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Abstract

This thesis considers the dynamics of a viscoelastic Link model. Though the constitu-
tive equation is linear, the problem has a geometrical nonlinearity and an imperfection.
This work extends and formalises that done by Hunt and Thompson, which studies the
elastic model, and that of Hayman, which studies the quasi-static approximation to the
viscoelastic model. The non-linear, dynamic elastic and viscoelastic Link problems and
the quasi-static approximation to the latter are rigorously analysed. The equilibria and
their stability and bifurcation properties are determined and compared for the perfect and
imperfect models. In particular, it is shown that the quasi-static approximation indicates
stability at some equilibrium points, corresponding to large deflection, where the dynamic
analysis indicates that the system is unstable. Asymptotic approximations to the solu-
tion of the linearised problem, subject to different loading strategies, are calculated using

multiple scale methods.
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Chapter 1

Introduction

This thesis looks at the dynamic and quasi-static motion of a viscoelastic Link model. The
Link model with a Standard Viscoelastic element is illustrated in Figure 1.1. It is a model
problem for a transcritical bifurcation with few degrees of freedom. The non-dimensional

load Ais the bifurcation parameter. A transcritical bifurcation occurs at the intersection

Figure 1.1: The Link Model with Standard Viscoelastic element.

of two branches of equilibria and stability is transferred from one branch to the other, as
illustrated in Figure 1.2. We can identify a critical load Ac at which this change in stability

occurs. The non-dimensional model equations are given by

lel, . vt + sinx - \/l + sinu coS a; .

a; = Alt)sm i —cosa;--—------—--- —_ - , v, (1.0.1a)
v’ yr1 + Sin« V1 +sin.-E

y = -a{y + P (y/lIT sino; —yn + SiI’IZ’\)}. (1.0.lb)

where x(ty is a measure of displacement, y(:) is the creep stress, A(i) is the load,

is the initial imperfection, - is related to the relaxation time and s = 1 —sm where

e m is the long-term modulus of elasticity. The elastic buckling behaviour of the Link
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Figure 1.2: (a) A Transcritical Bifurcation, (b) Bifurcation diagram for the elastic system. Solid
lines indicate stable equilibrium points and dashed lines indicate unstable equilibrium points. The

transcritical bifurcations can be seen at (x ,A) = (0,1/2) and (x ,A) = G, —1/2)

model has been studied in Hunt and Thompson [18], who looks at the static elastic Link

model with imperfection. Equilibrium curves are defined and the stability of the system

is investigated. Hayman [14, 15] investigates the Link model with a Maxwell viscoelastic

element. He is interested in the creep buckling behaviour of the system. His analysis

is restricted to the quasi-static motion of the system. Neither of these sources provide

a rigorous mathematical treatment of the model under consideration. Rather, they are

interested in the buckling characteristics from a structures viewpoint. This thesis extends

the work done in [14, 15, 18]. There is a rigorous treatment of the non-linear, dynamic

elastic and viscoelastic Link model and the quasi-static approximation to the nonlinear

system.

The dynamic elastic model is a conservative system. The equilibrium curves for the

perfect system are reproduced in Figure 1.2. We determine the stability properties of the

equilibria and identify two transcritical bifurcation points. The imperfect system is also

investigated. We show that the introduction of an imperfection has the effect of reducing

the critical load and removing the transcritical bifurcation from the system. In Section 3.3

we investigate the dynamic viscoelastic system. The equilibrium curves can be projected
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onto the sA-plane and compared with those of the elastic system. We show that the effect

of the viscoelastic element is to scale the elastic critical load by the factor ¢ m . This is

true in both the perfect case and the imperfect case. The behaviour of the perfect system

close to the zero equilibrium branch is analysed in greater detail. We determine conditions

on the system parameters A . and ¢ » that allow us to identify the regions in parameter

space where the linearised system has one real and two complex eigenvalues. We use these

results in Chapter 5 when constructing asymptotic approximations to the solution of the

linearised system.

In Chapter 4 we study the quasi-static approximation to the nonlinear system. We

extend Hayman’s work by assuming that y(0) is non-trivial. Under these conditions there

is some residual stress in the spring initially. This is another source of imperfection and

this has important consequences for the motion of the system. We show that under this

condition, the initial starting position of the system can be on any elastic equilibrium

curve. This results in a greater range of possible motions in comparison to those indicated

in [14, 15]. We show that the position of equilibrium curves of the quasi-static system is

equivalent to those of the dynamic system. However, the results of the quasi-static stability

analysis differ from the results predicted by the dynamic analysis. In particular, the

quasi-static analysis indicates stability at some equilibrium points, corresponding to large

deflections, where the dynamic analysis indicates that the system is unstable. This is true

for both the perfect and the imperfect quasi-static systems. We establish a relationship

between the dynamic elastic equilibria, the dynamic viscoelastic equilibria and the stability

of the quasi-static equilibria. In particular, we show that there are two points at which the

stability of the quasi-static equilibrium curve changes from stable to unstable. The first

point is equivalent to the critical point on the corresponding dynamic equilibrium curve

while the second change occurs at the intersection of the elastic critical point locus with
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the equilibrium curve.

In Chapter 5 we apply a perturbation technique, the multiple time scale method, to find
asymptotic approximations to the solution of the perfect model problem linearised about
zero. By imposing the condition that the relaxation time is large, we have a < |, giving us
a small parameter in the system. The results from Chapter 3 indicate that for « <1, the
characteristic equation has two complex roots and one realroot. This allows us to construct
a solution that has both oscillating and exponential components. We analyse the model
subject to three loading strategies; the constant load problem, the slowly varying load
problem and the parametric loading problem. The results of the constant load problem
agree with the analytic results from Chapter 3. In particular, we show that an exponential
term decays (grows) for values of load satisfying A< (>)AC resulting in a stable (unstable)
solution. In the slowly varying load problem we write the load as a function of e«, where
e « 1. We derive a condition which the time-dependent load must satisfy for the system
to remain stable. We show that in certain cases, the system remains stable even ifthe load
occasionally increases above the critical value for the constant load problem. Finally, we
look at the parametric load problem where the load is in the form, A = Ao+ ecos.: with
Ao a constant and e < 1. In the elastic case the problem reduces to the M athieu equation.
The solution to the M athieu equation can become unstable as a result of a resonance
effect due to the interaction of the natural frequency of the system with the frequency
of excitation «. The instabilities are due to oscillations with exponentially increasing
amplitude. We investigate the effect that including the viscoelastic element has on these
regions of instability. We need to distinguish between instabilities due to oscillations and
those due to creep. We show that the viscoelastic element has a stabilising effect on the
oscillations and that there is a minimum value of . below which the system has stable

oscillations.



Chapter 2

The Viscoelastic Link Model

2.1 Introduction

The second chapter of this thesis opens with an overview of the theory of viscoelasticity.
Desirable properties of viscoelastic materials are detailed and some rheological models
are discussed. The viscoelastic element that we use throughout the thesis, the Standard
Viscoelastic model, is analysed in detail and its constitutive equation is determined. This
equation is required to completely describe the Link model which is introduced later in the
chapter. The dynamic equations forthe Link model are formulated and supplemented with
the constitutive equation for the viscoelastic element, which results in a system comprising
of a first order and a second order differential equation. We allow the Link model to have
an initial imperfection. Finally, we apply transformations that non-dimensionalise the
system. For a more complete introduction to the theory of viscoelasticity and rheological
models, the reader is referred to Findley, Lai and Onaran [8], Fabrizio and Morro [7]
and Rabotnov [27]. A background to the mechanics of structures is found in Gere and

Timoshenko [9].

2.2 Viscoelasticity

The effective modeling of material behaviour requires that we can describe the relationship
between stress .. strain e and time. This relationship is given by the constitutive equation

for a given material. The behaviour of some solids can be described simply as elastic and
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some fluids as viscous. However, for materials that are intermediate between solids and

fluids wo need to be able to combine the properties of elasticity and viscosity. Such

materials are said to be viscoelastic. Viscoelastic materials demonstrate a wide range of

behaviour including the following, which are illustrated in Figure 2.1,

a) Instantaneous elasticity

b)

c)

d)

e)

f)

This is characterised by an instantaneous strain response to an applied jump in

stress.

Creep under constant stress

Creep is the slow, continuous increase in strain due to a constant stress.

Stress relaxation wider constant strain
Stress relaxation is characterised by a gradual decrease in stress when a material is

subjected to a constant strain.

Instantaneous recovery
This is characterised by an instantaneous decrease in strain following the removal of

an applied stress.

Delayed recovery
Upon removal of an applied stress there may be a slow, continuous recovery of creep

strain.

Perm.anent set
That part of the strain which is not recovered on removal of an applied stress is

referred to as permanent set.

M aterials with the properties b), c), e) and f) have memory in the sense that present

strain depends on the past history of stress. This is an important concept in the theory
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Figure 2.1: The strain response to a piecewise constant stress for a viscoelastic material. A
constant stress o0 is applied at time «» and removed at time ¢2- The strain response includes creep

and recovery features. Any, or all, of these responses may occur for a typical viscoelastic material.

of viscoelasticity. The total deformation of a material at time « depends not only on the

stress at time « but also on all previous stress inputs. Stress history can be written as
CI’*(S) IZocr(t — s) s > 0

where 07(0) is the current stress. Thus, if: is the present time, cr*s) is the stress s time
units in the past.

In this work | am concerned with materials that are linearly viscoelastic. A material is
said to be linearly viscoelastic if stress is proportional to strain and Boltzmann’s super-

position principle is satisfied. These conditions can be stated mathematically as
elciei + ] = Aga\ + CHa\

where e is the strain output, a» and a2 the stress inputs and ci,c2 are stress history
constants. The domain of e is the linear space of histories. Boltzmann’s superposition
principle states that the strain output due to the sum of two different stress histories is

equal to the sum of the strain outputs due to the individual stress histories.
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2.2.1 Rheological Models

Rheology is the science of deformation and flow. It is the study of those properties of
a material which determine its response to applied forces. Rheological models consisting
of various combinations of elastic springs and viscous dashpots are used to represent
viscoelastic materials. In this section we discuss three common rheological models; the
Maxwell model, the Voigt model and the Standard Viscoelastic model. The third model,
the Standard Viscoelastic model, is analysed in detail. Both the Maxwell and Voigt
models have a number of limitations when used to model solid-like materials. However,
the Standard Viscoelastic model retains the desirable features of the Maxwell and Voigt
models and overcomes their limitations. This model is used throughout the thesis. Its

constitutive equation is derived and its properties are detailed.

The Linear Elastic Spring

Linear elastic springs are used to model elastic behaviour in a material. The linear spring
is characterised by a time-independent elastic strain response which is proportional to the
stress input. This is illustrated in Figure 2.21 The stress-strain relationship is given by

Hooke’s Law,

a = Ee. (221)

The constant € is Young’s Modulus and is material dependent. The strain remains con-
stant over time and disappears when the stress is removed. Instantaneous elasticity and

recovery are the main characteristics of an elastic material.

IFig 2.2, in common with other diagrams which include a stress input graph, show the constant stress
cr0 beginning at time t = 0. This is for illustrative purposes. Both a and e are defined on (—o00,0) and can

be non-trivial there.
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Figure 2.2: (a) The Elastic Spring, (b) Strain response to a piecewise constant stress.

The Linear Viscous Dashpot

The dashpot is used to model viscous behaviour in fluids or fluid-like materials. The
stress-strain relationship is characterised by a strain rate response to an applied stress,

given by
a= je, (2.2.2)

where n\ is the constant of viscosity. This is illustrated in Figure 2.3. The dashpot. is
deformed continuously when a constant stress is applied. Unlike the elastic spring, this

deformation is not recoverable and remains as a permanent set.

The Maxwell Model

The Maxwell model consists of a linear spring and linear dashpot in series as shown in
Figure 2.4. Using (2.2.1), (2.2.2) and the fact that e = e\ + e2 we get the following

stress-strain relationship for the Maxwell model,
a
e - — +
E

The Maxwell model exhibits instantaneous elasticity (recovery) on loading (unloading).
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Figure 2.3: (a) The viscous dashpot. (b) The stress-strain relationship.

Figure 2.4: (a) The Maxwell Model, (b) Strain response to a constant stress, (c) Stress relaxation

due to constant strain.

10
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Figure 2.5: (a) The Voigt. Model, (b) Strain response to a constant stress.

A creep strain develops under constant stress and a permanent set remains o1l removal
of the stress. If a constant strain is maintained then stress relaxation occurs and stress

decays to zero.

The Voigt Model

The Voigt Model consists of a linear spring and linear dashpot in parallel as illustrated
in 2.5. Again, using (2.2.1), (2.2.2) and a —ai + €2, we get the following stress-strain
relationship for the Voigt model,

. E a
ed e= —
\% \
The Voigt model has a finite creep limit, cr’ME, and a decreasing strain rate under constant
stress.

While the Maxwell model and the Voigt model have been used to model viscoelastic

behaviour in materials, both models are specialised and do not have all the properties a) -

f) on page (i. The Maxwell model does not have a finite creep limit and there is 110 creep
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Figure 2.6: (a) The Standard Viscoelastic model, (b) The stress-strain relationship for the

standard model.

recovery. The strain due to creep remains as a permanent set once the applied stress is
removed. With the Voigt model there is no instantaneous elasticity (recovery) on loading

(unloading). Neither does this model exhibit stress relaxation.

2.2.2 The Standard Viscoelastic Model

The Standard Viscoelastic model is a 3-element model that, better reproduces the be-
haviour of real solids under load. This is the model that I will consider throughout t.his
work. The model and its properties are illustrated in Figure 2.6. The model consists of a

gpring-dashpot pair in parallel combined in series with a spring.

The Constitutive Equation

Let Ei and £2 be the spring constants and 7 the viscous constant. Let a be the applied

stress and c the total deformation. The deformation of the first spring satisfies (2.2.1), or
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The total stress on the spring-dashpot pair is

a=o\+ <,

with the spring satisfying

ay =

and the dashpot satisfying (2.2.2),

a2 = K2

Thus, for the spring-dashpot pair, (2.2.3) gives

a=-E2x@+ TR

The total deformation can be written as

e=ei + e2-
Differentiating (2.2.4) we get
e=d+ez,
(7 (T E-2
= — Homr——m e+
E\ V4 7

The Viscoelastic Link Model

Rearranging terms in (2.2.5) and multiplying across by e\ dgves

a+ E'+ B2a=Eye+ — €.
v n

Now, letting E = E\, a = (E\ -f EM)jr) and /i = Ei/i) in (2.2.6) we get

a+ acr = e (e + ne).

(2.2.3)

(2.2.4)

(2.2.0)

€25)

(2.2.7)

This is the differential form of the constitutive equation for the Standard Viscoelastic

model.

13
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The differential equation (2.2.7) predicts instantaneous elasticity followed by a time

dependent deformation which tends to the limiting value cro(E\+E 2)/ (E1E2), (see Fig.2.6).

If the load a is applied rapidly so that & and ¢ are large initially then a and e are negligible

and we get a ~ Eeé. The quantity E is the instantaneous modulus of elasticity. Ifthe stress

acts slowly over a long time period the rate of deformation is small and both < and ¢ become

negligible. Then (2.2.7) gives a ~ (E/j,/a)e.The quantity (E[i)/a = (E1E2)/ (Ei + E-j) is

the long term modulus of elasticity and it relates the stress and deformation in limiting

conditions. Solving (2.2.7) for the stress a(t) gives the integral representation of the

constitutive equation,

a) = Ee(t)-a{E-") [* (2.2.8)
n \]700

Letting Gg—E and Goo = E”i/a we can write (2.2.8) as

a(t) = Goe(t) + T G(t—rye(r) dr, (2.2.9)
J—®

where G(t) = Goo + {Gg—GO00)e~at,t > 0. We will refer to the long term modulus of
elasticity asGooe'= lim~oo G(t) and the instantaneous modulus ofelasticity as Go :=

G(0). We canrewrite the constitutive equation (2.2.7) in terms of Go andGoo as
a+ aa —Goe + aG”e. ¢ 210)
Solving (2.2.10) for the strain e(t) we get

e(t) = Joer(i) + f j(t — t)(t(t) dr, (2.2.11)

— o0
where J(t) = Jg+ (Jo — Joo)e_Mt, Jo = and J«, = G”™. We can think of j(t) as
a memory function. The first term in (2.2.11) represents the strain contribution from
the current stress. The term inside the integral represents the strain contribution from

all the previous stress inputs with J(t) determining the current effect of previous stress

14
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inputs. In general, J(t) is decreasing function, indicating a fading memory property. For

the Standard Viscoelastic element we have

i(t) = fido- Joy**m

Properties of the Standard Viscoelastic Model

The 3-element model exhibits the following characteristics.
1. Instantaneous Elasticity and Recovery.

Defining the stress function a[l) by

t<o,
(2.2.12)
o, t> 0,
where a$ is constant and usiug (2.2.11) we can write the strain as
e(t) = aa| Jo- n(J0- Joo) ~ e '4(t-nNdr|,
="M {Jo- (Jo- JooKl - e-'If)} » (2.2.13)

Setting t = 0 in (2.2.13) gives the instantaneous deformation
e(0) = <0Jo = s

This instantaneous deformation is recovered on removal of the stress (apply the Boltzmann
Superposition Principle).

2. Finite Creep Limit and Decreasing Strain Rate.

Under conditionsof constant stress cto, the strain increases at a decreasing rate until it

leaches a finitelimit.Taking the limit as t —o00 in (2.2.13) we get

lim e(t) = aoJoc -
t->00 Croo

15
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where G<x, is the long-term modulus of elasticity. Differentiating (2.2.13) we get the

(decreasing) strain rate,

e(t) = -iur0(JO0- Joo)e~Ild = L

3. Stress Relaxation.
Stress relaxation is a characteristic of certain viscoelastic materials whereby the stress
required to maintain a constant strain decreases over time. If a unit strain is imposed at

time t = 0 and maintained for all time t > 0O, then from (2.2.9) we have
er) = Gg+ f G(t —r)dr = G(t).
Jo
So, the function
G(t) = Goo + (Go — GO00)e~at, (2.2.14)

is the stress relaxation function with a = |/tT, where tr is the relaxation time. It demon-

strates that the stress required to maintain a constant strain is exponentially decreasing.

2.3 The Link Model

The Link model that is investigated in this thesis has been analysed by various authors
in the literature. Hunt and Thompson [18] looks at the static elastic case and derives
equilibrium equations. He does not consider the dynamic elastic case or include the vis-
coelastic element. Hayman [14, 15] considers the quasi-static equations of the Link model
with a Maxwell viscoelastic element. He ignores the time dependence due to inertia. In
this thesis we are interested in the dynamics of the viscoelastic Link model with a Stan-
dard Viscoelastic element. The load is allowed to be time dependent. In the following
section the dynamic equations for the Link model with a Standard Viscoelastic element

and time-dependent load are formulated.

16
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Figure 2.7: The Link Model with Standard Viscoelastic element.

2.3.1 Formulation of the Dynamic Equations

Consider the Link model in Figure 2.7. A light rigid rod of length a is hinged at O. The
end A is connected to the point B by a Standard Viscoelastic element. OB is of length a.
The viscoelastic element exerts a force a(t) in the direction AB. A time-dependent load
P(t) acts vertically downward at A. Conservation of angular momentum about 0 requires

that
—ma20(t) = —aP(t) sin£2(i) - acr(t) sin /i), (2,3.1)

where 9 —?r/4 —6/2. Now

1 COSo

s> = sin(——-) = .
4 2 ~2 \/l + sin9

Substituting for $in (2.3.1) and simplifying gives the following dynamic equation,
/1CSq . (2.3.2)
rna y/2ma Vv 1 + SIN6
The length of AB is

2a C0S () — ays2(1 + siuo).

17
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As a measure of strain, we choose extension from a natural reference. This natural ref-
erence is chosen so that it is stress free. Ideally we want 6 = 0 to be the reference state,
so that the natural length of AB would be ay/2. However, later we want to study an
imperfection in the Link model and therefore we allow the natural state to be 6 = O,

which we consider small. The extension, measured from the reference state, is given by
2acos (J—2acosfa= aVvV2~\/l + sin6 - v/l + sinfli}, (2.3.3)
where fa = 7r74 — 0,-/2. From (2.3.3), we write the strain as
e = \/T+~sin0 — \/I + sin/?,. (2.3.4)

We assume that the viscoelastic element is composed of a Standard Viscoelastic material.
The stress a(t) satisfies (2.2.10) with initial condition

rO
cr(0) = Goe(0) - a(GO0- G«,) / e(r)e“r(iT,
J—aD
which can be determined from the initial strain history. Define
ac(t) = a(t) - GOe(t). (2.3.5)
Differentiating (2.3.5) and using (2.2.10) we can write the constitutive equation as

qgc+acrc= —a(G0- G"e. (2.3.6)

with erc(0) = —a(Go — Goo) e(r)earcZr. Note that crc(0)—0 as a — 0. We can think
of ac as the stress component due to creep. From (2.3.6) and (2.3.2), we see that the

equations of motion are

n p mn Go {\/l + sin0 —y/l + sin0,} cosO0 ac cos 9 .

6 = smo I . — e = m —=m (z.0.ia)
ma V2ma vl + sino \/2m avl + sino

jgc= -a (ac+ (Go- GoQ |V I + sine> i/l + sin(9" . (2.3.7b)

18
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We now transform the system into one involving dimensionless variables. Define, the

following transformations.

©= < yHa

\rs\ nt / - V2rna
xIt)- p~ N z tle;'a =1 -
Go
/1 = Oi.

Applying the above transformations to (2.3.7) gives the non-dimensional system,

L vi + sina - s/l + sini/ COSX thtQ s

X=Ai smi—CoSX---------- L — : —w, (’%.3.8a)
>/l + sinar x/ITsEi

y=—ajy + G62™VI+sinx —VI +sinv'jj . (2.3.8b)

with initial conditions t-(0) = Ci, ¢(0) — (2, 3/(0) = 7 and initial imperfection u. We
call the system with u / O the imperfect system. In the limit as u — 0 the equations
for the imperfect system tend to those of the perfect system. For ease of notation we
drop the" from a for the remainder of the thesis. It is useful to note the effect that 11011-
dimensionalising of the variables has on the moduli of elasticity. They have been scaled
by the instantaneous modulus Go so that the instantaneous modulus is now equal to 1

and the long-term modulus is Gm — (?00/C?0>
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The Link Model: A Dynamic Analysis

3.1 Introduction

In this chapter we analyse the dynamic system for the Link model. We begin with the
elastic system without imperfection. We show that the system is conservative and use this
property to calculate the equilibria of the system. The stability properties of the equilibria
are also determined. We identify and discuss the bifurcation points of the elastic system.
In Section 3.3 we analyse the perfect viscoelastic system. Again, the equilibria and their
properties are determined. We discuss the effect that the introduction of the viscoelastic
element has on the behaviour of the system. Centre manifold theory is used to identify
the type of bifurcation that occurs in the viscoelastic system, with some details of the
calculations given in Appendix C. In Section 3.4 we look at the imperfect elastic and
viscoelastic models. We compare the equilibria with those found in the perfect case. In
appendix A, we give an overview of the theory of ordinary differential equations, and
introduce elements of the theory that are used in this chapter. For a fuller account the
reader is referred to Guckenheimer and Holmes [11], Hale and Kogak [13] and Glendinning
[10]. The stability of the equilibria for the viscoelastic system is determined using the

Routh-Hurwitz criterion, which is detailed in Appendix B.
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3.2 The Dynamic Elastic System

The dynamic elastic system is obtained by letting &—0 in (2.3.8). Then y(t) = 0, Also,
since oc(0) -* O as a — 0 we have ?//) = 0. We consider the constant load model so that

the system is autonomous. The model equation is

. N/TTSHTX - V. i
X = AsSINX —CO0S X ------- 2 -, ./_T_I'_S_,___u_’: (3.2.1)
V1 + sinX

with initial conditions x(0) = (i and :5i;(0) = (2- We first consider the perfect case by

setting v = 0. The imperfect system is discussed in Section 3.4.

3.2.1 Conservation of Energy

If we let
. / V'l +sina:- VI + sin
vix, A — — Asma—cosa————-7- ————(—
\ V1i+ SIM /

then the perfect elastic system can be written in the form
X = -«(a, A), (3.2.2)
thus is conservative (see A.6). The energy function is given by
E(x,X, A) = X2 + F(a;,A),
where

fig
/ v(s,X)ds
Jo

y(:c, A)

—A(l —cosa) + (VI +sina—1j (3.2.3)

is the potential energy function. The energy function E(X, x,A) is a constant ol the motion

of the system.
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Figure 3.1: Tim function Ap;(x).

3.2.2 Equilibria

The equilibrium points x of the conservative system satisfy V'(x, A) = 0. The equation

0 -l fas A) = Asinae--t , (3.2.4)
y | -fsinx

results in three branches of equilibria for —| <x < 47

e the branch {(0, A) : A£ R);
e the branch {(m,A) : Ae R};

e the branch{(e, Aje (as)) : A=AU'(.t),—| < X <

where

| + sinx— .
Ab(e) = T Hsinx—i, (3.2.5)
tanxv 1+ sing

In order to plot the branch (x,Ae (x)) we need to know some properties of A«.

Proposition 1. Thefunction A : (—tt/2,37r/2) —> ii given by (3.2.5) is a strictly
decreasing Clinvertible functionwith A/2(0) = 1/2,Ab(®/2) = o, Ay(r) = —1/2 and

dAu/dx[—n/2+) = oo, A/t (37r/2_) = —oo0.
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Figure 3.2: The equilibrium curves of tlio elastic system.

The proofto this proposition is straightforward and the function A/{/mkis plotted in Figure
3.1. The branches of equilibria are therefore as drawn in Figure 3.2. The (x, A/,;(X))
branch intersects the (0, A) branch at (<s,A) = (0,1/2) and intersects the (r,A) branch at,

(s, A) = (,—1/2).

3.2.3 Stability Analysis of the Equilibria

We wish to determine the stability of equilibrium points along each of the three branches
of equilibria. We are interested in finding the non-liyperbolic equilibrium points and

determining if a bifurcation occurs at any of these points.

Proposition 2. Suppose that x is an equilibrium point, of the elastic, conservative, system
(3.2.2), implying that x is also a critical point of the potential function x —V (s, A). Then,
(i) x is an unstable saddle point if A) < 0.1

(it) x is an stable centre, point if Vxx(x, A) > 0.

(in) x is an unstable cusp ifVxx(x, A) — 0 and, Ve (e,A) ™ O.

'The x-subscript. denotes partial differentiation with respect to X. Therefore, Vikx = d2V/dx\ etc.
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Thus, stable centre points correspond to minimum points of the potential function while
at maximum points of the potential we have unstable saddle points. The second derivative

of the potential function (3.2.3) is

re \\ = i +sin® —1 1 C0S2 ;
\%(X{X, A) = —AcosX—sina;y . — b ? (3.2.6)
v/1 +sin.'c 2 (i+sin:c)2

Proposition 3. Consider the dynamic autonomous elastic system (3.2.2).
a. The equilibria (0, A) are stable for A < 1/2 and unstable for A > 1/2.
b. The equilibria (ir, A) are stable for A > —1/2 and unstable for A< - 1/2.

c. The equilibria (A~1(A),A) are stable for A > 1/2 and A < —1/2, and unstable for

-1/2 < A< 1/2.

The points (0,1/2) and (v, —1/2) are unstable cusp points, and non-hyperbolic equilibria.

Proof, a.) For (X, A) satisfying {(0,A) : As R} we get VXX{Q A) = —(A —5). Now, from
proposition 2, we have

(i) For A< |, Vxx(0,A) > 0, implying that (0, A) is a stable centre point.

(ii) For A > ijj, Vxx(0, A) < 0, implying that (0, A) is an unstable saddle point.

(ii) For A = 5, Vxx(0,1/2) = 0 and V~~0, 1/2) ™ 0, hence (0,1/2) is a non-hyperbolic,
unstable cusp point .

b.) For (x, A) satisfying {(7r, A) : A GR} we get Vxx(vr, A) = A+”~. Again, using proposition
2, we have,

(i) For A> —s5, Vxx(ir, A) > 0, implying that (tt A) is a stable centre point.

(ii) For A < -i, Vxx{tt A) < 0O, implying that (ir, A) is an unstable saddle point.

(iii) For A = —|, Vxx(tt A) = 0 and Vxxx(tg A) ™ 0, hence (ff, -1/2) is a non-hyperbolic,

unstable cusp point.
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Figure 3.li: The function Mnx(x, &.' (a;))

c.) The third branch of equilibria has a A dependency. We need to examine the (.bird
derivative of the potential, Vxxxi™i )i 'n order to be able to identify fixed points and
regions of increase and decrease of (3.2.6). Differentiating (3.2.6) and substituting (3.2.5)

for A we get

WxXxx(x, AB(x)) = - j — (°S i, /2 < X < 3t/2,
w1 §-sino;)*

which has the same sign as —cosx. Thus,

Kttz'mAe)< O for —| < x < | implying that Wx(X, Ajs) is decreasing;

« Vxxx(xi A;;)= Ofor x = | implying that Vxr.(x, A7?) has a critical point;

Wxx{"i Ac)> 0 for | < x < ~ implying that Vxx(x, An) is increasing;

Vxx{%, A#) = O for x = 0,x = .

This information is used to plot V:K{X, A/,)) in Figure 3.3 and we s<gethat

(i) For x G (—|,())U (mr, 4~) we have Vxx(x,Ar) > 0 implying that thebranch of equilibria
over this range of x correspond to stable centre points.

(ii) For x G (0,7r) we have Vxx(x, A#) < 0 implying that the branch of equilibria over this

range of x correspond to unstable saddle points.
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min. max.
A< -1/2 0, A~1 n
-1/2 < A< 1/2 0O, 7T Ag

A> 1/2 Ag ,mT O

Table 3.1: The position of local minimum and maximum points of V(x, A) for different A values.
We can clearly see the interchange between minimum and maximum points, indicating the change

in stability of equilibrium points as A varies.

(iii) For x = o, 7w we have Vxx(x,Ae) = 0 and Vxxx(x,Ae) ~ 0, hence these equilibria are

unstable cusp points. O

So, we encounter a change in the stability type of equilibria on the (0, A) branch at A = 1/2
and on the (7r, A) branch at A = —1/2, indicating that the equilibrium points (a:;, A) =
(0,1/72) and (x,X) = (n, —1/2) are bifurcation points for the system. These equilibria
correspond to the intersection points of the (x,Ae {x)) branch with the (0, A) and (it, A)
branches. The change in stability can be clearly seen by examining the critical points of
the potential function for various values of A, as shown in Figure 3.5, Figure 3.6 and Figure
3.4. The local minimum and maximum points are given in Table 3.1. For —1/2 < A< 1/2,
V(-, A) has local minima at o,7r and a local maximum at A~1(A). As A increases through
A = 1/2, the local minimum at O interchanges with the local maximum at Agi1(A). The
local minimum at « remains unchanged. However, as A decreases through A= —1/2, we
encounter an interchange between the the local minima at n and the local maximum at
A gX(A). The number of equilibria points changes from two to one and back to two as we
pass through the parameter values A = £1/2. These bifurcations are discussed in more

detail in the next section.
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Figure 3.4: Potential function K('c, A) for A < —1/2.

Figure 3.5: Potential function V(x, A) for —1/2 < A< 1/2.

Figure 3.6: Potential function V(X, A) for A > 1/2.
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Xx=0 X — 7T

Figure 3.7: Bifurcation diagram for the elastic system. Solid lines indicate stable equilibrium
points and dashed lines indicate unstable equilibrium points. The transcritical bifurcations can be

seen at (a;, A) = (0,1/2) and (a;, A) = (t;, —1/2)

3.2.4 Discussion of Bifurcations

We have identified 3 branches of equilibria for the system, and the stability type of the
equilibria on each branch has been determined. The equilibria are plotted in the bifurca-
tion diagram in Figure 3.7

At a bifurcation point there is a qualitative change in the topological features of the
flow of the system. In particular we are interested in values of A at which the number
and/or type of equilibrium points changes. We have already seen that the equilibrium
point (X,A) = (0,]) is non-hyperbolic and is a bifurcation point for the system. At this
bifurcation point two branches of equilibria coalesce and a change is stability occurs. The
origin changes from being stable to unstable and stability is transferred to the branch
(X, Ae (x)). This type of bifurcation is called a transcritical bifurcation. There is a reduc-
tion in the number of equilibrium points from two to one at the bifurcation point. As A

increases through A = 1/2 the number of equilibrium points increases to two again. A

28



Chapter 3, Section 3 The Link Model: A Dynamic Analysis

similar bifurcation occurs at (X,X) = (wr,—1/2), where the (x,Ae (x)) branch intersects

the (wr?A) branch.

3.3 The Dynamic Viscoelastic System

The dynamic viscoelastic system without imperfection is

. vT Tsmx-1 COS a; , .

X = Asinx —cosa; e =y, (3.3.1a)
v/l + sina; v | + sin;c

y=—al[y + 6 \/i+ sina; —1 V (3.3.1b)

0 < a is the normalised relaxation constant and 3 —1 — Gm, where o < Gm < 1 is the

normalised long term modulus of elasticity associated with the viscoelastic element.

3.3.1 Equilibria of the Viscoelastic System

Let x = (X,y,X) be an equilibrium point for the viscoelastic system (3.3.1). From (3.3.1b)

we see that equilibrium points satisfy
y=—3 /Il + sinag— 1. (3.3.2)

For the remainder of this analysis we will refer totheequilibria(X,y(X), A) in terms
of (a:,A). We can view this as aprojection of theequilibria onto therrA-plane. By

substituting (3.3.2) into (3.3.1a) we have that

As'inX‘—,(\BmcosX fsm.a;_—l = 0, (3.3.3)
v 1+ sing

giving a relationship between X and A which defines equilibrium curves. We notice imme-
diately that (3.3.3) is equivalent to (3.2.4) with A replaced by A/Gm. Hence, it follows

that there are 3 branches of equilibrium points for the viscoelastic case,

e the branch {(0,A) : A€ R};
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e the branch {(mr, A) : AGR};
e the branch {(x, A™(x)) :A= Ay(x), —| < x < 4p};

where

Gm (\/L+ sina - l)
Mz) = — ——, | (3.3.4)
) tanxvl + sins

By proposition 1, Ay(x) is a strictly decreasing C2 invertible function with Ay (0) — Gm/2,
Ay(w/2) = o,Ay(mr) = —Gm/2 and dAy/dx(—mn/2+) = 00, dAy/dx(37r/2_) = —o00. Thus,
the (x, Ay(x)) branch of equilibria intersects the (0, A) branch at (0, Gm/2) and the point
of intersection of the (X,Av(x)) branch with the (T, A) branch is (tt, —Gm/2). We can
compare the equilibria of the elastic system to those of theviscoelasticsystem. We see
that the {(0,A) : A G R} and {(ir,A) : A GR} branches ofequilibria ofthe elastic
system are retained for the viscoelastic system. However, the branch (x, Ay(x)) satisfies
Ay(x) < Ae(x) for —7t/2 < x < 772 and Ay(x) > Aj%(x) for 7t/2 < x < 3n/2. The
viscoelastic equilibria are plotted in Fig 3.8. The stability properties are determined in

the next section.

3.3.2 Stability Analysis of the Equilibria

The stability type of the equilibrium points of the perfect viscoelastic system can be deter-
mined from the linearisation of (3.3.1). In particular, we need to calculate the eigenvalues

of the Jacobian matrix. We write the non-linear system in the form
x = f(x). (3.3.5)

Now, let x = x + £ where x is an equilibrium point of (3.3.5) and | £ |<C 1. Then £

approximately satisfies
£= £/(DE,
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Figure 3.8: The- equilibrium branches of the perfect viscoelastic system. Solid lines indicate stable

equilibrium points while the dashed lines indicate unstable equilibrium points.

the linearisation about x. Here Df(x), which is the Jacobian matrix evaluated at. x: is

given by
(0} 1 0
Df(x) = Acosx+sinf+~ | A2 0 (3.3.6)
fi i
S Viis o

where y(x) is given by (3.3.2). The characteristic equation A(/>) of Df(x) is
A(p) — pA+ (Yp2 + C.AP + ttCo, (3.3.7)

where

VI + s'mx(y(x) —1) + p cos2X

= - AcosX + sinx + .
2 1+ sinX

(3.3.8)

and

vi o+ SINX(Y(X) —1)

Cl=- Acosx+sinx+ (3.3.9)

The eigenvalues of (3.3.6) are the roots of the characteristic equation. We want to déter-

mine conditions on the model parameters A and a given the position of the eigenvalues
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in the complex plane. In this way we can identify values of the parameters for which sta-
ble and unstable solutions exist. We examine each of the three branches of equilibria
separately. The eigenvalue analysis indicates the stability of hyperbolic equilibria but for
non-hyperbolic equilibrium points we need to use the Centre Manifold theorem to de-
termine the behaviour of the system. Later in chapter 5 we determine solutions to the
linearised system £ = D f(0)£. For this reason we investigate the equilibrium points on
the branch (x, A) = (0, A) more closely. In particular, we determine a relationship between

Gm,A and a for which there exists of a pair of complex roots and one other root.

The {(0, A : A€Rj branch of equilibria
By setting X = 0in (3.3.8) and (3.3.9), we get the characteristic equation
A(p) = p3+ ap2+ (~-\)p + - A (3.3.10)

We can determine certain properties of the eigenvalues of (3.3.6) by applying the Routh-
Hurwitz criterion to A (p). Also using Rolle’'s theorem we can determine conditions on
A, Gm and a for which complex eigenvalues will occur. Note that there is always at least

one real eigenvalue and that complex eigenvalues will occur as conjugate pairs.
Proposition 4. The characteristic equation (3.3.10) has

« Three roots with negative real parts if A<

* Two roots with negative real parts and a root at the origin if A= ij—

« Two roots with negative real parts and one positive real root if A>

For a < \J3(™ — A) there exists a pair of complex conjugate roots to (3.3.10) for all

Gm < 1. Otherwise, a complex pair of roots will exist for Gm < G- and Gm > G+ where
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Proof. Applying the Routh-Hurwitz criterion to (3.3.10) we have

D\ = a > 0,
a a(-~-A) 1
d2= -
. = 2
1 I —A
a a(~f- - A 0
1 1-A 0
0 a a(% -

2/1 Gm..Gm

=° <“T XTI - Aj
The Di are strictly positive for A < Gm/2. Thus, all roots of the characteristic equation
have negative real parts. For A = we have £>3 = 0. A direct calculation shows us that
for this value of A there is one zero root and 2 roots with negative real parts. Finally, for
A > ~  the sequence 1, D\, DyD2,aco has sign sequence implying 1 root with
positive real part for equilibria on the branch {(0, A) : A > ~p-}.

We can investigate the roots further using Rolle’s Theorem. The first derivative of A (p)

is given by

f =V +29p+ (I - a)
with roots ax = —a/3 & a2—3(™ —A)/3. The roots of dA(p)/dp are complex for
a < y'3(] —A). Rolle’s Theorem implies that A(p) has complex roots when this condition

is satisfied. Also, A (p) has 2 equal real roots and another real root for Gm = G% where
G+ = (9a —4as + 36aA + \f2i2al+ sA —3)t)/27a. Thus, a pair of complex roots exists

for Gm satisfying Gm < G-, Gm > G+ (see Appendix B). O

Proposition 4 implies that at equilibrium points satisfying A < Gm/2 there exists a three-

dimensional stable manifold while for A > Gm/2 there exists a two-dimensional stable man-
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&

Figure 3.9: Regions in parameter space where real and complex toots exist for A < 1/2. The
curves G+ and G_, which represent the transition between real and comex roots, are shown. In
the region marked C, the characteristic equation has a pair of complex roots and one real root

while in the the region marked R, the characteristic equation has 3 real roofs.

Figure 3.10: Regions in parameter space where real and complex roots exist for the limiting case,
A = 1/2. Again we show the curves G+ and G- . The characteristic equation lias a pair of complex

roots and one real root in the region marked C. while in the the region marked R, the characteristic

equation has 3 real roots.
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ifold and a one-dimensional unstable manifold. The equilibrium point (x,A) = (0, Gm/2)

has a 2 dimensional stable manifold and a one-dimensional centre manifold. We will in-

vestigate the behaviour of the system on the centre manifold later in this chapter. In

Figure 3.9 we plot G+ vs. a for a typical value of A G (0,1/2) and in Figure 3.10 we plot

Gz* vs. a in the limiting case where A = 1/2. The curves Gm = Gx mark the transition

between real and complex roots. At the intersection of the curves we have 3 equal real

roots. On the remainder of the curves there are 2 equal real roots and one other root.

From these diagrams we can identify the parameter values at which the characteristic

equation (3.3.10) has a pair of complex roots. In particular, for A < 1/2 we can find some

0 < a « 1 such that a pair of complex roots exists. This fact is used when we construct

approximate solutions to the constant load model problem in chapter 5.

The {(a;,Ay (a:)) :A= Ay (ai)),—8 < x < branch of equilibria

We need to calculate the eigenvalues of the Jacobian matrix (3.3.6) evaluated at the equi-

librium point (a:;, Ay (a;)). Substituting Ay(al) for A and (3.3.2) for y in the characteristic

equation (3.3.7) and simplifying, we get

A(p) = p3+ ap2+ c\p + acQO, (3.3.11)
where
®= Ay (a;) cos a + sin a; N -fAsina; A AvT+"sing — 1A+1A
‘ B cos2x_
21+ smx
and
- /= - B ¥ A B 111 T S An—— —— X N
ca= Ay (i) cosx + sm i — (p(v1i+ smi—1)+ 1)

Proposition 5. The characteristic equation (3.3.11) has
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Figure 3.11: Graphs of D2 and Co indicating positive and negative regions.

« Three roots with negative real parts if x E (—§, 0) U (7r, 47);
« Two roots with negative real parts and a root at the origin ifx = 0 or x = n;

e« Two roots with negative real parts and one positive real root if x 6 (0,7r).

Proof. The Routh-Hurwitz condition is applied to (3.3.11). We need to examine the signs

of D[,D2 and £33, where

D\ = a,
_al3 cos'2x
2 2 14-sinX1
D-i - aD-2Co

The plots in Figure 3.11 indicate the sign of D2 and cq where £>3 = ctD™Co- Clearly, the D,
are strictly positive for s € (—1,0) U (7r, 4) implying that all roots of the characteristic
equation have negative real parts. For 5 = 0 and X —n, is zero. We calculate the
eigenvalues directly to get a root. at. the origin and two roots with negative real parts.
For x e (0,7t/2) U (t/2,t) the sequence 1,D \,D\D2,0lcq has sign sequence

implying that there is one root with positive real part. At x = n/2 we have D2 — 0



Chapter 3, Section 3 The Link Model: A Dynamic Analysis

and so we need to calculate the root explicitly. We get three real roots, p* = —a and
p\ = 1 + (/3(1 —-V2) — 1)/\/2. Thus, for X G (0, tt/2) we have one root withpositive
real part and two roots with negative real part. O

The {(r,A) : A GR} branch of equilibria

By setting X = n in (3.3.8) and (3.3.9), the characteristic equation (3.3.7) becomes

A(p) = p3+ apz - - A)p- «(™p - A (3.3.12)

We state without proof the following proposition. Theproof issimilar to that of Propo-

sition 4.

Proposition 6. The characteristic equation (3.3.12) will have

e Three roots with, negative real parts if A > —

e Two roots with negative real parts and a root at theorigin if A= —% L-

- Two roots with negative real parts and one positivereal root if A < —~jp.

3.3.3 Stability Analysis of Bifurcation Points

We have determined that the points (x, A) = (0,Gm/2) and (X,X) = (n, —Gm/2) are
bifurcation points of the viscoelastic system, occurring at the intersection of 2 branches
of equilibria. The stability analysis indicates that at each of these points there is a two-
dimensional stable manifold and a one-dimensional centre manifold. We wish to analyse
the behaviour of the system at the bifurcation points. The Centre Manifold Theorem
(see Appendix A) implies that at a bifurcation point the system can be written locally
in co-ordinates on the (stable,unstable and centre) invariant manifolds Ws x Wu x W c.

The motion on W s is towards the fixed point and the motion on Wu is away from the
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fixed point. So the local behaviour can be understood by looking at the motion on the
centre manifold. In this section we determine the centre manifold at the equilibrium point
(X, A) = (0,Gm/2). A similar analysis is used to calculate the centre manifold at second

bifurcation point (x,A) = (tt, —Gm/2).

The Centre Manifold at (x,X) = (0,Gm/2)

The parameter f,= A— Gm/2 is introduced so that the bifurcation point is translated to

the origin. The equation

is added to the system. This will allow us to describe the dynamics close to i = 0. New

co-ordinates (u,

system is
f oA a W \
! 2 Vf-(t)2 0 ° v
v vV of- ()2 - f 00 .\ f2(u,v,w,n)
w 0 0 00 w f3(u,v,w,n)
i J 0 0 00, \"/7 \ 0

(3.3.13)
Details of the canonical transformation and the functions /i, /72, f?, and are given in the

appendix. The center manifold can be represented locally as

We = {(u,V,w, V) = H(w, /i), -ff(0,0) = 0,DH(0,0) = 0} (3.3.14)

where = (hi(w, fi),h2(w, fj,)) and DH is the Jacobian matrix of The

conditions on H(w,fj,) given in (3.3.14) imply that h\ and h2 can be written as

hi = huw + hi2wn + hi3H + .. (3.3.15)
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and

(3.3.16)

where the hij are constants to be determined. Thus, on the center manifold the flow is

approximated by

\
™ I3{0\ (w, ) ,h2(wtfi),w,/x) \

Vil V 0 /

Following Glettdimiing [10], we calculate the coefficients hij to be

2/32- 3P + a2(/33 —3/3+ 6)

/in=
4/32

. AR2 - 9/3+ «2(/723 - 3/3+ 6)
hii = -a

nk - 2c2
fb=2
e R2 7

«(3MP- 2a2
127 — < )

wJi- (Ffw ~

/ib= "3 = 0.

Substituting the /ij from (3.3.18) into (3.3.15) and (3.3.16) gives

202 - 3/3+ a2(/33 - 3/9+6). 2 , NB - 2a2
N

N—nrr(N)m) — 4/32

w= h2p, fij --

\B- (SW

a(3/3—2a2) =2 4/32 - 9/3+ a2(/33 - 3/3+ 6)
7 = —_

(3.3.17)

(3.3.18a)

(3.3.18b)

(3.3.18¢)

(3.3.18d)

(3.3.18e)

A local approximation to the flow on the centre manifold is found by substituting (3.3.15),

(3.3.16) and (3.3.18) into

w = 73(/mw, m), iIZwy/).),wn) = Qwfi),
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Now, a> 0 andO < j3<1sothe coefficientsof w2and wfj, in (3.3.19) are positive. Hence,

on the center manifold w = C(w, fi) we have

C(0,0)= & ©,0)="(0,0)=Gm =0,

v 9 A 9rv
cw, =-{1 + -g(- - /7)) >0, CWl= — > o,

and thus C(w,fi) satisfies the conditions for a transcritical bifurcation at = (0,0)

(see [10]). Setting ii, = 0, we get the equation of motion on the centre manifold,

w=Ff(l +|(|-«)<»2+-.- (3-3.20)

where f(l + j|(8§~ £0)>0. From (3.3.20) we see that the origin is stable if approached
from w < o (i.e. motion is towards the origin), and unstable if approached from 4ia > o.
Thus, the bifurcation point at (x,A) = (0, Grn/2) is unstable. The calculations for the
centre manifold at the bifurcation point (x, A) = (n, —Gm/2) proceed in the same fashion
and we establish that at this point we also have a transcritical bifurcation and that this

bifurcation point is unstable.

3.4 The Imperfect Link Model

In this section we discuss the Link model with an initial imperfection. We are interested
in the elastic and viscoelastic equilibrium curves and their stability properties. A similar
imperfect elastic model is discussed informally in Hunt and Thompson [18]. Hayman
[14, 15] discusses the imperfect viscoelastic equilibria in his quasi-static analysis of the
model. However, the formal analysis there is incomplete. The results of the equilibrium

analysis in this section are used in the quasi-static analysis of the system in Chapter 4.
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3.4.1 The Imperfect Elastic System

Recall that the imperfect model equations are formulated on the assumption that the Link
model contains an initial imperfection u, where v is the angle that the rod OA makes with
the vertical while in the unloaded position (see Figure 2.7). The equation for the imperfect

elastic system is

. y/1 + sinrr — v'i + sini/
X = Asin X —cos X (3.4.1)
VI + sinx

We assume that the initial imperfection satisfies u > 0. The perfect system, (3.2.2), is

recovered by taking the limit as v —¥0 in (3.4.1)

Equilibrium Analysis

The equilibrium points (x, A) of (3.4.1) satisfy

) v/l + sinx —y/l + sin”
0= F(X,A) := Asinx — cosx (3.4.2)
\J1 + sinx

We can solve (3.4.2) to get an expression for A in terms of x,

y/l + sinx —\/I + sinv
(3.4.3)

The equilibria (x,AE(X)) lie on a curve in phase space. Two typical equilibrium curves
are shown in Figure 3.12. The equilibrium curve (x, A.e(x)) for the perfect elastic case is
also shown for comparison. For a given imperfection v, the equilibrium curve intersects
the x-axis at u) increases to a maximum and then decreases, cutting the x-axis at 7r/2.

We have the following,

Theorem 1. For 0 < u < 7t/2, the function AB : (0, vr/2) —R defined in (3.4.3) satisfies
AE(x) > 0 for v < x < 7t/2, and has a single maximum point at xc £ The

equilibria (x,Af (x)) are stable if 0 < x < xc and unstable ifxc< x < /2.
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Figure 3.12: Two typical imperfect elastic equilibrium curves are plotted with the perfect elastic

equilibrium curve, (x, Ae (x)), shown for comparison.

Proof. The stability of the equilibrium points is determined by examining the sign of
Fx(x, AE(X)).2 The stability changes if FXx = 0 and F\x ~ 0. We have Fx[x, AE(X)) =
—F\(X,A"E(X))dAE (x)/dx = sinxdAE(x)/dx and F\x = cosx ~ 0 for v < X < wvr/2.
Therefore a change in stability will occur at (a;*, A*) satisfying dAE{x*))/dx = 0, with A* =
AE(x*). This is the maximum point of the equilibrium curve A = AE(X). To determine
stability it is sufficient to check the sign of Fx(x, AE(X)) at x = v and x = ir/2. We have
Fx(v, Ae(v)) < 0 implying stable centre points for u < x < xc and Fx(n/2, Ae (&/2)) > 0

implying unstable saddle points for xc < x < itj2. O

The stability of the imperfect equilibrium curve is shown in Figure 3.13. We define
the critical point locus to be the locus of critical points of the equilibrium curves defined
for 0 < v < 7t/2. Rearranging (3.4.3) and differentiating gives us the following implicit
equation for the critical point locus,

Qr 1

ox I_(Atanx — 1) \/I + sinx =0. (3.4.4)

Both (3.4.4) and (3.4.2) are referred to in the quasi-static analysis of Chapter 4. In Figure

2The subscript denotes partial differentiation with respect to that variable. Thus Fx = dF/dx, etc.
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Figure 3.13: Stability of thu imperfect equilibrium curve. Stable(unstable) points arc. indicated
by solid(dashed) curves. The imperfect elastic critical load is indicated by A,. The perfect case

curve is again included for comparison.

3.14 we plot both the equilibrium curves and the critical point locus. The critical point
locus (dashed line) and the perfect case equilibrium curve are included. We see that the
critical point locus is a decreasing function. This indicates that as the imperfection in-

creases, we have a reduction in the critical load required to cause buckling of the structure.

3.4.2 The Imperfect Viscoelastic System

The equilibrium curves for the imperfect viscoelastic system were studied by Hayman
[14, 15] in his quasi-static analysis of the link model. The imperfect elastic equations are

supplemented with the creep equation to give

e /1 + sina,— \/l + sinu .

x = A{i)sinx - cost-E-----S-lp,a’ ) L Cos® %, (3.4.59)
V1 + sinx V1+smx

= —a{y 4-/3(\/I + sina; — \/I + sini/)}. (3.4.5b)
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Chapter 3, Section 4

Figure 3.14: The imperfect equilibrium curves and the critical point locus (dashed line ) for the
elastic and viscoelastic systems. The perfect case equilibrium curve is included for comparison.

The perfect critical load is denoted by A* In the elastic case we have A* = 1/2 while in the

viscoelastic: case we have A* = G',,,/2.
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The equilibrium points for the imperfect viscoelastic system are in the form x = (X, Yy, A).

Using (3.4.5b), we can express y in terms of X to get
y(x) = —3 |\/1 + sinx — \/I| + sinz . (3.4.6)

As is the case for the perfect system, we can specify an equilibrium point by (rr, A).

Substituting (3.4.6) into (3.4.5) we get the following relationship which must be satisfied

by the equilibrium points,

Asmx-GmcoB” +SiIf ~ W1+ Sin7 =0. G4
\/l + sina

Solving for A we get

N H _ N
\%x\) = C/;\ m v TSIPX ----- y—I+Sm . (3.4.8)
tan Xy 1 + sim

These equilibrium curves differ from the imperfect elastic equilibrium curves (3.4.3) by the
constant factor Gm. This is similar to the effect that the introduction of the viscoelastic
element has on the perfect elastic system. The curves are plotted in Figure 3.14. As in
the elastic case, we can define a critical point locus. Rearranging 3.4.8 and imposing the

condition that dAy/dx = 0, we get the following implicit equation in A and X,
(Atana — Gm)\/1 + sinXx + Gmv 1+ sin™ =0. (3.4.9)

Equations (3.4.7) for the equilibrium curve and (3.4.9) for the critical point locus are used
in the quasi-static analysis in Chapter 4. Using the Routh-Hurwitz criterion we can deter-
mine the stability of the equilibrium points (X, Ay(x)). We need to calculate the eigenval-
ues of the Jacobian matrix evaluated on the imperfect equilibrium curve. The Jacobian
differs from (3.3.6) in the term i?/2i(x), which becomes Acos X + sinxXx + \/I + sinx(y(:c) —

\/l + sin”™)/2, with y(x) given by (3.4.6). Thus, the characteristic equation is
A(p) = p3+ ap2+ cip+ aco, (3.4.10)
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where
og= — AY(X) cosX + sinX ---------- — (3 MV + sinic —\/I + sini™ + \/I + sin V']
IP COS2X
2 1+ sins
and
ci = Ay(X) cos X + sin® 1 -tAsinx A + sina; —\/l + sinUy + \/I + sin

Note that for X G (0,7r/2) we have c¢j > cg. The stability properties of the imperfect
viscoelastic equilibrium points are given in Theorem 2. In Figure 3.15 we plot co and

dkyjdx for a typical value of U G (0,7r/2).

Theorem 2. Let (xc,A;:) be the maximum point on the equilibrium curve Ay{x). The
stability of the equilibrium curve, changes at (xc, A¢). The equilibrium points (x, A) on the
curve satisfying u < x < xc are stable centre points and the equilibrium points (x. A) on
the curve satisfying xc < x < n/2 are unstable saddle points. Again, as the imperfection

tends to zero we recover the perfect system, equilibrium curves.

Proof. wWe apply the R.outh-Hurwitz criterion to (3.4.10), where D\, Di and D3 are given

D\ = a,

otp cos2X
D2 = .

2 1+ sinX’
D$ = aD"CGQ

From Figure 3.15 we see that both dky/dX and Cocross the axis at X = XC. For W< X < X({.
we have co > 0 and for XC < X < n/2 we have Co < 0. Also, D2 has the same value as

in the perfect viscoelastic case and is plotted in Fig 3.11. Using this information we can
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Figure 3.15: Graphs of dAy/dx and o indicating positive and negative regions.

determine the regions in which the Di are positive, negative or zero. We have D% > 0 for
x € [v,xQ implying that all roots of the characteristic equation have negative real parts.
For x € {xc,n/2), the sequence |,i?i,D\D-¢-,(m'q has sign sequence implying
that there is one root with positive real part. At X —Xxc we need to calculate the roots
of the characteristic equation exactly. Noting that Gy = 0 and <1 > cq, we calculate the

roots to get a root at the origin and two roots with negative real parts. O

The stability analysis indicates that for equilibrium points satisfying x £ [uy.xc) there is a
three-dimensional stable manifold. At x = xc there is a two-dimensional stable manifold
and a one-dimensional centre manifold while for equilibrium points satisfying X € [xc,ir/2)
there is a two-dimensional stable manifold and a one-dimensional unstable manifold. This

is comparable with the perfect case.
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The Link ModeliA Quasi-Static Analysis

4.1 Introduction

In this chapter we look at the quasi-static approximation to the non-linear system. We
include an imperfection in the system equations. Hayman [14, 15] uses the quasi-static
approach in his investigation of the creep buckling behaviour of the Link model. His
work is concerned with the phenomenon of creep buckling and he investigates the link
between a structures creep buckling behaviour at constant load and its instantaneous
buckling and post-buckling behaviour under varying load. Hayman’s analysis is limited
to Maxwell materials, as well as assuming that the initial creep stress, y(0), is zero. We
extend Hayman’s work by including a non-trivial initial condition, y(0) / 0. Under these
conditions there is some residual stress in the spring initially. This is another source of
imperfection. We discuss the consequences of this. We also investigate the stability of
the equilibrium curves in the quasi-static case. The results from this stability analysis
differ from the results indicated by the dynamic analysis. In particular, the quasi-static
analysis predicts stability at points where the dynamic analysis indicates that the system
is unstable. The analysis is valid for both the imperfect system and the perfect system.
The results are discussed and illustrated with a series of diagrams in Section 4.4. The
quasi-static method is discussed in detail in Hopenstadt [17] while O 'Malley [25] provides

an excellent introduction to the theory of singular perturbation methods.
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4.2 The Quasi-Static Equations

The quasi-static method neglects the dynamic effects due to the structure’s inertia but
includes the time dependence of displacements due to creep. First we specify circumstances
under which this approximation would be valid. The dynamic system of equations (2.3.8)

can be written as

x = f(x,y,X,v), (4.2.1a)
V= (4.2.1b)
where
f{xy, A>\ u)V = Asin x —cos X y-/-l--J-r--S-l-r?X B V/l--jr--s-lu\-/----y , COS@? n (4.2.2)
Vi + smx V1 +sinX
and
((xy,v)y=y+ + sins — /I + sin//). (4.2.3)

Initial conditions for :c(0), ¢(0) and y{0) are given. Now, if we rescale the time t by setting
r = at, we can rewrite (4.2.1) as
ax" = f{x,y, A/, (4.2.4a)
y' = 9(x,y,v), (4.2.4b)
wliere ' denotes d/dr. The transformed system (4.2.4) is a singular perturbation problem.
We have a small parameter multiplying the leading order derivative term. Wo expect a
singular solution at a = 0 due to the loss of the two initial conditions, :r(U) and ¢(0). By
letting a -> 0 in (4.2.4) we obtain a system of equations which is formally equivalent to
the quasi-static problem,
0= f{x,y,\,v)t (4.2.5a)

y' = 9{x,y,v). (4.2.5b)
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In the context of singularly perturbed systems, (4.2.5) is called the outer problem, and its
solution is the outer solution. These equations are supplemented by an initial condition
;y(0) = 7, but x'(0), .r"0) are not specified. It is possible to derive an initial-value problem
for x(t) and itismoreillustrative to describe the dynamicsof the quasi-static problem in
terms of the solutionto thisinitial-value problem. We can solve (4.2.5a) for y in terms of

X and A to get

y = Y(x, X,u), (4.2.6)

where

Y (X, A,v) := (Atana; — 1) \/\ + sina + \/1 + sinV. (4.2.7)

Differentiating (4.2.5a) and substituting for y from (4.2.6) we get an expression for x'(t)

given by
% = Q{x, A, i/), (4.2.8)
where
-fy (X Y(X, A u), A V) g(Xx, Y(X, A, u)
NOXN V) fx(x,Y{x,X,u),\,u)

(Atan X —Gm)\ZvFshTx + Gm\/Il -fsinv
mft [(A tan X —1) \/I + sin x]

(4.2.9)

This differential equation in X(r) is supplemented with an initial condition .t(0) = ( where

( satisfies

7 = y(C,A,v). (4.2.10)

Recall from (3.4.3) that the equilibrium curves of the imperfect viscoelastic system satisfy
Y(x, A,z = 0, for some initial imperfection u = u. Also, setting the denominator of Q
in (4.2.9) to be equal to zero results in the locus of critical points for the elastic system,
given by (3.4.4). Knowledge of these curves will be helpful in determining the stability of

equilibrium points of the quasi-static system.
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Figure 4.1: Possible initial positions for the quasi-static system. When y(0) = O, the initial
position is restricted to the curve beginning at (©,0). Otherwise, the initial position may be

anywhere in the shaded region, which is bounded by X = 0, A= 0 and A™(X).

The Locus of Initial Conditions

The initial condition ,t(0) = ( for the quasi-static system with imperfection v satisfies

7 = (Atanf — I)<y/T+ sinf + v™ + sinzA (4.2.11)

T his represents a locus of initial conditions in the .xA-plane. Rearranging (4.2.11) and

letting Vi + sinu = \/1 + sinu —7 we get

(Atanc — 1) \JI + sinC + \/I + sini> = 0. (4.2.12)

This is equivalent to (3.4.2), the equation for an elastic imperfect equilibrium curve
with imperfection v. Thus, for any initial condition x(0) = ( of the quasi-static system,
the point (C, A), satisfying (4.2.12), lies on an equilibrium curve of the imperfect elastic
system. By imposing the restriction that 7 = 0, as in [14, 15], ((, A) is limited to that
elastic equilibrium curve with imperfection i> = v. Non-trivial values of 7 allow the

initial position ((, A) to lie on any elastic equilibrium curve with imperfection v satisfying
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Figure 4.2: Initial value curves for 7 < 0,7 = 0,7 > 0. Hayman’s work is limited to initial

conditions on the 7 = 0 curve. The long term critical load Ait = Gm/2 is indicated.

0 < U < 7t/2. By allowing non-trivial values for 7, the quasi-static motion can proceed
from a variety of initial positions relative to the equilibrium curve. This results in a more
complete description of the quasi-static behaviour, and highlights the differences between
the quasi-static and the dynamic behaviour of the system. In Figure 4.1 we compare the
possible initial positions of the quasi-static system for trivial and non-trivial values of 7.
In Fig 4.2 we plot several loci of initial conditions for variable 7 with v fixed. The quasi-
static equilibrium curve for fixed U, which is discussed in the next section, is included for

comparison.

4.3 The Quasi-Static Equilibria

The equilibria (x, A) for the quasi-static system with imperfection v satisfy 0 = Q(X, A, u).

From (4.2.8), we have

Atanx\/l + sine — Gm\/l + sinx + Gm\/1 + sin™ = o (4.3.1)
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Expressing A in terms of X we get

GmV 1+ sing - Gmy/l + sini/

A= Aq(x):= (4.3.2)

tan Xv 1 + sinx
This is equivalent to (3.4.7), the equation for the long term equilibrium curves of the
imperfect viscoelastic system. Again referring to Figure 4.2, we see a typical equilibrium
curve for the quasi-static system with associated initial condition curves. We have shown
that the equilibrium curves for the quasi-static system are equivalent to those of the
dynamic system. We have also established that the initial position of the quasi-static
system lies on some curve that is equivalent to an elastic equilibrium curve. We now

determine the stability properties of the equilibrium points.

4.3.1 Stability of the Equilibria

The stability of the equilibrium curves can be determined by examining the sign of
Qx(x, Ag(x),v). Equilibria satisfying Qx(x, Aq(x),u) < 0 are stable while equilibria sat-
isfying Qx(x, Ag(x), v) > 0 are unstable. We have the following stability theorem for the

guasi-static equilibrium curves.

Theorem 3. Let (xQAc) be the maximum point of the equilibrium curve on the xX-plane
defined by A = Aq¢x). Let (xi, A/) be the intersection point of the equilibrium curve

A = Aq(x) and the locus of critical points for the imperfect elastic system, defined by

d

~ dx

(Atanre— 1) vl + sinx . (4.3.3)

Then, the equilibrium points (x, Aqg(x)) satisfying x G [v, xc) U (xi,n/2] are stable and the

equilibrium points satisfying x G {xc,xj) are unstable.

Proof. We begin the proof by determining the critical points, if any, of the equilibrium

curve. Recall that the equilibrium curve has a critical point (Xc, Ac) if QX(xc.Ac,u) — o and
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the stability of the equilibrium curve will change at the critical point if Q\x(xc, Ac,v) +o.
Differentiating Q(X,A,is) w.r.t X, evaluating it on the equilibrium curve and simplifying
gives

N ((Atanx-Gm)VI + sinx)

gj ((Atana —1)s/l + sing)
Setting the numerator equal to zero gives the critical point locus for the dynamic vis-
coelastic system. Similarly, setting the denominator equal to zero gives the critical point
locus for the dynamic elastic system. As these do not intersect, we cannot have the case

Qx = 0/0- Therefore, the critical points satisfy

— ((Atan a — Gm)\/1 + sinrr) = 0
(0D4

This is simply the maximum point (xc,Xc) of the equilibrium curve (4.3.2).
Next, we show that the stability of equilibrium points changes at (Xc, Ac). Differentiating

Qx with respect to A gives

2 + sina (2 + cos2X)

XX 2A(1 + sina;) + (Atana: — 1) cos3 X

Now 0 < Ac < Gm/2 and u < Xc < 7/2 and so, at the maximum point (Xc, Ac), we have
Qx\ / 0. This implies that there is a change in stability at the maximum. By examining
the stability at (S, A) = (u, 0) we can determine the stability for equilibrium points to the
left of the critical point. We have Qx(v,0) < 0 implying stability and thus, there is a
change in stability from stable to unstable equilibrium points as we cross the maximum
point.

Next, we show that there is another change in stability at the point (Xj,A/), the inter-
section point of the elastic critical locus with the quasi-static equilibrium curve. Recall
that the denominator in (4.3.4) is zero on the elastic critical locus. If this locus intersects

the equilibrium curve then we have QXx{xi>A/-) = +o0o0. Also, if an intersection occurs
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then the intersection point is always to the right of the maximum point of the equilibrium
curve. A change in stability may occur as we pass through an intersection point. Indeed,
we have Qx(ir/2,0) < 0 implying that the equilibrium point (x,X) = (tt/2,0) is stable.
We conclude that the elastic critical locus must have intersected the equilibrium curve,
causing a change in stability from unstable equilibrium points to stable equilibrium points.
Thus, the equilibrium points (x,A) satisfying X G (Xj,tt/2] are stable and the equilibrium

points satisfying x G [xc,x\) are unstable. O

Equilibrium curves for the quasi-static system in the case v = 0 and v > 0 are shown in
Figure 4.3. The diagram clearly indicates the stable region that exists for x close to n/2.

This stable region is unique to the quasi-static system.

4.4 Results of the Quasi-Static Analysis

In this section we illustrate the main features of the quasi-static system using a series of
diagrams and we discuss the results of the quasi-static analysis. Using Figure 4.2 and
Figure 4.3 we can predict the motion of the system for various initial conditions. The
motion of x(t) for a fixed v is illustrated in Figure 4.4. We see that the upper right
guadrant of the xA-plane is divided into four distinct regions. In Figure 4.5, Figure 4.6
and Figure 4.7 we concentrate more closely on the behaviour in each of these regions.
The initial position of the quasi-static system is given in Figure 4.2 for various values
of 7. We can compare the initial position with a typical equilibrium curve. We see that
it is possible for the initial value to be in any of the regions marked by + or — in Figure
4.4. The critical load Ac is indicated. It corresponds to the maximum value of lambda
on the equilibrium curve. For values of load satisfying A > Ac, the system is unstable.

In the case A < Ac, the system may be stable, with motion tending to the stable part of
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Figure 4.3: Stability of the quasi-static equilibrium curves. The stability of equilibrium points is
indicated by solid (stable) and dotted (unstable) lines. Equilibrium curves for the case U —0 and
V > 0 are included. The long term critical load is indicated by A;fEWe see a change in the stability
at the maximum point of the equilibrium curve representing V > 0 and also at the intersection of
this equilibrium curve with the elastic critical point locus (dashed line). The perfect equilibrium
curve changes stability on intersecting the A-axis and again on intersecting the elastic critical point

locus. The stable region close to X —itj2 is peculiar to the quasi-static analysis.
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Direction of motion

Figure 4.4: Direction of motion of the quasi-static system. The regions marked with + and —
indicate that X is increasing. Those marked with — and «—indicate that X is decreasing. A typical

equilibrium curve is shown. The elastic critical locus is also included.

the equilibrium curve, or unstable. In Figure 4.5 we illustrate the motion of the system

for A > Ac. We take two initial values, marked A and ALl Beginning at A, x(t) increases

until it encounters the elastic locus of critical points. From (4.2.9) we know that at the

locus of critical points, X'(r) has an infinite displacement rate. Similarly, starting at A',

X(t) decreases with the displacement rate tending to minus infinity as x(r) tends towards

the critical point locus. In Figure 4.6 and Figure 4.7 we demonstrate stable motion of the

quasi-static system. In Figure 4.6 the system tends to an equilibrium point X satisfying

V < X < XC. This behaviour is also typical of the dynamic viscoelastic system. In Figure

4.7 we see that for certain initial conditions, the system tends towards a stable equilibrium

point X satisfying Xj < X < tt/2. This behaviour is unique to the quasi-static system. From

a physical viewpoint, in terms of the Link model in Figure 2.7, this indicates that when

the rod is close to a horizontal position, with 6 near 7r/2, the system can achieve stability

in a quasi-static sense. However, the dynamic analysis predicts that the system will tend
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Figure 4.5: Unstable motion for A > Ac. As the motion approaches the elastic critical locus
(dashed line), an infinite displacement rate is encountered. The long-term critical load, G/2, is
indicated by Ajt. The equilibrium curve is indicated by the solid (stable) and dotted (unstable)

curve with critical load A= \c.

towards the equilibrium at x = n. Finally, is is possible for the system to become unstable
for certain initial values (£, A) satisfying A < Ac. This occurs when the initial position lies
between the unstable part of the equilibrium curve and the elastic locus of critical points.
This area is indicated in Figure 4.6 with a single rightarrow. In this case, x (t) increases
until an infinite displacement rate is encountered at the locus of critical points. Thus,
the system is unstable. Again, this motion differs from that indicated by the dynamic

analysis, where motion would again tend towards the stable equilibrium point at x - it
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Figure 4.6: Stable and unstable motion for A< Ac. The motion may stabilise about the stable
part of the equilibrium curve to the left of the elastic critical locus. However, for initial values
lying to the right of the unstable part of the equilibrium curve and to the left of the elastic locus,

the motion is unstable, encountering an infinite displacement rate.

Figure 4.7: Stable motion for values of A < A™ where the initial position is to the right of the

elastic critical locus.
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Chapter 5

Three Model Problems

5.1 Introduction

In this chapter we apply a perturbation technique, the multiple time scale method, to find
asymptotic approximations to the solution of the perfect model problem linearised about
zero with large relaxation time. We analyse the model subject to three loading strategies;
the constant load problem, the slowly varying load problem and the parametric loading
problem. The chapter opens with a general discussion on perturbation techniques, with
the main emphasis on the method of multiple scales. The three loading problems are
introduced with a brief discussion on each.

We apply the multiple scale method to the constant load viscoelastic model and obtain an
asymptotic solution that has an elastic component and a creep component. The solution
agrees with the results obtained in the stability analysis of Section 3.3. For unstable
solutions we can determine the critical time at which the motion of the system is dominated
by the creeping term. The behaviour of the system is demonstrated in a series of graphs.
The slowly varying load problem is also analysed using the multiple scale approach. We
show that a more complicated time variable is needed to describe motion on a fast time
scale. We determine a condition on the loading function to ensure stability in the system.
Again we graph the behaviour of the system for various loading functions. Finally we
analyse the system subjected to parametric loading. In the elastic case this problem
reduces to the Mathieu equation. We are interested in the effect of including a viscoelastic

element on the transition curves in parametric space that separate stable and unstable
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solutions ofthe Mathieu Equation. The method of strained parameters is used to calculate
the new transition curves. The results are discussed and the solution to the problem is
presented graphically.

The multiple scale and related techniques are discussed in detail in Cole and Kevorkian
[5, 6], Nayfeh and Mook [23] and Holmes [16]. In Murphy [24], the dynamic buckling
of linear viscoelastic rods is investigated. Multiple scale solutions are derived for various
loading strategies. W hile there are similarities between the work presented in this chapter

and that in [24], the results were derived independently.

5.2 Perturbation Methods

For many problems in applied mathematics it is difficult if not impossible to obtain an
exact solution. The problem may be non-linear, have complex boundary conditions, vari-
able coefficients or be multi-dimensional. However, approximate solutions to these prob-
lems are often sufficient. There are various methods by which approximate solutions are
constructed. Scientific computing can provide highly accurate numerical solutions to oth-
erwise intractable problems. A second option is to use perturbation techniques. Central
to this approach is the presence of a small variable e in the governing equations. Using
these techniques we can often determine a reasonably accurate analytic expression for the

solution.

5.2.1 The Multiple Time Scale Method

The multiple time scale method is a perturbation technique that can be used to analyse
systems which exhibit behaviour on several different time scales. It is a generalisation of
the method of strained co-ordinates proposed by the astronomer Lindstedt [21] for the

calculation of periodic orbits. The basic idea was first introduced by Stokes [28] in his
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study of fluid flow. Poincare [26] made extensive use of the ideas underlying multiple
time scales in his investigations into the periodic motion of planets. This motion cannot
be approximated using a regular asymptotic expansion due to the cumulative effects of
small disturbances. These disturbances eventually become non-negligible, resulting in an
expansion that is not uniformly valid for times of O0(e-1). The cumulative effects result
in, for example, terms proportional to etsinkt. We refer to these terms as mixed secular
terms. The word secular, derived from the Latin for century, was used to indicate that
the et term becomes significant when the time t is of the order of a century. Using the
Poincare-Lindstedt method a new time = (1 + ec\ + e2C2 + ...)i is defined and the
equations are rewritten in terms of this strained time. The constants c\,C2,.. « are chosen
to remove secular terms. Multiple time scales is an extension of this idea where multiple
independent time variables based on the expansion parameter are used. The use of two
independent time scales was proposed explicitly by Kuzmak [20] and independently by
Cole and Kevorkian [4]. The latter studied general, weakly nonlinear problems of the

form

yW + 200 + £/Qpyp£) = > y©) = ay(C) = b>

using two time-scales, the slow time t = et and the fast time defined by t+ = (1 + e2C2 +

e3C3 + ... )t. They obtain an asymptotic expansion of the solution in the form
N
y(t; e) = F(t+,i-,e) = ~ F n{t+,i)en + 0(eN+1)
n=0

which is uniformly valid (as € —>0) on the expanding interval 0 <t < T where T = ()(e~1).

The two-time expansion can be extended further by the introduction of multiple time

scales of the form

tk = ekt,k = 0,1,2,... (5.2.1)
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where each of the time variables t). is assumed to be independent. An expansion with
N + 1 terms involving N + 1 time variables is generally uniformly valid on an interval
0<t< T whereT = 0(e~N). The choice of time scales can be more general than (5.2.1).
Time variables that are a non-linear function of t and e may occur. The fundamental
assumption of the multiple time scales method with N + 1 independent time variables
ifc, K —0,1,... ,N is that solutions have a general asymptotic expansion that is uniformly
valid (as e —> 0) in the expanding time interval 0 < t < T(e) = 0(e~N) and each
term in the general asymptotic expansion can be uniquely expressed as a function of
t0,¢1,..., iyy and a power of e. This is a powerful assumption and results in the removal
of secular terms from the solution. For example, with two independent times defined by
to = tyti = et, a term of the form et”™s'mkto in the 0(e) contribution to the expansion
violates the uniqueness assumption as it can be included in the o (1) contribution as

t\ sin fcEj. Such a term must be removed by a suitable condition.

5.3 The Model Problems

In this section we introduce the three loading problems that are considered. The first prob-

lem we investigate is the viscoelastic model with constant load. The governing equations

X = —€0X —Y,

-a{y + -x},

<
1

where U = (™ — A) and the initial conditions are s(O) = £I> ((0) = £2 and y(0) = 7. As

we are interested in the effect of including the viscoelastic element on the elastic system

we only consider the case uyj > 0. For loads satisfying > < 0 the system is instantaneously

unstable. For a large relaxation time we have a € | and so a is a natural small parameter

63



Chapter 5, Section 3 Three Model Problems

for the system. This is an example of a linear oscillating system with a small viscoelastic
effect.
The second problem that we discuss is the viscoelastic model with a slowly varying load

A(t,e) = A(et) where e « I . The governing equations are

x = —Kk2(et)x —vy,

V= 'a{y+ -X},

where k2(et) = \ — A(et). Again we consider the case k2(et) > 0. For large relaxation
times we have a -C 1 and so there are two small parameters in the system. Since we want

to investigate both the viscoelastic effect and the effect due to the slowly varying load, we

a.= e(ao + eai + e2a2 + =)

where the constants cto, ai, o2 m. are to be determined.

Finally we will analyse the viscoelastic model subject to a load of the form A(t,e) =
Ao + ecos nt where again we have e « 1. The load oscillates with small amplitude about
the constant value Ao- This form of loading is known as parametric excitation. It can
result in parametric resonance whereby a small excitation can produce a large response
when the frequency of the excitation k is close to an integer multiple of half the natural

frequency of the system. The model equations are
X = (—P+ ecos nt)x —y,
y=-afy + 'x}
where U = | — Ao- The elastic system obtained by setting a = 0 and y(0) =0 is the

Mathieu equation, the solutions of which are well known. Of interest are the regions

of stability and instability in the U e-plane and the calculation of the transition curves
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between these regions. We will determine the effect; of the viscoelastic element on the
transition curves that result from the elastic case. Again we must be careful that we
include both the effect due to the viscoelastic element and the effect due to the load. This

is achieved by again setting

a = e(«o + £«i 4 £2«2 + e==m

5.4 The Constant Load Problem

In this section we apply the multiple time scale method to the viscoelastic model with
constant load and large relaxation time (a <€ 1). The governing equations for the mode]

are

X = —t)X —Y, (5.4.1a)

V- -«f'i/4- ~x}, (5.4.1b)

where w= g — A > Oandthe initial conditions are given by (0) = (i,arz(0) = Ca and
y(0) —7. Welet e= a. Now, thetwo-time expansionmethodwith twoindependent

time variables, i —et and £ = (1 4 £2& 4-eJcz ... )i, does not result in a uniformly valid
solution on the time interval 0 < t < T(e) — 0(e~2) for general initial conditions. To
obtain an expansion that is valid on this time interval we require three independent times
defined by io = Mi — aild ;2 = £2t- We seek an expansion for x(t.\e) and ?A/;e) in the

form

X(£;e) = X{to,ti,t2\£) — ATo(io)"ii t2) 4 eX\ (i0i*u”) 4 e2-"2(M0L*1>;2) 4 e== (5.4.2)

y{t;e) —Y(t.0,ti,t2}e) = Yo(t.o,ti, h) 4-eY\(io, *i,¢2) + e2°2(i0»*1" 2) + -e- (5.4.3)
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Derivatives with respect to t are expressed in terms of thenew timevariables /&ti and

2. LetDn= d/dto,Di—d/dt\ and D-i = d/dt2. Applying thechain ruleto d/dt gives

N = [(Dn+ eDIl +£2D2]k. (5.4.4)

Substituting (5.4.2), (5.4.3) and (5.4.4) into (5.4.1) and expanding in powers of e results

in the following sequence of problems:

0(1
L(X0)s DIXo+ ioX0 = -Vo, (5.4.5a)
DOYO = 0. (5.4.5b)

O(e)
L(Xi) = -2DnDVXQ - Yu (5.4.6a)
DoYy = -DiYo - Y 0- %XO. (5.4.6b)

O(e2)
L(X2) = —2X0Z?Ti - - 2DOD2X0 - Y2, (5.4.73)
day2=-D.y,. -y, - “Xi- D2yo- y0- ~x0. (5.4.7b)

The 0(1) problem is solved to give

*0(«0, h,h) cos VVwio + ¢2) sin Vusfo

- y (5.4.8a)

Yo(to,tut2) = CQ(tu t2). (5.4.8b)

By imposingconditions that remove secular terms in the 0(e) and 0(ez)problems wo

will he ableto determine the dependence of j4g, and Cq on the tunes and t2.1 We

'The superscripts |,e that appear oi1 the functions A,, Bi,Ci indicate the level at which these functions

enter the solution.
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substitute for Xo and Vo from (5.4.8) into the right hand side of (5.4.G) toget
DOYi = - D,C, - . ’2 [Al cos yfct -1- B,1sin /™ i] (5.4.9)

ul

Now, unless we set —D\C/ - Cj = 0in (5.4.9) we will introduce a secular term into

the solution. Solviug this for 6'g gives
Co{ti,t2) - Co(i2)e SI3L (5.4.10)
and we can now solve (5.4.6) for Y\ to get
Y\(to,t\,k) = ~A= [~q(ii, h) sinsfiut-BU (ti,i2)cosv/wi] + Cf(i2). (5.4.11)

Substituting Xo and Yi into (5.4.(>a) gives us two conditions that must, be satisfied if the

X | solution is not to have secular terms. These are
ZMi + ¢ Ai cos sfato = o,
BiMi + sin y/uto —o.
Solviug for and gives
4 ALR2)=Al{t2)e~&t\
BO{h,t2) = BO(t2) e -t1.

Continuing in this fashion we obtain the following expressions for the Xt(ta,li,h) to

o @),

Xi(to,ti,t2) = Aie~&tl cos(Vw£o - +32¢j '3/2--------
i a0 mp =i - 8A
TS B30, B . e
4-Ciég-~~")U

where the constants Ai = A™0),i?j = Bf(0) and Ci = Q(0) are determined from the

initial conditions.
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The Initial Conditions

The initial conditions are a?i(0) = (i, £2(0) = & and y[0) = 7. We us« these to solve for
the unknown constants that appear in the solution. We have x(0\e)( 1, dx(Q',e)/dt. — Q2
and -y(0;e) = 7. Expanding x(t; e), dx(t\e)/di and y(t;e) in powers of e and substituting

in the solution (5.4.12) evaluated at t, = O gives

o1
A) + On = Ci>
VEUBoO = <2, (5.4.13)
—tiAo = — | —WTI'3,
O(e)
A14-C\ —o,
=PiAo -fpsOo, (5.4.14)
—1AAi = 2\/u}piBa.
0(e2
Aj, + 02 —0,
\Zu>B2 = p\A\ +P3QJ +P2Bo, (5.4.15)
- yjA2 = 2s/u>V]B\ - 2s/upzAo-pfAo -p|Oo,
where pi = /3/(40j),p2 - /?(! + 3Gm-8A)/(320>3/2) and ps = w). Solving (5.4.13),

(5.4.14) and (5.4.15) for the constants A,, /i, and O, gives
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29uplBi - 2yltjp2A0- p\A0 - pjcO PiA0+p3C0+ P2B0

) y/U)
and

2ylupiBi - 27MUjp2A0-pfAo - pjCo
u

We see that each of the constants in the solution is linearly dependent on either one or
two of the initial conditions. We have Aq = Ao(Ci)T)i-*0o = Bqg((2),Co = C'o(Ci), Ay =
Al(C)1B1 = B”C1,7),Cl = Ci((2),A2 = A2(C1,7), B2 = B2(C2) and C2 = C2((1,7).
Using these relationships we can determine the non-zero terms of the expansion for any
initial values. The need for three independent times in the multiple time scale expansion
can now be justified. If we set CIl = C2 = 0 then we have Cq = C\ = o and the creep
component of the solution first appears in the 0(e2) term. An expansion to this order is
required to include the creep effect and thus obtain a solution that is uniformly valid on

the time interval 0<t<T = 0(e~2).

Analysis of the Multiple Scale Solution

We now discuss the solution obtained using the multiple time scale method with three
independent times. In particular, we are interested in the features that the viscoelastic
element introduces to the solution compared to the dynamic elastic solution. The multiple
scale solution has elastic and creep components. The elastic component is composed of
oscillating terms with an exponential amplitude while the creep component is an exponen-
tial term. The amplitude of the oscillation is given by e A" where '’ > 0. Thus, the
amplitude is exponentially decreasing for all values of the load A and varies on the slow
time scale i\. The oscillating terms have frequency \fujtn — The natural fre-
guency of the elastic problem, y/u, is shifted by the 0(e2) term -A. This small

term is positive for 0 < A < (1 + 3Gm)/8 and negative for (1 + 3Gm)/8 < A < 1/2. Thus,
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Figure 5.1: A typical multiple scale solution for A< G,,J2. The solution is stable and tends u>the
zero equilibrium position. A numerical solution is also plotted using Mathematica for comparison.

However, the solutions are indistinguishable.

Figure 5.2: A typical multiple scale solution for Gm/2 < A < 1/2. Initially, the solution appears
to be stable. However, the positive exponential term destabilises (.he solution. Again we plot a
numerical solution for comparison. However, the solutions aie indistinguishable over this time

interval.
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depending on the load value, the frequency of oscillation can be increased or decreased.
The slowly modulated oscillations have a stabilising effect on the solution.

The exponential term e_A*“ 2Nil results from creep in the system. This creep term
varies on the slow time scale ty. It is exponentially decreasing for 0 < A < Gm/2 and
this has a stabilising effect on the solution. However, for Gm/2 < A< 1/2 the creep term
is exponentially increasing on the slow time scale and this will eventually destabilise the
solution. Recall that in our stability analysis in Chapter 3 we found that the (0, A) branch
of equilibria is stable for A < 1/2 in the elastic case while in the viscoelastic case we
found that this branch of equilibria was stable for A< Gm/2 and unstable in the interval
Gm/2 < A< 1/2. The multiple scale solution agrees with this.

In Figure 5.1 we plot the multiple scale solution for a typical value of A < Gm/2. A
mimerical solution, generated by the mathematical software package Matliematica, is also
plotted. However, the solutions are indistinguishable. The main features of the solution, as
discussed above, are apparent. A typical solution for Gm/2 < A< 1/2 is plotted in Figure
5.2. We also include a numerical solution. Again, the solutions are indistinguishable.
However, if we compare the multiple scale solution with the numerical solution over a

much greater time interval, slight differences become apparent.

Critical Times

For values of the parameter A in the range Gm/2 < A < 1/2 we are interested in deter-
mining the time at which the exponentially increasing creep term is of the same order of
magnitude as the oscillating terms. Physically, this time gives an indication of the useful

lifespan of the structure. For general initial conditions we have

OihABe-"1)=0ihcer-7"1) (5.4.16)
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Figure 5.3: A typical unstable multiple scale solution with non-trivial initial conditions and
critical time tcr = 45.717. Examining the solution we see that the instability does appear in a

neighbourhood of this critical time.

where liab ~ jo "B q+ £(-41+ B\) 4 £2(A2+ B2) and hr; - Co+ sC\ + ¢"€'2- We solve

(5.4.1S) for t to get the critical time

4> ~ hAn{e)
ter e(3P _ip}/ hi hele) (5.4.17)

For non-trivial initial conditions we have liaajhe = 0(1) and so tcr — Ofe“ 1). In Figure
5.3 we plot a typical solution satisfying Gm/2 < A < 172 with non-trivial initial conditions.
We can also calculate the critical time when one or more of the initial conditions are zero.
We look at two cases, the first is when we have 7 = o and the second is when Ga=7 = O
Case 1: 7 = 0.

This occurs when the stress due to creep is initially zero, which results in one trivial initial
condition, Cq = 0. Therefore the creep component first appears in the solution in the

O(e) term. We have he = eC\ + tICi and so limi/lic —0(e) giving a critical time that
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Figure 5.4: A typical unstable multiple scale solution with 7 = o and critical time tcr —94.773.

Again, we see that the instability becomes apparent in a neighbourhood of this time.

is of order 0(j In|™). The critical time is increased with this type of initial condition. In
Figure 5.4 we plot a typical solution satisfying 7 = o. The critical tune is greater that in
the case of non-trivial conditions, as expected.

Case2: (2=7 =0

In this case both the initial velocity and (lie initial creep stress are zero. The creep
component of the solution is zero up to o (e) as the choice of initial conditions gives
Co= oand Ci = 0. We also have Ag—B\ = A2 = 0. Substituting these trivial initial
values into (5.4.17) gives liabP lc = 0(e-2). This results in a critical time that is of order
L = o (LIn|Jjj). Again we see an increase in the critical time. This is apparent in Figure

5.5 where we plot a typical solution with c2=7 = A
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100 200 300 400

Figure 5.5: A typical unstable multiple scale solution with 7 = @ =0 and critical time tcr =

218.128.

55 The Slowly Varying Load Model

In this section we consider the effect of a slowly varying load on the Link model. By
slowly varying we assume that the load varies on a time-scale that is much longer than
the natural time-scale associated with the model. This is a generalisation of the constant
load viscoelastic model. Physically we may encounter a slowly varying load in a number
of ways. One example may be a slow change in load due to external factors. Also, if the
properties of the viscoelastic element change slowly due,for instance, to an aging process,
we expect its response to the load to vary. A crude way of modeling this response would be
to hold the viscoelastic properties constant and slowly vary the load. The effect of a slowly
varying load on an elastic oscillator has been discussed in Cole and Kevorkian [6]. We will
extend these ideas to the viscoelastic model. The analysis is not as straightforward as in

the constant load problem. The viscoelastic model has a natural small parameter, a « |,
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for large relaxation times. The slowly varying load A(i;e) = A(e£) introduces another
small parameter, £ « 1. In order to include both the viscoelastic effect and the slowly
varying effect simultaneously we require that a = o (e) and so set. a = c(oo + a\e + ...).

The model equations are

x = —k2(et)x —y, (5.5.1a)

—a{y + ~x}, (5.5.1b)

<
1

where k2(et) = 5 —A(ei) and the initial conditions are given by x\(0) — (1, 72(0) = & and
2/(0) = 7. A multiple scale expansion with a fast time ;0 = £fads to provide a uniformly
valid approximation for long times as this choice of fast time does not take account of the
slow variation in the frequency of the oscillations due to the slowly varying load. Kuzmak
[20] recognised that the oscillations in the solution should have a constant frequency with
respect to the fast time and so allowed the fast time to have a nonlinear dependence on
/. In light of this we choose our fast time to be ;0 = /(i,e)where /(i,e) is a smooth,

non-negative, increasing function of t and satisfies et -C ) as e 4 0. We denote the
slow time by t\ = et. Substituting x(t,e) = X(to,ty\e) and y(t,e) = Y (io, t\;e) into

(5.5.1) gives

{ftD1 + fuDo + 2eftDQ@@I + e2D"\)X + k2X - —Y, (5.5.2a)

(ftDO+ eD\)Y = -e(«o + aa, + ... ){Y + fX}. (5.5.2b)

The terms in (5.5.2a) that result in oscillations o the fast, time scale are ff DX and

k2X . Equating these to zero gives

ftDIX + k2X = O. (5.5.3)

Now, by setting Zi(i,e) = k(et) in (5.5.3) the oscillations in the solution will have a
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constant frequency with respect to the fast time Integrating gives the fast time,

/(M) = fo Ket)(lt.

We seek a solution to (5.5.1) in the form

x (i;e) = X(t.o, ¢i;e) = Xo(to,ti) + zXy(t.Q, ty)+ ...

j/(i;e) = y(/,0,Er,e)= Yo{to,h) + eYiIiOMi) + eee

Substituting (5.5.4) into (5.5.1) gives the following sequence of problems

0O

tfDIX o+ k2Xo0= —Vo,

A:DoYo = 0.
O(e)
k2D IXy+ k2Xy = —Yi - Jb'Do”o - 2)ejDOA X O,
kDyyYy = —-DiYO- «o(YO+ £ *0).
0/(%)

k2L>QX2 + A2X 2= -Y 2- k'DoXy - 2kDODIXL- D'jXo,

kDaY2= —D\Y\ - «0(Yi + "X x) - ay(YO+ ~Xa).

(5.5.4a)

(5.5.4b)

(5.5.5a)

(5.5.5b)

(5.5.6a)

(5.5.6b)

(5.5.7a)

(5.5.7b)

Now, in order to correctly determine a uniformly valid solution to 0 (e 2) il. is necessary to

include a third time i2 = e2t. However, the analysis becomes quite complicated. We will

calculate the solution to o(e). This solution is valid on the time interval 0 < / < 0(e ).

The analysis demonstrates the important properties of the solution and solution method.
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The slowly varying solution

Solving (5.5.5) for X0 and Yq gives

Three Model Problems

ATo(/.0, ty) = v4o(£]) cos U + Bo(ti)sinto — Co(U) (5.5.8a)
A2(i,)’
Yb(/.0)£i) = Ca(t)). (5.5.8b)
Substituting (5.5.8) into (5.5.6b) gives
. 0 0.
kDOYi = -«o0-(>40 cos/0+ BOsin<o) - Co~ olqfl - "pj). (5.5.9)

To avoid secular terms in (5.5.9) we impose the condition —C'0—nC'o(l —~f?) = 0. Solving

for Cof{t>i) gives

Co(ti) = (5.5.10)
where K (t\) = fQ' jpr~dr. Now, (5.5.6a) is solved for Y\ to give
Yv{ta,h) = — \ Mo(£i)sinfr) —So(ii) costo) + Ct (Ai). (5.5.11)
Substituting (5.5.8a) and (5.5.1J) into the (5.5.6a) gives
. «0/3
k2D IX {+ k*Xi = (Bo ok —k' —2kB'0J cos ¢0
+ Uo -I- sin (0 — Oi (5.5.12)
2lc
We can solve (5.5.12) for X\. However, we get the two following conditions,
o 0P .
Bo oK —k' —2kBDS sinio = 0, (5.5.13a)
aop
oK + k' + 2kA'0o ) costo = 0, (5.5.13Db)

that must be satisfied if secular-terms are to be avoided. We solve (5.5.13) for /lo(/.|) and

Bo{t}) to get

Aoitn) = Aoe-a°V4AKd'W m /k (ti),

Bo(ti) = Boe-)6 K{I'W W )/k(ti).
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We can now solve (5.5.12) for X\ to get

Xi(t0,ti) = ycosto+ B\{h)sin<o- Ci(ti)/k:2{ti). (5.5.15)

Substituting for X\ and Y\ in the 0(e2) problem results in conditions that (t\)

and Ci (/.i) must satisfy to prevent the occurrence of secular terms. We get

A](tl) = Ale~no® I<*W m /K h),

Bx(ti) = Bre-a*WKW s/m JW i),

and

Gi(ti) = Cie-ao™ - I<M).

We see that these terms have the same form as the O(1) terms, as was the case in the

constant load problem. We can write the solution as

x{t]le) = (Aa+ eAi)e-“°~4K(il>y/k{Q)/k(h ) cost0
+ (BO+ eBy)e-QM &< SVHV /W i) + eBl)s\nt.0

+ {CO+ £Cl)e-ao(1l-2 I<M)). (5.5.16)

From the initial conditions we get

¢o = f2(0)ci+ 7, B0 = (2, 0o = (1 - f2(0)<i -7 .

1 fc'(0) _ 1 K'(Q)
A\ —2Bo >2(0)  2k(0) 0, = -2B0 k2{0)  2k(Q)
and
1 k'(0) P
= — — 1.
B\=—Ao _,0)  2k(0) 000 2 K0
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Analysis of the slowly varying solution

The solution (5.5.16) to the slowly varying load problem has oscillating terms with an
exponential amplitude which represent the elastic behaviour of the system and an expo-
nential creep term. This is similar to the constant load problem. In fact, if we set the
load A(et) to a constant value, then we recover the solution of the constant load problem,
taking into account that the fast times differ by a constant multiple.

The stability of the solution can be determined by looking at the exponential terms in
the solution. The oscillating terms are modulated by e- “0"/47 1) where —a0/3/4:K(ti) < 0
for <o > 0. Therefore, the amplitude of the oscillations is exponentially decreasing and this
has a stabilising effect on the solution. The creep term is of the form Chbe" “°(il_ 2~ (*0).

Again, with ao > 0 the exponential is decreasing for

em =ij1 /m" i_o* < 1. (5.5.17)

2£i 214 30 ~ — A(r)

The solution will be stable if (5.5.17) is satisfied for all values of ty > 0. However,
if there exists some time t* such that > 1 for all t\ satisfying t\ > t* then the
solution becomes unstable. Now, (3K(t\)/(2t\) is bounded below by 3 < 1, (let A =
0). Also, setting A(et) — Gm/2, the critical load for the constant load problem, gives
i3K(ti)/ (2t\) = 1. For constant values of A > Gm/2, we have unstable solutions. This
agrees with the constant load problem results. If we vary the load periodically about
the critical load then we may achieve a stable solution although (5.5.17) is not satisfied
over some finite time intervals. This is in contrast to the constant load problem where
loads even slightly greater that the critical load cause the system to become unstable. In
Figure 5.6 we plot the function j3K(t\) j2t\ for a load given by A(ii) = 0.25 —0.2 cos ii.
The critical load is given by Gmj2 = 0.35. The load oscillates about the critical load,

reaching a maximum of 0.45 and a minimum of 0.05. We plot the slowly varying solution
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Figure 5.6; The function 0K (ti)/2t.i, with associated load A(i]) = 0.25 - 0.2 cosii, is plotted.
The function oscillates about the critical value of 1, decaying with time. The time-scale is given

by *i = et,.
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Figure 5.7: The slowly varying solution with load A(t]) = 0.25 - 0.2 cos 11. The positive peaks in
the solution occur at those times when the function f3K(ti)/2tl increases above the critical value

of 1. The solution stabilises over time. The time-scale is given by f* —el.
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Figure 5.8: The function f}K(t\)/2ti with associated load A(i]) = 0.2 - 0.1 costi, is plotted .
The function is oscillating with decaying amplitude, but, tends to a value that is greater that the

critical value of 1. The time-scale is again given by t\ = et.

in Figure 5.7. Although the load increases periodically above the critical load we see that
the solution stabilises as time increases. This is in contrast to the situation shown in
Figure 5.9. Here, we plot a solution corresponding to a load A(*i) — 0.2 —0.1cos/,(, with
critical load given by Gm/2 — .2. The solution oscillates evenly about this load. The

corresponding function (3K(i.\)/2t\ is plotted in Figure 5.8.

56 The Parametric Load Model

In this section we consider the dynamics of the Link model subjected to a load that

oscillates with small amplitude about a constant, value. We set A(i,e) = A« + ecoskl
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Figure 5.9: The slowly varying solution with load A(ii) = 0.2 —0.1 cosii. The solution becomes

unstable, due to the condition j3K(t\)/2t\ > 1 being satisfied as ii — oo.

where e -C 1. The model equations are

X = —(uy —ecos nt)x —y, (5.6.1a)

il=-aly+ (5.6.1b)

where U = ~—Ao0 and tv 1 and with initial conditions given by x\(0) = £i, 7:2(0) = (2
and y(0) = 7. The corresponding elastic system, obtained in the limit as a —a0, is the
Mathieu equation. We will investigate the effect of the viscoelastic term on the regions
of stability and instability of the elastic system, which are well known. In particular
we calculate the transition curves between these regions. We begin the analysis with a
discussion of the behaviour of solutions to the Mathieu equation, which is based on results
in Nayfeh and Mook [23]. We then introduce the viscoelastic element into the model and
discuss the effect of its introduction. As the techniques used incalculating thesolution are

similar to thosein Section 5.4 and Section 5.5, some of the details areomitted. Rather,
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we concentrate on the important points of the analysis.

Analysis of the elastic Mathieu equation

The Mathieu equation is given by

X + (uj —ecos nt)x =0, (5.6.2)

where U = | —Ao and e < 1. A regular expansion in e of the solution to (5.6.2)indicates
the presence of secular terms and also a breakdown of thesolutionwhen W « n?K?/4,
resulting from the presence of small divisor terms. At these values of to there is a resonance
effect due to the interaction between the natural frequency U>and the frequency of the
excitation n. Using Floquet Theory to analyse the Mathieu equation, we determine that
the we-plane can be separated into regions where the solution is stable (bounded) or
unstable (unbounded). The boundaries between these regions are called transition curves
and can be represented by co = n2K2/A +ljoe+uie2+ .... To determine the equation of the
transition curves and the solution close to these curves, this expansion for uj is substituted
into the dynamic equations and the method of multiple scales is applied. The transition
curves are seen in Figure 5.10.

The solution to the elastic system without excitation consists of oscillating terms with
constant amplitude. The effect of the parametric excitation is to contribute an exponen-
tial amplitude to the oscillations. For bounded solutions of the Mathieu equation, the
exponential has a complex power, giving a solution that is aperiodic, varying with two
frequencies that result from the natural frequency of the elastic system and the parametric
excitation frequency. On transition curves the exponential vanishes and the solution is
periodic with constant amplitude. For unstable solutions the exponential amplitude has a

positive exponent, resulting in an exponentially increasing amplitude and an unbounded
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Figure 5.10: The transition curves separating the stable (clear) and unstable (shaded) regions of

the we-plane for the Mathieu equation.

Figure 5.11: Plots of typical solutions to the Mathieu equation. In (a) we have a bounded solution.

In (b) we plot the solution on a transition curve while in (c) the solution is unbounded.

solution. In Figure 5.11 we plot typical stable and unstable solution curves to the Mathieu

equation.

The viscoelastic Mathieu equation

Now, we wish to investigate the effect of a parametric excitation on the response of the
viscoelastic system. We know from Section 5.4 that the viscoelastic system may be unsta-
ble due to an exponential creep term. We have seen in the case of the Mathieu equation
that the parametric excitation may cause the oscillating terms to become unstable. We
concentrate on this latter form of instability in our analysis. Our approach is similar to

that described in Nayfeh [23], where the effect that viscous damping has on the regions of
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stability and instability for the Mathieu equation is investigated. The method of strained
parameters is used to determine the equations for the transition curves. We adapt this
approach for the viscoelastic model. The method is restrictive in that it only provides
solutions to the system on the transition curves. If we required the solution in a neigh-
bourhood of the transition curves we would have to use a more powerful method, such as
multiple scales. This is the approach taken by Murphy [24], The equations of motion are

given by (5.6.1). We look for a solution in the form

x(t; €) = XQt) + eXi(t) +e2X2{t) + ... (5.6.3a)

y(t-e) = Yo(t) +eYi(t) + e2Y2{t) + ... (5.6.3b)
We also expand U as an asymptotic sequence in € at the resonance points. We have
n2n2 ;
= — Hetdi + e2u2+ +om (5.6.4)

for n = 0,1,... . We determine values for the W by imposing the condition that secular
terms be removed from the oscillating component of the solution. The solution obtained
in this way is valid on the transition curves and results in an expression for the transition
curves.

The creep effect and the parametric effect result in two small parameters, e and a,
for the problem. In order that neither effect dominates, we require that a = e(ao +
a\e+ «e¢), where «0,«j ... are constants. We consider two cases, a0 = k2/4 and ujgq= k2,
(corresponding to n = 1 and n —2), and calculate the transition curves at these resonance
points. Substituting (5.6.3) and (5.6.4) for x(t), y(t) and tointo (5.6.1) and expanding the

system of equations ine results in the following sequence of problems,
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0(1}

Xag+ UX{)= —Yq, (5.6.5a)
Y0 = 0. (5.6.5b)

O(e)
X 1+ UQA [ — —Y\ X)) COSKt —U)I X.(), (5.6.6a)
Yl = -ao(YQ+pf2Xo). (5.6.6b)

0(e2)
X2+ WgXi — —Y'1+ X\ coskt - U\X\ - U2Xo, (5.6.7a)
¥2= ~«o(*i +0/2X1)- ai(YO+/3/2X0). (5.6.7b)

Case 1. wo = ij-
We solve (5.6.5) to get Yo(t) = Co and Xa{i.) = Aqgcosu>ot -f- Bgsinw(),- Co/W These
expressions are substituted into (5.6.6b) to give Y\. Removing secular terms from the os-

cillating components in (5.6.6a) results in the following conditions which must bn satisfied,

Kt ( OtofiAo —
sin Kt (Qwfifo Bo ) =0, (5.6.82)
2\ K + 2
Kt (aopBo —_
cosy « I-j ) =0, (5.6.8b)
where Aqgand Bo are non-zero constants. Solving (5.6.8) for uj\ gives
wi (5.6.9)

Substituting (5.6.9) into (5.6.4), we write the equation for the transition curves to 0(e)
at ug = k2/4 iis

« o2
K, 5. 0a2 (5.6.10)
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This transition curve is discussed in the next section.

Case 2. wo =

The 0(1) equations are solved as in the previous case to give Vow = Cq and Xa(t) —
j4q eos sin woi —Oo/wo- Using these expressions for Xu and Yb we can solve; (5.6.6b)
for Yi. Then, substituting for A'o, Yqg and Y\ into (5.6.6a) gives the following conditions

for the elimination of secular terms from the oscillating components at the o (e) level,

—w\Bq) sinAdi = 0, (5.6.11a)

«

~ABotto i oj B85kt = o, (5.6.11 h)

where A$ and Bq are non-zero. Solving (5.6.11) for «o and wi gives «o = Wi —O0. Thus,
we require the 0(e2) equations to determine the transition curve at wo = K'2- Using the
results from the 0(1) and O(e) level we can solve (5.6.71)) for Y2. Finally, substituting the
expressions for A'o, X\ and Yi into (5.6.7a) results in the following two conditions which

must be satisfied if secular terms are to be removed from the solution at this order,

/ AptviP .
PYI® B o A sinfct = 0, (5.6.12a)
V 2k 12k'2
> U2 cosKt —O0 (5.6.12b)
(A - A° 12k2 ' o

We solve (5.6.12) for u? to get

Aze £ N]{e)i- 6 SN\3>
The equation for the transition curve at wn — k2 is got by substituting (5.6.13) into (5.6.4),

giving
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Figure 5.12: Comparison of the viscoelastic transition curves(solid) with those of the Mathieu
equation(dashed). The critical values are marked by e\ for the transition curve at u)q = /s2/4 and

el for the transition curve at log = k2

Analysis of the viscoelastic transition curves

The transition curves for the viscoelastic system are plotted in Figure 5.12. The Mathieu
equation curves are included for comparison. Examining the transition curve at uw>= k2/4
we see that it is raised from the w-axis and is narrow compared to the Mathieu equation
curve. There is a critical (minimum) value of the transition curve given by e\ = 2afB/n.
For values of e satisfying € < ef, the system is stable. Thus, the effect, of introducing the
viscoelastic element is to increase the region of stability and thus it has a stabilising effect
on the parametric elastic system. Similarly, we see that the transition curve at U = k2
is raised and narrowed compared to the corresponding curve for the elastic case. The
critical (minimum) value for e given by e2 = y/2n6il. Thus, the region of stability is again
increased.

It is important to distinguish between instabilities due to the parametric excitation and
those due to creep. The parametric excitation can destabilise the constant load system

by introducing an instability into the oscillating terms while the viscoelastic effect is to
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introduce an instability by way of an exponentially increasing term. Thus, while we have
indicated regions of stability and instability in Figure 5.12, these refer only to instability
due to the oscillating terms. There may be an instability due to creep present also and

this would eventually destabilise (he system.
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6.1 Introduction

In this chapter we present a number of issues relating to the dynamics of the Link model.
We discuss the system in light of recent work that has been done on nonlinear jump
and bifurcation problems with slowly varying parameters. Much of this work is based on
the method of multiple time scales and averaging methods, and concerns the calculation
of an asymptotic solution to a system of differential equations. We introduce some of
the main ideas discussed in Haberman [12] and Marée [22], Both Haberman and Marée
investigate systems with a slowly varying parameter jj,. As //, varies through a critical value,
corresponding to a bifurcation or jump phenomena, the motion of the system becomes
unstable and a new equilibrium position is attained. Although these differential systems
differ fundamentally from the the system of equations describing the viscoelastic Link
model, the theory offers a new insight into our problem and suggests that further research
in this direction may be fruitful. In particular, the use of averaging methods suggests
that the application of the theory of near-identity averaging transformations should be
investigated. This theory has evolved from the original method of averaging proposed in
1937 by Krylov and Bogoliubov [2] and is presented in detail in Cole and Kevorkian [6]. For
a system with a small parameter a, one attempts to find an adiabatic invariant to 0 (ak).
The procedure involves an averaging transformation of the system. We also discuss the
related multiple scale technique due to Kuzmak [20], who investigates strictly nonlinear

second-order equation with solutions which are slowly modulated oscillations. We begin
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the discussion with abackgroundto some of the ideas justmentioned and present some
problems that have beenexamined. An introduction to the theoryof adiabatic invariants

is presented in Appendix D and a simple example illustrates the idea.

6.2 Recent Developments in Bifurcation Problems with Slowly

Varying Parameters

In this section we outline the recent work on bifurcation problems with slowly varying pa-
rameters discussed in Haberman [12] and Marée [22], In Haberman, second order systems

of the form

x = F{x,n) (6-2.1)

are considered, where jiis a bifurcation parameter. The nonlinear function F(x, //,) depends
on its arguments in such a way that the system has a either a transcritical bifurcation,
pitchfork bifurcation or there is a jump phenomenon. Physically, these systems can be
represented by models similar to the Link model. Haberman allows the bifurcation pa-
rameter [i to vary slowly by setting h= ij,(at). He then investigates the behaviour of
the solution as the bifurcation parameter passes through a critical value. Multiple time
scale and matched asymptotic methods are used. The leading order behaviour in the
transition layer at the critical point for various phenomena is governed by the first and
second Painlevé transcendents (see Ince [19]). Typical behaviour in the case of a trans-
critical bifurcation is illustrated in Figure 6.1. The solution is initially stable about the
zero equilibrium position. As the critical value is passed, the solution may transfer onto
the secondary branch of equilibria or it may become unstable and move to some other

equilibrium position. In Marée[22], damped second order systems of the form
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Figure 6.1: The slowly varying solution for a system with a transcritical bifurcation. The solution
in (a) remains stable after passing through the bifurcation point fj, = fic, moving onto the second

equilibrium path. In (b) the solution becomes unstable as the critical point is passed.

x = —akx + F(x, fi(a, t)), (6.2.2a)

X= a (6.2.2D)

are studied. Thus, the bifurcation parameter p,(a,t) is slowly varying. This system differs
from that discussed in [12] in that there is damping and the rate of change dependence of
the bifurcation parameter is specified. Marée determines asymptotic approximations to
the solution using the method of averaging and matched asymptotic expansions. Again,
the local transition behaviour is described by the first and second Painlevé transcendent.
For a « 1and Gm/2 < A< 1/2, the motion of the system (3.3.1) can be compared to
that of (6.2.1) and (6.2.2) in that it appears to stabilise about a zero position but becomes
unstable at some critical time. Although the motions are similar, there is a fundamental
difference between (6.2.1) and (6.2.2), and the system described by (3.3.1). The former are
examples of turning point problems, while the latter has a constant bifurcation parameter
and it is the slow onset of creep, with an O(a) rate of change, that destabilises the solution.
However, we can view thecreep function y(t) as a time-dependent parameterwith a rate

of change that is of orderO(a). In this case, we can make aconnection between the creep
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function y{t) of the system (3.3.1) and the bifurcation parameters of (6.2.1) and (6.2.2).

This has been the basis of further work on the Link model.

Averaging Methods

In his 1959 paper, Kuzmak [20] investigates strictly nonlinear second order equations of

the form

X+ g(x,r) + ah(x,x, r) = 0, (6.2.3)

where r = at. The solutions of (6.2.3) are slowly modulated oscillations. As a —0, the

reduced nonlinear oscillator

X +g(x,0) =0 (6.2.4)

has periodic solutions in some interval xq < X < x\. Kuzmak works out the 0(1) solution
using independent time scales and later work extends these results to higher order. Like
(6.2.3), the system (3.3.1) is Hamiltonian when a -> 0 and in this case the energy is
constant. For 0 < a « 1, the energy varies slowly. While the technique due to Kuzmak
cannot be applied directly to (3.3.1), it does suggest that we look at the energy of system
and apply some variant of the averaging method.

The method of near-identity averaging transformations would seem to be a possible

candidate. This method is applied to systems in the form

~ = aF(p,q,t,a), (6.2.5a)

~ = uj(p,t,a) +aG{p.,q.ta), (6.2.5b)

where O < a « 1 and the functions F and G are 0(1), 27r-periodic functions of g. The
basic idea is to transform the dependent variables p and (to new variables P and Q in terms

of which the system is as simple as possible to a given order in a. The transformed system is
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then solved and the solution is used in the transformations relations linking (p, q) to (P, Q)
to obtain a solution to the original problem. The variable P will be an adiabatic invariant
to 0(a) for (6.2.5). One possible advantage of this approach is that an approximate
solution to the full nonlinear problem may be possible if suitable transformations are
found. However, before the method of near-identity averaging transformations can be
applied, we need an initial transformation (a;,i) —» (p,q) to express (3.3.1) in the form
of (6.2.5). The usual way to achieve this is to let p be a function of the energy E of the
reduced system and let g be the phase. Such a transformation is used by Baker, Moore and
Spiegel [1] who investigate a system of equations that is similar to (3.3.1). in Appendix
D there is a definition of adiabatic invariance and an example that illustrates this type of
transformation. While we can define a number of energy functionals for (3.3.1), it, remains
a goal of further research to successfully obtain a near-identity transformation for the

system.
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Conclusions

In this thesis we have considered the dynamic and quasi-static motion of a nonlinear
viscoelastic Link model. We have formalised and extended the work done by Hunt and
Thompson [18] and Hayman [14, 15]. In Chapter 3 we analysed the dynamic system for
the Link model, starting with the elastic system without imperfection. Three equilibrium
branches are identified. The stability analysis indicates that the system undergoes a
transcritical bifurcation at the intersection points of these equilibria. In the imperfect
case, the transcritical bifurcation property is lost and the critical load for the system is
reduced in absolute value. The perfect and imperfect viscoelastic system is also studied.
By projecting the equilibria of the viscoelastic system onto the xA-plane, we are able to
compare them with the equilibria of the elastic system. We have shown that the eifect of
the viscoelastic element is to scale the elastic critical load by the factor Gm. This is true
in both the perfect case and the imperfect case. Conditions on the system parameters A, a
and Gm are determined for the perfect system close to the zero equilibrium branch. We
find that for Gm < 1 and values of A satisfying 0 < A < 1/2 that there exists some value
of a > O such that the characteristic equation of the linearised system has two complex
roots and one real root. These results are used in Chapter 5when constructing asymptotic
approximations to the solution of the linearised system.

In Chapter 4 we study the quasi-static approximation to the nonlinear system. We allow
the creep stress to have a non-trivial initial value. This contributes to the imperfection
in the model, allowing an increased set of initial positions for the system. This results

in a greater range of possible motions in comparison to those indicated in [14, 15]. We
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have shown that the location of the quasi-static equilibrium curves is equivalent to those

of the dynamic system. However, the stability properties differ. There is a change in the

stability of the quasi-static equilibrium curve at the point where it intersects the elastic

critical locus. To the right of this intersection point the equilibrium curve is stable. This

is in contrast to the results indicated by the dynamic analysis. Thus, the quasi-static

analysis indicates stability at some equilibrium points, corresponding to large deflections,

where the dynamic analysis indicates that the system is unstable. This is one of the main

findings of the thesis.

In Chapter 5 we have determined asymptotic approximations to the solution of the

perfect model problem linearised about zero. We analyse the model subject to three

loading strategies; the constant load problem, the slowly varying load problem and the

parametric loading problem. The results of the constant load problem agree with the

analytic results from Chapter 3. In particular, we show that an exponential term decays

(grows) for values of load satisfying A < (>)AC resulting in a stable (unstable) solution.

For the slowly varying load problem we derive a condition which the time-dependent

load must satisfy for the system to remain stable. We show that in certain cases, the

system remains stable even if the load occasionally increases above the critical value for

the constant load problem. Finally, we look at the parametric load problem. In the elastic

case, the problem reduces to the Mathieu equation. We show that the viscoelastic element

has a stabilising effect on the oscillations and that there is a minimum value of € below

which the system has stable oscillations.
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Appendix A

An Overview of Differential Equation Theory

A .l Introduction

In this appendix we give a brief overview of the theory of ordinary differential equations.
The purpose of the appendix is to provide a background to some of the concepts which are
discussed in the thesis. For a more detailed exposition we refer the reader to Guckenheimer
and Holmes [11], Hale and Kogak [13] and Glendinning [10]. We begin with definitions of
differential equation systems, their solutions and the stability properties of the solutions.
We discuss linear' and non-linear systems and the relationship between them. There is an
introduction to bifurcation theory and the application of the Centre Manifold theorem at
bifurcation points. We conclude the overview with a section on conservative systems and

their properties.

A .2 Differential equations and stability.

A differential equation of order n is an equation in the form
(A.2.1)
together with a set of initial conditions at t = to,
x(t0) = o0, = Oi, ..., (¢0) — O-n-1*

We can rewrite (A.2.1) as a system of 1st order equations by setting
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for 0 < k < n —1. The system of Ist-order equations is

Uk = ~e+ii 1<k<n—1 (A.2.2a)

xn =F (xx, ...,xn,t). (A.2.2b)

We will consider equations of the form

x = f(x, 1) x GRn, (A.2.3)

where f : Rn xRn —Rn. So, for (A.2.2), we have f(x,i) = (x2,..xn,F(xi,...,xn,t)) In
general the function f(x, t) is non-linear. We now give some fundamental results in the

theory of ordinary differential equations.

Theorem 4. (Local Existence and Uniqueness)
Suppose x = f(x,t) andf : R" XR —>Rn is continuously differentiable. Then there exists
maximal t+ > 0 and t2 > 0 such that a solution x(i) with x(io) = xo exists and is unique

for all t G (to —ti,to + t2).

To emphasize the dependence of the solution x(i) on the initial condition we write the
solution as ip(t,x0) where <p(t,x0) = x(t) and (p(to,x0) = xo- </?(io,x0) is called the flow
through xo at time t = fQ Properties of solutions of the system can be defined in terms
of the flow. (A.2.3) is said to be autonomous if the time t does not appear explicitly in
the right handside,so that f = f(x). There is no loss of generality in taking to = 0 if
this case. For autonomous systems, the solution can be represented as an integral curve

in some phase space.

Definition 1. The curve (x\(t),...,xn(t)) in Rn is an integral curve of x = f(x) iff

(£1(t),...,xn(t)) = f(x1(t),....,xn(t))

for all t. Thus, the tangent to the integral curve at (x\(tk), ...,xn (tk) is i(x\(tk), ...,xn(tk))-
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W hile it may be difficult to determine an exact solution, information about the behaviour
of the system can be deduced from these integral curves.
For many naturally occurring systems there are several associated conserved quantities.

These quantities are called first integrals.

Definition 2. A real-valued, non-constant C1 function

H:Rn-» R; x ~ 2f(x)

is called a first integral of the differential equation x = f(x) if H is constant on every
integral curve, that is, for any solution x(t) with initial value x(io) = xo, the composite

function satisfies ii(x (f)) = ii(xo) for all t for which the solution is defined.

A system containing a conserved quantity is said to be conservative. In certain mechanical
systems the total energy of the system is conserved along integral curves. We discuss

conserved systems in more detail in Section A.6.

Definition 3. A pointx S Rn x R is an equilibrium point (A.2.3) if

f(x) = O.

Equilibrium points are fixed points of the flow so we have ip(t,x) = x. An equilibrium
point x is said to be non-degenerate if f'(x) » 0. The behaviour of the system close to

equilibrium points can be deduced from a stability analysis of these points.

Definition 4. An equilibrium point x o/x = f(x) is said to stable iff for all e > 0 there
exists a6 > 0 s.t. if |xg —x|| < 5 then |ly>(tx0) —x]|| < e for all t > 0. An equilibrium

point is said to be unstable if it is not stable.

Definition 5. An equilibrium point x of x = f(x) is asymptotically stable if it is stable

and, in addition, there exists a 8 s.t. if ||[x° —x|| < § then \ip(t,x°) —x|| —=0 as t —oo0.
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From the definitions we see that a fixed point is stable if solutions which start close to the
fixed point remain close to the fixed point for all time. Asymptotic stability implies that
a solution that starts close to a fixed point will tend towards the fixed point in the limit
as t —moo.

Suppose that that the nonlinear differential equation (A.2.3) has a fixed point at x, then

f(x) can be expanded in a Taylor series about x to give

x = Df(x) x + h.o.t.

where Df(x) is the Jacobian matrix of f evaluated at x defined as

\
ot QP AW
axi 'x/ dx2wxi dxn w ~
Df(*) = (A.2.4)
few
and h.o.t denotes higher order terms. The equation
x = Df(x) x (A.2.5)

is the linearisation of (A.2.3) at x.

Definition 6. A fixed point is said to be hyperbolic if the eigenvalues of the Jacobian

m,atrix defined at the fixed point have non-zero real parts, otherwise it is non-hyperbolic.

The stability of hyperbolic fixed points can be determined by calculating the eigenvalues

of (A.2.4) evaluated at the fixed point.

Proposition 7. If the eigenvalues of (A.2.4), evaluated at a hyperbolic fixed point x, have

strictly negative real parts then the fixed point x is asymptotically stable.
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Proposition 8. If at least one of the eigenvalues of (A.2.4), evaluated at afixed point X,

has a positive real part then the fixed point x is unstable.

We can calculate solutions to (A.2.5) system directly. Let
X = AX (A.2.6)

be a linear system where A is a matrix with constant coefficients. Given an initial condition

vector xq we can write the solution to (A.2.6) as
(p{t,x0) = x OeA .

So, provided we can calculate this exponential, we can write down solutions to the linear

system for any given initial condition.

A .3 Invariant subspaces

W hile information about the location and stability of fixed points of a system is crucial to
understanding the dynamics of the system, we would also like to be able to say something
about the long term behaviour of the system. To do this we first need to define invariant

subspaces.

Definition 7. A set M is invariant iffM xo € M, cp(tx.0) £ M for all t. A set is forward

(resp. backward) invariant ;/V Xo G o) €M for allt > 0 (resp. t< 0/

A point in the invariant set will remain in that set during the motion of the system. In

the case of (A.2.6) the eigenspaces are invariant subspaces.

Definition 8. Letvi,...,vna be the ns eigenvectors of A whose eigenvalues have strictly

negative real parts. Then
Es(t) = span{\i,...,v,a}

A102



Appendix A, Section A An Overview of Differential Equation Theory

is the stable manifold of x.

Definition 9. Let V|[,...,vAu be the nu eigenvectors of A whose eigenvalues have strictly

positive real parts. Then

Eu{x) = span{v

is the unstable manifold of x.
Definition 10. Let vj,...,v,c be the nc eigenvectors of A whose eigenvalues have zero
real parts. Then
E c(x) = span{vh ...,vnJ
is the center manifold of x.

Solutions which lie on (.he stable manifold of x are characterised by exponential decay

while those on the unstable manifold are characterised by exponential growth.

A.4 The Nonlinear System x = f(x)

W hile the linear system, (A.2.6) can be solved explicitly with the solution given by
ip(t, xo) = X(fAi. in general we cannot solve the non-linear system x — f(x). However, by
examining the fixed points of the non-linear system we can determine some facts about
its dynamic behaviour. There are two fundamental results of dynamical systems theory
which relate the behaviour of the non-linear system to that of the linearised system close

to lixed points. Denote the linearisation of x = f(x) at the fixed point x by

x = Df(X) x, x£R* (A.4.1)

where D f(x) is the Jacobian matrix of f evaluated at X.
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Theorem 5. (Hartman-Grobman)

IfDf(x) has no zero or purely imaginary eigenvalues then there is a homeomorphism h
defined on some neighbourhood U of x which takes orbits of the nonlinear flow to those
of the linear flow eD" xt. The homeomorphism can be chosen so that parameterisation of

orbits by time is preserved.

Let U be some neighbourhood of x, a fixed point of x = f(x). We define the local stable

manifold Wfoc(x) by

Wne(x) = {x E U | (p(t xo) x as i —» 00, ip(t, xo) G U for all t > 0} (A.4.2)

and the local unstable manifold W”c(5t) of x by

Wu,c(x) = {x G U | (p(t,xo) —x as t — —00,ip(t, Xo) G U for all t < 0} (A.4.3)

Theorem 6. (Stable Manifold Theorem) Suppose that x = f(x) has a hyperbolic fi,xed

point x and that Es and Eu are the stable and unstable m,anifolds of the linearised system

x
1

D f(x) x. Then there exists local stable and unstable manifolds »~ ¢ c(x), W*c(x) to

x
1

f(x), of the same dimension as Es and Eu. These manifolds are tangential to Es

and Eu at x and as smooth as the function f.

The stable manifold theorem shows that the local structure of hyperbolic fixed points of
the non-linear flow is the same as for the linearised flow. We can also say something about

perturbations of the non-linear system.

Proposition 9. Letx be a hyperbolic fixed point of x = f(x) and let

x = f(x) + ev(x), e«l (A.4.4)

be a small perturbation to the non-linear system. Then (A.4.4) has a hyperbolic fixed point

close to x tuhich is of the same type as x.
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Thus the dynamics in a neighbourhood of a hyperbolic fixed point are invariant to small
perturbations of the defining differential equation. The proof is a consequence of the

implicit function theorem.

A.5 Bifurcation Theory

In applications, the governing differential equation can depend on a number of param-
eters. These parameters will typically have some physical representation. For example,
the equation for a structure that is subject to loading over time will have a parameter
that measures the load at a given time. Bifurcation theory is concerned with the qualita-
tive changes to the topological features of flow as one or more parameters are varied. In
particular, we are interested in values of the bifurcation parameters at which these qual-
itative changes occur. A fundamental observation is that for hyperbolic fixed points the
behaviour of the flow is completely determined by the linearised flow and that the topolog-
ical features at a fixed point persist under small perturbations to the defining equations.
Hence, bifurcations of fixed points can only occur at parameter values for which the fixed

point is non-hyperbolic. Let

x = f(x,n) (A.5.1)

where f : R"™ x R®» — Rn be an autonomous system of equationsdepending on the k-
dimensional parameter Theequilibrium points of (A.5.1) are given by solutions of

the equation f(x,/i) = 0.The Implicit Function theorem impliesthat these equilibria
are described by smooth functions of jj away from non-hyperbolic fixed points. These
functions describe a branch of equilibria. At a non-hyperbolic equilibrium point (x, /}.),
several branches may come together. In such a case, the point (x, fi) is called a bifurcation

point. It is useful to plot the branches of equilibria as functions of the parameter. These
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figures are referred to as bifurcation diagrams. Bifurcations that occur repeatedly are
classified according to schemes which are based on concepts of transversality and co-
dimension. One of the most important techniques for studying bifurcations is based on
the non-hyperbolic equivalent of the Stable Manifold Theorem, called the Centre Manifold
Theorem. This generalises the idea of the centre manifold for linear systems to nonlinear

systems.

Theorem?7. (Centre ManifoldTheorem.) Letf EOr(Rn) withf(o) =0 and let A =
D f(0).Divide theeigenvalues Aj of D f(0)into 3sets,as,au andac, with

<0 if AIE as,

Re Xi —o if AjG ac,

>0 if XiE au,
LetEs,E° and Eu be the corresponding generalised eigenspaces. Then there exist Cr stable
and unstable manifolds W s and W u tangential to Es and E u respectively at x and a CT1~1
center manifold, W c, tangential to Ec at x. All these manifolds are invariant, but W° is

not necessarily unique.

The Centre Manifold Theorem implies that at a bifurcation point the system can be
written locally in co-ordinates (Xx,y,z) GWcx IVs x Wu on the invariant manifolds in

the form

X = g(x) (A.5.2a)
y=-By (A .5.2b)
i =Cz (A.5.2c)

where B and C are positive definite matrices. The motion on W Sis toward the fixed point
and the motion on WU is away from the fixed point. Therefore, local behaviour can be

determined by solving (A.5.2a).
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A.6 Conservative Systems

Consider the second order system

x\ = xi (A .6.1a)

¢2 = —v(xi) (A.6.1b)

where V : R — R is a G1 function. The motion of (A.6.1) is described by the solution
vector <p(t,xo) which is time dependent. However, there may exist functions of </?(i,x0)
which remain constant during the motion and depend only on the initial conditions. Such
functions are called firstintegrals of the motion. Certainfunctionsplay an important role
in the physical description of the system, for instance,the energy function. A system is

said to be conservative if it has a first integral of the motion. Define the energy function

of (A.6.1) by
E(xi,x2) = ~x% + V(xt), (A.6.2)
where
V(x\) = f v(s)ds. (A .6.3)
Jo

The first term | X\ in (A.6.2) is called the kinetic energy and (A.6.3) is the potential

energy. Differentiating (A.6.2) with respect to time gives

[ | dE . dE . .. R
E = X\ + X2 = v(XI)X2 —X2V(XIl) = 0.
dx\ ax2

Therefore theenergy function is an integral of the motion of(A.6.1) and thus the system
(A.6.1) is conservative. The potential energy function V(X |)contains information on
the location and stability type of the fixed points of the conservative system. The fixed

points are in the form (¢1,0) where X\ satisfies V'(Xi) = 0. Moreover, if we calculate the

A107



Appendix A, Section 6 An Overview of Differential Equation Theory

V(X)

Figure A.l: Potential Function:(a,c) Stable center points (b) Unstable saddle point (d) Unstable

cusp point

linearisation of the non-linear system at a fixed point (;£;,0) we get

The two eigenvalues of the Jacobian matrix are given by +y/—V"(x\). We can determine
the stability type of non-degenerate equilibrium points by examining these eigenvalues. We
see that minimum points of the potential correspond to stable centers while the maximum
points of the potential correspond to unstable saddle points. For degenerate fixed points
(i,e. V"(xi) = 0) we must examine higher order terms of the potential function V. We

can rewrite (A.6.1) in terms of the energy function as

dB

and therefore the energy function is a Hamiltonian for the system.
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The Roots of the Characteristic Polynomial A(p).

In this appendix we present several theorems that are used in the thesis concerning
the roots of the characteristic polynomial A (p). The Routh-Hurwitz criterion is used
in the stability analysis of equilibrium points. Details of this criterion are found in [3].
The remaining theorems refer to the relationship between the coefficients of A (p) and the

existence of complex roots.

Theorem s. The Routh-Hurwitz Criterion.

Let
A(p) = p3 +aip2+ ap + a3 (B.0.1)

be a cubic polynomial in p. Define the determinants D\,D2 and D3 as

The real parts of the roots of (B.0.1) are strictly negative (nonpositive) if and only if the
determinants D\, D2 and D" are positive (nonnegative). Furthermore, the number of roots

with positive real part is equal to the number of sign changes in the sequence 1,D\, D1D2, a3

Conditions for the existence of a pair of complex roots for (B.0.1) can be determined by

applying Rolle’s Theorem to d,A/dp =0 .

Theorem 9. Existence of complex roots of A (p).

A (p) =p3 +aip2+ ap + a3 (B.0.2)
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be a cubic polynomial in p. Then, there, exists a pair of complex conjugate roots of (B.C.2)

ifa\ <

Proof. From Rolles Theorem we know that A(p) — 0 has a pair of complex roots if

clA/lclp —0 has complex roots. We liave

dA
— = 3p2+ 2«]7 + 02

dp
witli roots a and g given by
al. , \J «? —3«2
a= ——+#
3 3
Thus, the roots are complex if ai < \/3a-2- O

Proposition 10 below is used in Section 3.3 to determine relationships between the model
parameters that ensures the existence of complex roots for the characteristic equation.

First we state the following lemma,

Lemma 1. Let (B.0.2) have two equal real roots p and one other root g. Let p+ and />_

be the roots of dA/dp where p- < px. Then either

p=P-, Q= 3p+ and p< Q (B.0.3)

or

p=ptg=*P >+ and p> g (B.0.4)

Proposition 10. Let (B.0.2) have two equal real roots p and one other root g where p and

g are given by (B.0.3) and (B.0.4), We have 03 = -p2g. Let A “(p) be a perturbation of

A (7)) where A*(p) —p* + a\p2+ a2p + a$. Then, A*(p) has complex roots for 03 satisfying

23P- - p+ * 2 3P+ ~ P-
P+ o) < 3< P- n
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Appendix C

Center Manifold Analysis.

In this appendix we include the canonical transformation used in the calculation of
the center manifold at the bifurcation point (Xi, A) = (0,0rn/2). we also write out the

functions ft,/a and /|y, The canonical transformations are

( A
\ 2a ( \
( u 2 X\
[7—er2
2a

W 2 { Vvl

and
\ \
u

a
’2

¥ 2 a\Zf- <& -f v

The non-linear functions, to quadratic order, are

2«
/i(u,0,u;,7¢) = - A7¢(u+ w) - - (")2n2+ (] -~ - (M) 2ww-]- (F -
(/e = - Meurw) - e (1)2n2¢ (] (M) 2ww-l- (-,
“\/f-(8)2 , u a, ,2
+ —1 g +w)) " 4(«+ w) >
\ (1 - IfOM** + 3- a2 3 ,av\ ¢ 1/ P ta\2\
h{u,v,w,u) ( w) )( Al ((x - a%)«h (% ~ T ~ (g)
\/f - (?)2 8 2 4 4 2
fV2
+(g-J * + h(u + tu)) - (ti+ u)2,
2 g \/f-(1)2
! X 20; . . 2a .,3 ,0:0.,. 2 ,,3 p ,a\2\ , 13 1?2v 2
/s(u,V,w,;0 =—(;»(if+to)+—p\(/\(/é- (-) Ju + (Zl 74' (o) )WU;"'(I%_ 4"



Appendix D

Adiabatic Invariants

D.lI Introduction

In this appendix we define an adiabatic invariant for the system (D.1.1) and illustrate

the concept with a simple example. A fuller account of the theory is given in Cole and

Kevorkian [6], Consider the following system of differential equations in standard form,
~ =aF(p,q,t,a), (D .l.1a)

= u>(p,t,a) + aG(p,q,t, a), (D.l.1b)

where a 1. We assume that F and G are 0(1), 2n periodic functions g.

Definition 11. A function $ (p,q,t, a) with derivative

dty .
- = |f>(p, ql a)

is an adiabatic invariant to 0 (ak) of (D.1.1) ifip satisfies the following two conditions,

(i) i) = 0(afc+l),

(ii) i> has a zero average, to o (o*+1) over the period of g,

[wht
(1).1.2)

I x)p g, t,a)dg = 0(aK+2),
Jo

If (>= 0 then would be an exact invariant. Thus, an adiabatic invariant is constant to a
given order in « in an asymptotic sense and the condition on the average of iffensures that
the error in assuming that II; is constant is O{atk+1) uniformly in 0 < t < T(a) —0(a ).
Transforming a given system of differential equations t;o the standard form can often be

D112



Appendix D, Section 2 Adiabatic Invariants

achieved by looking for a transformation when a = Oand then applying this transformation
for @ 770. This idea isillustrated with a simple example. Weconsider anoscillator with

small damping. The reducedsystem is Hamiltonian, butthis property islost for a / 0.

D.2 The Damped Linear Oscillator

The damped linear oscillator is represented by the following second order system,

dx1 .
— =X2, (D.2.Ta)
Noo=-2ax2-x 1, D.2.1b
di ( )
where a « | . The reduced system is obtained by setting a = 0 and results in the linear

oscillator. We can express the reduced system in terms of the energy E(t) and phase q(t)

using the following transformation,

E =\(X2+ *I)> (D -2'2a)

= tan_1(—). D.2.2b
g = tan_ (xz) ( )

Now, allowing a to be non-zero and using (D.2.1) and (D.2.2), we determine E and g to

E = x2{x2 + x\) = —2ax% = —2a(2E cos q2) = —2aE —2aE cos(2Q)),
q=1+as'maq.
This system for E and q is in the standard form (D.1.1). However, E is not an adiabatic
invariant to 0(a) because E(t) does not satisfy (D.1.2) due to the presence of the —2a.E

term. However, we can define a new variable J(t) in terms of E(t) such that the equation

for j(t) satisfies (D.1.2), giving us an adiabatic invariant for (D.2.1). Letting J = $>(E,t),
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where r = at, we get

7 — fyfiE + = —a(2E$E —i>T) —2aE cos(2/)<I>/:. (D.2.3)

Setting 2E47/.; - <4 = 0 removes the average term from (D.2.3). We solve this condition

to get <{E,t) = 2Ee2r. Substituting for <¢into (D.2.3) gives

7 = 2ad cos(2ij).

The equation for J contains no average term and satisfies the conditions of an adiabatic

invariant to o (1) for the system.
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