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ABSTRACT

M o r p h o l o g i c a l  S t u d ie s  o n  K l u y v e r o m y c e s m a r x i a n u s  v a r .  m a r x i a n u s  

NRRLy2415 in  S u s p e n s io n  C u l t u r e :  A S t u d y  I n c o r p o r a t i n g  C o m p u t e r
A id e d  I m a g e  A n a l y s is

The m orpho log y  o f  the lactose fe rm en ting  organism , Kluyveromyces marxianus 
var. marxianus N R R L y2 4 1 5  was studied in  batch and con tinuous cu ltu re . The 
m o rp h o lo g y  o f  the organ ism  was observed to  va ry  s ig n if ic a n tly  fro m  a budd ing  
yeastlike  fo rm  to  a branched pseudohyphal fo rm  depending on  the opera ting  
cond itions. The fo llo w in g  m orpho log ica l classes w ere deemed im p o rta n t fo r  the 
com plete descrip tion  o f  cu ltu re  m orpho logy : yeast, e longated yeast, fila m e n t, 
double yeast, double elongated yeast, double f ila m e n t and pseudohyphae.

Im age analysis was used to  im p lem en t the c lass ifica tion  system, due to  its 
o b je c tiv ity  in  measurement o f  v isua l phenomena. The p ro toco l developed was also 
capable o f  m easuring geom etric properties o f  the ce ll popu la tion  in c lu d in g  vo lum e, 
leng th  and w id th  fo r  a ll ce lls and hypha l g row th  u n it leng th  fo r  pseudohyphae.

The predom inan t m orpho logy observed fo r  the organism  in  fu l ly  aerobic batch 
cu ltu re  was yeast-like . W hen the ag ita tion  rate was decreased, an increased 
heterogene ity in  the m o rpho log y  was observed, w ith  the generation  o f  m ore 
elongated yeast and filam en tous fo rm s. T h is  was a ttribu ted  to  p a rtia l oxygen 
lim ita t io n  in  the ferm entations.

In  chem ostat cu ltu re , the m orpho logy  observed was p redom ina n tly  pseudohyphal. 
T h is  m o rp h o lo g ica l fo rm  was found  to  dom inate  over a large range o f  d ilu t io n  rates 
(0 .1 -0 .45h '])  and substrate feed concentrations (5 to  2 0 g /L  lactose). A t  bo th  
extrem a o f  d ilu t io n  rates a revers ion to  a yeastlike  m o rp h o lo g y  was observed. The 
m yce lia l m o rp h o lo g y  was a ttribu ted  to  substrate lim ita t io n  and was dem onstrated 
to  be o f  eco log ica l advantage under substrate lim ite d  cond itions.

K in e tic  m o d e llin g  o f  substrate m etabo lism  was undertaken fo r  con tinuous and 
batch cu ltu re  results. I t  was dem onstrated that, the s to ich iom e try  o f  the m e tabo lic  
pathways studied was iden tica l under a ll operating cond itions. T h is  is s ig n ifica n t, 
as the m o rp h o lo g y  o f  the o rgan ism  varies s ig n ifica n tly  fro m  batch to  continuous 
culture.

A  p o p u la tio n  m ode l was developed w h ic h  was capable o f  describ ing  the 
d is tribu tions  o f  ce ll geom etric parameters based on sum m ed logno rm a l 
d is trib u tio n s  o f  selected m o rpho log ica l classes.

The u ltrastructu re  o f  pseudohyphae was exam ined. Th is  s tudy dem onstrated 
s ig n ifica n t d iffe rences in  methods o f  fo rm a tion  between pseudohyphae and true  
hyphae and h ig h lig h te d  key issues tha t need to  be addressed i f  successful m o d e lin g  
o f  such g ro w th  is to  be undertaken.



NO M ENCLATURE

Symbol Definition Units Dimens

A Projected area o f  pe lle t l^m2 L 2

A Cross sectional area o f  ce ll | im 2 L 2

^estimated Estim ated ce ll cross sectional area Hm2 L 2

A  measured Observed ce ll cross sectional area (am2 L 2

c ‘L
C oncentra tion  o f  oxygen in  liq u id  

phase at 100% saturation

— ---

O xygen concentra tion  at tim e  0 — ---

C L,
O xygen concentration at tim e  t — ---

CL C oncentration o f  oxygen in  liq u id  

phase

— ---

c m Biom ass concentration g L -1 M L '

D D iam eter o f  the daughter cell jam L

D Distance in  d ire c tio n  o f  

exam ination

variab le L

D

D f

D ilu tio n  rate 

Double filam ents

h ’ 1 T l

A Im pe lle r d iam eter m m L

A

D y

Tank d iam eter 

D oub le  yeastlike  ce lls

m m L

F

F

F low ra te  in to  b ioreactor 

F ilam ents

L h '1 L 3T

F ac F raction o f  substrate used in  

ethanol p roduction

— ---

H Length  o f  the daughter ce ll (.im L

1 In tens ity — —

Js Substrate f lu x gh-1 M T

criiical C ritica l substrate f lu x  at w h ich  

ethanol p roduc tion  ensues

g h '1 M T

ii



k Power la w  constant Pa M L _1T

k\ In it ia l substrate concentra tion  

dependence constant

g L ’ 1 M L ’3

kc Casson constant (Pa s)0'5 ( L - 'M T 1

kLa V o lu m e tr ic  oxygen, gas-liqu id  

mass transfer co e ffic ie n t

s '1 T ‘ i

ks Saturation constant in  M o n o d  eq. g L ’ 1 M L '3

L C e ll length (j,m L

L Feret leng th  o f  ce ll pm L

u E ffe c tive  hypha l length fim L

^hgu H ypha l g row th  u n it leng th jam L

u Leng th  o f  segment i pm L

u T o ta l hypha l length pm L

M M y c e liu m

Mass o f  ce ll p e lle t g M

Mi M o rp h o lo g y  index — —

N Consistency index — —

N C e ll num ber L -3

N N um ber o f  subd iv is ions — —

N N um ber o f  tip s  per hyphae — —

Ndf N u m e ria l fra c tio n  o f  double 

filam ents

*

Niy N u m e ria l fra c tio n  o f  yeastlike  

double cells

---

Nf N u m e ria l fra c tio n  o f  filam ents — —

Nm N u m e ria l fra c tio n  o f  m yce liu m — —

Nt T o ta l popu la tion  size cells —

Nv Rate o f  V es ic le  S upp ly — T"i

Ny N u m e ria l fra c tio n  o f  yeastlike  

sing le cells

—“

P Pow er in p u t W l 2m t

P C oncentra tion  o f  p roduct g L ’1 M L ’3

p(x) P ro b a b ility  o f  x — —

iii



Rs S pec ific  substrate uptake rate g substrate

/g  ce ll /  h

Rvsc Rate o f  V S C  m ovem ent

S  D iam eter o f  the m other bud pm

interface

S  Substrate concentra tion  g L "1

S0 In it ia l substrate concentra tion  g L "1

Sycasi Surface area o f  yeastlike  ce lls | im 2

5'f/in Surface area o f  pm

filam en tous /m yce lia l ce lls 

Sv Surface area to  vo lum e  ra tio  pm "

S t  Surface area to  length ra tio  p m

t T im e  s,h

tc C ircu la tio n  tim e  s
j

V  O vera ll ce ll vo lum e  pm
a

y  M ean  ce ll vo lu m e  (am

V B io reacto r V o lu m e  L

V\ V o lu m e  o f  segment, i p m

W C e ll w id th  p in

W Feret w id th  o f  ce ll pm

w H is togram  bucket w id th  variab le

x  D istance in  x  d ire c tio n

X  C e ll d ry mass concentra tion  gL"

Xo B iom ass concentra tion  at tim e  0 gL"

•^aerobic A e ro b ica lly  produced biomass gL"

Anaerobic A nae rob ica lly  produced biomass g L ‘

A^otai To ta l biom ass gL"

y Y cas tlike  ce lls  (Yeast and

elongated yeast)

Yp/s aerobic Y ie ld  o f  ethanol per u n it substrate g e thano l/ g
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Figure 5.6

Ferm enter co n fig u ra tio n  fo r  chemostat opera tion

Ferm enta tion  sample d isp lay ing  p re d o m in a n tly  yeast-like

m orpho logy. (a) Sample m a g n ifica tio n  at 200x, (b ) Sample

m a g n ifica tion  at 400x. Bars =  2 0 p m

E xam ple  o f  pseudohyphal ce lls taken fro m  chem ostat cu ltu re . 

Sample m a g n ifica tio n  at 200x. B a r =  20 pm

E xam ple  o f  in term edia te  cells taken fro m  batch cu ltu re , (a) Sample 

m a g n ifica tio n  at 200x. (b ) Sample m a g n ific a tio n  at 400x. B a r =  

20pm .

M o rp h o lo g ica l fo rm s d isp layed by  K. marxianus N R R L y2 4 1 5  (a) 

yeast (b ) elongated yeast (c) double yeast (d ) doub le  e longated yeast 

(e) f ila m e n t ( f)  double fila m e n t (g ) m yce liu m . B a r =  10pm

A p p lic a tio n  o f  con tou r ro ta tion  m ethod (adapted fro m  H u ls  el al.

(1992))

O ve rv ie w  o f  a lgo rithm s used in  program s A C Q U IR E  and 

M E A S U R E

P re lim in a ry  im age processing state (a) Im age A : (p o rtio n  o f)  in it ia l 

g rey im age; (b ) Im age B : unedited b in a ry  im age; (c) Im age C : edited 

b ina ry  image. F o r c la r ity , o n ly  a p o rtio n  (app rox im a te ly  one th ird ) 

o f  the fu l l  im age fram e is displayed.

M o rp h o lo g ica l operations fo r  secondary im age processing: (a) 

Segment 2; (b ) Segment 3; (c) Segment 4. B a r =  10pm .

S ke le ton isa tion  and characterisation o f  m yce liu m ; (a) o r ig in a l grey 

im age, (b ) b inarised  vers ion  o f  largest m yce liu m , (c) b ina ry  im age 

after app lica tio n  o f  ske le ton isa tion  operator, (d ) pruned to  rem ove 

artefact branches, (e) num ber o f  tips.

E rro r fu n c tio n  (sa) fo r  increasing m easured ce ll cross-sectional area 

(a) 200x m agn ifica tion , (b ) 400x m agn ifica tion .
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Figure 6.10

C om parison o f  d is tribu tions  o f  cross-sectional area, leng th  and 

w id th  o f  a sing le ce ll popu la tion  m easured at 200x and 400x 

m a gn ifica tion

Test fe rm en ta tion  g row th  p ro file  fo r  K. marxianus

D is tr ib u tio n  o f  ce ll m orpho log ies du ring  the test fe rm enta tion

Frequency d is tr ib u tio n  o f  ce ll properties du ring  fe rm en ta tion  run. (a) 

vo lum e, (b) leng th

7x/s aerobic versus d ilu t io n  rate fo r  K. marxianus g row n  in  lactose- 

lim ite d  chem ostat (800 rpm , 1 vvm )

D ete rm ina tion  o f  c r it ica l substrate f lu x  fo r  K. marxianus g row n  in  

lac tose -lim ited  chem ostat (w hey  m ed ium , 800rpm , lv v m )

Schem atic o f  the proposed m echan ism  fo r  substrate bypass o f  the 

reactor

S ens itiv ity  analysis on m odel p a ra m e te r /  long  dash (f=  0 .0), so lid  

line  (f= 0.03), short dash (f= 0.06)

S e n s itiv ity  analysis on m odel param eter ks; long  dash (ks = 0 .0036), 

so lid  line  (ks =0 .036), short dash (ks =0.36).

S e ns itiv ity  o f  m ode l to  va ria tio n  in  So; lo n g  dash (So = 15g /L ), so lid  

line  (So =  2 0 g /L ), short dash (So =  25g/L ).

S e n s itiv ity  analysis on m odel param eter Js; long  dash (Js = 

2 .02g /L /h ), so lid  line  (Js =  3 .02g /L /h ), short dash (Js =  4 .02g /L /h ).

Chem ostat fe rm enta tion  1-K in e tic  o ve rv ie w  o f  2 0 g /L  run  (a) 

biom ass (b) ethanol (c) res idua l substrate and pH . S o lid  lines - 

m ode l p re d ic tio n  o f  data (So = 19.5 g /L )

Chem ostat Ferm etation  2 - K in e tic  o ve rv ie w  o f  15 g /L  run  (a) 

biom ass (b ) ethanol (c) residual substrate and pH . S o lid  lines - 

m odel p re d ic tio n  o f  data. (So =  14.5 g /L )

Chem ostat fe rm enta tion  3 - K in e tic  o ve rv ie w  o f  lO g /L  ru n  (a) 

biomass (b) ethanol (c) residual substrate and pH . S o lid  lines - 

m ode l p re d ic tio n  o f  data (So = 10.0 g /L )
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Figure 6.11 Chem ostat Ferm enta tion  4 - K in e tic  o ve rv ie w  o f  5g /L  ru n  (a) 

biom ass (b) ethanol (c) res idua l substrate and pH . S o lid  lines  - 

m odel p re d ic tio n  o f  data (So =  5.2 g /L )

Batch Ferm enta tion  1 -  800rpm , l w m  w h e y  m ed ium . B roken  L in e

-  s to ich iom e tric  p red ic tion  fo r  substrate concentra tion

B a tch  Ferm enta tion  2 -  400rpm , l w m  w h e y  m edium . B roken  L in e

-  s to ich iom e tric  p re d ic tio n  fo r  substrate concentra tion

B atch  Ferm enta tion  3 -  300rpm , lw m  w hey  m ed ium . B roken  L in e

-  s to ich iom e tric  p re d ic tio n  fo r  substrate concentra tion

B a tch  Ferm enta tion  4 -  200rpm , lw m  w hey  m ed ium . B ro ke n  L in e

-  s to ich iom e tric  p re d ic tio n  fo r  substrate concentra tion

Estim ated S pecific  Substrate uptake rates (Rs) versus tim e  fo r  w h e y  

ferm entations

The e ffec t o f  kj,a on  Js critical in  w hey  m ed ia  batch cu ltu re

B a tch  Ferm enta tion  5 -  800rpm , lw m  Y E P D  m edium . B ro ke n  

L in e  -  s to ich iom e tric  p re d ic tio n  fo r  substrate concentra tion

B atch Ferm enta tion  6 -  200rpm , l w m  Y E P D  m ed ium . B ro ke n  

L in e  -  s to ich iom e tric  p re d ic tio n  fo r  substrate concentra tion

B atch  Ferm enta tion  7 -  800rpm , l w m  Y E P L  m edium . B roken  

L in e  -  s to ich iom e tric  p re d ic tio n  fo r  substrate concentra tion

Batch Ferm enta tion  8 -  200rpm , lw m  Y E P L  m ed ium . B ro ke n  

L in e  -  s to ich iom e tric  p re d ic tio n  fo r  substrate concentra tion

M o rp h o lo g y  d is tr ib u tio n  versus tim e  fo r  w h e y  batch cu ltu re  g ro w n  

at 800 rpm , lw m .  B la ck  -  Yeast; R ed -  D oub le  yeast; G reen -  

E longated yeast; Y e llo w  - D oub le  e longated yeast; D a rk  B lue  -  

F ilam ents; Purp le -  D oub le  filam ents ; L ig h t B lu e  -  Pseudohyphae

M o rp h o lo g y  d is tr ib u tio n  versus tim e  fo r  w hey  batch cu ltu re  g ro w n  

at 400 rpm , lw m  (Legends F igu re  7.1)

M o rp h o lo g y  d is tr ib u tio n  versus tim e  fo r  w hey batch cu ltu re  g ro w n  

at 300 rpm , l w m  (Legends F igu re  7.1)
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Figure 7.14

M o rp h o lo g y  d is tr ib u tio n  versus tim e  fo r  w hey  batch cu ltu re  g row n  

at 200 rpm , lw m  (Legends F igure  7.1)

M o rp h o lo g y  d is tr ib u tio n  versus tim e  fo r  Y E P L  batch cu ltu re  g row n 

at 800 rpm , lw m  (Legends F igure  7.1)

M o rp h o lo g y  d is tr ib u tio n  versus tim e  fo r  Y E P D  batch cu ltu re  g row n  

at 800 rpm , lw m  (Legends F igure  7.1)

M ean geom etric  parameters o f  ce lls in  batch cu ltures g row n  at 800 

rpm , 1 w m  on various m edia, (a) m ean ce ll vo lum e , (b) m ean ce ll 

length, (c) mean ce ll w id th , f i l le d  c irc les  - Y E P L , open c irc les  - 

Y E P D , open triang les - W hey. D a ta  presented versus b iom ass 

concentra tion  due to  d ifferences in  in o cu lu m  size and in it ia l 

substrate concentra tion

M o rp h o lo g y  d is tr ib u tio n  versus tim e  fo r Y E P L  batch cu ltu re  g ro w n  

at 200 rpm , lw m  (Legends F igure  7.1)

M o rp h o lo g y  d is tr ib u tio n  versus tim e  fo r  Y E P D  batch cu ltu re  g row n  

at 200 rpm , l w m  (Legends F igure  7.1)

M ean geom etric  parameters o f  cells in  batch cultures g ro w n  at 200 

rpm , 1 w m  on various m edia, (a) m ean ce ll vo lum e, (b ) m ean ce ll 

length , (c) mean ce ll w id th , f il le d  c irc les - Y E P L , open c irc les - 

Y E P D , open triang les - W hey. D ata  presented versus biom ass 

concentra tion  due to  d ifferences in  in o cu lu m  size and in it ia l 

substrate concentra tion

C lass ifica tion  data fo r  20g /L  chem ostat fe rm en ta tion  (based on  ce ll 

vo lum e  fra c tio n  in  each class)

C lass ifica tion  data fo r  2 0 g /L  chem ostat fe rm en ta tion  (based on cell 

num erica l fra c tio n  in  each class)

C lass ifica tion  data fo r  15 g /L  chem ostat fe rm en ta tion  (based on  ce ll 

vo lum e  fra c tio n  in  each class)

C lass ifica tion  data fo r  15g/L chem ostat fe rm en ta tion  (based on  ce ll 

num erica l frac tion  in  each class)
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Figure 8.2

C lass ifica tion  data fo r  1 Og/L chem ostat fe rm en ta tion  (based on  ce ll 

vo lum e fra c tio n  in  each class)

C lass ifica tion  data fo r  lO g /L  chem ostat fe rm enta tion  (based on ce ll 

num erica l fra c tio n  in  each class)

C lass ifica tion  data fo r  5g /L  chem ostat fe rm en ta tion  (based on ce ll 

vo lum e  fra c tio n  in  each class)

C lass ifica tion  data fo r  5g /L  chem ostat fe rm en ta tion  (based on  ce ll 

num erica l fra c tio n  in  each class)

P lo t o f  Pow er la w  constant (k) and P ow er la w  index  (n) versus 

d ilu t io n  rate fo r  20 g /L  chemostat fe rm enta ton

M ean geom etric  parameters o f  ce lls  fo r  20 g /L  chem ostat

fe rm enta tion ; (a) ce ll vo lum e, (b ) ce ll leng th , (c) ce ll w id th

M ean geom etric  parameters o f  ce lls  fo r  15g /L  chem ostat

fe rm enta tion ; (a) ce ll vo lum e, (b ) ce ll length , (c) ce ll w id th

M ean geom etric  parameters o f  ce lls  fo r  lO g /L  chem ostat

fe rm enta tion ; (a) ce ll vo lum e, (b) ce ll length, (c) ce ll w id th

M ean geom etric  parameters o f  ce lls fo r  5 g /L  chem ostat

fe rm enta tion ; (a) ce ll vo lum e, (b) ce ll leng th , (c) ce ll w id th

M ean  Zhgu versus d ilu t io n  rate fo r  fo u r in it ia l substrate

concentrations

Plots o f  Sy and Sl  versus d ilu tio n  rate fo r  lO g /L  chem ostat 

fe rm enta tion  (a) Sv (b) Sl

Plots o f  Sv versus B iom ass concentra tion  fo r  va rious batch cu ltu re  

ferm entations, (a) 800rpm  (b) 200rpm

Lo g n o rm a l and Gaussian vo lum e d is trib u tio n s  fo r  Sam ple 1. S o lid  

lin e  -  logno rm a l d is tribu tion , Dashed lin e  -  no rm a l d is tr ib u tio n  

(sam ple s ize=302)

Logno rm a l and Gaussian vo lum e  d is tribu tions  fo r  Sam ple 2 S o lid  

lin e  -  logno rm a l d is tribu tion , Dashed lin e  -  no rm a l d is tr ib u tio n  

(sam ple size =  297)

x
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Lo g n o rm a l and Gaussian vo lum e  d is tr ib u tio n s  fo r  Sam ple 3 S o lid  

line  -  logno rm a l d is tribu tion , Dashed lin e  -  no rm a l d is tr ib u tio n  

(sam ple size =  250)

V o lu m e  d is tr ib u tio n  o f  s ing le  ce lls  fo r  Sam ple 1. S o lid  lin e  -  

logno rm a l d is trib u tio n , Dashed lin e  -  no rm a l d is tr ib u tio n  (sam ple 

size =  95)

V o lu m e  d is tr ib u tio n  o f  s ing le  ce lls fo r  Sam ple 2. S o lid  lin e  -  

logno rm a l d is tribu tion , Dashed lin e  -  no rm a l d is tr ib u tio n  (Sam ple 

size =  101)

V o lu m e  d is tr ib u tio n  fo r  s ing le filam en ts  in  Sam ple 2, so lid  lin e  - 

logno rm a l d is tribu tion , dashed lin e  -  n o rm a l d is tr ib u tio n  (Sam ple 

size =  72)

The use o f  the summed d is tr ib u tio n  o f  yeastlike  ce lls  and filam en ts  

to describe the ove ra ll vo lum e  d is tr ib u tio n  o f  s ing le ce lls fo r  sam ple 

2. (V y =  0.29, V f =0.71)

V o lu m e  d is tr ib u tio n  o f  double ce lls  fo r  Sam ple 1, so lid  lin e  -  

logno rm a l d is trib u tio n , dashed lin e  -  no rm a l d is tr ib u tio n  (sam ple 

size =  201)

V o lu m e  d is tr ib u tio n  o f  double ce lls fo r  Sample 2, so lid  lin e  -  

logno rm a l d is trib u tio n , dashed lin e  -  no rm a l d is tr ib u tio n  (Sam ple 

size =  221)

The use o f  the summed d is tr ib u tio n  o f  yeastlike  ce lls and filam en ts  

to  describe the ove ra ll d is tr ib u tio n  o f  doub le  ce lls fo r  sam ple 2. (N^y 

=  0.41, V df =0.59)

D is tr ib u tio n  o f  pseudohyphae fo r  Sam ple 2, so lid  lin e  -  lo g n o rm a l 

d is tr ib u tio n  (sam ple size =  146)

D is tr ib u tio n  o f  pseudohyphae fo r  Sample 3, so lid  L in e  -  lo g n o rm a l 

d is trib u tio n . (Sam ple size =  164)

Sum m ed p o pu la tion  d is tr ib u tio n  fo r  sample 1, Ny =  0.31, Ndy =  0.63, 

V f  =  0.02, Ndf = 0.03, Nm =  0.00 (sam ple size =  302)
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Figure 9.1

Sum m ed vo lum e d is tr ib u tio n  fo r  sample 2, Ny =  0.10, Ndy — 0.09, Nf

-  0.25, N<y= 0.34, N m =  0.23 (sam ple size =  297)

Sum m ed vo lum e d is tr ib u tio n  fo r  sample 3, Ny =  0.01, N dy =  0.09, Nf 

=  0.02, iVdf =  0.20, Nm = 0.68 (sam ple size =  250)

Sum m ed length d is tr ib u tio n  fo r  yeast-like  Sample 1. Ny =  0.31, Nay

-  0.63, Nf=  0.02, Ndf =  0.03, Nm = 0.00 (sam ple size =  302)

Sum m ed length  d is tr ib u tio n  fo r  in te rm ed ia te  Sam ple 2. Ny =  0.10, 

TVdy =  0.09, Nf=  0.25, A f̂ =  0.34, Nm =  0.23 (sam ple size =  297)

Sum m ed length  d is tr ib u tio n  fo r  pseudohyphal Sample 3. Ny =  0.01, 

TVdy =  0.09, N f -  0 .0 2 ,7V<jf =  0.20, Nm =  0.68 (sam ple size =  250)

Sum m ed w id th  d is tr ib u tio n  fo r  yeast-like  Sample 1 Ny =  0.31, N dy =  

0.63, TVf =  0.02, JVdf =  0.03, =  0.00 (sam ple size =  302)

Sum m ed w id th  d is tr ib u tio n  fo r  yeast-like  Sample 2. Ny =  0.10, Nay =  

0.09, N f=  0.25, Ndf= 0.34, N m =  0.23 (sam ple size =  297)

Sum m ed w id th  d is tr ib u tio n  fo r  pseudohyphal Sample 3. Ny = 0.01,

TVdy =  0.09, Nf=  0.02, A ^ f =  0.20, Â m =  0.68 (sam ple size =  250)

D is tr ib u tio n  o f  vo lum e fo r  selected d ilu t io n  rates fo r  chem ostat w ith  

2 0 g /L  feed substrate concentra tion : (a) 0.12 h '1 (b) 0.20 h ’ 1 (c) 0.3 h"

1 (d) 0.4 h ’ 1 (e) 0.49 h ’ 1

D is tr ib u tio n  o f  vo lum e fo r  selected d ilu t io n  rates fo r  chem ostat w ith  

5 g /L  feed substrate concentration: (a) 0.10 h '1 (b) 0.20 h ’ 1 (c) 0.3 h"1 

(d) 0.4 h4 (e) 0.47 h '1

D is tr ib u tio n  o f  vo lum e fo r  selected tim e  po in ts  fo r  w h e y  m ed ia  

batch cu ltu re  fe rm enta tion  at 800rpm  lv v m  (a) 2.5 h (b ) 4.5 h  (c ) 6.5 

h (d )  8.5 h

D is tr ib u tio n  o f  vo lum e  fo r  selected tim e  points rates fo r  Y E P L  

m edia batch cu ltu re  fe rm enta tion  at 200rpm  lv v m  (a) 2.5 h  (b ) 4.5 

h (c) 6.5 h (d )  8.5 h

Exam ple  o f  pseudohyphal cod ing  system  em ployed in  the study o f  

K. marxianus pseudohyphae.
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Figure 9.2 The in it ia tio n  o f  pseudohyphal fo rm a tio n  w ith  the  lead subun it 

budd ing  a long  th in  subun it

The developm ent o f  the second bud fro m  the lead subun it

N e w  bud fo rm a tio n  at the tip  o f  branch 1 and on subun it 2 in  the 

m a in  hypha

D eve lopm ent o f  th ird  bud fro m  lead subun it

D eve lopm ent o f  a second bud on  the f ir s t  b ranch concurren t w ith  the 

developm ent o f  a th ird  bud on the second subun it on m a in  hyphae

U nusua l m orpho log ica l structure in  “ o ld ”  pseudohyphae
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CH APTER 1 

INTRO DUCTIO N

Fungal m orpho log y  is o f  great interest bo th  fro m  a b io lo g ic a l and b iochem ica l 

engineering v ie w p o in t. B io lo g ic a lly , i t  can re flec t an o rgan ism ’ s adapta tion to 

stress, its  pathogenic po ten tia l and can also be used in  its  id e n tifica tio n . W ith in  the 

rea lm  o f  b iochem ica l engineering, funga l m o rpho log y  can in fluence  fe rm en ta tion  

b ro th  rheo logy, nu trie n t mass transfer, p ro d u c tiv ity  and p roduc t recovery (O o lm an  

and L iu , 1991). W ith in  any environm ent, tw o  m orpho log ies ex is t fo r  any organism , 

m ic roscop ic  and m acroscopic. M ic ro sco p ic  m orpho log y  refers to  the shape and size 

o f  a s ing le  organ ism  whereas m acroscopic m o rpho log y  refers to  the structure 

fo rm ed b y  the in te rac tion  o f  several o f  the above. F o r exam ple, the m icroscop ic  

m orpho log y  o f  a yeast is genera lly  o vo id  and budd ing  whereas its  m acroscop ic 

m o rp h o lo g y  can be u n ice llu la r o r flo ccu le n t in  liq u id  cu ltu re  o r as a co lo n y  on an 

agar plate, whose texture , shape or size can be used in  the yeast’ s id e n tifica tio n . 

M acroscop ic  m orpho log y  can be e ither s trong ly  dependent on, o r com p le te ly  

independent o f, the m icroscop ic  m orpho logy.

In  m ic ro b io lo g y , fe w  m ore unusual observations can ex is t than tha t o f  funga l 

d im orph ism . Th is  phenom enon is re ferred to  as "the process by  w h ic h  the m yce lia l 

h a b it o f  g row th , w ith  ce lls in  hypha l o r filam entous fo rm , is  transfo rm ed b y  some 

change in  cu ltu ra l o r env ironm enta l cond itions, so tha t a yeast-like  o r u n ice llu la r 

m o rpho log y  is adopted at the ce llu la r leve l." (San-B las and San-Blas, 1984). M a n y  

pathogenic and in d u s tr ia lly  im portan t fu n g i are kn o w n  to be d im o rp h ic  and are so, 

fo r  reasons o f  eco log ica l advantage. F rom  an engineering perspective, the a lte ra tion  

o f  m ic ro b ia l m orpho log y  in  fe rm en ta tion  can have several deleterious effects on 

process perform ance m ak ing  the assessment o f  such d im o rp h ic  sw itches in  

fe rm enta tions essential.

C u rren tly , there is a strong trend  tow ards q u a n tify in g  m ic ro b ia l m o rpho log y  in  

suspension cultures using im age analysis (Thom as and Paul, 1996). Im age analysis 

a llow s  the quantita tive  ex trac tion  o f  in fo rm a tio n  fro m  images. Im age analysis
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prov ides m ore deta iled in fo rm a tio n  about m ic ro b ia l m o rp h o lo g y  than p rev ious 

m ethodo log ies such as “ C ou lte r”  counting  and is  m uch  faster than m ethods 

in v o lv in g  d ig it is in g  tablets and m anual measurements fro m  pho tom icrog raphs 

(A dam s and Thom as, 1988). A s com puting  pow er has increased over the years, so 

has the co m p le x ity  o f  the a lgo rithm s used fo r  the q u a n tif ica tio n  o f  m o rpho log y . 

C u rren tly , researchers are generating images d ire c tly  fro m  the b io reacto r us ing  laser 

techno logy  to  a llo w  the q u a n tifica tio n  o f  yeast m o rp h o lo g y  in situ  (Suhr et al., 

1995); are exam in ing  the use o f  im age analysis to  q u a n tify  in tra ce llu la r enzym atic  

reactions in situ  using flourescent techniques (Thom as, personal com m un ica tion ); 

and are tra in in g  neura l ne tw orks to  recognise d iffe re n t ce ll m orpho log ies  

(G uterm an and Shabtai, 1996).

Kluyveromyces marxianus is an organism  o f  great indus tria l im portance. I t  

produces a m yriad  o f  enzymes such as lactasc (p-galactosidase) (K u  and Hang, 

1992), inu linase  (2,1 (3-D-fructan fructanhydro lase), used in  the degradation o f  

in u lin , a p o lym er o f  approx im ate ly  35 fructose m olecules w ith  a glucose m o lecu le  

at the end, to  a va lue added fructose syrup and invertase (R ouw enhorst et al., 1990), 

and polygalacturonase (pectinases) (Schwan and Rose, 1994). The pectinases are a 

group o f  enzymes tha t degrade pectin -con ta in ing  substances and are w id e ly  used in  

the fo o d  indus try  to  im prove  the c loud  s ta b ility  o f  f r u it  and vegetable nectars 

(Harsa et al., 1993). I t  also produces some p rim a ry  m etabo lites, nam ely  ethano l and 

g lyce ro l, fro m  a va rie ty  o f  in d u s tr ia l substrates, in c lu d in g  cheese w hey  perm eate 

and Jerusalem artichoke. Cheese w hey  contains lactose, a disaccharide o f  the 

reduc ing  sugars, glucose and galactose. W hey is the p r im a ry  b y -p roduc t o f  the 

cheese-m aking industry , representing 80-90%  o f  the vo lu m e  o f  m ilk  transfo rm ed 

and is com posed p r im a r ily  o f  w ater (94% ), lactose (5% ), pro te ins and salts. The 

h ig h  B iochem ica l O xygen D em and (B O D ) o f  w hey (5 0 g /L ) makes i t  d i f f ic u lt  to  

dispose o f  and i t  is genera lly  used as a low -grade an im a l feed. The p ro te ins are 

recovered using u ltra f iltra t io n  bu t the resu ltant permeate s t i l l  has a h ig h  B O D . 

Yeast fe rm enta tions can reduce the B O D  o f  th is  perm eate w h ile  s im u ltaneously  

conve rting  lactose to  ethanol o r g lyce ro l. The fac t tha t Saccharomyces cerevisiae 

does n o t posses the necessary enzymes fo r  th is  fe rm en ta tion  makes K  marxianus
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the obvious choice. In  Ire land , a com m erc ia l process is in  operation , w h ic h  

ferm ents cheese w hey permeate to  ethanol. The resu ltan t a lcoho l is used in  the 

liq u e u r industry.

K. marxianus has been reported as being d im o rp h ic  in  suspension cu lture. W a lke r 

and O ’N e ill (1990) quan tified  the m orpho log y  o f  the organ ism  in  tw o  fo rm s, yeast­

like  and filam entous. They observed that the o rgan ism  developed in  filam entous 

fo rm  w hen g row n under aerobic cond itions and in  yeas t-like  fo rm  w hen g ro w n  in  

anaerobic cond itions. Th is  was com pared to  the d im o rp h ic  fungus, Mucor rouxii, 

where the p rim a ry  cause o f  m orpho log ica l a lte ra tion  is a ttribu ted  to  env ironm en ta l 

change. C u rren tly , some researchers are asserting tha t the te rm  d im o rp h ism  is 

inadequate and that the term s po lym orph ism  o r p laeom orph ism  are m ore su itab le  

(K e rridge , 1993). O ther w orkers  are try in g  to  im p rove  the q u a n tif ica tio n  o f  

d im o rp h ic  suspension cultures (B a rtn ick i-G a rc ia  and G ierz, 1993; Odds, 1993). 

The above suggests the inadequacy o f  a tw o  class system  in  describ ing  the 

m o rpho log y  o f  such organism s.

The a im  o f  the present w o rk  is to ;

1) develop an hypothesis regard ing yeast -  m yce liu m  d im o rp h ism  in  fu n g i,

2) im p rove  the c lass ifica tion  system  cu rren tly  used fo r  K. marxianus,

3) develop a fu l ly  autom ated im age analysis a lg o rith m  to  q u a n tify  the m o rp h o lo g y  

o f  K. marxianus,

4) v e r ify  the find ings  o f  W a lke r and O ’N e il l  (1990), tha t the presence o r absence 

o f  oxygen is c r it ic a l fo r  the m orpho log ica l trans ition  o f  the organism ,

5) assess the e ffect o f  changing m o rpho log y  on the perform ance o f  the organism , 

g row n  on cheese w hey permeate in  bo th  batch and continuous cu lture,

6) exp la in  the deve lopm ent o f  the hypha l structure based on m athem atica l 

analysis.
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CH APTER 2 

FUNG AL M O RPH O LO G Y AND EN V IRO NM ENT

2.1 INTRODUCTION

Several diverse m icroorgan ism s are c lass ified  w ith in  the broad group o f  p ro tis ts  

ca lled  the fung i. H ow ever, they do share some typ ica l features that d is tingu ish  them  

as fu n g i, fro m  other m icrobes. These d is tingu ish ing  features are based on the 

phys io logy  and m o rp h o lo g y  o f  cells. The funga l ce ll is d is tingu ished fro m  the 

bacteria l ce ll b y  its  size (genera lly  greater than 1-2 pm  in  d iam eter) and its 

eucaryotic  structure is s im ila r to  tha t o f  p lan t and an im a l ce lls (hav ing  d is tin c t 

m em brane-bound organelles such as nuc le i, m itochond ria ). B acte ria l ce lls, w h ich  

la ck  these organelles, are term ed procaryotic . Fungal ce lls  d iv id e  b y  m itos is  

(asexual reproduction) and b y  m eiosis (sexual rep roduc tion ); bacteria l ce lls  d iv id e  

by  b ina ry  fiss ion.

L ik e  anim als, the fu n g i are hetero troph ic organism s tha t cannot m anufacture  th e ir  

ow n  fo o d  by photosynthesis, as p lants and algae can. They requ ire  oxygen  fo r 

g ro w th  (aerobic) and genera lly  p re fe r an ac id ic  env ironm en t (b e lo w  p H  7) u n lik e  

the bacteria  w h ich  are anaerobic and aerobic and genera lly  g ro w  in  basic 

environm ents (at o r above p H  7). Fung i u tilis e  p re fo rm ed  organ ic m ate ria l fro m  

o ther organism s as sources o f  energy and b u ild in g  b locks  fo r  th e ir ce llu la r 

sysnthesis. Solub le  nutrien ts are absorbed fro m  the g ro w th  substrate fo llo w in g  the 

breakdown o f  com p lex  po lym ers  by  ex trace llu la r enzymes (proteinases, cellu lases, 

pectinases etc.) secreted by  funga l cells.

The fu n g i have diverse m orpho log ies especia lly in  spore p roduc tion , w h ic h  is the 

basis fo r  ide n tifica tio n . B u t, they are com m on ly  recognised as yeasts (s ing le -ce lled  

tha llus ), m ou lds (filam entous tha llus  ca lled  a m yce liu m  cons is ting  o f  tu b u la r ce lls 

in  long , branched, th read -like  structures ca lled  hyphae) and m ushroom s 

(m acroscopic fu n g i w ith  considerable d iffe re n tia tio n  o f  tissues and hyphae in  the 

m ushroom , the sporu la ting  p o rtio n  o f  the tha llus , w h ic h  is fed  by a m assive 

underground m yce liu m ). Fung i, lik e  bacteria, are ve ry  susceptib le to  d ry in g  and,
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are therefore genera lly  found  in  very m oist, i f  no t aquatic habitats. T hey can resist 

desiccation by  p roduc ing  th ick , m elanised w a lls  w h ic h  are o ften  seen in  aeria l 

spores, in  hypha l strands, and in  sc lerotia  tha t enable the fungus to  su rv ive  sub- 

op tim a l g row ing  cond itions  in  the so il fo r  several years. The funga l w a ll usua lly  

consists o f  layers o f  ch itin , a linea r po lysaccharide p o lym e r o f  N - 

acetylg lucosam ine, embedded in  and o ften covered b y  glucans, branched po lym ers  

o f  glucose and o ther sugars. Some species o f  fu n g i in  the Class O om ycetes such as 

Phytophthora and Pythium have w a lls  p redom inan tly  o f  ce llu lose  rather than ch itin . 

The m e lan in  com ponents consist o f  branched po lym ers  o f  pheno lic  m a te ria l s im ila r  

to the lig n in s  o f  p la n t ce ll w a lls  (S m ith , 1975).

2.2 FU N G A L M O R P H O L O G Y  IN SUSPENSION  C U LTU R E

Suspension cu ltu re  is n o t a natural env ironm ent fo r  fu n g i, whose p rim a ry  ro le  is the 

surface co lon isa tion  and degradation o f  th e ir pre ferred substrate. C erta in  fu n g i have 

h ig h  aerobic requirem ents bu t are also h ig h ly  sensitive to  shear. S upp ly ing  enough 

oxygen  to  a suspension cu ltu re  ty p ic a lly  requires v igo rous  m ix in g , thus generating 

a h ig h  shear environm ent. Certa in m orpho log ica l phenotypes are artefacts o f  th e ir 

a r t if ic ia l environm en t and w o u ld  never appear in  such m orpho log ies in  th e ir na tura l 

environm ent. T h is  is p a rticu la rly  true o f  funga l pelle ts. Four m o rp h o lo g ica l 

g roupings can be id e n tif ie d  w ith in  the funga l k in g d o m  g ro w n  in  submerged cu ltu re ; 

free filam entous fung i, pe lle ted fung i, yeast and d im o rp h ic  fung i.

2.2.1 U nicellu lar Fung i (Yeast)

Yeast are defined as u n ice llu la r fu n g i tha t reproduce by budd ing and fiss io n  

(F lege l, 1977). Th is  is regarded, by  K reger-van  R ij (1984), as the m ost precise 

d e fin it io n  cu rren tly  available . W ith in  yeast, three fa m ilie s  are ev iden t; the 

ascosporogeneous yeast, the basidosporogeneous yeast and the im perfec t yeast. The 

im perfect yeast is a g roup ing  fo r im perfec t fo rm s o f  ascosporogeneous and 

basidosporogeneous species.

W ith in  yeast, m o rpho log y  is one o f  the p rim a ry  too ls  fo r  species c lass ifica tion  

(K reger-van  R ij,  1984). G enera lly , yeast are regarded as o vo id  and budd ing  yet

5



o ften  th is  is no t the case. M a n y  yeast m orpho log ies are evident. The p r im a ry  

exam ple o f  a m orpho log ica l d iffe rence in  yeast is d ic ta ted  by  th e ir a b il ity  to  

reproduce. The processes o f  budding, and fis s io n  resu lt in  d ram a tica lly  d iffe re n t 

m orpho log ies fo r  double cells. S. cerevisiae and Schitzosaccharomyces pombe are 

exam ples o f  budd ing  and fiss ion  yeast respective ly . O ther d ifferences ex is t between 

strains and species bu t such d ifferences genera lly  in v o lv e  changes in  aspect ra tio  or 

vo lum e. L it t le  w o rk  has been done on the deve lopm ent o f  im age analysis rou tines 

as a cost-e ffective  m ethod o f  inter-species d iffe re n tia tio n .

There has been m uch interest in  the re la tionsh ip  between m o rp h o lo g ica l 

observations in  yeast and p hys io log ica l c r ite ria  such as g ro w th  rate and v ita l i ty  o f  

the ce lls present. Exam ples inc lude  the co rre la tion  o f  yeast ce ll g ro w th  rate w ith  

ce ll vo lum e, a technique using a C ou lte r counter, va lida ted  using in fo rm a tio n  taken 

fro m  photom icrographs (Tyson  et al., 1979) and the exam ina tion  o f  vacuo la tio n  in  

yeast popu la tions as an ind ica to r o f  v ita lity  (O hsum i et a l,  1993).

2.2.2 F ilam entous Fungi

F ilam entous fu n g i are o f  considerable im portance in  b io techno logy, p roduc ing  a 

d ive rs ity  o f  h y d ro ly tic  enzymes, secondary m etabo lites and consum able biom ass. 

They are cu ltiva ted  extens ive ly  in  bioreactors. The m orpho log y  d isp layed  by 

filam en tous fung i s ig n ific a n tly  alters b io reacto r perform ance. T h is  is  due to  

rheo log ica l p rob lem s caused by  h ig h  concentrations o f  funga l b iom ass in  

suspension culture. Fungal fe rm enta tion  broths are genera lly  pow er la w  in  nature, 

d isp lay ing  consistency ind ices as lo w  as n = 0.2. V a lues in  th is  range resu lt in  

extrem ely  heterogeneous m ix in g  patterns, o ften  resu lting  in  stagnant reg ions close 

to  the reactor w a ll (O ls v ik  and K ristiansen, 1994).

The te rm in o lo g y  used to  describe the developm ent o f  funga l cells is as fo llo w s . 

Each in d iv id u a l funga l structure is term ed a hypha. A  cu ltu re  o f  disperse hypha is 

term ed a mycelium. A  hypha can present its e lf  as e ither true hypha o r 

pseudohypha. T rue hyphae are made up o f  continuous cy linders  segmented 

in te rn a lly  by  septae whereas pseudohyphae are segmented by constric tions  at
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interfaces. T rue hyphae predom inate among fu n g i w h ich  perm anen tly  rem a in  in  a 

filam entous fo rm . Pseudohyphae are characteristic o f  d im o rp h ic  fu n g i. The to ta l 

length  o f  the hypha is described as the total hyphal length (Lj.  H yphae genera lly  

g ro w  in  an exponental m anner by fo rm in g  branches at a lm ost regu la r in te rva ls  

along the m yce lium . Each ac tive ly  g row ing  end o f  the hypha extends at an a lm ost 

linear rate and is kn o w n  as a tip. Each hypha has a longest hypha l e lem ent kn o w n  

as the effective hyphal length (LJ. T h is  pa rticu la r leng th  is im po rtan t in  q u a n tify in g  

the am ount o f  tim e  tha t the hypha has been in  existence. The hypha develops 

exponen tia lly , whereas the e ffec tive  hypha l leng th  develops lin e a rly  w ith  respect to 

tim e , m ak ing  i t  a m ore usefu l ind ica to r o f  ce ll age. The hypha can be d iv id e d  dow n 

in to  hyphal growth units (Xhgll), w h ich  defines the average leng th  a long m y c e liu m  

between branches. T h is  leng th  proves qu ite  consistent and is use fu l in  eva lua ting  

the fo rag ing  pow er o f  a hypha l element. Fo r exam ple a lo w  Z hgll suggests a dense 

t ig h t ly  packed m yce liu m  whereas a h ig h  Lhgu suggests a m uch looser s tructure  w ith  

greater fo rag ing  pow er (T rin c i, 1974).

2.2.3 Pelleted Fungi

Pellets are the m acroscopic resu lt o f  adverse env ironm en ta l cond ition s  on 

filam entous fung i. M a n y  in d u s tr ia lly  im portan t fu n g i are kn o w n  to  fo rm  pelle ts 

under spec ific  env ironm enta l cond itions. Exam ples o f  f i in g i tha t are capable o f  

fo rm in g  pe lle ts in  suspension cu ltu re  inc lude  Rhizopus oryzae and Penicillium 

chrysogenum. Pellets are fo rm ed  w hen the spores o f  certa in  fu n g i agglom erate w ith  

each other resu lting  in  the fo rm a tio n  o f  a com p lex  m a tr ix  o f  m y c e liu m  w h ich  

generate in to  a spherical ob ject w h ich  can assume sizes on a scale o f  centim etres. 

A s pe lle ts are genera lly  spherical, m o rpho log ica l a lterations are genera lly  re la ted to 

d iam eter changes o r to  the texture  o f  the pe lle t surface. Pellets are re fe rred  to  as 

hairy or smooth depending on the am ount o f  free m yce lia l g ro w th  p ro tru d in g  fro m  

the surface o f  w ha t is kn o w n  as the core, the dense reg ion  in  the in te r io r  o f  the 

pelle t. The g row th  o f  filam entous fu n g i in  the fo rm  o f  pe lle ts reduces o r negates 

rheo log ica l prob lem s bu t leads to other prob lem s such as substrate lim ita t io n  in  the 

in te r io r o f  la rger pellets. Th is  can resu lt in  the deve lopm ent o f  h o llo w  regions,

7



caused b y  ce ll au to lys is , in  the in te rio r o f  pe lle ts  resu lting  in  a d rop in  v o lu m e tr ic

p ro d u c tiv ity  (M e tz  and Kossen, 1977).

2.2.4 D im orphic Fungi

D im o rp h ic  fu n g i are unusual in  the ir a b ility  to  a lte r th e ir  m o rp h o lo g y  in  response to 

changing env ironm en ta l conditions. The m orpho log ica l trans itions  e xh ib ited  

genera lly  in v o lv e  the transfo rm ation  o f  a ty p ic a lly  filam en tous o rgan ism  to  a yeast­

lik e  m o rpho log y  or v ice  versa. The trans ition  o f  yeast-like  ce lls to  a tr iangu la r 

m orpho log y  has also been reported (Sentheshanmuganathan and N icke rson , 

1962a,b). The m orpho log y  o f  d im o rph ic  organsim s is  genera lly  described us ing  a 

com b ina tion  o f  term s derived fro m  yeast and filam en tous funga l m orpho log y . The 

on ly  requ irem ent fo r  te rm in o lo g y  spec ific  to  d im o rp h ic  fu n g i is w hen a h y b rid  

m o rpho log y  exists. A  hypha g ro w in g  d ire c tly  fro m  a yeast ce ll is ca lled  a germ 

tube. D im o rp h ic  fu n g i w i l l  be discussed in  greater de ta il in  Section 2.6.

2.3 E F F E C T  O F B IO R E A C T O R  EN V IR O N M E N T  ON  M O R P H O L O G Y

The env ironm en t w ith in  a b ioreactor is com posed o f  several elements. The system  

usua lly  has three phases; so lid  (organism , inso lub le  substrate), liq u id  (m ed ium ) and 

gas (aeration). The in te rac tion  o f  a ll three phases and resu ltan t mass transfer 

between each elem ent can resu lt in  a m y ria d  o f  com p lex  env ironm en ta l cond itions. 

M echan ica l shear and m ed ium  com pos ition  are c ruc ia l factors in  the de te rm ina tion  

o f  the g ro w th  envirom nent.

C e ll m orpho log y  w ith in  the b ioreactor can be altered by  tw o  methods:

1) the app lica tion  o f  su ffic ie n t m echanica l shear to the cu ltu re  can resu lt in  

phys ica l damage to  the ce ll structure resu lting  in  a change in  m orpho log y ,

2) changing env ironm en ta l cond itions can resu lt in  a change in  ce ll ph ys io lo g y  

w h ic h  subsequently leads to  a change in  m orpho logy.

O ften  i t  is d if f ic u lt  to  establish w h ic h  o f  the above is occurring  w hen  the le ve l o f  

ag ita tion  is the variab le .
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2.3.1 M echanical S hear

T y p ic a lly , fu n g i are cu ltu red in  stirred tank reactors (S T R ) w h ich  are tra d it io n a lly  

agitated by  a set o f  Rushton turb ines, named in  re cogn ition  o f  J.H. R ushton  and co­

w orkers w ho  carried ou t extensive research on m ix in g  and agitators in  the 1950s 

(N ienow , 1990). A g ita tio n  is supplied to  suspension cultures to  ensure good mass 

transfer and to prevent nu trien t lim ita tio n . A g ita t io n  is also essential in  the 

d ispers ion o f  gasses (p redom inan tly  oxygen). R eduction  o f  bubb le  size 

d ram a tica lly  increases the surface area fo r  g a s -liqu id  mass transfer. D ue to  the 

viscous nature and/or h ig h  oxygen consum ption  rate o f  m any funga l fe rm enta tions, 

v igo rous ag ita tion  has to be supplied and th is  can have deleterious affects on funga l 

m orpho logy.

There are three regim es under w h ich  ag ita tion  can in fluence  m orpho log y :

•  A g ita t io n  is poor enough to in itia te  mass transfer lim ita tio n s  in  the environs o f  

cells

•  A g ita tio n  is adequate in  p ro v id in g  good mass transfe r to  the ce lls in  the b ro th

•  Excessive ag ita tion  is m echan ica lly  dam aging the ce ll/p e lle t causing ce ll 

rup ture  and the release o f  in tra ce llu la r com ponents.

U n fo rtuna te ly , the three regim es are usua lly  no t m u tu a lly  exclusive. W ith in  a 

funga l fe rm enta tion  con ta in ing  large concentrations o f  biom ass, usua lly  tw o  o f  the 

above regim es w i l l  exist. I f  ag ita tion  is too  lo w , v ita l parameters such as heat, mass 

and oxygen transfer coeffic ien ts , w i l l  be in s u ffic ie n t in  regions o f  lo w  shear (near 

reactor w a lls ) w h ile  be ing adequate in  regions closer to the im p e lle r, thus reduc ing  

p ro d u c tiv ity . Y e t i f  the ag ita tion  is increased s u ffic ie n tly  to  p rov ide  good m ix in g  in  

the e n tir ity  o f  the b ioreactor, the consequences m ay be m echanica l damage to  cells 

in  reg ions o f  h ig h  shear, again reduc ing  p ro d u c tiv ity . The process designer is le ft  

w ith  a choice between pa rtia l oxygen lim ita t io n  and h ig h  shear breakage, genera lly  

selecting w h icheve r y ie lds  greater p ro d u c tiv ity .
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2.3.1.1 Problems with experimental design

M uch  experim en ta tion  has been perfo rm ed on  the consequences o f  h ig h  ag ita tion  

on m orpho logy  bu t o ften  the experim enta l design has been poor. T h is  is because o f  

several reasons.

•  The experim enta l m ethodo logy o ften  in vo lve s  cu ltu rin g  the ce lls  at a spec ific  

im p e lle r t ip  speed in  chemostat cu ltu re , at a fix e d  d ilu t io n  rate and assessing 

steady state m orpho logy using com puter-a ided im age analysis. W h ile  th is  m ay 

seem lik e  the m ost ideal m ethod o f  s tudy ing  g row th  and m o rp h o lo g y  

s im ultaneously, the unde rly ing  p rob lem  usua lly  is w he ther the h ig h  

concentra tion  o f  biomass in  the reactor is causing a rheo log ia l e ffect, n u ll i fy in g  

any a ttem pt to  qu a n tify  observed phenom enon using conven tiona l re c ircu la tio n  

theory.

•  U nsteady state m ethods o f  b ro th  ex trac tion  fro m  a b io reacto r at steady state and 

its subsequent ag ita tion  in  a separate vessel fo r  short periods does no t take 

account o f  the e ffec t o f  starvation  on ce ll m orpho logy , a lthough m ost o f  such 

experim ents are o f  short duration.

•  The e ffec tive  hypha l length  assessed b y  m ost researchers can o ften  be a 

m is lead ing  param eter ( fu l ly  expla ined in  Section 9.8) and does n o t usua lly  

represent the true phys io log ica l leng th  (to  be defined la ter in  Section  9 .8) o f  the 

ce ll.

The idea l approach to  assess the e ffec t o f  ag ita tion  on m o rp h o lo g y  is to  cu ltu re  

ce lls in  suspensions con ta in ing  excess d isso lved  oxygen and nu trien ts , a vo id in g  the 

p rob lem  o f  poo r mass transfer w h ich , itse lf, can have deleterious affects on 

m orpho logy. I t  is possib le  to  cu ltu re  ce lls in  ve ry  lo w  substrate concentrations, 

generating bro ths w ith  lo w  biomass and lo w  (even N ew ton ian ) apparent v iscos ity . 

In  these cultures, w here  conventiona l m ix in g  theory  applies, the e ffec t o f  ag ita tion  

on ce ll m o rp h o lo g y  can be assessed w ith o u t the need fo r  ce ll starvation.
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2.3.1.2 Breakage or acceleration o f old age?

C onsider a ehem ostat cu ltu re  at steady state, con ta in ing  a fix e d  num ber o f  hypha l 

elements. A s  feed is added, e fflu e n t is rem oved con ta in ing  the same concentra tion  

o f  hypha l elements. As the cu ltu re  is in  steady state the rate o f  hyphal e lem ent 

rem ova l has to  be equal to the rate o f  hypha l breakage. W ith  filam en tous  fung i, 

there is a na tu ra l progression fro m  ac tive ly  g ro w in g  m yce lia l t ip s  to vacuo la ted 

regions to  dead regions (Paul et al., 1994a).W hen experienc ing  s u ffic ie n t 

m echanica l shear, breakage w i l l  occur in  dead reg ions in  preference to  younger 

regions, due to  a greater degree o f  s tructura l weakness. Paul et al. (1994b) 

suggested a s im ila r hypothesis stating that m yce lia l breakage was bo th  due to 

app lied  shear and m ic ro b ia l phys io logy . W hen excessive m echanica l shear is 

applied , breakage w i l l  occur in  a c tive ly  g ro w in g  regions. E v idence has show n an 

increasing presence o f  in trace llu la r m etabo lites w ith  increasing ag ita tion  (Reuss, 

1988). Such m etabo lites should no t be present in  ag ing and dead reg ions o f  the 

hyphae, suggesting tha t a reduction  o f  hypha l leng th  in  such cases is due to  s im ple  

breakage.

2.3.1.3 How does agitation damage fungal hyphae?

The e ffec t o f  ag ita tion  on particu la te  damage has been assessed in  m any b io lo g ic a l 

and n o n -b io lo g ica l applications. H is to r ic a lly , i t  was though t tha t the size o f  a 

pa rtic le  in  a reactor was related to  the pow er in p u t per u n it vo lum e. H ow eve r, van 

S u ijdam  and M e tz  (1981) suggested tha t th is  was untrue. B y  lo o k in g  at com p lex  

phenomena such as the size and energy o f  tu rbu len t eddies and energy d iss ipa tion  

rates, they id e n tif ie d  key issues concern ing the breakage o f  hyphae in  s tirred  tank  

reactors. H yphae can o n ly  break w hen  loca l tu rbu len t eddies are in  the same scale 

as the d im ensions o f  the organism . T h is  ty p ic a lly  o n ly  occurs in  a reg ion  

surround ing the im pe lle r. A s  energy dissipates w ith  respect to  d istance from  the 

im pe lle r, eddies get p rogressive ly la rger and the scale is no longe r correct fo r  

breakage. Therefore  there exists a “ breakage zone”  surround ing each im p e lle r and 

the p ro b a b ility  o f  a ce ll b reaking is p ro p o rtio n a l to the num ber o f  tim es the ce ll 

enters the zone. Breakage is re lated to  parameters describ ing  c ircu la tio n  tim e  ra ther 

than those re la ting  to  pow er inpu t. T h is  f in d in g  has been va lida ted  b y  S m ith  et al.
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(1990) w ho  observed ra d ica lly  d iffe re n t m orpho log ies in  d iffe re n t size s tirred  tanks 

w ith  the same pow er inputs per u n it vo lum e. Th is group adapted the w o rk  o f  van 

S u ijdam  and M e tz  (1981) and developed the fo llo w in g  use fu l param eter, sc, fo r the 

co rre la tion  o f  P. chrysogenum hypha l fragm ent size w ith  ag ita tion  in tens ity ,

(2A)

where P  is the pow er inpu t, Dt is im p e lle r d iam eter and tc is  the c irc u la tio n  tim e. 

The energy d ispers ion zone is  sim ulated us ing  the P and D  term s, w h ile  h o w  often 

a ce ll enters the d ispersion zone is re la ted to the tc te rm . Jiis ten et al. (1996) 

dem onstrated the usefulness o f  such an approach, by co rre la ting  m ean to ta l hypha l 

leng th  and mean projected area (a measure o f  c lu m p in g ) w ith  an energy 

d iss ipa tion /c ircu la tion  func tion , fo r  a num ber o f  im p e lle r geom etries. A ttem pts  

were made to generate corre la tions based on pow er inpu t, w h ic h  p roved 

unsuccessful.

2.3.1.4 Fungal adaption to agitation

A g ita tio n  in  ferm enters con ta in ing  filam entous ce lls has been observed to 

s ig n ific a n tly  decrease hypha l lengths and a lte r p ro d u c tiv ity . M akag iansar el al.

(1993) observed a decrease in  mean e ffec tive  hypha l leng th  and in  hypha l g row th  

u n it w ith  increasing ag ita tion  speed fo r P. chrysogenum. The fo rm e r reduc tion  can 

be exp la ined  in  term s o f  m echanica l breakage whereas the la tte r can o n ly  be 

exp la ined in  term s o f  funga l adaption to  environm enta l stress. I t  is possib le  tha t a 

denser branch ing  pattern m ay pro tect the organism  fro m  the h igher ag ita tion  

environm ent. O ther w orkers have observed th is phenomena o f  a change fro m  long 

sparsely branched hyphae to  short, s trong ly  branched hyphae upon increase o f  

ag ita tion  in tens ity  (D io n  et al., 1954; van S uijdam  and M e tz , 1981; S m ith  et al., 

1990).
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2.3.1.5 Agitation and pelleted growth

C erta in  organism s w i l l  g row  in  pe lle t fo rm  i f  a lo w  shear rate env ironm en t is 

p rov ided . Aspergillus niger, a ty p ic a lly  pe lle tted  fungus, can be cu ltu red  in  free 

filam en tous fo rm  i f  su ffic ie n t ag ita tion  is supp lied  (M ita rd  and R iba, 1988). Th is 

applies fo r  several other species tha t adopt pe lle ted g ro w th  in  suspension cu lture. 

O ther phenom ena that occur under v igo rous ag ia tion  inc lude, the fo rm a tio n  o f  

“ sc le ro tic  pe lle ts ” , w h ich  are h o llo w  w ith  a toughened ex te rio r, and the 

d is in teg ra tion  o f  ex is ting  pe lle ts (M e tz  and Kossen, 1977). I t  can genera lly  be 

stated that, as ag ita tion  in tens ity  increases, the d iam eter o f  pe lle ts  w i l l  decrease 

(N ie lsen  et al., 1995).

2.3.2 O th e r E nv ironm en ta l Effects

E nv ironm en ta l changes tha t do no t in v o lv e  the app lica tion  o f  m echanica l shear can 

o n ly  in fluence  the m orpho logy  o f  the organ ism  in d ire c tly  b y  chang ing the ce ll 

phys io log y . There are s ig n ifica n tly  few er studies on m o rp h o lo g y  changes re la ted to  

ce ll ph ys io lo g y  than m echanical shear (Paul et al., 1994"). There are fo u r factors 

tha t can in fluence  the c e ll’ s m o rpho log y  as a consequence o f  a lte ring  ce ll 

p h ys io lo g y ; m ed ium  com position , d isso lved oxygen tension, g ro w th  rate and 

g ro w th  in  substrate lim ite d  chemostat.

Fung i, p a rticu la r ly  filam entous fung i, can be ve ry  heterogeneous in  nature, w ith  

d iffe re n t reg ions o f  the m yce lium  ex is ting  in  d iffe re n t p h ys io lo g ica l states, rang ing  

fro m  new  biom ass to  aged m ateria l. A u to ly s is  o f  o lde r cells can be a fac to r in  the 

breakage o f  hyphae causing a general shortening o f  m ean hypha l length. R ighe la to  

et al. (1968) studied the m o rp h o lo g y  o f  P. chrysogenum g row n  in  continuous 

cu ltu re  and observed considerable hypha l breakage w hen nutrien ts were supp lied  at 

the m aintenance rate. Th is  was re lated to  an increase in  hypha l vacuo la tio n  and 

degeneration. Paul et al. (1994b) u tilis e d  im age analysis to  q u a n tify  the degree o f  

vacuo la tio n  and observed a s ig n ifica n t drop in  hypha l leng th  w hen hyphae were 

h e a v ily  vacuolated (at lo w  grow th  rates).
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W hen m icroorgan ism s are g row n  in  a chem ostat they evo lve  and becom e better 

adapted to  the env ironm ent (N o v ic k  and Szilard, 1950). In  chem ostat cu ltu res, 

neutra l m utants (that ne ither have a selective advantage n o r disadvantage w hen  

g row n  in  com pe tition  w ith  the parental stra in) accum ulate in  the p opu la tion  at 

linea r rates. C erta in  mutants develop tha t have a selective advantage over the 

parenta l strain, genera lly  related to hav ing  a h igher m a x im u m  spec ific  g ro w th  rate 

( | im) o r a lo w e r ks te rm  (a llo w in g  the uptake o f  lo w e r trace concentrations o f  

substrate). M o rp h o lo g ica l m utants have been iso la ted fro m  continuous cu ltu res tha t 

have been h ig h ly  branched com pared to  the parental s tra in  (T r in c i et al., 1990). 

W ithe rs  et al. (1994) c la im  to  be the firs t to  have iso la ted a m o rp h o lo g ica l m u tan t 

w ith  a lo w e r branching in tens ity  than the parental stra in  o f  Aspergillus oryzae.

C hanging gaseous environm ents in  filam entous ferm enta tions have resu lted in  

some unusual m orpho log ica l changes. Aspergillus nidulans was observed to  a lte r 

m o rp h o lo g ica lly  w hen  experiencing lo w  d isso lved oxygen  concentrations. 

M c In ty re  and M c N e il (1997) observed an increase in  the e ffec tive  hypha l length , 

m ean branch length  and mean hypha l g row th  u n it leng th  w ith  increasing C 0 2 

concentration. Th is  was accom panied by  a decrease in  c itra te  p roduction . Large 

isod iam e tric  cells w ere observed and the fo rm a tion  o f  free co n id ia  occured (C arte r 

and B u ll,  1971). S m ith  and H o  (1985) observed the fo rm a tio n  o f  spherica l o r yeast­

lik e  ce lls  w hen P. chrysogenum was cu ltu red  in  h ig h  C 0 2 pa rtia l pressures.

O ther effects observed in  funga l fe rm entations inc lude  the con tro l o f  pe lle ted  

versus free filam entous g row th  in  P. chrysogenum b y  the a lte ra tion  o f  cu ltu re  p H  

(P ir t and C a llow , 1959). Furtherm ore, the length  o f  hyphae va ried  considerab ly 

w ith  pH . Joung and B la sko v itz  (1985) observed tha t b y  a lte ring  the concentra tion  

o f  am m on ium  nitra te  in  th e ir m ed ium , three d is tin c t m orpho log ies co u ld  be 

achieved; a) vegetative hyphae, b) m o rpho log y  com pris ing  o f  f ru it in g  bodies and 

hyphae and c) short, branched and bent hyphae w ith  bu lbous and h o rn y  masses. 

The second and th ird  m orpho log ies were found  to overproduce citra te . Papagianni 

et al. (1994) also observed h ig h  leve ls o f  c itr ic  acid p roduc tion  in  con junc tio n  w ith  

shorter hyphae fo r the same organism .
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2.4 B R O T H  R H E O L O G Y

R heo log ica l effects in  reactor broths can be de trim en ta l to b io reacto r perform ance. 

The rheo log ica l characteristics o f  a fe rm enta tion  f lu id  can d ire c tly  a ffec t the m ix in g  

behaviour, mass transfer and heat transfer, and can there fore  have a p ro fo u n d  

in fluence  no t o n ly  on the course and outcom e o f  a fe rm en ta tion  b u t also on the 

response o f  sensors used to m o n ito r fe rm enta ion parameters on line . Such changes 

in  b ro th  rheo logy are genera lly a ttribu ted  to  m o rpho log ica l observations, ye t 

s ig n ifica n tly , no strong (un iversa l fo r  a ll organism s) co rre la tions  have been devised 

between any m o rpho log ica l parameter cu rren tly  measured and rheo log ica l 

parameters. The fo llo w in g  section describes the assessment o f  the rheo logy  o f  

funga l fe rm en ta tion  broths and the attempts to  corre late m o rp h o lo g ica l parameters 

w ith  b ro th  rheo logy.

2.4.1 F lu id  Rheology

The N e w ton ian  rheo log ica l m ode l (2 .2 ) describes a lin e a r response o f  the shear rate 

(m ovem ent o f  the f lu id )  w ith  respect to an app lied  shear stress.

t  = rjy (2 .2)

where t represents the shear stress in  the f lu id , y  represents the resu ltan t shear rate 

and 7] is  the v iscos ity  o f  the flu id . In  m any cases the above re la tionsh ip  does no t 

ho ld . F lu id s  whose v iscos ities  can no t be described by  the above re la tionsh ip  are 

kn o w n  as non -N ew ton ian  flu id s . M ost filam entous funga l bro ths d isp lay  non- 

N e w to n ia n  characteristics. W h ile  m any m odels ex is t to  describe the rheo log ica l 

characteristics o f  non -N ew ton ian  flu id s  m ost can be sum m arised b y  the fo llo w in g  

general re la tionsh ip .

r =T Q + k y n (2 .3)

where n  represents the pow er la w  index, t 0 represents a y ie ld  stress (where an in it ia l 

shear stress is requ ired to  resu lt in  f lu id  m ovem ent) and A: is a constant. I f  x0 = 0  

then the m odel is pow er la w  w here n < 1 represents pseudoplastic o r shear th in n in g  

flu id s , n > 1 represents d ila ten t o r shear th icke n in g  flu id s . The constant k under
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such circum stances is kn o w n  as the consistency index. I f  r0 >  0 and n= 1 then  the 

equation is referred to  as the B ingham  m odel. The B ingham  m odel suggests the 

presence o f  a y ie ld  stress, a f in ite  shear stress requ ired  to  induce  f lu id  f lo w . The 

Casson equation is another exam ple o f  a rheo log ica l m ode l w ith  a y ie ld  stress 

com ponent, ( t 05 =  t0 0 5 +  k0y 0,5).

Herschel B u lk le y  ( t  =  t 0 +  ky "), im p ly  that the so lu tion  o f  ce lls  and cu ltu re  b ro th  

does n o t behave lik e  an ideal f lu id . A n y  f lu id  tha t requires a f in ite  stress to  generate 

f lo w  is no t s tr ic tly  a liq u id . M any  parties have debated the presence o r absence o f  a 

y ie ld  stress in  such fe rm en ta tion  broths. A lle n  and R ob inson  (1990) have suggested 

u til is in g  phys ica l methods to  determ ine y ie ld  stress, such as those ou tlined  b y  De 

Kee et al. (1980) and to  compare the experim enta l values ca lcu la ted fo r  y ie ld  stress, 

to  those extrapolated fro m  rheograms.

2.4.2 T he C onsequence of Cell M orphology on B ro th  Rheology

The m o rpho log y  o f  an organ ism  is the descrip tion  o f  the external fo rm  and 

structure o f  an organism . Equal vo lum e fractions o f  yeast and funga l m yce lia l 

b iom ass can have c lea rly  d iffe re n t rheo log ica l characteristics, yeast-like  ce ll 

suspensions being N e w ton ian  in  nature up to 85%  yeast vo lum e  fra c tio n  whereas 

m yce lia l fe rm enta tion  broths can develop N on -N ew ton ia n  characteristics at less 

than 5%  vo lum e fra c tio n  (Reuss et al., 1982). The fac t tha t m ost ce ll free 

fe rm en ta tion  broths (bar those o f  cells secreting exopolysaccharides) have a 

N e w to n ia n  v iscos ity  ve ry  close to that o f  w ater (1.0 mPa.s) suggests a strong ro le  

fo r  ce ll m o rpho log y  in  b ro th  rheo logy. The long , c y lin d r ic a l and branched nature o f  

the hypha l structure a llow s the in te rac tion  o f  such pa rtic les  w ith  each o ther hence 

a id ing  in  the re s tric tio n  o f  f lu id  f lo w , leading to  stagnant f lu id  in  regions o f  lo w  

shear. In  regions o f  h igh  shear, such in teractions are easily  dispersed, lead ing  to  

w e ll-m ix e d  regions close to  the im pe lle r.

M a n y  groups have investiga ted the effects o f  funga l m orpho log y , p r im a r ily  us ing 

im age analysis m ethods. A ttem p ts  have been made to  corre late the biom ass 

concentra tion  present w ith  rheo log ica l parameters, bu t w ith  the va rie ty  o f

16



rheo log ica l parameters and m opho log ica l measurements used, i t  is  d if f ic u lt  to  m ake 

comparisons. The developm ent o f  a u n ifie d  approach to  research and data analysis 

m ust occur before any progress can be made in  ach iev ing  such corre la tions. Reuss 

et al. (1982) dem onstrated the a b ility  o f  a ll m odels discussed p re v io u s ly  (P ow er 

law , Casson and H ersche l-B u lk ley ) to  describe P. chrysogenum  fe rm en ta tion  b ro th  

data assessed using  a tu rb ine  v iscom eter over a decade o f  shear rate ranges. 

H ow ever, the extrapolated curves on e ither side o f  the measured data deviate 

s ig n ific a n tly  fro m  each other. I t  was also suggested tha t the inconsistancy o f  m uch 

pub lished experim enta l data lies w ith in  the m easurem ent approach, p lac ing  

pa rticu la r blam e on the use o f  standard ro ta tiona l viscom eters. Th is  f in d in g  is  in  

disaggreem ent w ith  Charles (1978) w ho ind ica ted  tha t the v iscos ities  measured 

rem ained w ith in  5%  o f  the o r ig in a l v isco s ity  fo r  over tw o  m inutes o f  con tinuous 

m o n ito r in g  fo r  a lO g /L  A. niger cu ltu re  bro th . The p rob lem  poss ib ly  lies in  the 

inconsistency o f  o rgan ism  and stra in used fo r experim en ta tion  rather than the 

apparatus. Secondly, a standardisation o f  the rheo log ica l m ode l used to  f i t  the 

experim enta l data is necessary. The use o f  the H e rsch e l-B u lk le y  equation seems 

m ost appropria te as i t  contains bo th  va riab le  y ie ld  stress and pow er la w  index  

term s, thereby a llo w in g  the rheo log ica l descrip tion  o f  a ll f lu id  types. The p rob lem  

w ith  such an approach is the q u a lity  and q uan tity  (bo th  in  term s o f  data p o in t 

density  and range o f  experim enta l shear rate, ty p ic a lly  three orders o f  m agn itude  

are requ ired) o f  data requ ired to solve fo r  the m any constants in  the equation. I f  a ll 

data was treated in  th is  m anner, then com para tive  analysis m ay becom e a 

p o ss ib ility .

I t  is however, s t il l possib le  to  d raw  im portan t conclusions fro m  research com ple ted 

in  th is  area. F irs tly , fo r  dispersed filam en tous cu ltu res the rheo logy  o f  the 

suspension is dependent on in d iv id u a l hypha l characteristics, as suggested by  Roels 

et al. (1974). In  fact, M e tz  et al. (1979) suggested the fo llo w in g  re la tionsh ip  to  

corre late gross m o rpho log ica l data w ith  b ro th  rheo logy.

t 0 = 1 .6 7 x l0 -4C,2n5Z°e8 (2.4)
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K c =  5 .4 5 4 X C .1 X , (2 .5)

t 0 is the Casson y ie ld  stress, Kc the Casson constant and Cm the b iom ass 

concentration.

The use o f  Le and Z llgu suggests a ro le  fo r  bo th  ove ra ll leng th  and branch ing  in te n s ity  

in  rheo log ica l response.

O ther groups be lieve  tha t the characteristics o f  the in d iv id u a l hyphae are irre levan t 

and m ore deta iled a tten tion  should be pa id  to  aggregate characteristics. F a tile  

(1985) was the f irs t  to attem pt to  correlate measured aggregate characteristics w ith  

respect to  the P ow er la w  parameters. H is  corre la tions re lie d  on bo th  b iom ass 

concentra tion  and the equ iva len t c ircu la r d iam eter o f  the aggregates. Th is w o rk  was 

fo llo w e d  b y  a m ore deta iled  study b y  T ucke r and Thom as (1993) w ho  used the 

aggregate parameters, “ fu llness”  and “ roughness” , a long w ith  b iom ass to  corre late 

m o rp h o lo g y  w ith  rheo log ica l parameters.

In  conclus ion , i f  the study o f  the rheo logy  o f  filam en tous  ferm enta tions is  to  

develop, certa in  key  issues need to be addressed. A  set o f  consistent p ro toco ls  need 

to  be established fo r  researchers, inco rpo ra ting  v iscom eters o f  choice, range o f  

measurements and rheo log ica l m odel to  be used. There is a la ck  o f  s tandard isa tion 

in  the above parameters. Furtherm ore, there has to  be a rea lisa tion  tha t the  m ate ria l 

be ing  exam ined is b io lo g ica l and tha t ce ll-ce ll in te ractions are genera lly  surface 

based. W h ile  the m o rp h o lo g y  o f  the organ ism  is im po rtan t in  the in te ra c tio n  o f  

surfaces, the ove ra ll “ stickyness”  is con tro lled  by  ce ll w a ll b iochem is try .
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2.5  F U N G A L  D IM O R P H IS M

D im o rp h ism  in  m icro -o rgan ism s is a w e ll docum ented phenom enon w ith  m any 

occurrences to be found  in  bo th  the funga l and bacteria l k ingdom s. I t  is de fined  as

"The process by  w h ich  the m yce lia l hab it o f  g row th , w ith  ce lls  in  

hyphal or filam entous fo rm , is transfo rm ed by some change in  

cu ltu ra l o r environm enta l cond itions, so tha t a yeast-like  o r 

u n ice llu la r m o rp h o lo g y  is adopted at the ce llu la r le ve l."  (San-B las 

and San-Blas, 1984).

The term  “ d im o rp h ic ”  is defined as “ ex is ting  o r occu rring  in  tw o  d is tin c t fo rm s ”  

(O x fo rd  E ng lish  D ic to n a ry , 3rd ed ition). In  m ic ro b ia l d im o rph ism  how ever, m any 

in term edia te  fo rm s are usua lly  present. C u rren tly , authors are sta ting  tha t the te rm  

d im orph ism  is inadequate and tha t po lym orph ism  o r p laeom orph ism  are m ore 

suitable (K erridge , 1993). F o llo w in g  the d iscovery o f  d im o rph ism  in  the yeast-like  

fungus Mucor by  B e rke ley  in  1838 and B a il in  1857 m uch cu rio s ity  was aroused in  

researchers. E a rlie r w o rk  was directed along tw o  paths, f irs t ly , the possib le  use o f  

fungal d im o rph ism  as a m odel fo r  eucaryotic  ce ll d iffe re n tia tio n  and secondly, 

estab lish ing the reason fo r  the h ig h  occurrence o f  th is  phenom enon in  c lin ic a lly  

im portan t fung i. The la tte r has dom inated d im o rph ism  research since the above 

d iscovery. R ecently , emphasis has been placed on possib le  o p tim isa tio n  o f  

econom ica lly  im po rtan t ferm entations based on the o rgan ism ’ s m o rp h o lo g ica l 

characteristics ( H i l l  and R obinson, 1988; W a lke r and O ’N e il l ,  1990).

2.5 .1  M o rp h o lo g ies  E x h ib ited  by D im o rp h ic  O rgan sim s

I f  a yeast reproduces exc lus ive ly  by budd ing  the m ature bud m ay e ither detach 

its e lf  im m ed ia te ly  o r rem ain  attached to  the m other ce ll and eventua lly  g ive  rise  to  

e ither clusters o r chains o f  cells, resu lting  in  the fo rm a tio n  o f  pseudohyphae. Evans 

and R ichardson (1989) defined pseudohyphae as “ fra g ile  chains o f  ce lls (usua lly  

yeast, w h ic h  have arisen b y  budd ing and have elongated w ith o u t detaching fro m  

adjacent ce lls), w ith  m orpho log ica l characteristics in term edia te  between a cha in  o f
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yeast ce lls and a hypha” . F ive  d iffe re n t pseudom yce lium  structures have been 

observed and illu s tra ted  by  Langerton and T a lice  (1932).

A lth o u g h  yeast do n o t reproduce by  the exc lus ive  fo rm a tio n  o f  hyphae, num erous 

taxa w i l l  fo rm  true septate branch ing hyphae under suitable cond itions. T rue 

hyphae p ro life ra te  by  continuous g row th  o f  the hypha l t ip  fo llo w e d  b y  the 

fo rm a tio n  o f  septa. Three d is tinc t phases o f  yeast m o rp h o lo g y  have been described 

above. These phases, how ever, can be accom panied b y  in term edia te  m orpho log ies. 

W icke rham  (1951) app lied  three c rite ria  to  d iffe ren tia te  between pseudohyphae and 

true hyphae, basing observations on the te rm ina l ce lls o f  the hyphae. P r im a rily , true 

hyphae have re frac tive , s tra ight septa whereas pseudohyphae have not. 

Pseudohyphal fo rm s show  on ly  a sm all percentage o f  ce lls separated b y  septa. 

Secondly, the te rm in a l ce ll o f  true hyphae is usua lly  considerab ly longe r than  its 

predecessor whereas in  pseudohyphae the te rm ina l ce ll is shorter. Pseudohyphae 

te rm ina l cells are ra re ly  longer than the adjacent ce ll. T h ird ly , true hyphae show  

lit t le  o r no co ns tric tion  at the septa o r where the septum  w i l l  be fo rm ed  whereas in  

pseudom yce lium  cons tric tion  is evident.

The te rm  fila m e n t is used to describe an abno rm a lly  lo n g  ce ll and genera lly  a 

pseudohypha is com posed o f  a cha in  o f  filam en ts  (the te rm  fila m e n t is  usua lly  used 

in  the descrip tion  o f  bacteria). A n y  term s spec ific  to  a flo ra  o f  m icrobes n o t covered 

in  the above re v ie w  w i l l  be expla ined as required. A  m ore deta iled re v ie w  o f  the 

top ic  is g iven  by  K reger-van  R ij (1984).

2.5 .2  S ub  C la ssifica tio n  o f  D im o rp h ic  O rg a n sim s

M any d iffe re n t causes fo r  d im orph ism  are presented in  the lite ra tu re  and there 

appears to  be m uch confusion over the u n ify in g  cause o f  the phenom enon. Th is  

con fus ion  can be re lated to  the broad range o f  species that are d im o rp h ic . I f  

d im o rp h ic  organism s are sub-classified in to  suitable group ings then m ore com m on 

trends can be id e n tifie d . T w o  m a in  group ings can be im m ed ia te ly  seen, (1 ) the 

yeast-like  fu n g i and (2 ) yeast. The yeast-like  fu n g i are c lass ified  as fu n g i whose 

p rim a ry  m o rp h o lo g ica l fo rm  is filam en tous (Scherr and W eaver, 1953). Such
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organism s ty p ic a lly  revert to yeast-like  m o rp h o lo g y  w hen certa in  env ironm en ta l 

stresses are applied. W ith  yeast, the converse applies, as yeast are de fined  as 

u n ice llu la r fu n g i tha t reproduce by  budd ing  o r fis s io n  (F lege l, 1977). T h is  

breakdow n is therefore based on the dom inan t m o rp h o lo g y  o f  the o rgan ism  in  

question.

Y eas t-like  fu n g i can be sub-classified in to  pathogenic and non-pathogen ic. 

Pathogenic yeast-like  fu n g i that d isp lay d im o rph ism  (Blastomyces dermatitidis, B. 

brasiliensis, Histoplasma capsulatum, Sporotrichum schenckii, Coccidioides 

immitis) ty p ic a lly  a ll change fro m  the m yce lia l o r saprophytic  fo rm  to the yeast-like  

or paras itic  fo rm  by e levation  o f  incuba tion  tem perature fro m  30°C  to  37°C  

(Deacon, 1984). T h is  is know n  as therm a l d im o rp h ism  and is be lieved  to  be o f  

eco log ica l advantage to  the organism s in  question. D im o rp h ic , yeast-like , pa ras itic  

fu n g i are know n  as the o n ly  fu n g i tha t cause deep-seated mycoses in  bo th  hum ans 

and anim als. I t  is though t that a tra n s itio n  fro m  a m yce lia l to a yeast-like  

m o rpho log y  a llow s the organism  m o t i l i ty  w ith in  the b lood  stream and there fore  

a llow s i t  to  establish co lonies w ith in  the body. Parasitic  fu n g i that do n o t possess 

the a b ility  to make th is  trans ition  are restric ted to  surface in fections. A n o th e r fac to r 

that helps th is  tra n s itio n  is a h igher p C 0 2 (no t in  a ll cases). The 37°C  and h ighe r 

p C 0 2 bo th  ind ica te  cond itions present in  hum ans and animals.

2.5 .3  P a th o g en ic  Y ea st-L ik e  F u n g i

Blastomyces dermatitidis is the agent o f  N o rth  A m e rica n  b lastom ycoses (G ilch ris t's  

disease) and B. brasiliensis is the agent o f  South A m e rica n  blastom ycoses (Lu tz 's  

disease). B o th  organism s have a s im ila r m yce lia l m o rpho log y  bu t d if fe r  s lig h tly  in  

th e ir  pa ras itic  m orpho logy. A t  room  tem perature they e x h ib it a regu la r septate 

m yce liu m ; in vivo they appear as spherical yeast bounded b y  a th ic k -w a lle d  

m em brane (M a ria t, 1969). I t  was dem onstrated b y  H am burger (1907) tha t the 

g row th  tem perature o f  B. dermatitidis had a m a jo r in fluence  on its  m o rpho log y . I t  

was la te r established b y  Lev ine  and O rda l (1946), that no m atter w ha t the m ed ium  

com pos ition  was, tem perature was the sole fac to r d ic ta ting  trans itions  in  

m o rpho log y  fo r  the organism . The op tim um  temperatures fo r  the g ro w th  o f  the

21



m yce lia l and yeast phases were 33°C  and 37°C  respective ly. The phrase "the rm a l 

d im o rph ism " was co ined to describe th is  reversib le  phenom enon (N icke rso n  and 

Edwards, 1949). They also showed tha t the oxygen  consum ption  o f  the yeast phase 

was f iv e  to  s ix  tim es that o f  the m yce lia l phase.

H. capsulatum  is present in  so il and causes h is top lasm osis o r D a r lin g ’ s disease, a 

system ic m ycosis characterised by  the presence o f  sm a ll yeast in  the ce lls  o f  the 

re ticu lo -endo the lia l system. A s w ith  B. dermatitidis, its  m yce lia l phase occurs at 

room  tem perature w ith  the yeast-like  phase occurring  in vivo at 37°C . A  

tem perature o f  37°C  is genera lly requ ired fo r a m yce liu m  to  yeast convers ion  

a lthough w ith  m ed ium  conta in ing  certa in  com pounds, lo w e r tem peratures are 

equa lly  e ffective . The com pounds found  favourab le  fo r  the g ro w th  o f  the yeast 

phase inc lude, Z n 2+, M g 2+, glucose, c itr ic  and a -ke to  g luca ric  acids, cystine, 

cysteine and m eth ion ine ; and a m ix tu re  o f  g lu tam ic  acid, aspartic acid and cysteine. 

As is the case o f  some o f  the p revious examples, the effects o f  C 0 2, su lp h yd ry l 

groups and che la ting  agents a ll p o s it iv e ly  a ffec t the m yce liu m  to  yeast conversion. 

(M a ria t, 1969; Gupta and H ow ard , 1971).

A s  w ith  the tw o  previous yeast-like  parasitic  fu n g i, the Sporotrichum schenckii 

yeast-like  phase occurs in vivo, is paras itic  and requires a tem perature o f  37°C  fo r a 

m yce liu m  to  yeast-like  conversion. W ith  th is  organism , a h ighe r p C 0 2 appears to 

p rom ote the convers ion fro m  m yce liu m  to  yeast-like  at the above tem perature. 

P hys io log ica l studies have suggested tha t bo th  the nuc le ic  ac id  co m p o s itio n  and 

resp ira to ry  m etabo lism  o f  bo th  phases d iffe r  to  a large extent (M a ria t, 1969).

Coccidioides immitis is the agent o f  an im po rtan t m ycosis lim ite d  to  certa in  

geographica l regions. In vitro th is  organism  has branched septate filam ents , 

whereas in vivo, the fungus has a round structure bounded by  a th ic k  w a ll. Th is  

spherule contains deve lop ing round  endospores, w h ic h  w hen developed, are 

released b y  a rup tu re  o f  the m embrane. Tem perature seems to  be a de te rm in ing  

fac to r in  the developm ent o f  the spherule, 34-35°C  appears to  be op tim u m , bu t w ith
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lo w  inocu la , the presence o f  10% p C 0 2 appears to  prevent m y c e liu m  fo rm a tion . 

(Lones and Peacock, 1960; B rooks and N orthey , 1963; M a ria t, 1969).

2 .5 .4 . N o n -P a th o g en ic  Y ea st-L ik e  F u n g i

There are a sm all num ber o f  non-pathogenic, d im o rph ic , yeast-like  fu n g i described 

in  the lite ra tu re , Mucor sp. and Aureobasidium pullulans, w h ic h  are w e ll 

docum ented fo r  th e ir d im o rph ic  behaviour. B o th  present unusual and unrelated 

reasons fo r  th e ir d im o rp h ic  behaviour. Several Mucor species are characterised by 

th e ir d im orph ism . O n a h is to rica l note, Mucor sp. was the f irs t o rgan ism  observed 

to  e x h ib it m ou ld -yeast d im orph ism ; B a il (1857) concluded tha t the yeast-like  fo rm  

o f  Mucor Rouxii was Hormiscium cerevisiae (a fo rm e r name fo r  S. cerevisiae) and 

tha t th is organism  and Mucor were developm enta l stages o f  the same fungus. 

Pasteur la ter rejected th is  concept o f  species transm uta tion  and la te r dem onstrated 

the im portance o f  oxygen in  the con tro l o f  m ou ld -yeast d im o rp h ism  in  Mucor 

(Pasteur, 1876). Mucor presents a m y ria d  o f  causes fo r  its  d im o rph ism  in c lu d in g  

atm ospheric a lterations, hexose source and concentration, presence o f  che la ting  

agents (E D T A ) and concentraton c y c lic  A M P .

Several co n flic t in g  reports have been pub lished on the env ironm en ta l cond itions  

govern ing  the d im orph ism  phenomenon, a ll re la ting  to the atm ospheric 

environm en t in  w h ich  the cells were g row n. The three basic parameters, re la ting  

d im o rp h ism  to environm ent, were anaerobiosis, C 0 2, and the a c id ity  caused by 

h ig h  p C 0 2. B a rtn ick i-G a rc ia  and N icke rson  (1962a) established tha t bo th  carbon 

d iox ide  and oxygen con tro lled  d im orph ism . Carbon d io x id e  was fo u n d  to  induce 

yeast-like  g row th , oxygen was found  to  have the converse effect. U nde r an ine rt 

atmosphere (n itrogen) the organ ism  grew  in  filam entous fo rm . B y  increasing the 

p C 0 2 o f  th is  environm en t a gradual sh ift to  yeast-like  m o rp h o lo g y  occurred. The 

in tro d u c tio n  o f  a ir even at lo w  p 0 2 leve ls n u ll if ie d  th is  effect. The e ffec t o f  C 0 2 

was due to  d isso lved C 0 2 and no t to H C O , (B a rtn ick i-G a rc ia  and N icke rson , 

1962b). H a id le  and S tork  (1966) v e r if ie d  the above conclusions using  cytochrom e 

oxidase analysis techniques. I t  was found  tha t b y  exposing ce lls  to  a ir, the 

m o rpho log y  o f  the organism  changed to  filam en tous and the rate o f  cytochrom e
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oxidase synthesis increased sim ultaneously. C ytochrom e oxidase synthesis is  a 

strong in d ica to r o f  a sw itch  fro m  ox ido -reduc tive  to  o x id a tive  m etabo lism . U s ing  

m ito ch o n d ria l in h ib ito rs , they in te rrup ted  the p roduc tion  o f  cy toch rom e oxidase 

and found  a concom itan t reversion to  yeast-like  m orpho logy. They also found  that 

another com pound tha t caused m orpho log ica l revers ion (phenethyl a lcoho l) had no 

e ffec t on cytochrom e oxidase levels, dem onstrating tha t the absence o f  cytochrom e 

oxidase was no t required fo r  yeast-like  g row th . Furtherm ore they showed tha t under 

pure N 2 cond itions  (i.e. w ith o u t any traces o f  0 2) the yeast-like  fo rm  preva iled . Th is 

answered the last question regard ing d im o rph ism  in  Mucor. I t  showed tha t under 

com p le te ly  0 2 deprived  cond itions, the yeast-like  fo rm  w i l l  dom inate  and that the 

d im o rph ism  phenom enon in  Mucor is resp ira tory based.

B a rtn ick i-G a rc ia  (1968) also d isclosed tha t under anaerobic cond itions , the hexose 

source and concentration had a considerable e ffect on  the m o rp h o lo g y  o f  Mucor 

rouxii. G lucose was the m ost e ffec tive  hexose fo r  e lic it in g  yeast-like  g row th , 

fo llo w e d  in  order by  fructose, mannose and galactose. A t  100% p C 0 2, the effects 

were dram atic , w ith  pure yeast-like  or m yce lia l cultures deve lop ing , accord ing to 

the glucose concentra tion  present. A t  30%  p C 0 2, the e ffec t was less dram atic  w ith  

h ig h  glucose concentrations o n ly  causing m ix tu res  o f  m yce liu m  and yeast. 

In d e rlie d  and Sypherd (1978) also exam ined th is  hexose phenom enon and reasoned 

that the need fo r  C 0 2 and hexose in  the m aintenance o f  the yeast-like  fo rm  o f  

Mucor racemosus was related to  the h ig h  f lu x  o f  carbon th rough  the g ly c o ly t ic  and 

pentose phosphate pathways o f  the organ ism  w h ile  in  yeast-like  fo rm . Th is  

observation  was no t noted fo r  the m yce lia l fo rm .

The effects o f  certa in  chem icals on the m orpho log y  o f  Mucor have also been 

observed. A t  concentrations increas ing ly  in h ib ito ry  to  g row th , che la ting  agents o f  

the N -ace tic  ac id  type, such as E D T A , p rogress ive ly  n u ll if ie d  the m orphogenetic  

e ffec t o f  C 0 2, and cultures reverted to  the filam en tous fo rm  o f  developm ent. B o th  

the in h ib it io n  o f  g row th  and the m orphogenetic  effects w ere im peded b y  adding 

trans ition -g rou p  m etal ions. Th is  ind icates that the e ffec t o f  these com pounds was

24



due to  m eta l che la tion  and i t  was though t tha t in  pa rticu la r, z inc  was the cause o f  

the in h ib it io n  (B a rtn ick i-G a rc ia  and N icke rson , 1962b).

A. pullulans is a non pathogenic yeast-like  fungus w h ich  synthesises the a -g lucan , 

p u llu lan . The organ ism  has a com p lex  l i fe  cyc le  e x h ib it in g  a va rie ty  o f  fo rm s 

rang ing  fro m  yeast-like  cells th rough  m u ltic e llu la r  filam en ts  to  chlam ydospores. 

In terest in  the m orpho log y  o f  th is  organism  developed w hen  i t  became clear tha t 

synthesis o f  the  polysaccharide p u llu la n  was affected b y  the am ounts o f  e ithe r 

m o rp h o lo g y  present (C atley, 1980). I t  was also no ticed  tha t the generation  o f  the 

po lysaccharide was at an op tim u m  concurrent w ith  the fo rm a tio n  o f  b lastospores 

and tha t the  n itrogen  source present in fluence d  th is  phenom enon. I t  was noted by  

Ono et al. (1977) tha t changing in it ia l pH  altered the p roduc tion  o f  p u llu la n . W hen  

the p H  was low ered fro m  6.0 to 2.5, p roduc tion  o f  the po lysaccharide fe ll  

d ram a tica lly . I t  was then noted tha t the m o rp h o lo g y  o f  b o th  cu ltures was d iffe re n t, 

the p H  6.0 cu ltu re  contained a fa r greater le ve l o f  yeast ce lls than  the p H  2.5 

cu ltu re . They stated that m orpho log ica l appearance indicates the a b il ity  to  produce 

p u llu la n . T h is  resu lt was also observed b y  H eald and K ris tiansen  (1985) w ho  

concluded tha t i t  was possib le  that the  yeast-like  fo rm  o f  the o rgan ism  was the 

p r im a ry  producer o f  the po lysaccharide. In  the f ir s t  C ontinuous S tirred  T ank  

Reactor (C S T R ) studies, M c N e il et al. (1989) dem onstrated th a t the spec ific  

p ro d u c tiv ity  o f  the yeast-like  phase drops sharply w ith  increasing p H  and tha t the 

op tim u m  rate o f  p u llu la n  p roduc tion  is found  in  cu ltures con ta in ing  50%  yeast. 

T h is  w o rk  replaced the concept o f  a p roduc ing  and non -p roduc ing  m o rp h o lo g y  and 

suggested a re la tionsh ip  between m orp h o lo g y  and p ro d u c tiv ity . M a n y  studies have 

lin k e d  n u tr it io n a l lim ita tio n s  w ith  m o rpho log y  changes in  the organism . C ooper 

and Gadd (1984) showed tha t the use o f  yeast extract induced yeast to  m yce liu m  

trans itions, the same e ffect be ing achieved by  the add ition  o f  adenosine (C ooper et 

al., 1985). In  fact, Reeslev et al. (1991) w ho  studied the e ffec t o f  p H  and yeast 

extract on  the m orpho log y  o f  the organism , concluded that va ria tions  in  bo th  p H  

and yeast extract leve ls on the m o rp h o lo g y  o f  the organism  w ere s ign ifican t. They 

dem onstrated tha t s ig n ifica n t d ifferences existed in  the m o rp h o lo g y  o f  the o rgan ism  

g row n  at d iffe re n t p H  values (3.5 and 6.5) w hen  yeast extract was absent fro m  the
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m edium . They found a greater percentage o f  yeast-like  b iom ass at the h ighe r pH . 

T h is  d iffe rence  was no t observed w hen the concentra tion  o f  yeast extract was 

increased to 4g /L . They concluded tha t lim ita tio n  o f  a com ponent in  yeast extract 

was responsib le  fo r  the m orphog ica l trans ition , how ever, the m agn itude  o f  the 

m o rpho log ica l trans ition  was dependent on the p H  o f  the cu lture. Reeslev and 

Jensen (1995) dem onstrated tha t th is  m yce liu m  to yeast trans ition  was due to Z n 2+ 

and Fe3+ lim ita tio n . They observed tha t the concentra tion  o f  yeast extract (0.4 g /L ) 

u tilise d  in  p revious studies caused lim ita t io n  o f  the above m etals and suggested the 

u tilis a tio n  o f  a h igher concentra tion  o f  yeast extract (4 g /L ) fo r  im p roved  g row th  

and biom ass production . F o r the p roduc tion  o f  p u llu la n , l im ita t io n  o f  Z n 2+ was 

found  to  be superior to  lim ita tio n  o f  Fe3+. L im ita t io n  o f  Z n 2+ also resulted in  a 

greater quan tity  o f  yeast biomass.

F rom  a b iochem ica l engineering perspective, the chang ing m o rp h o lo g y  o f  A. 

pullulans has been seen to  a ffec t both  reactor perform ance and downstream  

processing. D ue to the p roduc tion  o f  a viscous polysaccharide and a changing 

m o rpho log y , A. pullulans fe rm enta tions present a com p lex  rheo log ica l p rob lem  

(M c N e ill and H arvey, 1993). I t  has been observed tha t fe rm enta tion  bro ths w ith  the 

h ighest concentrations o f  p u llu la n  o ften  have the low es t apparent v isco s ity  (M c N e il 

and K ris tiansen , 1987). Th is  resu lt is due to the “ p u llu la n  p ro d u c in g ”  fo rm  o f  the 

organ ism  be ing p redom inan tly  yeast-like , thus co n tr ib u tin g  l i t t le  to  the ove ra ll 

v isco s ity  o f  the broth, whereas non-p roduc ing  ferm enta tions are p redom ina n tly  

filam en tous and consequently pseudoplastic. The m o rpho log y  d is tr ib u tio n  o f  the 

ce lls in  the b ro th  was seen to  a ffec t the perform ance o f  c ro ss -flo w  m em brane 

f ilt ra t io n  systems (Yam asaki et al., 1993a, 1993b). The spec ific  resistance o f  the 

m ic ro b ia l cake was low ered d ram a tica lly  w hen the yeast-like  p o p u la tio n  was 

predom inant. A. pullulans was also the centre o f  an in te resting  study on the use o f  

neural n e tw o rk  c lass ifica tion  o f  ce ll m o rpho log y  (G uterm an and Shabtai, 1996).

26



2 .5 .5 . D im o rp h ic  T ru e  Y ea st

The d im o rph ic , true yeast inc lude  S. cerevisiae, Hansenula cinomola, 

Saccharomycopsis fibulgera  and the organism  used in  the present w o rk , K. 

marxianus. Im perfect, d im o rp h ic  yeast inc lude  Candida albicans and T. varibilis.

A  num ber o f  com m on trends are evident. F irs tly , d im o rp h ism  in  S. cerevisiae 

seems to be caused by  substrate lim ita t io n  in  continuous cu ltu re  (K u riya m a  and 

S laughter, 1995). I t  was found tha t ce lls elongated cons ide rab ly  and exh ib ited  

filam en tous and pseudom yce lia l m o rpho log y  at in te rm ed ia te  d ilu t io n  rates where 

g lucose concentra tion  was be lieved to  be at its  low est ( H i l l  and R obinson, 1988). 

L im ita t io n  o f  bo th  glucose and n itrogen  have been re lated to  th is change. 

M o rp h o lo g ica l a lterations due to  n itrogen  have been exp la ined by  B ro w n  and 

H ough  (1965). U nder n itrogen  l im it in g  cond itions, e longated ce lls  predom ina ted 

and a decrease in  the am ount o f  su lphyd ry l g roupings in  the su lp h yd ry l-d isu lp h id e  

balance occurs w h ich  consequently affects m o rpho log y  (N icke rson  and Falcone, 

1956).

Y anag ish im a (1963) found  tha t a cytop lasm ic m utan t s tra in  o f  S. cerevisiae, 

d e fic ien t in  aerobic resp ira tion  and under the in fluence  o f  10-20 m g /m L , in d w e ll-3 -  

acetic ac id  and a-naphta leneacetic acid, exh ib ited  ce ll e longa tion , w h ile  acetic acid 

had no such effect. A n  an tiaux in , 2, 4, 6 -tr ich lo rophenoxyace tic  acid, com p le te ly  

reversed the affect o f  the auxin. Th is  e ffect was observed before any s ig n ifica n t ce ll 

m u lt ip lic a tio n  occurred. A  s im ila r ity  to the effects noted w ith  the shoots o f  h ighe r 

p lants was observed. C e ll length increased w h ile  ce ll w id th  rem ained unchanged 

and the e ffec t was antagonised b y  the add ition  o f  an an tiaux in . In  a la ter paper 

(Y anag ish im a, 1964), i t  was dem onstrated that even w ith  resp ira tion  su ffic ie n t 

cells, under o rd ina ry  cu ltu ra l cond itions, the ce ll e longa tion  e ffec t o f  aux in  can be 

show n i f  the aux in  is accom panied b y  g ibbe re llic  ac id  (G A ). S ince G A  seems to 

m ake ce lls susceptible to  the aux in  action, i t  was assumed tha t some ce llu la r 

substance responsible fo r  the aux in  ac tion  is produced b y  the e ffec t o f  G A . A fte r  

trea ting  extracts fro m  the G A  treated cells w ith  RNase, rem ov ing  the RNase and 

reapp ly ing  the extracts to  ce lls treated w ith  auxin  no e longa tion  was noted, whereas
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the extracts no t treated w ith  RNase showed considerable e longation. I t  was then 

suggested tha t the active substance produced by  G A  was in  fac t R N A . I t  is  also 

possib le that the substance was a p ro te in  coded fo r  b y  the R N A  in  question and 

prom oted  by  G A .

G im eno el al. (1993) studied pseudohyphal g ro w th  o f  S. cerevisiae on so lid  

m ed ium  and suggested tha t pseudohyphae m ay be vecto rs to  d e live r ass im ila tive  

yeast ce lls  to regions w ith  p le n tifu l nu trien ts, suggesting tha t pseudohyphae behave 

as fo rag ing  ce lls in  tim es o f  env ironm enta l stress:

T hey id e n tifie d  the fo llo w in g  key  requirem ents fo r  pseudohyphal g row th .

1) C e ll shape changes -  cells cou ld  no t change fro m  one m o rpho log ica l fo rm  to 

another, bu t ra ther generated progeny whose m o rp h o lo g y  was d iffe re n t fro m  the 

parent ce ll, suggesting that a ce ll has to be m anufactured in  a pa rticu la r 

m o rp h o lo g y  and cannot change, once form ed, fro m  one m o rp h o lo g y  to  another. 

Th is  is s im ila r to  bo th  the germ -tube fo rm a tion  (O dds, 1988) and clear opaque 

trans itions (Bergen et al. , 1988) in  C. albicans.

2) N itro g e n  starvation  o r g row th  on a p o o rly  assim ila ted  fo rm  o f  n itrogen  fo r 

exam ple p ro lin e  - th is observation  was made after ce lls  g ro w n  on  so lid  m ed ium  

con ta in ing  lo w  amounts o f  am m on ium  sulphate o r p ro lin e  as the n itrogen  

source, in itia te d  pseudohyphal grow th . Th is  also agrees w ith  the w o rk  o f  B ro w n  

and H ough  (1965) and H i l l  and R ob inson (1988)

3) U n ip o la r ce ll d iv is io n  -  to  develop true pseudohyphae, u n ip o la r g ro w th  is 

essential, in  order to ensure tha t the ce ll develops away fro m  substrate lim ite d  

regions. T h is  is gene tica lly  con tro lled  in  S. cerevisiae. The m a ting  type locus 

program m es ce ll type spec ific  budd ing  patterns p robab ly  b y  regu la ting  budd ing  

pattern  genes and consequently co n tro llin g  pseudohyphal g ro w th  as th is  

requires the d ip lo id  budd ing  pattern.
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4) Invasiveness -  pseudohyphae penetrated the surround ing  agar. T h is  was 

a ttribu ted  to  tw o  possib le factors, the pressure exerted b y  the t ip  o f  a 

pseudohypha is greater than tha t exerted by  budd in g  yeast thus in it ia t in g  

penetration, or the secretion o f  h y d ro ly tic  enzymes m ay assist in  the penetra tion  

o f  the agar.

L ip k e  el al. (1976) fo u n d  tha t by  exposing the yeast to  a sex pherom one produced 

by  m a ting -type  a  cells, considerable e longa tion  and enlargem ent o f  ce lls occurred. 

I t  was also shown tha t the cells in  question contained m ore g lucan and less m annan 

in  th e ir  w a lls  than the con tro l cells.

Sundhagul and H e n d rick  (1966) demonstrated tha t b y  g ro w in g  Hansenula 

schneggii, co rrec tly  know n  as Hansenula anomala var. schneggii, (K rege r-van  R ij, 

1984) in  tryp tophan-g lucose m ed ium , considerable e longa tion  and 

pseudom yce lium  fo rm a tio n  occurred. T ryp tophan  was the o n ly  am ino acid to  cause 

th is  e longation. W hen the ce lls were g row n in  the above m ed ium  a long w ith  the 

ad d itio n  o f  other am ino acids yeast-like  g row th  predom inated. I t  was fo u n d  that 

there was 2.5 tim es as m uch mannan in  the elongated ce ll w a lls  than in  the yeast 

ce ll w a lls . Th is tra n s itio n  was reversed w hen p ro lin e  was added to  the cu ltu re  

m edium . O n exam ina tion  o f  the biomass curves fo r th is  experim ent, i t  can be seen 

that tryp thophan is a vas tly  in fe r io r  n itrogen  source than  am m on ium  sulphate. I t  can 

be hypothesised, in  th is  case, tha t n itrogen  is lim it in g , causing the observed 

e longation. Saccharomycopsis fibulgera  has been reported as be ing  d im o ip h ic  and 

again the n itrogen source is o f  great im portance. E xpe rim en ta l results also p o in t 

tow ards the above conclus ion . C om p lex  m ed ium  y ie lded  6.48 g /L  b iom ass (yeast­

like ). A l l  other n itrogen  sources (except m eth ion ine ) y ie ld e d  app rox im a te ly  1 g /L  

biom ass, w h ich  was again yeast-like . M e th ion ine  on  the o ther hand y ie ld e d  an 

in term edia te  am ount o f  biomass (3.46 g /L ) p lus extensive pseudo-hypha l g row th . 

Th is  resu lt d isp lays the e ffec t o f  n itrogen  on m o rp h o lo g y  and has strong 

im p lica tio n s  fo r  th is  w o rk  as w e ll.
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S. fibulgera, an organ ism  used extensive ly fo r  the p ro d u c tio n  o f  b iom ass fro m  

starchy wastes and fo r  amylase production , has been show n to  be d im o rp h ic  by  

Necas and Svoboda (1981). D u rin g  g row th  on com p lex  m ed ium , m yce lia l b iom ass 

and yeast-like  blastospores can be produced. U pon  the in tro d u c tio n  o f  de fined  

m ed ium  it  was found  that m eth ion ine  was requ ired  fo r  v igo rous  g ro w th  and 

pseudom yce lium  production . A s  su lphur is im p lica ted  in  the con tro l o f  d im o rp h ism  

in  C. albicans, i t  was though t tha t cysteine w o u ld  also a ffec t the m o rp h o lo g y  o f  the 

o rgan ism  in  a m anner s im ila r to  m eth ion ine . T h is  p roved  n o t to  be the case and 

hence i t  was assumed tha t m eth ion ine  was essential fo r  transm ethy la tion  reactions 

such as in  the m e th y la tio n  o f  hom ocyste ine, nuc le ic  acids, stero ids and 

phospho lip ids.

K. marxianus has been studied in  the past also (W a lke r and O ’N e ill,  1990). The 

results ind ica ted  tha t oxygen had a m a jo r co n tr ib u tio n  in  the m o rp h o lo g ica l 

a lterations o f  the organism . The present w o rk  w i l l  reveal tha t the above f in d in g  was 

erroneous and demonstrates an exam ple o f  the dangers o f  com paring  com p le te ly  

d iss im ila r organism s (i.e. Mucor) fo r  d im o rp h ic  c rite ria . T h is  w i l l  be discussed in  

some de ta il in  Chapter 7.

M oser and K u n g  (1986) dem onstrated the po ten tia l o f  e x p lo itin g  a d im o rp h ic  

organ ism  as a b io lo g ic a l test system to  assess b io reacto r perform ance. They u tilise d  

the d im o rph ic , s tr ic tly  aerobic (s ic) yeast, Trichosporon cutaneum in  th e ir 

fe rm en ta tion  studies and observed tha t by  changing the o rien ta tion  o f  the fe rm enter 

fro m  ve rtica l to  ho rizon ta l, com p le te ly  d iffe re n t end p o in t m orpho log ies  w ere 

observed.
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2 .5 .6 . D im o rp h ic  Im p erfect Y east

Im pe rfec t yeast, Candida albicans and Trigonopsis varibilis are the o n ly  reported 

d im o rp h ic  organism s in  th e ir class. In  fact i t  has been stated that

“ Few  fie lds  o f  b io lo g ica l science based on so s im p le  an observation, 

can have generated such a confused and con trad ic to ry  lite ra tu re  as 

tha t o f  d im o rph ism  in  Candida albicans” (Odds, 1988).

Candida is a pathogen, bu t u n like  a ll o ther d im o rp h ic  pathogens, its  m oxpho log ica l 

tra n s itio n  is no t exc lus ive ly  regulated by tem perature. In  fact, Candida occurs as 

both  yeast and m yce lia  in  bo th  the saprobic and pathogen ic states. A s  w ith  the 

p rev ious organism s discussed, the a b ility  o f  Candida to  fo rm  hyphae is though t to  

be an im portan t v iru lence  fac to r (S o il, 1991) bu t evidence is no t conc lus ive  fo r  th is  

organism , The m o lecu la r basis fo r  the sw itch  is  no t understood. Factors a ffe c tin g  

the tra n s itio n  in  m o rpho log y  inc lude  pH , tem perature, and the presence o f  am ino 

acids and carbohydrates.

Trigonopsis varibilis does not fo llo w  the tra d itio n a l yeast-like  m yce liu m  tra n s itio n  

b u t instead has an e llip so id a l-tr ia n g u la r trans ition . A g a in , M e th ion ine  is re la ted to 

the tra n s itio n  (Sentheshanmuganathan and N icke rson , 1962b). The tra n s itio n  is  also 

in itia te d  using a com b ina tion  o f  cho line  and in o s ito l in  the presence o f  am m on ium  

sulphate. Th is indicates a strong l in k  between p h o sp h o lip id  synthesis and 

d im o rph ism  in  th is  organism .

2 .6  A  M E C H A N IS M  F O R  D IM O R P H IS M  IN  Y E A S T

A  hypothesis fo r  the d im o rp h ic  g row th  o f  m any organism s is presented be low . T h is  

is s trong ly  based on  the re v ie w  o f  San-Blas and San-Blas (1984), the w o rk  o f  

Shepherd and G opal (1993) w ho  deal w ith  the nature and g ro w th  o f  ce ll w a ll 

b iosynthesis, B a rtn ick i-G a rc ia  and G ierz (1993) w ho  discuss m o d e llin g  o f  the 

deve lopm ent o f  ce ll shape and the studies o f  Necas and Svoboda (1981) on 

p ro top las t regeneration in  the w e ll-s tud ied  S. cerevisiae.
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2.6 .1  C ell W a ll C o m p o sitio n  and  S ig n ifica n ce  in M o rp h o lo g y

The ce ll w a ll is the p rim a ry  determ inant o f  c e ll shape (Sentandreu et al., 1993). 

W hen protop lasts (w a ll free ce lls) were fo rm ed  w ith  yeast and m yce lia l fo rm s  o f  

d im o rp h ic  organism s, a ll protoplasts were spherical and ce lls rem ained spherica l as 

new  w a ll developed (Svoboda and Necas, 1974). Therefore, a change in  e ithe r ce ll 

w a ll com pos ition  o r structure is necessary fo r  a change in  m o rpho log y  and i t  is also 

apparent tha t the environm en t in  w h ic h  the w a ll develops is c rit ica l fo r  ce ll 

m orpho logy . The ce ll w a ll o f  C. albicans ( typ ica l fo r  o ther funga l ce lls ) makes up 

about 30%  o f  the to ta l w e ig h t o f  the ce ll and a num ber o f  studies have show n tha t i t  

is composed o f  glucans (60-80% ), m annoprote ins (20 -30% ), c h it in  (0 .6 -2 .7% ), 

p ro te in  (5 -15% ) and lip id  (2 -5% ) (C hattaw ay et al., 1968). G lucans can be fu rth e r 

b roken dow n in to  (3-1,3 (25-35% ) and (3-1,6 (35 -45% ) lin k e d  glucans. T w o  lines o f  

evidence ind ica te  tha t the (3-glucans im p a rt the structura l strength. F irs tly , 

o sm o tica lly  sensitive ce lls are generated a fter degradation o f  w ho le  yeast ce lls  w ith  

a p u r if ie d  (3-1,3-glucanase (G opal et al., 1984a) and secondly, i t  has been show n 

tha t w ith  C. albicans, protoplasts regenerated in  a s im p le  m ed ium  g ive  osm o tica lly - 

resistant ce lls tha t have no t incorporated m annopro te in  in  the w a ll (G opa l et al., 

1984b). I f  ce ll m o rpho log y  is  to  be altered, therefore, the structura l com ponen t (i.e. 

glucans) has to  be changed e ither in  structure o r m ethod o f  deposition.

M annopro te ins are com posed o f  bo th  a carbohydrate and a p ro te in  po rtion . The 

m a jo r p o rtio n  is an a - 1,6 lin ke d  polym annose (m annose - a hexose c lose ly  re lated 

to  glucose). Th is  is jo in e d  to  a p ro te in  v ia  a ch itob iose  b ridge  and asparagine. 

M annopro te ins have been lin ke d  to v iru lence  in  C. albicans.

I t  is  kn o w n  tha t the ce ll w a ll also contains a num ber o f  enzymes in c lu d in g  N -a ce ty l 

glucosam inidase, ac id  phosphatase, proteinase, glucanase and chitinase.

2 .6 .2  C ell W a ll D ev e lo p m en t

The im portance o f  the ce ll w a ll in  d ic ta ting  the m o rp h o lo g y  o f  the funga l ce ll has 

been stressed to  date. The concept o f  altered m ethods o f  w a ll fo rm a tio n  lead ing  to
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d iffe r in g  end m orpho log ies w i l l  n o w  be addressed. C e ll w a ll fo rm a tio n  can be 

d iv ided  in to  tw o  stages, p rim a ry  and secondaiy w a ll developm ent.

In  p rim a ry  w a ll developm ent, ce ll w a ll precursors are assembled in  the endop lasm ic 

re ticu lu m  and are dispensed to the ce ll w a ll in  vesic les (M o o r, 1967). These 

vesicles con ta in  new  m ateria l fo r  the p lasm a m em brane as w e ll as m em brane bound 

enzymes, solub le enzymes, h igh ly-processed m annopro te ins and perhaps a num ber 

o f  ce ll w a ll p o lym e r prim ers. These vesicles are gu ided to  the p o in t o f  g ro w th  along 

actin  f ib r i ls  and at the p lasm a membrane there is an accum u la tion  o f  th is  new  w a ll 

m ateria l fro m  the vesic le  in to  the p lasm a m em brane. A fte r  fus ion  o f  the  vesicles 

w ith  the p lasm a mem brane, the m annoprote ins are released in to  the ce ll w a ll. 

C h it in  and g lucan are synthesised by  transm em brane enzymes ca ta lys ing  the 

vec to ria l synthesis o f  these po lym ers  w ith  the precursors U D P  N - 

acety lg lucosam ine and U D P  (u rid ine  d i phosphate) - g lucose inside the ce ll and the 

products are extruded th rough  in to  the w a ll. The inse rtion  o f  m ateria ls  in to  the 

ex is ting  w a ll is fa c ilita te d  by  loca lised glucanases that a llo w  c lip p in g  and inse rtion  

o f  new  m ateria l in to  glucan strands. The operation  and con tro l o f  these enzym es is 

n o t w e ll understood.

A  secondary phase o f  w a ll developm ent is also kn o w n  to  ex is t - p a rtic u la r ly  in  the 

subapical regions o f  the deve lop ing hyphae. T h is  invo lves  a c ro ss -lin k in g  o f  the 

polysaccharides already present in  the ce ll w a ll. T h is  is though t to  be m edia ted b y  

loca lised  glucanases tha t c lip  the g lucan m olecules and a llo w  new  p o lym e r to  be 

inserted and also a branch ing  enzyme located in  the ce ll w a ll. The rate o f  g ro w th  

and the f in a l m o rp h o lo g y  are c lea rly  regulated b y  both  tem pora l and spatia l con tro l 

o f  enzymes and in v o lv e  the d e live ry  o f  appropria te  po lym ers to  the re levant 

p os ition  in  the w a ll. N om be la  et al. (1992) hypothesised tha t the regu la tion  o f  these 

glucanases p o in t tow ards a ro le  in  ce llu la r m orphogenesis. Staebell and S o il (1985) 

demonstrated fo r  C. albicans that the resu ltant shape o f  the ce ll was com p le te ly  

con tro lled  by  the ra tio  o f  apical to  secondary g row th . They observed tha t 70%  o f  

the budd ing  c e ll’ s expansion was achieved by  apica l g row th  and the rem a in ing  30%  

was achieved b y  general expansion a fter apica l g ro w th  had ceased at app rox im a te ly
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tw o  th irds  o f  the c e ll’ s f in a l vo lum e. F o r germ-tubes, less than 10% o f  c e ll g row th  

was a ttribu ted  to general surface expansion w ith  the rem ainder co m in g  fro m  

continuous apica l expansion. Th is  w ho le  process o f  ce ll w a ll deve lopm ent and 

m orphogenesis has been sim ulated using a m athem atica l equation k n o w n  as the 

hyp h o id  equation (B a rtn ick i-G a rc ia  and G ierz, 1991).

y  = A'cot (2.6)

The hyp h o id  equation provides a m athem atica l foun d a tio n  fo r  the c e llu la r basis fo r  

d im orph ism . Its  parameters, /Vv and Rvsc, de fine tw o  m orphogene tica lly  im po rtan t 

parameters: the am ount o f  w a ll b u ild in g  vesicles produced per u n it tim e  and the 

rate o f  advance o f  a theore tica l en tity  the V es ic le  S upp ly Centre (V S C ) (x  and y  are 

geom etric coordinates) (G irba rd t, 1957). The V S C  has been observed in  h ighe r 

fu n g i as an organe lle  kn o w n  as the Spitzenkorper fo u n d  in  the g ro w in g  tip s  o f  

hyphae and, in  lo w e r order fung i, accum ulations o f  vesicles have been fo u n d  using 

e lectron m icroscopy near where the theore tica l V S C  w o u ld  lie  fo r  bo th  yeast 

(M oo r, 1967) and filam entous fu n g i (G rove and B racker, 1978). H ig h  values o f  th is  

Rmc : Nv ra tio  led to  the developm ent o f  hyphae; lo w  values led  to  a yeast-like  

m orpho logy. The assumptions o f  the m odel are as fo llo w s . A l l  vesicles o rig ina te  

fro m  a p o in t source kn o w n  as the V S C , and vesicles can trave l in  any d ire c tio n  in  

the ce ll. The m ovem ent o f  the V S C  was found  to  con tro l m o rp h o lo g y  com p le te ly . 

I f  the V S C  is he ld sta tionary w h ile  vesicles are released, then a spherica l ce ll is 

produced; i f  the V S C  is advanced con tinuous ly , then a hypha l tube is produced. I t  

was found  that, b y  pu ls ing  the advance o f  the V S C , budd ing  yeast ce lls  cou ld  be 

sim ulated. B y  lengthen ing the pulse, pseudohyphae cou ld  be created. The a b ility  o f  

th is  s im p le  m ode l to  p red ic t the va ried  m orpho log ies exh ib ited  b y  d im o rp h ic  fu n g i 

suggests a s im p le  m echanism  beh ind d im orph ism , w h ich  lies inhe ren tly  in  the 

fo rm a tion  o f  w a ll structure.

I f  secondary w a ll fo rm a tio n  fo llo w s  c lose ly  beh ind  the c e ll’ s apex, then th is  w i l l  

res tric t the la tera l extension o f  the ce ll w a ll in  reg ions close to  the apex, fo rc in g  the
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ce ll to  p ro jec t outwards in  a c y lin d r ic a l fashion. I f  secondary w a ll fo rm a tio n  is 

s low , th is  w i l l  a llo w  the inse rtion  o f  ce ll w a ll com ponents m ore  even ly  over the 

entire ce ll surface, lead ing to the fo rm a tio n  o f  m ore o vo id  cells.

2 .6 .3  C ell D iv is io n

The hypotheses b y  w h ic h  ce ll e longa tion  can occur have been ou tlined , bu t such 

hypotheses do no t take in to  account the lack  o f  ce ll d iv is io n  tha t o ften  occurs 

concurren tly  w ith  ce ll e longation. The life  cyc le  o f  the ha p lo id  phase o f  S. 

cerevisiae has been w e ll studied and an o ve rv ie w  o f  th is  l i fe  cycle , w ith  p a rticu la r 

emphasis on ce ll d iv is io n  w i l l  be presented here.

The in it ia l stages o f  bud  fo rm a tion  in vo lve  a w eaken ing  o f  the ce ll w a ll caused by 

the action  o f  ly t ic  enzymes that attack po lysaccharides in  the ce ll w a ll. The bud is 

fo rm ed  w hen  new  ce ll w a ll m a te ria l is la id  dow n  at the  site o f  bud in it ia tio n . A s  the 

bud becomes larger, the deposition o f  new  m ate ria l becomes loca lised  in  the t ip  o f  

the bud. W hen  the bud becomes fu ll sized then a com p lex  septum  is la id  d o w n  in  

the neck o f  the bud w h ich  contains c h it in  as w e ll as g lucan and mannan. The 

biosynthesis o f  ch itin , w h ich  is found  in  the bud scar and represents one o f  the 

layers o f  the d iv id in g  w a ll fo rm ed du ring  bud fo rm a tion , has been studied. The 

enzym e responsib le  fo r  ch it in  synthesis has been found  to be present in  the 

p lasm alem m a as a zym ogen, an inac tive  fo rm  o f  the enzyme. The fo rm a tio n  o f  

active  c h it in  synthase is achieved by the action  o f  an ac tiva tion  p ro te in . T h is  occurs 

by  p ro te o ly tic  cleavage o f  the zym ogen. The ac tiva tion  p ro te in  is restric ted  to  the 

neck o f  the bud, p reventing  w idespread c h it in  synthesis. A n  in h ib ito r  o f  the 

ac tiva to r p ro te in  ensures th is  (B erry , 1982). C h it in  seems to  have a consequentia l 

e ffect on ce ll m o rpho log y  in  C. albicans as h igher concentrations o f  c h it in  have 

been found  in  m yce lia l fo rm s o f  the ce ll a long w ith  h ighe r concentrations o f  ch it in  

synthase. T h is  m ay be expla ined by d ifferences in  cyc le  tim es o f  c h it in  synthesis in  

con junc tio n  w ith  d ifferences in  in h ib ito r  a c tiv ity . T h is  m ay a llo w  a m ore  u n ifo rm  

degree o f  c h it in  synthesis th roughou t the ce ll rather than at the m other-bud  

ju n c tio n , causing a fa ilu re  o f  cells to  separate. T h is  also concurs w ith  the suggestion 

tha t d im o rp h ism  is no t caused by q uan titia tive  changes in  the synthesis o f  any ce ll
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d iv is io n  cyc le  com ponent bu t rather by  an a lte ra tion  in  the t im in g  o f  ce ll d iv is io n  

events. I t  has been shown fo r  C. albicans, tha t no d iffe rence between p ro te in  

synthesis in  yeast-like  and m yce lia l fo rm s o f  the organ ism  was observed, and that 

the fila m e n t r in g  found  at the m other bud ju n c tio n  in  budded fo rm s appears 30 

m inutes la te r and 2um  fu rthe r dow n the evaginated tube in  m yce lia l fo rm s.

2.7 SUMMARY

F or m onom orph ic  organisms, the p rim a ry  co n tro lle r o f  m o rpho log y  is ag ita tion  or 

m echanica l shear. M echan ica l damage can resu lt in  hypha l fragm enta tion  and p e lle t 

d is in tegra tion . A dap tions  to a g itia tio n  inc lude  the in te n s ify in g  o f  the b ranc ing  

process in  free filam ents  and sc le ro tic  p e lle t fo rm a tion . M echan ica l shear has been 

corre lated to  hypha l or pe lle t d is ru p tio n  in  term s o f  an energy 

d iss ip a tio n /c ircu la tio n  function .

The consquences o f  other environm enta l parameters on m o rp h o lo g y  are e ither 

p o o rly  investiga ted  o r are categorised as d im orph ism . The e ffec t o f  m ed ium  

com pos ition  on  m orpho logy  has been p o o r ly  investiga ted and cou ld  resu lt in  

bene fic ia l m o rpho log ica l effects such as the reduction  o f  v iscos ity .

The m a jo r deleterious consequence o f  filam entous funga l m o rpho log y  is tha t o f  

increased b ro th  v iscos ity . The rheo log ica l properties o f  filam en tous fe rm en ta tion  

broths are non-N ew ton ian , ty p ic a lly  be ing described b y  the pow er la w  rheo log ica l 

m odel. A t  s u ff ic ie n tly  h ig h  biomass concentrations, a y ie ld  stess has been observed 

by  certain authors. Th is  means tha t the f lu id  requires the app lica tio n  o f  a f in ite  

shear stress before f lu id  m o tio n  w i l l  occur. T h is  f lu id  p roperty  results in  unm ixed  

regions in  the bioreactor. The m o rp h o lo g y  o f  fu n g i has been re lated to  the 

rheo log ica l characteristics o f  the fe rm enta tion  w ith  l i t t le  success. T h is  is p robab ly  

due to  the use o f  d iffe re n t rheo log ica l m odels and viscom eters.

B o th  the cause and m echanism  o f  d im o rp h ism  in  fu n g i are com p lex  phenom ona. 

D im o rp h ism  p r im a r ily  appears to be caused b y  changes in  the g ro w th  env ironm en t 

o f  the organism s in  question and, in  m any cases, such m o rpho log ica l trans itions  in
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response to  environm enta l changes have been shown to  be advantageous to  the 

organism . For exam ple, the m yce lia l - yeast trans ition  in  pathogenic yeast-like  

fu n g i a llow s  greater m o til ity  and penetra tion  in to  the host. Several experim ents 

exam in ing  the e ffec t o f  single m ed ium  com ponents on m o rp h o lo g y  o ften  do not 

address the e ffec t o f  changing concentrations on  phys io logy.

The ce ll cyc le  o f  yeast ce lls is a com p lex  series o f  b iochem ica l events, each 

c o n tr ib u tin g  to the f in a l m orpho log y  o f  the ce ll. The process can be described in  

tw o  stages, ce ll enlargem ent and ce ll separation. C e ll enlargem ent can be d iv id e d  

in to  tw o  processes, the p rim a ry  enlargem ent tha t p redom inan tly  occurs in  the ap ica l 

reg ion  o f  the bud and secondary enlargem ent w h ich  occurs over the entire  surface 

o f  the bud and is m ediated b y  glucanases that c lip  the ex is ting  p o lym e r and a llow s 

new  p o lym e r to  be inserted. The process o f  ce ll enlargem ent has been m ode lled  

using the hyp h o id  equation. The tw o  p rim a ry  parameters in  th is equation are (1 ) the 

m ovem ent o f  a theore tica l en tity , kn o w n  as the vesic le  supp ly  centre (V S C ), 

represented in  h ighe r fu n g i as an ob ject kn o w n  as the Sptizenkorper, and p oss ib ly  

representing the endoplasm ic re ticu lu m  in  yeast, and (2 ) the rate o f  supp ly  o f  

vesicles (packages o f  w a ll b u ild in g  m ateria ls) fro m  the V S C . I t  was fo u n d  tha t by 

co n tro llin g  the rate o f  m ovem ent o f  the vesic le  supp ly centre, the m o rp h o lo g y  o f  

the o rgan ism  cou ld  be altered to any m o rpho log ica l fo rm  observed.

C e ll d iv is io n  is also im paired b y  yeast - m yce lia l transitions. The ce ll d iv iso n  

m echanism  in  yeast is based on the establishm ent o f  a c h it in  septum  between the 

m other and daughter cell. Th is  septum  is established using  a com p lex  series o f  

enzym atic  steps. A  h igher concentra tion  o f  c h it in  in  m yce lia l ce lls o f  C. albicans 

has been observed, a long w ith  a h ighe r concentra tion  o f  c h it in  synthase suggesting 

a de fective  septum establishm ent pathway.

C urren t theories on d im orph ism  suggest tha t trans itions in  m o rp h o lo g y  are no t 

caused by  quantita tive  changes in  the p roduc tion  o f  ce ll d iv is io n  cyc le  p ro te ins bu t 

is ra ther a change in  the tim in g  o f  d iffe re n t ce llu la r events tha t con tro l ce ll d iv is io n . 

The t im in g  o f  such events are thus a ltered by  external env irom nen ta l changes.
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CH APTER 3 

M ATERIALS AND EXPERIM EN TAL M ETH O D S

3 .1  O R G A N I S M

The organ ism  used fo r  a ll studies was Kluyvromyces marxianus var. marxianus 

( fo rm e rly  fragilis)  N R R L y2 4 1 5  (N orthe rn  R egiona l Research Labora to ries, Peoria, 

IL ) .  T h is  organ ism  is also recognised as N C Y C 1425  (N a tio n a l C o lle c tio n  o f  Yeast 

C ultures, England).

3 .2  A U T O C L A V I N G  P R O C E D U R E

A l l  m edia, bo th  so lid  and liq u id , w ere  s te rilised  b y  au toc lav ing  at 121°C  (15 ps ig ) 

fo r  15 m inutes in  a T o m y  SS-325 autoclave (T o m y Seiko Co., L td ., Japan).

3 .3  M E D I A  P R E P A R A T I O N

3.3.1  Y E P D  M ed iu m

Y E P D  m ed ium  contained the com ponents lis ted  in  Table 3.1, resuspended in  

deionised water.

T a b le  3 .1 . Y E P D  m ed ium  fo rm u la tio n

C o n stitu en t M a n u fa ctu rer C o n cen tra tio n  (g /L )

Yeast extract O xo id 10

B a c te rio log ica l peptone O xo id 20

glucose m onohydrate B D H 20

3 .3 .2  Y E P D  M ed iu m  (S o lid )

A s in  Tab le  3.1, a long w ith  the ad d itio n  o f  30g /L  O xo id  (Basingstoke , E ng land) 

Techn ica l A g a r N o . 3.

3 .3 .3  Y E P L  M ed iu m

A s in  Tab le  3.1 bu t w ith  the replacem ent o f  glucose m onohydra te  b y  20 g /L  o f  

lactose m onohydra te  (B D H , Poole, England).
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3 .3 .4  W h ey -B a sed  M ed iu m

Whey based medium was prepared by ultrafiltering 1kg whey powder (Avonmore 

pie, Kilkenny, Ireland) in 35L deionised water in a Romicon PM 40 hollow  fibre 

ultrafiltration unit (Romicon Inc. Woburn, MA). This yielded a permeate with a 

lactose concentration o f approximately 20g/L. The permeate was subsequently 

supplemented with lOg/L yeast extract and 5g/L am monium sulphate (BDH) to 

ensure adequate supplies o f inorganic nitrogen and trace elements. The resultant 

medium was diluted accordingly to generate m edia o f  various lactose 

concentrations and the pH was adjusted to 4.5 using concentrated HC1 (BDH).

3 .4  C U L T U R I N G  O N  S O L I D  M E D I U M

The organism was maintained on solid YEPD agar plates. Subculturing was done 

on a monthly basis to ensure viable cultures. A loopful o f  cells from a single 

colony was taken from a stock plate and streaked on a fresh YEPD plate. Plates 

were incubated at 30°C for 24 hours and thereafter stored at 4°C.

3 .5  S H A K E  F L A S K  C U L T U R E S

All starter cultures for both batch and continuous fermentations were grown in 1L 

Erlenmeyer flasks containing 400mL YEPL medium. A  loopful o f  cells from a 

single colony was transferred to the flask and the flask was incubated at 30°C on an 

orbital shaker (200 rpm) for 24 hours.

3 .6  1 0 L  “ M I C O G E N ” F E R M E N T E R  (B A T C H  C U L T U R E )

The M icogen fermenter (New Brunswick Scientific, USA) had two primary 

advantages over other culturing systems available. Firstly, the fermenter was 

autoclavable in situ and secondly, due to the large culture volume, repetitive 

samples could be taken without significantly reducing the culture volume. A 

dissolved oxygen probe (Mettler Toledo, Switzerland) was also available for this 

fermenter.
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3 .6 .1  F erm en ter  C o n fig u ra tio n

The ferm enter used was a 16L stainless steel vessel (1 0 L  w o rk in g  capacity) w ith  

num erous access ports at d iffe re n t leve ls in  the ferm enter. I t  conta ined a se lf- 

s te rilis in g  sam pling p o rt at the base o f  the ferm enter. A g ita t io n  was supp lied  fro m  

a b e lt d rive n  stainless steel shaft on w h ic h  three R ushton tu rb ine  im pe lle rs  were 

m ounted. A e ra tion  was supp lied  using a nozzle sparger on the base o f  the 

ferm enter. F o r a deta iled descrip tion  o f  the ferm enter co n fig u ra tio n  see Tab le  3.2.

T a b le  3 .2  10L M icogen  Ferm eter C on figu ra tio n

M ea su rem en t Q u a n tity

'Fank d iam eter (Z)x) 220 m m

l ank depth 500 m m

Im p e lle r d iam eter (D-) 70m m

N u m b e r o f  im pe lle rs 3

B lades per im p e lle r 6

D im ensions o f  blade 20m m  x 20m m

In te r im p e lle r distance 100 m m

Sparger to  1st im p e lle r 70 m m

3 .6 .2  F erm en ter  S etu p

The ferm enter was in it ia l ly  cleaned tho ro u g h ly  and rinsed w ith  deion ised water. 

The pre-prepared m ed ium  was then added th rough  one o f  the ports on  top  o f  the 

ferm enter. The d isso lved oxygen probe was inserted in to  another o f  the top  ports. 

The vessel was sealed by  u n ifo rm  tigh ten ing  o f  the bo lts  on the head plate. 

A g ita t io n  was set at 400rpm  to  im p rove  heat transfer. The vessel was autoclaved in 

situ b y  passing steam at 20psi th rough the ba ffles  in  the tank. Once the vessel 

tem perature was greater than 105°C, steam was in jec ted  in to  the m edia, as no 

steam condensation occurred in  the vessel under pressure. Once the vessel reached 

121°C, i t  was he ld  at th is  tem perature fo r  25 m inutes due to  the large vo lum e  o f  the 

m ed ia  i t  contained. Once the cycle  was com plete, the steam supp ly  was te rm ina ted  

and the vessel was cooled by  passing w ater th rough  the fe rm enter baffles. A s  the
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vessel tem perature decreased tow ards 100°C the pressure in  the vessel had to  be 

prevented fro m  fa llin g  be low  atm ospheric pressure. T h is  was achieved by  sparg ing 

w ith  a ir. A  w o rk in g  pressure o f  5psig was m ain ta ined  in  the b io reacto r fro m  th is  

p o in t onwards.

3 .6 .3  F erm en ter  O p eration

Once the vessel had been stab ilised at the cu lt iv a tio n  tem perature, the vessel 

pressure was dropped m om en ta rily  to  a llo w  rem ova l o f  one o f  the top  ports fo r  

inocu la tio n . Ino cu la tio n  was com pleted aseptica lly  us ing  a b lo w to rch  to  s terilise  

the area around the p o rt and the neck o f  the E rlenm eyer flask. The contents o f  the 

fla sk  were poured ra p id ly  in to  the ferm enter and the vessel was q u ic k ly  resealed 

and a w o rk in g  pressure o f  5psig re-established.

A g ita t io n  was con tro lled  using a potentiom eter, w h ic h  regu la ted m o to r speed 

between 0 and 1200 rpm . Vessel tem perature was con tro lle d  using a heating  

e lem ent w h ic h  heated, w hen  necessary, w ater passing th rough  the baffles. A l l  

fe rm enta tions were m ain ta ined at 30°C . A e ra tio n  was p rov ided  fro m  a central 

com pressor v ia  a regu la to r at 20 psi. The supp ly to  the vessel was regulated b y  a 

ro tam eter m ounted on the fro n t o f  the ferm enter con tro l panel. A i r  s te rilisa tio n  was 

achieved b y  a 0.22|j.m  D o m in ic k  H un te r (D urham , U K ) a ir f i lte r . The f i l te r  was 

steam sterilised  in situ. A e ra tion  was supplied at lO L /m in  (1 V V M )  fo r  a ll batch 

ferm entations.

S am pling  was achieved v ia  a p o rt at the base o f  the vessel tha t a llow ed  fo r  in te r­

sam ple s te rilisa tion . Samples were fo rced  out o f  the vessel due to the p o s itive  

pressure w ith in .

3.7 2L “LIFE SCIENCES” FERMENTER (CHEMOSTAT)

D ue to  the large w o rk in g  vo lum e (V) in  the M ico g e n  ferm enter i t  w o u ld  have been 

im p ra c tica l to operate th is  fe rm enter in  chemostat m ode due to  the substantia l 

qu a n tity  o f  feed substrate (F) requ ired  da ily . Thus a sm alle r vessel had to  be used 

fo r  th is  purpose.
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V
(3.1)

3.7 .1  F erm en ter  C o n fig u ra tio n

The b io reactor (L ife  Sciences Laboratories, L u to n , U .K .)  was fab rica ted  in  

bo ros ilica te  glass m ounted in  a stainless steel co lla r supported on  a three m em bered 

fram e and base r in g . The vessel had a hem ispherica l base and was surrounded by 

an externa l ja cke t to  a llo w  fo r  heat transfer. The vessel had eleven ports  on the 

head plate. D u rin g  continuous cu ltu rin g , ports were used fo r  the fo llo w in g ; feed 

add ition , e ffluen t rem ova l, a ir add ition , o f f  gas o u tle t w ith  condenser, an tifoam  

add ition  and innocu lu m  add ition . The vessel was agitated us ing  a top  d riven  

stainless steel shaft m ounted w ith  tw o  Rushton tu rb ine  im pe lle rs . D u rin g  tr ia ls , the 

fe rm enter was aerated w ith  a nozzle sparger but th is  was fo u n d  to  be in e ffe c tive  

a fter operating periods o f  approx im ate ly  one w eek due to  b lockage b y  biomass. 

The nozzle  was rem oved and the ferm enter was subsequently aerated b y  open p ipe  

aeration. For a schem atic o f  the ferm enter see F igu re  3.1. F o r measured 

parameters see Table 3.3.

where D  is dilution rate (h '1)

20 L 
autoclavable 

vessel

To 
Agitation 

Air Controller

Effluent
outlet

balance

F ig u re  3 .1  Ferm eter co n fig u ra tio n  fo r  chemostat operation
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Table 3.3 2 L Life Sciences Fermenter Configuration

M ea su rem en t Q u a n tity

Tank diam eter (DT) 110 m m

Tank depth 230 m m

Im p e lle r d iam eter (D ¡) 55m m

N um ber o f  im pelle rs 2

Blades per im p e lle r 6

D im ensions o f  blade 10m m  x 10m m

In te rim p e lle r distance 70 m m

Sparger to  1st im p e lle r 20 m m

3 .7 .2  F erm en ter  S etu p

A s the fe rm enter was be ing operated in  chem ostat m ode, certa in  a dd ition a l 

requirem ents were necessary fo r  fe rm enter set-up. F irs tly , the b io reacto r requ ired  a 

means o f  m a in ta in ing  constant vo lum e. The e fflu e n t was rem oved using  a w e ir  

system, set at a he igh t tha t a llow ed  the w o rk in g  vo lum e  o f  the b io reacto r to  rem ain  

at 1L. The vo lum e in  the ferm enter was m on ito red  b y  a balance p laced underneath 

the b ioreactor. Secondly, the aseptic add ition  o f  s te rile  feed m edia  was required. 

In  tr ia l runs, tw o  5L  interchangeable vessels were used w ith  a w o rk in g  vo lu m e  o f  

4 L . The sm all opera tiona l tim e  per vessel and frequen t con tam ina tion  o f  the 

fe rm enter fo rced a change to  a la rger container. The con ta ine r used was a m o d ifie d  

autoclave (D ixons  S urg ica l Instrum ents L td , S he ffie ld , Eng land) w h ic h  had a 

m a x im u m  autoclavable vo lum e  o f  approx im ate ly  20L . A  feed line  ran fro m  a p o rt 

in  the side o f  the autoclave to  the ferm enter, w h ich  was closed du ring  autoclav ing. 

A  sterile  a ir f i l te r  (M ill ip o re  M il le x  0 .22 fim ) was p laced on a p o rt on top  o f  the 

autoclave to a llo w  the vessel compensate fo r  the loss o f  m edia  vo lum e  du ring  

feeding. P um ping o f  bo th  feed m ed ium  and e fflu e n t was achieved us ing  W atson 

M a r lo w  pe ris ta ltic  pum ps (C o rn w a ll, Eng land) th rough  s ilicone  tub ing . The in le t 

pum p was ca lib ra ted p r io r  to use, using s im ila r grade s ilic o n  tub ing  (5m m  in te rna l 

d iam eter). A  pum p setting was chosen, the pum p p rim e d  and the ou tpu t vo lum e 

was co llected fo r  a f ix e d  tim e  in te rva l. Thus pum p setting was re la ted to  feed rate.
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The o u tle t pum p setting was set to  ensure the requ ired  steady state vo lum e  in  the 

b ioreactor.

3.7 .3  F erm en ter  O p eration

A g ita t io n  in  the ferm enter was set using a po ten tiom e te r on  the fro n t o f  the 

ferm enter con tro lle r. A g ita tio n  was m ain ta ined at 800R P M  fo r  a ll chem ostat 

cu ltu rin g . Tem perature was regulated at 30°C  by  c ircu la tin g  w ater th rough  the 

ja cke t fro m  a hea ting -coo ling  w ater bath (B . B raun, B uck ingham sh ire , U .K .) . 

A e ra tio n  was supp lied  fro m  a fish  pum p regulated b y  a ro tam eter (P la ton) (2 L /m in  

m a x im u m  a ir th roughput). A i r  s te rilisa tion  was achieved us ing  in  line  autoclavab le  

M ill ip o re  M il le x  (M o lshe im , France) 0 .22(im  a ir filte rs . A e ra tio n  was m a in ta ined  

at 1 L /m in  (1 V V M )  fo r  a ll chemostat cu ltu ring . O rgan ic  an tifoam  (S igm a, St. 

Lou is , M isso u ri)  was added m anua lly  th rough  a septum  p o rt on top  o f  the vessel 

us ing  a sterile  syringe and needle.

The p rim a ry  p rob lem  w ith  chem ostat cu ltu rin g  was the id e n tif ic a tio n  o f  steady 

state in  the b ioreactor. Steady state was de fined  as the p o in t w hen  bo th  

m o rpho log y  and k in e tic  parameters cease to  change w ith  respect to  tim e . I t  was 

apparent fro m  tr ia ls  tha t the organism  m orp h o lo g y  was the param eter tha t to o k  

longest to reach steady state. I t  was found  that the s im p lest assessment o f  

m o rpho log ica l steady state was achieved using v isco s ity  measurements. Once the 

v isco s ity  o f  the ex it stream was observed to  reach a constant value, the cu ltu re  was 

deemed to be in  m o rp h o lo g ica l steady state. T h is  technique was v e rifie d  us ing  

im age analysis data. The ferem enter ty p ic a lly  reached steady state a fte r a 

th roughpu t o f  3-4 L  o f  m edium .

3 .8  D E T E R M I N A T I O N  O F  F E R M E N T A T I O N  P A R A M E T E R S

3.8 .1  S u g a r  C o n cen tra tio n

A l l  reduc ing  sugar concentrations were determ ined using a m in o r m o d ific a tio n  o f  

the d in itro s a ly c y lic  ac id  m ethod o f  M il le r  (1959). A  0.5 m L  quan tity  o f  su itab ly  

d ilu te d  sample was added to  1.5 m L  o f  D N S  Reagent. The so lu tion  was b o ile d  fo r

10 m inutes and ra p id ly  cooled by  the add ition  o f  5m L  deionised water. The op tica l
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density o f  the resu ltant so lu tion  was read at 540nm  on  a uv /v is  spectrom eter (Pye 

U n icam ) and values were read o f f  a standard curve. D N S  Reagent was com posed 

o f  l.Og 3 ,5 -d in itro sa lycy lic  acid (A ld r ic h  C hem ica l C o.) and 1.6g N a O H  (B D H ) 

d isso lved  in  lOOm L o f  deionised water. The assay was found  to  be lin e a r fro m

0 .0 -1 .5g /L  glucose and galactose and fro m  0.0-3.0 g /L  lactose. T h is  m e thod  was 

va lida ted  using k i t  assays (B oheringe r M annhe im  G m bH , M annhe im , G erm any) 

fo r  glucose, lactose and galactose. The a b ility  o f  the assay to  q u a n tify  equ im o la r 

so lu tions o f  glucose, lactose and galactose was established a llo w in g  the p repara tion  

o f  a s ing le  standard (i.e. glucose) fo r  a ll reducing sugars to  be quan tified .

3 .8 .2  E th a n o l C o n cen tra tio n

E thanol concentration was determ ined using a Carla Erba H R G C  S300 M ega  Series 

gas chrom atograph (C arla  Erba Strumentazione, M ila n , Ita ly ) w ith  flam e ion isa tion  

detection. The co lum n was packed w ith  5%  carbowax 2 0 M  on chrom osorb W A W  

80/100 mesh. In jec to r and detector temperatures were set at 170°C w ith  a co lum n  

temperature o f  120°C. Carrier gas flow ra te  through the co lum n was approx im ate ly  

15 m L /m in . A  1 f iL  quantity  o f  ce ll free sample was applied to the top o f  the co lum n 

using an Ex m ire 10 ( iL  m icrosyringc (Ito  C orporation , F u ji, Japan). E thano l 

concentration was determ ined fro m  peak heights obtained on a L inse is L6512  chart 

recorder.

3 .8 .3  C ell E n u m era tio n

C e ll enum eration was perfo rm ed using a Im p roved  Neubauer b r ig h t- lin e  

haem ocytom eter (B rand  G m bH , H am burg , G erm any). Samples w ere su itab ly  

d ilu ted  in  deionised w ater in  order to  pe rfo rm  counts. C e lls  were counted as s ing le  

un its  irregardless o f  subun it num ber o r size. T h is  a llow ed  the counts to  be used in  

con junc tio n  w ith  im age analysis data.

3 .8 .4  C ell D ry  W eig h t

C e ll d ry  w e ig h t was determ ined using the fo llo w in g  p ro toco l. W hatm an (K en t, 

U .K .)  N o . 1 f i l te r  papers (70m m  diam eter) were p redried ove rn igh t at 105°C. 

These were q u ic k ly  rem oved fro m  the oven and w e ighed  on an ana ly tica l balance
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w hen required. A  predeterm ined quan tity  o f  cu ltu re  f lu id  was passed th rough  the 

f i lte r  in  a Buchner funne l apparatus. The resu ltant supernatant was re filte re d  

th rough  the f i l te r  paper to  ensure the rem ova l o f  a ll ce lls. The f i l te r  cake was then 

washed w ith  lOOmL o f  deionised w ater to rem ove any so lub le  m edia  com ponents, 

w h ich  w o u ld  add to  the cake mass. The paper was then  re turned to  the oven and 

dried overn igh t. The d iffe rence  in  f i l te r  w e ig h t was converted to  ce ll d ry  w e ig h t in  

grams per litre .

3 .8 .5  V isco sity  o f  C e ll S u sp en sio n s

V is c o s ity  o f  ce ll suspensions were used as a measure o f  steady state in  the 

chemostat b ioreactor. V iscos ities  were determ ined on tw o  B ro o k fie ld  d ig ita l 

v iscom eters, a cone and plate v iscom eter (m ode l D V -1 + ), and a bob and cup 

v iscom eter (m odel D V -2 + ), (B ro o k fie ld  E ng inee ring  Laboratories, M A , U S A ). 

The cone and p late v iscom eter had a shear rate range o f  0-750 s '1, the bob and cup 

v iscom eter had a shear rate range o f  0-122.4 s '1. Due to  the pseudoplastic nature o f  

some o f  the broths, v iscos ities  were measured at m any shear rates on bo th  

m achines fo r  a va rie ty  o f  samples. O n analysis o f  the results i t  was found  tha t the 

prob lem s exh ib ited  b y  such viscom eters fo r  o ther fu n g i such as entrapm ent o f  the 

fu n g i in  the sm all in te rs tit ia l space between the cone and p la te  thus causing h ighe r 

v isco s ity  readings o r the se ttling  o f  fu n g i due to  the la m in a r f lo w  reg im e o f  the  bob 

and cup v iscom eter d id  no t occur w ith  th is  organism . The data generated fro m  

bo th  v iscom eters overlapped w e ll and no tim e  dependent e ffec t was fo u n d  fo r  

either viscom eter. A l l  samples v iscosities w ere read at 25°C . The cone and p la te  

had an operational vo lum e  o f  0 .5m L. The bob and cup v iscom eter had an 

operational vo lum e  o f  16m L. The constants o f  the pow er la w  m ode l w ere 

determ ined fro m  the fo llo w in g  equation

z = ky"  (3 .2)

W here t  is the shear stress and y is the shear rate. B y  ta k in g  the log  o f  bo th  sides
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l n r  =  n\n.y  +  In  k (3 .3 )

B y  p lo tt in g  the In  x versus In  y the slope is equal to  the pow er la w  index , n, the 

in tercept equals k, the pow er la w  constant.

3.8.6 pH

Sample p H  was determ ined using a W T W  (W e ilh e im , G erm any) M ic rop rocesso r 

P re c is io n -p H /m V -M e te r meter. Supernatant generated fro m  the d ry  w e ig h t 

procedure was used in  preference to  ce ll con ta in ing  samples.

3.8.7 C e ll D ry  M a tter  p er  U n it C e ll V o lu m e ( S)

T w o  m ethods w ere em ployed fo r  the assessment o f  th is  parameter. The f ir s t  was 

based on data generated fro m  im age analysis where

X  C e ll d ry  mass concentration (g /L )

n C e ll count (ce lls /L )

V  M ean ce ll vo lu m e  determ ined using  im age analysis (cm 3)

The second m ethod used to  determ ine the vo lum e  fra c tio n  o f  ce lls in  the cu ltu re  

was based on a m ethod used to  calculate the in te rs tit ia l w ater in  a ce ll p e lle t as 

suggested b y  Ju and H o  (1988). A  fix e d  vo lum e  o f  cu ltu re  was cen trifuged  in  a 

Heraeus Labo fuge  400 centrifuge  at 3500 rp m  (2383 g) fo r  10 m inutes. The 

supernatant was discarded and the p e lle t washed b y  resuspending w ith  deion ised 

water. T h is  was recentrifuged and the wash was discarded. The resu ltan t pe lle t 

was w e ighed and the vo lum e o f  the pe lle t was determ ined using the hypothesis tha t 

the p e lle t density is close to  w ater thus the vo lum e  o f  the p e lle t is equal to  the 

mass. The p e lle t was resuspended in  2 m L  o f  filte re d  10% w /v  dextran and the 

so lu tion  was recentrifuged. The dextran is d ilu ted  b y  the in te rs tit ia l w a te r in  the 

pe lle t bu t does n o t in te rac t w ith  the ce lls due to  its  h ig h  m o lecu la r w e igh t. The
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volume o f water in the pellet is thus calculated by measuring the difference in 

concentration between the solution added before and the solution obtained post 

centrifugation.

S  = ------    (3.5)
M J l - e )

M v Mass o f  cell pellet

£ Pellet voidage

3.8 .8  F erm en ter  k,a

The rate o f change o f oxygen concentration in a sterile fermentation broth with 

respect to time can be determined using the following equation.

^ = k , a ( C ;  ~ C L) (3.6)

Where C, is the concentration o f  oxygen in the liquid phase, C* is the 

concentration o f oxygen in the liquid phase at 100% saturation and k La  is the 

volumetric oxygen mass transfer coefficient.

On rearrangement o f  the above,

Where C, is the oxygen concentration at time 0 and CL is the oxygen 

concetration at time t.
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Integration yields,

C —C
I n —^------^ -  = k ,a t  (3 .8 )

C - C

B y p lo ttin g  the le ft hand side o f  the equation versus tim e  (s), the slope o f  the line  

equals the kLa  (s '1).

Experim ents were perform ed on autoclaved w hey m edium . The m ed ium  was 

degassed by sparging w ith  oxygen free n itrogen (A ir  Products) u n til an oxygen 

satura tion  close to  zero was obtained. The n itrogen How was stopped and the a ir 

supp ly in itia te d  at lv v m . The change in  sa tura tion  was recorded at 5-second 

in te rva ls  u n til the m edium  was close to saturation. The results obta ined were 

processed on S igm ap lo t™  graphing and data processing package (Jandel S c ie n tific  

,E rkra th , G erm any) and the above p lo ts  were generated (D oran, 1995).
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CHAPTER 4 

IN ITIA L M O RPH OLOG ICAL O BSERVATIO NS AND  

DEVELO PM ENT OF A  M O R PH O LO G IC AL  

CLASSIFICATIO N SYSTEM

4.1 IN T R O D U C T IO N

I t  is cu rren tly  accepted that the te rm  d im o rph ism  is  inadequate to  m o rp h o lo g ica lly  

describe organism s that f i t  w ith in  th is  fram e o f  exam ina tion  (K e rrid g e , 1993). I t  is 

suggested tha t term s such as “ p o lym o rp h ism ”  or “ p laeom orph ism ”  shou ld  replace 

the te rm  d im orph ism . B o th  o f  these term s suggest the presence o f  m ore  than tw o  

c lass ifica tions (i.e. yeast and filam en tous) w ith in  organism s d isp lay ing  

d im orph ism . W a lke r and O ’N e il l  (1990) exam ined the m o rp h o lo g y  o f  

Kluyveromyces marxianus var. marxianus N R R L y2 4 1 5  under various 

env ironm en ta l cond itions, and w h ile  a d ive rs ity  o f  m orpho log ies  w ere  observed, 

the authors reta ined the tra d itio n a l tw o  class approach. T h is  o ften  resu lted in  p lo ts 

show ing  a constant 100% yeast lik e  o r 100% filam en tous ce lls  over the tim ecourse 

o f  the ferm entations. A  la rger num ber o f  classes im parts  a greater am ount o f  

in fo rm a tio n  to the observer. I t  m ay be argued tha t c la ss ifica tio n  systems are 

redundant w h ile  the organism  p redom ina n tly  occupies o n ly  one m o rp h o lo g ica l 

fo rm . One consequence o f  increasing the num ber o f  c lass ifica tions  is the 

in tro d u c tio n  o f  a greater degree o f  su b je c tiv ity  in  the c lass ifica tion  system. 

W hatever c lass ifica tion  system is  used has to  be one o f  su ff ic ie n t f le x ib i l i t y  as to 

a llo w  adequate descrip tion  o f  the m orpho log y , ye t be easy to  im p lem en t and 

unaffected  b y  operator va ria tion .

The a im  o f  th is  in it ia l in ves tiga tio n  is to  uncover the d ive rs ity  o f  m o rp h o lo g y  

d isp layed b y  Kluyveromyces marxianus var. marxianus N R R L y2 4 1 5 . T h is  is to  be 

achieved by  va ry in g  the env ironm en ta l cond itions experienced b y  the organism . 

Once the range o f  m orpho log ica l va r ia tio n  has been established, a c lass ifica tion  

system  can be designed tha t tru ly  describes the m o rpho log y  o f  the organism . Th is  

system w i l l  a llo w  the developm ent o f  an im age analysis p ro toco l tha t w i l l  assist in  

the c lass ifica tion  o f  the organism .
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4 .2  M O R P H O L O G IC A L  V A R IA T IO N  IN  Kluyveromyces marxianus

A s stated in  section 4.1 the fo llo w in g  exam ples o f  m o rp h o lo g y  have been achieved 

by  va ry in g  env ironm en ta l parameters such as ag ita tion  rate in  batch cu ltu re  and 

substrate feed concentra tion  and d ilu t io n  rate in  continuous cu ltu res. M a n y  

d iffe re n t cu ltu rin g  cond itions were exam ined, m any o f  w h ic h  w i l l  be discussed 

subsequently in  the fo llo w in g  sections, b u t fo r  the purpose o f  b re v ity  o n ly  those 

exam ples tha t demonstrate s ig n ifica n t changes in  m o rpho log y  w i l l  be exh ib ited . 

A l l  exam ples are o f  K. marxianus cu ltu red  in  suspension. Tab le  4.1 lis ts  the 

env ironm enta l cond itions experienced by  the examples shown.

F igu re  4.1 shows, w ha t cou ld  o n ly  be described as, a popu la tion  o f  budd in g  yeast. 

B y  s im p le  observation i t  is apparent tha t the popu la tion  can be b roken  in to  s ing le  

and doub le  cells. Hence the f irs t  tw o  observed classes, nam e ly  “ Yeast”  and 

“ D oub le  Yeast” .
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Table 4.1 Operating conditions used to obtain samples o f  varying morphology

F ig u re  N u m b er F erm en ter M ediu m O p era tio n  M o d e V o lu m e A gita tion A eration

F igure  4.1 10 L  M icogen 2%  W hey M e d iu m Batch 10 L 800 RPM 1 w m

F igure  4.2 1 L  L ife  Sciences 2% W hey M e d iu m Continuous 1 L 800 RPM lw m

F igure  4.3 10 L  M icogen 2%  Y E P L  M ed ium Batch 10 L 300 R P M 1 vvm
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F ig u re  4.1 Ferm entation sample d isp lay ing  p redom inan tly  yeas t-like  m orpho logy , 

(a) Sam ple m a g n ifica tio n  at 200x, (b) Sample m a g n ifica tio n  at 400x, bars =  20|nm.
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F igure  4.2 presents an exam ple o f  the hypha l fo rm  o f  the organism . T h is  

p o pu la tion  is composed o f  long , th in , branched pseudohyphae, w h ic h  in  

them selves are com posed o f  fila m e n to u s -like  cells. C e lls  o f  th is  nature w i l l  be 

term ed “ pseudohyphae”  and m ake up the th ird  class to  be observed.

F ig u re  4 .2  E xam ple  o f  pseudohyphal cells taken fro m  chem ostat cu lture, sample 

m a g n ifica tio n  at 200x, bar =  20pm .

The classes, yeast and pseudohyphae, represent the extrem es o f  d im orph ism . 

H ow eve r, m any in te rm ed ia te  fo rm s were observed betw een the tw o  described 

m orpho log ies. F igu re  4.3 shows such an exam ple. A s  can be seen certa in  yeast­

l ik e  ce lls  have becom e m ore elongated in  appearance and certa in  o ther ce lls  are 

m ore filam en tous in  nature. Hence the choice o f  fo u r new  classes. The class 

“ e longated yeast”  describe ce lls that, in  appearance, are yeastlike , b u t have 

elongated considerab ly in  the m a jo r axis. O ften  th is  appears to  be accom panied b y  

a decrease in  the yeast ce ll w id th . The cells are s t i l l  e llip so id  in  appearance. A s  

these ce lls  are present as bo th  s ing le  and double fo rm s the c lass ifica tions  are 

extended to  inc lude  “ D oub le  e longated yeast” .
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(a)

F ig u re  4 .3  E xam ple  o f  in term ediate cells taken fro m  batch culture, (a) sample 

m a g n ifica tio n  at 200x (b) sample m a g n ifica tio n  at 400x, bars =  20|um.
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A lso  present in  the cu ltu re  (F igu re  4.3) are cells o f  a d is t in c t ly  d iffe re n t phenotype. 

The ce lls appear c iga r shaped (c y lin d r ic a l w ith  hem ispherica l ends) and are present 

e ithe r s ing ly  o r in  doubles. T h is  generated the fu rthe r c lass ifica tions  o f  “ fila m e n ts ”  

and “ double filam en ts ” . I t  is thought, on in it ia l observation , tha t the filam en tous 

fo rm s arc the precursors to pseudohypliae. F igure  4.4 shows good exam ples o f  

d iffe re n t classes iden tified  in  cu ltu r in g  in  suspension cu ltu re . It is apparent from  

the exam ina tion  o f  m any o ther cu ltu res, g row n under a d ive rs ity  o f  env ironm en ta l 

cond itions  that (he m orpho logy  o f  each o f  the cu ltu res was described adequately by 

the seven classes illus tra ted  in  F igu re  4.4.

(c )  (0 (s)

F ig u re  4.4 M o rp h o lo g ica l fo rm s d isplayed by K. marxianus N R R L y2 4 1 5  (a) yeast

(b ) elongated yeast (c ) double yeast (d) double elongated yeast (e) filam en t ( f)  

double fila m e n t (g ) pseudohyphae, bar =  10pm.
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4.3  F U R T H E R  C L A S S IF IC A T O N  O F P S E U D O H Y P H A E

A l l  the classes described, exc lud ing  pseudohyphae, have f in ite  lim its  in  size and 

shape, whereas pseudohyphae can range fro m  the unbranched type , con ta in ing  ju s t 

three subunits (filam en ts ) to  branched pseudohyphae con ta in ing  20 subunits o r 

m ore. Thus the pseudohyphae class cannot adequately describe the m o rp h o lo g y  o f  

a cu ltu re  con ta in ing  p redom ina n tly  pseudohyphae. A d d it io n a l descriptors m a y  be 

added to  the c lass ifica tion  in  order to  com p le te ly  describe the cultures m o rpho log y . 

Exam ples o f  such descriptors inc lude  the m ean leng th  o f  a pseudohypha in  term s 

o f  subunits and the mean num ber o f  branches per pseudohypha.

4.4  C O N C L U S IO N S

A  c lass ifica tion  system  has been designed that a llow s  the com plete desc rip tion  o f  

the m orpho log y  d isp layed b y  Kluyveromyces marxianus var. marxianus 

N R R L y2 4 1 5 , under a ll cu ltu re  cond itions u tilis e d  in  th is  study. T h is  does no t 

d e fin it iv e ly  suggest tha t th is  is the extent o f  m orpho log ies  d isp layed b y  the 

organism , how ever, i t  does c la im  to  represent the range o f  m orpho log ies  expected 

under norm a l b io reacto r opera ting  cond itions, in  typ ica l m ed ia  kn o w n  to  susta in 

yeast grow th. P roblem s experienced w ith  m anual im p lem en ta tion  o f  the 

c lass ifica tion  system  w ere s ign ifican t, due to  the large degree o f  in te r-ope ra to r 

va ria tio n  in  the generated data and the p rob lem s experienced w ith  the com ple te  

descrip tion  o f  the m o rp h o lo g y  o f  pseudohyphae. I t  is  apparent at th is  stage, tha t i f  

the organism  is to  be c lass ified  co rrec tly  and the m o rp h o lo g y  o f  pseudohyphae be 

described co rrec tly  tha t a to o l less subjective than the hum an eye be used fo r  the 

purpose.

Im age analysis has gained m uch attention  recen tly  due to  its  u t i l i t y  in  p h ys ica lly  

q u a n tify in g  b io lo g ica l phenomena (Thom as and Paul, 1996). Its  po ten tia l to  

im p lem en t the extensive c lass ifica tion  system, bo th  non -sub je c tive ly  and ro u tin e ly , 

is  appealing. Im age analysis w i l l  also p rov ide  a measure o f  the geom etric  

properties o f  cells. I t  was hoped, to develop an au tom atic  p ro to co l tha t w o u ld  

p rov ide  bo th  c lass ifica tion  and m easurem ent o f  c e ll geom etry, ro u tin e ly  fo r  

fe rm enta tion  samples. T h is  w i l l  be addressed in  Chapter 5.
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In  term s o f  experim enta l w o rk , i t  was hoped to  re-exam ine the causes o f  

d im o rph ism  established b y  W a lke r and O ’N ie l l  (1990) fo r  K. marxianus, as they 

do no t f i t  the typ ica l c rite ria  responsible fo r  d im o rp h ism  in  s im ila r yeast (H i l l  and 

Robinson, 1988). I t  is  also hoped to  app ly a m athem atica l analysis to  k in e tic  data, 

as the m is in te rp re ta tion  o f  data is w idespread in  th is  area o f  research. M a n y  

examples ex is t in  the lite ra tu re  o f  a ttr ib u tin g  the presence o r absence o f  a n u tr ie n t 

to a d im o rp h ic  tra n s itio n  in  an organism , whereas i t  is  apparent tha t the presence o r 

absence o f  the n u tr ie n t affects the phys io log y , w h ic h  in  tu rn  affects the 

m orpho logy. F o r examples o f  the above see Section 2.8.5.

I t  was also hoped to  assess the in fluence  o f  m o rp h o lo g y  on  the m etabo lism  o f  the 

organism . K. marxianus is a kn o w n  ethanol producer w hen  g ro w in g  on w hey  

permeate and its k ine tics  have been m ode lled  fo r  chem ostat cu ltu re  g ro w th  on 

lactose (C a s tr illo  and U ga lde, 1992). I t  was hoped to  assess, based on k in e tic  

m ode lling , h o w  the perform ance o f  the o rgan ism  varies between one 

m orpho log ica l fo rm  and another. The above m atters w i l l  be addressed in  Chapters 

6 and 7.

K. marxianus m yce liu m  m orpho logy, as can be seen in  F igu re  4.4 (g ), is 

pseudohyphal. Pseudohyphal g row th  is de fined  in  Section  2.8.1. L it t le  w o rk  has 

been presented on the m echanism  o f  pseudohyphal g row th . In  order to 

successfu lly m ode l the  g row th  and deve lopm ent o f  such m orpho log ies, a means o f  

describ ing such g ro w th  is necessary. I t  is hoped to  address th is  m atte r in  Chapters 

8 and 9.
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CHAPTER 5 

IMAGE ANALYSIS METHODS

5.1 IN T R O D U C T IO N

Im age analysis is the use o f  com puter techno logy  to  cx trac t quan tita tive  

in fo rm ation  fro m  a v isua l scene. The basic p r in c ip le  used in  im age analysis, is  the 

s im p lif ic a tio n  o f  the in fo rm a tio n  content o f  an im age, b y  conve rting  the im age in to  

a m a tr ix  o f  im age com ponents kn o w n  as p ixe ls , each p ix e l con ta in ing  a spec ific  

shade o f  grey, in  the case o f  b lack  and w h ite  im ages, o r a series o f  num bers 

representing the co lo u r and in tens ity  o f  a p ix e l in  the case o f  co lo u r im ages (Jain, 

1989).

5.2  A P P R O A C H E S  T O  IN F O R M A T IO N  E X T R A C T IO N  F R O M  IM A G E S

5.2.1  Im a g e  S eg m en ta tio n  b ased  on  C o lo u r  o r  G rey sca le  T h resh o ld in g

The in fo rm a tio n  content o f  an im age can be ove rw he lm ing . I t  can be reduced 

s ig n if ic a n tly  b y  b ina risa tion  o f  the m a tr ix  o f  im age com ponents. G iv in g  p ixe ls  a 

va lue  o f  1 o r 0, depending on th e ir s ign ificance  or ins ign ifican ce  to  the observer, 

achieves th is . Th is  is kn o w n  as segm entation, w here p ixe ls , w ith in  reg ions o f  

in terest o r objects o f  interest, w ith in  the im age are tu rned  on (set to  1) and 

background p ixe ls  are turned o f f  (set to  0).

Thresho ld ing , e ither by  co lou r o r greyscale, is  the m ost w id e ly  used and s im p lest 

process to extract an ob ject fro m  a background. I f  any scene is observed, any 

v is ib le  ob ject in  tha t scene has a p rope rty  tha t makes i t  v is ib le  to the eye such as a 

d is tin c t co lou r, in te n s ity  o r texture. T h resho ld ing  is based on setting  ranges o f  

acceptable p ix e l co lours o r grey leve ls fo r  segm entation based on the  observa tion  

o f  a co lo u r o r grey-scalc h istogram . The h is tog ram  ind icates the frequency o f  any 

co lou r o r grey-scale in  the image.
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Following segmentation, the computer is able to distinguish the foreground from 

the background and can also determine the number o f  objects present in the image, 

based on simple binary connectivity. I f  a pixel, o f  value 1, is in contact with 

another pixel, o f value 1, then they are both part o f the same object. I f  a pixel, o f 

value 1, is in contact w ith a pixel, o f value 0, then the pixel o f value 1 is a pixel on 

the edge o f an object. By breaking the pixels o f  value 1 into sets o f interconnecting 

pixels, then the number o f sets is representative o f the number o f  objects in the 

scene. This approach is not applicable to non-segmented images.

A disadvantage o f this approach is that a lot o f  the textural inform ation is 

discarded. This is an unfortunate, but necessary, consequence o f  segmentation. 

However, i f  an image is o f good definition and contrast, simple grey-scale or 

colour thresholding is an adequate means o f segmentation.

5.2.2 Edge-Based Segmentation

Edge-based segmentation utilise the sharp localised differences in intensity that 

occur as a transitions is made from one edge to another. In essence, edge based 

detection examines changes in intensity with respect to distance in a single 

direction which is represented by dl/dD  where I  is the intensity and D  is distance in 

the direction o f examination. Edge-based segmentation can be useful in images 

where horizontal or vertical edges predominate, i.e. buildings, biological gel 

images etc. For circular objects, multiple directions o f  approach have to be used to 

fully describe the outline.

5.2.3 Pattern Recognition

Pattern recognition is based on novel neural network technology, which allows 

computers to learn an object’s discriminate characteristics from a set o f  positive 

and negative instances. Positive instances would represent good examples o f a 

pattern whereas negative instances are counter examples o f a pattern. This 

technology is becoming a more popular m ethod o f industrial inspection, as a 

classifier can be trained to recognise flawed components simply by changes in 

pattern. This provides a high-speed alternative to the traditional approach o f  object-
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based segmentation and measurement. Object orientation or scale does not limit 

such pattern recognition approaches.

Uses o f pattern recognition include reading scanned document images (typed 

numeric and alphabetic characters have very well defined patterns), high speed 

flaw inspection and electronic circuitry inspection. Pattern recognition has 

difficulties when a large degree o f variance exists between positive examples.

5.2.4 Colour Indexing

Colour indexing is a new approach to image segmentation developed by Swain and 

Ballard (1991). It works on the principle o f dividing RGB space into equally 

spaced “colour cubes” . For example, each cube i n a l 6 x l 6 x l 6  matrix describing 

a 24 bit RGB image (8 bit x 3 colours) represents 4096 different colours out o f a 

total o f  16,777,216. Test images are assessed for their colour content and if  any 

colour in a colour cube is present in the image, the colour cube is given the value 1. 

I f  all colours in a colour cube are unrepresented in the image, the colour cube is 

given the value o f 0. The result o f this training yields a three dimensional binary 

matrix with the colour information content o f the test image. The data set is trained 

by exposing the colour cube to multiple test images in order to expose the data set 

to as much variability as possible. Once the data set has been fully trained it can be 

used to identify colour changes in test images from the normal range o f  colours 

experienced in the training images. This technique is very useful in the 

development o f high-speed industrial inspection protocols, for example the 

screening for bum  markings on filter casings (Duffy and Lacey, 1997). It is also a 

useful technique for image retrieval from a database.

5.3 IMAGE ANALYSIS HARDWARE

Image analysis hardware usually consists o f three primary components.

1. Image generator

2. FrameGrabber Board

3. High Speed Computer
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5.3.1 Image Generator

The image generator in visual image analysis usually consists o f a CCD camera. 

The CCD or charged couple device was developed by AT&T Bell Labs in the early 

1970’s. The basic principle behind its operation is as follows. The crystal silicon is 

an array o f atoms whose bonds can be broken by absorbing light at different 

wavelengths. In absorbing light, thus breaking bonds, electrons are released but, 

importantly maintained in that region (well) o f  the CCD chip. The potential well 

represents a pixel. The number o f electrons released is proportional to the amount 

o f light that hits the silicon crystal in that region. The term pixel is an acronym of 

sorts for the term “picture element” (Jain, 1989). A  CCD cam era is usually 

attached to a lens system to extract information from a scene, such as a microscope 

or photo-lens.

5.3.2 Framegrabber Board

The framegrabber board provides the interface between the hardware or image 

generator and the software. It has several functions, including the interpretation, if  

necessary, o f the analogue signal arising from the camera and the generation o f 

fixed images from the continuous stream o f data arising from  the camera. 

Framegrabbers may also include frame stores for the capture and m anipulation o f 

multiple images.

5.3.3 Image Analysis Software

Image analysis software allows the user to interface with the inform ation stored on 

the framegrabber board or stored images. The software generally provides the 

following key services:
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1) a graphical user interface (GUI) between the user and the framegrabber or 

image file, that allows the user to observe the image or any manipulations made 

to the image;

2) significant simplification o f the process o f image segmentation and processing, 

by the use o f simple commands that complete complex mathematical 

transformations on the image;

3) the inclusion o f an inbuilt “macro recording” facility that allows the user to 

record complex series o f image processing events and to subsequently run them 

automatically on an image.

The third service can be overlooked if  the developed software is not a m ultipurpose 

research tool, but rather, is a dedicated inspection system, designed for one task 

only. If  the end user has sufficient programming skills, the development o f  an in- 

house image analysis software platform to interact with the framegrabber may be 

beneficial, as this allows manipulations o f images often not supplied or possible 

using pre-designed software.

5.4 APPLICATIONS OF IMAGE ANALYSIS IN BIOLOGICAL SCIENCES

The general complexities o f biological images create a certain degree o f difficulty 

for image analysis. Medical applications include interpretation o f data from 

various scanners such as MRI (M agnetic Resonance Imaging), ultrasound and X- 

ray and the subsequent three-dimensional representation o f internal structures 

based on the above scans. The use o f image analysis as an automated diagnostic aid 

has also come to the forefront with investigations into automated early melanoma 

recognition in ambiguous cases (LeBoit and Van Fletcher, 1987) and automated 

cancer diagnosis in histopathology sections based on nuclear grade and density 

(Melamed, 1996).

In agriculture, image analysis can also be used to sort agricultural produce 

(Marchant, 1990) and to identify strains o f potato tubers and grain crops, for 

example, wheat and barley.
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W ithin the realm o f biotechnology, image analysis has proven essential in  the 

quantification o f information from gel images. Image analysis techniques were 

developed almost simultaneously with gel techniques, w ith the first programs 

written for supercomputers (Hader, 1992). M odern gel analysis systems can 

operate on standard computers and can correct for local distortions and “smiling” 

in gels.

Within plant biotechnology, image analysis has been used to quantify chlorophyll 

content in leaves, leaf morphology and the quantification o f  individual plant cell 

morphology in suspension culture (Kieran, 1993). Chi et al. (1996) used a neural 

network classification system, in association with Fourier transformations, to 

m onitor changing morphology o f somatic embryos. This technique related changes 

in the surface contour, using Fourier transformations to the correct classification o f 

carrot somatic embryo. In the field o f  animal cell culture, image analysis has been 

demonstrated as an efficient means o f quantification o f  hybridom a cell lines 

(Tucker el al., 1994), being more consistent and less labour intensive than manual 

methods. It also proved more consistent when quantifying stained cells and 

provided information about cell shape. Maruhashi et al. (1994) demonstrated an 

image analysis system suitable for on-line monitoring o f  animal cell suspension 

culture. The system was also capable o f  monitoring cell viability using the 

assumption that viable cells are larger than dead cells. The resultant data correlated 

well w ith trypan blue staining as a method o f viability testing. There is still much 

room for development within the animal cell culture field, particularly within the 

study o f  toxicology, where parameters such as changes in cell m otility and cellular 

shape are indicators o f drug toxicity. Image analysis is currently being investigated 

as a tool to assess the localised cellular toxicity o f surgical im plant materials 

(Remes Biomedical, Personal communication). The study examines the radial 

density o f nuclei surrounding the implant, thus assessing cellular density with 

respect to distance from the implant-tissue interface.

W ithin microbiology, image analysis has been used extensively to study the 

growth and morphology o f  microbial colonies grown on solid substrates.
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W impenny et al. (1995) suggested that the automated diagnosis o f  species, even 

strains, using image analysis, is a possibility. Due to the small size o f bacterium , it 

is difficult to apply image analysis to monitoring the characteristics o f  individual 

cells. However, Tsuchido et al. (1994), utilised image analysis to evaluate bacterial 

injury by determination o f bacterial motion. They identified intermediates between 

healthy cells and dead cells that developed upon moderate heating, thus suggesting 

bacterial injury rather than death. To monitor the morphology o f individual 

bacteria, the use o f advanced microscopy techniques such as Scanning Electron 

M icroscopy (SEM), would be required. This would make the use o f image analysis 

impractical as a bacterial fermentation monitor. Image analysis has been used to 

assess bacterial colony development in varied environments. W irtanen et al. (1995) 

utilised image analysis to evaluate cleaning procedures in the elimination o f 

biofilm  from stainless steel surfaces in open process equipment. Prosser et al. 

(1994) utilised image processing to identify luminesence marked bacterial cells 

from among a mixed flora o f microorganisms, by utilising staining (crystal violet 

and acridine orange).

Image analysis has been used to quantify various facets o f surface and im m obilised 

fungal growth. W alsh et al. (1996) quantified growth patterns o f the yeast S. 

cerevisiae microcolonies in carageenan and alginate gel particles and demonstrated 

a relationship between local alginate concentrations in the alginate bead and 

microcolony morphology. Surface growth o f fungi on agar plates has also been 

monitored using image analysis (Larralde-Corona et al., 1994). In an important 

study, image analysis has been applied to the quantification o f the extension rate o f 

fungal tips, leading to the discovery o f pulsed growth in hyphal tips (Lopez-Franco 

et al., 1994). Prior to this study, fungal hyphae were assumed to extend in a 

uniform, linear fashion. While pulse frequency and amplitude varied for the 

different fungi examined, it was apparent that all fungi examined, possessed a 

pulse. Olsson (1995) was able to observe nutrient relocation by higher fungi 

(Basidomycetes) across a nutrient gradient, utilising image analysis to quantify 

both biomass concentrations on either side o f the gradient, by correlating pixel 

grey levels with biomass concentrations, and nutrient diffusion in conjunction with

6 6



a chemical assay for glucose. This work proved that certain higher fungi could 

relocate nutrients from regions o f sufficient nutrition to regions o f insufficient 

nutrition, often promoting greater growth in the latter regions.

In mathematics, a geometric shape that is complex and detailed in structure at any 

level o f magnification is known as a fractal. Often fractals are self-similar— that is, 

they have the property that each small portion o f  the fractal can be viewed as a 

reduced-scale replica o f the whole. Diverse phenomena in biological sciences 

display interesting scaling in the time and space domain, many o f  which have been 

described using a fractal power law model. Pons et al. (1995) used fractal-based 

descriptors o f  texture to try and differentiate between colonies o f  various 

organisms cultured on agar plates. While the study proved unsuccessful, it is one o f 

the first to use grey level deviation as a measured parameter. One m ethod o f 

characterisation o f the spatial distribution o f hyphae w ithin a mycelium is in terms 

o f fractal dimension. Donnelly el al. (1995) demonstrated a rapid box counting 

algorithm for determining border fractal and mass fractal dimensions and indicates 

that the previously qualitative descriptors o f fungal feeding versus foraging can 

now be described using fractal dimensions. Hitchcock et al. (1996), using complex 

analysis o f skeletonised mycelial networks (see Section 5.5.3. for description o f 

skeletonisation), estimated fractal dimensions for different mycelial networks and 

verifies the above conclusion. Such work has significance in quality control o f 

m ushroom inoculum production.

5.5 IMAGE ANALYSIS OF FUNGI IN SUSPENSION CULTURE

5.5.1 Yeast

Yeast, geometrically speaking, are regarded as prolate ellipsoids, w ith m other and 

daughter having the same geometric properties as each other. In a two-dimensional 

projection they project as slightly intersecting ellipses and this is how  the imaging 

system perceives them. To infer a volume for each component o f  the cell can be a 

difficult process. The first attempt at generating volumes from observations was 

done by Wheals (1982), who manually measured the major and minor axes o f each 

component o f the yeast using a digitising tablet. The first application o f image
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analysis to the area was by Huls et al. (1992) who used a contour rotation method 

to assess the volume o f cells present (Figure 5.1).

fl
ts

hi '
UJ

Figure 5.1 Application o f contour rotation method (adapted from  Huls et al.

(1992))

The major axis (of length L) o f  the cell in figure 5.1(a) is subdivided into ns equal 

divisions. A rectangle o f width L/ns w ith a length defined by the intersection o f a 

line running perpendicular to the major axis intersecting the m id point o f the major 

axis section with the edge o f  the two-dimensional projection o f  the cell is 

generated. The volume o f each segment, i, o f the cell is then calculated by

n
n O  = -r L\

Kns y
(5.1)

The overall volume o f the cell was estimated from

V = f dV(i) (5.2)
;=i

I f  ns is large, then the representation given by such a method is good but the 

technique is cumbersome in terms o f  processing time. Secondly, the two cell 

subunits have to be on the same major axis, which is often not the case. Pons et al.

(1993) first exploited the approximate geometric properties o f the yeast, nam ely its 

ellipsoidal nature, by estimating the major and minor axes o f  the subunits and 

estimating volume using the following calculation.

V = ^(L ,W ,2 + L hWt2) (5,3)
6

6 8



where a and b represent the subunits o f the cell.

The major and minor axes were estimated by using the intersection o f the 

“geodesic diameter”, the longest Feret diameter in the cell representing the major 

axis o f  the structure, with the “regional maxima” determined by a process o f 

repeated erosion to a single point (removal o f pixels in an ordered fashion from the 

surface o f the cell until only one pixel remains in the centre o f the cell(s)). Again, 

the drawback o f this approach is the necessity o f both cells being on the same 

major axis.

Two o f the most significant pieces o f work done to date on the quantification o f 

yeast using image analysis are as follows. Zalewski et al. (1994) correlated the 

relative frequency o f four cell aggregates or tetrads w ith specific growth rate o f  the 

culture. This was a significant advance as it demonstrated the use o f image analysis 

as a m onitor o f fermentation performance. Suhr et al. (1994) demonstrated the use 

o f  an in situ microscopy system to quantify both cell growth and cell size. Both 

image generation (laser-based) and image processing are complex, yet they 

illustrate the use o f image analysis on the same basis as any fermentation probe, 

providing real time data regarding the physiological state o f the fermentation. This 

work also illustrated the use o f image analysis as a non-invasive technology, 

capable o f making measurements from the exterior o f a reactor on its contents.

In a later paper, Zalewski and Bucholz (1996) demonstrated a fully automatic 

sampling and analysis method that was capable o f dealing w ith yeast aggregates in 

the viewing chamber and was also capable o f enumerating cells and counting 

vacuoles within cells.

Vincente et al. (1996) quantified yeast floes by image analysis using an automated 

threshold. Automated thresholding, which is based on mathematical properties o f 

the grey level histogram, leads to less user intervention and less variation on what 

is deemed to be the “correct” threshold. This group also made use o f  a statistical
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analysis based on cumulative Gaussian distributions, each distribution describing 

single, double or other higher order floes. This yielded a strong mathematical 

description o f the data presented. A similar approach to data analysis was 

developed simultaneously in the present work to describe batch and continuous 

eulture population distributions.

5.5.2 Fungal Pellets

The pellet is the macroscopic morphology o f many filamentous organisms. Due to 

their nature, pellets contain within them an extremely heterogeneous environment. 

Pellets are formed by a process o f agglomeration, whereby different hyphal 

elements or spores aggregate together or with solid particles in the media. Certain 

pellets have been reported to form from the germination o f a single spore 

(Takahashi and Yamada, 1959). The morphology o f  fungal pellets is generally 

dictated by their growth environment, and several environm ental parameters such 

as medium composition and agitation rate have been associated with alterations in 

pellet morphology. The typical classification system used to describe pellets is as 

follows.

1) Fluffy loose pellets -  such pellets have a compact core with a much looser 

outer zone.

2) Compact smooth pellets -  the whole pellet is compact and the exterior is 

smooth.

3) Hollow smooth pellets -  the interior o f the pellet is hollow  due to autolysis and 

the exterior is smooth.

Quantification o f pellet morphology can provide a significant am ount o f 

information about culture physiology. Prior to the introduction o f image analysis to 

the field quantification o f  pellet morphology was based on qualitative descriptions 

o f pellet morphology (M etz and Kossen, 1977) and time-consuming sieve analysis 

to determine pellet volume fraction distributions (Vecht-Lifchitz et al., 1990). 

Reichl et a l.  (1992) and Cox and Thomas (1992) simultaneously demonstrated the 

use o f  image analysis as a quantifier o f pellet morphology. Both groups capitalised
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on two factors that make pellets suitable for image analysis, (a) the spherical nature 

o f  pellets and (b) the large difference in grey levels between the foreground, or 

pellet and the background. Using image analysis, the overall volume o f a pellet is 

represented by

where A is the projected area o f the pellet, a measurement easily determined using 

image analysis. W here pellets are “hairy” or fluffy, this approach can be inaccurate 

due to the often large volume occupied by voidage on the exterior o f the pellet. The 

estimated volume o f the pellet will be smaller than in reality. In such cases, the 

approach o f researchers has been to calculate the volume the core or solid region 

and to provide what is typically referred to as the “pellet hairy length” .

5.5.3 Filamentous Fungi

The quantification o f the morphology o f filamentous fungi in suspension culture 

has always been o f great interest to biochemical engineers as such quantification 

should (at least in theory) lead to a greater understanding o f  the behaviour o f  the 

fermentation broth and its constituent biocatalyst (the organism).

Filamentous fungi are generally regarded as being cylindrical in nature with 

hemispherical ends at hyphal tips. M ost fungi grow in a branched structure, the 

development o f which varies significantly with organism, strain and growth 

conditions. Plomley (1959) was the first to suggest that filamentous fungi have a 

growth unit that is duplicated at a constant rate during hyphal growth. This 

conclusion follows inevitably from the early observations that an individual hyphal 

strand extends at a linear rate whereby the whole hypha extends at an 

approximately exponential rate (Trinci, 1969). Trinci (1974) defined the Hyphal 

Growth Unit (HGU) as the total hyphal length divided by the number o f hyphal 

tips. Using this definition, he further demonstrated its constant nature in relation to 

hyphal development for three organisms grown on agar covered in cellophane,

(5.4)
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using time-lapse photomicroscopy. This approach was followed up with a study 

examining mitosis, branching and septation in Aspergillus nidulans on coverslip 

cultures (Fiddy and Trinci, 1976). This study involved the examination o f the 

synchrony o f division o f nuclei within hyphae and found that synchronous nuclear 

division occurred until the hyphae contained 8 or 16 nuclei and subsequently 

became asynchronous. This study also demonstrated an increase in the hyphal 

extension rate with increasing hyphal length. The study was accompanied by a 

similar examination on Geotrichum candidum (Fiddy and Trinci, 1976) where 

exponential growth o f  the hyphal element was observed with respect to time and a 

general increase in extension rate o f the primary branch and o f the apical 

compartment (the compartment between the tip and the adjacent septa).

W hile such studies revealed much about the mechanisms o f growth and 

differentiation o f fungi, they did not involve the examination o f  fungi in 

suspension cultures. Metz et al. (1981) measured many o f the m orphological 

criteria used today on suspension cultures. The following are a list o f measured 

parameters.

Lx Total hyphal length = length o f main hypha + branches

Le Effective hyphal length = length o f main hypha

n number o f tips per hypha

4  Hyphal Growth Unit length

M etz et al. (1981) used a digitising tablet to measure the above parameters from 

photomicrographs, essentially a laborious and time consuming process if  

statistically significant numbers o f hyphae are to be measured. This group 

continued this work with an important attempt to correlate engineering variables 

w ith morphology o f P. chrysogenum, see Chapter 2 (van-Suidjam and M etz, 1981). 

Adams and Thomas (1988) introduced the first digital image analysis protocol for 

the quantification o f filamentous fungi. They identified the usefulness o f  a 

morphological operator known as “skeletonisation”, a process by which pixels are 

sequentially removed from the surface o f an object until a line one-pixel thick
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remains. This operator has become the basis o f m ost algorithms developed for 

filamentous fungi. The protocol, subsequent to object skeletonisation, made use of 

a  light pen to identify branch points and the main hypha. It eliminated the need for 

photomicrographs and allowed the user to work in “real tim e”. This protocol, while 

a significant improvement on previous approaches, still had a considerable amount 

o f operator involvement. The development o f an automatic image analysis protocol 

was the concern o f  Packer and Thomas (1990). They identified some other key 

features o f a single pixel line such as the ability to rem ove pixels from the ends o f 

such lines, a process known as pruning. This led them to be able to remove short 

artefact branches generated in the skeletonisation process and also to identify 

hyphal growth in clumped form based on closed loops, an artefact not present in 

freely dispersed hyphae. The use o f logical operators also became apparent in this 

study. The main hypha was based on the longest interconnected distance in the 

skeletonised hypha. This skeletonised hypha was subsequently removed from  the 

image and the remaining unattached branches were then measured. This work also 

introduced the concept o f measuring clumped biomass, a term that will be used a 

great deal in following studies. In fact, it was found that in this study over 90% of 

the biomass (P. chrysogenum) remained in indispersable clumps for m ost o f  the 

fermentation. Tucker et al. (1992) developed the automated m easurem ent o f 

clumped biomass w ith the definition o f morphological characteristics o f  clumped 

biomass such as projected area, perimeter, compactness and roughness. The 

geometry o f a line is m uch simpler than that o f a two-dim ensional object and 

allows the calculation o f hyphal length based on values such as half the line 

perimeter or the sum o f all inter pixel distances. The use o f  such measurements 

have been used to quantify fungal morphology for the purposes o f  relating 

morphology to parameters such as broth rheology and to quantify the effect o f 

agitation on the structure o f hyphae.

The next phase in the study o f hyphal structure came with the development o f 

algorithms to study hyphal ultrastructure, particularly hyphae o f P. chrysogenum. 

This information is essential for the development o f  structured mathematical 

models for growth and antibiotic production. The whole concept behind the work
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is that biomass is not homogenous but, in fact, is composed o f regions o f  varying 

degrees o f vitality. The use o f image analysis to non-invasively identify such zones 

is o f obvious use. The first progress in this area came w ith the development o f  an 

algorithm by Packer et al. (1992) whereby the amount o f  vital P. chrysogenum was 

estimated using image analysis measurements. This group divided biom ass into 

two discrete types, actively growing biomass and inactive biomass. They found 

that the inactive regions o f the biomass contributed about 40% o f the mass per unit 

volume o f actively growing biomass. Paul et al. (1992) quantified the vacuolation 

o f  P. chrysogenum hyphae. The organism possesses clearly visible vacoules and is 

thus an ideal candidate for such studies. It was discovered that vacuolation 

increased as the distance from the actively growing tips increased. The possibility 

o f  modelling the hyphal development o f the organism using the results from  such 

analysis was discussed and subsequently demonstrated by Paul et al. (1994c). This 

work also included an extension o f the previous protocol to quantify the actively 

growing fungal tips based on their grey density (the tips appeared darker than other 

cell material). The first venture into colour-based image analysis o f  fungal cells 

was made by a collaborative effort between the Thomas and Pons groups, 

(Vanhoutte et al., 1994). This work, based on hyphal staining and multiple stain 

recognition, demonstrated the presence o f six metabolically distinct zones within 

the organism being cultured. It was regarded, at the time, as being too intensive 

from a processing perspective. However, the advent o f more powerful computers 

has opened opportunities in the area o f colour image analysis.

Quantification o f the morphology o f aggregated biomass generally requires 

classification o f  the organism into discrete morphological groupings. Generally, 

morphological alterations are continuous, but to aid the user, a discrete 

quantification system is often useful to help visualise the current morphological 

state o f a culture. M any examples o f such classification approaches exist. In yeast 

fermentations, the culture is often classified into groups o f  similar cells such as 

single cells, double cells, triple cells etc., where each cell grouping is normally 

distributed on a volumetric basis (Vincente et al., 1996). This is an ideal system 

with very discrete visual groupings, yet the volumetric data often overlaps between
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groupings. This is a typical example o f the additional information that such 

classification systems can add to the morphological description o f a culture. W ith 

filamentous biomass, classifications are made based on the degree o f aggregation 

o f the free filaments. Thom as’s group demonstrated the presence o f  clumps o f 

biomass that remained stable even after significant agitation. Tucker et al. (1992) 

developed the following classification system to describe the broad range o f 

morphologies exhibited in filamentous fungal fermentations.

Free filam ents ► Clumps o f free filam en ts  ► Pellets

While this classification system may encompass the entirety o f  displayed 

morphologies, it is often redundant due to the culture growing com pletely in one 

form o f the three. This classification system has distinct difficulties in 

implementation, as there is a difficulty in perception between the groupings 

outlined and considerable inter-group variation. It is apparent from the general 

failure to relate the above morphological criteria to rheology (Olsvik and 

Kristiansen, 1994), that further study o f the classification o f such complex systems 

is necessary.

5.5.4 Dimorphic Organisms

With regard to dimorphic fungal growth, there have been few attempts to 

mathematically quantify the dimorphic transition exhibited by such organisms. 

Odds (1993) suggested a method for assessing the morphological transition in C. 

albicans based on three pertinent measurements.

1) the diameter o f  the mother bud interface (.s’)

2) the diameter o f  the daughter cell (d)

3) the length o f  the daughter cell (h)

These values were combined to generate the following equation.
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M l = 2  + 1.781og10 ^  (5.5)

where M, is a morphology index related to the morphology o f a subunit o f  a hypha 

or a budding yeast cell. This author feels the term, s, is often redundant due to the 

similarity between yeast and hyphal cell interfaces. Thus, in equation (5.5), the 

statement is simply a comparison between the length and width o f the generated 

cell. W hile measurements o f this nature may be easy to assess manually, they are 

difficult to automatically evaluate using computer aided image analysis.

In a much more interesting development, the use o f neural network technology has 

been demonstrated in the classification o f  yeast-like and pseudohyphal forms o f the 

dimorphic organism, Aureobasidium pullulans (Guterman and Shabtai, 1996). 

This procedure was termed a “self-tuning vision system” and was based on the 

training o f a neural network with positive and negative examples o f  a  given 

morphology. The ease o f training led the authors to believe that the system  could 

rapidly be adapted to different mixed morphology systems. W hile this method 

classifies the organism into visual groupings, it yields no inform ation on the 

physical size o f the organisms.

It is hoped that the present work can address the above problems by providing 

physical measurements along with the standard classification system. The 

organism chosen for this work displays several morphologies (Chapter 4) and even 

within the pseudohyphal class, is seen to vary greatly from linear chains o f  three 

cells to the large branched cells with up to 20 subunits.
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5.6 IMAGE ANALYSIS HARDWARE

The hardware consisted o f  three main components, a personal computer, a TV 

camera (CCD type) and a microscope. Each component will be described in detail.

5.6.1 Computer Configuration

The computer supporting the image processing and analysis software contained a 

66MHz Intel 486 DX2 processor. For input o f live and frozen video-based images, 

the system contained an ELViS (Vision Dynamics) framegrabber board. The 

M onitor used was an AcerView 46L Low  radiation 14”  colour m onitor (Acer 

Peripherals Inc., Taiwan).

5.6.2 Camera

The camera used was a Sony XC-74CE monochrome video cam era (Sony 

Corporation, Japan). This was attached to the microscope via a C-mount adapter.

5.6.3 Microscope

The microscope used for all studies was an Olympus BX40 brightfield microscope 

(Olympus Optical Company, Japan). The magnifications used for this work were 

200x and 400x, yielding on screen magnifications o f  0.414pm2 and 0.206pm 2 per 

pixel respectively. Both lighting and condenser settings were maintained at 

constant levels to ensure as uniform an image as possible.

5.7 IMAGE ANALYSIS SOFTWARE

5.7.1 Introduction

The software used was a Windows based package (QWIN, Leica, Cambridge, 

England) which had the ability to:

•  acquire and display a grey image on screen

•  modify and enhance the acquired image to appropriate levels

• segment regions o f interest from the grey image resulting in binary images

• subsequently modify the binary image both manually and automatically

•  measure selected features contained in the binary image
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• output the measured data in useable form

• program routines to automatically complete complex sequences o f  the above 

events

5.7.2 Grey Image Acquisition

Each image acquired and displayed on the screen is composed o f  720x512 pixels, 

each pixel w ith a grey level ranging from 0 (representing black) to 255 

(representing white), this is known as an 8 bit image due to division o f grey into 28 

discrete values. The 8 bit grey image is an industry standard. Initially, a live image 

is displayed in the image window and when an image o f  sufficient quality is 

viewed the image is frozen. This image is now available for subsequent processing. 

The package allowed the short-term storage o f  seven grey images in regions known 

as planes. The image planes were not only useful for storing multiple images but 

also allowed for the processing o f images without overwriting the original.

5.7.3 Grey Image Processing

Acquired images often do not possess the required quality for image analysis. 

Problems commonly experienced are noise, unexplained variations in pixel grey 

values, and lighting aberrations. Grey image processing is necessary to correct such 

problems. Grey image processing is fundamentally the ability to alter a p ixel’s grey 

level based on the pixel’s own or surrounding pixels’ grey values. Such operators 

include edge enhancers and detectors, image smoothing and sharpening and image 

inversion. Such operators are used only if  the acquired image is not o f  suitable 

quality to allow segmentation o f the regions o f interest.

5.7.4 Image Segmentation (Feature Detection)

Image segmentation is a necessary feature o f all image analysis software packages. 

It is defined as the ability to isolate regions o f  interest in the image using some 

quality unique to the regions o f interest. M any documented approaches to image 

segmentation are available such as edge- and region- based segmentation (Jain, 

1989) but the QWIN software package simply uses detectable differences in grey 

levels between the regions o f interest and the background. This approach is often
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referred to as “thresholding”. Pixels with grey levels in the range o f interest are 

subsequently defined in the matrix o f  pixels as “ 1” and background pixels are 

defined as “0”. This resultant matrix is defined as a binary image and is displayed 

on the screen with regions o f interest coloured and background black. Image 

segmentation should not be confused with binary segmentation (an in-built binary 

morphological operator) to be described later.

5.7 .5  B in a ry  Im a g e  M a n ip u la tio n

Once an image has been segmented the resultant binary image is easily 

manipulated due to its mathematical simplicity. Often segmented images lack the 

required quality to perform correct measurements on features and require 

enhancement. Such images require the use o f the suite o f in-built binary operators 

for improvement. Binary operators are also useful in the modification o f  a binary 

image, i.e. the separation o f touching features, and, as will be discussed later, can 

be used in combination to provide some powerful morphological modifications to 

an image. Six binary image planes were provided to allow for multiple operations 

to be performed.

5 .7 .6  F ea tu re  M ea su rem en t

The software package allows the measurement o f  multiple parameters on any given 

feature in a binary image such as feature area, dimensions such as length and 

width, and other useful parameters including convex area (the area o f  a polygon 

circumscribing the object) and object orientation. Measurements can be used to add 

or eliminate features from binary images and are useful in categorising objects into 

groups.

5 .7 .7  P ro g ra m  D ev e lo p m en t U tility  (Q U IP S )

The software package also contained a utility to develop routines that will 

complete a complex sequence o f events w ithout the need for manual intervention. 

The facility provided programming operations such as the ability to input and 

output data from routines and conditionally execute certain events. QUIPS proved
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to be an extremely flexible and user friendly method o f  creating image analysis 

routines.

5.8  S L ID E  P R E P A R A T IO N  F O R  IM A G E  A C Q U IS IT IO N

Many different slide preparations were attempted in order to find the m ost suitable 

for image analysis. The most effective method is outlined below. A 35(0.1 aliquot o f 

suitably diluted sample was applied to a 1,2mm thick Blue Star glass slide (Chance 

Propper Ltd., Warley, England). This was covered w ith a 22x22mm No. 1 'A Glass 

cover slip (Chance Propper). This resulted in an image that was essentially 

monoplanar. Pseudohyphal samples were suitably diluted and vortexed for 10 

minutes prior to slide preparation to break up any temporary aggregates that may 

have been present.

5 .9  O B J E C T IV E S  F O R  D E V E L O P E D  A L G O R IT H M S

Algorithms were developed to perform the following functions on a cell 

population:

• separation o f the cells into the seven classes described in Chapter 4.

• estimation o f the volume o f  individual cells and double cells (Table 5.1).

• measurement o f the morphological properties o f pseudohyphal cells, such as 

total length, mean width, volume (Table 5.1), and the extent o f branching.

Two programs were developed to perform the above functions. This was necessary 

due to the slow speed o f  the processor in this system. The first program, 

ACQUIRE, was responsible for grey image acquisition, feature detection and 

binary image enhancement. The enhanced binary images were then stored. It was 

possible to acquire and store multiple samples each w ith multiple images. The 

second program, MEASURE, was responsible for the measurement and 

classification o f cells in the binary images. This program was run overnight so as 

not to interfere with other researchers in the laboratory. The program was capable 

o f outputting the data for several different samples separately. A more detailed

80



description o f  the operation o f  each program  w ill now  be given. For an overview o f 

the algorithms used in each program see Figure 5.2.

5 .10  O V E R V IE W  O F  P R O G R A M  “A C Q U IR E ”

Program ACQUIRE consists o f five distinct sections:

1. program setup and control o f  image logging

2. image acquisition

3. image segmentation (detection)

4. automatic image enhancement

5. manual image enhancement

Program setup and image management involve the initialisation o f  variables in the 

program and the logging o f information about the image including:

1. sample name

2. user number

3. number o f  images to be logged
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Filaments Pseudohyphae

F igu re 5.2 Overview o f algorithms used in programs ACQUIRE and MEASURE
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T a b le  5.1 M orphologies displayed by K. marxianus var. marxianus NRRLy2415. 

Classification and volume estimation.

C lass D escr ip tio n V o lu m e

Yeast Spherical or ellipsoidal single cells LW2u/6

Elongated yeast Elongated ellipsoidal single cells LW2 n/6

Filament Rod-like cell with no visible 

curvature except at the tips

LW2n/4 a

Double yeast Budding yeast containing a visible 

constriction at the mother-bud 

junction

(L] W,2 + L2W 2 )7i/6

Double elongated Budding elongated yeast containing a (LXWX2 + L2W22)n/6

yeast visible constriction at the mother-bud 

junction

Double filament Joined filaments formed either by (LrW 2 + L2W 2 )tt/4 b

cell growth or pseudohyphal

fragmentation

LW2tt/4  c

Pseudohyphae Three or more cells joined together 

(usually composed o f filaments) may 

be branched or unbranched

LW2W 4 d

L and W are the feret length and width of a cell respectively. The subscripts refer to the first and 

second subunits of a double cell.

* The length L of a filament is the feret length when it has been measured from Image G (Figure

5.2) and is the skeletonised length (where the cell has been reduced to a single pixel width and 

the length is measured as perimeter/ 2) when it has been measured from Image H (Figure 5.2). 

b Volume of double filament which has been successfully segmented in Image F (Figure 5.2).

c Volume of double filament which could not be segmented in Image F (Figure 5.2).

d L is the skeletonised length of a pseudohypha. W is the mean width of the cell and is equal to

area/length.
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This information is logged in data files along with the information from previous 

samples logged. The program now has the information required to log the images 

within the image database. The image logging database was developed prim arily 

for this program but was found useful for other programs being developed in the 

laboratory.

The image acquisition stage required the operator to m ove the microscope stage to 

a region o f  interest (a live image was present on the screen at this stage). The 

image was frozen and stored in the image database (Image A, Figure 5.3). This 

process was repeated until the desired number o f images was logged.

Image segmentation was performed using two different approaches. Cells in m ost 

images possessed white halos (Figure 5.3(a)) (an artefact o f  lighting) that were 

easily detectable. These halos were generally not present on debris and served as a 

useful method o f isolating cells from background debris and lighting 

inconsistencies. Dark pixels within the white borders were deemed to be part o f 

cells. Figure 5.3 outlines the approach to cell detection.

Pseudohyphae may possess inconsistent halos due to non-planarity and complexity 

o f  structure. A simpler approach to detection had to be implemented involving 

solely the detection o f darker regions in cells. These regions were reconstructed to 

the whole cell using closure cycles and hole filling routines. The image resulting 

from this approach was often o f poorer quality due to the presence o f a greater 

quantity o f debris being present. This debris had to be removed using size filters 

and in some cases manual intervention.

Once detection thresholds have been manually set for the first o f a series o f images, 

the remaining images are segmented and processed automatically, based on the 

assumption that the background grey levels in all images are similar. This was 

generally the case for all images taken off the same microscope slide. This greatly 

reduced operator intervention.
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(a)

(b)

(c )

Figure 5.3. Preliminary image processing stage (a) Image A: (portion of) initial 

grey image, (b) Image B: unedited binary image, (c) Image C: edited binary image. 

For clarity, only a  portion (approximately one third) o f  the full image frame is 

displayed.
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The enhanced binary images were then presented to the operator for manual 

intervention if  necessary. Problems that involved manual intervention included the 

elimination o f  debris not removed using size filters, the separation o f  touching cells 

and the repair o f pseudohyphae exhibiting non planarity. M anual intervention was 

minimal for most images. Once images were deemed to be o f sufficient quality 

they were stored for processing by the MEASURE program.

5 .11  O V E R V IE W  O F  P R O G R A M  “M E A S U R E ”

Program MEASURE is responsible for the measurement, classification and output 

o f data for cells in images recorded using program ACQUIRE. A graphical 

overview o f program M EASURE is presented in Figure 5.2.

5.11 .1  P re lim in a ry  C ell C lassifica tion

Single cells and pseudohyphae were separately identified on Image C and placed in 

separate binary image stores. Initially, a primary classification o f single cells is 

performed on Image C, using two size/shape filters (Filters 1 and 2, as detailed in 

Table 5.2), giving rise to a preliminary “single cells” image (Image D, Figure 5.2). 

Pseudohyphal cells are then removed from Image C using a size and shape filter 

(Filter 3 in Table 5.2), resulting in a preliminary pseudohyphae image (Image E, 

Figure 5.2). Once the single cells and pseudohyphal cells have been removed from 

Image C the remaining cells are termed “possible double cells” (Image F, Figure 

5.2).

T a b le  5.2 . Filters for preliminary cell classification

C lass F ilter  n u m b er F ilter  p a ra m eters

Single Cell 1 8 < area < I4\xm2

Double Cell 2 14 < area < 24(j.m2 and perimeter/convex

perimeter < 1 .12

Pseudohyphae 3 Area > 6 0  |im 2
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5 .11 .2  P r im a ry  S eg m en ta tio n

Image F contains what are termed “possible” double cells, because, in addition to 

“true” double cells (both double yeast and double filaments), this image may also 

contain cells that are, in fact, either single cells or pseudohyphae, but that are not 

captured by the software filters described in Table 5.2. To classify these cells 

correctly, it was necessary to perform segmentation on each cell in Image F. The 

segment function is a system-inbuilt binary morphological operator that is used to 

separate automatically touching features by reconstruction from ultimate erosion 

markers. Primary segmentation proceeds by systematically (and automatically) 

removing the largest object in Image F and placing it in a separate image plane. I f  

two cells o f the same size are present in an image, a backup filter based on cell 

roundness is used to separate them. Cells have to be isolated before segmentation, 

because, sub-units generated from a cell during the segmentation process become 

independent o f each other. Thus if  more than one cell segments in the same image 

the sub-units generated cannot be reassociated with each other after measurement.

Once a cell has been isolated, a binary segmentation is then performed on this 

object and the number o f  entities in the frame is counted (this primary 

segmentation is hereafter termed Segment 1). I f  the cell separates into two 

subunits, the geometric properties o f the subunits are measured and the cell is 

classified as a double yeast, a double elongated yeast or a double filament 

according to the criteria o f Table 5.3. The cell is then removed from Image F and 

the cycle repeated until all cells are removed from Image F.

T a b le  5 .3  Classification o f single and double cells

C ell ty p e C la ssifica tio n

Yeast 1 < L/W < 2.5

Elongated Yeast 2.5 < L / W < 4

Filament L/W > 5

Double Yeast Lj/Wj  and L2/W2 < 2 .5

Double Elongated Yeast L]/Wi and L2/W2  < 4  : Lj /W / or L2/W2 ^  2.5

Double filament Lj/Wj ov L2/W2 > 4
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5 .11 .3  S econ d ary  S eg m en ta tio n

There are a number o f  cell geometries in Image F, for which the application o f the 

binary segment function either fails to separate double cells, or more than two 

subunits arise. Extended image processing m ust be performed on these cells if  they 

are to be classified correctly and automatically. The use o f a system-inbuilt binary 

“outline” morphological operator proved extremely useful in correctly classifying 

(and separating, if  necessary) the aforementioned cells. Any cell in Image F which 

failed to segment into exactly two subunits after the application o f  Segment 1, was 

subjected to a series o f operations (hereafter termed Segments 2, 3 and 4), which 

were applied in sequence and which are described in Figure 5.4.

5.11.3.1 Segment 2

This operation proved useful for separating double cells that segmented into more 

than two subunits when primary segmentation (Segment 1) was performed. The 

binary outline operator is applied to the cell. In Figure 5.4a, this results in  the 

outline continuing through the cell-cell interface. Using logical arithmetic, the cell 

is seen to separate into two subunits. Using a number o f logical and rebuild 

functions, it is possible to recreate the original cell image, whereby the cells are 

separated at the interface, as depicted in Figure 5.4a. The geometric param eters o f 

the subunits are measured and their volume calculated as an ellipsoid or cylinder as 

required. The cell is then removed from Image F.

5.11.3.2 Segment 3

Some double cells do not possess the necessary degree o f concavity at the cell-cell 

junction to separate into two subunits by primary segmentation (Segment 1) and 

also fail to separate when the series o f outlining and logical operations in Segment 

2 is applied (as depicted in Figure 5.4b). If, however, the segment operator is 

applied to the cell structure in place after outline removal as in Segment 2, and this 

successfully separates the cell into two subunits, the subunits may be rebuilt, 

measured and removed from Image F. This step is term ed Segment 3. I f  following 

the application o f the segment operator, three or more subunits are present, then the
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cell is defined as a pseudohypha and is copied to Image H (the final pseudohyphal 

image) and simultaneously removed from Image F.

5.11.3.3 Segment 4

If, following the application o f Segments 1, 2, and 3, the cell fails to separate (see 

Figure 4.4c) but where there is a significant difference (greater than three pixels) 

between the measured areas o f the original cell and the image remaining after the 

applications o f Segments 1,2 and 3, then the cell can be rebuilt, measured, and 

removed from Image F. (this sequence o f operations is term ed Segment 4). 

However, if  the difference in area between the original cell and the segmented cell 

is three pixels or less, the cell is deemed to be a single cell. It is then removed from 

Image F and added to the final single cell image (Image H, Figure 5.2).

After these steps have been completed, all true double cells in the original 

“possible” double cells (Image F) have been classified (and their geometric 

properties have also been measured). If, after applying Segments 1, 2, 3 and 4, the 

original cell is still intact it is added to the original single cells image resulting in  a 

final single cells image (Image G, Figure 5.2). If, after applying Segments 1, 2 and 

3, the number o f subunits is greater than two the cell is added to the original 

pseudohyphal cell image, resulting in a final pseudohyphal cells image (Image H, 

Figure 5.2)

5 .11 .4  C la ssifica tio n  and  M ea su rem en t o f  S in g le  C ells

The individual cells in Image G are further classified as yeast, elongated yeast or 

filaments according to the criteria listed in Table 5.3. As the cells in this image are 

single cells and, hence, are discrete objects, m easurem ent o f  geometric parameters 

can be performed on the entire image in a single pass.

5 .11 .5  S k e le to n isa tio n  an d  M ea su rem en t o f  P seu d o h y p h a l C ells

The algorithm for skeletonising a hypha and pruning the branches was developed 

in a manner similar to that described by Tucker et al. (1992). The binary 

skeletonisation function is a morphological transformation producing the medial
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axis o f  an object in a binary image. A skeleton is produced by successive thinning 

from the edges inwards until single pixel centre lines are identified. This operator 

is very useful in the analysis o f pseudohyphae due to their long thin morphology. 

On application o f the skeletonisation operator to the pseudohyphae image, a single 

pixel line is generated representing the mid-line o f  the pseudohyphae. The fact that 

the line is one pixel thick has a number o f advantages. Firstly, by determining the 

perim eter o f the line, the length o f the pseudohypha can be estimated from L =  

Perimeter/2.

Secondly, by using a pruning operator, which sequentially removes pixels from the 

end o f single pixel lines, in conjunction with the skeletonisaion operator, 

information about the branching pattern o f the pseudohyphae can be extracted.

The largest cell in Image H is removed to a separate binary image plane (Figure 

5.5(b)). The skeletonisation operator is then applied to the cell and this results in a 

single pixel line representative o f  the mid line o f  the pseudohypha (Figure 5.5(c)). 

Artifact branches are removed using the pruning operator (Figure 5.5(d)). This 

operator removes pixels from the ends o f single pixel lines. Once artifact branches 

have been removed the operator is applied once more. Using a series o f logical 

operations the end point pixels can be isolated and counted thus yielding the 

number o f tips on the pseudohypha (Figure 5.5(e)). I f  the number o f tips equals 

two then the pseudohypha is unbranched and can be measured and removed from 

Image H. The calculation o f tip number was also necessary for correct length 

estimation. The total length o f the pseudohypha (Lt) was estimated using the 

assumption that ha lf the perimeter o f  the single pixel line yielded the length o f  the 

pseudohypha. The pruning operator removed pixels from each tip in its attempt to 

rid pseudohyphae o f  artefact branches thus the length o f  pixels removed from all 

the tips has to be added back to the measured area. After pseudohyphal length is 

determined, the skeleton is
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(e)

F igure 5.5 Skeletonisation and characterisation o f pseudohyphae; (a) original grey 

image, (b) binarised version o f largest pseudohypha, (c) binary image after 

application o f skeletonisation operator, (d) pruned to remove artifact branches, (e) 

number o f  tips.

91



systematically pruned and branches are removed and measured yielding the 

effective hyphal length (Le) and mean branch length.

Image H also contains some single filaments (which were not rem oved by the 

Table 5.2 filters) and double filaments, which segmented into more than two 

subunits even after applying the primary and secondary segmentation operations 

(Segments 1, 2, 3 and 4). Such cells were classified using the criteria in Table 5.4. 

The individual sizes o f two subunits o f  the double filaments cannot be measured, 

but the volume o f  the entire unit is calculated as described in Table 4.1 and the unit 

is categorised using the criteria o f Tabic 4.4.

T a b le  5 .4  Classification o f filaments/unbranched pseudohyphae (in Image H)

C lass F ilter

Filament L < 18|am

Double Filament 18< L < 36|^m

Unbranched pseudohyphae L > 36pm

5 .1 1 .6  S o rtin g  an d  P resen ta tio n  o f  D a ta

The measured and calculated morphological data from single cells, double cells 

and pseudohyphae were sorted into the desired order and the results graphed with 

Sigmaplot™.

5 .12  V A L ID A T IO N  O F  P R O G R A M  “ M E A S U R E ”

Three important validation steps had to be carried out before the program  could be 

used for sample analysis.

5 .12 .1  V a lid a tio n  o f  C orrect G eo m etr ic  S h a p e

The assumed geometric shape o f cells (i.e. prolate ellipsoids for yeast and 

elongated yeast and cylinders for filaments and pseudohyphae) have to be 

validated. The ellipsoidal nature o f  yeast and elongated yeast was validated by 

measuring the projected area o f yeast and elongated yeast and then estimating the 

projected area using length and w idth measurements where.

92



Projected area for single yeast and elongated yeast was calculated as

A = —LW  
4

(5.6)

Projected area for double yeast and elongated yeast was calculated as

A = ^ ( L XWX+ L 2W2) (5.7)

A n error estimate (sA) was based on the difference between observed (Ameasured) 

and estimated cross sectional areas (/4estimated) where:

Figure 5.6(a) shows sA plotted against measured cell projected area for single and 

double cells. The plot is scattered but little bias is evident in the data. The mean 

absolute error in estimation was found to be 6.34%. It was decided to examine the 

effect o f m agnification on sA. Cells were measured at 400x m agnification and the 

results are shown in Figure 5.6(b). Again, little bias was evident but the mean 

absolute error was reduced to 3.62%. The effect o f  m agnification on the 

measurement o f projected area, length and width was then assessed by measuring 

the same population o f cells at 200x and 400x. Figure 5.7 demonstrates clearly, 

that little difference exists between the measured lengths, widths and projected area 

at the two different magnifications.

Pseudohyphal cells possess a different geometric shape and the estimated 

parameter for pseudohyphal cells is w idth and not area as is the case for yeast cells. 

The error on estimated cell width was assessed by manually measuring the mean 

width o f a pseudohyphal population and comparing the m ean and standard 

deviation to that o f  the estimated values. As can be seen from Table 5.5 the mean

x 100 (5.8)
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values and standard deviations for both measured and estimated values are w ithin 

5% error

200x magnification - Mean absolute error = 6.34%
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F ig u re  5 .6  Error function (sA) for increasing measured cell cross-sectional area (a) 

200x magnification, (b) 400x magnification. Dashed lines indicate ±  10% on the 
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F ig u re  5 .7  Comparison o f distributions o f cross sectional area, length and w idth o f 

a single cell population measured at 200x and 400x magnification.
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T a b le  5 .5  Comparison o f mean width (pm ) o f 20 m anually measured 

pseudohyphae with the mean width o f the same 20 pseudohyphae m easured by 

program MEASURE

S a m p le  n u m b er M a n u a l A u to m a tic %  erro r

1 2.10 2.21 +5.24

2 2.30 2.35 +2.17

3 1.75 1.65 -6.06

M ean % error 4.49

5 .1 2 .2  T est F erm en ta tio n  D ev e lo p m en t

In order to fully test the protocol, a test fermentation was completed at 30°C at 

133rpm in foil covered 250mL Erlenmeyer flasks containing lOOmL o f  whey 

medium. The operating conditions described above were chosen because such 

conditions generate a diverse range o f morphologies over the timecourse o f the 

fermentation. The fermentation was sampled at three hourly intervals over a 24 

hour period. Biomass, ethanol and residual substrate concentrations for the 

fermentation are presented in Figure 5.8. The fermentative nature o f  the run is 

evidenced by the preferential conversion o f lactose into ethanol rather than cell 

mass.

The classification o f cells at three-hourly intervals over the course o f the 

fermentation is displayed in Figure 5.9. From 0 to 6 hours the percentage o f  single 

cells decreases initially and the num ber o f double yeast increases, indicating 

biomass growth. In the period from 6 to 9 hours the percentage o f double filaments 

increases dramatically. The development o f  many o f these cells into pseudohyphae 

is seen to occur between 9 and 12 hours. As the m edium  is exhausted towards the 

latter stages o f the fermentation, an increase in the percentage o f  single cells is 

noted at the expense o f other forms. As the inoculum was taken from an overnight 

culture, the expected similarity in the distribution o f  cells at the beginning and 

towards the end o f the fermentation can also be seen.
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F ig u re  5.9 Distribution o f cell morphologies during the test fermentation. Class 

percentages based on estimated volum e fraction o f each class.

The time course o f the distribution o f the volumes and lengths o f cells is depicted 

in Figure 5.10. It can be seen that there is both a significant broadening of, and a 

modal increase in, the distribution o f cell volumes in the first three hours, followed 

by a narrowing of, and a modal decrease in, the distribution over the remainder o f 

the fermentation run. The pseudohyphae measured in  the 12 hour sample o f Figure

5.9 is seen to correspond in Figure 5.10(a) to a large number o f cells whose 

volumes range from 100 to 250(im3.
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In Figure 5.10(b), the distribution o f cell length is seen to broaden significantly 

during the growth phase, reflecting large numbers o f pseudohyphae present at this 

stage. The length distribution is seen to narrow towards the latter stages o f  the 

fermentation run, with the distribution o f the 24-hour sample closely resembling 

that o f  the original sample.

5 .12 .3  C la ssifica tio n  E rro r  E stim a tio n

To check the accuracy o f the automatic image analysis routine, the cells were also 

processed through the algorithm in such a manner that the operator was able to 

intervene manually and inspect the correctness o f the cell classification technique. 

For the 12 hour sample o f the test fermentation a total o f 17 o f the 302 cells (4.6%) 

were incorrectly classified due to errors in blob segmentation. The nature o f these 

errors are detailed in Table 4.6. It can be seen, however, that two o f  the mistakes 

occurred where double cells segmented at the wrong location but where no error in 

categorisation took place and, in addition, a number o f the other errors are self 

cancelling. In fact, in classification terms, there are only 8 differences between the 

automatic and manual categories (<3%).

5 .1 2 .4  E sta b lish m en t o f  S u ita b le  S am p le  S ize

The number o f cells that m ust be analysed is a compromise between the accuracy 

desired, the total time taken to analyse the sample and the amount o f  storage 

available for the images. The effect o f sample size on the measured percentage o f 

cells in each morphological category is presented in Table 5.7 for the test sample. 

To avoid any bias, the data for the sample was randomised each time before the 

first 100, 200, etc. cells were categorised. A sample size o f 300 cells was 

determined to be sufficient in obtaining an accurate classification, at a significance 

level o f 5%.
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Table 5.6 Classification o f segmentation errors made by algorithm (t = 12h)

C ell d eterm in ed  m a n u a lly  as C e ll c la ss ified  b y  a lg o r ith m  as C o u n t N a tu re  o f  error

Yeast Double yeast 2 Single cell segments into two cells

Elongated yeast Double yeast 2
ft

Filament Double yeast 2
If

Double yeast Yeast 1 Double cell fails to segment

Double yeast Elongated yeast 1
If

Double filament Filament 4 Double cell segments in the wrong location

Double filament Filament 2
11

Double yeast Double filament 1
ir

Double filament Double yeast 2
ii
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Table 5.7 Effect o f sample size on cell categorisation (based on cell number)

N u m b er  o f  cells ta k en  a t ra n d o m  fro m  a sa m p le  o f  420  cells

C lass 100 200 300 400

Yeast 26% 24% 22% 21%

Elongated yeast 18% 23% 23% 23%

D oub le  yeast 22% 22% 24% 26%

F ilam en t 8% 9% 9% 9%

D oub le  fila m e n t 8% 9% 8% 9%

Pseudohypha 16% 12% 14% 12%

5 .1 2 .5  E x a m in a tio n  o f  S a m p le  P ro cessin g  T im e

D ue to  the structure o f  the a lgo rithm , some ce lls are categorised and m easured 

q u ic k ly  and others are subjected to  a large num ber o f  processing operations. The 

effectiveness and lim ita tio n s  o f  the various com ponents o f  the au tom atic  im age 

analysis rou tine  can best be understood b y  observ ing  the processing o f  a spec ific  

ce ll sample th rough  the a lgo rithm . Th is is dem onstrated fo r  the 12-hour sam ple in  

Tab le  5.8. Th is  sample was chosen as the p ro p o rtio n  (b y  ce ll num ber) o f  ce lls  in  

any category is  no less than 7%  and no greater than 26% . Tab le  5.8 also illus tra tes  

the tim e  taken to  com ple te  each section o f  the a lg o rith m . A  com parison o f  the 

re la tive  tim e  taken to  pe rfo rm  an operation  is p ro b a b ly  m ore use fu l than  the 

absolute tim e , as th is  is system dependent, and w o u ld  be considerab ly qu icke r on a 

m ore  p o w e rfu l im age analysis system.
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Table 5.8 Time taken to perform the individual stages o f the image analysis algorithm (t = 12 h)

S tage Im ages U n it T im e N o. o f  cells N o. o f  fie ld s T o ta l T im e

F ilte r  1 (Tab le  5.2) C -» D 5 s /fie ld (4 5 )* 6 30 s

F ilte r  2 (Tab le  5.2) C * D 5 s /fie ld (96) 6 30 s

F ilte r  3 (Tab le  5.2) C -» E 5 s /fie ld (28) 6 30 s

P rim a ry  segm entation (Segment 1) F 14 s/ce ll 58 — 812 s

Secondary segm entation (Segment 2) F 37 s/ce ll 18 — 666 s

C e lls  sent to  pseudohyphae image F * H 37 s/ce ll (27) — 999 s

Secondary segm entation (Segment 3) F 49 s/ce ll 1 — 49 s

Secondary segm entation (Segment 4) F 49 s/ce ll 13 — 637 s

C ells  sent to  sing le  ce lls image F -» G 45 s/ce ll (16) — 720 s

S ing le  ce ll measurement G 5 s /fie ld 157 6 30 s

Branched pseudohyphae H 41 s/ce ll 10 — 410 s

Unbranched pseudohyphae (Table 5.4) H 20 s/ce ll 22 — 440 s

F ilam ents in  pseudohyphae image (Table H 20 s/ce ll 11 — 220 s

5.4)

D oub le  filam en ts  in  pseudohyphae image H 20 s/ce ll 12 — 240 s

(Tab le  5.4)

T o ta l 302 89 m inutes
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5.13 D IS C U S S IO N

The bounds o f  filte rs  in  Table 5.2 and Table 5.3 w ere necessarily de te rm ined by 

tr ia l and error. The p rim a ry  fu n c tio n  o f  these filte rs  is  to  rem ove as m any o f  the 

s ing le ce lls  and pseudohypha fro m  the o r ig in a l im age (Im age C, F igu re  5.7) at the 

earliest possib le  stage o f  the a lgo rithm . The s ign ificance  o f  th is  f i lt ra t io n  process is 

ev ident fro m  Tab le  5.8, w h ich  demonstrates tha t the a p p lica tio n  o f  the 

segm entation operations amounts to  a large precentage o f  the to ta l tim e . H ow eve r, 

the upper bound o f  the s ing le  ce ll area and the lo w e r bound o f  the pseudohyphal 

area m ust be chosen to  m in im ise  the num ber o f  doub le  ce lls tha t w o u ld  be 

in co rre c tly  c lassified. The use o f  a pe rim e te r/convex perim e te r f i l te r  (F ilte r  2 o f  

Table 5.2) was found  to  be ve ry  usefu l in  a vo id ing  the erroneous p lacem ent o f  

double ce lls in  the s ing le  ce ll image. The effectiveness o f  F ilte rs  1 and 2 is 

dem onstrated b y  the fac t tha t 84%  o f  s ing le  ce lls in  the  12 -hou r sam ple are iso la ted  

in  th is  m anner. In  add ition , fo r  the same sample, 68%) o f  the ce lls  in  Im age F 

(“ poss ib le ”  double ce lls ) are f in a lly  c lass ified  as true  doub le  cells.

The greatest d if f ic u lt ie s  in  the developm ent o f  an autom atic  c lass ifica tion  a lg o rith m  

fo r  the stra in  stud ied were encountered w ith  filam en ts  and doub le  filam en ts . The 

lack  o f  d is tin c t concav ity  in  these ce lls frequen tly  resu lted in  th e ir  segm entation 

in to  three o r m ore subunits at po in ts  o f  s lig h t concav ity . A  second d if f ic u lty  w ith  

the c lass ifica tion  o f  filam ents  and double filam en ts  was in  d is tin g u ish in g  such ce lls 

fro m  s im ila r cells, ty p ic a lly  double yeast and doub le  elongated yeast, w hen  re ly in g  

so le ly  on  gross measures such as Feret leng th  and Feret w id th . S lig h t curva tu re  o f  

filam ents  means tha t Feret w id th  is an inappropria te  measure o f  the m ean ce ll w id th  

and, in  the case o f  doub le  filam ents w ith  an L-shaped m orpho log y , Feret leng th  and 

Feret w id th  are bo th  inappropria te  parameters w ith  w h ic h  to  estim ate the true  ce ll 

geom etry. In  add ition , ce lls possessing such geom etry tended to  oversegm ent. The 

m ost su itab le  w ay  to  measure the necessary geom etric  parameters p roved  to  be the 

ske le ton isa tion o f  the ce lls in  a m anner s im ila r to  pseudohyphae. The in a b il ity  to  

segment such filam entous fo rm s p ro p e rly  necessitated an a lte rna tive  means o f  

c lass ifica tion , and the parameters chosen in  Tab le  4.4 to d is tin g u ish  between
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filam ents, doub le  filam en ts  and unbranched pseudohyphae w ere dete rm ined fro m  

measurements o f  a large num ber o f  cells.

The deve lopm ent o f  an autom atic im age analysis m ethod to  characterise a ce ll 

popu la tion  con ta in ing  such a w id e  va rie ty  o f  ce ll m orpho log ies  m ust in v o lv e  an 

elem ent o f  com prom ise. The c lass ifica tion  system  developed had to  be tru ly  

autom atic  so that the rou tine  cou ld  be run  ove rn igh t on a range o f  samples fro m  a 

ferm enta tion . Some reduction  in  accuracy results fro m  the use o f  the 200x 

m agn ifica tion . In  add ition  subtle d ifferences in  the boundaries o f  sm all ce lls  are 

los t at the lo w e r m agn ifica tion , rendering  segm entation m ore d if f ic u lt .  T h is  is 

o ffset, how ever, by  the increase in  speed aris ing fro m  the reduced num ber o f  

o r ig in a l grey images requ ired  to pe rfo rm  a s ta tis tica lly  m ean ing fu l analysis.

There is an obvious e lem ent o f  overlap in  the categories chosen to describe the ce ll 

popu la tion . There is no sharp c u t-o ff  p o in t between a long  e longated yeast and a 

short filam en t, fo r  instance. H ow ever, i t  is fe lt  tha t the separation o f  the ce lls 

studied in to  seven d is tin c t categories fac ilita tes  a good in s ig h t in to  the nature o f  the 

dynam ic g row th  o f  a popu la tion  o f  d im o rp h ic  cells. The im age analysis m ethod 

described above ce rta in ly  provides a m uch  m ore com prehensive p ic tu re  o f  a 

fe rm enta tion  than the s im ple  reporting  o f  popu la tions in  term s o f  the percentage 

yeast and filam entous ce lls (Reeslev and Jensen, 1995; W a lke r and O ’N e il l ,  1990). 

A lth o u g h  the a lg o rith m  has on ly  been tested on the stra in  described, i t  shou ld  be 

capable o f  ca tegoris ing (w ith  m in im a l tun ing  o f  parameters) any d im o rp h ic  stra in  

tha t d isp lays the same range o f  m orpho log ies as K. marxianus.

N ote

A fte r  a m ore com prehensive exam ina tion  o f  cu ltu rin g  cond itions i t  was decided to 

add the class double elongated yeast to  the a lgo rithm . T h is  in vo lve d  no s ig n ifica n t 

changes in  the above descrip tion  o f  o r  testing  o f  the a lgo rithm , as double e longated 

yeast are a sub-class o f  the double yeast class re ferred to  in  th is  chapter.
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CHAPTER 6 

FERMENTATION KINETICS FOR BATCH AND 

CONTINUOUS CULTURES of Kluyveromyces marxianus

6.1 E T H A N O L  F O R M A T IO N  IN  Y E A S T  F E R M E N T A T IO N S

Yeast fe rm enta tions are genera lly in vo lve d  in  the p ro d u c tio n  o f  e ithe r b iom ass or 

ethanol fro m  ferm entab le  sugars such as glucose, fructose, o r galactose. In  a 

b rew ing  process, the a im  is to achieve the m a x im u m  concentra tion  o f  ethanol 

possible w h ile  keep ing  biomass g ro w th  to  a m in im u m . W hether yeast 

p redom inan tly  produce ethanol o r b iom ass, is  co n tro lle d  b y  the capacities o f  

various m etabo lic  pathw ays w ith in  the ce ll. A s  sugar is taken up by  the c e ll i t  

enters e ither the g ly c o ly t ic  pa thw ay o r is  used fo r  ra w  m ateria ls  in  ce ll 

construction . Substrate (glucose) tha t enters the g ly c o ly t ic  pa thw ay is converted 

in to  tw o  pyruva te  m olecules. Th is  fo rm  o f  m e tabo lism  results in  the d irec t 

fo rm a tio n  o f  tw o  h ig h  energy A T P  m olecu les fro m  m etabo lism  and the in d ire c t 

fo rm a tio n  under aerobic cond itions o f  4 m oles o f  A T P  fro m  F A D H 2 .

Once the glucose has been m etabolised to  pyruvate , the pyruva te  can enter one o f  

tw o  k in e tic  pathways. The f ir s t  is  a short pa thw ay w hereby the pyruva te  is 

converted to  ethano l us ing tw o  enzymes, nam e ly  pyruva te  decarboxylase and 

a lcoho l dehydrogenase. Th is pa thw ay prov ides no energy in p u t to  the c e ll and can 

be seen as an energy storage m echanism , as the tw o  a fo re-m entioned enzym atic  

steps are revers ib le . The other op tio n  is to  pass the pyruva te  th ro u g h  a com p lex  

enzym atic  pa thw ay kn o w n  as the T C A  (tr ic a rb o x y lic  ac id) pa thw ay. T h is  pa thw ay 

requires the presence o f  oxygen and results in  the m etabo lism  o f  the  pyruva te  to  

C O 2 and H 2O w ith  the net generation o f  15 m oles o f  A T P  per m o le  o f  pyruvate . 

T h is  pa thw ay is the pre ferentia l m ethod o f  m e tabo lism  o f  a ll pyruva te  tha t passes 

th rough  the ce ll. I t  requires 3 m oles o f  O 2 per m o le  o f  pyruva te  m etabo lised along 

the T C A  cycle . Interm ediates fro m  bo th  the g ly c o ly tic  and T C A  pathw ays are 

used in  the b iosynthesis o f  new  ce ll m ateria ls.

A  num ber o f  s itua tions arise w h ic h  resu lt in  the m etabo lism  o f  pyruva te  d o w n  the 

ethanol p ro d u c tio n  pathw ay rather than the o p tim a l T C A  m e tabo lic  pathw ay. The 

f irs t o f  these occurs w hen  there is  an in s u ffic ie n t supp ly  o f  oxygen, p reven ting  the
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e lectron transport chain in  the m ito ch o n d ria l m em brane fro m  fu n c tio n in g  p rope rly . 

Th is  results in  a b u ild -u p  o f  N A D H  in  the m ito ch o n d rio n  and a d e fic it  o f  N A D +. 

Th is  in  tu rn  causes the T C A  cyc le  to stop, w h ic h  in  tu rn  causes a b u ild -u p  o f  

pyruva te  in  the cytop lasm . T h is  b u ild -u p  o f  pyruva te  triggers the p ro d u c tio n  o f  

ethanol.

The second s itua tion  is where the a b ility  o f  the yeast ce ll to  fu l ly  m etabo lise  the 

glucose to  C O 2 and H 2O is com prom ised b y  a rate l im it in g  step in  the T C A  cyc le  

or in  the transport o f  pyruvate  across the m ito ch o n d ria l m em brane. T h is  w i l l  resu lt 

in  the p roduc tion  on ethanol in  the presence o f  excess carbohydrate substrate 

w hether excess O 2 is present o r not, hence the te rm  limited respiratory capacity 

com m on ly  used to  describe th is  phenomenon. L im ite d  resp ira to ry  capac ity  is 

com m on am ong yeast and i t  m ay resu lt in  the p ro d u c tio n  o f  large quan tities  o f  

e thano l in  aerobic yeast culture. The lo ca tio n  o f  the ra te - lim itin g  step has been 

debated b y  several authors. W h ile  Sonn le itner and K a p p e lli (1986) suggest tha t 

the bo ttleneck in  m etabo lism  lies at the start o f  the T C A  cycle , V a n  U rk  et al. 

(1988) propose tha t i t  is caused b y  the dep le tion  o f  T C A  cyc le  in term edia tes fo r  

am ino acid  synthesis and have observed the secretion o f  ce rta in  T C A  cyc le  

interm ediates, on add ition  o f  a pulse o f  glucose to  a g lucose lim ite d  chemostat. 

W h ile  th is  f in d in g  m ay m ove the p o s itio n  o f  the bottleneck, the  m ode l o f  

S onn le itner and K a p p e lli (1986) is s t i l l  the m ost w id e ly  accepted fo r  the p re d ic tio n  

o f  m e tabo lism  in  S. cerevisiae (N ie lsen  and V illadsen , 1994).

The Sonn le itner and K a p p e lli m ode l uses a s im ple  approach w h ic h  separates the 

m e tabo lism  o f  the organism  in to  tw o  d is tin c t m e tabo lic  pathw ays; an aerobic 

pa thw ay, resu lting  in  the com plete m e tabo lism  o f  substrate to  C O 2 and H 2 O, and 

an anaerobic pa thw ay resu lting  in  the m e tabo lism  o f  the substrate to e thano l and 

C O 2 . The biom ass produced as a resu lt o f  m e tabo lism  is ca lcu la ted b y  associating 

a y ie ld  co e ffic ie n t w ith  each m e tabo lic  pa thw ay. The f lu x  o f  substrate th rough  

each m etabo lic  pa thw ay is con tro lled  b y  a c r it ic a l spec ific  substrate uptake rate. I f  

the substrate uptake rate fo r  the  ce ll is lo w e r than the c r it ic a l uptake rate then  a ll 

sugars w i l l  be m etabolised v ia  the aerobic pa thw ay whereas i f  the spec ific  

substrate uptake rate is h igher than the c r it ic a l value, then the d iffe rence  between
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the to ta l uptake rate and the c r it ic a l uptake rate w i l l  be m etabo lised v ia  the 

anaerobic pathway.

Some studies have exam ined the m etabo lism  o f  the Kluyveromyces species. 

G onzalez Siso et al. (1996) observed that, irrespective  o f  oxygen  concentra tion , 

ethanol p roduc tion  was observed in  bo th  batch and continuous cu ltu re  fo r  the 

organ ism  Kluyveromyces lactis. The p roduc tion  o f  ethanol in  con tinuous cu ltu re  

started at a ve ry  lo w  d ilu tio n  rate o f  0.1 h '1. The w o rk  o f  C a s tr illo  and U ga lde  

(1993, 1994) dem onstrated that Kluyveromyces marxianus N C Y C 1 4 2 4  co u ld  g ro w  

fu l ly  ae rob ica lly , i f  adequate supplies o f  oxygen are supplied. T hey  proposed a 

m ode l to p red ic t the observed m etabo lic  results s im p ly  based on the d iffe rence  o f  

substrate f lu x  th rough  the d iffe re n t m e tabo lic  pathways as ou tlin e d  by S onn le itner 

and K â p p e lli (1986). N o  m o rpho log ica l va ria tio n  was described fo r  th is  s tra in  o f  

K. marxianus.

A  va ria tio n  o f  the C as trillo  and U ga lde  m ode l w i l l  be used in  th is  w o rk  to  in te rp re t 

the results found  fo r  experim enta l fe rm entations. I t  is hoped to  use th is  m ode l to 

assess w hether the organ ism ’ s m orpho log y  is a ffected b y  its  k in e tic  state o r v ice  

versa. I t  encompasses the fo llo w in g  m a jo r d iffe rences fro m  the m ode l o f  

S onn le itner and K â p p e lli (1986).

•  The organism  does no t su ffe r fro m  a resp ira to ry  bottleneck, i.e. e thano l is  no t 

fo rm ed  in  oxygen saturated cu ltu re .

•  S onn le itner and K â p p e lli describe a spec ific  substrate f lu x  th ro u g h  the ce ll 

w h ich  dictates w hether the organ ism  develops a resp ira to ry  bo ttlene ck  o r not. 

The f lu x  re fe rred  to in  th is  present w o rk  is a g loba l substrate f lu x  th rough  the 

reactor w ith  respect to  the g loba l u tilis a tio n  o f  oxygen in  the ferm enter, as the 

ce lls ’ m e tabo lism  is com p le te ly  con tro lled  b y  the g loba l a v a ila b ility  o f  oxygen 

to m etabolise the substrate.
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6.2  M A T H E M A T IC A L  M O D E L  D E S IG N

Chem ostat fe rm enta tions operate at a steady state. T h is  means tha t parameters, 

such as ce ll, substrate and p roduct concentrations, are unchang ing  w ith  respect to 

tim e.

A  descrip tion  o f  the m odel is as fo llo w s

1) Sugar is taken up by  the ce ll

2) I f  enough oxygen  is present to m etabolise the sugar, then i t  is  m etabolised 

ae rob ica lly

3) I f  n o t enough oxygen is present to  a llo w  the com plete aerobic m e tabo lism  o f  the 

sugar, then the excess is  m etabo lised b y  anaerobic pathw ays

4) C e ll y ie ld  per gram  o f  lactose is d iffe re n t fo r  aerobic and anaerobic pathways

5) The rate o f  oxygen supp ly to  the b io reacto r is constant irrespective  o f  d ilu t io n  

rate

6) N one  o f  the ethanol produced is m etabolised

The fo llo w in g  parameters needed to  be assessed to  evaluate the m ode l:

Tx/S aerobic - The y ie ld  o f  cells per u n it substrate m etabo lised ae rob ica lly  (g  c e ll/ g 

lactose)

Tx/s anaerobic - The y ie ld  o f  ce lls per u n it substrate m etabo lised anaerob ica lly  (g  ce ll/ 

g lactose)

Yp/s theoretical - theore tica l y ie ld  o f  ethanol per u n it substrate (g e thano l/ g lactose)

Tp/s anaerobic - y ie ld  o f  ethanol per u n it  substrate m etabo lised anaerob ica lly , (g 

e thano l/ g lactose)

Js critical - The c r it ic a l substrate f lu x  at w h ic h  ethanol p ro d u c tio n  occurs (g lactose/h)

6 .2 .1  Fx/s aerobic

Yx/s aerobic is determ ined b y  exam in ing  the non-ethanol p roduc ing  reg ions o f  the 

d ilu t io n  rate curves fo r  a ll the substrate concentrations. The substrate feed 

concentra tion  o f  5 g /L  is idea l fo r  th is  purpose, as no e thano l is produced at th is  

feed concentra tion  over the range o f  d ilu t io n  rates used. F igu re  6.1 shows the  Yx/S 

aerobic fo r  a ll 5 g /L  data p lus a ll o ther non-e thano l p roduc ing  data po in ts  fro m  other
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runs. A s  can be seen a lit t le  d ev ia tion  fro m  the m ean is fo u n d  as d ilu t io n  rate 

decreases be low  0.2h‘ \  Th is  can be exp la ined in  term s o f  a m aintenance 

coe ffic ie n t, where the operations o f  the ce ll take precedent ove r ce llu la r 

rep roduction  due to  the s low  g row th  rate and cause a decrease in  the y ie ld  o f  cells. 

The reg ions affected by  m aintenance w i l l  no t be addressed in  th is  m ode l fo r  tw o  

reasons. The num ber o f  data po in ts  obta ined in  th is  reg ion  is sm a ll and as the 

m odel is p redom ina n tly  based on actual ce ll m e tabo lic  pa thw ays, m aintenance is 

no t fu l ly  understood in  th is  context.
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1 0.6(/)

>-

0.4 

0.2
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Dlution rate (h'1)

F ig u re  6.1 Yx/S aerobic versus d ilu tio n  rate fo r  K. marxianus g row n  in  lactose lim ite d  

chem ostat (800 rpm , 1 w m )

The m ean va lue o f  Yx/S aerobic obta ined fo r  a ll po in ts  n o t a ffected  b y  m aintenance 

was 0.69 g ce lls /g  lactose. T h is  va lue  is qu ite  h ig h  com pared to  lite ra tu re  values. 

C a s tr illo  and U ga lde  (1993) determ ined the va lue at 0.54 g g '1. The com p lex  nature 

o f  the m e d iu m  used in  the present w o rk  com pared to  the above, m in im ises  the 

synthesis o f  am ino acids and o ther b u ild in g  b locks, a llo w in g  a greater fra c tio n  o f  

the substrate to be used fo r  energy p roduc tion , resu lting  in  a h ighe r ce ll y ie ld .
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6 .2 .2  F p/S theoretical

ip/s theoretical was determined stoichiometrically from the following reaction

C n H ^ O u  + H 20   > 4 C2H 5O H  + 4 C 0 2 (6.1)

4 moles o f  ethanol are produced per mole o f  lactose entering metabolism. The 

water molecule is necessary in the equation as the lactose molecule has to be 

hydrolysed to glucose and galactose before it can be subsequently metabolised. On 

a mass basis the 7P/S thcrocticai is 0.54 g ethanol/ g lactose.

6 .2 .3  Jg critical

Substrate flux (Js) refers to the quantity o f substrate being utilised by the cell 

population per hour (g substrate/L/ h)

Js = (So - S) D  (6.2)

All fermentations were aerated at a rate o f lw m . The rate o f  aerobic substrate 

metabolism should increase with increasing J s and then remain constant when 

oxygen becomes limiting, the excess substrate being metabolised to ethanol. 

Figure 6.2 shows the effect o f increasing substrate flux on ethanol production. 

Substrate metabolism is aerobic until substrate flux reaches a critical point (Js critical) 
where ethanol production begins. Beyond this point, the rate o f ethanol production 

increases linearly with increasing substrate flux. The value obtained for J s critical was

3.02 g lactose/L/h. It is assumed that any substrate supplied beyond this value is 

metabolised anaerobically.
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j .  (g lactose/L/h)

Figure 6.2 Determination o f critical substrate flux for K. m arxianus  grown in 

lactose-limited chemostat (whey medium, 800rpm, lw m )

6.2.4 ip/s anacrobic

When further analysis is carried out on Figure 6.2, it is possible to calculate the 

fraction o f anaerobically metabolised lactose that is directly converted to ethanol 

(Yp/s anaerobic)- The yield o f ethanol per gramme o f anaerobically metabolised 

lactose is 0.403g ethanol/g lactose. The theoretical yield is 0.54 g ethanol/ g 

lactose. Thus the organism is converting 74% o f anaerobically metabolised sugars 

to ethanol. The fraction o f anaerobically metabolised substrate used for energy 

production will be represented by F ae (=0.74). This value o f  F at is similar to the 

value calculated from the data o f  Castrillo and Ugalde (0.7). The rest o f  the sugar 

is used as raw material to construct biomass.

6.2.5 Fx/S anaerobic

Y *, s anaerobic was calculated by determining the amount o f  aerobically produced 

biomass (Xaerobic) using the following equation.

D -^ ae ro b ic  — M ' n ( ^ / * / s„ [lk 5 *^sclilical ^x /sacrohic )  ( 6 -3 )
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By subtracting Xaerobic from Xtotai, the amount o f  anaerobically generated biomass 

(̂ anaerobic) was determined.

■^anaerobic total ^ a e r o b ic (6.4)

Yxjs anaerobic was determined by dividing Xanaerobic by the quantity o f sugar going 

through anaerobic metabolism.

J, anaerobic = M ax(0,Js - J scritical) (6.5)

DX
J

Y =---------- anaerobk ( 6 . 6 )
x/s anaerobic t- V j

s anaerobic

Considerable scatter was found using this determination due to the small value for 

this constant compared to the error in the determination o f ethanol, lactose and 

biomass. 7x/s anaerobic was estimated to be approximately 0.1 g cells/ g lactose. 

Sonnleitner and Kappeli (1985) showed that this value was in the range o f  0.05-0.1 

g cells/ g glucose for S. cerevisiae. It is also possible to compare this value to the 

value o f  g biomass/ mol ATP value o f Barford (1990a,b). Theoretically, the 

metabolism of 1 mole o f lactose for the formation o f ethanol will result in the 

formation o f 4 moles o f ATP. Thus, at a Yx/S anaerobic o f  0.1 g/g and assuming 74% is 

metabolised yielding 4 moles o f ATP per mole lactose, a value o f  11.4 g biomass/ 

mol ATP is found. This compares to Barford’s value o f 10.5 g biomass/ mol ATP 

for the majority o f yeast strains examined in that work.

T ab le  6.1. Constants used in model

Constant Value

Yx/s aerobic 0.69 g cell/ g substrate

ix/s anaerobic 0.10 g cell/ g substrate

ip/s anaerobic 0.403 g ethanol/ g substrate

ip/s theoretical 0.54 g ethanol/ g substrate

J i critical 3.02 g substrate/L/hour
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6.2.6 Substrate Uptake

It was assumed that substrate uptake into the cell could be described using the 

simple M onod model, however, when the data for residual substrate was examined 

there was an increase in S at any dilution rate, w ith increasing So. As described in 

Chapter 3 the chemostat employed was based on a  weir system, where feed is 

added to the surface o f the liquid and overflow is also rem oved from  the surface o f 

the liquid. Due to previously undescribed variability in ks with increasing So, the 

potential o f a mixing problem being present in the reactor was investigated.

I f  a mixing problem exists in the reactor the system can be treated as a reaction 

vessel w ith a bypass line. The bypass line feeds into the output from the reactor as 

described in Figure 6.3.

QSo-----
QV-f>So

QfSo

V
□ ~ a

c m

Q V -f)s  
— >— ->  a s ;

A

Figure 6.3 Schematic o f  the proposed mechanism for substrate bypass o f  the 

reactor

A  mass fraction (f) o f the overall feed flow Q is observed to bypass the reactor 

w ith the remaining fraction (1 -f) entering the reactor. The exit substrate 

concentration Se is generated by combining the bypass stream and the exit stream 

w ith substrate concentrations o f So and S respectively. A  mass balance on the 

above system yields the following equation
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Q/S0 + Q O ~ f )S  = QSe (6.7)

rearrangement o f Equation 6.7 yields

Se ~ ß o5 =  * v 0 (6.8) 
1 - /

Assuming Monod kinetics for substrate uptake within the reactor

a  = (6.9)
k .+ S

Substituting equation 6.8 into 6.9 yields

— M J &  f i o ) —  ( 6 1 0 )

(1 -  f ) k s + S e ~ fio

Observation o f the data suggests that /um is approximately 0.5h"'. The above 

equation thus contains two u n k n o w n s,/an d  ks. The unknowns were estim ated by 

curve-fitting the experimental data using the least squares method on Sigmaplot 

(Jandel Scientific, USA). The values for the constants used are presented in Table 

6 .2 .

Table 6.2. Constants required to calculate the residual substrate curves

Constant Value

Mm 0.5 h’1

h 0.036 g/L

F 0.034

Once the sugar enters the cell then it is either used to generate biom ass by 

oxidative pathways or by oxido-reductive pathways. Aerobic metabolism can be 

summarised by the following equation
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S + a O2 + b other ■» c X  + d CO2 + e H2O (6 . 11)

I f  a  moles o f  oxygen are not provided, per mole o f  sugar, to the cell, the remainder 

w ill be metabolised anaerobically by the following pathway.

S + f  o th e r ----- » g X  + h C 0 2 + i C2H 5OH (6.12)

Therefore to predict the quantity o f  biomass the following equations are required,

D X aerobic — Min(./S,,/S critical) ^x/s aerobic (6.13)

D X anaerobic = Max(0,»/s- / s critical J x/s anaerobic (6.14)

X total — X  acrobic + -A anaerobic (6.15)

The amount o f  ethanol present is estimated by Equation 6.16.

D (ethanol)”  Max(0,./s-i/scritical/ Yp/ianaerobic (6.16)

6.2.7 Implementation o f Model

The model was implemented using the following series o f  steps. The model was 

calculated using a Sigmaplot™  transform.

1) Select So

2) Calculate residual substrate concentrations for fermentation using Equation 

6.10 and the model constants from Table 6.2.

3) Calculate ,/s curve for data at 0 .01 intervals using Equation 6.2.

4) Calculate biomass and ethanol traces using Equations 6.13-6.16.
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6 .2 .8  E x a m in a tio n  o f  m o d e l sen sitiv ity

Figures 6.4 to 6.7 illustrate model sensitivity to different values o f  model 

parameters. W hen the parameters are not being varied, their values are as in Table

6.2 and So is set at 20g/L. Variation in each model param eter by less than or equal 

to an order o f  magnitude causes large changes in at least one o f  the predicted 

parameters. W hile variation in  the /  constant does not significantly affect the 

resultant biomass and ethanol predictions, it is necessary to describe the residual 

substrate traces experienced in Figures 6.8 to 6.11.
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Figure 6.5 Sensitivity analysis on m odel parameter ks\ long dash (ks = 0.0036),

solid line (A:s =0.036), short dash (ks =0.36).
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Figure 6.6 Sensitivity o f model to variation in So; long dash (So = 15g/L), solid

line (So =  20g/L), short dash (S0 = 25g/L).
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Figure 6.7 Sensitivity analysis on m odel parameter Js; long dash (Js =  2.02g/L/h),

solid line (Js = 3.02g/L/h), short dash (Js = 4.02g/L/h).
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6.2.9 A dap ta tion  of M odel to B atch  C u ltu re  G row th

Batch culture by its nature is dynamic, thus requiring a series o f differential 

equations based on the above steady state model. The following additional steps 

are necessary in a batch culture.

1) The specific rate o f  substrate uptake is uncontrolled in batch culture. In 

chemostat this step can be ignored as substrate is consumed as quickly as it 

enters the fermenter.

2) The rate o f  oxygen supply is varying to the fermenter. To successfully model 

this process a relationship between a parameter such as k/,a and metabolism 

will need to be established

It was decided to examine whether significant differences exist in the stochiometry 

o f cell populations grown in batch and continuous culture. It is possible to 

estimate the substrate trace for each fermentation, using the m odel constants 

determined from chemostat studies. The following procedure was adapted.

The amount o f biomass generated as a direct result o f  ethanol formation was 

estimated using the following relationship

^ a n a e r o b i c  anaerobic (  C). 1 7  )

p/s anaerobic

Once this has been calculated, X(t)maerobic is subtracted from the total measured 

biomass (along with Xo). The remainder is the amount o f biomass form ed as a 

result o f aerobic fermentation X(t)aerobic- The total sugar remaining in the 

fermentation at the time o f examination is.

S(t) = S0 - «in aerobic

x/s,l( x/s
(6.18)

'niutcroltic J

Figures 6.12 to 6.15 and Figures 6.18 to 6.21 illustrate the relationship between 

Spredicted and êxperimental determined using the DNS assay for both whey
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fermentations and YEPD and YEPL fermentations A  good relationship between 

the measured and the experimental data is observed in all cases.

6.3 IN T R O D U C T IO N  T O  E X PE R IM E N T A L  W O R K

The importance o f  microbial physiology in determining the morphology of 

organisms was illustrated in Chapter 2. Varying ferm entation parameters such as 

agitation and aeration considerably alters yeast physiology. To relate morphology 

to fermenter parameters requires the completion o f  well-characterised 

fermentations. Parameters required to be measured in typical yeast fermentations 

include, biomass concentration, residual substrate concentration, ethanol 

concentration, dissolved oxygen concentration, pH and o ff gas analysis o f CO2 and 

02.

The following series o f continuous and batch fermentations are presented to allow 

greater insight into the physiology responsible for the morphology reported in 

Chapter 7. The model presented in Section 6.2 also allows the reader an insight 

into the kinetic workings o f the organism and highlights some interesting 

phenomena which have not been previously described for this strain o f  yeast, 

growing on whey based media.

6.4 C H E M O ST A T  C U LTU R E RESU LTS

6.4.1 O verview  of K inetic D ata

As can be seen from  Figures 6.8 -  6.11, changing substrate feed concentration 

greatly affects the metabolism o f the organism. A t low  dilution rates significant 

differences in biomass concentration for different feed concentrations are 

observed. Ethanol production ensues at different dilution rates for each substrate 

concentrations. For the 5g/L feed (Figure 6.11) concentration there is no ethanol 

production at any dilution rate. These experimental results suggest that the 

organism s’ metabolism lacks a limited respiratory capacity. It is apparent that 

biomass concentration is reduced as the dilution rate passes the point at which 

ethanol production begins. Very little substrate remains in the effluent
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Figure 6.8. Chemostat fermentation 1-Kinetic overview o f 20g/L run (a) biomass

(b) ethanol (c) residual substrate and pH. Solid lines - model prediction o f  data (So

= 19.5 g/L).
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Figure 6.9. Chemostat Fermetation 2 - Kinetic overview o f 15g/L run (a) biom ass

(b) ethanol (c) residual substrate and pH  Solid lines - m odel prediction o f  data (So

=  14.5 g/L)
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Figure 6.11. Chemostat Fermentation 4 - Kinetic overview o f 5g/L run (a)

biomass (b) ethanol (c) residual substrate and pH. Solid lines - model prediction o f

data (So = 5.2 g/L).
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stream indicating that the chemostat is lactose limited for all substrate feed 

concentrations. The critical dilution rate (dilution rate at which cell w ashout 

occurs w ith D surpassing pim) was observed to be approximately 0.5h_1. Broth pH 

varies significantly over the range o f  dilution rates and substrate feed 

concentrations studied. This variation appears to be related to whether the culture 

is producing ethanol or not. In cultures that produce ethanol there is a sudden drop 

in the pH  at the onset o f ethanol production. This is thought to be due to the 

increased concentration o f dissolved CO2 associated w ith ethanol fermentation.

Considerable scatter was observed in the data for the 20g/L fermentation in the 

region o f D= 0.2 h '1. Broths in this region appear highly viscous in nature (see 

Figure 7.19) and this is thought to be due to a combination o f  high biom ass and 

viscosity. This will be discussed in greater detail in Chapter 7.

The model data are observed to describe experimental data well over the range o f 

So examined.

6.5 B A T C H  C U L T U R E  RESU LTS

6.5.1 O verview  of W hey-B ased B atch  C u ltu re  Studies

Figures 6.12 to 6.15 show the kinetic data for fermentations completed in batch 

culture on whey media over a variety o f agitation speeds. The range o f  agitation 

speeds used in the experimental work, allowed a considerable variation in k^a (a 

factor o f 10) o f  the range o f the fermentations (Table 6.3).

The results obtained suggest that Kluyveromyces marxianus var. marxianus 

NRRLy2415 will not produce ethanol if  excess oxygen is present. This is unusual 

among yeast and contradicts the theory o f  a limited respiratory capacity, 

(Sonnleitner and Kappelli, 1986: Barford, 1990a,b). As the kja decreases, the yield 

o f biomass drops in conjunction with an increase in the yield o f ethanol.

These fermentations were completed to achieve a considerable variation in growth 

conditions. This has been successfully completed as the 800rpm fermentation is 

predominantly aerobic with little ethanol production and the 200rpm fermentation 

is predominantly ethanol producing w ith a low  final biomass concentration. The
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dashed line in each o f the batch fermentation plots is that o f  the stoichiometric 

prediction discussed in Section 6.2.9.

T ab le 6.3 The effect o f agitation on k/a in 10L batch whey fermentations

Agitation (rpm) h a  (h~l)

800 0.0427

400 0.0182

300 0.0100

200 0.0048
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Time (h)

F igure 6.12 Batch Fermentation 1 -  SOOrpm, lvvm  whey medium. Broken Line 

stoichiometric prediction for substrate concentration
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F ig u re  6.13 Batch Fermentation 2 -  400rpm, lw m  whey medium. Broken Line 

-  stoichiometric prediction for substrate concentration
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F igure  6.14 Batch Fermentation 3 -  300rpm? lw m  whey medium. Broken Line -  

stoichiometric prediction for substrate concentration
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F igu re  6.15 Batch Fermentation 4 -  200rpm, lw m  whey medium. Broken Line 

stoichiometric prediction for substrate concentration

6.5.2 S u b stra te  U ptake Rates

All fermentations were completed in  approximately the same amount o f  time (with 

respect to lactose consumption). As biomass concentrations varied significantly 

between fermentations therefore the specific uptake rates also vary in these 

fermentations.

Calculation o f Specific Uptake Rates (RJ

Specific substrate uptake rates were estimated from the model predictions o f 

substrate concentrations as experimental data were too scattered to attempt such 

calculations. Rs was estimated by taking the mean biomass concentration over a 

short interval and dividing it into the difference in substrate uptake in the same 

time interval.

R . = — —  (6.19)
AX At

131



C/5
c/5TO
Eo
lo
0 5

"a)-I—>TO
i_

CO-Q
C/5

S  
— w oc.
-a
05
ro
E
to
LLI

Time (h)

F igu re  6.16 Estimated specific substrate uptake rates (Rs) vs. time for whey 

fermentations

Figure 6.16 shows the findings for three o f the whey fermentations. Rs is seen to 

rise significantly after initiation o f ethanol formation. This is possibly due to 

competitive substrate uptake that declines as the rate o f new biomass production 

decreases. Such substrates are required less when the cells become oxygen limited 

thus opening more channels for the diffusion o f substrate into the cell. M ore likely 

is the possibility that the glycolytic step,

jruct -  6 -  phosphate + ATP----- > fruct -1 ,6  -  diphosphate + ADP (6.20)

catalysed by the enzyme, phosphofructokinase is impared during aerobic growth. 

The enzyme, phosphofructokinase, is allosteric and is activated by ADP and P, and 

deactivated by ATP. This results in the slowing down o f the enzymatic step in 

regimes o f high ATP/ADP ratios. During fully aerobic metabolism this is usually 

the case. As the rate o f aerobic metabolism decreases, the rate o f sugar uptake
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increases. The cell requires significantly larger amounts o f  substrate fluxing 

through the glycolytic pathways, to maintain an equivalent ATP/ADP ratio thus the 

rate o f  reaction is increased accordingly (Shuler and Kargi, 1992). This will result 

in an overall increase in the specific substrate uptake rate, followed by a 

subsequent increase in the rate o f  glycolysis.

6.5.3 T he Effect of kijt on Js critical

Figure 6.17 shows the effect o f  k/a on the critical substrate flux at which ethanol 

production begins. It is apparent that k/a controls ethanol production and any 

model developed to describe batch culture growth would have to address this 

finding.
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F ig u re  6.17 The effect o f  kid on Js criticai in whey m edia batch culture
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6.5.4 O verview  o f Y EPD  and  Y E PL  B atch  F erm en tations

YEPD and YEPL based fermentations were carried out in order to compare the 

effect o f medium alteration on the morphology o f the organism. The fermentations 

behave similarly to the previous whey fermentations, showing similar trends in 

ethanol production and dissolved oxygen concentration. The results o f the 

fermentations are displayed in Figures 6.18 to 6.21. The dashed lines on these 

plots represent stoichiometric predictions for residual substrate concentrations 

based on the Whey batch culture experiments. Due to their goodness o f fit it can 

be assumed that the two medium are quite similar in perform ance to the whey 

based medium.
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CDc/3OO
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Time (h)

F igu re  6.18 Batch Fermentation 5 -  800rpm, 1 vvm YEPD medium, broken Line • 

stoichiometric prediction for substrate concentration

134



1 2 0  -I 14 25

cg
2 1003

+-<
CO(/)

co

c
0oco
o
c0CT
$?o
■a<U>
ow
S2
b

80

60

40

20

12

10

</>tora
Eo
m

▼ Biomass 
•  Lactose 
O Dissolved Oxygen 
v  Ethanol

0 2 4 6 8

Time (h)
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6.6 C O N C LU SIO N S

This work was carried out in order to attain the greatest diversity o f fermentation 

conditions possible for the study o f  the effect o f  environmental conditions on the 

morphology o f the dimorphic organism. K  marxianus var. marxianus NRRLy2415. 

On examination o f  the fermentation data it is apparent that this objective has been 

achieved. The organism has been grown in two primary environments, the soluble 

substrate limited chemostat and soluble substrate excesses o f batch cultures. 

W ithin each o f the above environments the organism was subjected to both excess 

oxygen and partial oxygen limitation. Also within batch culture, the use o f 

different media and carbohydrate substrates was also examined. This should allow 

the full assessment o f the environmental effects on the morphology o f the 

organism.

Creating this diversity o f environmental conditions, allowed the detailed study o f 

the kinetics o f the organism. Figures 6.10 and 6.11 clearly demonstrate the lack o f 

a limited respiratory capacity in the yeast Kluyveromyces marxianus var marxianus 

NRRLy 2415. This means that if  the yeast has adequate oxygen supplies, it avoids
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the production o f ethanol. The presence o f  ethanol at higher substrate feed 

concentrations suggests that the fermentations are oxygen lim ited in these regions. 

Sonnleitner and Kappelli (1986) suggested a method to model m etabolism which 

contained two pathways, an oxidative pathway and an oxidoreductive pathway. 

They decoupled aerobic and anaerobic metabolism and applied yield coefficients 

to each pathway. This approach was applied to a strain o f  K. marxinaus by 

Castrillo and Ugalde (1992) in order to model kinetic growth. This approach to 

modelling has now also been successfully applied to chem ostat cultures o f  K  

marxianus N RRLy2415 (NCYC 1425).

Several interesting findings arise from both the experimental data and model 

parameters. The primary finding is that the same model constants apply in both 

batch and continuous culture. The importance o f this finding with respect to 

morphology will be discussed in Chapter 7. A point o f  interest may be the 

extremely high (0.69g/g) yield o f biomass per gram o f substrate. W hile this yield 

may be high compared to those reported in the literature, the media used in the 

literature typically contain a defined component. In this study a complex m edium  

was utilised to sustain growth. Complex m edia require less component 

manufacture w ithin the cell and rely on sugars prim arily for energy. This typically 

will result in a higher Yx/S. Secondly, the organism ’s kinetic perform ance is 

directly related to the h a , in the fermenter. As faa is increased in the fermenter 

the yield o f biomass increases to the detriment o f ethanol production. The point o f 

critical metabolic flux increases with increasing ha- The organism ’s ability to 

consume substrate is controlled by the type o f m etabolism in the cell. I f  excess 

oxygen is available to the cells then substrate uptake will be controlled to ensure 

no ethanol is produced. I f  the cells are oxygen limited, the cell will increase the 

specific rate o f  substrate uptake dramatically. This results in the rapid conversion 

o f the remaining sugars to ethanol. To model the above phenomenon, several 

detailed experiments would have to be carried out, closely monitoring specific 

substrate uptake rates over much smaller time intervals and for a more extended 

range o f  h a  values, than those examined in this study

The YEPL and YEPD fermentations appear to behave similarly to the whey 

fermentations. It can be seen from Figures 6 .1 8 -6 .2 1  that the stoichiometry o f
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the yeast extract fermentations is similar to that o f the whey fermentations at all 

operating conditions. It would be assumed at this point that morphologically they 

should also be similar to the whey fermentations.

While the model developed in this chapter fits the experimental data for the 

chemostat well, the batch culture data, particularly the residual substrate traces, are 

o f  poor quality. This is due to a number o f  factors.

•  Due to fermenter volume and quality o f  fabrication, the initial fermenter 

volume was prone to readjustment during autoclaving. This led to a slight 

dilution or concentration effect, resulting in inconsistent values for *Sb- The 

attainment o f a consistent sterilisation temperature was also difficult. D ifferent 

sterilisation temperatures and holding times can lead to different degrees o f  

sugar caramélisation, leading to poor quality sugar data.

• The fermentations were carried out over a short time period (approx. 8 hrs.). It 

was attempted to sample the fermenter every hour. Approximately 200-500 

mis was removed per sample. Thus, after 8 samples, approximately 24% o f  the 

fermenter volume was removed. The removal o f  more samples for 

intermediate analysis was deemed inappropriate, due to the resultant large 

variation in reactor volume.

Unfortunately the data, from a kinetic modelling standpoint, are poor. This is 

essentially due to a lack o f  the sophisticated equipment required to complete 

modern modelling exercises. Nielsen et al. (1991) state that new analytical 

techniques, suitable for accurate and reliable monitoring o f  key variables in 

fermentation processes, provide the necessary tools for improved modelling. Until 

more sensitive and accurate (possibly on-line) methods to determine the substrate 

utilisation curve are determined the analysis o f the data will remain limited.
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CHAPTER 7

THE CO NSEQ UENCES OF GRO W TH  CO NDITIO NS O N THE  

M O R PH O LO G Y OF Kluyveromyces marxianus

7.1 IN T R O D U C T IO N

In Chapter 2, the environmental causes for fungal dimorphism were outlined. 

W ithin groupings o f  similar organisms, certain trends were observed. W ithin 

ascosporogeneous yeast, for example, the following trends were observed.

• The primary morphology is yeast-like

• The organisms in this group revert to a filamentous\pseudohyphal morphology 

when put under stress.

• Stresses observed were generally attributed to poor quality substrates or 

substrate limitation.

• The mycelium formed is generally pseudohyphal, often consisting o f chains o f 

yeast cells

The work o f W alker and O ’Neill (1990), in which the morphology o f 

Kluyveromyces marxianus var. marxianus NRRLy2415 was examined, is not in 

agreement with the above findings. They compared the organism to Mucor, a 

distant fungal relation, whose dimorphism is generally attributed to the presence or 

absence o f oxygen. The primary morphology observed in aerobic culture was 

filamentous and when the organism was deprived o f oxygen it grew in a yeast-like 

form. W hen culturing the organism in aerobic continuous culture the organism 

appeared to generate a more elongated filamentous form but no change from the 

dominant pseudohyphal/filamentous population was reported. They concluded that 

dimorphism was thus controlled by oxygen supply and that the organism could not 

be cultured in yeast-like form in aerobic culture.

This explanation was the m ost probable based on the experimental observation, yet 

it fits none o f the criteria found for similar organisms. Hence the decision to 

investigate more thoroughly the causes for dimorphism in this organism. Two
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different techniques will be employed in the present work to that o f  the study o f 

W alker and O ’Neill (1990).

1) The use o f the image analysis protocol, as outlined in Chapter 5, w ill help 

monitor morphological alterations in more complete and objective detail and 

should be particularly useful in quantifying subtle changes in morphology.

2) All batch culture experimentation was performed in fermenters equipped with 

dissolved oxygen probes.

7.2 EFFECT OF AGITATION ON M ORPHOLOGY IN BATCH CULTURE  

(W HEY BASED M EDIUM )

The following series o f  experiments attempted to assess the effect o f increasing 

agitation intensity (thus increasing mass and oxygen transfer) on the morphology 

o f K. marxianus in batch culture while growing on the whey-based medium 

outlined in Chapter 3.

The first fermentation was cultured at 800 rpm, 1 w m  (See Chapter 6 for kinetic 

data for all fermentations). This fermentation was com pleted to assess the effect o f 

vigorous agitation on the morphology o f the organism. The culture displayed a 

predominantly yeast-like morphology throughout. Figure 7.1 also demonstrates 

that the primary classification observed during the active growth phase was double 

yeast; a strong sign o f an actively dividing culture. The mean total amount o f  the 

yeast classification present throughout the fermentation was 73 % by volum e with 

the remainder being made up by 21 % elongated yeast and 6 % filamentous and 

pseudohyphal cells. These results obtained in this fermentation are at variance 

with the findings o f  W alker and O ’Neill (1990) who indicated that the organism 

grew in pseudohyphal or filamentous form under aerobic conditions. As can be 

seen in Figure 6.17, the dissolved oxygen concentration remained in excess until 

hour 7 o f the fermentation thus the fermentation was fully aerobic until this time. 

After this point a greater degree o f  heterogeneity is observed in the culture 

morphology.

It is apparent from an examination o f  the morphology data in batch fermentation 

runs 2 - 4  (Figures 7.2 to 7.4) that the morphology becomes increasingly
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heterogeneous as the agitation intensity decreases, particularly at 300rpm and 

200rpm (Runs 3 and 4). There are tw o possible factors involved in this 

morphological transition. The first is that as ethanol production begins a 

morphological transition is initiated. The second is that poor mixing and mass 

transfer in the fermenter causes the morphological alterations. The combination o f 

both o f the above effects is also possible.
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Figure 7.1 M orphology distribution versus time for whey batch culture grown at 

800 rpm, lvvm. B lack -  Yeast; Red -  Double yeast; Green -  Elongated yeast; 

Yellow - Double elongated yeast; Dark Blue -  Filaments; Purple -  Double 

filaments; Light Blue -  Pseudohyphae
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F igure 7.2 M orphology distribution versus time for whey batch culture grown at 

400 rpm, lvvm  (Legends Figure 7.1)

10

Fermentation time (h)
Figure 7.3 M orphology distribution versus time for whey batch culture grown at

300 rpm, lvvm  (Legends Figure 7.1)
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Figure 7.4 M orphology distribution versus time for whey batch culture grow n at 

200 rpm, lw m  (Legends Figure 6.1)

By examination o f  Figures 7.1 to 7.4, it is apparent that the morphological 

transitions are gradual, leading to  an increase in the heterogeneity o f  the cultures 

with respect to  time. All fermentations appear to  have a high concentration o f 

yeast cells in the initial stages. This is probably due to  the low concentrations o f 

cells in the fermentations in the early hours; thus all nutrients, including oxygen, 

are in excess. It is probable that as the concentration o f  cells build up in the 

fermenter that nutrients, particularly oxygen, becom e limited in certain regions o f 

the fermenter leading to  morphological transitions o f  varying scale depending on 

the agitation speed. This exam ination also suggests that the morphological 

transition experienced in this work differs to  that o f  Candida albicans, which 

forms filamentous cells or “germ tubes” directly from yeast cells (Odds, 1993). At 

no time was germ tube formation observed w ith this organism under the culturing 

conditions examined. This is verified by the results displayed. The formation o f 

germ tubes would result in the bypassing o f  the elongated yeast phase.

One problem observed, with respect to automatic classification, was the formation 

o f clusters o f  yeast cells very early in the fermentations. Zalewski and Bucholz 

(1996) have also observed this phenomenon for Saccharomyces cerevisiae. Figure
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7.2 (400rpm) illustrates this finding. A  large percentage o f pseudohyphae are 

observed in the first sample (note; other fermentations were not morphologically 

sampled as early as this one). These “pseudohypha”, while, in theory, are being 

correctly classified, are geometrically different from  previously observed 

pseudohyphae and thus their volume is being incorrectly calculated. It is probable 

that this is a problem experienced with reviving the starter culture (grow n in 

YEPL) in a different nutrient medium. The cells in the chains are exclusively 

yeastlike but cell separation after division appears to be temporarily impaired. It 

was decided not to alter the image analysis protocols due to the rarity o f  the 

morphological form.

The predominance o f double cells during the active growth phase is apparent. This 

appears to be independent o f  morphology and is more dependant on whether the 

organism is in the growth or stationary phase. A  decrease in the percentage o f 

double cells (by volume) is observed towards the end o f  each ferm entation as the 

stationary phase is entered. This is a com mon phenomenon in  yeast fermentations 

with m any observations in the literature for Saccharomyces cerevisiae (Pons et al., 

1993: Zalewski and Bucholz, 1996). Zalewski et al. (1994) related the am ount o f 

cells in clusters o f four or “tetrads” to the active growth rate. Due to the 

morphological alterations occurring here it is impossible to attempt such analysis. 

It is, however, possible to state that a high percentage o f  double cells indicates 

active growth.
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7.3 EFFECT OF DIFFERENT M EDIA ON CELL M O RPH OLO GY IN  

BATCH CULTURE

It was decided, based on the above results, to assess the effect o f  a different 

medium base on the morphology o f the organism in batch culture. The medium 

used was a standard yeast medium w ith both glucose (dextrose) and lactose used as 

carbohydrate sources in order to assess whether the hydrolytic step in  lactose 

metabolism had any affect on the morphology o f the organism.

The morphology for the 800 rpm fermentations (Both YEPL (Figure 7.5) and 

YEPD (Figure 7.6)) are very similar in content to the whey ferm entation conducted 

under similar conditions (Figure 7.1). This is also evident w hen the m ean cell 

geometric properties are examined (Figure 7.7). The graphs are plotted versus 

biomass concentration rather that tim e to normalise all param eters such as initial 

substrate concentration and inoculum concentration. It is apparent that under 

optimal growth conditions that changing the medium has no effect on the 

morphology o f the organism.
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F e r m e n t a t i o n  t i m e  (h)

F igure  7.5 M orphology distribution versus time for YEPL batch culture grown at 

800 rpm, lw m  (Legends Figure 7.1)

Fermentation time (h)
Figure 7.6 M orphology distribution versus time for YEPD batch culture grown at

800 rpm, lw m  (Legends Figure 7.1)
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Figure 7.7 Mean geometric parameters o f  cells in batch cultures grown at 800 rpm, 

1 vvm on various media, (a) mean cell volume, (b) mean cell length, (c) mean cell 

width, filled circles - YEPL, open circles - YEPD, open triangles - Whey. Data 

presented versus biomass concentration due to differences in inoculum size and 

initial substrate concentration.
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This is not, however, true for all conditions. From an exam ination o f the 

classification data and the mean geometric parameters presented for the 200rpm 

fermentations (Figure 7.8 (lactose) and Figure 7.9 (glucose)) it is apparent that 

significantly more pseudohyphae are being produced in the YEP based m edia than 

in the whey medium (Figure 7.4).

This trend is verified in the plots o f mean cell volume and length versus biomass 

concentration (Figure 7.10) where the volume and length o f the YEP based 

fermentations is approximately double that o f the whey fermentations on 

completion. It is noteworthy that the mean cell widths o f  the three fermentations 

match each other closely (Figure 7.10c), and are significantly different from  those 

presented for the 800rpm fermentations (Figure 7.7c). This suggests that the cell 

subunit morphology is similar for all the 200rpm fermentations and that the ability 

to form  pseudohyphal structures w ithout subunit breakup is enhanced in  YEP 

based media. From the data presented thus far, it is apparent that the end point 

morphology o f K. marxianus is not determined by carbohydrate source for YEP 

media. Ecologically this would suggest that certain key nutrients regulate the 

ability o f  the organism to form foraging pseudohyphal structures under adverse 

environmental conditions yet have little or no effect on the morphology or growth 

o f the organims under ideal conditions. Possible nutrients include Zn2+ and Fe3+ 

(Reeslev and Jensen, 1995). The enzyme responsible for chitin synthesis, w hich in 

turn controls the ability o f a cell to separate after budding, is regulated by the 

presence or absence o f Zinc (Berry, 1982). When the growth o f the organism in 

YEPL and YEPD media (nutritionally balanced) is compared to that o f  the whey 

based m edia under ideal conditions it is apparent that the organism grows equally 

well on both compositions, with similar growth rates. The yield coefficient is also 

similar for the whey-based m edia and the YEP based media. This suggests that 

the whey medium is as equally balanced nutritionally as the YEPL and YEPD 

media. Further work is needed in this area to fully establish the reasons for this 

difference.
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F e r m e n t a t i o n  t i m e  (h )

F igure  7.8 M orphology distribution versus time for YEPL batch culture grown at 

200 rpm, lw m  (Legends Figure 7.1)

0 1  2 3 4 5 6 7 8 9  10

Fermentation time (h)
Figure 7.9 M orphology distribution versus time for YEPD batch culture grown at

200 rpm, lw m  (Legends Figure 7.1)
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Figure 7.10 Mean geometric parameters o f cells in batch cultures grown at 200 
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7 .4  M O R P H O L O G Y  IN  C H E M O S T A T  C U L T U R E

7.4.1 In tro d u ctio n

Chemostat culturing allows the study o f steady state environments, where all 

parameters have established constant values. The batch culture work, described 

earlier, provided some reasons for morphological transitions in the organism but 

was limited by the nature o f batch culture. It was hoped that the use o f chem ostat 

cultures would allow better control o f  the environment and allow morphology to 

adjust fully to a “morphological steady state” based on any set o f  environmental 

conditions. Wiebe and Trinci (1991) have also illustrated the im portance o f 

growth rate on the morphology o f  Fusarium graminearum, a filamentous fungus.

7 .4 .2  C h em o sta t M o rp h o lo g ica l C la ssifica tio n  D a ta .

The first attempts at chemostat culture led to some surprising discoveries. Initially 

it was attempted to culture the organism aerobically, (i.e. no ethanol prodution). 

This was achieved as described in Chapter 3, by diluting the basic m edia four fold 

to generate a 5g/L lactose whey-based media. This was effective in completely 

eliminating ethanol production at any dilution rate, suggesting that the culture was 

completely aerobic. Yet the morphology on examinaton, in general, was 

pseudohyphal. Furthermore, the pseudohyphae observed in chem ostat culture were 

unlike any seen previously. The global structure o f  the pseudohyphae was m uch 

more developed than that seen in batch culture and the individual subunits o f  the 

pseudohyphae were m uch more elongated than any seen previously. A  more 

detailed overview o f this set o f results is presented below.

The overall morphological classifications (both by volume fraction and object 

count) for the four runs are presented in Figures 7.11 -  7-18. A t low dilution rates, 

where maintenance is a significant factor, a mixed morphology prevails with yeast 

and elongated yeast predominant in all runs. As dilution rate increases (>0.2 h’ ) 

filamentous and pseudohyphal morphologies predominate. The ratio o f filaments 

to pseudohyphae is seen to increase with increasing substrate feed concentration. 

In the 20g/L fermentation, the population is almost completely composed o f 

pseudohyphae in dilution rates greater than O.ISh’1. As the fermentation 

approaches D = //m and substrate is no longer limiting, there is a reversion back to 

a more yeast-like morphology in all fermentations. W hile certain deviations form
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this behaviour may occur at both ends o f the range o f  dilution rate, it is apparent 

from this study, that while the organism is being cultured in substrate lim ited 

chemostat culture, irrespective o f whether the cell is in oxygen excess or in partial 

oxygen limitation, the predominant morphology will be filamentous/pseudohyphal.

The chemostat data illustrates the usefulness o f  both a numerical and volumetric 

based classification system, with the numerical classification system indicating the 

presence o f cells with smaller volumes, such as yeast and elongated yeast, the 

presence o f which may not be significant when using the volumetric classification 

system. The numerical classification graph for the 20g/L fermentation indicates a 

region in the environs o f 0.2h"' dilution rate, where a sudden increases in  % 

pseudohyphae from 30% to 90%, followed by a drop to 50%, is noted. This 

observation is also observed for the 15g/L fermentation, but to a lesser extent. As 

dilution rate approaches the washout value there is an increase in the % o f yeast 

and elongated yeast for all runs indicating a possible return to a yeast-like 

morphology at |um.

The presence o f  significant numerical fractions o f  single and double yeast and 

elongated yeast cells under almost all conditions indicates that a population 

exclusively composed o f pseudohyphal cells is unattainable. The presence o f  so 

many small cells suggest that they may play an important role in the maintenance 

o f a steady state, morphologically speaking, in the bioreactor, allowing the 

rejuvenation o f pseudohyphae as they are removed from the chemostat.
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7.4.3 G eom etric P ro p erties  o f Cells

D ata for mean volume, length and width o f  the cells are shown in Figures 7.20 -  

7.23. The data reflect what was observed in the classification graphs. All runs 

show an increase in volume and length with increasing dilution rate indicating the 

transition from smaller cells such as yeast and elongated yeast to pseudohyphal 

cells. It is apparent at this stage that even though all fermentations indicate the 

presence o f large quantities o f pseudohyphae, that the pseudohyphae present vary
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greatly in. size. M ean cell width is seen to decrease rapidly initially and increase 

linearly from D = 0 .2h '' to washout. There is a small increase in cell width with 

respect to increasing substrate feed concentration.

As mentioned previously in the discussion o f percentage classification (by 

number), an area o f  interest was noted for the 20g/L fermentation in the region 

surrounding D  = 0 .2h ''. A sudden increase in  volum e and length is noted in this 

region followed by a sharp decline. The fact that four points (all taken from 

different fermenter setups) are involved in this phenom enon suggests that it is 

more than experimental variability. In this region, the rheological behaviour o f the 

broth was different due to the concentration o f biom ass and the filamentous 

morphology (all other regions were approximately N ew tonian in nature). The fluid 

became strongly power law in nature. This resulted in non-uniform mixing with 

almost stagnant regions in the vicinity o f  the vessel wall. This irregular mixing 

m ay be responsible for the sudden change in morphology experienced in this 

region. Similar behaviour was observed for the 15g/L ferm entation in the same 

range o f  D  values.

Dilution R ate (h '1)

F igu re  7.19 Plot o f  Power law constant (k) and Power law index (n) versus 

dilution rate for 20 g/L Chemostat fermentation
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Figure 7.21 Mean geom etric parameters o f  cells for 15g/L chemostat fermentation;

(a) cell volume, (b) cell length, (c) cell width
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A s can be seen in  F igures 7.20-7.23, the in it ia l substrate concentra tion  has a 

considerable e ffec t on developm ent o f  the pseudohyphae. The average leng th  o f  

the ce ll popu la tion , at any d ilu tio n  rate, increases w ith  increasing substrate feed 

concentration. The w id th  o f  the ce lls in  the fe rm en ta tion  increase lin e a r ly  a fte r an 

in it ia l decrease fo r  D  =  0.0-0.2 h '1. Th is  linea r increase has been observed fo r 

other filam entous organism s w h ile  g ro w in g  in  continuous cu ltu re , fo r  exam ple, 

Fusarium graminearum (W iebe and T r in c i,  1991).

7.4.4 Pseudohyphal Growth Unit

The hypha l g ro w th  u n it length  (Zhgu) is a good in d ica to r o f  h ypha l structure. I t  is 

calcu la ted b y  d iv id in g  the to ta l hypha l leng th  (Xt) by  the num ber o f  hypha l tip s  (AO- 

A  lo w  ¿hgu is in d ica tive  o f  a h ig h ly  branched m y c e liu m  whereas a h ig h  Zhgu 

suggests a less branched structure. The la tte r is better, on a so lid  surface, fo r  

extending and re loca ting  to  regions con ta in ing  greater amounts o f  nu trien ts . Zhgu is 

p lo tted  fo r  each fe rm en ta tion  in  F igure  7.24

•  20 g/L Substrate O 10 g/L Substrate
A 15 g/L Substrate A 5 g/L Substrate

Dilution Rate (h'1)

Figure 7.24 M ean ¿hgu versus d ilu tio n  rate fo r  fo u r in it ia l substrate concentrations 

The mean ¿hgu o f  pseudohyphae show  a general increase w ith  increasing D  fo r  a ll 

runs. A g a in  the  re g io n  surround ing D  =  0.2 h '1 generates some e rra tic  results
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suggesting the v isco s ity  p rob lem  also in terferes w ith  Zhgu- Th is  increase in  Zhgu 
w ith  increasing d ilu t io n  rate is s im ila r to  tha t found  b y  W iebe and T r in c i (1991) 

w ith  a filam entous fungus, a lthough, the scale o f  increase in  Zhgu was m uch  greater. 

Increases in  Zhgu genera lly  re fle c t a tra n s itio n  fro m  a densely branched, 

m o rpho log ica l fo rm  to  a less branched, m ore d iverse fo rm  capable o f  a greater 

degree o f  fo rag ing . A s  stated p rev ious ly , the changes observed here are not 

s ig n ifica n t enough to  m ake a considerable d iffe rence  to  the fo rag ing  patte rn  o f  the 

organism .

7.5 G E O M E T R IC  C O N S ID E R A T IO N S  F O R  M O R P H O L O G IC A L  

T R A N S IT IO N S

M o rp h o lo g ica l trans itions  in  a m ic ro -o rgan ism  are usua lly  a response to  

env ironm en ta l changes. The organ ism  adapts its  m o rp h o lo g y  in  an a ttem pt to  ga in  

advantage in  its  na tu ra l environm ent.

The organ ism  absorbs nutrien ts th rough  the ce ll w a ll. Substrate d if fu s io n  in to  the 

ce ll has the po ten tia l to  increase w ith  increasing surface area. The surface area o f  a 

pro la te  e llip so id  is g iven  b y  the fo llo w in g  equation.

The surface area o f  a filam entous/pseudohyphal ce ll can be estim ated us ing  

equation 7.2

\

(7 .1)

/

(7.2)
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Where N  equals the number o f  tips in the pseudohypha. By dividing the above 

values o f surface area by the calculated volume o f  the cell an estimate o f  the 

foraging power o f the cell can be generated.

(7.3)

The surface area to volume ratio would be expected to be high in an organism with 

good foraging ability. Also by dividing the surface area term by the cell length, a 

value associated with the amount o f localised surface area can be generated.

This value should lend some information regarding a cell’s ability to accumulate 

localised substrate.

Figure 7.25 shows the change o f S \  and S t  with increasing dilution rate for the 

1 Og/L chemostat fermentation.
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F igu re  7.25 Plots o f Sv and SL versus dilution rate for lOg/L chem ostat 

fermentation (a) Sv (b) Su
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Figure 7.25 reveals that the foraging power o f the organism is at its peak at low 

dilution rates and decreases as the dilution rate increases. In batch culture, 

foraging power is low whereas the ability to accumulate localised substrate is high. 

S \  remains low and the Sl is high (mean value o f 8 .14(ini for 800rpm whey 

fermentation). It is apparent that by a simple manipulation o f m orphological form 

the organism has adapted to each environment. This is achieved by presenting the 

greatest amount o f  surface area per unit length in batch culture where the 

concentration o f  substrate is highest. On a solid substrate this is the equivalent o f 

localising as m uch surface area as possible in one region. This results in the 

development o f  raised colonies on agar plates. The alternative is to present the
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highest possible surface area per unit volume. This allows the organism to forage 

across surfaces and the development o f a flat colony is the result.

Figure 7.26 examines the effect o f batch culturing on the SV term. In the HO Orpin 

Whey fermentation, the S \  remains low and constant, reflecting the yeastlike 

morphology experienced in the fermentation. In the 200rpm fermentations, there is 

a steady rise in the S \  term with increasing biomass. The fact that both YEPD and 

whey fermentation’s Sy profiles are similar at 200rpm, again suggests that the 

organism has the same morphological substructure in both fermetations but fails to 

develop chains o f subunits in the whey culture.

7.6 CONCLUSIONS

This set o f  data suggests that, irrespective o f  the presence or absence o f  oxygen, 

that the organism will grow predominantly in pseudohyphal form while in a 

substrate limited chemostat. This statement does not hold for the extrema o f  

dilution rate. At low dilution rates, the cell population has to expend large 

amounts o f energy on maintaining itself, prior to any replication. This results in a 

significant drop in the cell yield coefficient. It also does not hold at high dilution 

rates when D  = /im. This is where the organism is no longer suffering from 

substrate limitation. This is a classic response to environment, whereby the cell 

metamorphoses into a foraging form when concentrations o f substrates required for 

growth are reaching growth limiting levels. It is apparent that the organism cannot 

sustain such a morphological transition at very low dilution rates (the equivalent o f  

very adverse conditions in a natural environment) and remains in a yeast-like form. 

This appears to be the equivalent o f a dormant phase. The complexity o f 

pseudohyphae increases as the dilution rate increases. This suggests that the higher 

the growth rate, the greater the foraging power o f the yeast. The size o f  the 

pseudohypha adjusts accordingly to the increased substrate throughput.

In batch culture, the predominant morphology displayed is yeast-like (yeast and 

elongated yeast). Double cells predominate during active growth periods. This 

contradicts the findings o f Walker and O’Neill (1990). This is due to a series o f  

misinterpretations on their behalf. The organism was grown at a low  agitation rate
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in high initial substrate concentrations resulting in large quantities o f ethanol. Any 

fermentations completed in this present work that produced large quantities o f  

ethanol were generally heterogeneous in morphology and in the case o f  the YEP 

based cultures extremely filamentous and pseudohyphal. These cultures were 

deemed “aerobic” by Walker and O’Neill and hence the conclusion was made that 

aerobic growth supports filamentous growth. When the cultures were made 

anaerobic, growth rates were slowed to a point where maintenance again becomes 

an issue. This resulted in the “dormant state” observed in the chemostat at very 

low dilution rates. This led them to conclude incorrectly that anaerobic cultures 

produced yeastlike cells because they were deprived o f  oxygen rather than the fact 

that the growth rate limited the development o f  hyphal cells.

Walker and O’Neill contradict their own conclusions by demonstrating a 

predominantly yeastlike morphology for a culture grown aerobically on glycerol. 

Glycerol is a very poor, and slowly metabolised substrate resulting in very slow  

growth rates. Hence the requirements for oxygen are lower in such fermentations 

and generally oxygen is in excess, resulting in a yeastlike morphology, as observed 

for the 800rpm whey fermentation.

The current findings are in agreement with previous research. K. m arxianus  

responds strongly to substrate limitation, this has been noticed, to a lesser extent in 

Saccharom yces cervisiae  (Hill and Robinson, 1988). The organism also responds 

to partial oxygen limitation, where the oxygen is only partly limiting and 

conditions are not completely anaerobic. Any morphological transition 

experienced in batch culture was minor, in terms o f  pseudohyphal length and 

structure, compared to those found in substrate limited chemostat culture. The 

study also reveals that the organism’s morphology is different in different media 

when the organism experiences adverse conditions yet behaves identically when 

under ideal conditions. Although the average length o f cells in the YEPL and 

YEPD cultures surpasses those o f the whey-based medium, the average width and 

S'v were almost identical (Figure 7.10(c), Figure 7.26). This suggests that the 

morphology o f  the subunits in pseudohyphae is identical to the single and double 

cells in the whey medium but the ability to form pseudohyphal chains is greater in 

the YEPL and YEPD based media. This area requires further research in the
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future, to identify the key nutrient or nutrients causing the organism to change so 

dramatically.
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CHAPTER 8 

POPULATIO N DISTRIBUTIO NS OF VARIO US  

M O RPH O LO G IES OF Kluyveromyces marxianus

8.1 IN T R O D U C T IO N

Populations can generally be described in terms o f  distributions, functions that 

describe the frequency o f a measured param eter at given values. The m ost widely 

used distribution to describe populations is known as the Gaussian or Normal 

distribution. The probability distribution is described by the following function 

(M ontgomery and Runger,1994).

P(x) = — L = exP
cr^ZTU

— (x -  x)2 
2<t 2

(8.1)

This results in a distribution where the m ean ( x )  is equal to the m edian and 95% o f 

the population is contained within two standard deviations (a ) on either side o f  the 

mean. Often statistical analysis o f  parameters assumes that populations are 

distributed normally about the mean and that the m ean and standard deviation o f 

the population is adequate information to fully describe the size and scatter o f  a 

parameter. Often this is not the case.

Certain biological systems are not described by the above distribution due to 

exponential development with respect to time. Filamentous fungi develop linearly 

from each hyphal tip yet the whole hypha develops exponentially with respect to 

time (Trinci, 1969) W hen such organisms are growing in  continuous culture there 

is a normal distribution in terms o f hyphal residence time. This means that hyphal 

volume or length will not be distributed normally. The lognormal distribution can 

often be applied to such systems to describe the population distribution. The 

probability distribution is described by the following function.

P(x) =  ^ = exP
*"ln jr

-  (ln(x) -  In x) 

2
(8.2)
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A variant o f the above function has been used by Kieran el al. (1993) to describe 

the population distribution o f Morinda citrifolia, a plant cell strain that develops in 

shear-sensitive chains, in suspension culture. While the development o f these cells 

is linear, the cells were more susceptible to shear as the length increased (see 

Chapter 2) hence the generation o f a skewed distribution.

One o f  the aims o f the present work was to devel op a population model distribution 

that will successfully describe the range o f  data experienced. It was also hoped to 

investigate whether the morphological classes described in Chapter 4 have any 

bearing on this process.

8.2 INITIAL INVESTIGATIONS.

Three populations were used to assess the potential o f  different population 

distribution models

• A predominantly yeast-like population taken from batch culture

• An mixed morphology population taken from chem ostat culture

•  A predominantly pseudohyphal population taken from  chem ostat culture

Table 8.1 details the culture conditions for each Sample.
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Table 8.1 Origins o f Samples used for population model development

Sample no. Description Culture conditions Number o f  cells analysed

1 Yeast-like 800 rpm whey m edium  -  

Sample time = 5.5 h

302

2 Intermediate Chemostat 5g/L lactose 

feed concentration D = 

0.20 h’1

397

3 Pseudohyphal Chemostat 20g/L lactose 

feed concentration D = 

0.35 h"1

250

The first stage o f the evaluation was to assess the potential o f  norm al and 

lognormal distributions, to describe the populations. Frequency distributions 

generated from cell volume data, were converted to probability distributions using 

the following equation.

P ^ )  =  ~  <*-3)wN{

W here w is the histogram bucket width and M is the total sample size. A  suitable 

histogram  bucket w idth was determined using the recom m endation o f K anazawa 

(1988).

w = 3.5oNt "°'33 (8.4)

Figures 8.1 to 8.3 present the probability distributions o f cell volume for each o f 

the test samples.
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Figure 8.1 Lognormal and Gaussian volume distributions for Sample 1. Solid line 

-  lognormal distribution, dashed line -  normal distribution (sample size=302)
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Figure 8.2 Lognormal and Gaussian volume distributions for Sample 2 Solid line 

-  lognormal distribution, dashed line -  normal distribution (sample size =  297)
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F igu re  8.3 Lognormal and Gaussian volume distributions for Sample 3 Solid line 

-  lognormal distribution, dashed line -  normal distribution (sample size = 250)

The global population models both fail, particularly the Gaussian distribution, to 

adequately describe the cell population over the entire range o f  operating 

conditions.

8.3 D IST R IB U T IV E  C H A R A C T E R IST IC S  O F C E L L  SU B -PO PU L A T IO N S

It was decided to divide the population into three distinct classes, single cells, 

double cells and pseudohyphae and assess the types o f  distribution associated w ith 

each. I f  this approach proved successful it was hoped to develop a distribution 

which is the sum o f several sub-distributions, where,

/>(*) = £ « , / ( * )  (8-4)
f

W here nc is the number o f classes used to describe the population and N\ is the 

number fraction o f objects in class i. By examining the distributive characteristics 

o f the three sub-populations, it was hoped that a more sensitive population model 

could be developed that permitted a better fit to the data.
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8.3.1 Single cells

Single cells are composed o f  single yeast, elongated yeast and filaments. Figures

8.4 and 8.5 shows the probability distribution for single cells in Sample 1 and 

Sample 2. Not enough single cells were present in Sample 3 to attempt statistical 

analysis. While both the lognormal and the normal distributions approximates the 

data from Sample 1 (Figure 8.4) well, both fail to approximate the data in Sample 2 

(Figure 8.5). The lognormal distribution approximates both population 

distributions to a more uniform degree.

0 .040
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0 .0 3 0  

\  0 .0 2 5  

^  0.020 
ol 0 .0 1 5  

0.010 
0 .0 0 5  

0.000
0 25  50 7 5  100 125 150

C e l l  V o l u m e  (V )  ( p m 3)

Figure 8.4 Volume distribution o f single cells for Sample 1. Solid line -  

lognormal distribution, dashed line -  normal distribution (sample size = 95)
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Cell Volume (V) (|jm3)

F igu re  8.5 Volume distribution o f single cells for Sample 2. Solid line -  

lognormal distribution, dashed line -  normal distribution (Sample size = 101)

The poor data fit obtained in Figure 8.5 can be explained in terms o f  the 

classification o f cells examined. The classification breakdown for each populations 

single cells is shown in Table 8.2.

T ab le 8.2 Summary o f  classification breakdown for single cells for Sample 1 and 2

Sample % Yeast %Elongated yeast %Filaments N um ber o f  single cells

Sample 1 79 16 5 95

Sample 2 16 24 61 101

Sample 1 is mainly composed o f yeast and elongated yeast, whereas Sample 2 has 

significant quantities o f filaments in the culture. The gross morphology difference 

between filaments and the yeast-like forms is significant thus the development o f 

the population may not be continuous, in terms o f  yeast -  elongated yeast - 

filaments. The filament population was examined for distributive properties.
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Cell Volume (V) (|jm3)

F igure  8.6 Volume distribution for single filaments in Sample 2, solid line - 

lognormal distribution, dashed line -  normal distribution (Sample size = 72)

It is clear from Figure 8.6 that the filaments are norm ally distributed, although the 

lognormal distribution does account well for the slight skew experienced in  the 30- 

40 (im subrange. Based on observation o f Figures 8.4 and 8.6, it can be said that 

Yeast and Elongated yeast are part o f  the same population whereas filaments are a 

discrete population that require separate treatment. The following approach is 

proposed to describe single cell populations.

-P( )̂singies = N  yPy (V) + NfPf (V) (8.5)

where Ny is the number fraction o f yeast and elongated yeast, Nf is the number 

fraction o f filaments, p y(V) and pf(V) probability distribution functions for yeast 

and filament volume respectively. The two probability distribution functions used 

are lognormal due to the slightly better description o f  the poputation distributions. 

Figure 8.7 demonstrates the effectiveness o f this approach in describing the 

population o f single cells in Sample 2.
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C e l l  V o l u m e  (V )  ( | j m 3)

F igure 8.7 The use o f the summed distribution o f yeastlike cells and filaments to 

describe the overall volume distribution o f  single cells for Sample 2. (Ny = 0.29, Nr 

=0.71) (Sample size = 101)

8.3.2 D ouble cells

Figure 8.8 and 8.9 show the probability distributions o f volume for the double cells 

in Samples 1 and 2.
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F igu re  8.8 Volume distribution o f double cells for Sample 1, solid line -  lognorm al 

distribution, dashed line -  normal distribution (Sample size = 201)

On examination o f the double cell distribution from Sample 1 it can again be seen 

that the normal distribution adequately describes the population, although again the 

lognormal distribution deals with the slight skew experienced. Table 8.3 shows the 

population breakdown for double cells in Sample 1 and 2.

T ab le  8.3 Summary o f classification breakdown for double cells for Samples 1 and

Sample % Yeast %Elong. yeast %Filaments Sample size

Sample 1 75 20 5 201

Sample 2 9 32 59 221
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F igu re  8.9 Volume distribution o f  double cells for Sample 2, solid line -  

lognormal distribution, dashed line -  normal distribution (Sample size = 221)

The normal or lognormal distribution fails to completely describe the population 

containing significant quantities o f double filaments. The same approach as 

applied in the previous section will be used to describe the population. Both 

filaments and yeast-like cells are separated, a log-normal distribution generated for 

each and the weighted results summed. Figure 8.10 shows the resultant distribution 

that describes the double cell population. As can be seen in Figure 8.10, the use o f 

this approach provides a better description o f the data.
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Figure  8.10 The use o f the summed distribution o f yeastlike cells and filaments to 

describe the overall volume distribution o f  double cells for Sample 2. (Ndy = 0.41, 

TVdf =0.59)

8.3.3 Pseudohyphae

Hyphae, in theory, extend their volume exponentially (Trinci, 1969). The 

distributions are therefore expected to be lognormal in nature. Figure 8.11 and 8.12 

show the probability distributions o f pseudohyphal volume for Samples 2 and 3. 

The calculated distributions in both figures show a slight bias towards larger cells. 

This is due to the sensitivity o f the calculation; i f  a few extremely large cells are 

measured the distribution will be biased in favour o f large cells. It is also possible 

that due to the scale o f  the pseudohyphae that an operator bias in favour o f 

measuring shorter pseudohypha may have existed. The use o f an automated 

microscope stage may have produced better results than a human operator in  this 

case.
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Volume (V) pm3

F igu re  8.11 Distribution o f  pseudohyphae for Sample 2, solid line -  lognormal 

distribution (sample size =  146)

Volume (V) pm3

F igu re  8.12 Distribution o f  pseudohyphae for Sample 3, solid line -  log-normal 

distribution (sample size = 164)
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8.4 GENERATION OF SUMMED DISTRIBUTION FUNCTION

The summed distribution was the weighted sum o f the following lognormal 

distributions.

• Yeastlike single cells Ny.py(V)

• Filamentous single cells Nf. pt(V)

• Yeastlike double cells Ndy,Pdy(V)

•  Filamentous double cells Ndf,ptf(V)

• Pseudohyphae Nm, p m(V)

The distributions were weighted according to their number fraction in the 

population. A transform was written using Sigmaplot ™  (Jandel Scientific, CA, 

USA) to calculate the distributions based on the raw data supplied by the image 

analysis system. I f  any subpopulation had a numerical representation o f less than 

5, they were omitted due to the generation o f  “spikes” in the distributions. Figures 

8.13 to 8.15 show the effectiveness o f this approach in  describing the test 

populations.

0 1 0 0  

C e l l  V o l u m e  (V )  ( p m 3)

200

Figure 8.13 Summed volume distribution for sample 1, Ny = 0.31, Ndy = 0.63, Nf- 

0.02, JVdf = 0.03, Nm = 0.00 (sample size = 302)
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Figure 8 .1 4  Summed volume distribution for sample 2, Ny = 0.10, Nay = 0.09, N{- = 

0.25, Ni/=  0.34, Nm ~ 0.23 (sample size = 297)
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F igure  8.15 Summed volume distribution for sample 3, Ny = 0.01, N^, =  0.09, N( =  

0.02, A^/= 0.20, Nm = 0.68 (sample size =  250)
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8.5  A P P L IC A T IO N  O F  T H E  S U M M E D  D IS T R IB U T IO N  T O  C E L L  

L E N G T H  A N D  C E L L  W ID T H

The same approach was applied to distributions o f cell length and cell width. As 

can be seen from Figures 8.16 to 8.22, the use o f summed distributions describes 

the experimental data very well. From an exam ination o f  the cell w idth 

distributions (Figures 8.19-8.22) the two primary m orphological forms, yeastlike 

and pseudohyphae, are evident by their difference in width.

Cell Length (Lt) (pm)

Figure 8.16 Summed length distribution for Sample 1 cell length, Nv — 0.31, N,/y = 

0.63, Nf = 0.02, N(ff =  0.03, Nm = 0.00 (Sample size = 302)
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0.05

Cell Length (/_t) (pm)

F ig u re  8.17 Summed length distribution for intermediate Sample 2, Ny =  0.10, Ndy 

= 0.09, Nf=  0.25, Ndf= 0.34, Nm = 0.23 (Sample size = 297)

Cell Length (Lt) (pm)

F ig u re  8.18 Summed length distribution for pseudohyphal Sample 3, Ny = 0.01, 

Ndy = 0.09, Nf = 0.02, Nd/= 0.20, Nm = 0.68 (Sample size = 250)
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Cell Width (W) (|jm)

F ig u re  8.19 Summed width distribution for yeast-like Sample 1, Ny =  0.31, Ndy = 

0.63, N f=  0.02, JVdf =  0.03, Nm = 0.00 .(Sample size =  302)

Cell Width (W) (Mm)

Figure 8.20 Summed width distribution for yeast-like Sample 2, Ny = 0.10, N,Jy = 

0 .0 9 ,7Vr = 0.25, NM=  0.34, Nm = 0.23 (Sample size = 297)
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F ig u re  8.21 Summed width distribution for pseudohyphal Sample 3, Ny =  0.01, 

Ndy -  0.09, Nf=  0.02, Nif=  0.20, Nm = 0.68 (Sample size = 250)

8.6 A PPL IC A T IO N  O F D IST R IB U T IO N  TO  FE R M E N T A T IO N  DATA

The volume distributions w ith respect to dilution rate for the 20g/L and 5 g/L 

substrate feed concentrations are shown in Figures 8.22 and 8.23. Both chemostat 

fermentations have a tight volumetric distribution at low  dilution rates ( D  <= 0.1). 

As the dilution rate increases the distribution for all runs broadens, developing the 

characterisic shape o f a sharp peak followed w ith a gradual decline at low 

probabilities. The shape o f these curves is uncharacteristic o f filamentous 

fermentation data which shows a more gradual decline with respect to increasing 

volume. There are obviously significant differences in the m echanism  o f 

population regeneration between this organism and typical filamentous fungi.
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Cell Volume (V) (nm3)

F igu re  8.22 Distribution o f volume for selected dilution rates for chem ostat with 

20g/L feed substrate concentration: (a) 0.12 h"1 (b) 0.20 h"1 (c) 0.3 h '1 (d) 0.4 h '1 (e) 

0.49 h '1
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F igure  8.23 Distribution o f volume for selected dilution rates for chem ostat with 

5g/L feed substrate concentration; (a) 0.10 h '1 (b) 0.20 h’1 (c) 0.3 h '1 (d) 0.4 h’1 (e) 

0.47 h '1
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Distribution changes in batch culture are more subtle, with smaller inter-sample 

variance than experienced in the chemostat results. The volum etric distribution 

data from two selected fermentations is presented in Figures 8.24 and 8.25. Figure 

8.24 shows the 800rpm batch culture whey fermentation. This ferm entation was 

predominantly yeast-like throughout with a slight morphological diversification at 

later stages. This can be seen in the volume distributions where a relatively 

uniform  distribution is presented throughout the fermentation. This is not the case, 

however, for the 200rpm YEPL fermentation presented in Figure 8.25. This figure 

also outlines how the characteristic shape o f the distributions develop in a transition 

from yeast-like to pseudohyphal.

Cell Volume (V) (pm3) Cell Volume (V) (|jm3)

Cell Volume (V) (pm3) Cell Volume (V) (pm3)

F igure  8.24 Distribution o f volume for selected tim e points for whey m edia batch 

culture fermentation at 800rpm lvvm  (a) 2.5 h (b) 4.5 h (c) 6.5 h (d ) 8.5 h.
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F ig u re  8.25 Distribution o f volume for selected tim e points rates for YEPL m edia 

batch culture fermentation at 200rpm lw m  (a) 2.5 h (b) 4.5 h  (c) 6.5 h (d) 8.5 h.

8.7 C O N C LU SIO N S

The probability distibution for the volume, length and w idth o f  the diversity o f 

samples experienced can be described in terms o f a w eighted sum o f the lognormal 

distributions o f certain key sub-populations in the sample. The key sub­

populations identified were yeastlike single cells, yeastlike double cells, 

filamentous single cells, filamentous double cells and pseudohyphae. The term 

yeastlike refers to both yeast and elongated yeast cells. This means that the yeast 

and elongated yeast populations are not discrete and are invalid as true classes in 

the classification regime implemented in Chapter 4. W hile they m ay be invalid as 

“true” classes, they still act as an indicator o f slight m orphological transitions in the 

ycastlike subrange. Certain problems exist with respect to applying lognormal
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distributions to pseudohyphal populations due to the sensitivity o f  the calculation 

rather than the inherent shape o f the disribution. The presence o f a  small 

percentage o f very large cells can cause the distribution to skew in favour o f  larger 

pseudohyphal. The approach used by Kieran (1993), which allows small 

adjustments to the distribution parameters in the case o f  poor fits, may provide 

better description o f the population distribution.

The distributions experienced are unusual in shape, particularly for samples 

containing predominantly pseudohyphal cells. For such samples, there is an 

unusual sharp peak in the smaller cells subrange followed by a long gradual 

decrease as volume increases. This is due to the method o f regeneration used by 

the pseudohyphae, which is obviously different from conventional hyphae. 

Preferential degradation o f smaller cells in preference to larger pseudohyphae m ust 

occur to obtain the distributions observed.

The generation o f a function o f this nature has use, w hen the volumetric 

distribution is required as part o f a  mathematical model. Foley et al. (1995) has 

demonstrated the importance o f yeast size polydispersity in crossflow 

m icrofiltration and has developed a mathematical model incorporating a cell size 

distribution function. As K. marxianus’s filtration characteristics are currently 

being evaluated (McCarthy et al., 1998), a function describing the size distribution 

o f the cell population may be useful.
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CH APTER 9

THE STRUCTURAL DEV ELO PM ENT OF Kluyveromyces 

marxianus PSEUDO H YPH AE IN  CO NTINUO US CULTURE

9.1 IN T R O D U C T IO N

M uch work has been done towards understanding the growth and m orphological 

development o f true hyphae (Trinci, 1974; Fiddy and Trinci, 1976a,b) yet little has 

been done in the area o f mathematically describing the growth and development o f 

pseudohyphae. This work hopes to identify key aspects o f  morphological 

development in pseudohyphae and subsequently propose a model to describe such 

growth.

Chapter 5 outlined an automatic imaging method capable o f classifying the 

morphology o f the organism displaying a diverse range o f morphological forms. It 

allowed for the assimilation o f  data on pseudohyphae including main hyphal length, 

effective hyphal length, hyphal growth unit length, number o f  tips and mean branch 

lengths. This appears to be a comprehensive repertoire o f  hyphal measurements, 

yet it does not provide any information towards the macro-structure o f the hyphae, 

such as the mean length o f subelements in the pseudohyphae, number o f  subunits in 

the m ain hyphae, number o f subunits in the branches etc. It was attempted during 

the development o f  the automated routine to follow a comprehensive “subunit” 

based analysis through to the longest pseudohypha from  single and double subunits, 

but it was found to be impossible due to poor curvature at the subunit interfaces in 

pseudohyphae. It was decidcd to generate a manual measurement based protocol in 

which the user measures the subunits o f interest and records the data in a m anner 

that allows easy data retrieval on a number o f different problems.

9.2  M A N U A L  IM A G IN G  P R O T O C O L

A 35(iL quantity o f  a suitably diluted sample was placed on a slide and covered 

with a coverslip. The coverslip was applied with a  pressing m otion in  order to 

introduce planarity in the slide. A  computer program was written to compile
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information on pseudohyphae. Measurements taken include the length and 

geometric position o f each subunit in pseudohypha.

A coding system was devised for subunits in pseudohyphae. It was apparent on 

examination o f many pseudohyphae that there was a lead subunit from which all 

subunits in the pseudohyphae were descended. This subunit was to be found at the 

start o f a chain and all branches appeared at an obtuse angle to the lead subunit 

(Figure 9.1). The main hypha was deemed the longest continuous line through the 

subunit starting at the lead subunit. Any other subunit was deemed part o f  a 

branch. Subunits on the main hypha were numbered 2.0, 3.0 etc. according to their 

distance, in subunits, away from the lead subunit (1.0). The active growing end o f 

the subunits in the pseudohypha was deemed to be that furthest away from the lead 

subunit. Thus branches emerge from a subunit at the point furthest away from the 

lead subunit and not from the start o f the subsequent subunit in the m ain hypha. 

Branch subunits were numbered according to the subunit on the main hypha that 

they originated from and their position on the main hypha. Figure 9.1 demonstrates 

the coding system employed in the study o f pseudohyphae.

marxianus pseudohyphae
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As can be seen in Figure 9.1, each subunit on the m ain hypha can generate two or 

more branches. For ease o f description, the subunits on the second branch will 

have the postscript a, subunits on a third branch will have the postscript b etc. Any 

branch that generates a sub-branch will be referred to as 1.1.1, a second subunit on 

this sub-branch will be referred to as 1.1.2, etc.

To study the relationship between mother subunits and daughter subunits the 

following terminology w ill be used. In Figure 9.1, the progeny o f subunit 1.0 are 

2.0, 1.1 and 1.1a in order o f age. The progeny o f subunit 2.0 are subunit 3.0, 

subunit 2.1 and subunit 2.1a. The term  daughter w ill be used to describe the 

progeny o f subunits. Subunit 2.0 in Figure 9.1 will be referred to as Daughter 1 o f 

subunit 1.0, subunit 1.1 will be Daughter 2 and subunit 1.1a will be Daughter 3. 

Daughters will be numbered according to age assessments based on the overall 

length o f the subsequent growth originating from each daughter subunit. The 

daughter subunit supporting the most subsequent development is term ed the oldest 

daughter and so on.

9.3 IN IT IA L  O BSERV A TIO N S

All pseudohyphae observed follow a distinct pattern o f development. The lead 

subunit (1.0) buds once, sending out a cylindrical subunit (2.0) which does not 

detach from the lead subunit (Figure 9.2). This subunit subsequently buds adding a 

third subunit (3.0) to the chain (Figure 9.3). As subunit 3.0 is being formed, 

subunit 1.0 develops a second bud (1.1), which grows at an angle to the main 

“hypha”. Subunit 1.1 then develops at approximately the same rate as the main 

“hypha” leading to branch formation. Each subunit w ill bud a second time 

approximately one cycle after the emergence o f the first bud (Figure 9.4). The 

development o f a third bud on the lead subunit (1.1a) can be seen in Figure 9.5. As 

all subunits remain attached to each other, the structure develops into a  com plex 

branched entity (Figure 9.6). The complexity o f the branching is thus controlled by 

the age o f the lead subunit, which is controlled by the residence tim e o f  the 

pseudohypha in the reactor. Thus a finite maximum object size is inevitable. It is 

obvious that a certain degree o f breakage or bud release has to occur to maintain the
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population in steady state. Unusual phenom ena occur in very long (old) 

pseudohyphae such as the disappearance o f the longest (oldest) branches and the 

development o f bipolar budding and budding from the middle o f the subunits 

(Figure 9.7). It is presumed that the subunit buds too frequently from one apex and 

the budding mechanism moves around to counter this problem. Streiblova (1970) 

observed a spiral budding pattern, for S. cerevisiae, moving from one pole to the 

other. Lord and Wheals (1980) observed this phenom enon but also found that the 

bud scar was able to move from one pole to the other without intermediate bud 

scars. Unfortunately cells in this form were not observed regularly in the 

fermentation.

F igu re  9.2 The initiation o f pseudohyphal formation w ith the lead subunit budding 

into a long thin subunit

F igure  9.3 The development o f the second bud from the lead subunit
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Figure 9.4 New bud formation at the tip o f branch 1 and on subunit 2 in the main 

liypha

F igure  9.5 Developm ent o f third bud from  lead subunit
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F igure  9.6 Development o f a second bud on the first branch concurrent w ith the 

development o f a third bud on the second subunit on the main hypha

. . .  • • 

n

F igure  9.7 Unusual morphological structure in “old” pseudohypha
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9.4 P R O PO SE D  M O D E L  F O R  PSEU D O H Y PH A L D E V E L O PM E N T

Figure 9.8. shows a proposed model for pseudohyphal development based on 

structures observed in Figures 9.2 to 9.6. The model is based on each subunit in the 

structure producing daughter subunits on a regular interval and at a  regular rate.

F igure 9.8 Diagrammatic representation o f pseudohyphal development for K. 

marxianus

The initial structures are quite close to what is observed in chem ostat cultures. As 

the structures develop, however, the branches do not appear as well developed in 

reality. Exam ination o f age dependant growth cycles are reported in the literature, 

where yeast do not bud at equal rates for each progeny produced, but instead slow 

down with the production o f  each new subunit. The data o f  Lord and Wheals 

(1980) demonstrates this with repeatedly higher percentages o f virgin yeast (have 

not formed progeny o f their own) than would be expected for a synchronously 

dividing population.
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9.5  A N A L Y S IS  O F  S U B U N IT  B E H A V IO U R

9.5.1  In tro d u ctio n

Based on the above observations o f pseudohyphal development and the hypothesis 

for subunit development presented in Section 9.4, the following questions need to 

be addressed if  a model for pseudohyphal development is to be proposed.

•  On a statistical basis, are the subunits the same length in a pseudohypha or does 

the length o f  the subunits change with position in the pseudohyphal structure?

• Does the subunit stabilise post budding or does it keep extending. This is 

important if  the overall length o f the developing hyphae is to be predicted?

• In the literature, several references are made to an age dependant budding rate. 

Does a subunit’s progeny develop at different rates according to their mothers 

subunit’s cycle number?

•  Are the progeny o f  a subunit morphologically related?

• How does mechanical shear affect the overall structure?

• How does growth rate and growth in different substrate concentrations affect 

pseudohyphal structure?

9.5 .2 . S u b u n it L en g th s R e la tiv e  to P o sitio n  in  P seu d o h y p h a e

Figure 9.9 shows the mean subunit length versus subunit position in the main 

hyphae for pseudohyphae o f various main hyphal lengths (in subunits). As can be 

seen in Figure 9.9 the subunits develop while they are in the terminal subunit 

position and subsequently do not extend significantly. This is in agreement with 

the definition o f pseudohyphal structure suggested in Chapter 2 whereby the 

terminal subunit is generally shorter than previous subunits. It also appears that as 

subunits get further away from subunit 1.0, they are more elongated. The 

additional graph in Figure 9.9 illustrates the typical standard deviations exhibited 

by this data. The scatter appears to be higher for subunit 1.0 and the term inal 

subunit (6.0) than the
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Figure 9.9 Lengths o f  subunits in main hyphae (5g/L substrate feed concentration, 

D -  0.4h''). Additional graph demonstrates the standard deviations on the values 

obtained for six subunits in the main hypha.
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other subunits. This suggests a heterogeneity in length o f  the starting cell in 

pseudohyphae. This may be due to pseudohyphae originating from both yeastlike 

cells (resulting in an overall shortening o f the m ean length o f  subunit 1.0) and 

breakdown products o f pseudohyphae. Heterogentity in the terminal subunit length 

is simply due to the fact that it is still in active development and can range in length 

from a small bud (just after formation) to a large cell (just about to produce progeny 

o f its own).

The development o f subunits in the main hypha is also illustrated by examination 

o f  the growth o f  specific subunits in the main hypha w ith respect to the 

development o f the total main hypha (Figure 9.10). It is apparent that while the 

subunit is in the terminal position it grows quickly, after budding it extends at a 

m uch reduced rate. Assuming the extension rate o f the terminal subunits in the 

hyphae is constant with respect to time, extension rates, relative to the extension o f 

the main hyphae, for subunits after budding are shown in Table 9.1.

T ab le 9.1 Relative extension rates o f subunits post budding (5g/L substrate feed 

concentration, D = 0.4h"')

Subunit number. Relative extension rate (post budding)

1 0.039

2 0.034

3 0.070

4 0.021

5 0.081

It is apparent that all subunits in the hyphae extend slowly post budding and that 

based on the decrease o f the relative extension rates o f the lead subunits that this 

secondary extension has to be taken in to account if  mathematical m odeling o f  the 

development o f the structure. A mean post budding extension rate o f 0.05 was 

calculated for this sample.
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Figure 9.9 demonstrates that each subunit appears to grow to a greater length than 

its mother subunit. Based on this observation it was decided to examine whether 

any relationship existed between the length o f the mother subunit and that o f the
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daughter subunit. As can be seen in Figure 9.11 there does appear to be a tenuous

relationship between the two parameters suggesting that as the length o f  mother

subunits increases, so does that o f any fully developed daughter subunits. The data 

presented Figure 9.11 encompasses all operating conditions utilised in chem ostat 

culturing, including changes in dilution rate and S0. All daughter subunits had to 

posses a granddaughter subunit before they were measured. The results 

demonstrated in Figure 9.11 suggest a “destiny” for each subunit, whereby a 

daughter subunit’s length is preordained by the length o f the m other subunit. The 

low regression coefficient has to be noted for the data.

It was also attempted to assess the relationship between the length o f fully grown 

daughter subunits and the mother subunit. Figure 9.12 shows that a tenuous 

relationship exists between the lengths o f daughter subunits generated from the 

same m other subunit.

■ Length  of Subunit  2 .0  v s  S ubunit  1.0
°  Length of Subunit 3 .0  vs. S ubunit  2 .0
A Length of Subunit  4 .0  vs. S ubunit  3 .0
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F igu re  9.11 Relationship between the length o f mother and daughter subunits. 

Solid Line -  parity plot, dashed Line - linear regression (r2 = 0.38)
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length of first daughter (urn)

F igu re  9.12 The relationship between the fully grown length o f the first and 

second progeny o f a subunit. Solid Line -  parity plot, dashed line - linear 

regression (r2= 0.46)

Both o f  the above findings are essential for the development o f a proper 

mathematical model for the development o f pseudohyphae.

9.6 ANALY SIS O F BRA N C H  D E V E L O PM E N T

9.6.1 In tro d u c tio n

The second issue to be examined is the development o f  branches. Pseudohyphal 

growth is the result o f subunits not separating after formation, thus studying the 

development o f branches is the equivalent o f studying the “family tree” o f  mother 

subunits. The life cycle o f the subunit has to be examined in order to determine 

whether the budding rate is constant w ith respect to time or whether the subunit 

cycle time increases with the age o f the subunit. The length o f branches is plotted 

with respect to the length o f the main hyphae to compare rates o f development o f 

both. There are recognised limitations w ith this analysis.

• W hile subunits predominantly develop while in the term inal position, they do 

exhibit slight growth after formation (Figure 9.9). The number o f subunits in the
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main hypha is always greater than the number in a branch. Therefore the 

amount o f residual extension will always be greater in the m ain hypha than in 

the branch. For example, the pseudohypha presented in Figure 9.4 has four 

subunits in the main hypha and two in the branch evolving from subunit 1.0. 

Therefore the amount o f residual extension in each com ponent is as follows. 

The main hypha has a terminal subunit extending at a relative rate o f  1.0. It also 

has three other subunits extending at an average relative rate o f 0.05 each. This 

contributes a total extension rate o f 1.15. The branch has one terminal subunit 

extending at a relative rate o f 1.0 and one other subunit extending at a rate o f 

approximately 0.05. This makes a combined total extension rate o f  1.05. 

Therefore if  both terminal subunits are extending at the same rate the branch 

should be extending at an approximate rate o f 0.91 relative to the main hypha.

• Another possible error is the assumption that the m ain hypha’s terminal subunit 

always extends at the same rate. The subunits are observed to elongate as they 

get further away from subunit 1.0. This either means that the subunit develops 

at the same rate and that the establishment o f the subunit interface is varying 

with respect to time or that the rate o f interface establishment is fixed and the 

extension rate is varying.

While the above observations may create errors in the data analysis, it is impossible 

to measure any morphological characteristics o f a single subunit w ith time for this 

system. Any experiments examining the extension rates for filamentous fungi are 

done on solid substrates (Lopez-Franco el al., 1994), whereas in the present work, 

the method o f growth is in suspension culture and it is impossible to follow the 

history o f  any one pseudohypha over time. All that can be done is to examine a 

population whereby one assumes, that due to the simple nature o f yeast, replicas o f 

previous morphological forms o f a particular pseudohypha are present in the 

population and thus the whole life cycle o f the pseudohypha can be estimated.
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9.6.2 B ranch  Extension R ates

Figure 9.13 illustrates the lengths o f branches originating from  subunit 1.0 w ith 

respect to overall length o f  the main hypha. The first finding is that the extension 

rate o f  new “branches” from subunits that have already budded is significantly 

slower than that o f the main hyphae. The more often a subunit buds the slower the 

development o f its progeny. This is illustrated in Figure 9.13. It was m entioned 

before that the slow post budding extension o f each sub element will artificially 

increase the main hyphal extension rate yet when this is compensated for the 

difference it makes does not significantly alter the findings. The first branch 

extends at relative rate o f 0.59 (im/|am to the m ain hypha w ith the second branch 

extending at a relative rate o f 0.20 um /|im  o f the main hypha for the sample 

illustrated.
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F igu re  9.13 Extension o f branches from lead subunit (1.0); Unfilled symbols, first 

branch; Filled symbols second branch; dashed line - parity plot (20g/L, substrate 

feed concentration, D = 0.4h_1)
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The fact that the plots are linear suggests that the extension rate o f the m ain hypha 

in the pseudohypha is constant with respect to that o f the branches.

Another interesting feature o f  this graph is that some o f  the branches exam ined are 

composed o f more than one subunit yet the extension rate o f  the progeny o f  the first 

subunit in the branch appear to be equal to the extension rate o f the first branch 

subunit. This suggests possible developmental problem s for subunits bom  o f  an 

old mother subunit. Unfortunately due to the limited development o f  hyphae 

within the chemostat before washout it was only possible to do limited work on this 

phenomenon. Another phenomenon preventing the study o f such events was the 

apparent “dropping o f f ’ o f  branches once subunits reach a certain age (effective 

hyphal length). Figure 9.13 illustrates the disappearance o f  the first branch on the 

hyphae in the environs o f  140(xm effective hyphal length. This was observed in  all 

samples with a greater and more random affect observed at lower dilution rates. 

Also apparent was the increased extension rate o f subsequent branches. Figure 9.14 

shows the extension rate for the first branch on the subunit 1.0 and first branch on 

the subunit 2.0. It is apparent that the first branch on subunit 2.0 extends at a 

greater rate than that o f  the first branch on subunit 1.0 (0.79 (im/|im).
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F ig u re  9 .14  Extension rate differences between branches generated from  first and 

second subunit on m ain hyphae. (20g/L substrate feed concentration, D = 0 .2h '')

9 .7  E F F E C T  O F  E N V IR O N M E N T  O N  P S E U D O H Y P H A L  D E V E L O P M E N T

9.7.1 E ffec t o f  O p era tin g  C on d itio n s on  B ra n ch in g  P a ttern

It was decided to examine the effect o f operating conditions such as substrate feed 

concentration, dilution rate and agitation on the development o f structural 

complexity w ithin the pseudohyphae. Figure 9.15 shows the effect o f  changing 

both dilution rate and substrate feed concentration on the com plexity o f  the 

pseudohyphae. For low S0 concentrations there are slight differences between D = 

0.2 h '1 and other dilution rates. This difference becomes less significant as 

substrate feed concentration increases.

O
branch on subunit 1.0 
branch on subunit 2.0
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F igu re  9.15 Effect o f dilution rate and substrate feed concentration on the structure 

o f pseudohyphae, (a) 5g/L substrate feed concentration, (b) lOg/L substrate feed 

concentration, (c) 15 g/L substrate feed concentration, (d) 20 g/L feed 

concentration.

When agitation is changed at a fixed dilution rate and substrate feed concentration 

(Figure 9.16) there are negligible differences in  the structures o f the pseudohyphae 

observed. W hile this may be true, there were significant differences in the 

population classifications under these conditions (Table 9.2).
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Number of subunits in main hypha

F igure  9.16 The effect o f agitation on the structural characteristics o f 

pseudohyphae (D = 0.2 h '1, SQ = 20g/L)

T ab le  9.2 Classification (numerical fraction) data for samples used in Figure 9.16

Sample Y DY EY DEY F DF M

200RPM 3.59 8.38 2.39 9.58 5.38 22.16 48.50

500RPM 3.79 9.00 2.37 11.37 2.37 16.59 54.50

800RPM 3.18 1.91 1.91 3.18 12.74 12.74 76.43

To ensure that this analysis was sufficient to guarantee structural similarity, a more 

complex analysis was utilised in Figure 9.17. This Figure demonstrates the 

structural similarity on a subunit by subunit basis. The range o f  impeller tip speed 

used in this study suggests that the organism does not undergo mechanical breakage 

but undergoes natural breakage under a preprogrammed regime. It is apparent that 

overall diversity o f  structures may change from sample to sample yet if  the same 

pseudohyphal structure is maintained then population dynamics are controlled by 

factors other than artificial breakage, which would result in a myriad
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F igure  9.17 Branching pattern analysis for various subunits under different 

agitation conditions (a) pseudohyphae w ith three subunits in the main hypha, (b) 

pseudohyphae with four subunits in the main hypha, (c) pseudohyphae w ith five 

subunits in the main hypha (D = 0.2 I f1)
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o f structures. It is also possible to speculate that the breakdown products are fractal 

in nature and assume the shape o f  shorter pseudohyphae on breakage.

9 .7 .2  T h e  E ffec t o f  G row th  C o n d itio n s on  P seu d o h y p h a l S u b u n it L en g th

It is apparent that operating conditions have no apparent affect on the growth 

patterns o f  pseudohyphal in continuous culture. It will now  be established whether 

this is also true for subunit length within the pseudohyphal. It has been 

demonstrated previously that the length o f subunits w ithin pseudohyphal change 

w ith respect to age thus it will be necessary to study the length o f the subunits with 

respect to the structure they are part of. Little difference in mean subunit length for 

the various categories was found w hen samples from each o f  the different agitation 

speeds were examined (Figure 9.18). On examination o f the effect o f  changing 

dilution rate and substrate feed concentration on the m ean length o f  subunits within 

a pseudohypha, small differences were observed (Figure 9.19). It was apparent 

that increasing substrate feed concentration or dilution rate increases m ean subunit 

length w ithin categories. The effect o f dilution rate was less noticeable at lower 

substrate feed concentrations. The length increases were noted particularly for 

subunits with the longest effective hyphal length. Little change was observed for 

single and double subunits under all conditions.
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9 .8  N O T E  O N  T H E  C L A S S IC A L  V A L U E  O F  Lt

The classical morphological value, Le described in the literature as the longest 

interconnected path through the hypha, is meant as an indicator o f  the hyphal age. 

This term, however, is inappropriate for the morphological form  in the present 

work. I f  Figures 9.2 to 9.6 are examined, the longest interconnected line is not 

related to the true physiological length o f  the pseudohypha, the central m ain hypha 

starting at subunit 1.0 and running to subunit X.O where X  is the num ber o f 

subunits in the main hypha. Thus, therefore it is im portant to define this new value 

as Le physiological in case o f contusion w ith the above definition. It is highly probable 

that this length has been misinterpreted for other organisms for the purpose o f  

simplifying image analysis. It is unfortunate that, when the automated image 

analysis protocol was developed for the present work, the method o f Tucker et al 

(1992) was utilised which calculates Lc rather that Ls p |l y s i o l o g j c a ] ,  and so it was not 

possible to analyse the data in the required manner. The design o f  an automated 

image analysis protocol to quantify length o f the m ain hypha in  a pseudohypha, 

would be a difficult but rewarding exercise.

9.9  C O N C L U S IO N S

The pseudohyphal structure appears to be a mimic o f  a budding yeast population 

whereby each pseudohypha is a “family tree” with all subunits descending from the 

one parental subunit. Each subunit may proceed to create an observed maximum o f 

four daughter subunits, three from the active growing end and a fourth occasionally 

from the opposite pole. There is a finite lim it to the structural development o f a 

pseudohypha in a chemostat due to the inevitable washout o f older and thus longer 

pseudohyphae. The rate o f development o f daughter subunits appears to be 

controlled by the age and position o f  the mother subunit at the tim e o f budding.

The pseudohyphal structure, observed in this work, behaves completely differently 

to that o f  a true hypha. Septae in true hyphae form erratically, both in  terms o f 

intersepta distance and position, new  septa can form  either before or after a 

previously formed septa. Intracellular divisions in K  marxiamis are formed
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regularly and always after the previous intracellular division. The position o f 

branches in true hyphae is controlled by the structure o f  the septa. I f  pores exist in 

the septa o f  true hyphae, allowing protoplasmic streaming, branch formation is an 

irregular affair, with branches often emerging from m id-compartment positions (A. 

nidulans). I f  pores are absent, branch formation is polar, originating from the 

active pole o f the compartment (G. candidium). The latter agrees w ith observations 

for K. marxianus, which suggests that subunits are individual and do not interact 

with each other. The compartments formed by septa in true hypha generally 

contain multiple nuclei, wheras yeast compartments are generally m ono-nuclear 

(Fiddy and Trinci, 1976a,b).

Interesting features observed for pseudohyphal structures include the elongation o f 

subunits with respect to their distance from subunit 1.0. This is accompanied by a 

greater degree o f homogeneity in subunit length. This gives some inform ation 

about the formation and regeneration o f pseudohyphae in continuous culture. The 

fact that subunits are shorter at the start o f pseudohyphae suggests that some 

pseudohyphae may have originated from yeast-like subunits or terminal subunits. 

A high standard deviation in the length o f subunit 1.0 also suggests that the 

breakdown products o f pseudohyphae may also be used for this process. This 

would not be the case if  the pesudohypha regenerated exclusively from  random  

hyphal breakage. It is hypothesised that as a term inal subunit is formed its 

connection to the pseudohypha can be either strong or weak. This results in  either 

the subunit remaining attached to the pseudohypha and developing to its full extent 

or it will disconnect from the main hypha resulting in the formation o f a small 

single subunit. This subunit is a virgin subunit and can go on to form a new 

pseudohypha. This mechanism for pseudohyphal regeneration would also explain 

the unusual shape o f the volume distributions in Chapter 8 for the 20g/L substrate 

feed concentration chemostat. The distributions had a  sharp peak at low values for 

volum e followed by a gradual decrease. This can be explained in term s o f  the 

population regenerating itself predominantly from single subunits. For such a 

probability distribution to occur, however, there has to be preferential breakoff o f 

terminal subunits in smaller pseudohyphal than in larger ones. This is not
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unreasonable, as it is apparent that subunits appear to com m it to pseudohyphal 

growth to a greater extent as the overall length o f the pseudohypha increases.

The global pseudohyphal structure observed, on a subunit basis, is approximately 

constant with respect to m ain hyphal length (in subunits) over a wide range o f 

operating conditions. Any particular main hyphal length (in subunits) will have a 

corresponding defined branch structure. A  population o f pseudohyphae is thus 

composed o f amounts o f  discrete morphological forms, rather than the products o f 

random hyphal breakage. This rule applies up to a m ain hyphal length (in subunits) 

o f 6. After this point branches start falling off the pseudohyphae and erratic 

budding patterns are observed whereby the organism assumes bipolar budding 

patterns and budding is observed from the middle o f  subunits (Figure 9.8). This 

may be a response to a heavily bud scarred apex. The rarity o f such morphological 

forms was due to the finite residence time in the bioreactor. The reversal o f  bud 

polarity may be a genetic response, whereby the subunit 1.0 produces buds firstly in 

one direction and then completely reverse poles and initiate growth in another 

direction. This behaviour may be an attempt by the subunit to forage in as many 

directions as possible.

The mean lengths o f  the subunits were seen to vary both w ith substrate feed 

concentration (S0) and dilution rate (D). As the substrate feed concentration 

increases so does the length o f  the subunits. It is also apparent that the widths o f  

the subunits are increasing with increasing S0 and D  in Chapter 7. The effect o f 

changing D  on subunit length increases with increasing SQ. In chem ostat 

fermentations with 5g/L substrate feed concentration, the subunits are 

approximately the same length for all values o f D. A t a 20g/L substrate feed 

concentration the difference in overall subunit length is more apparent.

M ost investigations o f hyphal development in the literature, involve the study o f  

hyphae on solid m edia (Fiddy and Trinci, 1976a,b; Gimeno et al, 1993). This 

approach allows the direct measurement o f  rates o f extension with time. 

Unfortunately, the changing environmental conditions experienced on solid m edia
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result in a heterogeneity o f  morphology, thus making it impossible to examine the 

morphology o f populations behaving uniformly. Such culturing problems would 

have to be overcome before the extension rates o f  main hyphae and branches can be 

examined with time.
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CH APTER 10

SUM M ARY AND REC O M M ENDATIO NS FO R  FU R TH ER

W O RK

10.1 S U M M A R Y

On initial examination o f the morphology o f  K. m arxianus, it was noted that the 

morphology displayed by the organism could not be described as dimorphic but 

was best described as polymorphic in that it displayed a myriad o f m orphological 

forms between the yeast form and the pseudohyphal form. This fits well w ith 

recent dimorphism studies that suggest the term  dimorphism is unsuitable for the 

description o f morphology o f such organisms, and that terminology such as 

plaeomorphism or polymorphism would be more suitable.

To describe the morphology o f polymorphic organisms, requires the introduction o f 

a more rigorous classification system. The current descriptors o f yeast-like or 

filamentous are inadequate to fully describe the observed m orphology in 

fermentation. The introduction o f a seven class system was deemed appropriate, 

based on observations o f  fermentation samples. The classes introduced were as 

follows:

• Yeast - spherical to ovoid single cells

• Double yeast - the double variant o f the above

• Elongated yeast - ovoid single cells with a high length to width ratio

• Double elongated yeast - The double variant o f the above

• Filam ent - single rod-like cell

• Double filament - double rod-like cell

• Pseudohyphae - pseudohyphae composed generally o f  chains o f filaments, often 

displaying a complex branched structure.

W ith a classification system o f this nature, certain complications arise in the 

interpretion o f  small morphological differences between certain classes. A n 

example o f this is the difference between a slightly elongated “yeast” and an
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“elongated yeast” with a low length to width ratio. Differences o f this nature are 

inherently prone to interoperator misclassification. It was decided that a more 

objective system was needed to correctly classify the organism into the above 

classes. Based on an examination o f  the literature, it was concluded that image 

analysis was the best means o f achieving this goal.

The image analysis algorithm constructed was an amalgamation o f several other 

protocols previously used for the description o f various m onom orphic 

morphological forms. The classification o f  yeast and elongated yeast was based on 

the principle o f subunit separation using object segmentation. This allows the 

measurement o f the geometric parameters o f  each o f the subunits in the cell 

structure. Initially it was hoped to extend this approach to the classification o f 

filaments and pseudohyphae, but when this approach was applied to the cells it was 

inadequate. The poor degree o f curvature at the subunit interfaces and the lower 

cell width resulted in the formation o f false “subunits” . Thus it was decided to 

examine the morphology o f filaments and pseudohyphae by classical means, using 

skeletonisation and pruning to determine the geometric properties o f such cells. 

The two morphologies therefore had to be separated from  each other before any 

processing could be done. This was achieved using global size and shape criteria. 

Segmentation was applied to smaller cells and skeletonisation to pseudohyphae and 

long double filaments. The algorithm allowed the study o f  the resultant 

classifications, on a numerical and volumetric basis. It also allowed the 

examination o f gross measurement data such as the cell volume, length and width.

Certain problems exist with this current algorithm, particularly in its ability to 

morphologically examine the subunits in filamentous cells and pseudohyphae. This 

limitation was software based. The software package used, was useful for simple 

morphological operations and allowed the application o f a com bination o f  simple 

operators to achieve a desired effect, but did not include the possibility o f 

development o f custom operators. It also did not allow access to pixel level data. 

This limited the development o f the overall algorithm. There is also a recognised 

problem with the classification o f elongated yeast and filaments. As the length to
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width ratio increases the morphology will change gradually from yeast to elongated 

yeast to filaments. As the elongated yeast develop into filaments, the transition is 

smooth whereas the transition as predicted by the algorithm  is abrupt. It m ay be 

more suitable to calculate volume on the basis o f  a contour rotation method as 

suggested by Huls et al (1992) which should, in theory, deal with calculating this 

smooth transition more appropriately. Again the development o f such a protocol 

was limited by the software package utilised.

It was determined that to fully understand the effect o f environm ent on 

morphology, the effect o f  environment on the microbial kinetics on the organism 

also had to be assessed. A  simple kinetic model was proposed that described the 

stoichiometry adequately in both batch and continuous culture. The model, was 

adapted from Sonnleitner and Kappelli (1986) and involves splitting the cell’s 

sugar metabolism into two discrete kinetic routes, an aerobic and an anaerobic 

pathway. Each kinetic pathway has distinct cell yield coefficients and ethanol can 

only be generated from the anaerobic pathway. The model developed adequately 

described chemostat kinetic data solely by changing the S0 term. For the model to 

describe the effect o f variation in k/a, a relationship between k[a  and Js critical will 

have to be established. Preliminary examinations in batch culture suggest linearity 

between the two parameters. The yield coefficients determined from the chem ostat 

studies, when applied to batch culture data, describes the kinetic data well, 

suggesting that the kinetics o f the organism are essentially the same in both batch 

and continuous culture. Due to large variations in the specific substrate uptake 

rates in batch culture, and the poor quality o f the experimental substrate data, the 

model could not be adapted to batch culture data. The model proposed was 

ineffective in regions w ith low growth rates (|i < O.llV'). This is where cell 

maintenance becomes important. The kinetics o f cell maintenance are not fully 

understood and are generally not addressed in models o f this nature.

W hen the morphology o f the organism was examined in batch culture under 

various operating conditions, it was found that decreasing agitation rate caused a 

greater heterogeneity in the morphology with an increase in the volumetric
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fractions o f elongated yeast and filaments with time. Contrary to previous 

investigations, the morphology displayed under fully aerobic conditions was 

predominantly yeastlike. All cultures were observed to have large volumetric 

fractions o f yeastlike cells in the early stages o f fermentations. W hen dissolved 

oxygen became partially limiting, an increase in the m orphological heterogeneity o f 

the cultures was observed. This increase was relative to the degree o f agitation,and 

consequently the degree o f gas-liquid mass transfer occurring in these regions. 

When YEPD and YEPL media were assessed in a similar fashion it was observed 

that similar morphologies were observed in fully aerobic yeastlike cultures whereas 

in cultures subject to lower agitation rates a greater development o f pseudohyphal 

forms was observed. W hen both cell w idth and surface area to volum e ratios were 

compared between these fermentations and the comparable whey fermentation, it 

was observed that the results for both YEPL and YEPD m atch those o f  the whey 

medium. This suggests that the subunit morphology in each form is the same but 

YEPL and YEPD suppress subunit separation to a greater extent than the whey 

based media. No difference in morphology was observed between YEPL and 

YEPD suggesting that the hydrolytic step that splits lactose into glucose and 

galactose or the subsequent metabolism o f galactose have no effect on morphology. 

Thus it can be concluded that either poor mixing or poor gas-liquid mass transfer 

causes morphological transitions in the organism from  a yeastlike form  under ideal 

conditions to a m ixed morphology in poor conditions.

W hen the organism was cultured in a chemostat the prim ary morphology observed 

was pseudohyphal under almost all environmental conditions. Exceptions to this 

rule occur at low dilution rates where the cells have a strong maintenance 

requirement and at D approaching p.m. W hile the morphologies displayed in both o f 

these regions was returning to yeastlike, the yeast cells produced at low  dilution 

rates were much smaller that those produced at higher dilution rates. The 

pseudohyphae produced increased in length and complexity as dilution rate 

increased. This was also accompanied by an increase in pseudohyphal width. The 

effect o f the presence or absence o f oxygen appeared to be negligible on the 

morphology in these fermentations. There was a significant numerical fraction o f
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yeast and elongated yeast cells in all samples (up to approximately 20%) but this 

fraction was negligible on a volumetric basis. A global increase in the m ean cell 

volume and length w ith dilution rate was observed. The rate o f increase o f these 

parameters appeared to be related to increasing S0. It is apparent that substrate 

limitation is the param eter that gives the strongest morphological transition in this 

organism and not oxygen as previously thought.

As the kinetic model proposed is equally effective in describing both batch and 

continuous culture data and the gross morphology o f  batch and continuous are very 

different it has to be concluded that the cells in batch and continuous culture are 

essentially the same on a metabolic basis. For the kinetic balances to be effective 

the cells in both culturing conditions have to be manufacturing equal amounts o f 

dry m atter from substrate. The yeast like cells present a lower surface area per unit 

volume than pseuohyphal cells, therefore more wall building m aterials per unit 

volume should in theory be required to manufacture pseudohyphae. A 

compensation may be made in terms o f  storing carbohydrates (glycogen and 

trehalose) under ideal environmental conditions, when yeastlike morphologies 

prevail. Further work is required in to study this phenomenon.

I f  the population distributions are examined, it is apparent that geometric 

parameters such as volume, length and w idth cannot be described using global 

population models such as Gaussian or lognormal distributions. By distributing 

various cell subpopulations, it was discovered that the global population 

distribution could be described in terms o f  summed weighted distributions o f  the 

subpopulations. Lognormal distributions were calculated for each subpopulation 

and the results weighted using the numerical fraction o f  each subpopulation in the 

total population. The distinct subpopulatons identified were single yeastlike cells, 

double yeastlike cells, single filaments, double filaments and pseudohyphae. The 

term yeastlike included both yeast and elongated yeast, as it was found that both 

were essentially part o f  the same population. The use o f  the “elongated yeast” class 

is therefore restricted to descriptive purposes only. The global distributions 

observed for pseudohyphal populations had an unusual shape, displaying a sharp
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peak at low values o f volume and length and subsequently declining gradually over 

a large range o f volume or length. The shape o f  distributions is completely 

determined by the method o f replication o f  the pseudohyphae, hence some 

information from this data should point to mechanisms for pseudohyphal 

replication.

Pseudohyphae are composed o f subunits that fail to separate on division. It was 

decided to study the mechanism o f pseudohyphal formation using manual image 

analysis as automatic image analysis proved too difficult to implement. It was 

found that the pseudohyphae observed, developed as i f  each subunit was a budding 

yeast and that all daughter cells remained attached to their mothers. Thus a family 

tree developed whereby all cells in the pseudohypha were descended from one 

individual subunit. Subunits were also observed to elongate as the pseudohypha 

extended, suggesting that pseudohyphae are not generated by random  breakage, but 

rather develop from shorter cells, i.e. yeast and elongated yeast. The ultrastructure 

o f hypha increases uniformly with increasing main hyphal length, under all 

operating conditions except at combined low S0 and D. This suggests that 

populations are composed o f quantities o f discrete elements. For example, 

pseudohyphae were typically observed to develop from  one cell to two cells to four 

cells, very few pseudohyphae w ith three cells were observed. This may explain the 

bimodal appearance o f the distributions for predominantly pseudohyphal 

populations in Chapter 8. It was found that subunit length increased with 

increasing D  and S{) but the effect was most significant in  the cases o f  combined 

high D  and S0. Also observed in this section o f the work was the fact that when a 

subunit is in the terminal position o f a hypha, it extends rapidly. Once a bud has 

been produced, the extension rate o f the mother subunit is minimal. There also 

appears to be a predestiny for a subunit’s length tube related to the length o f its 

mother subunit. It was observed that this occurrence applied to cells on the main 

hyphae and cells in branches.
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10.2  O V E R A L L  C O N C L U S IO N S

To propose a hypothesis for morphological transition all evidence gathered in this 

work has to be examined carefully. Firstly, the transition does not significantly 

alter cell metabolism. This would indicate, as suggested in Chapter 2, that 

dimorphism is simply the response o f  a slight change in the rates o f various 

enzymatic pathways responsible for wall formation, rather than a global cellular 

change. Chemostat data suggests that cell w idth is increasing linearly w ith dilution 

rate. I f  carefully examined, it is seen that values o f w idth increase linearly towards 

those values observed in batch culture. This suggests that the elongation 

component o f  dimorphism is completely controlled by growth rate. In  batch 

culture, this also correlates with observations that as the cells elongate as agitation 

decreases (accompanied by a decrease in growth rate). The decreases, in growth 

rate, in batch culture are not as significant as those in chem ostat culture, so the 

transitions reported are not as significant. Cells will always grow at the maximum 

possible growth rate and generally the only factor controlling growth rate in a cell 

is the acquisition o f nutrients. This is controlled in regions o f substrate limitation 

and hence this is how substrate limitation affects elongations. In the m atter o f 

subunits not separating after generation, this appears to be an on-off effect with 

cells either predominantly separating or not separating according to environmental 

conditions. Generally cell separation does not occur i f  the cells are sufficiently 

elongated.

Cells in chemostat culture have to regenerate themselves at the same rate as they 

are removed from the reactor. I f  all cells keep extending without cell separation, 

hypothetically, the culture could end up containing one pseudohypha encompassing 

the entire fermenter. This is obviously not the case, as the culture reaches an 

observed morphological steady state. Therefore, the population requires some 

means o f self-maintenance. This regeneration is hypothesised to originate from 

two different sources. The large numerical fraction o f yeast and elongated yeast in 

such populations can provide a reservoir o f cells from which to generate a 

population o f pseudohyphae. Secondly, old pseudohyphae were observed to 

disintegrate into smaller pseudohyphae. This would explain the high standard
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deviation in the length o f the first subunit in pseudohyphae, as there are two 

probable routes for first subunit formation. The yeast cell population must be 

predominantly self-maintaining, as it seems less probable that they originate from 

the tips o f  pseudohyphae. Figure 10.1 outlines a possible route for cell cycling in 

the reactor.

 ► Yeast and Elongated Yeastit
Double yeast and Double Elongated Yeast

I
  M ycelium  i -»  Shorter M ycelium

II
  Filaments and Double Filaments

F igu re  10.1 Overview o f possible morphological pathways based on experimental 

observations

This body o f work provides several novel techniques and approaches useful in the 

examination o f the morphology o f dimorphic organisms and has shown 

conclusively that the dimorphic transition does not affect process performance but 

rather is a response to process environment. It does not claim to have fully 

explained the mechanisms behind dimorphism, but rather highlights deficiencies in 

current approaches to dimorphic research. Currently there is a strong emphasis on 

genetic investigations in this area which are looking for on-off mechanisms in 

dimorphic organisms. It is probable that a lot o f  this w ork is misguided as 

dimorphism appears to be controlled by rate balances in the cells mechanism o f 

wall development. I f  progress is to be made in this area, more mechanistic studies 

o f this nature need to be carried out to fully understand the control processes behind 

this unusual biological phenomenon.
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10.3 P O S S IB L E  A R E A S  O F  F U T U R E  R E S E A R C H

10.3.1 Im a g e  A n a lysis

To develop an algorithm that examines the morphology o f  all cells on a subunit 

basis and calculates volumes based on a contour rotation method is essential to 

future studies. The experimental work described in Chapter 9 was very time 

consuming and tedious and it proved difficult to generate the quantities o f  data 

required for a more complex analysis o f this nature. A method based on current 

imaging software would allow the isolation o f perim eter points from which it 

would be possible to identify points o f constriction in pseudohyphae with greater 

ease. This would also allow the generation o f  contour rotation methods to estimate 

the volume o f the various morphologies more accurately.

10 .3 .2  K in e tic  M o d ellin g

The kinetic study uncovered some interesting phenom ena that require further study. 

Firstly, the model needs to be verified using off-gas analysis whereby the amount 

o f C 0 2 evolved and 0 2 consumed could be used in mass balances to validate the 

above approach. The model also has to be adapted to include a variable k ja  term. 

This was not possible due to the lack o f a dissolved oxygen probe for the chemostat 

fermenter. A  dynamic batch culture model has to be developed which needs to 

address the variable substrate uptake rate observed when ethanol production begins. 

Again this will require more sensitive mechanisms o f substrate utilisation 

measurement, such as off-gas analysis and possibly on-line analysis o f lactose 

concentration in the fermenter.

10.3 .3  M o r p h o lo g y  S tu d ies

W hile several key issues have been identified in this work concerning model 

development for hyphal extension, more detailed studies w ill have to take place to 

analyse phenom ena to a greater degree.

• Batch to continuous culture transition studies will yield information about the 

speed o f  the transition from yeastlike to filamentous/pseudohyphal forms. This 

should allow the assessment o f whether there is a genetic effect in dimorphism 

or not.
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• The morphological transition is now understood to be a growth rate dependent 

phenomenon. M athematical analysis should attempt to relate kinetic model 

findings to overall population morphological dynamics.

•  In terms o f  predicting pseudohyphal development, a m odel should be 

developed that encompasses some o f  the above findings. M odels describing 

the cell cycles o f  budding yeast should be a good starting point for this work. 

Such models propose that division is a function o f  age and time. This model 

hypothetically should have a  third parameter, the global position o f  the subunit 

w ith respect to subunit 1.0.
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