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Abstract. Recent service management needs, e.g., in the cloud, require ser-

vices to be managed dynamically. Services might need to be selected or re-

placed at runtime. For services with similar functionality, one approach is to 

identify the most suitable services for a user based on an evaluation of the 

quality (QoS) of these services. In environments like the cloud, further person-

alisation is also paramount. We propose a personalized QoS prediction method, 

which considers the impact of the network, server environment and user input. 

It analyses previous user behaviour and extracts invocation patterns from moni-

tored QoS data through pattern mining to predict QoS based on invocation QoS 

patterns and user invocation features. Experimental results show that the pro-

posed method can significantly improve the accuracy of the QoS prediction. 

Keywords: Service Quality, Web and Cloud Services, QoS Prediction, Invoca-

tion Pattern Mining, Collaborative Filtering, Personalized Recommendation.  

1 Introduction 

Service QoS (Quality of Service) is the basis of Web and Cloud service discovery 

[1-4], selection [5,6] and composition [7-9]. For services located in open environ-

ments such as the Web or the Cloud, QoS may vary depending on the network, the 

service execution environment and user requirements. Additionally, a personalized 

QoS evaluation of services for different service users is necessary in particular in 

these open environments, as users more and more expect the customisation of publi-

cally provided services used by them. Generally, service QoS information is derived 

in three ways: delivered by services providers, evaluated based on user feedback and 

predicted based on monitoring information. Prediction based on monitoring is more 

objective and reliable in untrusted Web and Cloud contexts and more suitable for 

these dynamically changing environments. There are two types of prediction based on 

monitoring: one is based on statistical, the other is personalized prediction. Many 

implementations [1,5,7,9,10] adopt the statistical approach for usage (QoS) predic-

tion. The statistical method is simple and easy to implement, e.g., response-time is 

usually calculated based on the average response time. This method ignores the users’ 

personalized requirements, network conditions and execution features. For example, 
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for an on-demand cloud-based movie/video processing service, the size of the video 

has a significant influence on the response time. Different users, accessing the service 

through the cloud, may experience different response times. In [11,12,13], collabora-

tive filtering methods are proposed, predicting QoS for a user by referring to past 

information of similar users. The influence of the user environment and input can also 

be considered to provide a user with a more personalized QoS prediction.  

Moreover, even the same user does not experience the same QoS values for differ-

ent invocations at different times and with different invocation parameters – which is 

something that current cloud services, whether multimedia on-demand for end users 

or commercial applications in the cloud, highlight as a problem. If a user invokes a 

service many times, then the QoS cannot be determined by collaborative filtering, 

which is inefficient for QoS prediction for every invocation. A Bayesian network-

based QoS assessment model for web services is proposed in [13]. It predicts the ser-

vice performance level depending on the user requirements level, but how to define 

the performance level is still a problem. Most QoS prediction methods of services do 

not consider the impact on service performance by environmental factors. The predic-

tion performance becomes a critical aspect in dynamically managed service and cloud 

environments, where monitored QoS data is taken into account. 

Our experiments and analyses show that user inputs, network conditions and Web 

server performance impact on QoS significantly. Assume three services s1, s2 and s3 

with similar functions. Take input data size, network throughput and CPU utilization 

as representatives of input, network and Web server characteristics. Table 1 shows an 

invocation log of these services. It records information for every invocation: network 

throughput (MB), data size (MB), Web server CPU utilization and response-time(s).  

Table 1. Services Usage Information 

Service 

name 

1st invocation 2nd invocation 3rd invocation 4th invocation 5th invocation 

s1 <2, 10, 0.2, 0.5> <1.5,20, 0.5, 2> <2.5,10,0.1,0.2> <2,30, 0.3, 0.8> <2, 8,0.2, ？> 

s2 <1.5,10,0.3, 0.3> <2,20, 0.4, 1.8>    

s3 <2, 20, 0.3, 3 > <1, 20, 0.2, 6 > <1.5,20, 0.3, 4 > <2,15,0.2, 2.4 >  

 

In the third invocation of s1, network throughput is 2.5MB, data size is 10MB, Web 

server CPU utilization is 0.1 and response time is 0.2sec. Now, if there is another user 

wanting to invoke s1, the network throughput is 2MB, data size is 8MB and CPU 

utilization is 0.2. Then, predicting the response time for this user depends on history 

information (cf. Table 1). The three services were invoked 5 times, 2 times or 4 times. 

The average response times are 0.875s, 1.05s and 3.85s. This is independent of invo-

cation parameters. No matter what the situation of the next invocation, the traditional 

prediction results will be the same, but according to Table 1, the real result is depend-

ent on input, network and Web server factors. The prediction in our previous work 

[15,16] is based on collaborative filtering. It predicts QoS through calculating the 

similarity of invocation parameters and parameters in past invocations. The prediction 

is more accurate than an averaging method, but needs to calculate the similarity of 



target invocation and all past invocations, resulting in too many repeated calculations 

and low efficiency, which needs to be addressed for dynamic contexts like the cloud. 

 An important observation is that most services have relatively fixed service invo-

cation patterns (SIPs). A SIP consists of ranges of input characteristics, network 

characteristics and Web server characteristics and reflects relatively stable, acceptable 

variations. The service QoS keeps steady under a SIP. If we can abstract the SIP from 

service usage, the prediction can be based on usage information for the matched pat-

tern. If there is no usage information for the matched pattern, the prediction needs to 

be calculated using past log information of other similar services. We propose con-

structing SIPs by analysing user input, network environment and server status factors. 

We adapt collaborative filtering prediction to be based on SIPs and pattern mining, 

improving prediction accuracy and performance. Thus, our contributions are:  

 Firstly, we propose the novel concept of Service Invocation Pattern and an aligned 

method for mining and constructing SIPs (Sections 2 and 3). It considers the influ-

ence of environmental characteristics on the quality of a Web service. 

 Secondly, we propose a collaborative filtering QoS prediction algorithm based on 

SIPs (Sections 4 and 5). This approach can predict QoS based on personalized user 

requirements. It improves the prediction accuracy and computational performance.  

2  Service Invocation Pattern SIP 

Services QoS characteristics are related to user input, network status and server 

performance. It means that a certain range of input, network status and server status 

determines a relatively fixed service invocation pattern. A SIP reflects that the QoS 

remains steady under this pattern, i.e., predicting QoS this way is beneficial. We ana-

lyse the characteristics which impact Web service execution and define the SIP. 

Definition. 1. Service Invocation Characteristic (SIC). C = < Input, Network, 

Server> is the characteristic model of one invocation.  Input, Network and Server 

represent user input characteristics, network characteristics and Web server character-

istics, respectively. We take input data size, network throughput and CPU utilization 

as examples. In invocation characteristic <30, 1.5, 0.2>, the input data size is 30MB, 

throughput between server and user is 1.5MB and server CPU utilization is 0.2.  

Definition. 2. Input Characteristic (IC). Input =< In
1
,In

2
,…, In

P
> is the input 

characteristics vector. It describes the input characteristics that have an influence on 

QoS.  I
k
 (1≤ k ≤ p) is the k-th input characteristic. 

Definition. 3. Network Characteristic (NC). Network =< net
1
,net

2
,…, net

r
> is the 

network characteristics vector. It describes the network characteristics that have an 

influence on QoS. n
k
 (1≤= k ≤ r) represents the k-th network characteristic. 

Definition. 4. Web Server Characteristic (WSC). Server =< se
1
,se

2
,…,se

q
> is the 

server characteristics vector. It describes the Web server characteristics that have an 

influence on service QoS. se
k
 (1≤ k ≤ q) represents the k-th server characteristic. 

Definition. 5. Service Invocation Pattern (SIP). A SIP is a group of service invoca-

tion characteristics SIC. In a SIP, the value of invocation characteristics is a range. 



The QoS is meant to be steady under a SIP. We describe it as M = < Inputlow ~ In-

puthigh, Networklow ~ Networkhigh , Serverlow ~ Serverhigh >, Input, Network and Server 

are input characteristics, network characteristics and Web server characteristics. 

Definition. 6. Invocation Pattern-QoS matrix. If the QoS of services keeps steady 

or have a fixed relation to a SIP, then this relation can be expressed as a matrix MS: 
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The matrix MS shows the QoS infor-

mation of all the services s under all the 

patterns M. qij (1≤j≤l, 1≤i≤m) is the QoS 

of service sj under the pattern Mi.  

with 
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If a pattern is <20-30MB, 0.5-0.6, 0.2-0.4, 30-40MB>, then the input data size is 

20-30MB, CPU utilization is 0.5-0.6, memory utilization is 0.2-0.4 and server 

throughput is 30-40MB.  We can search for the QoS of a service based on information 

related to this pattern. If there is corresponding information and the value keeps 

steady in a range, then it is returned to the user. If the value is not consecutive, it 

means the service is not only affected by the characteristics of the invocation pattern. 

It then needs further calculation based on history information. If there is no invocation 

history, this value will be null. In that case, prediction is done for a user invocation 

requirement. Below is an example of an Invocation Pattern-QoS Matrix. There are 4 

invocation patterns. We introduce how to abstract/mine SIPs and predict in Sect. 3.  
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Some services have no usage 

information within a pattern 

range – e.g., since s1 has an 

invocation history for pattern 

M1, it returns this range of 

values, but as s2 has no invoca-

tion history, it needs collabora-

tive filtering for prediction.  

3 Service Invocation Pattern Abstraction and Mining 

The values of user invocation characteristics are spread across a certain range. Ob-

taining these value ranges significantly helps QoS prediction, but the number of SIPs 

that reflect these cannot be decided in advance and all usage information is multi-

dimensional. Density-based spatial clustering of applications is used to achieve this. 

DBSCAN (density-based spatial clustering of application with noise) [17] is a densi-



ty-based clustering algorithm. It analyses the density of data and allocates them into a 

cluster if the spatial density is greater than a threshold. DBSCAN can find clusters of 

any shape. The DBSCAN algorithm has two parameters:  and MinPts. If the distance 

between two points is less than the threshold , they can be in the same cluster. The 

minimum number of points in a cluster must be greater than MinPts. DBSCAN clus-

ters the points through spatial density. The main steps of DBSCAN: 

1. Select any object p from the object set and find the objects set D in which the ob-

ject is density-reachable from object p with respect to  and MinPts. 

2. Choose another object without cluster and repeat the first step. 

A SIP Extraction Algorithm based on DBSCAN shall now be introduced. A SIP is 

composed of user input, network and server characteristics. For these aspects, we take 

throughput, input size and CPU utilization as representatives, respectively. We con-

sider the execution time as the representative of QoS here.  

 An execution log records the input data size and execution QoS.  

 A monitoring log records the network status and Web server status.  

We reorganize these two files to find the SIP under which QoS keeps steady. A SIP 

extraction algorithm is shown in Alg. 1 (see also the SIP format in Definition 5). 

____________________________________________________________________ 

Algorithm 1:  SIP Extraction Algorithm based on DBSCAN 

Input: Service Usage Information InforSet (execution+monitoring log), ,  MinPts. 

Output: SIP Database PatternBase, Pattern-QoS information PatternQoS.                        
1 for ( Infori<DataSize, CPU, ThroughPut, time> ∈ InforSet ) 
2 { 
3   if ( Infori does not belong to any exist cluster ) { 
4     Pj= newPattern(Infori) // create a new pattern withInfori as seed. 
5     Add( Pj, PatternBase ) 
6     InforSet = InforSet – Infori 
7     SimInfor = SimilarInfor(InforSet, Infori, ε) // SimInfor is the infor- 
8          mation set which includes all the similar usage information of 
9        Infori. Differences between the information in SimInfor and  

10    Infori on the charac-teristics value except execution time are  

11       less than . n is the number of information items in SimInfor. 
12  InforSet = InforSet – SimInfor 

13  if ( n>MinPts ) {  // MinPts is min number of exec inform in cluster. 

14    (S1, S2, … ,Sm) = Divide(SimInfor) // Divide SimInfor into different                  

15    groups. Group S1 includes all information of servs1.  

16 for(k=1; k≤m; k++){ 

17   for(Inforj∈Sk) { 
18        SimInfor = SimilarInfor(InforSet, Inforj, time, MinPts, ε)   

19         // Search similar info of Sk in execution information set. If 

20           the number of similar information item is less than MinPts, 

21           then the density will turn low and  top the  loop. 

22         Sk = Sk + SimInfor 

23         InforSet = InforSet – SimInfor 

24      } 

25       PatternCharacteristics(Sk)  // Organizes the information in the  

26            cluster and statistics for the ranges of characteristics.  

27            Completes the pattern-QoS matrix. 

28 } 

29    } 

30  } 

31}________________________________________________________________________ 



The distance calculation between two objects in this algorithm is different from the 

traditional DBSCAN. It includes two types of distance: 

 Firstly, when we initialize a cluster, we randomly select an object without cluster. 

We take it as the seed to find the cluster it belongs to. In this cluster, the response 

time of different services may differ, but the performance of different invocations 

of the same service keeps steady. The distance between the other information and 

seed information is computed based on all characteristics except response time. 

 Secondly, when the cluster has been constructed, we need to check whether the 

information does not belong to any cluster or belongs to the given cluster. We 

need to compare this information with others of the same service in the cluster 

and calculate the distance of this information with the cluster. Then, the distance 

computation is dependent on all the characteristics of the two information items.  

4 The QoS Prediction based on SIP 

This section will introduce the Web Service QoS prediction approach. It uses Ser-

vice Invocation Patterns and the Invocation Pattern-QoS Matrix to carry out the pre-

diction. It fully considers the requirements of every invocation. 

4.1 The QoS Prediction Procedure based on SIP 

In order carry out the prediction, we assume that the SIP database has been created.  
 

 

Fig. 1. QoS Prediction Procedure 

 

The steps of the prediction procedure in Fig. 1 are as follows. Firstly, we match the 

target invocation characteristics with the SIPs in the database. We match the charac-

teristics of target service sj with the characteristics of stored patterns. If there is a pat-

tern that can be matched directly, then we return it. Otherwise, we employ the Gray 

Relevance Analysis to get the matched pattern. Assume that the matched pattern is mi. 

Then, we search information about a matched pattern in the QoS matrix. If there is 

QoS information of the target service in pattern mi, then we return it directly. Finally, 

if there is no related QoS information, then we predict QoS by collaborative filtering. 

4.2 Matching User Invocation Characteristics with Patterns 

A characteristics vector of a user invocation is C = < Input, Network, Server>. 

Here Input, Network and Server represent input, network and server characteristics, 
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respectively. The Service Invocation Pattern is defined as M = < Inputlow~Inputhigh, 

Networklow~Networkhigh, Serverlow~Serverhigh >. During the matching process, we 

compare the user invocation characteristics and the respective component in the pat-

tern. Matching is successful if Inputlow ≤ Input ≤ Inputhigh, Networklow ≤ Network ≤ 

Networkhigh and Serverlow ≤ Server ≤ Serverhigh. Assume the matched pattern is mi.   

If there is no matched pattern, adopt the Gray Relevance Analysis method to calcu-

late the association degree between QoS and invocation characteristics to a) find the 

ordering of characteristics that have greater impact on QoS and b) match the pattern 

based on the order. Table 2 shows the n times invocation information of service s. 

 

Table 2. Usage Information of Service s 

Features 1 …… I …… n 

Response Time T1 …… Ti …… Tn 

Input Datasize Data1 …… Datai …… Datan 

Throughput TP1 …… TPi …… TPn 

CPU utilization CPU1 …… CPUi …… CPUn 

 

1. Take response time as the reference sequence x0(k), k = 1,…, n, and other charac-

teristics as comparative sequences. Calculate the association degree of the other 

characteristics with response time. First, take the characteristics of an invocation 

as standard and carry out normalization of the other characteristics. The reference 

sequence and comparative sequence are handled dimensionless. Assuming the 

standardized sequence yi(k), i=1,…,4, k=1,…,n, Table 3 shows the result matrix. 

 

Table 3. Normalized Usage Informaiton 

Features 1 …… I …… n 

Response Time 1 …… y1(i) …… y1(n) 

Input Datasize 1 …… y2(i) …… y2(n) 

Throughput 1 …… y3(i) …… y3(n) 

CPU utilization 1 …… y4(i) …… y4(n) 

 

2. Calculate absolute differences for Table 3 using 0 0( ) ( ) ( )i ik y k y k   . The result-

ing absolute difference sequence is:  

       ))(,),1(,0( 010101 nyy  ， ))(,),1(,0( 020202 nyy  ， ))(,),1(,0( 030303 nyy   

3. Calculate a correlation coefficient between reference and comparative sequence: 

max0

maxmin
0
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k
k
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i
is the correlation coefficient of the Gray Relevance. 

Here |)()(|)( 00 kykyk ii  is the absolute difference and min 0min min ( )i
i k

k    is 

the minimum difference value between two poles, and max 0max max ( )i
i k

k    is 

the maximum difference value.   (0,1) is the distinguishing factor. 



4. Calculate the correlation degree: Use 
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  to calculate the cor-

relation degree between characteristics. Then, sort the characteristics based on the 

correlation degree. If r0 is the largest, it has the greatest impact on response time 

and will be matched prior to others. Assume usage information of s as in Table 4. 

5 QoS Prediction Based on Collaborative Filtering 

If there is no related QoS within matched patterns, we need to predict QoS based 

on collaborative filtering. In the Invocation Pattern-QoS Matrix, there are a usually a 

number of null values. The prediction accuracy will be affected if we ignore these null 

values. We need to fill the null values for the information items of similar services.  

5.1 QoS Prediction Process based on Collaborative Filtering 

Assume that the target service is sj, and the matched pattern is mi. When service sj 

has no QoS information in pattern mi, the prediction process is as follows: 

1. For any service sv, v ≠ j, if there is information of sv under pattern mi. then calculate 

the similarity between service sj and service sv. 

2. Get the k neighbouring services of service sj through the similarity calculated in 

step 1. The set of these k services is S = {s1‘,s2‘,
…

,sk‘}. We fill the null QoS values 

for the target invocation using the information in this set. 

3. Using the information in S, calculate the similarity of mi with other patterns that 

have the information for target service sj. 

4. Choose the most similar k‘ patterns of mi, and use the information across the k‘ pat-

terns and S to predict the QoS of service sj . 

5.2  Service Similarity Computation 

 Assume that mi is the matched pattern and sj is the target service. If there is no in-

formation of sj in pattern mi, we need to predict the response time qi,j  for sj. Firstly, 

calculate the similarity of sj and services which have information within pattern mi 

ranges. For a service svIi where Ii is the set of services that have usage information 

within pattern mi, calculate the similarity of sj and sv. Vector similarity calculation 

commonly adopts cosine similarity, correlation similarity or correction cosine similar-

ity. However, these 3 methods do not consider the impact of user environment differ-

ences, i.e., the methods are not suited for service similarity computation directly. We 

need to improve the similarity calculation. We define service similarity as follows: 

 

Definition. 7.  The similarity of two services sj and sv is defined by  

),(),(),( jvdatajvsumjv sssimsssimsssim                                          (1) 

where 



 simsum(sv,sj) is the similarity of the numbers of invocation patterns which are in-

voked by services sv and  sj  together. Two services are more similar if they have 

more used invocation patterns in common.  

 simdata(sv,sj) is the similarity of the usage information of services sj and sv. Two 

services are more similar if their usage information is more similar. 

 α and β are adjustable balance parameters. They can be changed based on differ-

ent user requirements. 

For services sj and sv, P(sj/sv) is the probability of the coexistence of services sj and sv 

within a pattern. This probability can be used to measure the similarity of sj and sv: 

)(

)(
),(

j

jv

jvsum
snum

ssnum
sssim                                                      (2) 

Here, num(sv, sj) is the number of the common pattern-based invocations by two ser-

vices.  num(sj) is the number of pattern-based invocation by service sj. Based on for-

mula (1), simsum(sv, sj) is between 0 and 1.   

Our definition of the similarity of invocation information adopts the correction 

cosine similarity method. It is shown in formula (3). Mvj is the set of invocation pat-

tern models which have the usage information of sv and sj. 
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Here, 
vq  is the average of the usage information for service sv, jq  is the average of 

the usage information for service sj. 

From formula (3), we can obtain all similarities between sj and others services 

which have usage information within pattern mi. The more similar the service is to sj, 

the more valuable the data of it is. Formulas (2) and (3) are two aspects of service 

similarity. Formula (1) provides the sum of these two different similarities. 

5.3 Predicting Missing Data 

Missing data will have a negative impact on the accuracy of QoS prediction. We 

calculate the similarity between two services and get the k neighbouring services. 

Then, we establish the k neighbours matrix Tsim and fill the missing data in Tsim. 

Assume the k neighbouring services form the set S = {s1‘,s2‘,
…

,sk‘}. Here, '

1s  has 

the highest similarity with service sj and so on. Then, these k services are more valua-

ble and their usage information is defined as follows in matrix (4) below. Matrix Tsim 

shows the usage information of the k neighbouring services of sj within all invocation 

patterns. The data space is reduced to k columns and the computational effort required 

is consequently also reduced. In this matrix, there are still many missing data items ti,j. 

We need to fill these empty spaces before prediction. Firstly, we fill the missing data 

references to the services similarity.  




























'

,

'

2,

'

1,,

'

,

'

2,

'

1,

'

,1

'

2,1

'

1,1,1

''

2

'

1

kllljl

kiii

kj

kj

tttt

ttt

tttt

ssss

















l

i

1

sim

M

M

M

T
                                                    (4) 

We fill 
ser

piP, , which is the data of service sp under pattern mi. The method is: 
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Here 


pt '  is the average QoS of service sp, and simn,p is the similarity between service sn 

and sp. For any service p S’, every service has usage information within all the pat-

tern ranges in mi after this process. 

5.4 Calculating the Pattern Similarity and Prediction 

There is QoS information of k neighbouring services of sj in matrix Tsim. Some of 

them are prediction values. We can calculate the similarity of pattern mi and other 

patterns using the correction cosine similarity method: 
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       After determining the pattern similarity, the data of patterns with low similarity 

are removed from Tsim. The set of the first k patterns is },,{ '

2

'

1

'

kMMM M' . The data 

of these patterns are retained for prediction. 

As described above, if pi,j is the data to be predicted as the usage data of service 

sj within pattern Mi., it is calculated as: 
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Here 


it '  is the average QoS of the data related to pattern mi   and simn,i is the similarity 

between patterns Mn and  Mp. 

6 Experimental Analysis 

We have designed a simulation environment to evaluate the efficiency and accu-

racy of the approach proposed. First, we implemented 100 Web services. These ser-

vices belong to 3 categories, which are sensitive to data size, network throughput and 

CPU utilization separately. They are distributed over different network environments. 

All Web servers provide an open SNMP service and we installed a monitoring pro-



gram for network monitoring. We gathered user input data size, server CPU utiliza-

tion and server port throughput. The monitor submits environment information to the 

monitoring log recorder, which is responsible for cleaning the monitor log and storing 

data in the database. We generated a 200*100 invocation pattern-QoS matrix, restrict-

ed to the response time characteristics. Fig. 2 shows the experimentation architecture. 
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Fig. 2. Experimentation Architecture 

 

Service providers register their Web service with a registry centre. Monitors for 

server and client are responsible for submitting the monitoring data to the Monitoring 

Log Recorder and the Execution Log Recorder. The Service Invocation Pattern 

Extraction module is responsible for extracting the service invocation patterns from 

the monitoring log and the execution log. When user requirements need to be pro-

cessed, the QoS Management System will predict service QoS for a user according to 

their requirements. Then, the user can decide to invoke this service or not. 

 

Accuracy Analysis. MAE (Mean Absolute Error) is the normal standard to meas-

ure the prediction accuracy.  Here MAE is the mean absolute error between prediction 

and real response time. The smaller the MAE, the more accurate is the prediction. 

Assuming pij is the prediction value and tij is the real value, then MAE can be calculat-

ed as follows, where N is the total number of predictions:  

N

pt
MAE

ji ijij 


,
||
                                                       (8) 

Different characteristics of QoS have different ranges. Consequently, we use 

NMAE (Normalized Mean Absolute Error) instead of MAE. The smaller the NMAE, 

the more accurate is the prediction.  NMAE is the normalized MAE:  



Nt

MAE
NMAE

jiji /,,
                                                    (9) 

The accuracy of the prediction is important. Web QoS prediction algorithms 

usually are statistics-based and collaboration method-based. Average-based methods 

do not consider the users’ personalized requirements and the impact of the network. 

Thus, they calculate the same prediction for all users. Collaboration-based methods 

need to use all historic data, i.e., the computation takes too long. We analysed these 

three approaches and tried different settings of k,  and  to assess the result. 

 

 

 

 
Fig. 3. NMAE of k=15 Fig. 4. NMAE of k=18 

Different ks have different impacts on the result. If k is too large, there will be too 

much unnecessary information. The prediction result will be affected. However, if k is 

too small, useful information will be ignored and the data will not be sufficiently large 

enough for prediction. The similarity of the first k patterns maybe different under 

different data condition. Thus, a fixed k is not the objective. We tested different num-

bers of neighbouring patterns. We took the square root of the number of patterns first. 

Then, considering the pattern similarity, we fixed 0.5 as the critical value of similari-

ty. If similarities between the target pattern and all other patterns exceed 0.5, then we 

increase k, otherwise decrease k. After testing, when k is 15 or 18, the performance is 

better in our environment.  and  in Formula (1) have also different impacts in dif-

ferent datasets. For our dataset, the performance is best when  is 0.2. We use AP to 

represent the average method. CF is the abbreviation of the collaboration-based algo-

rithm. MCF is the abbreviation of the approach in this paper. As indicated in Figures 

3 and 4, an increase of the dataset size improves the accuracy significantly. 

 

Efficiency Analysis. If the target invocation can be matched in the service invoca-

tion pattern database and if there is QoS of the target service within the matched pat-

tern, we can predict QoS directly. Only if there is no related data, collaborative com-

putation is needed. The dataset for collaborative computation is related to service 

invocation patterns, but the number of patterns is far less than the number of usage 

information items. We used DBSCAN to obtain the service invocation patterns. We 

determined 150 invocation patterns from 2400 usage recordings. Compared to work 

in [11,12], the matrix for collaborative computation is reduced from 2400*100 to 

150*100. Here, only when the matched pattern has no information of the target ser-

vice, the calculation for prediction is required. Thus, the computation effort is de-

creased to a large extent. We tested the algorithm on many datasets. For each dataset, 
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50 predictions were taken and we averaged the response time. The comparison be-

tween the methods is shown in Figure 5. When the size of the dataset grows, time 

consumption in normal collaborative cases increases quickly. Our approach (MCF) is 

not much affected by data size.    

 

 
Fig. 5. Efficiency Analysis 

7 Related Work 

Different types of Web or cloud services [26] usually have different QoS character-

istics [1-12]. The normally used ones are response time, execution cost, reliability, 

availability, security and reputation. There are many factors that impact on QoS [18]. 

Some factors are static, some are run-time static, the others are totally dynamic. Run-

time static and dynamic factors are uncertain. They are client load, server load, net-

work channel bandwidth or network channel delay. Most factors can be obtained by 

monitoring, but not all. Then, their impact cannot be calculated. 

QoS-based service selection has been widely covered
 
[1-10]. Many service predic-

tion methods are proposed. There are three categories of prediction. The first one is 

statistic, which is normally adopted
 
[1,2,7,8,9]. This method is simple and easy to 

implement. The second category is based on user feedback and reputation [19,20]. It 

can avoid malicious feedback, but these methods do not consider the impact of user 

requirements and the environment and cannot personalize prediction for users. The 

third category is based on collaborative filtering [11-14]. Collaborative filtering is a 

widely adopted recommendation method [21-24,28]. Zeng [22] summarizes the appli-

cation of collaborative filtering in book, movie and music recommendation. In this 

paper, collaborative filtering is combined with service invocation patterns, user re-

quirement and preferences. This considers different user preferences and makes pre-

diction personalized, while maintaining good performance results. 

Some works integrate user preferences into QoS prediction [11-15], e.g. [11-13] 

propose prediction algorithms based on collaborative filtering. They calculate the 

similarity between users by their usage data and predict QoS based on user similarity. 

This method avoids the influence of the environment factor on prediction. Even the 

same user will have different QoS experiences over time or with different input data, 

but these works do not consider user requirements and generally show low efficiency. 

The proposed method in this paper takes full account of user requirements, the 

network and server factors. It abstracts the service invocation pattern to keep the ser-
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vice QoS steady. When user requirements are known, prediction can be done based on 

matched patterns. This approach is efficient and reduces the computational overhead. 

8 Conclusion  

Service management in Web and Cloud environments [26,27], e.g. public clouds, 

requires service-level agreements (SLA) for individual users to be managed continu-

ously, based on monitored QoS data. (Cloud) service managers take care of this for 

the users. Dynamic, personalised prediction of QoS is an essential component of reli-

able service provisioning that makes service lifecycle management more reliable. The 

need to personalise services dynamically is highlighted by e.g. cloud requirements for 

efficient service quality management adapted to user-specific requirements and situa-

tions across a range of end-user and business solutions offered as cloud services. 

This paper proposes a service QoS prediction technique to satisfy personalized re-

quirements. It considers not only the impact of the network, but also the Web server 

environment, and especially the individual user requirements. Based on historic in-

formation, we can abstract past user invocation pattern (mined from monitored log 

data) in order to predict future QoS of potential services to be utilised. The pattern 

approach provides independent reliability for the prediction of SLA-relevant aspects. 

When there is no information about the target pattern, we utilize collaborative filter-

ing to predict according the data of other patterns. The results show that this approach 

is more accurate and personalized, and also demonstrates good prediction perfor-

mance, which allows for dynamic utilisation of the technique.  
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