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Abstract

Biologically active amines in cheese and fish arising from metabolic activities o f 

food-borne microorganisms have been implicated as the causative agents in many 

food poisoning outbreaks. An awareness o f amine levels in foods today is therefore 

important in relation to food spoilage and safety.

In recent years there has been increased consumer awareness about food 

composition and safety and a corresponding increase in regulatory action. The food 

industry requires reliable and cost effective analytical methods for process and 

quality control to meet the needs o f  the consumer. Therefore, this study focussed on 

comparing conventional analytical methods involving HPLC and fluorimetry, for 

histamine analysis in food.

Irish cheeses and canned tuna samples were selected for analysis o f histamine 

content by a standard fluorometric technique. The cheeses, Cheddar, Cooleney, 

Edam, Emmental and Brie were analysed over a three-week period and observations 

of any changes in histamine levels were made. All samples were stored at 4°C until 

analysis to replicate the retail outlet storage conditions. The histamine levels found 

in cheese in this study were low in comparison to levels in reported literature, 

ranging from 0.2 to 4.3 mg/lOOg and were non hazardous for consumption. Canned 

tuna was analysed by the same technique. Results from this study showed that the 

tuna contained high levels o f histamine, 20 mg/lOOg that increased to hazardous 

levels upon putrefaction after a 96 hour period. A HPLC method of detection was 

established based on the derivitisation o f histamine with dansyl chloride and UV 

detection with the aim o f detecting histamine quantitatively in food samples and to 

facilitate correlation studies with the fluorometric method o f detection. A novel 

method, based on an amine oxidase system coupled to an ammonia sensing 

calixarene, was investigated as an alternative and improved method o f histamine 

detection.

v



1.1 Introduction

Biogenic amines are chemically defined as low molecular weight aliphatic, 

alicyclic, or heterocyclic organic bases (Table 1.1) formed from the 

decarboxylation of amino acids by the metabolic activity o f bacteria, plants and 

animals. The decarboxylation process can proceed through two biochemical 

pathways: decarboxylation through endogenous (naturally occurring)

decarboxylase enzymes or by exogenous decomposition through enzymes 

released by microflora. The production o f amines by the exogenous process is 

considered far more significant. (Rawles and Flick, 1996).

Biogenic amines are naturally present in a wide variety o f foods in low 

concentrations. As they are derived from amino acids they can be found in 

practically all protein-containing foods such as meat and fish and as a result of 

bacterial action are found in fermentation products such as beer and sauerkraut. 

The number o f R groups bound to the nitrogen moiety is used in the 

characterisation o f amines, i.e. primary, secondary or tertiary (Figure 1.1).

Table 1.1: Biogenic amines and their different structural classes.

Aliphatic Aromatic Heterocyclic
Putrescine Tvramine Histamine
Cadaverine Phenyletyylamine Tryptamine
Spermine

Spermidine

Figure 1.1: Amines are characterised by the number of R groups bound to 

the nitrogen

Primary amine: Secondary amine:

R --- N -------  H H ----  N   H
I I

H R-
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Tertiary amine:

R ---  N ---------H"

I
R'

Histamine, 4-(2-ami noethyl )imidazo I e) is a primary heterocyclic amine derived 

from the decarboxylation o f the amino acid L-Histidine (Figure 1.2). It plays an 

important role in biological processes (vasodilation and gastric acid secretion) 

but also occurs exogenously in the food supply and can cross the intestinal 

barrier. Intoxication can result if significant quantities cross the barrier and enter 

the bloodstream (Taylor, 1988). There have been many reported incidences of 

food poisoning involving histamine/other amines and as a consequence 

determination of these levels in foods is an important aspect o f food safety.
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Figure 1.2 Biological pathways for the formation of amines
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1.2 Biogenic Amines in Food

Biogenic amines are present in a wide variety o f foods from non-fermented 

foods such as fish, meat, chocolate, milk and fruit to fermented products like 

wine, cheese, beer and sauerkraut. There is a vast amount o f reported data o f 

amine levels in these foods (Maga, 1978, Smith, 1981 and Santos, 1996) which 

outlines the necessity to be able to identify possible contributors to histamine 

poisoning.

1.2.1 Non-Fermented Foods

The presence o f biogenic amines above a certain level in non-fermented foods 

arises as a consequence o f undesired microbial activity and indicates some level 

o f food spoilage. Foods with a high protein content such as fish and meat are 

candidates for amine production by such microbial activity.

1.2.1.1 Fish

Scombrotoxin poisoning (histamine poisoning) is caused by the ingestion o f 

foods containing high levels o f histamine and may also include other vasoactive 

compounds such as cadaverine and putrescine. Scombroid fish poisoning was so 

called as it was historically associated with the ingestion o f spoiled fish from the 

scromboid families which include tuna, mackerel, skipjack and bonito. Non- 

scromboid fish such as mahi-mahi, herring, sardines and anchovies have also 

been implicated with outbreaks. (Morrow et al. 1991). These fish all contain 

high levels of free histidine and other amino acids in the fish muscle, which 

serves as an excellent medium for the growth o f invading bacteria. (Karmas, 

1981). Proteolysis, either autolytic or bacterial, may play a role in the release o f 

free histidine from tissue proteins. (Taylor, 1986). Histidine can be catabolized 

in two ways in fish muscle: Amino-acid deamination to obtain urocanic acid or 

histidine decarboxylation to produce histamine. (Santos, 1996). Any food with 

the appropriate amino acids and that is subjected to certain bacterial 

contaminants and growth may lead to scombroid poisoning if  ingested. (Food 

and Drug Administration, 1998).

The illness is an intoxication, so the incubation period is rather short ranging 

from immediate to 30 minutes after ingestion of the spoiled food. (Taylor, 1986)
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The duration o f the illness is usually three hours but may last several days (Food 

and Drug Administration, 1998). Histamine poisoning is most often confused 

diagnostically with food allergies as they share identical symptoms and can be 

treated by antihistamines. It can be distinguished from food allergy on the basis 

of; a) no previous history o f a reaction to the food, b) high attack rate in group 

outbreaks and c) high histamine levels detected in incriminated foods. (Taylor, 

1986, Taylor, 1988).

Symptoms include flushing, nausea, vomiting, diarrhoea, headaches, dizziness, 

rash and sometimes swelling o f the face and tongue (Morrow, et al. 1991). 

There has been considerable doubt as to whether histamine is the causative 

agent in scombroid fish poisoning. Evidence supporting this doubt is the fact 

that when individuals are administered histamine orally no significant 

symptoms associated with scombrotoxism are observed. Luthy and Schlatter 

(1983) in a placebo-controlled double blind experiment showed that histamine 

(25mg) administered orally in apple juice to 27 healthy volunteers did not show 

any significant effect. This was also true o f wines containing natural amounts of 

histamine (non-detectable to 21 ppm). (Luthy and Schlatter, 1983).

However Morrow et al. (1991) provided evidence that histamine is the causative 

toxin o f scombroid fish poisoning. Poisoned individuals who had ingested fish 

containing high levels of histamine began to exhibit symptoms ten to thirty 

minutes after ingestion. Their urine was analysed one to four hours afterwards 

and showed histamine and N-methylhistamine levels o f 9-20 times and 15-20 

times the normal mean, respectively. Levels dropped with time and after 14 

days they were back to normal. It was concluded that the histamine in the urine 

was most likely derived from the spoiled fish and the results showed histamine 

to be the toxin responsible. (Morrow et al. 1991).

Two hypotheses have been proposed to explain this paradox between the 

toxicity o f histamine when consumed in conjunction with spoiled fish and the 

lack of toxicity when reagent-grade histamine is ingested. The biogenic amines 

cadaverine and putrescine, which have been shown to be present in spoiled fish 

(Mietz and Karmas 1977), acting as potentiators, are at the basis o f both 

hypotheses. Since the oral ingestion o f toxic levels o f histamine alone does not 

lead to fatality, it was proposed that a barrier to histamine absorption exists in 

the gut. Large amounts o f mucin bind to histamine hindering its absorption
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while detoxification occurs by enzymatic processes as it is released from the 

mucin.

The inhibitor hypothesis proposes that the potentiators act by inhibiting 

intestinal metabolism of histamine, i.e. inhibiting histamine-metabolising 

enzymes diamine oxidase (DAO) and histamine-N-methyltransferase (HMT), 

therefore allowing more histamine, relative to its less toxic metabolites reaching 

circulation (Lyons et al. 1983).

The barrier diffusion hypothesis proposes that through inhibition o f the binding 

o f histamine to mucus which lines the epithelial cells, the potentiators alter the 

barrier function o f the small intestine and allow greater quantities o f histamine 

to diffuse across into circulation. Histamine binding was decreased 46.5% by 

spermine, 9.5% by cadaverine and 11.1% by putrescine. (Chu and Bjeldanes, 

1981).

Temperature and storage

The toxin, once produced is incredibly resistant to degradation so to prevent its 

formation immediate packing at 0°C is essential as soon as possible after the 

fish is caught. I f  fish are allowed to remain at room temperature, tissue 

concentrations o f histamine rise rapidly due to the bacterial action on free 

histidine. Figure 1.3 shows that at 4°C no significant rise in histamine levels 

occured after 14 days storage, although the appearance and odour deteriorated 

indicating psychrophilic spoilage had occurred.



Figure 1.3: Rise in histamine levels with decomposition in 

various fish.

(Edmunds and Eitenmiller, 1975)

Histamine-forming bacteria are capable of growing and producing histamine 

over a wide temperature range, but growth is more rapid at temperatures above 

20°C. Once the histidine decarboxylase has been formed, it can continue to 

produce histamine even if  the bacteria are not stable. (Food and Drug 

Administration, 1998). The enzyme can be active at or near refrigeration 

temperatures. After cooking, recontamination o f the fish with the enzyme- 

forming bacteria is necessary for additional histamine to form, therefore 

histamine development is more likely in raw, unfrozen fish.

In the fishing industry, good handling practices are used to control histamine 

formation. They include icing or rapid immersion o f the catch in chilled water (- 

1°C), followed by uninterrupted frozen storage. At high storage temperatures 

histamine can form long before other indicators o f decomposition are detected 

such as odour and physical appearance o f decomposition. The rate o f histamine 

formation at low temperatures is much slower and the other indicators of 

decomposition are evident in the same time frame. (Food and Drug 

Administration, 1998).
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A new problem has been the increased duration o f fishing voyages to obtain 

greater catch quantities and less than adequate handling and storage facilities 

onboard ships which results in less fresh fish for the processor and increases the 

potential for histamine formation. (Karmas, 1981).

Canned fish are o f considerable concern in relation to food safety. The fish is 

prepared from previously frozen fish, which is then thawed before processing 

and thus is subjected to additional handling, which may result in higher 

histamine levels. Karmas and Mietz showed that histamine exhibited a marked 

increase in concentration with canning where levels were twice that o f uncanned 

fish. (Karmas and Mietz, 1978).

Table 1.2: Approximate Safe Shelf life at Various Storage Temperatures

Product
Temperature

Safe Shelf 
life(days) with 
Rapid Cooling

Safe Shelf 
life(days) with 

Delayed Cooling
0°F (-17.8°C) No limit No limit

32°F (0°C) 14 8

38°F (3.3°C) 10 7
40°F (4.4°C) 7 5
50°F (10°C) 3 0

70°F (21.1°C) 0 0

90°F (32.2°C) 0 0

(Food and Drug Administration, 1998).

As can be seen from Table 1.2 the safe shelf life is significantly reduced above 

4.4°C and fish should not be subjected to this temperature for more than four 

hours.
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In fish, the most important histamine-producing bacteria are Morganella 

morganii, Klebsiella pneumonia and perhaps a few other enteric bacteria. 

(Taylor, 1986).

Figure 1.4: Microbial Isolates showing Histidine-decarboxylase activity.

Identification of isolate Decomposition temp on which 

found

Source

Acineiobacter Iwojfi 0, 15

Aeromonas hydrophelia 0, 15 Beef

Citrobacter freundii 15 Skipjack tuna

Clostridium perfringens 15,30 Skipjack tuna

Enterobacter sp. 30 Food, tuna

Escherichia coli 15,30 Tuna

Hafnia alvei 15, 30 Tuna, mackeral

Klebsiella sp. 15 Tuna, mackeral

Morganella morganii 0,15,30 Scombroid fish

Proteus vulgaris 30 Beef, pork, turkey

Proteus sp. 15 Fish, tuna, mackeral

Vibrio sp. 15 Mackeral

(Rawles and Flick, 1996)

Histamine in raw fish is not uniformly distributed in the tissue muscle. It is 

usually higher in tissue close to the gills or intestines that are the main areas for 

histamine-producing bacteria. The bacteria naturally exist here with no harm to 

the fish but when death occurs, the fish’s defence mechanisms cease to inhibit 

bacterial growth and so histamine levels increase with the growth o f these 

histamine-producing species. The levels also vary within a species of fish. It is 

for these reasons that histamine by itself does not serve as a reliable index of 

spoilage. (Karmas and Mietz, 1978). A level o f 50ppm in one section may 

accompany a level in excess of 1000 ppm elsewhere in the same fillet (Fish and 

fishery products hazards and control guide, 1998). The Food and Drug 

Administration (FDA) have set a hazard action level for histamine in tuna of
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50mg/100g(500ppm) o f fish. A level o f 20mg/100g(200ppm) is considered 

evidence o f decomposition. There is uncertainty about the level o f histamine 

that is considered toxic due to the fact that potentiators o f  toxicity which lower 

the effective dosage may be present in the fish (Taylor, 1985), and the variance 

o f detoxification mechanisms in individuals.

Incidence

Fish is the major source o f protein in the Japanese diet and therefore it is not 

surprising that this country has a very high incidence o f food poisoning 

outbreaks.

Most outbreaks in Japan involve a large number o f people with the largest 

outbreak occurring in 1973 where 2656 people were effected. Given that raw 

fish is the preference in Japan one would expect it to be responsible in the 

majority o f cases, however most illnesses are associated with cooked fish. One 

argument to explain this is that only the highest quality fish is used for 

consumption in this manner.

Since the 1970’s the countries with the most reported cases o f histamine 

poisoning have been Japan, U.S.A. and Britain but better reporting may account 

for such figures.

The type o f fish caught and methods o f harvesting are important determinants in 

histamine poisoning. In Scandinavian countries where there is a high 

consumption o f fish, one would expect many outbreaks like Japan but there 

have been very few incidents o f poisoning. The type o f fish consumed is not 

prone to histamine formation and catching and storage temperatures are low 

which decrease the possibility o f such formation.
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Table 1.3. Reported Levels of Biogenic Amines in Fish.

Fish

source

Histamine

(mg/IOOg)

Cadaverine

(mg/IOOg)

Putrescine

(mg/IOOg)

Reference

Canned

tuna

1.97 0 .8 0 .1 2 Kim and 

Bjeldanes 

1979Canned 

tuna *

118 1 0 .8 1.25

Canned

tuna

0.38 0.15 0 .1 2 Mietz and 

Karaias 

(1978)Canned

tuna*

25.3 1.93 0.25

Canned

tuna

3.46 Taylor,

1978

Sardines 0.79 - -

1.2.2 Fermented Foods

The use of micro-organisms in food by the food and drinks industry has 

supplied us with many products today especially in brewing and wine 

production where the production of alcohol is derived from yeast’s and lactic 

acid bacteria. However these micro-organisms do not just produce beneficial 

substances as part o f their metabolism but also present are unwanted and 

potentially hazardous products like amines.

1.2.2.1 Cheese

After fish, cheese is the next food product responsible for food poisoning 

outbreaks, and numerous cases have been reported. (Sumner et al. 1985). 

Cheese acts as a perfect environment for amine production supplying substrates, 

the presence and activity o f bacteria and enzymes, proteolysis, water availability 

and ideal ripening and storage conditions. (Edwards and Sandine, 1981). The 

amine content in fresh milk is quite small which is why proteolysis may play
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such an important role in the formation o f histamine by the release o f free 

histidine. The precursor amino acid, tyrosine is present at high concentrations in 

cheese and may give rise to tyramine, which has the effect o f causing the release 

of noradrenaline from the sympathetic nervous system. This in turn causes an 

increase in blood pressure and can cause serious headaches and even induce a 

brain haemorrhage or heart failure. (Smith, 1981).

The body possesses a natural detoxification system to eliminate amines by 

conversion to an aldehyde through the action o f monoamine oxidase (MAO). 

However, drugs known as monoamine oxidase inhibitors used for the treatment 

of depression and other psychiatric illness hinder the detoxification process. 

When these drugs are taken along with the ingestion of tyramine containing 

cheese, the “cheese reaction” occurs where a hypertensive crises is provoked. 

(Marley and Blackwell, 1970).

Studies have shown that in 4-6 month Cheddar cheese 2pmol. o f histidine, 

tyrosine and tryptophan are present per gram of dry weight. (Voigt et al. 1974). 

For histidine this accounts for 12g/100g cheese at 36% moisture. Only 0.83% of 

this would be required to produce a toxic level o f lOOmg/lOOg.This suggests 

that substrate availability is not a limiting factor in amine production in cheese. 

Edwards et al. confirm this in experiments where bacterial isolates from various 

cheeses were tested for amine- producing potential by measuring carbon dioxide 

production from the amino acids.

Amino acid decarboxylases require pyridol phosphate for activity and they 

found that concentrations ranged from 42-215pg/100g, which appears to be 

sufficient to saturate the decarboxylases needed for amine production. (Edwards 

et al. 1981).

Outbreaks o f histamine poisoning have occurred following the consumption of 

cheese containing high levels of histamine. (Chambers and Starusziewicz, 1978, 

Sumner et al. 1985).
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Table 1.4. Reported Levels of Biogenic Amines in Cheese

Cheese Histamine

(mg/lOOg)

Tyramine

(mg/lOOg)

Reference

Cheddar 1 26.5 108.5 De Vust et al. 

1976

Cheddar 2 4.6 65.0

Edam 8 .8 Trace

Camenbert 2.4 Trace

Brie 1.4 39.8

Cheddar 14.0 24.0 Voigt et al. 

1974Edam N.D. 31.0

Camenbert 7.0 1 2 .0

Gouda 7.5 29.0

Cheddar 1 5.8 - Chambers

and

Staruszkiewicz

1978

Cheddar 2 1.2 -

Camenbert 0.7 -

Swiss 116 -

1.2.2.2 Wine

Wine, as it is a product o f the fermentation process, is a candidate for high 

biogenic amine content. Headaches from red wine consumption are a common 

complaint and can be induced by histamine in wine in people with histamine 

intolerance. Histamine intolerance is due to impaired histamine degradation 

based on decreased activity o f the detoxification enzyme diamine oxidase 

whether it be natural deficiencies or inhibition from drugs (MAO inhibitors), 

other amines (cadaverine and putrescine) or competitive inhibition from
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alcohol. It is believed that 4 to 7 per cent o f the population has difficulty in 

eliminating histamine from their bodies.

Classic red wine headache occurs within two hours o f consuming less than two 

ounces o f wine. The headaches are migraine in nature and are accompanied by 

flushing and congestion, symptoms o f histamine poisoning. (Jarisch and 

Wantke, 1996).

There are several types o f headache, vascular, tension, pressure and 

inflammatory. Wine headaches are usually vascular in nature due to the 

presence o f vascular compounds causing the dilation o f blood vessels when 

ingested. (Shore, 1996).

Red wines in general contain higher levels o f histamine than white wines. In a 

study by Baucom et al, they reported that while histamine levels were higher in 

red wines, cadaverine and putrescine levels where higher in white wines and 

that a great deal o f variation in amine content existed among grape varieties 

and wines produced by different vintners. (Baucom et al. 1986). Red wine 

contains about 20-200 fold more histamine than white wine. Jarisch and Wantke 

reported a range o f 60-3,800|_ig/L (6-380mg/100g) in red wine and 3-120pg/L in 

white wine (Jarisch and Wantke, 1996).

Table 1.5. Histamine in Austrian red and white wines.

Wine Level (p.g/L) Wine Level (f-ig/L)

Red wine White wine

Cuvee 1989 3,776 Riesling 1989 1 2 0

Bordeaux 1989 2,197 Riesling 1988 42

Zweigelt 1991 281 Chardonnay

1988

35

Goldeck 1988 133 Messwein

1991

9

Cuvee 1987 92 Langenloiser

1988

3
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1.3. Production by Micro-organisms

Amino acid decarboxylases are not widely distributed among the bacterial 

population but species such as Bacillus, Proteus, Klebsiella, Pseudomonas, 

Salmonella and the lactic acid bacteria Lactobacillus are capable of 

decarboxylating one or more amino acids.

However not all are prolific histamine producers. Taylor et al (1978a) tested 

1 1 2  bacterial strains for their potential to produce histamine levels capable of 

causing food poisoning. O f the organisms tested only Proteus morganni and 

Enterobacter aerogenes had the capability o f causing an outbreak o f food 

poisoning. The strains were capable of producing over 200nmoles/ml 

(4.0mg/100g tuna) o f histamine in TFIB, trypticase-soy broth-histidine 

medium, which is generated from raw tuna fish. There are a lot o f differences 

between the media and solid tuna flesh but the growth and histamine formation 

in the media should demonstrate an organisms potential to cause histamine 

accumulations in fish. The average histamine production for P. morganni and E. 

aerogenes following 7-hour incubation amounts to 500 and 133mg/100g tuna, 

which is enough for illness to occur. (Taylor et a l  1978a).

As discussed in section 2.1.1 low storage temperatures are used in the fishing 

industry to control bacterial histamine formation. The lower temperature limits 

for production o f toxicologically significant levels o f histamine in tuna fish 

infusion broth were 7°C for Klebsiella pneumonia; 15°C for both Proteus 

morganni strains and 30°C for Hafnia alvei, Citrobacter freundii and 

Escherichia coli. The abilities o f the Proteus and Klebsiella species to produce 

significant levels o f histamine at these low temperatures is critical to the 

freezing and storage conditions on board fishing vessels.

P. morganni and K. pneumoniae produced large quantities o f histamine in a 

short period of time (<24 hours) with K. pneumoniae producing a maximum 

amount (42^moles/ml by 24 hours o f incubation at 37°C and then declining. 

The levels o f histamine production with P. morganni accumulated up to 72 

hours incubation. This is a significant result as fish containing these strains may
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accumulate high levels of histamine in a short amount o f time but yet show no 

appearance o f spoilage. (Behling and Taylor, 1982).

Detection o f histidine-decarboxylating bacteria may be difficult as often they 

account for a minority o f bacterial species present in fresh fish. To facilitate 

detection, a histidine-containing agar medium was developed for the 

quantitative detection o f these organisms. The organisms will decarboxylate the 

histidine incorporated into the medium converting it to histamine, which 

corresponds to a marked pH change in the agar. Also incorporated is a pH 

indicator, so any colonies positive for histamine producing bacteria appear 

purple with a purple halo on a yellow background. (Niven JR. et al. 1981). 

Histamine production can be confirmed in the cultures by a modified 

fluorometric method (Shore et al. 1959).

This plating method does not work with most histamine-producing, dairy- 

related bacteria due to lactic acid being produced simultaneously with histamine 

and so a pH change cannot be observed as histidine is converted to histamine. 

An alternative method involving a two step enzyme system was developed by 

Sumner et al (1988).

Bacterial isolates are incubated on histidine incorporated de Man, Rogosa and 

Shapre (MRS) broth, which is then reacted with diamine oxidase. Histamine is 

oxidised by the enzyme, producing imidazole acetaldehyde, ammonia and 

hydrogen peroxide. The hydrogen peroxide is detected by the formation of 

crystal violet from the leuco base in the presence o f horseradish peroxidase. A 

purple colour results if  the bacteria have produced more than 1 2 0 0 nmole 

histamine per millilitre. Other amines will not interfere in the assay. (Sumner 

and Taylor, 1988).

1.4 Amine Oxidases

Amine Oxidases are enzymes which catalyse the oxidative deamination of 

mono-, di- and polyamines with the formation of an aldehyde, ammonia and 

hydrogen peroxide.

RCH2NH2 + 0 2 + H20  RCHO + H20 2 + NH3
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In the case o f Histamine:

H i s t a m i n e  +  O 2 +  H 2O  —> im id a z o le a c e ta ld e h y d e  +  N H 3 +  H 2O 2

The enzymes are divided into two separate groups. The first group is the flavin 

co-factor dependent enzymes known as monoamine oxidases (MAO), EC 

1.4.3.4. These oxidases are located in the outer mitrocondrial membrane and 

metabolise neuroactive amines. Inhibitors o f these enzymes are effective in the 

treatment o f Parkinson’s disease, schizophrenia and clinical depression.

The second group is the copper amine oxidases or diamine oxidases, EC 1.4.3.6 , 

which are found in animal tissue and plasma, plants, yeast’s, fungi and bacteria. 

(Malmstrom et al. 1975). The metabolic function o f these enzymes is the 

breakdown of a number of biologically active amines.

Highly purified enzymes have been obtained from the fungus Aspergillus niger, 

pea seedlings, bovine blood plasma, pig plasma and pig kidney cortex.

The amines most rapidly oxidised are the aliphatic monoamines with chain 

lengths C3-C6 including agmatine and histamine. Tyramine and tryptamine are 

oxidised at a slower rate. Pig kidney oxidases oxidise alkyl diamines such as 

cadaverine and putrescine most rapidly but histamine is also a good substrate. 

The purification o f the enzyme from this source has been used in a number of 

studies (Bouvrette et al. 1997) because o f its specificity for these diamines 

which are very important from a toxicological point o f view.

The optimal substrate concentration for enzyme activity is 34mM for cadaverine 

and ImM for histamine in the pH range 6.3 and 7.4. Histamine inhibits activity 

at concentrations greater than ImM  and hydrogen peroxide produced during the 

reaction o f a diamine and the enzyme inhibits activity at neutral pH. (Mondovi 

etal. 1971).

Copper is the only metal found in significant quantity in the amine oxidases and 

is an essential component for activity. The copper ions are firmly bound but can 

be partially removed by treating with diethyldithiocarbamate (Yamada and 

Adachi, 1971). Activity is lost on removal of the copper and reacti vation can be 

achieved by addition o f suitable amounts o f Cu .
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1.5 Methods O f Analysis

Many methods are available for the detection o f histamine but only a few have 

been specially developed for detection in foods. The most popular methods are 

the fluorometric assay, enzymatic and chromatographic techniques and more 

recently immunological detection and the use o f biosensors.

The fluorometric procedure is the official AO AC method and is most commonly 

used for histamine determination. (AOAC, 1990). The method involves 

extraction with methanol followed by selecting for histamine over other amines 

and amino acids by passing the sample through an ion-exchange column and 

reacting with o-phthaldialdehyde and fluorometric measurement. It is an 

accurate and sensitive method but tends to be slow and laborious.

1.5.1 Fluorometric Method for Histamine Analysis

Fluorimetry as a technique offers a number o f distinct advantages over other 

conventional techniques, primarily its sensitivity. It is greater than 100 times 

more sensitive than colourimetry and offers a limit o f detection down to the 

nanomolar range. (Roth, 1971). The fluorometric method is based on the 

coupling o f histamine to a compound called o-phthaldialdehyde (OPT/OPA) at 

a highly alkaline pH to form a fluorescent product. The complex is then 

acidified which further enhances stability and a signal is obtained using a 

fluorimeter. Many other primary amines and amino acids react with OPT in the 

initial alkaline conditions but there are relatively few compounds which can 

form an acid-stable fluorophore and are broken down upon acidification. 

(Shore, 1971b). However, there are a small number o f interfering reaction 

products, which must be removed by purification/clean-up procedures such as 

ion-exchange chromatography and organic extractions. (Shore, 1971a, Taylor et 

al. 1978b). The reagent rapidly forms fluorescent derivatives at room 

temperature, is non-fluorescent itself and does not breakdown and form 

fluorescent by-products when present in excess. (Alvarez-Coque et al. 1989).
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Figure 1.5: Condensation of OPT with Histamine.

(Goutgou etal. 1987)

Optimum fluorophore formation occurs at pH 12.5 after 10 hours under nitrogen 

at -20°C. Under these conditions histamine as low as lng/ml can be measured 

and is therefore much more sensitive than the conventional assay. Fluorometric 

intensities at these conditions are almost twice that o f standard conditions (20°C 

for 4 minutes). (Hakanson and Ronnberg, 1974). Obviously this method would 

severely limit the amount of samples analysed due to the length o f time 

involved in the reaction.

The acid-stable fluorescence obtained following condensation of histamine with 

OPT at an alkaline pH is reasonably specific for N-unsubstituted imidazol- 

ethylamines. Compounds such as histidine, histidylhistidine and other hisdtidyl 

end group peptides can react with OPT in the same way as histamine but the 

purification procedures mentioned above eliminate them. (Shore, 1971a).

Since biological fluids are composed o f complex matrices and can include 

histamine mixed with other compounds it is essential to see if  they can effect 

the fluorometric assay to any degree.

Kownatzki et al. (1987) analysed low weight molecular amines and amino acids 

for interference with the assay and they observed three mechanisms of 

interference.

• Mimicking o f histamine.

• Suppression o f histamine fluorescence

• Generation o f increased histamine fluorescence during the excitation of the OPT-

histamine complex with daylight or UVA light.
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Table 1.6: Substances producing histamine-like fluorescence after butanol 

extraction and condensation with OPT.

m o l/i1

S perm id in e 4 X I 0 - S
N o rad ren a lin e 5 X lO "4
Sperm ine 4 X 1 0 -1
P u iresc ine 3 X 1 0 -3
T ryp tam ine 5 X 10-3
5-O H -T ryptam ine 5 x  1 0 -3
A drenaline io - ;
3-O H -T yram ine io -2
M ethyl h is tam in e 2 X ID -2
A den ine 6 X 1 0 -2

’ C o n cen tra tio n s giving the sam e fluorescence as
5 X  1 0 '7 moUl o f  h istam ine.

(Kownatzki et al. 1987)

Histamine fluorescence was suppressed by methylhistamine, 3-OH-tyramine 

and 5-OH-tryptamine. These only were effective when added before the OPT to 

the sample and no suppression occurred on addition after OPT condensation had 

proceeded.

In order to show the generation of added fluorescence the histamine-OPT 

product was left sitting in a cuvette and a constant increase in signal, seven 

times the starting signal was observed after 25 minutes. This time could be 

reduced if  exposed to daylight or a 20W UVA fluorescent lamp. Samples kept 

in the dark for the same length o f time did not show this increase in 

fluorescence. This phenonomen was experienced by other amino acids but no 

biogenic amines including histamine experienced the increase in fluorescence. 

Staruszkiewicz et al, observed a similar increase in fluorescence when 

conducting stability experiments on the OPT-histamine derivative. They noticed 

that fluorescence intensity decreased 5 and 7% after 1 and 5 hours respectively. 

When the samples were stored in fluorimeter tubes in room light, minute gas 

bubbles formed in the tubes adding to fluorescence but intensities returned to 

normal when the solution were transferred to new tubes. (Starusziewicz et al.

20



1977). interferences by other compounds were remarkably decreased by the 

butanol extraction step showing its selectivity for histamine over other 

interfering compounds.

A number o f important precautions were outlined in order to determine the 

presence of interferences.

1. By determining the recovery o f pure histamine from a spiked sample, the 

presence of histamine fluorescence-suppressing compounds can be determined.

2. Digesting with either diamine oxidase or histamine methyl transferase allows 

the determination o f histamine-mimicking substances in a sample.

3. Any increase in fluorescence on exposure to light indicates the presence of 

histidine or other amino acids. (Kownatzki et al. 1987)

The major difficulty with histamine analysis in foods is the need to selectively 

extract the compound from the biological matrix and eliminate all possible 

interfering compounds. This is why the sample treatment step prior to the actual 

fluorometric assay is so important. Taylor el al made some efficient and 

improved modifications to the method o f Shore (1971) and that o f Rice el al 

(1975). Firstly the initial extraction o f amines from the food was investigated. 

Methanol proved more efficient compared to 10% trichloroacetic acid (TCA), 

(Lerke and Bell, 1976) and 0.4M perchloric acid (Rice, 1975). Recoveries were 

103, 8 6 % and 43% respectively.

To determine the specificity o f the second organic solvent extraction other 

potentially interfering amines were added to an aqueous phase and n-butanol 

added. Following separation of the phases amines were assayed with 

fluorescamine, (a general amine detection reagent). The experiment showed that 

the method selectively concentrates histamine into the n-butanol phase and 

leaves other amines in the aqueous phase with the exception o f spermidine and 

histidyl-L-leucine but these levels are reduced considerably.

Other important factors are the use o f sodium carbonate in saturating amounts 

as a salt and the presence o f sodium hydroxide. The extraction procedure 

eliminates the need for a chromatographic step that is cumbersome and 

increases the analysis time. (Taylor et al. 1978).
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1.5.2 Thin Laver Chromatography Analysis

Thin layer chromatography (TLC) has been reported as an efficient 

chromatographic technique for amine identification. TLC consists o f migration 

o f a sample extract on silica gel and detection of histamine by various spray 

reagents such as fluorescamine or ninhydrin. A method was devised and used 

for determining the amines tyramine, tryptamine, ethanol amine and histamine in 

pork bellies by Spinelli et al. (1974). The dansylated derivatives were separated 

by a combination o f two solvents in two directions and finally viewed under 

long-wave ultra violet light. Levels were found in the range o f 0.07- 

1.49mg/100g histamine and 0.03-1.27mg/100g cadaverine.

Figure 1.6: Two-dimensional thin-layer separation of dansyl-derivatives of 

various amines.
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SM: Spermine, SD: Spermidine, PUT: Putrescine, CAD: Cadaverine, TRYP: 

Tryptamine, TYR: Tyramine, HIS: Histamine, ETA: Ethanolamine.

Abdel-Monem et al. (1975) successfully identified spermine, spermidine, 

cadaverine and putrescine by this method which appeared as well-defined and 

well-separated spots on both silica gel and alumina plates. The amines were 

derivatised with dansyl chloride and separated using chloro-isopropanol and 

chloro-dioxane-isopropanol as solvents. Confirmation o f the individual amine 

spots was achieved by high-performance liquid chromatography. (Abdel- 

Monem and Ohno, 1975).
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1.5.3 High-Performance Liquid Chromatography (IIPLC)

HPLC is widely used as a method for amine analysis both by UV and by 

fluorescent detection. With the exception of the aromatic amines, most amines 

do not possess any significant chromophores or fluorophores. This necessitates 

the use o f derivitization in order to confer fluorescene or UV activity on the 

molecules. Amines are usually quantified by pre-column or post-column 

derivitization with dansyl chloride (5-(dimethylamino)-l-naphtalene) or o- 

phthaldialdehyde.

The most widely used HPLC detectors are generally not very selective o f highly 

sensitive (UV/vis and refractive index) for trace analysis while others tend to be 

very expensive (Mass spectrometry and infrared). The ideal system would be a 

combination of a general detection system and a sensitive method o f compound 

identification. Most derivitization reactions for HPLC involve the sample or the 

column effluent being mixed with a derivitization solution in off-line or on-line 

(pre- or post-column) procedure before detection.

Fluorescence detection coupled with HPLC offers possibilities to improve 

specificity. Gouygou et al. (1987) used a reverse phase system with pre-column 

derivitization with o-phthaldialdehyde to detect histamine in fish. Extraction of 

histamine from the fish was achieved by TCA extraction followed by 

centrifugation and filtering. The sample pre-treatment is simple and non- 

selective as interfering compounds are eliminated following acidification o f the 

histamine-OPT condensation product. (Shore, 1971a). It was very important to 

choose a mobile phase with a high resolution for the histamine fluorescence 

without quenching the fluorescence. A mobile phase o f 40% acetonitrile in 

water with monosodium phosphate gave good separation in less than 15 

minutes. The detection limit was lOOpg histamine per 20(il loop injection. 

(Gouygou et al. 1987).

Pre-column derivitization with dansyl chloride with reverse phase linear 

gradient elution was used to establish a chemical quality index for canned tuna. 

The index can determine the extent o f putrefaction in fish prior to canning by 

the putrefactive amines. From the results o f fish analysis it was observed that in 

fresh fish the levels of cadaverine, putrescine and histamine were low and 

increased upon decomposition while the opposite was observed for spermine
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and spermidine. These observations formed the basis o f the equation for the

quality index. (Mietz and Karmas, 1977).

Index = histamine + ppm cadaverine + ppm putrescine 

1 + ppm spermine + ppm spermidine

Class 1: 0-1 good

Class 2: 1-10 borderline

Class 3: > 1 0  decomposed

There are several other methods based on derivitization with dansyl chloride for 

the simultaneous determination o f biogenic amines in fish, cheese and beer and 

have reasonably quick elution times o f 24 minutes or less. (Wei et al. 1995, 

Buiatti et al. 1994, Vallé and Malle, 1997 and Vallé and Gloria 1997).

A group o f reagents (polymeric benzotriazoles) are known to derivatize most 

amino acids/peptides rapidly and efficiently and previously were only used for 

amino acid protection and peptide synthesis. Gao et al. (1998) developed new 

polymeric reagents based on the polymeric benzotriazole with an o-acetylsalicyl 

or 9-fluoroenyl labelling group that provided increased UV absorptivity and 

fluorescent properties for derivatized amines. Derivatization is performed off

line (pre-column) at 60°C for only 10 minutes and the limit o f detection is 1 to 2 

picomoles for polyamines using the fluorenyl label and fluorescence detection. 

(Gao et al. 1988).

A drawback in these derivatisation procedures in the analysis o f food samples is 

that many of the derivatization reagents will react toward undesired compounds 

present in the biological matrix, thus necessitating a sample clean-up step or re- 

extraction of the derivatized samples to remove the unreacted reagent. Herraez- 

Hemández et al. devised a detection system based on on-line derivatization with 

9-fluorenylmethyl chloroformate (FMOC), separation by reverse phase 

chromatography and fluorescence detection. The reaction between the FMOC 

and the amines is completed within a few minutes but the total analysis time 

takes approximately 28 minutes, the limiting step being the chromatographic
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separation. The limitation o f the method is that is only responsive to primary 

and secondary amines. (Herraez-Hemandez et al. 1996).

1.5.4 ELISA Analysis

Enzyme-linked immunosorbent assay (ELISA) is a detection system based on 

the binding of an antibody to an antigen and detection using an enzyme label. 

The enzyme acts on a colourless substrate to give a coloured product, which is 

readily detectable.

Figure 1.7: The presence of an antigen is detected using the enzyme- 

labelled antibody. The amount of coloured product is proportional to the 

antigen concentration.
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Research Diagnostics Incorporated (RDI) have developed a kit for the 

quantitative measurement of acylated histamine in food. Sample preparation 

involves the acylation o f histamine to form N-acylhistamine. The kit functions 

as a competitive ELISA, whereby there is competition between a peroxidase- 

conjugated and a non-conjugated antibody for a fixed number o f antibody- 

binding sites (rabbit-anti-histamine). The peroxide conjugated antibody-antigen 

complexes bind to the well of the plates, which are coated with goat-anti-rabbit 

antibodies. Any unbound antigen is then removed by washing. The plates are 

read and the O.D. (complexes bound) is inversely proportional to the histamine
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concentration in the sample, ie: the greater the concentration o f the antigen in 

the sample the lower the amount o f labelled antigen binding to the antibody. 

The sensitivity o f the assay is 0.8|ig/L.

Serrar et al, developed a monoclonal antibody-based ELISA based on the same 

competitive system. In order to obtain antibodies specific for histamine it is 

necessary to provoke an immune response from an animal against the 

compound. However, histamine is a small molecule and alone is not 

immunogenic. It must be coupled to a large immunogenic carrier molecule 

usually a protein to stimulate antibody production. Once the monoclonal 

antibodies (mAbs) were obtained and purified they were retested against 

histamine-protein conjugates, other amines and negative controls to investigate 

their antigenic specificity. It was found that they recognised histamine only and 

showed high affinity to histamine after chemical derivitisation. The lower limit 

o f detection was found to be lOng/ml. (Serrar el al. 1995).

1.5.5 Screening Test for Histamine

This method involves a two step sequential enzyme system and is similar to the 

assay for the detection of decarboxylase activity in dairy-related bacteria 

(Sumner and Taylor, 1989).

1. DAO catalyses the breakdown o f histamine forming H2O2 as a product.

2 . H2O2 is then detected by the formation o f crystal violet from the leuco base in 

the presence of oxidase.

3. Colour formation is read at an O.D. o f 596nm.

Specificity o f the test: DAO also catalyses the breakdown of other amines 

associated with decomposition. The amines spermine and spermidine are found 

to decrease with spoilage and are usually present in non-interfering amounts but 

cadaverine and putrescine increase with spoilage, (Mietz and Karmas, 1977), so 

they may add to positive reactions with histamine in the screening test.

However the procedure would fail to detect any non-histamine type spoilage in 

fish.

Samples are absorbed onto filter paper strips by inserting them into a cut in the 

dorsal are o f the fish for 5 minutes. The strips are then placed into reaction tubes
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for colourimetric detection. The strip results were correlated with a standard 

method o f detection by excising the same fish sample, homogenising and 

analysing by the AO AC fluorometric method. Poor correlation was found which 

was due to a broad range of saturation intensities after 5 minutes on the strips, 

which led to variations in sample size. The uneven distribution o f histamine in 

tuna was also a contributing factor.

To overcome these problems, samples are usually taken from the area o f highest 

histamine content, the gills and a smaller amount o f absorbent is used so that the 

samples can become saturated quickly. (Lerke et al. 1983).

The sensitivity o f the test can be adjusted to test samples with a particular 

histamine level by altering the horseradish peroxidase concentration.

1.5.6 Biosensors

Currently the food industry is not very receptive to biosensor technology but in 

the long run it is hoped that a niche in the market can be developed. Biosensors 

have to compete with other analytical methods in terms o f cost, performance 

and reliability. Chromatography is the method o f choice for multiple sample 

analysis and recently HPLC and GC instrumentation has been improving 

making them more cost effective. The fact that they can analyse several 

compounds simultaneously increases their reliability and speed of analysis. Also 

simple dipstick tests are easier and more user friendly than portable biosensors 

for field testing and these account for why there is only limited acceptance o f 

biosensors in the food industry.

The food industry spends 1.5-2% of its total value sales on quality control and 

appraisal. Recent trends in increased regulatory action and consumer awareness 

about food safety has created a need for reliable and cost effective analytical 

methods. New legislation requires the extensively labelling of all major and 

minor constituents present in the food. (Luong et al. 1997)

The functioning o f a biosensor involves the combination of biochemical and 

electrical interactions. It consists o f a receptor, which is an immobilised, 

biologically responsive material linked in close contact to a suitable transducing 

element.
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The interaction o f the analyte and the biological element produces a 

biochemical signal, which is converted into an electrical response by the 

transducer. (Graham and Moo-Young, 1985). There are many materials that can 

be utilised in biosensors:

• Enzymes

• Microbial cells

• Monoclonal antibodies

• Whole sections o f plant

• Animal tissues

• Organelles

(Turner, Karbue and Wilson, 1987)

The food industry has a need for simple, rapid and inexpensive methods that are 

ideally automated. Process control in food is more complicated than other 

industries due to the complicated biochemical matrices involved. 

Electrochemical sensors allow for the measurement of many substances such as 

those outlined in Table 1.7 (Schaertel and Firstenberg-Eden, 1988).

Table 1.7: Substances determined by enzyme sensors.

Substance Category Examples

Carbohydrates Glucose, Lactose, Starch.

Amino Acids L-arginine, D-alanine.

Alcohols, Phenols Ethanol, Glycerol, Cholesterol.

Gases NH3, H2, S 0 2, NO.

Amines, Amides Urea, Histamine, Creatine.

Inorganic Ions Nitrite, Nitrate, Sulphite.
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In order to be sucessful to industry a biosensor must possess the following 

characteristics:

1. The biocatalyst must be highly specific for the purpose o f the analyte and be 

stable under normal storage conditions.

2. The response should be accurate, precise, reproducible and linear.

3. It should be cheap, small, portable and simple to use.

4. The biochemical reaction should be independent o f physical parameters such as 

pH, temperature and stirring.

(Karube, 1992).

The critical factor for biosensor design is maximal retention o f bioactivity and 

biostability of the biological molecule. By increasing these factors, a more cost 

effective biosensor can be designed to compete with existing analytical 

methods.

The AOAC fluorometric assay, HPLC or TLC has traditionally determined the 

analysis o f biogenic amines in the food industry. However due to extensive 

sample pre-treatment and time consumption, the methods are not as efficient as 

desired.

Biosensors owing to their many advantages have become more and more 

prominent as analytical devices in this industry and much research is being put 

into further applications o f them.

Trimethylamine (TMA) is an important component o f the smell o f spoiled fish 

and so lends itself as a good detection element for such spoilage. A sensor has 

been developed for TMA detection based on an ammonia-sensing electrode, 

which consists of a glass (pH) electrode and a AgCl reference electrode in an 

internal filling solution o f ammonium chloride, neutral salts and a dye. The 

filling solution is separated from the analyte by a gas-permeable, ion-permeable 

membrane. Any dissolved ammonia in the sample diffuses across the membrane 

leading to an increase in pH, which is detected. In order to detect TMA, the 

internal filing solution has been replaced with 0.01M TMA hydrchloride and 

0.04M Potassium chloride. Formaldehyde is added to the sample solution in 

order to decrease the response o f the electrode to ammonia. The analyte 

concentration range is O.l-lOmM. (Chang et al. 1976).
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Ammonia is another compound responsible for the off-flavours and odours 

associated with spoiled fish and the ammonia-sensing electrode is a very 

popular device for these determinations. (Ward el al. 1979)

Using an amine oxidase enzyme as a biological component a biosensor was 

constructed to quantify histamine levels in fish. In a closed reaction cell o f  the 

sensor the following reaction proceeded:

Histamine + O2 + H20  —» imidazoleacetaldehyde + NH3 + H2O2

t
Amine oxidase

This reaction can be followed by several methods including, substrate 

disappearance, oxygen consumption and the production o f ammonia, hydrogen 

peroxide and an aldehyde.

Oxygen consumption was measured by an oxygen sensor following the reaction 

o f amine oxidase with fish extracts. One mole o f dissolved oxygen was 

consumed upon oxidation of one mole of histamine, so based on this 

relationship of consumption histamine could be determined selectively. The 

assay requires no sample pre-treatment to remove interfering compounds which 

allows analysis to proceed rapidly. The enzyme is a fungal amine oxidase, 

which was purified from the mycelium extract o f Aspergillus niger AKU-3302 

strain. The enzyme from this source most rapidly oxidises the aliphatic 

monoamines o f C2-C6, benzylamine, phenylethylamine, histamine and 

agmatine. Aliphatic diamines, C4-C6, are oxidised at a lower rate. (Yamada and 

Adachi, 1971).

The method correlated well with the official AO AC method, (AO AC, 1990) and 

histamine recoveries were 100%. (Ohashi etal. 1994).

Male el al. (1996) also used this amine oxidase system in the development of a 

amperometric biosensor for determining histamine, cadaverine and putrescine. 

The system utilised an amperometric electrode for the detection o f the product 

hydrogen peroxide and was linear up to 6 mM with a lower limit o f detection of
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25|j,M for the three substrates. The enzyme was a diamine oxidase purified from 

porcine kidney, which exhibits specificity towards diamines like cadaverine and 

putrescine but also deaminates histamine. (Male el al. 1996).

The influence o f biosensors will rise in the food and beverage industry in the 

near future. Advances in improving the stability o f the biological component, 

simultaneous analysis o f multiple analytes and mass production o f biosensors 

will in the long run create a more cost-effective analytical device.

The aims o f the thesis are to study the different levels o f  histamine in both tuna 

and five varieties o f Irish cheeses by conventional methods o f detection. These 

methods will be High performance liquid chromatography and fluorimetric 

detection. The production o f histamine by food microorganisms will also be 

monitored over time by the above methods. A new method o f detection utilising 

a group o f compounds called calixarenes will be investigated and its potential 

use as an analytical tool evaluated.
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Chapter 2 
Materials and Methods
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(Taylor et al. 1978b)

Reagents. Sigma: o-phthaldialdehyde (OPT), methanol, n-butanol, diethyl 

ether, sodium carbonate, hydrochloric acid, histamine dihydrochloride.

Food samples were purchased from two separate local retail markets and stored 

at 4° C during the experiment.

The procedure according to Taylor et al. (1978b) was followed with a few 

modifications carried out. Ten grams o f cheese were homogenised with 50 ml o f 

reagent grade methanol for 10 min in a Waring Blender. The blender cup was 

rinsed with methanol and added to the homogenised sample in a 1 0 0  ml 

stoppered volumetric flask. The flasks were heated in a water bath for 30 min at 

60°C and allowed to cool before adjusting the contents to 100 ml with 

additional methanol. The samples were transferred to capped polypropylene 

tubes and centrifuged at 2000 rpm in an IEC PR-6000 centrifuge for 8 min. A 

2 ml portion o f the supernatant was diluted 1 /2 0  (v/v) with deionized water and a 

5 ml aliquot o f this dilution was added to a test tube containing 1ml o f 5M 

NaOH. Saturating amounts o f Na2C0 3 were added and the samples were 

vortexed. Six ml of water-saturated n-butanol were added followed by vigorous 

shaking in order to extract histamine into the organic phase. A 3 ml aliquot o f 

the organic phase was then added to 3ml o f 0. IN HC1 and vortexed well.

The upper organic layer was removed and 2 ml of the acid phase was used for 

the fluorometric assay (Shore, 1971b). A reagent blank was carried out by 

substituting 5 ml o f deionized water in place o f the 1/20 diluted sample before 

proceeding as described. An external standard (5 ml o f a 25 (iM histamine 

solution) was added at this same stage and treated likewise. The standard was 

used to calculate the unknown samples by comparison o f fluorescence 

intensities.

2.1 Fluorometric Assay for Histamine analysis in food



2.2 Fluorometric Assay

A 400 (j.1 aliquot o f 3M NaOH was added to 2 ml o f the acid phase followed by 

100 (il o f 1% (w/v) o-phthaldialdehyde (OPT). The reaction proceeded for 4 

min. exactly and was terminated by addition o f 200 pi 3M HC1.

Fluorescent intensities were read on a Perkin Elmer spectrophotometer with 

excitation and emission wavelengths set at 360 nm and 450 nm respectively. 

The excitation and emission slit widths were set at 10.0 and 5.0 respectively.

2.3 Fluorometric Assay for Histamine production in bacteria

A 5 ml broth culture o f Providencia retgerri 865 was grown overnight and was 

used to inoculate one 100 ml culture o f LB broth and one 100 ml L-histidine 

supplemented culture o f LB broth. A growth curve was constructed by taking 

O.D. readings at 550 nm at regular intervals. Simultaneously samples were 

taken for histamine quantification by a fluorometric method as follows.

A 1.0 ml aliquot o f broth culture was added to 9.0 ml o f methanol and heated at 

60 C for 15min and allowed to cool. 1.0 ml o f the methanol extract was run 

through an ion exchange column (Dowex 1X-8 in the hydroxide form, 80 x 5 

mm). The column resin was prepared as described (AOAC, 1980). The column 

was washed with 35 ml of distilled water and the eluant was collected in a 50 ml 

volumetric flask and the volume raised to 50 ml with distilled water. (Behling 

and Taylor, 1982).

Flistamine content was determined using a fluorometric assay (Shore, 197 lb), 

Column eluant (2 ml) was placed into a test tube followed by 0.4ml o f 3M 

NaOH and the tube shaken. A 100 pi aliquot of 1% (w/v) o-phthaldialdehyde 

(Roth, 1971) was added, mixed and the reaction was let to proceed for 4 min 

exactly. The reaction was stopped by addition o f 200 pi 3M HC1. Fluorescence 

was measured at an excitation wavelength of 360 mn and an emission 

wavelength o f 450 nm (slit widths: excitation 10.0, emission 5.0).
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2 .4  M i c r o b i o l o g i c a l  M e d i a

All media constituents were obtained from Oxoid unless otherwise stated. 

Media were solidified with 1.2% agar No.3 where necessary. Distilled water 

was used in all preparations. Sterility was ensured by autoclaving at 151b/in2 for 

2 0  minutes.

Luria Bertani (LB)

Tryptone lOg

Yeast Extract 5g

NaCl (Sigma) 1 Og

H20 1 Litre

pH 7.5

Differential Plating Medium for Quantitative Detection o f Histamine-Producing 

bacteria.

(Niven elal. 1981)

Tryptone 0.5%

Yeast Extract 0.5%

L-Histidine.2HCl 2.7%

NaCl 0.5%

C aC 03 0 . 1%

Agar 2.0%

Bromocresol purple 0.006%

pH 5.3
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• Providencia retgerri 865 (obtained from NCIMB Aberdeen, Scotland)

• Escherichia coli DH5a (DCUstocks)

• Proteus vulgaris (DCUstocks)

2.5 Bacterial strains

2.6 Differential Plating Media for Quantitative Detection of Histamine- 

Producing bacteria

(Niven etal. 1981)

A loopful of a single bacterial colony from a streaked plate was transferred to 

5ml o f LB broth and grown overnight at 37°C. Decimal dilutions (1 0 1 to 10~9) 

were prepared from the broth by diluting with sterile Ringer’s reagent. 

Duplicate pour plates were prepared for each dilution with the solidified agar 

being overlaid with ~5ml o f the same medium to suppress spreading colonies. 

Plates were incubated for 72 hours at 37°C. Controls o f bacterial free media and 

definite non-histamine producing strains were run in parallel. Plates were 

examined for purple colonies with a purple halo on a yellow background 

indicating positive histidine decarboxylating colonies.
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2.7 HPLC Analysis of Histamine

2.7.1 Derivitisation with Benzoyl Chloride

(Yen and Hsieh,1991)

Reagents: Histamine dihydrochloride, methanol, diethyl ether, sodium 

bicarbonate, ammonium acetate and magnesium sulphate. (Sigma), benzoyl 

chloride (Aldrich), HPLC grade acetonitrile, acetone and Mili-Q water. Sodium 

hydroxide, perchloric acid, toluene, ammonia, sulphuric acid, sodium chloride, 

phosphoric acid, hydrochloric acid.

All analysis was carried out on a Varian liquid chromatograph which consisted 

of a Varian 9012 solvent delivery system, a Rheodyne model 7125 syringe 

loading sample injector, a Varian 9050 variable wavelength uv-vis detector and 

a Hichrom lichrospher RP-18-5 reversed phase column (5|j,m x 12.5cm x 

4.6mm i.d.).

Method

Histamine dihydrochloride (165.7 mg) was dissolved in 10 ml o f de-ionised 

water. This gave a concentration o f lOmg/ml.

To the histamine solution (50 (4,1) an aliquot o f 2M NaOH (1ml) was added, 

followed by the addition o f 10 (j.1 o f benzoyl chloride. The solution was then 

vortexed for 30 seconds and then left standing for a further 20 minutes. 

Saturated sodium chloride (2ml) was then added, followed by extraction with 

4mls o f diethyl ether.
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Chromatographic Conditions

A gradient elution system was employed. The gradient elution program was set 

at 1.1 ml m in 1 at room temperature, starting with a methanol: water mixture 

(55:45, v/v) for 2.5 minutes. The program proceeded linearly to methanol: water 

88:22 (v/v), with a flow rate increasing from 1.1 ml min' 1 to 1.3 ml min ' 1 over

3.5 minutes. This was followed by the same composition and flow rate for 2 

minutes, then decreased over 7 minutes to methanol: water (55:45 v/v) at 1.1 ml 

m in 1. Finally the system was re-equilibrated at methanol: water (55:45, v/v) for 

10  minutes before the next injection.

2.7.2 Derivitisation with Dansyl Chloride

(We ie ta l. 1995)

Reagents:

Sigma. Sodium carbonate, dansyl chloride, histamine dihydrochloride, n- 

butanol, methanol, diethyl ether.

Labscan. Acetonitrile.

The method of analysis is based on a derivatization of histamine samples 

followed by HPLC separation and detection by UV.

Derivatization Reaction

A concentrated solution o f histamine dihydrochloride (16.57 mg/100 mL water 

and diluted 1 /1 0 0  v/v) was prepared.

A 200 ^1 aliquot o f  this solution was placed in a round-bottomed flask to which 

2.0 ml dansyl chloride (10.0 mg/ml acetone) and 3.0 ml o f 4% (w/v) sodium 

carbonate was added. All solutions were freshly prepared before each 

experiment. The flask was foil covered, as the dansyl chloride is light sensitive. 

A blank (containing no histamine) was derivatized along with the standard. This 

solution was placed in a water bath at 40°C with constant stirring overnight. The 

following day, 15.0 ml of MiliQ water was added to the reaction mixture,
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washing the sides o f the flask thoroughly. The solution was then extracted with 

three 5,0 ml portions o f diethyl ether, the ether layers were then combined and 

evaporated using a rotary evaporator set at 60°C. The residue in the flask after 

evaporation was dissolved in  acetonitrile and made up to a volume o f 10ml. 

From this stock solution, other dilutions were made up with acetonitrile (80, 60, 

40 and 20%). A 20 pi sample o f each solution was injected into HPLC (Waters) 

by a fixed loop. A 200 jj.1 aliquot o f  extracted sample was treated in the same 

way as the standards.

Chromatographic Conditions

Separating Column: Inertsil 50DS-2 (250mm x 4.6mm, 5|j,m)

Mobile Phase: Acetonitrile: Methanol: Water (3:10:3)

Flow Rate: 1.2 mL/min

A,max: 254nm
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Chapter Three. 

Fluorometric Method of Analysis
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A simplified fluorometric assay for food analysis, as described by Taylor et al. 

(1978b), was established as the standard method for determining levels of 

histamine in various foods. The method involved extraction o f histamine from 

the biological matrix into methanol followed by protein denaturation and 

precipitation and then further extraction into n-butanol. The organic extraction 

step was selective for histamine and was dependent on the presence o f a salt 

(sodium carbonate), its concentration and the type o f organic solvent used. Prior 

to analysis it was important to assess the specificity and accuracy of the method 

and also to investigate possible interference’s in the assay. The amount of 

histamine that is recovered from the sample clean-up process is an essential 

factor and so spiking samples with known amounts o f histamine should show 

the efficiency o f the procedure. A linear correlation between fluorescence and 

histamine concentration is necessary in order to determine histamine levels 

present in samples and this is demonstrated by Fig. 3.1 which shows a high 

degree o f linearity with a R2 value o f 0.997.

3.1 Introduction

3.2.1 Specificity of Organic extraction for histamine

3.80 ppm solutions of histamine and other amines were prepared with 1 ml 

sodium hydroxide and saturating amounts o f sodium carbonate prior to the 

addition o f n-butanol. Following phase separation the fluorometric assay 

was performed on the solutions and recoveries calculated (Table 3.1). A 

variety o f amines, amino acids and histidine were assayed fluorimetrically 

to show the specificity o f the assay for histamine and to show the 

interference, if  any of other amines. An amino acid solution containing 

lysine, leucine, proline and glutamine were investigated as possible 

interferants in the assay also. (Table 3.3). Both Figure 3.7 and Table 3.3 

show that histidine can be detacted by the fluorimetric assay to some degree 

but a the use o f  ion chromatography can totally eliminate this interference.
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Table 3.1 Recoveries of various amines following butanol extraction.

Solution Concentration
Measured

(ppm)

Recovery

Histamine 3.80 1 0 0 %
Histamine + 
Histidine (a)

3.94 104%

Histamine + 
Histidine (b)

3,91 103%

Histamine, 
histidine, 

putrescine, 
cadaverine, 

glutamine and 
trvptophan. (a)

4.14 109%

Histamine, 
histidine, 

putrescine, 
cadaverine, 

glutamine and 
tryptophan, (b)

4.03 106%

(a) and (b): duplicate analysis

3.2.2 Estimation of interfering compounds in the assay/specificity of the 

fluorometric assay for histamine

Two food samples (canned tuna) were extracted and treated according to the 

method described by Taylor et al (1978b) and subjected to the fluorometric 

assay. The assay was performed with and without the acidification step by 3N 

hydrochloric acid and the results were read fluorometrically. Table 3.2 shows 

the differences in amine levels in tuna samples.

Table 3.2 Levels of amines in tuna with and without acidification of the 

OPT-histamine condensation complex.

+ Acid - Acid
Tuna sample (a) 214.7 ppm 218.0 ppm
Tuna sample (b) 197.4 ppm 199.8 ppm
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Figure 3.1 Linear Range for Fluorometric Assay for Histamine



Table 3.3 Fluorometric Assay on Various Amines and Amino acids

Fluoresence
Cone, (ppm) Histamine Histidine 

(pre. col.)
Histidine 
(post col.)

Cadaverine Tyramine Putrescine Amino acids*

0 0 0 0 0 0 0 0
0.005 0.906 0.182 0 0 0 0 0
0.025 4.693 0.6115 0 0.033 0 0 0
0.050 8.318 1.77 0 0 0 0 0
0.10 19.213 2.771 0 0 0 0 0
0.25 51.563 7.156 0 0.072 0 0 0
0.40 91.268 12.076 0.12 - 0 0 0
0.50 113.853 12.236 0 0.115 0.445 0 0
1.00 - - - 0.121 0 0 0

100.0 - - - 0.362 0 4.02 15.64

* Amino acid solution 
L-Lysine 
L-Leucine 
L-Proline 
L-Glutamine



A detailed study was carried out into histamine levels in Irish produced cheeses. 

The five cheeses, (Cheddar, Cooleney, Brie, Edam and Emmental) were 

analysed over a three week period, before and after their expiry best before 

dates and were purchased from two retail outlets to examine batch to batch 

variation. Analysis was carried out in triplicate and standard deviations 

calculated. Samples were stored at 4°C during decomposition to emulate 

conditions in retail outlets and storage fridges. The results are displayed in 

tabular form (Table 3.4) and as a bar graph (Figure 3.2).

3.3.1. Analysis of Irish Cheeses for Histamine Content

Table 3.4 Histamine Levels in Irish Cheeses with Standard Deviations

C h e e s e A n a l y s i s  1
( m g / 1 0 0 g )

A n a l y s i s  2  
( m g / l 0 0 g )

A n a l y s i s  3  
( m g /1 0 ( ) g )

Cheddar 1* 0.452 ±0.1 0.704 ±0.11 0.539 ±0.02
Cheddar 2 4.31 ±0.22 2.95 ±0.38 0.281 ±0.04
Cooleney 1 0.355 ±0.03 6 .6 8  ±0.58 8.522 ±0.71
Cooleney 2 0.519 ±0.127 3.15 ±0.54 1.758 ±0.12
Emmental 1 1.953 ±0.32 2.28 ±0.96 6.314 ±0.67
Emmental 2 0.986 ±0.19 1.71 ±0.33 5.906 ± 1.31

Edam 1 0.219 ±0.09 0.273 ± 0.023 3.071 ±0.29
Edam 2 2.643 ±0.17 1.892 ±0.14 4.073 ± 0.62
Brie 1 2.912 ±0.12 0.633 ±0.03 0.375 ±0.05
Brie 2 1.847 ±0.22 0.453 ±0.05 0.119 ±0.04

*The numbers indicated after the cheeses represent which outlet they were 

obtained from.

Analysis 1: Carried out 7 days before the expiry date. 

Analysis 2: Carried out on the expiry date.

Analysis 3: Carried out 7 days after the expiry date.
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3.3.2 Spiking of Cheese Samples and Recoveries

A decomposed cheese sample (Emmental) was spiked with a 200 ppm 

histamine standard following homogenisation with methanol and brought 

through the extraction process as described in Chapter 2 (2.1). Recoveries were 

derived by calculating how much o f the 2 0 0  ppm histamine spike was 

detectable in a cheese sample o f known histamine concentration after the 

extraction procedure was carried out, ie. Adding 200 ppm histamine to a 47 ppm 

histamine cheese would yield a 100% recovery if  247 ppm histamine was 

detected. Table 3.5 shows the recovery o f histamine spikes in the cheese 

samples.

Table 3.5 Recoveries of histamine standards from cheese

Cheese Spike 1 Spike 2 Spike 3

Level

(ppm)

47 223.2 238.3 230.2

Recovery

%

100 90.4 96.5 93.2
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Figure 3.2 Bar graph of Histamine Levels in Irish Cheeses over three-week period.

H i s t a m i n e  L e v e l s  in I rish C h e e s e s
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(-7 d a y s )
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(expiry d a t e )

□  Analys is  3 
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3 .3 .3  H i s t a m i n e  A n a l y s i s  i n  c a n n e d  t u n a

Two brands o f canned tuna were chosen for the survey. Samples were obtained 

as with the cheese survey from two different retail outlets to observe batch to 

batch variations and analysis was carried out in triplicate.

Canned tuna was tested on opening (Time =0) and then left in storage at room 

temperature and at refrigeration temperatures to decompose. Further analysis 

was conducted at daily intervals in triplicate.

F i g u r e :  3 .3  A n a l y s i s  o f  H i s t a m i n e  l e v e l s  o v e r  t i m e  o n  C a n n e d  T u n a  a t  

R o o m  t e m p e r a t u r e  s t o r a g e  f r o m  O u t l e t  1 .

(R.T.: Room temperature)
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Figure 3.4 Analysis of Histamine levels over time on Canned Tuna at Room 

temperature storage from Outlet 2.

Histamine Content in Canned Tuna, 
Outlet 2 (Storage RT.)
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Figure 3.5: Histamine Analysis in Canned Tuna at 4°C Storage from Outlet 1.
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Figure 3.6 Histamine Analysis in Canned Tuna at 4°C storage from outlet 2
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T a b l e  3 .6  S p i k i n g  a n d  R e c o v e r i e s  o f  H i s t a m i n e  i n  T u n a

A 200ppm histamine spike was added to three turn samples prior to homogenisation 

and extraction and the percentage o f  histamine spike recovered was determined by 

fluorimetiy.

Fluorescence

Fresh

tuna

71.82

Spike 1

122.33

Spike 2

139.44

Spike 3

124.2

Level

(ppm)
157 351.0 399.0 357.5

Recovery

%
100 97.5 121 99.9
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3.3 Histamine Analysis in other foods

Foods that have reported low histamine levels such as vegetables and fruits were 

analysed in order to show comparative figures to the high histamine levels in 

canned tuna. The vegetables were prepared and extracted in the same way as the 

cheese and tuna samples. Table 3.7 shows that there was no histamine present in 

the samples.

Table 3.7. Histamine levels in fruit and vegetables.

Food Histamine (mg/100g)*

Potato (a) 0

Potato (b) 0

Carrot 0

Apple 0

*(Analysis in triplicate)

3.4 Identification of a Histamine producing micro- organism

A screening method based on the differential media developed by Niven et al. 

(1981) was employed to identify histamine-producing bacteria. The bacteria, 

following overnight growth were diluted to various concentrations and plated on 

the medium and incubated for 72 hours at 37°C. Three bacterial strains were 

grown on this media, with only one bacteria, Providencia retgerri 865 

exhibiting positive purple colonies indicative o f histamine producing bacteria. 

(Table 3.8). P.retgerri was used for further histamine studies, with its optimum 

growth rate established growing on LB media (Figure 3.8). Figure 3.9 

demonstrates where the optimum production of histamine occurs in the lifetime 

of the species, which correlates to Figure 3.8 where exponential growth occurs 

between 2  and 8 hours.

Table 3.8 Micro-organisms showing histamine decarboxylase activity on 

differential plating medium.

Bacterial species Differential media

Providencia retgerri 865 +

Proteus vulgaris -

Escherichia coli -
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F i g u r e  3 .7
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Fig 3.9: Production of Histamine by Providencia retgerri on unsupplemented and 
histidine supplemented LB media.

3.5 Diamine Oxidase Activity
Diamine oxidase was added to histamine samples extracted from tuna at various 

concentrations and at different incubation times to observe the effect o f  its activity.

Table 3.9 Effect of Diamine Oxidase (DAO) on Histamine in tuna.

Sample Histamine (mg/100g)

Tuna (a sample)* 88.4

Tima (b sample)* 6 8 .8

+ DAO (5min) 19.1

+ DAO (15 min) 10.7

+ DAO (overnight) 0 .0

* decomposed canned tuna
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3.6 Discussion

Taylor et al. (1978b) showed water saturated n-butanol to be the best organic solvent 

for the extraction of histamine with a partition coefficient o f 33. However Shore, 

(1971b) suggested that in samples where there are high histidine levels like in the case 

of canned tuna, n-butanol-chloroform (3:2) should be used. However these solvents 

only have a partition coefficient o f 0.04 and may leave the majority o f histamine in 

the aqueous phase and not the desired organic phase. Table 3.1 shows that some 

histidine was carried through into the organic phase (up to 4%) and displayed some 

residual fluorescence. The putrificative amines cadaverine and putrescine were 

analysed in the same way as they are associated with decomposition in fish and may 

be a source o f interference. A solution o f these amines along with glutamine and 

tryptophan gave an average recovery of 109%, again indicating that some of these 

substances were not totally excluded from the butanol phase. However these 

interferences were greatly decreased by the extraction steps and should not interfere to 

any great extent in the food assays.

The fluorometric assay is based on the reaction o f o-phthaldiadehyde with amines at a 

high pH. Upon acidification all complexes are dissociated with the exception of the 

acid stable fluorophore OPT-histamine complex. Therefore it should be possible to 

observe the total amine levels by eliminating the acidification step and comparing 

levels to an acidified sample having only histamine fluorophores. This result would 

again demonstrate whether any other amines are being extracted along with histamine 

in the procedure. It is apparent from Table 3.2 that there was a difference in levels of 

upto 3 ppm (0.3mg/100g) between the acidified and unacidified samples which is the 

amount o f interference coming through the butanol extraction and complexing with 

the OPT.

A broad linear range (0-10 p.g/ml) was achieved for histamine with fluorescence 

detection (Figure 3.1) and both cheese and tuna samples fell within this range 

following dilutions in the sample preparation stages.

Table 3.3 lists a range o f amines and amino acids subjected to fluorescence detection 

after butanol extraction in comparison to histamine. Tyramine and the putrificative 

amines putrescine and cadaverine showed little or no fluorescence even at very high 

concentrations. The amino acid solution showed some activity but only at high 

concentrations ( 1 0 0  ppm) where its fluorescence corresponded to that created by 0.1
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ppm histamine. Histidine exhibited about 10% fluorescence compared to histamine 

but after subjecting it to an ion-exchange column all such fluorescence was 

eliminated.

The results indicate that the assay is specific enough for histamine determination in 

food samples without major interference from other amines and that an ion-exchange 

column is useful in the cases o f high histidine levels that need removing.

Histamine levels in fresh Irish cheeses produced were low in comparison to levels in 

the reported literature, ranging from 0.2 to 4.3mg/100g and proved to be non- 

hazardous for consumption in relation to recommended safe levels (50mg/100g). 

Separate studies would be needed to analyse tyramine levels in case o f a ‘cheese 

reaction’. The extraction of histamine from the cheese matrix was deemed to be 

satisfactory with an average 93.3% recovery o f spiked histamine standards.

Upon putrefaction at refrigeration temperatures a rise in histamine levels would be 

expected to some extent due to microbial decarboxylase activity and this was 

observed in most cases with the exception of Brie and Cheddar from outlet 2. An 

explanation for the drop in levels may be the presence of an oxidase-producing 

fungus. Brie is a soft cheese that contains a mould, which is added for flavour during 

the processing stage. The mould is usually a Penicillium  species and may have the 

capacity to produce amine oxidase, which would deaminate any histamine formed in 

the cheese. As Cheddar contains no such mould the fungus would have had to come 

from an external source. There was evidence of batch to batch variation in the 

samples from each o f the two outlets. Histamine levels in cheddar varied between 0.4 

and 4.3 mg/lOOg and histamine levels in Edam varied between 0.2 and 2.6 mg/lOOg. 

An investigation of the microbial population by isolating decarboxylase positive 

colonies on differential media would act as a further method to confirm the increase in 

histamine levels and identify its source.

From the study it can be concludcd that histamine levels in Irish-produced cheeses are 

well within safety limits although, like all other cheeses, are prone to spoilage and 

histamine production.

Histamine levels in canned tuna from the two outlets ranged from 10 to 20mg/100g, a 

figure that is notably high when reported results indicate that a level o f 2 0 m g/1 0 0 g is 

considered evidence o f decomposition. The FDA hazard action level for histamine in 

tuna is 50 mg/lOOg o f fish (Food and Drug Administration, 1998). This level is 

achieved in canned tuna (both brands) 96 hours after being opened and let putrefy at
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room temperature. From figures 3.3 and 3.4 an increase in histamine levels can be 

seen. Both brands purchased from outlet 1 show similar trends with histamine 

increasing at a steady rate over time. The brands from outlet 2, show histamine 

remaining constant up to 24 hours followed by an increase and further levelling off 

after 72 hours. It must be noted that during the course o f the study the brine, which 

normally acts as a preserving agent, was removed from the tuna samples thus 

allowing spoilage to occur more rapidly. The effect o f storage temperatures is very 

noticeable from the comparison of the trends in figures 3.5 and 3.6 to the previous 

figures. Refrigeration temperatures slow down the rate o f decomposition and this can 

be seen by the small increases in histamine levels. Temperature is critical for the 

growth o f micro-organisms and cold incubation conditions are usually good inhibitors 

of growth. A net increase of 10 mg/100g occurs at 4°C storage compared to an 

increase o f 20-30 mg/100g at room temperature storage. These results verify the 

critical need for cold storage temperatures of fish upon harvesting on board fishing 

vessels and also in prolonging their safe shelf life.

Recoveries of histamine from the fish flesh were very efficient with an average 

recovery o f 106%.

The number o f microbial species with histidine decarboxylase activity within the 

microflora population of a food sample is relatively small in size. A screening process 

involving the utilisation o f the differential plating medium (Niven et al, 1981), would 

be required to distinguish producing from non-producing strains. For the purpose of 

the experiment three bacterial strains were screened for decarboxylase activity, a 

known producer, Providencia retgerri 865 obtained from the National Collections of 

Industrial and Marine Bacteria Limited (NCIMB) and two unknowns Proteus valgaris 

and Escherichia coli DH5a from DCU stocks.

Positive growth of colonies on the differential media was represented by purple 

colonies growing on a yellow media background indicating that histamine has been 

produced from the histidine substrate. This was achieved for the Providencia retgerri 

865 strain at a dilution o f 10 “7 No growth appeared on plates from the other two 

strains even at lesser dilutions (Table 3.8), while decreased dilutions for the 

Providencia strain resulted in a complete colour change of yellow to purple for the 

whole plate.
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Once the histamine producing strain had been identified it was decided to investigate 

the level o f histamine production over a time period by Providencia retgerri 865. The 

bacterial strain was grown on two types o f media, ordinary LB broth and LB broth 

supplemented with histidine to act as a substrate for decarboxylase activity. A growth 

curve was constructed in order to observe the different phases o f  growth especially 

the exponential phase where maximum activity takes place. The lag phase proceeded 

for about 2.5 hours, which is the time it takes for the micro-organism to adapt to its 

surroundings. This was followed by exponential growth until 8 hours. This is the 

period o f maximum activity and growth where the rich supply of nutrients in the 

media is utilised. Eventually the nutrients begin to be exhausted and a balance is 

achieved between growth and cell death where a plateau in growth is obtained called 

the stationary phase.

The bacteria were grown overnight in 5 mis of LB broth and transferred to two culture 

flasks containing LB broth and histidine supplemented LB broth at a dilution of 

1/100. At regular intervals optical density measurements were taken to observe 

growth and also culture extracts were subjected to the fluorometric assay according to 

the procedure by Behling and Taylor, (1982). This involved the use o f an ion 

exchange column to remove histidine and figure 3.7 shows the extreme effectiveness 

o f the technique. Figure 3.8 clearly shows the production o f histamine by Providencia 

retgerri 865 by decarboxylase activity on the histidine substrate as compared to the 

lack o f production when the substrate is absent. The availability of histidine 

supplement in the medium did not influence growth rate.

A rapid increase in histamine levels occurs in the early hours o f growth (0-6 hours) 

corresponding to exponential phase on the growth curve where maximum activity is 

expected with increased growth. Histamine production levels off once stationary 

phase is reached with a level o f just over 200 ppm produced after 24 hours. This level 

corresponds to 1.8 ^moles/ml. Each of these growth stages can be seen from figure 

3.9. A similar level was produced by Citrobacter freundii T3 after 24 hours at similar 

incubation temperatures with levels continuing to rise on further incubation. Tuna fish 

infusion broth was used as the medium for growth in this case and based on the 

weight o f tuna fish used to prepare the broth, it was calculated that a histamine level 

o f 2.5 |amoles/ml was equivalent to 50 mg/100g, which is the FDA Hazard action 

limit for histamine in tuna. (Behling and Taylor, 1982).
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Although a different medium was used in our studies and may not be a true 

representation o f conditions in tuna fish flesh, the species Providencia retgerri 865 

was observed to produce less histamine than some o f the major producers like 

Klebsiella pneumoniae and Proteus morganii. However like these bacteria it was 

capable o f producing histamine in a short period o f time which is o f concern as 

although some fish may look unspoiled in appearance, they may contain significant 

levels of histamine.

Table 3.9 shows the ability o f  the enzyme diamine oxidase to successfully break down 

histamine. In this study histamine was extracted from tuna samples according to the 

method described by Taylor et al. (1978b). Diamine oxidase (20mg/ml) was added to 

the extracted histamine and incubated at 37°C for various time periods (5 min, 15 min 

and overnight). A clear reduction in histamine levels resulted over time with the 

complete elimination of histamine after overnight incubation. Increasing the 

concentration of the commercial enzyme or using a more purified form of the enzyme 

would result in decreasing the time to totally eliminate the histamine levels. This has 

significant implications in the development of enzyme based sensors for histamine 

detection (Bouvrette et al. 1997). Obviously an enzyme that can breakdown histamine 

completely in the shortest time in order to detect one o f the breakdown products is 

essential to the detection system.
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Chapter 4 

HPLC Analysis
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4.1 Introduction

High performance liquid chromatography has been a very popular method for 

the analysis o f biogenic amines (Gouygou et al. 1987, Vallé and Malle, 1996, 

Vallé and Gloria, 1997) and the method o f detection has varied from UV to 

fluorescent detectors. Biogenic amines with the exception o f the aromatic 

amines, do not possess any chromophore or fluorophore, which means that they 

have to undergo derivitisation to render them active.

Two methods o f HPLC analysis were employed for the determination o f 

histamine. The first method involves benzoylating the amino acid groups on the 

amines with benzoyl chloride followed by separation in a methanol:water 

gradient coupled with UV detection. (Yen and Hsieh, 1991). However due to 

the failure o f this method to successfully detect histamine a second method 

according to Wei et al. (1995) was investigated. This method was based on 

derivitisation with dansyl chloride, separation in acetonitrile: methanol:water 

and UV detection. It is capable o f analysing seven biogenic amines 

simultaneously with good sensitivity and selectivity.

Once the method had been successfully adopted and optimised the ability to 

identify and quantify histamine in both standards and food samples was 

examined. The extent o f the correlation between the fluorimetric method and 

the HPLC method for analysis o f histamine in food samples was examined.
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4.2 Results

The results from derivitisation with benzoyl chloride were deemed to be 

inconclusive and shall only be discussed (section 4.4 below).

After derivitisation with dansyl chloride histamine standards were separated on 

a Ci8 column and analysed by UV detection. A number o f peaks emerged and 

based on the linear increase in peak area corresponding to an increase in 

histamine concentration the peak at 11.5 minutes was selected as a possible 

candidate peak for histamine. The peak was also observed in decomposed tuna 

samples. The sensitivity of the detection method was established by repeated 

analysis o f  a lower standard range. Eventually a range o f 0.066 to 0.33|ag/200(j.l 

was determined (Figure 4.3) which corresponded to a range o f 8  to 40 mg/lOOg 

in food samples after allowing for the dilutions in the extraction procedure 

(Taylor et al. 1978b).

Figure 4.1 Standard Curve for Benzoylated Histamine
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Figure 4.2 Chromatogram of Benzoylated Histamine Standard

Figure 4.3 Standard Curve for Dansylated Histamine by HPLC 

determination
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Figure 4.4 Chromatograms for HPLC Dansylated Histamine Standards.
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4.2.1 Verification of Histamine Peak

In order to verify that the peak actually represents histamine a number of 

experiments were undertaken. A tuna sample was spiked with a histamine 

standard (2 0 0 ppm), and brought through the extraction procedure and histamine 

was determined by HPLC analysis. In a similar way the effect of diamine 

oxidase (lOmg) on this peak was investigated.

Figure 4.5 Histamine Spiked Tuna Sample
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Figure 4.6 C hrom atogram  showing histam ine peak in (a) tuna and (b) 

tuna treated with diam ine oxidase.
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4.2.2 Correlation of HPLC analysis with the Fluorometric Assay.

A tuna sample was divided into two portions, one part spiked with histamine 

(200mg) and the other left untouched. Analysis on the individual portions was 

to be carried out both by the fluorometric assay and by HPLC analysis. Analysis 

was carried out in duplicate. Table 4.1 shows the comparative results.

Table 4.1 Comparison of Histamine levels in Tuna by HPLC and 

Fluorometric analysis

Sample Histamine 
(mg/1 OOg) 

Fluorometric
Assay

Histamine 
(mg/1 OOg) 

HPLC Analysis

*Tuna 1 90.38 89.88

*Tuna 2 91.22 96.04

Spiked Tuna* 263.46 121.04

* Decomposed canned tuna

4.4 Discussion

The chromatogram from the analysis o f  histamine derivitised with benzoyl 

chloride showed far too many peaks so it was decided to try to improve the 

extraction technique in order to achieve a cleaner chromatogram. Derivitisation 

was allowed to proceed for 1 hour instead o f twenty minutes and the aqueous 

phase was extracted 2 x 2  times with diethyl ether. Three main peaks were now 

observed, 6.08, 7.08 and 7.39 minutes. A blank was run and the only significant 

peak occurred at 7.4 minutes indicating that this is not an analyte peak but 

probably due to benzoyl chloride.

The most significant peak resulting from histamine standard injections occurred 

at 7.01 minutes and a standard curve (Figure 4.1) indicated that this peak was 

that o f histamine with a R2 value o f 0.9396 which is indicative o f linearity. It 

was thought that the linear response might have been improved by using an 

alternative to diethyl ether in the extraction, as volatile losses were thought to 

have been a potential source of error. Hexane was tried as an alternative but
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proved to be a very poor extracting solvent with respect to the benzoyl ated 

histamine. Butanol was considered but owing to its high boiling point (117°C) it 

would not have been compatible with the evaporation step. As no substitute was 

found, diethyl ether was used for further investigations. It was found that many 

of the interfering peaks could not be successfully removed so it was decided that 

it would be more advantageous to achieve good separation in the presence o f 

these interferences than to eliminate them from the analysis altogether. The poor 

separation of the histamine peak at 7.08 minutes was slightly improved by 

making the mobile phase more polar but two shoulders could still be observed 

on the analyte peak (Figure 4.2). Increasing the polarity o f the mobile phase 

further did not improve the separation. The pH o f the mobile phase was adjusted 

to pH 4 and the gradient run was changed such that the program proceeded 

linearly to 70:30, methanol: water. This improved separation but baseline 

resolution was not being observed. The mobile phase was increased to 65:30:5, 

methanol:water:acetonitrile and the pH dropped further but no improvement in 

resolution occurred and peak tailing was becoming evident. It was decided that 

baseline resolution would be difficult to achieve. The method could possibly be 

used if  peak heights were used, but problems may be encountered whereby the 

interference peaks may swamp the signal at the retention time o f histamine. This 

could result in a very high detection limit. Quantitation would be difficult based 

on peak areas owing to the poor separation achieved.

Analysis o f dansylated amines proved to be less complicated and more accurate, 

but analysis time was prolonged due to the overnight derivitisation procedure. 

Chromatograms were clearer with relatively few peaks observed. Figure 4.4 

shows the range of peaks obtained from the analysis o f histamine standards and 

the peak at 11.5 minutes was postulated to be that o f histamine. From the 

injection of a range o f histamine concentrations a standard curve was 

constructed based on a retention time of 11.5 minutes and a linear response was 

found with a R2 value o f 0.9967. This was not conclusive evidence that the peak 

at 11.5 minutes was that o f histamine, as an increase in peak area was observed 

with the peak at 9.5 minutes. Spiking a tuna sample with a known amount of 

histamine would lead to an increase in peak area in the identifying peak. From 

Figure 4.5 a notable increase in height/area is seen in the peak eluting at 11.5
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minutes while the peak at 9.0 minutes remains unchanged. Further confirmation 

is achieved through treating a tuna sample with the enzyme diamine oxidase, 

which due to its activity on histamine results in a corresponding decrease in 

peak height at 11.5 minutes. (Figure 4.6). It is interesting to note that a decrease 

in peak height is also associated with the 9.0-minute peak, that aids in its 

identity. As it is subject to deamination by diamine oxidase, it therefore must be 

a diamine, which has passed into the organic layer during the extraction 

procedure. The figures in Tables 3.1 and 3.3 that identify the possibility o f other 

amines or amino acids being selected to some degree by the extraction 

procedure suggest that the identity o f the diamine may be cadaverine or 

putrescine. However the peak is also present in chromatograms o f histamine 

standards which exclude the possibility o f other diamines being present unless 

contamination o f the stock histamine has occurred which is unlikely. A new 

stock of histamine was analysed with the same resulting chromatograms. The 

peak therefore is likely to be due to some component in the extraction or 

derivitisation procedure. A blank was derivitised according to procedure and the 

resulting chromatogram showed a large peak at 2.5 minutes, this is either the 

dansyl chloride itself or 5-dimethylaminonaphthalene-l-sulfonic acid, which is 

a hydrolysis product o f dansyl chloride. (Hui and Taylor, 1983).

Table 4.1 compares histamine levels in tuna as detennined by the two methods. 

The methods compare favourably with a 0.56% error between methods for 

sample 1 and a 5.02% error between methods for sample 2. However, although 

the fluorometric assay confirmed the spike with 86.5% o f the 200mg detected 

the HPLC method failed to do so to such an extent. This may be as a result o f 

the spike being much greater than the linear range which measures from 0-4.2 

mg/lOg i.e.: 0-4.2mg in the 100ml methanol extraction step where the spike is 

added. This overloading would account for the non-detection of the spike.

Both methods work well in this study of histamine but the HPLC method would 

prove to be more beneficial elsewhere as it has the ability to simultaneously 

detect several biogenic amines. In terms o f analysis time the fluorometric assay 

has a distinct advantage over the HPLC method which requires overnight 

derivitisation. However the assay does not provide rapid analysis of analyte or 

high sample throughput needed in the food industry.
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Chapter 5 

Histamine Detection by Novel Methods
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I

5.1 Introduction

Nitrophenylazophenol cailx[4]arene belongs to a group o f compounds called 

chromogenic calixarenes that have the property o f upon complexation with lithium 

and to a lesser extent sodium, in the presence of a base undergo a change in 

absorption. A colour change o f yellow to red corresponding to a wavelength shift 

from 380 to 520nm. Colour generation arises from the deprotonation o f the acidic 

chromophore (-COH) attached near the ligand polar cavity. A proton acceptor is 

required for the colour formation, which cannot procced just by the formation of the 

metal ligand complex itself.

Equation 1: L-COH + M* «■ LM+ + COH 

Equation 2: L-COH + M+ + B o  LM* + CO + BH+

No deprotonation occurs in the absence of a base (equation 1) while equation 2 shows 

deprotonation o f the acidic chromophore. ( McCarrick et al. 1994 ).

Figure 5.1 The structure of the chromogenic ionophore, nitrophenylazophenol 

calix[4]arene used in this study.
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Figure 5.2 Representation of the deprotonation of lithium nitrophenylazophenol 

calix[4)arene complex as a result of the basic nature of ammonia gas.

By complexing the metal with the ligand it is now possible to determine the presence 

o f a base by observing the generation of a colour change (equation 2 ), which is the 

procedure by which McCarrick et al used to detect trimethylamine (TMA).

TMA is a degradation product o f bacteria in marine fish after death and is often used 

as an indicator of spoilage in fish. Previous methods of detection ranged from 

colourimetric methods to gas chromatograpic analysis involving either elaborate 

handling or the need for instrumentation. The use of calixarenes as a non-instrumental 

indicator system that responds rapidly to volatile amines would benefit the food 

industry.

The calixarene complexes were immobilised onto filter discs and a colour change was 

generated on exposure to the gaseous amine. The detection limit ranged from 0.02 to 

30 ppm and the reaction time was under 2 minutes. (McCarrick et al. 1994).

The ability o f this compound to detect gaseous TMA led Grady et al to investigate the 

effect o f ammonia gas (another volatile base) on a poly (vinyl chloride), PVC, 

membrane which incorporated the nitrophenylazophenol calix[4]arene ligand. The 

sensor configuration employed in this study was based on evanescent wave
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interactions between guided radiation in an optical fibre and the calixarene 

immobilised on the core o f the optical fibre. The characterisation system consisted o f 

mass flow controllers which allowed known concentrations o f ammonia to be passed 

over the optical fibre, a white light source and an Ocean Optics Spectrometer to 

collect the light from the fibre and disperse it to detectors.

Figure 5.3 The absorbance spectra of the PVC coated fibre with the calixarene 

for the addition of different ammonia concentrations.

It was possible to alter the sensitivity o f  the calixarene membrane to ammonia by 

varying the lithium/ligand mole ration or by changing the metal ion from lithium to 

potassium. The sensor was able to detect the ammonia gas at very low levels (10 

ppm). (Grady et al. 1997).

The ability o f this system to detect ammonia gas at low levels prompted an 

investigation o f its suitability in detecting endogenous diamines and monoamines in 

food and those produced by micro-organisms. An amine oxidase based system 

coupled to the ammonia-sensing sensor would provide a simple and efficient method 

for the detection o f amines.
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5.2 Results

A crude sensor based on the amine oxidase-caiixarene detection system was designed. 

An ammonia source (the reaction o f diamine oxidase and a substrate or pure 

ammonia) was enclosed by a gas permeable teflon seal and the calixarene complex 

was immobilised onto a filter disc and placed the other side o f  the teflon membrane. 

The whole system was enclosed with non-permeable parafiim.

Figure 5.4 Schematic diagram of the detection system.

Para film

Teflon.

Caiixarene

.Substrate + Enzymi

Slide

A number of different conditions were investigated in order to achieve a colour 

change by the calixarene, these included pH, temperature, substrate and enzyme 

concentrations and the presence/absence o f moisture.

Tabie 5.1 Conditions for coiour generation in calixarene.

pH Moisture Heat Time Colour

8.4 Yes \ T _
IN O - yellow

8.4 No No - yellow

10.3 No No - yellow

10.3 Yes X T _
XNU 15 mins Red

10.3 No Yes 45 mins Orange

10.3 Yes Yes 15 mins Red

Substrate: 100|il o f ImM  histamine dihydrochloride 

Enzyme: 40 ,̂1 5mg diamine oxidase = u.056 Units

74



Table 5.2 Controls for calixarene colour generation.

Control 

Aqueous ammonia

Colour

Red

Histamine only Yellow

Diamine oxidase only Yellow

T a b l e  5 .3  L e v e l  o f  h i s t a m i n e  d e t e c t a b l e  b y  c a l i x a r e n e .

Histamine 

0.5 mM

Time 

12 hours

Colour

Orange

0.25 mM 48 hours Red/orange

0.1 mM 48 hours Orange

0.05 mM 48 hours Orange

0.01 mM - Yellow

F i g u r e  5 .5  C o l o u r  G e n e r a t i o n  o n  C a l i x a r e n e  d o p e d  f i l t e r  d i s c s .

A .  G a s e o u s  b a s e  a b s e n t B .  G a s e o u s  b a s e  p r e s e n t



Table 5.4 Colour generation from a positive histamine-producing bacterial 

species with the calixarene-amine oxidase system.

Substrate and Enzyrae Colour

Providencia retgerri 865 + Diamine 

oxidase

Red

Providencia retgerri 865 - Diamine 

oxidase

Red

Histamine was extracted from cheese samples according to Taylor et al. (1978b) and 

treated with and without diamine oxidase. The samples were applied to the crude 

sensor as shown in figure 5.4. In most samples the red colour was generated 

regardless of diamine oxidase outlining the difficulties posed by background 

ammonia. However in one cheese sample colour was only seen after the addition o f 

the enzyme which indicated that the system detected ammonia as a result of the 

oxidation of histamine in the food sample.

5.3 Discussion

The reaction of an amine with an oxidase enzyme yields a product o f ammonia and in 

this case histamine is reacted with diamine oxidase. The chromogenic calixarene, 

which has been immobilised onto a filter paper disc, undergoes a colour change from 

yellow to red on exposure o f ammonia gas. The reaction between enzyme and 

substrate produces ammonia but in the aqueous phase and so in order to cross the 

teflon barrier the ammonia must be encouraged to enter into the gaseous state. 

Ammonia was encouraged to cross the membrane in a number o f ways. Firstly, 

knowing that ammonia is a volatile base, heat was applied, then moisture was added 

to the calixarene disc on the opposite side o f the reaction to force ammonia across and 

also by increasing the pH the NH4  molecule is deprotonated forming NH3 gas.

Firstly no colour change was observed at a pH o f 8.4 even at 44°C and the presence of 

moisture. The pH was raised to 10.3 for the remainder o f the experiment, as it proved
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successful in producing a colour change. The substrate used waslOOul o f ImM 

histamine and the enzyme quantity was (40ul) 5mg.

The trial was carried out at 44°C at pH 10.3 and using the above enzyme and substrate 

values but with no added moisture. A slight colour change was observed after 60 

minutes.

The best reaction occurred at a pH of 10.3, with added moisture and no heat was 

needed. A red tinge was observed after about 15 minutes.

Table 5.2 lists the controls used in order to verily that the calixarene could detect 

ammonia and secondly that the substrate-enzyme reaction was the unique ammonia 

source.

Both the histamine and enzyme on their own could not produce a colour change.

The sensitivity of the system was investigated by finding the lower limit o f detection 

for histamine. With 0.5 mM histamine as substrate a red/orange tinge was observed 

around the edges of the calixarene disc after 60 minutes. After 12 hours an orange 

tinge was seen over 90% o f the disc and a fully developed red colour produced after 

24 hours. At levels o f 0.05 mM histamine an orange colour developed after 48 hours 

but very little colour change was observed at levels o f 10|jM.

Lower limits o f detection can be obtained and hence increasing sensitivity by altering 

the lithium-ligand mole ratio. (Grady et al. 1997).

Provedencia retgerri 865, a positive histamine producing strain identified in Chapter 

3 with a differential media was grown in histidine supplemented LB broth and a 

culture fluid extract was obtained according to Behling, A.R. et al. (1982).

This fluid was examined using the crude calixarene-amine oxidase sensor. A colour 

change occurred both in the presence and absence o f diamine oxidase, which meant 

that a gaseous base was been generated from another source. The culture was 

examined for urease activity by streaking out a loopful o f the culture on a urease 

slope. The slope, yellow in its uncontaminated form turned to red indicating that the 

culture was positive for urease activity. Two controls, Proteus vulgaris and 

Escherichia coli were also streaked onto the slopes and a negative result was observed 

with the slopes remaining yellow. Urease is an enzyme present in microorganisms 

which hydrolysis urea, producing ammonia. This would explain the change in colour 

o f the calixarene in the absence o f diamine oxidase in the culture fluid extract. 

Screening for a positive histamine producing bacterial species with negative urease
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activity would yield an ideal microorganism to test with the sensor system. However 

the floral content in food is not o f a homogenous nature and may include several 

microorganisms that possess this urease activity. This background level o f ammonia 

present in the food matrix represents a difficulty in the detection o f ammonia from 

amine oxidation.

The solution to the problem is to use a differential measurement o f histamine in food, 

firstly without an enzyme added which would represent any background ammonia and 

secondly after addition o f an oxidase, so only ammonia produced as a result o f the 

enzyme activity on amines present would be detected. The experiment described here 

includes the lengthy extraction procedure in isolating histamine so this would not be a 

solution to a rapid and efficient method of analysis. For an ideal detection system the 

enzyme would have to be applied directly to a food sample and the evolution o f 

ammonia monitored from a difference measurement.The system also would have to 

be in an enclosed environment as the calixarene is very sensitive and may be 

influenced by contamination, a problem experienced in one o f the laboratories.

It was found that the specific activity o f commercial enzyme used in the study was 

very low, 0.14 units/mg solid (1 fimol putrescine oxidised/hour at 37°C). Using the 

more conventional unit definition (pmol/min), the specific activity would be 0.0023 

units/mg solid. Male et al. (1996) cited that for the development o f an amperometric 

biosensor for diamines with a satisfactory response, sensitivity and detection limit, the 

enzyme must have a specific activity o f about 1 unit/mg solid. This necessitates the 

need for purification of the enzyme from a source such as porcine kidney or the 

fungus Aspergillus niger. Already in existence are several biosensors capable of 

measuring histamine either by detecting the product o f an amine oxidase reaction, 

hydrogen peroxide (Male et al. 1996), measuring the rate of oxygen consumption by 

the same enzyme reaction (Ohashi et al. 1994) and detecting gaseous trimethylamine 

directly using the nitrophenylazophenzl calix[4]arene (McCarrick et al. 1994).

The detection system used in this study is based on the same calixarene used by 

McCarrick et al. (1994) but is used to detect another product o f the amine oxidase 

reaction with biogenic amines, ammonia. The sensitivity o f the calixarene offers great 

potential in a detection system and with more investigations may be eventually used 

for histamine detection in the food industry.
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