
Using GOMS to predict the
Usability of User Interfaces of

small off-the-shelf software
products.

A Dissertation Presented in Fulfilment of the
Requirement for the M.Sc. Degree

August 1990

Aine P. O'Neill
School of Computer Applications, Dublin City University

Supervisor : Dr. A. Moynihan

Declaration

This dissertation is based on the
author's own work . It has not been
submitted for a degree at this or any
other academic institution.

Aine P. O'Neill

August 1990

Acknowledgements

I am grateful to my supervisor, Dr. Tony Moynihan for his help and
guidance. Thanks due to all my colleagues at Carlow R.T.C. for their
support and encouragement throughout the two years. I wish to
thank Mary Cashman for her constant encouragement as she
participated with me on this course. Finally, I wish to acknowledge
the financial support for the DCU for waivering a portion of the
course fees.

TABLE OF CONTENTS
Page

1 INTRODUCTION 1
1.1 A Usable User Interface 4

2. USABILITY 8
2.1 Usability & Functionality 9
2.2 Criteria for a Good Interface Design 10
2.3 Designing for Usability 11
2.4 Survey of Interface Design Methods 13

2.4.1 Usability Specifications 13
2.4.2 Interface Metaphors 16
2.4.3 Executable Interface Definitions 18
2.4.4 User Interface Tools 20
2.4.5 Usability Engineering 25

3. ASSESSING USABILITY ON EXISTING SYSTEMS 28
3.1 Existing Evaluation Methods 28
3.2 The GOMS Model 32

3.2.1 Overview of GOMS Task Analysis 35

4. APPLYING GOMS & ASSESSING THE RESULTS 41
4.1 Phase 1: Constructing the GOMS model 41
4.2 Phase 2: Quality Evaluation &

Learning time Predictions 44
4.3 Phase 3: Experiments on novice users 46
4.4 Phase 4: Assessing the results of the Case Study 48

5. CONCLUSIONS & SUMMARY. 55
5.1 Advantages of GOMS 55
5.2 Limitations of GOMS 56
5.3 Improvements to the Case Study 58
5.4 Suggested improvements to GOMS 59
5.5 Summary 62

Appendix A : GOMS task analysis for text-editing in WP1 64

Appendix B : GOMS task analysis for text-editing in WP2 68

Appendix C : Questionnaire 71

Bibliography 72

Abstract

The design of user interfaces and how usable they are, are both
important research topics in computer science. This thesis is a
research effort aimed at exploring the whole concept of usability and
measuring the quality of a user interface in terms of how usable it is.
Usability means how easy a system can be learned and used. In order
to have usable products, they must be initially designed with
usability in mind. A survey of methods for designing user interfaces
which incorporate usability are outlined and they include some or
all of the principles for designing for usability, proposed by various
authors.

Evaluating the quality of existing interfaces can be done by various
methods.The method used in this dissertation is the GOMS (goals,
operators, methods and selection rules) approach. This model was
initially proposed by [Card, Moran & Newell 83] and the approach is
based on constructing an explicit model of the user's procedural
knowledge, entailed by a particular system design. [Kieras & Poison
85] expanded this model to suggest that quantitive measures defined
on this explicit representation of the user's knowledge can predict
important aspects of usability. The predictions are obtained from a
computer simulation model of the user's procedural knowledge
that can actually execute the same tasks as the user.

To test the reliability and accuracy of the GOMS model predictions,
the author carried out a pseudo-experiment on four inexperienced
users using two different types of word-processors. The actual
results from the experiment were compared with the GOMS
predictions.The GOMS model was found to have some limitations
and some enhancements to the approach are proposed. It was also
found that the experim ent had some lim itations and
improvements for a better experiment are proposed.

Chapter 1

Introduction

Have you ever used a computer package and found that you don't

know the right commands or command syntax, that you are

receiving meaningless error messages, that you are reading poorly

formatted displays, or have found yourself 'lost' in the system?.

Overall you become confused and frustrated and having to use far

more effort than necessary to get the computer to perform, even the

most simplest task .

This is the problem of usability.

Usability goals can be included in the design stage of software

development and there are numerous methods developed which

demonstrate how this is done. eg. usability specifications, user

derived interfaces, executable specs etc. which will be discussed later.

But, wouldn't it be nice to be able to select a piece of off-the-shelf

software (ie. popular PC application software) , and just by running

it through a few 'tests', be able to predict how easy this piece of

software is to use ?. The approach used should be relatively

economical and quick to perform. It should also be reliable and

accurate.

To address the problem of usability, an approach is presented which

is based on the GOMS model of human-computer interaction

1

[Card,Moran & Newell 83]. The GOMS model, an acronym for

Goals, Operators, Methods and Selection rules describes the user's

goals for executing a task, the constituent subgoals, the methods

available to accomplish particular subgoals on a specific system, the

operations and actions necessary to execute each method. [LaLomia

& Coovert89] defined it as an application of a general theory that

assumes humans are symbol processors and when performing a

complex task a user's behaviour is described as the repeated

application of a small set of processing steps or elements.

The GOMS methodology has been used and extended by many

researchers. The basis of this dissertation is a production system

approach which was developed by [Kieras «Sc Poison 85]. This

approach is an extension to the GOMS model, in that it uses a task

modelling language , which is used to build a computer simulation

model of the user's procedural knowledge that can actually execute

the same tasks as the user.

The procedural knowledge is represented in the form of a

production system. This representation provides a description of

the knowledge in terms of units of roughly equal 'size', namely the

statements of the procedures, which can then be counted to yield

quantitative estimates of the amount of knowledge required in the

execution of a task. I manually examined the set of productions

produced rather than using a computer simulation because to do

this I would need some type of interpreter to translate the

productions. This idea of computer simulation via production

systems was initially proposed by [Newell & Simon 72] as a tool for

evaluating problem solving models.

2

The objective of this dissertation, was to become familiar with the

GOMS model, it's components and it's operation, in sofar that I

could apply the GOMS method to particular off-the-shelf products.

This was used to predict the usability of the products. As an

extension to this, the reliability and accuracy of the model was

tested. To do this, I conducted a pseudo-experiment, comparing the

predicted results of GOMS with the actual results achieved from

experiments. I refer to it as a pseudo-experiment because proper

experiment controls and conditions were not enforced. Throughout

this dissertation, I shall refer to the pseudo-experiment, as an

experiment (because the word 'experiment' is faster to type and to

read).

The experiment took place in 4 phases :

1. The GOMS models of 2 word-processing packages were

drawn up and the learning times were predicted.

2. Four in-experienced users were given a set of standard

tasks to complete, and their learning times were

recorded, as they worked on the packages.

3. The users were also given a questionnaire which was

to determine their attitudes towards the products.

4. Assessment of the results of the experiment. That is,

the predicted results were compared to the actual

results obtained and conclusions were drawn.

I chose text-editing rather than any other PC application because it is

the most popular microcomputer application. Note, though that

3

text-editing doesn't occur in isolation from other applications. The

user frequently needs to interact with other areas of a computer

system in the process of editing a document. The user may want to

perform a quick calculation or a detailed statistical analysis and

incorporate the results directly into the document.

1.1 A Usable User Interface

Many software packages available are of an interactive nature ie.

user enters data and the computer responds to it. This type of

interaction is called human-computer dialogue - a two-way

exchange of symbols and actions between human & computer. The

user interface is the supporting software and hardware through

which this dialogue occurs.

The terminal dialogue is the central and most intensive medium of

human-computer interaction. The quality of the dialogue depends

on the match between the technical elements of the computer

system and the cognitive characteristics of the user. Some of the

more important facets of the system and user are summarised in

fig.1.1.

4

0
p
e
r
a
t
1
n
9

S
y
s
t
e
m

A
P
P
I
i
c
a
t
i
0
n

P
r
o
g
r
a
m
s

Fig 1.1: The central elements of human-computer

interaction

A good interface is an essential part of any system. Even an excellent

system would be useless without a proper interface. Many

researchers have suggested criteria and desirable properties of an

interface. An interface should be simple and reliable, yet flexible and

easy to modify. It should offer proper guidance and support and be

compatible throughout it's menus and submenus. It should

provide the appropriate functionality and information feedback.

Documentation and error messages should be very clear and

explicit. It should be easy to learn and easy to use.

The latter two properties are the basis of this dissertation - Usability.

User

Physical Character

Cognitive Char.

Knowledge

Goals

Computer

Dialogue Design

Maps, Icons

Natural Lang. Processing

Intelligence & Adaptation

Terminal Char.

Windows, 'Help'
Data

Rules
Objectives
Structure
Exceptions

TASK

5

Usability is not easily defined, but everyone knows what it is. It is

affected by the types of tasks that are to be performed ie. it is task-

related. It is also people-related. The characteristics that make a

system usable for one set of users may render it unusable for

another.

This was illustrated by SCORPIO, a bibliographic search system

which was installed in the Library of Congress. The staff were

required to learn and use this new system, and they did so very

successfully. Then, the general public had access to it , in order to

locate books in the library. For even a computer-knowledgeable

individual, learning to use the commands, understanding the

cataloguing rules and formulating a search strategy were found to be

challenging tasks. In brief the system was seen as.an intrusion or

interference with their work. The SCORPIO system that worked so

well for one community of users was inappropriate for another. [

Shneiderman 86]

Usability is still too often discussed in abstract terms. [Barnard et al

81] 'To be truly usable a system must be compatible not only with

the characteristics of human perception and actions, but also most

critically, with users cognitive skills in com munication,

understanding memory and problem solving."

Although this may be valid, it doesn't offer specific guidance.

Others do offer advice.

[Heckel 82] takes the point of view that 'friendly' software is

software that communicates well. In his book, he shows that the

place to look for understanding on how to make software friendly is

in any number of communication crafts.

6

[Rubenstein «Sc Hersh 84] claims that a computer system described as

'user friendly1 or as having 'ease of use1 features frequently means

only that certain parts have been added in order to eliminate user

problems, whereas ease of use can only be designed into the product

as a whole.

In this dissertation, I used Paul Reed's definition from [Bury et al 86]

that 'usability is the ease with which a system can be learned and

used'.

7

Chapter 2

Usability

The general framework for usability embraces the 4 principal

components of any work situation ; user, task, system and

environment. Good design for usability depends on achieving

successful harmony in the dynamic interplay of these four

components. Therefore, usability can be defined in terms of the

interaction between user, task and system in the environment.

[Shackel 86] has proposed an operational definition of usability

along four factors : effectiveness, learnability, flexibility and attitude.

Effectiveness : is defined as performance which is better than some

required level (measured eg in terms of speed and errors), and

achieved by a required proportion of the population in the range of

usage environments.

Learnability : is criterion performance achieved within some

specified time based upon a specified amount of training and user

support.

Flexibility : is defined as adaptation to some specified range of

variation in user tasks.

Attitude : refers to acceptable levels of human cost (fatigue,

discomfort, frustration, personal effort etc.) and perceived benefits

(which promote continued and enhanced usage of the system), is

defined in subjective as well as performance terms. Subjective

measures, collected primarily through questionnaires and rating

scales, are important since they provide information about the

quality of the interface that are difficult to obtain in any other way.

8

2.1 Usability & Functionality

When measuring the quality of a user interface, explicit criteria are

required. These criteria relate to the objectives of the evaluation.

Currently, the most frequently adopted criteria are functionality and

usability. Functionality relates primarily to the general objective of

assessing the capabilities of the design and refers to the tasks that the

system enables the user to perform. Usability relates to the

assessment of the impacts of specific design decisions and refers to

the ease of use of the interface [Rubin 88].

Too often designers of computer systems equate functionality with

usability or view usability features as limiting functionality. A

critical step in defining the design philosophy for the user interface

is to establish the appropriate balance of ease of learning, ease of use

and functionality. Ease of learning is the extent to which a novice

user can become proficient in using a system with minimal training

and practice. Ease of use is the extent to which the system allows a

knowledgeable user to perform tasks with minimal effort.

Functionality is the number and kind of different functions the

system can perform.

Opinions on the importance of usability in system design are not

particularly new or unanimous. [Martin 73] has written that a user's

ability to use a system powerfully will depend on the ease with

which he or she can communicate with it. [Brooks77] considers

usability "the proper criterion for success" and [Bennett78] argues

that "user acceptance is strongly affected by how the function is

9

invoked as well as what function the system contains. [Foley &

VanDam82] conclude that usability is at least as important as

functionality.

On the other hand, [Fried82] cautions us that "in general, there is

little hard evidence to support the idea that ease of use leads to

improved (traditional) productivity, or that specific ease of use

characteristics truly make software easier to use for a majority of

users". In a sense, functionality itself can determine usability; if the

functions provided do not match task requirements , a system will

not be usable. People must understand what the functions do and

how to use them.

Although usability is not an easy concept, investing in usability is as

important as investing in functionality. Failure to consider usability

can lead to system failure. At best, a system with poor usability will

cost its users time and effort; at worst, it will not be used at all, and

its functions may be removed because their utility has not been

demonstrated. As an integral part of system design, usability

contributes to overall system functionality by making it accessible to

users and facilitating effective use of functional capabilities.

2.2 Criteria for a Good Interface Design

According to [Mehlmann 81] a 'good' program or package is one that

displays few usability defects.

These defects are :

1 0

the Speed criterion : it must not take longer to do the job with the

help of the package than without.

Accuracy : Information to which the user has access must not be less

accurate with the package than without.

Complete : the user must have access to as much relevant

information that he wants when using the

package.

Pleasure : the package must not take over the parts of the work the

users enjoy doing and leave them with the parts

they find boring (ie. let the computer do any

repetitive work).

Also, a package should be flexible and should meet its objectives.

2.3 Designing for Usability

[Shackel86] outlined 5 fundamental features of design for usability.

These are

1. User Centred Design - focus from the start on users and tasks

2. Participative Design - with users as members of the design

team.

3. Experimental Design- with formal user tests of usability in

pilot trials, simulations and full prototype evaluations.

4. Iterative Design - design, test and measure, and redesign as a

regular cycle until results satisfy the usability specification

5. User Support Design - training, manuals, quick reference

cards, on-line help etc.

Also [Gould & Lewis85] at IBM Watson Research Centre have

devised a methodology from their experiences and have proposed

four precepts for design for use . These principles for system design

a re :

early and continual focus on users, integrated design, early and

continual testing and iterative design (the cycle of design, test ,

measure and redesign repeated as often as necessary).

These are in essence, very similar to Shackel's. The paper also

outlines examples of the use of simulation and prototyping as part

of the usability development process.

[Hewett & Meadow86] report in their paper an example of how these

principles proved their worth in a successful system design project.

Their project Individualized Instruction for Data Access IIDA,

involved development of a computerized intermediary to assist end

users doing bibliographic database searches.. It was designed to

enable end users of information retrieval systems to perform their

own searches by

1. instructing them in how to search as needed, and by

2. assisting them with the performance of the search

providing diagnostic analyses and feedback.

Also [Boies et al 87] evaluated a computer system design

methodology. The paper reports on the 1984 Olympic Message

System OMS- a voice mail system that was developed according to

the four design principles, outlined earlier. Their research

demonstrated that any project that followed these principles is do

able , doesn't take too long, and doesn't cost too much. The

principles made possible an integration of all aspects of usability.

1 2

They led to a reliable, responsive, easy to learn system containing

the right functions.

Throughout the following review of methods of designing user

interfaces, it becomes apparent how the principles of design for

usability outlined above, have been used.

2.4 Survey of Interface Design Methods :

"Simply, applying the latest technology doesn't insure a good

human interface. Only careful, iterative design can do that We

believe that iterative design by itself, should be universally applied

to the design of user interfaces". [Good et al. 84]. It will become

obvious how nearly all the design methods summarised below,

have used iterative design as their main criterion for design. This is

due to the fact that feedback from users is the basis on which

interfaces are designed.

2.4.1 Usability Specifications:

[Carroll & Rosson85] developed an approach to the usability

problem based on usability specifications. These are precise, testable

statements of performance goals for typical users carrying out tasks

typical of their projected use of the system. These in turn are

factored into their behavioural prerequisites which are called

subskills, in order to pinpoint and remedy specific problems in

design.

Because they are concerned with the design of user interfaces, they

focus on users throughout the design process. They outline that the

usability specifications and the subskills they imply, are viewed as

being iteratively elaborated and refined throughout the design

process. And, since the computer system development process is

already organised around the development, refinement and

implementation of specifications, this affords a means of

incorporating user interface issues into the existent development

process.

Figure 2.1 shows how [Carroll & Rosson85] viewed the design of

user interfaces. The cycle begins with the generation of design

objectives, followed by a looping process where specifications are

generated, behavioural subskills are analysed, the subskills are

tested in a qualitative fashion and the information fed back into the

design specifications. The loop is to provide a process of refining

and rejecting interim solutions and discovering new ones.

1 4

Functional Objectives Usability Objectives

Functional Specifications Usability Specifications

f
Performance Testing

Fig 2.1 : Iterative Design Process

a) Design Objectives

This information is gathered from the intended users of the

system. It provides the designer with the relevant functional and

usability objectives on what the people need to know and on how

the people want to work.

b) Design Specifications

These are motivated by the objectives drawn up earlier. They

represent a codification of the design plan. Functional specifications

codify the function that is to be intended for the system and usability

specifications formulate the user behaviour to be supported.

1 5

c) Subskill requirements

The design team now determines the behavioural subskills

implied by fulfilment of the specifications. For example, do the

users understand how to use a mouse in a mouse-driven menu

system.

Thus the decomposition of usability objectives into specifications,

and finally into subskill requirements, is an iterative empirically

driven process. This design loop of iterative decomposition,

refinement and redefinition is at the heart of their view of the

design process. Also, this view on design has particular implications

for the role of behavioural expertise in user interface design. It

shouldn't be seen as something that can be brought in at particular

points or stages of the design plan. One must think of behavioural

work as part of the design process, as intrinsic to it. Their final word

is th at' useful and usable systems can only be designed deliberately'.

2.4.2 Interface Metaphors :

[Carrol, Mack & Kellog 86] developed an approach to control

the complexity of user interfaces by designing interface actions,

procedures and concepts to exploit specific prior knowledge that

users have of other domains. Example : designing an office

information system using the metaphor of a desk top.

Instead of reducing the absolute complexity of an interface, this

approach seeks to increase the initial familiarly of actions,

procedures and concepts by making them similar to actions,

1 6

procedures and concepts that are already known. The use of

interface metaphors has dramatically impacted actual user interface

design practice.

In their paper, they outline a structured methodology for

developing user interface metaphors. The method involves four

steps:

- identify candidate metaphors

these can be got from predecessor tools and systems,

human propensities or sheer invention

- detail metaphor / software matches with respect to

representative user scenarios.

- identify likely mismatches and their implications.

- identify design strategies to help users manage mismatches

eg UNDO command on Mactintosh, reference information and on

line help.

The approach that they have advocated emphasizes the overall

context and process of metaphor use. Interface presentations using

metaphors interact with, and frame user's problem solving efforts

in learning about the problem domain. Metaphors have been

employed to increase the initial familiarity of the target domain-

and they do - but, the authors feel that they have an inevitable

further role to play.

The ultimate problem that the users must solve is to develop an

understanding of the target domain itself, a mental model. The

authors point out that to develop a successful interface, the design

will need to take into account accumulating observations of user's

experience with other metaphoric interfaces, the knowledge that

1 7

users can be expected to gain through the metaphoric comparison,

as well as the inevitable consequences of the metaphor for the user-

as-learner.

Although the concept of metaphors is a widely used design

technique for controlling interface complexity, there is no predictive

theory of metaphor. Metaphors still need to be generated on a case

by case basis.

2.4.3 Executable Interface Definitions:

[Hayes85] proposed an approach to spread the high cost of

developing interfaces over a large number of applications by

building a single central computer program, called an interface

system, to provide user interfaces for all different applications.The

interface system finds the details of the interface required by each

application in an external, declarative database called an interface

definition - one interface definition for each application. This

results in the situation in diagram fig 2.2, where the user

communicates with the application only indirectly through the

interface system.

Application ^ --------------- ► In terface ^ --------------- ► User
System

---------------- j-

▼
Interface

Defin ition

Fig 2.2 : External Definition of a User Interface

This diagram also shows that the interface definition must, in fact,

define two interfaces - the user interface, plus an application

interface through which the interface talks to the application.

However, the latter interface is invisible to the user.

Hayes developed a language to be used for the interface definitions.

This language had to be more abstract than the programming

languages normally used for interface implementation. It was built

around abstractions of the kinds of communication required by the

applications.

The advantages of this approach are

o the interface definition will be much smaller and

therefore easier and quicker to construct and modify

than a conventionally implemented interface,

o since the definition is external to the application, many

modifications can be made without corresponding

changes to the application itself. This encourages

experimentation with different interface characteristics

1 9

and a more extensive and more effective refinement

phase.

The interaction required by an application program is specified at a

level more abstract than the implemented language of the

application. The idea of using these interface definitions is critically

dependent on finding suitable abstractions of the interactions

required by the applications. The abstractions used are centred

around a form-based metaphor of communication. This form

contains a field for each piece of information that the user and the

application need to exchange. These form-based interface

abstractions form a good basis for the following user-friendly

behaviour :- correction of erroneous or abbreviated input,

interactive error resolution, integral on-line help and automatically

generated online documentation.

2.4.4 User Interface Tools:

Creating good user interfaces for software is very difficult. There are

no guide-lines or techniques that guarantee the software will be easy

to use, and software implementors have generally proven to be

poor at providing interfaces that people like. Consequently, interface

software must often be prototyped and modified repeatedly.

Interface software is difficult to write because frequently it must

control many devices, each of which may be sending streams of

input events asynchronously. Also, interfaces typically have

stringent performance requirements to ensure that there is no

perceived delay between a user's actions and the system's response.

2 0

Therefore there is great interest in developing tools that help design

and implement interfaces.

As experience with tools for developing human computer interfaces

increases, more will be understood about the requirements for such

tools. Even though all these tools should be usable and user friendly

, they should also be functional, complete and offer structured

guidance.

The advantages of these tools is that

1. They produce better interfaces.

2. the interface code is easier to create and more economical to

maintain.

User interface tools come in 2 general forms : User interface tool-kits

and User interface development systems

User interface tool-kits :

is a library of interaction techniques where an interaction

technique is a way of using a physical input device (such as mouse,

keyboard etc) to input a value (such as command, number, location

etc) , along with the feedback that appears on the screen.

Examples of interaction techniques are menus, scroll bars and on

screen buttons operated with the mouse. A programmer uses a user-

interface tool-kit by writing code to invoke or organize the

interaction techniques. Toolkits do not provide much support for

the design or the specification of sequencing and dialogue control.

2 1

User interface development system :

is an integrated set of tools that help programmers create and

manage many aspects of interfaces. These systems are usually called

user interface management systems (U IM S).

Evaluator

Feedback foj Application^
Programrpér

Dialogue
Developer

Inter-Role s
Communicati-terative

lement

External
Dialog ua

Dialogue
Component

Internal
Dialogue Computational

Component

Dialogue Programming
Development Environment
Tools

Fig 2.3 : Typical Structure of a UIMS

2 2

The typical structure of a UIMS is illustrated, along with appropriate

roles involved. A dialogue developer interacts with automated

tools for developing the application's systems human computer

interface : these tools produce an internal stored representation of

the dialogue that is executed at run-time to produce the interface.

An application programmer produces the application system's

computational software, providing its functionality. These two

developer roles communicate and coordinate their development

efforts. End users and the system evaluators give feedback about the

interface and the system functionality. The entire process forms a

cycle of iterative refinement.

Some examples of UIMS are :

Dialogue management system (DMS) [Ehrich & Hartson 81], is a

research UIMS that has been developed as a test bed for interface

management concepts.

RAPID/USE [Wasserman 85] is a direct manipulation dialogue

development tool which uses state transition diagrams to provide a

graphical language.

I shall outline the DMS tool in more detail :

Dialogue management system (DMS) [Ehrich & Hartson

81]:

DMS was developed at Virginia Tech by H. Rex Hartson, Deborah

Hix, and Roger Ehrich and it is a comprehensive system for

interface management. DMS 3.0 is built on a Smalltalk-80 (object

2 3

oriented) platform running on a Macintosh II. DMS is a complete

system for defining and managing human-computer dialogues. It is

based upon the hypothesis that dialogue software should be

designed separately from the code that implements the

computational parts of an application, and different roles are

defined for the dialogue author and the programmer to achieve that

goal.

DMS contains an integrated set of interface development tools

called Author's Interactive Dialogue Environment (AIDE), in

earlier versions of DMS. These tools embody a structural model,

methodology, representational notation, life cycle management and

rapid prototyping. Tools include a display tool, several menu tools,

a forms tool and primitive libraries. In addition it contains several

generic tools for developing interfaces not supported by specific tool.

DMS itself has a direct manipulation interface. The DMS approach

to interface development considers human computer interface

management as an integral part of software engineering.

An application system developed using DMS is viewed as having

three components : a dialogue component through which all

communication between the end user and the application system is

carried out, a computational component that contains all semantic

processing algorithms, and a global control component that governs

logical sequencing among dialogue and computational components.

Dialogue independence forms the fundamental philosophy of DMS

and helps ensure easy modification of the interface allowing two or

more very different interfaces to be used with the same

computational and global control components.

2 4

2.4.5 Usability Engineering :

Usability Engineering is defined as a process whereby the

usability of a product is specified quantitatively, and in advance.

Various authors [Gilb 77], [Bennett 84], [Butler 8 5], [Good et all85] etc

have proposed or described the use in practice of specifying

measurable usability goals as a means of planning and controlling

software development. I shall do a brief review of their contribution

to this area.

[Brooke 86] describes how usability goals and usability engineering

techniques are being applied in the context of the development of

computer-based office products. Whether or not the specification of

usability goals is a formal part of product development procedures,

the application of usability testing techniques can help in the

identification of design and implementation flaws which affect the

usability of products. However, the power of such testing is much

improved when usability goals are incorporated into product

requirements, because they then become another target for a product

to meet, rather than something that is treated as an afterthought.

In the paper, he outlines 2 categories of usability criteria : user

performance measure and user attitude measure. The metrics are

firstly defined, and then the usability goals are set for each metric.

The worst case and the best case values are set for each criterion, for

both expert and novice users.. He stresses that the usability goals set

must be a realistic reflection of the likely use of the product ie

depending on whether experts or novices will be using the product.

Note that, setting the goals does not imply anything about how the

2 5

goals should be reached by the software developer. In order to

ensure that the usability goals can be reached, empirical testing of

the product takes place. The purpose of such testing is that it enables

the product to be measured against the usability criteria and also a

qualitative analysis of the testing sessions allows the human factor

engineer to identify those problems with the product which will

contribute most to improving the overall usability of the product.

[Tyldesley 88] also wrote a paper on employing usability engineering

in the development of office products. He outlines the steps that are

traditionally involved in usability engineering in Digital. They carry

out much the same steps that Brooke described earlier, but Tyldesley

stresses the point that the design is done iteratively, incorporating

user feedback until the planned levels of usability are achieved.

[Good et all 86] introduce user-derived impact analysis as a tool for

usability engineering. It involves applying usability engineering to a

specific product. Again, they follow the same steps :

defining usability through metrics,

setting planned levels of usability

analysing the impact of design solutions

incorporating user-derived feedback, and

iterating until the planned levels are achieved.

Impact analysis [Gilb84] is a method of estimating the probability

that a set of proposed design solutions will result in successfully

meeting the engineering goals of a product. Impact analysis is a

technique for estimating which solutions will be most effective for

meeting planned levels for various attributes, as well as estimating

the likelihood that the solutions will be sufficient for meeting these

2 6

attributes. It is an aid for deciding how to allocate scarce engineering

resources.

The approaches and tools outlined, in this section, are all means of

designing user interfaces. The characteristic of all the methods, is

that they all design products with usability as the main objective.

That is, the design team are conscious to fulfil the usability criterion,

from the initial stage of the design process.

In the next chapter, approaches for assessing usability in the post

implementation stage are outlined.

2 7

Chapter 3

Assessing the Usability of existing
interfaces

The methods adopted for evaluating a product will vary widely

with the product in question and the metrics established for

usability.Even though, it is now more common for evaluation to

occur throughout the design process, allowing more frequent, more

rapid and earlier evaluations of the design, it is actually easier to

evaluate a system that already exists. This is because much of the

information needed for evaluation can be obtained from the system

itself, it's documentation, it's designers and it's present users.

3.1 Existing Evaluation M ethods

Evaluating designs has become a very important concept. It has

progresses from what was an informal discussion between designers

to a planned, careful and methodical enquiry.

Numerous evaluation methods have been proposed and

developed, of which there are two main types. : Empirical methods

& Formal Methods.

Empirical methods :

These methods collect evaluation data about the user interface, and

once collected, it can be analysed. The principle evaluation methods

of this type are experiments, observations and surveys. In general,

2 8

they are a sort of common sense testing method in which all the

functions to be provided by the system are reviewed. The key

objective in these methods is to assure that no obvious errors have

been made and to make minor adjustments that seem reasonable.

[Ravden & Johnson 89] developed a survey method, based on a

practical tool, in the form of a check-list. They outline the full

checklist in their book, and the same checklist can be used to

evaluate many different products. Thus, there is no need to tailor it

to suit particular applications. The questions on the check-list are

based on a set of 'goals' which a well-designed user interface should

aim to meet. To evaluate a system, the check-list is distributed to the

end-users. They answers all the questions and then the check-list is

assesses by the evaluator. This method provides a standard and

systematic means of enabling those evaluating an interface to

identify and make explicit problem areas, areas for improvements

etc..

Formal methods :

These methods have formulated the application of the evaluation

methods. These methods have emerged from attempts to model

user interaction with the interface.

[Kiss & Pinder 86] assess the quality of a user interface in terms of

the user effort required for the operation of a system. User effort is

interpreted to mean the computational work done by the user in

terms of interface operations in carrying out tasks on the system.

The execution of the operations by the user are regarded as the

execution of computational algorithms ('procedures'). Complexity

2 9

theory 1 is then applied to them, in order to analyse the properties

of them in terms of 'ease of use'.

[Reisner 82] has argued that user interfaces should be described in

terms of a formal grammar expressed in BNF notation and that the

length of sentences generated by this grammar is to be used as a

measure of task difficulty. She has also suggested that the number of

BNF rules is to be regarded as an indicator of the complexity of the

interface design.

[Moran 81] developed Command Language Grammar (CLG). This

shares a close relationship with the GOMS model as it was

developed around the same time. The CLG framework consists of a

set of operators and methods (as in GOMS), and a set of goals called

tasks, which are organized functionally. The components are

stratified into distinct levels. The same basic notation is used at each

level :

task level : analyses the set of tasks that the user wishes to

accomplish

semantic level : outlines the objects in the system and

procedures for manipulating these objects

syntactic level: translates the information gathered from the

task and semantic levels into command

language.

interactive level : converts command language into dialogue used

when working the system

1 C om plexity theory analyses the resources needed for the
com putation o f fu n ction s in the execu tio n o f algorithm s. The
fundam ental resources arc space and tim e.

30

Example :

The task level for the task Reply-To-Message might be
FIND MESSAGE
SHOW MESSAGE
READ MESSAGE
COMPOSE TEXT
SEND MESSAGE

The semantic level specifies the operations within the system to

complete the task. In this example, the semantic level might be
Task Level Semantic Level

FIND MESSAGE SHOW DIRECTORY
SHOW MESSAGE SHOW MESSAGE
READ MESSAGE READ MESSAGE
COMPOSE TEXT COMPOSE TEXT
SEND MESSAGE SEND MESSAGE

SHOW LIST OF USERS
SPECIFY RECIPIENT

To fulfill the task procedure FIND a MESSAGE, the operation

within the system might be SHOW the DIRECTORY. The semantic

level operation for SHOW MESSAGE, READ MESSAGE and

COMPOSE TEXT are the same as depicted in the task level. The task

procedure SEND a MESSAGE requires three operations, SEND

MESSAGE, SHOW LIST OF USERS and SPECIFY the RECIPIENT.

The syntactic level would outline the commands available for

completing the semantic level tasks. For example, the command

available for the task SHOW MESSAGE might be

SHOW MESSAGE n where n is the message number.

The interaction level provides details of the keystrokes that the user

will have to make in order to accomplish the syntactic level

procedures. For example the command on the system to SHOW

3 1

MESSAGE n might be 'DISPLAY n', where n is the message

number.

Each level provides a complete description of the system at its own

level of abstraction. The descriptions consist of procedures for

accomplishing tasks addressed by the system in terms of the actions

available at that level (eg. methods). These formal descriptions can

then be used to derive some evaluation measures such as

learnability, efficiency of the system, optimality, memory load etc.

CLG has been reported as being an efficient tool for evaluating user

interfaces [Davis83].

Just as an aside, [Brown, Sharratt & Norman 86] reported in their

article how CLG could be used as an interface design tool. They take

advantage of the feature that the CLG structure provides a way of

moving from an informal description (task level) to a formal

description at the interactive level. They found it lacking in some

ways particularly to the design of adaptive user interfaces. Future

enhancements have been proposed.

3.2 The GOM S M odel

GOMS is an approach for defining the cognitive procedures that a

user must perform at the computer interface. This model describes

the user's knowledge in terms of Goals (which the user must

accomplish), Operators (the individual actions), Methods (step-by-

step procedures for accomplishing goals) and Selection rules

3 2

(heuristics for specifying which method to use in specific

circumstances).

The GOMS model is an approach to describe user behaviour.The

Interface Metaphors approach to design described in Section 2.4.2, is

another example of a user model. A User model describes an

individual's behaviour when interacting with a computer system

and represents the amount and structure of relevant 'how to use a

system' knowledge.

The initial notation for GOMS was developed by [Card, Moran &

Newell83] and was further enhanced by [Kieras & Polson85], because

they found the first model clumsy to use and it didn't explain in any

detail how the notation worked. The Kieras & Poison approach

called the production simulation approach codifies GOMS into a set

of production rules, which when executed by a computer, simulate a

user performing a computer task. As I explained earlier, in this

dissertation the rules are examined manually rather than using the

computer. The basic architecture of a production system includes a

set of production rules and a working memory. The working

memory represents the current goals of the system including

information about current and past actions as well as

environmental information.

Kieras, himself developed a language called Natural GOMS

Language (NGOMSL) to describe GOMS models,ie the production

rules, which has a high degree of precision and is relatively easy to

read and write. The goals are represented as the conditions in the

production system. Methods are formed from the sequencing of the

production rules. Selection rules are production rules that control

3 3

the execution of the method. The operators are scattered throughout

the production rules. Maybe, in the future, this language could be

compiled to make it useful for other areas of HCI ie. implemented

as a running computer language to fully complete the production

simulation approach.

The GOMS process consists of 2 parts

1. the GOMS task analysis : which describes how a GOMS

model is constructed for a system using NGOMSL

notation.

2. the use of this model to

a) evaluate the design of the system, namely the user

interface, and

b) predict the human performance.in terms of learning

and execution times.

The advantage of GOMS is that it carried out at any stage of the

software lifecycle.

During design, the GOMS model can be described concurrently with

the design of the system.

During development, the GOMS analysis can be carried out on

components from the design stage.

After implementation, is the easiest stage to describe a GOMS model

because much of the information needed can be obtained from the

system itself, it's documentation, it's designers and the present

users.

It is at the post implementation stage, that this dissertation carries

out the GOMS analysis.

34

I shall explain a GOMS task analysis, giving examples using

NGOMSL notation. Details of the method and the language are

published in a document called 1 A Guide to GOMS task-analysis1

which Kieras refers to in [Kieras88].

3.2.1 Overview of GOMS Task Analysis

GOMS is a formal means of describing a system. Formal in that it

contains a simplified model of the human operator and thus

theories of human performance that are entailed in the model. A

GOMS analysis is a description of the knowledge that a user must

know in order to carry out some specific task on the system. It is a

representation of the 'how to do it' knowledge. It is also a

description of what the user must learn thus it could act as a basis

for training or reference documentation. Each of the methods is

made up of certain operators, key presses and hand motions as

specified in the Keystroke Model [Card, Moran & Newell 83].

The aim of a GOMS analysis is to describe the system in terms of

Goals, Operators, Methods and Selection Rules.

Goals :

The user tries to accomplish the goals. They define the state of

affairs to be achieved, and determines a set of possible methods by

which they can be accomplished, eg the goal to delete a word. A set

of goals are arranged hierarchially, because usually to accomplish a

goal, one or more subgoals need to be accomplished first.

3 5

Operators:

These are the actions that the user executes. An operator is the

action that the user does to achieve a goal eg press the mouse button

etc. When carrying out a GOMS analysis , the aim is to describe all

the operators as primitive actions ie. they can't be further analysed

eg drag the mouse, can be decomposed further to describe pressing

the mouse button etc.

There are two types of operators :-

1: external operators : these are actions that the user performs in

the system environment.

a) perceptual operators : eg . 'find the insertion point',

'scan the screen' ie "looking" operators

b) motor operators : eg. press key, move mouse , ie.

"doing" operators.

2: mental operators : internal operators; ie actions that the user

reads, then responds by doing what they instruct, eg. Find the

goal to be accomplished, Retain information in working

memory etc.

There is a need sometimes for a third type of operator, an analyst-

defined operator that the analyst herself, (person doing the analysis)

can define. This can be used in the instance whereby a process may

be too complex to be represented and more importantly, it may have

little to do with the specifics of the system. For example an analyst-

defined operator can be used to outline the method to use the scroll

3 6

bar or to explain the method of how to read a message from the

screen. Both of these types of processes can be by-passed ie. you just

assume that they will be done without explaining how to do them.

Methods :

A method describes a procedure for accomplishing a goal. A step in

the procedure typically consists of a combination of operators,

external and/or mental. Describing the methods is the focus of the

task analysis since much of the work in analysing a user interface

consists of specifying the actual steps that the users carry out in

order to accomplish the goals.

eg. Method to accomplish goal of <goal description>
1. operator
2. operator
3.

n. Report goal accomplished

Also, a method can call another method by having as one of it's
steps:

4. Accomplish the goal of <goal description>

Selection Rules :

When a goal is attempted, there may be more than one method

available to the user to accomplish the goal. The selection rule set is

the means for handling method selection. It is a series of IF

statements which direct control to different methods depending

upon some conditions.

eg. Selection Rule set for goal of <goal description>
If <condition> then Accomplish goal eg <goal desc.>

•••

Report Goal accomplished.

3 7

The GOMS model analysis is then used to

a) evaluate the quality of the design, and

b) predict the learning and execution times.

Naturalness

The quality of the design is evaluated by general observations in the

following areas

would the goals and subgoals make sense to a

new user on the system or would they have to

develop a new way of thinking when going to

perform certain tasks ?.

are similar goals accomplished by similar

methods ?.

are there methods for every goal and subgoal ?.

are selection rule sets clear and easily stated ?. ie.

is it easy to pick out which method is

appropriate ?.

Consistency:

Completeness:

Cleanliness :

For the purpose of this dissertation, I only used the learning time

prediction, because with the lack of resources, it would be very

difficult to test the reliability of the predicted execution times.

The phrase production rules, is the collective name for all the

statements of the GOMS model ie.the Method statement, the steps

in each method, the S election Rule Set statement and the IF

statements of the Selection Rule Set.

The predicted learning time is estimated by counting the number of

production rules 2 necessary to accomplish a specific task. Learning

2 Throughout th is d issertation , I use the term s 'production rules' and
'statem ents', but they actually m ean the sam e thing.

38

time is a assumed to be a linear function of the number of

productions. The more productions a subject must learn to

complete a computer task, the longer the training time.

When all the statements have been added up, the total is used in

the following equation to produce a prediction for learning time.

Predicted Learning Time =

(30-60) minutes + 30 seconds per NGOMSL

statement.

The statements of the model are counted, depending on the type

they are :

o the M e th o d description statement counts as 1

statement

o all steps in method including the R eport Goal

accomplished statement, each count as 1 statement.

o Selection Rule Set statement and the concluding

Report Goal accomplished statement, both count as 1

statement.

o All options in a Selection rule set, each count as 1

statement.

39

As well as predicting the execution and learning times of a task, the

GOMS model can also be used to predict the transfer of learning.

The transfer of learning when going from one task to another is

quantified as the number of new productions one must learn. In

cases where there are methods common to both tasks, these

methods will transfer at no cost, that is they are not added into the

overall total.

40

Chapter 4

Applying GOMS and Assessing the
results.

This experiment was divided into 4 stages :

1. A limited number of operations in 2 different word

processing packages were analysed in terms of the GOMS

model- and 2 models (one for each w /p) were drawn up.

2. Using these models, the quality of the interface was evaluated

and the learning times were predicted for the two packages.

3. Four in-experienced users used the two packages, and their

learning times were recorded. They had also to complete a

questionnaire regarding their views on the two packages.

4. The accuracy and reliability of the GOMS method was

assessed.

4.1 Phase 1: Constructing the GOM S m odel.

The purpose of this phase was to describe a manuscript editing task

in information processing terms. The general technique was to

observe some experienced user doing the tasks on each word

processing package, but I conducted the analysis on the ways that I

did the tasks- I have some experience with both the packages.

Effectively, I described my own behaviour using a GOMS model.

41

Ideally, it would have been more satisfactory to construct the model

from the behaviour of frequent and skilled users of each of the

packages.

The procedure I used, was a top-down , breadth-first expansion of

the methods. That is, I described the most general goal (to edit a

document) and worked down through it's subgoals until I reached

the primitive operator at the end. All of the goals at each level were

dealt with before going down to a lower level. It is better to use

breadth-first rather than depth-first because when all the methods

are described level-by-level, it is easier to pick out methods that are

similar to each other. Identifying such method similarities is critical

to capturing the consistency of the user interface. Consistency means

that similar goals are accomplished by similar methods.

Figures 4.1 & 4.2 show brief outlines of the GOMS methods used for

WP1 and WP2 respectively. The diagrams in both the figures are

illustrated using the J.S.P. 3 method of design.

Appendix A & B contains the full GOMS models for each word-

processor.

3 Jackson Structured Program m ing : A Program D esign M ethod
d evelop ed by M. Jackson.

Text Editing

Editing Document

Move to Perform Unit Task

Document*

unit task
location

Move text Delete text Insert text

Cutting

Select
Text

Pasting

Issue
CUT

Select
Insertion
Point

Cutting

Issue
PASTE

o ' o
Select Select
Word A rb itra ry

Text

Select Insertion
Point

Issue
CHANGE

Using
CHANGE

Answer-Cont
Message

Closing
CHANGE

Fig :4.1 GOMS methods used for WP 1

4 3

Text Editing

Editing Document

Move to Perform Unit Task

Issue
Control
Q

Fig :4.2 GOMS methods used for WP 2

4.2 Phase 2: Quality Evaluation & Learning time

Prediction

This phase involves using the GOMS models which were drawn up

in phase 1, to

a) Evaluate the quality of the design of each interface, and

Document*

44

b) Calculate the predicted learning time for each package.

Qualitative Evaluation :

This is done by general observations of the GOMS models of each of

the packages. Each model is evaluated under the categories outlined

in Section 3.2.1.

Naturalness:

W /P l :

The terms and the jargon (command names etc) used in this

package would make sense to any person who has never used a

word processor or even a computer before, ie to save a document,

click the mouse on the SAVE command.

W /P 2 :

This package doesn't convey natural features quite like the previous

package. The users would have to learn the commands for some of

the operations eg to save a document, type Control KD. What is the

relationship between the word Save and the command Control KD

Because, I am evaluating existing packages , the other criteria of

evaluation were found to be satisfactory. That is, each of the

interfaces were found to be consistent, complete and exhibited

cleanliness.

4 5

Predicted Learning Times :

This analysis postulates that the number of productions (rules

needed to decompose goals into subgoals, to find methods to fit the

subgoals and to execute the sequence of actions in a method)

necessary to perform a task , is a good predictor of the time it takes to

learn a system. Also, the number of productions that the two

packages have in common, can be used to predict the transfer of

learning criteria. That is, how easy is it to learn a second package,

after learning one already.

W /P 1 : was found to have 135 NGOMSL statements :

PLT = (30-60) mins + 30 secs / no. of NGOMSL statements.

= (30-60) mins + 30 secs /1 35 statements

= -30 mins + 67.5 mins

= 37.5 minutes

W /P 2 : was found to have 88 NGOMSL statements :

PLT = (30-60) mins + 30 secs / no. of NGOMSL statements.

= (30-60) mins + 30 secs /88 statements

= -30 mins + 44 mins

= 14 minutes

4.3 Phase 3 : Experiments on novice users.

4 6

The task-based experiment was carried out by observing four novice

subjects (A, B, C, D) using the two packages. Novice means that they

had no previous experience with computers or word-processors.

Four is the absolute minimum number of subjects needed to get

some indication of individual user variation. They each had to

learn and use two word processing packages. The two word

processing packages were chosen specifically because one was mouse

and menu-driven and the other was keyboard driven.

I used as much variety in this experiment as I could ,without the

proper experimental resources and facilities. Normally many users

with different experience and capabilities should have been

involved, using many different types of word processors on

different types of machines. The set of subjects should be selected to

represent the diversity of the user community. [Martin 73] in his

book categorises PC users as follows: frequent user, casual user, user

with programming skills, intelligent user (high IQ), highly trained

user, active user, passive user, and intermediary user. Maybe these

types of users could be used as a basis for a proper experiment. This,

and other improvements to the experiment are outlined in Section

5.3.

The subjects in this experiment were given the same task which was

to modify the same marked-up manuscript on each of the packages.

The modifications they had to make were the five text-editing

operations, Move text, Delete text, Copy text, Insert text and Replace

text. When these tasks had been done they had to save the modified

document. The subjects were supplied with the marked up

document , a copy of the revised document and a list of the

commands for each package and were shown how to use them.

The experiment was organised such th at:

Users A & C used W /P 1 then W /P 2.

Users B & D used W /P 2 then W /P 1.

The subjects were instructed on how to use each package and

terminology regarding the mouse, keyboard and commands was

also explained to them. They were taught on a one-to-one basis

which had the advantage that it is adaptable to the individual

learner. On a one-to-one basis, I could respond to the particular

difficulties of each learner by explaining things in a different way, by

correcting misconceptions etc. They were allowed to practice as

much as they required but once they started modifying the marked-

up document supplied, their time was recorded.

When they were finished their tasks on each package, the subjects

were asked to fill in a questionnaire. The purpose of this

questionnaire (see Appendix C) was to evaluate their attitudes

towards each package and it was used to compare with the results of

the qualitative evaluation carried out earlier.

4.4 Phase 4 : Assessing the results of the Case Study.

Recall the values that the GOMS model predicted from Section 4.2 :

48

The predicted learning time for WP1 : 37.5 minutes and for WP2 : 14

minutes.

The actual learning times (in minutes) from the case study are :

Subject WP1 W P2
A 21 16
B 21 15
C 25 14
D 27 19

Average 23.5 16
Prediction 37.5 14

How do the GOMS predictions compare with the actual results ?

The results for WP1 are not widely distributed and the GOMS

prediction seems to be quite a bit higher than any of the actual

results obtained. (See Fig 4.3) The predicted result for WP2 seems to

be quite close to. the actual values. Fig 4.4

Fig 4.3 : Actual & Predicted Values for WP1

Subjects

D -

C -

B

A - I

Predicted
Value

— r~
1 0

Minutes
20

Fig 4.4 : Actual & Predicted Values for WP2

50

Does it matter in which order the subjects were given the word

processors ?

Recall, Groups A&C were given WP1, then WP2

Groups B&D were given WP2, then WP1

Group WP1 W P2

A 21 16

C 25 14

Aver 23 15

B 21 15

D 27 19

Aver 24 17

It is tempting to answer this question, but it isn't possible due to the

lack of proper experimental conditions. Only speculative

conclusions could be drawn from these results, because there seems

to be a wide variation between the subjects.

There seems to be insufficient evidence of a transfer of learning

effect. I would prefer to test this on more subjects and in a proper

experiment environment.

Do the types of word processors make any difference ?

As in the previous question, only speculative conclusions can be

drawn, to answer this qusetion. Recall, that WP1 was a mouse-

driven word-processor whilst WP2 was keyboard driven. It seems

5 1

that if you can work a mouse-driven wp (word processor), you can

perform better on another type of wp. But using another type firstly

doesn't help with the mouse driven one. Thus, it seems to suggest

that mouse driven word processors are difficult to master. Maybe it

was because the subjects were novices and the idea of clicking a

mouse, selecting text etc. took a while to become familiar with.

These are all very speculative points but wouldn't it be interesting

to find how expert users of both word-processors would perform in

this experiment ?.

How did the user evaluation compare with the GOMS evaluation of

the packages ?

These results were gathered from the questionnaires which the

subjects had to complete. The majority of the users found that WP1

was the easiest to use given the limited amount of documentation

and tuition supplied. Initially, they found the mouse difficult to

understand and orientate but in the end found it faster and more

meaningful than the keyboard. All the subjects deduced that WP1

was the better documented package, easiest to read and they found

that it used terms which were familiar to them.

A paradox seems to have arisen !

Why was WP1 predicted to be (and actually was) the longest package

to learn and yet the users indicate that they found it the easiest and

most user friendly to use ? .

The answer to this seems to be in the method of presentation of the

packages. WP1 is a menu-driven package, which is operated using a

mouse. It uses different icons - small pictures - to visually represent

documents, files, etc.. The user's work is spread out on the screen.

Even the cursor takes on different shapes as it is used for different

tasks. Specutively speaking, this layout seems to maintain the user's

interest as they are using the package.

Because it communicates with metaphors, it seems to trigger the

desired knowledge and experience in the minds of the users. Thus,

because it was presented in an interesting manner, it required more

statements to describe the commands etc.. fully. The longer learning

time didn't seem to matter to the users, they found using this

package to be the most interesting and useful.

Also, eventhough it takes longer to learn WP1, I would speculate

that the commands etc.. learnt from WP1 would be retained longer

in the user's mind than those of WP2. Maybe, this could be treated

as another interesting extension to the experiment.

The major criticism for WP2 was that it was very easy to get lost in

because it had large menus embedded in each other. Pull-down

menus were found to be easier to understand and follow through.

Also, as in the GOMS evaluation, the control key command was

found to be very meaningless. They suggested that if the control key

commands were made more meaningful, it might be the easier

package to learn and remember.

Again, for this section it would be interesting as to how expert users

would answer this questionnaire.

Conclusions :

The GOMS predictions for one of the packages.seemed to come quite

close to the actual results obtained in the experiment. The other

package which had the mouse driven menu was predicted to have a

learning time greater than the actual values. This seems to suggest

that the GOMS model might be too low level. Low level in the

respect that it describes simple operator commands in very intricate

detail. For example, selecting an item from a pull-down menu was

described in 5 or 6 steps or productions. Once one had learnt this

process once, it becomes more or less an immediate action

thereafter.

Also, WP1 displayed and explained the submenus which are in it's

package which WP2 didn't. WP1 had steps in the model to explain

pull-down menus etc. whereas WP2 just said, for example issue

Control QC command, not explaining that the Control Q section of

the command brings one to a separate menu.

Finally, the GOMS model for WP1 had more productions than that

of WP2, thus predicting a longer learning time for WP1. But this is

due to the method of presentation of WP1, which was found to be

the more interesting package.

54

Chapter 5

Conclusions & Summary

5.1 The Advantages of GOMS

As mentioned previously, the GOMS method can be carried out at

any stage of the software lifecycle. In my experiment, I demonstrated

how it could be used post-implementation, but if it was carried out

at the development stage the following would be an advantage.

Since the GOMS model is a complete description of the procedural

knowledge that the user needs to know in order to perform tasks

using the system, the procedure documentation could be written

from the GOMS model directly, as a way to ensure accuracy and

completeness from the beginning. Even though it is a big help in

providing the content of the documentation, it provides little

guidance concerning the form of the documentation, the

organisation and presentation of procedures in the document.

[Elkerton 88] says to make sure the index, table of contents and

headings are organised by user's goals, rather than the function

names, to allow the user to locate methods given that they often

know their natural goals, but not the operators involved.

As defined earlier transfer of learning can be predicted for a specific

interface based on the number of new rules to be learned in a task. If

this predicted time is extreme and very high, appropriate training

procedures could be implemented to simplify the learning

55

environment. Similar and dissimilar rules would dictate the

presentation of interface methods. For example, if a text editor is

difficult to learn, a GOMS analysis may suggest initial training for

say, selecting text since this method is required for many other

commands.

The GOMS model also permits analysis of working memory loads.

Specifically, the memory loads experienced by the user can be

estimated by counting the goals and subgoals activated during a

simulation with the model. From this analysis, predictions for user

error rates could be generated with the expectation that high

memory loads would result in more errors than periods of low

memory loads. High working memory loads also may decrease

learning and performance times. Therefore, if periods of high

working memory loads can be predicted, then additional prompts

and cues could be provided by the software to support error-free and

time efficient user performance.

5.2 The Limitations of GOMS

The GOMS approach is very low-level, in that it focuses on very

detailed user tasks and user typing behaviour. It doesn't account for

personality characteristics or problem solving behaviour of the user

which results from completing a task that has no prescribed

method. In the experiment the GOMS model had to describe the

specifics of how to click the mouse button in graet detail. This is

5 6

why the predicted learning time value for the mouse driven word

processor was so high.

The GOMS approach doesn't account for memory processes such as

comprehension, forgetting or information reorganisation. The fact

that these processes take place in the learning stage are not

incorporated into the approach.

GOMS is limited to describing the error-free behaviour of a

computer user. Making errors is a routine occurrence, thus the

model is far from approximating typical user behaviour. Even

skilled users spend at least one-quarter of their time making and

recovering from errors. Errors in understanding or simple human

errors in areas such as typing or pointing can cause complete failure

in a users ability to communicate with the system. It would be

impossible to consider all possible user responses to a given

situation but the GOMS model should take into account time lost

due to errors. [Robertson 83] has proposed a method as to how errors

and error recovery could be incorporated into a GOMS like analysis.

Also the GOMS approach assumes a computer task can be described

in terms of an over riding goal divided into independent, context-

free subtasks - this isn’t always the situation.

5 7

5.3 Improvements to the Pseudo-Experiment.

The definition I used earlier for usability is that it is 1 the ease with

which a system can be learned and used' [Bury et al 86], so to test

these capabilities properly, I would improve on the following :

To test the ease of use :

Many different editing tasks would be embedded into a

number of different types of documents eg. an office memo, paged

report, chapter from book etc.. The tasks would appear anywhere in

the documents and their complexity would be randomly distributed.

The usability of the layout and formatting facilities would also be

tested. The subjects would be expert users, some from a technical

background and some from a non-technical background with no

programming experience.

When they are using the system, the overall time to complete the

tasks would be recorded. In addition to this, the amount of time that

was spent in error-time would also be recorded. This is one

limitation of the GOMS model in that it doesn't take into account

users making errors. Thus, in recording the time spent in error, it

will show whether it is a significant omission from the model.

To test the ease of learning :

The subjects would be novices. They would be provided with

a marked-up document similar to the document that was supplied

in the experiment I carried out and they would have to perform

similiar types of tasks. But as an extension, once the user had learnt

58

some of the tasks, they would be quizzed on them. This is in order

to examine what tasks they could do independently. Each user

would be taught following a common syllabus. However, it would

be up to the instructor to determine which specific editor

commands and facilities to teach in order for the subject to

accomplish the core tasks.

5.4 Suggested Improvements to GOMS

[Kieras & Poison 85] stated that the learning time is a linear function

of the number of productions. But instead of weighting all the

productions etc. with the value of 1 as they have proposed, why not

put different weights on the types of operators in the method.

Section 3.2.1 outlined the types of operators which can be present in

the methods. There are both external operators and mental

operators.

Maybe the external operators could have a weight of 0.5, (rather

than 1) because they only require a glance at the screen or a touch of

a key on the keyboard. These represent more or less immediate

actions performed by the user, thus they only require half the

original weight..

The mental operators like Accomplish Goal of..., Report Goal

Accomplished etc. might retain the original weight of 1.

Also, if the mental operators that refer to the working memory,

operators like Retain, Recall & Forget it, could have double the

original weight to be worth the value of 2 because these represent

stages when there is a high memory load on the user.

59

The value of the Method and the Selection Rule statements are left

at their original value.

So, how would the GOMS models of the 2 word-processors score

under this speculative weighting scheme ? .

The GOMS model for WP1, was found to have

24 - method & selection rule statements

53 - mental operators

58 - external operators

0 - working memory statements

Thus,

(24+53) * 1 + 58 * 0.5

77 + 29

106

Use this value in the Learning time equation :

(30-60) minutes + 30 seconds / number of statements

-30 minutes + 30 secs * 106

-30 mins + 53 mins

23 minutes

The GOMS model for WP2, was found to have

46

27

16 method & selection rule statements

mental operators

external operators

6 0

8 working memory statements

Thus,

(16+46) * 1 + 27 * 0.5 + 8 *2

62 + 13.5 + 16

91.5

Use this value in the Learning time equation :

(30-60) minutes + 30 seconds / number of statements

= -30 minutes + 30 secs * 91.5

= -30 mins + 45.75 mins

15.75 minutes

Recall, that the average actual values achieved for these word-

processors w ere:

23.5 for WP1 & 16 for WP2.

It is obvious that these predicted values come closer to the actual

values than those obtained from the Kieras & Poison's approach.

But to make a formal proposal as this being an improvement, this

'improved' method would have to be tested fully and properly.

And, to really test this fully, as I have pointed out many times

previously, proper experiment conditions and controls must be

enforced.

5.5 Summary

In this dissertation I have described the GOMS model of human-

computer interaction [Card, Moran «Sc Newell83]. The author has

become familiar with the GOMS approach, in sofar that she can

apply it to particular off-the-shelf products. The GOMS model was

then used to predict the usability of the products.

To test the accuracy and reliability of the GOMS model, a pseudo

experiment was carried out. Four in-experienced users were given a

set of standard tasks to complete and their learning times were

recorded, as they worked on the packages. The actual learning times

recorded were compared to the predicted learning times.

The values of the GOMS model using Kieras & Poison's predicted

learning equations seem to be inaccurate for some instances, to the

experiment carried out. Maybe this is because of the limitations that

were on the experiment or because of the means by which the

statements of the GOMS model were added up.

A set of improvements are presented which could be made to the

experiment and/or which could be made to GOMS model itself. The

improvements to GOMS seem to be more reliable and accurate

when compared to the actual values (those that were achieved in

the experiment).

The proposal, which is an expansion of Kieras & Poison's approach,

takes into account the complexity of the knowledge required to

learn the system. Different weightings are used when adding up the

6 2

statements, depending on whether the knowledge is perceptual

(looking), motor (doing) or mental.

As an expansion to this dissertation, it would be interesting to carry

out a 'proper' experiment, using the proposed improvements in the

experiemnt to get the actual learning values and the proposed

improvements to GOMS to get the predicted values.

6 3

Appendix A

GOMS task analysis for text-editing in
W P1

Method to accomplish goal of text-editing
1. Accomplish the goal of editing the document.
2. Accomplish the goal of Save Document
3. Report goal accomplished

Method to accomplish goal of editing the document
1. Get next unit task from marked-up document.
2. Decide : if no more unit tasks, then report goal

accomplished
3. Accomplish the goal of moving to the unit task

location.
4. Accomplish the goal of performing the unit task
5. goto 1.

Method to accomplish the goal of Save Document.
1. Move cursor to "File" on menu bar.
2. Press the mouse button down
3. Move cursor to "Save"
4. Verify that Save is selected
5. Release the mouse button
6. Report goal accomplished

Method to accomplish the goal of moving to the unit task location.
1. Get location of unit task from manuscript.
2. Decide : if unit task location on screen, then report

goal accomplished.
3. Use scroll bar to advance text
4. goto 2

Selection rule set for the goal of performing the unit task.
if the task is moving text, then accomplish the goal of

moving text
if the task is deletion, then accomplish the goal of deleting

text
if the task is insertion, then accomplish the goal of inserting

text
if the task is replace , then accomplish the goal of replacing

text
if the task is copy , then accomplish the goal of copying text.

6 4

Report goal accomplished.

M ethod to accomplish the goal of m o vin g text
1. A ccom plish the goal of cutting text
2. Accom plish the goal of pasting text
3. V erify correct text m oved
4. Report goal accomplished.

M ethod to accomplish the goal of deleting text
1. A ccom plish the goal of cutting text
2. V erify correct text deleted
3. Report goal accomplished

M ethod to accomplish the goal of inserting text
1. A ccom plish the goal of selecting insertion point.
2. Ty p e in new text
3. V erify correct text inserted
4. Report goal accomplished

M ethod to accomplish the goal of replacing text
1. A ccom plish the goal of issuing C H A N G E com m and
2. V erify correct replacement done
3. Report goal accomplished.

M ethod to accomplish the goal of copying text
1. Accom plish the goal of copy/op
2. Accom plish the goal of pasting text
3. V erify correct text copied
4. Report goal accomplished

M ethod to accomplish the goal of cutting text
1. Accom plish the goal of selecting text
2. A ccom plish the goal of issuing C U T com m and
3. Report goal accomplished.

M ethod to accomplish the goal of pasting text
1. Accom plish the goal of selecting insertion po int
2. Accom plish the goal of issuing P A S T E com m and
3. Report goal accomplished.

M ethod to accomplish goal of selecting insertion point
1. Determ ine position of insertion po int
2. M o ve cursor to insertion point
3. C lick mouse button.
4. Report goal accomplished

M ethod to accomplish the goal of issuing C H A N G E com m and.
1. M o ve cursor to "Search" on M e n u Bar.
2. Press mouse button dow n.

6 5

3. M o ve cursor to "Change"
4. V erify that C H A N G E is selected.
5. Release mouse button
6. Accom plish goal of using C H A N G E m enu.
7.. Report goal accomplished.

M ethod to accomplish goal of copy/op
1. A ccom plish the goal of selecting text..
2. Accom plish the goal of issuing C O P Y com m and
3. Report goal accomplished

Selection rule set for goal of selecting text.
if text-is w o rd , then accomplish goal of selecting w o rd
if text-is arbitrary, then accomplish goal of selecting arbitrary

text.
Report goal accomplished

M ethod to accomplish goal of issuing C U T com m and
1. M o ve cursor to 'Edit' on m enu bar.
2. Press mouse button d o w n
3. M o ve cursor to 'C U T '.
4. V erify that 'C U T ' is selected.
5. Release mouse button.
6. Report goal accomplished.

M ethod to accomplish goal of issuing P A S T E com m and
1. M o ve cursor to 'Edit' on m enu bar.
2. Press mouse button d o w n
3. M o ve cursor to 'P A S TE '.
4. V erify that 'P A S TE ' is selected.
5. Release mouse button.
6. Report goal accomplished.

M ethod to accomplish goal of using C H A N G E m enu.
1. M o ve cursor to 'F ind W hat' Box .
2. C lick mouse
3. Ty p e in text to be replaced.
4. M o ve cursor to 'Change to' Box.
5. C lick m ouse
6. Ty p e in text to replace w ith
7. M o ve cursor to 'Change A ll ' box
8. C lick mouse
9. Decide :If message-on-screen is 'Continue changing

from beginning of docum ent', then accom plish goal of
answer-cont message.

10. A ccom plish goal of closing C H A N G E m enu.
11. Report goal accomplished

M ethod to accomplish goal of closing C H A N G E m enu.

6 6

1. M o ve cursor to box on top left hand corner of
C H A N G E m enu.

2. C lick m ouse
3. Report goal accomplished.

M ethod to accomplish the goal of issuing C O P Y com m and.
1. M o ve cursor to 'Edit' on m enu bar.
2. Press m ouse button d o w n
3. M o ve cursor to 'C O P Y '.
4. V erify that 'C O P Y ' is selected.
5. Release m ouse button.
6. Report goal accomplished.

M ethod to accomplish goal of selecting w o rd
1. Determ ine position of beginning of w o rd .
2. M o ve cursor to beginning of w o rd .
3. D ouble-click mouse button
4. V erify that correct text has been selected.
5. report goal accomplished

M ethod to accomplish goal of selecting arbitrary text
1. D eterm ine position of beginning of text.
2. M o ve cursor to beginning of text.
3. Press m ouse button d o w n
4. Determ ine position of end of text
5. M o ve cursor to end of text
6. V erify that correct text has been selected.
7. Release m ouse button
8. report goal accomplished

M ethod to accomplish goal of answer-cont message
1. M o ve cursor to 'YES' box.
2. C lick mouse
3. Report goal accomplished.

6 7

Appendix B

GOMS task analysis for text-editing in
W P2

Method to accomplish the goal of text editing
1. Accomplish the goal of editing the document
2. Accomplish the goal of Save Document
3. Report goal accomplished

Method to accomplish goal of editing the document
1. Get next unit task from marked-up document.
2. Decide : if no more unit tasks, then report goal

accomplished
3. Accomplish the goal of moving to the unit task

location.
4. Accomplish the goal of performing the unit task
5. Goto 1.

Method to accomplish the goal of Save Document
1. Retain that command letter is D, and accomplish the

goal of issuing Control K command.
2. Report goal accomplished.

Method to accomplish the goal of moving to the unit task location.
1. Get location of unit task from manuscript.
2. Decide : if unit task location on screen, then report

goal accomplished.
3. Use keys on right-hand-side keypad to advance text
4. Goto 2

Selection rule set for the goal of performing the unit task.
if the task is moving text, then accomplish the goal of

moving text
if the task is deletion, then accomplish the goal of deleting

text
if the task is insertion, then accomplish the goal of inserting

text
if the task is replace , then accomplish the goal of replacing

text
if the task is copy , then accomplish the goal of copying text.
Report goal accomplished.

68

Method to accomplish the goal of moving text
1. Accomplish the goal of selecting text
2. Accomplish the goal of selecting insertion point
3. Retain that the command letter is V, and accomplish

the goal of issuing Control K command.
4. Verify correct text moved
5. Report goal accomplished.

Method to accomplish the goal of deleting text
1. Accomplish the goal of selecting text
2. Retain that the command letter is Y, and accomplish

the goal of issuing Control K command.
3. Verify correct text deleted
4. Report goal accomplished

Method to accomplish the goal of inserting text
1. Decide : if message on top rhs of screen says 'Insert Off',

then
Accomplish the goal of Switch Insert On

2. Accomplish the goal of selecting insertion point.
3. Type in new text
4. Verify correct text inserted
5. Report goal accomplished

Method to accomplish the goal of replacing text
1. Accomplish the goal of issuing CHANGE command
2. Verify correct replacement done
3. Report goal accomplished.

Method to accomplish the goal of copying text
1. Accomplish the goal of selecting text
2. Accomplish the goal of selecting insertion point
3. Retain that the command letter is C, and accomplish

the goal of issuing Control K command.
4. Verify correct text copied
5. Report goal accomplished

Method to accomplish goal of selecting text
1. Determine position of beginning of text.
2. Move cursor to beginning of text.
3. Retain that command letter is B, and accomplish the

goal of issuing Control K command.
4. Determine position of end of text
5. Move cursor to end of text
6. Retain that command letter is K, and accomplish the

goal of issuing Control K command.
7. Verify that correct text has been selected.
8. Report goal accomplished

6 9

Method to accomplish goal of selecting insertion point
1. Determine position of insertion point
2. Move cursor to insertion point
3. Report goal accomplished

Method to accomplish the goal of issuing Control K command
1. Press the CTRL key
2. Type the letter K
3. Recall the command letter, and type it.
4. Release the CTRL key
5. Report goal accomplished.

Method to accomplish the goal of Switch Insert On
1. Press the CTRL key
2. Type the letter V
3. Release the CTRL key
4. Report goal accomplished.

Method to accomplish the goal of issuing CHANGE command.
1. Retain that command letter is A, and accomplish the

goal of issuing Control Q command.
2. Accomplish goal of using CHANGE menu
3. Decide : if 'Replace Y/N ' message not on top rhs of

screen, then Report goal accomplished.
4. Type Letter Y
5. Goto 3

Method to accomplish goal of using CHANGE menu.
1. Type in text to be replaced .
2. Press Return Key
3. Type in text to replace with.
4. Press Return key
5. Type letter G
6. Report goal accomplished.

7 0

Appendix C

Questionnaire

W Pl WP2

1. Which was the easiest package to use ?

2. Which offered the best guidance on how
to use the system ?

3. Which was the better documented ?

4. Which used jargon «Sc terminology which
was most familiar to the user ?

ie. command names etc.

5. Which was the most clear display to read ?

6. Which had the best colours , ie. easiest to read ?

7. Which had the best help facility ?

8. Which system was the easiest to get lost in ?

9. Which had the most suitable system response time ?

10. Which had the most meaningful error messages ?

11. Which has the most consistent design ?

12. Which of these word processors do you prefer ?

13. What features were omitted from these packages, that you
would like to see included.

W /P 1:

W /P 2 :

7 1

Bibliography

[Barnard et al 81]
Barnard, Hammond, Morton & Long : Consistency & Compatibility
in human-computer dialogue. Int. J Man-Mach studies, 15,1 (July
81) pp 87-134

[Bennett 78]
Incorporating usability in system design: the opportunity for
interactive computer graphics. In Proceedings of the International
Conference on Cybernetics and Society Nov 1981 pp 1119-1124

[Bennett 84]
Managing to meet usability requirements. In Bennett, Case,
Sandelin & Smith (editors) Visual Display Terminals : Usability
issues and Health concerns pp 161-184

[Boies et al87]
Boies, Gould, Levy, Richards & Schoonard. The 1984 Olympic
Message System- A case study in system design. Comm of the ACM
30,9, pp 249-260

[Brooke 86]
Usability engineering in Office Product Development. In People and
Computers- Designing for usability, Harrison & Monk,Cambridge
pp249-260

[Brooks 77]
The computer scientist as "toolsmith" -Studies in interactive
graphics. In Information Processing 1977, B Gilcrist (ed) pp 625-634.

[Brown, Sharratt & Norman 86]
The formal Specification of Adaptive User Interfaces using
Command Language Grammar. In Proc. Human factors in
computing systems CHI'86 pp 256-260 New York ACM.

[Bury et al 86]
Usability Testing in the real world. In Proc. Human factors in
computing systems CHI'86 pp 212-215 New York ACM.

[Butler 85]
Connecting Theory & Practice : A Case study of achieving Usability
goals. In Proc. Human factors in computing systems CHI'85 pp 93-98
New York ACM.

7 2

[Card, Moran & Newell83]
The Psychology of Human-Computer Interaction. Laurence
Earlbaum Assoc.

[Carroll, Mack & Kellogg 86]
Interface Metaphors and User Interface Design. In Handbook of
Human-Computer interaction, M.Helander Elsevier Science Pub
1988. pp67-86

[Carroll & Rosson 85]
Usability Specifications as a tool in iterative development. In
Advances in Human-Computer Interaction H.Rex Hartson Voi 1 pp
1-28 Ablex Pub.

[Davis 83]
User error or Computer error ? Observations on a statistics package.
Int. J Man-Mach studies, 19,4 (Oct 83) pp 359-376

[Ehrich & Hartson 81]
DMS- An environment for dialogue management. In Proc. of
COMPCON81 Sept Pg 121 IEEE

[Elkerton 88] On-line aiding for Human-Computer interfaces.In
Handbook of Human-Computer interaction, M.Helander Elsevier
Science Pub 1988. pp345-364

[Foley & VanDam 82]
Fundamentals of Interactive Computer Graphics. Addison-Wesley.

[Fried 82]
Nine principles for ergonomic software. Datamation 28,11 Nov 82
pp 163-166

[Gilb 77]
Software Metrics. Cambridge MA

[Gilb 84]
The 'impact analysis table’ applied to human factors design. In Proc
Interact' 84. First IFIP Conference on Human-Computer Interaction
Voi 2 pp 97-101

[Good et al 84]Good, Whiteside, Wixon & Jones : Building a User-
derived Interface. Comm of the ACM 27, ppl032-1043

[Good et al 86]
Good, Whiteside,Spine & George : User derived impact analysis as a
tool for usability engineering. In Proc. Human factors in computing
systems CHI'86 pp 241-246 New York ACM.

73

[Gould & Lewis 85]
Designing for usability: key principles and what designers think.
Comm of the ACM, 28, pp 300-311

[Hayes 85]
Executable Interface Definitions using form-based interface
abstractions. In Advances in Human-Computer Interaction Vol 1 pp
161-189 Ablex Pub.

[Heckel 82]
The Elements of Friendly Software Design. New York, Warner
Books.

[Hewett & Meadow 86]
On designing for usability: An application of 4 key principles. In
Proc. Human factors in computing systems CHI'86 pp 247-252 New
York ACM.

[Kieras & Poison 85]
An approach to formal analysis of user complexity. Int. J man-Mach
Studies 22,pp 365-394

[Kieras88]
Towards a practical GOMS model methodology for User Interface
Design. In Handbook of H um an-Com puter interaction,
M.Helander,pp 135-157 Elsevier Science Pub 1988.

[Kiss & Pinder 86]
The use of Complexity Theory in evaluating Interfaces. In People
and Com puters- Designing for usability, H arrison &
Monk,Cambridge pp447-463

[Martin 73]
Design of Man-Computer Dialogues. Prentice-Hall

[Mehlmann81]
When people use computers: an approach to developing an
interface. Prentice-Hall

[Moran 81]
The Command Language Grammar: A representation for the user
interface of interactive computer systems.Int. J man-Mach Studies
15,pp 3-51

[LaLomia & Coovert 89]
Approaches to User Modelling. In Proc. of 21st annual Hawaii Inter.
Conference on System Sciences. Vol 2. pp 470-476

[Newell & Simon 72]

Human Problem Solving, Englewood Cliffs, N J, Prentice Hall.

[Ravden & Johnson 89]
Evaluating Usability of Human-Computer interfaces: A practical
method. Ellis Horwood.

[Reisner 82]
Further developments towards formal grammar as a design tool.In
Proc. Human factors in computing systems pp 309-314 New York
ACM.

[Robertson 83]
Goal, Plan & outcome Tracking in Computer Text-editing
Performance. Cognitive Science Tech. Report 25, Yale Univ.

[Rubenstein & Hersh 84]
The Human Factor: Designing computer systems for people. Digital
Press

[Rubin 88]
User interface design for Computer systems : Ellis Horwood.

[Shackel 86]
Ergonomics in Design for Usability. In People and Computers-
Designing for usability, Harrison & Monk,Cambridge pp44-64

[Shneiderman 86]
Designing the User Interface . Addison Wesley.

[Tyldesley 88]
Employing usability engineering in the development of Office
Products. In The Computer Journal 31,5 pp 431-436

[Wasserman 85]
Extending transition diagrams for the specification of Human-
Computer interaction. IEEE trans, on Software Eng. 11,8 (Aug)

