
Personalized Quality Prediction for Dynamic Service

Management based on Invocation Patterns

Li Zhang
1,2

, Bin Zhang
1
, Claus Pahl

2
, Lei Xu

2
, Zhiliang Zhu

1

1Northeastern University, Shenyang, China

{zhangl,zhuzl}@swc.neu.edu.cn, zhangbin@ise.neu.edu.cn
2Dublin City University, Dublin, Ireland

{cpahl,lxu}@computing.dcu.ie

Abstract. Recent service management needs, e.g., in the cloud, require ser-

vices to be managed dynamically. Services might need to be selected or re-

placed at runtime. For services with similar functionality, one approach is to

identify the most suitable services for a user based on an evaluation of the

quality (QoS) of these services. In environments like the cloud, further person-

alisation is also paramount. We propose a personalized QoS prediction method,

which considers the impact of the network, server environment and user input.

It analyses previous user behaviour and extracts invocation patterns from moni-

tored QoS data through pattern mining to predict QoS based on invocation QoS

patterns and user invocation features. Experimental results show that the pro-

posed method can significantly improve the accuracy of the QoS prediction.

Keywords: Service Quality, Web and Cloud Services, QoS Prediction, Invoca-

tion Pattern Mining, Collaborative Filtering, Personalized Recommendation.

1 Introduction

Service QoS (Quality of Service) is the basis of Web and Cloud service discovery

[1-4], selection [5,6] and composition [7-9]. For services located in open environ-

ments such as the Web or the Cloud, QoS may vary depending on the network, the

service execution environment and user requirements. Additionally, a personalized

QoS evaluation of services for different service users is necessary in particular in

these open environments, as users more and more expect the customisation of publi-

cally provided services used by them. Generally, service QoS information is derived

in three ways: delivered by services providers, evaluated based on user feedback and

predicted based on monitoring information. Prediction based on monitoring is more

objective and reliable in untrusted Web and Cloud contexts and more suitable for

these dynamically changing environments. There are two types of prediction based on

monitoring: one is based on statistical, the other is personalized prediction. Many

implementations [1,5,7,9,10] adopt the statistical approach for usage (QoS) predic-

tion. The statistical method is simple and easy to implement, e.g., response-time is

usually calculated based on the average response time. This method ignores the users’

personalized requirements, network conditions and execution features. For example,

mailto:zhuzl%7d@swc.neu.edu.cn
mailto:zhuzl%7d@swc.neu.edu.cn

for an on-demand cloud-based movie/video processing service, the size of the video

has a significant influence on the response time. Different users, accessing the service

through the cloud, may experience different response times. In [11,12,13], collabora-

tive filtering methods are proposed, predicting QoS for a user by referring to past

information of similar users. The influence of the user environment and input can also

be considered to provide a user with a more personalized QoS prediction.

Moreover, even the same user does not experience the same QoS values for differ-

ent invocations at different times and with different invocation parameters – which is

something that current cloud services, whether multimedia on-demand for end users

or commercial applications in the cloud, highlight as a problem. If a user invokes a

service many times, then the QoS cannot be determined by collaborative filtering,

which is inefficient for QoS prediction for every invocation. A Bayesian network-

based QoS assessment model for web services is proposed in [13]. It predicts the ser-

vice performance level depending on the user requirements level, but how to define

the performance level is still a problem. Most QoS prediction methods of services do

not consider the impact on service performance by environmental factors. The predic-

tion performance becomes a critical aspect in dynamically managed service and cloud

environments, where monitored QoS data is taken into account.

Our experiments and analyses show that user inputs, network conditions and Web

server performance impact on QoS significantly. Assume three services s1, s2 and s3

with similar functions. Take input data size, network throughput and CPU utilization

as representatives of input, network and Web server characteristics. Table 1 shows an

invocation log of these services. It records information for every invocation: network

throughput (MB), data size (MB), Web server CPU utilization and response-time(s).

Table 1. Services Usage Information

Service

name

1st invocation 2nd invocation 3rd invocation 4th invocation 5th invocation

s1 <2, 10, 0.2, 0.5> <1.5,20, 0.5, 2> <2.5,10,0.1,0.2> <2,30, 0.3, 0.8> <2, 8,0.2, ？>

s2 <1.5,10,0.3, 0.3> <2,20, 0.4, 1.8>

s3 <2, 20, 0.3, 3 > <1, 20, 0.2, 6 > <1.5,20, 0.3, 4 > <2,15,0.2, 2.4 >

In the third invocation of s1, network throughput is 2.5MB, data size is 10MB, Web

server CPU utilization is 0.1 and response time is 0.2sec. Now, if there is another user

wanting to invoke s1, the network throughput is 2MB, data size is 8MB and CPU

utilization is 0.2. Then, predicting the response time for this user depends on history

information (cf. Table 1). The three services were invoked 5 times, 2 times or 4 times.

The average response times are 0.875s, 1.05s and 3.85s. This is independent of invo-

cation parameters. No matter what the situation of the next invocation, the traditional

prediction results will be the same, but according to Table 1, the real result is depend-

ent on input, network and Web server factors. The prediction in our previous work

[15,16] is based on collaborative filtering. It predicts QoS through calculating the

similarity of invocation parameters and parameters in past invocations. The prediction

is more accurate than an averaging method, but needs to calculate the similarity of

target invocation and all past invocations, resulting in too many repeated calculations

and low efficiency, which needs to be addressed for dynamic contexts like the cloud.

 An important observation is that most services have relatively fixed service invo-

cation patterns (SIPs). A SIP consists of ranges of input characteristics, network

characteristics and Web server characteristics and reflects relatively stable, acceptable

variations. The service QoS keeps steady under a SIP. If we can abstract the SIP from

service usage, the prediction can be based on usage information for the matched pat-

tern. If there is no usage information for the matched pattern, the prediction needs to

be calculated using past log information of other similar services. We propose con-

structing SIPs by analysing user input, network environment and server status factors.

We adapt collaborative filtering prediction to be based on SIPs and pattern mining,

improving prediction accuracy and performance. Thus, our contributions are:

 Firstly, we propose the novel concept of Service Invocation Pattern and an aligned

method for mining and constructing SIPs (Sections 2 and 3). It considers the influ-

ence of environmental characteristics on the quality of a Web service.

 Secondly, we propose a collaborative filtering QoS prediction algorithm based on

SIPs (Sections 4 and 5). This approach can predict QoS based on personalized user

requirements. It improves the prediction accuracy and computational performance.

2 Service Invocation Pattern SIP

Services QoS characteristics are related to user input, network status and server

performance. It means that a certain range of input, network status and server status

determines a relatively fixed service invocation pattern. A SIP reflects that the QoS

remains steady under this pattern, i.e., predicting QoS this way is beneficial. We ana-

lyse the characteristics which impact Web service execution and define the SIP.

Definition. 1. Service Invocation Characteristic (SIC). C = < Input, Network,

Server> is the characteristic model of one invocation. Input, Network and Server

represent user input characteristics, network characteristics and Web server character-

istics, respectively. We take input data size, network throughput and CPU utilization

as examples. In invocation characteristic <30, 1.5, 0.2>, the input data size is 30MB,

throughput between server and user is 1.5MB and server CPU utilization is 0.2.

Definition. 2. Input Characteristic (IC). Input =< In
1
,In

2
,…, In

P
> is the input

characteristics vector. It describes the input characteristics that have an influence on

QoS. I
k
 (1≤ k ≤ p) is the k-th input characteristic.

Definition. 3. Network Characteristic (NC). Network =< net
1
,net

2
,…, net

r
> is the

network characteristics vector. It describes the network characteristics that have an

influence on QoS. n
k
 (1≤= k ≤ r) represents the k-th network characteristic.

Definition. 4. Web Server Characteristic (WSC). Server =< se
1
,se

2
,…,se

q
> is the

server characteristics vector. It describes the Web server characteristics that have an

influence on service QoS. se
k
 (1≤ k ≤ q) represents the k-th server characteristic.

Definition. 5. Service Invocation Pattern (SIP). A SIP is a group of service invoca-

tion characteristics SIC. In a SIP, the value of invocation characteristics is a range.

The QoS is meant to be steady under a SIP. We describe it as M = < Inputlow ~ In-

puthigh, Networklow ~ Networkhigh , Serverlow ~ Serverhigh >, Input, Network and Server

are input characteristics, network characteristics and Web server characteristics.

Definition. 6. Invocation Pattern-QoS matrix. If the QoS of services keeps steady

or have a fixed relation to a SIP, then this relation can be expressed as a matrix MS:





















mlll

m

m

m

qqq

qqq

qqq

sss

,2,1,

,22,21,2

,12,11,1

21













l

2

1

M

M

M

MS

The matrix MS shows the QoS infor-

mation of all the services s under all the

patterns M. qij (1≤j≤l, 1≤i≤m) is the QoS

of service sj under the pattern Mi.

with











 .~'' range with pattern under history invocation has Service~

.pattern under history invocation no has Service

,,

,

i

i

m

m

jjiji

j

ji

shighlow

s

q



If a pattern is <20-30MB, 0.5-0.6, 0.2-0.4, 30-40MB>, then the input data size is

20-30MB, CPU utilization is 0.5-0.6, memory utilization is 0.2-0.4 and server

throughput is 30-40MB. We can search for the QoS of a service based on information

related to this pattern. If there is corresponding information and the value keeps

steady in a range, then it is returned to the user. If the value is not consecutive, it

means the service is not only affected by the characteristics of the invocation pattern.

It then needs further calculation based on history information. If there is no invocation

history, this value will be null. In that case, prediction is done for a user invocation

requirement. Below is an example of an Invocation Pattern-QoS Matrix. There are 4

invocation patterns. We introduce how to abstract/mine SIPs and predict in Sect. 3.



















s

sss

ss

ss

ssss

4~3

5.0~3.04.2~25.0~4.0

5.1~1.11.1~8.0

3.1~15.0~2.0

4321

4

3

2

1

M

M

M

M

Some services have no usage

information within a pattern

range – e.g., since s1 has an

invocation history for pattern

M1, it returns this range of

values, but as s2 has no invoca-

tion history, it needs collabora-

tive filtering for prediction.

3 Service Invocation Pattern Abstraction and Mining

The values of user invocation characteristics are spread across a certain range. Ob-

taining these value ranges significantly helps QoS prediction, but the number of SIPs

that reflect these cannot be decided in advance and all usage information is multi-

dimensional. Density-based spatial clustering of applications is used to achieve this.

DBSCAN (density-based spatial clustering of application with noise) [17] is a densi-

ty-based clustering algorithm. It analyses the density of data and allocates them into a

cluster if the spatial density is greater than a threshold. DBSCAN can find clusters of

any shape. The DBSCAN algorithm has two parameters:  and MinPts. If the distance

between two points is less than the threshold , they can be in the same cluster. The

minimum number of points in a cluster must be greater than MinPts. DBSCAN clus-

ters the points through spatial density. The main steps of DBSCAN:

1. Select any object p from the object set and find the objects set D in which the ob-

ject is density-reachable from object p with respect to  and MinPts.

2. Choose another object without cluster and repeat the first step.

A SIP Extraction Algorithm based on DBSCAN shall now be introduced. A SIP is

composed of user input, network and server characteristics. For these aspects, we take

throughput, input size and CPU utilization as representatives, respectively. We con-

sider the execution time as the representative of QoS here.

 An execution log records the input data size and execution QoS.

 A monitoring log records the network status and Web server status.

We reorganize these two files to find the SIP under which QoS keeps steady. A SIP

extraction algorithm is shown in Alg. 1 (see also the SIP format in Definition 5).

__

Algorithm 1: SIP Extraction Algorithm based on DBSCAN

Input: Service Usage Information InforSet (execution+monitoring log), , MinPts.

Output: SIP Database PatternBase, Pattern-QoS information PatternQoS.
1 for (Infori<DataSize, CPU, ThroughPut, time> ∈ InforSet)
2 {
3 if (Infori does not belong to any exist cluster) {
4 Pj= newPattern(Infori) // create a new pattern withInfori as seed.
5 Add(Pj, PatternBase)
6 InforSet = InforSet – Infori
7 SimInfor = SimilarInfor(InforSet, Infori, ε) // SimInfor is the infor-
8 mation set which includes all the similar usage information of
9 Infori. Differences between the information in SimInfor and

10 Infori on the charac-teristics value except execution time are

11 less than . n is the number of information items in SimInfor.
12 InforSet = InforSet – SimInfor

13 if (n>MinPts) { // MinPts is min number of exec inform in cluster.

14 (S1, S2, … ,Sm) = Divide(SimInfor) // Divide SimInfor into different

15 groups. Group S1 includes all information of servs1.

16 for(k=1; k≤m; k++){

17 for(Inforj∈Sk) {
18 SimInfor = SimilarInfor(InforSet, Inforj, time, MinPts, ε)

19 // Search similar info of Sk in execution information set. If

20 the number of similar information item is less than MinPts,

21 then the density will turn low and top the loop.

22 Sk = Sk + SimInfor

23 InforSet = InforSet – SimInfor

24 }

25 PatternCharacteristics(Sk) // Organizes the information in the

26 cluster and statistics for the ranges of characteristics.

27 Completes the pattern-QoS matrix.

28 }

29 }

30 }

31}__

The distance calculation between two objects in this algorithm is different from the

traditional DBSCAN. It includes two types of distance:

 Firstly, when we initialize a cluster, we randomly select an object without cluster.

We take it as the seed to find the cluster it belongs to. In this cluster, the response

time of different services may differ, but the performance of different invocations

of the same service keeps steady. The distance between the other information and

seed information is computed based on all characteristics except response time.

 Secondly, when the cluster has been constructed, we need to check whether the

information does not belong to any cluster or belongs to the given cluster. We

need to compare this information with others of the same service in the cluster

and calculate the distance of this information with the cluster. Then, the distance

computation is dependent on all the characteristics of the two information items.

4 The QoS Prediction based on SIP

This section will introduce the Web Service QoS prediction approach. It uses Ser-

vice Invocation Patterns and the Invocation Pattern-QoS Matrix to carry out the pre-

diction. It fully considers the requirements of every invocation.

4.1 The QoS Prediction Procedure based on SIP

In order carry out the prediction, we assume that the SIP database has been created.

Fig. 1. QoS Prediction Procedure

The steps of the prediction procedure in Fig. 1 are as follows. Firstly, we match the

target invocation characteristics with the SIPs in the database. We match the charac-

teristics of target service sj with the characteristics of stored patterns. If there is a pat-

tern that can be matched directly, then we return it. Otherwise, we employ the Gray

Relevance Analysis to get the matched pattern. Assume that the matched pattern is mi.

Then, we search information about a matched pattern in the QoS matrix. If there is

QoS information of the target service in pattern mi, then we return it directly. Finally,

if there is no related QoS information, then we predict QoS by collaborative filtering.

4.2 Matching User Invocation Characteristics with Patterns

A characteristics vector of a user invocation is C = < Input, Network, Server>.

Here Input, Network and Server represent input, network and server characteristics,

Invocation
Pattern
MatchUser

Invocation
Characteristics

QoS
Information
in Matched

Pattern?

SIP
Database

Return
Prediction

Prediction
based on

Collaborative
Filtering

respectively. The Service Invocation Pattern is defined as M = < Inputlow~Inputhigh,

Networklow~Networkhigh, Serverlow~Serverhigh >. During the matching process, we

compare the user invocation characteristics and the respective component in the pat-

tern. Matching is successful if Inputlow ≤ Input ≤ Inputhigh, Networklow ≤ Network ≤

Networkhigh and Serverlow ≤ Server ≤ Serverhigh. Assume the matched pattern is mi.

If there is no matched pattern, adopt the Gray Relevance Analysis method to calcu-

late the association degree between QoS and invocation characteristics to a) find the

ordering of characteristics that have greater impact on QoS and b) match the pattern

based on the order. Table 2 shows the n times invocation information of service s.

Table 2. Usage Information of Service s

Features 1 …… I …… n

Response Time T1 …… Ti …… Tn

Input Datasize Data1 …… Datai …… Datan

Throughput TP1 …… TPi …… TPn

CPU utilization CPU1 …… CPUi …… CPUn

1. Take response time as the reference sequence x0(k), k = 1,…, n, and other charac-

teristics as comparative sequences. Calculate the association degree of the other

characteristics with response time. First, take the characteristics of an invocation

as standard and carry out normalization of the other characteristics. The reference

sequence and comparative sequence are handled dimensionless. Assuming the

standardized sequence yi(k), i=1,…,4, k=1,…,n, Table 3 shows the result matrix.

Table 3. Normalized Usage Informaiton

Features 1 …… I …… n

Response Time 1 …… y1(i) …… y1(n)

Input Datasize 1 …… y2(i) …… y2(n)

Throughput 1 …… y3(i) …… y3(n)

CPU utilization 1 …… y4(i) …… y4(n)

2. Calculate absolute differences for Table 3 using 0 0() () ()i ik y k y k   . The result-

ing absolute difference sequence is:

))(,),1(,0(010101 nyy  ，))(,),1(,0(020202 nyy  ，))(,),1(,0(030303 nyy 

3. Calculate a correlation coefficient between reference and comparative sequence:

max0

maxmin
0

)(
)(











k
k

i

i
is the correlation coefficient of the Gray Relevance.

Here |)()(|)(00 kykyk ii  is the absolute difference and min 0min min ()i
i k

k   is

the minimum difference value between two poles, and max 0max max ()i
i k

k   is

the maximum difference value.   (0,1) is the distinguishing factor.

4. Calculate the correlation degree: Use 



n

k

i k
n

r
1

010)(
1

 to calculate the cor-

relation degree between characteristics. Then, sort the characteristics based on the

correlation degree. If r0 is the largest, it has the greatest impact on response time

and will be matched prior to others. Assume usage information of s as in Table 4.

5 QoS Prediction Based on Collaborative Filtering

If there is no related QoS within matched patterns, we need to predict QoS based

on collaborative filtering. In the Invocation Pattern-QoS Matrix, there are a usually a

number of null values. The prediction accuracy will be affected if we ignore these null

values. We need to fill the null values for the information items of similar services.

5.1 QoS Prediction Process based on Collaborative Filtering

Assume that the target service is sj, and the matched pattern is mi. When service sj

has no QoS information in pattern mi, the prediction process is as follows:

1. For any service sv, v ≠ j, if there is information of sv under pattern mi. then calculate

the similarity between service sj and service sv.

2. Get the k neighbouring services of service sj through the similarity calculated in

step 1. The set of these k services is S = {s1‘,s2‘,
…

,sk‘}. We fill the null QoS values

for the target invocation using the information in this set.

3. Using the information in S, calculate the similarity of mi with other patterns that

have the information for target service sj.

4. Choose the most similar k‘ patterns of mi, and use the information across the k‘ pat-

terns and S to predict the QoS of service sj .

5.2 Service Similarity Computation

 Assume that mi is the matched pattern and sj is the target service. If there is no in-

formation of sj in pattern mi, we need to predict the response time qi,j for sj. Firstly,

calculate the similarity of sj and services which have information within pattern mi

ranges. For a service svIi where Ii is the set of services that have usage information

within pattern mi, calculate the similarity of sj and sv. Vector similarity calculation

commonly adopts cosine similarity, correlation similarity or correction cosine similar-

ity. However, these 3 methods do not consider the impact of user environment differ-

ences, i.e., the methods are not suited for service similarity computation directly. We

need to improve the similarity calculation. We define service similarity as follows:

Definition. 7. The similarity of two services sj and sv is defined by

),(),(),(jvdatajvsumjv sssimsssimsssim   (1)

where

 simsum(sv,sj) is the similarity of the numbers of invocation patterns which are in-

voked by services sv and sj together. Two services are more similar if they have

more used invocation patterns in common.

 simdata(sv,sj) is the similarity of the usage information of services sj and sv. Two

services are more similar if their usage information is more similar.

 α and β are adjustable balance parameters. They can be changed based on differ-

ent user requirements.

For services sj and sv, P(sj/sv) is the probability of the coexistence of services sj and sv

within a pattern. This probability can be used to measure the similarity of sj and sv:

)(

)(
),(

j

jv

jvsum
snum

ssnum
sssim  (2)

Here, num(sv, sj) is the number of the common pattern-based invocations by two ser-

vices. num(sj) is the number of pattern-based invocation by service sj. Based on for-

mula (1), simsum(sv, sj) is between 0 and 1.

Our definition of the similarity of invocation information adopts the correction

cosine similarity method. It is shown in formula (3). Mvj is the set of invocation pat-

tern models which have the usage information of sv and sj.














vj jjcvj vvc

jcvvc

jvdata

cc

vjjc j

qqqq

qqqq
sssim

MM

M

mm

m

2

,

2

,

,,

)()(

))((
),(

 (3)

Here,
vq is the average of the usage information for service sv, jq is the average of

the usage information for service sj.

From formula (3), we can obtain all similarities between sj and others services

which have usage information within pattern mi. The more similar the service is to sj,

the more valuable the data of it is. Formulas (2) and (3) are two aspects of service

similarity. Formula (1) provides the sum of these two different similarities.

5.3 Predicting Missing Data

Missing data will have a negative impact on the accuracy of QoS prediction. We

calculate the similarity between two services and get the k neighbouring services.

Then, we establish the k neighbours matrix Tsim and fill the missing data in Tsim.

Assume the k neighbouring services form the set S = {s1‘,s2‘,
…

,sk‘}. Here, '

1s has

the highest similarity with service sj and so on. Then, these k services are more valua-

ble and their usage information is defined as follows in matrix (4) below. Matrix Tsim

shows the usage information of the k neighbouring services of sj within all invocation

patterns. The data space is reduced to k columns and the computational effort required

is consequently also reduced. In this matrix, there are still many missing data items ti,j.

We need to fill these empty spaces before prediction. Firstly, we fill the missing data

references to the services similarity.


























'

,

'

2,

'

1,,

'

,

'

2,

'

1,

'

,1

'

2,1

'

1,1,1

''

2

'

1

kllljl

kiii

kj

kj

tttt

ttt

tttt

ssss

















l

i

1

sim

M

M

M

T
 (4)

We fill
ser

piP, , which is the data of service sp under pattern mi. The method is:










 


' ,

' ,,

,
|)(|

)''(
'

Sn pn

Sn nnipn

p

ser

pi
sim

ttsim
tP , (5)

Here


pt ' is the average QoS of service sp, and simn,p is the similarity between service sn

and sp. For any service p S’, every service has usage information within all the pat-

tern ranges in mi after this process.

5.4 Calculating the Pattern Similarity and Prediction

There is QoS information of k neighbouring services of sj in matrix Tsim. Some of

them are prediction values. We can calculate the similarity of pattern mi and other

patterns using the correction cosine similarity method:














SS

S

kk

k j

s jkjs iki

s kjiki

jiel

tttt

tttt
mmsim

2

,

2

,

,,

mod

)''()''(

)'')(''(
),(, (6)

 After determining the pattern similarity, the data of patterns with low similarity

are removed from Tsim. The set of the first k patterns is },,{ '

2

'

1

'

kMMM M' . The data

of these patterns are retained for prediction.

As described above, if pi,j is the data to be predicted as the usage data of service

sj within pattern Mi., it is calculated as:










 


' ,

' ,,

,
|)(|

)''(
'

Mn

Mn

in

njnin

iji
sim

ttsim
tp (7)

Here


it ' is the average QoS of the data related to pattern mi and simn,i is the similarity

between patterns Mn and Mp.

6 Experimental Analysis

We have designed a simulation environment to evaluate the efficiency and accu-

racy of the approach proposed. First, we implemented 100 Web services. These ser-

vices belong to 3 categories, which are sensitive to data size, network throughput and

CPU utilization separately. They are distributed over different network environments.

All Web servers provide an open SNMP service and we installed a monitoring pro-

gram for network monitoring. We gathered user input data size, server CPU utiliza-

tion and server port throughput. The monitor submits environment information to the

monitoring log recorder, which is responsible for cleaning the monitor log and storing

data in the database. We generated a 200*100 invocation pattern-QoS matrix, restrict-

ed to the response time characteristics. Fig. 2 shows the experimentation architecture.

Service

Consumer

Register Centre

Web Services

Monitors on
Servers

Monitors on
Clients

WSIP Extraction

Web
QoS

manag
ement
syste
m

Monitoring Log
Recorder

Execution Log
Recorder

Service Providers

Monitoring Log Excution Log

WSIP Database

Web QoS
Predictio
n Based
on WSIP

Fig. 2. Experimentation Architecture

Service providers register their Web service with a registry centre. Monitors for

server and client are responsible for submitting the monitoring data to the Monitoring

Log Recorder and the Execution Log Recorder. The Service Invocation Pattern

Extraction module is responsible for extracting the service invocation patterns from

the monitoring log and the execution log. When user requirements need to be pro-

cessed, the QoS Management System will predict service QoS for a user according to

their requirements. Then, the user can decide to invoke this service or not.

Accuracy Analysis. MAE (Mean Absolute Error) is the normal standard to meas-

ure the prediction accuracy. Here MAE is the mean absolute error between prediction

and real response time. The smaller the MAE, the more accurate is the prediction.

Assuming pij is the prediction value and tij is the real value, then MAE can be calculat-

ed as follows, where N is the total number of predictions:

N

pt
MAE

ji ijij 


,
||
 (8)

Different characteristics of QoS have different ranges. Consequently, we use

NMAE (Normalized Mean Absolute Error) instead of MAE. The smaller the NMAE,

the more accurate is the prediction. NMAE is the normalized MAE:

Nt

MAE
NMAE

jiji /,,
 (9)

The accuracy of the prediction is important. Web QoS prediction algorithms

usually are statistics-based and collaboration method-based. Average-based methods

do not consider the users’ personalized requirements and the impact of the network.

Thus, they calculate the same prediction for all users. Collaboration-based methods

need to use all historic data, i.e., the computation takes too long. We analysed these

three approaches and tried different settings of k,  and  to assess the result.

Fig. 3. NMAE of k=15 Fig. 4. NMAE of k=18

Different ks have different impacts on the result. If k is too large, there will be too

much unnecessary information. The prediction result will be affected. However, if k is

too small, useful information will be ignored and the data will not be sufficiently large

enough for prediction. The similarity of the first k patterns maybe different under

different data condition. Thus, a fixed k is not the objective. We tested different num-

bers of neighbouring patterns. We took the square root of the number of patterns first.

Then, considering the pattern similarity, we fixed 0.5 as the critical value of similari-

ty. If similarities between the target pattern and all other patterns exceed 0.5, then we

increase k, otherwise decrease k. After testing, when k is 15 or 18, the performance is

better in our environment.  and  in Formula (1) have also different impacts in dif-

ferent datasets. For our dataset, the performance is best when  is 0.2. We use AP to

represent the average method. CF is the abbreviation of the collaboration-based algo-

rithm. MCF is the abbreviation of the approach in this paper. As indicated in Figures

3 and 4, an increase of the dataset size improves the accuracy significantly.

Efficiency Analysis. If the target invocation can be matched in the service invoca-

tion pattern database and if there is QoS of the target service within the matched pat-

tern, we can predict QoS directly. Only if there is no related data, collaborative com-

putation is needed. The dataset for collaborative computation is related to service

invocation patterns, but the number of patterns is far less than the number of usage

information items. We used DBSCAN to obtain the service invocation patterns. We

determined 150 invocation patterns from 2400 usage recordings. Compared to work

in [11,12], the matrix for collaborative computation is reduced from 2400*100 to

150*100. Here, only when the matched pattern has no information of the target ser-

vice, the calculation for prediction is required. Thus, the computation effort is de-

creased to a large extent. We tested the algorithm on many datasets. For each dataset,

Top k=15

0.15

0.2

0.25

0.3

0.35

0.4

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9 1

Matrix Density

N
M
A
E AP method

CF method

MCF method

Top k=18

0.15

0.2

0.25

0.3

0.35

0.4

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9 1

Matrix Density

N
M
A
E AP method

CF method

MCF method

50 predictions were taken and we averaged the response time. The comparison be-

tween the methods is shown in Figure 5. When the size of the dataset grows, time

consumption in normal collaborative cases increases quickly. Our approach (MCF) is

not much affected by data size.

Fig. 5. Efficiency Analysis

7 Related Work

Different types of Web or cloud services [26] usually have different QoS character-

istics [1-12]. The normally used ones are response time, execution cost, reliability,

availability, security and reputation. There are many factors that impact on QoS [18].

Some factors are static, some are run-time static, the others are totally dynamic. Run-

time static and dynamic factors are uncertain. They are client load, server load, net-

work channel bandwidth or network channel delay. Most factors can be obtained by

monitoring, but not all. Then, their impact cannot be calculated.

QoS-based service selection has been widely covered

[1-10]. Many service predic-

tion methods are proposed. There are three categories of prediction. The first one is

statistic, which is normally adopted

[1,2,7,8,9]. This method is simple and easy to

implement. The second category is based on user feedback and reputation [19,20]. It

can avoid malicious feedback, but these methods do not consider the impact of user

requirements and the environment and cannot personalize prediction for users. The

third category is based on collaborative filtering [11-14]. Collaborative filtering is a

widely adopted recommendation method [21-24,28]. Zeng [22] summarizes the appli-

cation of collaborative filtering in book, movie and music recommendation. In this

paper, collaborative filtering is combined with service invocation patterns, user re-

quirement and preferences. This considers different user preferences and makes pre-

diction personalized, while maintaining good performance results.

Some works integrate user preferences into QoS prediction [11-15], e.g. [11-13]

propose prediction algorithms based on collaborative filtering. They calculate the

similarity between users by their usage data and predict QoS based on user similarity.

This method avoids the influence of the environment factor on prediction. Even the

same user will have different QoS experiences over time or with different input data,

but these works do not consider user requirements and generally show low efficiency.

The proposed method in this paper takes full account of user requirements, the

network and server factors. It abstracts the service invocation pattern to keep the ser-

0

1000
2000
3000
4000
5000
6000
7000
8000
9000

1 2 3 4 5 6 7 8 9 10

Datasize(thousand)

Ti
me
(m
s)

CF method

MCF method

vice QoS steady. When user requirements are known, prediction can be done based on

matched patterns. This approach is efficient and reduces the computational overhead.

8 Conclusion

Service management in Web and Cloud environments [26,27], e.g. public clouds,

requires service-level agreements (SLA) for individual users to be managed continu-

ously, based on monitored QoS data. (Cloud) service managers take care of this for

the users. Dynamic, personalised prediction of QoS is an essential component of reli-

able service provisioning that makes service lifecycle management more reliable. The

need to personalise services dynamically is highlighted by e.g. cloud requirements for

efficient service quality management adapted to user-specific requirements and situa-

tions across a range of end-user and business solutions offered as cloud services.

This paper proposes a service QoS prediction technique to satisfy personalized re-

quirements. It considers not only the impact of the network, but also the Web server

environment, and especially the individual user requirements. Based on historic in-

formation, we can abstract past user invocation pattern (mined from monitored log

data) in order to predict future QoS of potential services to be utilised. The pattern

approach provides independent reliability for the prediction of SLA-relevant aspects.

When there is no information about the target pattern, we utilize collaborative filter-

ing to predict according the data of other patterns. The results show that this approach

is more accurate and personalized, and also demonstrates good prediction perfor-

mance, which allows for dynamic utilisation of the technique.

Acknowledgement. This research has been supported by the National Natural Sci-

ence Foundation of China (grant 61073062), the Technology Project of LiaoNing

Province (2011216027) and the Irish Centre for Cloud Computing and Commerce, an

Irish national Technology Centre funded by Enterprise Ireland and the Irish Industrial

Development Authority.

References

1. Cardoso J., Sheth A., Miller J., Arnold J., and Kochut K.: Quality of Service for Work-

flows and Web Service Processes. Journal of Web Semantics,1(3), 281-308 (2004)

2. Kritikos, K., Plexousakis, D.: Requirements for QoS-based Web service description and

discovery. IEEE Transactions on Services Computing, 2(4), 320-337 (2009)

3. Zheng, K., Xiong, H.: Semantic Web service discovery method based on user preference

and QoS. Intl Conf on Consumer Electr, Comms and Netw CECNet’12, 3502-3506 (2012)

4. Ali, R. J. A., Rana, O.F. Walker, D. W.: G-QoSM: Grid service discovery using QoS

properties. Computing and Informatics, 21(4), 363-382 (2012)

5. Wang, P.: QoS-aware web services selection with intuitionistic fuzzy set under consumer’s

vague perception. Expert Systems with Applications, 36(3), 4460-4466 (2009)

6. Huang, A. F. M., Lan, C. W., Yang, S. J. H.: An optimal QoS-based Web service selection

scheme. Information Sciences, 179(19): 3309-3322 (2009)

7. Ye, Z., Bouguettaya, A., Zhou, X.: QoS-Aware Cloud Service Composition based on Eco-

nomic Models. Service-Oriented Computing, Springer, 111-126 (2012)

8. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for QoS-based web service

composition. Proc. Intl Conf on World Wide Web, ACM, 11-20 (2010)

9. Zeng, L., Benatallah, B., Ngu, A. H. H., et al.: QoS-Aware middleware for Web services

composition. IEEE Trans on Software Engineering, 30(5), 311-327 (2004)

10. Yu, T., Lin, K. J.: Service Selection Algorithms for Web Services with End-to-end QoS

constraints. Information Systems and E-Business Management, 3(2):103-126 (2005)

11. Shao, L., Zhang, J., Wei, Y., et al.: Personalized QoS prediction for Web services via col-

laborative filtering. IEEE Intl Conference on Web Services ICWS 2007, 439-446 (2007)

12. Zheng, Z., Ma, L. M. R., et al.: Qos-aware web service recommendation by collaborative

filtering. IEEE Transactions on Services Computing, 4(2) ,140-152 (2011)

13. Zheng, Z., Ma, H.: WSRec: A Collaborative Filtering Based Web Service Recommender

System. Proc IEEE Intl Conference on Web Services, 437 – 444 (2009)

14. Wu, G., Wei, J., Qiao, X., et al.: A Bayesian network based QoS assessment model for

web services. Proc IEEE Intl Conference on Service Computing, 498-505 (2007)

15. Li, Z., Bin, Z., Ying, L., et al. A Web Service QoS Prediction Approach Based on Collabo-

rative Filtering. IEEE Asia-Pacific Services Computing Conf APSCC’10, 725-731(2010)

16. Li, Z., Bin, Z., Jun, N., et al.: An Approach for Web Service QoS prediction based on ser-

vice using information. Intl Conference on Service Sciences ICSS’2010. 324-328 (2010)

17. Ester, M., Kriegel, H. P., Sander, J., et al.: A density-based algorithm for discovering clus-

ters in large spatial databases with noise. Proc. Intl Conf on Knowledge Discovery in Da-

tabases and Data Mining (KDD-96). AAAI Press, 226-232 (1996)

18. Lelli, F., Maron, G., Orlando, S.: Client Side Estimation of a Remote Service Execution,

IEEE International Symposium on Modelling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS) (2007)

19. Vu, L. H., Hauswirth, M., Aberer, K.: QoS-based Service Selection and Ranking with

Trust and Reputation Management. Computer Science, 3760(2005) , 466-483 (2005)

20. Yan, L., Minghui, Z., Duanchao, L., et al.: Service selection approach considering the

trustworthiness of QoS data. Journal of Software, 19(10), 2620-2627 (2008)

21. Sarwar, B., Karypis, G., Konstan, J., et al.: Item-based collaborative filtering recommenda-

tion algorithms. Proc 10th Int’l World Wide web Conf. ACM Press, 285-295 (2001)

22. Chun, Z., Chunxiao, X., Lizhu, Z.: A Survey of Personalization Technology. Journal of

Software, 13(10), 1852-1861 (2002)

23. Hailing, X., Xiao, W., Xiaodong, W., Baoping, Y.: Comparison study of Internet recom-

mendation system. Journal of Software, 20(2):350-362 (2009)

24. Ailing, D., Yangyong, Z., Bole, S.: A Collaborative Filtering Recommendation Algorithm

Based on Item Rating Prediction. Journal of Software, 14(9):1621-1628 (2003)

25. Balke, W. T., Matthias, W.: Towards personalized selection of Web services. Proc. Intl

World Wide Web Conf. New York: ACM Press, 20-24 (2003)

26. Pahl, C., Xiong, H., Walshe, R.: A Comparison of On-premise to Cloud Migration Ap-

proaches. European Conference on Service-Oriented and Cloud Computing ESOCC 2013.

Springer LNCS (2013)

27. Pahl, C., Xiong, H.: Migration to PaaS Clouds - Migration Process and Architectural Con-

cerns. IEEE 7th International Symposium on the Maintenance and Evolution of Service-

Oriented and Cloud-Based Systems MESOCA'2013. IEEE (2013)

28. Huang, A.F., Lan, C.W., Yang, S.J.: An optimal QoS-based Web service selection scheme.

Information Sciences, 179(19), 3309 -3322 (2009)

