3: SOSPD model parameter estimates, calculated using the analytical method

No Noise ±10% Noise

Km a.m a2m Km aim a2m
Case A 2.00 1.01 0.02 0.49 2.19 1.24 0.10 0.42

Case B 1.99 4.49 4.57 0.99 2.24 5.36 4.98 1.04

Case C 1.97 7.20 19.72 1.70 2.19 8.85 22.45 1.72

Case D 2.00 11.15 46.83 7.80 2.20 11.88 57.46 7.47

Case E 2.00 0.99 1.00 1.00 2.19 1.03 1.19 1.02

Case F 2.00 6.30 8.15 1.00 2.22 7.34 9.42 1.01

Case G 1.99 6.28 8.33 4.37 2.28 7.89 7.67 4.79

The use of the gradient algorithm (equation (4.103)) requires that the cost 

function be unimodal with respect to a lm and a2m . Equations (4.113) and (4.114), 

which define the unimodality condition, reduce (for this application) to

a2j
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+0.5Z
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tan
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> 0 (4.138)

Numerical evaluation o f equations (4.137) and (4.138) revealed that the initial 

estimates o f the parameter values to be used in the gradient approach should be as 

defined in either Option 3 or Option 4, to facilitate unimodality of the cost function 

with respect to the variation in a lm and a2ra .

O ption 3: 0.83Km (optimum) < Km (analytical) < 1.17Km(optimum) (4.139)

0.75alm (optimum) < a]in (analytical) < 1.5alm (optimum) (4.140)

0.5a2m (optimum) < a2m (analytical) < 1.75a2m (optimum) (4.141)

0.83Tin (optimum) < x1T1 (analytical) < 1.17xm (optimum) (4.142)

with a,m (optimum) and a2m (optimum) being the least squares value o f alm and a2m 

calculated using the gradient method.

O ption 4: Km (gradient -  initial) = 1.5Km (analytical) (4.143)

0.75a1m (optimum) < a lm (analytical) < 1.75alm (optimum) (4.144)

0.5a2m (optimum) < a2m (analytical) < 1.75a2m (optimum) (4.145)

xm(gradient -  initial) = 0.5xm(analytical) (4.146)

For the estimation of the parameters of a SOSPD model, the specifications in 

Options 3 and 4 are broadly similar; as with Options 1 and 2, both Options 3 and 4

describe worst case conditions. The analytical estimates o f the parameters are first

calculated (using equations (4.133) to (4.136)); these may then be used as the initial 

values for the gradient estimates o f the parameters (assuming Option 3 is taken).
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Convergence to the optimum values o f the parameter estimates using the gradient 

method is o f course not guaranteed (as in the case when the parameters of a FOLPD 

model are being estimated). Simulation results show convergence to fixed SOSPD 

parameter estimates for all o f the processes under discussion, under both the noise free 

and ±10% noise conditions considered; the convergence is, generally speaking, slower 

than when the parameters of a FOLPD model are being estimated. These simulation 

results are summarised in Table 4.4.

Table 4.4: SOSPD model parameter estimates, calculated using the gradient method

No Noise ±10% Noise

Kra aim a2m Kra aim a2m
Case A 2.00 1.02 0.02 0.48 2.02 1.05 0.04 0.47

Case B 2.01 4.54 4.51 1.00 1.99 4.48 4.30 1.05

CaseC 1.94 7.34 16.76 1.89 1.91 7.22 15.95 2.00

Case D 1.87 10.35 38.20 8.25 1.78 9.66 30.28 9.08

Case E 2.00 1.00 1.00 1.00 2.00 1.01 0.98 1.04

Case F 2.01 6.32 8.25 0.99 2.03 6.42 7.90 1.04

Case G 2.22 7.67 16.01 3.73 2.22 7.54 16.14 3.79

The open loop step and frequency response of the SOSPD models, formed from 

the parameter estimates in Table 4.4, under both the noise free and ±10% noise 

conditions, were compared with the responses of the corresponding processes. These 

results, determined using Program CC, show that when the process is itself of a 

FOLPD or SOSPD structure, excellent fitting was achieved (as may be deduced from 

the results provided for Cases A, B and E in Table 4.4) though when the process was 

not o f this structure, an expected deviation between the process and the model in both 

the time domain and the frequency domain was observed. This deviation was, 

however, far less than that seen when a FOLPD model was estimated (particularly in 

the frequency domain), which indicates that if  accurate fitting o f the model to the 

process in the frequency domain is required, then the estimation o f a SOSPD model of 

the process is more appropriate than a FOLPD model. However, a caveat is that better 

initial estimates o f the gradient model parameters are required, as the worst case
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conditions for convergence are tighter when estimating the parameters of a SOSPD 

model compared to estimating the parameters of a FOLPD model, as a comparison of 

Options 1 and 4 or Options 2 and 3 will reveal. A further disadvantage of estimating 

the parameters of a SOSPD model is the slower convergence rate of the parameter 

estimates (though the speed of convergence of the parameter estimates may be altered 

by varying the learning rate, (j. (equation (4.103)). As is the case when estimating a 

FOLPD model, the acceptability o f the fitting depends on the use to which the process 

model is applied.

One representative simulation result is provided in Figures 4.14 to 4.29, for the 

process in Case C, under the ±10% noise condition. The model parameter values 

calculated analytically in this case are Km =2.19, a]m = 8.85, a2lt) = 22.45 and 

xm = 1.72 seconds (Table 4.3).

Figures 4.14 to 4.23 show that, for the simulation taken, a wide range of initial 

parameter values is possible (O = points where the appropriate second partial 

derivative is less than zero, • = points where the appropriate second partial derivative 

is greater than zero and [] = approximate allowed range of the analytical parameter 

estimates o f a]|TI and a2m, over all values o f K m and Tm taken (Option 3); Option 3 

describes a conservative bound for this particular simulation). Figures 4.14 to 4.18 

record when 32j/<9alm2 < 0 ; Figures 4.19 to 4.23 record when 32j/d a 2m2 < 0.

Figures 4.24 to 4.27 show the convergence o f the initial parameter values to 

final values within 500 samples, using the gradient method. The final values of 

Km = 1.91, aIm = 7.22, a2m = 15.95 and xm = 2.00 seconds (Table 4.4) mean that the 

guidelines suggested in Option 3 are fulfilled.

Figures 4.28 and 4.29 show the step response and frequency response of the 

process and model together (using Program CC). The fitting o f the process to the 

model in both domains is excellent, and is better than if a FOLPD model is estimated 

(Figures 4.12 and 4.13).
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Figure 4.24: K m -  ji = 1.0 Figure 4.25: a lm -  ji = 10.0
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Figure 4.28: Unit step response of the process and the SOSPD model
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Figure 4.29: Polar plot o f the process and the SOSPD model

4.3.3.3 Estimating the parameters of a third order model (with time delay) and no 

zeroes

Separate initial estimates of the parameters are calculated using the analytical 

formulae that estimate the parameters of a general third order model (with no zeroes), 

and using the analytical formulae that estimate the parameters o f a third order model 

with a multiple pole (and with no zeroes). Using the former approach, the transfer 

function of the model is

Gm(s) = K „e-"m
1 + a imS + a2mS2 a3ms

(4.147)

From equation (4.83), the non-delay parameters are calculated by solving the following 

relationship:

GpCjco,) 1 ^
1 — CQ| Gp(j®,) 4

“ 0 3 1 Gp(jco,) 6
- C O , Gp(jco,)

_ K m 2 "

Gp(jco2)| 2
1 2
1 - C O , gp(>2) - ® 2  4Gp(jco2)2  6 

— CO 2 Gp(jco2)|2 C l m

Gpjro3)2 2
1 — CO 3 Gp(j®3) ^ 4 

- C O  3 Gp(jco3) 2  6 
- C O  3 Gp(jco3) 2 c2m

Gp(jco4)[2
1 21 -co4 Gp(jffi4) 2 4 

- C O  4 Gp(jra4) 2  6 

- ® 4 Gp(jco4)|2 _  C 3 m  .

(4.148)
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Applying equations (4.78) to (4.81), it may be deduced that

a 3in -  "\/C 3m
(4.149)

with a2lll solved numerically from the following equation:

a2m 2c2ltla2m 8c3ma2m + (c2in 4 c |inc 3m) — ® (4.150)

and with

In ) — V c tin + 2a2m (4.151)

The time delay is calculated from equation (4.85), as follows:

•cm = —l-<t>p(jco) -  tan '((a lmco -  a3mco3) / ( l  — a2mco2))] (4.152)
(0

with w = o)t,co2,co3 or co4. The alternative to this procedure is to estimate the model 

parameters, assuming a repeated pole on the denominator o f  the transfer function i.e.

G„,|(S) =
O + s T j 3

(4.153)

From equations (4.89), (4.90) and (4.91), the parameters Km, , Tm) and Tm,, 

respectively, are calculated as follows:

Kml =
G p( j c o , ) G p(jco2)|(co22 - c o , 2) 15

I  I .  | 0 . 3 3 3 \ 2 /  I 10.333
(a>2|G p(j(o2)| j -Jco^GpOco,)!

-|1 5 (4.154)

-10.667

T = 1  
,nl 0)

K ml - 1 ,  co =  co. or co - (4.155)

and
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T m ]  = —[-<)> ( jro ) -3 ta n -1(coTml)|, c d  = c o ,  o r  a >2
CO L J

(4.156)

The denominator parameters a lm,a 2m,a 3m are then calculated in a straightforward 

manner.

The model parameters are calculated under the noise free and ± 10% noise 

conditions. The analytical estimates o f the parameters (in equations (4.148) to (4.152)) 

are calculated following broadly the conditions defined for the analytical calculation of 

the parameters in the SOSPD case i.e. the parameters K m, a3m, a2m and a lm are 

calculated from three magnitude values that span at least a decade o f frequency and the 

time delay, xm, is calculated at frequency values when Gp(jco)| <0.5Km. Detailed

simulation results to determine the robustness of the parameter estimates to changes in 

the magnitude values recorded would need to be carried out if  refinements in these 

rules o f thumb were judged desirable. The parameters in equations (4.154) to (4.156) 

are calculated based on the conditions defined for reduced sensitivity o f the parameters 

of a FOLPD model to process magnitude values recorded.

The model parameter estimates calculated using equations (4.148) to (4.152), 

for Cases A to G, are summarised in Table 4.5, with the model parameter estimates 

calculated using equations (4.154) to (4.156) summarised in Table 4.6.

Table 4.5: Model parameters calculated using the analytical method

No Noise ±10% Noise

Km a i m a 2 m a 3m Km a i m a 2 m a 3 m

Case A 2.00 1.09 0.10 0.00 0.41 2.33 2.20 0.85 0.16 0.05

Case B 1.99 4.44 4.33 0.23 0.99 2.22 5.00 5.54 0.00 0.95

Case C 1.99 8.38 22.1 16.3 1.13 2.36 13.2 38.5 56.2 0.60

Case D 2.00 13.5 66.1 123 5.73 2.37 29.3 200 679 2.71

Case E 2.00 1.31 0.85 0.09 1.04 2.35 2.55 1.98 0.77 0.65

Case F 2.00 6.29 8.54 0.00 0.96 2.33 9.92 18.3 16.8 0.29

Case G 1.99 6.34 9.21 0.00 4.25 2.16 7.55 22.9 0.00 3.32
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Table 4.6: Model parameters calculated using the analytical method (repeated pole)

No Noise ±10% Noise

a i t „ a 2 m a 3 m
Km

a i m a 2 m a 3 m

Case A 1.17 0.65 0.14 0.01 0.29 1.29 0.73 0.18 0.01 0.27

Case B 1.94 4.85 7.83 4.22 0.25 2.15 6.43 13.8 9.84 0.00

Case C 1.98 8.57 24.5 23.3 0.79 2.18 10.6 37.4 44.1 0.24

Case D 2.00 13.1 57.5 84.0 6.58 2.21 14.6 71.4 116 6.14

Case E 2.08 1.54 0.79 0.13 1.12 2.30 1.57 0.83 0.14 1.18

Case F 1.75 6.21 12.9 8.88 0.12 1.92 6.63 14.7 10.8 0.08

Case G 1.97 7.01 16.4 12.8 3.02 2.17 7.74 20.0 17.2 2.98

Comparing the results for Cases A, B, C and E in Table 4.5 and 4.6, for the 

noise free case, it is evident that the values calculated using the more general model 

structure are closer to the actual process values, then are the values calculated using the 

model structure with a repeated pole. The trade-off is the much higher computational 

cost associated with the calculation o f the model parameters in the former structure, 

particularly if any of the parameters must be calculated numerically (equation (4.150)).

As the model order increases, the evaluation o f the allowed range of estimates 

o f the analytical parameter values, for successful implementation of the gradient 

method, becomes more time-consuming. Since a requirement for unimodality is that 

the second partial derivative of the cost function with respect to the denominator 

parameter values be greater than zero, it was decided to increase the initial estimate of 

the model gain, and decrease the initial estimate of the model time delay, if  any of the 

second partial derivatives o f the cost function with respect to the denominator 

parameter values were less than zero (it was felt that increasing the model gain, and 

decreasing the model time delay would be more likely to facilitate unimodality of the 

cost function, following the example of the FOLPD model parameter estimation 

strategy). The model gain is increased, and the model time delay is reduced, until a set 

o f model parameter values is reached when all o f the relevant second partial 

derivatives are greater than zero.

Simulation results show convergence of the model parameters to their optimum 

values, using the gradient method, in some but not all simulated processes, when either
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a general third order model or a third order model with a repeated pole was used. These 

simulation results are summarised in Tables 4.7 and 4.8, respectively.

Table 4.7: Parameters calculated using the gradient method - general model

No Noise ±10% Noise

a,m a 2 m a 3 m Km a i m a 2 m a 3 m

Case A 2.00 1.09 0.09 0.00 0.41 2.29 1.38 0.31 0.02 0.18

Case B 2.01 4.54 4.54 0.03 0.99 2.00 4.65 4.95 0.70 0.90

CaseC 2.02 8.00 33.7 11.0 0.09 2.00 7.94 34.3 10.6 0.01

Case D 1.97 13.7 66.3 147 5.41 2.19 15.0 139 227 0.76

CaseE 2.00 1.00 1.00 0.00 1.00 2.14 1.36 1.39 0.30 0.57

Case F 2.01 6.33 8.36 0.14 0.97 2.05 6.70 16.1 2.50 0.01

Case G 2.22 7.67 15.5 0.00 3.77 2.21 7.44 12.2 0.00 4.17

Table 4.8: Parameters calculated using the gradient method - repeated pole model

No Noise ±10% Noise

Kra a im a2m a3m T,n K m a,m a2m a3m
Case A 2.00 1.10 0.10 0.00 0.41 2.06 1.25 0.19 0.02 0.31

Case B 2.08 4.95 9.80 1.80 0.01 2.06 4.90 10.3 1.80 0.01

CaseC 2.13 8.62 35.0 11.9 0.00 2.09 8.40 34.7 12.0 0.03

Case D 1.97 13.6 65.7 144 5.46 1.89 13.3 56.5 132 6.18

C aseE 2.00 1.00 1.00 0.00 1.00 2.00 1.01 0.98 0.00 1.04

Case F 2.04 6.57 15.7 2.5 0.00 2.08 6.70 16.2 2.60 0.02

Case G 2.22 7.66 15.5 0.00 3.76 2.21 7.46 12.4 0.30 4.14

Both sets of simulation results show that in some cases, convergence of the 

parameters, using the gradient method, to their optimum values (or values close to the 

optimum values) is facilitated. This may be seen directly in Table 4.7, in the following

cases:

(1) Case A, no noise

(2) Case B, no noise and ±10% noise and
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(3) Case E, no noise.

In addition, supplementary simulation results (O’Dwyer (1996h)) demonstrate good 

fitting between the process and the models, in Program CC, for the following cases in 

Table 4.7:

(1) Case D, no noise

(2) Case F, no noise

(3) Case G, no noise and ±10% noise.

The convergence o f the parameters may be seen directly in Table 4.8, in the following 

cases:

(1) Case A, no noise and ±10% noise

(2) Case E, no noise and ±10% noise

In addition, supplementary simulation results (O’Dwyer (1996h)) demonstrate good 

fitting between the process and the models, in Program CC, for the following cases in 

Table 4.8:

(1) Case D, no noise and ±10% noise

(2) Case G, no noise and ±10% noise.

However, it is disappointing that the optimum parameters of a third order 

model plus time delay (Case C) were not estimated using the gradient method, for the 

algorithms defined. Thus, the tactic o f increasing the model gain, and decreasing the 

model time delay, to ensure that all of the second partial derivatives are greater than 

zero does not facilitate optimum parameter estimation in all cases. A more 

sophisticated strategy may need to be employed to check that, as all of the parameters 

vary, the second partial derivatives remain positive at each iteration. This suggestion 

would, however, involve a large number of calculations at each sample time. 

Alternatively, initial values of other parameters could be modified to try to ensure 

positive second partial derivatives; unfortunately, there would be no guarantee that the 

second partial derivatives would remain positive as the parameters changed. The 

conclusion from this discussion is that it is not a straightforward matter to facilitate 

convergence of the model parameters to their optimum values if any of the second 

partial derivatives are less than zero; under these circumstances, it may be better to 

estimate the parameters o f a less complex model structure.
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4.3.3.4 Estimating the parameters of a second order model (with time delay) and 

one zero

The transfer function of the model is defined as

G m(s) = ^ " l(1 + b"*S )e" m (4-157)l + a lms + a 2ras

From equations (4.73), (4.74), (4.78), (4.79), (4.84) and (4.85), the parameters Km, 

a]m, a2tn, b]m and xm are calculated as follows:

K,„ = V d ^  (4.158)

and

(4.159)

(4.160)

a i„ = Vcim + ^a2m (4.161)

1
= —[-<t)p(j®) + tan"1(blm(o ) - ta n “1(a lm(D /( l - a 2m©2))] (4.162)

co

with co = C0 j,co2,co3 or co4. The model parameters are calculated under the noise free 

and ± 10% noise conditions. The analytical estimates o f the parameters (in equations 

(4.158) to (4.162)) are calculated following broadly the conditions defined for the 

analytical calculation o f the parameters in the SOSPD case i.e. the parameters Km, 

b,m, a2m and a ]lT) are calculated from three magnitude values that span at least a 

decade o f frequency and the time delay, Tm, is calculated at frequency values when 

Gp(jro) < 0.5xra. Detailed simulation results to determine the robustness of the

parameter estimates to changes in the magnitude values recorded would need to be 

carried out if  refinements in these rules of thumb were judged desirable. The model 

parameters calculated using equations (4.158) to (4.162) are summarised in Table 4.9.
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Table 4.9: Model parameters calculated using the analytical method

No Noise ±10% Noise

K,m a im a2in b,m Kra aim a2m t>im Tn.
Case A 2.00 0.64 0.00 0.00 0.54 2.33 2.28 0.70 0.73 0.56

Case B 1.99 4.49 4.57 0.00 0.99 2.21 5.11 6.36 0.52 1.35

CaseC 1.99 7.36 14.5 0.00 2.07 2.18 7.65 18.9 0.00 1.84

Case D 2.00 10.4 34.6 0.00 8.59 2.28 9.07 0.00 0.00 12.2

Case E 2.00 1.40 0.99 0.00 1.09 2.34 1.36 0.00 0.00 1.78

Case F 2.00 6.32 8.71 0.35 1.28 2.32 7.39 0.00 0.00 2.00

Case G 1.99 6.50 9.96 0.78 4.91 2.18 3.43 0.00 0.00 6.48

The analytical parameters calculated were used as the initial values for the 

gradient estimates of the parameters. In all cases, convergence to final values of the 

parameters was achieved. The simulation results obtained are summarised in Table 

4.10.

Table 4.10: Model parameters calculated using the gradient method

No Noise ±10% Noise

Km aim a2m blm Km aim a2m Xn,
Case A 2.00 1.00 0.00 0.01 0.51 2.04 2.19 1.12 1.12 0.51

Case B 2.01 4.54 4.51 0.00 1.00 1.98 4.49 4.62 0.28 1.28

CaseC 1.94 7.34 16.8 0.00 1.90 1.91 7.22 15.9 0.00 2.00

Case D 1.87 10.4 38.2 0.00 8.25 1.78 9.66 30.3 0.00 9.08

Case E 2.00 1.00 1.00 0.00 1.03 2.00 1.01 0.98 0.00 1.03

Case F 2.00 6.32 8.39 0.19 1.17 2.03 6.42 7.62 0.00 1.06

Case G 2.20 7.74 13.7 0.85 4.75 2.16 6.46 0.00 0.05 5.78

A comparison o f the results in Table 4.4 and Table 4.10 shows that, in many 

cases, very similar results are obtained when the processes are modelled by a SOSPD 

model without a zero (Table 4.4) and with a zero (Table 4.10). This is not surprising, 

as many o f the processes do not contain a zero. In Case G, under the ±10% noise
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condition, the results in Table 4.10 may be more directly compared with the results in 

Table 4.2 (when the processes are modelled by a FOLPD model). It is possible to 

identify an overdetermined model if  a zero is estimated; the results for Case A under 

the ±10% noise condition in Table 4.10 shows that the model identified has a 

common factor (approximately) on the numerator and denominator terms.

Overall, there does not appear to be a significant benefit in estimating the 

parameters of a model with zeroes as opposed to estimating the parameters of a model 

without zeroes. In specific terms, the following reasons suggest why it may be more 

appropriate to estimate a process model without zeroes:

(a) There is an increased computational burden involved in estimating the parameters 

of a model with zeroes.

(b) It is likely that there will be an increased difficulty in calculating sufficiently good 

parameter estimates using the analytical approach (if the parameters o f a model with 

zeroes are being estimated), so that a reasonable possibility o f convergence to the 

optimum parameter estimates using the gradient approach exists.

(c) There is reasonably good fitting, for both the noise-free and noisy cases, in both the 

time and frequency domains, between the processes taken, and an appropriate model 

without zeroes.

4.3.5 Model structure selection

The estimation o f the most appropriate model of the process to use is a difficult 

issue. One approach is to assume that the process is adequately modelled by either a 

FOLPD model or a SOSPD model (with no zero). Such an assumption is frequently 

made in process model identification, as described in Chapter 1. The advantages and 

disadvantages of estimating a FOLPD model versus a SOSPD model have been 

debated in Section 4.3.3.2.

One simple test that may allow an indication o f the preferred model to use, is to 

calculate the slope of the process magnitude versus frequency curve at high 

frequencies. This slope should be -20 dB/decade if the process is of FOLPD structure 

and should be -40 dB/decade if the process is o f SOSPD structure. Experimentally 

obtained frequency response data are seldom accurate enough to exhibit a slope more 

negative than -40 dB/decade (Seborg et al. (1989)). The slope of the process magnitude
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versus frequency curve is given by:

201og10|Gp(jco1)| -  201og1(,|G p(j(p2)| ^

log10(a>2/a>i)

However, the final decision on the most appropriate model structure to choose depends 

more on parameter convergence and on computational issues, and goodness of fit 

requirements.

Alternatively, the parameters of an arbitrary order model could be estimated. 

Some measure of the most appropriate model order to use in the estimation is 

necessary; one way to do this would be to calculate the cost function formed from the 

optimum parameters estimated (using the gradient method) as the model order is 

increased. Then, the value of the model order corresponding to where the cost function 

levels out would be the most appropriate model order to use. This procedure is 

computationally intensive. A variation of the strategy that is less computationally 

intensive would be to calculate the cost function based on the initial model parameter 

estimates (calculated using an analytical approach). A repeated pole model would 

simplify the calculations further.

It has been shown in Section 4.3.3.3 that convergence of the parameters to their 

optimum values using gradient methods is not always facilitated for third order process 

models (with time delay), due to non-unimodality of the cost function. In addition, 

simple means to ensure that all of the second partial derivatives are greater than zero 

(i.e. that the cost function is unimodal) do not always allow appropriate model 

parameter estimation. It is likely that the same experience would be repeated if the 

parameters of higher order models with time delay are to be estimated. Therefore, a 

strategy for the estimation of the parameters of an appropriate arbitrary order model 

plus time delay is summarised in Figure 4.30.

Table 4.11 summarises the results obtained when the algorithm in Figure 4.30 

is applied to estimate the model order of the seven simulated processes in Cases A to 

G.

This test is not entirely reliable (as may be seen from Table 4.11); however, it 

appears to be a reasonable guide to the choice of an appropriate model order. The test 

has been developed assuming that the model has no zeroes; a similar test could be
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developed for a model with zeroes.

Figure 4.30: Flowchart summarising the algorithm for model parameter estimation
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Table 4.11: Model orders estimated

Simulation Correct Model Order Estimated Model 

Order - No noise

Estimated Model Order 

- ± 10% Noise

Case A 1 1 1

Case B 2 2 2

CaseC 3 2 2

Case D 8 6 6

Case E 2 2 2

Case F 3 2 2

Case G 3 1 2

It has already been shown that good fitting between the process and the model 

exists for Case C for the estimated model order value in Table 4.11, under the +10% 

noise condition (Figures 4.28, 4.29). Simulation results are now presented to show the 

estimation of the model parameters, and the fitting between the process and the model,

for Cases A, B, E, F and G. In all cases, the results are determined under the ±10% 

noise condition.

For case A, G p = 2 e '05s/( l  + s ) . From Table 4.11, the parameters of a FOLPD

model are estimated (Figures 4.31, 4.32 and 4.33) following the procedure in Option 1 

(Section 4.3.3.1). Fitting in the time domain and in the frequency domain, using

Program CC, is shown in Figures 4.34 and 4.35, respectively.

Figure 4.31: K m -  p = 0.5 Figure 4.32: Tm -  p = 0.5 Figure 4.33: Tm -  p = 0.5

Sample number Sample number Sample number
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Figure 4.34: Unit step response o f the process and the FOLPD model

Figure 4.35: Polar plot o f the process and the FOLPD model

For case B, G p = 2e"l0s/ l  + 4.5s + 4.5s2 . From Table 4.11, the parameters of a

SOSPD model are estimated (Figures 4.36 to 4.39), following the procedure in Option 

3 (Section 4.3.3.2). Fitting in the time domain and in the frequency domain, using 

Program CC, is shown in Figures 4.40 and 4.41, respectively.
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Figure 4.36: K m -  p. = 0.1 Figure 4.37: a lm -  p. = 0.1

Figure 4.38: a2m -  p = 0.1 Figure 4.39: Tm - p  = 0.01

Sample number

Figure 4.40: Unit step response of the process and the SOSPD model

Tine
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For case E, G p = 2e”''0s/ l  + s + s 2 . From Table 4.11, the parameters o f a

SOSPD model are estimated (Figures 4.42 to 4.45), following the procedure in Option 

3 (Section 4.3.3.2). Fitting in the time domain and in the frequency domain, using 

Program CC, is shown in Figures 4.46 and 4.47, respectively.

Figure 4.42: K m -  fj, = 0.1

]

t

j

\

\ i

n  5 00  iooo to

Sample number

Figure 4.44: a2ra -  (a. = 0.1

Figure 4.43: a lm -  ^  = 0.1

Figure 4.45: xra -  = 0.01
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Figure 4.46: Unit step response o f the process and the SOSPD model

T i n e

Figure 4.47: Polar plot o f the process and the SOSPD model

For case F, G p = 2(1 + 2.25s)e'IUs/ l  + 8.5s + 22.5s2 + 18s3. From Table 4.11, the

parameters o f a SOSPD model are estimated (Figures 4.48 to 4.51). Fitting in the time 

domain and in the frequency domain, using Program CC, is shown in Figures 4.52 and 

4.53, respectively.
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Figure 4.48: K m -  p = 0.1 Figure 4.49: a lm -  p  = 0.1

Figure 4.50: a2m -  p = 0.1

E
„S'

Figure 4.51: xm -  (a = 0.01

Sample number

Figure 4.52: Unit step response of the process and the SOSPD model
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Figure 4.53: Polar plot o f the process and the SOSPD model

R e a l

For case G, G p = 2(1 -  2.25s)e~,0s/ l  + 8.5s + 22.5s2 + 1 8s3 . From Table 4.11, the

parameters o f a SOSPD model are estimated (Figures 4.54 to 4.57). Fitting in the time 

domain and in the frequency domain, using Program CC, is shown in Figures 4.58 and 

4.59, respectively.

Figure 4.54: Km -  p = 1.0 Figure 4.55: a lm -  n = 10

Figure 4.56: a2m -  (i = 10 Figure 4.57: xm -  p, = 0.1
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Figure 4.58: Unit step response o f the process and the SOSPD model

Time

Figure 4.59: Polar plot o f the process and the SOSPD model

Real

All o f these results show the appropriateness o f the strategy under 

consideration.
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4.3.6 Recursive estimation of the model parameters

In the work described in the chapter thus far, it has been assumed that ten 

points on the process frequency response have been available for the calculation of the 

model parameters. It is possible that data points may become available at different 

times. It would be possible to wait until all the data points became available before 

estimating the model parameters; an alternative would be to implement a recursive 

scheme which would estimate appropriate model parameters as each data point became 

available. For example, if  the parameters o f a FOLPD model are to be estimated, a 

minimum of two data points are required to estimate the model gain analytically. 

However, the sensitivities of the subsequent parameter estimates to errors in the 

magnitude values recorded are likely to be high. One could re-estimate the analytical 

parameter estimates or one could rely on the gradient technique to appropriately update 

the parameter estimates, as more data points became available; however, the 

convergence of the parameter estimates to their optimum values is not guaranteed.

The algorithm proposed for the recursive estimation of the FOLPD model 

parameters is given in Figure 4.60.

Figure 4.60: Recursive estimation algorithm
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This algorithm ensures that the condition for unimodality is fulfilled. One 

representative simulation result (for Case A), using the algorithm proposed in Figure 

4.60, is provided in Figures 4.61 to 4.63, under the ±10% noise condition. A new data 

point is added every 200 sample periods. The figures show that the estimates calculated 

converge to the estimates determined when ten data points were used to calculate the 

parameters non-recursively (Figures 4.31 to 4.33). Figures 4.61 to 4.63 also show that 

there is a refinement in the parameter estimates as new data points are added, 

demonstrating the recursive nature of the method. O f course, the computational burden 

increases as the number o f data points increase; the computational burden could be 

limited by defining a maximum number o f data points over which the parameters 

should be calculated. If more data points become available, these could replace existing 

data points used to calculate the parameters. The extension of the method to the 

estimation of the parameters of a higher order model plus time delay is a natural 

progression of the method, though the computational burden is likely to be increased 

(because of the larger number of points required to estimate the parameters, combined 

with the greater number of second partial derivatives that would need to be compared 

to zero).

Figure 4.61: K ra -  p, = 0.5 Figure 4.62: Tm -  p. = 0.5

Figure 4.63: Tm -  p = 0.5
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4.3.7 Other issues

4.3.7.1 The choice of the learning rate, p.

Appropriate estimates of the learning rate, p ,  (equation (4.103)) have been 

determined in simulation. The best setting o f this value to allow rapid convergence of 

the parameter estimates appears to be related to the process order and to whether the 

process is underdamped or overdamped. Unfortunately, it is very possible for the 

model parameters to converge to non-optimum values if the value of the learning rate 

is too large. An ultimate aim would be to allow the learning rate to be adaptive. A trial 

and error procedure to choose the learning rate was the only satisfactory method 

developed.

4.3.7.2 Normalising used in the cost function

The normalising used in the cost function (equations (4.100), (4.101)) has the 

effect of weighting the cost function more equally over a wide range of frequencies. 

This facilitates the convergence of the model parameters to their optimum values, 

using the gradient method, over a wider range of initial model parameters than if no 

cost function weighting is used. Other normalising matrices, based on a different 

weighting of the cost function over the range of frequencies, have been employed to 

less effect than the normalising matrix that is used in equation (4.101). Palmor and 

Blau (1994) also use a normalising matrix in an effort to balance the components that 

make up the cost function; their matrix also involves dividing the magnitude 

components by the appropriate process magnitude value, though they divide the phase 

components by unity. The normalising used in equation (4.101) involves dividing the 

phase lag related components by the appropriate frequency; this is done to 

approximately balance out the cost function over all the phase terms.

4.3.7.3 Other methods of calculating initial model parameter values

Alternative analytical procedures, based on calculating some or all of the non­

delay parameters from the phase response (instead of just calculating the time delay
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from the phase response) could be employed to calculate initial model parameter 

values for use in the gradient method. However, a disadvantage o f such a scheme, 

particularly if  the parameters o f a FOLPD or SOSPD model are estimated, is the non­

linear dependence of the phase on the numerator and denominator parameters of the 

model (equation (4.85)), which means that the solution o f the simultaneous equations 

involved would need to be done numerically (in contrast to the present analytical 

determination of the parameters, when the model is in FOLPD or SOSPD form).

Alternatively, different models o f the process, with corresponding analytical 

procedures, could be defined to calculate the model parameters; one example of such a 

method, which involves assuming that the model denominator has repeated poles, has 

already been formulated (equations (4.86) to (4.91)). Other such methods could also be 

implemented; for example, the model denominator D m(s) could be assumed to be as 

follows:

Dn,(s) = f l ( l + n T ms) (4.164)
11= 1

Another alternative is

D,„(s) = (l + Tn,s)N/!(l + 2Tms)N/! (4.165)

The use o f equations such as (4.164) and (4.165) may change the trade-off discussed in

Section 4.3.2.1, in which poorer accuracy o f the parameters estimated using such

procedures, compared to using the procedures to analytically determine the parameters 

o f a general order model, is traded off against the computational intensity o f the latter 

algorithm. It does appear that the use o f the latter analytical formulae is generally 

indicated, provided the complexity of the equations involved to estimate the model 

parameters is not prohibitive.

4.3.7.4 The choice of model parameter estimation method

Tables 4.1 to 4.5, 4.7, 4.9 and 4.10 demonstrate that, in the absence of noise, 

the parameters determined using the analytical approach are as appropriate as the 

parameters determined using the two-stage approach (on balance). This is as expected, 

though the evaluation o f the gain is problematical in the analytical approach in some 

cases; this is due to the relatively restricted range of process phase values over which
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the parameters are calculated. The advantages o f the analytical approach are that it is 

much less computationally intensive than the two-stage approach and that there are no 

concerns about choosing the most appropriate value o f the learning rate, |J,. As 

expected, the analytical model parameters facilitate much poorer fitting than do the 

parameters calculated using the two-stage method, in both the time and frequency 

domains, under the ±10% noise condition. This result is compatible with the large 

values of the parameter sensitivity functions calculated when an analytical method is 

used to estimate the FOLPD model parameters (equations (4.121) to (4.124)).

4.3.8 Conclusions

1. The two-stage method defined in this section o f the chapter has successfully allowed 

the estimation of the parameters (including the time delay) o f SISO process models, 

from an appropriate number of arbitrarily specified points on the process frequency 

response, in a wide variety of simulations. Convergence o f the initial model parameter 

estimates, calculated using the analytical approach, to the optimum model parameter 

estimates, calculated using the gradient approach, is possible if  the initial model 

parameters are sufficiently close to the optimum parameters. It was not possible to 

prove such convergence properties analytically, though it is possible to evaluate the 

likelihood of convergence o f the initial model parameter estimates to the optimum 

values by calculating the second partial derivative(s) of the cost function with respect 

to the denominator parameter value(s); if  these expressions are greater than zero, 

convergence is possible, though not guaranteed. It is also possible, having obtained the 

analytical estimates (and determining that one or more o f the second partial derivative 

are less than zero), to adjust them in a manner likely to allow the corresponding second 

partial derivatives to be greater than zero and thus to increase the possibility of 

convergence. An alternative simple strategy that involves the commencement of 

iteration at different values of the parameter estimates could also be employed to 

increase the probability that the parameters estimated using the gradient approach will 

correspond to the global minimum of the cost function.

2. In general, the required frequency range over which the process and the model must 

be fitted, and the acceptability of the fitting of the process to the model, depends on the
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use to which the model is applied; it appears reasonable that, for many applications, 

fitting of the process in phase lags between 0° and 270° will be the maximum range 

over which good fitting is required. This is true for many compensation strategies (e.g. 

PID controller design); in addition, most processes, being low pass in nature, will have 

a small magnitude at larger phase lags, making the measurement problem greater. 

These considerations provide a cogent argument for estimating the parameters of either 

a FOLPD model or a SOSPD model; in addition, the estimation o f the parameters of 

such a low order model will have the advantages o f a lower computational burden, 

faster convergence and a larger parameter space for which the cost function is 

unimodal, compared to the estimation of the parameters of a higher order model.

3. In future work, it would be worth investigating the robustness of analytical estimates 

of the process parameters, calculated using data at the ultimate frequency. Frequency 

response data determined at the ultimate frequency is of particular interest, because if 

the magnitude and phase o f the process is to be estimated using either the power 

spectral density approach or the approach that involves the ratio o f the Fourier 

transforms of the output signal and the input signal to the process, the estimation in 

open loop or closed loop is unbiased by the presence o f frequency terms at multiples of 

twice the frequency o f evaluation (provided, o f course, that the required conditions are 

observed on the excitation signals). The ultimate frequency is also in the range of 

frequencies over which the process model should be estimated with accuracy, for 

controller design purposes.
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CHAPTER 5

The compensation of processes with time delay

5.1 Introduction

The compensation of processes with time delay, both in the continuous time 

domain and the discrete time domain, has been treated comprehensively in the 

published literature. Isermann (1989), (1991) classifies the two major types of 

compensator designs for processes with time delay, in the discrete time domain, as (a) 

the design of parameter optimised controllers, in which the controller structure is fixed, 

and the controller parameters are adapted to the controller structure and (b) the design 

o f structurally optimised controllers, in which the controller structure and the controller 

parameters are adapted optimally to the structure and to the parameters of the process 

model. It appears reasonable that such a classification may be extended to classify 

compensation methods in the continuous time domain. The focus of this chapter is to 

review the work done in the design of both parameter optimised compensators and 

structurally optimised compensators, in both the continuous time and discrete time 

domains; it will include consideration of more recent work than that covered by 

Isermann (1989), (1991).

The two major classes of parameter optimised compensators will be 

considered, namely those based on a PID structure and those based on a lead/lag 

structure. The methods used to define the appropriate compensator parameters will be 

classified and outlined. The discussion in this section of the chapter is further detailed 

by O ’Dwyer (1996b).

The design of structurally optimised time delay compensators will then be 

discussed; examples of the compensators discussed will include the Smith predictor 

and direct synthesis compensators. The discussion in this section of the chapter is 

further detailed by O ’Dwyer (1996c).
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5.2 Parameter optimised controllers

Parameter optimised controllers refer to controllers whose structure is fixed. 

The PID controller and the lead-lag controller are the two main types of parameter 

optimised controllers. The design of these controllers for processes with time delay are 

based on methods that were originally used for the design of the controllers for delay- 

free processes; in these applications, the controllers are popular, due to their relatively 

wide applicability and ease o f use. This section of the chapter will consider how the 

design methods may be applied to the specification o f parameter optimised controllers 

for processes with time delays.

5.2.1 The design of PID parameter optimised controllers

5.2.1.1 Introduction to the PID controller

The most common controller structure in process control applications is the 

PID (proportional integral derivative) or three term controller structure and its 

variations (P, PI or PD structures). The ideal continuous time domain PID controller 

for a SISO process model is shown in Figure 5.1.

Figure 5.1: Block diagram of a SISO process controlled by an ideal PID controller

Such a controller is expressed in the Laplace domain as follows:

U(s) = Gc(s)E(s) (5.1)

with
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Gc(s) = Kt ( l + - L  + Tas) (5.2)

and with K c = proportional gain, T( = integral time constant and Td = derivative time 

constant. If T; = oo and Td = 0 (i.e. P control), then it is clear that the measured value, 

Y, will always be less than the desired value, R (for processes without an integrator 

term, as a positive error is necessary to keep the measured value constant, and less than 

the desired value). The introduction of integral action facilitates the achievement of 

equality between the measured value and the desired value, as a constant error 

produces an increasing controller output. The introduction of derivative action means 

that changes in the desired value may be anticipated, and thus an appropriate correction 

may be added prior to the actual change. Thus, in simplified terms, the PID controller 

allows contributions from present controller inputs, past controller inputs and future 

controller inputs.

It is, however, uncommon to implement the PID controller structure in equation

(5.2) in practice (Astrom and Wittenmark (1984)). These authors describe more 

common PID controller structures, examples o f which are outlined below.

1. A PID controller with a filter on the differentiator. Such a structure reduces the 

tendency of the differentiator to amplify high frequency noise.

2. A PID controller with derivative action on the measured value only. Such a 

controller does not cause a large control signal following a step change in the desired 

value (Kaya and Scheib (1988) label this the non-interacting controller).

3. The I-PD controller structure, in which the proportional and derivative terms act on

the measured value.

The PID controller is often implemented in the discrete time domain; the 

‘position’ form o f the PID algorithm may be directly calculated by appropriate 

substitutions, using finite differences, for the integral and derivative terms. An 

alternative implementation is the ‘velocity’ form of the PID algorithm, in which the 

increment in the controller output is calculated. Two practical issues associated with 

the implementation o f these algorithms are bumpless transfer between manual and 

automatic control operation, and anti-reset windup. Other issues associated with the 

implementation o f such discrete time algorithms (such as the choice of the sample 

period used) are discussed in detail by O’Dwyer (1996b).
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The use o f the PID controllers (in any of the structures indicated) for the control 

o f both time delayed and non-time delayed processes is very common in industrial 

applications. Ho et al. (1995a) declare that over 90% of industrial controllers are o f PI 

type. Koivo and Tanttu (1991) suggest that there are perhaps 5-10% of control loops 

that cannot be controlled by SISO PID controllers (the authors suggest the use of 

MIMO PID controllers for these cases); in particular, the PID controller performs well 

if  the performance requirements are modest (Hwang (1993)). PID controllers have 

some robustness to incorrect process model order assumptions (Lammers and 

Verbruggen (1985)), and limited process parameter changes. The PID controller also 

has the considerable advantage of being easy to understand, with tuning rules that have 

been validated in a wide variety of practical cases. It may also be shown that the PID 

controller is optimal for the control o f a second order process.

However, many authorities state that PID controllers have their limitations; 

Deshpande and Ash (1983), for instance, suggest that PI control is used in the majority 

of industrial applications, as the PID controller is sensitive to process and measurement 

noise, is less forgiving o f process parameter changes and is more difficult to tune. The 

PID structure and its variations are stated by these authors not to be well suited for the 

control of (a) non-linear processes (b) interacting processes (c) processes with the time 

delay greater than the time constant (for a FOLPD process model) and (d) processes 

with disturbances that have a significant frequency content around the systems resonant 

frequency o f oscillation. Hagglund and Astrom (1989), (1991) also suggest that the 

PID controller is unsuitable for the control o f (a) processes whose dynamics are 

dominated by a time delay (b) processes with oscillatory dynamics and (c) processes 

with significant stochastic disturbances; in another paper, Astrom et al. (1993) state 

that the PID controller requires unnecessarily fast sampling (if implemented in the 

discrete time domain). Isermann (1989) suggests that the PID controller 

implementation is recommended for the control o f processes o f “low to medium” 

order, with small time delays, when controller parameter setting must be done using 

tuning rules and when controller synthesis may be performed a number of times.

These arguments make it clear that the PID controller structure (and its 

variations) have a role to play in the control of some processes with time delay. In 

many applications, when the process is accurately modelled by a low order model plus 

time delay, the PID controller is recommended when the time delay is not the dominant

179



model parameter. In subsequent sections of this chapter, the design of PID controllers 

for processes with time delays will be discussed in detail.

5.2.1.2 The specification of the controller parameters

Isermami (1989) outlines a number of criteria for determining the parameters of 

the PID controller or its variations, as follows:

(a) By using iterative methods (considered in detail in Section 5.2.1.2.1)

(b) By using tuning rules (considered in detail in Section 5.2.1.2.2)

(c) By minimising a performance criterion (considered in detail in Section 5.2.1.2.3)

(d) By using a pole placement strategy (considered in detail in Section 5.2.1.2.4). 

Isermann (1989) states that the design methods described in (a) and (b) are suitable if 

there is no specification for the control performance, or if the process has simple 

behaviour or a low settling time. Isermann (1989) also suggests that the design 

methods described in (c) and (d) are suitable for controller design where there are 

“stringent” performance requirements or slow, complex or changing process 

behaviour. However, the applicability of the PID controller is questionable in such 

implementations, particularly if the process has a significant time delay.

The control of processes of variable or uncertain structure or parameters may be 

handled in two ways:

(1) A self-tuning controller may be designed to allow appropriate variation in the 

controller parameters as the process parameters vary; explicit self-tuning controllers 

are normally designed if  the variations in the process parameters are known, and 

implicit self-tuning controllers are normally designed otherwise. This discussion does 

not consider self-tuning PID controllers separately from fixed parameter PID 

controllers, as the model based, analytical design techniques for both (discussed in 

Sections 5.2.1.2.3 and 5.2.1.2.4) tend to be the same.

(2) The controller may be designed to be robust to process parameter variations. There 

is a certain amount of robustness associated with the PID controller implementation, 

which may be assessed after an appropriate controller has been designed. Alternatively, 

the controller may be designed to satisfy simple robustness measures (e.g. gain margin 

or phase margin specifications); such specifications are considered in the PID 

controller designs discussed in Sections 5.2.1.2.1 to 5.2.1.2.4, inclusive. More
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generally, a more complete robust design strategy based on, for example, an Internal 

Model Control (IMC) procedure may be employed; these strategies are considered in 

Section 5.2.1.2.5.

5.2.1.2.1 Iterative methods

The choice of appropriate compensator parameters may be achieved either 

experimentally (for example, by manual tuning), or by using a graphical approach in 

either the time domain (typically using root loci) or the frequency domain (typically 

using Bode plots). Perhaps a majority of tuning methods could be considered iterative, 

as the effect of the compensator designed is often assessed, and changes made to the 

compensator as appropriate; this section of the chapter will consider only those 

methods in which a number of trials are typically needed to achieve a satisfactory 

compensator.

A typical experimental approach to trial and error tuning is discussed by Seborg 

et al. (1989), who suggest the following approach:

(a) Set Td to a minimum value and Tf to a maximum value.

(b) Set Kc at a low value and put the controller on automatic (if appropriate).

(c) Increase K c by small increments until continuous cycling occurs after a small set 

point change or load change. Set Kc to half this value.

(d) Decrease T; by small increments until continuous cycling re-occurs. Set T; to three 

times this value.

(e) Increase Td until continuous cycling re-occurs. Set Td to one third of this value. 

Other experimental approaches are outlined by Pollard (1971), Power and Simpson

(1978), Deshpande and Ash (1983), Leigh (1987) and De Santis (1994). However, trial 

and eiTor tuning using an experimental approach has some significant disadvantages; 

Seborg et al. (1989) list these as

(a) The time consuming nature of the method and

(b) The requirement that the process has to be driven to its stability limit.

In addition, the authors declare that the strategy is not applicable to the design of 

compensators for processes that are open loop unstable.

A graphical trial and error approach to controller tuning may be done in either 

the time domain or the frequency domain. The time domain design is done using root
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locus diagrams. In this method, the process is assumed to be well modelled by a second 

order model; thus, it is the location of the process dominant poles that are considered to 

be significant. Such root locus based approaches may be used to design appropriate PD 

controllers (Kuo (1991), Philips and Harbor (1991)), PI controllers (Dorf (1989), Kuo

(1991)) and PID controllers (Kuo (1991), Philips and Harbor (1991)); it is, however, 

questionable that a process with time delay would be sufficiently well modelled by a 

second order model to allow the design o f appropriate compensators. The frequency 

domain design is typically done using Bode plots; unlike the time domain procedure, 

the process is not necessarily modelled by a second order model. The frequency 

domain may also be used to design PD controllers (Kuo (1991)), PI and PID controllers 

(Kuo (1991), Philips and Harbor (1991)).

Alternatively, an analytical approach to the design of PD, PI or PID controllers 

may be employed. In the time domain, the design criterion is typically that a root 

location should be on the root locus, with the frequency domain design criterion 

typically being the achievement o f a desired phase margin (Philips and Harbor (1991), 

Shahian and Hassul (1993)). The latter authors show, in one simulation result, a step 

response o f the compensated system in servo mode that has an overshoot 22% larger 

than the specification, indicating that the method used (in the time domain) must be 

considered iterative; such inaccuracies are typical, because of inaccurate process 

models used. Rao and Perdikaris (1988) also discuss these techniques. Similar methods 

may also be described in the discrete time domain (Shahian and Hassul (1993)), though 

Seborg el al. (1989) declare that the discrete root locus method is not recommended for 

designing PID controllers, as the dynamic response of sampled data systems is not 

uniquely determined by the closed loop pole locations.

In conclusion, the iterative methods for controller design discussed provide a 

first approximation to desirable controller parameters. The methods described are 

perhaps most suitable if there are simple specifications on the performance of the 

closed loop control system to be achieved; they may be applied to the control of 

processes with time delays, though the accuracy of the process model used in the 

controller design is an issue.
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5.2.1.2.2 Tuning rules

Many authors have defined tuning rules for the specification of the PID 

controller parameters. In most cases, the motivations for using tuning rules are the ease 

of use of the rules and the difficulty in calculating a sufficiently accurate process model 

to employ other, more accurate, tuning strategies. Therefore, tuning rules provide non­

optimum controller parameters in most cases. This section of the chapter considers (a) 

tuning rules based on the measured step function (also called process reaction curve 

methods) and (b) tuning rules based on recording appropriate parameters at the 

ultimate frequency (also called continuous cycling methods). Tuning rules based on 

minimising a performance criterion are considered in Section 5.2.1.2.3.

Process reaction curve methods for controller design are based on calculating 

the controller parameters from the model parameters that are determined from the step 

response of the process in open loop. This method was originally suggested by Ziegler 

and Nichols (1943), who model the process by a FOLPD model, estimate the model 

parameters using a tangent and point method (as indicated in Chapter 2) and define 

appropriate tuning parameters for the P, PI and PID control o f the process. This method 

achieves the quarter decay ratio criterion (approximately); this criterion refers to the 

maintenance o f the ratio of the amplitudes o f two successive oscillations (of the closed 

loop output) at 0.25, for both set point and disturbance input changes. Shaw (1993) 

comments that the rules facilitate good compromise between instability and sluggish 

control; Hang (1989) suggests that, for PID regulator design, the Ziegler-Nichols 

tuning strategy positions the PID controller zeroes relative to the process poles (in 

many cases) to achieve approximately optimal disturbance rejection response. Other 

tuning rules o f this type are defined by Cohen and Coon (1953), which also facilitate 

an approximate quarter decay ratio response in servo and regulator modes, though the 

response tends to be more aggressive than that achieved with the tuning rules of 

Ziegler and Nichols (1943); both sets of tuning rules apply for values o f the time delay 

in a range of 0.1 to 1.0 times the time constant (Smith and Corripio (1985)). Yuwana 

and Seborg (1982), Deshpande and Ash (1983), Smith and Corripio (1985), Hwang 

and Chang (1987), Ringwood (1987), Seborg et al. (1989), De Paor (1993), Shaw 

(1993) and Ho et al. (1995a) discuss the characteristics and operation of the tuning 

rules o f Ziegler and Nichols (1943) and/or Cohen and Coon (1953), in detail. Seborg et 

al. (1989) suggest that the advantages of tuning strategies based on such process
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reaction curve methods are that only a single experimental test is necessary, a trial and 

error procedure is not required and the controller settings are easily calculated. 

However, disadvantages of the method include the difficulty o f calculating an accurate 

and parsimonious process model, and the possibility of significant load changes 

occurring during the test that may distort the test results. Process reaction curve 

methods may also be used to tune discrete time compensators (Isermann (1989), Su 

(1993)) and compensators for M1MO processes (Jussila and Koivo (1987)).

Continuous cycling based tuning rules are calculated from the parameters 

(controller gain and oscillation period) recorded at the ultimate frequency (i.e. the 

frequency at which marginal stability o f the closed loop control system occurs). One of 

the first ultimate cycle tuning methods was defined by Ziegler and Nichols (1942) 

(henceforth referred to as the Ziegler-Nichols ultimate cycle method) for the tuning of 

P, PI and PID controller parameters o f a process that may or may not include a time 

delay. The tuning rule involves bringing the system to marginal stability under 

proportional control, recording the proportional gain at marginal stability and the 

period of oscillation of the output and calculating appropriate tuning parameters based 

on these values. The tuning parameters approximately facilitate the achievement of the 

quarter decay ratio criterion in the response to both set point inputs and disturbance 

inputs, for many processes. De Paor (1993) shows that the tuning rules implicitly build 

an adequate frequency domain stability margin into the compensated system; 

Krishnaswamy et al. (1987) declare that the rules display robustness against signal 

noise and process parameter variations. The main advantage of the ultimate cycle 

tuning strategy is that the controller settings are easily calculated.

The weakness of the method is that the system must be destabilised under 

proportional control, and the empirical nature o f the method means that uniform 

performance is not achieved in general (Hwang and Tseng (1994)). Pessen (1994) 

states that the drawbacks of using the ultimate cycle method in controller design is that 

(i) several trials must typically be made to determine the ultimate gain (ii) the resulting 

process upsets may be detrimental to process quality, especially if  the disturbances pass 

through to other production units in the plant and (iii) there is a danger of 

misinterpreting a limit cycle as representing the stability limit.

Other authors that discuss the specification and implementation of continuous 

cycling tuning algorithms include Harriott (1964), Pollard (1971), Weber and Bhalodia 

(1979), Yuwana and Seborg (1982), Astrom and Hagglund (1984), Tan and Weber
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(1985), Eitelberg (1987), Hippe et al. (1987), Hang and Astrom (1988), Bogere and 

Ozgen (1989), Lee (1989), Mantz and Tacconi (1989), (1990), Astrom (1991), Hang et 

al. (1991), Hang and Sin (1991), Litt (1991), Astrom et al. (1992), De Carvalho 

(1993), Lee et al. (1993), Hang et al. (1994a), Ho et al. (1995a), Kim (1995) and Wang 

et al. (1995a). Continuous cycling methods may also be used to tune discrete time 

compensators (Kofahl and Isermann (1985), Isermann (1989), Seborg et al. (1989), 

Shahian and Hassul (1993), Ringwood and O ’Dwyer (1994a), (1994b), Bobal (1995)) 

and to tune compensators for MIMO processes (Luyben (1986), Isermann (1991), Loh 

and Vasnani (1992), Loh et al. (1993), Shen and Yu (1994), Wu et a l (1994), Zhuang 

and Atherton (1994) and Palmor et al. (1995)).

Other types of tuning rules have also been defined for PID implementation; Da 

Silva et al. (1988), for instance, present a rule based self-tuning procedure based on a 

pattern recognition approach, while Zhao et al. (1993) use fuzzy rules and reasoning to 

determine appropriate PID controller parameters, in an on-line environment. An expert 

system approach to choosing the controller parameters is outlined by Li (1994). Other 

tuning rules for PID controllers for MIMO processes are outlined by Lieslehto et al.

(1991).

In conclusion, the motivations for using tuning rules are the ease o f use of the 

rules and the difficulty in calculating a sufficiently accurate process model to employ 

other, more accurate, tuning strategies. The design methods in this section are thus 

most suitable if  there is a simple specification on the performance o f the closed loop 

control system to be achieved (such as an approximate quarter decay ratio criterion), 

when the process has a non-dominant time delay term.

5.2.1.2.3 The minimisation of a performance criterion

A number of performance (or optimisation) criteria may be used to design 

appropriate PI or PID controller parameters for a process. Simple optimisation criteria 

include the integral of the absolute value o f the error (IAE) criterion and the integral of 

time multiplied by the absolute value of the error (ITAE) criterion. Such criteria suffer 

from the disadvantage that engineering constraints such as slew rate and control effort 

are not explicitly taken into account in the design of the controller parameters 

(Hemerly (1991)). An example of a more complete optimisation criterion is as follows:
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oo

J = je 2(t) + pu2(t)dt
0

(5.3)

with e(t) = error signal, u(t) = control effort, p = control weight. Such a quadratic 

performance criterion, however, has the disadvantage that it is not possible to 

determine, a priori, the relationship between the control weight and desired transient 

response criteria, for instance (Hemerly (1991)).

One advantage o f the use of optimisation criteria is that a unique set of 

controller parameter values may be calculated (unlike the fulfilment o f the approximate 

quarter decay ratio criterion, for instance). Tuning rules to minimise a performance 

criterion have been defined by many authors; Rovira el al. (1969), for instance, model 

the process by a FOLPD model and define tuning parameters for PI and PID control of 

the process, based on minimising the IAE and ITAE criteria. Optimum controller 

parameters are separately defined for set point tracking applications and disturbance 

input rejection applications. The tuning rules apply for a range o f time delay values 

between 0.1 and 1.0 times the time constant. Tuning rules o f this type are also 

discussed by Ohta et al. (1979), Jutan and Rodriguez (1984), Nishikawa et al. (1984), 

Cheng and Hung (1985), Kaya and Scheib (1988), Jutan (1989), Seborg et al. (1989), 

Shaw (1993), Wang et al. (1993a), (1995a), Zhuang and Atherton (1993), (1994a), 

(1994b), Ho et al. (1995), Huang and Lin (1995) and Hwang and Fang (1995). Discrete 

time PID compensators may also be tuned by minimising performance criteria, using 

tuning rules (Moore et al. (1969), Rovira et al. (1969), (1970), Huang and Chao

(1982), Astrom and Wittenmark (1984), King (1984b), Isermann (1989) and Su

(1993)).

The performance criteria may also be minimised analytically, or otherwise, to 

calculate appropriate controller parameters. Harris and Mellichamp (1985), for 

instance, outline a methodology to tune a PI or PID controller to met multiple closed 

loop criteria. These criteria are subsumed into a single performance index that depends 

on frequency domain parameters with the exact design of the performance index being 

arbitrary; the authors choose their index as a function o f the resonant peak ratio, the 

phase margin and the maximum resonant frequency. The method reflects the important 

point that there is no one set of tuning values that provide the optimum response in all
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respects. Other analytical methods to calculate PID controller parameters include those 

defined by Dumont et al. (1985), Huang et al. (1985), Patwardhan et al. (1987), Penner

(1988), Zevros et al. (1988), Górecki et al. (1989), Hill and Venable (1989), Lee et al.

(1990), Ruano et al. (1992), Hassell and Harper (1994), Schei (1994) and Abbas and 

Sawyer (1995). Pemberton (1972a), (1972b), in interesting papers, argues that if the 

time delay may be approximated by a zero, then the PI and PID algorithms may be 

directly derived as the optimal controller structure for a FOLPD process model and a 

second order lag plus time delay model, respectively. This approximation is valid over 

a certain frequency range; the authors specify a number of methods of determining the 

tuning parameters for both controllers, though the corresponding closed loop responses 

appear quite oscillatory in many cases (presumably because of the mismatch between 

the process and the model).

Discrete time PID compensators may also be tuned using optimisation criteria; 

Radke and Isermann (1984), for instance, define a method for calculating the PID 

controller parameters that involves minimising a performance criterion that is defined 

as the sum of the squares of the error plus weighted control effort over all samples. 

Other algorithms for specifying discrete time PID compensators are defined by 

Shigemasa and Akizuki (1981), Cameron and Seborg (1983), King (1984a), (1984b), 

Ralston et al. (1985), Isermann (1989), (1991), Katende and Jutan (1993), Yamamoto 

et al. (1994) and Poulin et a l (1996). Appropriate PID compensators for MIMO 

processes may also be defined in the continuous time domain (Zhuang and Atherton 

(1994a), Wang and Wu (1995), Puleston and Mantz (1995)) and in the discrete time 

domain (Isermann (1991)).

In conclusion, the design methods based on minimisation of a performance 

criterion may be divided into tuning rule based methods and analytical, or other, 

methods. As mentioned previously, the tuning rule based methods are suitable for 

controller design where there are simple performance requirements to be implemented. 

The other methods are suitable for controller design where there are more complex 

performance requirements to be achieved (Isermann (1989)), for the control of non­

dominant time delay processes.
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5.2.1.2.4 Direct synthesis

A direct synthesis algorithm is one that results in a controller that gives a 

specified closed loop response. This may be done by specifying the desired poles of the 

closed loop response, for instance, though more generally, the desired closed loop 

transfer function may be specified. Direct synthesis methods include pole placement 

strategies for designing appropriate PID controllers, as well as controller design 

techniques that allow the achievement of a specified gain margin and phase margin.

Two term or three term controller parameters may be defined in the continuous 

time domain, using a pole assignment strategy, in either the time domain or the 

frequency domain. One time domain design method is described by Chiu et al. 

(1973b), who define algorithms for the design of PI and PID controller parameters 

based on the desired time constant of the closed loop system response. A FOLPD 

process model is used if the PI controller parameters are required, and a SOSPD model 

is used if  the PID controller parameters are required. Other time domain strategies of 

this type are also discussed in detail by Pemberton (1972a), (1972b), Borg and Giles 

(1975), Tachibana (1984), Smith and Corripio (1985), Arzen (1987), Hwang and 

Chang (1987), Górecki et al. (1989), Schuster (1989), Seborg et al. (1989), Brambilla 

et al. (1990), Aguirre (1992), Hwang (1993), McAnany (1993), Ho et al. (1994), 

Hwang and Tseng (1994), Hwang and Shiu (1994), Jin (1994), Shafiei and Shenton

(1994) and Jacob and Chidambaram (1996). Frequency domain design methods are 

described by Edgar et al. (1981), Sanathanan and Quinn (1987) and Barnes et al. 

(1993); the latter authors, for instance, design a PID controller for a process with time 

delay by minimising the sum of the squared errors between the desired and actual polar 

plots. The pole assignment strategy may also be used in the discrete time domain, to 

determine appropriate controller parameters; Chiu et al. (1973b), for example, define 

algorithms for PI and PID controller parameter selection, based on knowledge of the 

desired time constant (and time delay) o f the closed loop system response in the 

discrete time domain, in an analogue of the techniques defined by the same authors in 

the continuous time domain. Other discrete time techniques for controller design based 

on pole assignment for SISO applications are discussed by Radke and Isermann (1984), 

Ortega and Kelly (1984), Tjokro and Shah (1985), Teng and Sirisena (1988), Keviczky 

and Banyasz (1988), (1992), Vermeer et al. (1988), Habib and Sungoor (1989), 

Isermann (1989), Teng (1990), Hemerly (1991), Wellstead and Zarrop (1991), Pal et
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al. (1992), Brown et al. (1993), Yang (1993) and Leva et al. (1994). Keviczky and 

Banyasz (1988), for instance, model the process as a SOSPD model in the discrete time 

domain and let the numerator o f the PID controller equal the denominator of the 

process model; the remaining controller parameters are chosen to provide a 

compensated system phase margin of 60 degrees. Discrete time techniques for 

controller design based on pole assignment for MIMO applications are discussed by 

Koivo and Sorvari (1985), Jones and Porter (1985), Gawthrop and Nomikos (1990) 

and Pal et al. (1992).

The controller parameters may also be defined using a gain and/or a phase 

margin specification, in the SISO continuous time domain; Ho et al. (1995b), for 

example, derive accurate and simple analytical formulae to tune PI and PID controller 

parameters for FOLPD and SOSPD models, to meet gain margin and phase margin 

specifications. Other authors that design PI or PID controllers based on this 

specification include Astrom and Hagglund (1984), Tan and Weber (1985), Balchen 

and Lie (1987), De Paor and O'Malley (1989), Thomson et al. (1989), Hagglund and 

Astrom (1989), (1991), Landau and Voda (1992), Schei (1992), Leva (1993), 

Venkatashankar and Chidambaram (1994), Voda et al. (1994), Voda and Landau 

(1995a), (1995b) and Kavdia and Chidambaram (1996). A continuous time technique 

o f controller design based on gain and phase margin specifications for a 2x2 MIMO 

process is discussed by Zhuang and Atherton (1994a).

In conclusion, a direct synthesis algorithm is one that results in a controller that 

gives a specified closed loop response. There is, o f course, some overlap between the 

methods discussed in this section and the methods that involve minimisation of an 

appropriate performance criterion (e.g. the method defined by Barnes et al. (1993) 

above); both types of method are suitable for controller design where there are well- 

defined performance requirements to be achieved (Isermann (1989)), for the control of 

non-dominant time delay processes.

5.2.1.2.5 Robust controllers

The chapter thus far has not considered formally the design of PI and PID 

controllers in the presence of unmodelled process dynamics, or when the process 

parameter values drift from the model values. In some cases, the robustness of the 

control system to variations in these parameter values has been considered as a means
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of evaluating the controller strategy. Typically, the robustness o f the design is checked 

by calculating the sensitivity o f the closed loop transfer function to changes in the 

process parameter values as frequency changes (mapped on to a Bode plot) or by 

calculating the sensitivity o f the pole locations to changes in the process parameter 

values. Such calculations are relevant for small changes in the process parameter 

values only (Dorf (1989), Kuo (1991)). The disadvantage o f such an approach is that 

the design of a controller with the required robustness may be iterative. In other cases, 

simple robustness measures have been built into the controller design; a typical 

example is the design of the controllers based on the achievement of a specified gain 

margin and/or phase margin in the frequency domain. Other robust controller design 

strategies in the frequency domain are discussed by Rivera et al. (1986), Dorf (1989), 

Morari and Zafiriou (1989) and Seborg et al. (1989).

This section o f the chapter deals more fully with the design of PID controllers, 

with an explicit robust stability and robust performance criterion built in to the design 

process. One method o f designing robustness into the controller specified is to use the 

Internal Model Control (IMC) design procedure. Seborg et al. (1989) discuss this 

strategy, in which a model is defined for the process; the PID controller is designed by 

resolving the process model as follows:

G m= G m+G m- (5.4)

with G m+ containing the time delay terms and all right half plane zeroes. The 

controller is then designed as follows:

with f  = desired closed loop transfer function. Morari and Zafiriou (1989) show how 

the full IMC design procedure, which allows uncertainty on the process transfer 

function parameters to be specified, may be used to design an appropriate PID 

controller for a FOLPD process both with time delay uncertainty and with general 

parameter uncertainty. The controller is designed by minimising an integral of squared 

error (ISE) performance criterion. Robust stability and robust performance criteria are
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defined explicitly during the analysis. The IMC design procedure and its application to 

PI and PID controller design for SISO processes with time delay is also discussed by 

Rivera et al. (1986), Chien (1988), Seborg et al. (1989), Chien and Fruehauf (1990), 

Rivera and Morari (1990), Fisher (1991), Chia and Lefkowitz (1992), Tyreus and 

Luyben (1992), Fruehauf et al. (1993), Hang et al. (1993), Lee and Sung (1993), 

Peebles et al. (1994) and Ho et al. (1995b). Friman and Waller (1994) apply the IMC 

procedure to the design of appropriate PI and PID compensator parameters of a 2x2 

MIMO process modelled by integrator plus time delay terms or by gain plus time delay 

terms.

Alternatively, other robust strategies may be used to design appropriate 

controllers for SISO processes. Kawabe and Katayama (1994), for instance, consider 

the problem of acceptable control performance, and closed loop stability, in the 

presence of process parameter uncertainties. An I-PD controller is recommended to 

compensate a process with time delay, and the controller parameters are adjusted to 

minimise the ISE criterion maximised by process parameters belonging to a bounded 

set. The time delay is approximated by a first order Pade approximation during the 

development (which, of course, adds to the uncertainty in the dynamics). Other robust 

methods are described by Devanathan (1991) and Al-Saggaf (1994). In an interesting 

recent paper, Hayes and Holohan (1996) use results from L, robust control theory to 

tune PID controllers when the plant is poorly modelled, is non-linear, has variable time 

delay and/or has many operating points. The approach considers both robust stability 

and robust performance requirements, and the controller parameters that yield the 

defined specification o f these requirements may be estimated numerically.

In conclusion, the robustness of a particular PID controller design to process 

parameter variations may be assessed after the controller is designed using a variety of 

methods. Alternatively, both a robust stability criterion and a robust performance 

criterion may be built into the PID controller design, as part o f the specification to be 

fulfilled.
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5.2.2 The design of lead, lag or lead-lag parameter optimised 

controllers

Lead, lag or lead-lag controllers are simple alternatives to the PID controllers 

described in the previous sections. The designs o f such controllers are described in 

detail by O’Dwyer (1996b); the designs are primarily based on a root locus procedure 

in the time domain, or using Bode plots in the frequency domain. Thus, in the time 

domain, the process with delay has to be modelled by a model without delay; controller 

design procedures for delay free systems may then be applied. Of course, a large 

mismatch may be present between the process and the model, and this may affect the 

acceptability of the controller design in an implementation environment. In the 

frequency domain, the time delay appears as extra phase lag; the design of the 

compensators for such processes is thus the same as the design of compensators for 

delay free processes. Little work has been done to design such compensators 

specifically for processes with time delays, unlike the corresponding work that has 

been done for the design o f PID compensators for these applications.

5.2.3 Conclusions

The choice of a parameter optimised control scheme (typically a PID controller) 

as opposed to a more flexible control scheme depends on a number o f factors, which 

have been outlined in Section 5.2.1. One factor that is consistently mentioned (by 

Deshpande and Ash (1983) and Hagglund and Astrom (1989), (1991), amongst others) 

is that the PID controller and its variations are not suitable for the control o f a process 

whose dynamics are dominated by a time delay term. A common rule o f thumb quoted 

is that PI and PID controllers are suitable for the control of a FOLPD process if

0.1 < xm/Tm < 1.0 . O’Dwyer (1996b) discusses this topic in detail, quoting authors that 

suggest more detailed rules o f thumb, such as Astrom (1991) and Astrom et al. (1992).

In an interesting perspective on this issue, Shinskey (1990) proposes a series of 

tests, for both performance and robustness, that may be used to compare controller 

strategies. The author compares the performance of regulator loops on the basis of the 

minimisation o f the IAE criterion, declaring that such a criterion also minimises peak 

deviation. The control o f time constant dominant processes and time delay dominant

192



processes are considered; generally, the author concludes that model based time delay 

controllers (such as the Smith predictor) have higher performance than PID controllers 

for all processes, if  the former are specifically tuned to minimise the IAE criterion. 

However, model based time delay controllers are, in general, less robust than PID 

controllers; thus, the authors conclude that the preferred controller for a particular task 

depends on the type o f process to be controlled and the relative importance given to 

performance and robustness. If better performance is to be achieved, the author 

suggests a feedforward/feedback control strategy. Finally, if  the performance of a 

feedback controller is acceptable, but its robustness is not acceptable, then the author 

suggests that self-tuning is appropriate.

Overall, the parameter optimised controllers (and specifically the PID 

controller) are appropriate for the compensation o f non-dominant time delay processes. 

For a process with a dominant time delay, one possibility is to convert the process to a 

non-dominant time delay process (perhaps by using a Smith predictor), and then design 

a parameter optimised controller in this Smith predictor structure.
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5.3 Structurally optimised controllers

Structurally optimised controllers refer to controllers in which the controller 

structure and the controller parameters are adapted optimally to the structure and 

parameters of the process model. This section of the chapter concentrates on the use of 

such controllers to compensate processes with time delays. The compensators will be 

discussed under the following headings:

1. The Smith predictor, and its variations.

2. Direct synthesis methods, which are typically based on designing the controller to 

meet a required output specification; pole placement controllers are an example.

3. Optimal controller design methods, which may be based on a minimum variance or 

linear quadratic control strategy.

4. Predictive controllers and

5. Other compensation strategies for processes with time delays.

5.3.1 The Smith predictor and its variations

5.3.1.1 Introduction

Smith (1957) defined a method (subsequently entitled a Smith predictor) for the 

control of a process with a time delay. The method involves effectively removing the 

time delay from the control loop; an appropriate controller may then be designed for 

the delay free portion of the process i.e. a controller C* is designed for a process 

G pe”STp such that the desired closed loop transfer function o f the system (in servo 

G G
mode) is   —-—e~STp (with C*.Gc and Gp being functions o f the Laplace variable,

p

s).

Therefore, e- S T (5.6)
1 + C*G e~STp 1 + G Gp c p

i.e. C*Gpe”s,p (1 + GcG p) = GcGpe“" p (1 + C’G pe-STp) (5-7)
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i.e. C* =
GçGpe » G,

G„(l + GcGp)e"s,p - G CG„ e " 1 + GeGp( l —e p)
(5.8)

c“ p'

Thus, the implementation o f this controller in block diagram form is shown in Figure

5.2 ( G l is a function o f the Laplace variable, s).

Figure 5.2: Smith predictor implementation

An alternative implementation is shown in Figure 5.3 (this implementation also 

recognises that G p and t p are modelled by G m and xln).

Figure 5.3: Alternative Smith predictor implementation

The closed loop servo transfer function of this system is
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l + GcGm( l - e - ST")
(5.9)

1 +
l + GcG m( l - e - " - )

i.e.

y (5.10)R l + GcGH,+Gc[Gpe-^-Gnie- ]̂

Therefore, for ideal time delay compensation, the mismatch term

G c(G pe~s1p - G me”STm) must equal zero.

Meyer et al. (1976), Astrom and Zhou (1981), Horowitz (1983) and Seborg et 

al. (1989) discuss the applicability of the Smith predictor, especially compared to the 

PI or PID controller. The latter authors, for instance, quote studies that declare that the 

performance of the Smith predictor for set point changes can be as much as 30% better 

than a conventional PID controller based on minimising an ISE criterion (which is the 

least conservative of the integral criteria). It is also suggested that the Smith predictor 

can provide an improvement over PI control if  the model parameters are within about 

30% of the process parameters. Palmor and Blau (1994) suggest that a properly tuned 

Smith predictor performs much better than a PID controller in loops typical of the 

process industries, even though the model used in the Smith predictor may be of much 

lower order than the process; the authors suggest that a FOLPD process model is 

adequate, with the primary controller in the Smith predictor being of PI or PID 

structure.

The Smith predictor may be derived from other time delay compensator 

strategies. Palmor (1982), for instance, shows that the constrained minimum output 

variance controller for a process with a time delay, if  the process and disturbance 

models are of low order, is a Smith predictor with a PI or PID primary controller. Other 

authors also show that the Smith predictor may be interpreted as an optimal controller 

for time delay compensation under certain conditions (Kleinman (1969), Donoghue 

(1977), Cook and Price (1978), Grimble (1979), Hammerstrom and Waller (1980), 

Watanabe and Ito (1981), Clark (1985), Durbin (1985)). In summary, it is shown that 

the optimal controller for a process with a time delay is a Smith predictor for servo 

applications, or when the disturbance may be considered to be a step input, if the
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optimal controller is designed using a constrained minimum output variance control 

law. If the disturbance is not a step input, then the optimal controller may be specified 

for regulator applications by the inclusion o f an appropriate dynamic element in the 

feedback path o f the Smith predictor structure. The design o f such dynamic elements is 

considered in more detail in Chapter 6.

In other contributions, Astrom and Wittenmark (1984) and Landau (1995) 

show that a Smith predictor (in the z domain) may be derived from the pole placement 

compensator design for a time delayed process; Middleton and Goodwin (1990) also 

show this relationship in the delta domain. It is interesting that Soeterboek (1992) 

states that the Smith predictor (implemented in the discrete time domain) is the best 

d+1 step ahead predictive controller (d = process time delay index) for a process with 

time delay, with a constant or random walk measurement disturbance (the author 

claims that such disturbances are frequently found in industrial applications). In an 

interesting comment, Morari and Zafiriou (1989) remark that the Smith predictor is an 

extreme form of lead compensator.

The Smith predictor has been investigated in many simulation and 

implementation studies. Singh and McEwan (1976), for instance, consider the 

implementation o f the Smith predictor compensated system in a laboratory case study, 

in which the delay in the predictor is approximated by a second order Pade 

approximation, realised in continuous time by an appropriate operational amplifier 

based circuit. The authors show that the servo response of the closed loop compensated 

system is significantly better than if a PI controller is used, despite the presence of 

some mismatch between the process and the model. Other such studies have been done 

by Parrish and Brosilow (1985), Schneider (1988), Papageorgiou and Messner (1989) 

and Foss and Wasbo (1994). Other contributions that are of interest are those of 

Shinskey (1990), Hagglund (1992) and Rad et al. (1995) (who discuss in detail a time 

delay compensator that is a special case o f the Smith predictor, called the predictive PI 

(PIP) controller), Young et al. (1990) (who control a stable non-minimum phase 

process using a 'pseudo-predictor', which the authors describe as a Pade approximation 

for a Smith predictor) and Tan and De Keyser (1994) (who consider the use of neural 

network based Smith predictors to compensate a non-linear process with a large time 

delay).
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5.3.1.2 The design of the Smith predictor in continuous time

In real applications, it is inevitable that the model will not be a perfect 

representation o f the process, perhaps because the process and the model are of 

different structure or because the process parameters change in an unknown way with 

operating conditions. This difference between the process and the model is referred to 

as 'mismatch'. The presence of mismatch means that perfect time delay compensation 

using the Smith predictor is not possible; compensation is a particular problem if the 

process parameters vary. Two approaches are possible to improve the operation of the 

Smith predictor in these circumstances: the model parameters could be adaptively 

updated as the process parameters vary, or a robust Smith predictor could be designed, 

if  a limit on the variation of the process parameters is known.

Adaptive model parameter estimation schemes have been implemented (by 

Marshall (1979), (1980), Bahill (1983), Malik-Zafarei and Jamshidi (1987) and O' 

Connor (1989), amongst others) to allow the model parameters to track the process 

parameters. Kaya and Scheib (1984) also propose the tracking of slowly varying 

parameters of a FOLPD process model (using the method defined by Marshall (1979)); 

a Smith predictor, with a primary controller in P1D form whose parameters are 

calculated by minimising the ITAE criterion, is then adjusted corresponding to the 

changes in the model parameter values. Other authors that implement adaptive 

estimation schemes include Liu (1990), Hang et al. (1994b), (1995) and Palmor and 

Blau (1994); such schemes are also discussed in Chapter 7. The difficulty with many 

adaptive approaches is that the closed loop system may be unstable as a result of the 

mismatch, before the model parameters are updated to the process parameters. 

Therefore, a fundamental requirement is that the Smith predictor compensated system 

should stay stable in the presence o f mismatch (this may be considered a robust 

stability criterion). The performance of the compensated system in the presence of 

mismatch (i.e. the fulfilment of a robust performance criterion) is also o f interest.

The conditions for stability in the presence of mismatch may be calculated 

analytically in both the time and frequency domains, by tracking the poles o f the closed 

loop transfer function for changes in the process parameters in the time domain, or by 

showing that the magnitude of the open loop transfer function is less than 1 when the 

phase lag equals 180°, in the frequency domain, as the process parameters change.
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Unfortunately, numerical methods are required in both cases to calculate the controller 

parameters needed to keep the controlled system stable. In addition, knowledge of the 

process parameters is required; it may be possible to design a (cautious) primary 

controller if  the maximum mismatch between the process and the model parameters is 

known. Some authors consider creating a deliberate mismatch between the process and 

model time delays to improve stability (Vit (1979), Marshall and Salehi (1982), 

Hocken et al. (1983)), though it does appear that the process time delay must be known 

a priori.

An alternative is to specify robust stability and robust performance 

requirements for the Smith predictor implementation, in the presence of mismatch 

between the process and model parameters. Palmor (1980), (1982), Garcia and Morari 

(1985), Laughlin and Morari (1987), Laughlin et al. (1987), Yamanaka and Shimemura 

(1987), Górecki et al. (1989), Morari and Zafiriou (1989), Fisher (1991), Santacesaria 

and Scattolini (1993), Shu et al. (1994) and Lee et al. (1996) discuss these issues in 

detail. Laughlin and Morari (1987) and Laughlin et al. (1987), for instance, define a 

single multiplicative perturbation to represent the uncertainty in several real 

parameters; the authors subsequently derive analytical conditions for robust stability 

and robust performance o f the Smith predictor. The authors use the IMC procedure to 

formulate an appropriate primary controller. An alternative robust stability condition 

using |i analysis is discussed by Wang and Skogestad (1993). The authors state that it 

is normally necessary to approximate the time delay by a rational transfer function to 

synthesise the \x optimal controller; however, if  the controller is in a Smith predictor 

structure, then it is not necessary to approximate the time delay. Therefore, the robust 

stability conditions to be evaluated are the same as those o f the delay-free system, 

taking into account any delay uncertainty. In an interesting variation of the above 

strategy, Wang et al. (1994) convert the time delay design problem to a delay free one, 

by modelling the nominal time delay as uncertainty. A simple nominal model without 

the time delay is the result, allowing the use of the standard robust stability and 

performance criteria. The controller is designed in terms of the H OT norm, using jj. 

synthesis.
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5.3.1.3 Smith predictor modifications in the continuous time domain

The Smith predictor strategy is designed with servo applications in mind. 

Palmor and Blau (1994) suggest that because o f this, and since the Smith predictor 

contains a model in parallel with the process (which means that the open loop poles are 

excited by disturbances which in some cases may govern the response), the regulator 

action of the Smith predictor is less effective. If a disturbance L acts on the system 

(Figure 5.3), then

G l 1 + ° cG m l - e -SI")

l + GcG m + GIG„e-“ '

A number o f modifications on the basic Smith predictor structure have been defined, to 

improve the disturbance regulator properties of the compensated system. Watanabe and 

Ito (1981) and Watanabe et al. (1983), for example, modify the basic Smith predictor 

by including a lead-lag compensator in the feedback path of the major loop to make the 

controlled system less sensitive to disturbances; the method is developed to 

compensate a SISO process and is extended to compensate MIMO processes. Other 

such modifications are proposed by Marshall (1979), Kantor and Andres (1980), 

Palmor and Powers (1985), Wong and Seborg (1986), Romagnoli et al. (1988), Wang 

and Wan (1988), Górecki et a l (1989), Huang et al. (1990), Mitchell (1990), Astrom et 

al. (1994), Benouarets and Atherton (1994), Palmor and Blau (1994) and Dastych

(1995). These modifications are outlined in Chapter 6 and are discussed in detail by 

O ’Dwyer (1996f).

5.3.1.4 The control of unstable processes using time delay compensators

The control o f unstable processes with time delays, using an appropriate 

compensator, has been considered by Furukawa and Shimemura (1983), amongst 

others; these authors show that such a process may not be stabilised with a Smith 

predictor, as the poles of the compensated closed loop system always contain those of 

the unstable process. De Paor (1985) designs a modified Smith predictor and 

associated primary controller for the control of an unstable process modelled by an nth
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order model plus time delay with one unstable pole. The author factorises the 

denominator polynomial in the model into a Hurwitz polynomial and a term that 

corresponds to the part o f the process denominator that includes the unstable pole. The 

author then designs the controller, so that the overall compensated system is 

asymptotically stable for a range of values o f the delay, while satisfying a disturbance 

rejection criterion. The method amounts to reflecting, in the imaginary axis, the pole in 

the right half plane. Other time delay compensation strategies for unstable SISO 

processes with time delay are defined by De Paor (1989), while De Paor and Egan

(1990) develop a sampled data control scheme based on De Paor (1989). Ichikawa

(1985) and Wang el al. (1988) discuss finite spectrum assignment algorithms, and 

Zheng et al. (1995) describes a variable structure controller, to compensate unstable 

processes with time delays.

Compensation methods have also been defined to control unstable MIMO 

processes with time delays. Uraz and Ozturk (1985), for instance, propose a predictor 

control scheme to stabilise unstable multivariable processes containing time delays in 

either the control or the output variables. The control scheme is composed of a 

predictor and a compensator that is formed from feedforward and feedback elements. 

Other such strategies are defined by Jerome and Ray (1992) and Pandiscio and Pearson 

(1993).

5.3.1.5 The implementation of the Smith predictor in discrete time

The discussion has concentrated thus far on the implementation of Smith 

predictors in the continuous time domain. However, it is difficult to generate the 

equivalent o f the model time delay using analogue hardware; it is more straightforward 

to implement a time delay in the discrete time domain (at least if  the time delay is an 

integer multiple o f the sample period). Less work appears to have been done into the 

investigation o f the robustness of discrete time Smith predictor implementations, to 

mismatch between the process and model parameters; an exception is the work done by 

Palmor and Halevi (1990) and Whalley and Zeng (1994), who propose analytical 

procedures to investigate the robustness of the Smith predictor, operating under 

process-model mismatch conditions in the discrete time domain. The procedures 

proposed are analogous to the procedures proposed by Palmor (1980), (1982) in the 

continuous time domain.
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It is common to estimate the parameters o f the process before designing the 

appropriate primary compensator in the Smith predictor structure. The time delay may 

be estimated explicitly; such estimation methods are investigated in Chapter 2. An 

alternative approach is to overparameterise the model; the design o f the Smith 

predictor is based on the model parameters identified, without an explicit estimation of 

the time delay. One such approach is defined by Chien et al. (1985b), who discuss the 

control of a process with time delay varying between a minimum and a maximum 

value; the equivalent time delay is put equal to the minimum value, and the extra time 

delay is subsumed into an overparameterised process model numerator. The model 

parameters may then be estimated recursively, and a Smith predictor may be used to 

implement the self-tuning controller strategy. Other such approaches are described by 

Batur (1986), Wang (1990), Fujikawa and Yamada (1991), Guez and Piovoso (1991) 

(who design the resulting Smith predictor using neural networks), Mills et al. (1991) 

and Behbehani et al. (1993).

Other authors that discuss the implementation o f Smith predictors in the 

discrete time domain include Teng (1990) and Chen and Jong (1993); the latter authors 

propose the use o f an enhanced Smith predictor structure that is composed of a fuzzy 

model and a discrete time fuzzy filter. Mechanisms for fuzzy model updating and fuzzy 

controller tuning are applied to reduce the model m ism atch. and to improve 

compensated system performance. The procedure appears to improve the robustness of 

the Smith predictor. Other modifications of the Smith predictor structure in the discrete 

time domain are discussed by Chotai and Young (1985), (1987), Zhu and Saucier

(1992), Li et al. (1994) and Landau (1995).

5.3.1.6 The analytical predictor algorithm

Moore et al. (1969), Deshpande and Ash (1983), Wong and Seborg (1986) and 

Seborg et al. (1989) discuss the analytical predictor algorithm, which is a discrete time 

compensator design approach that combines good regulation behaviour with time delay 

compensation. Fundamentally, the analytical predictor algorithm includes a disturbance 

filter in the feedback path; it thus has close similarities with methods that are used to 

improve the regulator performance of Smith predictors. Wong and Seborg (1986) show 

that the analytical predictor algorithm and the Smith predictor algorithm are equivalent,
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i f  the process and model are identical and the compensated system is optimised for 

servo applications.

Wong and Seborg (1986), Wellons and Edgar (1987) and Seborg et al. (1989) 

outline a modified version of the algorithm, called the generalised analytical predictor 

algorithm. If the load is assumed to be constant over N sample periods, it may be 

shown that exact time delay compensation is achieved when the disturbance filter 

= zN . Such a filter must be approximated, as it involves the implementation of the 

controller variable N time steps ahead; one such approximation is provided by Seborg 

et al. (1989). The authors declare that, because o f the similarity between the IMC 

structure and the generalised analytical predictor structure, the IMC methodology may 

be used to calculate an appropriate primary controller design.

The analytical predictor and generalised analytical predictor algorithms may 

also be used to compensate MIMO processes with time delays; Huang and You (1994) 

discuss such an application.

5.3.1.7 The use of the Internal Model Control (IMC) strategy

Seborg et al. (1989) and Morari and Zafiriou (1989) discuss the design o f the 

IMC strategy in detail. The block diagram for the IMC structure is set up as shown in 

Figure 5.4. It may be shown that

L (5.12)

Figure 5.4: Block diagram for the IMC structure
L
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The design strategy is the same as that given for the design o f a robust PID controller

in Section 5.2.1.2.5.

The IMC structure is clearly analogous with that o f the Smith predictor. 

Vandeursen and Peperstraete (1995) state that the IMC structure is a generalisation of 

the modified Smith predictor control structure o f Watanabe et al. (1983). Thompson

(1993) also suggests that the Smith predictor controller is a subset o f the internal model

controller.

Morari and Zafiriou (1989) outline a procedure for the robust design of a time 

delay compensator based on the IMC structure. The authors implement the method for 

the control of a FOLPD process, with a bounded variation in the process time delay. 

Morari (1987), Thompson (1993) and Datta and Ochoa (1996) also discuss robustness 

issues in detail.

The IMC methodology may also be used for the design o f discrete time delay 

compensators; this is discussed in detail by Zafiriou and Morari (1985), Seborg et al.

(1989), Shahrokhi and Naimpour (1992), Peebles et al. (1994) and Vandeursen and 

Peperstraete (1995). In an interesting application, Hunt and Sbarbaro (1991) and Hunt 

et al. (1992) suggest the use of neural networks, in an IMC structure, to implement the 

adaptive control of non-linear processes.

The compensation of MIMO process models with time delays, using the IMC 

approach, is described by Garcia and Morari (1985), Luo et al. (1992), Wu and Tseng

(1992) and Wu et al. (1994).

5.3.1.8 Generalised Smith predictors for MIMO process models

Generalised Smith predictors have been defined by a number o f authors to 

control MIMO process models with time delays. Ogunnaike and Ray (1979) and Ray 

(1981) propose both a discrete time and a continuous time multivariable, multidelay 

compensator for this application. This compensator is a multivariable version of the 

Smith predictor; the authors show that the controller reduces to the Smith predictor 

(and the analytical predictor) for a SISO application. Jerome and Ray (1986) describe 

the Generalised MultiDelay Compensator (GMDC), which is an expansion of the 

Smith predictor to control MIMO processes (and a generalisation of the algorithm of 

Ogunnaike and Ray (1979)); both time delay compensation and MIMO interaction 

compensation are achieved in a single design. The design of generalised Smith
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predictors for these applications is also discussed by Alevisakis and Seborg (1974), 

Donoghue (1977), Hammerstrom and Waller (1980), Watanabe and Sato (1984), Chien 

et al. (1985a), Ozturk and Fardanesh (1991), Triantafyllou and Grosenbaugh (1991), 

Austin et al. (1993) and Desbiens et al. (1996). The robustness o f the Smith predictor 

control scheme, when applied to the control o f MIMO processes, is discussed by 

Owens and Raya (1982a), (1982b), Palmor and Halevi (1983), Chu and Wu (1986) and 

Feng (1991); the latter author derives a sufficient condition for the practical stability of 

linear multivariable processes, controlled using the Smith predictor strategy.

5.3.2 D irect synthesis methods

5.3.2.1 Introduction

A direct synthesis algorithm is one that results in a controller that gives a 

specified closed loop response. Direct synthesis methods may be used to specify the 

controller parameters o f low order controllers, such as PI, PID or lead-lag controllers 

(see Section 5.2.1.2.4); the technique covers pole placement controllers and controllers 

that achieve a specified closed loop transfer function. For processes that include a time 

delay, low order controllers are typically specified by approximating the time delay 

term by an appropriate rational polynomial. This model will thus approximate the 

process at lower frequencies. This section of the chapter will discuss the design of 

controllers in which the time delay is typically not approximated. The controller design 

techniques may be based on a state space or input-output process model.

5.3.2.2 Continuous time domain

Seborg et al. (1989) outline the direct synthesis method of controller design in 

the continuous time domain, for processes that include time delays; the desired closed 

loop transfer function must include a time delay greater than the process time delay. It 

may be shown that the controller designed using the method has a time delay 

compensator structure. If the process is of FOLPD structure, for example, then
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KpeG„(s)= P
1 + sT

( 5 .1 3 )

If the desired closed loop response is

C Ì K„e - S T rf

Ry d 1 + sTd
T d > T p (5.14)

Then

Gc(s) =
(C/R)

d _
1 + sT K de ^

G p(s) 1- ' (C/ R)d K Pe "
1 + sTd -  Kde

(5.15)

No direct equivalence may be drawn between this structure and the Smith predictor 

structure. As with the Smith predictor, some difficulties would arise in the practical 

implementation of this structure (in the continuous time domain). The IMC design 

strategy (Section 5.3.1.7) has some similarities to the direct synthesis method 

described; Seborg et al. (1989) show that the appropriate choice of the desired closed 

loop response (direct synthesis method) and the IMC filter (IMC method) can mean 

that the compensators designed using both approaches are identical.

Direct synthesis methods are also discussed by Sanathanan and Quinn (1987) 

and Lilja (1990); the former authors calculate an appropriate low order controller for a 

high order process with time delay, by matching the frequency response of the 

compensated system with the desired frequency response, based on an appropriate 

reference model.

5.3.2.3 Discrete time domain

Direct synthesis methods for calculating an appropriate sampled data controller, 

based on an input-output model approach, have been discussed by many authors; 

Dahlin (1968), for instance, derives an appropriate controller by assuming that the 

desired closed loop transfer function is the discrete equivalent of a continuous FOLPD 

model. The time constant for the closed loop system may be adjusted to give more 

sluggish control if  the process parameters are not known accurately. Such algorithms
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have been discussed in detail by Chiu et al. (1973a), Palmor (1982), Zafiriou and 

Morari (1985), Seborg et al. (1986), Leffew et al. (1987), Seborg et al. (1989), Dumont

(1990), Elnagger et a l (1992), (1993) and Dumont et a l (1993). Seborg et al. (1989) 

show that the controller implementation may have the disadvantage of allowing 

intersample ripple in the controlled variable and the controller output.

A pole placement design approach is outlined by Isermann (1989), (1991) and 

Wellstead and Zarrop (1991), for application to the control o f a general process with 

time delay; Isermann (1991), however, suggests that a large computational effort is 

associated with the design procedure. Pole placement controllers may be designed by 

including the time delay in an overparameterised process model; Wellstead et al.

(1979), Vogel and Edgar (1982), Prasad et al. (1985), Seborg et al. (1986), and Wang

(1990) discuss this approach. However, the order o f the polynomial increases as the 

time delay increases, making the method unattractive for the design of compensators 

for processes with large time delays (Seborg et al. (1986)).

Alternatively, the time delay may be approximated by a rational polynomial; 

Stahl and Hippe (1987), De Souza et al. (1987), (1988) and Salgado et al. (1988) 

design pole placement controllers for the process on this basis. Interestingly, De Souza 

et al. (1987) implement the pole placement controller in the 8 (or Euler) discrete 

domain. However, the robustness of the compensated system at higher frequencies 

would need to be considered, as the time delay may be poorly modelled at such 

frequencies (Stahl and Hippe (1987)); interestingly, Hang and Chin (1991) state that 

extensive simulation experience suggests that as long as most o f the time delay is 

explicitly modelled, then the residual time delay may be safely estimated as a non­

minimum phase zero.

Other authors that use pole placement compensators in their applications 

include Astrom and Zhou (1981), Lammers and Verbruggen (1985), Astrom and 

Hagglund (1988), Kristinsson and Dumont (1992), Gendron et al. (1993), Astrom et al.

(1993), Chen et al. (1994), Kotob et al. (1994) and Lundh and Astrom (1994). Other 

direct synthesis methods are defined by Isermann (1989) and Isermann et al. (1992), 

who discuss the design o f "cancellation" controllers (in which part o f the controller 

cancels the poles and zeroes o f the process) and "deadbeat" controllers (in which a 

finite settling time is required for both the controlled variable and the manipulated 

variable).
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Adaptive pole placement controllers (or model reference adaptive controllers 

(MRAC)) may also be designed to compensate processes with time delays. The design 

of a MRAC in the continuous time domain for process models with time delay is 

discussed by Nagarajan and Sajed (1994). More attention appears to have been paid to 

the design of such controllers in the discrete time domain; for instance, Isermann et al.

(1992) discuss the design of such a MRAC. The authors state that the discrete time 

compensated systems designed are stable if  the process time delay index is known, the 

reference model time delay index is greater than or equal to the process time delay 

index, an upper bound on the process order is known and the process is of minimum 

phase form. Gawthrop (1977), Barthal and Shin (1993), Meyn and Brown (1993), and 

Kimura et al. (1994) also discuss the design of such compensators in the discrete time 

domain. The design of a MRAC for MIMO process applications is discussed by 

Mizuno and Fujii (1983).

State-space design approaches are an alternative to the input-output model 

approach for direct synthesis compensator design. Such approaches are described by 

Isermann (1989), Bartolini and Ferrara (1992) and Tsai et al. (1994). Isermann (1989) 

designs the controller for a SISO process model assuming no time delay, and suggests 

that the time delay compensator design may be facilitated by including the time delay 

in the system matrix. It is suggested that controllers designed using a pole placement 

state space approach are recommended for processes o f high order, processes with a 

large time delay or if  the process model is known precisely.

Manitius and Olbrot (1979) discuss the finite spectrum assignment approach for 

the control o f linear processes with time delays in the state and/or output variables. The 

procedure involves designing a feedback law based on pole assignment. This is a time 

domain approach; a corresponding frequency domain approach that facilitates the 

arbitrary placing o f the finite poles o f the process is outlined by Ichikawa (1985). 

Wang et al. (1988) state that the finite spectrum assignment method removes all of the 

delay from the closed loop characteristic equation (as does the Smith predictor); the 

method allows the resulting closed loop system to have a finite number of poles 

located at an arbitrarily preassigned set o f points in the complex plane. This means that 

the method may be used to compensate unstable processes with time delays (unlike the 

Smith predictor). Manitius (1984) describes a number o f control laws, based on an 

application of a finite spectrum assignment approach, for the control o f a process with 

a time delay. The author shows good closed loop transient responses corresponding to
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the use of one of the control laws developed; he also states that on-line updating of the 

controller parameters is possible, as the calculation of the coefficients in the control 

law is straightforward. In a very recent paper, Yao et al. (1996) design observers for 

processes with time delays using a finite spectrum assignment method. The finite 

spectrum assignment method is also discussed by Furukawa and Shimemura (1983), 

Ichikawa (1985), Watanabe and Ouchi (1985), Ortega and Lozano (1988), Wang and 

Chen (1988) and Wang et al. (1988), (1995b).

5.3.2.4 Direct synthesis controller design methods for MIMO process models

Continuous time and discrete time approaches to the design of direct synthesis 

compensators, using an input-output model approach or a state-space approach, have 

been defined for the compensation of MIMO processes with time delays. Continuous 

time compensators using an input-output model approach have been defined by Pemg 

and Ju (1991) and Agamennoni et al. (1992); the latter authors design the compensator 

so that the frequency response of the controller satisfies the criteria that the slow 

disturbance modes should be rejected by each loop, and that an appropriate dominant 

time constant for each loop should be attained. A continuous time compensator for 

MIMO process models is designed using a state-space approach by Kocijan and Korba

(1991). Discrete time compensators using an input-output model approach have been 

explored in more detail; Wellstead et al. (1979), Prager and Wellstead (1980), Chai

(1986), Lang et al. (1986), Seborg et al. (1986), Kinneart et al. (1987), Kinneart and 

Hanus (1988), Vogel and Edgar (1988), Isermann (1991), Yamamoto et al. (1991), 

Isermann el al. (1992), Mo and Bayoumi (1993), Song and Hardt (1994) and Teng el 

al. (1994) discuss these techniques. Seborg el al. (1986) state that the advantages o f the 

MIMO pole placement controller are similar to those of the SISO pole placement 

controller (i.e. it may be applied to control non-minimum phase processes, it may be 

detuned to avoid excessive control action, it provides time delay compensation and it 

facilitates the control o f processes with variable time delay); in addition, it allows for 

the control o f MIMO processes with different time delays between the input-output 

combinations. However, since the method involves overparameterisation of the 

numerator polynomial, it is not particularly attractive for the control of processes with 

large time delays. Finally, the design of state-space direct synthesis controllers in the
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discrete time domain has received some attention; Isermann (1991) discusses the 

design o f such compensators.

5.3.3 Optimal controller design methods

5.3.3.1 Introduction

This section of the chapter will consider the development of optimal design 

techniques to specify compensator parameters for the control o f processes with time 

delays. The process is assumed to be a time varying linear process, and process and 

measurement noise may be present. The controller is synthesised to minimise an 

appropriate criterion; Astrom and Wittenmark (1984) discuss a number of optimal 

control criteria. One such criterion minimises the variance of the controlled variable 

(the minimum variance (MV) control strategy); in the discrete time domain, the 

criterion is

with d = time delay index. Another criterion minimises the expected value of the 

square o f the controlled variable plus a multiple times the square of the control signal 

(the linear quadratic (LQ) control strategy or the linear quadratic Gaussian (LQG) 

control strategy, if  Gaussian stochastic disturbances are allowed in the system); in the 

discrete time domain, the criterion is

5.3.3.2 Input-output design approach

General LQ design strategies in the continuous time domain for processes with 

time delays are discussed by Grimble (1979) and Semino and Scali (1994); the latter 

authors, for example, calculate the parameters in the weight function that guarantee the 

required robustness o f the response using the IMC design strategy.

J = E[y2(k + 1 + d)] (5.16)

J = E[y2 (k +1 + d) + pu2 (k)] (5.17)
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Optimal controllers may also be designed in the discrete time domain; Astrom 

and Wittenmark (1984), (1989), Landau (1990), Isermann (1991) and Isermann et al.

(1992), for instance, discuss in detail the design of a MV and LQ optimal controller for 

a process with time delay. Wellstead and Zarrop (1991) declare it is necessary that an 

accurate value o f the process time delay index should be used in the compensation. The 

authors state that if  the model time delay index is less than the process time delay 

index, then instability may result; if  the model time delay index is greater than the 

process time delay index, then the regulation error is unnecessarily large. Isermann

(1991) and Isermann et al. (1992) extend the above techniques to the design of LQG 

and MV compensators for MIMO processes with time delays.

The design and implementation o f MV compensators is discussed in detail by 

Wong and Bayoumi (1982), Clough and Park (1985), Liu and Gertler (1987), Koivo et 

al. (1988), Hu et al. (1988), Xu (1988), Ren (1993) and Al-Chalabi and Khalil (1994). 

The MV control strategy may also be used to design compensators for MIMO 

processes with known time delays; Borison (1979) and Chien et al. (1985) discuss 

these applications of the method in detail. It is possible to associate the MV controller 

strategy with some of the compensation strategies discussed earlier; Palmor (1982) and 

Dumont et al. (1993), for example, state that the direct synthesis controller derived by 

Dahlin (1968) is a minimum variance compensator. Seborg et al. (1986) state that the 

MV controller may be interpreted as a PID controller in addition to a component 

containing memory of previous control actions, and additional terms providing a form 

of time delay compensation. In interesting comments on the applicability of the MV 

algorithm, the same authors declare that a MV controller is not suitable for the control 

o f processes with time delay, because the time delay is likely to be a non-integer 

multiple o f the sample period, which may result in poor, and even unstable, 

performance. The reason for this is explained by Wellstead and Zarrop (1991), who 

point out that the zero, due to the modelling in the z domain o f the time delay that is 

not an integer multiple o f the sample period, moves along the negative real axis of the 

z plane, as the “fractional” value of the time delay varies from zero to the sample time. 

For small values of the “fractional” time delay, the process model will be in non­

minimum phase form. A process controlled by a MV controller may be destabilised in 

these circumstances, as the implementation o f the compensator involves the inversion 

o f the model numerator polynomial. Therefore, if  stable compensation is to be 

achieved, the time delay used in the MV controller design must be larger than the
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actual value o f the process time delay (which results in a non-optimal controller). In a 

similar manner, time varying time delays also cause problems for the design of a MV 

controller.

The design and implementation o f LQ compensators is discussed in detail by 

Kurz (1979), Kurz and Goedecke (1981), Durbin (1985), Chien et al. (1985b), Allidina 

et al. (1985), Seborg et al. (1986), Voss et al. (1988), Chen and Zhang (1990), Zhang 

and Chen (1990), Roy et al. (1991b), (1991c), (1993a), Pratt and Downing (1994), 

Yusof et al. (1994) and Weerasooriya and Phan (1995). Clark (1985) shows that the 

implementation of the LQ controller for the control o f processes with time delays may 

be considered to be similar to a Smith predictor strategy, in that the predicted rather 

than the current measured output is fed back. The author argues that the method takes 

account o f disturbances and may control open loop unstable processes (unlike the 

Smith predictor). The LQ control strategy may also be used to design compensators for 

MIMO processes with delays; El-Bagoury and Bayoumi (1980), Koivo (1980), Hahn et 

al. (1982), Dugard et al. (1984), Scattolini (1986), Chai (1988), Tade et al. (1988a), 

(1988b), Chai and Ma (1990), Chai (1990), Chen et al. (1991), Chai and Wang (1992) 

and Yin and Asbjornsen (1993) discuss this application of the method in detail.

An interesting feature of the LQ or MV method is that since the process input 

influences the process output at a number o f steps equal to the time delay index later, 

the minimisation o f the output variance, for instance, requires a controller exhibiting 'k 

step ahead prediction', where k is set equal to the time delay index. Thus, these optimal 

strategies are intrinsically predictive; predictive controller strategies are discussed in 

Section 5.3.4.

5.3.3.3 State-space design approach

Continuous time and discrete time approaches have been defined for the 

specification o f optimal controllers for processes with time delays. Anderson and 

Moore (1989), for example, demonstrate that an optimally designed LQ state controller 

for a process with time delay is stable provided x < n  / 3ror , cor = frequency at which 

the magnitude o f the process is unity and x = time delay. Grimble (1980), Malik- 

Zafarei and Jamshidi (1987), Palanisamy et al. (1988), Górecki et al. (1989), Dadebo 

and Luus (1992), Dadebo and McAuley (1993), Chyung (1993) and Paraskevopoulos
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and Samiotakis (1994) discuss in detail the optimal control o f SISO processes with 

time delay, in the continuous time domain, by minimising an LQ cost function, while 

Malik-Zafarei and Jamshidi (1987) discuss the optimal control o f MIMO processes 

with time delay, using the approach.

Linear quadratic optimal controllers may also be defined in the discrete time 

domain, using the state-space approach. Joshi and Kaufman (1975), Knobbe (1989), 

Middleton and Goodwin (1990) and Ha et al. (1993) consider the design of the optimal 

controller for a process model with a time delay; interestingly, Middleton and Goodwin

(1990) design the compensator in the 8 domain. The LQ strategy may also be used to 

design compensators for MIMO process models; Ray (1981) presents a general 

formulation o f the controller problem for the control o f MIMO processes with time 

delays. The author discusses in detail the optimal control o f such processes in the state 

space domain, using the LQ control strategy; the material presented is based on the 

work of Ray and Soliman (1970), who discuss general fundamental results on the 

optimal control o f time delay systems.

5.3.3.4 Other optimisation strategies for SISO process models

Other optimisation strategies may also be used for compensator design; one 

such approach is the time optimal controller design method that involves the 

determination o f the control function which drives the system to a desired state in 

minimum time. Algorithms based on determining this controller for a process with 

time delay in the continuous time domain are defined by Latour et al. (1967), Malik- 

Zafarei and Jamshidi (1987) and Lin et al. (1993). Other optimisation approaches are 

defined in the discrete time domain by Ozbay and Peery (1993) and Lublinsky and 

Fradkov (1993).

5.3.4 Predictive controllers

Soeterboek (1992) states that predictive controllers calculate a future controller 

output sequence so that the predicted output o f the process is "close" to the desired 

process output. If only the first element o f the controller output sequence (i.e. at sample 

time k) is used to control the process, and the predicted sequence is repeated at sample
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time k+1, then this is referred to as a "receding horizon" predictive controller. The 

predictive controller is designed by minimising an appropriate cost function. One such 

predictive controller is the unified predictive controller, as outlined by Soeterboek

(1992). A cost function to be optimised is defined, with appropriate constraints. The 

author subsequently derives the unified predictive control law; it is shown that, under 

certain circumstances, the unified predictive control law may be interpreted as a pole 

placement controller (with prediction). The author also discusses the stability 

robustness and the performance robustness o f the unified predictive control law; the 

gain margin and time delay margin (which is the change in the model time delay 

required to drive the controlled system unstable) are used to evaluate the stability 

robustness o f the method. The author states that the unified predictive controller action 

may be summarised as the driving of future controlled variables y(k + i) to follow as 

closely as possible the desired set point input r(k + i) over the next i samples. This is 

done at each sampling instant k by calculating the future set point sequence r(k  + i ) , 

predicting the controlled variable at sample k+i, minimising an appropriate cost 

function to provide the suggested control sequence u(k + i ) , implementing the first 

element o f the control sequence u(k + 1) and then repeating the calculations.

Soeterboek (1992) shows that the Dynamic Matrix Control (DMC) algorithm, 

the Predictive Control Algorithm (PCA), the Model Algorithmic Control (MAC) 

algorithm, the Generalised Predictive Control (GPC) algorithm (of Clark et al. (1987a), 

(1987b)), the Extended Prediction Self-Adaptive Control (EPSAC) algorithm and the 

Extended Horizon Adaptive Control (EHAC) algorithm (of Ydstie (1984)) may be 

regarded as special cases o f the unified predictive control algorithm discussed above. 

The author states that all o f these controllers can compensate processes with time 

delays successfully.

In a review paper, Kwon (1994) compares the model predictive control (MPC) 

strategy, the GPC strategy and the receding horizon control (RHC) strategy as applied 

to the control o f linear unconstrained processes, linear constrained processes and non­

linear processes. These strategies are compared in historical origin, in models and cost 

indices used, in predictive strategies used and in the solutions obtained to the 

predictive control problem. In addition, the stability and robustness properties of the 

controlled systems are explored, when the relevant algorithms are implemented. A 

large number o f industrial applications of the strategies are reported.
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The GPC strategy is a subset o f the unified predictor controller strategy. The 

GPC strategy, and relevant implementations, is discussed in detail by Clark et al. 

(1987a), (1987b), Dumont (1990), Demircioglu and Gawthrop (1991), Fisher (1991), 

Isermann et al. (1992), Willis et al. (1992) (who uses neural networks to implement the 

strategy), Camacho and Bourdons (1993), Dumont et al. (1993), Elnagger et al. (1993), 

Jolly et al. (1993) and Yamamoto et al. (1994). Camacho and Bourdons (1993), for 

instance, model the process as a FOLPD model, and apply the GPC strategy to 

calculate a control sequence that minimises a multistage cost function. The authors 

provide simple formulae to calculate the appropriate tuning parameters required.

Other predictive controller strategies are discussed by Ydstie (1984) (who 

considers the use o f the EHAC algorithm), Zevros and Dumont (1988), Garcia el al.

(1989), Ishida and Zhan (1992), (1993), Chisci and Mosca (1993) (who considers the 

use of the RHC algorithm), Rad and Lo (1994), Rangaiah and Krishnaswamy (1994), 

Zhu and Ling (1994), Maiti et al. (1994) (who considers the use o f a DMC algorithm), 

Austin et al. (1994) and Huang and You (1995).

5.3.5 Other compensation strategies for processes with time delays

5.3.5.1 Feedforward control

Feedforward control (or more realistically, feedforward-feedback control) may 

be used to compensate a process with time delay. If a disturbance acts on the controlled 

variable, a feedforward element with transfer function equal to the reciprocal of the 

process may be used to eliminate the effect of the disturbance. However, as Isermann

(1991) suggests, ideal feedforward control is not possible if the process has a time 

delay or if the zeroes of the (discrete) process model or disturbance model are on or 

outside the unit circle. A feedforward controller is typically used in association with a 

feedback controller structure.

Isermann (1991) outlines a number of methods for the design of a feedforward- 

feedback controller for a process with time delay in the discrete time domain, based on 

the use o f a cancellation controller strategy, the use of a parameter optimised 

feedforward controller strategy, the use of a state variable technique and the use of a 

LQG controller design method. A disadvantage of feedforward control is that accurate
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knowledge o f  the process is required. An adaptive feedforward-feedback controller 

implementation, in which the model parameters are continuously updated, may be used 

to facilitate wider use o f the strategy; one such algorithm is discussed by Isermann

(1991).

Other authors that discuss the design and implementation of feedforward- 

feedback controllers for the control o f processes with time delay are Palmor and 

Powers (1985) (who use a feedforward controller in conjunction with a Smith 

predictor), Peter and Isermann (1988), Rao and Perdikaris (1988), Hagglund and 

Astrom (1989), (1991), Morari and Zafiriou (1989), Newell and Lee (1989), Shinskey

(1990) (who suggests that feedforward-feedback control offers the capability of 

decreasing the IAE of the compensated closed loop system by another order of 

magnitude over an appropriate PID feedback controller), Astrom (1991), Mills et al.

(1991), Astrom et al. (1992) and Chyung (1993); Astrom et al. (1992), for instance, 

suggest that if  the process may be modelled by a FOLPD model, and if the conditions 

(i) xrn/Tm < 0.6 and (ii) the product o f the ultimate gain and the process gain is greater 

than 2.25 are not fulfilled, then feedforward-feedback compensation may be 

appropriate.

A feedforward element, in addition to the feedback controller, may also be used 

to compensate MIMO processes with time delays; Uraz and Ozturk (1985), Chai

(1990), Chai and Ma (1990) and Gawthrop and Nomikos (1990) consider appropriate 

compensator designs in detail.

5.3.5.2 Other strategies

Many time delay compensation strategies do not naturally fall into the previous 

categories discussed. Chou et al. (1989), for example, design a feedback controller to 

robustly stabilise an uncertain, saturating process with a time delay. A large number of 

other strategies, defined in the literature, have been outlined by O ’Dwyer (1996c), for 

the stabilisation of SISO and MIMO process models with time delay; many of these 

strategies are concerned with the conditions for stability for the closed loop control of 

processes with time delays.

Finally, the robustness o f compensator designs is a topic that has been the focus 

o f increasing attention in recent years. Earlier sections of the chapter have discussed a
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number o f approaches that facilitate the achievement o f a certain degree of robustness, 

when a process with time delay is being controlled. Other authors define other 

robustness procedures than have been encountered thus far; Lamaire et al. (1991), for 

example, propose a method for robust process estimation in the frequency domain in 

which bands on the frequency domain estimation error are developed. This procedure 

allows the on-line design o f a robust control law. Other robustness strategies that have 

appeared in the recent literature are outlined by O ’Dwyer (1996c).

5.3.6 Conclusions

This chapter has considered a wide variety o f methods for the compensation of 

processes with time delay, in both the continuous time and discrete time domains. The 

wide spectrum of methods covered, and the dependence o f the choice of compensator 

method on the application, means that an overall conclusion as to the best method to 

use is not appropriate. However, it has been concluded in Section 5.2.3 that parameter 

optimised controllers are not appropriate for the compensation of dominant time delay 

processes. Structurally optimised compensators are more appropriate for the 

compensation o f such processes, as the controller structure and controller parameters 

may be adapted optimally to the structure and to the parameters o f the process model. 

It has been decided to concentrate on the development o f a modified version of the 

Smith predictor, with the aim of improving the regulator response of the Smith 

predictor, while retaining a similar servo response; this decision has been made as 

many methods, viewing the compensation problem from a variety of perspectives, 

appear to present the Smith predictor as the optimal (or a component o f the optimal) 

controller for dominant delay processes. An alternative perspective is that the Smith 

predictor structure may be used to reduce the dominance o f the time delay term, and 

thus facilitate the conversion of the compensation problem from the control of a 

dominant time delay process to the control o f a non-dominant time delay process 

(though process-model mismatch difficulties do have to be taken into account); the 

primary controller in the predictor may therefore be designed using a parameter 

optimised approach.

The development o f the modified Smith predictor is detailed in Chapter 6.

217



CHAPTER 6

The compensation of processes with time delay by 

using an appropriately modified Smith predictor

6.1 Introduction

It has been concluded in Chapter 5 that the Smith predictor is a component of 

the optimal controller for dominant time delay processes. However, as discussed in 

Section 5.3.1.3, the Smith predictor strategy is designed with servo applications in 

mind. It has therefore been decided to develop a modified version of the Smith 

predictor, with the aim o f improving the regulator response of such a compensator; the 

development is performed in the continuous time domain.

Initially, the Smith predictor, and modifications of the Smith predictor that 

appear in the literature, are considered in more detail. A generalised modified Smith 

predictor is then defined, and the design of such a structure to achieve ideal servo and 

regulator responses, with the elimination of process-model mismatch, is described. 

Subsequently, the design of the modified Smith predictor to achieve realistic servo and 

regulator action is discussed. This latter development involves the approximation of a 

time advance term; an appropriate approximation is detailed. The servo and regulator 

responses o f the modified Smith predictor and the Smith predictor are then compared 

for a number o f process-model structures. The performances o f the Smith predictor and 

the modified Smith predictor are compared analytically by calculating the sensitivities 

o f the output o f the compensated systems to changes in the plant parameters. Finally, 

appropriate conclusions as to the efficacy of the modified Smith predictor 

implementation are drawn.

The algorithms and simulations in this chapter are considered in more detail by 

O ’Dwyer (1996f), and are also discussed by O’Dwyer and Ringwood (1996).
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6.2 The Smith predictor and its modifications

6.2.1 Introduction

The design of controllers for processes with long time delays has been of 

interest to academics and practitioners for several decades. In a seminal contribution, 

Smith (1957) proposed a technique that facilitates the removal o f the time delay term 

from the closed loop characteristic equation. This method, labelled the Smith predictor, 

has been the subject of numerous experimental and theoretical studies, and is 

considered in detail in Chapter 5. A block diagram of the Smith predictor structure 

(with process and measurement noise) is provided in Figure 6.1 (with each o f the terms 

G Li ,G Li ,G b,G p G m being functions of the Laplace variable, s).

Figure 6.1: Block diagram of the Smith predictor structure

The response of the compensated system is as follows:

(G [GIe - " ') R + ( G l.G pe-” ']L ,+ G l>L2)(1 + G „ G I [l-e^ ™ ])

l + G eO „ + G J - G .e - " - ) 1

A number of authors have proposed modifications to the Smith predictor 

structure to improve the regulator response of the compensated system and/or to reduce 

the effect on either the servo or the regulator response o f process-model mismatch. 

Some authors (e.g. Marshall (1979), Hammerstrom and Waller (1980), Kantor and 

Andres (1980), Watanabe and Ito (1981), Marshall and Salehi (1982), Watanabe et al.
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(1983), Hocken et al. (1983), Wong and Seborg (1986), Romagnoli et al. (1988), 

Mitchell (1990), Astrom et al. (1994) and Dastych (1995)) suggest that improved 

responses may be obtained if  appropriate dynamic terms are included in either the outer 

feedback loop or the inner feedback loop o f the Smith predictor. Other authors suggest 

either the inclusion of extra dynamic elements from either the process or model outputs 

(Benouarets and Atherton (1994)), the inclusion o f a dynamic element in the forward 

path o f the compensator between the outer and inner feedback loops (Huang et a l

(1990)) or the feedforward of a measurable disturbance signal acting on the process 

through an appropriate dynamic element (Palmor and Powers (1985)). Many of the 

modifications o f the Smith predictor structure discussed are subsets of the 

implementation provided in Figure 6.2 (with each of the terms P jF^EjjK, and K2

being functions of the Laplace variable, s and y is the process output of the modified

Smith predictor).

Figure 6.2: Block diagram of a generalised Smith predictor structure

R
+

F,

G Ll G L2

+
G e”STp V)

+

K,

K,

+

The response o f the system in Figure 6.2 may be derived to be

yP =
(G pP e - ,-)R  + (l + G m|[K, + {F2- K 2P}e-"-])(G u L2 + G pG lUe - L , )

1+1(g ,„K, + G„[F2 -  K2P]e->- -  Gp[F, -  K2P ]e " '- )1
(6.2)
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6.2.2 Optimising the servo and regulator responses

One may optimise the servo and regulator responses, and minimise the effect of 

the mismatch between the process and the model, by appropriate design of three of the 

five dynamic elements in Figure 6.2 (as only three specifications need to be fulfilled). 

This redundancy means that there are ten possible modifications to the Smith predictor 

structure, outlined in Table 6.1 (with blank terms indicating the dynamic elements to 

be designed).

Table 6.1: Possible modifications of the Smith predictor structure

Modification P F, F2 K, K2

Case 1 1 0

Case 2 1 0

Case 3 0 1

Case 4 0 1

Case 5 1 1

Case 6 0 1

Case 7 0 0

Case 8 0 1

Case 9 1 1

Case 10 1 1

If it is desired to achieve ideal servo and regulator action (i.e. y */R = 1.0, 

yp*/L, = 0.0 and yp*/L2 = 0.0) with mismatch elimination, then the application of

equation (6.2) will reveal the requirements on the individual dynamic elements in the 

modifications. O f the ten modifications, it may be shown by applying equation (6.2) 

that three o f the modifications do not facilitate the achievement o f the full specification 

(Cases 7, 8 and 9 in Table 6.1) and two of the modifications fulfil the specification in 

an identical manner (Cases 4 and 10). Table 6.2 summarises the requirements on the 

six remaining cases, to achieve the specification, with Cases 1 a to 6a corresponding to 

Cases 1 to 6 in Table 6.1.
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An example calculation clarifies how these requirements are achieved. Taking 

Case 1, equation (6.2) becomes

. (G pe - '- ) R  + (l + G j K , - K 2e - ’-])(G L2L2 + GpG Lle - , 'L l)

^  = ----------- l + (G „ K ,-G „ K 2e—  G J F . - K . K - . ] -----------  ^

From equation (6.3), ideal servo action is achieved when G pe STp/ ( l  + G mK,) = 1 i.e. 

when

K, = (G„e-” - -  1)/G„ (6.4)

From equation (6.3), ideal regulator action is achieved when 1 + G m(K, -  K^e”51"1) = 0

i.e. when, substituting from equation (6.4),

K 2 = G pe - ’' / G me-” - (6.5)

From equation (6.3), mismatch is eliminated when G p(K2 - F ])e”STp = G mK2e-STm i.e. 

when, substituting from equation (6.5),

F ,= [G pe '“ - / G . e " - ] - l  (6.6)

Table 6.2: Possible methods o f achieving ideal servo and regulator action, with 

elimination of mismatch

Implementation P F, f2 K, k 2

Case la 1 a . 0 a2 a, +1

Case 2a 1 0 - a , a 2 1

Case 3a arbitrary 0 -Pa, a 5 1

Case 4 a a 3 0 " a 4 1 1

Case 5 a 1 -1/(1 + a,) - 1 - a , a2 1

Case 6a a3 a 4 0 1 a, +1



with a, = —- e  ŝTp T"̂  - 1 , a. 
Gmm

and

However, all o f the representations in Table 6.2 require inversion of the model 

or (unknown) process transfer function, and/or the model or (unknown) process time 

delay, to set up one or more of the required dynamic elements, which means that the 

design involves the specification o f a non-proper transfer function. Such non-proper 

transfer functions would need to be approximated; supplementary calculations reveal 

that any deviation of the parameters from those used in the non-proper specification 

drives the closed loop modified Smith predictor unstable.

6.2.3 The design of a realistic modified Smith predictor

It is more realistic to design the modified Smith predictor such that the servo 

response o f the compensated system is similar, for example, to that of a FOLPD model, 

with a corresponding regulator response. Such responses may also be achieved by 

using the IMC strategy described by Morari and Zafiriou (1989). An appropriate choice 

of three dynamic elements in each o f the cases taken will fulfil the requirements for 

realistic regulator and servo action (with the servo requirement being equivalent to the 

response to an appropriately ordered model plus time delay), together with the 

requirement for mismatch elimination. The requirements on the dynamic elements are 

summarised in Table 6.3; Cases lb  to 6b correspond to Cases la  to 6a in Table 6.2, 

under the new design requirements.

An example calculation clarifies how these requirements are achieved. The 

realistic servo response is G pG ce~” p/( I  + G pG c) , with the corresponding regulator

response (to a process disturbance) being G pG L]e~STp/( l  + G pG c) ; Gc is considered to 

be an appropriate primary controller in the Smith predictor structure. From equation

(6.3), realistic servo action is achieved when G pe"STp/ ( l  + G mK,) =

G pG ce-STp / ( I  + G pG c) i.e. when
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K, = (1 + GpG c -  G c) /G cG m (6.7)

From equation (6.3), realistic regulator action is achieved when 1/(1 + G pGc) = 

[1 + G m(K, -  K2e ST,,,)| / (1 + G mK,) i.e. when, substituting from equation (6.7),

K2 = l /  e~STp (6.8)

The mismatch is eliminated when the conditions defined in equation (6.6) are fulfilled.

Table 6.3: The design o f realistic servo and regulator action, with mismatch

elimination

Implementation P F, f2 K, k 2

Case lb 1 b6 0 b. b2

Case 2b 1 0 b, eSTp

Case 3 b b3 0 - b 6b3estp 1 eSTp

Case 4b 1 b4 - b 2 b, 1

Case 5b b3 b6b3eSTp /G p 0 1 b2

Case 6b b3 b3( l - e stp) b3b5eŝ 1 1

with b, = b  _ 1 + G pG° - ° .  b _  u p b _
G„

G„ G cG m G e"m

G.Q + G J  
l + G pGc

U G p(e~ p -  1) -  G me_
4  ~ G pe p

and bs =
G e‘STm -G „

G„

Unfortunately, non-proper transfer functions are required to implement the 

specifications; for example, if  G c is considered to be a PI controller and G p and G m

are considered to be in first order lag (FOL) form, then for Case lb, for example, K, is 

specified using a dynamic element o f denominator order 1 and numerator order 2, and
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K 2 and F, are specified using terms involving the inversion of the model and the

(unknown) process parameters.

If the specification that the mismatch must be eliminated is relaxed (i.e. if  the 

dynamic elements in the modified Smith predictor are defined assuming the model 

parameters equal the process parameters), then, from Table 6.3, the terms in Cases lb 

and 2b are specified using a dynamic element o f denominator order 1 and numerator 

order 2, and the inversion of the model time delay. An inversion of the model time 

delay is also required in the terms o f Cases 3b, 5b and 6b. Table 6.4 summarises the 

required design of the dynamic elements for realistic servo action and regulator action 

(to a process disturbance) assuming the model parameters equal the process parameters 

(when general forms of G m and Gc are taken); Cases lc to 6c correspond to Cases lb 

to 6b in Table 6.3.

Table 6.4: The design of realistic servo and regulator action, with the process 

parameters assumed equal to the model parameters.

Implementation P F, f2 K, k 2

Case lc 1 0 0 C! eSTm

Case 2c 1 0 0 C, eST™

Case 3 c c2 0 0 1 eST,n

Case 4c 1 - e STm - e STra c, 1

Case 5c c2 0 0 1 eSTm

Case 6c c2 c2( l - e STm) c2( l - e STm) 1 1

1 + G mG c -  G c , G (1 + G ra) 
with c. = -------12—5   and c, = —- —

G cG m 1 + G mG c

Table 6.4 shows that Cases 3c/5c and 6c are more suitable for design than Cases lc/2c 

or 4c as the c, term in the latter modifications is non-proper. O f course, in all cases, it 

is required to specify the (non-proper) inversion of the model time delay.

In summary, the modified Smith predictor design to achieve realistic servo 

action and regulator action (to a process disturbance) may be represented in block 

diagram form as shown in Figure 6.3 (corresponding to Case 3c/5c, Table 6.4); a
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realistic implementation involves appropriately approximating the time advance term. 

The method has some similarities with that implemented by Huang et al. (1990), 

though the block diagram structures in both designs are different. The method also has 

similarities with the extended Smith predictor defined by Marshall (1979); in 

particular, the methods defined by Watanabe and Ito (1981) and Watanabe el al.

(1983), in which a lead-lag compensator is placed in the feedback path of the outer 

loop of the Smith predictor to improve its regulator response, are structurally similar to 

the defined method.

Figure 6.3: Modified Smith predictor design considered

It is now necessary to approximate the time advance term. An interesting 

approximation is provided by Huang et al. (1990), as follows:

eT"'s »  1 + B(S) - (6.9)
1 + B(s)e_STm

with B(s) = k /( l + T s ) . Other, less accurate, approximations are suggested by Hocken 

et al. (1983) (who use a time delay equal to the difference between the process and 

model time delays) and Romagnoli et al. (1988) (who use a lag controller dynamic 

element).

The time advance approximation may be improved by defining B(s) as a phase 

lead network i.e.

B(s) = (as + l)/(as + p), p > l  (6.10)
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From Figure 6.3, the responses o f the modified Smith predictor, to R and L ,, using the 

time advance approximation (equation (6.9)), are as follows:

I e_
R

G pG ce_STp

1 + G rG + G
1 + B(s) (G De~SIp - G me 'st")

l + B(s)e“STm V P m )

(6 .11)

and

G ,e '" 'G LI 1 + G mG c ' l - e - ST- ' + B ( s ) e - - '

(l + G„Gn,)(l + B (s)e - '-) + G t (l + B(s))(Gpe - " '- G „ e - " - )
(6 .12)

The responses in equations (6.11) and (6.12) reduce to the servo response and the 

regulator response (to a process disturbance) o f the Smith predictor (equation (6.1)) 

when the approximation for the time advance term is unity.

The time advance approximation in equation (6.9) facilitates the achievement 

o f the zero steady state offset requirement for the servo and regulator responses. From 

Figure 6.3, the open loop servo response (in an equivalent unity gain negative feedback 

control system) is

r -I SERVO
G qL

G pG ce p

(l + G cG m) + G,
1 + B(s)

(G pe - , ' - G „ e - ' - ) - G pGce '
1 + B(s)e-i

and the open loop regulator response (to a process disturbance) is

(6.13)

G REGULATOR
OL

Gpe - - [ l + G.G.I 1̂ -  e~STm) + B(s)e”STm ]1
(l + GtG .)( l + B(s)e-"- ) + Gc(l + B(s))(Gpe_s,B -  Gme-«m j| - G pe-"'X

(6.14)

with X = l + G cG m( l - e  Stmj + B(s)e . The steady state error o f the closed loop 

compensated system to a step input is

227



T • sR(s) e = Lim---------
ss ->o l + G

= Lim-
U

OL s->° 1 + G
(6.15)

OL

G ol = G qlRVO or G - GULATOR > as appropriate, and U = step amplitude. The substitution 

o f equations (6.13) and (6.14) into equation (6.15) reveals that the steady state offset 

equals zero, for both servo and regulator responses to a step input.

6.2.4 The design of the time advance approximation

A systematic approach for the design of the time advance approximation is 

difficult to directly deduce from equations (6.11) or (6.12), or indeed from equations

(6.13) or (6.14), because of the complex manner in which the phase lead network, B(s), 

is incorporated into all these equations. It was decided to recommend a design 

procedure based on simulation work. The seven simulated processes considered in 

Chapter 4 (equations (4.57) to (4.63)) and their FOLPD and SOSPD models 

(calculated using the two stage frequency domain method described in Chapter 4) were 

simulated (in SIMULINK), in the modified Smith predictor structure, for the purpose 

o f specifying a design procedure. The following design procedure for B(s) was 

determined to be appropriate.

1. The value o f a (equation (6.10)) is chosen equal to the time constant of the FOLPD 

model o f the process.

2. The value o f p (equation (6.10)) is chosen iteratively to (a) ensure servo and 

regulator system stability over the full range o f variation o f the process parameters 

anticipated and (b) facilitate a better regulator response (and a similar servo response) 

to that achieved by the original Smith predictor. The starting value of p is chosen as

3. The time delay in the time advance approximation (denominator o f equation (6.9)) is 

chosen as the FOLPD process model time delay.
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6.3 Simulation results

The performance o f the modified Smith predictor in Figure 6.3, with the time 

advance approximation designed using the procedure detailed in Section 6.2.4, has 

been compared with the performance of the corresponding Smith predictor, in the 

SIMULINK environment. The parameters of the processes considered were allowed to 

vary about the nominal process parameter values (which were provided by equations 

(4.57) to (4.63), inclusive); the maximum variation of the process parameters is 

assumed known a priori. The PI and PID primary controllers specified for both 

predictors are robust to the possible process/model mismatches considered.

A number o f simulation results, representing the process/model combinations 

considered, showing the operation o f the modified Smith predictor and the Smith 

predictor are provided in Figures 6.4 to 6.27. A unit step response is applied to obtain 

the servo and regulator responses. Taking Simulation 1 as an example, the nominal 

process (equation (4.57)) is G pe_i,Ip = 2e_Ms/( l  + 0.7s). The model is put equal to the

nominal process, with the process variation allowed being between 1.6e”Us/( l  + 0.5s) 

(labelled G p]e”STpl) and 2.4e“16s/( l  + 0.9s) (labelled G p2e~STp2). The primary controller, 

G c, is designed to provide a servo time constant of 1.0 seconds, when the process and 

model parameters coincide. The design procedure in Section 6.2.4 is used to specify 

B(s); G c and the value o f p in B(s) are chosen together to ensure stability of the 

modified Smith predictor over the process parameter variations permitted. The primary 

controller designed is more conservative than that designed for the robust Smith 

predictor using the IMC design procedure of Morari and Zafiriou (1989). Simulations 2 

to 4 show the performance of the modified Smith predictor, with a mismatch between 

the nominal process and the model; the model (of the nominal process) is calculated 

using the two stage frequency domain method described in Chapter 4. G c is designed 

to fulfil the performance requirements detailed in the simulations (assuming that the 

(unknown) nominal process is modelled by the FOLPD model) with robustness 

guaranteed, as in Simulation 1, by the combined effect of G c and B(s).

The simulation results presented in Figures 6.4 to 6.27 show that the modified 

Smith predictor tends to facilitate better regulator responses, with similar servo 

responses, compared to the Smith predictor, if the desired servo response is relatively 

slow.
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Simulation 1: Gme STm = 2e 14s/ ( l  + 0.7s) = Gpe STp. B(s) = (0.7s + l) /(0 .7 s+ 10). Gc

is specified assuming a servo time constant of 1.0s, when the process and model 

parameters coincide i.e. G c = 0.35(1 + l/0 .7s).

(a) G 1e~STpl = 1.6e_12s/ (1 + 0.5s)

Figure 6.4: Servo response Figure 6.5: Regulator response

(b) G pe”STp = 2 e  14s/(1 + 0.7s)

Figure 6.6: Servo response Figure 6.7: Regulator response

(c) G P2

Time (seconds)

e p2 = 2.4e_16s/ ( l  + 0.9s) 

Figure 6.8: Servo response Figure 6.9: Regulator response
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Gme~STm = 1.82e'347s/ ( l  + 7.68s) with B(s) = (7.68s+ l)/(7.68s + 20). G c is specified 

assuming a servo time constant o f 2.0s, when the process and model are identical i.e. 

Gc = 2.11(1 + l/7.68s).

Simulation 2 : Nominal process G pe STp = 2e s/ l  +8.5s + 22.5s2 + 18s3 . FOLPD model

(a) Gple”STpI = 1.2e"07s/ l  + 5.9s + 15.7s2 + 12.6s3 

Figure 6.10: Servo response Figure 6.11: Regulator response

—  = Smith predictor response
— = Modified Smith predictor

response

Tim e (seconds)

(b) Gpe~STp = 2e~s/ l  + 8.5s + 22.5s2 + 1 8s3

Figure 6.12: Servo response Figure 6.13: Regulator response

(c) G p2e~STp2 = 2 .8c13s/ l  +11s + 29.3s2 + 23.4s3 

Figure 6.14: Servo response Figure 6.15: Regulator response
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Gme~STm = 1.82e~347s/ ( l  + 7.68s). B(s) = (7.68s + l)/(7.68s + 40). Gc is specified by 

setting the damping factor of the closed loop system response equal to 1, when the 

process and model are identical i.e. G c = 2.42(1 + l/6.97s + 2.03s/(l + 0.37s)).

Simulation 3 : Nominal process G pe STp = 2e s/ l  + 8.5s + 22.5s2 + 18s3 . FOLPD model

(a) G ple~sv = 1.2e~07s/ l  + 5.9s + 15.7s2 + 12.6s3 

Figure 6.16: Servo response Figure 6.17: Regulator response

Time (seconds)

(b) G pe~STp = 2e^s/ l  + 8.5s + 22 5s2 + 18s3 

Figure 6.18: Servo response Figure 6.19: Regulator response

(c) G p2e~STp2 = 2.8e'13s/ l  + 1 Is + 29.3s2 + 23.4s3 

Figure 6.20: Servo response Figure 6.21: Regulator response
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Gme_STm = 1.82e“347s/ ( l  + 7.68s). B(s) = (7.68s + l)/(7.68s + 10) . G c is specified by 

optimising the ITAE criterion (in servo mode), when the process and model are 

identical i.e. G c = 0.647(1 + l/4.78s).

Simulation 4 : Nominal process Gpe STp = 2e s/ l  + 8.5s + 22.5s2 +18s3 . FOLPD model

(a) Gp]e~STpl = 1.2e 07s/ l  + 5.9s + 15.7s2 + 12.6s3 

Figure 6.22; Servo response Figure 6.23: Regulator response

(b) Gpe SXp = 2e~s/ l  + 8.5s + 22.5s2 + 18s3 

Figure 6.24: Servo response Figure 6.25: Regulator response

(c) Gp2e STp2 = 2.8e'13s/ l  +11s + 29.3s2 + 2 3 ,4s3

Figure 6.26: Servo response Figure 6.27: Regulator response

Time (seconds)
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6.4 Sensitivity analysis

The simulation results have shown that the modified Smith predictor provided a 

modest improvement in the servo and regulator responses over the Smith predictor. 

The sensitivities o f the outputs o f the Smith predictor and the modified Smith predictor 

to (small) changes in the process parameters are also o f interest. The sensitivity of a 

transfer function, T, to changes in a plant parameter, a , is defined as

s ; = - —  (6 . 1 6 )
“ T da

The servo transfer function of the modified Smith predictor is given by

R

G pGce ^

1 + G G  + Gc m c
_ J  + B(s)
1 + B(s)e-S1

(6.17)

General expressions for the process and model transfer functions are as follows:

G p(s) =
K p(l + b lps+....+bJpsJ)e" 

)
(6.18)

+ a lps+....+aips

and

G ra(s) =
K m(1 + b ln,s+ .-+ b kmsk)e~

+ a lms+....+alms )
(6.19)

Straightforward calculation using equation (6.17) reveals that

dy * Rf 1 + G G -  G G K2e~STm ¡ - s G cG De_STp 1
= - i  ------ -------------± J  = - s T msp (s) 1 -  K2Tmsp (s) R (6.20)

[l + G ,G m + GeK2(Gpe - ' - G „ e * ' - ) ]dx

with
1 + B(s)

1 + B(s)e-S1
(6 .21)
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and Tmsp(s) is the servo transfer function of the modified Smith predictor. For the 

Smith predictor (using the servo response portion of equation (6.1)), it may be 

calculated that

^  = R[l + GcG m -  GcG me~aTmJ |- s G cGpe~” p] = _ sT!p( _ tSP( ^
Q x  r . „  „  _  - s t _  „  \1 L J[l + GcG nl+ G „ (o pe - " '- G .e - " - ) ]

with Tsp(s) being the servo transfer function o f the Smith predictor. The sensitivities 

o f the servo response for the modified Smith predictor and the Smith predictor, 

respectively, with respect to changes in the process time delay (using equations (6.16), 

(6.20) and (6.22)) are

TMSP(s)R St
X p  =  — S T p [ l  -  K 2TMSP(s)] (6.23)

ST. T-SPTp = - s x p[ l - T sp(s)]
T (s)R axp

Similar calculations to those done in equations (6.16) to (6.24) show that

(6.24)

SK
R 'l + GcG m -  G,G„ K2e 'ST™| G„Gpe " ' '

K -
l + G cG m + G cK2(Gpe-” ' - G „ e - '- ) ] :

TMSP(s)
K„

[ l - K 2TMSP(s)]R (6.25)

3K„

[l + G .G . - G .G .e - ” -] [G„Gpe—■]

K >l
[l + G cG m+ G t(G pe“" ' - G me - '" ) ]2 K

R (6.26)

C  = = I1 -  K ;T "sp(s)]

and

T (s)R 5K

s r  = spKp = [ l - T sp(s)j
Kp T (s)R 3Kp L J

(6.27)

(6.28)
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In a similar manner, the following equations may be calculated:

Oh. = Rt1 + G-G- - g,g„k^"-Kq^"p1 s -

®b~ [l + GcG m + G ,K 2( G ,e - '’ - G „ e " - ) ] 2 1 + V +- - +tV Ixp

1 + b]ps+....+bjps
- T MSP( s ) [ l - K 2TMSP(s)]R, x = 1, ,j

8yp _ R[l + G IG m- G cO „ e - - j G IGpe-

5b xp [l + GcG „ + G 0(G pe-“ '- G „ e - " - ) ] l + b lps+....+bjpsJ

l + b )ps+....+bJps
~Tsp(s)[l -  Tsp(s)]r , x = 1, ,j

xp V *
b-  T MSP(s)R 9bxp l + b lps+....+bjpsJ

[ l - K 2TMSP(s)]

and

g T * ”" _  ^ PJ-SP

^bvn npSPT (s)R 9bxp l + b lps+....+b,ps-
T[l -  Tsp(s)]

Finally, the following expressions may be obtained:

d y j  _  R[l + G.G., -  G ,G „K ;e - ’- ¡ C . G . e - ' '

etax p [l + G cG m + G cK2(G pe"stp - G me 'SI- ) l + a lps+....+aips'

- s
l + a lps+....+aips'

r TMSP(s)[l -  K 2TMSP(s)]R, x = 1, ,i

d y ^  _ R[l + G ,G n, - G , G me - ' - j G IG pe - - |

9a
I1

*p ll + G tG m+ G „(G pe - ' - G „ e - ')]

—s
l + a lps+....+aipsi

- s
l + a lps+....+aips'

-Tsp( s ) [ l - T sp(s)]R, x = 1, ,i

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)
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a xP 5y p’ _ a xPs

and

a, Tmsp(s)R  0axp l + alps+....+a,pS 

axp 5y

[l -  K 2TMSP(s)] (6.35)

g T 1’1'  _  " x p  p  _   a x p S

a'p Tsp(s)R 9axp 1 + alps+....+aips1
- [ l - T sp(s)] (6.36)

For all parameters, it may be calculated (using equations (6.23), (6.24), (6.27), (6.28),

(6.31), (6.32), (6.35) and (6.36)) that the ratio o f the sensitivity o f the modified Smith 

predictor to that o f the Smith predictor is the same i.e.

S f  1 -  Tsp(s) '  ’

where a  equals K p,axp,bxp or xp . The magnitude (and phase) of the ratio in Figure

(6.37) will vary with frequency. A practical example is used to demonstrate a typical

variation; the parameters taken are broadly similar to those indicated in Simulation 1 

viz.

2 Oe“14s
  (6.38)

1 + 0.7s

with

16e“l2s 2 0e_1'4s 2 4 e “16s
(a)G le”STpl = —  , (b )G De 'STp = — ----- , (c)G p2e ^ p2 = — ----  (6.39)

pl 1 + 0.5s p 1 + 0.7s p2 l + 0.9s

and G„ = 0.7 1 +
0.7s^

, 0.7s+ 11 +

(6.40)

“ d o . 7 s : r iu l4, <6-41)
1 i 6

0.7s + 10

Figure 6.28 shows that the modified Smith predictor tends to be less sensitive than the 

Smith predictor to process parameter variations at lower frequencies, but more 

sensitive than the Smith predictor to process parameter variations at some higher
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frequencies. If an ideal time advance term is used for K 2, a similar pattern is seen 

(Figure 6.29).

Figure 6.28: / S^SP when the parameters defined in equations (6.38) to (6.41) are

used.
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Figure 6.29: / S('SP when the parameters defined in equations (6.38) to (6.40) are

used; the exact value of the time advance is used.
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By applying equation (6.37), it may be shown that at low frequencies, for a 

general process and model structure, and if Gc = Kc(l + 1/T;s ) , then

c'l

s l

K cK mxm
ySP

'a (l + P)(K cK mTm +Tj)
(6.42)

with

K2 =
r „  i \  i f„ T„,s+1
1 +

v Tms + p ; v
l + i d ± i e -

Tms + P
(6.43)

with Tm = FOLPD model time constant. This result means that the sensitivity of the 

modified Smith predictor to process parameter variations is less than that of the Smith 

predictor at lower frequencies, which conforms with the simulation results seen in 

Figure 6.28.

It may be shown, by performing similar calculations to those done in equations

(6.16) to (6.37), that the ratio o f the sensitivities of the modified Smith predictor to the 

Smith predictor is the same (with respect to the variation o f each of the process 

parameters), regardless of whether the sensitivity o f the regulator transfer function or 

the sensitivity of the servo transfer function is in question. This result applies when the 

disturbance input is at the input to the process; if  the disturbance input is at the output 

o f the process, then similar calculations to those done in equations (6.16) to (6.37) 

show that
■J-MSF „  r j - M S P  (  \

= M  - W  (6 44)
S’ T (s)

The sensitivity, to process parameter variations, o f the modified Smith predictor in 

these circumstances equals the sensitivity of the Smith predictor at lower frequencies 

and tends to be much greater at higher frequencies. Figures 6.30 and 6.31 show this 

pattern of behaviour, for the simulation conditions taken in equations (6.38) to (6.41), 

when both an approximation for the time advance term is used (Figure 6.30) and when 

the exact time advance term is used (Figure 6.31).

Overall, the sensitivity analysis indicates that, at lower frequencies, the 

modified Smith predictor transfer function is either less sensitive or as sensitive to 

process parameter variations as is the Smith predictor transfer function.
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Figure 6.30: S^MS? / when the parameters defined in equations (6.38) to (6.41) are

used, with the disturbance present on the process output.

 > G p = 1 .6 / (1 + 0 .5 s )  , T p = 1 .2
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-> G p = 2 .4 / (1  + 0 .9 s )  , C p = 1  .6 
G m = 2 .0 / (1 + 0 .7 s ) . O n = 1 .4 
G ( s ) = 0 . 7 (1 + 1 / 0 . 7 s )
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Figure 6.31: S„ /  when the parameters defined in equations (6.38) to (6.40) are 

used, with the disturbance present on the process output; the exact value of the time

advance is used.
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6.5 Conclusions

A modification to the conventional Smith predictor structure for the control of a 

process with time delay has been proposed to facilitate the achievement of a modest 

improvement in the closed loop system responses. The modification involves 

approximating a time advance term that may be incorporated in the outer feedback 

loop o f the predictor. It has been shown analytically and in simulation that the method 

facilitates performance improvement, particularly when the desired servo response is 

relatively slow. If the desired servo response is faster, then unless the model fits the 

process well (for example, when the order o f the process equals that of the model), it is 

less likely that the responses of the modified Smith predictor will be better than those 

of the Smith predictor. Generally, the performance of the modified Smith predictor 

tends to be less damped than that o f the Smith predictor; the phase lead network in the 

modified Smith predictor needs to be carefully designed so that system instability does 

not result. However, the sensitivity of the modified Smith predictor to process 

parameter variations tends to be less than that of the Smith predictor at lower 

frequencies.

The work has considered a number of possible model and primary controller 

combinations; a number o f other avenues of exploration are

(a) The use o f a higher order term for B(s), when the model is of higher order. There 

may be some advantage in using a second (or higher) order term for B(s), as is shown 

by some trial and error supplementary simulation results. However, even in these 

simulations, the improvement appears to be relatively marginal over the responses 

determined when a first order term is used for B(s).

(b) The use of higher order process models (perhaps with a zero), and corresponding or 

reduced order controllers. This is unlikely to have a dramatic effect on the performance 

of the modified Smith predictor, though it is of course desirable that the mismatch 

between the model and the nominal process be as small as possible.

(c) The use o f the modified Smith predictor strategy, in conjunction with an adaptive 

identification strategy. The stability of the modified Smith predictor would need to be 

guaranteed during the updating of the parameters. This may mean that the servo 

response achieved will be relatively slow, at least until the model and process
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parameters are closely matched. An adaptive identification procedure to estimate the 

process parameters in the modified Smith predictor structure is discussed in Chapter 7.

(d) The formulation of robust stability and performance criteria for the modified Smith 

predictor, similar to those formulated for the Smith predictor by Morari and Zafiriou 

(1989). Some preliminary work shows that, unsurprisingly, the robust design of the 

modified Smith predictor is relatively complex. It appears inevitable that an iterative 

approach to determining the correct robust compensator will be required. This topic is 

considered in more detail by O’Dwyer (1996f).

(e) Finally, the modified Smith predictor detailed has been chosen to improve the 

regulator response (when compared to the corresponding response of the Smith 

predictor); other modified Smith predictors could be defined, for instance, to reduce 

the effect o f the mismatch between the process and model parameters.
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Chapter 7

Closed loop time domain gradient methods for 

parameter and time delay estimation

7.1 Introduction

The estimation o f the model parameters (including time delay), using gradient 

methods, in a Smith predictor structure, is the subject of this chapter. This topic has 

been considered by Marshall (1979), (1980), Bahill (1983), Malik-Zafarei and 

Jamshidi (1987) and O'Connor (1989), amongst others (see Chapter 2); the work in this 

chapter will expand on the ideas and algorithms considered by these authors. 

Fundamentally, it is desired to reduce the mismatch between the (unknown) process 

and the model (particularly the time delay mismatch), so that the performance of the 

Smith predictor may be improved. The Smith predictor is discussed in detail in 

Chapters 5 and 6. A block diagram of the Smith predictor is shown in Figure 7.1; Gc, 

G m and G p are functions o f the Laplace variable, s.

Figure 7.1: Block diagram of the Smith predictor

As detailed in Chapter 1, it is often assumed that an adequate model for the 

process is o f FOLPD structure, implying that three parameters (gain, time constant and 

time delay) need to be estimated. It will be shown that the modelling o f the process by 

a more general structure involves a straightforward generalisation o f the procedure 

used to estimate appropriate FOLPD model parameters. The model parameters are
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updated, in closed loop, based on minimising the integral o f the square of the error 

function (with the error function being the process output minus the model output), 

using an appropriate gradient algorithm.

Six algorithms (three based on a Gauss-Newton gradient approach and three 

based on a Newton-Raphson gradient approach) will be implemented for the estimation 

of the model parameters. The first of the Gauss-Newton based algorithms is outlined 

by Marshall (1979), (1980) and Bahill (1983); the other two algorithms (which are 

developed by the author) are refinements on the above algorithm, which eliminate 

some o f the assumptions used in its development, in an attempt to increase the 

applicability o f the procedure. The three Newton-Raphson based algorithms developed 

by the author correspond directly to the three Gauss-Newton based algorithms; these 

former algorithms eliminate other assumptions in the development o f the estimation 

procedure, and therefore should increase its applicability still further.

All of these algorithms will also be applied to the estimation of the process 

parameters in a modified Smith predictor structure (the modified Smith predictor is 

used to facilitate an improvement in the regulator response of the compensated system 

in Chapter 6). The convergence properties of the algorithms will also be investigated 

analytically.
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7.2 Algorithms based on a Gauss-Newton gradient approach

7.2.1 Theoretical development of the Gauss-Newton (1) algorithm

Marshall (1979), (1980) and Bahill (1983) have developed a parameter 

identification algorithm to estimate the corresponding model parameters and time delay 

o f a FOLPD process, in a Smith predictor structure. In the development o f the 

algorithm, the authors assume that the plant output is linearly related to any changes in 

the plant parameters (assumption 1) i.e.

with y p( t ,a  + A a) = process output after a change Aa in parameter a ,

y p( t ,a )  = starting value o f the process output = model output y m(t) and

9y
e ( t ,a  + Aa) = y „ (t,a  + Aa) -  y ( t ,a )  = A a— .

9 a

This assumption effectively means that the change in the parameter being updated is 

assumed to be small. The idea may be represented graphically as shown in Figure 7.2 .

9 a
(7.1)

Figure 7.2: Graphical interpretation of the algorithm

y P

y P( t ,a  + A a)
9 yp/ 9 a

y P( t ,a )

=  y m( t )

( t ,a )  ( t ,a  + Aa) a

e ( t ,a  + Aa) may be estimated in a number of different ways; three such methods, 

based on Figure 7.2, are as follows:



dy
e ( t , a  +  A a )  »  A a — -

da
(7.2)

e ( t ,a  + Aa) «  Aa
da

(7.3)

e ( t ,a  + Aa) «  0.5Aa
da da

(7.4)

Marshall (1979), (1980) and Bahill (1983) use equation (7.2) in their development of 

the identification method (assumption 2), for updating the gain, time constant and time 

delay of a FOLPD process model. This development is provided in detail; for 

convenience in the development, the dependent variables associated with the

parameters are henceforth not shown explicitly. From equations (7.1) and (7.2)

A A  1 7  ^ p  A r p  ^ p  A i n  ^y„ « y m + A a— -  i.e. e «  — — AK_ H-----ATm H------A t: (7.5)
p m 5a  dKp STp ra 5 rp m

with AKra,ATm and Axm being the desired change in the model gain, time constant 

and time delay, respectively. It is desired to update the model parameters to minimise 

the following cost function:

J = 0.5 j e 2dt (7.6)

From equations (7.5) and (7.6), the cost function is expressed as

J = 0.5 f(—̂ -A K  +-<̂ E-AT + —̂ -A t )2dt (7.7)
J dKp m 3Tp m dxp m

If it is assumed that AKm,ATm and Axm are time invarient (assumption 3), then, from 

equation (7.7),
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+At AK & ^ d t  + AT.AT.f ^ ^ d t  + AKmATJ  (7.8)
m mJa r SK„ J 0T„ ax  J

5yP ^yP . 4 T „  4 r p i  r 3yP ^yP

p P p p 5Kp 5Tp

Therefore, from equation (7.8) and the application o f assumption 1 (O ’Dwyer (1996i)), 

it may be shown that

dJ
dK

r  ~ \ 2 dy
ak4  i r  d,+AT- i

•3yP ^ y P
^ p 5Kp

r ^yn dyn dt + AT f --p - dt (7.9)
m J 5Kp 5Tp

dJ
d T

AT„J 9Yl
d t

\2
dt + A t  f*? 5y- 1> d t  +  A K m J - ^ - ^ d t  ( 7 .1 0 )

i  P)t  r fT  " J dKp STp

dJ
5t„

AtJ
dz„

dt +AK ffeg -fo g-dt + AT f dyp. dy '' dt (7.11) 
m J d x p 3Kp m J ** ~ -

The development o f equations (7.9) to (7.11) is equivalent to the development o f the 

following approximation:

~ { e 32yP . 9yP SyPd2J [e ~ ■'p_+ ^ p  -  p 
5 a ,  da da lda2 da] da2 J da l da2d t*  J-

^  ^ p dt (7.12)

with a , , a 2 = [Kp,Tp,xpJT i.e. the algorithm defined by equations (7.9) to (7.11) is a

gradient algorithm of Gauss-Newton form (as developed in Chapter 2, Section 2.2.4.1). 

Now, using

( 7 - 1 3 )

and if it is assumed that (assumption 4)

A [0 .5 je> dt] = 0 .5 j|-[e> ]d t (7.14)
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therefore
da

(7.15)

with a  = [Kp,Tp,Tp]T. A further assumption made by the authors is that

3e 5yP dym ^  dyf
da da da da

(7.16)

i.e. dym/ d a  «  dyv/ d a .  Further analysis shows that this assumption is equivalent to

the application o f assumption 1 and assumption 2 (O’Dwyer (1996i)). The update 

values of the model gain, time constant and time delay are calculated, using equations 

(7.9), (7.10), (7.11), (7.15) and (7.16), by solving the following relationship:

fe^'dt

fe '̂dt *
1 ^
Je^dt
1 ch.r  _

if * ’ 1

2

dt
jU k j

( a. N
^P

v5TpJU kJ
r \
dyp 5yP

U k pJ

3X

dt

dt

0K
dt

a x
dt

p'

a x  A  ax
dt

a t

a x

v5K„
f  "\ay

dt

p 'V ^ V
ay

dt

dx
dt

p '

AK„

ATra
At.„

(7.17)

Bahill (1983) develops the procedure described for updating the time delay 

only; Marshall (1979), (1980) develops the procedure to facilitate updating of all o f the 

parameters. O f course, the updating of the gain term only and the time constant term 

only could also be implemented using the algorithm.

The implementation o f the procedure requires the evaluation o f dyv/ d a  . The

response of the Smith predictor (Figure 7.1) is calculated to be

G cG pe-
(7.18)

The following formulae have been developed from equation (7.18) for the evaluation 

o f the required partial derivatives (or “sensitivity functions”) in equation (7.17):
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p y

a x
= R-

sGcKpe 

(1 + sX )2
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1 + sX

(l + sTp)y „ (7.21)

Alternative Gauss-Newton gradient algorithms, based on relaxing the assumptions 

used in the procedure, may be derived. Xwo such algorithms are detailed in Sections

7.2.2 and 7.2.3.

7.2.2 Theoretical development of the Gauss-Newton (2) algorithm

The final version o f the Gauss-Newton (1) algorithm (equation (7.17)) involved 

assuming that dypj d a  «  do/da (equation (7.16)). However, it is straightforward to

calculate dym/ d a , and thus the assumption in equation (7.16) may be eliminated. The 

update values o f the model gain, time constant and time delay are subsequently 

calculated by solving the following relationship (which corresponds to equation

(7.17)):
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If, in addition, it is assumed that

y p( t ,a  + Aa) = y p( t,a )  + Aa
ae
a a

(7.23)

then the update values o f the model parameters are calculated by solving the following 

relationship (which is obtained using a similar procedure to that given in equations 

(7.5) to (7.11)):
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(7.24)

This latter assumption is non-optimal; this topic is discussed in more detail in the 

conclusions o f the chapter.

The implementation o f the procedure requires the evaluation of 3 e /ô a , 

e = y p -  y m. The equation for ym is derived from Figure 7.1 to be

ym =
G G e ' s,'R

1 + GcG m + G c G e " '  -  G„e
(7.25)

with y given by equation (7.18).
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The following formulae have subsequently been developed (from equations (7.18) and 

(7.25)) for the evaluation o f the required partial derivatives (or sensitivity functions) in 

equation (7.24):

f  sG„K e~STp

de
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= R
1 + sT 1 + sT

= -sy ,

i + G‘K-
1 + sT

G cKme"sC I»
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GcKpe 2 :  
l + sT„

I - Z l + Zsl 
R R J (7.26)
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(l+ sT p) R R ,
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7.2.3 Theoretical developm ent of the Gauss-Newton (3) algorithm

The Gauss-Newton (1) algorithm developed in Section 7.2.1 assumed that 

e ( t ,a  + Aa) « A adyp/d a  (equation (7.2)). As was mentioned in Section 7.2.1, an

alternative approximation is given by equation (7.4). This approximation and other 

complementary assumptions to those made by Bahill (1983) are used in the 

development o f the method in this section. It will also be assumed that

—  =5 0.5 
<3a

dyP ( dyn
da da

(7.29)

As in Section 7.2.2, this assumption is non-optimal; this topic is discussed in more 

detail in the conclusions o f the chapter.
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The update values o f the model parameters are subsequently calculated by 

solving the following relationship (which is obtained using a similar procedure to that

given in equations (7.5) to (7.16)):

5e,

3e,

3e,

' o r *

dt

dt

dt

dt

dt

de,
dx ps

5e,

3K
dt

p'

dt
AKn

ATm
At

(7.30)

with e, = y p + y m. The following formulae have been developed for the evaluation of

the required partial derivatives (or sensitivity functions) in equation (7.30), based on 

equations (7.18) and (7.25):
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7.2.4 Algorithm representations

The block diagram representation o f the algorithms for updating the model time 

delay only is provided in Figure 7.3. The block diagram of the three algorithms used 

differs only in the sensitivity function; v = y p for the Gauss-Newton (1) algorithm,

v = e for the Gauss-Newton (2) algorithm and v = e, for the Gauss-Newton (3) 

algorithm (‘x ’ = multiply).

The block diagram representation o f the algorithms for updating the model gain 

or time constant only, assuming a FOLPD model, is provided in Figure 7.4. In the 

sensitivity function in the diagram, to = K p when the model gain is to be updated and

co = Tp when the model time constant is to be updated. The code for v is identical to 

that in Figure 7.3.

The block diagram representation o f the sensitivity functions, for each of the 

Gauss-Newton algorithms, is provided in Figure 7.5; K m,Tra and xm are 

approximations for the (unknown) process parameter values used in the sensitivity 

functions (the explicit dependence o f the sensitivity functions on the process parameter 

values is shown in equations (7.19) to (7.21), for example). In this diagram, the 

sensitivity functions oyp/5 K p, 5yp/3Tp and 5yp/5 x p correspond to the Gauss-

Newton (1) algorithm, the sensitivity functions oe/3Kp, 8e/3Tp and 3e/oxp

correspond to the Gauss-Newton (2) algorithm and the sensitivity functions 

9e ,/9K p, 9e,/3Tp and d t xjd x p correspond to the Gauss-Newton (3) algorithm.

The block diagram representation of the algorithms to facilitate the updating of 

all o f the parameters simultaneously is provided in Figure 7.6. The code for v is 

identical to that in Figure 7.3.

There is a straightforward extension of the algorithms to allow updating of the 

parameters o f an arbitrary order model plus time delay; the block diagram 

representations of the relevant algorithms are provided in Figures 7.7 and 7.8.

A simplified version o f the algorithms for updating all o f the parameters 

simultaneously may be implemented by approximating the matrices given by equations

(7.17), (7.24) or (7.30) by a diagonal matrix, with the same diagonal entries as in the 

defined matrices. The appropriateness of using such an approach has been evaluated by 

determining the ratio o f the magnitude of the off-diagonal elements to the diagonal
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elements; however, the ratios calculated depend on the (unknown) process parameter 

values and are also frequency dependent. In practice, therefore, the appropriateness of 

using these simplified algorithms would have to be evaluated in simulation.

Some preliminary comments are appropriate on the algorithms:

(a) The calculation of the sensitivity functions dv/dxp , v = yp, e or e, (Figures 7.5

and 7.8) involve the use o f a derivative term, which may be problematic in the 

presence o f noise. The use o f a filtered derivative term should be helpful.

(b) It is suggested by Bahill (1983) that the values o f Km,T;n and xm should be put 

equal to the relevant model parameters, with these values updated “as often as 

possible” .

(c) The assumptions made in deriving the methods limit their application to the 

identification o f processes whose parameters “change slowly” (Bahill (1983)).
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Figure 7.3: Representation of the Gauss-Newton algorithms for time delay estimation.
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Figure 7.4: Representation o f the Gauss-Newton algorithms, for model gain or model 

time constant estimation.
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Figure 7.5: Representation o f the sensitivity functions for the Gauss-Newton 

algorithms.
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Figure 7.6: Representation of the Gauss-Newton algorithms for simultaneous model

parameter estimation.
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and v = y p,e or e , , as appropriate. The sensitivity functions are calculated as in Figure 

7.5.
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Figure 7.7: Representation of the Gauss-Newton algorithms, for simultaneous model

parameter estimation (of a general order model).
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and with v = y p,e or e , , as appropriate. The sensitivity functions for the Gauss-

Newton (1) representation are calculated as shown in Figure 7.8. The sensitivity 

functions for the Gauss-Newton (2) and Gauss-Newton (3) representations follow the 

same template as those shown in Figure 7.5; the values o f K m , xm , b,m , 1 = l...j and 

alm , 1 = l...i used are approximations for the process parameter values.
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Figure 7.8: Representation o f the sensitivity functions for the Gauss-Newton 

algorithms (general order model).
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7.3 Algorithms based on a Newton-Raphson gradient 

approach

The algorithms described in Section 7.2 are based on a Gauss-Newton gradient 

approach. Such algorithms will facilitate linear convergence of the model parameters to 

the process parameters (Söderström and Stoica (1989)). For quadratic convergence of 

the model parameters to the process parameters, it is necessary to calculate the second 

partial derivative o f the error with respect to the parameter vector (equation (2.6), 

Chapter 2). Three such Newton-Raphson gradient algorithms are discussed, 

corresponding to the three Gauss-Newton algorithms discussed in Section 7.2.

7.3.1 Theoretical development of the Newton-Raphson (1) algorithm

The Gauss-Newton (1) algorithm (Section 7.2.1) has used the approximation

<9a,<9a2 J d a ]d a 2 5a, d a 2 J d a { d a 2

(equation (7.12)). However, it is straightforward to calculate d2y p/ d a } d a 2 (by

partially differentiating equations (7.19), (7.20) and (7.21)), facilitating the elimination 

o f the assumption that this term may be neglected (this means that the corresponding 

gradient approach may be classified as a Newton-Raphson gradient algorithm). The 

update values o f the model parameters may be subsequently calculated, by solving the 

following relationship (using a similar procedure to that given in Section 7.2.1):



The following formulae have been developed for the evaluation of the required second 

partial derivatives in equation (7.34):
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Alternative Newton-Raphson gradient algorithms based on varying the assumptions 

used to determine the algorithm developed, may be defined. Two such algorithms are 

detailed in Section 7.3.2 and 7.3.3 (corresponding to the Gauss-Newton (2) algorithm 

and the Gauss-Newton (3) algorithm discussed in Section 7.2.2 and 7.2.3,

respectively).

7.3.2 Theoretical development of the Newton-Raphson (2) algorithm

The Gauss-Newton (2) algorithm involved assuming that

d2i r d2e de de r de de
 = e  + ---------d t * ---------------dt (7.41)
d a ,d a 2 J d a ,d a 2 d a , d a 2 J da , d a 2

in the development of equation (7.24). However, it is straightforward to calculate 

d2e/da , d a 2 (by partially differentiating equations (7.26), (7.27) and (7.28)), 

facilitating the elimination o f the assumption that this term may be neglected. The 

update values o f the model parameters may be subsequently calculated, using a similar 

procedure to that given in Section 7.2.2, by solving the following relationship:



The following formulae have been developed for the evaluation o f the required second 

partial derivatives in equation (7.42):
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7.3.3 Theoretical development of the Newton-Raphson (3) algorithm

The Gauss-Newton (3) algorithm involved assuming that

+ ^ L Ì ? L d t»  ( Ì5 l Ì ! l  (7,49)
5a, d a 2 J ^

d1] 52e,
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with e, = 0.5(yp + y mj,  to develop equation (7.30). However, it is straightforward to

calculate <92e ,/d a , d a 2 (by partially differentiating equations (7.31), (7.32) and 

(7.33)), facilitating the elimination o f the assumption that this term may be neglected. 

The update values o f the model parameters may be subsequently calculated, using a 

similar procedure to that given in Section 7.2.3, by solving the following relationship:
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The following formulae have been developed for the evaluation o f some of the 

required second partial derivatives in equation (7.50):
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Similar terms may be determined for d2e j d  a , 3a  2, a , *  a 2.

7.3.4 Algorithm representations

The block diagram representation of the algorithms for updating the model time 

delay only is provided in Figure 7.9. The block diagram of the three algorithms used 

differs only in the sensitivity functions; v = y p, e and e, for the Newton-Raphson (1),

Newton-Raphson (2) and Newton-Raphson (3) algorithms, respectively.

The block diagram representation o f the algorithms for updating the model gain 

or model time constant only, assuming a FOLPD model, is provided in Figure 7.10. In
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the sensitivity function in the diagram, ra = K p when the model gain is to be updated 

and co = Tp when the model time constant is to be updated. The code for v is identical

to that in Figure 7.9.

The block diagram representation o f the sensitivity functions for the Newton- 

Raphson (1) algorithm is provided in Figure 7.11; Km ,Tm and xm are approximations 

for the (unknown) process parameter values used in the sensitivity functions (the 

explicit dependence o f the sensitivity functions on the process parameter values is 

shown in equations (7.51) to (7.53), for example). The block diagram representation of 

the sensitivity functions for the other two Newton-Raphson algorithms may be 

specified in a similar manner (O’Dwyer (1996i)). The block diagram representation of 

the algorithms to facilitate the updating o f all the model parameters simultaneously 

may be subsequently defined, as may the representation o f the algorithms that allow 

updating o f the parameters of an arbitrary order model plus time delay.

It is interesting that the calculation o f the 32y p/dxp2 sensitivity function

(Figure 7.11) involves the use o f a squared derivative term; the effect of noise on the 

operation o f this calculation will therefore be greater than its effect on the 

corresponding sensitivity function (5 y p/ 5 r p ) for the Gauss-Newton (1) algorithm

(which is, o f course, quite sensitive itself to the presence of noise).
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Figure 7.9: Representation o f the Newton-Raphson algorithms, for time delay

estimation.

Figure 7.10: Representation of the Newton-Raphson algorithms, for model gain or 

model time constant estimation.
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Figure 7.11: Representation o f the sensitivity functions for the Newton-Raphson (1) 

algorithm.
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7.4 Parameter estimation - simulation results

The algorithms defined have been simulated, for updating all o f the parameters 

separately, using the SIMULINK package. It has been decided to simulate the 

algorithms for seven process/model combinations, in a Smith predictor structure. The 

processes considered are the same as those identified in Chapter 4; their transfer 

functions arc provided in equations (4.57) to (4.63), inclusive. They include high order, 

underdamped and non-minimum phase processes, which were modelled by 

equivalently ordered models or mismatched FOLPD and SOSPD models, as 

appropriate. The FOLPD and SOSPD models were obtained from the two stage 

frequency domain identification technique o f Chapter 4. The PI and PID primary 

controllers used are specified to be robust to the possible process/model parameter 

mismatches considered; the design procedures for the controllers include the robust 

synthesis procedure of Morari and Zafiriou (1989). In all cases, the maximum variation 

of the process parameters must be known a priori.

In each simulation, the excitation signal at the servo input is of band limited 

white noise form; such a signal was determined to be sufficiently exciting so that 

appropriate parameter updating is achieved. In all cases, the individual model 

parameters are updated at discrete intervals using a dedicated s-function in 

SIMULINK; the gradient algorithm implementations, which are in continuous time (as 

shown in Figures 7.3 to 7.11) are also effectively set up in continuous time in the 

SIMULINK environment (by choosing a small step size for the simulations). The 

approximations for the process parameters in the sensitivity functions (labelled K m , 

Tm and xm in Figures 7.5 and 7.11) are updated at the same rate as the model 

parameters; the realisable sensitivity functions produced are the best approximations to 

the ‘ideal’ sensitivity functions.

7.4.1 Time delay estimation

The six algorithms for updating the time delay have been simulated 

individually, for each of the process-model combinations outlined above. 

Representative simulation results are provided in Cases 1 to 8, in which all of the 

gradient algorithms defined are used at some stage; further supplementary simulation
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results are provided by O ’Dwyer (1996j).

Case 1: G me 'ST'" = 2e“] 4s/ ( l  + 0.7s), Gc = 1.75(1 + l/0 .7s). In Figures 7.12 and 7.13, Tp 

= 1.2 seconds and G p = G m; in Figures 7.14 and 7.15, xp = 1.6 seconds and

G p = G ra.

Figure 7.12: Time delay updating Figure 7.13: Time delay updating

Figure 7.14 : Time delay updating
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Figures 7.12 to 7.15 show that the algorithms facilitate a reduction in mismatch 

between the process time delay and the model time delay.
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Case 2 : Gme~ŝ  = 2e~s/( l  + 4.5 + 4.5s2), G0 = 1.17(1 + l/4.07s+ 2.73^(1 + 0.5s)). In Figure 

7.16, xp = 0.7 seconds and G p = G m ; in Figure 7.17,xp = 1.3 seconds and G p = Gm .

Figure 7.16: Time delay updating Figure 7.17: Time delay updating

Case 3 : Gme“ST” = 2e~s/( l  + 18s+ 137s2 + 567s3 + 1403s4 + 2103s5 + 1846s6 + 856s7 + 158s8) , 

Gc = 2.14(1 + l/9.75s+3.3ls/(l + 0.61s)). In Figure 7.18, xp = 0.7 seconds and G p = Gm ; 

in Figure 7.19, xp = 1 .3  seconds and G p = Gm .

Figure 7.18: Time delay updating Figure 7.19: Time delay updating

A similar comment to that made in Case 1 applies to the simulation results in Figures 

7.16 to 7.19.
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Case 4: G me“STm = 2e 14s/ ( l  + 0.7s), Gc = 1.75(1 +1/0.7s ) . In Figures 7.20 and 7.21, xp 

= 1.2 seconds and G p = 1.6/(1 + 0.5s); in Figures 7.22 and 7.23, xp = 1 .6  seconds and 

G p = 2.4/(1 + 0.9s).

Figure 7.20: Time delay updating Figure 7.21: Time delay updating

Figure 7.22: Time delay updating Figure 7.23: Time delay updating

Figures 7.20 to 7.23 show that most of the algorithms facilitate a reduction in 

mismatch between the process and the model. These are significant results, as the non­

delay process and model parameters are different.
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Case 5: G me-ST" = 2e“s/ ( l  + 4.5s + 4.5s2) ,  G c = 1.17(l + l/4.07s + 2.73s / (1 + 0.5s)). In 

Figures 7.24 and 7.26, xp = 0.7 seconds and G p = 1.2/(1 + 3.1s + 3.1s2); in Figures 7.25 

and 7.27, x = 1 .3  seconds and G = 2.8/(1 + 6.1s + 6.1s2) .

Figure 7.25: Time delay updating

Time (seconds) x 10

Figure 7.26: Time delay updating Figure 7.27: Time delay updating

Time (seconds) *10*

A similar comment to that made in Case 4 applies to the simulation results in 

Figures 7.24 to 7.27 above.
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Case 6: G me STm = 1.96e 173s/ ( l  + 4.65s); the process corresponding to this model is 

2e~s/ ( l  +4.5s + 4.5s2) ,  with Gc = 1.19(l + l/4.65s). In Figures 7.28, 7.30 and 7.32, xp = 

0.7 seconds and G p = 1.2/(1 + 3.1s + 3.1s2); in Figures 7.29, 7.31 and 7.33, xp = 1.3 

seconds and G = 2.8/(l + 6.1s + 6.1s2) .

Figure 7.28: Time delay updating Figure 7.29: Time delay updating

Figure 7.30: Time delay updating

Figure 7.32: Time delay updating

Figure 7.31: Time delay updating

Figure 7.33: Time delay updating

Time (seconds) x ID*
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converges to 1.35 seconds and when x = 1.3 seconds, xm approximately converges to

2.11 seconds. It is difficult to sensibly compare the goodness o f fit between the process 

and the model in the time or frequency domains, as all the parameters have been 

changed in the process and only the time delay is updated in the model; a polar plot 

shows poor fitting of the processes and their corresponding models for this reason. 

However, if  phase plots of the processes and models are obtained at higher frequencies 

(Figure 7.34), reasonable fitting between the process and model is seen; this result 

implies that the model time delay estimates are appropriate, if  it is desired to reduce the 

mismatch between the process and the model, as the time delay will be the dominant 

influence on the phase plot at higher frequencies. However, it is normally desirable 

when using a Smith predictor to reduce the mismatch between the process and model 

time delays; the matching of the process and the model at higher frequencies means 

that the difference between the process and the model, fed back in the Smith predictor, 

is small at these frequencies. This is not desirable, bearing in mind the large mismatch 

between the process and model time delays. Thus, the gradient algorithms may not be 

suited for updating the time delay in a Smith predictor structure, if  the process and 

model orders are different.

Figure 7.34: Phase plot of processes and their models

Figures 7.28 to 7.33 show that when xp = 0.7 seconds, xm approximately



Case 7: G me SIm = 2.01e 0,99s/ ( l  +6.32s + 8.25s2) . The process corresponding to this 

model is (2 + 4.5s)e~s/ ( l  +8.5s + 22.5s2 + 18s3) . G 0 = 3.64(1+ 1/6.1 I s + 1.14s/(l +0.21s)). 

In Figures 7.35, 7.37 and 7.39, G p = (1.2 + 3.1s)/(l + 5.9s + 15.7s2 + 12.6s3) and xp = 

0.7 seconds; in Figures 7.36, 7.38 and 7.40, G p = (2.8 + 6.1s)/(1 + 1 Is + 29.3s2 + 23.4s3) 

and xp =1.3  seconds.

Figure 7.35: Time delay updating Figure 7.36: Time delay updating

Figure 7.37: Time delay updating Figure 7.38: Time delay updating
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0.67 seconds and when xp = 1.3 seconds, xm approximately converges to 1.29

seconds. Good fitting between the processes and models are seen, particularly at higher 

frequencies, when polar plots o f the processes and models are obtained (Figure 7.41).

Figure 7.41: Polar plots o f processes and their models
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Case 8: G me“STm = 1.96e”184s/( l  + 6.7s); the process corresponding to this model is 

(2 + 4.5s)e-s/ ( l  + 8.5s + 22.5s2 + 18s3) with Gc = 6.84(l + l/6.7s) . In Figures 7.42, 7.44 

and 7.46, G p = (1.2+ 3.1s)/(l +5.9s + 15.7s2 + 12.6s3) and xp = 0.7 seconds; in Figures 

7.43, 7.45 and 7.47, G p = (2.8+ 6.1s)/(1 +1 Is + 29.3s2 + 23.4s3) and xp =1.3 seconds.

Figure 7.42: Time delay updating Figure 7.43: Time delay updating
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Figure 7.44: Time delay updating Figure 7.45: Time delay updating
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Figure 7.46: Time delay updating Figure 7.47: Time delay updating

Figures 7.42 to 7.47 show that when xp = 0,7 seconds, xm approximately converges to

1.25 seconds and when xp = 1.3 seconds, xm approximately converges to 1.88

seconds. As in Case 6, good fitting between the processes and models is seen if  phase 

plots o f the processes and models are obtained at higher frequencies (Figure 7.48).

Figure 7.48: Phase plots of processes and their models
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Overall, the full panorama of simulation results show that when the order o f the 

process equals that of the model, the mismatch between the model time delay and the 

process time delay is significantly reduced, irrespective o f the match between the 

process and model parameters. When the order o f the model differs from that o f the 

process, then the model delay is updated to a final value in the simulations taken.

The performance of the six algorithms is more difficult to compare, though it is 

obvious that there is little to be gained (at least in the simulations taken) in using a 

Newton-Raphson algorithm instead of a Gauss-Newton algorithm. It is evident that, on 

balance, and taking the full panorama o f simulation results obtained (including the 

supplementary results provided by O ’Dwyer (1996j)), the Gauss-Newton (1) time delay 

updating algorithm is the most appropriate algorithm to use, with the Gauss-Newton

(2) algorithm being the least appropriate one to use. This conclusion has been reached 

based on the speed and reliability of the convergence o f the relevant parameters over 

the full range of simulations taken. It may be shown analytically by checking the 

validity o f the assumptions used in the algorithm for the application, that a Newton- 

Raphson algorithm had advantages over a Gauss-Newton algorithm as the process- 

model mismatch increases. Unfortunately, because of the complexity o f the equations 

developed to check the validity o f the assumptions, and their dependence on 

knowledge o f the (unknown) process parameters, it was not possible to arrive at a 

general conclusion as to the algorithms’ relative performance, as indeed the simulation 

results discussed above reveal.

It is interesting that it takes a long time for the model time delay to converge to 

the process time delay in most cases, even when the order o f the process and model are 

the same. The oscillatory convergence pattern is a factor in this disappointingly slow 

convergence rate; an alteration in the learning rate o f the gradient algorithms 

(discussed in Chapter 2, Section 2.2.4) would improve this situation.

7.4.2 Estimation of the non-delay parameters

The six algorithms for separately updating the gain and the time constant have 

been simulated individually, for the process-model combination in which both the 

process and model are in FOLPD form. It was found (in simulation) that the gain and 

time constant terms are best updated at ten times the rate at which the time delay is
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updated. It was also found to be necessary to limit the amount by which the gain and 

time constant are updated at each sample.

Representative simulation results that show the updating o f the model gain are 

shown in Figures 7.49 to 7.52; these results, and other supplementary simulation 

results provided by O ’Dwyer (1996j), show that convergence o f the model gain to the 

process gain occurs, for all o f the gradient algorithms, when the non-gain model 

parameters arc equal to the corresponding process parameters. However, if  the non­

gain model parameters differ from the corresponding process parameters, the model 

gain does not converge to the process gain (unlike the behaviour o f the model time 

delay in corresponding circumstances). The simulation conditions are as follows: 

G me_ST"' = 2e“14s/( l  + 0.7s) ,G C = 1.75(l + l/0 .7s). In Figures 7.49 and 7.50, xp = xm, 

Tp = Tm and K p = 1.6; in Figures 7.51 and 7.52, xp = xm, Tp = Tm and Kp = 2.4.
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7.5 Parameter estimation in the modified Smith predictor

7.5.1 Introduction

The modified Smith predictor structure involves the inclusion o f a dynamic 

element in the outer loop of the Smith predictor structure; such an arrangement 

facilitates an improvement in the regulator response. This issue is discussed fully in 

Chapter 6. In this section, the Gauss-Newton algorithms are used to separately update 

the gain, time constant and time delay of a FOLPD model, in such a structure.

For the modified Smith predictor structure, the transfer function, y p* /R , is 

given by equation (6.11). Simple calculations, based on Figure 6.3, show that

(1 + B (s))/(1 + B(s)e"STra ) is the dynamic element implemented (equation (6.9)).

7.5.2 Development of the gradient algorithms

The formulae detailed have been developed for the calculation o f the sensitivity 

functions o f the modified Smith predictor, when appropriate partial derivatives are 

taken of equations (6.11) and/or (7.54).

(1) Gauss-Newton (1) algorithm:

(7.54)

with ym* being the model output o f the modified Smith predictor. The term

dxp p [ U  + B(s)e~ST™jU  + B (s)e""V  R
p (7.55)

(7.56)
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(2) Gauss-Newton (2 ) algorithm:
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(3) Gauss-Newton (3) algorithm:
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Equations (7.55) to (7.63) follow the pattern o f the sensitivity function 

formulae developed for the Gauss-Newton (1), Gauss-Newton (2) and Gauss-Newton

(3) implementations, respectively, for the Smith predictor structure (Sections 7.2.1 to 

7.2.3). The formulation o f these gradient algorithms for updating the model parameter 

values is similar to the formulations of the algorithms for a Smith predictor structure in 

equations (7.17), (7.24) and (7.30), respectively.



7.5.3 Parameter estimation - simulation results

The three gradient algorithms for updating the model parameters separately 

have been simulated individually, for the process-model combination in which both the 

process and model are in FOLPD form. The conditions under which the parameters are 

updated are similar to those in Section 7.4, with the exception that a more conservative 

primary controller is used to ensure control system stability over the range of process 

parameter values considered. Representative simulations demonstrating (a) the 

convergence o f the model time delay to the process time delay are provided in Figures 

7.55 to 7.58 (b) the convergence o f the model gain to the process gain are provided in 

Figures 7.59 and 7.60 and (c) the convergence o f the model time constant to the 

process time constant are provided in Figures 7.61 and 7.62. In all simulations shown, 

G me“SI- = 2e_14s/( l  + 0.7s), Gc = 0.7(1 +1/0.7s) and B(s) = (0.7s + l)/(0.7s +10).

Time delay updating: In Figures 7.55 and 7.56, G p = G m and xp = 1.2 and 1.6 

seconds, respectively; in Figure 7.57, G p = 1.6/(1 + 0.5s),xp = 1 .2  seconds; in Figure 

7.58, G p = 2.4/(1 + 0.9s),xp = 1 .6  seconds.
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1 4 

1 3 5  

1 3 
1 2 5  

1 2
E

H  1 15

£  1 1  
1 05

-ac
oo
CD
C/3

Ci>T3
<D

E
P

1

O 95 

0 9

x p
en

" O A x
C  1 .6 5OO
% 16 h  V >. . 4 -■."■■■■

1 ¡1 w y E  1 5 5 1 W y y

y  /  — = Gauss-Newton (1) 1 .5
—  = Gauss-Newton (1)

\ /  — = Gauss-Newton (2) U  1 45 — = Gauss-Newton (2)
. •-,/ .. =  Gauss-Newton (3) CD 1 4 g .. = Gauss-Newton (3)

5 0 0  10CG 15EO 2 0 0 0  2 5 0 0  3 0 0 0  3 5 0 0  40 oo E— 1 x n
Time (seconds)

Figure 7.57: Time delay updating

Time (seconds) 

Figure 7.58: Time delay updating

T3C
oo
CD

1u-acu
6
P

= Gauss-Newton (1) 
Gauss-Newton (2) 

: Gauss-Newton (3)

0 500 1000 1500 2000 2500 3000 3500 4000
Time (seconds)

500 1000 1500 2000 2500 3000 3500 4000
Time (seconds)

285



Gain updating and time constant updating: In Figure 7.59, Tp = Tm, xp = xm and Kp = 

1.6; in Figure 7.60, Tp = Tm, xp = Tm and K p = 2.4. In Figure 7.61, Kp = Km, 

xp = xm and Tp = 0.5 seconds; in Figure 7.62, K p = K m, xp = xm and Tp = 0.9 

seconds.

Figure 7.59: Gain updating Figure 7.60: Gain updating

Figure 7.61: Time constant updating
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Figure 7.62: Time constant updating

These results are similar in nature to the results found when the gradient algorithms are 

used for model parameter updating in the Smith predictor structure. O f course, the 

convergence o f the model parameters is slower than when the Smith predictor structure 

is used, because of the more aggressive primary controller used in the latter 

implementation. It is difficult to come to a general conclusion as to the most 

appropriate gradient algorithm to use for the application (as in Sections 7.4).
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7.6 Analytical exploration of the algorithms used

An analytical exploration of the gradient techniques has been performed in 

Chapter 3 when the model parameters are estimated in open loop. The conditions under 

which the theorems developed in Chapter 3 are valid (such as the conditions on the 

process excitation signal, for example) may also apply to the closed loop gradient 

implementation. However, many of these theorems have been developed by assuming a 

first order Taylor’s series expansion for the difference in time delay between the 

process and the model. Now, theorems will be developed without the necessity for 

such an approximation; the theorems developed may apply to both open loop and 

closed loop identification situations (provided the conditions under which the theorems 

are derived are fulfilled).

The analysis was performed in discrete time, for a number o f process and 

model structures. These calculations are done in discrete time for similar reasons as 

reported in Chapter 3 i.e. in the discrete time domain, integer values o f the process 

time delay appear as appropriate power terms on the numerator transfer function of the 

process and that a standard procedure has been defined to calculate the MSE surface, 

by Widrow and Stearns (1985), in the domain. The closed loop gradient algorithms are, 

of course, defined in continuous time; the application of the analysis performed in the 

discrete time domain will need to take this into account.

It is required to prove that the MSE between the process and the model output 

is unimodal with respect to the relevant process parameters, and is minimised when the 

appropriate model parameter equals the equivalent process parameter.

7.6.1 Non-delay model parameter estimation

Theorem 3.1 (Section 3.3) shows that for a first order discrete stable system, 

the MSE performance surface is minimised when the model gain equals the process 

gain and the model time constant equals the process time constant, provided the model 

time delay equals the process time delay and measurement noise is assumed 

uncorrelated to the process input and output. In addition, the input to the process and 

the model is assumed to be a white noise input. A corollary to this theorem is that if  the 

process time delay index, gp, is not equal to the model time delay index, gm, then the
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MSE function is not minimised when K m = K p and Tm = Tp. A further corollary to this 

theorem is that the MSE function is not minimised when K m = K p unless gm = gp and 

Tm = Tp, and the MSE function is not minimised when Tm = Tp unless gm = gp and 

K m = K p. In a closed loop environment, the excitation signal to the process is not of

white noise form; nevertheless, it is interesting that the simulation results in Sections

7.4.2 (Figures 7.49 to 7.54) and in Section 7.5.3 (Figures 7.59 to 7.62) show that these 

conclusions do apply to the closed loop identification case, provided the process input 

is sufficiently exciting. This is a less conservative criterion than that given in the 

theorem.

7.6.2 Model time delay index estimation - non-delay parameters

known

Elnagger et al. (1990a) prove that for a first order discrete stable system of

known gain and time constant, the MSE performance surface versus time delay is

minimised when the model time delay index equals the process time delay index, 

provided the measurement noise is uncorrelated with the open loop process input. The 

resolution on the process time delay is assumed to be equal to one sample period. The 

authors also show that the MSE surface is unimodal with respect to the time delay, and 

that this unimodality exists for any change in the process input (such a signal is 

consistent with the types of signals present at the process input in closed loop 

applications). These conclusions conform with the simulation results in Section 7.4.1 

(Figures 7.12 to 7.15) and in Section 7.5.3 (Figures 7.55 and 7.56).

7.6.3 Model time delay index estimation - non-delay parameters

unknown

Elnagger et al. (1991) show that for a first order discrete stable system of 

unknown gain and time constant, the MSE performance surface versus time delay is 

minimised when the model time delay index equals the process time delay index. The 

input signal to the process is assumed to be white, though the authors state that this is a 

sufficient condition, rather than a necessary condition. However, the authors do not
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explicitly show that the MSE performance surface is unimodal with respect to the time 

delay, which is a requirement for the use o f a gradient algorithm for time delay 

estimation.

It is therefore appropriate to prove that for a first order discrete stable system of 

unknown gain and time constant, the MSE performance surface versus time delay is 

minimised when the model time delay index equals the process time delay index, and 

that the MSE performance surface is unimodal. It will be assumed that the process 

excitation signal is white, which is a more rigorous requirement than that which may 

be achieved using a closed loop implementation; nevertheless, the proof will provide 

guidelines for the convergence of the parameters using the gradient algorithms in 

closed loop.

Theorem 7.1: For a first order discrete stable system of unknown parameters, the 

unimodal MSE performance surface versus time delay is minimised when the model 

time delay index equals the process time delay index, under the following conditions:

(a) The measurement noise is uncorrelated with the process input.

(b) The resolution on the process time delay is assumed to be equal to one sample 

period.

(c) The input to the process is assumed to be a white noise signal and

(d) The conditions provided in the theorem are observed on the model parameters. 

Proof: The process difference equation is given by

As in Chapter 3, Ts = sample period and w (n )=  coloured noise term. The model 

difference equation is (assuming the previous process output has been used in its 

calculation)

If the non-delay parameters are unknown, then, from equations (7.64) and (7.65), 

e(n) = y(n) -  ym (n ) , is given by

y(n) = e Ts/Tpy(n -1 )  + K p (1 -  e“Ts/Tp )u(n -  gp -1 )  + w(n) (7.64)

ym (n) = e 'Ts/Tm y(n -  1) + Km (1 -  e_Ts/Tm )u(n -  gm -1 ) (7.65)

1
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e(n) = (e 'Ts/Tp -  e Ts/Tm )y(n -1 )  + K p (1 -  e Ts/Tp )u(n -  gp -1 )

- K m(1 - e”Ts/Tm)u (n -  gm -1 )  + w(n) (7.66)

The MSE performance surface, E[e2(n)], may then be calculated (from equation 

(7.66), using a procedure similar to that used in equations (3.22) and (3.23) (Chapter 

3)), to be (O’Dwyer (1996m))

(e“T'/Tp -  e-T̂  )2 rw(0) + (Kp2(l -  )2 + Km2(l -  )2)ruu(0) + ^ ( 0 )

+2(e'Ts/Tp - e “T*/T'")ruy(gp) +2(e~r’/Tp -  e“T»/T" )ruy(l)

-2 K m(l -  e”Ts/T™ )[Kp(l -  e-T̂ Tp )ruu(gm -  gp) + (e“7̂  -  e ^ ^ ) r uy(gm)] (7.67)

assuming that the measurement noise is uncorrelated with the process input. If the 

excitation signal input to the process is white, then it may be shown that

(1) ruu (k) = ruu (0), k = 0 and (2) ruu(k) = 0, otherwise (7.68)

with

(3) ru>(gp + k ) = (e-T’/T' ) n' lKp( l - e - T-/T')r„u(0), n > l  (7.69)

(4) r u y  (gp + n) = 0, otherwise (7.70)

These equations are similar to equations (3.56) to (3.58) (Chapter 3). The proof that the 

MSE function is unimodal with respect to the model delay, for gp > gm and gp < gm,

will be done by induction; an outline of the inductive proof (provided in full by

O ’Dwyer (1996m)) is as follows:

(a) For gp < gm, it may be proved, using equation (7.67), that E[e2(n)j at gm = gp +1 

E[e! (n)] at g,„ = gp, provided

Kp(l -  e 'T‘/T') r uu(0) + (e-T‘/T- -  e 'T̂ -  )(r„(gp) -  rp>(gp + 1))>0 (7.71)

>
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By appropriate substitution, it may be shown that this expression is true if

_ (e~VTp _ e~Ts/Tm ) < 1 5 which is always true.

It may also be proved, using equation (7.67), that E |e2(n)] at gm = gp + n + 1 >

E[e2 (n)] at gm = gp + n , provided

K p(l -  e ^ Tp )ruu(n) + ( e ^ /Tp -  e~T‘/T" )ruy(gp + n) >

K p(l -  e~Ts/Tp)ruu(n + 1) + (e~Ts/Tp -  e"Ts/T™ )ruy(gp + n + 1) (7.72)

Applying equation (7.69), it may be proved by appropriate substitution that equation 

(7.72) is true, provided Tp > Tm .

(b) For gp > g m, it may be proved, by applying equations (7.67) and (7.70), that 

E[e2(n)] at gm = g p - l  > E[e2(n)J at gm = gp . It may also be proved that E[e2(n)j at 

gm = gp - n - 1  = E[e2(n)] at gm = gp -  n ,  n *  0 (by applying equations (7.67) and 

(7.70)). Thus, the MSE performance surface is unimodal when gp > gm only at 

gm = gp — 1, when the input to the process is a white noise signal. □

This theorem provides an analytical structure that helps to explain the 

simulation results given in Section 7.4.1 (Figures 7.20 to 7.24) and in Section 7.5.3 

(Figures 7.57 and 7.58); it is interesting that these simulation results show that 

convergence of the model time delay to the process time delay is possible, when 

K m 5* K p and Tm & Tp, even when the excitation signal to the process is not in white

noise form, or when the conditions on the parameter values in the theorem are violated. 

This shows the conservative nature o f the conclusions o f the theorem.

7.6.4 Model time delay index estimation for a general model

An analytical framework on the convergence o f the model time delay index, in 

a general model structure, will now be put in place for the case where the non-delay 

process and model parameters are identical. The conditions for convergence will first 

be calculated for a process and model in SOSPD form, as a prelude to calculating the
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convergence conditions for a process and model o f arbitrary order. It will be 

demonstrated that the conditions for convergence are wider when the process and 

model are in SOSPD form, compared to when the process and model are o f arbitrary

order.

7.6.4.1 Process and model in SOSPD form

Theorem 7.2: For a second order discrete stable system of known non-delay 

parameters, the unimodal MSE performance surface versus time delay is minimised 

when the model time delay index equals the process time delay index, under the 

following conditions:

(a) The measurement noise is uncorrelated with the process input and

(b) The resolution on the process time delay is assumed to be equal to one sample 

period.

Proof: The SOSPD process difference equation is given by

y(n) = -a ,y (n  -1 )  -  a2y(n -  2) + b,u(n -  gp -1 )  + b2u(n -  gp -  2) + w(n) (7.73)

with a ,,a 2,b, and b2 being the non-delay process parameters. The model difference 

equation is (assuming the previous process output has been used in its calculation)

ym (n) = -a ,y (n  -1 )  -  a2y(n -  2) + b tu(n -  gm -1 )  + b2u(n -  gm -  2) (7.74)

Then, from equations (7.73) and (7.74), e(n) = y(n) -  y m(n) , is given by

e(n) = b ^ u (n -  gp -1 )  -  u (n -  gm -1 )] + b2[u (n -  gp -  2) -  u (n -  gm - 2 ) ]  + w(n)

(7.75)

The MSE performance surface, E[e2(n)], may then be calculated (from equation 

(7.75), using a procedure similar to that used in equations (3.22) and (3.23)) to be 

(O’Dwyer (1996m)):
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2(b,2 + b22)ruu(0) -  2(b,2 + b22)ruu(gp -  gm) + 4b,b2ruu(l)

-2bib2[ruu(gp - g m - l )  + ruu(gp - g ra + 1)] + r ww ( ° ) (7.76)

assuming that the measurement noise is uncorrelated with the process input. Therefore, 

from equation (7.76), E[e2(n)j = ^ ( 0 )  for gp = gm . The proof that the MSE function 

is unimodal with respect to the model delay, for gp > gm and gp < gm, will be done by

induction; an outline o f the inductive proof (provided in detail by O ’Dwyer (1996m)) 

is as follows:

(a) For gp > g m, it may be proved that E[e2(n)] at gm = gp - 1  > E[e2(n)] at gm = gp, 

as applying equation (7.76) at g1TI = g - 1  gives

E[e2(n)] = 2(b,2 + b22J[rull( 0 ) - r uu(l)] + 2b]b2[rlm(l) -  ruu(0)]

+2b,b2[r>u( l ) - r „ ( 2 ) ]  + rm (0) (7.77)

= (b, -  b2)![r„(0) -  r„ (l) ]  + (b ,! + b22)[ruu(0) -  r„ (l)] + 2b,b2[r„ (l) -  r„u(2)]+ rw (0)

(7.78)

This is clearly more positive than ^ ( 0 ) .

Similarly, it may be proved that E |e2(n)j at gm = g p - n - l  > E |e2(n)j at

gm = g p _ n > as ^  may be shown by using equation (7.76) that E[e2(n)j at

gn, = gp -  n - 1 minus E[e2(n)] at gm = gp -  n equals

(b, -  b2)2[ruu(n) -  ruu(n + 1)] + (b,2 + b22)[rull(n) -  ruu(n + 1)] + 2b,b2[ruu(n -  1) -  ruu(n + 2)]

(7.79)

which is greater than zero.

(b) For gp < gm, it may be proved, using equation (7.76), that E[e2(n)] at gm = gp +1 

> E[e2(n)] at gm = gp , as it may be shown that E[e2(n)j at gm = g p + l  equals 

E[V(n)J at gm = g p - l .  Similarly, it may be proved, using equation (7.76), that
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E[e2(n)] at gm = gp + n + l > E[e2(n)] at gm= g p + n ,  as it may be shown that 

E[e2(n)] at gm= g p + n + l equals E[e2(n)] at gm= g p - n - l  and E[e2(n)] at

gm = gP + n equals E[e2(n)] at gm = gp -  n. □

The unimodality of the MSE surface versus time delay proved in this theorem exists 

for any change in the process input. Such a conclusion may be deduced from equations

(7.78) and (7.79), as equation (7.78) equals rw (0) only when the process input is a 

constant i.e. when the process input has a flat autocorrelation function; similarly, 

equation (7.79) only equals zero under the same condition. This is a significant result, 

as the process is in a closed loop environment; the theorem corresponds to the theorem 

developed by Elnagger et al. (1990a) for a first order discrete stable system of known 

non-delay parameters, described in Section 7.6.2. The conclusions reached in this 

theorem conform with the simulation results given in Section 7.4.1 (Figures 7.16 and 

7.17).

7.6.4.2 Process and model of arb itra ry  o rder

Theorem 7.3: For an m'h order discrete stable system of known non-delay parameters, 

the unimodal MSE performance surface versus time delay is minimised when the 

model time delay index equals the process time delay index, under the following 

conditions:

(a) The measurement noise is uncorrelated with the process input.

(b) The resolution on the process time delay is assumed to be equal to one sample 

period and

(c) The conditions provided in the theorem are observed on the model parameters. 

Proof: The process difference equation is given by

m
y(n) = X  [~aky(n -  k) + bku(n - gP - k)l + wO) (7'8°)

k=l

with ak,b k,k = l..m  being the non-delay process parameters. The model difference 

equation is (assuming the previous process output has been used in its calculation)
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y m(n) = Z  [ - a ky ( n - k )  + bku ( n - g m - k ) ] (7.81)
k=l

Then, from equations (7.80) and (7.81), e(n) = y(n) -  y m(n ) , is given by

m
e(n) = {u(n -  gp -  k) -  u(n -  gm -  k)}] + w(n) (7.82)

k=l

The MSE performance surface, E[e2(n)], may then be calculated (from equation 

(7.82), using a procedure similar to that used in equations (3.22) and (3.23)) to be 

(O’Dwyer (1996m)):

11»

2Z t b k \u  (°) -  bk2ruu (gp -  gm)] + ^  (0) •
k = l

T T T -1

k=l

m r )Z  bkbJ {2ruu (J -  k) -  ruu (gp -  gm -  j + k) -  ruu (gp -  gm + j -  k)}
j=k+l

(7.83)

assuming that the measurement noise is uncorrelated with the process input. It may be 

shown, from equation (7.83), that E[e2(n)j = rww(0) for gp = gm . The proof that the

MSE function is unimodal with respect to the model delay, under appropriate model 

parameter conditions, for gp > gm and gp < gm , will be done by induction; an outline

of the inductive proof (provided in full by O ’Dwyer (1996m)) is as follows:

(a) For g p > gm, it may be proved that E[e2(n)] at gm = gp - 1  > E[e2(n)] at gm = gp, 

as it may be shown that, by applying equation (7.83), E |e2(n)]at gm = gp - 1  is given

m
E[e!(n)] = 2 £ b lJ[r,ll(0 )-r ,„ (l)]  +

k=l

m m -1 

k - l  k=l
X bkbj{2ruu(j -  k ) -  ruu(k +1 -  j) -  ruu(j + 1 -  k)}

k=j+1

+ rw (0) (7.84)

This is greater than ^ ( 0 )  if  the excitation signal is white, for example, as equation
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(7.84) then equals

m-1
[b,2 + b„2 + £ 0 v ,  - bk) K „(°) + r „ ( 0 )  (7.85)

k=2

> 0

>

White noise input is a sufficient, rather than a necessary condition for unimodality.

Similarly, it may be proved that E |e2(n)] at gm = gp -  n - 1  > E |e2(n)J at 

gm = g -  n , using equation (7.83), provided

2Z bk2[ruu( n ) - r uu(n + l)] +
k = l

m  m - 1  m

Z 2 S  Z b kb j K u ( n  -  j  +  k)  -  ru>  +  1 -  j  +  k)  -  ruu(n +  1 + j  -  k)  +  ruu(n  + j  -  k)}
k = l k = 1 |_j=k + l

(7.86)

(b) For gp < gm, it may be proved, using equation (7.83), that E[e2(n)j at gm = gp +1 

E[e2(n)] at gra = gp , as it may be shown that E[e2(n)] at gm = g p + l  equals 

E[e2(n)j at gm = gp - l .  Similarly, it may be shown, using equation (7.83), that 

E[e2(n)] at gm= g p + n  + l equals E[e2(n)] at gm= g p - n - l  and E[e2(n)] at 

gm = g p + n equals E[e2(n)J at gm = gp -  n. Thus, the MSE surface is unimodal when 

the conditions provided in equations (7.84) and (7.86) are fulfilled. □

The conclusions reached in this theorem conform with the simulation results 

given in Section 7.4.1 (Figures 7.18 and 7.19).

Unfortunately, it was not possible to calculate the conditions for unimodality of 

the MSE function with respect to the time delay index, using the principle of induction, 

when both the process and the model were in general form, and when the non-delay 

model parameters are not equal to the non-delay process parameters.

Overall, the conclusions o f the theorems conform with the appropriate 

simulation results quoted in Sections 7.4 and 7.5. Indeed, the results o f the theorems 

are more conservative than many o f the results achieved in simulation.
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7.7 Conclusions

1. The gradient updating algorithms can facilitate a reduction in mismatch between the 

process and model parameter values. This reduction is mismatch has been achieved in 

a variety o f conditions, described in the text o f the chapter. The reduction in the time 

delay mismatch is of most interest, because mismatch in this parameter has the most 

influence on the stability o f a Smith predictor. The most significant results are that (a) 

the time delay is updated, with the non-delay process and model parameters being 

different and (b) the time delay is updated, with the model and process structures being 

different. A desirable topic for further work would be to prove convergence for these 

two cases analytically, for an arbitrary process and model structure (though some 

preliminary work done in this area suggests that a proof based on the principle of 

induction may not be the best way o f tackling such problems). A more unified 

approach to the problem, which would involve the application of a process order 

estimation strategy, as well as the time delay updating strategy, is also indicated, as the 

simulation results have revealed that the time delay is updated in a relatively short 

period o f time when the model and process orders are either identical or close together; 

in addition, the time delay mismatch between the process and the model is only 

definitively reduced when the process and the model are the same order.

2. The reduction in the mismatch between the process and model time delay (in 

particular) allows for the possibility o f updating the robust controller parameter values 

(in the text, the robust controller was assumed to be part of a Smith predictor 

structure). If  an oscillatory convergence pattern is evident on the model parameters (as 

in the simulations taken), then this allows the calculation o f the maximum mismatch 

from the maximum and minimum values o f  the parameter as it converges; this 

mismatch value could be used to calculate appropriate primary controller parameters 

(as in the procedure defined by Morari and Zafiriou (1989), for the calculation of the 

parameters o f a robust PI primary controller). However, the methodology is by no 

means confined to such a controller; other possibilities include, for instance, the 

possibility o f updating the parameters of additional dynamic terms, as well as the 

controller, in a modified Smith predictor structure, as the mismatch is reduced.

A further possibility is to restrict the range o f variation of the parameters
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allowed during the updating process, so that the stability o f the Smith predictor or the 

modified Smith predictor implementation is preserved. The implementation o f such a 

suggestion would require that the range of variation of the process parameters is known 

a priori, though the design of the robust primary controller in the predictor structure 

does assume that the maximum variation o f the process parameters is known a priori.

3. The conclusion reached in the chapter was that the Gauss-Newton (1) time delay 

updating algorithm is the most appropriate algorithm to use (at least for the simulations 

taken). This conclusion is disappointing, as the purpose of implementing the other five 

gradient algorithms was to try to facilitate improved performance by reducing the 

number o f assumptions made by Marshall (1979) and Bahill (1983) in implementing 

the Gauss-Newton (1) algorithm. The investigation o f more accurate approximations 

for the error (instead of those used in equations (7.2) to (7.4)) may be appropriate; a 

likely disadvantage is the increased complexity o f such approximations.

Alternative gradient algorithms could also be employed to update the 

parameters. Two such alternative implementations, defined below, are based on the 

development used to calculate the Gauss-Newton (2) implementation and the Gauss- 

Newton (3) implementation, respectively. Taking these in turn, the present Gauss- 

Newton (2) algorithm assumes that yp( t ,a  + Aa) = y p( t,a )  + A ade/S a  (equation

(7.23)) with the update values o f the parameters being subsequently calculated using 

equation (7.24). Such an assumption is, however, unnecessary and the update values of 

the parameters may be more accurately calculated by solving the following 

relationship:

<9e 
e  dt

de . e  dt
aTp
de

e  dt
3t„

(  a, >
f

2

dt
j U k J

^ pÌ P
d T j U k J

^ p

fldyP

dt

dt

st :

J

f  a. >ày»
P;  \d K py 

r p. \ 2
dy

a. rf

v3Tp/
dt

Jv^Tpy dr
dt

fy> i
(  a. >

[ d K j

5yPi
/'a , A 

P
d T j v d ip )

2

r - dt

dt

dt
a k h

ATm

(7.87)

In a similar manner, the update values of the parameters in the Gauss-Newton (3)
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algorithm implementation are calculated using equation (7.30). This is based on 

implementing Se/Sa « 0.5(<9yp/d a  + 5ym/<9a) (equation (7.29)). However, it is more

accurate to implement d e / d a  » d y p / d a  -  d y m / d a , which means that the update values

of the parameters may be calculated as follows:

de 
e  dt

5Kp
de 

e  dt
dTp
de 

e  dt
<3t „

de. v f "de," j rf <3ei '  de, "
dt dt — LJ/ U x J U k J a

Se,
ST

dt

de{
a r

de,
dr„

dt

J
de,

dX

J

de,

de.

dt

dt

d r
dt

AKn

ATm
Ax

(7.88)

Equivalent modifications could be made to the implementations o f the Newton- 

Raphson (2) and Newton-Raphson (3) algorithms developed.

4. The limitation of the gradient based algorithms for updating the non-delay model 

parameters motivates the search for other algorithms to update these parameters. One 

such algorithm may be derived by updating the time delay using any o f the gradient 

methods discussed in the chapter, and updating the non-delay parameters using 

identification algorithms (after the time delay has been updated) such as the recursive 

least squares (RLS) algorithm. The disadvantage of this approach is the requirement 

that the model and process time delays must coincide before the non-delay model 

parameters will converge to the corresponding process parameters. Such 

implementations are discussed by Kaya and Scheib (1984) and O ’Connor (1989), and 

are outlined by O’Dwyer (1996i).

Alternatively, an analytical method to calculate the parameters o f a FOLPD 

process, in closed loop under the control of a Smith predictor, based on the closed loop 

magnitude and phase information measured at a number of frequencies, could be used. 

Such an analytical technique has been used to calculate the parameters o f a FOLPD 

process, in an open loop environment (Chapter 4). This method is described in more 

detail by O ’Dwyer (1996i).

5. To summarise, the identification method is significant as the model parameters may
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be updated in closed loop, using a Smith predictor structure. In broad general terms, 

the presence of the Smith predictor may be used to reduce the dominance of the time 

delay in a dominant time delay process, making the control problem more tractable.
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CHAPTER 8

Conclusions

The thesis has dealt with a number o f methods for estimating the process model 

parameters, and time delay, in both open loop and closed loop environments, together 

with the compensation o f such systems. Two common themes exist in the different 

chapters of the work, the first being the use of gradient algorithms for parameter and 

time delay estimation and the second being the use o f the Smith predictor structure for 

identification and control o f a process with time delay.

8.1 G rad ien t algorithm s for param eter and time delay estimation

These methods are used for process parameter and time delay estimation in 

open loop and in closed loop, in the time domain (Chapters 3 and 7, respectively) and 

in open loop, in the frequency domain (Chapter 4). The experience with these gradient 

methods may be compared under a number of headings:

(a) Parameter convergence. Each of the methods used facilitate convergence o f model 

parameters to process parameters. However, interestingly, each gradient algorithm 

favours the convergence of some parameters over other parameters. The open loop 

time domain gradient algorithm used favours the convergence of the gain and time 

constant, when the time delay index is known (for a FOLPD process and model); 

convergence o f the time delay index, under restrictive conditions, is only achieved 

when a first order Taylor’s series approximation is used for the variation in time delay 

between the process and the model. These results are related to the conditions for 

unimodality o f the corresponding cost function with respect to the parameter vector. 

The closed loop time domain gradient methods used favour the convergence of the 

time delay, for a wide variety of processes and models; other model parameters 

converge to the process parameters under very restrictive conditions (i.e. that every 

parameter, except the one being updated, is known). The open loop frequency domain 

gradient method favours the convergence of the gain and the time delay (as the
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corresponding cost function minimised is unimodal with respect to these parameters), 

with some restrictions on the convergence o f the other parameters. The latter gradient 

method facilitates convergence over a wider range of operating conditions than the two 

time domain methods.

(b) Nature o f the gradient algorithms used: A variety o f gradient algorithms are used, in 

Chapters 3, 4 and 7. In the frequency domain, it is possible to formulate a gradient 

algorithm based on the analytical partial derivative o f the cost function, with respect to 

the parameter vector, as the process is not parameterised in the frequency domain. In 

the time domain, because of the parameterisation o f the process (and the subsequent 

dependence of the cost function, with respect to the parameter vector, on the process 

parameters) a gradient algorithm based on a Taylor’s series expansion of the cost 

function about the optimum parameter vector must be used. Such an expansion will be 

accurate for a limited range o f variation of the model parameters about the process 

parameters. Therefore, the implementation o f the gradient algorithm in the frequency 

domain has an obvious advantage.

(c) Range o f variation of the model parameter values: The range of variation of the 

model parameter values, to allow convergence to the optimum model parameter values 

corresponding to the global minimum of the cost function using the gradient method, 

may be calculated using the frequency domain approach, by calculation of the first 

and/or second partial derivatives o f the cost function with respect to the appropriate 

parameter values. Indeed, as mentioned in Chapter 4, the unimodality of the cost 

function as the model parameters change may be checked in the same manner. It is not 

possible to perform such calculations in the time domain. Hence, the range o f variation 

of the model parameters allowed, so that convergence of the model parameters to the 

parameters corresponding to the global minimum of the cost function is assured, for 

both time domain gradient methods, is not known analytically; it would have to be 

determined in simulation. Marshall (1979) suggests that convergence of the time delay 

is possible when it varies by ± 80% about the process time delay (using the Gauss- 

Newton (1) algorithm, when the time delay is updated in closed loop).

(d) Choice of initial model parameter values: It is necessary that the cost function be 

unimodal if  convergence from the initial model parameter values to the global 

minimum is to be achieved. A general method has not been proposed to calculate such 

initial values. In the time domain gradient approaches evaluated, it has been assumed 

that the initial values are sufficiently close to the global minimum so that unimodality
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exists (with the theorems in Chapters 3 and 7 providing some guidelines as to the 

relationships required between the process and model parameters). The estimates o f the 

initial values could be obtained using experimental open loop or closed loop methods 

(as described in Chapter 2). Alternatively, a relay in series with the process in closed 

loop could be used to analytically calculate model parameters, from the time domain 

measured value produced. Such a scheme has been outlined in supplementary work by 

O'Dwyer (1996k), for the estimation of FOLPD model parameters. In the frequency 

domain approach, the initial values have been calculated analytically and, as mentioned 

in (c) above, unimodality of the cost function from these values may be checked. An 

algorithm to change the initial values used in this case, if  the unimodality condition is 

violated, has been described in Chapter 4. In conclusion, multiple optimisation runs, 

each initiated at a different set o f model parameters, may be required to calculate the 

global minimum of the cost function using the time domain gradient methods as 

implemented; a single optimisation run, with the possibility o f appropriately changing 

the model parameters as a result of relevant analytical calculations may be used to 

calculate the global minimum of the cost function using the frequency domain gradient 

method as implemented.

From this discussion, and from the results contained and quoted in the thesis, it 

is clear that the gradient technique based in the frequency domain has significant 

advantages over the two time domain gradient techniques.

Some possibilities for further work using the specific gradient methods have 

been indicated at the conclusions of the relevant chapters, and will not be repeated 

here. However, a number of general recommendations are appropriate:

(1) It has already been mentioned in Chapter 3 that it may be useful to filter the data 

before identification, to increase the range of parameters over which the cost function 

is unimodal. It would be interesting to consider normalising the performance surface 

itself, when the time domain gradient methods are used, for similar reasons (such 

normalising has been applied in the implementation of the frequency domain gradient 

method). Pupeikis (1985) proposes one such adaptive filtering procedure to transform a 

multimodal cost function into unimodal form.

(2) The use o f other methods, such as multiple model estimation methods or genetic 

algorithms, in combination with gradient methods, is indicated. A combination of 

estimation methods has been implemented, with some success, in the frequency 

domain; the use o f multiple model estimation methods or genetic algorithms may
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provide a means o f determining the global minimum o f the cost function with more 

certainty. The use o f such methods is considered in Chapter 2.

(3) Each gradient technique has either explicitly or implicitly used a learning rate factor 

in the implementation o f the gradient algorithm; this has been determined explicitly, in 

simulation, for both open loop gradient methods and included implicitly for the closed 

loop gradient method. The oscillatory convergence pattern o f the parameters, when the 

closed loop gradient method is used (Chapter 7), shows that the learning rate is too 

large in these cases. An analytical determination o f an optimum learning rate would be 

desirable; alternatively, the implementation o f an adaptive learning rate may be 

appropriate (this topic has been considered briefly in Chapter 2).

8.2 The use of the Sm ith pred ictor structu re  fo r identification and control

Chapters 6 and 7 have indicated that the Smith predictor structure (and its 

modifications) are suitable for the identification and control o f dominant time delay 

processes. A number of questions remain as to the practical applicability of this 

structure, particularly for identification; some o f these issues are discussed in Section

8.1. Other issues, such as the nature of the excitation signal required at the servo input 

for identification (i.e. the persistent excitation condition) need further clarification. In 

addition, the practical application o f a continuous time Smith predictor is problematic, 

as the (model) time delay is not easily implemented in this domain (in contrast to its 

straightforward implementation in the discrete time domain). Further work on these 

issues is recommended. In addition, it is appropriate to consider further the practical 

interaction o f the identification and compensation strategies; one practical requirement, 

for instance, is that the compensated system should have a certain minimum level of 

robust stability and robust performance during identification. More specific 

recommendations for future work are described in the two relevant chapters.

8.3 F u tu re  direction of the field

It remains true to declare that the choice o f identification method, and 

compensation method, for a process with time delay depends on the application. A 

number o f trends in the development and application work are evident:
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(1) There is still a lot o f interest in the identification o f FOLPD and/or SOSPD process 

models, using, for example, experimental closed loop methods (as detailed in Section 

2.2.1.3) or by analysing the process output when a relay is switched into the closed 

loop compensated system in place of the controller (as detailed in Section 2.3.3.2). 

This appears to be due partly to the low computational intensity involved in identifying 

such models, and partly to concerns about how complex a model may reasonably be 

identified from experimental data. There appears to be scope to apply some of the 

methods in question to the estimation of the parameters and time delays of MIMO 

process models.

(2) The identification o f higher order models still appears to be conditioned on the 

presence of a priori information on the process; few applications exist in which the 

parameters and/or time delay (of a higher order model) are identified in a black box 

manner from process input and output data. In addition, few unified approaches to the 

estimation problem have emerged; one of the rare exceptions is detailed by Chen and 

Zhang (1990), in which a recursive algorithm to estimate the parameters, order and 

time delay index of a process is described.

(3) The use of predictive controller strategies for the control of a process with time 

delay, such as the generalised predictive control strategy and the unified predictive 

control strategy, appear to be the compensation methods that are attracting increasing 

attention from the applications community; Kwon (1994) for instance, in a review 

paper, reports twenty-five such applications since 1990 in process control, 

mechatronics, aircraft control and medical engineering. The author also claims that 

“hundreds” of commercial predictive control software packages have been used in real 

installation examples. These are significant figures, in view of the well known (and 

often well founded) reluctance o f applications engineers to implement controllers other 

than the PID controller (and its variations).

(4) Finally, developments in the applications of neural networks and genetic algorithms 

seem certain to have an increasing impact on the identification problem (as is 

suggested in Chapter 2). It also seems reasonable that neural networks, and the use of 

techniques such as expert systems and fuzzy logic applications will impact on the 

control problem. The application of robust compensation techniques to an increasing 

number o f applications also appears inevitable; recent applications o f robust strategies 

to the compensation o f processes with time delays are discussed in Section 5.3.1.2.
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9. Glossary of essential terms and symbols used

a = Term in the polynomial, B(s), used as a component of the time advance 

approximation (Chapter 6)

alm,l = 0....i = Model denominator parameters (Chapter 7)

alm ,1 = 0....i = Process denominator parameter estimates (for sensitivity function).. 

(Chapter 7)

a, ,1 = 0....i = Process denominator parameters (Chapter 7) 

axm,x = 1...1 = Model denominator parameters (Chapter 6) 

axp,x = l...i = Process denominator parameters (Chapter 6)

a  = Process parameter (Chapters 6 and 7) 

a ,  , a 2 = Process parameter (Chapter 7)

Aa = Process parameter change (Chapter 7)

ARMA model = Auto-Regressive Moving Average model 

BPN network = BackPropagation Neural network

B(s) = Polynomial used as a component of the time advance approximation (Chapter 6) 

b lni ,1 = 0 j = Model numerator parameters (Chapter 7)

blm ,1 = 0....j = Process numerator parameter estimates (for sensitivity function).. 

(Chapter 7)

bIp ,1 = 0 j = Process numerator parameters (Chapter 7)

bxrn ,x = l...k = Model numerator parameters (Chapter 6) 

bxp,x = l...j = Process numerator parameters (Chapter 6)

d = Time delay index (= time delay/sample time)

d(t) = Disturbance signal on the measured value

DFT = Discrete Fourier Transform

DMC algorithm = Dynamic Matrix Control algorithm

DSP = Digital Signal Processor

DTFT = Discrete Time Fourier Transform

5 = Multiplier term used in the Levenberg-Marquardt algorithm (Chapter 3)

e = Process minus model output

e, = Mean o f process and model output (Chapter 7)
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e, (n) = y, (n) -  yml (n ) ... Chapter 3 (see definitions o f y, (n) and yml(n )) 

e2(n) = y2(n) -  ym2(n ) ... Chapter 3 (see definitions o f y2(n) and ym2(n)) 

e3(n) = y 2( n ) - y m3(n ) ... Chapter 3 (see definitions o f y2(n) and ym3(n)) 

e4(n) = y 3(n) -  ym4(n ) ... Chapter 3 (see definitions o f y 3(n) and y m4(n)) 

e5(n) = y3(n) - y m5( n ) ... Chapter 3 (see definitions o f y 3(n) and y ra5(n)) 

e6(n) = y2(n) - y m6( n ) ... Chapter 3 (see definitions o f y2(n) and y m6(n)) 

e7(n) = y2(n) -  y m7(n ) ... Chapter 3 (see definitions o f y2(n) and ym7(n)) 

e8(n) = y,(n) -  y m8(n ) ... Chapter 3 (see definitions o f y,(n) and yra8(n )) 

e9(n) = y,(n) -  y m9(n ) ... Chapter 3 (see definitions o f y,(n) and y m9(n)) 

e10(n) = y4(n) - y m]0( n ) ... Chapter 3 (see definitions o f y4(n) and y ml0(n)) 

e n ( n )  = y4( n ) - y IIlll(n)... Chapter 3 (see definitions o f y4(n) and y mll(n ))

ETFE = Empirical Transfer Function Estimate 

EHAC algorithm = Extended Horizon Adaptive Control algorithm 

EPSAC algorithm = Extended Prediction Self-Adaptive Control algorithm 

F[ ] = Fourier transform o f ...

Fl(s),F2(s),K1(s),K2(s),P(s) = Dynamic elements in the feedback paths and the 

forward path of the modified Smith predictor (Chapter 6)

FFT = Fast Fourier Transform

FOL model = First Order Lag model

FOLPD model = First Order Lag Plus time Delay model

ga = Model time delay minus model time delay index

gb = Process time delay minus process time delay index

g m = Model time delay index

g p = Process time delay index

G c(s) = Controller transfer function (s domain)

G l (s),G Lj (s) = Dynamic elements on the disturbance inputs (closed loop)

G m (s) = Model transfer function (s domain), not including time delay 

G m (z) = Model transfer function (z domain), not including time delay 

Gp(jco) = Process frequency transfer function, at frequency co

|Gp(jco)| = Magnitude of the process frequency transfer function, at frequency co

G p (s) = Process transfer function (s domain), not including time delay

I
3 0 7



G p(z) = Process transfer function (z domain), not including time delay 

GMDC algorithm = Generalised MultiDelay Compensator algorithm 

GPC strategy = Generalised Predictive Control strategy 

I = Identity matrix

IAE criterion = Integral o f Absolute Error criterion

i.i.d. random variable = Independent and identically distributed random variable 

IMC strategy = Internal Model Control strategy

I-PD controller = Integral on error, Proportional and Derivative on feedback controller

ISE criterion -  Integral o f Squared Error criterion

ITAE criterion = Integral of Time multiplied by Absolute Error criterion

J = Cost function

K = Gain (when process gain = model g a in ).... (Chapter 3)

K 2 = Time advance approximation = (1 + B(s))/(1 + B(s)e“STm) .... (Chapter 6)

Kc = Proportional gain

AKm = Desired change in model gain

K m = Model gain

K m = Process gain estimate (sensitivity function)....(Chapter 7)

K p = Process gain

LMS algorithm = Least Mean Squares algorithm 

LQ controller = Linear Quadratic controller 

LQG controller = Linear Quadratic Gaussian controller 

L, ,L 2 = Disturbance inputs (closed loop system)

A,(n) = Forgetting factor 

m(t) = Manipulated variable

MAC algorithm = Model Algorithmic Control algorithm 

MIMO model = Multi-Input, Multi-Output model 

MISO model = Multi-Input, Single Output model 

MPC algorithm = Model Predictive Control algorithm 

MRAC strategy = Model Reference Adaptive Control strategy 

MSE function = Mean Squared Error function 

MV controller = Minimum Variance controller
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p = Term in the polynomial, B(s), used as a component o f the time advance

approximation (Chapter 6)

p.d.f. = Probability density function

P controller = Proportional controller

PCA strategy = Predictive Control Algorithm strategy

PD controller = Proportional and Derivative controller

PI controller = Proportional and Integral controller

PID controller = Proportional, Integral and Derivative controller

PIP controller = Predictive PI controller

PRBS = Pseudo-Random Binary Signal

r = Time delay variation (Chapter 3)

R = Desired input signal (to a closed loop system)

ruu (n) = Autocorrelation function o f u(n)

ruy (n) = Crosscorrelation function between u(n) and y(n)

rww (n) = Autocorrelation function of w(n)

ryy (n) = Autocorrelation function o f y(n)

RELS algorithm = Recursive Extended Least Squares algorithm 

RHC algorithm = Receding Horizon Control algorithm 

RIV algorithm = Recursive Instrumental Variable algorithm 

RLS algorithm = Recursive Least Squares algorithm

S^ = Sensitivity o f the transfer function, T, to changes in the process parameter, a

(Chapter 6)

Sm = Power spectral density o f m

S = Cross power spectral density of y with respect to m 

Su = Power spectral density o f  u

Suy = Cross power spectral density of y with respect to u

SISO model = Single Input, Single Output model 

SNR = Signal to Noise Ratio

SOSPD model = Second Order System Plus time Delay model

T = Time constant (when process time constant = model time constant) .... (Chapter 3) 

TMSP(s) = Servo transfer function of the modified Smith predictor (Chapter 6)

Tsp(s) = Servo transfer function o f the Smith predictor (Chapter 6)
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Td = Derivative time 

Tj = Integral time

ATm = Desired change in model time constant 

Tm = Model time constant

Tm = Process time constant estimate (sensitivity function)... (Chapter 7)

Tp = Process time constant 

Ts = Sample period

ATm = Desired change in model time delay 

xn] = Model time delay

xm = Process time delay estimate (sensitivity function)... (Chapter 7) 

x = Process time delay

TDOA = Time Difference O f Arrival

Three term controller = PID controller

Time Delay Index = Time delay/sample time (integer value)

Two term controller = PI controller 

u(n) = Process/Model input

u(t) = Disturbance signal on the manipulated variable 

w(n) - Measurement noise term 

|o. = Learning rate 

co = Frequency

co bw = Bandpass filter bandwidth (Chapter 4)

co c = Bandpass filter centre frequency (Chapter 4)

cor = Frequency where the magnitude of the process is unity

cos = Sampling frequency

y m = Model output

y m* = Model output (modified Smith predictor) 

yp = Process output

y * = Process output (modified Smith predictor)

y,(n) = FOLPD process difference equation when Tm & Tp, Km *  Kp and the process 

time delay is an integer multiple of the sample period (Chapter 3).
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time delay is an integer multiple o f the sample period (Chapter 3).

y3 (n) = FOLPD process difference equation when Tm = Tp, Km = K p and the process

time delay is a real multiple of the sample period (Chapter 3).

y 4 (n) = FOLPD process difference equation when Tm * Tp, K m * K p and the process 

time delay is a real multiple of the sample period (Chapter 3).

yrni (n) = FOLPD model difference equation when Tm * Tp, K m ^  K p and the process

time delay is an integer multiple o f the sample period. No approximation for the time 

delay variation is used. The model output is a function of the previous process output 

(Chapter 3).

ym2(n) = FOLPD model difference equation when Tm = Tp, K m = Kp and the process

time delay is an integer multiple of the sample period. A first order Taylor’s series 

approximation for the time delay variation is used. The model output is a function of 

the previous process output (Chapter 3).

y m3(n) = FOLPD model difference equation when Tm = Tp, K m = K p and the process

time delay is a integer multiple o f the sample period. No approximation for the time 

delay variation is used. The model output is a function of the previous process output 

(Chapter 3).

y m4(n) = FOLPD model difference equation when Tm = Tp, K m = Kp and the process

time delay is an real multiple of the sample period. No approximation for the time 

delay variation is used. The model output is a function of the previous process output 

(Chapter 3).

y m5(n) = FOLPD model difference equation when Tm = Tp, Km = Kp and the process

time delay is an real multiple o f the sample period. A first order Taylor’s series 

approximation for the time delay variation is used. The model output is a function of 

the previous process output (Chapter 3).

y m6(n) = FOLPD model difference equation when Tm = Tp, Km = Kp and the process

time delay is an integer multiple o f the sample period. No approximation for the time 

delay variation is used. The model output is a function o f the previous model output 

(Chapter 3).

y m7 (n) = FOLPD model difference equation when Tm = Tp, Km = Kp and the process 

time delay is an integer multiple of the sample period. A first order Taylor’s series

y2(n) = FOLPD process difference equation when Tm = Tp, K m = K p and the process
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approximation for the time delay variation is used. The model output is a function of 

the previous model output (Chapter 3).

ym8 (n) = FOLPD model difference equation when Tm ^  Tp, K m ^  Kp and the process

time delay is an integer multiple of the sample period. A first order Taylor’s series 

approximation for the time delay variation is used. The model output is a function of 

the previous process output (Chapter 3).

ym9(n) = FOLPD model difference equation when Tm *  Tp, Km ^  Kp and the process

time delay is an integer multiple o f the sample period. A first order Taylor’s series 

approximation for the time delay variation is used. The model output is a function of 

the previous model output (Chapter 3).

yml0(n) = FOLPD model difference equation when Tm *  Tp, K m *  Kp and the process

time delay is a real multiple of the sample period. No approximation for the time delay 

variation is used. The model output is a function o f the previous process output 

(Chapter 3).

y m,,(n) = FOLPD model difference equation when Tm ^  Tp, K m * Kp and the process

time delay is a real multiple o f the sample period. A first order Taylor’s series 

approximation for the time delay variation is used. The model output is a function of 

the previous process output (Chapter 3).

0(n) = Parameter vector

<t>p(jco) = Phase o f the process, at frequency co
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