
Database Rules and Time:
Some Proposed Extensions to the SQL Standard

Liam O’Neill B.Sc.

Submitted to Dublin City University
for the degree of

Master of Science (Computer Applications)

This research was carried out under the supervision of
Dr. A.F. Smeaton in the School of Computer Applications

at Dublin City University

February 1994

I hereby certify that this material, which I now
submit for assessment on the programme of study
leading to the award of Master of Science
(Computer Applications) is entirely my own work
and has not been taken from the work of others
save and to the extent that such work has been
cited and acknowledged within the text of my work.

Signed Date :

ACKNOWLEDGEMENTS
I would like to thank my academic supervisor, Dr. Alan
Smeaton, for his expert advice and many kind words of

encouragement. I am grateful to the Irish Aviation

Authority who sponsored my work on this thesis and to

colleagues and friends for their valuable assistance.

A very special thanks to my wife, Geraldine, for her
understanding and support.

CONTENTS

Abstract... 1

Chapter 1 Introduction
1.1 General.. 2
1.2 Subject of Thesis.. 2
1.3 Structure o f Thesis.. 3

Chapter 2 Database Management Systems

2.1 Relational-Centred DBMS
2.1.1 Relational Model Characteristics 5
2.1.2 Evaluation of the Basic Relation Model.... 11
2.1.3 Extended Relational Models............... 14

2.2 Alternative DBMS Models
2.2.1 Semantic Data Models.......... 17
2.2.2 Deductive Databases...................... 18
2.2.3 Semantic Query Optimization.............. 19

2.3 Distributed DBMS 21

2.4 Object-Oriented DBMS
2.4.1 Background............................... 24
2.4.2 The Zdonik/Maier Threshold and Reference

Models................................... 26
2.4.3 Problems Facing OODBMS................... 29

2.5 Temporal Databases.. 32

Chapter 3 Rules in Database Systems
3.1 Background.. 36
3.2 Rule Applications.. 40
3.3 Next-Generation Prototype Systems........................... 45
3.4 Syntax for Rule Specification.................................... 48
3.5 Rule Execution Semantics... 55
3.6 Implementation of Rule Systems 58

iii

Chapter 4 A Working Syntax for Temporal Rules
4.1 Motivation.................................. 62
4.2 Modified Syntax for Temporal Extensions....... 64

Chapter 5 An Operational Semantics for Temporal
Rules

5.1 Graphical Representation of Temporal Rules 77
5.2 The OS A Object Behaviour M odel............. 82
5.3 Modelling Real-Time Constraints............. 84
5.4 Worked Examples........................... 87

Chapter 6 Temporal Rules and the SQL Standard

6.1 Overview of SQL-92 and SQL3 ... 102
6.1.1 Advanced Language Features of SQL-92 103
6.1.2 Working with Multiple Tables: The

Relational Operators.................... 110
6.1.3 Constraints, Assertions and

Referential Integrity................... 118
6.1.4 Privileges, Users and Security.......... 127
6.1.5 Transaction Management.................. 130
6.1.6 Connections and Remote Database Access. . . . 132
6.1.7 Diagnostics and Error Management........ 134
6.1.8 Internationalisation.................... 135
6.1.9 The Specification of Time in SQL-92..... 137
6.1.10 SQL3 - A look to the future.............. 142

6.2 Implications for the Temporal Syntax
6.2.1 Trigger Definition....................... 147
6.2.2 Application to Worked Examples........... 150
6.2.3 The Extended Syntax...................... 164

Chapter 7 Conclusions

7.1 Temporal Database Rules and SQL....................................... 175
7.2 The Graphical Modelling Formalism..................................... 177
7.3 Research Directions in Database Rules................................ 179
7.4 Conclusions and Suggested Future Work.............................. 181

References.. 184
iv

ABSTRACT
Title Database Rules and Time :

Some Proposed Extensions to the SQL Standard
Author Liam O'Neill

The subject of this thesis is the incorporation of temporal
semantics into database rules and how the resultant syntax
might be reconciled with the evolving SQL standard. In
particular, it explores time-driven rules and the time-
relationship between triggering events and associated
actions.
A review of the key research results in the area of
database rules and the syntax developed for the major
prototype implementations is conducted, and a working
syntax , free of any limitations within the SQL standard,
developed. Next, an operational definition is evolved
through the application of this working syntax to two
sample domains rich in 'temporal rules'. In each case a
graphical representation of the domain is presented using
an adapted object-oriented modelling technique followed by
a mapping into the working temporal syntax.
Attention is then turned to the SQL-92 standard and its
future successor SQL3. An assessment is made of their
implications for the working syntax developed in the
earlier chapters - with particular reference to the
specification of time and the use of database triggers.
When an attempt was made to re-cast the working syntax into
SQL, a satisfactory mapping, which succeeded in preserving
the semantics of the original, could not be achieved.
Support for time-based triggers; cyclic operations;
delayed actions and rule lifetimes necessitated the
development of appropriate modifications to the basic SQL3
draft syntax. The proposed extensions capture all of the
semantics required for the specification of time-based
rules.
The example applications indicated that an extended SQL-
compliant language approach allied to a sound object-
oriented modelling formalism had a broad applicability.
Furthermore, it was apparent that the addition of a
temporal dimension to rule actions was a key enabling
factor in increasing their semantic power.

1

Chapter 1
Introduction

1.1 General
An interesting development in Database Management Systems
in recent years has been the trend towards the migration of
integrity maintenance logic out of traditional application
code and into the database server itself. This has been
achieved by allowing developers to program the server as
well as specifying the user-interface and front-end logic.

The parallels with the introduction of Data Normalisation,
where duplication and inconsistencies are resolved
by way of the simple strategy of actually having only one
copy of the data, are striking. The real benefits made
possible by the process of what could be called 'Logic
Normalisation' are already to be seen with commercial
Database Management Systems, chiefly in reduced
maintenance, greater flexibility and responsiveness and
enhanced security. Indeed, the ability to provide central
integrity control has made such servers a key enabling
technology for the spread of client-server applications.

The factor which has made the database come alive and cease
to be a passive data repository has been the ability to
capture rules, the event/action pairs long the subject of
AI research. Database management systems have thus become
sensitised and, in broad terms, we will be concerned in
this study, with the range of stimuli to which they might
usefully react.

1.2 Subject of Thesis
The subject of this thesis is the incorporation of temporal

2

semantics into database rules and how the resultant syntax
might be reconciled with the evolving SQL standard. In
particular, it explores time-driven rules and the time-
relationship between triggering events and associated
actions.

A number of sub-topics flow naturally from the above and
the intention is to:

(i) Provide a suitable working syntax for exploring
temporal rules.

(ii) Define their semantics by an appropriate means.
(iii) Attempt to provide, as a research aid, a

formalism for their graphical representation.
(iv) Evaluate SQL as a medium for temporal rule

specification.
(v) Document any required SQL extensions.

The strategy adopted is to develop a working syntax so as
to avoid being bound by any limitations in the current SQL
standard and the SQL3 draft, clarify the associated
semantics by way of sample applications, and then to
attempt a mapping into SQL, highlighting any extensions
identified in the process. The implementation of this
strategy is reflected in the chapter contents set out in
the next section.

1.3 Structure of Thesis
In Chapter Two we establish our context, describing how the
thesis relates to the broader field of knowledge (Database
Management Systems) to which it belongs.

Chapter Three is a review of the key research results in
the area of database rules and a study of the syntax
developed for the major prototype implementations. We
follow this up in Chapter Four by describing a working
syntax based on the material covered in the previous
chapter.

3

The focus in Chapter Five is on semantics. We develop our
operational definition through the application of the
working syntax to two sample domains which are rich in
temporal 'rules'. In each case a graphical representation
of the domain is presented using an adapted object-oriented
modelling technique followed by a mapping into the working
temporal syntax.

In Chapter Six we look at some of the highlights of the
SQL-92 standard [MELT93] and its future successor SQL3
[EISA93]. We then go on to assess the implications for the
working syntax developed in previous chapters - in
particular, how this relates to the way in which the
standards handle the specification of time and the use of
database triggers. Up to SQL-92 the standard has continued
to be based on the relational model. The next version,
with the working title SQL3, will remain relational-centred
but will add object oriented features. More significant,
from our viewpoint, will be its introduction of a standard
for database rules.

Taking the evolving SQL standard as a starting point we go
on to attempt to map the semantics of the operational
definition into SQL. The outcome of the attempted mapping
is discussed and any required syntactic extensions
detailed.

In the final chapter, we summarize our conclusions and
suggest areas of further work.

4

Chapter 2

Database Management Systems

In this context-setting chapter, the emphasis will be upon
database modelling concepts as this has most relevance to
the focus of later chapters, but we will also touch on
areas such as Distributed Databases. We will begin our
discussion of Database Management Systems (DBMS) with a
review of the relational model.

2.1 Relational-Centred DBMS
The relational model is now some 20 years old and in that
time the early prototypes, System R and Ingres ([ASTR76],
[STON7 6]) have given rise to the mature DBMS products
widely used today. In this section we will look at this
model in its original form, highlight its perceived
shortcomings and discuss various proposals for overcoming
them.

2.1.1 Relational Model Characteristics

A concise description of the relational model can be found
in [C0DD79]. It is emphasised that the algebraic operators
are as intrinsic an element of the model as are the
structures and that there is a close relationship with
first-order predicate logic.

A database is said to be fully relational if it supports:

(1) the structural aspects of the relational model;

(2) the insert-update delete rules;

(3) a data sub-language at least as powerful as the

5

relational algebra, even if all facilities the
language may have for iterative loops and recursion
were deleted from the language.

Structure

Domain a pool of values of similar type e.g.
integers, on which all field values are
defined. The domains of the relational
model are simple.

Relation the cartesian product produced from n
domains produces a set of tuples
comprising of all possible combinations
from the n domains. A relation defined on
these n domains is thus a subset of the
cartesian product. The number of domains,
not necessarily distinct, defines the
degree of the relation.

Attribute - one of the characteristics of the entity
which the relation represents. The values
are drawn from the domains on which the
attributes are defined. Codd looks on
attributes as different uses of the
underlying domains.

Tuple a set of attribute/value pairs with the
values drawn from the domains on which the
attributes are defined.

Using these elements Codd summarises the term relation as
a set of tuples each containing the same group of
attributes. Because the attribute values are atomic any
relation can be represented as a table.

6

Four rules govern the properties of a relation:

(1) There are no duplicate tuples.

(2) There is no ordering significance amongst the
tuples of a relation.

(3) There is no ordering significance amongst the
attributes of a tuple.

(4) All attribute values are drawn from simple
domains.

A relational database, then, is a time-varying collection
of data which presents itself as a group of tables where
values are atomic in nature. The property of closure holds
under the operators of the relational algebra (discussed
later in this section) - operations on relations produce
other relations.

Data models generally have three dimensions - structure,
integrity constraints and manipulation primitives.

Two rules constrain operations on base tables:

(1) The Entity Integrity Rule
No primary key value of a base relation can be wholly
or partially null. This rule is needed to preserve
the semantic link between an individual tuple and its
corresponding real-world entity set instance.

(2) The Referential Integrity Rule
If an attribute of a base relation is a foreign key
matching the primary key of another base relation,
then its value must be equal to some value taken by
that primary key or be null. In practical terms this

7

''Crule states for instance that an employee can only
be assigned to a valid department or else remain
unassigned e.g. an induction training period may be
needed to decide on where to send the employee during
which time the department is null.

Based on the above definitions the model can be viewed as
consisting of the following:

(1) a collection of time-varying relations;

(2) the two integrity rules. These are often referred to
as the insert-update-delete rules;

(3) the relational algebra.

Codd defined a set of operators for manipulating tables
which he called the Relational Algebra [CODD70], [CODD79].
As relations are sets the operators UNION, INTERSECTION,
DIFFERENCE and CARTESIAN PRODUCT can be used. In the case
of relations as distinct from normal sets the UNION
operator is restricted to union-compatible relations i.e.
their attributes must correspond in number and type
(domain).

The other operators are THETA-SELECT (OR RESTRICT) which
produces a subset of tuples. It picks out specific rows
based on a restriction predicate in the query e.g.

R (A B C)
p 1 2

* p 2 1
q 1 2
r 2 5
r 2 3

R [B.C]

8

(A B C)
p 2 1

PROJECTION - Formally defined as R [Al, A2..An] is the
relation made up of the specified attributes of R after the
elimination of any duplicate rows e.g.

[CODD79]

R (A B C)
P 1 2
P 2 1
q 1 2
r 2 5
r 2 3

R [B] (B)
1
2

[CODD79]

THETA-JOIN - this is the concatenation of tables based on
the relationship specified for the linking attributes (of
compatible domain). If the relationship specified is that
of equality then this operator is referred to as EQUI-JOIN.

R (A B
*-----
C) S (D E)

P 1 2 2 u
P 2 1 3 V

q 1 2 4 u
r 2 5
r 3 3

(EQUI-JOIN Case)

R [C = D] S (A B C D E)

9

p 1 2 2 u
q 1 2 2 u
r 3 3 3 V

(GENERAL Case)

R [C . D] S (A B C D E)
r 3 3 2 u
r 2 5 2 u
r 2 5 3 V
r 2 5 4 u

CODD79]

NATURAL JOIN - this is similar to EQUI-JOIN except that one
of the linking columns is removed e.g. column D in the
EQUI-JOIN example above.

DIVIDE - Codd describes this as the algebraic counterpart
of the universal quantifier and defines it as follows:

Taking 2 relations R (A, B) and S (G) with B and C domain
compatible then R [B DIVIDE C]S is the greatest subset of
R[A] such that its Cartesian product with S[C] is in R.

Example

R

R

10

(A B) S (C)
p 1 1
p 2 3
p 3
q 1
r 1
r 3
[B DIVIDE C]S (A)

P
r

[CODD7 9]

Note:
The Cartesian product ql, q3 not being a subset of R does
not qualify q for inclusion in the result of the DIVIDE
operation.

2.1.2 Evaluation of the Basic Relational Model

The main achievement of the relational model was to provide
a modelling methodology that offered data independence to
both the designer and the user. Users did not need to know
and designers could initially ignore the implementation
details of storage structures and access paths required for
acceptable performance. To simplify is to remove
unnecessay detail and depending on the context of the
application significant loss of semantic richness could
result. This is most noted in cases where mapping onto the
tables of the relational model is not entirely natural.

"One problem inherent in modelling any subset of the
real world is the difference between the human's
perception of the enterprise and the computer's need
to organise the structures in a particular way for
efficient storage and performance. This gives rise to
three database modelling levels that reflect the
user's conceptual model, the machine's physical model
and the mapping from one to the other".

[PECK88]

An emphasis on retaining more of the human perception tied
up in the conceptual level was the driving force behind
research on other data models such as that of Chen [CHEN7 6]
and the functional [SHIP81], semantic [HAMM81],
object-oriented ([DKIM90], [COPE84], [BANE87] and others)
and the extended relational [STON86] approaches.

One of the main limitations of the relational model which
such later work addressed is the fact that a user needs to
be aware of the foreign keys which implicitly define the
relationships between entities and to use this knowledge to
make the connections apparent. By contrast in, for
example, the E-R model [CHEN7 6] the connections are

11

example, the E-R model [CHEN7 6] the connections are
explicitly defined within the model itself and no such
semantic pre-processing is called for.

"Current database systems are primarily an effort to
implement an abstract data type over the memory of a
machine rather than to support easy and natural
modeling of real-world enterprises. They hide the
complexity of file systems and indexing techniques and
provide a degree of physical data independence. The
next generation of database systems will be knowledge
management systems with more support for data
semantics, inferencing and general purpose
programming."

[PECK88]

Copeland and Maier [COPE84] highlighted specific
shortcomings with the relational model:

(1) Lack of type definition facilities
Types such as integers, date and money are standard in
current systems. However, it is not possible to
enhance the set of operators e.g. 'day of week'
already defined for these types or indeed to declare
new types. By definition, values must be drawn from
atomic domains which excludes the use of structured
data types e.g. arrays of simple data types.

(2) Structural limitations
The primitives of the relational model cannot
adequately capture real-world objects. The framework
provided by the tables of the model offer simplicity
but impose rigidity - other models can cope much
better with such practical requirements as the
facility to store an extra middle name in some records
but not in others.

(3) Modelling power
Simplification of the target domain leads to
compromise. Looking at the 'middle name' example

12

again, two people who are in reality distinguishable
by full name can become 'identical' in the database.

Logical pointers are required to show relationships
between entities - e.g. dept-name could be used to
link employee records with their corresponding
department record. The designer has to find or
artificially create this logical pointer and it is
consequently vulnerable to update anomalies e.g. if it
is decided to rename the 'Personnel' department to
'Human Resources'.

(4) Lack of a temporal dimension
Although manual systems are based on historical data
the relational model ignores this aspect of
applications. Deletion was originated to allow the
re-use of scarce computer resources but this is no
longer a major concern. The extra cost can be
justified by the importance that users attach to
having access to historical views of the enterprise
and the benefit of built-in error recovery offered.

On the question of semantic weakness, Codd [CODD79] has
highlighted the fact that his original model was not
without semantic features and instances domains, keys and
the notion of functional dependence as examples. He
recognises, however, that a greater concern for problems
of the external level is required and that those cannot
be solved by structural approaches alone.

"Structure without corresponding operators or
inferencing techniques is rather like anatomy
without physiology. Some investigators have retained
clear links with the relational model and have
therefore benefitted from inheriting the operators
of this model - just as the relational model
retained clear links with predicate logic and can
therefore inherit its inferencing techniques".

[CODD7 6]

13

2.1.3 Extended Relational Models

In response to the perceived shortcoming of the relation
model Codd presented an enhanced model which added the
concepts of relationships and integrity rules [CODD79]. He
referred to this new model as RM/T (sometimes referred to
as the Tasmanian model). In later versions this model has
become known as RM2.

His original model handled relationships in a value based
way, through joins expressed in the data manipulation
language. Through the process of normalisation entities
are factored to avoid redundancy and ensure consistency.
A side-effect is that what the user sees as a single entity
e.g. the data about say a book is in fact stored in several
tables, the relationships or linkages between which are not
obvious to the user.

In RM/T relationship types are defined in addition to
regular entities. Codd introduced the ideas of E-relations
and P-relations. There is an E-relation for each entity
type which holds the entity identifiers for each instance
of that type. This use of an internal identifier has been
followed in the object oriented model ([ZDON90],[KIMW90]) .
P-relations then define the properties (attributes) for
each entity type and hold the values for each instance.

Example
E-RELATION

Book Book-ID

P-RELATIONS
AUTH
TITL
PUBL

Book-ID
Book-ID
Book-ID

Author
Title
Publisher

Moving on to the specification of relationships RM/T
introduces associative entity types for many-to-many

14

relationships and designative entity types for one-to-many
relationships.

As an example of the latter Peckman and Maryanski [PECK88]
show that by adding a 'DESIGNATING' clause to the
definition of the E-relation Book the relationship between
a writer and his book is captured.

CREATE E-RELATION Book
DESIGNATING (Author via Writer-ID)

Here the link to AUTHOR is set down at data definition time
leading to a more semantically explicit schema. In
addition to this, built in integrity rules are proposed.

RM/T also supports IS-A relationships through E-relation
definition

Book
ITopic

Database Book AI Book

For example, the following syntax defines a new subtype
'AI-Book' value-based on TOPIC:

CREATE E-RELATION AI-Book
SUBTYPE OF BOOK PER
CATEGORY TOPIC

The trend towards extending the relational model is driven
by the sensible notion of achieving greater semantic
modelling power without throwing away what has been
achieved so far with the original model. In short, Codd
was saying that a new model was not necessary.

15

The argument for the extended relational approach can be
summarised as follows:

existing benefits are retained,
it is a natural evolution of what users already know
and like about a robust existing model,
there is no need to learn a totally new DML.

16

2.2 Alternative DBMS Models
In this section we will examine a range of non-relational
models on which a DBMS can be based. As will be seen,
these offer greater expressive power and functionality but
introduce a greater level of complexity.

2.2.1 Semantic Data Models

Peckman and Maryanski [PECK88] provide a useful review of
research on the semantic data model highlighting some
common characteristics and providing an evaluation of
future prospects for the various proposals put forward.

Their basis for comparison between semantic models focuses
on the following observation.

"Every semantic model has objects (or entities),
relationships (functional or relational), dynamic
properties and a means for handling integrity constraints.
Relationships can be characterised by the abstractions they
are capable of representing and the means by which they do
so. Dynamic properties can range from the simple
specification of insertion and deletion constraints to the
modelling of operations and transactions. Constraints can
be collected from the user and represented and/or
automatically implied by the semantics of the model's
relationships. Both the level and mechanisms of
information representation are used to characterise and
compare models."

[PECK88]

Elaborating on these key concepts they provide an
eight-point framework of fundamental semantic data
modelling characteristics.

(1) Representation of Unstructured Objects
(2) Relationship Representation
(3) Standard Abstractions Present
(4) Networks or Hierarchies of Relationships
(5) Derivation/Inheritance
(6) Insertion, Deletion and Modification Constraints

17

(7) Degree of Expression of Relationship Semantics
(8) Dynamic Modelling

An interesting example of a semantic database proposal is
SDM [HAMM81] which illustrates in concrete terms the
application of the above concepts.

2.2.2 Deductive Databases

Although primarily a field of academic research the topic
has yielded important practical benefits to commercial
RDBMS (- null and missing values, integrity constraints and
optimization). Their strengths are likely to lie in the
implementation of very large expert systems where the
database management requires DBMS level functionality.

Also known as logic or expert databases these hold data in
two forms:

(1) Explicitly stored data.

(2) Data deriveable from the above and defined as logic
procedures.

Although a promising concept, performance, as in the case
of semantic databases, continues to be a problem. Such
difficulties are to be expected. For instance it is not
possible to have the power of recursion without the
overhead of potentially redundant processing. Many
algorithms have been proposed to alleviate this problem
without major success. However, a hardware solution is
emerging in the form of massively parallel systems.

A comprehensive introduction to deductive databases is
given by Gallaire, Minker and Nicolas [GALL84] who describe
the important role of mathematical logic in query

18

languages, handling null values, integrity constraints,
query optimization and database design.

2.2.3 Semantic Query Optimisation
This is a spinoff of deductive database research. The idea
being to use rules to help in optimization rather than
working on the query itself. It is analogous to the way
'old hands' in any organisation are able to say things like
'you won't find it there I' and, as might be expected, the
basic approach to date has been heuristic in nature.

Although the idea looks simple at first sight it has proved
complex to implement efficiently. However, the advantages
to be gained are striking as the following examples based
on Shenoy and Ozsoyoglu [SHEN89] illustrate.

Schema
Employee (Ssn, Name, Job, Sal)

cardinality = 36000
secondary index on Job

Constraint 1
"Only managers make over £30,0 00

Query 1
select employees with salary >= £40,000

Note: No index on employee.sal.
Index on employee.job.

Strategy

Regular RDBMS:- Table scan of Employee

Semantic:- Constraint condition indicates the
best access path is the secondary
index on employee.job to pick out

19

'manager' tuples and then scan
this subset for salary condition.
This is an example of semantic
index introduction.

As the number of managers is a small proportion of total
employees the response time for such a query would be
significantly improved. It could be argued, in the case of
such a trivial query, that a simple secondary index on
employee.sal would have much the same effect but what if a
second constraint was added along the following lines:

Constraint 2

Only Mr. Brauer can make over £60,000

The semantic query optimizer could now use this constraint
to zero in on this tuple in response to a query requesting
employees earning, say, £70,000.

Shenoy and Ozoyoglu summarise this mechanism in the
following terms:

"...dynamic and heuristic interaction of three
entities - schema, semantics and query..."

[SHEN89]

As expected the savings achieved increase with the size of
the data set as the optimization cost is fairly constant.
A recent study [MCMA92] evaluated the potential of semantic
query optimization on a public health database using ORACLE
and concluded that significant reductions in query times
were achievable. It has been argued [SHEK88] that this
optimization strategy will find its niche in the field of
Very Large Databases.

20

2.3 Distributed DBMS

"To someone with a new hammer everything looks like
a nail".

Anon

One of the lesser known innovations of the Saatchi and
Saatchi advertising empire was the term 'globalisation'.
They envisaged all products from hamburgers to consultancy
services being marketed McDonald's style - companies should
think globally not just multinationally.

This sort of evolution has profound implications for
database systems. A global enterprise would naturally hold
Customer databases in each of their local centres e.g. Hong
Kong, Milan and Sydney with most day-to-day access being
confined to staff employed in these centres. However, for
control and planning purposes, it will also be necessary to
interrogate several of the databases as a unit to get, say,
an age profile of the Customer base. One feature which a
Distributed Database Management System (DDBMS) must support
therefore, is location transparency. Of course, a
distributed database could equally be implemented as part
of an Office Information System (OIS) on one floor of an
office block. Stonebraker [STON88] has proposed that
meetings could be scheduled by intersecting the diaries on
individual's workstations if such personal databases formed
the nodes of a 'local area' distributed database.

Normal 'economies of scale' do not apply to computer
hardware. Upgrading a mainframe is now seen as
prohibitively expensive when there is an option of
offloading onto cheap desktop machines using the
client-server approach. However, client-server only shares
the processing load, leaving the DBMS still resident on a
backend mini or mainframe. Using distributed database
management as an enabling technology, work on spreading the

21

database itself onto workstations is well advanced e.g.
ORACLE on nCUBE.

Robert Epstein, who helped build the relational database
prototype 'Ingres' at Berkeley in the mid 1970's recently
made the striking observation that 99% of the world's data
is held outside of relational databases and that in ten
year's time this figure could be down to 90%. [EPST90] .
Stonebraker sees an opportunity here for heterogeneous
DDBMS. Users should be able to work with their
organisation's legacy and new databases through some
generic interface without having to be aware of whether
they are connecting to an Rdb or DB2 database or indeed
both at the same time.

Moving on to specifics, even an outline functional
specification for a DDBMS begins to reveal the practical
issues that need to be resolved and reconciled:

(1) Location Transparency:
Users should not have to supply location specific
information e.g. a node name, in queries against
remote data.

(2) Performance Transparency:
Performance should be independent of where the user
chooses to submit the query. This implies the
existence of some form of global optimization which
takes line speeds, processor speed, I/O speed into
consideration.

(3) Copy Transparency:
It should be possible to distribute copies of data
to all sites if required - this is to allow
continued service during site failure.

(4) Transaction Transparency:

22

The 'all or nothing' nature of transactions should
hold irrespective of whether a multi-site or single
site update is involved.

(5) Fragment Transparency:
For performance reasons, a single table may be
distributed across several machines e.g. the ORACLE

architecture referred to previously. This
distribution scheme turns what would normally be a
heavy query such as a table scan on a serial machine
into an ideal parallel processing task. A user
should be unaware of any fragmentation of the target
query object.

(6) Schema Change Transparency:
In a traditional DBMS a user only has to change one
catalog to modify the schema. This level of
simplicity must be retained in the distributed case.

(7) Local DBMS Transparency:
The distributed DBMS should not be affected in any
way by the nature of the local data managers at the
individual nodes.

Much progress has been made in the areas summarized above
and the emergence of mature DDBMS is on the horizon.
However, a question mark still hangs over the degree of
uptake of the offerings from the major vendors. My own
instinct is that the spin-off role of this technology in
taking advantage of loosely coupled multiprocessor
architectures at local sites for high availability and
performance will be of equal importance to the primary
objectives in relation to geographically dispersed
databases.

23

2.4 Object-Oriented DBMS
A rule of thumb in coping with complexity is to isolate
it into compartments which at least look simpler from the
outside. Object-oriented programming systems have
successfully used this strategy to achieve significant
real-world modelling power - the challenge now is to make
these objects persistent in an efficient and commercially
viable manner.

2.4.1 Background
An object-oriented database is a data repository where
complex objects are stored directly i.e. the physical
data model mirrors the logical schema. This implies that
the constructs and concepts of Object Orientated
Programing Systems (OOPS) are carried forward into
object-oriented database technology so a review of these
characteristics is appropriate.

An OBJECT is basically a complex variable but it can have
a CLASS and a STATE as well as the usual TYPE and VALUE.
Skarra and Zdonik [SKAR87] discuss the problem of
maintaining consistency between a set of persistent
objects and a set of type definitions that can change.
They argue that this can be resolved by the use of
version control on the types and the definition of
related error handlers which are version specific i.e.
designers are given the means to define the
correspondence between different type versions.

Relational database designs are full of surrogate keys
(Social Security Number, Payroll Number, Personnel File
Number can all be used to identifier a specific employee)
which are used to bind and track an entity across the
database schema. The weakness of this approach is that
it tends to confuse data values with identity. In an
Object-Oriented Database (OODB) this mechanism is no

24

longer necessary as objects are assigned unique
identifiers of which the user is never aware
([KHOS86,MAIE87]). Merging of OODBs naturally raises the
issue of identifier conflict - the simple procedure of
assigning a new set of identifiers to the imported data
is just one possible work-around.

Dayal et al [DAYA87] argue that the requirements for
modelling complex objects can be met by minor
enhancements to the DAPLEX data language [SHIP81] which
supports generic operations on entities, relationships
between entities and entity and relationship level
constraints.

CLASSES can also be simple (primitive) or complex. The
notion of a CLASS extends the idea of a datatype to
include the behaviour of any object defined on that
CLASS. The behaviour is captured as a set of operators
called METHODS which can be changed at will.

The purpose of a class is "so that each object need not
carry around its own methods"[MAIE87]. Once defined
in this way a method is applied to an object by way of a
MESSAGE which is like a procedure call which elicits a
SIGNAL from the object. In the introduction to a paper
describing the object-oriented data model 02, [LECL88],
Lecluse distinguishes between the terms 'type' and
'class'. The intensional notion 'type' provides a
blueprint (the 'class defining object' of Maier and Stein
[MAIE87]). The extensional notion 'class' describes the
set of all objects which can conform to the 'type' at a
given time.

Classes can have subclasses which inherit their
properties. Cardelli [CARD88] describes this as a
biology and taxonomy approach but argues that multiple
inheritance is necessary to describe real world class

25

hierarchies effectively. Implementing this property is,
however, much more difficult than straightforward single
inheritance. Snyder [SNYD86] examined the relationship
between inheritance and encapsulation developing a set of
requirements for full support of encapsulation with
inheritance. The problem he studied was the inherent
conflict between the concepts of strong encapsulation and
the information sharing between objects in a class
hierarchy. He looks upon inheritance as a 'contract
between a class and its children' - like any contract it
limits the scope of actions, in particular, changes to a
class.

2.4.2 The Zdonik/Maier Threshold and Reference Models
It can come as something of a surprise to find the
comedian Chevy Chase quoted in a paper, by Andrews and
Harris [ANDR87], on the question of impedance mismatch in
object-oriented systems, but the phrase "You're both
right, it's a dessert topping and a floor wax!" somehow
says it all. There is still a lot of confusion as to
what objects are, due in part to the way that the ideas
associated with objects have been developed by workers in
the diverse fields of programming languages, artificial
intelligence and, more recently, databases [KIM90].

In [ZDON90] Zdonik and Maier provide a useful framework
against which putative OODBMS can be evaluated - the
'Codd's Laws' of the object-oriented database world.
They first propose a 'Threshold Model' which is a set of
minimal requirements that every ODDBMS must have.
Building on this model they set down the capabilities of
a 'Reference Model' which is a yardstick for commercially
acceptable systems.

The Threshold Model

(i) An ODDBMS must provide database functionality.

26

(ii) Objects must have a unique and permanent identity
independent of value.

(iii) It must provide encapsulation and all abstract
objects should be defined on this basis.

(iv) It must support objects with complex state i.e. the
full state of an object is made up of it's local
state plus that due to inter-object references.

The Reference Model
The Reference Model builds on the Threshold Model's
foundations of object identity, encapsulation, complex
objects and standard database management utilities adding
the following features:

(i) Structural representation for objects
Rather than being limited to holding the state of an
object in a simple data structure it should be
possible to build up a compound representation for
those defined in terms of component objects (i.e.
defined by nested application of constructors) which
is somewhat analogous to the 'nested-dot' concept
used in GEM and Postgres ([ZANI83], [ROWE87])

(ii) Persistence by reachability
All objects, irrespective of their type, should be
permanently reachable through a distinguished root
object.

(iii) Typing of objects and variables
Every object knows its type and every variable and
argument in a method definition has a type. A
variable has effectively two types - it's declared
type and it's immediate type (the type of the object
that is it's current value). Static type checking at

27

run-time must ensure that a variable's immediate type
is a subtype of it's declared type. Messages must
also be checked to ensure that they are meaningful to
the target object.

(iv) The existence of three hierarchies
The model must support the following hierarchies:

a specification hierarchy of types
an implementation hierarchy of representations
and methods
a classification hierarchy of actual groups of
objects

(v) Polymorphism
The reaction of an object to a given message depends
on how the corresponding method is implemented. This
allows the same message to trigger off a
user-definable variety of object behaviours. This
feature must be provided.

(vi) Collections
Built-in types must be supported for aggregate objects
such as sets, lists and arrays. These greatly enhance
semantic modelling power.

(vii) Name Spaces
The model proposes database variables which can be
assigned a value in a database bind and then persist
for use in subsequent sessions. In relational systems
the only names that persist are base tables and views.
The presence of database variables supports a richer
set of query targets.

(viii) Queries and Indexes
The query language must be high level and amenable
to optimization. In relational systems queries

28

consist of well defined operators working on
relations which are simple tabular structures. In
OODBMS queries may involve both newly defined
operators and abstract structures resulting in a
whole new algebra. Apart from a well designed
object-orientated algebra two other factors are
important. For efficient optimization the query
optimizer must be 'trusted' to peel back the layers
built up by the process of encapsulation to become
aware of any storage structure details which it
could find useful. It must also be possible to
create indexes on collections.

(ix) Relationships
Single valued, multi-valued and symmetric named
relationships must be fully supported. This
emphasises the fundamental importance of relationships
in data modelling.

(x) Versions
The idea of a version set must be supported to hold
the history of an object. Previous versions can be
retrieved by moving a pointer over the members of the
version set.

2.4.3 Problems Facing OODBMS
Object-oriented database systems still lag far behind RDBMS
when it comes to implementation issues. Work aimed at
making up the shortfall is summarized below.

Query optimization
In the absence of a successful 'object algebra' and a
simple DML, direct use of defined methods presents another
level of indirection to the problem of query optimization.
People such as Manola and Dayal [MAN086] have been
addressing this issue with proposals for an 'object
algebra'. A hybrid approach has been suggested by Fishman

29

[FISH87] based on the IRIS project. He proposes an
object-oriented extension to SQL 'OSQL' together with a
relational storage manager, an achitecture which permits
the use of the standard relational algebra and query
optimization procedures against an object-oriented schema.

The query optimization problems stem from the notion of
encapsulation which is fundamental to the object-oriented
model - the optimizer needs to know about the detail masked
by the messages. In light of this the necessity for a
'trusted system component' is now accepted which is allowed
to see the internal workings of objects.

Storage Management
There is still a long way to go towards a mature storage
technology for OODBs. This is further complicated in the
distributed case where the object's methods must also be
replicated/updated across all sites to ensure consistent
local access [LYNG84],

Exploitation of Emerging Technologies
The use of parallel processing of queries in set-oriented
systems is now well established. However, it remains to be
seen if OODBs can successfully exploit this technology -
splitting method evaluation between processors may not
justify the scheduling overhead involved [ZDON90]. The use
of optical storage technology on the other hand will lend
itself to the idea of retaining all versions of objects (no
deletion semantics), an important facility in CAD
environment.

Finally, OODBs face a problem of cultural acceptance in
certain quarters. Stonebraker recalls the almost religious
fervour of the opposing camps in the COBOL/CODASYL Vs
RELATIONAL war of minds which culminated in the 'Great
Debate' at the ACM/SIGMOD Conference in Ann Arbor, Michigan
in 1975 -

30

"The debate was significant in that it highlighted
once again that neither camp could talk in terms the
other could understand".

[STON8 8]

Stonebraker himself is playing a leading role on the
relational side this time around and is largely determining
a strategy of moving away from a purist stance by making
some object-oriented beliefs part of a born-again
relational dogma.

31

2.5 Temporal Databases

"The Machiguenga verb system was complicated and
misleading, among other reasons because it readily
mixed up past and present. Just as the word for
'many' - tobaiti - was used to express any quantity
above four, 'now' also included at least today and
yesterday, and the present tense of verbs was
frequently used to recount events in the recent
past. It was as though to them only the future was
something clearly defined."

Mario Vargas Llosa, The Storyteller.

Temporal database systems are becoming increasingly
important as a means of handling versioning of data in
application areas such as Computer Aided Design. However,
the most striking feature proposed for temporal database
systems is the idea of update as succession rather than
replacement. Nothing is deleted but rather migrates to
less volatile storage - physical memory to magnetic disk to
optical disk. This is yet another example of
hardware-driven innovation in database technology. These
database systems are sometimes called historical databases
because recorded data is never deleted but is timestamped
with creation/deletion times [CLIF83]. The timestamping
enables these databases to handle queries like:

Has Jims salary ever risen?
Did Richard work in sales last year?
When was Paul hired?
Have Jim and Paul ever earned the same salary?
Will the average salary in Finance surpass X this
year?

Implementation
Implementing temporal database features using timestamps in
a relational database can be cumbersome as the folowing

32

example illustrates:

EMP Sal Start End
John 10K D2 D8
John 1 IK D8 D12
John 12K D12 NULL
Mary 15K D3 D6
Mary 15K D8 Dll
Mary 15K Dll D15

Now, assume that we want to record the fact that John was
not employed during [D4,D6] we find that this is not
recorded explicitly, so we need to insert two more tuples.

On top of this we have the fact that two time intervals
can be placed together in thirteen distinct ways which must
all be handled in some consistent way:

The result is that it is not always obvious how to handle
a query such as "retrieve all salaries during the interval
[D1,D2]".

Copeland and Maier [COPE84] describe extensions to
Smalltalk-80 to support temporal concepts. Data elements
are set rather than single valued with the binding between
an element name and its associated value indexed by time.

33

For example, using their notation, E!Salary@T would
represent an employee's salary when the database was in the
state current at time T. More specifically, the link
between an attribute and a given value begins at the
transaction time for the value, and ends when a new
value/transaction time pair becomes current.

Stonebraker [STON87a] outlines the design of the Postgres
storage system including time management features. The
Postgres DML 'postquel' provides a simple syntax for
queries on historical data:

retrieve (Emp.Salary) using EMP[T]
where Emp.Name = "Mike"

The state of the EMP relation at time T is the scope of the
query target. Although times are held as 32 bit unsigned
integers built-in conversion functions allow T to be
specified in a range of standard formats.

The Postgres storage system is designed to facilitate
versioning by storing an additional 8 fields in each
record. They store details of the lifetime of a record
from the commit time of the transaction which created it to
the commit time of the transaction which superceded it.
These values can be used for efficient validity checking
during query execution. The algorithm can be extended
without difficulty to deal with queries that request
records valid in the interval £T1. To] rather than valid at
time T.

Although Stonebraker does not explicitly include the
catalog tables in this discussion, it would be useful to be
able, for instance, to plot cardinalities against time over
various phases in the lifetime of a database. Used in
combination with alerters (rules whose actions are messages

34

rather than database updates) runaway table growth could
then be automatically highlighted for the attention of the
DBA.

Typical of more recent research is the paper-based work of
Jensen ([JENS91], [JENS92]) which, although without an
underlying theoretical formalism, suggests a way forward.
The approach proposed is to take the relational model and
extend it to handle temporal information calling it DM/T
(data model with time) in order to support the notion of a
transaction taking time to execute instead of being an
atomic event. In order to do this new relational operators
(UNIT, FOLD, UNFOLD, WHEN, etc) are proposed and described.

35

Chapter 3

Rules in Database Systems

In this chapter we review the key research results relating
to the incorporation of rules into database systems,
examine the syntax and semantics of the major prototype
implementations, and finish up with a look at some of the
implementation issues arising.

3.1 Background

It is important right from the start to clear up any
confusion which might exist as to the difference between
an expert system and a database management system that can
support rules.

As stated in [STON83], rule systems are nothing new in
Artificial Intelligence where they typically take the form
of a set of first order logic formulae. Stonebraker
emphases the 'inference engine' role of an expert system's
data manager i.e. its function is to see what rules can
fire at any given time and then proceed to process them.

In a DBMS the emphasis has traditionally been exclusively
on representation by pure data. The data manager's
function is to apply a search logic in response to data
requests expressed in a declarative language. Rules get

36

fired, not by an 'inference engine' but by database queries
(in the broad sense which includes inserts, updates and
deletions) against the database. What we are discussing is
a mechanism which provides guaranteed consistency between
rules and data [STON92].

Using rules in a DBMS holds the promise of turning a
database from a passive data repository into something
active.

Silberschatz [SILB91] lists triggering, data mining and
deduction as potential features. To be useful these should
be capable of supporting complex triggering of actions on
events in a controlled fashion. In addition to such
imperative rules he highlights the equally significant
potential of what he refers to as declarative rules ("if A
is true then B is true") which open up the possibility of
storing information without specific data. Indeed, he
highlights the handling of large numbers of such rules as
a major challenge for Next Generation Database Systems.

From a broader perspective these two classes of rules
should be viewed as part of a comprehensive integrity
maintenance system which is emerging as a standard
requirement for DBMS - data alone is not enough.

As to implementation, he makes three interesting
observations. Firstly, the rule processing cannot be

37

delegated to a separate sub-system such as an expert system
shell. These use a memory based approach which will not be
an option with large systems. In general terms, such
implementation considerations are tending to force the rule
manager and data manager roles together which is not a bad
thing as it is consistent with the goal of integration of
knowledge and data. Further, this also ties in with the
current trend towards 'normalising' business logic into the
database server and out of the application code where a
given 'rule' can have multiple and potentially inconsistent
occurrences. Stonebraker [STON83] points out that attaching
an inference engine to a data manager leads to the DBMS
becoming not only much larger and more complex, but one
which is attempting to reconcile two essentially different
sub-components. He proposed the more elegant approach of
extending the functionality of the data manager to cater
for rules.

Secondly, he mentions the problem of maintaining the
consistency of a rule set as new rules are added. The
possible de-stabilising effects need to be addressed.
Returning to the metaphor of normalising application logic
this concern is understandable in terms of the potential
'chaos' which could result if programmers were allowed to
fling new logic into an application without re-testing for
overall consistency off-line. Silberschatz foresees an
equivalent requirement for change control in light of the
extensive rule-sets likely to become commonplace and their

38

critical role in future systems. Thirdly, rather than
throwing away the obvious benefits of declarative
query languages, such as SQL, he favours extending the
concept as a language strategy for next-generation systems.

By way of illustrating the challenge facing the prototype
builders Widom and Finkelstein [WID089] list some of the
major questions that needed to be resolved:

"What causes a rule to be triggered? Is it a
database state, a transition from one state to
another, either, both?
If rules can be triggered by state transitions,
what exactly constitutes a transition? An
operation on a single tuple? A set-oriented
database update? A transaction?
When are rules executed? At any time? Only after
certain operations? Only at transaction
boundaries?
What happens if several rules are triggered at
the same time? Are all rules executed? If so, is
there an order? Is only one rule executed? If so,
how is it chosen?
What happens if execution of a rule causes
another rule to trigger? How does the new rule
interact with the other triggered rules? Can a
rule trigger itself?
If rules are not always executed as soon as they
are triggered, what environment is used when a
rule is finally executed?
If several rules are triggered simultaneously,
what happens if execution of one rule's action
negates another rule's condition? "

[WID089]

39

3.2 Rule Applications
The arrival of the Client-Server architecture has led to an
explosion in end-user computing. The problem is that the
responsibility for the maintenance of integrity which was
previously enforced by programmers in their application
code cannot simply be passed on to the end-users.
Consequently, integrity checking has had to be provided
more centrally, specifically by greatly enhancing the
degree to which it can be programmed into the database
server itself.

Aside from the support of simple referential constraints a
whole range of general integrity constraints is becoming
commonplace such as triggers, assertions and alerters. The
obvious advantage of such facilities over simply embedding
constraints in application code is in flexibility - the
rules only need to be specified in one place and can be
adjusted overnight, as it were, in response to changing
needs. This will free up staff resources currently tied
up in maintenance programming.

A frequent requirement in commercial applications is the
provision of running aggregates e.g. the year-to-date
expenditure from a budget subhead. Generally two options
are available. The first is to put in end of day routines
which tot up the necessary balances and store them in some
sort of summary table against which queries can be run.
With smaller databases it may be acceptable to allow users
to run such queries interactively against the raw data and
display the results. Both approaches have their draw­
backs .

Rules can be used to set up triggers that make it easy to
clock up such aggregates incrementally during the normal
processing of database queries. The following example,
using the syntax of the Ingres Knowledge Management
Extension [KMAN91] keeps a running total of the number of

40

employees that report to each manager in the context of the
following schema:

Manager(name,dept,no_of_employees)
Employee(ename,mgr,age,salary)

AFTER INSERT,UPDATE (mgr) of Employee
EXECUTE PROCEDURE p_check_mgr

(mname = NEW.mgr)
PROCEDURE p_check_mgr (mname char(20)) AS

BEGIN
UPDATE Manager SET no_of_employees =

no_of_employees + 1
WHERE name = :mname;
IF (iirowcount = 0) THEN

RAISE ERROR 1 'RE-Enter Manager7
END IF

END

The rule facilities which are becoming available in the
commercial product Ingres flow from on-going work with a
Next-Generation Database prototype called POSTGRES
([WENS88],[STON9 0a],[STON90b],[STON91],[STON92]) w h i c h
will be discussed in more detail in the following
sections.

However, an example like the above does not reveal the true
power and potential of rules which is to bring the event-
monitoring of real time systems into the realms of the
DBMS. To take a simple example, a stock control reorder
mechanism can be built into the database server by
specifying values for the three basic elements of a rule:

AFTER UPDATE (quantity) OF Stock
WHERE NEW.quantity < 100
EXECUTE PROCEDURE p_reorder_stock.

41

Moving on to the question of security, rules allow the DBA
to add two more mechanisms to the existing ability to
grant verb level privileges to users. The degree of
auditing that becomes possible using rules is limited only
by performance considerations. An example would be the
logging of all variation orders approved on capital
projects.

ON UPDATE (budget) OF Project
EXECUTE PROCEDURE p_log_changes

With the accompanying procedure definition:

PROCEDURE p_log_changes
BEGIN

INSERT old_budget, new_budget, whoby,
project, date

INTO Variation_log_table VALUES(...)
END

A DBA can easily restrict privileges such as updates of a
Salary table to specified users but this is revealed as
rather crude when compared to the ability to specify value-
based security controls like the following. Here we only
allow managers to update the salaries of employees who
report directly to them:

AFTER UPDATE (salary) OF Emp
EX ECUTE P R O C E D U R E p _ c h e c k _ o k

(man_no=NEW.man_no)
PROCEDURE p_check_ok (Man_no integer) AS

BEGIN
SELECT man_no
FROM Manager
WHERE

Manager.man_no = :man_no AND
M a n a g e r . n a m e =

dbmsinfo('username');

42

ENDIF
END

A more complex application is the solution of Tree Walking
type problems [KMAN91] such as 'Parts Explosion'.
Essentially, this involves implementing a tree search with
the root set at the part level that is to be exploded - the
rule is triggered by a query against this root which sets
off a (potentially recursive) call to a pre-defined
procedure that will retrieve all of the sub-parts.

The same ideas can easily be extended to Graph Traversal
problems as occur in transportation systems, project
management and general network type applications. The
approach taken is practical and involves selecting a
suitable method, say Dijkstra's Algorithm, and
implementing it directly with rules.

State Transition Diagrams offer another illustration. In
database applications, extensive programming is used to
enforce constraints such as that the status of an order has
a natural progression of states from 'approved' to 'picked'
to 'dispatched' etc. and that a particular firm may have
its own particular policies regarding exception to these.
Surprisingly, all of this code can be replaced by a rule
which puts an integrity check across these old and new
states combined with a simple trigger to link it to the
'Order' table.

So far we have been looking a rules in isolation. In
[STON90b] the assertion is made that all data management
applications are essentially three dimensional in nature
and merit a three dimensional implementation. The point
is made that the 'real world' must be modelled in terms of
data plus objects plus rules. The example of a newspaper
layout application is presented. Whereas a traditional
data manager could handle the costing and billing of

43

advertisers, an object manager is required to manipulate
pictures and other graphical components. The third
dimension is then supplied by the rule set which guides the
layout process itself e.g.

"... the ad copy for two major department
stores can never be on facing pages"

[S T C) N 9 0 b]

This approach is evident in the design philosophy of
POSTGRES.

Reference was made previously to the use of rules in a
deductive manner. This makes possible the derivation of
data which is not explicitly stored in the database. A
glimpse of how this could be useful is given in [ST0N91]
which presents an elegant solution to the problem of
keeping the salaries of two employees automatically
synchronised - the key concept is that there is actually
only ever one value in storage. Stonebraker & Kemnitz
propose the following Postquel [WENS88] syntax:

ON RETRIEVE TO Emp.salary WHERE
EMP.name = "JOE"
THEN DO INSTEAD RETRIEVE
(Emp.salary)
WHERE Emp.name = "FRED"

As can be seen the salary for employee 'JOE7 does not
need to be stored as a separate data item. This process
can, of course, involve a whole series of linked steps
depending on the needs of the particular application.

To complete the picture reference has to made to the
potential contribution of rules to the field of Semantic
Query Optimization ([SHEN89],[CHAK90],[GRANT92]). A recent
study [MCMA92] has shown that where response time

44

improvements occur over conventional methods that these
are very significant - up to 100% in cases where the
existence of a rule obviates the need for any table access
in response to a query. However, as mentioned in [SILB91],
where large numbers of rules are involved something
comparable to the RETE Match strategy [FORG82] will be
necessary in order to exploit rules in this way.

Finally, applying rules in distributed systems raises some
interesting issues. For performance reasons, asymmetrical
multiprocessor systems, where a database system is
implemented across multiple processors are receiving
attention as a cost-effective solution for very large
database applications. As rules are fired by triggers
attached to tables vendors will have to offer an efficient
mechanism for implementing these triggers when the tables
are striped over a multiplicity of separate nodes. Another
point in relation to peer to peer distributed systems such
as those implemented using Sybase data servers is that, to
take a simple example, a rule on database 'A' can have its
condition part dependent on database 7B7 and its action
part happen in database 7 C' all on different nodes.

3.3 Next-Generation Prototype Systems
The following sections draw heavily on published results
from the two main research vehicles in this area -
Starburst and POSTGRES.

The Starburst [HAAS90] project is being undertaken at IBM7s
Almaden Research Centre and has as its ultimate goal the
building of a highly extensible DBMS which can cater for
the non traditional requirements outlined in [SILB91].
The approach being taken is to "... explore extensibility
in every aspect of database management" [HAAS90] with such
features as complex objects, user-defined datatypes, main-
memory databases, parallelism in addition to support for

45

rules. The intention is to support everything from CAD/CAM
to office systems without compromising on the existing
strengths of traditional systems in the areas of
concurrency control, optimization, recovery and
authorization. There is to be no compromise on performance
either and a secondary goal of Starburst is to review and
enhance the best ideas put forward for building performance
systems and use these to tackle the Very Large Database
(VLDB) problem. It has been on-going since 1985 when
resources become available towards the end of the R*
distributed database project.

In providing support for production rules a new syntax and
semantics has been developed. The set-oriented nature of
the relational database DML has been carried forward into
the rules system. The approach is to implement forward
chaining triggers at set, rather than at record level. The
corresponding actions can of course involve sets of
updates. The syntax is an extension of standard SQL.

Starburst has several rule systems, a shortcoming
recognized by the research team, and the goal is to move
towards a unified rule processor. The intention is to
provide a supporting set of design utilities which would
make it easier for the DBA to avoid undesirable
interactions or redundancy between rules.

In contrast to Starburst, the POSTGRES project ([STC)N90b],
[ST0N91],[STON92]), also begun in 1985, is being built by
a group of 4 part-time students with a full-time team
leader who have nonetheless constructed a prototype
comprising of some 180,000 lines of C code. Work is based
in the University of California at Berkeley. In addition to
the DBMS, a front-end development environment called
PICASSO is being developed to exploit the full range of
features being built into POSTGRES. Some of these features
are already finding their way into the related commercial

46

DBMS ASK Ingres.

The project goal is to extend the relational data manager
to include object (bitmaps, icons, text and polygons) and
knowledge management. Knowledge management supports both
the enforcing of integrity constraints and the derivation
of data not explicitly stored in the database. The
eventual aim is to make available a DBMS which will enable
three dimensional applications i.e. the real world equals
data plus knowledge plus objects. The most remarkable
feature so far implemented is the storage manager which is
based on a 'replace as delete' mechanism making possible
temporal queries.

The evolution of POSTGRES is the result of two fundamental
design decisions. Firstly, all database access is from a
query language - POSTQUEL [WENS88]. Although a single
query language is used at database level the fact that a
DBMS usually sits in a multi-lingual environment was
recognized and the ability to call POSTGRES from many
different languages is envisaged. Secondly, the POSTGRES
data model is built using a small number of concepts just
as the relational model was. The concepts consist of
types, functions and inheritance which suggests that
POSTGRES can be considered either as object oriented or
extended relational depending on the chosen definition.

Turning to the rules system, not all of the implementation
decisions taken have proved to be successful. Building the
rules system with a single syntax, although POSTGRES uses
both query re-write and trigger mechanisms, has worked
well. However, after some years of development work,
Stonebraker [STON90b] admits that the rule system as
originally implemented was unnecessarily complicated. It
also failed to provide support for some expected
functionality such as updates on views and, as might be
expected from a prototype, the rule system still lacks

47

acceptable performance. Consequently, a 'version two' rule
system called PRSII is under development.

The general impression is one of a model which is
excessively complex and sophisticated - Stonebraker makes
the point that it has taken much longer to build than the
original relational prototypes. Conversely, it has taken
less than half the number of years for the benefits to be
reflected in commercial systems.

3.4 Syntax for Rule Specification
Production rules are of the form 'when X then do Y' . The
X part is generally referred to as the trigger, the Y part
the action to be performed when X holds
([WID089],[STON92]). The exact syntax found will depend on
the language used to implement the rules system, be it
extended SQL, as in Starburst, or Postquel [WENS88] as used
in POSTGRES. Further differences are introduced on
account of the range of special features or extensions that
occur in the two prototypes.

The Starburst syntax for rule actions is defined in terms
of the operation block. An operation block is any sequence
of SQL update, delete and insert primitives which together
go to make up a database transition (as distinct from a
transaction). The following syntax for an operation block
is given in [WID089] :

op_ block ::= sql_op; sql_op;...;sql_op

sql_op ::= update_op|delete_op|insert_op

update_op ::= update table
set columns = expressions
where predicate

48

delete_op ::= delete from table
where predicate

insert_op ::= insert into table
values <V1,V2,...,Vn>
|insert into table

(select_op)

The triggering of rules is specified in terms of pre­
defined operations on tables. This requires a syntax that
sets down both the operation and the target table.
Starburst uses the concept of a transition predicate eg.
an append to a table - more formally:

trans_pred ::= updated table
| deleted from table
inserted into table

The terms predicate, table and column have the same meaning
as in the standard SQL syntax for relational databases.

So far we have not considered conditional triggering of
rules. The syntax must support the addition of
qualifications to the trigger section. To accomplish this
a '.. where predicate...' clause can optionally be
included.

Putting it all together then gives a complete primary
syntax for the specification of production rules.

prod_rule ::= when trans_pred {Trigger}
where predicate {Condition}
then op_block {Action}

49

trans_pred ::= updated table
|deleted from table
|inserted into table

op_block sql_op; sql_op;... ;sql_op

sql_op update_op|delete_op|insert_op

update_op ::= update table
set columns = expressions
where predicate

delete_op delete from table
where predicate

insert_op ::= insert into table
values <V1,V2,...,Vn>
|insert into table

(select_op)

Standard SQL statements are always interpreted in terms of
the current state of the database against which they are
being run. Rule systems deal with state-transitions and
it becomes necessary to be able to refer to four different
tuple sets.

In an update statement the old values of the updated tuples
as well as the new values assigned by the update must be
accessible. The same applies to the removed values
referenced in a delete statement and the values appended by
an insert statement.

To accommodate these requirements reference to these tuple
sets needs to be added to the basic syntax. In Starburst

5 0

this achieved by the use of the keywords inserted, deleted
old updated and new updated which are placed before the
tablename specified in the rule's trigger clause.

This construct enables some very complex rules to be
defined on account of the ability to compare old and new
values in update statements but a simple example is
adequate to illustrate the syntax.

The following statement implements a cascade delete policy.
Here we want to enforce the rule that whenever a Department
is deleted that its assigned employees are also removed.

WHEN DELETED FROM Dept
THEN DELETE FROM Emp

WHERE dept_no IN
(SELECT dept_no FROM DELETED Dept)

This also illustrates the set-orientation of the syntax -
the same statement can cater for both single tuple and
multiple tuple deletions.

The syntax used in POSTGRES differs not only for the
trivial reason that it is QUEL rather than SQL based but
because it reflects the presence of many novel ideas. For
a start, there are three categories of rule in POSTGRES -
always, once, and never rules [WENS88].

'Once' rules are designed to fire when a qualification
predicate attached to the trigger becomes true. After the
rule fires it is automatically deleted.

The POSTGRES 'never' rule category can be view as access
control statements implemented as rules. The term is never
is added to the rule definition syntax as shown by an
example from [WENS88]. This rule refuses access by the

51

user 'Spyros' to salary details of first floor department
employees.

define rule Y is never
retrieve (emp.salary)
where emp.dept = dept.dname
and dept.floor = 1
and userO = "Spyros"

Most rules will fall into the category of standard rules
which are classified as always rules in POSTGRES.

The full syntax for assigning a rule to a class has the
following structure.

define rule rule_name is always|once|never
query
[priority = number]

The syntax provides for the optional specification of
a priority for a rule in the range 0 (default value) to
15. These values can be used in conflict resolution.

Within each category the individual rules are specified
using the following compact syntax.

on append|retrieve|replace|delete to databaseobject
[where expression]
then do [instead] expression

Put more simply, all rules are of the form 'on event do
action'. In [STON92] all of the possible combinations
of such events and actions are explored yielding four
variations in all as both events and actions are database
operations which can only be retrieve or update (in the

52

broad sense) statements. The 'database_object' can be a
view as well as a base table or attribute.

Update/Update rules produce forward chaining, a mechanism
supported in both POSTGRES and Starburst as well as the
commercial products ASK Ingres and Sybase. Because such
rules have an update in both the trigger and the action it
becomes possible to set off a chain reaction of updates
involving any number of rules. Stonebraker's familiar
salary propagation example is a rule of this type.

on replace to Emp.salary where
Emp.name = "Joe"

then do replace Emp (salary = new.salary) where
Emp.name = "Sam"

Update/Retrieve rules drive alerters. By defining such a
rule a user is saying that if the specified event occurs
'then I want to know about it'. Stonebraker [STON92] notes
that, so far, only POSTGRES and HiPAC support this feature.

Although a rule of the form Retrieve/Retrieve might
initially appear fairly innocuous, this construct turns out
to be very powerful indeed. By inserting the keyword
instead into the do clause backward chaining becomes
possible.

This presents another strategy for solving the Joe/Sam
problem. Rather than explicitly storing the two salaries
and keeping them in step POSTGRES stores a single value and
a policy.

on retrieve to EMP.salary where
EMP.name = "Sam"

then do instead retrieve (EMP.salary) where
EMP.name = "Joe"

53

The presence of a backward chaining mechanism raises the
issue of recursion and the marketers of the POSTGRES
commercial offspring Ingres Knowledge Manager have been
quick to seize upon such a differentiating factor.

Recursion allows a single rule to perform tasks such as
extracting an employee's chain of command from a personnel
database. In the context of POSTGRES syntax the practical
implication is that specifying the same attribute name in
the action as well as the event clause of a rule may lead
to recursion.

So far only the POSTGRES rules system supports backward as
well as forward chaining.

The final category provides a useful means of implementing
an audit trail feature - on retrieve .. do update.
Stonebraker [STON92] offers the following example to
illustrate how this might be used.

on retrieve to EMP.salary
then do append to AUDIT

(name = current.name,
salary = current.salary,
user = user())

The usefulness of rules systems in authorization checking
has also been studied in the Starburst prototype and is
discussed in [WID089],

As can be seen with both prototypes, the syntax is
continuously evolving to incorporate new features. It is
interesting to note that the POSTGRES derived 'Knowledge
Manager' facility now available with ASK Ingres allows
rules to be specified in SQL.

54

3.5 Rule Execution Semantics
We now focus on the way in which rules behave and interact
in a database rules system. Although this has yet to
become a mature research area it is possible to summarize
the key issues involved.

While rules are activated by database operations the
designer still has the discretion to decide when the rules
system should be allowed in, leading in turn to a variety
of different end-states. For example POSTGRES allows free
interleaving between the data and rules systems so that
rule activation is exactly as implied by the syntax -
immediate activation. However, this means that rules work
at a record level rather than at set level as in Starburst.
This difference is also reflected in ASK Ingres (POSTGRES
approach) and Sybase (Starburst approach). An intermediate
strategy which enjoys some of the benefits of the set-
oriented approach is to allow in the rule manager between
commands. For example, if a command updated all tuples
in a table the rules system would await this update and
then fire once rather than as each tuple was touched by the
update.

Turning to the approach used in Starburst we find that the
separation is at transaction level. The semantics of the
Starburst rules system can be visualised in terms of a
state-transition diagram with the transitions corresponding
to committed database transactions. These state
transitions provide the triggers.

In Starburst "..rules are considered and executed just
before considering and executing each externally-generated
transaction" [WID089]. Widom and Finkelstein use the word
'externally-generated' to distinguish normal database
transactions from the rule system database transactions
which may result from rule firing. Irrespective of their
origin, however, all transactions are treated in the same

55

way - a state transition which produces an effect and a new
state. This implies that rules can in turn trigger other
rules producing forward chaining in Starburst.

A final option is to de-couple data and rule transactions
in which case the rules system will not automatically kick
in at the end of a transaction as just described but will
catch up later. This mechanism has been studied in HiPAC
[MCCA89].

In [STON92], Stonebraker points to a specific security
implication of this decoupling. He takes the example of a
rule-implemented audit trail to log user accesses to the
salary attribute of an employee table. Using the same
transaction for both data and rule operations effectively
allows users to cover their tracks by aborting the
transaction after accessing the salary thus leaving no
trace in the audit trail. It has to be said that this is
really a special case as it would be unacceptable to
allow a rule triggered off by an aborted transaction to
career on across the database. If a separate transaction
strategy is to be adopted then it is vital to have
effective co-ordination between the data and rule systems
to abort rules where necessary.

So far, it has been implied that semantic differences exist
only between different implementations but this is not
entirely true. It was mentioned previously that POSTGRES
supports both forward and backward chaining rules. In both
cases there is a determining value. In backward chaining
this has to be the value which is actually stored in the
database as distinct from the value(s) that may be derived
from it. In forward chaining it is the value cited in the
rule trigger. If its value is deleted and the dependent
attribute then examined a dichotomy is observed. In the
forward chaining case the value found will be the last one
stored as a result of the rule. However, with backward

56

chaining, the rule will return the current value of the
determining value which will be null.

Finally, what happens when several rules are enabled at the
same time. Even with only two rules the possible semantic
variations begin to mount up.

One solution would be to fire only one of the rules as is
the case in POSTGRES if the exception syntax is used
instead of the original priority mechanism.

A strict ordering could be imposed as in the case of
Starburst where a before and after syntax is available.
Alternatively a laisser faire approach could be adopted
letting all of the enabled rules fire in a random manner.
Once again, the effects will differ between the three
cases.

The designers of Starburst also considered other options
such as 'least recently triggered' and 'most recently
triggered' along with total, partial and weighted ordering.
They concluded that although the only way to guarantee
deterministic behaviour was to use total ordering that this
meant the loss of the flexibility to add rules
independently.

Widom and Finkelstein [WID089] consider flexibility to be
a vital design objective for rule systems.

"...we might want additional flexibility in the time
at which rules are triggered and in the correspondence
between rules and transactions... For example, we
might want the ability to specify that a rule's action
should be executed in a separate transaction. Also,
in some cases, it might be advantageous to execute
several externally-generated transactions before
considering triggered rules, or , conversely, we might
prefer to consider rules earlier than the commit
point of an externally-generated transaction."

57

[WID089]

Overall, the literature reflects an uneasy sense of
critical mass which could precipitate an uncontrollable
semantic explosion at any moment. Even Stonebraker is
using language such as '.. semantic morass..' and '..too
complex for any database administrator to understand..'
which re-enforce the impression of moving away from the
mature and well understood environment of the traditional
relational DBMS. Characteristically, in [ST0N92], he
counters this by making two incisive proposals to
researchers. The simplest way forward, he contends, would
be to use a scoping approach. Simplify the problem by
rejecting, as semantically unworkable, certain
complicating cases. His second suggestion, another type of
abstraction, would be to come up with a higher level
language that would provide a form of insulation analogous
to the abstraction of the intricacies of the base machine
provided by an operating system.

3.6 Implementation of Rules Systems
The primary implementation problem is that the DBMS is now
being asked to take on the workload associated with a rule
base on top of existing commitments. There is also the
very practical constraint that in next generation database
systems the rule base will, most probably, need to held on
disk rather than main memory due to its size.

In light of this the prototype builders have examined a
succession of solutions. Stonebraker gives an up to date
evaluation of three such schemes in [STON92], brute force,
discrimination network and marking.

Brute force involves keeping a list of every defined rule.
When a database operation occurs this event is matched
against the condition part of each of the rules. Although
simple to implement, this strategy proves to be too slow
once the number of rules begins to grow. The list needs to

58

be structured so as to enable faster access.

Discrimination networks have been studied for some time by
Artificial Intelligence researchers notably by Forgy
[FORG82]. Nonetheless, his Rete Match Algorithm assumes
that all of the rules are in memory. As mentioned at the
outset this would be unsuitable for very large databases.

A third technique called marking has been adopted in the
POSTGRES prototype. Here no lists are kept but instead
each rule is 'processed' against the database and every
record which is touched by the qualification clause is
identified. I suspect that the adoption of this mechanism
to some extent accounts for the record level activation of
rules favoured in POSTGRES as opposed to the set-level
emphasis of Starburst.

Records are marked with identifiers for the rules to be
triggered. This requires more storage space but obviates
the need to perform any rule search at run time.
Stonebraker recognizes the problems inherent in keeping the
marking up to date as updates are made to the database.
For example, if a rule's scope applied to employees with
salaries less than £20,000 and, say, Jones got a pay rise
then his record would need to undergo marking adjustment.
Nevertheless, this is nothing totally new as the marking
can be considered as just another kind of index on the
table with an inevitable but acceptable maintenance
overhead.

For the implementation of backward chaining rules POSTGRES
employs a technique called query rewrite. This entails
fleshing out the user command with the logic of the
relevant rules. This is analogous to how query
modification is currently used to implement user privileges
in relational database systems. In POSTGRES, this involves
running the do instead clause of the rule. As hinted at in

59

regard to user privileges, guery rewrite does not have to
be confined to the implementation of backward chaining
rules and an evaluation of the pros and cons of this
technigue can be found in [STC)N90b]. An indication of the
alternative proposals evaluated, particularly from a
performance standpoint can be judged from [STON86].

Query rewrite is also used in Starburst. Perhaps a certain
convergence is to be expected between the two prototypes
when they come under the harsh light of the performance
benchmark arena. As Haas et al., in a review of the
Starburst prototype, put it "... these problems are not
peculiar to our application but are in fact generic to all
rule systems." [HAAS90].

As previously indicated Starburst actually has several rule
systems with separate rule processors. The various
features implemented, such as the use of prioritized
gueues are outlined in [HAAS90]. This 'multiple rule
processor' approach tends to give an erroneous impression
of a lack of focus in Starburst but, it is, after all, a
research vehicle and building several rule processors in
different ways increases the potential for generating
efficient solutions. In ways, both POSTGRES and Starburst
are at a stage of development similar to the early
relational prototypes when people accepted that they liked
how they looked but now wanted to see them run. The
solution may come in the form of a hardware driven solution
such as parallelism. Indeed, some research into the
exploitation of such technology for parallel rule
processing has already been conducted eg. [ISHI91].

60

We now have our starting point, a framework for exploring
what happens when we bring time into the picture, and in
the next chapter we will move on to consider the potential
of temporal rules and the guestion of how they might be
specified to a DBMS.

61

Chapter 4
A Working Syntax for Temporal Rules

We begin this chapter with a brief look at some of the
opportunities which the introduction of a time dimension to
database rules presents. These will be elaborated upon in
later chapters when specific application domains are
discussed in detail. We go on to present a working syntax
for the examination of time-enabled database rules.

4.1 Motivation

As will become clear, the simple act of bringing time to
bear on what we have said so far regarding database rules
opens the door to a interesting range of possibilities.

We will see how cyclical rule firing enables batch jobs to
be specified at database rather than operating system level;
how time-based alerters can be used to implement scheduled
reviews, deadline notification and general timing
constraints; how deferred rule actions support the roll-out
of a series of procedures over time e.g. reminders of
increasing severity, enforcement or compliance with
regulations by specific dates; how database rules are
enabled to take part in workflow monitoring - checking
output/progress at regular intervals; time-based rule
enabling - rule lifetimes, rule dormant/active periods;
time-specific processing - rules fired by specific dates

62

such as retirement dates or implementation dates for new tax
rates.

On a more specialised level, temporal rules also present the
possibility of providing sophisticated tools such as 7DBA
Advisor' applications. Examples would be the automated
testing and logging of response-time figures - rules as
continuous benchmarks; monitoring table growth by way of
rules defined on the catalog (a temporal rule would fire,
say, every hour and check the rate of table growth) and
support for real time (automated) performance tuning.

Finally, although some commercial DBMS can already detect
run-away gueries and stop them, a more ambitious idea might
be to use rules to attach specific time-outs to updates that
not only aborted the update but re-submitted it later at a
less-busy time.

The syntactic enhancements called for to effectively
deliver the kind of functionality that we have touched on
above is the subject of the remainder of this chapter.

63

4.2 Modified Syntax for Temporal Extensions

In this section we set out the changes in syntax reguired
to support the temporal extensions, define each of the new
terms introduced and explain their usage by way of examples.

The complete extended syntax is as follows:

DEFINE RULE IS ALWAYS|ONCE|NEVER|TEMPORAL
[,CYCLE=time interval,LIMIT = max number of

cycles (default = 00)]
[,TIMES=time range|specific times]
[,DAYSOFWEEK= days]
[,DATES = date range|specific dates]
[,LIFETIME = start, finish]

ON guery|OCCURRENCE|OCCURRENCE AND query|
OCCURRENCE OR query

[WHERE condition]
[incidence = n out of m]

DO action
atime (default = now)

64

CYCLE

CYCLE is the time interval between activations of a
recurrent rule where the firing is on a regular time basis.

[, CYCLE = time interval]

time interval
The parameter 'time interval' is expressed in terms of

months:days:hours:minutes:seconds

Example:

DEFINE RULE IS TEMPORAL, CYCLE = 01:00:00

ON OCCURRENCE

DO
DELETE FROM Pending
WHERE Pending.closed = 'Y'

This rule does garbage collection on a table of pending
reguests by clearing out 'closed' items every hour.

65

LIMIT
LIMIT is the number of cyclic recurrences defined for a
rule. It is one method of specifying a lifetime for a rule.

[, LIMIT = max number of cycles]

max number of cycles
The parameter 'max number of cycles' is an integer value
representing the number of cyclic recurrences which the rule
is allocated. If no LIMIT is defined then the default value
is infinity ie. the rule will continue to recur until it is
deleted.

Example:

DEFINE RULE IS TEMPORAL, CYCLE = 01:00:00, LIMIT = 5
ON OCCURRENCE
DO

SELECT count(*) FROM Pending
WHERE Pending.closed != 'Y'

Such a rule might be defined by a supervisor to monitor how
staff are progressing with a build-up of reguests. The
supervisor wants to be notified with an hourly count of the
outstanding items for the duration of the following 5 hour

66

period.

TIMES
TIMES specifies either an effective time range for cyclic
rules or explicit times at which to fire for other rules.

[, TIMES = time range|specific times]

time range
The parameter 'time range' is an interval or series of
intervals during which cyclic firing of a rule is enabled.

Example 1 :

DEFINE RULE IS TEMPORAL, CYCLE = 01:00:00,
TIMES = 09:00 - 17:00

ON OCCURRENCE

DO
SELECT count(*) FROM Pending
WHERE Pending.closed t= 'Y'

This example is a modification of the previous rule which

67

now runs an unlimited number of times but is only enabled
during normal business hours.

specific times
The parameter 'specific times' allows the specification of
one or more explicit times which will serve as a trigger for
non-cyclic rules.

Example 2:

DEFINE RULE IS TEMPORAL
TIMES = 09:00;17:00

ON OCCURRENCE

DO
SELECT etime, count(*) FROM Pending
WHERE Pending.closed 1= 'Y'

This rule takes an opening and closing balance for the day
of reguests outstanding. The special variable etime captures
the date and time of the rule triggering event.

68

DAYSOFWEEK

is enabled.

[, DAYSOFWEEK = days]

days
The parameter 'days' is a list of day identifiers.

Example :

DEFINE RULE IS TEMPORAL, CYCLE = 01:00:00,
TIMES = 09:00 - 17:00
DAYSOFWEEK = Mo;Tu;We;Th;Fr

ON OCCURRENCE

DO
SELECT count(*) FROM Pending
WHERE Pending.closed != 'Y'

This example shows the rule enabled during normal business
hours from Monday to Friday only.

DATES
DATES specifies either an effective date range for cyclic
rules or explicit times at which to fire for other rules.

DAYSOFWEEK specifies the days of the weeks on which the rule

69

[, DATES = date range|specific dates]

date range
The parameter 'date range' is a date interval or series of
intervals during which cyclic firing of a rule is enabled.

Example 1:

DEFINE RULE IS TEMPORAL, CYCLE = 01:00:00,
DATES != ('01-Aug' - '15-Aug')

ON OCCURRENCE
DO

SELECT count(*) FROM Pending
WHERE Pending.closed != 'Y'

This rule suspends the running of the hourly workload check
for the duration of the summer plant closure. This example
also indicates the potential for building real-time process
control applications from a collection of such rules.

specific dates
The parameter 'specific dates' allows the specification of
one or more explicit dates which will serve as a trigger for
non-cyclic rules. However, if no year is specified they

70

become implicitly cyclic with a time interval of ' 1 year'.

Example 2:

DEFINE RULE IS TEMPORAL
DATES = '01 Jan'

ON OCCURRENCE

DO
{New Year Routine}

This example shows a rule driven implementation of a 'New
Year Routine'.

Example 3:

DEFINE RULE IS TEMPORAL
DATES = '01 Jan 1997'

ON OCCURRENCE

DO
SELECT count(*) FROM PC_Inventory
WHERE Anti_Glare_Compliance 1= 'Y'

71

This example shows a rule which will re-awaken when the EC
transition period for compliance with the directive on the
provision of anti-glare screens to employees expires. The
value returned by count(*) should be zero when the rule
fires.

LIFETIME
LIFETIME specifies the timespan during which the rule is in
force.

[, LIFETIME = (start, finish)]

start, finish
The parameters 'start' and 'finish' specify the date on
which the rule is to come into force and the date when it
expires respectively. The default value for 'start' is now
and for finish is infinity.

Example :

DEFINE RULE IS TEMPORAL, LIFETIME = ('01-Jan-1993',-)

ON OCCURRENCE AND INSERT INTO Contract

72

DO
{Single European Market Query}

This example shows a rule which remains dormant until a
scheduled statutory date. Perhaps a rule might exist to
enforce a competition directive which comes into force from
that date onwards. The boolean combination in the event
clause is discussed later.

WHERE CLAUSE
The WHERE clause allows the specification of an optional
condition on the rule trigger as in the traditional syntax.
However, for recurrent rules additional conditional
statements can be used. We may wish to define an action
threshold - only fire the rule if the condition is
satisfied on a specified percentage of evaluations [RMON92] .

[,incidence = n out of m]

'n' is the threshold number of evaluations to true

'm' is the sample size

73

For instance, we could test for the size of a transaction
table every 10 mins and take an appropriate action if it
were empty more than 9 0% of the time.

DEFERRED ACTION
The existing syntax for rules does not support deferred or
scheduled performance of the rule action(s).

DO action
atime (default = now)

atime
No value need be specified if the action is to be performed
immediately . The extended syntax can also support a single
action at specific 'atime' or multiple actions at multiple
'atimes' . In the latter case these can be specified in terms
of the time associated with the triggering event eg. etime
+ '3 months', etime + '6 months'. Thus, a series of actions
can be scheduled to occur over time.

Boolean Combination of Triggering Events
Rules fire when their defined triggering event evaluates to
true. This, as the syntax suggests, has implications for
the specification of rules.

74

ON query|OCCURRENCE|OCCURRENCE AND query|
OCCURRENCE OR query

ON query
This is the standard syntax used in traditional rule
definition. Rules are triggered by query events against
specific database objects eg. 'ON update to
Employee.salary...' .

ON OCCURRENCE
In this case the rule will fire immediately on the pre­
defined time based event. An example would be a rule
defined to fire every night at 11.30 pm to kick off an end
of day update.

ON OCCURRENCE AND query
Here the rule will be enabled by the time based event but
will not fire unless the 'query' clause becomes true. An
example use would be putting a time frame on the simple 'ON
update of Employee. salary' rule mentioned earlier. The rule
is enabled in the time frame but will not actually fire
unless the guery event occurs as well.

And finally,
ON OCCURRENCE OR query

75

Such rules will fire on whichever event happens first.

In the next chapter we will explore the semantics of the
syntax defined above by attempting to apply it in two
application areas which are rich in temporal rules. As part
of this process we will evolve an appropriate formalism for
the documentation of such rules.

76

Chapter 5
An Operational Semantics for

Temporal Rules

In this chapter we will explore the semantics of temporal
database rules by way of an empirical approach. Two example
domains are used - Personnel Management and Programme
Scheduling. In each case a graphical schema is presented
followed by a mapping into the temporal syntax.

The chapter begins with a discussion of the formalism chosen
for specifying the schema - OSA (Object-Oriented Systems
Analysis) which supports time-based triggers and
constraints. The suitability of this methodology owes much
to its object-oriented basis. As will be seen, for
instance, in the Personnel Management example the database
rules can be thought of as being defined for the Class
'Employee' - logically part of the methods for this Class.
When a new employee is hired the employee object identifier
('employee #') is used to instantiate a rule-set for this
new employee from the 'Employee' Class rule templates.

5.1 Graphical Representation of Temporal Rules

In order to explore and illustrate the use of temporal
database rules a formalism supporting the semantics of
event-driven actions was reguired. A methodology called OSA
(Object-Oriented Systems Analysis) [EMBL92] was selected.

77

In particular, the adapted state-net diagrams which are
employed in OSA to capture the details of object behaviour
(including time-based triggers and real-time constraints)
proved an efficient mechanism for the identification and
subsequent specification of temporal rules. OSA is
semantically more powerful than the classical approaches to
systems analysis of DeMarco and Gane ([DEMA7 9];[GANE7 9]) and
is more implementation independent than Coad and Yourdon's
00A (Object Oriented Analysis) methodology [COAD90].

If a data-flow diagram (DFD) is examined it is apparent that
any of the processes documented will contain elements of the
behaviour of a variety of the objects in the application
domain. The emphasis in OSA is on taking the objects
themselves as the starting point and building a
comprehensive standalone description of the properties and
behaviour of each.

The benefits of this approach include the resultant direct
correspondence between real world objects and the analysis
documentation produced to describe them; a concentration on
the 'what' rather than on the 'how' during the analysis
stage and the increased semantic modelling power that comes
with support for aggregation, generalisation and
classification.

The basis of OSA then, is the compact representation of
object classes; relationships between object classes;

78

object behaviour and object interactions. The starting
point is the object class - represented by a rectangle.

A labelled line connecting two object class rectangles
denotes the relationship-set between them. The relationship
may be simple such as 'ownership7 between a person and a
consumer product but OSA is egually comfortable with 7 Is A 7
(represented by a triangle) and 7 Is Part Of7 (shown as a
dark triangle) relationships. These four symbols
(rectangle, triangle, dark triangle and connecting line)
are combined in the first category of diagram used in the
OSA formalism, the Object Relationship Model (ORM). A
partial ORM for the Personnel example is given in Figure 1
which illustrates the ease with which Generalisation/
Specialisation, Inheritance and Aggregation can be
specified in OSA.

The second type of diagram available to the analyst using
OSA is the Object Interaction Model which captures the
interplay between different objects in the system. As
before, the objects themselves are represented by
rectangles. A single new symbol is introduced - the zigzag
line - to represent the interaction. For instance, a
manager putting work in a secretary's in-basket is an object
interaction. The manager puts the work in the in-basket
which the secretary removes from time to time. What the
object interaction model does not tell us is what triggers
the secretary to remove items from the in-basket in the

79

first place or how long the manager can wait for this to
happen. To answer such guestion reguires some form of
behaviour modelling and this brings us to the third element
of OSA called the Object Behaviour Model which uses three
basic concepts - states, triggers and actions, the very
language of database rules.

80

d
e

fi
n

e
s

b

a
s

ic

Category Cod«

Cosi Centre

works
Description

Address Phone

Job ApplicantEmployeeG rade

Admin.

Retired
Employee

Serving
Employee

PensionSalary

is
allowed

Special Duly
Allowance

Shift
AllowanceBasie

Status

O n
P ro b a tio nActing Suspended

SpecialAnnual

PARTIAL ORM FOR PERSONNEL DOMAIN

Figure 1.

81

5.2 The OS A Object Behaviour Model

The behaviour of an object has three dimensions
(a) the states which it can assume
(b) the conditions which cause it to change state
(c) the actions associated with the object in these

states or in changing between states.

In OSA a state-net is drawn for each object class. The
rectangle representing the object class is exploded in the
state-net diagram to reveal the detail within. States are
represented by rectangles with rounded corners,transitions
are shown as partitioned rectangles with the trigger above
the line and the action(s) below. The transition paths are
represented by directed arcs. Importantly, real-time
constraints on the object's behaviour can be added to the
basic state-net.

Building a state-net begins with consideration of the valid
states which an object can exhibit in the target system.
For instance, a sales order would have states such as 'open'
, 'filled' and 'invoiced'. The next step is to look at how
an object moves in and out of these states, more
specifically, what events trigger these transitions. For
instance, the event of raising an invoice triggers the
transition of an order from 'filled' to 'invoiced'.

82

OSA recognizes two types of actions: noninterruptible and
interruptible. The former are atomic in nature - they
either complete or rollback whereas the latter category can
be suspended and resumed as reguired. Noninterruptible
actions are associated with transitions while interruptible
actions relate to states - indeed the state itself may
represent the continuous performance of some action which
is interrupted and resumed as the object leaves and returns
to that state. Object concurrency, both interobject and
intraobject, is supported - not alone can the different
states be occupied by any number of class instances at the
same time but a given object can be in more than one state
at any instant, for example, speaking on the phone and
opening in-coming mail.

The firing of transitions is far from automatic. The
trigger must first be enabled by its designated prior state.
Additional conditions may also need to be satisfied and
indeed a trigger may be viewed as a boolean expression which
evaluates to true or false. This echoes the trigger and
condition syntax used for specifying database rules.

As will be seen in the Employee state-net some additional
conventions are required. The initial state of the object
is shown as a solid line rather than a round-cornered
rectangle. An event monitor @hire is used to detect the
arrival of a new employee in the system. This has the
subseguent state of 'On Probation' but no prior state -

83

initial transitions are always enabled. Terminal states can
be recognized by the absence of any arrow leaving that
state.

One final state-net symbol remains to be discussed.
Analogous to the idea of levelling in data flow diagrams OSA
supports 'states-within-states'. It is possible for an
object to enter a new state without actually leaving its
current one. This layering of states is shown as an extra
arc outside the symbol representing the enabling state.

5.3 Modelling Real-Time Constraints

Once the state-net has been drawn timing constraints can be
added to capture any important temporal aspects of the
object's behaviour. Timing constraints can be specified for
triggers, actions, states and the duration of state-
transition paths.

In each case the constraint is specified using an expression
enclosed in braces ({}) which is associated with the
appropriate symbol on the state-net. For instance, the
real-time constraint {<=1 hour} might appear beside the 'on
lunch-break' state of an employee. Similarly, a constraint
of {<= 15 minutes} might be specified for the action of
filling a sales order.

Constraints on triggers specify the acceptable 'response

84

time' between the firing of the trigger and the commencement
of the accompanying transition. Finally, a constraint can
be defined over the duration of the transition as a whole
covering the time to respond plus the time to leave the old
state, perform all of the transition actions and enter the
new state.

The role of this constraint mechanism in temporal rule
specification is further explored in the examples which
follow.

85

EMPLOYEE ni
@hire {<3 days to

p rocess}

PARTIAL OSA STATE-NET FOR THE PERSONNEL DO M A IN

Figure 2.

86

5.4 Worked Examples

Two case studies are used viz. Personnel Management and
Programme Scheduling. In each case an OSA state-net is
presented (Figures 2 and 3), and the accompanying temporal
rules defined.

Personnel Management
The rules are categorized into transition-centred rules
(which are basically time-based triggers) and state-centred
rules which consist of timing constraints. We will begin
by looking at the transitions in Figure 2 .

Transition Tl]
This is a timing constraint on a trigger which states that
the specified action must commence within a specified time.
In this specific instance, the constraint states that the
induction procedure should commence within three days of
hiring a new employee. The following rule checks three days
after the hire date that the induction procedure has indeed
commenced for a new employee. The first step might be to
place him/her on the payroll.

DEFINE RULE check_induction_init IS TEMPORAL
ON Append to Employee
DO exec proc check_induction_begun(emp#)

atime = etime + '3 days7

87

An employee on probation has a review every six months for
a period of two years [rule (a)]. There is also an agreed
maximum time of two weeks in completing the review on foot
of a Union agreement [rule (b)].

Rule (â
DEFINE RULE probation_review IS TEMPORAL

CYCLE = '6 months'
LIMIT = '4 cycles'

ON OCCURRENCE
DO INSERT INTO Pending_review
VALUES (emp#, 'Due since ',date(etime))

Rule (b̂
DEFINE RULE Union_Agreement IS TEMPORAL
ON Append to 'Pending_Review'
DO exec proc check_review_complete(employee#)

atime = etime + '2 weeks'

Transition [4]
Employees on a salary scale are due an increment on their
designated increment date if they are not already on the
maximum point of their pay scale and if their work is
satisfactory.

Transition \2]

88

DEFINE RULE increment_rule IS TEMPORAL
DATES = employee.increment_date

ON OCCURRENCE
WHERE {Not on max pay and satisfactory}
DO exec proc pay_rise(emp#)

This shows the way in which an object Class rule template
can instantiate an object specific rule by filling in the
blanks such as the increment date above when a new employee
is created. In this way the rules can be viewed as an
extension of the methods for the Class with the triggering
dates specific to each employee being bound to the relevant
Class rule.

Transition r51
There are two temporal rules involved here:
(a) An employee must retire at 65 years of age.
(b) The procedures involved, such as putting the employee

on pension must begin within a week of the retirement
date.

Rule (a)
DEFINE RULE retirementrule IS TEMPORAL

DATES = employee,retire_date
ON OCCURRENCE
DO exec proc retirement_procedure(emp#)

89

Alternatively, if the number of employees was small this
rule could be implemented as follows:

DEFINE RULE retirement_rule2 IS TEMPORAL
DATES = employee.birthday

ON OCCURRENCE
WHERE ('today' - employee.birthdate) >-= '65 yrs'
DO exec proc retirement_procedure(emp#)

In the second example the check is made every year for each
employee.

Rule (b̂
DEFINE RULE max-delay IS TEMPORAL
ON Append to Pending_Retirement_Procedures
DO exec proc check_procedures_begun(emp#)

atime = etime + '1 week'

This implements the timing constraint of one week placed on
the delay in getting the various tasks associated with a
retirement underway.

Transition [101
Ten months before an employee is due to finish a career
break preparations for their return must commence. For
example, their name must be appended to the short-list table
for vacancies at their grade

90

DEFINE RULE career_break_rule IS TEMPORAL
DATES = return_date - '10 months'

ON OCCURRENCE
DO INSERT INTO ShortList

VALUES employee#, grade, return_date

Transition [11]
If an employee is on sick-leave for more than six months
they are put on half pay.

DEFINE RULE extended_sick_leave IS TEMPORAL
DATES = sickleavebegin + '6 months'

ON OCCURRENCE
WHERE sick_leave_return IS NULL
DO exec proc half_pay (emp#)

An efficient implementation of such a rule would probably
de-activate the rule when the employee returned from sick
leave.

Transition [13]
An employee on secondment (loan) to another organisation
must be notified to come back one month before their
scheduled return date.

DEFINE RULE secondment_rule IS TEMPORAL
DATES = secondment_end_date - '1 month'

ON OCCURRENCE
DO exec proc notifyemployee (emp#)

91

When an employee goes on secondment this rule for the Class
Employee is instantiated for the given employee using the
parameters 'emp#' and ' secondment_end_date/.

The following examples look at how temporal rules may be
associated with object states.

Suspended State
For various reasons an employee may be taken off the payroll
temporarily for a specified period. There is therefore a
real-time constraint on the time the employee should be kept
in that state. The following temporal rule expresses this
constraint.

DEFINE RULE suspended IS TEMPORAL
ON Update to Employee.status
WHERE new.status = 'Suspended'
DO exec proc revoke_suspension(emp#)

atime = etime + (suspension_period)

The last line states that the action part of the rule will
not fire until the suspension period has elapsed.

Career-Break State
An employee may voluntarily take a year or longer off
without pay to pursue other interests and be re-instated on
return. The break cannot be longer than the period
sanctioned.

92

DEFINE RULE career_break IS TEMPORAL
ON Update to Employee.status
WHERE new.status = 'On Career Break'
DO exec proc re-instate(emp#)

atime = etime + interval('sanctioned_break')

Secondment State
Secondment to another organisation is for a sanctioned loan
period. The employee must then return to his/her
substantive position. Once again there is a real-time
constraint placed on the time spent in the secondment state.

DEFINE RULE secondment_rule IS TEMPORAL
ON Update to Employee.status
WHERE new.status = 'on secondment'
DO exec proc resume_substantive(emp#)

atime = etime + secondment period

On-Leave State
Career Breaks and Secondment arrangements are relatively
rare. However, paid leave in its various forms - especially
annual leave and sick leave, are not only very common but
reguire close monitoring. These are characterised by high
volume/short duration time spans making the reguirement one
of exception handling - a regular check for cases of leave
taken beyond the amount sanctioned. The temporal rule

93

system must provide the functionality of the traditional
end_of_day/ week batch report. A rule-level implementation
is presented below.

DEFINE RULE leave_check_rule IS TEMPORAL
CYCLE = '1 week'

ON OCCURRENCE
DO exec proc leave_check

The above example illustrates the importance of supporting
the full semantics of time-based triggering. In this
example the system designer could elect to use either the
actual return date or a time cycle as the appropriate
triggering mechanism.

94

Programme Scheduling

"Life has been a bit quiet here lately. The only
thing that changes from day to day are the television
programmes"

Anon

Although a television programme schedule changes every day
there is an underlying framework of fixed points on which
it is built. These consist of transmission start and
approximate closedown, newstimes and regular commercial
breaks. This backdrop is further classified into Weekday,
Saturday and Sunday patterns. The second case study takes
the example of creating an active database of these schedule
frameworks. The rules for this database will be exclusively
of the alerter category and reguire a time-based triggsring
mechanism.

The templates for Weekday, Saturday and Sunday schedules are
set out below:

Transmission Times
Category
Weekday

Saturday

Sunday

Newstimes
Category
Weekday

Start Closedown Synonyms
12.05 c. 11.45 <weekdaystart>

<weekdayclose>
Closedown depends
on how thing actually
transpired on the day. An
adjustment for 'injury time'
needs to be added to the
nominal <weekdayclose> value.
13.05 c. 00.30 (Sun)

11.00 c. 00.30 (Mon)

Times
13.00,15.00,18.01,21.00

<satstart>
<satclose>
<sunstart>
<sunclose>

Synonyms
<weeknewsl>
<weeknews2>

95

<weeknews3>
<weeknews4>

Saturday 14.25,18.01,21.00, 00.20(Sun) <satnewsl>
<satnews2>
<satnews3>
<satnews4>

Sunday 13.40,18.01,21.00,00.20(Mon) <sunnewsl>
<sunnews2>
<sunnews3>
<sunnews4>

Commercial Breaks
Category Interval Synonyms
Weekday 25 mins <weekccmncycle>
Saturday 2 0 mins <satccmncycle>
Sunday 30 mins <suncomncycle>

Moving on to the state-net (Figure 3) the semantics of
transitions [1],[2],[3],[4] and [7] can be expressed in the
following rule set.

(a) Alerter for Transmission Start
(i) Weekdays

DEFINE RULE weekday_start_rule IS TEMPORAL
TIMES = <weekdaystart>,

DAYSOFWEEK = [MON..FRI]
ON OCCURRENCE
DO Message 'Weekday Transmission Start Due'

96

SCHEDULE FRAMEWORK

Running
Saturday
Framework

V V1

Running
Sunday
Framework

r Running
Weekday
FrameworkV -- -------- J

tu
@Sat Start

[2]
@Sun Start

[3]
@Weekday Start

[5]

r \

Running

Schedules

V 7

Vi
V

i

[4] [7] ^r
@Start @Closedown

Begin Trans. End Trans.

Dormant

@Newstime Showing
* * News

[6]
@Commerical ^Showing

Commericalv

PARTIAL OSA STATE-NET FOR SCHEDULING DOMAIN

Figure 3

(ii) Saturdays
DEFINE RULE saturday_start_rule IS TEMPORAL

TIMES = <satstart>,
DAYSOFWEEK = [SAT]
ON OCCURRENCE
DO Message 'Saturday Transmission Start Due'

(iii) Sundays
DEFINE RULE sunday_start_rule IS TEMPORAL

TIMES = <sunstart>,
DAYSOFWEEK = [SUN]
ON OCCURRENCE
DO Message 'Sunday Transmission Start Due'

(b) Alerter for Transmission Closedown
Allowance for two factors is necessary. Firstly,
closedown is an approximate time and an adjustment for
delays etc. needs to be made. Secondly, closedown on
Saturdays and Sundays occurs on the following
morning. There is no overlap in the schedule
frameworks as can be seen from rules (i) and (iii)
where in each case the temporal trigger will not fire
until the TIMES clause evaluates to TRUE.

(iv) Weekday Closedown
DEFINE RULE weekday_close_rule IS TEMPORAL

98

TIMES = <weekdayclose> + time('variance'),
DAYSOFWEEK = [MON..FRI]
ON OCCURRENCE
DO Message 'Weekday Transmission Closedown Due'

(v) Saturday Closedown
DEFINE RULE sat_close_rule IS TEMPORAL
DAYSOFWEEK = [SAT]
ON OCCURRENCE
DO Message 'Saturday Transmission Closedown Due'
atime = TOMORROW + <satclose> +time('variance')

(vi) Sunday Closedown
DEFINE RULE suncloserule IS TEMPORAL
DAYSOFWEEK = [SUN]
ON OCCURRENCE
DO Message 'Sunday Transmission Closedown Due'
atime = TOMORROW + <sunclose> + time('variance')

(c) Alerters for Newstimes

(vii) Weekday Newstimes
DEFINE RULE weeknews_rule IS TEMPORAL

TIMES = [weekdaynewsl, weekdaynews2,
weekdaynews3, weekdaynews4],

DAYS = [MON..FRI]
ON OCCURRENCE

99

The same rule template can be used for Saturday and
Sunday Newstimes.

(d) Alerter for Commercial Breaks
(viii) Weekday Commercial Breaks

DEFINE RULE weekcommcycle_rule IS TEMPORAL
CYCLE = <weekcommcycle>,

DAYSOFWEEK = [MON..FRI]
ON OCCURRENCE
DO Message ' Commercial Break Due'

Similarly for Saturday and Sunday rules.

The foregoing assumes that the Weekday, Saturday and Sunday
schedule frameworks are consistent throughout the year
whereas in fact they may change between Summer and Winter
Schedules. This is an example of where it becomes necessary
to specify a LIFETIME clause.

What is required is a rule-set for each schedule category
with the ability to set the start and end dates for each.

Summer Schedule
LIFETIME = [<summerstartdate>,<summerenddate>]

Winter Schedule
LIFETIME = [<winterstartdate>,<winterenddate>]

DO Message' Newstime Due'

100

The syntax provided requires that this clause be included
in every rule. This raises the issue of opening up the
syntax to allow some clauses to apply to multiple rules.

So far, we have allowed ourselves a fairly free hand in how
we expressed our rules. We have seen how, combined with a
suitable analysis formalism, temporal rules can readily
capture a broad range of application requirements in an
almost intuitive manner. The time has now come to see
if this can be reconciled with the rigorous requirements of
the evolving SQL standard.

101

Chapter 6

Temporal Rules and the SQL Standard

In this chapter we will look at some of the highlights of
the SQL-92 standard and its future successor SQL3. We will
then go on to assess the implications for the temporal
syntax developed in previous chapters - in particular, how
this sits with what the standards have to say in relation
to the specification of time and the use of database
triggers.

6.1 Overview of SQL-92 and SQL3

In taking an overview of SQL-92 we will see how the new
standard has resolved the previous lack of application
language features; look at what is happening with Joins and
the relational operators; the enhanced integrity features;
treatment of privileges; the important area of transaction
management; the topical issue of connections to remote
databases; how SQL-92 has rationalised error handling; we
will look beyond the single language database with a review
of the standard's significant internationalisation features
and finally focus on SQL-92's support for temporal data
types.

102

Up to SQL-92 the standard has been based on the relational
model. The next version, working title SQL3, will remain
relational-centred but will add object-oriented features.
More significant, from our viewpoint, will be is its
introduction of a standard syntax for the definition of
database rules.

6.1.1 Advanced Langauge Features of SQL-92

As we will see, the main enhancements to the existing
standard come in the form of the CASE and CAST expressions,
row value constructors, parameters, special values and the
SQL functions.

This is part of a strategy of inclusion of programming
constructs to achieve reduced dependence on host languages.
These advanced value expressions are among the major
enhancements in SQL-92.

1) CASE - a conditional expression.

2) CAST - a data conversion expression.

3) ROW VALUE CONSTRUCTOR - allows a user to deal with
an entire row of data as a unit.

CASE
(a^CASE and Search Conditions

This allows a user to store a code and expand to

103

a description without the need for host language
intervention. For instance:

Marital Status l=single, 2=married, 3=widowed,
4=divorced.

Allows conversion of 'null' to say '0' during retrieval
as in the example which follows :

UPDATE employees
SET salary = CASE

WHEN dept = 'video'
THEN salary * 1.1

WHEN dept = 'music'
THEN salary * 1.2

ELSE 0
END

CASE and Values
We can use shorthand version for simple value comparisons
e.g.

SELECT title
CASE movie_type

WHEN 1 THEN 'Horror'
WHEN 2 THEN 'Comedy'
WHEN 3 THEN 'Romance'

104

WHEN 4 THEN 'Western7
ELSE NULL

END,
our_cost

FROM movie_titles

(c)fflJLLIF
A special form of the CASE construct used, for instance,
to allow nulls to be physically stored as, say, -1 (for
some historical reasons) yet be retrieved as null.

NULLIF(our_cost, -1) is equivalent to

CASE WHEN our_cost = -1 THEN NULL ELSE our_cost END,

(d ̂ COALESCE
This is a shorthand for an often used variation of the
CASE statement.

COALESCE (valuel,value2,valueS) is equivalent to:

CASE WHEN value1 IS NOT NULL
THEN value1

WHEN value2 IS NOT NULL
THEN value2

ELSE value3
END

105

In other words, if valuel is not null then the value of
COALESCE is valuel. If valuel is null then value2 is
checked. This continues until either a non-null value
valuej is found- in which case the value returned by
COALESCE is valuej - or every value, including valuen is
found to be null - in which case, the value returned by
COALESCE is null itself. The use of COALESCE in OUTER
JOINS is discussed in a later section.

CAST
This is a sort of counter-balance to the inherent strong
typing of the SQL language. The user can now mix exact
numerics and characters in a single expression by CASTing
to appropriate datatypes. Once again this reduces
dependence on host language capabilities.

It is particularly useful when we want to UNION two tables
whose columns may differ in datatypes or for passing eg.
data of type DATE to a host language which treats dates as
character strings.

ROW VALUE CONSTRUCTORS
These facilitate multiple column value comparisons. Take,
for example, the situation where one wished to compare all
columns in one table with all columns in another table - we
can compare full rows rather than column values.

SOL-89

106

WHERE cl = 'CA' AND c2 = 'CB' AND C3 = 'CC'

SOL-92 allows

WHERE (cl,c2,c3) = (#CAf,'CB','CC')

A row value constructor is essentially a parenthesised list
of values. It can be used in many places where a value is
permitted. Indeed, the individual values don't have to be
literals but can be parameters/host variables or even
subqueries.

Parameters in SQL

These (also called host variables) allow values to be passed
between host variables and SQL statements. A prefix is
used.

Example: UPDATE EMPLOYEES
SET salary = salary * :raise
WHERE dept = :department;

SQL-92 uses the following three categories of SQL parameter:

1) status parameter (returns status information)
- SQLCODE - Currently deprecated i.e. it might

107

not be supported in future versions
of the standard.

- SQLSTATE - New to SQL-92

2) data parameter
e.g. INSERT INTO MOVIE_STARS

VALUES (:title, :year, :last_name,
:first_name);

3) indicator parameter
- returns -1 if a null value is retrieved. This

is necessary because 3GLs don't understand 'null'.

- informs host program of truncation of a returned
value.

Special Values

Examples of these special values are session_user
and current_timestamp.

Functions

Set Functions
Count, Max, Min, Sum, Avg

108

1) Numeric Value Functions
2) String Value Functions
3) Datetime Value Functions which will be discussed later.

Numeric Value Functions

These always return a numeric value. Examples of these
would be POSITION, CHARACTER_LENGTH, OCTET_LENGTH,
BITLENGTH and EXTRACT.

Example:

EXTRACT (YEAR FROM DATE'1992-06-017)

This returns a numeric value of 1,992.

String Value Functions

For instance, SUBSTRING which extracts a substring, UPPER
and LOWER which do case conversion and TRIM which
strips off characters (TRIM (BOTH 7T7 FROM 'TEST7) yields
7 ES 7)

SQL-92 introduces internationalization to the SQL
standard and this is reflected here by the functions
TRANSLATE and CONVERT.

Value Functions
There are three types in SQL-92:

109

6.1.2 Working with Multiple Tables: The Relational Operators

SQL-92 makes it easier to pull information together from
across a relational database. This section introduces the
new Join Operations as well as covering the use of the
UNION,INTERSECT and EXCEPT operators.

JOIN OPERATIONS
SQL-86 and 89 handled table joins by way of SELECT...WHERE.
SQL-92 expands the ways in which this can be done. There
are now eight join types supported.

1) Old Style Joins
SELECT ... WHERE ... = ...

2) Cross Joins
Produces Cartesian product of tables specified
e.g.

SELECT *
FROM tablel CROSS JOIN table2;

This is, of course, equivalent to the old style join
with the absence of a WHERE clause.

3) Natural Joins
This selects rows from two tables that have equal values

110

in the relevant columns. For this to work column names
must be the same.

SELECT * FROM tablel NATURAL JOIN table2

NATURAL can also be used to qualify other join types such
as inner, outer, and union.

4) Condition Join
Any columns may be used to match rows from one table
against those from another.

SELECT *
FROM tablel JOIN table2
ON tablel.cl = table2.c3

T1
Cl____C2
10 15
20 25

T2
C3____ C4
10 BB
15 DD

Joined Table
Cl C2 C3 C4
10 15 10 BB

1 1 1

5) Column Name Join
Natural Joins use all columns with the same names for
matching. With column name we can limit the columns used
in matching to a specified sublist.

SELECT *
FROM tl JOIN t2
USING (cl,c2)

The old-style JOIN and the CROSS JOIN are essentially the
same thing. The NATURAL JOIN uses any columns with the same
name in the two source tables for an implicit equijoin,
while the COLUMN NAME JOIN allows you to specify a USING
clause so that you can further restrict the columns used to
a subset of those with the same name.

By contrast the CONDITION JOIN lets you specify an arbitrary
search condition to determine just how the rows of the two
tables will be joined. In many ways, the ON clause is
redundant with the where clause; however, the ON clause is
useful to specify conditions specifically related to the
join and use the WHERE clause for additional filtering of
the rows returned.

6) The Inner Join
All of the above are known in SQL-92 terminology as INNER
JOINS. For clarity this can be made explicit as in the

112

following example.

SELECT *
FROM tl INNER JOIN t2
USING (cl, c2);

7) Outer Joins
These differ in that they preserve unmatched rows from
one or both tables depending on whether the keyword LEFT,
RIGHT or FULL is used. Inner joins disregard all unmatched
rows.

Left Outer Join
This preserves unmatched rows from the LEFT table.

SELECT *
FROM tl LEFT OUTER JOIN t2
ON tl.cl = t2.c3;

Tl
Cl____C2
10 15
20 25

T2
C3____C4
10 BB
15 DD

Joined Table
Cl C2 C3 C4
10 15 10 BB
20 25 null null

113

By definition each row in the first table in a LEFT OUTER
JOIN must be included in the result table.

Right Outer Join
IN this case the second named table has its rows preserved.

Full Outer Join
This is a combination of left and right outer joins. The
resultant table contains all of the values from each table
filled out with nulls where necessary.

8) Union Join
SQL-89 limited UNION to cursor operations - SQL-92 permits
UNION operations to be performed within query expressions.
This is an example of how the standard lags behind
commercial applications.

In order to use this operator tables must be union
compatible.

SELECT *
FROM music_titles

UNION

SELECT *

114

FROM discounted albums;

By default UNION eliminates duplicate rows but SQL-92 allows
the use of UNION ALL which preserves duplicate rows. This
is one of the most useful features introduced in SQL-92.
A query may involve a union of tables of, say, monthly sales
figures where it is possible for duplicate figures to occur
thus leading to an error when the figures are brought
together by the UNION operator prior to producing totals.

Another variation UNION CORRESPONDING allows us to specify
a subset of compatible columns for the UNION operation i.e.
the non compatible columns can be excluded automatically.

Union Join works just like a full outer join, with a
difference -

1. It creates a virtual table with the union of all
columns from the source tables.

2. It creates a row in the new table with the values
from the respective columns from each source table,
with null values assigned to columns within each row
from the other table.

115

T1 T2

C l C2 C3 C4

10 15 10 BB

20 25 15 DD

Joined Table
Cl C2 C3 C4
10 15 null null
20 25 null null
null null 10 BB
null null 15 DD

As can be seen, unlike the FULL OUTER join, no effort
is made to match columns.

INTERSECT & EXCEPT Operators
Starting with two tables - these make it easy to say which
rows are common to both tables and which rows are in one
table but not in the other.

INTERSECT returns all rows that exist in the virtual table
formed by the intersection of the two source tables.

SELECT *
FROM music titles

116

INTERSECT

SELECT *
FROM discontinued_albums

ALL and CORRESPONDING act in the same way as with the UNION
operator eg. INTERSECT CORRESPONDING (column_list) and allow
the user to focus the intersect on the attributes of
interest.

The syntax for EXCEPT is similar. EXCEPT returns all rows
that are in the first table except those that also appear
in the second table.

117

6.1.3 Constraints, Assertions and Referential Integrity

The application of constraints, or rules to the structure
of a database and its contents is now the established
mechanism for achieving database integrity. This move is
reflected in SQL-92 where integrity is enforced via the DBMS
rather than by applications running against the database.

This permits a kind of 'logic normalisation'. The integrity
logic is centralised and terse making rapid rule changes
possible.

Column and Table Constraints in SOL-92
For Primary Key constraint enforcement NOT NULL and UNIQUE
are already present in SQL-89 but they can now be used
separately.

CREATE TABLE movie-titles
(title CHARACTER(30) NOT NULL,
ii <
I

)

UNIQUE

CREATE TABLE distributors
(dist_name CHARACTER VARYING(30) UNIQUE)

118

CHECK
This is effectively the SQL-92 Business Rule specification
mechanism and is very flexible in its range of uses.

FORMAL SYNTAX:

CHECK(search_condition)

where search_condition ca be any valid SQL expression.

Examples

CREATE TABLE movie_titles
(. . .

our cost DECIMAL (9.2)
CHECK(our_cost < 100.00),

!
ii
)

This places a domain constraint on the specified column.
What happens when the table is empty? Well, the SQL
standard holds that if there are no rows present then no
row violates the constraint.

Multiple CHECK clauses can be specified for each column and
they are then effectively ANDED together.

119

So far we have been looking at a single table. CHECK'S
search condition parameter can just as easily reference data
from other tables for a domain constraint. Importantly, the
constraint is dynamic - the CHECK is run again after any
changes to these other tables. Indeed this also holds if
the constraint is based on other column values in the same
table.

RANGE OF VALUES
It is often desirable to set down bounds of reasonable
values for a given column e.g. employee ages or salaries.

SQL-92 provides the BETWEEN qualifier to the CHECK option
for this purpose.

CHECK (age BETWEEN 17 and 65)

Similarly, a positive or negative value constraint can
readily be specified as in 'BETWEEN -10000 AND 0' .

LIST OF VALUES
A set of acceptable values can be specified for any column
as follows.

CREATE TABLE movie_titles
(title CHAR(30) NOT NULL,
ii

120

II

CHECK (movie_type IN
('Children', 'Comedy','Musical',
'Romance', 'Western',
'Adventure','Other')),

available CHAR(l)
CHECK (available IN ('Y','N'))

The construct used for the 'available' attribute highlights
the fact that SQL-9 2 does not support true Boolean values.

SQL-92 CHECKS are not limited to this sort of hard-coded
format. The following is also valid for the 'movie-type'
constraint:

CHECK (movie_type = SOME
(SELECT * FROM category))

movie_type CHAR(10)

CONSTRAINT NAMES
SQL-92 permits the optional specification of names for
user defined constraints. The previous example could
be re-cast in the following format.

121

CREATE TABLE ...
iI
II
CONSTRAINT check_movie_type
CHECK (movie_type IN

('Children'......

Why bother with them? One obvious advantage in allowing
users to specify their own constraint names is that
constraint violation messages become much more meaningful
than is possible with system generated defaults.

The name is also used as a handle to SET the constraint to
DEFERRED or IMMEDIATE or to DROP the constraint.

Constraints are, by default, NOT DEFERRABLE - they are
checked at the end of each SQL statement. Alternatively,
DEFERRABLE, can be specified which effectively delays
constraint checking until COMMIT time.

ASSERTIONS

An assertion is a constraint which is not tied to a
particular table (i.e. part of a CREATE TABLE statement)
but rather enforces a rule across some portion of the
schema.

For instance, if we wished to limit the total value of
video and CD stock to £50,000 a suitable assertion would

122

be:

CREATE ASSERTION maximum_inventory
CHECK ((SELECT SUM(0 Ur_C0 St)

FROM movies)
+ (SELECT SUM(our_cost)
FROM musicjtitles)

< 50,000)

PRIMARY KEY
SQL-92 provides a very natural and direct approach to the
designation of a unique identifier allowing the use of the
keywords PRIMARY KEY within the CREATE TABLE statement.

FOREIGN KEY
The basic requirement is for the foreign key to include
enough columns in its definition to uniquely identify a row
in the referenced table and that the referencing table never
contains values in these columns which are not represented
in the primary key values of the referenced table.

CREATE TABLE movie stars

(
|i /

ii
CONSTRAINT titles_fk FOREIGN KEY (movie_title)

REFERENCES movie_titles (title)

123

In other words the table movie_stars has a foreign key
(movie_title) which must correspond to the primary key
(title) of the movie_titles table.

REFERENTIAL CONSTRAINT ACTIONS

These are new to SQL-92 and mean that the DBMS has to ensure
that tables are kept in 'sync7 over time. SQL-92 not only
ensures that referenced rows cannot be deleted but provides
the option of allowing the deletion to go ahead on condition
that a pre-defined replacement is specified.

CREATE TABLE movie_titles
(title CHAR(30) NOT NULL,

ii
ii
distributor CHAR VARYING(25)

REFERENCES distributors
ii
!)

What this means is that as long as we have titles for a
distributor that firm cannot be deleted from the
distributors table. However, the following may be
desirable. We may want the freedom to drop any distributor
and transfer their titles to a default supplier.This can be
achieved with only minor modifications.

124

CREATE TABLE movie_titles
(title CHARACTER(30) NOT NULL

distributor CHARACTER VARYING(25)
DEFAULT 'Big East, Inc.'

REFERENCES distributors
ON DELETE SET DEFAULT,

SET NULL
SQL-92 allows the direct specification of a 'set foreign key
to null' strategy for the maintenance of referential
integrity. The syntax is as follows.

CREATE TABLE movie_titles
(title CHARACTER(30) NOT NULL

distributor CHARACTER VARYING(25)
REFERENCES distributors

ON DELETE SET NULL,

125

CASCADE
So far we have been dealing with the case of simple deletion
from the referenced table but SQL-92 handles updates as
well. For instance, if a name forming part of the primary
key of a referenced table had to be updated it can now be
left to the DBMS to make the necessary amendments in the
referencing tables to maintain the linkages.

CREATE TABLE movietitles
(title CHARACTER(30) NOT NULL,

distributor CHARACTER VARYING(25)
REFERENCES distributors

ON UPDATE CASCADE,

If a distributor changed its business name this would be
automatically reflected in any rows of movie_titles which
referenced that distributor in its original guise. Cascades
can, of course, involve multiple tables with the updates of
one table triggering off a chain reaction in line with the
foreign key constraints defined at the CREATE TABLE stage.

126

6.1.4 Privileges, Users and Security

This is concerned with the control of access to various
categories of SQL-92 database objects:

Tables, Columns, Views, Domains, Character Sets
Collations and Translations.

The last three are new in SQL-92 and are discussed in
section 1.9 (Internationalisation).

Privileges could not be revoked in the SQL-89 standard
but this has been rectified in SQL-92. The concept of
granting a privilege to PUBLIC is also now supported.

GRANT
Syntax in SQL-92

GRANT privilege_list
ON object
TO user_list [WITH GRANT OPTION]

The privilege_list can include

SELECT/DELETE/INSERT/UPDATE/REFERENCES and USAGE

In all but the last case the 'object' would be a table. In

127

the case of the USAGE privilege the 'object7 would be a
DOMAIN, CHARACTER SET, COLLATION or a TRANSLATION.

'REFERENCES' limits the use of references via foreign keys
to the specified table to specified users. This is
necessary because a user could deduce the contents of this
table by trial and error using the referential integrity
check as an indicator.

USAGE
Only those users granted USAGE privilege on the domains,
character sets, collations and translations can 'see' them
and use them in their data definitions or in their SQL
programs. This avoids problems such as an unauthorised user
issuing a DROP domain statement.

The privileges on a view are equivalent to the privileges
held on the base table(s) on which it is defined. In SQL-92
the view privileges are automatically updated to reflect
changes in adjusted rights to the base table(s) i.e. as if
the view were re-created after each change in privilege.

REVOKE
Two qualifiers, RESTRICT and CASCADE are provided with
REVOKE. RESTRICT will disable REVOKE if the privilege in
question was passed on. With CASCADE the privilege is
removed from all users to whom it was passed on through the
WITH GRANT option. Usefully, SQL-92 allows a user to revoke

128

the WITH GRANT OPTION privilege.

As can be seen, although security in SQL-92 is syntactically
simple - just GRANT and REVOKE, there is a good deal of
complexity introduced by the WITH GRANT OPTION clause.

129

SQL has never used an explicit statement to start a
transaction but each ends with a COMMIT or ROLLBACK
statement.

In SQL-92 a transaction has three characteristics

(a) Mode
(b) Isolation Level
(c) Diagnostics Area

The default which the standard provides is

(a) Read and update permitted
(b) Maximum isolation from concurrent transactions
(c) Diagnostics area with default size is set up

Any deviation from these norms is specified through the
SET TRANSACTION statement. Transactions can be set to READ
ONLY, READ WRITE with ISOLATION levels ranging from the
lowest level of READ UNCOMMITTED, through READ COMMITTED,
REPEATABLE READ up to the highest level possible
SERIALIZABLE.

Example :

SET TRANSACTION

6.1.5 Transaction Management

130

READ ONLY,
ISOLATION LEVEL READ UNCOMMITTED

i.e. no updates will be allowed within the transaction and
a dirty read is acceptable. This could be useful for sate
reports such as rough statistical queries where we want
to scan a table without causing any locking delays for other
users. An isolation level of READ COMMITTED will eliminate
the dirty read phenomenon i.e. only committed transactions
are read.

The REPEATABLE READ level guarantees that if the same row
is read more than once within a transaction then its value
will be the same. SERIALIZEABLE is the highest level and
the one provided by current commercial database systems.

131

6.1.6 Connections and Remote Database Access

There is a move towards the adoption of distributed database
environments. SQL-92 addresses the question of multiple
connections although there is more work needed to
achieve seamless use of heterogenous databases.

SQL-89 did not have the concept of a session in which your
application ran or of a connection from your application
to a session. This requirement has arisen due to the
general adoption of the client-server paradigm.

Establishing connections
In SQL-89 a DBMS was expected to accept SQL statements
without any prior definition of a context. The context was
provided by DBMS specific software. SQL-92 recognizes the
need for a degree of DBMS independent set-up and it is
therefore worthwhile looking at this process in a little
more detail.

First the user needs to establish a connection between the
program (client) and the DBMS (server). SQL-92 specifies
that the connection is to a default server (left to the
implementation to define). So, if the user does not execute
an explicit CONNECT statement SQL-92 executes one for them
against the defined server.

The presence of a CONNECT statement allows you to establish
a connection to several servers at a time. This is where

132

the notion of a session comes in. Each connection has a
session associated with it which is analogous to a user
having multiple logins in, say, VMS.

The session associated with the current connection is called
the current session whereas other connections are known as
dormant sessions. The SET CONNECTION statement is used to
switch between sessions.

For efficient use of system resources a DISCONNECT statement
is provided for use in client programs. One problem with
early client-server implementations was the possibility of
connections to clients being left hanging if someone decided
to re-boot their PC. For this reason a tidy up is carried
out when a client program terminates which will disconnect
any sessions not explicitly released from the client side.

How the client exploits the ability to have multiple
sessions is left as an implementation-dependent feature.
A transaction may be limited to one connection in which case
disconnecting or session switching will raise an error.
Alternatively, the implementation may treat statements
executed across all of the connections as part of a global
transaction. In summary, CONNECTING starts a session,
DISCONNECTING ends a session.

133

6.1.7 Diagnostics and Error Management

This is concerned with error and condition reporting and
uses the two functions SQLCODE and SQLSTATE which allow the
developer to include robust error handling in SQL
applications. SQL-92 classifies and interprets errors and
supplies warning descriptions. The earlier standard
reported errors via the status parameter SQLCODE where 0
represented successful completion, 100 meant a no-data
condition (i.e. no rows found on which to operate) and all
negative values represented an error condition. As
implementors were free to use their own set of negative
numbers for specific error conditions portability was
compromised. The approach taken in the SQL-92 standard
was to create a second parameter SQLSTATE rather than
attempting to impose a retrospective standard for SQLCODE.
Indeed, SQLCODE has been deprecated i.e. it will eventually
be deleted from the standard.

Pre-defined values are supplied for SQLSTATE and rather than
using an integer like SQLCODE it uses a 5 character string
(the uppercase letters A-Z and the digits 0-9) . For greater
semantic power the code is divided into a two-character
class code and a three-character subclass code. The
standard reserves for itself all class codes beginning with
A-H or 0-4. For these classes any subclass code starting
with the same character is standard-defined. Implementors
are free to define class codes beginning with the remaining
letters and digits.

134

On its own, SQLSTATE has limited powers in reporting error
situations and SQL-92 has addressed this issue with the GET
DIAGNOSTICS statement. These diagnostics are retrieved from
a diagnostics area which is structured so as to provide
header information on the last SQL statement executed as a
whole and detail entries for each error, warning or success
code associated with that statement. The diagnostics area
is emptied at the start of each new SQL statement.

6.1.8 Internationalisation

Before SQL-92, database products were designed for English
language use based around 8-bit ASCII characters.

Unfortunately, the Japanese language, for instance, requires
not only support for thousands of characters but requires
more bits to encode each character. The challenge facing
SQL-92 was to support not just one but multiple languages
at the same time - a standard for internationalised DBMS.

Character Sets. Collations and Translations
In order to be meaningful every character string has a
character set associated with it. Generally, the user has
no control over which character set is used as vendors
currently decide this in advance.

A character set has three basic attributes:

- The repertoire of characters or what characters it

135

is capable of representing.

- The form of use or method of representation e.g. one,
two bytes per character.

- The default collation or sort order. This assumes
we are comparing two strings from the same repertoire
a default which can be over-ridden.

For example:

CREATE TABLE tl (
coll CHARACTER(10)
col2 CHARACTER VARYING(50) CHARACTER SET

KANJI

)

Further, SQL-92 supports the translation of character
strings from one character set to another e.g. from Hebrew
to Latin characters.

136

The introduction of standards for datetimes and intervals
posed some difficulties, not least the existence of myriad
implementation conventions, and consequently a canonical
form of expression was finally adopted. We will start by
looking at how datetimes are handled before moving on to the
topic of intervals.

6.1.9 The Specification of Time in SQL-92

Datetimes

SQ1-92 Data Type
DATE
TIME
TIMESTAMP

TIME WITH TIME ZONE

TIMESTAMP WITH TIME ZONE

INTERVAL

Literal Example
DATE '1929-10-29'
TIME
TIMESTAMP '1987-10-19

16:00:00.00'
TIME '10:45 - 07:00'

TIMESTAMP '1993-04-05 03:00:00
+ 0 1 :00'

INTERVAL '10:30' MINUTE TO
SECOND

Note: The specification of time zones uses a plus/minus UCT
offset. Universal Coordinated Time (UCT) replaces the
earlier GMT standard.

137

A precision can also be specified for temporal data types
eg.

TIME(2) TIME '14:35:10.55'

TIME(3) TIME '12:20:00.000'

DateTime Value Functions
These are functions which return a value of type DATE.

Examples

Function Returns
CURRENT_DATE The current date

CURRENT_TIME(2) The current time to 2 decimal
places

CURRENTTIMESTAMP The current timestamp for the
timezone of your session
in the following format:

Year :Month:Day:Hrs :Mins: Secs :Fraction of a second

138

to specified precision

Datetime Value Expressions

These operate on date-oriented data types
DATE, TIME, TIMESTAMP and INTERVAL

The result is always a datetime.

CURRENT_DATE + INTERVAL '1' DAY gives tomorrow.

TIME '10:45:00' AT LOCAL
- Store 10:45 in my local time zone.

TIME '10:45:00' AT TIME ZONE INTERVAL '+09:00' HOUR TO
MINUTE
- Store 10:45 in Tokyo time.

Interval Value Expressions
If you subtract one datetime from another you will get
an interval as a result. SQL-92 divides intervals into
two categories: year-month intervals and day-time intervals.
It does not allow these to be mixed in a single expression.

A year-month expresses an interval as a number of years and
an integral number of months. This is an exact
representation as a year always has only 12 months.

139

Similarly, a day-time interval expresses an interval as a
specific number of days,hours, minutes and seconds - there
are always the same number of hours in a day, minutes in an
hour an so on. However, we cannot know how many days are
in a month unless we know which month it is.

The following rules govern intervals and datetimes in
expressions:

1) datetime - datetime -> interval

2) datetime - interval -> datetime

3) datetime + interval -> datetime

4) interval *j/ scalar -> interval

Example:

CURRENT_DATE - DATE_RELEASED
- Gives the time for which a movie or CD has
been available.

More correctly:

(CURRENT_DATE - DATE_RELEASED) YEAR TO MONTH

140

The qualification YEAR TO MONTH is required because

subtraction of two dates can result in an invalid interval

(an interval that is neither a year-month interval nor a

day-time interval).

141

6 .1 .10 SQL3 - A Look to the Future

New versions of SQL generally appear every 3 years. The next

version of the standard has the working title SQL3 and its

expected publication date is 1995/96.

The thrust of SQL3 [EISE93] is twofold,

1) enhanced relational capabilities.

2) support for objects.

Enhanced Relational Support

Triggers
SQL-92 lacks a definition of database rules (triggers). The

standards committee did not foresee their rapid uptake and
vendors have had to use the SQL3 draft which does include

support for triggers.

The SQL3 definition is as follows:

CREATE TRIGGER trigger_name time event
ON table_name action

The 'time' is not a clock time but simply specifies that the

action happens either BEFORE or AFTER the event. An 'event'
can be an INSERT,DELETE or UPDATE. The 'table-name' refers

to the table against which the event occurs.

142

A 'granularity' can be specified for the action with a

default of FOR EACH STATEMENT. The alternative of FOR EACH

ROW causes the action to be performed for each row inserted,
deleted or updated by the event whereas the default causes

a single firing of the rule. This is very significant as
the default maintains the set-level nature of SQL statements
i.e. the default behaviour of a trigger is to react to the

INSERTION, DELETION etc. of sets of rows rather than single

rows. Sybase is an example of a commercial product which
currently supports this level of trigger abstraction.

Recursive Operations
SQL3 introduces the RECURSIVE UNION operation which

implements a long-awaited 'bill of materials' functionality.

It effectively allows a user to traverse a tree of rows in

a database.

The syntax proposed is:

(initial RECURSIVE UNION correlation_names
[columns] iteration

[search] [limit])

The term 'initial' is a query expression specifying the
starting point of the search. The correlation names are

used in the accumulation of rows into the result. The term
'iteration' is a query expression that set out how child

rows of any parent row are to be located.

143

The search strategy (DEPTH FIRST, BREATH FIRST etc.) is

specified by the 'search' parameter. Finally 'limit' will

allow the user to control how long the search should

continue thus avoiding runaway queries.

New Data Types
Two new data types are so far proposed in SQL3: Enumerated

and Boolean.

For instance, an attribute of MOVIE_TITLES might be IN_STOCK

which would be defined as Boolean (True or False).

The enumerated data type allows the definition of a domain

which has a fixed set of values. For example:

CREATE DOMAIN movie_types

(children, comedy, horror, musical)

CREATE TABLE movie titles
(title CHARACTER VARYING(30),

type MOVIE_TYPES,

. . .)

INSERT INTO movie titles VALUES

144

Note the use of the ' : :' to specify the enumerated value

within the domain.

Other features such as stored procedures, so vital in

distributed environments, are also expected.

Support for the Object Paradigm
Intensive work is on-going aimed at lifting SQL beyond its

relational database roots and providing the basis for
combined relational and 00A features in one DBMS. To date

the following concepts have received attention and can be

expected to be fully supported in the new standard.

- User-defined abstract data types

- Encapsulation
- Object Identity
- Unification of SQL tables and abstract data types

- Subtypes and Supertypes
- Inheritance of type attributes and methods

- Parameterised types.
- Type generators

- A control language for implementation of methods

- Computational completeness
- Functions and procedures written in SQL
- Static and dynamic binding of methods

- "Built-in" data type generators (eg for sets, multisets

(. . . ,movie_types: .’musical, . . .)

145

- SQL variables, temporary variables.

Add to this new standards for multimedia and GIS

Geographical Information Systems) and it can be expected
that SQL3 will involve a quantum leap in complexity within

the standard. To deal with this, a layered approach is
emerging which will most likely see these extensions built

on top of existing standards but it is not possible to say
how things will turn out for another couple of years.

So far, we have outlined SQL-92 and established the

direction in which it is evolving. It is now time to bring
our temporal database rules back into the picture, viewed,

this time, against the more formal backdrop of the SQL

standard.

and lists)

146

6.2 Implications for the Temporal Syntax

We next look at how triggers are defined in SQL and how

this sits with our Working Syntax. We then evaluate how

successfully SQL can capture the semantics of the sample
application domains and finally, define any syntactic

extensions highlighted by this process.

6.2 .1 Trigger Definition

In this section we will review the SQL3 trigger definition

syntax in detail, teasing out the underlying elements. The

result of this exercise will be used as a framework for
suggested extensions to the draft standard.

We will take as our starting point an example given in

[EISE93]:

Assume the two tables:

tabl (a CHAR(2),b CHAR(2))
tab2 (c CHAR(2),d CHAR(2))

and the trigger definition

CREATE TRIGGER trl

AFTER UPDATE OF a
ON tabl

147

REFERENCING OLD AS pre_a, NEW AS post_a

UPDATE tab2 SET d = post_a WHERE

d = pre_a

FOR EACH ROW;

This can be analysed and abstracted as follows:

CREATE TRIGGER trl (trigger_name)
AFTER (time) UPDATE OF a (event)
ON tabl (database object)
update tab2 ... (action)

giving -

CREATE TRIGGER (trigger_name)
(time) (event)
ON (database object)
(action)

where

(time) represents the time relationship between the
occurrence of the triggering event and the

performance of the associated action. In the
draft SQL3 syntax this time relationship is limited

to the form 'immediately before' or 'immediately

148

after' the event. The syntax proposed here seeks

to extend this relationship.

(event) The intention of the proposed syntax is also to

extend the set of triggering events to include
temporal events. So far, it seems as if SQL3 will

limit events to "INSERT, UPDATE and DELETE actions

on a specified base table" [EISE93].

In essence, SQL3 defines a rule in terms of a trigger name,
a triggering event, an action initiated by the trigger

and an expression of how the trigger and action relate in

time.

More formally,

SQL3_TRIGGER_STATEMENT ::= CREATE TRIGGER

<Trigger_Name>
<Event/Action_Time_Relationship>
<Triggering_Event>

<Triggered_Action>

In the following section we will re-visit the worked
examples given in the previous chapter and attempt to re­

cast these in a form compliant with SQL-92 time

specification and SQL3's emerging framework.

149

A representative sample of statements from the Personnel and

Programme Scheduling worked examples have been selected.

In each case the working syntax used is given before being

dismantled into the elements of an SQL3 Trigger and finally
re-assembled taking care to meet the existing requirements
of SQL-92. For brevity, some of the following examples

assume the promised inclusion of remote procedure calls

(RPCs) in the eventual SQL3 standard.

Example 1
This rule expresses a time constraint of 3 days within which
the induction procedure for a new employee must begin.

Working Syntax

DEFINE RULE check_induction_init IS TEMPORAL

ON APPEND TO Employee
DO exec_proc check_induction_begun (emp#)

atime = etime + '3days'

Trigger Elements

Trigger Name : check_induction_init

6.2.2 Application to Worked Examples

150

Triggering Event : Append to Employee
Triggered Action : exec proc check_induction_begun

(emp#)
Event/Action Time Rel. : Perform the action 3 days after the

triggering event.

Requires an Extended S0L3 Syntax

First cut :

CREATE TRIGGER check_induction_init

AFTER (+ 3 days) INSERT INTO Employee
exec proc check_induction_begun (emp#)

After adjusting for SQL-92 time interval specification:

CREATE TRIGGER check_induction_init
AFTER INTERVAL + '3' DAY INSERT INTO EMPLOYEE

exec_proc check_induction_begun (emp#)

Example 2
An employee on probation has a review every six months for
a period of 2 years. This rule is set in motion when an

employee is hired or promoted.

Working Syntax

151

DEFINE RULE probation_review IS TEMPORAL

CYCLE = '6 month'

LIMIT = '4 cycles'

ON OCCURRENCE

DO INSERT INTO Pending_Review
VALUES (emp#, 'Due since', date(etime))

Trigger Elements

Trigger Name
Triggering Event

Triggered Action

Event/Action Time Rel

: probation_review

: An absolute date which occurs once
every six months for a period of

two years.
: INSERT INTO Pending_Review

VALUES (Emp#, 'Due since', date)

: Immediately after.

Required an Extended S0L3 Syntax

CREATE TRIGGER probation_review
AFTER (cycle ('6 months'),(limit('4 cycles'))

INSERT INTO Pending_Review
VALUES (emp#, 'Due since',CURRENT_DATE)

Notes: 1. Cyclic operations are not supported in the SQL-92

152

or SQL3 standards.

2. CURRENT DATE is an SQL-92 datetime value function.

Example 3
Employees move to the next point on their current pay scales
on their designated increment date if they are not already

on the maximum point and if their work is satisfactory.

Working Syntax

DEFINE RULE increment_rule IS TEMPORAL
DATES = employee.increment_date

ON OCCURRENCE
WHERE {not on MAX and satisfactory}

DO exec proc pay_rise (emp#)

Trigger Elements

Trigger Name
Triggering Event

Triggered Action

: increment_rule
: An absolute date - the employee's

official increment date.
: Move up to next point on pay scale

153

on condition that not on Maximum

point of scale already and work is

satisfactory.

Event/Action Time Rel. s Immediately after.

Requires an Extended S0L3 Syntax

CREATE TRIGGER increment_rule
AFTER employee.increment_date

WHERE {not on max and satisfactory}

exec proc pay_rise (emp#)

Adjusted for SQL-92 compliant specification of parameters

this becomes:

CREATE TRIGGER increment_rule

AFTER DATE :employee.increment_date
WHERE {not on max and satisfactory}

exec proc pay_rise (emp#)

Example 4
An employee must retire at 65 years of age.

Working Syntax

154

DEFINE RULE retirement_rule IS TEMPORAL

DATES = employee.retire_date

ON OCCURRENCE
DO exec proc retirement_procedure (emp#)

Trigger Elements

Trigger Name : retirement_rule
Triggering Event : An absolute date - the employee's

retirement date.

Triggered Action : Retirement procedure initiated

Event/Action Time Rel. : Immediately after.

Requires an Extended S0L3 Syntax

CREATE TRIGGER retirement_rule
AFTER employee.retirement_date
exec proc retirement_procedure (emp#)

Adjusted for SQL-92 :

CREATE TRIGGER retirement_rule
AFTER DATE :employee.retirement_date

155

exec proc retirement_procedure (erap#)

Example 5
Ten months before an employee is due to finish a career
break preparations for their return must commence.

Working Syntax

DEFINE RULE career_break IS TEMPORAL
DATES = employee.return_date - '10 months'

ON OCCURRENCE
DO INSERT INTO Short_List
VALUES employee#, grade, return_date

Trigger Elements

Trigger Name
Triggering Event

Triggered Action

career_break
An absolute date - given by a
date expression representing a date
ten months prior to the employee's

expected return date.

INSERT INTO Short_list
VALUES employee#, grade,

return date

156

Event/Action Time Rel. : Immediately after.

Requires an Extended S0L3 Syntax

CREATE TRIGGER career_break
AFTER employee.return_date - 710 months'

INSERT INTO Short_list
VALUES employee#, grade, return_date

After application of SQL-92 this becomes:

CREATE TRIGGER career break

AFTER DATE (:employee.r e t u r n d a t e - INTERVAL '10'
MONTH)

INSERT INTO Short_List
VALUES employee#, grade, return d a t e

Example 6
The following rule expresses the real-time constraint on the
period for which an employee can be kept off the payroll for

any reason. When an employee is suspended there should be
no delay in re-instatement once the suspension period has

elapsed.

157

Working Syntax

DEFINE RULE suspended IS TEMPORAL

ON UPDATE TO Employee.status
WHERE new.status = 'suspended'

DO exec proc revoke_suspension (emp#)
atime = etime + (suspension_period)

Trigger Elements

Trigger Name : suspended
Triggering Event : Employee.status being set to

'suspended'

Triggered Action : Revoke the suspension

Event/Action Time Rel. : The action is to be performed
at a time 'suspension_period'

later than the event.

Requires an Extended S0L3 Syntax

CREATE TRIGGER suspended
AFTER (+ suspension_period) UPDATE OF status ON

Employee

158

REFERENCING OLD as pre_status, NEW AS post_status

WHERE post_status = 'suspended'

exec proc revoke_suspension (einp#)

In SQL-92 compliant terms

CREATE TRIGGER suspended
AFTER INTERVAL :suspension_period DAY UPDATE OF status
ON Employee

REFERENCING OLD as pre_status, NEW AS post_status

WHERE post_status = 'suspended'

exec proc revoke_suspension (emp#)

Example 7
Moving on to our hypothetical Programme Scheduling worked

example, we begin with a simple alerter for transmission

start times.

Working Syntax

DEFINE RULE weekday_start_rule IS TEMPORAL
TIMES = <weekdaystart>,

DAYSOFWEEK = [MON..FRI]
ON OCCURRENCE
DO Message 'Weekday Transmission Start Due'

159

Trigger Elements

Trigger Name : weekday_start_rule

Triggering Event : An absolute time 'weekdaystart'
for days in the range MON..FRI

Triggered Action : Alerter message
Event/Action Time Rel. : Immediately after

Requires an Extended S0L3 Syntax

CREATE TRIGGER weekday_start_rule

AFTER (weekdaystart, DAYSOFWEEK([MON..F R I])
Message 'Weekday Transmission Start Due'

SQL-92 does not have the sort of datetime functions found

in commercial DBMS for extracting the day of the week from
an absolute date and consequently the above syntax has been

left unaltered.

Example 8
The following alerter for newstimes is triggered by a set

of times on a range of days.

Working Syntax

DEFINE RULE weeknews rule IS TEMPORAL

160

TIMES = (weekdaynewsl, weekdaynews2,

weekdaynews3, weekdaynews4),

DAYSOFWEEK = [MON..FRI]

ON OCCURRENCE
DO Message 'Newstime Due7

Trigger Elements

Trigger Name
Triggering Event

Triggered Action
Event/Action Time Rel

: weeknews_rule

: An absolute time in the set
(weekdaynewsl,weekdaynews2,

weekdaynews3,weekdaynews4)

for days in the range MON..FRI

: Alerter message
: Immediately after

Requires an Extended S0L3 Syntax

CREATE TRIGGER weeknews_rule
AFTER TIMES(weekdaynewsl,weekdaynews2,weekdaynews3,

weekdaynews4),DAYSOFWEEK([MON..FRI])

Message 7Weekday Newstime Due7

The SQL-92 standard allows SETS to be defined as a comma

delimited list enclosed in brackets eg.

161

.. WHERE type IN (7horror7,7comedy7,'western7)

so here we could write

AFTER (TIME ¡weekdaynewsl, TIME :weekdaynews2,
TIME :weekdaynews3, TIME :weekdaynews4)

although, again, an equivalent of the necessary DAYSOFWEEK

function is lacking.

Example 9
In the final example from our worked examples we look at
rule lifetimes. We wish to make the previous rule apply

to the summer time schedule only.

Working Syntax

DEFINE RULE weeknews_rule IS TEMPORAL

TIMES = (weekdaynewsl, weekdaynews2,
weekdaynews 3, weekdaynews 4),

DAYSOFWEEK = [MON..FRI],
LIFETIME = (summerstart_date, summerend_date)

ON OCCURRENCE
DO Message 7Newstime Due7

Trigger Elements

162

Trigger Name
Triggering Event

weeknews rule
An absolute time in the set
(weekdaynewsl,weekdaynews2,

weekdaynews3,weekdaynews4)

for days in the range MON..FRI
during the lifetime of the rule.

Triggered Action Alerter message

Event/Action Time Rel. : Immediately after

Requires an Extended S0L3 Syntax

CREATE TRIGGER weeknews_rule
AFTER TIMES(weekdaynewsl,weekdaynews2 ,weekdaynews3,

weekdaynews4),DAYSOFWEEK([MON..FRI]),
LIFETIME (: summerstart_date, : summerend_date)

Message 'Weekday Newstime Due (Summer Schedule)'

SQL3 does not support the concept of a lifetime for a
trigger. The above syntax is notional.

163

Having reviewed the semantics of our worked examples we
are now in a position to summarize the required syntactic
extensions which they highlight. We will take the draft

SQL3 trigger definition statement as our starting point,

merge in the temporal clauses developed in previous
chapters, and finally, give the complete extended syntax

proposed.

The draft SQL3 standard gives the following syntax for

a database trigger:

TRIGGER_STATEMENT : : = CREATE TRIGGER <trigger__name>

<time>

<event>

ON table_name [referencing]

<action>

where:

6.2.3 The Extended Syntax

164

<trigger_name> = The name of the trigger

<time>

<event>

<table name>

[referencing]

BEFORE|AFTER indicating whether the trigger

is fired before or after the specified

event occurs.

We will need to extend this to allow an
optional delay between the event and the
action.

= INSERT|DELETE|UPDATE, indicating that
execution of an INSERT statement, a DELETE

statement or an UPDATE statement will fire

the trigger.

We will need to extend this to cater for
temporal events.

= Identifies the table which the DBMS must

watch for the triggering event.

= For UPDATE statements it may be necessary
to refer to the pre and post values to

allow comparisons within the trigger
statement. The full syntax is:

165

<action>

REFERENCING OLD [AS]
old_Gorrelation_naitie
[NEW [AS] new_correlation_name]

Or

REFERENCING NEW [AS]

new-corre1at ion_name
[OLD [AS] old_correlation_naine]

[WHEN (search_condition)]

(statement [,statement]...)

[granularity]

where

(search_condition) = an expression
controlling the
conditional firing
of the trigger.

and

166

[granularity] = FOR EACH ROW|FOR EACH
STATEMENT

The trigger fires for each row
inserted/deleted/updated or once for

the statement as a whole.

So far, the syntax allows only for INSERT, UPDATE and DELETE

type events on a specified table, we will refer to them as
/data_events/. Actions occur immediately BEFORE the event

or immediately AFTER the event. We can take zero therefore
as the default value of the first clause we will introduce,

an optional delay clause where 'delay7 is a time period

specified as an SQL-92 compliant datetime.

In order to bring 'time_events' into the picture we need to

re-state 'event' as follows:

<event> ::= <time_event> | <data_event>

<time_event> ::= [CYCLE = <time_interval>,
LIMIT = <max_cycles>]

[,TIMES = <time_range>|<specific_times>]

167

[,DAYSOFWEEK = <specified_days>]

[,DATE|DATES =
<date_range>,<specific_dates>]

[,LIFETIME = <start_date>, <finish_date]

The parameters used in <time_event> have the following

meanings:

CYCLE

CYCLE is the time interval between activations of a

recurrent rule where the firing is on a regular time basis.

[, CYCLE = <time_interval>]

<tirae_interval>
The parameter 'time_interval7 is expressed in terms of

months:days:hours:minutes:seconds

168

LIMIT
LIMIT is the number of cyclic recurrences defined for a
rule. It is one method of specifying a lifetime for a rule.

[, LIMIT = <max_cycles>]

<max_cycles>
The parameter /max_cycles/ is an integer value
representing the number of cyclic recurrences which the rule

is allocated. If no LIMIT is defined then the default value
is infinity ie. the rule will continue to recur until it is

deleted.

TIMES
TIMES specifies either an effective time range for cyclic

rules or explicit times at which to fire for other rules.

[, TIMES = <time_range>|<specific_times>]

<tirae_range>
The parameter 'time^ange' is an interval or series of
intervals during which cyclic firing of a rule is enabled.

169

The parameter 'specific_times' allows the specification of

one or more explicit times which will serve as a trigger for

non-cyclic rules.

<specific_times>

DAYSOFWEEK
DAYSOFWEEK specifies the days of the weeks on which the rule

is enabled.

[, DAYSOFWEEK = <specified_days>]

<specified_days>
The parameter 'specified_days' is a list of day identifiers.

DATES
DATES specifies either an effective date range for cyclic

rules or explicit times at which to fire for other rules.

[, DATES = <date_range>|<specific_dates>]

170

<date_range>
The parameter 'date_range' is a date interval or series of

intervals during which cyclic firing of a rule is enabled.

<specific_dates>
The parameter 'specific_dates' allows the specification of

one or more explicit dates which will serve as a trigger for
non-cyclic rules. However, if no year is specified they
become implicitly cyclic with a time interval of ' 1 y e ar'.

LIFETIME
LIFETIME specifies the timespan during which the rule is in

force.

[, LIFETIME = (<start_date>, <finish_date>)]

<start_date>, <finish_date>
The parameters 'start_date' and 'finish_date' specify the
date on which the rule is to come into force and the date

when it expires respectively. The default value for
'start_date' is today and for finish_date is infinity.

In the case of 'data_events' SQL3 provides a complete

syntax as shown below:

171

<data_event> := INSERT|DELETE|UPDATE

ON <table_name>

[REFERENCING OLD [AS] old_correlation_name

[NEW [AS] new_correlation_name] |
REFERENCING NEW [AS] new_correlation_name

[OLD [AS] old_correlation_name]

We can now bring the various elements together into
an Extended SQL3 Trigger Statement which has the form
shown overleaf:

172

TRIGGER_STATEMENT ::= CREATE TRIGGER <trigger_name>

BEFORE IAFTER [delay]
{

[CYCLE = <time_interval>,
LIMIT = <max_cycles>]
[,TIMES = <time_range> | <specific_tiraes>-]
[,DAYSOFWEEK = cspecified_days>]
[,DATE|DATES =

<date_range>,<specific_dates>]
[,LIFETIME = <start_date>, <finish_date]

| (INSERT|DELETE|UPDATE)

ON <table_name>

[REFERENCING OLD [AS] old_correlation_name

[NEW [AS] new_correlation_name] |
REFERENCING NEW [AS] new_correlation_name

[OLD [AS] old_correlation_name]

}

[WHEN (search_condition)]

(statement [,statement]...)

[granularity]

173

The syntax on the previous page shows how the temporal

elements and the SQL-92 and SQL3 components can be combined

without the introduction of unnecessary complexity. The

worked examples used to develop this extended syntax serve
to demonstrate its intuitive nature. These issues are

discussed further in the concluding chapter.

174

Chapter 7
Conclusions

In this chapter we outline the conclusions which we have
reached and draw attention to some areas where further

research could be of benefit.

7.1 Temporal Database Rules and SQL

In our review of the SQL standard we looked at how it is
constantly evolving, highlighting the many innovative

developments, in areas ranging from internationalisation to
integrity checking, which are being built into the

language. The SQL-92 standard, in particular, had a lot to

say regarding how time should be specified.

For the specification of triggers, however, we had to base

our discussion on SQL3, an advanced draft version of the

next revision of the SQL standard, which is due for
publication around 1995. In spite of this, it proved

possible to abstract SQL3's trigger format (which has
largely crystallised at this stage) into the following

components:

1. A Trigger Name
2. A Triggering Event

3. A Triggered Action

175

4. An Event/Action Time Relationship

As we have seen, SQL3 limits the time relationship to

'immediately before' and 'immediately after' the triggering

event. Moreover, it limits triggering events to INSERT,

UPDATE and DELETE actions.

When the above abstraction mechanism was applied to the
worked examples developed in the earlier chapters, it

proved possible to re-cast them into the 'shape' required
by SQL3 and to achieve compliance with the SQL-92 datetime
specification syntax, but not to capture the complete

semantics of the original.

The underlying limitations in SQL for the purposes of

specifying temporal rules (lack of support for delayed
actions; time-based triggers; cyclic operations and rule

lifetimes) necessitated the use of an extension of the
basic SQL3 draft syntax.

In the final section of Chapter Six the results of all of
the previous work were brought together to set out a formal
specification of the proposed extended syntax for database

trigger definition highlighting where this departed from
the evolving SQL framework. The proposed extensions capture

all of the semantics required for the specification of

time-based rules.

176

7.2 The Graphical Modelling Formalism

In Chapter Five we discussed the formalism chosen
for specifying temporal rules - OSA (Object-Oriented

Systems Analysis) which supports the concepts of temporal
events and constraints. We emphasised that the suitability
of this methodology owed much to its object-oriented

basis.

We saw how it was possible to adapt the state-net diagrams

used in OSA to capture the details of object behaviour

(including time-based triggers and real-time constraints)

and demonstrated how this could be used as an efficient

mechanism for the identification and subsequent

specification of temporal rules.

We examined how OSA behaviour modelling combined three

views of an object:
(a) the states which it can assume

(b) the conditions which cause it to change
state

(c) the actions associated with the object in
these states or in changing between states.

This results in what is called an Object Behaviour Model

which uses these three basic concepts - states, triggers

177

and actions, the very language of database rules.

Importantly, real-time constraints governing the object's
behaviour can be added to the basic state-net which

represents this model.

As with database rules the firing of object state
transitions is far from automatic. The trigger must first

be enabled by its designated prior state. Additional
conditions may also need to be satisfied and indeed a

trigger may be viewed as a boolean expression which
evaluates to true or false. This strongly echoes the

trigger and condition syntax used for specifying database

rules.

Once the state-net was drawn timing constraints were added

to capture any important temporal aspects of the object's
behaviour. In our example domains timing constraints were

specified for triggers, actions, states and the duration of
state-transition paths. Constraints on triggers specified

the acceptable 'response time' between the firing of the

trigger and the commencement of t h e a c c o m p a n y i n g

transition.

In adapting OSA as a formalism for temporal database rules
the benefits were twofold. Firstly, a graphical

representation mechanism emerged and secondly, it provided

the necessary framework for the systematic identification

and specification of temporal rules.

178

7.3 Research Directions in Database Rules

In this section we take a brief look at some of the

possible ways in which the field of database rules might

develop. These range from further developments in the areas
of syntax and semantics; CASE Tools and Knowledge

Acquisition; High Level Languages; Explanation Facilities
and the special requirements of Distributed and Object-

Oriented databases.

The issue of extending the syntax to support the
combination of transition predicates with boolean operators

is discussed in [WID089]. For example, a free-format

specification of such a rule, 'Rl', might appear something

like the following:
R1 when inserted in tl

or deleted from t2
where predicate then op-block

As can be seen this also opens up the possibility of

referring to multiple tables in a trigger. The points
made by Stonebraker [STON92] regarding the need for a
simplifying assumption regarding semantics have already

been touched upon in Chapter Three. Another issue is the

provision of what he refers to as an explain facility to

allow hypothetical rule firing - 'what would happen if I

179

fired this rule?7 . It is to be expected that this will be

adopted as a standard service in future systems given the

body of work already built up by AI researchers.

Widom and Finkelstein also suggest that, as rules generally

enforce constraints, it should be possible to just type
in the constraint and have the rules automatically
generated. To successfully bring the benefits of CASE to

this arena, however, requires a good metaphor for
graphically specifying rules and for getting user

confirmation of their correctness d u r i n g d e s i g n

something equivalent to the way dataflow diagrams etc. are

used in SSADM and other methodologies. This should also
support schema generation. The OSA formalism, as adapted
in Chapter Five, might be worthy of further investigation

for this purpose.

Before specifying constraints we have to establish what
they are and it may be that rules systems will carry the

bottleneck associated with knowledge acquisition into the
database domain. However, many proposals for streamlining

this process have been put forward e.g. the use of Kelly's
repertory grids [F0RD91] and the outlook looks positive.

Researchers seem to agree ([STON92] , [WI D0 8 9]) on the

usefulness of providing a High Level Language for rules at
a level of abstraction above the syntax used in prototype

systems. Like any language, this should provide a

180

debugging facility for use by the 'database production

rules' programmer which would issue warnings of potential

loops and rule conflicts.

Rule systems will also need to prove themselves in the new
territories opened up by advances in object-oriented and

distributed database technologies. The ability to define

global rules in a location transparent manner needs to be
examined. For object oriented systems rules may need to
cope with the added complexity introduced by object

versions.

Finally, it might be worthwhile at this point to stand back

and have a look at where all of this work is likely to

yield the greatest benefit. A recent paper [STON92] sees

these systems being used mainly for 'simple' rule bases
replacing most of what currently goes to make up

application programs, with front-end rule systems being
used for 'hard expert system' shells such as automated
geologist or physician type problems. Perhaps we will find
the client-server paradigm surfacing here, giving us hybrid

systems that offer co-ordination between such back-end and
front-end rule bases.

7.4 Conclusions and Suggested Future Work

The following conclusions are drawn:

181

(a) OSA can be adapted as an effective formalism

for modelling temporal database rules.

The formalism adapted for the graphical representation of
database rules - OSA (Object-Oriented Analysis) lent itself

to the compact definition of time-based triggers and

constraints. The suitability of this methodology owed much
to its object-oriented basis, indeed, database rules might

be viewed of as 'methods' for the Classes which a database

seeks to model, and triggering events thought of as
'messages'. Indeed, this echoes the trend to increased

object-orientation in SQL itself.

(b) The extended SQL syntax was capable of expressing all
of the time-based rules thrown up during OSA analysis.

Recent work by Chandra and Segev [CHAN93], combining the

Postgres extensible database with an elegant calendric

approach to the specification of time points, confirms the
semantic power of time-triggered database rules. However,
Segev (pers. comm.) has found the use of Postgres somewhat

restricting as an implementation medium for their ideas.

The example applications given here indicated that an
Extended-SQL compliant language approach allied to a sound
object-oriented modelling formalism has a broad

applicability. Furthermore, it was apparent that adding a
temporal dimension to rule actions was a key enabling

182

factor in achieving increased semantic power.

As to suggested future work, it would be interesting to see

what could be achieved in developing the graphical

formalism into a full CASE concept by evolving a formal
specification of temporal rule semantics using, say, the

language 'Z', and combining this with the graphical front-
end. Useful objectives for such research might be, firstly
to develop a specification for a CASE tool which could take
a graphically represented rule set as input and generate

a set of production rules and, secondly, to evaluate its

potential, for instance, as a methodology for partitioning
out and building the server-side logic (business rules) for

Client-Server applications.

183

References

[ANDR8 7]

[ASTR7 6]

[BANE 8 7]

[CARD88]

[CHAK90]

[CHAN93]

[CHEN7 6]

[CLIF83]

Andrews, T., and Harris, C. "Combining
Language and Database Advances in an
Object-Oriented Development Environment."
Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages
and Applications, Orlando, Fl, October, 1987

Astrahan, M.M., Blasgen, M.W., Chamberlin,
D.D., Eswaran, K.P., Gray, J.N., Griffiths,
P.P., King, W.F., Lorie, R.A., McJones, P.R.,
Mehl, J.W., Potzolu, G.R., Traiger, I.L.,
Wade, B.W. and Watson, V. "System R: A
Relational Approach to Database Management"
ACM Transactions on Database Systems, 1(2),
1976, pp. 97-137

Banerjee, J. "Data Model Issues for
Object-Oriented Applications" ACM
Transactions on Office Information Systems,
5(1), 1987, pp. 3-26

Cardelli, L. "A Semantics of Multiple
Inheritance" Information and Computation,
20(8), 1977, pp. 564-576

Chakravarthy, U.S., Grant, J. and Minker, J. "A
Logic-based Approach to Semantic Query
Optimization" ACM Transactions on Database
Systems, 15(2), 1990, pp. 162-207

Chandra, R. and Segev, A. "Managing Temporal
Financial Data in an Extensible Database"
Proceedings of the 19th International
Conference on Very Large Databases, Dublin,
Ireland, 1993, pp. 302-313

Chen, P.P.S. "The Entity-Relationship Model -
Toward a Unified View of Data" ACM
Transactions on Database Systems, 1(1), 1976,
pp. 9-36

Clifford, J. and Warren, D.S. "Formal Semantics
for Time in Databases" ACM Transactions on

184

Database Systems, 8(2), 1983

[COAD90]

[CQDD70]

[CODD79]

[COPE84]

[DAYA87]

[DEMA79]

[EISE93]

[EMBL92]

[EPST90]

[FORD91]

Code, P. and Yourdon, E. "00A: Object Oriented
Analysis" Prentice Hall, Englewood Cliffs,
N.J., 1979

Codd, E.F. "A Relational Model of Data for
Large Shared Data Banks" Communications of
the ACM, 13(6), 1970, pp. 377-387

Codd, E.F., "Extending the Database Relational
Model to Capture More Meaning" ACM
Transactions on Database Systems, 4(4), 1979,
pp. 397-434

Copeland, G. & Maier, D. "Making Smalltalk a
Database System" Proceedings of the ACM
SIGMOD International Conference on the
Management of Data. ACM, New York, 1984, pp.
316-325

Dayal, U, and Maniola F. "Simplifying Complex
Objects: The Probe Approach to Modelling and
Querying Them". Proceedings of the German
Database Conference, Burg Technik and
Wissenschafts, Darmstadt, April, 1987

De Marco, T. "Structured Analysis and System
Specification" Prentice Hall, Englewood Cliffs,
N.J., 1979

Eisenberg A., & Kulkarni, K. "SQL-92 and SQL3
(its eventual successor)" in Tutorial Notes,
19th International Conference on Very Large
Databases, August 1993, Dublin, Ireland.

Embley, D. W., Kutz, B.D. and Woodfield, S.N.
"Object-Oriented Systems Analysis : A Model-
Driven Approach" Yourdon Press, Prentice Hall
Building, Englewood Cliffs, N.J., 1992

Epstein B. "Trends and Implications in
Database & Repository Technology" Butler Cox
Foundation Opening Address, 1990. Audio
Cassette, Sybase Inc.

Ford, K.M., Petry, F.E., Adams-Webber, J.R. and
Chang, P.J. "An approach to Knowledge
Acquisition Based on the Structure of Personal
Construct Systems" IEEE Transactions on
Knowledge and Data Engineering, 3(1), 1991, pp.
78-88

185

[GALL84]

[GANE 7 9]

[GRANT92]

[HAAS90]

[HAMM81]

[ISHI91]

[JENS91]

[JENS92]

[KHOS8 6]

[KIMW90]

[KMAN91]

Gallaire, H., Minker, J. and Nicolas, J.-M.
"Logic and Databases: A Deductive Approach"
ACM Computing Surveys, 16(2), 1984, pp. 153-
185

Gane, C. and Sarson, T. "Structured Systems
Analysis: Tools and Techniques" Prentice Hall,
Englewood Cliffs, N.J., 1979

Grant, J. and Minker, J. "The Impact of Logic
Programming on Databases" Communication of the
ACM, 3, 1992, pp. 66-81

Haas et al. "Starburst Mid- Flight : As the
Dust Clears" IEEE Transactions on Knowledge and
Data Engineering, 2(1), 1990, pp. 143-160

Hammer, H. & McLeod, D. "Database Description
with SDM: A Semantic Database Model" ACM
Transactions on Database Systems, 6(3), 1981,
pp. 351-386

Ishida, T. "Parallel Rule Firing in Production
Systems" IEEE Transactions on Knowledge and
Data Engineering, 3(1), 1991, pp. 11-17

Jensen, C.S. and Mark, L. "Queries on Change in
an Extended Relational Model". IEEE
Transactions on Data and Knowledge Engineering
4(2), pp.192-200, 1992

Jensen, C.S. "Incremental Implementation Model
for RElational Databases with Transaction Time"
IEEE Transactions on Data and Knowledge
Engineering 3(4), pp. 461-473, 1991

Khoshafian, S.N. & Copeland, G.D. "Object
Identity" Proceedings of the ACM Conference
on Object-Oriented Programming Systems,
Languages and Applications, Portland, OR.
September, 1986

Kim, W. "Object-Oriented Databases:
Definition and Research Directions" IEEE
Transactions on Knowledge and Data
Engineering, 2(3), 1990

"Application of Ingres Rules" Ingres Knowledge
Manager Course Notes, ASK Ingres, 1991

186

[LECL88]

[L0HM91]

[LYNG84]

[MAIE86]

[MAIE87]

[MCCA89]

[MCMA9 2]

[MELT9 3]

[PECK88]

[RMON92]

[ROGE88]

Lecluse, C. "02, an Object-Oriented Data
Model" ACM International Conference on the
Management of Data, Chicago, May, 1988

Lohman, G.M., Lindsay, B., Pirahesh, H.,
Schiefer, K . B . "Extensions to Starburst :
Objects, Types, Functions, and Rules"
Communications of the ACM, October 1991,
34, (10),1991, pp. 94-109

Lyngbeck, P and McLeod, D. "Object Management
in Distributed Information Systems" ACM
Transactions on Office Information Systems,
2(2), 1984, pp. 96-122

Maier, D. and Stein, J. "Development of an
Object-Oriented DBMS" Proceedings of the ACM
Conference on Object-Oriented Programming
Systems, Languages and Applications,
September, 1986, pp. 472-482

Maier, D. & Stein, J. "Development and
Implementation of an Object-Oriented DBMS".
In B. Shriver and P. Werner e d s . Research
Directions in Object-Oriented Programming, pp.
355-392, MIT Press, Cambridge, MA, 1987

McCarthy, D. and Dayal, U. "The Architecture of
an Active Object-Oriented Database System"
Proc. 1989 ACM-SIGMOD Conf. on Management of
Data, Portland, OR, June 1989

McManus, C. "A Comparison of Conventional Query
Optimisation and Semantic Query Optimisation in
a Relational Database" M.Sc Thesis, Dublin City
University, August 1992

Melton, J. & Simon, A.R. "Understanding the New
SQL: A Complete Guide" Morgan Kaufmann, San
Mateo, California.

Peckman, J. & Maryanski, F. "Semantic Data
Models" ACM Computing Surveys, 20(3), 1988,
pp. 153-189

"RoboMon Rule Writing" Course Notes for RoboMon
Version 5.0, Computer Information Software
Ltd., July 1992,

R o g e r s , T.R. & C a t t e l l , R . G . G.
"E n t i t y - R e l a t i o n s h i p D a t a b a s e U s e r

187

Interfaces". Proceedings of the ER Institute
(1988)

[ROWE 8 7]

[SHEK88]

[SHEN89]

[SHIP81]

[SILB91]

[SKAR87]

[SNYD8 6]

[STON7 6]

[STON83]

[STON85]

[STON86]

Rowe, L .A. & Stonebraker, M.R. "The Postgres
Data Model" Proceedings of the International
Conference on Very Large Databases, September,
1987, pp. 83-96

Shekar, S., "A formal model of trade-off
between optimization and execution costs in
semantic query optimization" Proceedings of
the 14th International Conference on Very
Large Databases, August, 1988, pp. 457-467

Shenoy, S., T. & Ozsoyoglu, Z.M. "Design and
Implementation of a Semantic Query Optimizer"
IEEE Transactions on Knowledge and Data
Engineering, 1(3), 1989, pp. 344-361

Shipman, D.W. "The Functional Data Model and
the Data Language DAPLEX" ACM Transactions on
Database Systems, 6(1), 1981, pp. 140-173

Silberschatz, A. et al. "Database Systems:
Achievements and Opportunities" Communications
of the ACM, 34(10), 1991, pp. 110-120

Skarra A .H . & Zdonik, S.B. "Type Evolution in
an Object-Oriented Database" in Research
Directions in Object-Oriented Programming, B.
Shriver & P. Wegner (eds.), MIT Press 1987,
p p . 1-15

Snyder, A. "Encapsulation and Inheritance in
Object-Oriented Programming Languages"
Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages
and Applications Portland, OR, September, 1986

Stonebraker et al. "The Design &
Implementation of INGRES" ACM Transactions on
Database Systems, 1(3), 1976, pp. 189-222

Stonebraker, M et al. "Implementation of Rules
in Relational Database Systems" University of
California Berkeley CSD, UCB/CSD 83/151,
November 1983

Stonebraker, M. "Triggers and Inference in Data
Base Systems" Memorandum No. UCB/ERL M85/46, 8
May 1985

Stonebraker, M. et al. "An Analysis of Rule
Indexing Implementations in Data Base Systems"

188

[STON87a]

[STON87b]

[STON88]

[STC)N90a]

[ST0N9Qb]

[ST0N91]

[STON92]

[WENS88]

[WID089]

[ZANI83]

[ZD0N9Q]

Memorandum No. UCB/ERL M86/6, 16 January 1986

Stonebraker, M. "The Design of the Postgres
Storage System" Proceedings of the 13th
International Conference on Very Large
Databases, Brighton, England, 1987

Stonebraker M. et. al. "The Design of the
Postgres Rules System" IEEE International
Conference on Data Engineering 1987, pp.
356-374

Stonebraker, M. "Readings in Database
Systems" Morgan Kaufman Publishers, Inc. San
Matio, California, 1988

Stonebraker, M. et al. "The Implementation of
Postgres" IEEE Transactions on Knowledge and
Data Engineering, 2(1), 1990, pp. 125-142

Stonebraker, M. et al. "The Implementation of
Postgres" Memorandum No. UCB/ERL M90/34, 27
April 1990

Stonebraker, M. & Kemnitz, G. "The Postgres
Next Generation Database Management System"
Communications of the ACM, 34(10), 1991,
pp. 78-92

Stonebraker, M. "The Integration of Rule
Systems and Database Systems" IEEE Transactions
on Knowledge and Data Engineering, 4(5), 1992,
pp. 415-423

Wensel, S. (Ed.) "The Postgres reference
Manual" Memorandum No. UCB/ERL M88/20, 25 March
1988

Widom, J. & Finkelstein, S.J. "A Syntax and
Semantics for Set-Oriented Production Rules in
Relational Database Systems" Research Report -
IBM Research Division RJ 6880 (65706) 6/12/89

Zaniolo, C "The Database Language GEM"
Proceedings SIGMOD Conference 1983, pp.
297-218

Zdonik S.B. & Maier, D. "Readings in
Object-Oriented Database Systems" S.B. Zdonik
& D. Maier (eds.), Morgan Kaufman, 1990

189

